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CHAPTERI 

DAMAGE TOLERANCE, INTEGRITY, AND DURABILITY OF 
BUILT-UP METALLIC STRUCTURES 

In this chapter, we discuss the damage tolerance, integrity, and durability of 
metallic built-up structures. While the methodologies presented are generic in na- 
ture, for illustration purpose, the discussion is focused in stiffened aircraft struc- 
tures. In a typical commercial aircraft, the fuselage is made of a thin skin that is 
stiffened by frames and stringers; and the skin is attached to these stiffening ele- 
ments through flexible fasteners. Also, a lap joint along the longitudinal direction 
may exist when the lower skin and the upper skin overlap. A typical construction 
is illustrated in Fig. 1.1. Typical damage scenarios in which an aircraft is expected 

Outer Skin 

Inner Skin 

Lap Joint 

Figure 1.1: A typical construction of a commercial aircraft 

to retain its structural integrity are: impact by foreign objects or fragments of a 
disintegrated engine; fatigue damages due to repetitive loadings; corrosion dam- 
ages, etc. In a typical damage tolerance analaysis, damages are modeled as cracks, 
either in the longitudinal direction or in the circumferential direction. Due to the 
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internal cabin pressure, a typical aircraft panel is subjected to circumferential load- 
ing as well as longitudinal (axial) loading. In additon to the interal cabin pressure, 
the fuselage bending in the longitudinal direction can induce a significant axial 
loading on the aircraft panel. To determine the damage tolerance capability of 
an aircraft and to assess the intergrity of the damaged aircraft, the reduction in the 
load-carrying capacity of an aircraft due to the presence of cracks must be assessed. 

Due to the complexity of the aircraft structure, it is impossible to analyze the 
entire aircraft in detail in a single numerical analysis. Thus, a hierarchical analysis 
approach is required. In a hierarchical analysis, a global analysis is first performed 
to obtain the load flow in the aircraft fuselage; at that stage, the details of the struc- 
ture are greatly simplified. Stringers and frames can be modeled as beams; rivets 
can be modeled as shear springs, etc. Based on the results of the global analysis, a 
detailed local model can be constructed to study more accurately the local details 
near the damage. The "global-local" methodology is a generic computational tool 
to assess the structural integrity and durability of complex engineering structures. 

In assessing the structural integrity of cracked fuselage panels, especially in the 
presence of multiple-site-damage, an accurate evaluation of the stress-intensity fac- 
tors (or other fracture parameters), is required. If the ordinary finite element method 
is used for such purposes, especially in linear elastic fracture, proper numerical 
modeling of the crack-tip singularities is necessary [Atluri (1986)]. Even if indirect 
methods such as the "stiffness-derivative approach" or the "equivalent domain inte- 
gral approach" are used, the relatively fine meshes needed near the crack-tips make 
the computation prohibitively expensive, especially in the case of complex geomet- 
rical shapes of fuselage structures with stringers, stiffeners and lap joints, etc., and 
with multiple cracks. In order to circumvent these difficulties, alternative computa- 
tional strategies are mandatory. One such novel alternative scheme is the so-called 
"displacement-compatibility-method" (DCM), developed some twenty years ago 
by Swift (1974, 1984). It is based on the classical redundant force method [or 
"Flexiblity Matrix" method] for statically indeterminate structures, as developed 
by Argyris and Kelsy in the 1950's. In this scheme, the effects of stiffeners, and 
flexible fasteners, attached to the skin were taken into account through the displace- 
ment compatibility conditions, and a linear-superposition principle. Since Swift 
used analytical solutions for displacement fields only for an infinite cracked panel, 
the method is anti-conservative in the case of finite-sized panels (or when the ra- 
tio of crack size to panel size is not very small). It is also difficult to generalize 
the DCM method to the case of multiple cracks of arbitrary size and at arbitrary 
locations in the panel, or to account for geometric and material nonlinearities. 
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To circumvent these difficulties and shortcomings in the analysis of multiple 
cracks [multi-site-damage in the presence of a lead-crack] in finite-sized flat stiff- 
ened panels, a "finite element/alternating method" (FEAM) [which is based on the 
more common finite element stiffness method] is preferable. In this method, a very 
coarse finite element mesh is first used to compute the reactions of the fasteners 
(used to fasten the stringers and stiffeners) on the sheet, while accounting for bro- 
ken stiffeners, if any, as well as the broken ligaments of the crack; but ignoring the 
detailed stress-state near the crack-tip. In this way, the free-body diagram of the 
cracked sheet alone may be constructed, with the applied loading on the sheet be- 
ing the fastener reactions as well as the external loading. The "alternating method" 
(described in Chapter III) is then used to compute the stress-intensity factors for 
the (multiply-) cracked sheet, while still using the same very coarse finite element 
grid. In this way, one can dramatically reduce the computational time as well as 
the data preparation time, as compared to the conventional finite element stiffness 
method or the "flexibility matrix" based DCM method. Furthermore, the FEAM 
is ideally suited for analyzing the multiple-site-damage (MSD) situation (including 
plasticity effects), as in the case of cracks emanating from a row of fastener holes 
in a lap-joint in a fuselage. 

In order to enhance the life of damaged engineering structures in general, and 
cracked aging aircraft structures in particular, the repair technique which uses ad- 
hesively bonded Boron/epoxy composite patches is being widely considered as a 
cost-effective and reliable method [Baker and Jones (1988)]. For a successful im- 
plementation of this repair technique, however, a thorough understanding of the 
effect of various design parameters of repair, on the crack-tip stress intensity fac- 
tors, is necessary. These design parameters include: the size, thickness and material 
properties of the composite patch, and the mechanical properties and thickness of 
the adhesive layer. Other issues that must be understood for a successful implemen- 
tation of composite patch repairs include: (i) the effect of adhesive nonlinearity; (ii) 
the effects of residual stresses in the metal panel due to elevated temperature curing 
of the patch; (iii) the effect of thermal cycling (ground to flight altitude) on the fa- 
tigue growth of the patched crack; (iv) the effect of interaction of multiple patches; 
(v) the effect of debonding of the patch, on the fatigue growth of the underlying 
crack, etc. Early work in this area includes that by Greif and Sanders (1965); Arm 
(1974) who considered the effect of a single stringer that is used to reinforce the 
crack; and those by Erdogan and Arm (1972); Atluri and Kathiresan (1978); Jones 
and Callinan (1979); Rose (1981); Kan and Ratwani (1981); Sethuraman and Maiti 
(1989), using finite element methods or semi-analytical methods. In most of these 
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cases, only patches of infinite size, or very narrow strip type patches, are consid- 
ered. Furthermore, the ensemble of results presented in the above references is still 
not sufficient for rational design purposes. A detailed general methodology for an- 
alyzing the effects of composite patches appled to cracked metallic structures was 
presented recently by Park, Ogiso, and Atluri (1992); Nagaswamy, Pipkins, and 
Atluri (1996); and Chow and Atluri (1997). These approaches will be discussed 

later in this chapter. 

§ 1.1   The Displacement Compatibility Method 

In a stiffened panel, the far-field applied load is transmitted to the sheet in a complex 
way. The stiffeners and the fasteners (both of which are flexible) exert tractions on 
the sheet. Thus, the stress intensity factor at the tip of a crack in the sheet depends 
on these tractions exerted on the sheet by the fasteners. Swift (1974) developed 
a "flexibility matrix" approach to determine the fastener tractions exerted on the 
sheet. Since this method has its root in the classical "redundant force method", it is 
generally known as the "Displacement Compatibility Method" (DCM). 

The "redundant force method" was first introduced in the area of aircraft struc- 
tural analysis, by Argyris and Kelsy in the 1950's. In this approach, which is used 
to analyse statically indeterminate structures, the redundant forces are first removed 
from the system. Their magnitudes are later determined by enforcing the condition 
of compatibility of displacement [hence the name "Displacement Compatibility 
Method"] at the points where the redundant forces act. This leads to a "flexibility 
matrix equation" (which is linear for linear structural mechanics) from which the 

redundant force vector is solved for. 
In the Displacement Compatibility Method, displacements in the cracked sheet 

at each fastener location are made compatible with those in the stiffening elements, 
taking full account of stiffener bending and fastener shear flexibility. The "redun- 
dant force method" (and hence the DCM) is a dual to the now standard finite ele- 
ment displacement method which leads to a "stiffness matrix equation" (which is 
linear for linear structural mechanics) from which nodal displacements are solved 
for. Thus, it is worthwhile to remark here that while Swift (1984)'s DCM is based 
on a "flexibility matrix approach", the Finite Element Alternating Method (FEAM) 
to be described subsequently is based on a "stiffness matrix" approach. It is for this 
reason, that FEAM can be far more easily implemented in a global/local strategy, 
using the currently available commercial software, which are, without exception, 

based on the finite element stiffness method. 
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The following development of DCM is due to Swift (1984). 
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Figure 1.2: Displacement Compatibility Method (DCM) 

§ 1.1.1   Sheet displacements 

For the two bay crack with a broken central stiffener, the displacements in the 
cracked sheet, vsh, are obtained by a superposition of the three cases shown in 
Fig. 1.2. The displacements resulting from these three cases are 

1. Va, the displacement in the infinite cracked sheet due to the applied gross 
stress a [see Problem A in Fig. 1.2]; 

2. Vb, the displacement in the uncracked infinite sheet due to all the stiffener 
fastener loads [see Problem B in Fig. 1.2]; and 

3. Vc, the displacements in the infinite cracked sheet, due to a traction applied 
on the crack face, which is equal and opposite to the traction at the location 
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of the crack in the uncracked sheet, due to fastener loads as in Case 2 [see 

Problem C in Fig. 1.2]. 

Displacement Va in a center-cracked sheet due to the far field loading 

The displacements at the rivet locations in the cracked sheet, due to the far field 
stress a, can be determined using the well known Wetergaard (1939) solution, as 

described briefly below. 
It is shown in ?? that the equilibrium equation will be satisfied if the stress com- 

ponents are expressed in terms of stress functions §{x,y) in the following fashion. 

ty\   °y~dx^   %xy~    dxdy 

The stress function ${x,y) must satisfy the biharmonic equation 

^=372'   a:v=3~2>   xxy = --=rr- (1-1) 

in order to satisfy the compatibility equation (Eq. ??). 
Westergaard' s stress function Y, where 

<|) = ReI+vImZ (1.3) 

and _ _ 
dZ dZ ,     dZ 

z=Tz'z=Tz'andZ=Tz 

would satisfy the biharmonic equation (Eq. 1.2). Thus, the complex function Z that 
satisfies the boundary condition for a specific problem is the solution for the given 

problem. 
Use of Eq. 1.3 in Eq. 1.1 results in the following equations for the components 

of stress 

(1.4) 
aJ = ReZ-yImZ' 

ay = ReZ+yImZ' 

Substitution of Eq. 1.4 into the strain-stress relations results in 

_ [(l-v)ReZ+(l+v)yImZ'] 

where ty is the strain in the y direction and v is the Poisson's ratio. 
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Figure 1.3: A center cracked sheet subjected to uniaxial far field load 

Integration of Eq. 1.5 gives the following equation for displacement V in the 
cracked sheet 

[2ImZ-(l+v)jReZ] 
(1.6) 

The following stress function [Wetergaard (1939)] would satisfy the boundary 
conditions at the crack surface for the infinite sheet. 

