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PITTING CORROSION FATIGUE OF STRUCTURAL MATERIALS

Tarun K. Goswami
Quality and Integrity Design Engineering Center
Department of Mechanical Engineering
University of Utah, Salt Lake City 84112 Utah.

David W. Hoeppner
Quality and Integrity Design Engineering Center
Department of Mechanical Engineering
University of Utah, Salt Lake City 84112 Utah.

ABSTRACT

Further evaluation of studies related to pitting corrosion
fatigue of aircraft structural materials are presented in this
paper. This study was undertaken to consider electrochemical
effects in pit formation and role of pitting in fatigue and
corrosion fatigue crack nucleation behavior. Thus, a review of
mechanisms that cause pit nucleation and growth is presented
herein. Since the transition of pit(s) to crack(s) is an
extremely important issue in assessing the significance of pits
on structural integrity the transition models are reviewed and a
new conceptual model is presented.

INTRODUCTION:

Pitting corrosion has been found in the structure of a tear-
down C/KC 135 aircraft. Widespread pitting on the surface and
hidden within the fuselage joints, as found in the case of C/KC
135 and other aircraft components, may pose a significant
threat to the structural integrity of an aircraft or a component
as pitted regions are those from which fatigue and/or corrosion
fatigue cracks may nucleate and propagate. In addition, pitted
regions may coalesce thereby forming a longer crack. Aircraft
materials, particularly those of high strength types, are
susceptible to pitting as well as stress corrosion cracking in a
favorable environment (Burleigh, 1991). Since aircraft
operate in a spectra of environments, the effect of such
environmental influences on fatigue or corrosion fatigue crack
growth behavior must be established and ultimately
understood.

Early work reported by Hoeppner and Hyler (1966) showed
that fatigue life in aluminum alloys improved as the exposure
time in a vacuum increased. In a similar study by Bradsaw and
Wheeler (1966), crack growth rates were found to vary in the

presence of water in the environment or water vapor pressure.
In the literature little data have been reported on the role of
pitting in fatigue, mechanisms of pit nucleation and growth
with respect to crack nucleation and growth, and pitting
corrosion fatigue crack growth modeling of aluminum alloys.
Hoeppner (1971, 1979) conducted one of the original
researches related to pitting and pitting corrosion fatigue
modeling in aluminum and other alloys, this has raised the
interests of the scientific community and more studies are now
underway and results are appearing in the literature. Recent
focus on this issue from the KC 135 program has raised the
level of interest in these phenomenon as well.

In order to use the potential life of commercial as well as
military fleets, knowiedge of localized corrosion processes
such as pitting and their potential role in integrity of aircraft
structures must be gained so that these models can be
integrated with the other models to allow accurate assessment
of inspection intervals and assure that the high standard of
safety will not be affected negatively.

Previous reviews on pit nucleation and growth
mechanisms were conducted by Hoeppner and Goswami (1993,
1995a) are expanded in this paper. Corrosion fatigue crack
growth behaviors in aluminum and titanium alloys also were
compiled by Goswami and Hoeppner (1994, 1995b). The
objectives of this research were;

1. To review the mechanisms of pit nucleation and growth.
To examine the role of pit growth in the generation of
"short corrosion fatigue cracks".

3. To evaluate the "short corrosion fatigue crack growth”
behavior until a long crack size is reached.

4. To explore the transition of "short crack” to "long crack”
growth where a linear elastic fracture mechanics parameter

T. Goswami and D. W. Hoeppner




such as mode I change in stress intensity (AK]) be applied
to model the behavior.

In this paper, particular emphasis is given to the study of
fatigue crack nucleation and growth mechanisms from the
regions of pits.

REVIEW OF PIT NUCLEATION AND GROWTH
MECHANISMS:

The American Society for Metals (1986) defines corrosion
"as deterioration of a material due to chemical or
electrochemical reaction with its environment". In the pitting
corrosion process, local dissolution causes cavities in
passivated metals when exposed to solutions containing
aggressive anions of chloride types. This is a discontinuous
corrosion process. There is a threshold value of anodic
potential for a given electrolyte system below which pits do
not form. Pit formation and their shapes are random
phenomena, in that location and shape of a pit depends upon
several material as well as electrochemical factors which are
not very well understood. Several pit shapes were shown by
Ma and Hoeppner (1994). It has been shown that pits may
form on the sites where there is a concentration of constituent
particles (or second phases) (Bond et al, 1966 and Zahavi and
Yahalom, 1975) since such a site is vulnerable to corrosive
attack where the protective film thickness is uneven and even
broken, thus allowing local attack. However, how a local
dissolution process may penetrate the depth, intergranularly
and across the grains has not been established. Clearly, much
more research needs to be undertaken to investigate the
mechanisms of pitting corrosion and how pit shapes can be
controlled so that enhancement of properties of exposed
materials of aircraft structures can be accomplished.

Pit Nucleation Mechanisms:

Table 1 provides a summary of pit nucleation mechanisms.
They are adsorption related, ion migration and film breakdown
mechanisms.

Pit Growth Mechanisms:

The mechanisms of a pit growth is an important phase of
activity. During this phase the pit concentrates stresses and
localized dissolution removes material. In the pitting
corrosion fatigue process, it has been hypothesized that at the
early stages only electrochemical parameters influence the
generation of pits and their growth. Furthermore, observation
of intergranular, randomly oriented cracks frequently have
been made inside pits. However, in a latter stage, competition
between the pit growth process and the crack nucleation
process becomes significant. This, "competition"
undoubtedly is determined by energetic processes that need
further clarification in order that the development of a mode I
(or other appropriate mode crack) can be understood.
Therefore, pit growth has a significant contribution to the
fatigue crack nucleation and growth mechanisms. This aspect
has not yet quantitatively established. Pit growth mechanisms
are of the types shown in Table 2.

Pit growth kinetics and conditions which support growth
of a pit are not ye. established fundamentally. Only empirical
relationships exist that support stable pit growth subjected to
critical ion concentration that must be maintained for pit
growth as presented by Sato (1982). Such a model also is
questionable since it requires a concentration gradient to
develop due to diffusion. During hydrogen bubbling the mass
transfer is increased several times higher than the critical rate
required by Sato's model. Each of the above three mechanisms
is not well accepted as a means by which a pit or pits should
grow.

PITTING CORROSION FATIGUE MODEL

Hoeppner (1971, 1979) presented a fracture mechanics
based pitting corrosion fatigue model in that pit depth was
evaluated using pitting theory. Then, using linear elastic
fracture mechanics concepts fatigue crack growth from the
bottom of a pit was evaluated. This was an early attempt made
to determine the transition from a pit to a crack. The model
proposed by Hoeppner assumed hemispherical pits. This has
been used by Kondo (1989) and Kondo and Wei (1989) in
Newman and Raju criterion (1978) in calculating the stress
intensity for a critical pit by assuming it to be a crack.

The pitting corrosion fatigue process has been
conceptually separated into the following stages:
electrochemical stage and pit nucleation,
2. pit growth,
3. competative mechanisms in pit growth and fatigue crack
nucleation,
chemically "short" crack growth,
"short crack” transition to "long crack",
long crack growth, and
corrosion fatigue crack growth and instability.
These stages are incorporated in the model presented in Fig. 1.

No e

Figure 1 shows the pitting model using fracture mechanics
concepts. It is clear from the model that external factors such
as surface conditions, time of exposure, stress-strain
conditions, environmental factors, thermal history and other
factors decide the pitting nucleation and growth rates. Since
pitting and its rate is time dependent, only after a critical time
will the pits nucleate.  Pit growth mechanisms not only
depend upon the electrochemical parameters, but also, on
several external factors as shown in the model. During this
process two mechanisms namely; pit growth and fatigue
damage by slip systems (clusters, slip saturation, intrusion or
extrusion formation) compete with each other. The
electrochemical growth rate of a pit is enhanced if the damage
produced by the various processes interact with each other.
Therefore, in a pitting corrosion fatigue process pit growth
may transform into crack nucleation.

When the pit growth rate is smaller than the damage
produced under fatigue for crack nucleation, the pit transforms
to a crack. Therefore, in a latter stage when the crack formed
grows, a "short crack grows chemically”. However,
mechanisms of crack growth in this stage have been
investigated to a limited extent and such data needs generating.
It is speculated that crack growth will occur in the directions of
pre-damaged regions by corrosion, a crack may grow on the
surface or sub-surface and not through the thickness crack
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growth. Usual linear equations may not be useful to describe
the crack growth behavior under such conditions.

Once propagation of a crack from the "short" region
reaches a critical size, a long crack growth model as used by
several workers be applicable to describe the corrosion fatigue
crack growth behavior.  However, it may be noted that
selection of environmental and test parameters may produce
accelerated crack growth or crack growth retardations. These
aspects are very complex in nature and have not been
accurately accounted for in computer codes (Gangloff et al,
1994). The four parameter Weibull equation may be used to
model the corrosion fatigue crack growth rates as shown in
Fig. 1.

FRETTING CORROSION FATIGUE MODEL

A similar model can be developed for fracture mechanics
modeling of fretting fatigue. A fretting fatigue damage
threshold concept was developed by Waterhouse (1972) and
Hoeppner (1972) independently. It is realized that in a fretting
corrosion fatigue situation the describing mechanisms of
"short" crack growth will be a complex process since not only
corrosion effects take place, but also, stresses produced on a
surface due to relative normal load applications, all of these are
difficult to model. Also, the frictional force effects must be
accounted for in the model.

A limited number of fretting fatigue tests were conducted by
Hoeppner (1976) and Cox (1979) for different materials in
corrosive environments. The data are reported in Fig. 2 for a
Ti-6Al-4V. 1t is interesting to note that fretting considerably
reduced the fatigue life of Ti-6Al1-4V. The corrosion fretting
response of Ti-6Al-4V in different environments showed a
marked reduction in life when the medium changed from air to
distilled water and 3.5% NaCl solution as shown in Fig. 2.
Fretting corrosion behavior was significant in 3.5% NaCl
solution where the life reduction factor was 2 compared to air.
A similar trend is shown in Fig. 3 for a 7075-T6 alloy.

