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Abstract 

Efficient feedback control algorithms based on optimal and robust control theories 
have been formulated and tested in direct numerical simulations of turbulent channel 
flow. The optimization technique used is based solely on the equations governing the 
fluid flow and variations of a mathematical statement of the control objective, without 
the heuristic procedures normally used to determine effective flow control algorithms. 
The control algorithms tested are shown to be extremely effective, and a host of new 
ideas for the determination of simple, implementable, effective control rules for turbulent 
flows have been proposed and are currently still under investigation. 

The problem of transition control via optimal and robust techniques has also been 
studied to draw parallels between the linear and nonlinear theories on problems of signif- 
icant interest in fluid mechanics. Results on this problem have also been quite good and 
clearly demonstrate how the control theories are related. With this insight, an important 
extension of the concepts of robust control theory to nonlinear problems has been made. 

Accomplishments 

As a linear "warm-up" project, optimal and robust control techniques were used to 
effectively control small, two-dimensional, linearly unstable perturbations to a laminar 
plane channel flow at Re = 10,000. The outcome was control rules based on wall- 
information only which were highly effective at stabilizing the flow system, and is dis- 
cussed in Part A: Optimal and robust control of transition. 

The application of control theory to the nonlinear problem of turbulence is, of course, a 
much greater challenge. The model problem we consider is turbulent flow in a plane chan- 
nel with blowing and suction distributed over the walls (as an idealization of boundary 
forcing by discrete MEMS actuators), as illustrated in figure 1. In the case of nonlinear 
phenomena such as turbulence, iterative approaches must be used based on local lin- 
earizations of the flow state. It was also found that optimizations must be performed 
over finite time intervals which are sufficiently long to accurately reflect the dynamical 
evolution of the near-wall flow. After some difficulty, an extremely effective implementa- 
tion of the optimal control technique was tested which reduced the drag of a ReT = 100 
channel flow by approximately 50%. This far exceeds what is possible using heuristic 
techniques in the same flow. The calculations also illustrate the sensitivity of important 
integral flow quantities (such as drag) in a particular flow realization to small modifica- 
tion of the control forcing; thus, a valuable new tool has been developed which may be 
used to identify coherent turbulent structures responsible for important flow characteris- 
tics and, more importantly, where these structures are most sensitive to control forcing. 
Results are discussed in Part B: Optimal control of turbulence. 

Comparison of the approaches discussed in Parts A and B led to an understanding 
of how the concepts from linear robust control theory (i.e. Hoo) may be extended to 
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(a) Visualization of turbulent channel flow at ReT — 180. Shaded regions indicate coher- 
ent structures of the near-wall turbulence. Flow is from, left to right, walls are dark. 
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(b) Top view of lower wall, which is covered with sensors and actuators in one possible 
configuration. 

FIGURE 1. The model problem studied in this work is turbulent flow in a plane channel. Small 
amounts of blowing and suction will be applied through the computational equivalent of closely 
spaced holes drilled in the walls in response to these turbulent motions in a manner which 
reduces drag. This is a (very rough) approximation of the eventual physical implementation 
illustrated in (b). 

nonlinear problems in a consistent manner. System robustness is achieved, essentially, 
by playing the "devils advocate" and attempting to find the "best" feedback control 
in the presence of a small component of the "worst-case" disturbance forcing the state 
equation. This type of forcing leads to controls which are less prone to cause instability in 
the system in the presence of unmodelled disturbances at the price of a slight degradation 
of performance for the nominal {i.e. undisturbed) plant. Such an approach is easily added 
to the optimal control algorithm discussed in Part B, and is put in a rigorous framework 
in Part C: Robust control of turbulence. 

The final, and perhaps most important, result of this project is the development of a 
technique with which simple, implementable control rules may be rigorously optimized 
with similar methods. The control rules under consideration in this portion of the work 
are based on flow information which may be obtained with flush wall-mounted sensors, 
and determine via simple feedback rules the wall-normal component of the fluid velocity 
distributed on the walls. The techniques of optimal and robust control theory are used 
simply to optimize the unknown coefficients in these feedback rules. This work is still 
under investigation, and is discussed in Part D: Optimization of practical feedback 
rules for turbulence control. 
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PART A. 

Optimal and robust control of transition 

Optimal and robust control theories are used to determine feedback control rules that 
effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (un- 
steady blowing/suction) with zero net mass flux is used as the control. Control algo- 
rithms are considered that depend both on full fiowfield information and on estimates of 
that fiowfield based on wall skin-friction measurements only. The development of these 
control algorithms accounts for modeling errors and measurement noise in a rigorous 
fashion; these disturbances are considered in both a structured (Gaussian) and unstruc- 
tured ("worst case") sense. The performance of these algorithms is analyzed in terms 
of the eigenmodes of the resulting controlled systems, and the sensitivity of individual 
eigenmodes to both control and observation is quantified. 

1. Introduction 
The behavior of infinitesimal perturbations to simple laminar flows is an important 

and well-understood problem. As the Reynolds number is increased, laminar flows often 
become unstable and transition to turbulence occurs. The effects of the turbulence 
produced in such flows are very significant and often undesirable, resulting in increased 
drag and heat transfer at the flow boundaries. Thus, a natural engineering problem is 
to study methods of flow control such that transition to turbulence can be delayed or 
eliminated. 

Transition often occurs at a Reynolds number well below that required for linear in- 
stability of the laminar flow. Orszag & Patera (1983) demonstrate that finite amplitude 
two-dimensional perturbations can highly destabilize infinitesimal three-dimensional per- 
turbations in the flow. Butler & Farrell (1992) show that the non-orthogonality of the 
eigenmodes of subcritical flows implies that perturbations of a particular initial structure 
will experience large amplification of energy before their eventual decay, and suggest that 
such amplification can sometimes lead to flow perturbations large enough for nonlinear 
instability to be triggered. Such nonlinear instabilities can lead to transition well below 
the critical Reynolds number at which linear instability occurs. Results such as these 
have renewed interest in the control of the small (linear) perturbations, as the mitigation 
of linear perturbations also lessens the potency of these nonlinear "bypass" mechanisms. 

A firm theoretical basis for the control of small perturbations in viscous shear flows 
is only beginning to emerge. An important step in this direction is provided by Joslin 
et al. (1995) and Joshi, Speyer, & Kim (1996), who analyze this problem in a closed- 
loop framework, in which the dynamics of the flow system together with the controller 
are examined. Joslin et al. (1995) apply optimal control theory to a problem related to 
the one presented here; in their approach, the control is determined through an adjoint 
formulation requiring full fiowfield information. Joshi, Speyer, & Kim (1996) consider 
essentially the same problem analyzed in this paper, and show that a simple constant 
gain feedback with an integral compensator may be used in a single-input/single-output 
(SISO) sense to stabilize the flow; a single output (the appropriate Fourier component of 
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the streamwise drag) is multiplied by some scalar K and summed with a reference signal 
to determine the corresponding component of the control velocity. This proportional 
approach is a special case of a class of proportional-integral-derivative (PID) controllers, 
which combine terms which are proportional, integrals, and derivatives of a scalar output 

of a system. 

The present work extends these analyses to rigorously account for state disturbances 
and measurement noise. A two-step control approach is used. First, a state estimate 
is developed from a (potentially inaccurate) model of the flow equations, with correc- 
tions to this state estimate provided by (noisy) flow measurements fed back through an 
output injection matrix L. This state estimate is then multiplied by a feedback matrix 
K to determine the control. Potentially, this approach can yield better results than a 
PID controller. In comparison to the PID approach, the present approach has many 
more parameters in the control law (specifically, the elements of the matrices K and L), 
which are rigorously optimized for a clearly defined objective. In this manner, multiple- 
input/multiple-output (MIMO) systems are handled naturally and the controller is cou- 
pled with an estimator which models the dynamics of the system itself. 

Though a PID approach, such as that of Joshi, Speyer, & Kim (1996), is sufficient to 
stabilize the present system, it is the authors' judgement that application of modern 
control theory to the same problem is a timely exercise. Many problems in fluid me- 
chanics, especially those involving turbulence, are dominated by nonlinear behaviour. 
In such problems, the linear analysis performed in this paper is not valid. However, 
optimal control approaches, which use full state information, may still be formulated 
(Abergel & Temam 1990) and performed (Moin & Bewley 1995) with impressive results. 
In order to make such schemes practical, one must understand how to account for distur- 
bances in a rigorous fashion and how to estimate accurately the necessary components 
of the state (for instance, the location and strength of the near-wall coherent structures) 
based on limited flow measurements. The current paper makes these concepts clear in 
a fluid-mechanical sense, albeit for a linear problem, and thus provides a step in this 

development. 

The controllers and estimators used in this work are determined by application of %2 

and Hoc approaches. These techniques have recently been cast in a very compact form 
by Doyle et al. (1989), and are well suited to the current problem, in which the issue 
of interest is the ability of a closed-loop system to reject disturbances to a laminar flow 
when only a few noisy measurements of the flow are available. The discussion presented 
here will involve some tools seen often in the controls literature, such as block diagrams, 
which are not in common use by the fluids community. Such tools were included only 
after careful deliberation; it was concluded that these powerful tools are essential in 
making this development clear, and are thus described in detail when used. 

In §2, we derive the governing equations for the present flow stability problem and cast 
these equations in a standard notation, which makes subsequent application of control 
theory straightforward. In §3, the control problem is analyzed in terms of the controlla- 
bility and observability of each individual eigenmode of the system developed in §2. In 
§4, the control approach developed in Doyle et al. (1989) is summarized and applied to 
the present system. In this control approach, two Riccati equations describe a family of 
Hz and Hoc controllers, which take into account structured (Gaussian) and unstructured 
("worst case") disturbances. Results of these approaches are presented in §5, and §6 
presents some concluding remarks. 
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2.  Governing equations 
This chapter derives the equations governing the perturbations to a laminar channel 

flow and casts them in a form to which standard control techniques may be applied. This 
familiar discussion is presented to precisely define the control problem under considera- 
tion. Readers interested only in how the control techniques are applied are advised to 
proceed directly to §3. 

2.1.   Continuous form, of flow equations 

Consider a steady plane channel flow with maximum velocity UQ and channel half-width 
8. Non-dimensionalizing all velocities by Uo and lengths by 5, the mean velocity profile in 
the streamwise direction (x) may be written U(y) = l-y2 on the domain y £ [—1,1]. The 
equations governing small, incompressible, three-dimensional perturbations (u,v,w,p) to 
the mean flow U are given by linearized Navier-Stokes and continuity 

Ü + U-^-u + U'v = -^ + 4- Au (2.1a) 
ox ox      Re 

(2.1b) 

(2.1c) 

(2.2) 

where A = d2/dx2 + d2/dy2 + d2/dz2 is the Laplacian, Re = UoS/v is the Reynolds 
number, v is the kinematic viscosity, dot (') denotes d/dt, and prime (') denotes d/dy. 
A single equation for the normal component of velocity v, found by taking the Laplacian 
of (2.1b), substituting for Ap from the divergence of (2.1), and applying (2.2), is 

Av=( -U-^-A + U"-^- + A(A/Re)}v. (2.3a) 
I        dx ox i 

The equation for the normal component of vorticity w = du/dz - dw/dx, found by 
subtracting d/dx of (2.1c) from d/dz of (2.1a), is 

d> = {-U'-^}v+ {-U-^ + A/Re} u. (2.3b) 

As the domain is homogeneous in the x and z directions, we may Fourier transform the 

solution such that 

v(x,y,z,t) =  ^2 v(kx,y,kz,t) e-x.p[i(kx x + kz z)] 

kx,K 

u(x,y,z,t)=  ^2 ü(kx,y,kz,t)exp[i{kxx + kzz)]. 
k„k, 

As the various Fourier modes are orthogonal and equations (2.3a) and (2.3b) are linear, 
the solution for each wavenumber pair (kx,kz) is decoupled and obeys the equations 

Av = {-ikxUA + ikxU" + A(A/Re)} v (2.4a) 

Ü  = {-i kz U'} v + {-i kx U + A/Re} w, (2.4b) 

where the hat accents (") have been dropped for notational convenience and the Laplacian 
now takes the form A = d2/dy2 - k\ - k\. Equation (2.4a) is the (fourth order) Orr- 
Sommerfeld equation for the wall-normal velocity modes, and (2.4b) is the (second order) 
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equation for the wall-normal vorticity modes. Note the one-way coupling between these 
two equations. Also note that, from any solution {v,w), the values of u, w, and p may 
be extracted by manipulation of the above equations into the form 

kx — kz w ) (2.5a) 
kl + kl V     dV 

kz^-kxw) (2.5b) 
kl + k2

z \    dy 

Ap = -2ikxU'v. (2.5c) 

Control will be applied at the wall as a boundary condition on the wall-normal component 
of velocity v. The boundary conditions on u and w are no-slip (u = w = 0), which implies 

that Lü = 0 and (by continuity) dv/dy = 0 on the wall. 

In this development, it is assumed that an array of sensors, which can measure stream- 

wise and spanwise skin friction, and actuators, which provide wall-normal blowing and 
suction with zero net mass flux, are mounted on the walls of a laminar channel flow. 
It is also assumed that a sufficient number of sensors and actuators are installed such 
that individual Fourier components of wall skin friction and wall transpiration may be 
approximated, and the analysis is carried through for a particular Fourier mode. 

2.2. Discrete form of flow equations 

The continuous problem described above is discretized on a grid of N + 1 Chebyshev- 
Gauss-Lobatto points such that 

yi = cos(nl/N) iorO^l^N. 

An (N+ 1) x (iV+ 1) matrix V may be expressed (Canuto et al. 1988, eqn. 2.4.31) such 
that the derivative of u with respect to y on the discrete set of N + 1 points is given by 

J = $iu> and W" = @OJ', 

where the prime (') now indicates the (partial) derivative of the discrete quantity with 
respect to y. The homogeneous Neumann boundary condition on v is accomplished by 
modifying the first derivative matrix such that 

Differentiation of v with respect to y is then given by 

v' = 9v, v" = 3$v', v'" = @v", and        v"" = 9v'". 

With these derivative matrices, it is straightforward to write (2.4) in matrix form. 
This is accomplished by first expressing the matrix form of (2.4) on all N +1 collocation 
points such thatf 

v — Cv (2.6a) 

w = Cu + 5w, (2.6b) 

where C, C, and <S are (N + 1) x (JV + 1). The Dirichlet boundary conditions are 
explicitly prescribed as separate "forcing" terms.  To accomplish this, decompose C, C, 

f Note that, for k% + k% ^ 0, the matrix form of the LHS of (2.4a) is invertible, so the form 
(2.6a) is easily determined. 
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where x is 2(N - 1) x 1, A is 2(AT - 1) x 2{N - 1), ß is 2(N - 1) x 2, and u is 2 x 1, we 
may express (2.6) in the standard form 

x = Ax + Bu. (2.7) 

The vector x is referred to as the "state", and the vector u is referred to as the "control". 

2.3.   Wall measurem,ents 

We will consider control algorithms using both full fiowfield information and wall infor- 
mation only. For the latter case, we will assume that measurements made at the wall 
provide information proportional to the streamwise and spanwise skin friction 

J/ml — 

2/m3 
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dw 
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Equations (2.5a) and (2.5b) allow us to express these measurements as linear combina- 
tions of v and w. Defining a = ikx/(k% + k2

z) and b = —ikz/(k2 + k2
z) and using the 

derivative matrices, the measurements are expressed as 

ijm.i — (aWv + bT>i 
V y upper wall 

Vm3= (bWDv + aVu) 
V / upper wall 

Now decompose T> T> and T> according to 

/ di      ci      d3 \ 

(VV) = 

\ d2     c2     di J 

Vm.2 = [a.VDv + bT>üj] 

Vmi —  ( 

lower wall 

bVVv+a vJ\ 
/ lower wall 

x> = 

/ *       c3       * \ 
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where ci,c2,c3, and c4 are 1 x (N- 1) and di, d2, d3, and (i4 are 1 x 1. Finally, defining 

/z/mi\ /     aci bc3      \ 

Vm = c = 
V 

ac\ bc3 

ac2 bei 
bc\ ac3 

bc2 aci 

D = Dm.2 

\VmiJ 

where ym is 4 x 1, C is 4 x 2(iV - 1), and £> is 4 x 2, allows us to express ym in the 
standard form of a linear combination of the state x and the control u 

1 

(a d\ bd3\ 
ad2 bdi 
bdi ad3 

\bd2 adij 

ym = Cx + Du. (2.8) 

The vector ym is referred to as the "measurement". 