Z = 
az 

\J? — aL (1.7) 
z2 — a2 

where c is the tension stress at °° in all directions. 
Since the actual problem considered has an applied stress a only as v -*■ °°, 

adding a term to cancel out the effect of ax as x —► °°, and substituting the resulting 
stress functions in Eq. 1.6, yields the following equation for the skin displacement 
in a uniaxially loaded cracked sheet. 

Va   =    £{V^sm(^-j 
(l+v)yr[cos(e-ei/2-e2/2)] 

=  ova 

■vy (1.8) 

(1.9) 

where the geometric parameters r\, ri, öj, 62 and r, 8 are defined in the Fig. 1.3. 
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the location 
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(a) 

Traction at 
the location 
of the crack 

(b) 

Figure 1.4: An infinite sheet subjected to (a) four fastener loads; (b) two fastener 
loads 

Displacement V^ in an uncracked sheet due to fastener loadings 

The stress distribution in an infinite sheet resulting from a concentrated force F can 
be determined from the work of Love (1944), as follows 

Fy(l+v) 
y     4nt{x2 + y2) [l+v    x2+y2 

3 + v       2X2 

The corresponding displacements are given by 

VF = 
Fy(l+v) 

4ntE 
3-v 

log^ + v2) 
(1+v)*2' + C 

(1.10) 

(1.11) 
2 "ov" ' J ' ' x2+y2 

where x and y are measured from the load point, C is a constant of integration, 
and t is the sheet thickness. Eq. 1.11 contains a singularity. The singularity can 
be eliminated by distributing the concentrated force F uniformly over the rivet 
diameter D. Using Eq 1.11 to obtain the displacement of an elemental load and 
integrating the effect over the rivet diameter will yield an expression free from 
singularity. The resulting expression can then be used to obtain the displacement 

due to the fastener loads. 
The displacement due to a system of four fastener loads, exerted symmetrically 

about the crack by the two intact outer stiffeners [see Fig. 1.4(a)], is 

Va(xhyi,Xj,yj) 

F(l+v)(3-v) 
\6nEt 

(XA + l)log 
(XA + l) ' + Y2 

(xA+\y+Y2 



§ 1.1: 

-(A^-lJlog 

-(Xß-l)log 

yAtan 

(fr-l)2 + ff 
(XA-lf + Yi 

{XB-\)2 + Yl 
(XB-l)2 + Yi 

2YA 

+ (Xß + l)log (xB+i)2+Yjl 
{xB+ir+Y$_ 

+ 4 

Fva 

0.12) 

(1.13) 

where XA = (2/D) (x,- - xj), XB = (2/D) (Xi+Xj), YA = (2/D) (y,- - >;),Ife = (2/D) (y, + 
yj). The index i labels the rivet locations where displacements are computed, and 
the index j labels the systems of fastener loads. 

The displacement due to a pair of fastener loads, exerted symmetrically by the 
broken center stiffener on the center line of the crack [see Fig. 1.4(b)], is 

x 

=   Pv, 

.Vp(*i,yi.)0-) 

P(l+v)(3-v) 
\6nEt 

-(Xc-l)log 

YA tan 

(Ac+l)log 

(Ac-l)2 + y| 
(Xc-\)2 + Yi 

2YA 

[Xc+lf + Y* 
(Xc+l)2 + Yi 

-(B) 
'(^T)-"--(i^T)]} ™ 

(1.15) 

where Xc = (2/D)JC,-. 

The displacement at the ith rivet location due to all fastener loads is 

Vb(*,,y,) = 2^va, + XP;vß, (1-16) 
i J 

where F, and Pj are the fastener loads in the corresponding load system. 

Displacement Vc in a center-cracked sheet due to the crack surface load 

The stress in the uncracked sheet along the x axis, where the actual crack is located, 
due to the fastener forces in the uncracked sheet, can be obtained from Eq. 1.10 by 

transfer of axis. 
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Figure 1.5: A center-cracked sheet subjected to crack surface point loads 

where 

Oy(x,0) = 
(i+v)yi 

2nt 
(1.17) 

<*{xj,yj,b)   = 
3 + v 
1+v 

+ 
(b-xjf + y2     (b + xj)2+yj 

2{b-XjY 2{b + Xjy 

(b-xjf + yj (b + xj)2 + y]. 

V(yj,b) 
3 + v 
1+v b2+yj 

Vlb 

b2+y2j 

(1.18) 

(1.19) 

The displacement Vc (see Fig. 1.2) is obtained by applying an equal and oppo- 
site traction over the crack face to cancel out the stress caused by the rivet forces 
Fj and Pj. The displacement caused by this stress distribution can be obtained 
from Eq. 1.6 by using a complex stress function derived by Irwin (1957) for the 
center-cracked sheet with a pair of point forces opening the crack [see Fig. 1.5]. 

Z = 
2Pa l\-(b/a)2 

(1.20) 
tn(z2-bi))l \-{a/z)2 

Substituting toy (x, 0) db for P, and integrating over half the crack length leads 
to the following expression for Vc. 
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Vc 
(i+v)yj 

ra 
£ F, /  a (xj, yj, fe) e (*,- ,yt,b)db 

2rc2£f 

j   Jo 

where a and ß are given by Eq. 1.18 and Eq. 1.19, and e is given by 

(1.21) 

e(^,y,-,fc) log 
{a2-b2) + y/a2-b2(BC+AD) + rxr2 

(a2-b2)-y/a2^¥(BC+AD) + rlr2 

ydi+v)y/{Z=Wj 
r\r2rjr2 

{{xf-b2-y2) [Xi(AC-BD) +yt(BC+AD)} 

-2xiyi [xi (BC+AD) - y,- (AC+BD)}} 

(1.22) 

where A = ^n + Xj-a, B = y/n-xt + a, C = y/r2 + Xj + a, and D = sjr2 - xt - a. 
Numerical integration is, in general, necessary to evaluate the integrals in Eq. 1.21. 

The total sheet displacement, denoted by Vsh in Fig. 1.2, is: 

vsh = va+vb + vc 

or 
vshl = vai+vbi + vCi 

for the displacement at ith rivet location. 

§ 1.1.2   Stiffener displacements 

Outer, intact stiffener displacements 

The outer stiffener is assumed to be supported on three frames running normal to 
the stiffeners. The center frame is on the skin crack centerline. Stiffener extension 
at the fastener shear face is determined because of axial loads and bending from 
fastener loads and direct loads resulting from axial stresses. Stiffener bending is 
induced since the fastener shear faces are offset from the stiffener neutral axis. The 
average bending moment between each fastener, obtained through the use of the 
three-moment-equation, is given by [Swift (1974)]: 
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In 
MAi = ^CFj- 

j=> 

3C 

2Ü> 

In 

I  Fj{2Lyj-yj) 
j=n+\ 

L- yi-\+yi 

Stiffener displacement caused by bending from fastener loads is given by 

C     ' 8«.- = ?7 X MAj[yj-yj-\] 
Ct j=n+\ 

Stiffener displacement resulting from direct fastener loads is given by 

In 

«A AE iFjyj+fßlFj 
j=n+\ AE j=i+l 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

Stiffener displacement resulting from gross stress is given by 

»G = -J 

where C is the distance from neutral axis to shear face, / is the stiffener inertia, L is 

the distance between supports, n is the number of active fasteners per stiffener, and 

y is the rivet coordinate from crack centerline. 
Thus, at each fastener location in each of the out-stiffeners, the stiffener dis- 

placement, Vslj, is given by 

Vsti = 5M, + 8D, + 8G, (1.27) 

Center broken stiffener displacements 

The center stiffener is assumed to be broken at the center of the skin crack. It is 

assumed to be supported by a frame at the break and two other frames at each side 

of the break. The average bending moment between each fastener is given by 

MA, = icpJ- 
j=' 

yi+\ +yi (1.28) 

Stiffener displacement resulting from bending due to fastener loads is given by 

(1.29) 
f n-\ 

5
M, = -£-I

1LMAj(yi+i-yj) El 
j=< 

Stiffener displacement resulting from direct load is given by 
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1      ' j     n-l 
6A = TF X p; (y» - ?;)+7i X p; (y» - w) (1.30) 

Thus, at each fastener location in the central broken stiffener, the stiffener dis- 

placement Vsti is given by 

V«, = 8W, + 6c,. (1.31) 

§ 1.1.3   Fastener displacements 

The DCM is based on the displacement compatibility between the cracked skin 
and the stiffener, after accounting for the rivet displacement. Thus, the stiffener 
plus rivet displacements are made equal to skin displacements at each of the rivet 
locations. It is of interest to note that the rivet contribution to stiffener plus rivet 
displacement is more than 75%, and is therefore an extremely important consider- 
ation. Errors up to 50% in crack-tip stress intensity factors can result by neglecting 
fastener displacements[Swift (1984)]. 

It has been determined by tests [Swift (1974)] that the elastic displacement in 
shear can be represented by the following empirical relation 

5fi = 
ED 

A + C 
\Bi + B2). 

(1.32) 

where F is the applied load, E is the modulus of sheet material, D is the rivet 
diameter, B\ and B% are thickness of joined sheets. A = 0.5 for aluminium rivets; 
and A = 1.666 for steel fasteners. C = 0.8 for aluminium rivets; and C = 0.86 for 

steel fasteners. 

§ 1.1.4   Compatibility of displacements 

The fastener forces on the panel are obtained from the solution of a set of simultane- 
ous equations based on the compatibility relations enforced at each of the fastener 
locations in the two outer stiffeners, Vsh. = Vsti + 8^,., and a similar relation for the 
central broken stiffener. Compatibility at the center broken stiffener is given by 

In 

X*v 
n 

va{xn,yn,Xj,yj)-[2ii^
J j a{xj,yj,b)e{xn,yn,b)db 

^(xn,yn,yj)-
{-^^ll^(yj,bMxn,ynMdb 
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+5«„ - 8D, - 5W, - 8«,. 
In 

~    X   FJ   V« 
y=n+l       L 

(l|v)v/  f° 
{xi,yi,Xj,yj) -   2n2gB J0 

a(*;>>7>fo)£('i-.^fc)^ 

vß(^y,-,w) -^3$ fctohWwiMM 

ovfl(^,)'/-)-<5vfl(jc„,y„ 

Compatibility at the outer intact stiffener is given by: 

(1.33) 

(1.34) 

So, + 8M, + 8«; 
2n 

- X *> 
;=n+l 

n+v)y>   /"a 

va (xi,yi,Xj,yj) ~   2n*EB  h a^xJ^J^E^x'^b^db 

+ ^PjW{xl,yuyJ)-^^^[Hyj^{xl^b)db 

ova(x;-,v,)-8Gj (1.35) 

A system of simultaneous equations is set up from these compatibility equa- 
tions, to solve for the fastener loads F, and Pj. The matrix is 2« x In in size where 
n is the number of active fasteners assumed in each of the center and outer stiffen- 
ed. A value of n of 15 is usually adequate for the broken central stiffener case[Swift 

(1984)]. 
The compatibility matrix is made up of a series of sections formed by terms of 

the compatibility equations. The section DCC is a 14 x 14 matrix of skin displace- 
ments at each of the center stiffener rivets resulting from center stiffener rivet loads. 
Only the first 14 rivets are considered in this matrix since all the displacements at 
the broken center stiffener are made relative to the fifteenth, most remote rivet from 
the crack, and this is considered separately. DCC is formed from the eighth term of 
Eq. 1.33, The section DCO is a 14 x 15 matrix of skin displacements at each of the 
center stiffener rivets resulting from outer stiffener rivet loads. 