The results presented above constitute some limited data in
fretting corrosion fatigue. It also may be seen in Fig. 4 that
fretting in corrosive environments produces pits and pit
linking. As a result, a significant life reduction may occur
under fretting situations when the contact stresses are produced
on the protective film. The composition of the protective film
varies within the layers. Therefore, properties of the film are
likely to be uneven and the film may elongate at one place and
rupture at another. Such local areas where there is a rupture in
the film provide electrolyte entry. In addition, capillary
action occurs and the electrolyte is spread within the metal
under the film. Fretting conditions accelerate this process
thereby, pits are produced earlier compared to in
electrochemical conditions acting alone. An example of the
fretting corrosion fatigue induced pit growth mechanism is
shown in Fig. 4.

DISCUSSION ON PITTING CORROSION FATIGUE
MODEL:

Effect of stress cycling under different environments such
as lab-air, distilled water and 3.5% NaCl solution on the S-N
type fatigue response of 7075-T6 was reported elsewhere

(Hoeppner, 1971 and 1979, Ma and Hoeppner, 1994). Other
data (Antolovitch and Saxena, 1985) showing ihis behavior
were compiled and plotted collectively in (Ma and Hoeppner,
1994). The environmental effects were found to reduce the
fatigue life significantly.  Fatigue resistance of 7075-T6
aluminum alloy deteriorated more in 3.5% NaCl solution than
in air. From the limited data that were available it was found

that at fatigue lives of 106 cycles in air the maximum fatigue
stresses reduced more than 3 times in 3.5% NaCl environment.
In terms of cyclic life, the fatigue lives in air were an order of
magnitude or more higher at the same stress levels from tests
in 3.5% NaCl solution. Effect of frequency in a range of 5 to
20 Hz was observed to be very limited reported by many
workers (Gangloff, 1988).

ELECTROCHEMICAL STAGE OR PIT NUCLEATION
IN FATIGUE:

Under controlled environment fatigue tests, it is usually
difficult to isolate the effects of interacting parameters such as
the electrolyte, loads and those related to materials. Therefore,
individual effects related to electrochemical aspects in
corrosion and fatigue are difficult to separate if not
impossible. In the nucleation stage under the conjoint action
of cyclic loading and corrosion in a 3.5% NaCl solution,
bubbling has been found as a feature. The rate of bubble
generation depends upon time and temperature of exposure.
Later, pits form at the regions of bubbling. There may be a
dependency of bubble settlement on the surface and i~calized
regions where the film is uneven or broken. Such sites are
usually the sites where there are constituent particles present.
Pit nucleation, though, depends upon the electrochemical
parameters as mentioned in Table 1 and 2, microstructural
features determine where a pit must nucleate. As a result, a
detectable pit nucleation stage depends upon many factors
which are not understood individually, in collective action
their influence is very difficult to hypothesize at present.
More research needs to be devoted to this area of research.

PIT GROWTH:

The kinetics of pit growth has been empirically modeled in
terms of parabolic growth. Under the pitting corrosion fatigue
process stable pit growth requires a critical ion concentration
that must be maintained (Sato, 1982). However, bubbles as
appear, transport hydrogen thus, the mass transfer rate is
increased several times more than that required for stable pit
growth (Sato, 1982). The effect of fatigue cycling and slip
generation may provide electrolyte access in the metal surface
and its entry is enhanced by capillary action. Therefore, these
processes have not been evaluated quantitatively as affected by
texture and microscopic features. In the case of several
titanium alloys, hydride formation is an indication that the
environmental effect is interacting with cyclic load response.

COMPETING MECHANISMS IN PIT GROWTH AND
FATIGUE CRACK NUCLEATION:

Corrosion fatigue mechanisms of two or more independent

processes acting conjointly under conditions where the
combination is synergistic has not been investigated much.
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In the literature, description of a hemispherical pit assumed as
a crack has been reported and used as an ideal pit to model the
pit as a crack. However, no attempts have been made to
investigate the competition mechanisms between the
electrochemical pit growth combined with the fatigue process
which may nucleate cracks at multiple sites.

CHEMICALLY "SHORT" CRACK GROWTH:

At the bottom of a pit, depending upon microstructure
these cracks grow intergranularly as found in the failure of
many engineering components. These cracks may propagate
faster than usual LEFM Mode I crack. Under corrosive
environment, cyclic oxidation, embrittiement and local
dissolution determine the crack growth rate, thereby, the crack
growth is a chemical as well as a mechanical process. Damage
by pitting corrosion and fatigue cracking, their multiple
numbers and interactions among them is not known at the
present time. Only limited tests that are available show that
"short" crack growth is dependent on other parameters as well
as dependent on the geometry of the specimen. A recent study
by Piascik and Willard (1994) found intergranular crack growth
in the "short” regime when the crack size in the z direction was
less than 100um and transgranular above it. In their study
(Piascik and Willard, 1994) it was also found that at very low
ranges of mode I AK (<1MPa\/m) which was much below
threshold mode 1 AK for long cracks in aluminum alloys
(approximately 5 to 7 MPaVm) the crack growth rates
incrzased.  Thereby, consideration of threshold mode 1 stress
intensity factor range of long cracks in the consideration of a
pit becoming a crack is invalid. Recent work reported by Wei
(1994) indicates that such a transition would occur at a mode 1
AK range of about 2.5MPaVm to 5MPaVvm depending upon
frequency and maximum stresses. Nearly same analogy was
provided by Hoeppner (1971, 1979) over 20 years ago and is
being studied further in author's laboratories. A new model
shown in Fig. 1 is being proposed in this paper shows that
subsequent to pit growth there is "short" corrosion fatigue
crack growth which cannot be modeled accurately due mainly
to limited data published and its behavior in corrosion fatigue
is not investigated fully.

As undertaken in many studies (Hoeppner, 1971, 1979,
Kondo, 1989, Kondo and Wei, 1989, and Wei, 1994) the
criteria of pit transition to crack is incomplete as the role of
short corrosion fatigue crack growth is ignored in all studies at
very low stress amplitudes. Therefore, the transition stress
intensity factor range derived by most authors is the transition
where the short crack becomes a LEFM long crack and its
growth can be modeled by linear equation presented by Paris.
A co-operative program among various researchers working on
this issue (Hoeppner, 1971, 1979, Kondo, 1989 and Kondo
and Wei, 1989, Wei, 1994) will help expedite development of
a method thereby, contribute to the understanding of various
failures which propagated from the bottom of a pit and their
sensitive usage parameters.

SHORT CRACK TRANSITION TO LONG CRACK:

As pointed out in this paper the "short" corrosion fatigue
crack grows quite early in the pitting corrosion fatigue crack
growth process within the range of mode I AK (<1MPaVm) at a
rate much faster than the long cracks. Therefore, according to

the models presented in (Hoeppner, 1971, 1979, Kondo, 1989
and Kondo and Wei, 1989, Wei, 1994) the transition is indeed
not from a pit to a modelable crack but, transition from a
"short” crack to a long crack.

Figure 5 shows a schematic plot of pitting corrosion
fatigue crack growth process. The conventional models
reported in (Hoeppner, 1971, 1979, Kondo, 1989, Kondo and
Wei, 1989, and Wei, 1994) are represented by a thick line
which has a zone that represents crack growth and mode I AK
curve closer to threshold mode 1 AK or above. As a result
"short" crack growth trend has not been incorporated. Should
that behavior been incorporated, a range of mode 1 AK less
than IMPaVm to 2MPa Vm would have shown crack growth
rate (CGR) higher than the CGR of long cracks. Therefore,
when a "short" crack growth rates become lower subjected to
crack face reaching a hard particle or grain, the rate of CG
becomes smaller and other factors such as time, corrosive
environment, fatigue loads then determine its further growth or
transition from "short" to long crack growth. As the range of
CGR and mode I AK is enhanced above the threshold, the long
crack grows. This has been widely examined in references
(Hoeppner, 1971, 1979, Kondo, 1989, Kondo and Wei, 1989,
Wei, 1994, Koch, 1994, and Brown and Srawley, 1967) as a
pit transformation to a crack and corrosion fatigue crack
growth.

LONG CRACK GROWTH:

In the data reported by Hoeppner, (1971, 1979), Kondo,
(1989), Kondo and Wei, (1989), Wei, (1994), Koch, (1994),
and Brown and Srawley, (1967) show that under pitting
corrosion fatigue the range of linear behavior reduces.
Depending upon frequency and environment, the crack growth
rate behavior increases abruptly after a critical mode 1 AK.
This value changes with materials and other parameters. For a
2024-T3 a shift from the steady crack growth to higher CGR
occurred in a range of mode 1 AK from 24 to 28 MPaVm under
pitting corrosion fatigue process (Koch, 1994). Such a
behavior when the crack growth rate changes from point to
point within the range of mode I AK range of long cracks,
though observed under different environments reviewed in
(Gangloff, 1988), has also been found for exposed materials of
the C/KC 135 aircraft by Mills et al, (1995). Further studies of
this behavior and corrosion fatigue crack growth rate modeling
are presently underway in the author's laboratories.

CONCLUSION:
From this study the following conclusions are drawn:

1. The pit nucleation and growth stages in a corrosion
fatigue process cannot be quantitatively separated. The
number of fatigue cycles in a pitting corrosion situation
to nucleate a "pit" or pits are considerably higher than
pit growth and cycles to failure.

2. There are many pit growth mechanisms. However, in
fatigue situations, it is very difficult to isolate
electrochemical as well as mechanical effects. In such
situations synergisms among various electrochemical
and mechanical parameters determine the pit nucleation,
growth, shapes and sizes and their numbers.
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3.  The pit growth due to electrochemical actions and crack
nucleations are two competition mechanisms. As soon
as the crack growth rate exceeds the pit growth rate, i.e.,
within the "short” crack regime, a pit becomes a crack.