2.4. Inner products and norms 

For this paper, the inner product for two continuous complex functions u and v on the 

domain y £ [—1,1] is defined by 

,V)C = |   u*v(dy, where     ((y) = (1 - y2)~1'2 (u 

and the star (*) denotes the complex conjugate.   The inner product for functions dis- 
cretized on the collocation points y\ is defined by 

N 

(u, v)N = ^2 u*{xm)v{xm)C,m,        where      C™ — < 

     m = 0,N 
2N 

I N 

For sufficiently smooth functions u,v on a sufficiently large number N of Chebyshev- 
Gauss-Lobatto grid points (Canuto et al. 1988), the discrete inner product approximates 
the continuous inner product, (u, U)AT sa (u, v)$. Note that, for two discrete vectors 
f and 77 defined only on the interior grid points, or for vectors which are zero at the 
boundary points m = 0,N, the inner product is given simply by 

(£»»?)* = 77^*^' (2.9) 

where star (*) applied to a vector denotes conjugate transpose. The norm of v, denoted 
||u||, is defined as the square root of (v,v) for both the discrete and continuous cases. 
Orthogonality of two functions implies that their inner product is zero. 

3.  Analysis of control problem 

In §2, it was shown that the equations governing small perturbations in a laminar 
channel flow may be expressed in the standard form 

x = Ax 4- Bu 

ym = Cx + Du, 

(3.1a) 

(3.1b) 

where all variables are complex and the system matrix A is dense and non-self-adjoint. 
We now discuss the eigenmodes of A and identify which of these modes may be modified 
by the control u and which may be detected by the measurements ym. 

It has been shown (Orszag 1971) that, for .Re £5772, the uncontrolled problem itself 
is stable and, for Re > 5772, weak instability is seen (though most of the eigenvalues 
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remain stable), with the greatest instability near kx — 1.0 and kz — 0.0. We seek a 
method to determine the control u which stabilizes the system in a manner which is 
robust to system uncertainties. To simplify our discussion, we will restrict our attention 
in the remainder of this work to the particular case Re — 10,000, kx — 1, and kz = 0. 
Joshi, Speyer, & Kim (1996) explore the (Re, kx, kz) parameter space further. 

For kz = 0 (two-dimensional perturbations), C = 0 in (2.6), entirely decoupling the 
w eigenmodes from both the v eigenmodes and from the control u = (VQ, VN) . In the 
language of control theory, the w eigenmodes are thus "uncontrollable" by the control 
u. (However, it is also seen that the u> eigenmodes are stable, so these modes will, so to 
speak, "take care of themselves".) Thus, for the remainder of this paper, we will restrict 
our attention to the the v eigenmodes according to system (3.1) with 

x — 

Vl 

KVN-ll 

An B= \bn    6i2 
VN 

where x is (N - 1) x 1, A is (N - 1) x (N - 1), B is (TV - 1) x 2, and u is 2 x 1, and 

/ ?/ml \ f a a \ fa di bd3\ 
Vm.2 

Um.3 
C = 

ac2 

bei 
D = ad2 

bdx ad3 

\ Vmi ) \ bc2 ) \bd2 ad^J 
11m, = 

where ym is 4 x 1, C is 4 x (N — 1), and D is 4 x 2. (All the constituent matrices, vectors, 
and flow measurements are described in the previous section.) 

3.1.  System analysis 

We now address whether or not all of the current system's N — 1 eigenmodes may be 
controlled by the TO = 2 control variables, and whether or not all of these eigenmodes 
may be observed with the p = 4 measurements. To accomplish this, it is standard 
practice to consider two matrices which characterize the controllability and observability 
of the system as a whole (Lewis 1995). These are the system controllability Gramian Lc 

of (A,B) and the system observability Gramian L0 of (C, A), which may be found by 
solution of 

ALC + LCA* + BB* =0 

A* L0 + L0 A + C* C = 0. 

Note that stable numerical techniques to solve equations of this form, referred to as 
Lyapunov equations, are well developed (Kwakernaak & Sivan 1972). 

If Lc is (nearly) singular, there is at least one eigenmode of the system which is (nearly) 
unaffected by any choice of control u, and the system is called "uncontrollable". If all 
uncontrollable eigenmodes are stable, and a controller may be constructed such that the 
dynamics of the system may be made stable by the application of control, the system is 
called "stabilizable". 

Similarly, if L0 is (nearly) singular, there is at least one eigenmode of the system which 
is (nearly) indiscernible by the measurements ym, and the system is called "unobserv- 
able". If all unobservable eigenmodes are stable, and an estimator may be constructed 
such that the dynamics of the error of the estimate may be made stable by appropriate 
forcing of the estimator equation, the system is called "detectable". 

For the present system, the smallest eigenvalue of both Lc and L0 are computed to be 
near machine zero, indicating that the present system as derived above is both uncontrol- 
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lable and unobservable. Gramian analysis can not identify which of the eigenmodes are 
uncontrollable or unobservable, however, so it is impossible to predict from this analysis 
alone whether or not the system is stabilizable and detectable. For this reason, we now 
develop a method to determine which of the eigenmodes of a system may be affected by 
the control u and, similarly, which eigenmodes may be discerned by the measurements 

y-m- 

3.2. Individual eigenmode analysis 

We will now make use of the modal canonical form of the system (3.1) to quantify the 
sensitivity of each eigenmode of A to both control and observation (Kailath 1980). In 
order to clarify the derivation, we shall examine each eigenmode of the system separately. 
Define the eigenvalues A; and the right and left eigenvectors, & and /ft, of A such that 

right eigenvectors: A& = A;£; 

left eigenvectors: rj* A = A; rj*, 

where the eigenvectors are normalized such that ||fj|| = ||?7;|| = 1 for all i, where || • || is 
defined in §2.4. Assume A has distinct eigenvalues (this may be verified for the present 
system described above). Then any x may be decomposed as a linear combination of the 
(independent but not orthogonal) right eigenvectors such that 

z = $><&. (3.2a) 
i 

Differentiating with respect to time, 

i = £><&. (3.2b) 
i 

Also, note that left and right eigenvectors corresponding to different eigenvalues are 
orthogonal 

fa, £i) = 0     j?i, (3.3a) 

but those corresponding to the same eigenvalues are not 

foy, £,-) 9*0. (3.3b) 

3.2.1. Definition of modal control sensitivity 

By (3.1a) and (3.2), we have 

Y,aiZi = Aj2<xiti + Bu (3.4) 
i i 

= J^ai\iti + Bu. (3.5) 
i 

Taking the inner product with rjj and noting (3.3a) yields 

(Vj, ä-i 0) = (Vj, ai Xi Ci) + (Vj> Bu)- 

By the definition of the inner product (2.9), and noting (3.3b), yields 

. ,   {B*m)*u 

Vj Cj 

If the vector B* rjj = 0, then 6tj — Xj a.j for any u. In terms of equation (3.2a), the 
component of x parallel to £j is not affected by the control u, and the eigenmode is said 
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to be "uncontrollable". Further, the norm of the coefficient of u 

\rjj-t B B* ryl1/2 

U =    3   ..f "      , (3.6) 

which we shall call the control sensitivity of mode j, is a quantitative measure of the 
sensitivity of the eigenmode j to the control u. Note the dependence of this expression 
on the matrix B B*, which is the same term which drives the Lyapunov equation for 
controllability Gramian Lc. 

3.2.2.  Definition of modal observation sensitivity 

By (3.1b) and (3.2) and assuming, for the moment, that u = 0, we have 

i 

If the vector C £j = 0, then ym will not be a function of a.j. In terms of equation (3.2a), 
the component of x parallel to £j does not contribute to the measurements ym, and the 
eigenmode is said to be "unobservable". Further, the norm of C£j 

gi = \ViC*CtJ\
1l2, (3.7) 

which we shall call the observation sensitivity of mode j, is a quantitative measure of 
the sensitivity of the measurement ym to eigenmode j. Note the dependence of this 
expression on the matrix C* C, which is the same term which drives the Lyapunov 
equation for observability Gramian L0. 

3.3.  Sensitivity of eigenm,odes of A to control and observation 

The least stable eigenvalues of A and their corresponding control and observation sensi- 
tivities fj and gj are tabulated in table 1. Note that the fourth eigenmode is five orders 
of magnitude less sensitive than the first eigenmode to modifications in the control. In 
general, those modes in the upper branch of figure la (large |3(A)|) are much less sensi- 
tive to control than those in the lower branch (small |S(A)|). Near the intersection of the 
two branches (5ft(A) K, —0.3), the control sensitivity is maximum, with this sensitivity 
decreasing slowly to the left of this intersection (K(A) < —0.3). It can be predicted that 
the eigenmodes corresponding to the largest fj may be affected most upon application 
of some feedback control u. 

Note that the flow measurements are two orders of magnitude less sensitive to the 
fourth eigenmode as they are to the first eigenmode. It can be predicted that the state 
estimates of the eigenmodes corresponding to the largest gj will be most accurate when 
estimating the state based on the measurements in the presence of noise. 

An important observation from figure lb is that eigenvalues in the upper branch of 
figure la have corresponding eigenvectors with variations primarily in the center of the 
channel, and are thus less controllable via wall transpiration and less observable via wall 
measurements than eigenvalues in the lower branch. This observation is quantified by 
reduced values of fj and gj for these modes in table 1. 

The second eigenvalue computed, at A2 = —0.0235 + 1.520 i is spurious. Spurious 
eigenmodes may be easily identified two ways: i) the eigenvalue moves significantly when 
N is modified slightly, though the eigenvalues reported in table 1 remain converged, and 
ii) when plotted, spurious modes are dominated by large oscillations from grid point 
to grid point across the entire domain, though converged eigenmodes are well resolved. 
Spurious eigenmodes are expected using this approach and may be disregarded. 
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(a) Least stable eigenvalues: |S(A7-)| versus 5R(A^). 

(b) Eigenvectors corresponding to (left to right): j — 1 (unstable, lower branch), 
j = 3 (stable, upper branch), j = 4 (stable, upper branch), and j — 5 (stable, 
lower branch), plotted as a function of y from the lower wall (bottom) to the upper 
wall (top). Real component of eigenvector is shown solid and imaginary component 
dashed. Corresponding eigenvalues are reported in table 1. 

FIGURE 1. Least stable eigenmodes of A (no control). 
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A; fi 9i 

1 0.00373967 - - 0.23752649 i 0.266545 102.61 
3 -0.03516728 - - 0.96463092 i 0.000215 72.85 
4 -0.03518658 - - 0.96464251 i 0.000005 1.45 
5 -0.05089873 - -0.27720434?; 0.026606 347.98 
6 -0.06320150 - - 0.93631654 i 0.000513 81.39 
7 -0.06325157- - 0.93635178 i 0.000021 2.90 
8 -0.09122274 - - 0.90798305 i 0.000931 83.36 
9 -0.09131286 - - 0.90805633 i 0.000056 4.32 

10 -0.11923285 - - 0.87962729 i 0.001587 77.67 
11 -0.11937073 - - 0.87975570 i 0.000124 5.37 
12 -0.12450198 - -0.34910682?; 0.171859 69.50 
13 -0.13822653 - -0.41635102?; 0.037660 252.09 
14 -0.14723393 - -0.85124584?; 0.002833 63.31 
15 -0.14742560 - - 0.85144938 i 0.000268 5.59 
16 -0.17522868 - -0.82283504?; 0.005581 44.14 

38 -0.32519719 - - 0.63610486 i 5.659801 0.78 
39 -0.34373267 - - 0.67764346 i 4.685315 0.64 

53 -0.66286552 - -0.67027520?; 0.259581 11.58 

TABLE 1. Least stable eigenmodes of A (no control) and the associated control and observation 
sensitivities. Note that all eigenvalues agree precisely with those reported by Orszag (1971). 
Calculation used Chebyshev collocation technique with TV = 140 in quad precision (128 bits per 
real number). The second eigenmode, which is not shown here, is spurious (see text). Note that 
the only unstable mode (j = 1) for the present system is both sensitive to the control u and 
easily detected by the measurements j/m. 

4.  Summary of %2 and T-L^ control theories 
In §2, it was shown that the equations governing small perturbations in a laminar 

channel flow may be expressed in the standard form 

x  = Ax + Bu (4.1a) 

ym = Cx + Du, (4.1b) 

where the constituent matrices A, B, C, and D were summarized and discussed in §3. 
We now seek a simple method to determine a control u based on the measurements 
ym to force the state x towards zero in a manner which rigorously accounts for state 
disturbances, to be added on the RHS of (4.1a), and measurement noise, to be added on 
the RHS of (4.1b). Specifically, we will consider feedback of the measurements ym such 
that a state estimate x is first determined by the system model 

x  = Ax + Bu - u 

ym — Cx + Du, 

u = C(ym - ym), 

then this state estimate is used to produce the control 

u — /C(x). 

(4.2a) 

(4.2b) 

(4.2c) 

(4.3) 
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Equation (4.1), with added disturbance terms on the RHS, is referred to as the "plant", 
(4.2) is referred to as the "estimator", and (4.3) is referred to as the "controller". The 
problem at hand is to compute linear time-invariant (LTI) functions C and K such that i) 
the "output injection" term ü forces the state estimate x in the estimator (4.2) towards 
the state x in the plant (4.1), and ii) the control u computed by the controller (4.3) forces 
the state x towards zero in the plant (4.1). 

The flow of information in this problem is illustrated schematically in the following 
block diagram. 

disturbances 

i 
, 

measurements 
Um 

estimator control C~J u 

state estima te 
X 

COI uiuner 

The plant, which is forced by external disturbances, has an internal state x which cannot 
be observed. Instead, a few noisy measurements ym are made, and with these measure- 
ments an estimate of the state x is determined. This state estimate is then fed back to 
through the controller to determine the control u to apply back on the plant in order to 
regulate x to zero. 

We will now demonstrate how to apply %% and %ao control theories to determine 
C and K. (Note that we will redefine several variables used in §2 to derive the Orr- 
Sommerfeld equation. Considered in the context of this chapter, this should present no 
confusion.) With this presentation, one set of control equations, involving the solution of 
two Riccati equations, describes a family of H2 and %oo control algorithms. The reader 
is referred to Doyle et al. (1989), Dailey et al. (1990), and Zhou, Doyle, & Glover (1996) 
for derivation and further discussion of the control theories summarized here. 

4.1. %2 control theory 

4.1.1.  Optimal control (LQR) 

The first step in considering the system (4.1) is to consider the problem with no 
disturbances and measurements which identically determine full information about the 
state, so that x = x {i.e. no estimation of the state is necessary). These assumptions are 
quite an idealization and can rarely be accomplished in practice, but this exercise is an 
important step to determine the best possible system performance. It is for this reason 
that the controller in this limit is referred to as optimal. Under these assumptions 
about the system, the objective of the optimal controller, of the form in (4.3), is to 
regulate {i.e. return to zero) some measure of the flow perturbation x from an arbitrary 
initial condition as quickly as possible without using excessive amounts of control forcing. 
Mathematically, a cost function for this problem may thus be expressed as 

r 
JLQR — \ 

Jo 
+1  u u) dt. (4.4) 
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The term involving ||x'||2 is a measure of the flow perturbation x integrated over the 
time period over which this perturbation decays, which is taken as t £ [0,oo). The 
term involving u*u is an expression of the magnitude of the control. These two terms are 
weighted together with a scalar I2, which represents the price of the control. This quantity 
is small if the control is "cheap" (which generally results in larger control magnitudes), 
and large if applying the control is "expensive". As the state equation is linear, the cost 
quadratic, and the control objective regulation, this controller is also referred to as a 
linear quadratic regulator (LQR). 