DCO is formed from the seventh term of Eq. 1.33. Both DCC and DCO are 
initially formulated as 15 x 15 matrices. The fifteenth row in DCC is replaced by 
a series of ones. The reason for this is to form the fifteenth equation, which is 
the equilibrium for the broken central stiffener and equates the sum of the rivet 
loads to the load in the stiffener beyond the fifteenth rivet. The fifteenth column of 
DCC is replaced by the rivet flexibility of the fifteenth rivet in the center stiffener, 
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Figure 1.6: Matrix of compatibility equations for two bay crack with center broken 
stiffener [Adopted from Swift (1984)] 

obtained from Eq. 1.32. The section SDA15 is a 14 x 30 matrix representing the 
skin displacement at the fifteenth rivet in the center stiffener. This displacement 
is the one to which all center stiffener displacement are referenced. The first 14 
columns are formed from DCC with i equal to 15. Column 15 in this matrix is 
eventually replaced by RDC, based on Eq. 1.32. Columns 16 to 30 are formed from 
DCO with i equal to 15, that is, displacement at the fifteenth rivet. All the 14 rows 
in this matrix are identical to each other. The section DELD is a 14 x 14 matrix 
of center stiffener displacements resulting from rivet direct loads. The matrix is 
formulated from Eq. 1.30 plus the third term of Eq 1.35. The section DELM is 
a 14 x 14 matrix of center stiffener displacements resulting from bending. It is 
formed by first obtaining a matrix DDELM, which is a matrix of increments of 
stiffener displacement resulting from bending. For example, A6Mi, {DDELM\) 
is the extension of the center broken stiffener between the first and second rivets. 
A8M2 {DDELMi) is the center stiffener extension between the second and third 
rivets and so forth. The total displacement at the ith rivet is given by Eq. 1.29. 
DELM is formed by first summing the elements of the DDELM matrix. The section 
DOC is a 15 x 15 matrix of skin displacements at each of the outer stiffener rivets 
resulting from center stiffener rivet loads. DOC is formed from the fifth term of 
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Figure 1.7: A center-cracked sheet subjected to (a) a pair of fastener loads; (b) a 
system of four fastener loads 

Eql.35 where j is 1 to 15, and i is 15 to 30. The i,j notation reflects the skin 
displacement at the ith rivet resulting from the jth rivet load. The section DOO is a 
15x15 matrix of skin displacements at each of the outer stiffener rivets resulting 
from outer stiffener rivet loads. DOO is formed from fourth term of Eq. 1.35 . The 
section DELDO is a 15 x 15 matrix of outer stiffener displacements resulting from 
rivet direct loads and is formulated from first and third terms of Eq 1.35, or Eqs 1.25 
and 1.32. The section DELMO, is a 15 x 15 matrix of outer stiffener displacements 
resulting from bending. It is formed by first obtaining a matrix DDELMO, which 
is a matrix of increments of outer stiffener displacements caused by bending. For 
example, A8MU (DDELMO]) is the extension of the outer stiffener between the 
first and second rivets. A8M2 (DDELMOi) is the extension of the outer stiffener 
between the second and third rivets. The total deflection at the ith rivet is given by 
the second term of Eq 1.35 or Eq. 1.29. The matrix DELMO is formed by summing 

the elements of the DDELMO matrix. 
The final compatibility matrix is inverted and solved for fastener loads. 

§ 7.7.5   Crack-tip stress intensity factor 

Crack-tip stress intensity factors caused by each pair of center stiffener fastener 
loads as shown in Fig. 1.7(a) are given by Paris (1960) 

Kr* — 
_ s/aP 

2ty/n 

2a2 + (3 + v)r1
2 

L («2+>?)3/2 
(1.36) 
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For each set of outer stiffener fastener loads, as shown in Fig. 1.7(b), the stress 

intensity is given by Paris (1960) 

where 

K = 
3.+ v 

/i-(l+v)/2 (1.37) 

h   = 
(a2+x1

2)y1
2 + (a2-x1

2)2|ß2+x1
2y2(y2_a2+X2) 

2Y$ (y2+a2-x2)2+4x2r2 -i 3/2 

ß   =    ±   tf + a2-Xt) + J{Y? + a>-X?)2 + 4X?Yl 
1/2 

(1.38) 

(1.39) 

where Xi and Fi are defined in Fig. 1.7 
Total stress intensity is obtained by superposition for each set of active fasten- 

ers, paying attention to load direction, and the effects of overall stress. 

§ 1.1.6   Summary 

The displacement compatibility method (DCM) uses a simplified computational 
model to compute the stress intensity factors for a cracked panel. In the simplified 
model, the displacement compatibility condition between a center-cracked infinite 
sheet and the stiffener system, both subjected to the far field loading and the fas- 
tener loads, is used to form a system of equations to solve for the fastener loads. 
Thus, it is essentially a redundant-force-method, wherein the displacement compat- 
ibility condition is used to solve for the redundant (statically indeterminate) forces. 
Based on the superposition principle, analytical solutions for i) a center-cracked 
infinite sheet subjected to uniaxial far field load, ii) a center-cracked infinite sheet 
subjected to point load at crack surface, and iii) an uncracked infinite sheet sub- 
jected to a point load, are used to determine the displacement for the sheet. The 
use of these infinite body solutions would, in general, result in anti-conservative 
results for cracks in finite panels. The traction at the location of the crack for the 
uncracked sheet, subjected to the fastener loads, is cancelled by the applied load 
at the crack surface of the center-cracked panel. The stiffener system is solved us- 
ing the classical beam theory. The resulting linear equation system is small, in the 

order of the number of rivets. 
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However, the simplified model uses analytical solutions for an infinite sheet, 
and the effect of boundaries is ignored. This is anti-conservative. To include 
the boundary effects and possible plasticity effects, the finite element alternating 
method is preferable. Since it is difficult to incorporate the displacement compati- 
bility requirements, as in the flexibility matrix approach of DCM, into a displace- 
ment (or, stiffness matrix based) based FEM framework, we can first use hierarchi- 
cal analysis approach to solve for the fastener loads using ordinary finite element 
stiffness method, and then use the finite element alternating method to solve for the 

fracture parameters. Details are shown in the next section. 

§ 1.2   The FEAM for a Cracked Stiffened Panel 

§ 1.2.1   A hierarchical methodology and the FEAM 

A global-intermediate-local hierarchical methodology is presented in this section 
for the calculation of residual strength of a stiffened fuselage or a wing of an air- 
craft, constaining a Discrete Source Damage (DSD). In this approach, a coarse 
finite element mesh is first used to model the global behavior of a cracked stiffened 
structure (wing or fuselage). The traction and/or displacement boundary conditions 
around a relatively small region around the crack is found from the global model. 
Then, an intermediate model is used to model the details of the panel, wherein the 
structural details such as stringers and ribs are modeled completely, to reflect the 
local effects of these reinforcements. Coarse meshes with unconnected nodes are 
only used to model the cracks, since the purpose of this intermediate analysis is to 
obtain the reaction forces, exerted by the stiffeners (via the fasteners), on the skin. 
Fracture parameters (such as stress intensity factors in a linear elastic analysis) 
are obtained by analyzing only the isolated skin with a finite element alternating 
method. A coarse finite element mesh for the skin can be used, because the crack 
tip fields are captured by the analytical solution and the cracks are not modeled 
explicitly. The global and intermediate analyses are normally accomplished via a 
standard finite element (stiffness method) code. The local damage modules, es- 
pecially the finite element alternating method, discussed in the previous chapter 
can be used for the local analysis. The flow chart of such a hierarchical analysis 

approach is shown in Fig. 1.8. 
In the global analysis, the stringers are simplified as beams attached to the skin, 

and ribs are modeled as plates, as illustrated in the Fig. 1.9. Cracks are modeled 
using a coarse mesh with unconnected nodes at the crack locations, to reflect the 
loss of stiffness of the structure, so that the redistribution of loads among the skin, 
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Figure 1.8: Flow chart for the hierarchical damage tolerance analysis 
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Figure 1.9: A global analysis 

stringers and ribs can be captured. Broken stringers and ribs, if any, are also ac- 

counted for. The details of the crack tip fields are ignored. 
The intermediate model, which consists of the skin containing the cracks and 

several stringers and ribs, can be constructed from the global analysis. The bound- 
ary conditions and loads for the panel are obtained from the global analysis. In 
this model(as illustrated in Fig. 1.10), all the stringers, frames and fasteners are 
modeled in detail. Cracks are also modeled only with unconnected nodes, without 
paying attention to the crack tip fields. The intermediate model is used to obtain the 
forces applied on the skin by the frames and stringers. The effects of the fasteners, 
that are used to fasten the frames on the skins are also accounted for. 

The fracture parameters for the cracked skin (Fig. 1.11), loaded with fastener 
forces and boundary tractions, can be solved by the Finite Element Alternating 
Method described in the previous chapter. The superposition principle used by the 
Finite Element Alternating Method for solving the isolated skin is illustrated in 
Fig. 1.12. Since finite element alternating method is used, the cracks in the sheet 
are closed for the local finite element model. The same mesh can be can be used 
for different crack lengths. We assume that a small change in crack length does not 
affect significantly the load distribution among the skin, stringers and ribs. Thus, 
the isolated skin with the same reaction forces can be used to analyze several cracks 
of lengths that are slightly different from each other. Similarly, the same global 
model can be used for several local models with cracks of lengths that are slightly 
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Figure 1.11: The isolated skin with reaction forces from the stiffeners 
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Figure 1.12: Superposition principle for the finite element alternating method 

different from each other. Thus, the number of global and intermediate analyses, 
in a parametric study of cracks of different lengths, can be minimized. In this way, 
one can dramatically reduce the computational time as well as the data preparation 
time, as compared to the conventional finite element method. Furthermore, the 
FEAM is ideally suited for analyzing the multiple-site-damage (MSD) situation, 
as in the case of a major crack approaching small cracks emanating from fastener 

holes, as discussed later. 
Fracture mechanics parameters can be found accurately because the near-crack- 

tip fields are captured exactly by the analytical solutions. Coarser meshes can be 
used in the finite element analysis because the cracks are not modeled explicitly. 
The finite element method is only used to compute the cohesive tractions at the 
locations of crack in an otherwise uncracked sheet, which is a smooth distribu- 
tion. Therefore, a very coarse mesh can be used. Fig. 1.13 shows the typical finite 
element meshes around the crack tip, when a) the EDI based method is used to 
evaluate stress intensity factors; or, b) the finite element alternating method is used. 
In Fig. 1.13, the EDI based method also uses singular quarter-point elements. 