4. A model presented in this paper of pitting corrosion
fatigue and fretting corrosion fatigue has seven stages.
Each one of these stages is not very well understood.
The seven stages are as follows:

1. electrochemical stage or pit nucleation in fatigue,

2. pit growth,

3. competition mechanisms in pit growth and fatigue
crack nucleation,

4. chemical "short" crack growth,

5. short crack transition to long crack,

6. long crack growth, and

7. corrosion fatigue crack growth modeling.

5. Most models presented considered the transition of
"short" crack growth to "long" crack, thereby,
application of LEFM mode I AK can be applied. It is
proposed in this paper that from the bottom of a pit
"short" crack grows and the critical parameters related to
pit depth and beginning of "short" crack growth needs
defining by appropriate experimental procedures.

6. More work is required to develop a methodology of a pit
transition to a crack and (he proposed seven stages of
pitting corrosion fatigue process so that it can be
computed in structural integrity assessment tools and
future usage parameters be estimated for various
components.
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Table 1. Summary of pit nucleation mechanisms.

Adsorption related

Ion migration

Film breakdown

Based on adsorption of aggressive
anions at energetically preferred
sites.  Only above a critical
potential, Cl adsorption takes place
by breakdown of the localized
passivity.

Penetration of anions from
oxide/electrolyte interface to the
metal/oxide interface or migration
of cations as a decisive process.
Only after a critical breakdown
potential is reached the
penetration occurs. Rapid cation
egress results in pitting.

Independent as well as a
interdependent phenomena of the
other two mechanisms. Breakdown
of a passive film provides
electrolyte direct access to the
metal surface and pitting occurs.

Table 2. Summary of pit growth mechanisms.

Charge transfer based

Diffusion related

Resistance controlled

At the bottom of a pit a differential
current density exists that causes a
pit to grow. A constant current is
assumed as it is very difficult to
measure the current and its profiles
with respect to the depth within the

pit.

Salt powders present on the surface
diffuse by causing a breakdown of
the protective film in aluminum
alloys.

Pitting also occurs at a high Ohmic-
limited current density. Hydrogen
bubbles generated within a pit
increases the mass transport rate.
Pit growth rate is a time dependent
as well as applied potential
dependent process. Increasing the’
potential enhances the rate. A
parabolic growth often is

observed.
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EXECUTIVE SUMMARY

The Quality and Integrity Design Engineering Center (QIDEC),
Mechanical Engineering Department at the University of Utah
conducted extensive literature search and review on the effects of
environment and microstructure on the behavior of "short" cracks in
structural materials. This work was performed under the Airforce
Office of Scientific Research (AFOSR) grant as a part of the research
program entitled "Investigation of Modeling the Fretting and Pitting
Corrosion Fatigue Processes In Structural Aluminum Alloys". The
findings from the literature search and review are presented herein
as an interim report (PART-I) for (AFOSR).

As the meaning of the word "short" as related to the formation
and arly propagation of cracks differs significantly with respect to
the conditions of interest (coi), it has been realized by the technical
community that there are three basic types of "short"/"small" cracks
viz. microstructurally-short-cracks, chemically-short-cracks, and
mechanically-short-cracks. The most important finding of the
literature search process showed that while a tremendous amount of
effort has been expended during the past several years to
characterize the "short" crack behavior of structural materials, very
little research has been performed as related to environmental
issues such as the contribution of chemical environment to the
formation and early propagation of cracks as well as "short" cracks as
related to the pitting corrosion fatigue mechanism. Moreover, the
literature search and review process has shown that the technical
community has not done any work to characterize the "short"/"small"
crack behavior of materials under the synergistic process of fretting
corrosion fatigue.

This review report addresses the microstructural and
environmental "short" crack studies that have been conducted since
1965. Section 1 of this report gives an introduction summarizing the
present understanding of the mechanisms of "short" crack behavior
of materials. This is followed by a detailed review of



microstructurally "short” crack studies including the effects of grain
size, grain and phase boundaries, variation of precipitate size,
processing technique, and stress ratio. In addition, "short" crack
studies as related to stage I crack propagation also are discussed in
section 2. Section 3 discusses environmental influences in the "short"
crack regime. Conclusions are given in section 4. Some "short" crack
test results are extracted from the literature and they are included
in appendix I. Experimental details including the commonly used
"short" crack specimen geometry, test techniques and test
parameters are tabulated in appendix II. A global view of the "short"
crack challenge in materials is schematically presented in appendix
ITI. Also, a title list of "short" crack related works published so far is
given in appendix IV.

It is envisioned that Part II of the report will address some
preliminary experimental investigations on "short”" crack fretting
fatigue and pitting corrosion fatigue studies in 7075 aluminum alloy
specimens. In addition, in this future report, "short"” crack modeling
methods that are published in the literature will be discussed and
also these modeling methods will be compared with the findings
from the proposed "short" crack fretting fatigue and corrosion
experimental studies. Two to three "short" crack fretting fatigue tests
and some pitting corrosion fatigue "short" crack tests will be
performed using replication technique. Part II of the report
incorporating preliminary test data will be submitted to AFOSR after
the completion of the testing program.
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1. Introduction

Design of structural components using fracture mechanics
concepts requires three basic parameters viz. load or applied stress,
stress intensity factor, and discontinuity or crack size. Conventionally
damage tolerant design methods consider an initial "flaw" size
typically in the order of 1 mm (0.04") while applying fracture
mechanics concepts to design damage tolerant components (Potter
and Yee, 1983). Fatigue crack growth tests in the "long" crack regime
as per ASTM E647 are conducted on materials that are to be used to
make the damage tolerant parts and together with the assumed
initial "flaw" size as well as the appropriate loading and material
parameters inspection intervals are computed. However, the
technical community has realized the significance of the formation
and existence of the so called "short" cracks (examples:
manufacturing discontinuities like crack(s) from a hole that may
result from improper riveting operation, and material
microstructural discontinuities in the "short" crack range, typically in
the order of grain size, or less) and their growth is "faster" when
compared to "long" cracks in the equivalent or even at lower stress
intensity range. With the support of experimental studies conducted
by several researchers to determine the "short" crack behavior of
materials, it can be argued that the current practice of computing
inspection intervals of aircraft critical structural parts using the
"long" crack growth data and the initial "flaw" size of 1 mm might
lead to unexpected fatigue crack growth behavior resulting in a

catastrophic failure. This implies that designing components using
1



damage tolerant concepts may still not be safe when "short" crack
behavior is not integrated in fatigue life prediction methods. "Small"
cracks were found in aircraft fuselage riveted lap joints (Schijve,
1992), fastener holes (Potter and Yee, 1983) and in tear-down

aircraft wing critical structures (Wood and Rudd, 1983).

Although many research studies were conducted, there is still
not a clear understanding among the researchers with regard to the
usage of terminology such as "small" and "short" as related to the size
of the crack as these terms are often mixed up in the literature and
this alone exemplifies the complexity of the challenge we have at
present. However, many "short" crack researchers agree on the

following aspects:

+ There are three basic types of "short" cracks viz. mechanically or
physically "short", microstructurally "short" and chemically "short"
(McClung, Chan, Hudak and Davidson, 1994).

» "Short" cracks can not be modeled using the Linear Elastic Fracture
Mechanics (LEFM) concepts although some workers have attempted
to convert the "short" crack data to "long" crack, to compare the crack
growth behavior in both the regimes and also to evaluate the
"effective crack driving force” for "small" and "large" fatigue cracks
(Tokaji, Ogawa, Harada and Ando, 1986; Tokaji, Ogawa and Harada,
1987; Davidson, 1988; Hyspecky and Stanadel, 1992; Nicholls and
Martin, 1991; Sheldon, Cook, Jones and Lankford, 1981).

» "Short" cracks often grow "rapidly” when compared to "long" cracks

at a lower stress intensity range that is below the "long" crack
2




threshold and also at an equivalent stress intensity range. In some
materials, the "short" growth rate is observed to be much "faster"
than would be predicted by extrapolating "large" crack data
(Lankford, 1982; Lankford, 1985).
e The material parameters which influence plastic deformation viz.
grain size, grain orientation, texture, work hardening rate, slip band
character, local microscopic fracture toughness, inclusion size and
content as well as second phase particles have an important role in
"short" crack growth (Miller, 1982).
* Current NDI technologies are not capable of detecting the
discontinuities that are in the "short" crack range (Wood and Rudd,
1983). This directly affects the inspection related issue as it is
inextricably linked with the damage tolerant design concepts.
 There is no single parameter that can define the "short crack
driving force".
» Although a few studies have attempted deterministic "short" crack
growth prediction methods for physically or mechanically "short"
cracks, as the influence of the microstructural variations on the
"short” crack behavior of materials is extremely complex, the
challenge of incorporating "short" crack methodology into present
practice of fatigue life prediction analyses must be treated with
probabilistic approaches. This necessitates the study of scatter in the
behavior of "small" cracks to understand the physical basis of scatter
in the fatigue lives of components or specimens (Goto, 1992 and Goto,
1993).

Several researchers have postulated different mechanisms for

the behavior of "short" cracks. They are indeed related to the type of
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"short" cracks. For microstructurally "short" cracks, "crack tip
shielding" and "enhanced crack tip plastic strains" are stated to be
responsible phenomena (Ritchie and Lankford, 1986). Also,
evidences suggest that microstructurally "short" cracks are
sometimes obstructed locally by grain boundaries (crack arrest),
influenced by non-uniform growth and sometimes may experience
higher cyclic plastic strains at the crack tips resulting in "faster”
growth (Lankford, 1981, Lankford, 1982, Ritchie and Suresh, 1995).
Moreover, "short" cracks may be subjected to "crack deflection”
(Suresh, 1983) that may be related to the orientation of each grain.
Thus, texture has an important role in determining the behavior of

microstructurally "short" cracks.