The mathematical statement of the present control problem, then, is the minimization 
of JLQR- This results in regulation of x without excessive use of control effort. Note 
that minimization of JLQR is equivalent to minimization of the integral of z*z, where 

^=(Q^x/l 

and where Q is a diagonal matrix with diagonal entries Qjj — ir/N, as required by the 
definition of the norm in §2.4. In order to arrive at a form which is easily generalized in 
later sections, define 

B2 = B Ci 012 = 

For notational convenience, the state equation (4.1a) will be considered as "forced" with 
a right hand side forcing term r which shall be set to zero, as this regulation problem 
simply drives the state towards zero without external command input. The state equation 
(4.1a), the performance measure z, and the state estimate x then may be written 

x = A x + r + B2 u 

z = C\x        + Dun 

(4.5a) 

(4.5b) 

(4.5c) 

The optimal controller K-LQR is sought to relate the control u to the (precise) state 
estimate x. Control is applied to modify the evolution of the state x such that the cost 
JLQR{Z) is minimized. The important matrices of the system described by (4.5) may be 
summarized in the shorthand form 

X r u 
A I B2 

Ci 0 D12 

I 0 0 
VLQR —   z 

The flow of information is represented by the block diagram 

z , ,        r = 0 

VLQR 

K-LQR 

where VLQR is the flow system given by (4.5) and KLQR is the optimal controller, which is 
still to be determined. Note that the command input is r — 0 and there are no disturbance 
inputs; the task of the control u is simply to regulate the state x from nonzero initial 
conditions back to zero.   The state x — x is fed back through the controller K-LQR to 
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control the system.   The system output z may be used to monitor the performance of 
the system. 

Given this general setup, a Hamiltonian is defined such that 

* = (-<£«  -*£)■ (4'6a) 

As shown in Doyle et al. (1989), the Hermetian positive-definite solution X2 to the alge- 
braic Riccati equation defined by this Hamiltonian 

A* X2 + X2 A - X2 (B2 B*) X2 + (C? d) = 0, (4.6b) 

denoted X2 - Ric(H2), then yields the optimal LTI state feedback matrix 

K2 = -B;X2. (4.6C) 

The optimal LTI controller KLQR is then given simply by 

(4.7) = K2x 

This controller minimizes /0°° z*zdt in a system with no disturbances and arbitrary initial 
conditions. Note that standard numerical techniques to solve equations of the form (4.6b) 
are well developed (Laub 1991). 

4.1.2.  Kaiman-Bucy filter (KBF) 

When there are disturbances to the system, and thus the state is not precisely known, 
the state (or some portion thereof) must first be estimated, then the control determined 
based on this state estimate. The Kalman-Bucy filter, of the form (4.2), accomplishes the 
required state estimation by assuming that the state disturbances and the measurement 
noise are uncorrelated white Gaussian processes. To accomplish this, we introduce two 
zero-mean white Gaussian processes w\ and w2 with covariance matrices E[w{wi] = I, 
E[u)£w2] = I, where E[-] denotes the expectation value. With these new disturbance 
signals, and with Gi defined as the square root of the covariance of the disturbances to 
the state equation and G2 defined as the square root of the covariance of measurement 

noise, the system (4.1) takes the form 

x  = Ax + Giwi + Bu (4.8a) 

ym = Cx + G2w2 + Du. (4.8b) 

The objective of the Kalman-Bucy filter is to estimate the state x as accurately as possible 
based solely on the measurements ym. Put another way, the Kalman-Bucy filter attempts 
to regulate the norm of the state estimation error XE to zero, where 

XE = x — x 

and where the state estimate x shall be determined by a filter of the form (4.2). Mathe- 
matically, a cost function for this problem may thus be expressed as 

JKBF=E[\\ZE\\
2
}, (4.9) 

where zE = XE for notational convenience. (As Gaussian disturbances »i and w2 con- 
tinually drive this system, an integral on t € [0,oo), as used to define JLQR, is not 
convergent for this problem, and the expectation value is the relevant measure.) 

The mathematical statement of the present control problem, then, is the minimization 
of JKBF- This results in a "best possible" estimate of the state x. In order to arrive at 
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a form which is easily generalized in later sections, assume G2 is nonsingular and define 

Bx = (Gx    0) C2 = G^C D21 = (0    I) 

and the vector of disturbances 

w 

Also, define new "observation" vectors y and y by a simple change of variables such that 

y = G21 (ym - D u) y = G^1 (ym -Du). 

Note that this change of variables does not represent any real limitation, for whenever any 
flow measurement ym is made in a physical implementation, the control u at that moment 
is also known, so the observation y is easily determined from the flow measurement ym. 
With this change of variables, (4.8b) and (4.2b) may be expressed as 

y = C2 x + D2x w 

y = C2 x. 

(4.10a) 

(4.10b) 

As we are developing the equations for an estimator, it is appropriate now to examine the 
equations for the state estimation error XE and the ouput estimation error -IJE = y — '</• 
Subtracting (4.2a) from (4.8a) and (4.10b) from (4.10a) yields the system 

iß = A XE + Bxw + ü 

ZE = XE 

VE = G2xE + D21w. 

(4.11a) 

(4.11b) 

(4.11c) 

The Kalman-Bucy filter CKBF is sought to relate the output injection term ü to the 
output estimation error 'IJE- The extra term ü is applied in these model equations to 
control the evolution of the state estimation error XE such that the cost JKBF{ZE) is 
minimized in the presence of Gaussian disturbances w. The important matrices of the 
system described by (4.11) may be summarized in the shorthand form 

XE w U 

XE 

ZE 

r    A Bx I 

VKBF = I 0 0 

VE I c2 021 0 

The flow of information is represented by the block diagram 

ZE 

VE 

VKBF 

-KBF 

where VKBF is the flow system given by (4.11) and CKBF is the Kalman-Bucy filter, which 
is still to be determined. This system accounts for Gaussian disturbances w and noisy 
observations ys of the system, which are fed back through the filter CKBF to produce 
the state estimate. The system output ZE may be used to monitor the performance of 
the system. Note the striking similarity of the structure of VKBF to the structure of 
the conjugate transpose of VLQR- For this reason, these two problems are referred to as 
"duals", and their solutions are closely related. 
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Given this general setup, another Hamiltonian is defined such that 

J^{-BlB*       -A   )■ (4.12a) 

As shown in Doyle et al. (1989), the Hermetian positive-definite solution Y2 to the alge- 
braic Riccati equation defined by this Hamiltonian 

AY2 + Y2 A* - Y2 (C2* C2) Y2 + (Bx B{) = 0, (4.12b) 

denoted Y2 = Ric(J2), then yields the LTI estimator feedback matrix 

L2 = -Y2 C%. (4.12c) 

The LTI Kalman-Bucy filter CKBF is then simply given by 

Ü = L2 1JE, 

and thus the complete state estimator is given by 

x = Ax + B2u- L2 (y - C2 x) (4.13) 

This estimator minimizes E[\\x — x\\2] in a system with Gaussian disturbances in the 
state equation and Gaussian noise in the measurements. 

4.1.3. H2 control (LQG =LQR + KBF) 

An estimator/controller of the form (4.2)—(4.3) for the complete system described by 
(4.8) with Gaussian disturbances may now be constructed. The objective of the control 
is to minimize 

J2=E[\\x\\2+eu*u)t (4.14) 

where || ■ || denotes the "2-norm" as defined in §2.5.   Note that minimization of J2 is 
equivalent to minimization of the expectation value of z*z, where 

= {Q1/2x/e z = 
u 

and Q is a diagonal matrix with diagonal entries Qjj = TT/N as required by the definition 
of the norm in §2.4. As the control objective is the minimization of the expectation value 
of the square of a 2-norm, this type of estimator/controller is referred to as %2. As the 
state equation is linear, the cost quadratic, and the disturbances Gaussian, this type of 
estimator/controller is also referred to as linear quadratic Gaussian (LQG). 

Combining the notation developed in the previous two sections 

B2=B C2 = G^C ^21 = (0    /), 

with the vector of disturbances w and the observation vectors y and y defined such that 

'wA y^G^ivm- Du) 

^2) y = G^{ym-Du), 
w = 
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the system (4.8) and the control objective for the minimization of J2 take the form 

x = A x + B\ W+B2 u 

Z = C\X+ Dl2'U. 

y — C2x + D2iw. 

(4.15a) 

(4.15b) 

(4.15c) 

An %2 estimator/controller is sought to relate the observations y to the control u, which 
is applied to control the evolution of the state x such that the cost ^(z) is minimized 
in the presence of Gaussian disturbances w. The important matrices of the complete 
system described by (4.15) may be summarized in the shorthand form 

X w u 
A Bi B2   ■ 

Ci 0 D12 

c2 D21 0 
'complete —     % 

v 

Similarly, the important matrices of the model plant in an estimator of the form (4.2) 
may be represented in the shorthand form 

X u u 

r A -I B2 

1 0 0 

I c2 0 0 
'  model —     -^ 

y 

With these representations, the flow of information is represented by the block diagram 

system output 
z 

<l  

observation 
y 

complete 

disturbances 
w 

state estimate 
x K2 

control 
u 

(controller) 

The plant, which is forced by external disturbances w, has an internal state x which 
cannot be observed. Instead, a few noisy observations y are made, and with these 
observations an estimate of the state x is determined. This state estimate is then fed 
back to through the controller to determine the control u to apply back on the plant in 
order to regulate x to zero. The system output z may be used to monitor the performance 
of the system. 

The remarkable result from control theory (Lewis 1995) is that the 7^2 estimator/controller 
of the form illustrated in the above block diagram which minimizes J2 for this system is 
formed by simple combination of the optimal controller and the Kalman-Bucy filter such 
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that 

x = A x + B2 u - L2 (y -C2x) (4.16a) 

u = K2x (4.16b) 

where K2 is given by (4.6) 

K2 = -B;X2 X2=Ric((£Ci    
_S^?2*) (4.16c) 

and L2 is given by (4.12) 

L2 = -Y2C; Y'=Bic(-BiBi    ~°-A2)- (4-16d) 

Note the separation structure of this solution. The computation of K2 does not depend 
upon the influence of the disturbances, which are accounted for in Bi and C2. The 
computation of L2 does not depend upon the weightings in the cost function, which are 
accounted for in Ci, or the manner in which the control u affects the state, which is 
accounted for in B2. In other words, the problem of control and the problem of state 

estimation are entirely decoupled. 
Note also that, in order to arrive at the (relatively) simple control equations described 

by Doyle et al. (1989) and outlined in this section and the next, the matrices A, Blt B2, 
C\, C2, _Di2, and £>2i are assumed to satisfy eight required properties. The first four of 
these properties 

(A,Bi) stabilizable {C\,A) detectable 

(A,B2) stabilizable {C2,A) detectable 

are verified a posteriori, simply by examination of the results. (Note that the analysis 
of §3.3 indicates that there is only one slightly unstable mode for this system, and that 
this mode is both sensitive to the application of control and easily discerned by the mea- 
surements. Thus, we may presume, but not assert rigorously, that these four conditions 
will in fact be satisfied.) The matrices are constructed to satisfy the other four of these 
properties identically 

D*12 d = 0 D*12 D12 = I 

B1Di1=0 D21D*21 = I, 

as may be verified directly with the definitions of these matrices. 

4.2. %oo control 

The %oo estimator/controller described in this section is very similar to the %2 estima- 
tor/controller described previously. Consideration is now given to disturbances, which 
we shall distinguish with a new variable x, of the "worst" possible structure (as made 
precise below), rather than the Gaussian structure assumed in the %2 case. Considered 
in the frequency domain, the estimator/controllers developed in this section provide a 
system behaviour in which the maximum singular value of the closed-loop transfer func- 
tion, also known as the "oo-norm", is less than some constant, which shall be referred to 
as 7. As this approach may be interpreted as bounding the oo-norm of the transfer func- 
tion from the disturbances to the performance measure, it is referred to as Ti^ control. 
For further details of the frequency-domain explanation of %00, the reader is referred to 
Doyle et al. (1989) and Zhou, Doyle, & Glover (1996). 
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The governing equations to be considered in this section are identical to (4.15): 

x = Ax +BlX+B2u (4.17a) 

z = dx+ D12u (4.17b) 

y = C2x + D2lX. (4.17c) 

As before, the G\ and G2 matrices used to define this system describe any covariance 
structure of the disturbances known or expected a -priori (for instance, if one measurement 
is known to be noisier than another). These matrices are taken as identity matrices if no 
such structure is known in advance. 

An 7/oo estimator/controller is sought to relate the observations y to the control u, 
which is applied to control the evolution of the state x such that the cost Joc{z) is 
minimized in the presence of some "worst case" disturbance %■ The flow of information 
is represented by a block diagram similar to that shown in §4.1.3. 

Effectively, the cost function considered for %00 control is 

Joo = E[x* Qx + f u*u - 7
2 x*x]. (4.18) 

A u is sought, through an estimator/controller of the form (4.2)—(4.3), to m,inim,ize 
Joe, while simultaneously an external disturbance x ls sought to maximize Jao. (In this 
manner, % is the "worst possible" disturbance, as it is exactly that disturbance which 
increases the relevant cost function the most.) Thus, the "Hoc problem is a "min-max" 
problem. The term involving — j2 limits the magnitude of the unstructured disturbance 
in the maximization of J^ with respect to x in a manner analogous to the term involving 
£2, which limits the magnitude of the control in the minimization of J^ with respect to 
u. 

The result (Doyle et al. 1989) is that an %oo estimator/controller of the form (4.2)— 
(4.3) which minimizes J^ in the presence of some component of the worst case unstruc- 
tured disturbance x for this system is given by 

x = Ax, + B2u- Loo {y - C2 x) (4.19a) 

u = K00x (4.19b) 

where K^ is given by 

K   --n* x x   -Riri     A      7   BIB;-B2B^ 
■"-act  —       -»->•> -^ oo ^oo  — l^^  I   _/~i* (~i —A* J2 

is given by 

-l-oo02 l-oo - 1ÜC  \y_Bi B, _A 

(4.19c) 

(4.19d) 

Note first that, in the 7 —> 00 limit, the 7^2 estimator/controller is recovered, so the set of 
two Riccati equations in (4.19) describes both the 1-L2 (optimal control + Kalman-Bucy 
filter) and the "Hoc problems. 

It may also be shown that, as the upper-right blocks of the Hamiltonians may not be 
negative definite, a solution to these Riccati problems exists only for sufficiently large 7; 
the smallest 7 = 70 for which a solution to these equations exists may be found by trial 
and error (Doyle et al. 1989). An /H00 estimator/controller for 7 > 70 is referred to as 
suboptimal. 
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4.3.   Comparison of H2 and Hoc control equations 

Most of the robustness problems associated with %2 stem from the state estimation. Op- 
timal (LQR) controllers themselves, provided with full state information, generally have 
excellent performance and robustness properties (Dailey et al. 1990). Recall from §4.1.3 
that the problems of control and state estimation in the %2 formulation are decoupled. 

An important observation of §4.2 is that the problems of control and state estimation 
in the Tioo formulation are coupled. Specifically, the computation of Koo depends on the 
expected covariance of the state disturbances, which are accounted for in B±, and the 
computation of LM depends on the weightings in the cost function, which are accounted 

for in C\. This is one of the essential features of Hoo control. 
By taking into account the expected covariance of the state disturbances, reflected in 

Bi, when determining the state feedback matrix K^, the components of x correspond- 

ing to the components of x that are expected to have the smallest forcing by external 
disturbances are weighted least in the feedback control relationship u = K^x. 

Similarly, by taking into account the weightings in the cost function, reflected in C\, 
when determining the estimator feedback matrix Loo, the components of x corresponding 
to the components of x that are least important in the computation of Joo are forced 
with the smallest corrections by the output injection term Loo ('</ - y) in the equation for 
the estimator. 

By applying strong control only on those components of x significantly excited by 
external disturbances, and by applying strong estimator corrections only to those com- 
ponents of x important in the computation of the cost function, 'Hoo feedback gains for 
components of the system not relevant to the control problem are reduced from those 
in the H2 case. With such feedback gains reduced, the stability properties of Tioo es- 
timator/controllers in the presence of state disturbances and measurement noise may 
be expected to be better than their %2 counterparts, at the cost of a (hopefully, small) 
degradation of performance in terms of the 2-norm of the output z for the undisturbed 

system. 

