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PITTING CORROSION FATIGUE OF STRUCTURAL MATERIALS 

Tarun K. Goswami 
Quality and Integrity Design Engineering Center 

Department of Mechanical Engineering 
University of Utah, Salt Lake City 84112 Utah. 

David W. Hoeppner 
Quality and Integrity Design Engineering Center 

Department of Mechanical Engineering 
University of Utah, Salt Lake City 84112 Utah. 

ABSTRACT 

Further evaluation of studies related to pitting corrosion 
fatigue of aircraft structural materials are presented in this 
paper. This study was undertaken to consider electrochemical 
effects in pit formation and role of pitting in fatigue and 
corrosion fatigue crack nucleation behavior. Thus, a review of 
mechanisms that cause pit nucleation and growth is presented 
herein. Since the transition of pit(s) to crack(s) is an 
extremely important issue in assessing the significance of pits 
on structural integrity the transition models are reviewed and a 
new conceptual model is presented. 

INTRODUCTION: 
Pitting corrosion has been found in the structure of a tear- 

down C/KC 135 aircraft. Widespread pitting on the surface and 
hidden within the fuselage joints, as found in the case of C/KC 
135 and other aircraft components, may pose a significant 
threat to the structural integrity of an aircraft or a component 
as pitted regions are those from which fatigue and/or corrosion 
fatigue cracks may nucleate and propagate. In addition, pitted 
regions may coalesce thereby forming a longer crack. Aircraft 
materials, particularly those of high strength types, are 
susceptible to pitting as well as stress corrosion cracking in a 
favorable environment (Burleigh, 1991). Since aircraft 
operate in a spectra of environments, the effect of such 
environmental influences on fatigue or corrosion fatigue crack 
growth behavior must be established and ultimately 
understood. 

Early work reported by Hoeppner and Hyler (1966) showed 
that fatigue life in aluminum alloys improved as the exposure 
time in a vacuum increased. In a similar study by Bradsaw and 
Wheeler (1966), crack growth rates were found to vary in the 

presence of water in the environment or water vapor pressure. 
In the literature little data have been reported on the role of 
pitting in fatigue, mechanisms of pit nucleation and growth 
with respect to crack nucleation and growth, and pitting 
corrosion fatigue crack growth modeling of aluminum alloys. 
Hoeppner (1971, 1979) conducted one of the original 
researches related to pitting and pitting corrosion fatigue 
modeling in aluminum and other alloys, this has raised the 
interests of the scientific community and more studies are now 
underway and results are appearing in the literature. Recent 
focus on this issue from the KC 135 program has raised the 
level of interest in these phenomenon as well. 

In order to use the potential life of commercial as well as 
military fleets, knowledge of localized corrosion processes 
such as pitting and their potential role in integrity of aircraft 
structures must be gained so that these models can be 
integrated with the other models to allow accurate assessment 
of inspection intervals and assure that the high standard of 
safety will not be affected negatively. 

Previous reviews on pit nucleation and growth 
mechanisms were conducted by Hoeppner and Goswami (1993, 
1995a) are expanded in this paper. Corrosion fatigue crack 
growth behaviors in aluminum and titanium alloys also were 
compiled by Goswami and Hoeppner (1994, 1995b). The 
objectives of this research were; 

1. To review the mechanisms of pit nucleation and growth. 
2. To examine the role of pit growth in the generation of 

"short corrosion fatigue cracks". 
3. To evaluate the "short corrosion fatigue crack growth" 

behavior until a long crack size is reached. 
4. To explore the transition of "short crack" to "long crack" 

growth where a linear elastic fracture mechanics parameter 
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such as mode I change in stress intensity (AKj) be applied 
to model the behavior. 

In this paper, particular emphasis is given to the study of 
fatigue crack nucleation and growth mechanisms from the 
regions of pits. 

REVIEW   OF   PIT   NUCLEATION   AND   GROWTH 
MECHANISMS: 

The American Society for Metals (1986) defines corrosion 
"as deterioration of a material due to chemical or 
electrochemical reaction with its environment". In the pitting 
corrosion process, local dissolution causes cavities in 
passivated metals when exposed to solutions containing 
aggressive anions of chloride types. This is a discontinuous 
corrosion process. There is a threshold value of anodic 
potential for a given electrolyte system below which pits do 
not form. Pit formation and their shapes are random 
phenomena, in that location and shape of a pit depends upon 
several material as well as electrochemical factors which are 
not very well understood. Several pit shapes were shown by 
Ma and Hoeppner (1994). It has been shown that pits may 
form on the sites where there is a concentration of constituent 
particles (or second phases) (Bond et al, 1966 and Zahavi and 
Yahalom, 1975) since such a site is vulnerable to corrosive 
attack where the protective film thickness is uneven and even 
broken, thus allowing local attack. However, how a local 
dissolution process may penetrate the depth, intergranularly 
and across the grains has not been established. Clearly, much 
more research needs to be undertaken to investigate the 
mechanisms of pitting corrosion and how pit shapes can be 
controlled so that enhancement of properties of exposed 
materials of aircraft structures can be accomplished. 

Pit   Nucleation   Mechanisms: 

Table 1 provides a summary of pit nucleation mechanisms. 
They are adsorption related, ion migration and film breakdown 
mechanisms. 

Pit   Growth   Mechanisms: 

The mechanisms of a pit growth is an important phase of 
activity. During this phase the pit concentrates stresses and 
localized dissolution removes material. In the pitting 
corrosion fatigue process, it has been hypothesized that at the 
early stages only electrochemical parameters influence the 
generation of pits and their growth. Furthermore, observation 
of intergranular, randomly oriented cracks frequently have 
been made inside pits. However, in a latter stage, competition 
between the pit growth process and the crack nucleation 
process becomes significant. This, "competition" 
undoubtedly is determined by energetic processes that need 
further clarification in order that the development of a mode I 
(or other appropriate mode crack) can be understood. 
Therefore, pit growth has a significant contribution to the 
fatigue crack nucleation and growth mechanisms. This aspect 
has not yet quantitatively established. Pit growth mechanisms 
are of the types shown in Table 2. 

Pit growth kinetics and conditions which support growth 
of a pit are not yei established fundamentally. Only empirical 
relationships exist that support stable pit growth subjected to 
critical ion concentration that must be maintained for pit 
growth as presented by Sato (1982). Such a model also is 
questionable since it requires a concentration gradient to 
develop due to diffusion. During hydrogen bubbling the mass 
transfer is increased several times higher than the critical rate 
required by Sato's model. Each of the above three mechanisms 
is not well accepted as a means by which a pit or pits should 
grow. 

PITTING CORROSION FATIGUE MODEL 

Hoeppner (1971, 1979) presented a fracture mechanics 
based pitting corrosion fatigue model in that pit depth was 
evaluated using pitting theory. Then, using linear elastic 
fracture mechanics concepts fatigue crack growth from the 
bottom of a pit was evaluated. This was an early attempt made 
to determine the transition from a pit to a crack. The model 
proposed by Hoeppner assumed hemispherical pits. This has 
been used by Kondo (1989) and Kondo and Wei (1989) in 
Newman and Raju criterion (1978) in calculating the stress 
intensity for a critical pit by assuming it to be a crack. 

The pitting corrosion fatigue process has been 
conceptually separated into the following stages: 
1. electrochemical stage and pit nucleation, 
2. pit growth, 
3. competative mechanisms in pit growth and fatigue crack 

nucleation, 
4. chemically "short" crack growth, 
5. "short crack" transition to "long crack", 
6. long crack growth, and 
7. corrosion fatigue crack growth   and instability. 
These stages are incorporated in the model presented in Fig. 1. 

Figure 1 shows the pitting model using fracture mechanics 
concepts. It is clear from the model that external factors such 
as surface conditions, time of exposure, stress-strain 
conditions, environmental factors, thermal history and other 
factors decide the pitting nucleation and growth rates. Since 
pitting and its rate is time dependent, only after a critical time 
will the pits nucleate. Pit growth mechanisms not only 
depend upon the electrochemical parameters, but also, on 
several external factors as shown in the model. During this 
process two mechanisms namely; pit growth and fatigue 
damage by slip systems (clusters, slip saturation, intrusion or 
extrusion formation) compete with each other. The 
electrochemical growth rate of a pit is enhanced if the damage 
produced by the various processes interact with each other. 
Therefore, in a pitting corrosion fatigue process pit growth 
may transform into crack nucleation. 

When the pit growth rate is smaller than the damage 
produced under fatigue for crack nucleation, the pit transforms 
to a crack. Therefore, in a latter stage when the crack formed 
grows, a "short crack grows chemically". However, 
mechanisms of crack growth in this stage have been 
investigated to a limited extent and such data needs generating. 
It is speculated that crack growth will occur in the directions of 
pre-damaged regions by corrosion, a crack may grow on the 
surface or sub-surface and not through the thickness crack 
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growth.   Usual linear equations may not be useful to describe 
the crack growth behavior under such conditions. 

Once propagation of a crack from the "short" region 
reaches a critical size, a long crack growth model as used by 
several workers be applicable to describe the corrosion fatigue 
crack growth behavior. However, it may be noted that 
selection of environmental and test parameters may produce 
accelerated crack growth or crack growth retardations. These 
aspects are very complex in nature and have not been 
accurately accounted for in computer codes (Gangloff et al, 
1994). The four parameter Weibull equation may be used to 
model the corrosion fatigue crack growth rates as shown in 
Fig. 1. 

FRETTING CORROSION FATIGUE MODEL 

A similar model can be developed for fracture mechanics 
modeling of fretting fatigue. A fretting fatigue damage 
threshold concept was developed by Waterhouse (1972) and 
Hoeppner (1972) independently. It is realized that in a fretting 
corrosion fatigue situation the describing mechanisms of 
"short" crack growth will be a complex process since not only 
corrosion effects take place, but also, stresses produced on a 
surface due to relative normal load applications, all of these are 
difficult to model. Also, the frictional force effects must be 
accounted for in the model. 

A limited number of fretting fatigue tests were conducted by 
Hoeppner (1976) and Cox (1979) for different materials in 
corrosive environments. The data are reported in Fig. 2 for a 
Ti-6A1-4V. It is interesting to note that fretting considerably 
reduced the fatigue life of Ti-6A1-4V. The corrosion fretting 
response of Ti-6A1-4V in different environments showed a 
marked reduction in life when the medium changed from air to 
distilled water and 3.5% NaCl solution as shown in Fig. 2. 
Fretting corrosion behavior was significant in 3.5% NaCl 
solution where the life reduction factor was 2 compared to air. 
A similar trend is shown in Fig. 3 for a 7075-T6 alloy. 