Excessive plasticity is stated to be the mechanism for
mechanically "short" cracks. This implies that the assumption of
"small-scale yield" that forms the basis of linear elastic fracture
mechanics is not applicable. Local crack tip environment (Gangloff,
1985) has been hypothesized as a predominant mechanism for the
"faster" propagation of chemically "short" cracks as they are more
vulnerable to chemical attack than "long" cracks because of the
relative ease of access to the crack tip. For physically "short" cracks,
it is hypothesized that the "crack closure effect” that decreases the
"crack driving force" for "long" crack propagation may be absent
(Schijve, 1986). Furthermore, it is believed that "short" cracks that
are usually associated with a limited "wake" are less able to develop
the same magnitude of shielding as equivalent "long" cracks at the

same nominal stress intensity range (Lankford 1986). Some
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experimental studies have showed that although the growth rate of
microstructurally "short" cracks is "faster" initially, once the crack tip
reaches the grain boundary the growth rate either gets reduced or
some times completely arrested at the grain boundary (Lankford,
1982, Lankford, 1983, Lankford and Davidson, 1986, Tokaji and
Ogawa, 1992, Ritchie and Suresh, 1995).

Moreover, the dimension of the crack also is related to the
types of crack. Mechanically "short" crack size 'a’ is considered to be
less than the plastic zone size and microstructurally "short" crack size
is related to the grain size (Ritchie and Suresh, 1995). As the crack
length is "short" compared to the microstructural dimensions, such as
the grain size, it has been realized that the assumption that the crack

grows in a homogeneous, isotropic continuum is no longer valid.

Therefore, the primary focus of this report is to review the
present understanding of the influence of microstructure and
environment on the behavior of "short"/"small" cracks in structural

materials.



2. The effect of microstructure on the '"short'/"small" Crack

behavior of materials

This section reviews microstructurally "short"/"small" crack
studies conducted on materials. The mechanisms of the "short" crack
growth behavior as related to the local microstructural variations
and crack closure phenomena are discussed in detail. Some "short"
crack test results are reproduced from literature and they are
included in appendix I. The experimental details including specimen
geometry as well as test techniques corresponding to the following

discussion are included in appendix II.

When applying damage tolerance principles to the design of
structural components subjected to cyclic loading, a geometry
independent parameter AK (stress intensity range), is used to
characterize the crack growth. This is the basis of Linear Elastic
Fracture Mechanics (LEFM). Moreover, it is presumed that cracks
would not propagate at a stress intensity below a threshold value
and it is usually denoted as AKth. Although it has been realized that
there is no geometry independent crack driving force in the "short"
crack regime, several attempts have been made to predict "short"
crack growth rates including some approaches that are based on
crack deflection, crack closure, 'J' integral and some semi-empirical
methods (Morris and Buck, 1977, McEvily and Minakawa, 1984,
Suresh, 1985, and El Haddad, Dowling, Topper, and Smith, 1980). As
microstructure has varying effects in materials, it has been realized

that the deterministic way of fatigue life prediction in the "short"
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crack regime is far from accurate. However, some researchers have

proposed models which incorporate microstructural parameters into
the "short" crack growth rate equations (Petit and Zeghloul, 1986,
Petit and Zeghloul, 1990)

The factors that are believed to be responsible for the "faster"
growth of "small" cracks as summarized by Schijve are:
« The front of a "microcrack" is more regular than the front
associated with a "long" crack.
* A single slip system is required for propagating a "small" crack
whereas several systems are necessary for "macrocracks".
* Anisotropy effects, grain boundary structure and inclusion content
may influence "small" crack behavior.
 The reversed plastic zone behind the crack tip may be different
and may induce "crack closure effects" which are a function of the
crack length.
* The roughness of the fracture surfaces may play an important role

in favor of the crack closure phenomenon.

- A distinction between "small" and "short" crack growth
behavior was made by some researchers (Lankford and Davidson,
1986, Breat, Mudry, and Pineau, 1983) by experimental studies.
Their studies have showed that the experimentally measured
difference in crack closure response between "short" and "large"
cracks in AS508 steel may be sufficient to explain differences in their
crack propagation behavior. From experimental studies conducted in

AS508 steel, it was observed that da/dN versus AK for "short" cracks
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was only an extension of the "long" crack behavior into the
subthreshold regime. This is illustrated in Fig. 1 (Breat, Mudry, and
Pineau, 1983). As can be seen in Fig. 1, "short" and "long" cracks
exhibit the same behavior. However, "small" cracks are related to a
controlling microstructural element, usually the grain size, and these
cracks are observed to be distinct from "short" cracks, i.e., through
thickness cracks (0.5-2.0 mm) in length. (Taylor and Knott, 1981)
have suggested that the "small" crack regime corresponds roughly to
microcracks such that 2a = 10 GS where GS 1is grain size. Also, (Breat,
Mudry, and Pineau, 1983) have showed that "short" cracks do not
grow much faster at a given AK than do "long" cracks. But "short"
cracks have a lower threshold; above which they follow roughly the
same da/dN versus AK curve that a "long" crack would if it were
simply to continue growing below its threshold (see Fig. 1). However,
"small" cracks, as hypothesized by these researchers, not only grow
below AKth, they also grow much faster than would be predicted by
extrapolating long crack results below their threshold. Some studies
(Taylor and Knott, 1981, Hicks and Brown, 1984, Lankford and
Davidson, 1986) have showed that "small" crack growth converges
with the "large" crack curve when plastic zone size is approximately
equal to the grain size. This phenomenon has been observed in
aluminum alloy, fine grained, coarse grained and single crystal

astroloy, and p/m aluminum alloy as shown in Figs. 2, 3, and 4.

In many cases it has been shown that the arrest or retardation
of small cracks correlates with the crossing of grain boundaries

(Lankford, 1982, Lankford 1985). It also has been postulated that if
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the plastic zone size is less than the grain size such crossings are
infrequent. In comparison with the "large" cracks, cracks are
observed to grow in many unfavorable grains simultaneously, hence,
the average rate of growth is much lower than that for "small" cracks
at equivalent AK levels in favorably oriented grains. Although these
studies attempted to distinguish "small" and "short" cracks, many of
the researchers used the terminology in a mixed manner. Therefore,
as the purpose of this report is only to review the present
understanding with regard to the fundamental issues pertaining to
microstructural and environmental aspects of the fatigue crack
formation and growth, this report includes the terms "short" and

"small" as they are extracted from the literature.

In general, the "faster" growth of microstructurally "small"
fatigue cracks has been observed to be associated with second phase
particles (Pearson, 1975), inclusion particle clusters or voids
(Newman and Edwards, 1988), eutectic colony boundaries (Taylor

and Knott, 1981), and grain boundaries (Lankford, 1985).

Early in 1975, bending fatigue studies were performed on
commercial aluminum alloys viz. aluminum-copper-magnesium (BS
L65) and DTD 5050 (aluminum-zinc-magnesium) (Pearson, 1975). It
was observed that cracks in the order of, or even less than, the grain
size grew "faster" than "long" cracks. i.e. the mean crack growth rate
in the early stage was observed to be 1.27 X 10-6 mm (5 X 10-8 in.).
In this study crack formed at surface inclusions and it was related to

previous cold working that was performed on the material. Fracture
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mechanics approach was used to calculate AK values for "short" and
"long" cracks because the plastic zone size was observed to be 1/20th
of the crack length (see Figs. 5(a) - 5(d)). Also, it was concluded that
the growth rates in the early stage was much "faster" than would be
predicted from the "long" crack data. The results of experiments
performed by Pearson for alloy BS L65 and DTD 5050 are given in
Table 1 and 2 and the plots of the number of cycles to "initiate" a
crack of 0.05 mm (0.002 in) for the two alloys are given in Figs. 6
and 7.

Following this study, in 1976, uniaxial fatigue loads were
applied on Aluminum alloy 2219-T851 parallel to the rolling
direction in room temperature and it‘ was observed that crack
nucleated at the surface at intermetallic inclusions (Morris, Buck and
Marcus, 1976). Moreover, it was showed that at the fatigue loads
that are less than 0.6 times the yield stress several cracks coalesced
to form a macrocrack that lead to the ultimate failure. The most
important finding of this study showed that there was significant
retardation of microcracks with grain boundaries. Similar
observation was made in another study (Lankford, Cook and Sheldon,
1981), in that it was hypothesized that "small" cracks grew '"rapidly"
during the initial stage and when the crack tip interacted with grain
boundaries, the growth rate slowed down. However, it also was
formulated that as the crack moved away from the boundary, the
crack growth became "faster" again. This behavior was related to
local microplasticity in certain preferentially oriented grains

(Lankford, 1982). This study was conducted in laboratory air in
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7075-T6 (precipitation hardened aluminum) with 60% humidity. It
was observed that for the "smallest" crack (2a<40 pm), da/dN did not
increase monotonically with AK. However, there was a decrease in
the crack growth rate and reached a minimum in the range 30 pm <
2a < 40 pm. Some of the cracks were found to be "nonpropagating”.
Lankford also proposed a schematic representation of the "short" and
"long" crack growth behavior as shown in Fig. 8. It was concluded
that "small" cracks could become "large" cracks "when their LEFM

plastic zones begin to exceed in size the maximum grain dimension".