In a parametric analysis of various crack sizes to evaluate the residual strength 
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(a) (b) 

Figure 1.13: The finite element mesh when a) the EDI base method is used; b) the 
finite element alternating method is used 

of a cracked wing structure, the global stiffness matrix of the finite element model 
is decomposed only once, since the stiffness of the uncracked structure remains the 
same for all crack sizes. In the other approaches, such as using singular/hybrid 
type special crack-tip finite elements or using EDI based conservative integrals / 
interactive integrals, the cracks must be modeled explicitly. Therefore, the global 
stiffness matrix must be computed and decomposed for each crack size. Thus, 
the alternating method is very efficient in saving both time in the computational 
analysis and human effort in the mesh generation. 

The details for extracting an isolated skin model for the local analysis are pre- 

sented in the next section. 

§ 1.2.2   Details of extracting the isolated skin model 

In the intermediate analysis, the skin is discretized using a coarse finite element 
mesh. This coarse mesh models the broken stiffeners, as well as the broken skin- 
ligament of the crack; but the crack-tip singularities are not modeled. The axial de- 
formation of the stiffener is modeled by using the conventional "truss-type"( and/or 
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"beam-type") elements. Since the fastener shear forces are usually offset from the 
stiffener neutral axis, an out-of-plane bending is also induced in the stiffeners. The 
out-of-plane bending deformation of the stiffener, between two fasteners, is given 

by the elementary beam theory: 

8'=c(öHF °40) 

where: 
C = axis of the stiffener to the point of action of the fastener shear force, 

/ = stiffener cross-sectional inertia, 
L = distance between two fasteners, or the length of the stiffener "truss" ele- 

ment, 
Est = Young's modulus of stiffener material, 

M = F-C, 
F is the force in the truss element. 
Note that bb is in the same direction, as the stiffener axial force, F. From 

Eq. 1.40, it is seen that: 

The axial stretch of the stringer is given by: 

«■-£■=«'■ *=isi- (1'42) 

We use the total axial deformations at the ends of the stringer, at the points 
where the stringer is attached to the skin, as the generalized degrees of freedom 
for the stringer. For these degrees of freedom, the stiffness matrix of the stringer 

element is given by: 

K5r — 

1 -1 
(ab + as)    (ab + as 

-1 1 
(1.43) 

{ab + as)    {ab + as) 

The flexibility of the fasteners has been found [Swift (1984)] to be an important 
factor that influences the stress-intensity factors for a crack in the stiffened skin. If 
Q is the shear force acting on the fastener, the shear deformation of the fastener can 
be represented by the empirical relation [Swift (1984)] 
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1 
EshD 

where 
ESh = modulus of sheet material 
D = rivet diameter 
t\ and *2 = thicknesses of joined sheets 
A = 5.0 for Al rivets and 1.66 for steel fasteners 
C = 0.8 for Al rivets and 0.86 for steel fasteners. 
The "stiffness" of the rivet in shear is thus given by 

KF = 

F = aFQ (1.44) 

EshD 

A+c(-+ 
tl). 

(1.45) 

Consider, for simplicity (but without any loss of generality), that the skin is 
discretized into finite elements, with nodes being only at the locations of the fas- 
teners; and likewise, the stringers are discretized into finite elements with nodes 
being only at the fastener locations. Let the number of fasteners be N. Let the 
number of stringer elements be NST\ and the number of sheet elements be Nsk. Let 
the generalized displacements of the skin at the nodes of the finite element mesh be 
denoted as qsk and those of the stringers at the nodes be denoted by qst. Then the 
total strain energy of the stiffened fuselage skin, with flexible fasteners, is given by: 

(1.46) 

where qe
sk is the vector of nodal displacements of a skin element; and qe

sl is the 
vector of nodal displacements of a stringer (stiffener) element. 

Let q^ be the master vector of nodal displacements of the skin; Ksk the as- 
sembled nodal stiffness matrix of the skin; q^r be the master vector of nodal dis- 
placements of the stringers; and Kst at the assembled nodal stiffness matrix of the 
stringers. Let KF be the "assembled" (diagonal) stiffness matrix of the fasteners; 

i.e., 
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Kf 

KF 0 0 0    • •    0 

0 KF 0 0    • •     0 

0 0 , NxN 

0     0        KF 

Then, the total strain energy W of Eq. 1.46 can be written as: 

(1.47) 

W = ^q'sk (Ksk + Kf) q,* + -<& (K„ + KF) qst - q^KFq„ (1.48) 

If the fastener flexibility is ignored, then q,, = qsk, and Eq. 1.48 reduces to: 

W=yst(Ksk + Kst)qsk (1.49) 

The potential of the external forces (the hoop stress in the fuselage) may be 

represented, in general, as: 

U=(qskQsk + qstQst)- (1.50) 

Letn = W-U. The finite element equations that arise from the vanishing of 

the variation of 8rt (i.e., Srt = 0) are given by: 

(1.51) 
(K^ + KF)q^-KFq,f   =   Q^, 

(K„ + KF)q„-KFq^   =   Qst. 

for the case of flexible fasteners. Equations 1.51 may be rearranged as: 

(Krt + Kf) KF 

-KF        (K„ + KF) 

After the imposition of appropriate boundary conditions, q^ and q„ can be 
solved for, from Eq. 1.52. Once q,,. and q,, are solved for, the reactions of the 
stiffeners on the skin, at the locations of the fasteners, can be easily calculated as: 

(1.52) 

■ stiffener = KF (q,, - qjk) = Qst - K^ (1.53) 

with care being exercised to determine the direction of these reactive forces. 
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Table 1.1: Properties of stiffener cross-section 

Thickness B% 
(mm) 

Area A 
(mm2) 

Inertia / 
(mm4) 

Arm length R 
(mm) 

1.6002 121.935 20431.1 13.64 

2.5400 163.709 28346.5 13.64 

4.0642 231.467 38867.0 13.64 

4.8260 265.322 43113.6 13.64 

Once the effects of the stringer (with flexible rivets) on the skin are determined, 
one can consider the free-body diagram of the cracked skin alone (see Fig. 1.11); 
the skin being subject to the far-field hoop stresses, and the stiffener reaction forces. 

§ 1.2.3   Numerical examples 

In order to illustrate the application of the above described methodology, some ex- 
ample problems are solved. Consider a crack in a stiffened panel where a stiffener is 
broken and the crack is located symmetrically with respect to the broken stiffener 
(see Fig. 1.14). To investigate the effects of stiffener configuration and spacing, 
four different cross-sectional stiffener areas and four different stiffener-spacings 
are considered. The data for the stiffeners is given in Tab. 1.1. In order to compare 
the results, the same panel configuration as in Swift (1984) was employed. 

The meshes used in the finite element analysis are shown in Fig. 1.15. Since 
the geometry and loading are symmetric, a quarter of the panel was modeled. The 
fastener interval, d, in Fig. 1.15 was chosen as 1 inch. And the stress intensity 

factor Kj is normalized as: 

Kn = —^—= (1.54) 
F (Q OyßÜ 

where o is the stress applied on the external boundary, a is the half crack length 
and F (Q is the boundary correction factor, given by: 

l-0.5;+0.370C2-0.044C3 
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Figure 1.15: Meshes used in the parametric study; S: stiffner spacing, N: number 
of fasteners, d: Rivet interval 
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Figure 1.16: Effect of stiffening on crack-tip SIF, spacing 6 inches 

where C, is the ratio of the crack length to the width of the sheet. Since F (Q Cy/na 
gives approximately the stress intensity factor for a crack in an unstiffened panel, 
the normalized stress intensity factor, Kn indicates the ratio of the stress intensity 
factor of a stiffened panel to that of an unstiffened panel. 

In this parametric study, eight node isoparametric elements were used. The 
sheet and stiffener materials are assumed to be 6061-T6 where Poisson's ratio is 

0.351. 
Some results of parametric studies are given in Figs. 1.16 through 1.21. The 

effects of stiffening are shown in Figs. 1.16 through 1.19. Four different cross- 
sectional areas of stiffeners were considered for each stiffener spacing. From these 
results, we can notice that when the crack is very short, the stress intensity factors 
for the stiffened panel are much larger than those of the unstiffened panel. This is 
due to the effect of the broken stiffener. As the crack becomes longer, the stress 
intensity factors decrease and become smaller than those of the unstiffened panel, 
because of the outer unbroken stiffeners. 

In Figs. 1.20 and 1.21, the results of the present parametric study and the re- 
sults from Swift (1984) are illustrated together. The stress intensity factors from 
the present finite element alternating method are higher than those from the dis- 
placement compatibility method until the crack grows to the outer stiffener. This is 
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Figure 1.17: Effect of stiffening on crack-tip SIF, spacing 8 inches 
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Figure 1.18: Effect of stiffening on crack-tip SIF, spacing 10 inches 
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Figure 1.19: Effect of stiffening on crack-tip SIF, spacing 12 inches 
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Figure 1.20: SIF by using FEAM and DCM, spacing 6 inches 
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Figure 1.21: SIF by using FEAM and DCM, spacing 10 inches 

due to the fact that the finite-size effects are accounted for in the present FEAM, as 
opposed to the displacement compatibility method wherein the sheet is treated as 

being infinite. 

§ 1.3   Residual Strength of Aircraft Structures with a Single Dominant Flaw 
(Discrete Source Damage) 

§ 1.3.1   Introduction 

Currently, the fleet of aging commercial aircrafts in the U.S. is operating under the 
concept of damage tolerance [Swift (1985)], which requires that an aircraft should 
have sufficient residual strength in the presence of damages in the principal struc- 
tural elements during the interval of service inspections. Such damages include 
fatigue cracks, propagating at lengths between detectable and critical sizes, and 
discrete source damage (DSD), induced by foreign objects such as fragments in the 

case of engine disintegration. 
A commercial aircraft is expected to sustain a discrete source damage as large 

as a two bay crack in the skin [see Fig. 1.22]. In an airliner fuselage, the stiffeners 
(stringers, frames and tear straps) take a part of the load, but the major fraction is 
taken by the skin. Large cracks in the skin cause significant redistribution of load 
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Figure 1.22: Damage tolerance requirement based on two-bay crack 

flow, which becomes fairly complex due to the various stiffening elements and the 
presence of fastener holes and MSD ahead of the dominant crack. When the tip of 
a lead (dominant) crack approaches an intact stiffener, the stiffener takes over more 
load and reduces the local stress around the crack tip. Therefore, a residual strength 
analysis is necessary to understand the load carrying capability of a cracked aircraft 

structure. 
To determine the critical MSD crack size that will reduce the residual strength 

of an aircraft fuselage to below an acceptable level, we must perform residual 
strength analysis of the fuselage in the presence of a lead crack and MSD. Non- 
linear material behavior must be considered in such a study. At the critical load, 
the plastic zone size ahead of the lead-crack tip in a typical cracked aircraft fuse- 
lage is as large as more than a half inch to several inches. However, the typical 
rivet spacing is only about 1 inch. Therefore, the zone of plastic deformation ahead 
of the lead crack is not negligible when compared to the size of the MSD cracks1 

and ligaments ahead of the lead crack. In an elastic fracture mechanics model, the 
deformation and stress are highly localized near the crack tip. Due to the plastic de- 
formation, these stresses must be redistributed along the ligaments to achieve static 
equilibrium, as suggested in an Irwin model for the estimation of plastic zone size. 
Such stress redistribution can change significantly the loading condition of the ad- 

1 usually of the order of 0.01 ~ 0.04 in emanating from rivet holes of 0.1 in diameter 
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Figure 1.25: Normalized residual strength for i) the lead crack only case, using 
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case, using LEFM; iv) the lead crack with MSD case, using EPFM. 

jacent cracks in the MSD crack situation. On the other hand, the existence of MSD 
cracks limits the size of the ligaments on which the stress can be redistributed. Fur- 
ther more, the stress redistribution is much more complicated in the MSD situation 
due to the interaction between the MSD cracks and the lead crack. Therefore, a 
detailed elastic-plastic fracture analysis of the cracked panel is necessary. 