The results presented above constitute some limited data in 
fretting corrosion fatigue. It also may be seen in Fig. 4 that 
fretting in corrosive environments produces pits and pit 
linking. As a result, a significant life reduction may occur 
under fretting situations when the contact stresses are produced 
on the protective film. The composition of the protective film 
varies within the layers. Therefore, properties of the film are 
likely to be uneven and the film may elongate at one place and 
rupture at another. Such local areas where there is a rupture in 
the film provide electrolyte entry. In addition, capillary 
action occurs and the electrolyte is spread within the metal 
under the film. Fretting conditions accelerate this process 
thereby, pits are produced earlier compared to in 
electrochemical conditions acting alone. An example of the 
fretting corrosion fatigue induced pit growth mechanism is 
shown in Fig. 4. 

DISCUSSION  ON  PITTING  CORROSION  FATIGUE 
MODEL: 

Effect of stress cycling under different environments such 
as lab-air, distilled water and 3.5% NaCl solution on the S-N 
type fatigue response of 7075-T6 was reported elsewhere 

(Hoeppner, 1971 and 1979, Ma and Hoeppner, 1994). Other 
data (Antolovitch and Saxena, 1985) showing this behavior 
were compiled and plotted collectively in (Ma and Hoeppner, 
1994). The environmental effects were found to reduce the 
fatigue life significantly. Fatigue resistance of 7075-T6 
aluminum alloy deteriorated more in 3.5% NaCl solution than 
in air. From the limited data that were available it was found 
that at fatigue lives of 10" cycles in air the maximum fatigue 
stresses reduced more than 3 times in 3.5% NaCl environment. 
In terms of cyclic life, the fatigue lives in air were an order of 
magnitude or more higher at the same stress levels from tests 
in 3.5% NaCl solution. Effect of frequency in a range of 5 to 
20 Hz was observed to be very limited reported by many 
workers (Gangloff, 1988). 

ELECTROCHEMICAL STAGE OR PIT NUCLEATION 
IN FATIGUE: 

Under controlled environment fatigue tests, it is usually 
difficult to isolate the effects of interacting parameters such as 
the electrolyte, loads and those related to materials. Therefore, 
individual effects related to electrochemical aspects in 
corrosion and fatigue are difficult to separate if not 
impossible. In the nucleation stage under the conjoint action 
of cyclic loading and corrosion in a 3.5% NaCl solution, 
bubbling has been found as a feature. The rate of bubble 
generation depends upon time and temperature of exposure. 
Later, pits form at the regions of bubbling. There may be a 
dependency of bubble settlement on the surface and I -calized 
regions where the film is uneven or broken. Such sites are 
usually the sites where there are constituent particles present. 
Pit nucleation, though, depends upon the electrochemical 
parameters as mentioned in Table 1 and 2, microstructural 
features determine where a pit must nucleate. As a result, a 
detectable pit nucleation stage depends upon many factors 
which are not understood individually, in collective action 
their influence is very difficult to hypothesize at present. 
More research needs to be devoted to this area of research. 

PIT GROWTH: 

The kinetics of pit growth has been empirically modeled in 
terms of parabolic growth. Under the pitting corrosion fatigue 
process stable pit growth requires a critical ion concentration 
that must be maintained (Sato, 1982). However, bubbles as 
appear, transport hydrogen thus, the mass transfer rate is 
increased several times more than that required for stable pit 
growth (Sato, 1982). The effect of fatigue cycling and slip 
generation may provide electrolyte access in the metal surface 
and its entry is enhanced by capillary action. Therefore, these 
processes have not been evaluated quantitatively as affected by 
texture and microscopic features. In the case of several 
titanium alloys, hydride formation is an indication that the 
environmental effect is interacting with cyclic load response. 

COMPETING MECHANISMS IN PIT GROWTH AND 
FATIGUE CRACK NUCLEATION: 

Corrosion fatigue mechanisms of two or more independent 
processes acting conjointly under conditions where the 
combination is synergistic has not been investigated much. 
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In the literature, description of a hemispherical pit assumed as 
a crack has been reported and used as an ideal pit to model the 
pit as a crack. However, no attempts have been made to 
investigate the competition mechanisms between the 
electrochemical pit growth combined with the fatigue process 
which may nucleate cracks at multiple sites. 

CHEMICALLY "SHORT" CRACK GROWTH: 

At the bottom of a pit, depending upon microstructure 
these cracks grow intergranularly as found in the failure of 
many engineering components. These cracks may propagate 
faster than usual LEFM Mode I crack. Under corrosive 
environment, cyclic oxidation, embrittlement and local 
dissolution determine the crack growth rate, thereby, the crack 
growth is a chemical as well as a mechanical process. Damage 
by pitting corrosion and fatigue cracking, their multiple 
numbers and interactions among them is not known at the 
present time. Only limited tests that are available show that 
"short" crack growth is dependent on other parameters as well 
as dependent on the geometry of the specimen. A recent study 
by Piascik and Willard (1994) found intergranular crack growth 
in the "short" regime when the crack size in the z direction was 
less than lOOum and transgranular above it. In their study 
(Piascik and Willard, 1994) it was also found that at very low 
ranges of mode I AK (<lMPaVm) which was much below 
threshold mode I AK for long cracks in aluminum alloys 
(approximately 5 to 7 MPavm) the crack growth rates 
increased. Thereby, consideration of threshold mode 1 stress 
intensity factor range of long cracks in the consideration of a 
pit becoming a crack is invalid. Recent work reported by Wei 
(1994) indicates that such a transition would occur at a mode I 
AK range of about 2.5MPaVm to 5MPaVm depending upon 
frequency and maximum stresses. Nearly same analogy was 
provided by Hoeppner (1971, 1979) over 20 years ago and is 
being studied further in author's laboratories. A new model 
shown in Fig. 1 is being proposed in this paper shows that 
subsequent to pit growth there is "short" corrosion fatigue 
crack growth which cannot be modeled accurately due mainly 
to limited data published and its behavior in corrosion fatigue 
is not investigated fully. 

As undertaken in many studies (Hoeppner, 1971, 1979, 
Kondo, 1989, Kondo and Wei, 1989, and Wei, 1994) the 
criteria of pit transition to crack is incomplete as the role of 
short corrosion fatigue crack growth is ignored in all studies at 
very low stress amplitudes. Therefore, the transition stress 
intensity factor range derived by most authors is the transition 
where the short crack becomes a LEFM long crack and its 
growth can be modeled by linear equation presented by Paris. 
A co-operative program among various researchers working on 
this issue (Hoeppner, 1971, 1979, Kondo, 1989 and Kondo 
and Wei, 1989, Wei, 1994) will help expedite development of 
a method thereby, contribute to the understanding of various 
failures which propagated from the bottom of a pit and their 
sensitive usage parameters. 

SHORT CRACK TRANSITION TO LONG CRACK: 

As pointed out in this paper the "short" corrosion fatigue 
crack grows quite early in the pitting corrosion fatigue crack 
growth process within the range of mode I AK (<lMPaVm) at a 
rate much faster than the long cracks.   Therefore, according to 

the models presented in (Hoeppner, 1971, 1979, Kondo, 1989 
and Kondo and Wei, 1989, Wei, 1994) the transition is indeed 
not from a pit to a modelable crack but, transition from a 
"short" crack to a long crack. 

Figure 5 shows a schematic plot of pitting corrosion 
fatigue crack growth process. The conventional models 
reported in (Hoeppner, 1971, 1979, Kondo, 1989, Kondo and 
Wei, 1989, and Wei, 1994) are represented by a thick line 
which has a zone that represents crack growth and mode I AK 
curve closer to threshold mode I AK or above. As a result 
"short" crack growth trend has not been incorporated. Should 
that behavior been incorporated, a range of mode I AK less 
than IMPaVm to 2MPa \m would have shown crack growth 
rate (CGR) higher than the CGR of long cracks. Therefore, 
when a "short" crack growth rates become lower subjected to 
crack face reaching a hard particle or grain, the rate of CG 
becomes smaller and other factors such as time, corrosive 
environment, fatigue loads then determine its further growth or 
transition from "short" to long crack growth. As the range of 
CGR and mode I AK is enhanced above the threshold, the long 
crack grows. This has been widely examined in references 
(Hoeppner, 1971, 1979, Kondo, 1989, Kondo and Wei, 1989, 
Wei, 1994, Koch, 1994, and Brown and Srawley, 1967) as a 
pit transformation to a crack and corrosion fatigue crack 
growth. 

LONG CRACK GROWTH: 

In the data reported by Hoeppner, (1971, 1979), Kondo, 
(1989), Kondo and Wei, (1989), Wei, (1994), Koch, (1994), 
and Brown and Srawley, (1967) show that under pitting 
corrosion fatigue the range of linear behavior reduces. 
Depending upon frequency and environment, the crack growth 
rate behavior increases abruptly after a critical mode I AK. 
This value changes with materials and other parameters. For a 
2024-T3 a shift from the steady crack growth to higher CGR 
occurred in a range of mode I AK from 24 to 28 MPaVm under 
pitting corrosion fatigue process (Koch, 1994). Such a 
behavior when the crack growth rate changes from point to 
point within the range of mode I AK range of long cracks, 
though observed under different environments reviewed in 
(Gangloff, 1988), has also been found for exposed materials of 
the C/KC 135 aircraft by Mills et al, (1995). Further studies of 
this behavior and corrosion fatigue crack growth rate modeling 
are presently underway in the author's laboratories. 

CONCLUSION: 

From this study the following conclusions are drawn: 

1. The pit nucleation and growth stages in a corrosion 
fatigue process cannot be quantitatively separated. The 
number of fatigue cycles in a pitting corrosion situation 
to nucleate a "pit" or pits are considerably higher than 
pit growth and cycles to failure. 

2. There are many pit growth mechanisms. However, in 
fatigue situations, it is very difficult to isolate 
electrochemical as well as mechanical effects. In such 
situations synergisms among various electrochemical 
and mechanical parameters determine the pit nucleation, 
growth, shapes and sizes and their numbers. 
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3. The pit growth due to electrochemical actions and crack 
nucleations are two competition mechanisms. As soon 
as the crack growth rate exceeds the pit growth rate, i.e., 
within the "short" crack regime, a pit becomes a crack. 

4. A model presented in this paper of pitting corrosion 
fatigue and fretting corrosion fatigue has seven stages. 
Each one of these stages is not very well understood. 
The seven stages are as follows: 
1. electrochemical stage or pit nucleation in fatigue, 
2. pit growth, 
3. competition mechanisms in pit growth and fatigue 
crack nucleation, 
4. chemical "short" crack growth, 
5. short crack transition to long crack, 
6. long crack growth, and 
7. corrosion fatigue crack growth modeling. 