4.4. Numerical method 

Standard numerical techniques are now applied to all aspects of this problem. In order 
to simplify both the theory to be presented and the numerical algorithm to be coded, no 
further manipulation of the equations is used beyond the matrix representations (4.17) 
and (4.19). It was observed that the minimal realization approach (Kailath 1980) is well 
suited to reduce the computation time necessary to determine effective control algorithms 
by the present approach; however, such an approach was not found to be necessary in 
the present case. 

The algebraic Riccati equations are solved using the method of Laub (1991), which 
involves a Schur factorization. This is found to be a stable numerical algorithm for all 
cases tested. The implementation of Laub's method is written in Fortran-90 and follows 
closely the algorithm used by the Matlab function are .m (Grace et al. 1992). A Lyapunov 
solver, modelled after the Matlab function lyap.m, is also used to compute the system 
Gramians. 

Two LAPACK routines (Anderson et al. 1995), zgeev.f and zgees.f, are used to 
compute eigenvalues/eigenvectors and Schur factorizations. These routines are compiled 
in quad precision (128 bits per real number) to ensure sufficient numerical precision in the 
eigenvalue computation. All computations are carried out with N = 140 to ensure good 
resolution of all significant eigenmodes. The eigenvalues of A match all those tabulated 
by Orszag (1971) to all eight decimal places, as shown in table 1, indicating that this 
numerical method is sufficiently accurate. 
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5.  Performance of controlled systems 
We now examine the behaviour of the "closed-loop" systems obtained by application 

of the above controllers and estimators to the "nominal" {i.e. no disturbances) channel 
flow stability problem. In other words, we examine the behaviour of the flow and the 
estimator/controllers operating together as a single dynamical system. By looking at 
"root locus" plots which map the movement of the eigenvalues of these systems in the 
complex plane with respect to the relevant parameters, this behaviour is well quantified, 
as long as all perturbations remain small enough that the linearity assumption remains 
valid. We shall also examine the control and observation sensitivities defined in §3.2 for 
two special cases in order to better understand the fundamental limitations of controllers 
and estimators applied to the present system. 

5.1.   rt2 control 

5.1.1.  Optimal control (LQR) 

In order to investigate the controllability of the closed-loop eigenmodes when all modes 
are observable, consider the system described in §4.1.1. With r — 0 and examining only 
the equations for x and x, the plant is given (in the shorthand notation used in §4) by 

"PLQR. = 
X 

X 

'    A 
u 

B2   1 
X, I 0 

with the control now given by 

K2'i + u, 

where an additional control term u' has been added to study the sensitivity of the closed- 
loop system to further modification of the control. Putting the plant and the controller 
together, the closed-loop system may be represented by 

LQR(closed loop) 
A + B2K2 

u 

Bo 

0 
(5.1) 

The eigenmodes of AK2 = A + B2 K2 describe the dynamics of the closed-loop system for 
the unmodified control rule (u' = 0). Figure 2a shows the movement of these eigenvalues 
with respect to the free parameter of the control problem, £, used to determine K2. The 
eigenvalues for t —> oo are observed to be very near those of the uncontrolled system A 
in figure la, with the previously unstable mode moved just to the left of the imaginary 
axis. The eigenvalues generally move to the left as £ is decreased. Figure 2b shows the 
shape of the first four eigenmodes of the closed-loop system. Comparing figure 2b with 
figure lb, it is seen that the control modifies most those eigenmodes with significant 
variations near the wall. 

The sensitivity of the eigenmodes of the system (5.1) to modification of the control 
rule may be quantified by performing the analysis of §3.2.1, replacing the eigenmodes of 
A by the eigenmodes of AK2- The result of this analysis for small £ is shown in table 2. 
This table shows that, in the I —¥ 0 limit, the system matrix is modified to the point that 
the eigenmodes are no longer sensitive to further modification of the control. In other 
words, all the controllable dynamics of the system have been modified by K2 and are 
accounted for in the closed loop system in this limit. This is one demonstration that the 
optimal controller extracts the best possible performance from a given (full-information) 
system. 
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(a) Root locus of least stable eigenvalues of AK2 as a function of the free 
parameter of the W2 controller, I. The eigenvalues for I —y oo are marked 
with an (x). 

(b) Eigenvectors of AK2 , with I = 10  4, corresponding to (left to right): j = 1, j = 3, 
j = 4, and j = 5. Corresponding eigenvalues are reported in table 2. 

FIGURE 2. Least stable eigenmodes of AK2- 
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Xj 

3 
4 
5 
6 
7 
1 
8 
9 

10 
11 
12 
14 
15 
13 
16 

-0.03513233 ■ 
-0.03518652 ■ 
-0.06255259 ■ 
-0.06310358 ■ 
-0.06325089 • 
-0.06644730 • 
-0.09102975 ■ 
-0.09130964 ■ 
-0.11890731 ■ 
-0.11936036 ■ 
-0.14335180 ■ 
-0.14673294 ■ 
-0.14739907 ■ 
-0.14803996 ■ 
-0.17450455 ■ 

■ 0.96462128i 
• 0.9646426Ü 
0.29262711» 

■ 0.93629329i 
■ 0.93635257; 
0.29721403i 

■ 0.90793951; 
■ 0.90805917; 
■ 0.87955083; 
■ 0.87976246; 
0.43962023t 

■0.85111508; 
■ 0.85146161* 
0.44586838t 

■ 0.82261690; 

U 

0.000000029 
0.000000001 
0.000001101 
0.000000070 
0.000000003 
0.000001116 
0.000000129 
0.000000008 
0.000000226 
0.000000020 
0.000002303 
0.000000414 
0.000000045 
0.000003081 
0.000000842 

TABLE 2. Least stable eigenmodes of the closed-loop system AK2 and their sensitivity to control 
for the optimal controller in the cheap control limit {(. = 10-4). The numbering of the eigenvalues 
shown is the same as the numbering of the eigenvalues of table 1 to which they are connected by 
the root locus of figure 2. Note that, the control in this limit drives all eigenmodes to positions 
at which they are insensitive to further modifications of the control, as illustrated by the large 
reductions in fj. Note also that those eigenmodes with the largest values of /,- in table 1 
(specifically, those in the lower branch) have moved the most. 

5.1.2. Kalman-Bucy filter (KBF) 

The estimator itself has its own set of dynamics. These dynamics are captured by 
the equations for the state estimator error, as described in §4.1.2. We now make use of 
this system in order to investigate the observability of closed-loop eigenmodes when all 
modes are controllable. With w = 0 and examining only the equations for XE and 'IJE, 

this plant is given by 

'PKBF — 
iß 

XE 

'    A 
u 
I  ' 

VE [ c2 0 

with the output injection now given by 

u — L2 VE + u , 

where an additional output injection term ü' has been added to study the sensitivity of 
the closed-loop system to further modification of the otitput injection rule. Putting the 
plant and the estimator together, the closed-loop system may be represented by 

KBF (closed loop) — 
XE 

XE 

A + L2C2 

u 
I  ' 

VE [      c2 0 
(5.2) 

The eigenmodes of AL2 = A + L2 C2 describe the dynamics of the closed-loop system for 
the unmodified output injection rule (v! — 0). Figure 3 shows the movement of these 
eigenvalues with respect to the free parameters of the estimator problem. (This is done 
by assuming that the matrices describing the covariance of the disturbances have the 
simple form G\ = g\I and G2 = g2I, where g\ and g2 are real scalars.) The eigenvalues 
for (71 = g2 —¥ 0 are very near those of the uncontrolled system A in figure la, with the 
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FIGURE 3. Root locus of least stable eigenvalues of AL2 as a function of the free parameters 
of the %2 estimator, gi and g2 (note that we take gi = g2 for the purpose of drawing the root 
locus). The eigenvalues for gi = g2 -f 0 are marked with an (x). 

A,- 

3 
4 
6 
7 
5 
8 
9 
1 

10 
11 
12 
14 
15 
16 
13 

-0.03505745 ■ 
-0.03518656 ■ 
-0.06287931 ■ 
-0.06325136 ■ 
-0.08362450 ■ 
-0.09059621 ■ 
-0.09131196- 
-0.09565183 - 
-0.11823779 ■ 
-0.11936807 ■ 
-0.14209547 - 
-0.14584717 - 
-0.14741926 - 
-0.17347707 - 
-0.17418920 ■ 

• 0.96474093« 
■ 0.96464253* 
■ 0.93668086* 
• 0.93635193* 
0.25066856* 

■ 0.90874817; 
■ 0.90805689* 
0.17658643; 

■ 0.88095122?; 
■ 0.87975709* 
0.25910275* 

■ 0.85329567?: 
• 0.85145223» 
■ 0.82577419* 
0.40314656» 

9i 

0.000000568 
0.000000004 
0.000000644 
0.000000008 
0.000002858 
0.000000673 
0.000000011 
0.000000094 
0.000000646 
0.000000014 
0.000000130 
0.000000549 
0.000000014 
0.000000399 
0.000002002 

TABLE 3. Least stable eigenmodes of the closed-loop system AL2 and their sensitivity to obser- 
vation for the Kalman-Bucy filter in the large disturbance limit (gi — g2 = 102). The numbering 
of the eigenvalues shown is the same as the numbering of the eigenvalues of table 1 to which 
they are connected by the root locus of figure 1. Note that the estimator in this limit modifies 
all eigenmodes until the measurements are no longer sensitive to them, as illustrated by the 
large reductions in g,. Note also that those eigenmodes with the largest values of gj in table 1 
(specifically, those in the lower branch) have moved the most. 
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FIGURE 4. Least stable eigenvalues of the composite closed-loop system with the %2 estima- 
tor/controller, taking I — g\ — #2 = 1- Note that the eigenvalues are simply the eigenvalues of 
the closed loop controller (+) together with those of the closed loop estimator (*). 

previously unstable mode moved just to the left of the imaginary axis. The eigenvalues 
generally move to the left as g\ and g2 are increased. 

The sensitivity of measurements IJE to the the eigenmodes of the system (5.2) may 
be quantified by performing the analysis of §3.2.2, replacing the eigenmodes of A by the 
eigenmodes of AL2 . The result of this analysis for large g\ = g2 is shown in table 3. 
This table shows that, in the gi = gi —> 00 limit, the system matrix is modified to the 
point that the measurements are no longer sensitive to the eigenmodes of the closed- 
loop system. In other words, all the measurable dynamics of the system have been 
extracted by L2 and are accounted for in the closed loop system in this limit. This is 
one demonstration that the Kalman-Bucy filter extracts the best possible state estimate 
from a given (fully-controllable) state estimator. 

5.1.3. H2 control (LQG = LQR + KBF) 

It was mentioned in §4.1.3 that the estimator/controller which minimized the relevant 
cost functional {J2) in the presence of Gaussian disturbances could be found by consid- 
ering the controller and estimator problems separately. In this section, it is shown that 
the closed-loop performance of a system of the form (4.15) (without disturbances) 

x — A x + B2 u 

y = C2x 

combined with an estimator/controller of the form (4.16) 

x = Ax + B2 u - L2 (y - C2 x) 

u = K2 x 

may also be evaluated by considering the estimator and controller problems separately. 
To accomplish this, simply combine the above equations into the closed-loop composite 
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FIGURE 5. Root locus of least stable eigenvalues of the Hoc controller versus 7, taking / = 100, 
g1 — g2 — 0.001. The result with 7 -)• 00, marked with the (x), gives the corresponding H2 

controller. Note that the 7-Zco controller modifies only the least stable eigenmode of this H2 
result, without expending any extra control effort to control those eigenmodes not associated 
with the maximally unstable component of the system. Note also that 7 = 70, marked with 
the (o), is reached by reducing 7 until the least stable eigenvalue corresponds to one of the 
uncontrollable eigenmodes in the upper branch, which cannot be moved further left; in the 
present case, this corresponds to a numerical value of 70 = 0.26. 

system 

A B2K2 

-L2 C2    A + B2 K2 + L2 C2 

Gaussian elimination, first on the rows and then on the columns, reveals that the eigen- 
values of this system are the same as the eigenvalues of the system 

A + B2 K2        B2 K2 

0 A + L2 C2 

In other words, the eigenvalues of the closed-loop composite system for the %2 problem 
are simply the union of the eigenvalues of the controlled system AK2 = A + B2 K2 and 
the eigenvalues of the estimated system Ai2 = A + L2C2 discussed in the previous two 

sections and illustrated in figure 4. 

5.2. %oo control 

As with the H2 estimator/controller, the performance of the closed loop composite system 
with the Hoc estimator/controller 

A 

— Loo C2 

B2K0 

A + B2 Kx ^ Loo C-, 

may be evaluated by considering the performance of the controlled system AKX = A + 
B2 Koc and the performance of the estimated system AL^ — A + L^ C2 separately. 
The root locus of the eigenvalues of AKX are plotted with respect to the parameter 7 
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of the Hoc problem in figure 5, clearly illustrating the tendency of rix controllers to 
modify only the least stable components of the system, as opposed to the H2 controller 
of figure 2, which modifies all controllable modes of the system. 

6.  Conclusions 

Optimal and robust control theories have been successfully applied to the Orr-Sommerfeld 
equation. Given control on the wall-normal component of boundary velocity only, the 
flow system is shown to be stabilizable but not controllable. Given measurements of wall 
skin-friction only, the flow system is shown to be detectable but not observable. It is 
shown that %2 controllers/estimators modify all of the controllable/observable modes 
of the system. In contrast, the rioo controllers modify the corresponding H.2 controllers 
only in the most unstable component, as rioo targets a bound only on the maximum 
value of the transfer function. 

In the £ —> 0 limit of the H2 controller, corresponding to cheap control and thus large 
values of u, all eigenmodes of the closed-loop controlled system are shown to be modified 
to points at which they are no longer sensitive to further modifications of the control. 
Similarly, in the g\ = 92 —> 00 limit of the H2 estimator, accounting for large disturbances 
on both the state and the measurements, all eigenmodes of the closed-loop system for 
the estimator error are shown to be modified to points at which they are not discernible 
by flow measurements. 

These results indicate that %2 controllers and estimators are optimal for their desired 
purposes, but may contain large feedback gains. On the other hand, rioo controllers 
only target the least stable components of the system, and thus have smaller feedback 
gains while still achieving the same worst case performance for the nominal plant. Such 
reduced feedback gains generally result in improved robustness to inaccuracies in the 
system model. 
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PART B. 

Optimal control of turbulence 

Optimal control theory is used to determine controls that effectively reduce the drag of 
a turbulent flow in a plane channel. Wall transpiration (unsteady blowing/suction) with 
zero net mass flux is used as the control. The technique described is unique from the 
standpoint that it is mathematically based solely on the control objective, the equations 
governing the fluid flow, and instantaneous observations of the flow, without the ad hoc 
procedures normally used to accomplish control of complex nonlinear phenomena such 
as turbulence. Drag reduction of over 50 percent is obtained using an optimal controller 
in a direct numerical simulation of a turbulent channel flow at ReT = 180, which far 
exceeds what has been obtained to date via adaptive and intuition-based control rules in 
similar flows. 

The algorithm used is computationally intensive and requires full flowfield information, 
and therefore can not be implemented in a laboratory. However, these calculations allow 
us to quantify the best possible system performance given a certain class of flow actuation 
and qualitatively identify how optimized controllers interact with the coherent structures 
of the turbulence. In so doing, an important step is made in the progression towards 
practical and efficient turbulence control strategies based on optimal control techniques. 

1.  Introduction 

The recent development of the technology necessary to produce micro-scale mechan- 
canical devicesf, commonly referred to as Microfabricated Electro-Mechanical Systems 
(MEMS), has prompted researchers to revisit questions heretofore thought to be purely 
academic. The present question is exactly of this nature: assuming that individual small- 
scale turbulent fluctuations may somehow be measured and that concomitant small-scale 
forcing of the turbulent fluid may somehow be attained, how much do practical engineer- 
ing designs stand to benefit, where should the control be applied, and what control 
algorithms are most effective? The present work attempts to cast these questions in a 
rigorous framework, present a mathematical approach for their solution, and demonstrate 
an effective implementation of the control algorithm in a fully-developed turbulent flow. 