Fig. 1.23 shows a typical MSD situation, in which there is a single lead crack 
located at the center of the flat panel. There are two MSD cracks ahead of each 
of the lead-crack tips. The length of the ligaments between adjacent cracks is 1- 
inch. The material is assumed to be AL 2024-T3. A piecewise linear flow curve 
is used for AL 2024-T3, as shown in Fig. 1.24. The effect of MSD cracks on the 
residual strength of a cracked panel and the importance of Elastic-Plastic Fracture 
Mechanics [EPFM] approach can be seen in Fig. 1.25. 

Fig. 1.25 is the normalized residual strength plot for the panel shown in Fig. 1.23. 
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Figure 1.26: Fuselage shell panel configuration (a) Shell panel, (b) Cracked skin 
segment 

The failure strength of the panel is defined as the magnitude of applied far field load 
at which the crack tip experiences the material fracture toughness Kic (or the equiv- 
alent JJC). The residual strength is normalized with respect to the residual strength 
for the case where there is only a lead crack, obtained using Linear Elastic Fracture 
Mechanics [LEFM]. It is seen that the LEFM approach over-estimates the residual 
strength, as compared to the EPFM approach. For the case of a lead crack only in 
this panel configuration, the amount of over-estimation is very large. However, in 
the presence of MSD cracks, the LEFM approach can lead to a significant error, 

especially if the panel operates at a high stress level. 

§ 1.3.2    Computational models 

The fuselage shell panels under consideration in this section are typical of commer- 
cial airliners. They are stiffened along the longitudinal direction by stringers and 
circumferentially by frames and tear straps [see Fig. 1.1]. Tear straps are generally 
at frame locations, but can also be present at mid-frame stations depending upon 
the design philosophies. A typical configuration is shown in Fig. 1.26. Two shell 
geometries, one of each kind, have been considered. The geometrical details are 
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listed below. 

Shell 1 Shell 2 

Shell radius R 118.5 in 74.0 in 

Shell skin thickness t 0.071m 0.036 in 

Distance between frames 20.0 in 20.0 in 

Distance between stringers 8.0 in 9.25 in 

Distance between tear straps 20.0 in 10.0 in 

Width of T-straps 3.0 in 2.0 in 

Thickness of T-straps t, 0.025 in 0.036 in 

Frame area 0.7171 in2 0.160 m2 

Frame moment of inertia 1.4320 m4 0.120 m4 

Frame neutral axis offset 3.25 in 3.15 in 

Stringer area 0.6721 in2 0.186 m2 

Stringer moment of inertia 0.1020 m4 0.040 m4 

Stringer neutral axis offset 0.68 in 0.78 in 

Fuselage internal pressure 8.6 psi 9.0 psi 

Rivet diameter D 0.1875 m 0.15625 m 

Pitch of rivets 1.25 m 1.0 m 

Material: skin, frame, stringers Al 2024-T3 Al2024-T3 

Material: tear straps Ti 8-1-1 A12024-T3 

The lap joint configuration considered is as follows: 

Length of overlap 3.0 in 

No. of rivet rows 3 

Pitch of rivets 1.0 m 

No. of rivets in each bay 20 x 3 

Rivet diameter D 0.15625 in 

Adhesive layer thickness ta 0.00025 in 

Material Al2024-T3. 

The material properties of Al 2024-T3 and Ti 8-1-1 are taken as follows: 
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Al2024-T3 Ti 8-1-1 

Young's modulus E 10.5x103ks i 11.5xl03 ksi 

Shear modulus G 4.2 xlO3 ksi 6.7xlO3 ksi 

Poisson' s ratio v 0.32 0.32 

Yield strength oy 47.0 ksi 135.0 ksi 

Ultimate tensile strength au 64.0 ksi 145.0 ksi 

Crack tip linkup stress \ (oy + cu) 55.5 ksi 140.0 ksi 

% Elongation 18% 8% 

Fracture toughness KJC is 93.0 ksi y/in. Adhesive shear modulus is Ga = 1.09 x 

105 psi. 
Four situations of cracks are considered in § 1.3.3-§ 1.3.6: 

1. a single dominant multi-bay crack in shell 1 (§ 1.3.3), 

2. a single dominant multi-bay crack at a row of fastener holes in shell 1(§ 1.3.4), 

3. long cracks and MSD at lap splice in shell 2 (§ 1.3.5), and 

4. a single dominant multi-bay crack at lap splice in shell 1 (§ 1.3.6). 

Global analysis (FEM) 

Conventional linear elastic finite element analysis of the multi-bay stiffened shell 
panel with cracks, is performed as a part of the global analysis. The FEM model is 

briefly described below: 
The fuselage skin is modeled by four-noded shell elements, with five degrees 

of freedom per node. The element used is strain-based and was developed by Ash- 
well and Sabir (1972). Tear straps are also modeled using the same element. The 
frames and stringers are modeled as two-noded, three degrees of freedom per node, 
curved/straight beam elements with their shape functions degenerated from those 
of shell elements. This is done to ensure compatibility within the stiffeners and 
the sheet. The cracks are incorporated into the problem as unconnected nodes be- 
longing to respective elements. For the purpose of present global analysis, the 

crack tip singularity is not modeled as the crack will be modeled analytically in the 
second step, i.e. the local analysis. The fasteners are modeled as two degrees of 
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freedom connectors between the corresponding nodes and the fastener stiffness is 
represented by the empirical relation developed by Swift (1984) [see Eq. 1.45, page 

25]. 
Wherever there is a crack, the stiffness along the crack length is relieved as the 

fastener will not be able to bear the load in that direction. Adhesive is also modeled 
as a two-noded, two degrees of freedom per node connector between the sheets. 

The adhesive stiffness is modeled as 

^ = ttn—%A,u   M' (L56) 

Ga 8 VG GJ 

where /ud is the degradation factor. The values of 0 and 1 represent total degradation 
and perfect conditions, respectively. A value of 0.1 means 90% degradation. A 
represents the bond area being lumped at the nodal connections. Appropriate multi- 
point constraints have been imposed to prevent crisscrossing of sheet nodes in the 
lap joint zone. The fuselage internal pressure is applied as a uniformly distributed 
normal outward load on the shell panel. The four edges of the panel are permitted 
to undergo only radial displacement in a cylindrical system. A typical problem size 
for the configurations considered is of the order of 15,000 degrees of freedom and 
the computer time is of the order ofmin on an HP 9000/700 series workstation. 

Elastic local analysis [E-FEAM] 

From the global analysis, the skin segment containing the cracks, holes and fas- 
teners of interest, is isolated with corresponding sheet stresses. The fastener holes 
are now modeled as circular and the bearing loads (if any, from global analysis) 
are distributed as sinusoidal variations over the periphery. The stresses due to the 
misfit of the rivet can also be accounted for at this stage. This problem is solved 
using the Schwartz-Neumann Finite Element Alternating Method which involves 

two solutions. 

1. An analytical solution to the problem of a row of cracks of arbitrary lengths 
with crack faces being subjected to arbitrary tractions, 

2. Finite element solution for a strip, with/without a row of holes, but without 
cracks; the strip being subjected to sheet stresses and pin bearing loads. Since 
the finite element solution is only for the uncracked body and the cracks of 
arbitrary lengths are accounted for analytically in step 1 above, the computa- 
tional finite element mesh remains the same as the cracks grow. 
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The analytical solution to the problem of multiple cracks in an infinite sheet 
and the alternating technique are presented in detail in Chapter ?? and Chapter ??. 
Eight-noded isoparametric elements with two degrees of freedom per node are em- 

ployed in this finite element analysis. 
The crack tip stress intensity factors and the stress field are obtained directly 

from the FEAM analysis. The net section stress for any ligament is obtained by tak- 
ing an average over the ligament length. To compute the plastic zone size, Irwin's 
formula does not seem to give a reasonable approximation, due to the complexity 
of geometry and vicinity of other cracks/loaded-holes. So the plastic zone size is 
estimated from the computed stress field, obtained from the linear elastic analysis, 
by doubling the distance from crack tip to the point where the stress falls to yield 

stress. 
Critical pressure for the fuselage is that value of applied pressure differential 

for which either the crack tip SDF becomes equal to Kic of 93.0 ksi\fin., or the 
net ligament stress equals the linkup stress of 55.5ksi. For linear elastic analysis, 
this can be computed directly from the obtained values of K\ and average ligament 

stress aav- 

Critical pressure differential = applied pressure x — 

linkuD stress 
Critical pressure differential = applied pressure x  

Gav 

§ 1.3.3   Single dominant multi-bay crack in the skin 

Consider a panel of shell 1, consisting of seven frames (six bays) and six stringers 
(five bays). There are seven tear straps, one at each frame location. Consider a 
single dominant crack aligned longitudinally and located centrally, i.e. halfway 
between two stringers and symmetrical about a frame/strap location. The fuselage 
stiffened shell must be able to sustain a two-bay-long crack with broken central 
strap. For this requirement, consider the central tear strap also to be cracked along 

with the skin. All other stiffening elements are intact. 
Analyses have been carried out for various crack lengths up to 50in, i.e. the 

crack spreading in four bays. Since there is only one crack and there are no holes 
in the vicinity of the crack tip, it is difficult to reasonably define an intact ligament 
length, thus the critical pressure is computed only from the fracture mechanics 

point of view (Fig. 1.27). 
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Figure 1.27: Critical pressure diagram for a single dominant mutibay crack in the 
shell panel 
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A point on this curve gives information about the cabin pressure required to 
make the crack tip SIF critical and does not imply that the panel will fail catas- 
trophically. The curve falls below the applied pressure of 8.6psi for crack lengths 
of 10.8 and 18.2m (points "a" and "b"). The implication of this is as follows. Con- 
sidering an initial half crack length of, say, 2in and the pressure never exceeding 8.6 
psi, the crack cannot grow under static loading; it will grow under cyclic loading 
till it reaches point "a". At this stage, fast fracture will occur and the crack will in- 
stantaneously grow up to point "b", where it will be arrested as the SIF falls below 
the critical value. Further growth of the crack will be again under cyclic loading. 
The effect of plasticity is not included in this calculation, and stable tearing that 

follows crack growth initiation is not modeled. 

§ 1.3.4   Two-bay crack with holes near the crack tip 

Consider a panel of shell 1, consisting of seven frames (six bays) and seven stringers 
(six bays). There are seven tear straps, one at each frame location. Consider a sin- 
gle dominant crack aligned longitudinally along the fastener holes. The crack is 
located centrally and is symmetrical about a frame/strap location. The central tear 
strap is broken. All other stiffening elements are intact. The presence of holes alters 
the stress flow. The distance between the crack tip and the hole periphery is found 
to have substantial effect on the crack tip SIF and also, for very small ligaments, 
the section will yield before the crack becomes unstable. A situation of holes ahead 
of a two-bay crack is analyzed to study the effects of holes on the critical pressure. 