5. Most models presented considered the transition of 
"short" crack growth to "long" crack, thereby, 
application of LEFM mode I AK can be applied. It is 
proposed in this paper that from the bottom of a pit 
"short" crack grows and the critical parameters related to 
pit depth and beginning of "short" crack growth needs 
defining by appropriate experimental procedures. 

6. More work is required to develop a methodology of a pit 
transition to a crack and ;>e proposed seven stages of 
pitting corrosion fatigue process so that it can be 
computed in structural integrity assessment tools and 
future usage parameters be estimated for various 
components. 
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Table 1. Summary of pit nucleation mechanisms. 

Adsorption   related Ion   migration Film   breakdown 
Based on adsorption of aggressive 
anions at energetically preferred 
sites. Only above a critical 
potential, Cl adsorption takes place 
by breakdown of the localized 
passivity. 

Penetration of anions from 
oxide/electrolyte interface to the 
metal/oxide interface or migration 
of cations as a decisive process. 
Only after a critical breakdown 
potential is reached the 
penetration occurs. Rapid cation 
egress results in pitting.  

Independent as well as a 
interdependent phenomena of the 
other two mechanisms. Breakdown 
of a passive film provides 
electrolyte direct access to the 
metal surface and pitting occurs. 

Table 2.  Summary of pit growth mechanisms. 

Charge   transfer   based Diffusion   related Resistance    controlled 
At the bottom of a pit a differential 
current density exists that causes a 
pit to grow. A constant current is 
assumed as it is very difficult to 
measure the current and its profiles 
with respect to the depth within the 
pit. 

Salt powders present on the surface 
diffuse by causing a breakdown of 
the protective film in aluminum 
alloys. 

Pitting also occurs at a high Ohmic- 
limited current density. Hydrogen 
bubbles generated within a pit 
increases the mass transport rate. 
Pit growth rate is a time dependent 
as well as applied potential 
dependent process. Increasing the 
potential enhances the rate. A 
parabolic growth often is 
observed. 
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Figure 2. Baseline fatigue and corrosion fretting fatigue behavior of Ti-6A1-4V. 
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Figure 3. Baseline fatigue and corrosion fretting fatigue behavior of 7075-T6 
aluminum alloy. 
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Figure 4.        Fretting induced pitting of 7075-T6 aluminum alloy in 3.5% NaCl 
solution 
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EXECUTIVE  SUMMARY 

The Quality and Integrity Design Engineering Center (QIDEC), 
Mechanical Engineering Department at the University of Utah 
conducted extensive literature search and review on the effects of 
environment and microstructure on the behavior of "short" cracks in 
structural materials. This work was performed under the Airforce 
Office of Scientific Research (AFOSR) grant as a part of the research 
program entitled "Investigation of Modeling the Fretting and Pitting 

Corrosion Fatigue Processes In Structural Aluminum Alloys". The 
findings from the literature search and review are presented herein 
as an interim report (PART-I) for (AFOSR). 

As the meaning of the word "short" as related to the formation 
and arly propagation of cracks differs significantly with respect to 
the conditions of interest (coi), it has been realized by the technical 
community that there are three basic types of "short'V'smaH" cracks 
viz. microstructurally-short-cracks, chemically-short-cracks, and 
mechanically-short-cracks. The most important finding of the 
literature search process showed that while a tremendous amount of 
effort has been expended during the past several years to 
characterize the "short" crack behavior of structural materials, very 
little research has been performed as related to environmental 
issues such as the contribution of chemical environment to the 
formation and early propagation of cracks as well as "short" cracks as 
related to the pitting corrosion fatigue mechanism. Moreover, the 

literature search and review process has shown that the technical 
community has not done any work to characterize the "short"/"small" 
crack behavior of materials under the synergistic process of fretting 
corrosion   fatigue. 

This review report addresses the microstructural and 
environmental "short" crack studies that have been conducted since 
1965. Section 1 of this report gives an introduction summarizing the 
present understanding of the mechanisms of "short" crack behavior 
of    materials.    This    is    followed    by    a    detailed    review    of 



microstructurally "short" crack studies including the effects of grain 
size, grain and phase boundaries, variation of precipitate size, 
processing technique, and stress ratio. In addition, "short" crack 
studies as related to stage I crack propagation also are discussed in 
section 2. Section 3 discusses environmental influences in the "short" 
crack regime. Conclusions are given in section 4. Some "short" crack 
test results are extracted from the literature and they are included 
in appendix I. Experimental details including the commonly used 
"short" crack specimen geometry, test techniques and test 
parameters are tabulated in appendix II. A global view of the "short" 
crack challenge in materials is schematically presented in appendix 
III. Also, a title list of "short" crack related works published so far is 
given in appendix IV. 

It is envisioned that Part II of the report will address some 
preliminary experimental investigations on "short" crack fretting 
fatigue and pitting corrosion fatigue studies in 7075 aluminum alloy 
specimens. In addition, in this future report, "short" crack modeling 
methods that are published in the literature will be discussed and 
also these modeling methods will be compared with the findings 
from the proposed "short" crack fretting fatigue and corrosion 
experimental studies. Two to three "short" crack fretting fatigue tests 
and some pitting corrosion fatigue "short" crack tests will be 
performed using replication technique. Part II of the report 
incorporating preliminary test data will be submitted to AFOSR after 
the completion  of the testing program. 
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1.     Introduction 

Design    of   structural   components   using    fracture   mechanics 

concepts  requires  three  basic  parameters  viz.  load  or  applied  stress, 

stress  intensity factor,  and discontinuity or crack size.  Conventionally 

damage   tolerant   design   methods   consider   an   initial   "flaw"    size 

typically   in   the   order   of   1   mm   (0.04")   while   applying   fracture 

mechanics   concepts   to   design   damage   tolerant   components   (Potter 

and Yee,  1983). Fatigue crack growth tests in the "long" crack regime 

as per ASTM E647 are conducted on materials that are to be used to 

make   the   damage   tolerant   parts   and   together   with   the   assumed 

initial   "flaw"   size   as   well   as   the   appropriate  loading   and  material 

parameters    inspection    intervals    are    computed.    However,    the 

technical   community   has   realized   the   significance   of  the   formation 

and    existence    of    the    so    called    "short"     cracks    (examples: 

manufacturing   discontinuities   like   crack(s)   from   a   hole   that   may 

result     from      improper     riveting      operation,      and     material 

microstructural  discontinuities  in  the  "short"  crack range,  typically  in 

the  order  of  grain   size,   or  less)  and  their  growth  is   "faster"   when 

compared  to  "long"  cracks  in  the  equivalent or even  at lower  stress 

intensity  range.   With   the   support  of experimental   studies   conducted 

by   several   researchers   to   determine   the   "short"   crack   behavior   of 

materials,   it  can   be   argued   that   the   current  practice   of  computing 

inspection   intervals   of   aircraft   critical   structural   parts   using   the 

"long"  crack growth  data and the initial  "flaw"  size of  1   mm might 

lead   to   unexpected   fatigue   crack   growth   behavior   resulting   in   a 

catastrophic   failure.   This   implies   that   designing   components   using 
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damage tolerant concepts may still not be safe when "short" crack 

behavior is not integrated in fatigue life prediction methods. "Small" 

cracks were found in aircraft fuselage riveted lap joints (Schijve, 

1992), fastener holes (Potter and Yee, 1983) and in tear-down 

aircraft wing critical structures (Wood and Rudd,   1983). 

Although many research studies were conducted, there is still 

not a clear understanding among the researchers with regard to the 

usage of terminology such as "small" and "short" as related to the size 

of the crack as these terms are often mixed up in the literature and 

this alone exemplifies the complexity of the challenge we have at 

present. However, many "short" crack researchers agree on the 

following  aspects: 

• There are three basic types of "short" cracks viz. mechanically or 

physically "short", microstructurally "short" and chemically "short" 

(McClung, Chan, Hudak and Davidson, 1994). 

• "Short" cracks can not be modeled using the Linear Elastic Fracture 

Mechanics (LEFM) concepts although some workers have attempted 

to convert the "short" crack data to "long" crack, to compare the crack 

growth behavior in both the regimes and also to evaluate the 

"effective crack driving force" for "small" and "large" fatigue cracks 

(Tokaji, Ogawa, Harada and Ando, 1986; Tokaji, Ogawa and Harada, 

1987; Davidson, 1988; Hyspecky and Stanadel, 1992; Nicholls and 

Martin,  1991; Sheldon, Cook, Jones and Lankford,  1981). 

• "Short" cracks often grow "rapidly" when compared to "long" cracks 

at   a   lower   stress   intensity   range   that   is   below   the   "long"   crack 



threshold and also at an equivalent stress intensity range. In some 

materials, the "short" growth rate is observed to be much "faster" 

than would be predicted by extrapolating "large" crack data 

(Lankford,   1982;  Lankford,   1985). 

• The material parameters which influence plastic deformation viz. 

grain size, grain orientation, texture, work hardening rate, slip band 

character, local microscopic fracture toughness, inclusion size and 

content as well as second phase particles have an important role in 

"short" crack growth (Miller,  1982). 

• Current NDI technologies are not capable of detecting the 

discontinuities that are in the "short" crack range (Wood and Rudd, 

1983). This directly affects the inspection related issue as it is 

inextricably  linked  with  the  damage  tolerant design  concepts. 

• There is no single parameter that can define the "short crack 

driving  force". 

• Although a few studies have attempted deterministic "short" crack 

growth prediction methods for physically or mechanically "short" 

cracks, as the influence of the microstructural variations on the 

"short" crack behavior of materials is extremely complex, the 

challenge of incorporating "short" crack methodology into present 

practice of fatigue life prediction analyses must be treated with 

probabilistic approaches. This necessitates the study of scatter in the 

behavior of "small" cracks to understand the physical basis of scatter 

in the fatigue lives of components or specimens (Goto, 1992 and Goto, 

1993). 

Several   researchers   have   postulated   different   mechanisms   for 

the behavior of "short" cracks. They are indeed related to the type of 



"short" cracks. For microstructurally "short" cracks, "crack tip 

shielding" and "enhanced crack tip plastic strains" are stated to be 

responsible phenomena (Ritchie and Lankford, 1986). Also, 

evidences suggest that microstructurally "short" cracks are 

sometimes obstructed locally by grain boundaries (crack arrest), 

influenced by non-uniform growth and sometimes may experience 

higher cyclic plastic strains at the crack tips resulting in "faster" 

growth (Lankford, 1981, Lankford, 1982, Ritchie and Suresh, 1995). 

Moreover, "short" cracks may be subjected to "crack deflection" 

(Suresh, 1983) that may be related to the orientation of each grain. 