Similar observation was made when "small" crack behavior
was studied in A286 steel in which the "short" crack effect
disappeared when the crack-tip plastic zone size became greater
than the grain size (Mei and Morris, 1993). This study also supported
the hypothesis that peak stress and microstructural effects in
addition to the absence of crack closure are some of the factors that
influence the "short" crack growth in this material. In another study,
it was observed that when the applied stress was sufficiently high
the "short" crack growth rate could be sustained and could overcome
the microstructural barrier when tested in plain specimens (Pan, De
Los Rios and Miller, 1993). Also, in this study, tests on notched
specimens (8090 Al-Li alloy) revealed that the extent of notch tip
and crack tip plastic zones control "short" crack propagation. It was
hypothesized that "a short crack will continue to propagate only if its
own plastic zone can sustain growth as the crack tip extends beyond
the notch zone". This study presented some interesting data on the

"short" crack growth from corner notches as shown in Fig. 9. Also, the
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effects of grain boundary, viz, changing the direction of the crack,
temporary stopping of a crack, and forcing the crack to adopt a zig-

zag path were observed.

In SiC reinforced aluminum alloy (6061), "short" cracks were
found to propagate through the SiC particles as the crack front
fractured the particles (Kumai, King and Knott, 1990). In another
study, the presence of voids in an overaged 2024 aluminum alloy
was observed to be responsible for the formation of fatigue "micro
cracks" (Sigler, Montpetit and Haworth, 1983). In this study, the
density of microcracks (cracks were counted when the size was more
than 5 pm) was observed at different stress amplitudes during the
fatigue life. It was found to be 300/mm2 at 320 MPa, in 771 cycles
at failure, but less than 0.5/mmZ2 at 200 MPa, in 1.5X105 cycles (at
failure). This result has very high significance as related to the
possibility of microcracks coalescence into macrocracks that may

affect the ultimate fatigue life.

In nodular cast iron, "short" cracks formed from either the
graphite nodules or microshrinkage pores (Clement, Angeli and
Pineau, 1984). Crack closure effect was suggested as the mechanism
for the "faster” growth of the "short" cracks for the given stress
intensity factor. On the other hand, in a medium carbon steel, the
"short" crack growth rate was related to the intensity and the extent
of plasticity of the crack tip (De Los Rios, Tang and Miller, 1984).
Also, it was observed that "short" crack growth decreased or even

arrested at ferrite-pearlite boundaries. However, as the stress level
12



I

was increased to certain value, the two of the arrested cracks at the
ends of the ferrite joined up and the resultant crack branched off
along the prior austenite grain boundaries. Therefore, it was
suggested that the critical fracture occurred when two of the "short"
cracks joined and branched that made it possible to propagate into
the pearlite. Similar hypothesis can be postulated for a "short" crack
nucleating from corrosion pit in aluminum alloys and the stress
concentration of the pit may be sufficient for "short" crack to
overcome the grain boundary barrier for subsequent propagation. It
can be further hypothesized that if cracks form from adjacent pits
these "short" cracks can join and may grow "faster" when compared
to "microcracks" coalescence resulting from other microstructural
heterogeneities. However, there are no experimental data to support
this theory and the very possibility of this occurring in a material

should be investigated.

"Small" surface crack (2 to 1000 um) studies on other materials
like aluminum-lithium alloy 2090-T8E41 also have showed an
accelerated growth at AK levels as low as 0.7 MPa Vvm (Venkateswara
Rao, Yu and Ritchie, 1988) and this behavior was related to
restrictions in the development of "crack tip shielding" resulting
from "roughness-induced crack closure"”. The test results are shown

in Figs. 10(a) and 10(b).

In low carbon steel, when fatigue tested with specimens
produced with two ferrite grain sizes of 24 and 84 um, it was found

that in fine grained material most of the cracks formed within ferrite
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grains and in coarse grained material the cracks formed at grain
boundaries as shown in Fig. 11 (Tokaji, Ogawa and Harada, 1986).
The most important finding of this study was that the effect of grain
boundary strongly depended on "short" crack length. For fine and
coarse grained material, when 2¢>200 pm and 2¢>250 pm
respectively, the grain boundary was not a barrier for the "short"
crack propagation and dc/dN increased with increasing crack length
(see Fig. 12). Fig. 13 shows the relationship between crack growth
rate and stress intensity range for "small" fatigue cracks. Also, other
studies showed that the effect of a grain boundary on the "short"
crack growth appeared to be dependent on the orientation of ferrite
grains (Lankford, 1985 and Suresh and Ritchie, 1984). In general, it
has been recognized that when cracks are of a length comparable to
the scale of the microstructure, the growth is greatly affected by the
microstructure and the relevance of continuum mechanics is limited.
The concept of "microstructural dissimilitude" was proposed to

explain this kind of behavior (Chan and Lankford, 1988).

During the growth of "short" cracks, if the crack front behaves
in a similar fashion when it intersects many grains irrespective of
the crack length, these cracks are believed to possess similitude and
the stress intensity range (corrected for yielding) can be used to
correlate the crack growth rates. However, for "short" cracks, it has
been observed that there is no linear relation between da/dN and AK.
Thus, the challenge becomes so complex as it is highly impossible to
predict the potential site of crack nucleation that may be related to

the preferred orientation of the grain for the cracks to form. More
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importantly, because of the greater dependence of the "short" crack
challenge on the microstructural variations in a material that is
frequently in the order of a grain size, the "short" crack problem is
intrinsically statistical in nature. Therefore, to improve the resistance
of the material microstructure to the nucleation of "short" fatigue
cracks, alloy design incorporating "small" randomly oriented grains,
and texture to have only a few grains as possible for an easy crack
growth under a known loading condition was suggested to be a
useful way to deal with this issue (Ritchie and Lankford 1984). Also,
the challenge becomes still more complex as the local fracture
toughness of each grain is of practical significance as related to the

formation and the propagation of cracks in the "short" regime.

The effect of processing techniques on the "short" crack
behavior was studied in an aluminum-magnesium-silicon alloy
(Plumtree and O'Connor, 1991) in strain control. "Short" cracks were
observed to form from second phase particles and the growth was
impeded at grain boundaries. It was concluded that the extruded
alloy with a finer microstructure and smaller second phase particles
demonstrated a superior resistance to formation of "short" cracks
when compared to squeeze-cast material. "Short" cracks in the order
of 3 to 147 um were found to form from Ti3Al hcp alpha phase in a
titanium aluminide alloy (Davidson, Cambell and Page, 1991). The
results showed that the growth of "small" cracks in titanium
aluminide alloy was slower by a factor of 10 to 100 when compared

to aluminum alloys.
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As the grain size has an important role in the behavior of
microstructurally "short" cracks, a study was conducted to
demonstrate the effect of grain size on the "short" fatigue cracks.
Specimens from 7075-T6 were prepared to produce grain sizes of 12
and 130 pm. Growth rates of surface cracks in the order of 20 to 500
um were studied during the axial fatigue test in laboratory air of 45
to 60% RH (Zurek, James and Morris, 1982). It was found that the
mechanism for the "short" crack growth behavior was dependent on

alloy grain size.

As discussed so far, many of the published works on the
behavior of "short" cracks indicate that grain boundaries impede
propagation, resulting in decrease in the growth rate or complete
arrest in some cases. This kind of behavior has been modeled by
some workers (Eastabrook, 1984, Hobson, 1982, Lankford, 1982).
These models predict that increasing grain size will lead to faster
crack propagation rates in the "short” crack regime. A schematic to
represent the predicted effect of grain size on short crack growth is
given in Fig. 14 (Lankford, 1982). (Brown, King, and Hicks, 1984)
supported this model when they conducted "short" crack studies on a
Ni-base superalloy, Astroloy, with grain sizes of 12 and 50
micrometer. They observed slower crack propagation rates in the
fine grained material than those in the coarse grain size. Fig. 15
shows the effect of grain size on the fatigue crack growth rates in
Astraloy resulted from this study. Also, (Wagner, Gregory, Gysler,
and Lutjering, 1986) showed a similar trend in Ti-8.6Al alloy with

grain sizes of 20 and 100 um. In addition, some studies (Hirose and
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Fine, 1983) reported slower growth in a powder metallurgy
aluminum alloy with a fine grain size. However, a different behavior
was observed (Taira, Tanaka, and Hoshina, 1979) in a 0.2% C steel
with a ferrite/pearlite microstructure. They observed similar growth
rates at ferrite grain sizes of 20.5 and 55 pm and lower growth rates
only when the grain size was reduced to 7.8 pm. This is illustrated in
Fig. 16. In contrast to these results are those of (Brown and Taylor,
1984, and Zurek, James and Morris, 1982). Their studies (Brown and
Taylor, 1984) in a mill annealed alpha/beta titanium alloy (Ti-6Al-
4V) with grain sizes of 4.7 and 11.7 pm, could not detect any grain
size effect. Also, (Zurek, James and Morris, 1982) in 7075-T6
aluminum alloy, observed a decrease in growth rate with increasing
grain size from 12 to 130 pm. Fig. 17 illustrates the results from this
study. Thus much of the published work on the effect of grain size on
"small" fatigue crack growth indicates that increasing grain size leads
to "faster" crack growth rates. In the microstructurally "small" crack
regime, this trend is related to the difference in the "blocking effect"
of grain boundaries. This so called "blocking effect" was observed to
occur more frequently in fine grained material than in coarse
grained material. As demonstrated (Tokaji, Ogawa, Harada and Ando,
1986) in quenched and tempered steel, prior austenite grain
boundaries act as barriers to the growth of microstructurally "short"
cracks. It was observed in fine and coarse grained materials as

shown in Fig. 12.

The effect of variation of precipitate sizes on the "short" crack

behavior was studied (Brown, King and Hicks, 1984) using Astroloy
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with 50 um grain size. In this study, they investigated a range of
gamma prime distributions, achieved by different heat-treatment
processes and they found similar "short" crack growth rates in all
conditions. Also, similar observation was made in a nickel base super
alloy, Waspaloy, with about the same grain size, but somewhat lower
gamma prime volume fraction. The results from this study are
shown in Fig. 18. It also was realized by some investigators that one
of the important ways of controlling short crack behavior in steels
and titanium alloys was through variations in the distribution and
proportions of the phases present. (De los Rios, Tang and Miller,
1984) When tested in a 0.4% C steel with a strongly banded structure
with alternate layers of alpha and pearlite, observed cracks
nucleating in the alpha and were held up by the alpha/pearlite
interfaces and sometimes the propagation was completely stopped
after reaching these boundaries. Also, in another study using the
same material (De los Rios, Mohamed and Miller, 1985), but with a
different microstructure in which the alpha outlined the prior
austenite (gamma) grain boundaries, the similar observation was

made.