We first briefly summarize recent approaches to determine effective turbulence control 
algorithms, categorizing these approaches to the feedback control problem by examining 
their mathematical dependence on the equations governing the system. This discussion 
puts the present approach in context with other techniques currently under investigation. 
For a more thorough discussion along this line, see Moin & Bewley (1994). 

1.1. Adaptive networks 

The first class of schemes which may be proposed to achieve small scale flow control 
actually makes no explicit reference to the dynamics known to take place in the flow or 
the Navier-Stokes equations known to govern these dynamics. Instead, a "reasonable" 
network is fashioned which takes as input those measureable flow quantities assumed to 

f For a recent review of this subject as it applies to fluid mechanics, see McMichael (1996). 
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be most relevant to the control problem and produces as output the requisite control 
velocity. The coefficients of this network are then "trained" by applying the control 
network to the flow and gradually adjusting the coefficients in a heuristic manner based 
on the resulting evolution of the flow4 

As an example of one adaptive approach, an adaptive inverse technique has been 
applied by Lee et al. (1996) to a turbulent channel flow at ReT = 100, providing ap- 
proximately 20 percent drag reduction. This approach first develops an approximate 
"inverse" model between measurable flow quantities (as input) and the control forcing 
(as output) with an adaptive technique. Each iteration of the adaptation for this inverse 
model consists of three steps: 1) computing the error of the model output with respect to 
the desired model output (the actual control forcing used), 2) determining the influence 
of the various weights in the model on this error, then 3) updating all the weights in the 
model a small amount in a manner that reduces the error. When applied to the nonlinear 
adaptive networks commonly used for this purpose, known as "neural networks", this is 
commonly referred to as "back-propagation" of the error. Once the approximate inverse 
model between the flow measurements and the control converges, the inverse model is 
used to compute a control which will drive the flow measurements to some desired state. 
In the case of Lee et al. (1996), the desired state is chosen to be a state with reduced 
spanwise drag fluctuations, and the inverse model is continually trained as the flow sys- 
tem evolves in time. Such on-line training of the controller helps to provide "robustness" 
to possible changes in the dynamics of the flow system to be controlled. 

1.2.  Intuition-based approaches 

In situations in which the dominant physics is well understood, judgment can guide 
an engineer to design effective control schemes. Success is limited, however, by the 
engineer's understanding of the physical processes involved; in the case of turbulence, 
our understanding is still limited despite several decades of intense research. 

An active cancellation scheme was used by Choi, Moin, & Kim (1994), to reduce the 
drag in a fully-developed turbulent flow by mitigating the effect of the near-wall vortices. 
By opposing the near-wall motions of the fluid, which are caused by the near-wall vortices, 
with an opposing wall control, the high shear region was lifted away from the wall. A 
direct numerical simulation of this scheme applied to turbulent channel flow at ReT = 100 
demonstrated 23 percent drag reduction when the control was chosen to oppose the 
vertical motion at y+ — 10. 

Sensing the instantaneous normal velocity at y+ = 10 is, of course, very difficult. 
From a practical standpoint, it is highly desirable to confine both sensing and actuation 
to the wall. Thus, Choi, Moin, k Kim (1994) computed the correlation of quantities 
measurable at the wall with the normal velocity above the wall. Surprisingly, the wall 
pressure did not exhibit a high correlation with the normal velocity. Using a Taylor 
series expansion and the equation of continuity, they obtained an expression relating the 
normal velocity at a point near the wall to the instantaneous wall shear. However, using 
this expression to estimate the normal velocity away from the wall resulted in only a 6 
percent drag reduction. This is comparable to the drag reduction that can be achieved 
with simpler, passive means such as riblets. 

X Note that the network used for this purpose can take any of several linear or nonlinear forms. 
Hertz, Krogh, & Palmer (1991) contains a survey of these networks and outlines strategies for 
their training. 
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1.3. Dynamical systems 

The tools of dynamical systems theory have proven useful in analyzing and interpreting 
turbulence dynamics (Aubry et al. 1988). Due to their large range of spatial and tempo- 
ral scales, turbulent flows are known to have relatively high dimensions in this framework 
even at fairly low Reynolds numbers, which makes analysis of these systems quite difficult 
(Keefe, Moin, & Kim 1992). However, there has been some instructive work in represent- 
ing the dynamics of coherent structures in wall-bounded flows with systems of much lower 
dimension using the proper orthogonal decomposition (POD) method (Berkooz, Holmes, 
& Lumley 1993). This method provides a (numerically determined) set of eigenfunctions 
which are particularly efficient in representing second order turbulence statistics with a 
small number of modes (perhaps as few as 10 to 20) in the cross-flow plane. 

In the dynamical systems framework, the movement of the near-wall longitudinal vor- 
tices when observed in a cross-flow plane may be represented locally as the orbiting of 
a low dimensional state around several unstable fixed points; the passage of one set of 
coherent structures leads to a rapid jump in the state to a different unstable orbit, or to 
a different distribution of near-wall longitudinal vortices in the cross-flow plane. Such a 
rapid transition between critical points, followed by a quiescent period in which the flow 
pattern remains largely unchanged, is referred to as a heteroclinic cycle. 

Coller, Holmes, & Lumley (1994a,b) consider the control of an interesting model prob- 
lem governed by a simple two-component equation with similar dynamics to this model 
of near-wall longitudinal vortices (i.e. attracting heteroclinic cycles) subject to random 
excitation to account for unmodelled disturbances. They develop and demonstrate a 
strategy which delays heteroclinic transitions in this model as long as possible by sensing 
when the state is near an unstable fixed point and maintaining it there with feedback 
control for as long as possible. Once the state diverges from this fixed point, presum- 
ably due to the unmodelled dynamics of the flow, control is turned off until the state 
approaches the neighborhood of another unstable fixed point. 

1.4.  Rigorous optimization of practical control algorithms—a preview 

The present work is a first step towards developing practical controllers of the two types 
illustrated in figure 1. The (initially undetermined) coefficients present in both con- 
figurations may be optimized rigorously with approaches based on the adjoint analysis 
developed in this paper, and are still under development (Bewley, Moin, & Temam 1996). 

In the output feedback configuration, the flow is controlled using computationally 
inexpensive direct feedback from instantaneous flow measurements. The structure of the 
controller may be nonlinear and may incorporate a finite impluse response (FIR) filter 
to account for information from past measurements in the control rule. 

In the estimator/controller configuration, a time-evolving estimate of the flow state 
near the wall is first developed, effectively accumulating the information reflected by the 
stream of measurements from a few noisy sensors. The flow is then controlled with a 
(possibly nonlinear) control rule based on this flow estimate. The estimation problem 
and the control problem become linked when they are optimized in the presence of a 
small component of "worst case" noise which maximally aggrevates the coupled system. 
Such an approach is well developed for linear problems, and is referred to as TZoo control; 
Doyle et al. (1989) presents a compact form of this approach which makes it straight- 
forward to apply to linear problems, as illustrated in Bewley, Agarwal, & Liu (1996) for 
the control of the linear stages of transition. Methods to extend this "robust" approach 
to nonlinear problems are still under analysis. 
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FIGURE 1. Examples of practical control configurations based on a few noisy flow measurements. 
Both closed-loop configurations may be optimized with techniques based on the approach de- 
veloped in this paper, and are still under development. 

2.  Governing equations 
The flow problem we will consider is fully-developed turbulent channel flow with no-slip 

walls and wall-normal velocity boundary conditions $ applied as the control. Though 
this is an idealized geometry, it will give insight into the turbulent behavior which can 
later be exploited in more practical configurations, such as the control of a spatially 
developing boundary layer with discrete wall-mounted actuators. The present problem 
is governed by the unsteady, incompressible Navier-Stokes equation and the continuity 
equation inside the domain fi and wall-normal velocity boundary conditions on the walls 
Öfii. On the remainder of the boundary of the three-dimensional volume fi, denoted 
dü2, periodic boundary conditions are applied. The extent of the computational domain 
is chosen to be large enough in the wall-parallel directions that the convenient (though 
non-physical) periodic boundary conditions on 80,2 have no effect on the nature of the 
near-wall turbulence, as illustrated qualitatively in figure 2. 

The governing equations may be written functionally as 

with boundary conditions 

Af(U) = 0 

Ui — $ Ui 

fi 

on 9fii 

(2.1a) 

(2.1b) 

and prescribed initial conditions 

Ui=Ui(0) att = 0. (2.1c) 

For clarity, all differential equations will be written in operator form in this discussion, 
with these operators defined when first introduced. The (nonlinear) Navier-Stokes op- 
erator for the present case, in which the flow is assumed to have uniform density and 
viscosity, is given by 

M{U) = 

(duj 

8t "jdx~ 
d2 

U-^- + -SuPt 
\ 

duj 

dxj 

P dxi 
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In this discussion, x\ is the streamwise direction, x2 is the wall-normal direction, x3 

is the spanwise direction, the u^s are the corresponding velocities, p is the pressure, 
p is the density, fi is the absolute viscocity, and v = fi/p is the kinematic viscocity. 
The flow is sustained by a mean pressure gradient Px in the streamise direction, which is 
modified at each time step in order to maintain a constant mass flux through the channel. 
Define also n as a wall-normal unit vector directed into the channel, TW = [i du\/dn\wau 

as the mean skin friction on the wall for the uncontrolled channel (averaged in space 
and time), uT = {TW/P)

1
'

2
 as the mean friction velocity, S as the channel half-width, 

and ReT = uTS/v as the Reynolds number based on the mean friction velocity and the 
channel half width. The flow considered in this work is taken at ReT = 180. All velocities 
are normalized by the friction velocity uT, and therefore may also be marked with a (+) 
superscript. All lengths are normalized by 8 unless marked with a (+) superscript, in 
which case they are normalized by the wall unit v/uT. All times are normalized by S/uT 

unless marked with a (+) superscript, in which case they are normalized by v/u2
T. Note 

that, with this normalization, v = l/ReT in the above equation for Af(U). 

Three state vectors are used in this work: the flow U, the flow perturbation U', and 
the adjoint [/*: 

/ui(Xl,X2,X3,t)\ (u'i(xl,x2,xz,t)\ = (u*i{x1,x2,x3,t)\ 

\P(X1, X2 ,X3,t) J   ' \p' (XX , X2 , X3 ,t)J   ' \p* (.Tl, X2 , X3 , t)J   ' 

Note that each of these vector fields is composed of three velocity components and a pres- 
sure component. The motivation for introducing U' and U* will be apparent in the deriva- 
tion of the control equations to follow, and the parital differential equations governing 
these fields will be derived. Only after the control problem has been derived in differential 
form is it discretized in space and time. For the current three-dimensional nonlinear prob- 
lem, this approach is found to yield systems of equations which are easiest to understand 
and to code. Note that for simpler systems of equations, such as the one-dimensional 
linear problem of transition control examined in Bewley, Agarwal, & Liu (1996), the ma- 
trix control equations derived from the discrete form of the governing equations is found 
to be tractable. 

3.  Analysis of control problem 

The base turbulent flow analyzed in this problem is illustrated in figure 2. This flow 
has been carefully studied by Kim, Moin, & Moser (1987); the present simulations yield 
essentially the same second order statistics as the results presented there for the un- 
controlled flow, though the numerical method used in the present work is substantially 
different in order to better facilitate wall-normal velocity boundary conditions. 

As direct numerical simulations of turbulence produce a tremendous amount of data, it 
is important to analyze relevant statistics of these flowfields in order to better understand 
the phenomena taking place in an integrated sense and how these integral measures of the 
turbulence are modified by the addition of control. The statistics used to examine the tur- 
bulent flowfields in the present work are the mean velocity u\, the root-mean-square ve- 
locity fluctuations Ui^rms, the Reynolds stress —u\u2, the total stress —u\u2-\-vdu\jdx2, 

and the two-point correlations Rij(r) = w;(x) Uj(x + r) and their Fourier transform, the 
cospectra Eij (k). Note that the overbar ( ) implies averages in the homogeneous direc- 
tions x\ and x3 and, when appropriate, time. The statistics are functions of the nonho- 
mogeneous direction x2. A further discussion of these statistics and their behaviour in a 
turbulent channel at ReT — 180 may be found in Kim, Moin, & Moser (1987). 
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(a)  Three-dimensional visualization.    For clarity,  discriminant is marked only in the 
lower half of the domain. Flow is from left to right, walls are shaded. 

N.NN i\\\\\N\ 
»X\\\\\S 

^ifU^^^^^^^H^iifflil^^^^MM^Ir-^^ 
(b) Crossflow visualization. For clarity, crossflow velocity vectors (indicated by the ar- 
rows) are marked on only one ninth of the gridpoints used in the computation. 

FIGURE 2. Turbulent channel flow realization at ReT = 180, no control. Regions of the flow with 
positive discriminant D > Ahre.hoid are shaded, indicating fluid motion which, in a pointwise 
sense, is vortical in nature, as suggested by Blackburn, Mansour, & Cantwell (1996). Small 
amounts of blowing and suction will be applied through the computational equivalent of closely 
spaced holes drilled in the walls in response to these turbulent motions in a manner which 
reduces drag. 

The nature of the turbulent motion is also well characterized by observing the fluid at 
various points throughout the channel in a reference frame which moves with the local 
velocity. In this reference frame, the point under consideration is a critical point, as the 
local streamline slope is indeterminate. Thus, a critical point analysis of the type dis- 
cussed by Perry & Chong (1987) is appropriate. Chong, Perry, & Cantwell (1990) and 
Blackburn, Mansour, & Cantwell (1996) have demonstrated that a single scalar quantity 
D, the discriminant of the velocity gradient tensor, provides a useful identification of re- 
gions in the flow which, in this context, are "focus" in nature. Such focus regions roughly 
correspond to "vortex-type" regions in a turbulent flowfield, though this description is 

only pointwise in nature.f 
The velocity gradient tensor discussed in this work is defined in wall units A{j = 

duf/dxf. The second and third invariants of A are Q = {[tr(yi)]2 - ti(A2)} /2 and R = 

— det(A). The discriminant of the velocity gradient tensor is given by D = (27/4)R2+Q3. 
Regions with D > 0 are characterized by a velocity gradient tensor with one real and two 
complex eigenvalues (and thus a swirling, vortex-type motion in a Lagrangian reference 
frame), whereas regions with D ^ 0 are characterized by three real eigenvalues. For 
clarity, the visualizations of the discriminant presented in this work identify only regions 

f Note that this description of a "vortex" is by no means unique.    Robinson (1991) and 
Bernard, Thomas, & Handler (1993) discuss other vortex identification techniques. 
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of positive discriminant greater than a small threshold value D  >  ^threshold) where 

■^threshold = 10~5 . 

4.  Summary of optimal control theory 
4.1.   Cost functional 

The first step in solving an optimal control problem is to represent the control problem 
of interest as a cost functional, J, to be minimized. In the present problem, control is 
to be applied to minimize the drag averaged over a section of wall with area A and over 
the time period (0,T] using the least amount of control effort possible. A relevant cost 
functional for the present problem is thus 

The first term in the integrand is a measure of the magnitude of the control. The second 
term is a measure of exactly that quantity we would like to regulate: in this case, the 
drag. These quantities are integrated over the wall section under consideration, of area A, 
and over the time period under consideration, of duration T. Finally, they are weighted 
together with a factor £2/2, which represents the price of the control. This quantity is 
small if the control is "cheap" (which reduces the significance of the first term), and large 
if applying control is "expensive". 

4.2.  Gradient of cost functional 

As suggested by Abergel and Temam (1990), a rigorous procedure may be developed to 
determine the sensitivity of a cost functional J to small modifications of the control $ 
for nonlinear problems of this sort. To do this, consider the perturbation to the cost 
functional resulting from a small perturbation to the control $ in the direction $'. (Note 
that this control perturbation direction <3?' is arbitrary and scaled to have unit norm.) 
Define J' as the Frechet differential (Vainberg 1964) of the cost functional such that 

s lim j{*+ &)-«*) s r rT ^m^dtdS. 