Thus, texture has an important role in determining the behavior of 

microstructurally   "short"   cracks. 

Excessive    plasticity    is    stated    to    be    the    mechanism    for 

mechanically   "short"   cracks.   This   implies   that   the   assumption   of 

"small-scale   yield"   that   forms   the   basis   of   linear   elastic   fracture 

mechanics  is   not  applicable.  Local  crack  tip  environment  (Gangloff, 

1985)   has   been   hypothesized   as   a   predominant   mechanism   for   the 

"faster"   propagation   of  chemically   "short"   cracks   as   they   are   more 

vulnerable   to   chemical   attack   than   "long"   cracks   because   of   the 

relative ease of access to the crack tip. For physically  "short" cracks, 

it  is  hypothesized  that  the   "crack  closure  effect"   that  decreases  the 

"crack   driving   force"   for   "long"   crack   propagation   may   be   absent 

(Schijve,   1986).   Furthermore,   it  is   believed  that   "short"   cracks   that 

are usually associated with a limited "wake"  are less able to develop 

the  same  magnitude  of shielding  as  equivalent  "long"   cracks  at  the 

same    nominal    stress    intensity    range    (Lankford    1986).    Some 
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experimental studies have showed that although the growth rate of 

microstructurally "short" cracks is "faster" initially, once the crack tip 

reaches the grain boundary the growth rate either gets reduced or 

some times completely arrested at the grain boundary (Lankford, 

1982, Lankford, 1983, Lankford and Davidson, 1986, Tokaji and 

Ogawa,  1992, Ritchie and Suresh,  1995). 

Moreover, the dimension of the crack also is related to the 

types of crack. Mechanically "short" crack size 'a' is considered to be 

less than the plastic zone size and microstructurally "short" crack size 

is related to the grain size (Ritchie and Suresh, 1995). As the crack 

length is "short" compared to the microstructural dimensions, such as 

the grain size, it has been realized that the assumption that the crack 

grows in a homogeneous, isotropic continuum is no longer valid. 

Therefore, the primary focus of this report is to review the 

present understanding of the influence of microstructure and 

environment on the behavior of "short"/"small" cracks in structural 

materials. 



2.    The   effect   of   microstructure   on   the    "short'V'smaU"    Crack 

behavior    of    materials 

This section reviews microstructurally "short'V'smaU" crack 

studies conducted on materials. The mechanisms of the "short" crack 

growth behavior as related to the local microstructural variations 

and crack closure phenomena are discussed in detail. Some "short" 

crack test results are reproduced from literature and they are 

included in appendix I. The experimental details including specimen 

geometry as well as test techniques corresponding to the following 

discussion are included in appendix II. 

When applying damage tolerance principles to the design of 

structural components subjected to cyclic loading, a geometry 

independent parameter AK (stress intensity range), is used to 

characterize the crack growth. This is the basis of Linear Elastic 

Fracture Mechanics (LEFM). Moreover, it is presumed that cracks 

would not propagate at a stress intensity below a threshold value 

and it is usually denoted as AKth- Although it has been realized that 

there is no geometry independent crack driving force in the "short" 

crack regime, several attempts have been made to predict "short" 

crack growth rates including some approaches that are based on 

crack deflection, crack closure, T integral and some semi-empirical 

methods (Morris and Buck, 1977, McEvily and Minakawa, 1984, 

Suresh, 1985, and El Haddad, Dowling, Topper, and Smith, 1980). As 

microstructure  has   varying  effects  in  materials,  it  has  been  realized 

that   the   deterministic   way   of  fatigue   life  prediction   in   the   "short" 
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crack regime  is  far  from  accurate.  However,   some researchers  have 

proposed   models   which   incorporate   microstructural parameters   into 

the "short" crack growth rate equations (Petit and Zeghloul, 1986, 

Petit and Zeghloul,  1990) 

The factors that are believed to be responsible for the "faster" 

growth of "small" cracks as summarized by Schijve are: 

• The front of a "microcrack" is more regular than the front 

associated with a "long" crack. 

• A single slip system is required for propagating a "small" crack 

whereas   several  systems  are  necessary  for  "macrocracks". 

• Anisotropy effects, grain boundary structure and inclusion content 

may influence  "small"  crack behavior. 

• The reversed plastic zone behind the crack tip may be different 

and may induce "crack closure effects" which are a function of the 

crack  length. 

• The roughness of the fracture surfaces may play an important role 

in favor of the crack closure phenomenon. 

A distinction between "small" and "short" crack growth 

behavior was made by some researchers (Lankford and Davidson, 

1986, Breat, Mudry, and Pineau, 1983) by experimental studies. 

Their studies have showed that the experimentally measured 

difference in crack closure response between "short" and "large" 

cracks in A508 steel may be sufficient to explain differences in their 

crack  propagation  behavior.   From  experimental   studies   conducted  in 

A508  steel, it was observed that da/dN versus AK for  "short"  cracks 
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was only an extension of the "long" crack behavior into the 

subthreshold regime. This is illustrated in Fig. 1 (Breat, Mudry, and 

Pineau, 1983). As can be seen in Fig. 1, "short" and "long" cracks 

exhibit the same behavior. However, "small" cracks are related to a 

controlling microstructural element, usually the grain size, and these 

cracks are observed to be distinct from "short" cracks, i.e., through 

thickness cracks (0.5-2.0 mm) in length. (Taylor and Knott, 1981) 

have suggested that the "small" crack regime corresponds roughly to 

microcracks such that 2a = 10 GS where GS is grain size. Also, (Breat, 

Mudry, and Pineau, 1983) have showed that "short" cracks do not 

grow much faster at a given AK than do "long" cracks. But "short" 

cracks have a lower threshold,- above which they follow roughly the 

same da/dN versus AK curve that a "long" crack would if it were 

simply to continue growing below its threshold (see Fig. 1). However, 

"small" cracks, as hypothesized by these researchers, not only grow 

below AKth, they also grow much faster than would be predicted by 

extrapolating long crack results below their threshold. Some studies 

(Taylor and Knott, 1981, Hicks and Brown, 1984, Lankford and 

Davidson, 1986) have showed that "small" crack growth converges 

with the "large" crack curve when plastic zone size is approximately 

equal to the grain size. This phenomenon has been observed in 

aluminum alloy, fine grained, coarse grained and single crystal 

astroloy, and p/m aluminum alloy as shown in Figs. 2, 3, and 4. 

In many cases  it has been  shown that the  arrest or retardation 

of   small   cracks   correlates   with   the   crossing   of   grain   boundaries 

(Lankford,   1982,  Lankford   1985).  It also has  been postulated  that if 
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the plastic zone size is less than the grain size such crossings are 

infrequent. In comparison with the "large" cracks, cracks are 

observed to grow in many unfavorable grains simultaneously, hence, 

the average rate of growth is much lower than that for "small" cracks 

at equivalent AK levels in favorably oriented grains. Although these 

studies attempted to distinguish "small" and "short" cracks, many of 

the researchers used the terminology in a mixed manner. Therefore, 

as the purpose of this report is only to review the present 

understanding with regard to the fundamental issues pertaining to 

microstructural and environmental aspects of the fatigue crack 

formation and growth, this report includes the terms "short" and 

"small"  as  they are extracted from the literature. 

In general, the "faster" growth of microstructurally "small" 

fatigue cracks has been observed to be associated with second phase 

particles (Pearson, 1975), inclusion particle clusters or voids 

(Newman and Edwards, 1988), eutectic colony boundaries (Taylor 

and Knott,   1981),  and grain boundaries  (Lankford,   1985). 

Early in 1975, bending fatigue studies were performed on 

commercial aluminum alloys viz. aluminum-copper-magnesium (BS 

L65) and DTD 5050 (aluminum-zinc-magnesium) (Pearson, 1975). It 

was observed that cracks in the order of, or even less than, the grain 

size grew "faster" than "long" cracks, i.e. the mean crack growth rate 

in the early stage was observed to be 1.27 X 10-6 mm (5 X 10-8 in.). 

In this study crack formed at surface inclusions and it was related to 

previous  cold  working  that  was  performed  on  the  material.   Fracture 
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mechanics approach was used to calculate AK values for "short" and 

"long" cracks because the plastic zone size was observed to be l/20th 

of the crack length (see Figs. 5(a) - 5(d)). Also, it was concluded that 

the growth rates in the early stage was much "faster" than would be 

predicted from the "long" crack data. The results of experiments 

performed by Pearson for alloy BS L65 and DTD 5050 are given in 

Table 1 and 2 and the plots of the number of cycles to "initiate" a 

crack of 0.05 mm (0.002 in) for the two alloys are given in Figs. 6 

and 7. 

Following   this   study,   in   1976,   uniaxial   fatigue   loads   were 

applied   on    Aluminum   alloy    2219-T851    parallel    to    the   rolling 

direction   in   room   temperature   and   it   was   observed   that   crack 

nucleated at the  surface  at intermetallic inclusions  (Morris,  Buck and 

Marcus,   1976).   Moreover,   it  was   showed   that   at  the   fatigue   loads 

that are  less  than  0.6  times  the  yield  stress  several  cracks  coalesced 

to   form   a   macrocrack   that   lead   to   the   ultimate   failure.   The   most 

important   finding   of   this   study   showed   that   there   was   significant 

retardation     of    microcracks     with     grain     boundaries.     Similar 

observation was made in another study (Lankford,  Cook and Sheldon, 

1981), in that it was hypothesized that  "small"  cracks  grew  "rapidly" 

during the initial  stage  and when the crack tip interacted with  grain 

boundaries,   the   growth   rate   slowed   down.   However,   it   also   was 

formulated   that   as   the   crack   moved   away   from   the   boundary,   the 

crack   growth   became   "faster"   again.   This   behavior   was   related   to 

local    microplasticity    in    certain    preferentially    oriented    grains 

(Lankford,   1982).   This   study   was   conducted   in   laboratory   air   in 
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7075-T6 (precipitation hardened aluminum) with 60% humidity. It 

was observed that for the "smallest" crack (2a<40 um), da/dN did not 

increase monotonically with AK. However, there was a decrease in 

the crack growth rate and reached a minimum in the range 30 |nm < 

2a < 40 fim. Some of the cracks were found to be "nonpropagating". 

Lankford also proposed a schematic representation of the "short" and 

"long" crack growth behavior as shown in Fig. 8. It was concluded 

that "small" cracks could become "large" cracks "when their LEFM 

plastic zones begin to exceed in size the maximum grain dimension". 