Fig. 1.28 shows the effect of holes ahead of a two-bay crack. For the sake of 
convenience we will use a term "overhang", defined as the extent of crack length 
from the closest hole center involved in the same crack. Zero overhang implies a 
hole at the crack tip and so the SIF has no definition. For extremely small overhang, 
the SIF value is low and for longer overhangs, the SIF rises sharply. The ligament 
stress is found to increase steadily with overhang. For any crack length and over- 
hang, the critical pressure is the lower of the two values corresponding to K] = KJC 

and aav = linkup stress. 
Fig. 1.28 shows the critical pressure from both considerations and interestingly, 

the structure is critical from the net section failure point of view over most of the 
region. Thus, small scale yielding assumption breaks down here. The linear elastic 
fracture parameter can not be used as a failure criteria. 

Again, any point on this curve represents the pressure differential required to 
either make the crack unstable, or cause tensile failure of the ligament. It is seen 
from this analysis that the presence of holes (even without cracks emanating from 
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Figure 1.28: Critical pressure diagram for a single dominant 2-bay crack with holes 
ahead of the crack tip 
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them) ahead of a lead crack, significantly lowers the residual strength of a stiffened 

panel; as surmised by Swift (1993a, 1987). 

§ 1.3.5   Long crack and MSD in lap splice 

We now consider the problem of a riveted/bonded longitudinal lap joint in the shell 
panel. Skin stresses have to flow through this joint. So long as the adhesive is in a 
good condition, it transfers most of the load across the lap, but the adhesive is found 
to degrade fairly fast with usage and time, and make the fasteners the major load 
carriers. The presence of cracks at rivet holes causes further load redistribution. An 
important aspect of the situation is how one crack effects other cracks in its close 

vicinity. 
Consider the fuselage panel 2 with a longitudinal riveted/bonded lap joint. Let 

there be cracks at the outer (critical) row of fastener holes. The adhesive is treated 
to be degraded, so that fasteners share a major part of the hoop load. The fuselage 
panel considered for analysis, consists of three bays in the longitudinal direction 
and six bays along the circumferential direction. This panel contains four frames, 
seven tear straps and seven stringers. Tear straps exist at all frame and mid-frame 
stations. The cracks are only considered in the central bay. Fig. 1.29 shows 12 
cases [B-M] of crack configurations that have been analyzed in this section. Case 
A is the uncracked situation and forms a reference. These configurations have no 
relationship with each other and the long crack configurations are not necessarily 
arrived at through linkup of small crack situations. In all these cases, the stiffening 
elements (frames, T-straps and stringers) are all intact. 

Global load distribution 

The uncracked panel is analyzed as in the first case, to obtain a reference and under- 
stand the original load flow path. After the adhesive has virtually degraded (99% 
for the present problem) the rivets transfer a large part of the hoop load. In this 
situation 83% goes through the fasteners and only 17% of the load is taken by the 
frames/straps. Among the three rows of fasteners, the outer two carry 36% each 
and the rest of the 28% is taken by the central row. In a flat panel lap joint, nor- 
mally, the center row carries a much lesser portion. The curvature seems to be a 
cause of more even row-wise load distribution. The maximum sheet hoop stress is 

found to be \3Aksi. 
The presence of cracks at rivet holes causes load redistribution at the joint. For 

various cases considered [A-M] the load changes in straps/frames in the damaged 
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Table 1.2: Load redistribution at frames/T-straps for various cases (lb) 

Case Frame 2 T-strap 3 T-strap 4 T-strap 4 Frame 3 

A 1127 24.5 228 24.5 1127 

B 1142 34.6 211 24.1 1127 

C 1142 34.5 218 23.9 1127 

D 1146 34.9 248 21.8 1126 

E 1142 32.5 248 22.0 1126 

F 1168 47.5 250 20.4 1126 

G 1153 40.2 221 22.6 1127 

H 1232 86.6 240 16.6 1125 

I 1231 84.4 252 32.3 1151 

J 1104 -9.4 1510 -4.5 1121 

K 1284 100 489 90.0 1271 

L 1246 19.9 4163 19.9 1246 

M 1535 230 4558 230 1535 
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 Table 1.3: Row-wise rivet load distribution (lb)  

Raw 1 Raw 2 Raw 3 

Case Load % Load % Load % Total load 

A 3394 36.1 2600 27.7 3405 36.2 9398 

B 3305 35.2 2682 28.6 3395 36.2 9383 

C 3278 34.9 2696 28.7 3402 36.3 9377 

D 3280 35.1 2673 28.6 3385 36.3 9339 

E 3302 35.3 2661 28.5 3382 36.2 9347 

F 3267 35.2 2654 28.6 3366 36.2 9288 

G 3361 35.9 2627 28.1 3358 35.9 9347 

H 3223 35.2 2615 28.6 3315 36.2 9154 

I 3201 35.1 2633 28.9 3272 35.9 9107 

J 2778 34.1 2421 29.7 2956 36.2 8156 

K 2937 34.7 2485 29.4 3033 35.9 8458 

L 1669 34.6 1442 29.9 1718 35.6 4831 

M 1101 34.5 952 29.8 1141 35.7 3195 

bay are given in Tab. 1.2. It can be observed from this table that MSD, or long 
cracks, [B-I] do not significantly overload the frames and straps. Even for case 
I, where one may say that the T-strap load has gone up from 24.5 to 84.4/b, nu- 
merically both these values are insignificant as compared to the yield strength of 
3384 lb (2 x 0.036 x 47000 = 3384) for the strap. Some amount of overloading for 
the central T-strap can be seen in cases J and K, where cracks exist across it. From 
cases K-M, it is evident that if two cracks approach a tear strap from both sides and 
linkup at a location where there is no frame, the strap will yield. 

For all the cases, the row-wise rivet load distribution within the damaged panel 
is given in Tab. 1.3. It can be observed that as the crack length increases and the 
load is shed from the rivets, the relative share of the three rows changes marginally. 
Thus, as the cracked row sheds the load, the other two rows also do so and effec- 
tively, the load goes into the skin and the frames/straps. Physically, this appears 
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Figure 1.30: Rivet load redistribution pattern due to cracks at fastener holes in lap 
splice 

correct as the rivet rows are 1 in apart and with a crack of a few inches in the first 
row, the second and third rows will hardly get any load to share. 

The rivet-wise load redistribution pattern for the critical row for all the cases [A- 
M] is given in Tab. 1.4. To have an overall qualitative idea of the load redistribution, 
the loads are also plotted to scale in Fig. 1.30. Rivet numbers 1-10 run from left to 
right in the damaged bay. A crack diverts the load towards its tips. So, intuitively 
a crack on one side of the hole should overload the fastener, and cracks on both 
sides will unload it. Rivets 5 and 6 of cases A and B clarify this point. On a similar 
logic, the stresses in the ligament between two crack tips will be high and further 
increase with crack growth. At some stage of loading, the ligament will yield, 

causing a crack linkup to form a single long crack. 
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Table 1.4: Rivet load distribution in the critical row (lb) 

Case 

Rivet A B C D E F G H I J K L M 

1 135 141 141 143 141 151 145 176 176 148 203 246 365 

2 148 146 146 149 145 171 156 246 246 151 311 388 120 

3 164 166 167 172 163 236 195 141 142 170 107 133 35 

4 274 123 123 133 186 62 107 40 40 125 33 41 17 

5 180 198 200 238 229 150 273 26 26 202 18 20 11 

6 182 135 138 126 122 154 60 35 35 140 17 12 9 

7 181 132 140 58 57 63 106 101 101 140 29 8 8 

8 181 187 131 116 115 121 222 305 305 210 74 3 3 

9 179 171 182 217 216 224 183 214 215 269 371 -5 -6 

10 168 191 195 208 208 211 196 210 213 75 294 -14 -15 

11 168 186 187 191 191 192 188 193 204 18 279 -14 -15 

12 179 175 175 176 176 177 176 178 186 8 354 -5 -6 

13 181 180 180 180 180 180 180 181 223 11 111 3 3 

14 181 181 181 181 181 181 181 181 106 21 35 8 8 

15 182 182 182 182 182 182 182 182 60 46 19 12 9 

16 180 180 180 180 180 180 180 180 273 175 19 20 11 

17 174 174 174 174 174 174 174 174 108 322 33 41 17 

18 164 164 164 164 164 164 164 164 196 216 104 133 35 

19 148 148 148 148 148 148 148 148 157 171 319 388 120 

20 135 135 135 135 135 135 135 135 147 150 196 246 365 
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Comparing the rivet load patterns for cases H and I, we can see that even long 
cracks across the tear strap do not affect each other. The rivets involved in long 
cracks take very little load, thus significantly overloading the neighboring rivets 
(case H). In these cases, the neighboring rivets are also found to bear some side 
load as a consequence of inclined load flow path through the skin, at the row of 
rivets. The side load on rivet 8 of case I is of the order of 55 lb towards rivet 7, and 
rivet 9 in case J is 48 lb towards rivet 10. Very long cracks (over 10 rivets) are found 
to even reverse the load direction on some of the centrally located rivets (cases L 
and M). This happens due to inplane bending, again as a consequence of load flow 

diversion due to the crack. This analysis is, of course, not correct as the tear strap 
has yielded. Thus, the cases L and M are not further analyzed. Looking at Tab. 1.4 
one can see that case I is essentially the case when the configuration H exists on the 
left side of the tear strap and the configuration G exists on the right side of the tear 
strap. In this case, although the strap is overloaded, there is no mutual interaction 
between the cracks and so it need not be analyzed as an independent case. 

Local analysis results: net section stress and plastic zones 

The finite element alternating technique is employed to cases of interest, viz. B- 
H, J and K, by isolating the cracked portion (row and bay) from the panel. Crack 
tip parameters and stress fields are obtained from these analyses. The net section 
stresses and plastic zones are then computed. Fig. 1.31 shows the maximum net 
section stresses and the residual strength in terms of cabin pressure based on the 
linkup stress of 55.5fai. Case J is intended to study the effect of a large crack 
on MSD and so the local analysis is performed only on the MSD region and the 
indicated maximum stress is not for the complete section, which is likely to be 
between rivet 9 and 10. The following observations are made from this figure: 

Case B and C: The maximum net section stress is not significantly increased by 
MSD and adequate residual strength still exists in the panel. 

Case C and D: Linkup shoots up the maximum net section stress. 
Case B and J: A long crack on or across the tear strap marginally increases the 

net section stress in the MSD zone. 
Case D and E: MSD near a long crack increases the ligament stress. 
Case F-H and K: One or two long cracks involving five or more rivets push 

the maximum stress beyond yield stress, thus substantially reducing the residual 
strength. The sections at the crack tips either yield (F, H, K) or tend to yield (0). 