The quantity J' is the cost functional perturbation due to a control perturbation e<f>' 
scaled by the inverse of the control perturbation magnitude e in the limit that e —> 0. The 
above relation, considered for arbitrary $', also defines the gradient of the cost functional 
J with respect to the control $, which is written 3dJ{$)l'2)<&. 

In the present approach, the cost functional perturbation J' defined above is expressed 
as a simple linear function of the direction of the control perturbation $' through the 
solution of an adjoint problem. By the above formula, such a representation reveals the 
gradient direction ^JT($)/^$ directly. With this gradient information, the control $ 
is updated on (0,T] in the direction that, at least locally {i.e. for infinitesimal control 
updates), most effectively reduces the cost functional. The finite distance the control 
is updated in this direction is then found by a line search routine, which makes this 
iteration procedure very robust even when controlling nonlinear phenomena. The flow 
resulting from the modified control is then computed according to the (nonlinear) Navier- 
Stokes equation (1.1), the sensitivity of this new flow to further control modification is 
computed, and the process repeated.   Upon convergence of this iteration, the flow is 
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advanced over the interval (0, Ti], where 7\ ^ T, and an iteration for the optimal control 
over a new time interval (Tj, 7\ + T] begins anew.f 

The cost functional perturbation J' resulting from a control perturbation in the di- 

rection $' is given by 

^ir-^^-^u:^^)^ (4.1) 

where u[ is the Frechet differential of «i, as defined in the following subsection. Adjoint 
calculus is used simply to re-express the integral involving u[ as a linear function of <f>'. 
Once this is accomplished, $' is factored out of the integrands and, as the equation holds 
for arbitrary $', an expression for the gradient ^J'($)/^$ is extracted. 

4.2.1. Perturbation field 

Define U' as the Frechet differential of U such that 

e-+0 e 

The quantity U' is the flow perturbation due to a control perturbation e<&' scaled by the 
inverse of the control perturbation magnitude e in the limit that e -> 0. The equations 
governing the dependence of the flow perturbation U' on the direction of the control 
perturbation $' may be found by taking the Frechet differential of the state equation 
(1.1) itself. The result is 

with boundary conditions 

and initial conditions 

A/"' U' = 0, in ft (4.2a) 

Sfti (4.2b) 

u[ = 0 at t = 0, (4.2c) 

where the differential Navier-Stokes operator Af' is given by 

M'U' = 
dt        J dxj       3 dxj        dxj      p dx 

_19^ 

V p dxj / 

(4.3) 

Note that the operation TV' U' is linear in the perturbation field U', though the operator 
A/"' itself is a function of the solution U of the Navier-Stokes problem. Equation (4.2) 
reflects the linear dependence of the perturbation field U' in the interior of the domain 

f Note that the flow may be advanced over a time interval which is shorter than the complete 
interval over which the optimization was performed. The rationale for such an approach is that 
the controls computed near the end of each optimization interval are computed without regard 
to the (inevitable) further development of the flow beyond the end of the optimization interval. 
Thus, the controls near the end of the optimization interval are not as effective in the long run as 
those controls near the beginning of the interval, which are optimized with greater "foresight" 
about the flow development. Thus, the controls optimized near the end of one interval may 
be improved upon (in terms of the long-term performance) by recalculation in the following 
interval. 
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on the direction of the control perturbation $' at the boundary. However, the implicit 
linear relationship U' = [/'($') given by these equations is not tractable for expressing 
J' in a form from which ^l7($)/^$ may be deduced. For the purpose of determining 
a more useful relationship with which we may express J' in the desired form, we now 
appeal to an adjoint identity. 

4.2.2. Derivation of adjoint identity 

This subsection derives the adjoint of the linear partial differential operator A/"'. 
Define an inner product over the domain in space-time under consideration such that 

(U',U*) =  f   f   U' -U*dtdV, 
JQ JO 

and consider the identity 

(Af'U', U*) = (U',Af*U*)+ b. (4.4) 

Integration by parts may be used to move all differential operations from U' on the left 
hand side of the equation to U* on the right hand side, resulting in the definition of the 
adjoint operator 

'du?      du*-, d2i 

Af*U* = 
dt *>Kdx] + Ö: Xi J dx) 

+ ldP*\ 

P dxi 

l du) 
(4.5) 

V p dxj j 

where the operator A/"* is a function of U, and an expression for b, which contains all the 
boundary terms: 

b=f   f-nj 
Jw J0 

/    «i< 
JQ 

Ui Uj ui ,( du\ 

\oxi 1 dx, 
)+I(^-.Jp.)) dtdS 

+ *dV 
t=T 

[ <u*dV 
JQ 

The identity (4.4) is very powerful; in fact, simplification of this identity by interior 
equations, boundary conditions, and initial conditions on U, U', and U* provides an 
expression which recasts J' in a form from which SdJ{Q)l2#Q may be deduced, as 
illustrated in the following two subsections. 

4.2.3. Definition of adjoint field 

Consider an adjoint state defined (as yet, arbitrarily) by 

M* U* =0, in fi 

with boundary conditions 

and initial conditions 

oil on dtti 

(4.6a) 

(4.6b) 

it? = 0 at t = T, (4.6c) 

where the adjoint operator Af* is given in (4.5).   Note that the adjoint problem (1.2), 
though linear, has complexity similar to that of the Navier-Stokes problem (1.1). Note 
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also that the "initial" conditions in (4.6c) are defined at t = T. With this definition, 
the adjoint field must be marched backward in time over the interval—due to the sign 
of the time derivative and viscous terms in the adjoint operator J\f* in (4.5), this is the 
natural direction for this time march. However, as the operator Af* is a function of U, 
computation of the adjoint field U* requires storage of the flow field U ont £ [0, T], which 
itself must be computed with a forward march. This storage issue presents a numerical 
complication which precludes solution for large optimization invervals T. However, the 
problem is not insurmountable for moderate values of T. 

Equation (1.2) is, as yet, simply a definition of an adjoint field. The motivation for 
considering an adjoint field so defined is revealed in the following subsection. 

4.2.4. Identification of gradient 

The identity (4.4) is now simplified using the equations defining the state field (1.1), 
the perturbation field (4.2), and the adjoint field (1.2). Due to the judicious choice of 
RHS forcing terms in the equations (1.2a)-(4.6c) defining the adjoint field, the identity 

reduces to 

f  [   n^dtdS = - I  [   P*$'dtdS. 
Jw Jo       * Jw Jo 

Using this equation, the cost functional perturbation J' in (4.1) may be conveniently 
rewritten as 

/o     V     ®$ 
As $' is arbitrary, this implies that 

*£>=/■.-•. (4.7) 
Thus, the desired gradient is found to be a function of the solution of the adjoint problem 

(1.2) discussed in §4.2.3. 

4.3.  Gradient update to control 

4.3.1. Simple gradient 

A control strategy using a simple gradient (also known as steepest descent) algorithm 
may now be proposed such that 

.W-.-«.«^, ,4.8) 

over the entire time interval t G (0,T], where k indicates the iteration number and a is 
a parameter of descent which governs how large an update is made, which is adjusted 
at each iteration step to be that value which minimizes J. This algorithm updates $ 
at each iteration in the direction of maximum decrease of J. As k -> oo, the algorithm 
should converge to some local minimum of J over the domain of the control $ on the 
time interval t G (0,T]. Note that convergence to a global minimum will not in general 
be attained by such a scheme, and that, as time proceeds, J will not necessarily decrease. 

4.3.2. Conjugate gradient 

The simple gradient approach described above is straightforward, but, as illustrated 
in figure 3, not always efficient. Even in linear problems, for cases in which the cost 
functional has a long, narrow "valley", the lack of a momentum term from iteration to 
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iteration tends to cause the simple gradient algorithm to bounce from one side of the 
valley to the other without turning to proceed along the valley floor. The conjugate 
gradient approach tends to improve this behaviour, and will be examined further in 
future work. 

5. Numerical approach 
5.1. Numerical algorithm, for solution of flow and adjoint equations 

The control formulations derived above were tested in direct numerical simulations of 
fully developed turbulent channel flows at ReT = 180. Fourier transforms are used to 
compute spatial derivatives in the homogeneous directions with 3/2 dealiasing on the 
nonlinear terms, and a conservative second-order finite difference scheme is used to com- 
pute spatial derivatives in the wall-normal direction. For the present simulations, the 
number of Fourier modes used is 170 x 129 x 170 in the x\, X2, and x$ directions respec- 
tively (i.e. 256 x 129 X 256 dealiased collocation points), and the size of the computational 
domain in wall units is L~l = 2260, L^ = 360, L% — 1130. The resulting effective grid 
resolution in the streamwise and spanwise directions (on collocation points determined 
without the extra 3/2 padding) is Ax* — 13, Ax+ — 7. Hyperbolic tangent streching of 
the grid is used in the wall-normal direction, resulting in a grid spacing of AxJ = 0.3 
adjacent to the wall and Ax% — 5 in the center of the channel. Fine grid resolution is 
required near the wall to resolve the shear layer; the mesh is fine in this direction even up 
to the center of the domain because the second order difference scheme used to compute 
the derivatives in this direction is numerically dissipative. The computational grid is 
staggered in the wall-normal direction to prevent decoupling of the even and odd modes 
of the pressure. 

The flow is advanced in time using an explicit low-storage third-order Runge-Kutta 
method for terms involving x\ and x$ derivatives and an implicit Crank-Nicholson 
method at each Runge-Kutta substep for X2 derivative terms. A temporal discretiza- 
tion implicit in the Xi derivatives is necessary to mitigate the CFL time step restriction 
when control is applied, as the control fluid at the wall is directed in the X2 direction, 
which is precisely the region and direction in which the mesh must be refined most to 
resolve the shear layer. 

The adjoint solver is coded with a method analogous to that of the flow solver. The 
flow field is stored every 5 time steps on the forward sweep, with linear interpolation of 
these stored fields used on the backward sweep to determine the operator J\f*. In the 
optimal calculations presented here, we chose I = 10~2 (control power is taken to be 
"cheap"). The Polak-Ribiere variant of the conjugate gradient algorithm was used for 
the control update, with a computed at each iteration by Brent's method, a robust line 
minimization algorithm taken from Press et al. (1986). 

6. Performance of controlled systems 

At the time this document went to press, high Reynolds number computational results 
were not yet available. They will appear in the version of this paper that gets submitted 
to J. Fluid Mech. Instead, shown here are some of the visualizations and statistics from 
the baseline case (no control) which was run in order validate the code and illustrate the 
post processing analysis to be performed. 

Figure 6 demonstrates that effective performance, including about 50% drag reduction 
and nearly an order of magnitude reduction in the turbulent kinetic energy, have been 
obtained in ReT = 100 turbulent flow. 
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FIGURE   5.     Performance  of optimal control  algorithm  at  ReT   —   100: ,   optimal 
drag formulation (§4);    , optimal energy formulation; , intuition based scheme 
$ = —U2{y+ — 10);   , no control (both turbulent and laminar drag curves are shown). 
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PART C. 

Robust control of turbulence 

The framework for applying optimal and robust control theories to linear problems 
is first reviewed in a notation fairly consistent with that used by Doyle et al. (1989). 
The discussion is made strictly in the time domain, not the frequency domain often 
used to discuss these approaches, to facilitate extension of the approaches to nonlinear 
problems in which frequency domain techniques are of limited usefulness. The resulting 
development is fairly straightforward and does not assume the reader is accustomed to 
the language of control theory. 

Nonlinear optimal control problems are then reviewed in a similar notation—the ap- 
proach described here is that taken by Bewley, Moin, and Temam (1997) for the optimal 
control of wall-bounded turbulent flows. Finally, the concepts of robust control are ex- 
tended to nonlinear problems, such as the control of turbulence, in a consistent manner. 

1.  Outline of linear regulation problems 
1.1.   Optimal regulation of linear problems 

1.1.1.  State equation 

Consider a state vector u which is a function of some feedback control vector 3> such 
that it obeys the linear evolution equation 

ü=Au+ß2$ (1.1a) 

with given initial conditions 

u = u(0) att = 0. (1.1b) 

The matrices A and #2 may be functions of time but do not themselves depend on the 
state u or the control $. 

1.1.2.   Cost function 

The object of applying control in the present problem is to regulate some measure of 
the state to zero quickly without applying excessive amounts of control. Mathematically, 
this objective is expressed as the minimization of a cost functional which balances a 
measure of the state u with a measure of the control $ applied. We will use the norm 
symbol to denote these measures, which may be defined appropriately for particular 
problems of interest: 

J2 = ^=l    (||u||2 + £2||$||2)^. 
2T70 

Note that the two terms are weighted together with a factor H? which accounts for the 
"price" of the control; this factor is large if applying the control is "expensive", which 
emphasizes the importance of the latter term in this equation and generally results in 
a modest control effort, and small if applying the control is "cheap", which results in a 
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larger control effort. These terms are then averaged over some optimization interval of 
consideration [0,T]. In matrix form, J2 is expressed as 

J2 = 2Y/ (u*crc'iu+^***) dt 

with C\ denned appropriately based on the definition of the norm of the state ||u|| and 
the star (*) denoting the conjugate transpose. By appropriate scaling of the vector $ 
and the matrix B2, the norm of the control ||$[| is taken simply as the Euclidian norm 
without loss of generality. 

A technique to design a feedback control relationship of the form $ = K2 u which 

minimizes the cost function J2 is now briefly outlined. 

1.1.3.  Adjoint equation 

Define an adjoint state (as yet, arbitrarily) by the relation 

with initial conditions 

-A = A* A + C{ & u 

A = 0 at t = T. 

(1.2a) 

(1.2b) 

Note that the "initial" conditions (1.2b) are defined at t — T, so to determine the 
adjoint on the interval [0,T), the evolution equation (1.2a) must be marched backwards 

from T -)• 0. 

1.1.4.   Gradient of cost junction J2 with respect to control <3> 

It may be shown that the gradient of the cost with respect to the control is a simple 
function of the adjoint state defined by (1.2): 

2>J2 

m = f§ + B; A. (1.3) 

1.1.5.  Solution of control problem 

By (1.3), the most suitable control which results in 

^J2 
^$ = 0   (minimum) (1.4) 

(1.5) 

as a function of the adjoint state is given simply by 

Combining the state equation (1.1a), the adjoint equation (1.2a), and the control given 
by (1.5) into a combined matrix form gives 

1_ 

P 
-C1!* d -A* 

-^B2B; (1.6) 

Now prescribe a relationship between any state vector u = \i(t) and the corresponding 
adjoint A = A(i) such that 

A - X2u, (1.7) 



PART C. Robust control of turbulence 49 

where X2 = X2(t). Inserting this expression into (1.6) to eliminate A and combining the 
top and bottom rows to eliminate ü leads to the expression 

- x2 = A* x2 + x2 A - x2 - B2 B; X2 + a 
p ?r Ci)u 

As this expression is valid for any state vector u, we arrive at a Riccati equation for the 
matrix X2{t): 

X2 — A X2 + X2 A — X2 -j B2 B2 X2 + Cj C\ (1.8a) 

with initial conditions, due to (1.2b) and (1.7), given by 

X2 = 0 at t = T. (1.8b) 

Combining (1.5) and (1.7), the optimal control $ as a function of the state u is given by 
the state feedback relationship 

$ = K2u where 
P 

K2 — — -^ B2 X2 (1.9) 

where X2(t) is the solution of (1.8) and thus K2 — K2{t). 

1.1.6.  Infinite time horizon for tim,e invariant problems 

If the matrices A, B2, and C\ are time invariant, then in the limit of large optimization 
intervals T —t 00 the matrix X2(t) defined by (1.8) approaches a steady state value in 
the march from the initial conditions defined at t = T back towards t = 0. This steady 
state value may be found by setting X2 — 0 in (1.8a), which leads to 

0 = A* X2 + X2 A ■ X2 —^ B2 B2 X2 + Cj C\ (1.10) 

The optimum feedback relationship given by (1.9) in this limit is thus time invariant and 
a function of the solution to (1.10), referred to as an algebraic Riccati equation (ARE). 
Solution methods for equations of this type are well developed (Laub 1991). 