Similar observation was made when "small" crack behavior 

was studied in A286 steel in which the "short" crack effect 

disappeared when the crack-tip plastic zone size became greater 

than the grain size (Mei and Morris, 1993). This study also supported 

the hypothesis that peak stress and microstructural effects in 

addition to the absence of crack closure are some of the factors that 

influence the "short" crack growth in this material. In another study, 

it was observed that when the applied stress was sufficiently high 

the "short" crack growth rate could be sustained and could overcome 

the microstructural barrier when tested in plain specimens (Pan, De 

Los Rios and Miller, 1993). Also, in this study, tests on notched 

specimens (8090 Al-Li alloy) revealed that the extent of notch tip 

and crack tip plastic zones control "short" crack propagation. It was 

hypothesized that "a short crack will continue to propagate only if its 

own plastic zone can sustain growth as the crack tip extends beyond 

the notch zone". This study presented some interesting data on the 

"short" crack growth from corner notches as shown in Fig. 9. Also, the 
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effects of grain boundary, viz, changing the direction of the crack, 

temporary stopping of a crack, and forcing the crack to adopt a zig- 

zag path  were  observed. 

In SiC reinforced aluminum alloy (6061), "short" cracks were 

found to propagate through the SiC particles as the crack front 

fractured the particles (Kumai, King and Knott, 1990). In another 

study, the presence of voids in an overaged 2024 aluminum alloy 

was observed to be responsible for the formation of fatigue "micro 

cracks" (Sigler, Montpetit and Haworth, 1983). In this study, the 

density of microcracks (cracks were counted when the size was more 

than 5 |im) was observed at different stress amplitudes during the 

fatigue life. It was found to be 300/mm2 at 320 MPa, in 771 cycles 

at failure, but less than 0.5/mm2 at 200 MPa, in 1.5X105 cycles (at 

failure). This result has very high significance as related to the 

possibility of microcracks coalescence into macrocracks that may 

affect the ultimate fatigue life. 

In nodular cast iron, "short" cracks formed from either the 

graphite nodules or microshrinkage pores (Clement, Angeli and 

Pineau, 1984). Crack closure effect was suggested as the mechanism 

for the "faster" growth of the "short" cracks for the given stress 

intensity factor. On the other hand, in a medium carbon steel, the 

"short" crack growth rate was related to the intensity and the extent 

of plasticity of the crack tip (De Los Rios, Tang and Miller, 1984). 

Also, it was observed that "short" crack growth decreased or even 

arrested   at  ferrite-pearlite   boundaries.   However,   as   the   stress   level 
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was increased to certain value, the two of the arrested cracks at the 

ends of the ferrite joined up and the resultant crack branched off 

along the prior austenite grain boundaries. Therefore, it was 

suggested that the critical fracture occurred when two of the "short" 

cracks joined and branched that made it possible to propagate into 

the pearlite. Similar hypothesis can be postulated for a "short" crack 

nucleating from corrosion pit in aluminum alloys and the stress 

concentration of the pit may be sufficient for "short" crack to 

overcome the grain boundary barrier for subsequent propagation. It 

can be further hypothesized that if cracks form from adjacent pits 

these "short" cracks can join and may grow "faster" when compared 

to "microcracks" coalescence resulting from other microstructural 

heterogeneities. However, there are no experimental data to support 

this theory and the very possibility of this occurring in a material 

should   be   investigated. 

"Small" surface crack (2 to 1000 |im) studies on other materials 

like aluminum-lithium alloy 2090-T8E41 also have showed an 

accelerated growth at AK levels as low as 0.7 MPa Vm (Venkateswara 

Rao, Yu and Ritchie, 1988) and this behavior was related to 

restrictions in the development of "crack tip shielding" resulting 

from "roughness-induced crack closure". The test results are shown 

in Figs.  10(a) and 10(b). 

In low carbon steel, when fatigue tested with specimens 

produced with two ferrite grain sizes of 24 and 84 fim, it was found 

that in fine grained material most of the cracks formed within ferrite 
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grains and in coarse grained material the cracks formed at grain 

boundaries as shown in Fig. 11 (Tokaji, Ogawa and Harada, 1986). 

The most important finding of this study was that the effect of grain 

boundary strongly depended on "short" crack length. For fine and 

coarse grained material, when 2c>200 |im and 2c>250 |im 

respectively, the grain boundary was not a barrier for the "short" 

crack propagation and dc/dN increased with increasing crack length 

(see Fig. 12). Fig. 13 shows the relationship between crack growth 

rate and stress intensity range for "small" fatigue cracks. Also, other 

studies showed that the effect of a grain boundary on the "short" 

crack growth appeared to be dependent on the orientation of ferrite 

grains (Lankford, 1985 and Suresh and Ritchie, 1984). In general, it 

has been recognized that when cracks are of a length comparable to 

the scale of the microstructure, the growth is greatly affected by the 

microstructure and the relevance of continuum mechanics is limited. 

The concept of "microstructural dissimilitude" was proposed to 

explain this kind of behavior (Chan and Lankford,  1988). 

During the growth of "short"  cracks, if the crack front behaves 

in   a   similar  fashion   when  it  intersects   many   grains   irrespective   of 

the  crack length,  these  cracks  are believed  to possess  similitude  and 

the   stress   intensity   range   (corrected   for   yielding)   can   be   used   to 

correlate  the  crack growth rates.  However,  for  "short"  cracks,  it has 

been observed that there is no linear relation between da/dN and AK. 

Thus, the challenge becomes so complex as it is highly impossible to 

predict  the  potential  site  of crack  nucleation  that may  be  related  to 

the  preferred  orientation  of the  grain  for  the  cracks  to  form.   More 
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importantly, because of the greater dependence of the "short" crack 

challenge on the microstructural variations in a material that is 

frequently in the order of a grain size, the "short" crack problem is 

intrinsically statistical in nature. Therefore, to improve the resistance 

of the material microstructure to the nucleation of "short" fatigue 

cracks, alloy design incorporating "small" randomly oriented grains, 

and texture to have only a few grains as possible for an easy crack 

growth under a known loading condition was suggested to be a 

useful way to deal with this issue (Ritchie and Lankford 1984). Also, 

the challenge becomes still more complex as the local fracture 

toughness of each grain is of practical significance as related to the 

formation and the propagation of cracks in the "short" regime. 

The effect of processing techniques on the "short" crack 

behavior was studied in an aluminum-magnesium-silicon alloy 

(Plumtree and O'Connor, 1991) in strain control. "Short" cracks were 

observed to form from second phase particles and the growth was 

impeded at grain boundaries. It was concluded that the extruded 

alloy with a finer microstructure and smaller second phase particles 

demonstrated a superior resistance to formation of "short" cracks 

when compared to squeeze-cast material. "Short" cracks in the order 

of 3 to 147 \im were found to form from Ti3Al hep alpha phase in a 

titanium aluminide alloy (Davidson, Cambell and Page, 1991). The 

results showed that the growth of "small" cracks in titanium 

aluminide alloy was slower by a factor of 10 to 100 when compared 

to  aluminum  alloys. 
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As the grain size has an important role in the behavior of 

microstructurally "short" cracks, a study was conducted to 

demonstrate the effect of grain size on the "short" fatigue cracks. 

Specimens from 7075-T6 were prepared to produce grain sizes of 12 

and 130 (im. Growth rates of surface cracks in the order of 20 to 500 

lim were studied during the axial fatigue test in laboratory air of 45 

to 60% RH (Zurek, James and Morris, 1982). It was found that the 

mechanism for the "short" crack growth behavior was dependent on 

alloy grain size. 

As   discussed   so   far,   many   of   the   published   works   on   the 

behavior   of   "short"   cracks   indicate   that   grain   boundaries   impede 

propagation,   resulting   in   decrease   in   the   growth   rate   or   complete 

arrest  in   some   cases.   This  kind   of behavior  has  been  modeled  by 

some   workers   (Eastabrook,   1984,   Hobson,   1982,   Lankford,   1982). 

These   models   predict  that  increasing   grain   size   will   lead   to   faster 

crack propagation rates  in  the  "short"  crack regime.  A  schematic  to 

represent the predicted effect of grain  size  on  short crack growth  is 

given  in  Fig.   14  (Lankford,   1982).   (Brown,  King,   and  Hicks,   1984) 

supported this model when they conducted  "short"  crack studies  on a 

Ni-base   superalloy,    Astroloy,    with   grain    sizes    of    12    and    50 

micrometer.   They   observed   slower   crack   propagation   rates   in   the 

fine   grained   material   than   those   in   the   coarse   grain   size.   Fig.   15 

shows  the  effect  of grain  size  on  the  fatigue  crack  growth  rates  in 

Astraloy   resulted   from   this   study.   Also,   (Wagner,   Gregory,   Gysler, 

and  Lutjering,   1986)   showed  a  similar  trend  in  Ti-8.6A1   alloy  with 

grain sizes of 20 and 100 p.m.  In  addition,   some  studies  (Hirose  and 
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Fine, 1983) reported slower growth in a powder metallurgy 

aluminum alloy with a fine grain size. However, a different behavior 

was observed (Taira, Tanaka, and Hoshina, 1979) in a 0.2% C steel 

with a ferrite/pearlite microstructure. They observed similar growth 

rates at ferrite grain sizes of 20.5 and 55 |im and lower growth rates 

only when the grain size was reduced to 7.8 |im. This is illustrated in 

Fig. 16. In contrast to these results are those of (Brown and Taylor, 

1984, and Zurek, James and Morris, 1982). Their studies (Brown and 

Taylor, 1984) in a mill annealed alpha/beta titanium alloy (Ti-6A1- 

4V) with grain sizes of 4.7 and 11.7 (im, could not detect any grain 

size effect. Also, (Zurek, James and Morris, 1982) in 7075-T6 

aluminum alloy, observed a decrease in growth rate with increasing 

grain size from 12 to 130 |im. Fig. 17 illustrates the results from this 

study. Thus much of the published work on the effect of grain size on 

"small" fatigue crack growth indicates that increasing grain size leads 

to "faster" crack growth rates. In the microstructurally "small" crack 

regime, this trend is related to the difference in the "blocking effect" 

of grain boundaries. This so called "blocking effect" was observed to 

occur more frequently in fine grained material than in coarse 

grained material. As demonstrated (Tokaji, Ogawa, Harada and Ando, 

1986) in quenched and tempered steel, prior austenite grain 

boundaries act as barriers to the growth of microstructurally "short" 

cracks. It was observed in fine and coarse grained materials as 

shown in Fig. 12. 