The stress intensity factors and the corresponding residual strength obtained 
with K,c = 93.0 ksiy/B. are shown in Fig. 1.32. The following observations are 
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Figure 1.31: Maximum net section stresses and the corresponding critical cabin 
pressure (psi) based net ligament stress criterion. 
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K1C = 93.0 ksi/in 

Figure 1.32: Stress intensity factors and the corresponding critical cabin pressure 
(psi) based on Fracture mechanics criterion. 
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Table 1.5: Residual Strength for various caes considered (cabin pressure, psi) 

Linear Fracture mechanics Net section stress 

Case    Max K[    Critical pressure   Max oav    Critical pressure 

B 14.6 57.33 22.3 22.40 

C 14.8 56.55 22.6 22.10 

D 53.4 15.67 38.4 13.00 

E 52.7 15.88 30.8 16.21 

F 53.4 15.67 55.5 9.00 

G 55.6 15.05 44.8 11.15 

H 98.2 8.52 59.9 8.34 

J 15.9 52.64 23.7 21.08 

K 108.9 7.68 61.9 8.07 

made from this figure: 
Case B and C: Short and medium MSD cracks at neighboring rivets have marginal 

effects, e.g.  SIF at rivet 7 goes up from 14.2 to 14.5 due to a crack at rivet 8. 
Short/medium cracks, one rivet hole apart, do not interact.   Adequate residual 
strength exists in these situations. 

Case C and D: Linkup causes significant increase in the crack tip SIF, but has 
little effect on the SIF at MSD in the neighborhood. 

Case D and E: Linked up cracks in close proximity affect each other marginally 
and do reduce the residual strength. 

Case H and K: In moving from H to K. one more fastener hole is involved. 
Interestingly, the SIF on one end falls and goes up on the other end. This is due to 
the load redistribution. The residual strength for these cases has just fallen below 

the applied load of 9.0psi. 
The maximum SIF, net section stresses and the corresponding residual strengths 

are listed in Tab. 1.5. 
Looking at Figs. 1.31 and 1.32, and Tab. 1.5 it is quite clear that the net ligament 

yields before the crack becomes unstable, under static loading conditions. Plastic 
zone sizes for all the cases have been computed (Fig. 1.33). For MSD cases B, C 
and J, the plastic zones are insignificantly small. They are found to grow as cracks 
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Figure 1.33: Plastic zones for vaious crack configurations 
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Table 1.6: SIFs and the corresponding plastic zones for all crack tips 

Case K, rP Case K, rP Case K, rP 

10.5 0.0160 11.0 0.0176 10.6 0.0171 

13.4 0.0269 14.4 0.0318 13.8 0.0274 

13.5 0.0271 14.9 0.0331 13.7 0.0274 

B 12.5 0.0205 D 13.2 0.0181 J 12.6 0.0214 

14.5 0.0303 53.4 0.2142 15.2 0.0307 

14.6 

14.4 

0.0300 

0.0299 

50.8 0.2010 15.0 

15.9 

0.0303 

E 52.7 0.2101 0.0314 

14.2 0.0296 50.3 0.1986 15.8 0.0316 

10.5 0.0161 53.2 0.2882 K 108.9 0.3395 

13.5 

13.6 

12.5 

0.0272 

0.0274 

0.0208 

F 53.4 

53.4 

0.2089 

0.2121 

82.5 0.2873 

G 29.2 0.1.90 

C 14.7 

14.8 

0.0313 

0.0311 

55.6 0.2237 

H 92.5 0.2923 

14.6 

14.5 

0.0304 

0.0301 

98.2 0.3210 

13.8 0.0285 

13.4 0.0279 
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link up. Tab. 1.6 gives the various K\ and rp values for all the crack cases analyzed. 
Plastic zone size becomes significant once K\ exceeds 50.0, which happens when 

three or more rivets are involved in a single crack. 

§ 1.3.6   Two-bay cracking at lap splice 

We now consider the aspect of a multi-bay crack with, and without, MSD ahead 
of it. In this section, we consider a panel of shell 1, consisting of six bays in the 
longitudinal direction and six bays along the circumferential direction, and a lap 

joint. This panel contains five frames, five tear straps and seven stringers. Tear 
straps exist at all frame stations. Let there be a long crack extending equally on two 
sides of the central broken tear strap. All the other stiffening elements (frames, T- 
straps and stringers) are considered intact. We are interested in the residual strength 
for various lead crack lengths and the effect of MSD ahead of the crack tip. 

Single dominant crack at fastener holes 

First consider the situation of a single dominant crack only. Global analysis is 
carried out to obtain the rivet bearing loads and then local FEAM is applied to 

obtain the crack tip SBF and net section stresses. 
In the last section, we saw that the magnitude of crack length from the hole 

center (overhang) is an important factor in determining the critical pressure. For a 
single dominant crack, at the outer critical row of fasteners, spreading equally on 
both sides of a broken tear strap, the critical pressure diagram is shown in Fig. 1.34. 
Linkup stresses for the lead crack (ahead of which there arc fastener holes, but 
without MSD cracks) correspond to the net section yield between the crack tip and 
the fastener hole. Up to 40% overhang, the shell panel is K!C critical and for the 
later half, it has too little section strength. Interestingly, a two-bay crack is fully 
section strength critical. Frames/tear straps appear to provide adequate residual 

strength to the panel. 

Single dominant crack and MSD at fastener holes 

We now explore the effect of MSD near fastener holes ahead of the dominant crack 
in a lap splice. The important parameters are the lead crack length, the lead crack 
overhang from the nearest fastener hole, and the number and lengths of MSD cracks 
near fastener holes ahead of the lead crack. The MSD considered for the present 
purposes is over the three rivets immediately ahead of the lead crack tip, as the far 
away MSD cracks have insignificant effect on the lead crack tip stress field and 
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Figure 1.34: Critical pressure diagram for a single dominant multibay crack at outer 
critical row of fastener holes in a lap splice 
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also have lower intact ligament stress. In the MSD zone, cracks of equal length 
are presumed to be present on both sides of the rivet holes. To understand the 
MSD effects, for various lead crack lengths, starting from a situation where the 
lead crack spans over only two holes, to a situation of a multi-bay crack involving 
more than 40 rivets, the following two sets of crack configurations (overhang and 

MSD length) are analyzed. 

1. MSD length of 0.12 m, which corresponds to the maximum that can hide 

under the countersunk head and stays undetected during regular economical 
nondestructive inspections. Two values of lead crack overhang, viz. 0.25 in 

and 0.50m, are considered. 

2. Lead crack overhang of 0.25 m, and the MSD lengths of 0.12,0.25 and 0.35 

in 

The analyses for the configurations of the two sets are performed and the resid- 
ual strengths are computed, based on linear elastic fracture mechanics, as well as 

net section stress criteria (Tabs. 1.7, and 1.8). 
From Tab. 1.7, it can be seen that the small MSD cracks (0.12 in.) have marginal 

effect on the residual strength of the shell panel, whether it is computed based 
on linear elastic fracture mechanics or section yielding criteria. Of course, for 
relatively large overhang values, i.e. 0.75 in., the section stress shoots up with the 

presence of MSD. 
We see that the MSD does not significantly alter the lead crack tip SIF, but 

does raise the net ligament stress when the two crack tips come closer. Thus, the 
main conclusion is: the use of linear elastic fracture mechanics to study the effect 
of MSD infested holes ahead of a lead crack is highly questionable. It may be 
concluded that the effect of plasticity and net section yield dominate the situation 
when holes with MSD cracks are present ahead of a lead crack. The need for an 
elastic plastic analysis of the lead crack-MSD interaction is further highlighted in 

the following section 

§ 1.4   Residual Strength of Aircraft Structures under Discrete Source 
Damage: Use of Elastic-Plastic Fracture Mechanics 

Structural integrity evaluation of aging aircraft structures is extremely important in 
ensuring the safety of the operation of these structures. A fuselage of an aircraft 
would typically undergo a cycle of pressurization for every single flight operation. 
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Table 1.7: Effect of MSD on Kt, aav and residual stength. Set 1, constant MSD 
crack length of 0.12 in.  

LEFM Net section stress 

Half Ki Critical pressure am Critical pressure 

crack length     No MSD     MSD     No MSD     MSD     No MSD     MSD     No MSD     MSD 

Lead crack oveihang=0.25 in. 

1.75 27.5 28.4 28.5 27.6 12.1 12.4 39.4 38.5 

3.75 41.2 42.1 19.0 18.6 16.7 17.4 28.6 27.4 

5.75 53.8 54.2 14.5 14.4 21.5 22.4 22.2 21.3 

7.75 64.4 64.0 12.2 12.2 25.8 26.9 18.5 17.7 

9.75 72.7 71.5 10.8 10.9 29.6 31.0 16.1 15.4 

11.75 79.4 77.5 9.9 10.1 32.9 34.4 14.5 13.9 

13.75 84.8 82.2 9.2 9.5 35.4 37.1 13.5 12.9 

15.75 88.0 83.1 8.9 9.4 36.7 38.5 13.0 12.4 

17.75 81.9 79.2 9.6 9.9 34.7 36.0 13.8 13.3 

18.75 68.8 65.5 11.4 11.9 29.6 30.5 16.1 15.6 

19.75 47.6 43.2 16.4 18.1 22.6 23.1 21.1 20.7 

20.75 28.6 25.2 27.4 31.1 19.4 19.7 24.6 24.2 

21.75 30.7 28.6 25.5 27.4 17.6 18.3 26.7 26.1 

22.75 36.4 35.1 21.5 22.3 18.6 19.1 25.7 25.0 

jead crack overhang =0.50 in. 

2.00 27.7 28.3 28.3 27.7 19.4 20.6 24.6 23.2 

4.00 41.2 41.8 19.0 18.7 27.1 29.1 17.6 16.4 

6.00 53.9 54.1 14.5 14.5 34.9 37.5 13.7 12.7 

8.00 64.6 64.2 12.1 12.2 41.8 44.9 11.4 10.6 

10.00 73.1 72.0 10.7 10.9 47.8 51.2 10.0 9.3 

12.00 80.0 78.3 9.8 10.0 52.8 56.5 9.0 8.4 

14.00 85.6 83.2 9.1 9.4 56.7 60.6 8.4 7.9 

16.00 88.6 84.3 8.8 9.3 58.6 62.2 8.1 7.7 

18.00 81.5 78.9 9.6 9.9 54.2 57.2 8.8 8.3 

19.00 67.4 64.2 11.6 12.2 44.8 47.1 10.7 10.1 

20.00 47.5 43.6 16.5 17.9 33.2 34.3 14.4 13.9 

21.00 31.5 28.4 24.8 27.6 28.2 28.5 16.9 16.7 

22.00 32.6 30.8 24.0 25.4 26.8 27.6 17.8 17.3 

23.00 37.5 36.4 20.9 21.5 28.6 29.9 16.7 16.0 



60 Draft dated: May 12,1997 

Table 1.8: Effect of MSP crack length on residual strength. Set 2 
Residual strength based on 