1.2.  Simple interpretation of the adjoint field 

In the preceding discussion, the determination of optimal feedback control relationship 
$ = K2 u in (1.9) was closely linked to the definition of an adjoint A in (1.2). However, 
the definition of A was made arbitrarily in (1.2), and subsequently justified only mathe- 
matically in (1.3) as being that field which is required to express the gradient of the cost 
function with respect to the control S>J2j^^ in a simple manner. 
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In the case that the control $ enters the state equation (1.1) through the identity- 
matrix, B2 = /, a simple interpretation of the adjoint is now clear. In this case, the 
expression for the gradient (1.3) reduces to 

^=£2$ + A. (1.11) 

Thus, the gradient consists of two terms. The first term simply accounts for the term 
in the cost function J2 which measures the magnitude of the control; in the absense of 
other term in the cost function, this term would drive the control to zero when J2 is 

minimized. 
The second term in (1.11) accounts for the term in the cost function J2 which measures 

the state u itself. Thus, one interpretation of the adjoint A is simply that: The adjoint, 
when properly defined, is a measure of the sensitivity of the term of the cost function 
which measures the state u to additional RHS forcing of the state equation. Note that 
there are exactly as many components of the adjoint A as there are components of the 

state equation (1.1a). 

1.3. Robust regulation of linear problems 

1.3.1.  State equation 

Consider the linear state equation of (1.1) with additional forcing due to an external 

disturbance x. 

ü = Au+BlX + B2$ (1.12a) 

with given initial conditions 

u = u(0) at£ = 0. (1.12b) 

The matrix Bi may be a function of time but does not itself depend on the state u or 
the control <&. 

1.3.2.   Cost function 

The object of applying control in the robust problem is identical to the optimal prob- 
lem, except we now play the "devil's advocate" and seek to find the best control in the 
presence of a "small" component of exactly that disturbance % which is maximally ag- 
grevating to the control objective. To represent this concept mathematically, we append 
to the cost function discussed in the previous section a term which accounts for the 
magnitude of the disturbance used to aggrevate the system 

J^ = ^ lT(\\u\\> + F\MZ-J2\\x\ndt. --hL (iiuii2+£2ii$n2-72|W 

Note that the sign of the term which is used to account for the disturbance is opposite 
to the sign used to account for the control; this is because we minimize with respect 
the control $ while simultaneously we maximize with respect to the disturbance %■ The 
term involving — j2 \\x\\2 limits the magnitude of the disturbance in the maximization 
with respect to x as the term involving I2 ||$||2 limits the magnitude of the control in 
the minimization with respect to $. In matrix form, J7oo is expressed as 

Joo=2^/   (u* CT <?! u+ *****-7V x) dt 
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By appropriate scaling of the vector % and the matrix B\, the norm of the disturbance 
llxll is taken simply as the Euclidian norm without loss of generality. 

A technique to design a feedback control relationship of the form $ = K^ u which 
minimizes the cost function j7oo in the presence of a small component of the worst external 
disturbance x forcing the state equation (1.12) is now briefly outlined. By designing a 
feedback control rule effective for a state disturbed in this manner, the control rule which 
is found is effective in the presence of small disturbances of any type, and has nearly the 
same nominal performance (i.e. performance on the undisturbed system) as the optimal 
controller determined in the previous section. 

1.3.3. Adjoint equation 

Define an adjoint state as for the optimal control case by the relation 

-A = A* A + C{ Cj u 

with initial conditions 

A = 0 at t = T. 

(1.13a) 

(1.13b) 

1.3.4.   Gradients of cost function J^ with respect to control <3> and, disturbance \ 

In a manner identical to the derivation leading to (1.3), the gradient of the cost with 
respect to the control $ and the disturbance x, m this problem are simple functions of 
the adjoint state defined by (1.13): 

e $ + B: A 
®x 

= -7
2X + Bl\. (1.14) 

1.3.5. Solution of control problem 

By (1.14), the most suitable control and disturbance which result in 

are given simply by 

0   (minimum) and 
®X. 

0   (maximum) 

* = -p*a*A and x = \ m A. 
T 

(1.15) 

(1.16) 

Combining the state equation (1.12a) and the adjoint equation (1.13a) with the control 
and disturbance given by (1.16) into a combined matrix form gives 

-Ci Ct -A* 
(1.17) 

Now prescribe a relationship between any state vector u and the corresponding adjoint 
A such that 

A = XooU (1.18) 

Inserting this expression into (1.17) to eliminate A and combining the top and bottom 
rows to eliminate ü leads to the expression 

-X0 A*Xa XXA + X0 1 Bt B{ -^B2 B*2 ) Xx + C{ d u 
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As this expression is valid for any state vector u, we arrive at a Riccati equation for the 
matrix X^t): 

-X0C = A*X0C+X0CA + X00 (4
ßi5i -^52-B2) Xoo + Cld 

with initial conditions, due to (1.13b) and (1.18), given by 

Xoo = 0 at t = T. 

(1.19a) 

(1.19b) 

Combining (1.16) and (1.18), a robust control $ which is effective even in the presence 
of a small component of the worst case disturbance x ls given by the state feedback 

relationship 

$ = Koou        where        K^ - -— B2 X^, (1.20) 

where X^ is the solution of (1.19) and thus Äoo = Koo{t)- 

1.3.6. Infinite time horizon for time invariant problems 

If the matrices A, 51( B2, and C\ are time invariant, then in the limit that the 
optimization interval T ->• oo the matrix X^t) defined by (1.19) approaches a steady 
state value in the march from the initial conditions defined at t = T back towards t = 0, 
and is given by the solution to 

0 = A* Xx + Xoo A + X0 ■^ B1 Bl - 1 B2 B*2 ) Xoo + C? Ci 
(1.21) 

The robust feedback relationship given by (1.20) in this limit is thus time invariant and 
a function of the solution to (1.21). 

2.  Outline of nonlinear regulation problems 
2.1.   Optimal regulation of nonlinear problems 

2.1.1.  State equation 

Consider a state vector u which is a function of some feedback control vector $ such 
that it obeys the nonlinear evolution equation 

u=A(u) + B2($) (2.1a) 

with given initial conditions 

u=u(0) atf = 0. (2.1b) 

The nonlinear functions A(u) and B2(§) may themselves be functions of time. 

2.1.2.  Cost function 

The object of applying control in the present case is identical to the optimal linear reg- 
ulation problem described in §1.1.2. Mathematically, it is expressed as the minimization 
of 

J2 
1    rT 

= —-      (u* c: d u + £2 $* *) 
2T J0    

V        X J 
alt (2.2) 
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A technique to determine the control $ on the interval (0, T] which (locally) minimizes 
the cost function J2 for the nonlinear state equation (2.1) is now briefly outlined. 

2.1.3. Perturbation equation 

Consider the linear problem of a small perturbation ($', u') to some reference solution 
($,u) of the system given by (2.1). It is easily shown that such a perturbation must 
obey a linear evolution equation of the form 

u' = Au' + B2$' (2.3a) 

with initial conditions 

u' = 0 at t = 0. (2.3b) 

The matrices A and B2 are functions of time and depend explicitly on the reference 
condition (3>,u). 

2.1.4. Adjoint equation 

An adjoint system is defined based on the A matrix of the perturbation problem (2.3) 
such that 

-X = A*X + Cldu (2.4a) 

with initial conditions 

A = 0 at t = T. (2.4b) 

2.1.5. Gradient of cost function J2 with respect to control $ 

As in the linear case, the gradient of the cost with respect to the control is a simple 
function of the adjoint state defined by (2.4): 

^2 _ „2 = £2 $ + B; A. (2.5) 

2.1.6.  Solution of control problem 

The most suitable control on (0, T] which results in 

——— = 0   (minimum) (2.6) 

may not be found simply by setting the gradient S>J2IS>^ in (2.5) equal to zero, as this 
gradient information is accurate only in a small neighborhood of the reference solution 
upon which the matrices A and B2 were based.t Instead, a more stable iterative approach 
is used based on the gradient vector: 

$*+i=<|>*_algk, (2.7) 

where k indicates the iteration index. Thus, the condition (2.6) is approached iteratively 
according to the following procedure: 

f One may propose a Newton-Raphson technique to determine the control, setting the local 
expression for ^^2/^$ in (2.5) equal to zero to determine a new control, determining a new 
reference condition from (2.1), examining the new perturbation problem to determine a new 
expression for Stfa/^®, and iterating until convergence. However, such a technique is not 
recommended, as there is no way to insure that the initial reference condition is sufficiently 
close to a minimum to guarantee convergence of this approach. 
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(a) Initialize control $ on (0,T] to $ — 0. 
(&) Determine state u on (0,T] from state equation (2.1). 
(c) Determine adjoint A on [0,T) from adjoint equation (2.4). 
(d) Determine local expression for gradient $Jvl$)$! from (2.5). 
(e) Test various different values for a in (2.7), computing the resulting state u from 

(2.1) and the resulting cost Ji from (2.2), and determine via a line minimization algo- 
rithm that value of a which results in the smallest J2. 

(f) Update control <3> on (0,T] via (2.7) using best value of a determined in step e. 
(g) Repeat from step b until convergence. 

2.2. Robust regulation of nonlinear problems 

2.2.1. State equation 

Consider the nonlinear state equation of (2.1) with additional forcing due to an external 

disturbance x 

ü=^(u) + ßi(x) + B2(*) 

with given initial conditions 

u = u(0) at t = 0. 

The nonlinear function B\ (x) may itself be a function of time. 

(2.8a) 

(2.8b) 

2.2.2.   Cost function 

The object of applying control in the present case is identical to the robust linear reg- 
ulation problem described in §1.2.2. Mathematically, it is expressed as the minimization 
of a cost function J^ with respect to the control $ while simultaneously maximizing Joo 

with respect to the disturbance x, where 

Joo^^l   (u*C1*Ciu + £2**$-7Vx) dt 

A technique to determine the control $ on the interval (0,T] which (locally) mini- 
mizes the cost function J^ in the presence of a small component of the worst external 
disturbance x forcing the state equation (2.8) is now briefly outlined. 

2.2.3. Perturbation equation 

Consider the linear problem of a small perturbation ($',x')u') to some reference so- 
lution ($,x,u) of the system given by (2.8). It is easily shown that such a perturbation 
must obey a linear evolution equation of the form 

ü' = Au' + Bi)d + B2& 

with initial conditions 

u' = 0 at t = 0. 

(2.9a) 

(2.9b) 

The matrices A, Bi, and B2 are functions of time and depend explicitly on the reference 

condition ($,x,u)- 
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2.2.4. Adjoint equation 

An adjoint system is defined based on the A matrix of the perturbation problem (2.9) 
such that 

-A = A* A + C{ d u (2.10a) 

with initial conditions 

A = 0 &tt = T. (2.10b) 

2.2.5. Gradients of cost function Joo with respect to control $ and, disturbance x 

As in the linear case, the gradients of the cost with respect to the control $ and the 
disturbance x are simple functions of the adjoint state defined by (2.10): 

^p =/»* + *• A and ^f = -72X + i?rA. (2.11) 

2.2.6. Solution of control problem, 

The most suitable control and disturbance which result in 

 — = 0   (minimum) and ——— = 0   (maximum) (2.12) 

may not, strictly speaking, be found simply by setting the gradients SlJoo/StQ and 
9 Joel ^X m (2-11) equal to zero, as this gradient information is accurate only in a small 
neighborhood of the reference solution upon which the matrices A, B\, and B2 were 
based. Instead, an iterative approach is used based on the gradient vectors: 

$fc+i=$fc-a^ and X
k+1 = X

fc + ß^^ (2.13) 

where k indicates the iteration index. The iteration procedure followed is analagous to 
that described in §2.1.6; in the present case, a value of a is chosen to reduce J^ while 
simulataneously a value of ß is chosen to increase J^. The min/max problem is solved 
when the conditions given in (2.12) are approached. 

2.2.7. Approximate solution for systems of very large dimension 

The min/max problem described by (2.13) is unfeasible when the state equation (2.8) 
is a model of turbulent channel flow, as the state u upon which the disturbance acts in 
this case, and therefore any general representation of the disturbance % itself, has a very 
large dimension (G(107) at ReT = 180). Thus, instead of forcing the state equation with 
a disturbance x determined by the iterative approach given in (2.13), which is guaranteed 
to be stable but would present excessive computational storage requirements, we settle 
on a simpler, though possibly unstable, approach for the determination of xA To do 
this, we choose the noise by setting SiJoo/S^x m (2-11) equal to zero to determine the 
the disturbance %. Taking the matrix B\ as simply the identity matrix, the disturbance 
determined in this fashion is proportional to the adjoint field itself 

T 

\ Note that we still determine the control $ via the stable iterative approach given in (2.13). 
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For sufficiently large 7 (i.e., sufficiently small level of noise), this is an accurate ap- 
proximation of the global maximum ^Joo/^X — 0, and thus results in an accurate 
approximation of the "worst case" noise. For smaller values of 7 (i.e., larger noise lev- 
els), this approach can not even be guaranteed to be stable. Trial and error will indicate 

for what values of 7 this approach converges. 
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PART D. 

Optimization of practical feedback rules 
for turbulence control 

A new method based on control theory for optimizing feedback control rules with the 
objective of reducing drag in wall-bounded turbulent flows is presented. Both linear and 
nonlinear control rules (of the type commonly used in neural networks) are considered. 
These control rules relate wall measurements of skin friction and pressure to the control, 
which is applied as a continuous distribution of wall-normal boundary velocity with zero 
net transpiration. Though the optimization technique itself requires complete informa- 
tion about the flow, and thus can only be performed computationally, it is intended that 
the resulting optimized rules be scaled appropriately and used in physical boundary layer 
control implementations. 

Using optimal control theory, the sensitivity of some representative cost functional 
to small modifications in the coefficients of a feedback control rule are found via the 
solution of an adjoint problem. With this sensitivity field, the coefficients are iteratively 
updated with a gradient algorithm until the cost functional is minimized. Given that this 
optimization is performed in a representative situation, the coefficients then may be fixed 
and the control rule effectively used in other flows with similar configurations, requiring 
only information about the flow which can be obtained with flush-mounted sensors on 
the wall. 

1.  Introduction 

Optimal control theory applied to turbulence provides a rigorous framework to deter- 
mine the gradient of a cost functional (which represents a physical problem of interest) 
with respect to small modifications of the control forcing (Bewley, Temam, and Moin, 
1997). With such information, combined with a gradient algorithm to update the con- 
trol, very effective control distributions may be determined. Numerical simulations of 
this approach in a low Reynolds number turbulent channel flow obtained a 50% drag 
reduction and an order of magnitude turbulent kinetic energy reduction with small levels 
of boundary velocity control. Important drawbacks of this approach, however, are 1) it 
requires complete information about the turbulent fluctuations in the near-wall region, 
and 2) it is extremely computationally expensive. Thus, it is impossible to apply the 
optimal control approach directly in an experimental setting. 

In order to arrive at a practical scheme, a method was sought to optimize control 
rules which 1) require only flow information obtainable with wall-mounted sensors, and 
2) are computationally inexpensive enough to apply in real time. Possible approaches 
for this purpose can be divided into two broad categories: state trajectory approaches, 
which attempt to drive some description of the turbulent state (or a portion thereof) in 
a desired manner, and direct approaches, which bypass any description of the turbulent 
state per se, but simply seek a control rule which achieves a desired effect, such as the 
reduction of drag. 