In 0.37% C steel (Hoshide, Yamada, Fujimura, 1985), with an
alpha/pearlite microstructure in two conditions, air-cooled from
865°C and furnace-cooled from 940°C, cracks formed in the
alpha/pearlite boundaries and stopped when the cracks reached the
pearlite. Also, slower "short" crack growth rates were presented in
the air-cooled material with the finer distribution of alpha. In one of

the earlier studies (Kunio and Yamada, 1979) using martensite steel
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(alpha prime/ferrite alpha mixtures consisting of about 50 volume %
of each), crack formation occurred in the alpha and growth stopped
on reaching alpha prime. However, it was found that at higher stress
levels these cracks continued to propagate, but until they reached
lengths of 400-500 pm, their growth was still impeded by regions of
alpha prime. From these studies, in steels, it was clearly observed
that the presence of harder phases forced the cracks to take a
tortuous path by deflecting the crack paths. Similar study was
carried out in titanium alloys (Hicks and Brown, 1984). They
compared the behavior of a beta processed titanium alloy, IMI 685,
with a coarse aligned alpha structure with that of alpha/beta heat-
treated IMI 318. The changes in orientation of the alpha plates at the
prior beta grain boundaries and the coarse beta grain sizes produced
at the high beta heat-treated proved to be the main barriers to
“short" crack propagation in the IMI 685. However, in IMI 318 which
consisted of regions of primary alpha and transformed beta, cracks
formed in the alpha and were impeded by the harder regions of
transformed beta, thereby meeting the effective barriers at lengths
very much shorter than the prior beta grain size. As shown in Fig.19,
a five-fold difference in average growth rate was obtained between

the two microstructures.

Also, another study in IMI 318 and IMI 550 with different
heat-treatment processes (Boilngbroke and King, 1986) clearly
showed that a finer and harder transformed beta impedes the crack
growth more effectively than a coarser transformed beta produced

at a slower cooling rate. Moreover, they showed that an average
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"short" crack growth rates in the beta heat-treated structure are up
to an order of magnitude faster than in an alpha/beta heat-treated
condition in IMI 318. Similar observations were made in dual phase
steels with ferrite and martensite phases, crack growth rates and
crack path were strongly affected by martensite phase (Minakawa,
Matsuo, and Mcevily, 1982, Dutta, Suresh, and Ritchie, 1984, and
Shang, Tzou, and Ritchie, 1987). Somewhat similar research
observations also were presented (Tokaji and Ogawa, 1988) in
medium carbon steel and dual-phase stainless steel as shown in Fig.
20). As can be seen from this illustration, it was found that as cracks
grew into pearlite phase from ferrite phase in medium carbon steel
and austenite phase from ferrite phase in dual-phase stainless steel,
crack growth rates showed a marked decrease at phase interfaces.
Also, it was observed that cracks tend to grow predominantly within
ferrite phase in medium carbon steel. Fatigue crack was also found to
form in softer ferrite in C-Mn steel (de los Rios, Navarro, and
Hussain, 1992). Moreover, (Kawachi, Yamada, and Kunio, 1992)
showed the possibility of coalescence of "small" cracks in a dual-
phase (martensitic-ferritic) carbon steel and as a result of this,
cracks increased their length along the matrix-ferrite, by-passing the
harder martensite. They also demonstrated that the crack
coalescence could be suppressed in this kind of steel by preparing a
dual phase microstructure with the matrix ferrite enclosed by the
second phase martensite. This resulted in increase in the fatigue

strength of this steel.
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Also, other microstructurally "short" crack studies in different
metals viz. low carbon steel (Tokaji, Ogawa, and Harada, 1986),
medium carbon steel (Tokaji and Ogawa, 1988), high tensile steel
(Tokaji, Ogawa, and Harada, 1987), low alloy steel (Tokaji, Ogawa,
Harada and Ando, 1986), aluminum alloy (Tokaji and Ogawa, 1990),
and pure titanium (Tokaji, Ogawa, Kameyama, and Kato, 1990)
revealed a similar overall growth behavior as crack growth rates
were markedly decreased by grain boundaries, triple pints and
interfaces between phases depending on the microstructures. These
studies also supported the above mentioned research works that
large decreases in microstructurally "short" crack growth rate are
more frequent in fine grained materials than in coarse grained
materials (see Fig. 21). This was observed to increase the overall

fatigue life in the fine grained materials.

In fine and coarse grained materials such as in pure titanium
(Tokaji, Ogawa, Kameyama, and Kato, 1990), the crack path was
observed to be extremely tortuous and it increased with increase in
grain size. Therefore, decrease in crack growth rate resulted. Fig. 22
shows that decreases in crack growth rate are observed more
frequently in fine grained material as compared to coarse grained
material. This was attributed to grain boundary and crack deflection.
As described in one study (Suresh, 1983), the deflection in crack
path might lower the crack driving force. Also, as hypothesized by
some researchers (Tokaji and Ogawa, 1992), the tortuous nature of
crack path morphology in pure titanium might be associated with

planar slip characteristics or fewer slip systems than bcc and fcc
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metals. Furthermore, they postulated that because of this, as cracks
reached grain boundary, large changes of growth direction might
occur due to the incompatibility of deformation and it was related to
misorientation between two grains. Although extensive research
studies on the microstructurally "short" crack behavior were
performed on various possible materials, a direct comparison is not
possible because of some obvious differences in test conditions viz.
stress level, loading type and other test parameters. However, as
indicated before, a general behavior of microstructurally "short"
cracks is observed in many of the materials bearing a few

contradictory results.

The effect of stress ratio (R) on microstructurally "short" cracks
was studied by some workers (Tokaji and Ogawa, 1990), The
microstructural effect at R=-1 and at R=0 is shown in Fig. 23. As can
be seen from this illustration, in aluminum alloy (7075-T6) tested at
R=-1 and R=0, faster growth was recorded at R=-1. Also, the results
at R=-2 showed the fastest crack growth rates. (Tokaji and Ogawa,
1992) observed stage I facets on the fracture surfaces when tested
at R=-1 and R=-2 but not at R=0. They related the growth behavior of
microstructurally "short" cracks to the existence of stage I facets.
Also, some studies on Stage I crack formation as related to "short"

crack growth behavior are discussed in the next section.
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2.1 Stage I crack formation studies and its relation to

"short" crack growth behavior

The slip mechanism for the formation of fatigue cracks was
first studied by Ewing and Humphrey, Gough and Forsyth among
others. Since then, formation of persistent slip bands (PSB) has been
recognized as a general phenomenon for the nucleation of fatigue
cracks. Forsyth termed the formation and growth of crack in slip
bands during the fatigue process as Stage I. Stage I or slip band
cracking was related to the range of resolved shear stress on the slip
plane (Forsyth, 1969). Also, slip bands produced by cyclic stress
were shown to be a series of grooves and ridges and the fatigue
deformation mechanism of "slip band intrusion and extrusion" was
related to Stage I crack growth mechanism (Forsyth, 1969). However,
not all the fatigue cracks form from slip bands. Under favorable
conditions of stress and environment these cracks may form on those
planes most closely aligned with the maximum shear-stress
directions in the component or test specimens. Some "short" crack
research studies related the behavior of cracks in the "short" regime

to Stage I cracks and they are discussed below.

Two high strength and low alloy steel containing V and Nb
were fatigue tested to observe the nucleation of cracks and growth of
"microcracks” (Kim and Fine, 1982). Strain controlled fatigue tests
were conducted in 30-40% humidity air at room temperature. Also,
results of crack formation at different mean stress were reported.

This study showed that at all stress levels, fatigue cracks were
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observed to form along persistent slip bands. The number of cycles
to nucleate a crack of size 5 pm long was observed at 2000 to 3000
magnification and the "microcracks" were always found to be
associated with slip bands. (Kwun and Fournelle, 1982) also reported
more density of slip bands and "small" cracks for quenched and
tempered at a lower temperature when compared to tempering
performed at higher temperature in Niobium bearing high strength

and low alloy steel.

Although the formation of cracks in extruded aluminum alloy
X7091 containing Zn-Mg-Cu and Co occurred at grain boundaries at
both low and high stresses, the same was not true when the material
was subjected to thermomechanical treatment. This resulted in the
slip band crack nucleation (Hirose and Fine, 1983). Another study
(Kim, Mura and Fine, 1978) in 4140 steel also showed that
"microcracks" formed at grain boundaries in as-quenched specimens

and at intrusions and extrusions in the tempered specimens.

In another study, Tokaji and Ogawa, 1988, observed many
straight lines on the facets of medium carbon steel and the direction
of these lines were confirmed to be consistent with the slip direction
<111> of this material. This indicated that the crack grew along slip
planes in a shear mode and it was related to stage I crack growth
mechanism. Moreover, they (Tokaji and Ogawa, 1992) argued that
the microstructural effect "short" crack growth occurred as a

sequence of stage I crack growth.
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At higher strains, at two different microstructures, when
fatigue tested, Ti-6Al-2Sn-4Zr-6Mo exhibited nucleation of cracks
within the slip bands in Widmanstatten plus grain boundary alpha
and equiaxed structures of different alpha particle (Mahajan and
Margolin, 1980). However, at low strains the crack nucleation
occurred at alpha-beta interface and the resultant "microcracks”

linked up and extended.