The effect of variation of precipitate sizes on the  "short"  crack 

behavior was  studied  (Brown,  King  and Hicks,   1984)  using Astroloy 
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with 50 |j.m grain size. In this study, they investigated a range of 

gamma prime distributions, achieved by different heat-treatment 

processes and they found similar "short" crack growth rates in all 

conditions. Also, similar observation was made in a nickel base super 

alloy, Waspaloy, with about the same grain size, but somewhat lower 

gamma prime volume fraction. The results from this study are 

shown in Fig. 18. It also was realized by some investigators that one 

of the important ways of controlling short crack behavior in steels 

and titanium alloys was through variations in the distribution and 

proportions of the phases present. (De los Rios, Tang and Miller, 

1984) When tested in a 0.4% C steel with a strongly banded structure 

with alternate layers of alpha and pearlite, observed cracks 

nucleating in the alpha and were held up by the alpha/pearlite 

interfaces and sometimes the propagation was completely stopped 

after reaching these boundaries. Also, in another study using the 

same material (De los Rios, Mohamed and Miller, 1985), but with a 

different microstructure in which the alpha outlined the prior 

austenite (gamma) grain boundaries, the similar observation was 

made. 

In  0.37%  C  steel  (Hoshide,  Yamada,  Fujimura,   1985),  with  an 

alpha/pearlite   microstructure   in   two   conditions,    air-cooled   from 

865°C    and    furnace-cooled    from    940°C,    cracks    formed    in    the 

alpha/pearlite   boundaries   and   stopped   when   the   cracks   reached   the 

pearlite.   Also,   slower   "short"   crack  growth  rates  were  presented  in 

the air-cooled material with the finer distribution of alpha.  In one of 

the  earlier  studies  (Kunio  and  Yamada,   1979)  using  martensite  steel 
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(alpha prime/ferrite alpha mixtures consisting of about 50 volume % 

of each), crack formation occurred in the alpha and growth stopped 

on reaching alpha prime. However, it was found that at higher stress 

levels these cracks continued to propagate, but until they reached 

lengths of 400-500 |im, their growth was still impeded by regions of 

alpha prime. From these studies, in steels, it was clearly observed 

that the presence of harder phases forced the cracks to take a 

tortuous path by deflecting the crack paths. Similar study was 

carried out in titanium alloys (Hicks and Brown, 1984). They 

compared the behavior of a beta processed titanium alloy, IMI 685, 

with a coarse aligned alpha structure with that of alpha/beta heat- 

treated IMI 318. The changes in orientation of the alpha plates at the 

prior beta grain boundaries and the coarse beta grain sizes produced 

at the high beta heat-treated proved to be the main barriers to 

"short" crack propagation in the IMI 685. However, in IMI 318 which 

consisted of regions of primary alpha and transformed beta, cracks 

formed in the alpha and were impeded by the harder regions of 

transformed beta, thereby meeting the effective barriers at lengths 

very much shorter than the prior beta grain size. As shown in Fig. 19, 

a five-fold difference in average growth rate was obtained between 

the   two   microstructures. 

Also, another study in IMI 318 and IMI 550 with different 

heat-treatment processes (Boilngbroke and King, 1986) clearly 

showed that a finer and harder transformed beta impedes the crack 

growth more effectively than a coarser transformed beta produced 

at   a   slower   cooling   rate.   Moreover,   they   showed   that   an   average 
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"short" crack growth rates in the beta heat-treated structure are up 

to an order of magnitude faster than in an alpha/beta heat-treated 

condition in IMI 318. Similar observations were made in dual phase 

steels with ferrite and martensite phases, crack growth rates and 

crack path were strongly affected by martensite phase (Minakawa, 

Matsuo, and Mcevily, 1982, Dutta, Suresh, and Ritchie, 1984, and 

Shang, Tzou, and Ritchie, 1987). Somewhat similar research 

observations also were presented (Tokaji and Ogawa, 1988) in 

medium carbon steel and dual-phase stainless steel as shown in Fig. 

20). As can be seen from this illustration, it was found that as cracks 

grew into pearlite phase from ferrite phase in medium carbon steel 

and austenite phase from ferrite phase in dual-phase stainless steel, 

crack growth rates showed a marked decrease at phase interfaces. 

Also, it was observed that cracks tend to grow predominantly within 

ferrite phase in medium carbon steel. Fatigue crack was also found to 

form in softer ferrite in C-Mn steel (de los Rios, Navarro, and 

Hussain, 1992). Moreover, (Kawachi, Yamada, and Kunio, 1992) 

showed the possibility of coalescence of "small" cracks in a dual- 

phase (martensitic-ferritic) carbon steel and as a result of this, 

cracks increased their length along the matrix-ferrite, by-passing the 

harder martensite. They also demonstrated that the crack 

coalescence could be suppressed in this kind of steel by preparing a 

dual phase microstructure with the matrix ferrite enclosed by the 

second phase martensite. This resulted in increase in the fatigue 

strength of this  steel. 
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Also, other microstructurally "short" crack studies in different 

metals viz. low carbon steel (Tokaji, Ogawa, and Harada, 1986), 

medium carbon steel (Tokaji and Ogawa, 1988), high tensile steel 

(Tokaji, Ogawa, and Harada, 1987), low alloy steel (Tokaji, Ogawa, 

Harada and Ando, 1986), aluminum alloy (Tokaji and Ogawa, 1990), 

and pure titanium (Tokaji, Ogawa, Kameyama, and Kato, 1990) 

revealed a similar overall growth behavior as crack growth rates 

were markedly decreased by grain boundaries, triple pints and 

interfaces between phases depending on the microstructures. These 

studies also supported the above mentioned research works that 

large decreases in microstructurally "short" crack growth rate are 

more frequent in fine grained materials than in coarse grained 

materials (see Fig. 21). This was observed to increase the overall 

fatigue life in the fine grained materials. 

In  fine  and  coarse   grained  materials   such  as  in  pure  titanium 

(Tokaji,   Ogawa,   Kameyama,   and   Kato,   1990),   the   crack  path   was 

observed  to  be  extremely  tortuous  and  it  increased  with  increase  in 

grain  size.  Therefore,  decrease in crack growth rate resulted.  Fig.  22 

shows   that   decreases   in   crack   growth   rate   are   observed   more 

frequently   in   fine   grained   material   as   compared   to   coarse   grained 

material.  This  was  attributed  to  grain boundary  and crack deflection. 

As   described   in   one   study   (Suresh,   1983),   the   deflection   in   crack 

path  might  lower  the  crack  driving  force.   Also,   as  hypothesized  by 

some  researchers   (Tokaji   and  Ogawa,   1992),   the  tortuous   nature  of 

crack  path   morphology   in   pure   titanium   might   be   associated   with 

planar   slip   characteristics   or   fewer   slip   systems   than   bcc   and   fee 
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metals. Furthermore, they postulated that because of this, as cracks 

reached grain boundary, large changes of growth direction might 

occur due to the incompatibility of deformation and it was related to 

misorientation between two grains. Although extensive research 

studies on the microstructurally "short" crack behavior were 

performed on various possible materials, a direct comparison is not 

possible because of some obvious differences in test conditions viz. 

stress level, loading type and other test parameters. However, as 

indicated before, a general behavior of microstructurally "short" 

cracks is observed in many of the materials bearing a few 

contradictory   results. 

The effect of stress ratio (R) on microstructurally "short" cracks 

was studied by some workers (Tokaji and Ogawa, 1990), The 

microstructural effect at R=-l and at R=0 is shown in Fig. 23. As can 

be seen from this illustration, in aluminum alloy (7075-T6) tested at 

R=-l and R=0, faster growth was recorded at R=-l. Also, the results 

at R=-2 showed the fastest crack growth rates. (Tokaji and Ogawa, 

1992) observed stage I facets on the fracture surfaces when tested 

at R=-l and R=-2 but not at R=0. They related the growth behavior of 

microstructurally "short" cracks to the existence of stage I facets. 

Also, some studies on Stage I crack formation as related to "short" 

crack growth behavior are discussed in the next section. 

22 



2.1   Stage   I   crack   formation   studies   and   its   relation   to 

"short"    crack    growth    behavior 

The slip mechanism for the formation of fatigue cracks was 

first studied by Ewing and Humphrey, Gough and Forsyth among 

others. Since then, formation of persistent slip bands (PSB) has been 

recognized as a general phenomenon for the nucleation of fatigue 

cracks. Forsyth termed the formation and growth of crack in slip 

bands during the fatigue process as Stage I. Stage I or slip band 

cracking was related to the range of resolved shear stress on the slip 

plane (Forsyth, 1969). Also, slip bands produced by cyclic stress 

were shown to be a series of grooves and ridges and the fatigue 

deformation mechanism of "slip band intrusion and extrusion" was 

related to Stage I crack growth mechanism (Forsyth, 1969). However, 

not all the fatigue cracks form from slip bands. Under favorable 

conditions of stress and environment these cracks may form on those 

planes most closely aligned with the maximum shear-stress 

directions in the component or test specimens. Some "short" crack 

research studies related the behavior of cracks in the "short" regime 

to Stage I cracks and they are discussed below. 

Two high strength and low alloy steel containing V and Nb 

were fatigue tested to observe the nucleation of cracks and growth of 

"microcracks" (Kim and Fine, 1982). Strain controlled fatigue tests 

were conducted in 30-40% humidity air at room temperature. Also, 

results   of  crack   formation   at   different   mean   stress   were   reported. 

This   study   showed   that   at   all   stress   levels,   fatigue   cracks   were 
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observed to form along persistent slip bands. The number of cycles 

to nucleate a crack of size 5 |im long was observed at 2000 to 3000 

magnification and the "microcracks" were always found to be 

associated with slip bands. (Kwun and Fournelle, 1982) also reported 

more density of slip bands and "small" cracks for quenched and 

tempered at a lower temperature when compared to tempering 

performed at higher temperature in Niobium bearing high strength 

and low alloy steel. 

Although the formation of cracks in extruded aluminum alloy 

X7091 containing Zn-Mg-Cu and Co occurred at grain boundaries at 

both low and high stresses, the same was not true when the material 

was subjected to thermomechanical treatment. This resulted in the 

slip band crack nucleation (Hirose and Fine, 1983). Another study 

(Kim, Mura and Fine, 1978) in 4140 steel also showed that 

"microcracks" formed at grain boundaries in as-quenched specimens 

and  at intrusions  and  extrusions  in  the  tempered  specimens. 

In another study, Tokaji and Ogawa, 1988, observed many 

straight lines on the facets of medium carbon steel and the direction 

of these lines were confirmed to be consistent with the slip direction 

<111> of this material. This indicated that the crack grew along slip 

planes in a shear mode and it was related to stage I crack growth 

mechanism. Moreover, they (Tokaji and Ogawa, 1992) argued that 

the microstructural effect "short" crack growth occurred as a 

sequence of stage I crack growth. 
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At higher strains, at two different microstructures, when 

fatigue tested, Ti-6Al-2Sn-4Zr-6Mo exhibited nucleation of cracks 

within the slip bands in Widmanstatten plus grain boundary alpha 

and equiaxed structures of different alpha particle (Mahajan and 

Margolin, 1980). However, at low strains the crack nucleation 

occurred at alpha-beta interface and the resultant "microcracks" 

linked up  and extended. 