As an example of one state trajectory approach, an adaptive inverse technique has 
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been applied to a low Reynolds number turbulent channel flow, providing approximately 
18% drag reduction (Kim, 1996). This approach first develops an approximate "inverse" 
model between measurable flow quantities (as input) and the control forcing (as output) 
with an adaptive technique. Each iteration of the adaptation consists of three steps: 1) 
computing the error of the model output with respect to the desired model output (the 
actual control forcing used), 2) determining the influence of the weights in the model on 
this error, then 3) updating all the weights in the model a small amount in a manner that 
reduces the error. In neural networks, this is commonly referred to as "back-propagation" 
of the error. Once this approximate inverse model between the flow measurements and 
the control converges, the inverse model is used to compute a control which will drive the 
flow measurements to some desired state. In the case of Kim (1996), the desired state is 

chosen to be a state with reduced spanwise drag fluctuations. 
Drawbacks of the adaptive inverse approach are 1) an ad hoc desired state must be 

chosen, 2) a random "dither" signal needs to be applied to the control in order for the 
inverse model to have "persistently exciting" data from which to learn, which reduces 
the performance of the controller, and 3) it is possible that even at statistical steady 
state, due to the nonlinear nature of the Navier-Stokes equation, the weights in the 
inverse model may need to continually adapt in order to represent a temporally evolving 
relationship between the flow measurements and the control. Thus, if the training of the 
inverse model does not converge fast enough, it will not have time to keep up with the 
temporal evolution of the flow (for instance, the movement of the near-wall turbulent 
coherent structures), and may not develop an accurate model between flow measurements 
and the control which produces them. 

Other state trajectory approaches attempt to control a more complete description of 
the turbulence using a low-dimensional (10-20 mode) representation of the near-wall 
coherent structures (Coller et al, 1994). In this approach, the orbit of the near wall 
structures in this representation is partially stabilized, resulting in a reduced "bursting" 
frequency and, presumably, reduced drag. Coller et al. (1994) showed that the frequency 
of bursting events could be reduced in their model equations, but did not demonstrate 
how effective such an approach would be at reducing drag when applied to a fully tur- 

bulent flow. 
Drawbacks of this low-dimensional representation approach include 1) an accurate 

estimation of this low-dimensional state needs to be made from the measurements at 
the wall, and 2) a desired ad hoc state trajectory must be chosen, which can only be 
selected well if one has a detailed understanding of the cause/effect relationship of the 
drag-producing phenomena in the near-wall region, which is still under debate. 

Direct approaches may be proposed which bypass estimation and control of the state 
trajectory altogether. In such approaches, one simply represents the control objective 
mathematically as a cost functional, then attempts to find a control rule which minimizes 
this functional. 

The simplest direct approach is an adaptive "reinforcement learning" approach. In 
such an approach, the weights of a control rule are initialized randomly and the control 
rule applied to the flow. Every time a "good" result is seen (e.g., the drag is reduced), 
the weights contributing most to the control at that instant are increased, and every time 
a "bad" result is seen, the corresponding responsible weights are decreased. 

The main drawback of this approach, however, is that this reward/punish training 
algorithm is not very reliable, especially for complicated nonlinear systems, and thus the 

scheme may not converge at all. 
Thus, we arrive at the motivation for the current work, in which we derive a rigorous 

algorithm to efficiently optimize a direct control scheme, with the goal in mind simply 
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of reducing some integral measure of the control objective without the prescription of 
a desired state trajectory. This approach, based on computation of the gradient of a 
cost functional with respect to modification of the weights in the control rule, will be 
outlined in the following sections. Numerical simulations that implement this technique 
are underway. 

2.  Problem Statement 

Our goal is to determine a relationship which takes as input the measurable flow 
quantities and produces as output a control $ (the normal component of velocity at the 
wall) which effectively controls the flow system. The measurable flow quantities are taken 
to be the wall values of the streamwise drag fidui/dn, the pressure p, and the spanwise 
drag (iduz/dn, where U{ are the components of the velocity, ß is the viscosity, and n; 
is a unit normal on each wall facing into the flow. Hence, one of the simplest (linear) 
control rules which may be proposed for this purpose is 

A ö«i   , du3 
<3> = wi*fj,— l-W2*P + M3*/J-r— (2.1a) 

on an 

The task at hand is simply to optimize the weighting functions wK such that the control 
$ determined by linear relationship (2.1a) effectively controls the flow system. This 
configuration is illustrated graphically in Figure 1. Note that the wK are convolution 
functions, where the convolution is defined such that, for example, 

dui        f dui - .       . 
w\ */i7J— - / "iW V1!^^ ~ x>      ' (2.1b) 

where T is the portion of the (2D) boundary of the (3D) flow domain il over which 
measurements are made (and also, we assume, the portion of the boundary over which 
control is applied), and x € F is the variable of integration. By optimizing the convolution 
functions wK(x), we take into account "nearby" flow measurements (in the direction x) 
from a specific actuator location (a;). In fact, the extent to which these convolution 
functions are nonzero when converged will indicate how far in each direction from a 
specific actuator flow measurements are relevant when computing an effective control. 
Additionally, we will constrain the spatial average of each convolution function to be zero, 
so that the net control on each wall is exactly zero at any instant. This is motivated both 
by physical flow control devices and the current simulations which require control with 
zero net mass flux. We will seek the best control rule to interact with the fluctuating 
part of the turbulence only. 

Note also that the weighting functions wK are prescribed at the outset to be invariant 
in time. Though the method used requires that the weights be optimized by considering 
finite time horizon [0,T], we seek to approximate the steady-state weights at the "infinite 
time horizon" in which turbulent fluctuations near the wall are countered by a fixed 
control rule at the wall in an efficient drag-reducing manner. 

As a straightforward extension to this work, one may also optimize nonlinear control 
rules of a form similar to that used in neural networks, which may be written 

A 

din dus 
tA = wix * ji-z h w2\ *p + w3\ * fj,— h B\, 

on on 

where A is the number of "nodes" in the "hidden layer" of the network and g(£\) is an 
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Output = Control Velocity 

dn 

Streamwise Drag Pressure 

dn 

Spanwise Drag 

Input = Flow Measurements 

FIGURE 1. Linear Network. The flow measurements which we take as inputs are localized mea- 
surements on the wall of the streamwise drag, the pressure, and the spanwise drag. The flow 
measurements are convolved with the weighting functions wK and summed to determine the con- 
trol $. The input flow measurements are field variables and are indicated with heavy lines—the 
corresponding weights are convolution functions (in the continuous case) or two dimensional 
arrays containing a stencil of weights (in the discrete case). 

Output = Control Velocity 

Input = Flow Measurements Bias Term 

FIGURE 2. Nonlinear Network. The output of several simple networks A similar to the one 
depicted in Figure 1 (with added bias weights B\ connected to an input clamped to unity) are 
used as the arguments £x to activation functions g at the hidden nodes. The output of all of 
the hidden nodes g(£\) are then weighted with the W\ and summed to produce the control $. 

"activation function" which will be prescribed. Control rules of this form, used commonly 
in neural networks, have seen a broad range of application and are capable of representing 
very general nonlinear relationships (Hertz et al., 1991). The task at hand in this case is 
to optimize the weighting functions wK\ and the discrete weights B\ and W\ such that 
$ effectively controls the flow system. This type of network is illustrated in Figure 2. 

For simplicity, the equations necessary to optimize the linear network of equation (2.1) 

and figure 1 will be derived in this paper. 

3.  Governing equations 
The flow system we consider is fully developed turbulent channel flow with periodic 

boundary conditions in the streamwise (xi) and spanwise (a;3) directions, as shown in 
Figure 3. Blowing and suction through the computational equivalent of holes drilled 
in the wall will be applied according to the linear control rule (2.1).   The control rule 
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FIGURE 3. Flow configuration. Blowing and suction is applied through closely spaced holes 
drilled in the walls to control the flow. This control will be coordinated with nearby flow 
measurements on the wall in a manner to be determined. 

optimized for this configuration should also be effective in turbulent boundary layers due 
to the similar near-wall behavior of these flows. 

The governing equations may be written functionally as 

du 

M{U) = 0 in tt 

with boundary conditions 

U{ = $ rii < 

where <£ is determined by the linear control rule 

<9MI du3 
$ = u>i * [i— h w2 * p + «3 * y"-^—, 

on on 

l) 

and prescribed initial conditions 

U{ = Ui (0) at t = 0. 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

For clarity, all differential equations will be written in operator form in this discussion, 
with these operators defined when first introduced. The (nonlinear) Navier-Stokes op- 
erator for the present case, in which the flow is assumed to have uniform density and 
viscosity, is given by 

/ dui   i      dui        d2u{ 

~dt 
M{U) = 

+ u 3dXj 

V 

dx) 

duj 

dxj 

+ 1 dp 

pdxi 
+ -SiiP^ 

P 

) 
In this discussion, x\ is the streamwise direction, X2 is the wall-normal direction, X3 
is the spanwise direction, the M;'s are the corresponding velocities, p is the pressure, 
p is the density, fi is the absolute viscocity, and v = [ijp is the kinematic viscocity. 
The flow is sustained by a mean pressure gradient Px in the streamise direction, which is 
modified at each time step in order to maintain a constant mass flux through the channel. 
Define also n as a wall-normal unit vector directed into the channel, TW = \i du\/'dn\wau 
as the mean skin friction on the wall for the uncontrolled channel (averaged in space 
and time), uT = (TW/p)1'2 as the mean friction velocity, S as the channel half-width, 
and ReT = uT8/i/ as the Reynolds number based on the mean friction velocity and the 
channel half width. The flow considered in this work is taken at ReT — 180. All velocities 
are normalized by the friction velocity uT, and therefore may also be marked with a (+) 
superscript.   All lengths are normalized by S unless marked with a (+) superscript, in 
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which case they are normalized by the wall unit vjuT. All times are normalized by 8/uT 

unless marked with a (+) superscript, in which case they are normalized by v/u2
T. 

We will now develop a systematic procedure to optimize the weighting functions wK. 
The first step is to define the control problem of interest mathematically as a cost func- 

tional to be minimized. 

4.  Cost functional 

The objective of applying the control in this problem is to reduce the drag without 
using excessive amounts of control forcing. Mathematically, a cost functional for this 

problem may thus be expressed as 

J<-» = ^/rjT("t + T*,)*-r- (41) 

The term involving fidui/dn is the drag averaged over the wall T and the time interval 
of interest [0, T]. The term involving $2 is an expression of the magnitude of the control. 
These two terms are weighted together with a factor £2, which represents the price of the 
control. This quantity is small if the control is "cheap", and large if applying the control 

is "expensive". 
Minimization of J corresponds to reducing drag while maintaining a small amount of 

control forcing. 

5.  Gradient of cost functional 

We now develop a technique to compute the gradient of the cost functional J with 

respect to the weighting functions w. 

5.1. Perturbation field 

Consider first the Frechet differential of the flow U with respect to w, which is defined 

such that 

1 U(w + ew) — U(w) 
U = — lim  

A e->o e 
3 -us W(uQ . 

— wKdT 
9wK 

where w is an arbitrary "update direction" to the weighting function w. This update 
direction will remain undetermined and will later be isolated and removed from the 
equation for the perturbation of the cost functional caused by a perturbation to the 
control. The perturbation field Ü is governed by the Frechet differential of (3.1) with 

respect to w, which may be written: 

.4.17 = 0 in ft (5.1a) 

with boundary conditions 

Ui = $ni on9£2i, (5.1b) 
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■ dui du3 
<P — Wi * [J,— \-w2*p + ws * //-r— 

on on 
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dui      . .        du3 
+ wi * p-z \- w2 * p + w3 * [J,——, 

on on 
(5.1c) 

and with initial conditions 

üi = 0 at t = 0. (5.Id) 

The Frechet differential of the (non-linear) Navier-Stokes operator is given by 

AU 

Id'äi düi      .   du{ 

dt oxj oxj 

1 diij 

\ pdxj 

d2üi      1 dp \ 
' TT  -\ — 
dx2-      p dxi 

J 

(5.2) 

which is linear in the perturbation field U, but is a function of the solution U of the 
Navier-Stokes problem, so that A = A(U). 

The Frechet differential of the cost functional J with respect to w is: 

±       1 ..     J(w + ew) - J(w) 
J = — hm  

A e^Q e 

=-fy- 9J{w) 

9wK 

wK dT 

AT r ^o 
//^ + £2$$) dtdY 

It is seen that the perturbation of the cost functional J is a function of the perturbation 
of the flow U. The linear dependence of U on w may, in theory, be found directly from 
(5.1). However, in practice, this is not a tractable approach due to the excessively large 
dimension of the problem under consideration. Thus, we seek a simpler way to express 
the above equation in a manner in which the gradient ^Jr(w)/^wK may be determined. 
It is for this reason that we now propose the definition of an adjoint field. 

5.2. Definition of adjoint field 

As discussed in previous sections, an adjoint operator A* may be defined by the identity 

<AU,U> = < U,A*U>+b. (5.3) 

Integration by parts may be used to move all differential operations from U on the left 
hand side of the equation to U on the right hand side, resulting in an expression for the 
adjoint operator 

A*U* = 
dt        3 V dxj      dxi J        dx2-       p dxi 

1 du) 

p dxj 

(5.4) 
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where the operator .4* is a function of U, and an expression for b, which contains all the 
boundary terms: 

+ f u'iuldV -  f u'iuldV 
Jn t=T    Jn *=o 

In order to express the perturbation of the cost functional in a usable form, we now 
define an adjoint state by the system of equations 

•4*17 = 0, (5.5a) 

with mixed boundary conditions on the walls 

üj  + / * i&i = 1 + £2 $ * t&i 

-Ü2 n2 + f*w2=       £2 $ * w2 (5.5b) 

ü3  + f * w3 —        £2 $ * w3, 

where 

and with initial conditions 

dü2 
f=p-2pu2u2 - fi-— 

ox2 

b(x) = b(-x), 

üi = 0 at t = T. (5.5c) 

5.3. Identification of gradient 

Using the identity (5.3) and the definition of the adjoint, in (5.5), we can algebraically 
manipulate (5.3) to the form 

where GK is some function of the solution to the adjoint problem (5.5). As w is arbitrary, 
we may then identify the expression for GK as @J(w)/'3>wK. It may be shown that the 

resulting expression for the gradient, is 

@wi T J0    \ J    P dn 

9w2        Tj0    V J 

9w3        T J0    V J       dn 

Thus, the gradient of the cost J{w) with respect to modification of the weights w of 
the feedback control rule has been represented as a function of the solution of an adjoint 
problem. This adjoint problem, though linear, has approximately the same complexity 
as the Navier-Stokes problem itself, as can be seen by examining Equation (5.5) and the 
definition of A*. Note that the adjoint field evolves backwards over the domain [0,T] 
from initial conditions at t = T; this is the natural direction in time to march these 
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equations due to the sign of the viscous and time derivatives in A*. Note also that 
the computation of the adjoint field requires the storage of the flow field over the entire 
interval [0,T], as the adjoint operator depends on the flow velocity, i.e. A* = A*(U). 

6. Gradient update to control 

With the gradients computed using the adjoint field, a control rule may be optimized 
using a gradient algorithm as done in previous sections. 

7. Computational Results 

At the time this document went to press, computational results were not yet available. 
They will appear in the version of to be submitted to J. Fluid Mech. 

8. Discussion 

A new technique for optimizing linear and nonlinear feedback control rules for turbulent 
flows has been presented. This technique is based solely on the equations governing 
the flow and a mathematical statement of the control objective, thus bypassing the ad 
hoc identification of a desired state trajectory often used to determine feedback control 
rules. Also, the training is based on an adjoint ("sensitivity") field, which determines 
the gradient of the cost with respect to small modifications of the weights in a rigorous 
manner. Thus, convergence can be expected to be much better than for an reinforcement 
learning approach with an adaptive algorithm. 

A straightforward extension of the present approach is to take into account past mea- 
surements in the control rule. Past measurements, which may easily be stored in an 
experimental implementation, may give additional information about the convection ve- 
locity of flow structures which cannot be determined from instantaneous measurements 
alone. It is also possible that such information can be determined by recurrent networks, 
in which the inputs of the control network include the outputs of the network from the 
previous time step. 

Drawbacks of the present method include 1) an accurate mathematical model of the 
flow equations and boundary conditions are needed for the training, and 2) the training 
algorithm is quite complex, requiring simulation on a supercomputer. However, this 
method should provide insight into effective new control rules which one could not think 
of otherwise, and which can be further modified to fit practical problems. In addition, 
they may be used to guide the development of experimental configurations, revealing the 
necessary locations of sensors with respect to the actuators in order to obtain information 
relevant to effective control strategies. 
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