Similar observation was made in another study conducted in
2024 and 2124 aluminum alloy in the T-4 condition (Kung and Fine,
1979). This study was conducted in dehumidified laboratory air, 10%
humidity as well as 50% humidity. The loading was applied in
tension-tension and also in tension-compression with the direction of
stress normal to the long direction of the notch and parallel to the
specimens rolling direction. It was found that at high stresses the
fatigue cracks formed on "coarse slip lines" in both alloys. However,
at low stresses majority of cracks originated from the constituent
particles. However, the important finding of this study was the
probability of nucleation of a fatigue crack at a constituent particle
size normal to the stress direction decreased below 6 um and the
crack formation mode was along slip bands which originated from

the inclusions.

Polycrystalline copper of commercial purity (99.9%) exhibited
formation of extrusions and intrusions along persistent slip bands
within the grain and also in preferably oriented grain boundaries

when tested in constant strain amplitude cyclic loading (Polak and
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Liskutin, 1990). "Short" crack growth was characterized by PSB
nucleation and was related to localization of the cyclic slip at or close
to grain boundaries and "the cracks advanced by linking a newly
nucleated crack at the tip of the existing crack or in front of it"
(Plumtree and O'Connor, 1991) also observed the stage I crack
growth to a depth of about 250-350 pum in Al-Mg-Si alloy subjected
to two different processing techniques viz. extruded and squeeze-
cast. They stated that the "short" crack behavior was observed

during this portion of fatigue life.

Different kinds of crack nucleation mechanisms were observed
in nickel base super alloy namely, Waspaloy (Yates, Zhang and Miller,
1993). Four point bending fatigue tests were conducted on Waspaloy
specimens and was found that crack formed directly from PSBs,
along a twin boundary and also in grains. Moreover, it was observed
that in all the three types, cracks formed at 45° to the principal
stress axis suggesting the Stage I growth until the crack depth of
around 600 um. This study proposed a model for the "short" crack
growth behavior in Waspaloy incorporating the microstructural
effect as well as the characteristic nature of grain boundary in

blocking the growth of "short" crack.
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3. Environment effects on '"Short" crack

behavior of materials

The environment (chemical) and temperature effects on the
fatigue crack propagation in the "long" crack regime are not well
studied and the same is applicable to "short" crack studies. Very few
researchers have performed "short" crack studies to evaluate these

issues.

In earlier study, very low environmental influence on "small"
surface cracks was observed in a 7075-T651 alloy when tested in
ambient air and in purified nitrogen (2 ppm water) (Lankford,
1983). However, some studies (Zeghloul and Petit, 1985, Petit and
Zeghloul, 1986) have shown a greater effect of environment on the
propagation of "short" through cracks grown in a 7075-T651 and
T7351 when tested in air and in purified nitrogen and also the test
results were compared in vacuum (see Fig. 24). Moreover, in another
study (Petit and Zeghloul, 1990), faster growth rate of "small" surface
cracks was observed in ambient air compared to vacuum when
7075-T651 and T7351 were fatigue tested. This behavior was
related to water vapor embrittlement as in the case of long cracks.
These studies have shown that the growth in ambient air of stage II
cracks in a 7075 alloy can be rationalized with that of long and
"short" through-section cracks in terms of AKeff after correction for
local plasticity. However, another study (Petit and Kosche, 1992),
showed that the initial propagation in vacuum of "small" surface

cracks naturally "initiated" on smooth specimens in 7075-T651 and
27




7075-T351 alloys is much faster than stage II propagation, and 1is
similar to the intrinsic stage I regime, as identified on Al-Zn-Mg

single crystals.

More dramatic results were shown in a review paper (Gangloff
and Wei, 1986) in which it was concluded that "small" corrosion
fatigue cracks in high strength steels when cycled in aqueous
hydrogen producing environments grew up to 500 times faster than
"long" crack at constant AK. From this paper, results illustrating the
effect of crack size on corrosion fatigue in steels were reproduced

and they are given in Fig. 25.

Another study (Akid and Murtaza, 1992) showed that
environmental assisted "short" fatigue crack growth could influence
the propagation of cracks beyond the "crack-arresting barriers" such
as grain boundaries. Their studies in high strength spring steel using
an intermittent fatigue tests in air and NaCl solution clearly showed
that strain assisted dissolution caused the transition of stage I crack
to stage II at shorter crack lengths. Also, (Boukerrou and Cottis,
1992), another study in a structural steel (BS4340 grade) in 3.5%
NaCl and in pitting solution, showed that cracks could nucleate from

corrosion pits when cycled at low stresses.
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3.1 Temperature effects on '"short" crack

behavior of materials

At room temperature, "short" cracks were found to form
primarily at inclusion particles, and less frequently at grain
boundaries in Nickel base super alloy when cyclically loaded in four
point bending specimens (Mei, Krenn, and Morris, 1993). However,
when tested at elevated temperature (873°K) "short" cracks were
observed to form from micropores, slip planes and carbide
precipitates at grain boundaries in Nickel base super alloy (Okazaki,
Tabata and Nohmi, 1990). In this study, Stage I fatigue fracture
occurred on the {111} planes. Also, (Stephens, Grobowski and
Hoeppner, 1993) slip band cracking was observed in Waspaloy
tested at 25° C, 500° C and crack was observed to form at twin
boundaries and slip bands at 700°C. Moreover, this study
demonstrated the "faster" growth rate of "short" cracks at 500°C
when compared to 25°C and 700°C. This was related to diffusive
nature of slip bands and "changes in material leading to precipitate
coarsening” at 700°C. Similar observation of slip band cracking was
found in Waspaloy when tested at 19°C and 500°C (Healy, Grabowski
and Beevers, 1991). In addition, "short" cracks formed at coarse
carbide particles. The "short" crack growth rate measured at R=0.1
was "faster" at 500°C when compared to 19°C at an equivalent values
of stress intensity range as reported by Stephens, Grobowski and
Hoeppner. In another study (Suh, Lee and Kang, 1990), numerous
"microcracks" were observed to form at grain boundaries in 304

stainless steel specimens tested at 538°C.
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In general, the mechanisms for the "short" crack behavior at
room and elevated temperature as postulated in the above
mentioned studies are related to
» absence of closure effects,

* heterogeneous microstructure (responsible for statistical scatter in
the "short" crack growth rate (Goto, 1993; Goto, 1994)),

* grain boundary cracking (may result from embrittlement due to
stress-assisted grain boundary oxidation during heat treatment),

e grain orientation (if the grains are favorably oriented the cracks
are observed to grow "faster" and if not "short" crack growth either
gets slowed down or arrested),

» crack deflection (may occur within a grain or when the crack
passed to another grain),

e crack tip deflection resulting in "roughness induced crack closure"
and subsequent reduction in crack growth rate,

e Stage I crack growth (Stage I crack growth increases as the crack
length increases. However, as the crack tip neared a grain boundary
the "short" crack growth rate decreased because of crack deflection
due to secondary slip and finally fracture occurring on the {111}

planes in fcc).
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4. Conclusion

This literature review on microstructural and environmental
effects of "short" crack behavior of structural materials has clearly
revealed the lack of experimental studies to characterize materials
response in the "short" crack regime under fretting fatigue and
corrosion conditions. As mentioned in this report, very little data
have been published with regard to "short" crack formation
mechanisms in corrosive environments of aluminum alloys in
aircraft structures. In addition to a few previous studies (Hoeppner,
1979, Reeves and Hoeppner, 1978, Saliver and Hoeppner, 1979 and
Hoeppner and Krupp, 1974) in which pitting was modeled
statistically with different materials and specimen types, recently, as
discussed before in this report, there was a study demonstrating
corrosion fatigue induced "short” crack formation from pits (Akid
and Murtaza, 1992). Also, a recent study (Ma and Hoeppner, 1994)
has shown that pits form in different shapes in contradictory to
general assumption that pits have hemisperical shape. Although this
assumption simplifies the modeling part of research (Kondo, 1989),
further studies to characterize the formation of cracks from pits in
the "short" crack regime must be evaluated as outlined in the
proposal submitted by QIDEC (Hoeppner, 1995). Apart from these
studies the literature search has not found any "short" crack studies
to evaluate the formation of cracks from pits and their crack
morphologies and paths. Moreover, this may further be aggravated
by fretting mechanism(s) in conjunction with fatigue and corrosion.

It is envisioned that part II of the report may provide additional
31



insight of the "short" crack behavior under synergistic conditions of
fretting fatigue and corrosion in aluminum alloys. This research will
be further expanded as mentioned in the proposal that more studies
will be conducted to develop some basic understanding on pitting
corrosion fatigue as well as corrosion fretting fatigue in aluminum

and titanium alloys.

To conclude the report, a global view of the "short" crack

challenge is given in appendix III.
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Appendix I
"Short" crack test results extracted from literature
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Figure 1. Fatigue crack growth rate versus cyclic stress intensity for
long and short cracks in AS508 steel (Breat, Mudry, and Pineau, 1983)
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into the bulk. (a) Fine grained material (a = 0.276 mm). (b) Coarse
grained material (a= 0.220 mm). (Tokaji, Ogawa and Harda, 1986)

Figure 11. Macroscopic observations of "small" fatigue crack growth
|
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Figure 15. The effect of grain size on the fatigue crack growth rates
in Astroloy (Brown, King, and Hicks, 1984)
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Figure 16. The effect of grain size on short fatigue crack growth in
0.2 wt% C steel. Coarse grain - 20.5 and 55um, Fine grain - 7.8um
(Taira, Tanaka, and Hoshina, 1979)
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Figure 17. The effect of grain size on short fatigue crack growth in
aluminum alloy 7075-T6 (Zurek, James, and Morris, 1982)
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1984)
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Appendix II

Summary of "short" crack experimental work performed by Researchers

This section briefly summarizes the "short" crack experimental work including
"short" crack test specimen geometry and the test techniques used by the researchers to
characterize the behavior of "short" cracks of structural materials. Different types of
specimen geometry such as
« Single-Edge-Notched-Tension (SENT) fatigue specimen,

» cylindrical "smooth" specimen,

« four point bend specimens, plate specimens,

« specimens notched by a hole, cut or center cracked tension (CCT),

« tensile square bar (TSB) type containing a shallow groove,

+ shallow hour-glass shape specimens,

« specially designed "short" crack specimens with round or rectangular cross section,

» hollow cylindrical specimen, specimens with cross section of parallelogram, and

+ specimens with reduced gage section have been used to study the behavior of "short"

cracks.