Similar observation was made in another study conducted in 

2024 and 2124 aluminum alloy in the T-4 condition (Kung and Fine, 

1979). This study was conducted in dehumidified laboratory air, 10% 

humidity as well as 50% humidity. The loading was applied in 

tension-tension and also in tension-compression with the direction of 

stress normal to the long direction of the notch and parallel to the 

specimens rolling direction. It was found that at high stresses the 

fatigue cracks formed on "coarse slip lines" in both alloys. However, 

at low stresses majority of cracks originated from the constituent 

particles. However, the important finding of this study was the 

probability of nucleation of a fatigue crack at a constituent particle 

size normal to the stress direction decreased below 6 |im and the 

crack formation mode was along slip bands which originated from 

the  inclusions. 

Polycrystalline copper of commercial purity (99.9%) exhibited 

formation of extrusions and intrusions along persistent slip bands 

within   the   grain   and   also   in   preferably   oriented   grain   boundaries 

when  tested  in  constant  strain   amplitude  cyclic   loading   (Polak  and 
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Liskutin, 1990). "Short" crack growth was characterized by PSB 

nucleation and was related to localization of the cyclic slip at or close 

to grain boundaries and "the cracks advanced by linking a newly 

nucleated crack at the tip of the existing crack or in front of it" 

(Plumtree and O'Connor, 1991) also observed the stage I crack 

growth to a depth of about 250-350 (im in Al-Mg-Si alloy subjected 

to two different processing techniques viz. extruded and squeeze- 

cast. They stated that the "short" crack behavior was observed 

during this portion of fatigue life. 

Different kinds of crack nucleation mechanisms were observed 

in nickel base super alloy namely, Waspaloy (Yates, Zhang and Miller, 

1993). Four point bending fatigue tests were conducted on Waspaloy 

specimens and was found that crack formed directly from PSBs, 

along a twin boundary and also in grains. Moreover, it was observed 

that in all the three types, cracks formed at 45° to the principal 

stress axis suggesting the Stage I growth until the crack depth of 

around 600 u.m. This study proposed a model for the "short" crack 

growth behavior in Waspaloy incorporating the microstructural 

effect as well as the characteristic nature of grain boundary in 

blocking the growth of "short" crack. 
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3.    Environment   effects   on    "Short"    crack 

behavior    of    materials 

The environment (chemical) and temperature effects on the 

fatigue crack propagation in the "long" crack regime are not well 

studied and the same is applicable to "short" crack studies. Very few 

researchers have performed "short" crack studies to evaluate these 

issues. 

In earlier study, very low environmental influence on "small" 

surface cracks was observed in a 7075-T651 alloy when tested in 

ambient air and in purified nitrogen (2 ppm water) (Lankford, 

1983). However, some studies (Zeghloul and Petit, 1985, Petit and 

Zeghloul, 1986) have shown a greater effect of environment on the 

propagation of "short" through cracks grown in a 7075-T651 and 

T7351 when tested in air and in purified nitrogen and also the test 

results were compared in vacuum (see Fig. 24). Moreover, in another 

study (Petit and Zeghloul, 1990), faster growth rate of "small" surface 

cracks was observed in ambient air compared to vacuum when 

7075-T651 and T7351 were fatigue tested. This behavior was 

related to water vapor embrittlement as in the case of long cracks. 

These studies have shown that the growth in ambient air of stage II 

cracks in a 7075 alloy can be rationalized with that of long and 

"short" through-section cracks in terms of AKeff after correction for 

local plasticity. However, another study (Petit and Kosche, 1992), 

showed that the initial propagation in vacuum of "small" surface 

cracks   naturally   "initiated"   on   smooth   specimens   in   7075-T651   and 
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7075-T351 alloys is much faster than stage II propagation, and is 

similar to the intrinsic stage I regime, as identified on Al-Zn-Mg 

single  crystals. 

More dramatic results were shown in a review paper (Gangloff 

and Wei, 1986) in which it was concluded that "small" corrosion 

fatigue cracks in high strength steels when cycled in aqueous 

hydrogen producing environments grew up to 500 times faster than 

"long" crack at constant AK. From this paper, results illustrating the 

effect of crack size on corrosion fatigue in steels were reproduced 

and they are given in Fig. 25. 

Another study (Akid and Murtaza, 1992) showed that 

environmental assisted "short" fatigue crack growth could influence 

the propagation of cracks beyond the "crack-arresting barriers" such 

as grain boundaries. Their studies in high strength spring steel using 

an intermittent fatigue tests in air and NaCl solution clearly showed 

that strain assisted dissolution caused the transition of stage I crack 

to stage II at shorter crack lengths. Also, (Boukerrou and Cottis, 

1992), another study in a structural steel (BS4340 grade) in 3.5% 

NaCl and in pitting solution, showed that cracks could nucleate from 

corrosion pits when cycled at low stresses. 
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3.1    Temperature    effects    on    "short"    crack 

behavior    of    materials 

At room temperature, "short" cracks were found to form 

primarily at inclusion particles, and less frequently at grain 

boundaries in Nickel base super alloy when cyclically loaded in four 

point bending specimens (Mei, Krenn, and Morris, 1993). However, 

when tested at elevated temperature (873°K) "short" cracks were 

observed to form from micropores, slip planes and carbide 

precipitates at grain boundaries in Nickel base super alloy (Okazaki, 

Tabata and Nohmi, 1990). In this study, Stage I fatigue fracture 

occurred on the {111} planes. Also, (Stephens, Grobowski and 

Hoeppner, 1993) slip band cracking was observed in Waspaloy 

tested at 25° C, 500° C and crack was observed to form at twin 

boundaries and slip bands at 700°C. Moreover, this study 

demonstrated the "faster" growth rate of "short" cracks at 500°C 

when compared to 25°C and 700°C. This was related to diffusive 

nature of slip bands and "changes in material leading to precipitate 

coarsening" at 700°C. Similar observation of slip band cracking was 

found in Waspaloy when tested at 19°C and 500°C (Healy, Grabowski 

and Beevers, 1991). In addition, "short" cracks formed at coarse 

carbide particles. The "short" crack growth rate measured at R=0.1 

was "faster" at 500°C when compared to 19°C at an equivalent values 

of stress intensity range as reported by Stephens, Grobowski and 

Hoeppner. In another study (Suh, Lee and Kang, 1990), numerous 

"microcracks" were observed to form at grain boundaries in 304 

stainless  steel specimens tested at 538°C. 
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In general, the mechanisms for the "short" crack behavior at 

room and elevated temperature as postulated in the above 

mentioned  studies  are  related  to 

• absence of closure effects, 

• heterogeneous microstructure (responsible for statistical scatter in 

the "short" crack growth rate (Goto,  1993; Goto, 1994)), 

• grain boundary cracking (may result from embrittlement due to 

stress-assisted   grain   boundary   oxidation   during   heat  treatment), 

• grain orientation (if the grains are favorably oriented the cracks 

are observed to grow "faster" and if not "short" crack growth either 

gets  slowed down or arrested), 

• crack deflection (may occur within a grain or when the crack 

passed  to  another grain), 

• crack tip deflection resulting in "roughness induced crack closure" 

and  subsequent reduction  in  crack  growth rate, 

• Stage I crack growth (Stage I crack growth increases as the crack 

length increases. However, as the crack tip neared a grain boundary 

the "short" crack growth rate decreased because of crack deflection 

due to secondary slip and finally fracture occurring on the {111} 

planes in fee). 
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4.    Conclusion 

This   literature   review   on   microstructural   and   environmental 

effects   of  "short"   crack  behavior  of  structural  materials   has   clearly 

revealed   the   lack   of  experimental   studies   to   characterize   materials 

response   in   the   "short"   crack   regime   under   fretting   fatigue   and 

corrosion   conditions.   As   mentioned   in   this   report,   very   little   data 

have    been    published    with    regard    to    "short"    crack    formation 

mechanisms    in    corrosive    environments    of   aluminum    alloys    in 

aircraft  structures.   In  addition  to  a  few  previous   studies  (Hoeppner, 

1979,  Reeves  and  Hoeppner,   1978,   Saliver  and  Hoeppner,   1979  and 

Hoeppner    and    Krupp,     1974)    in    which    pitting    was    modeled 

statistically  with  different materials   and  specimen  types,  recently,  as 

discussed   before   in   this   report,   there   was   a   study   demonstrating 

corrosion   fatigue   induced   "short"   crack   formation   from   pits   (Akid 

and  Murtaza,   1992).  Also,   a recent  study  (Ma  and  Hoeppner,   1994) 

has   shown   that   pits   form   in   different   shapes   in   contradictory   to 

general   assumption   that  pits  have  hemisperical   shape.   Although  this 

assumption   simplifies   the  modeling  part  of research  (Kondo,   1989), 

further   studies   to  characterize  the  formation   of  cracks   from  pits   in 

the   "short"   crack   regime   must   be   evaluated   as   outlined   in   the 

proposal   submitted   by   QIDEC   (Hoeppner,   1995).   Apart   from   these 

studies  the  literature  search  has  not found  any   "short"  crack  studies 

to   evaluate   the   formation   of   cracks   from   pits   and   their   crack 

morphologies   and   paths.   Moreover,   this   may   further   be   aggravated 

by  fretting   mechanism(s)   in  conjunction  with  fatigue   and  corrosion. 

It   is   envisioned   that  part   II   of  the   report  may   provide   additional 
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insight of the "short" crack behavior under synergistic conditions of 

fretting fatigue and corrosion in aluminum alloys. This research will 

be further expanded as mentioned in the proposal that more studies 

will be conducted to develop some basic understanding on pitting 

corrosion fatigue as well as corrosion fretting fatigue in aluminum 

and  titanium  alloys. 