Various experimental techniques have been developed to observe the behavior of
"short" cracks such as
* photography,
* photomicroscopy,
* potential drop (AC & DC),
* compliance,
» metallography,
« replication,

« ultrasonic,




+ In-situ techniques viz. Transmission Electron Microscope (TEM), Scanning Electron

Microscope (SEM) and Scanning Laser Acoustic Microscope (SLAM).

Among these test techniques plastic replica and potential drop methods have been
widely used. A few studies have used in-situ technique to observe the "short" crack
behavior of materials. The in-situ techniques have significant advantage over the
conventional methods, as the complete event of crack formation and growth can be
monitored and recorded throughout the fatigue testing. Some researchers also have
developed automatic crack monitoring system incorporating a camera and a microscope to
capture the formation and the growth of "short" cracks at a predetermined fatigue cycles. A
brief summary of "short" crack experimental works including the geometry of the "short"
crack test specimens, the test conditions as well as the techniques used by several

researchers is given in Table 1.
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2024-T3 Aluminum Alloy

305 m

L J

— 150 am 1

i I !
‘Y1 wesom |y
/“" [ ] \\ ’

| |

Optional hole H ~ '

f f

6rip line Grip line

Thickness = B = 2.3 mm TX

r=3,18 mm
X,

Loading-Constant
Amplitude @ R=-2, -1, 0,
0.5 and @ FALSTAFF and
GAUSSIAN.

Maximum Gross Stress
(MPa)- 75, 60 and 50 @
R=-2; 105, 80 and 70 @
R=-1; 145,120 and 110 @
R=0; 225, 205 and 195 @
R=0.5, 275, 205 and 170 @
FALSTAFEF,; 170, 145 and
125 @ GAUSSIAN.
Frequency-5-10 Hz

Laboratory Air
Single-edge notched tension (SENT) fatigue specimen
(Newman and Edwards, 1988) Plastic Replica
High strength A286 Steel Loading-@0.5S1gmay
on ._'__.:4—>=<—‘—>m (Omax=571.8 MPa,
1 T T b Omin=39.8 MPa); R=0.7;
AT L _-———_J ————— ] —b @O.Scy (O'max=874 MPa;

a=21.2mm b=124mm h=94mm
Four-point bending specimen used for "short™ tatigue
crack "initiation" and propagation tests (Mei and Morris,
1993)

R=0.056)
Laboratory air

Optical microscope

7075-T6 Aluminum Alloy
Specimen with reduced gage section with KT=1.06

4.75
25

5|3 ’IO.875
B
J le7s

Design of "small” crack specimen-dimensions in mm
(Lankford, 1982)

Loading-Constant
Amplitude

Smax=414 MPa (80% of
Yield stress) @ R=0.05,

Max. cyclic stress intensity
=414 MPa (80% of yield
stress)

Frequency=5Hz

Laboratory air with
RH=60%
Test Technique

Replica




Titanium-Aluminide alloy

- s b
Specimen design and dimensions (mm) used for the
“initiation", growth and analysis of "small" fatigue cracks

(Davidson, Campbell and Page, 1991)

Loaded in three-point
bending;

Loading-
6=1406 MPa N;0.069;

R=0.1.
Laboratory air
Replica

Normalized medium carbon steel (0.4%C steel)

Torsional deflection-

controlled fatigue test;
18 2 18
§ R15 &/ Q B15 — Stress level-350-400 MPa;
’—+ s B — % {’ y Total strain range-0.5 to
2ras N—q . ’ 0.65.
40 40 40 : 17
i ! . Room Temperature
Shallow hour-glass shape specimen
Specimen geometry-dimensions in mm (De los Rios, Tang | Replica
and Miller, 1984)
Ferritic nodular graphite cast iron Four-point
.‘ bending@R=0.1;
i | 4 Frequency=20-50 Hz.
_ T3 ) ! -0 Laboratory air
j \ . d.c. potential drop technique
Q! {
M 3 —é W %‘ i "Short" crack formation
g_{ . - L Bl pFropedure ki of thrce
! 7/’ ¥4 | Fatigue precracking o -
F . —@— M /’ _}j point bend specimens at a
/ ,; / <A | low AK approaching the
i (a) [r:20 fp. .+’] | near-threshold regime. After
! - V. ~ -4 | this the upper part and lateral
& T ) “<i<44 | faces of the specimens were
3 (b) |machined as shown in fig.

(c) @ogk

Specimen dimensions in mm. (a) Uncracked specimens (b)
Three point bend specimens. Solid lines for large
specimens, dotted lines for "small" crack specimens (c)
"short" crack specimens (Clement, Angeli and Pineau,
1984)

(b). With this procedure
"short" crack in the order of
2=0.075-0.5 mm was
obtained with a "straight
front". Specimens were heat
treated to relieve the residual
stresses because of the
above procedure.




Cast and wrought nickel base super alloy-Waspaloy

10.00—41 f_ F

Four point bending tests @
frequency 30 Hz.

Smax= 880 MPa @ R=0.1

waveform = sinusoidal.

!

L_50- 00—= 10.00 -t 10.00 [ Acetate Replica

Four point bend specimens and loading states-dimensions

in mm (Yates, Zhang and Miller, 1993)

Waspaloy 90£0.3 —~ Constant Amplitude @
. Width 4 ] R=0.5 and 0.1 at 19°C and
-—22:0.3——] | 5:‘0 03/ 500°C.

 — 1
- — 112'65'0"3 Constant load range @ 75 to

\LS:O.OZ r
R=14203 Screw 500 - 20 UNF

R=25203 Effective diameter 11.84-0.
- K7=1.03 All dimensions in millimetres

"Short" fatigue crack specimen with shallow notch - Kt =
1.03 (Healy, Grabowski and Beevers, 1991)

80% of proof stress.
Frequency=100 Hz.

Optical system and the use
of Image analyzer.

Waspaloy with different heat treatments

t ¢
12.5 mm radius groove , 12.50 ! 30
L B A | S-S
14—53.40——>:\ k) -
. |t=4.0

1.25
!

T ...

15
Specimen geometry-all dimensions in mm (Stephens,
Grabowski and Hoeppner, 1993) -

Constant amplitude in load
control

A maximum stress of 92%
of the 0.2% proof stress
was applied.

R=0.1 @ Frequency=20
Hz.

At 25, 500, and 700°C.

Insitu SEM in vacuum
environment (10-4 torT)

Nickel base super alloy

~
©-

<
o

) - - Tt
| 2| 1

34

112

Geometry of specimen used - dimensions in mm (Okazaki,
Tabata and Nohmi, 1990)

Strain controlled low-cycle
fatigue tests

Temperature = §73°K

The applied strain ratio was
Zero

Frequency = 10 Hz.

Acetate replica technique




8090 Aluminum-Lithium alloy

63.5

Tested at 245.8, 259.3,
279.4 and 241.4 MPa

&/ ~! R=0; Frequency=2Hz.
M ~
- _#’—4 w —&+ In-situ with an optical or
' acoustic system
25 126 .

L% Laboratory air
Plain and with comner notch -- Specimen size m mm and
the corner notch profile (Pan, De los Rios, and Miller,
1993)
Aluminum-copper-magnesium alloy BS L65 and Bending test @ fixed
Aluminum-zinc-magnesium alloy DTD 5050 amplitude of 1500

5 B cycles/min.
T e T A microscope fitted with
e — N— ot calibrated eyepiece.
ey |

AN SR :
Test specimen for investigating fatigue crack initiation at a
plane polished surface (Pearson, 1975)
Powder metallurgy nickel-base super alloy Frequency 5 Hz

[ \ >/ T |Laboratory air
@ — @» o | Optical Microscope
' 7 LE3mm
1

|

1.

ww g os

Fatigue specimen design (Lankford, Cook and Sheldon,
1981)

SECTION “A - A"

{Enlcrgued )




Commercial steel sheet of grade 15Ch2NMFAA.

Tested @ two plastic
deformation amplitude

f ﬂ I DETAIL B levels, £/2=0.003 and
{ 7 -/‘JIV‘ £/2=0.005 @ 20°C.
B) |
. S R=-1
48001 Heof 5| i 1
| (o @ Frequency=1 Hz.
]
l “\»{'\-’ SEM and optical microscope
Specimen bar with shallow notch for investigating the
initiation and propagation of short fatigue cracks
(Hyspecky and Strnadel, 1992)
4% Cu-Al alloy (BS 2L65) Four point bending
6.4 DIA DRILL AND REAM Variable amplitudc loading
used were Gaussian random
and FALSTAFF
Replica
i_ 36.1 *]F L -
K =1.9 (BENDIK ) 50.8 RAD FouR DOTTED
STEEL ROLLERS F ROLLERS REMOVED
A0k 0 A s
/I N O N N S B SR
Q :‘--’: : '\‘v’: 50.8 )
Notched specimen (Cook and Edwards, 1982)
7475-T7651 aluminum alloy Fatigue tested to 16000

- 432

[ - 330

]

N_
]
;

— =] |2
. 3
—— <

.-
51 |

—{30k

S — — L4
I [ ¥ B 1ﬁ l . i '
All Dimensions in Miilimeters 4.8

-
(o
~N

X

1]
T

-t
n
~

1k

Test specimen geometry (Potter and Yee, 1982)

design usage flight hours.

Maximum gross section
stress was 235 MPa.

Fractographic crack length
measurement.




Appendix III
A global view of "short" crack challenge in materials
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