To   conclude   the   report,   a   global   view   of   the   "short"   crack 

challenge is given in appendix III. 
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Appendix I 

"Short" crack test results extracted from literature 
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Figure  1. Fatigue crack growth rate versus cyclic stress intensity for 
long and short cracks in A508 steel (Breat, Mudry, and Pineau,  1983) 
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Figure  10(a) Replication data showing the surface crack length (2c) of 
"small" cracks in 2090-T8E41  alloy as a function of number of cycles, 
for (a) L-T. (b) T-L, and (c) T-S orientations. (Venkateswara Rao, Yu 
and Ritchie,   1988) 
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Figure  11. Macroscopic observations of "small"  fatigue crack growth 
into the bulk, (a) Fine grained material (a = 0.276 mm), (b) Coarse 
grained material (a= 0.220 mm). (Tokaji, Ogawa and Harda,  1986) 
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Figure 12. Effect of grain boundary on crack growth rate, (a) Fine 
grained material, (b) Coarse grained material. (Tokaji, Ogawa and 
Harda,   1986) 
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in Astroloy (Brown, King, and Hicks, 1984) 
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Figure 17. The effect of grain size on short fatigue crack growth in 
aluminum alloy 7075-T6 (Zurek, James, and Morris,  1982) 
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1984) 
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titanium alloys (Brown and Hicks,  1984) 
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Appendix II 

Summary of "short" crack experimental work performed by Researchers 

This section briefly summarizes the "short" crack experimental work including 

"short" crack test specimen geometry and the test techniques used by the researchers to 

characterize the behavior of "short" cracks of structural materials. Different types of 

specimen geometry such as 

• Single-Edge-Notched-Tension (SENT) fatigue specimen, 

• cylindrical "smooth" specimen, 

• four point bend specimens, plate specimens, 

• specimens notched by a hole, cut or center cracked tension (CCT), 

• tensile square bar (TSB) type containing a shallow groove, 

• shallow hour-glass shape specimens, 

• specially designed "short" crack specimens with round or rectangular cross section, 

• hollow cylindrical specimen, specimens with cross section of parallelogram, and 

• specimens with reduced gage section have been used to study the behavior of "short" 

cracks. 

Various experimental techniques have been developed to observe the behavior of 

"short" cracks such as 

• photography, 

• photomicroscopy, 

• potential drop (AC & DC), 

• compliance, 

• metallography, 

• replication, 

• ultrasonic, 



• In-situ techniques viz. Transmission Electron Microscope (TEM), Scanning Electron 

Microscope (SEM) and Scanning Laser Acoustic Microscope (SLAM). 

Among these test techniques plastic replica and potential drop methods have been 

widely used. A few studies have used in-situ technique to observe the "short" crack 

behavior of materials. The in-situ techniques have significant advantage over the 

conventional methods, as the complete event of crack formation and growth can be 

monitored and recorded throughout the fatigue testing. Some researchers also have 

developed automatic crack monitoring system incorporating a camera and a microscope to 

capture the formation and the growth of "short" cracks at a predetermined fatigue cycles. A 

brief summary of "short" crack experimental works including the geometry of the "short" 

crack test specimens, the test conditions as well as the techniques used by several 

researchers is given in Table I. 



Material/Specimen Geometry 

2024-T3 Aluminum Alloy 

Grid line 

Thickness - B - 2.3 am 

GrlD line 

oc r - 3.18 itm 

Single-edge notched tension (SENT) fatigue specimen 
(Newman and Edwards, 1988)  
High strength A286 Steel 

a a a 
P/2 1 1 

/ 1                                                  f 
s  _J I                ' 

P/2 P/2 

P/2 

a = 21.2 mm b = 12.4 mm h = 9.4 mm 

Four-point bending specimen used tor "short" tatigue 
crack "initiation" and propagation tests (Mei and Morris, 
1993)  

Test Parameters & Test 
Technique  

Loading-Constant 
Amplitude @R=-2,-1,0, 
0.5 and @ FALSTAFF and 
GAUSSIAN. 

Maximum Gross Stress 
(MPa)- 75, 60 and 50 @ 
R=-2; 105, 80 and 70 @ 
R=-l; 145, 120 and 110 @ 
R=0; 225, 205 and 195 @ 
R=0.5, 275, 205 and 170 @ 
FALSTAFF; 170, 145 and 
125 @ GAUSSIAN. 
Frequency-5-10 Hz 

Laboratory Air 

Plastic Replica 
Loading-@ 0.5 S igmay 

(Omax=571.8MPa, 
Omin=39.8 MPa); R=0.7; 
@0.8ay (Omax=874 MPa; 
R=0.056) 

Laboratory air 

Optical microscope 

7075-T6 Aluminum Alloy 
Specimen with reduced gage section with KT=1.06 

4.75 

Design of "small" crack specimen-dimensions in mm 
(Lankford, 1982)  

Loading-Constant 
Amplitude 

Smax=414 MPa (80% of 
Yield stress) @ R=0.05, 

Max. cyclic stress intensity 
= 414 MPa (80% of yield 
stress) 
Frequency=5Hz 

Laboratory air with 
RH=60% 
Test Technique 

Replica 



Titanium-Aluminide alloy 

f-—a.72—J 6.3S-J      K 

Specimen design and dimensions (mm) used for the 
"initiation", growth and analysis of "small" fatigue cracks 
(Davidson, Campbell and Page, 1991) 
Normalized medium carbon steel (0.4%C steel) 

Shallow hour-glass shape specimen 
Specimen geometry-dimensions in mm (De los Rios, Tang 
and Miller, 1984) __^_ 

Loaded in three-point 
bending; 

Loading- 
a=1406 MPa Ni0-069; 

R=0.1. 

Laboratory air 

Replica 

Torsional deflection- 
controlled fatigue test; 

Stress level-350-400 MPa; 

Total strain range-0.5 to 
0.65. 

Room Temperature 

Replica 

Ferritic nodular graphite cast iron 
90 

Specimen dimensions in mm. (a) Uncracked specimens (b) 
Three point bend specimens. Solid lines for large 
specimens, dotted lines for "small" crack specimens (c) 
"short" crack specimens (Clement, Angeli and Pineau, 
1984)  

Four-point 
bending® R=0.1; 
Frequency=20-50 Hz. 
Laboratory air 
d.c. potential drop technique 

"Short" crack formation 
procedure 
Fatigue precracking of three- 
point bend specimens at a 
low AK approaching the 
near-threshold regime. After 
this the upper part and lateral 
faces of the specimens were 
machined as shown in fig. 
(b). With this procedure 
"short" crack in the order of 
a=0.075-0.5 mm was 
obtained with a "straight 
front". Specimens were heat 
treated to relieve the residual 
stresses because of the 
above procedure. 



Cast and wrought nickel base super alloy-Waspaloy 

10.00 -i r 

I -50.00- 10.00- 10.00 

Four point bend specimens and loading states-dimensions 
in mm (Yates, Zhang and Miller, 1993)  

Four point bending tests @ 
frequency 30 Hz. 

Smax= 880 MPa @ R=0.1 

waveform = sinusoidal. 

Acetate Replica 

Waspaloy 90*0.3 

5:003 
Width 4 mm 

=^C 12.65-0.13 

R' 2510.3 
/T/.I.03 

ff= 1410.3       \ Screw 500-20 UNF 
Effective diameter 11.84-0.1 

All dimensions in millimetres 

"Short" fatigue crack specimen with shallow notch - Kt = 
1.03 (Healy, Grabowski and Beevers, 1991)  

Constant Amplitude @ 
R=0.5and0.1atl9°Cand 
500°C. 

Constant load range @ 75 to 
80% of proof stress. 

Frequency=100 Hz. 

Optical system and the use 
of Image analyzer. 

Waspaloy with different heat treatments 
t t 

I I 12.5 mm radius groove i 12.50 

-H|h*-4.0 

T'T" 
1.5 

Specimen geometry-all dimensions in mm (Stephens, 
Grabowski and Hoeppner, 1993)  

Constant amplitude in load 
control 

A maximum stress of 92% 
of the 0.2% proof stress 
was applied. 

R=0.1 @ Frequency=20 
Hz. 

At 25, 500, and 700°C. 

Insitu SEM in vacuum 
environment (10"4torr) 

Nickel base super alloy 
§1       1 

t     ^ Z1' t 

-. 22 . 34 34       ( 

112 

Geometry of specimen used - dimensions in mm (Okazaki, 
Tabata and Nohmi, 1990) 

Strain controlled low-cycle 
fatigue tests 

Temperature = 873°K 

The applied strain ratio was 
zero 

Frequency = 10 Hz. 

Acetate replica technique 



8090 Aluminum-Lithium alloy 
63.5 

Plain and with comer notch ~ Specimen size in mm and 
the corner notch profile (Pan, De los Rios, and Miller, 
1993)   

Tested at 245.8, 259.3, 
279.4 and 241.4 MPa 

R=0; Frequency=2Hz. 

In-situ with an optical or 
acoustic system 

Laboratory air 

Aluminum-copper-magnesium alloy BS L65 and 
Aluminum-zinc-magnesium alloy DTD 5050 

,1 

12     125-*mm i                * 

i::   m  

p 

F /o-i 
'Vlo o 

6.* 

1 ?5 4mm|2mm 

5>r                                        '           ! 

t 1 i  

"— 
l5*mm                                              ■ ! 

•yin Oioettor 
10 i mm oto 

.If •-©"$- — —c^-o-- 
Test specimen for investigating fatigue crack initiation at a 
plane polished surface (Pearson, 1975) 

Bending test @ fixed 
amplitude of 1500 
cycles/min. 

A microscope fitted with 
calibrated eyepiece. 

Powder metallurgy nickel-base super alloy Frequency 5 Hz 

Laboratory air 

Optical Microscope 

SECTION'  "A_VA " 

Fatigue specimen design (Lankford, Cook and Sheldon, 
1981) 

_ 



Commercial steel sheet of grade 15Ch2NMFAA. 

DETAIL B 

B 7 
4&±QS}1 e 

I «ft/*1 ^r 
Specimen bar with shallow notch for investigating the 
initiation and propagation of short fatigue cracks 
(Hyspecky and Strnadel, 1992)  

Tested @ two plastic 
deformation amplitude 
levels, e/2=0.003 and 
e/2=0.005 @ 20°C. 

R = -l 

Frequency=1 Hz. 

SEM and optical microscope 

4% Cu-Al alloy (BS 2L65) 
6.4 DIA    DRILL    AND   REAM 

o T O 

Kt=l9IBENDIN    I 
SO.B RAO 

Four point bending 

Variable amplitude loading 
used were Gaussian random 
and FALSTAFF 

Replica 

.,     STEEL    ROLLERS 
'        .    APPLYING 

T       BENDING 

?D 
Sii. 

QJ 

a 
o 

FOUR    DOTTED 
ROLLERS   REMOVED 

/FOR   HALF    RIG 
/ TESTS 
'•     (SECTION   S.4 I 

J 

Notched specimen (Cook and Edwards, 1982) 
7475-T7651 aluminum alloy Fatigue tested to 16000 

design usage flight hours. 

Maximum gross section 
stress was 235 MPa. 

Fractographic crack length 
measurement. 

All Dimensions In Mllllmstsrs 
4.8 

Test specimen geometry (Potter and Yee, 1982) 



Appendix III 
A global view of "short" crack challenge in materials 
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