LEFM Net section stress 

Half lead MSD crac k length MSD crac k length 

crack length NoMSD 0.12 in 0.25 in 0.35 in NoMSD 0.12 in 0.25 in 0.35 in 

1.75 29.0 28.2 28.1 27.9 39.4 38.5 30.2 23.0 

3.75 19.4 19.0 18.8 18.5 28.6 27.5 21.4 16.2 

5.75 14.9 14.8 14.6 14.3 22.3 21.3 16.6 12.5 

7.75 12.4 12.5 12.4 12.1 18.5 17.7 13.8 10.4 

9.75 11.0 11.2 11.1 10.9 16.1 15.4 12.0 9.1 

11.75 10.1 10.3 10.2 10.1 14.5 13.9 10.8 8.2 

13.75 9.4 9.7 9.7 9.5 13.5 12.9 10.0 7.7 

15.75 9.1 9.6 9.6 9.4 13.0 12.4 9.7 7.4 

17.75 9.8 10.1 10.1 10.0 13.7 13.3 10.4 8.0 

18.75 11.6 12.2 12.1 12.1 16.1 15.6 12.3 9.6 

19.75 16.8 18.5 18.5 18.4 21.1 20.7 16.5 13.0 

20.75 28.0 31.7 31.9 32.1 24.5 24.3 19.6 15.6 

21.75 26.1 27.9 27.9 27.9 26.7 26.1 20.8 16.3 

22.75 22.1 22.8 22.6 22.4 25.7 25.0 19.8 15.3 

40.0- 

30.0- 

20.0- 

S 10.0- 

1.75   3.75   5.75   7.75  9.75 11.75 13.75 15.75 17.75 18.75 19.75 20.75 21.75 22.75 

Half Lead-Crack Length (in) 

Figure 1.35: Effect of MSD crack length on residual strength, based on net section 
yield criterion 
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Figure 1.36: Widespread fatigue on fuselage panel 

These cycles of pressurization would result in fatigue cracking near the rivet holes 
of the fuselage panel and may lead to a widespread fatigue damages (WFD). With 
the formation of widespread fatigue damage on the fuselage panel as shown in 
Fig. 1.36, the fuselage structure may no longer meet the damage tolerance require- 
ment. Under the current damage tolerance philosophy, the inspection program of a 
fuselage panel is established on the basis that a single lead crack, propagating be- 
tween detectable and critical size at limit load, will be detected before failure. This 
single lead crack is intended to represent a discrete source damage from fatigue, 
accident or corrosion in service. However, when widespread fatigue damages exist 
on the fuselage panel, the interaction of the lead crack with WFD has to be studied 
and the damage tolerance requirement of this structure needs to be changed accord- 
ingly, in order to ensure that the structure with WFD would meet the same safety 
requirements of a structure without WFD. Some preliminary analyses performed 
by Swift (1993b), based on 2-D solutions, have shown that the residual strength 
of a fuselage can be degraded below the required levels, when small cracks (with 
size of the order 0.05 inch) exist ahead of the lead crack. Furthermore, based on 
experiments of flat panels, Maclin (1991) has found that cracks as small as 0.05 
inch ahead of the lead crack can reduce the residual strength by more than 30%. 

Given that the cost of computing has declined by several orders of magnitude 
over the past decade, it is now economically feasible, to perform numerical analysis 
of a full-scale pressurized fuselage panel to study not just a single two-bay crack but 
also the interactions of multiple cracks ( say, due to multiple engine fragments) in 
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a stiffened structures. Furthermore, it is also possible to include nonlinear features 
such as the elastic-plastic material behavior to accurately calculate the interactions 
of plastic zones. With the ability to model a full-scale fuselage panel, the effect of 
location of the two-bay crack can be studied. 

As discussed earlier, to ensure the structural airworthiness of aging structures, 
a study of the interaction between MSD cracks and a two-bay crack, is necessary 
in order to determine if the residual strength of the fuselage panel is reduced below 
the required level. In addition, we will also study the interaction of multiple lead 

cracks to simulate discrete source damage induced by fragments in the event of an 

engine disintegration. 
This section presents a study of the interaction between MSD cracks and a two- 

bay crack, using Elastic-Plastic Fracture Mechanics (EPFM). The interaction of 
multiple lead cracks to simulate discrete source damage induced by fragments in 
the event of an engine disintegration, is also presented. 

§ 1.4.1   Automated evaluation of residual strength in the presence of widespread 

fatigue damage 

In order to provide the regulatory agencies as well as aircraft manufacturers with 
the ability to evaluate the effect of WFD on a model-by-model basis, an automated 
analytical method has be developed to model a full scale fuselage panel with WFD, 
rather than relying on the approximations based on flat panels. This would allow 
a fundamental understanding on the behavior of WFD and help engineers in de- 
veloping structural designs capable of containing WFD. This section describes a 
software package with a user-friendly Graphical User Interface [GUI], which can 
efficiently perform the fatigue/fracture analysis of multiple site damage (MSD) in 
fuselages with various designs of frames and stiffeners. This software has been 
implemented in Windows NT for personal computers as well as in different Unix 
based X-window systems for workstations. In order to substantially reduce the 
cost of computing, the modeling of the MSD cracks in the fuselage is based on 
the global-intermediate-local hierarchy. The software can automatically generate 
the finite element mesh of the skins, stiffeners, frames and rivets for each level of 
modeling using the data provided through the GUI interface. Having generated the 
mesh, the global and intermediate analyses are carried out using a commercial finite 
element package, wherein the cracks are modeled explicitly, to obtain the load flow 
pattern around the damage zone near the MSD cracks. This is followed by a local 
analysis based on the elastic plastic finite element alternating method (EPFEAM) 
and the the T* integral fracture parameter. In the local analysis, there is no need to 



§ 1.4: 63 

model the cracks explicitly. At the end of the analysis, the software will provide 
the graphical output of the residual life and strength estimates for the fuselage with 

MSD, in the presence of a discrete source damage. 

Funtionality of the software program 

In order to capture the interaction of the lead crack with MSD cracks, it is impor- 
tant that the elastic-plastic material behavior of the skin panel be taken into account 
in the numerical analysis. It is generally found [Wang and Atluri (1996)] that nu- 
merical fracture simulations of a panel with multiple cracks based on linear elastic 
assumption tend to be anti-conservative especially when the cracks are close to- 
gether. Therefore, one of the most important feature of this software tool is its 
ability to calculate elastic-plastic fracture parameters for multiple cracks efficiently 
and accurately using elastic-plastic finite alternating method. 

The summary of the functionality of this software tools are listed in Fig. 1.37. 
In addition to being able to perform the residual strength analysis with MSD in- 
teractions, this software tool can also perform the analysis of multiple cracks of 
similar size. This feature is important in analyzing the damages that can occur 
when engine fragments of high velocity are to impact on a fuselage panel during 
an engine failure. During such circumstances, a large region of damage would be 
formed on the fuselage panel which is usually modeled as a single large crack. 
However, with this automated tool, the region of damage induced by engine dis- 
integration can be modeled as a lead crack followed by a series of smaller cracks. 
Furthermore, in order to make the residual strength analysis more accurate, the 
software tool can account for the nonlinear flexibility behavior of the fasteners as 
well as the nonlinear geometric behavior of the shell structure. For example, in the 
residual strength analysis for a large circumferential crack, it has been found that 
the ability to model the nonlinear flexibility behavior of the fasteners is important 
in correlating the analysis with experiment [Wang and Atluri (1996)]. Also, it has 
been generally found that accounting for the nonlinear geometric behavior of the 
shell structure is important for the residual strength analysis of narrow-body air- 
craft where the skin panel is relatively thin. Besides the ability to perform residual 
strength analysis, this automated tool can also perform the fatigue analysis of the 
fuselage panel using a complete 3-D shell model. In these analyses, the effect of 
residual stress at the rivet holes due to rivet misfit as well as cold-working are also 

included. 
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Figure 1.37: List of functionality of the software tool 
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Structure of program 

In order to substantially reduce the cost of computing, the modeling of the MSD 
cracks in the fuselage is based on the global-intermediate-local hierarchy. The 
software will automatically generate the finite element mesh of the skins, stiffen- 
ers, frames and rivets for each level of modeling using the data provided through 
the GUI interface. In the global analysis, conventional linear elastic finite element 
analysis of the multibay stiffened shell panel is performed. The fuselage skin is 
modeled by 8 noded shell elements with 5 degrees of freedom per node while the 
frame, stringer and tear strap are modeled by 3 noded beam elements. The fas- 
teners on the fuselage panel are modeled using spring elements and multiple point 
constraints. The linear behavior for the fastener stiffness is represented by the em- 
pirical relation developed by Swift (1984) [see Eq. 1.45, page 25]. Whenever there 
is a crack, the stiffness of the fasteners along the crack length becomes zero as the 
fasteners will not be able bear load in that direction. A typical global model shown 
in Fig. 1.39a, has seven frames and twenty stringers with approximately 3,000 ele- 

ments. 
Having performed the global analysis [here the cracks are modeled explicitly, 

using disconnected finite element nodes] to capture the overall load flow of a large 
section of a fuselage panel, the displacement boundary conditions of a smaller sec- 
tion is then transferred to an intermediate analysis. This intermediate model will 
be sufficiently large to contain the entire lead crack of the fuselage panel. In the 
intermediate analysis, the frames, stringers and fasteners are modeled in greater 
detail; each of the fasteners would be properly positioned according to the physical 
model, while the frames and the stringers are modeled with 4 noded shell elements 
as shown in Fig. 1.39b. In this intermediate analysis, the options of nonlinear fas- 
tener behavior as well as nonlinear geometric behavior are carried out. To capture 
the interaction of the lead crack with much smaller MSD cracks, a local analysis of 
smaller section of the fuselage skin is carried out. Here, the rivet holes are meshed 
in detail as shown in Fig. 1.39c and the elastic-plastic material behavior is assumed. 

To automate this hierarchical process of global-intermediate-local analysis, this 
software program can be separated into four major components: (i) main module, 
(ii) mesh generator, (iii) finite element method, and (iv) finite element alternating 
method. The main module provides the detail of the geometric data as an input 
to the mesh generator. The mesh generator not only generates the mesh for the 
fuselage panel but also allows the proper positioning of the fasteners as well as the 
meshing of the cracks on the fuselage skin. With the mesh generated for the global 
and intermediate model, the global and intermediate analyses are performed using 
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a commercial finite element package. The stress and displacement results are then 
transferred to the local analysis to be performed by an in-house elastic-plastic finite 

element alternating method (EPFEAM). 
To perform the fatigue crack growth analysis for MSD problem, linear elastic 

material behavior is assumed. This analysis can be carried out efficiently with 
FEAM where the MSD cracks do not have to be meshed explicitly. To take into 
account of the effect of stress ratio, the Forman's crack growth equation is used. 
The effect of the initial radial pressure induced near a hole in the skin due to a rivet 
misfit; and the effect of the plastic deformation near the hole due to rivet misfit, 
are both considered [Wang, Brust, and Atluri (1995a)]. These effects can alter the 
range of stress intensity factor imposed on a crack-tip during cyclic loading; and 
thus affect the fatigue crack growth rates. It has been shown that these effects are 
responsible for a phenomenon whereby the shorter cracks near a row of fastener 

holes, may grow faster than longer cracks. 

Demonstration of software 

The program begins with the option of performing either a residual strength anal- 
ysis or a fatigue crack growth analysis. It assumes that the details of the fuselage 
panel are provided by the OEM or can be easily obtained from a database. For the 
residual strength analysis, the user can choose the orientation of the cracks either 
in the longitudinal or circumferential direction as shown in Fig. 1.39. The program 
can also allow the user to change the center of the lead crack with respect to the 
frame/stringer position to study the effect of crack location on the residual strength 
of the fuselage panel. In order to obtain the residual strength curve, the user would 
be asked to input the initial and final crack length. For longitudinal crack, the user 
will also be given an option on whether the tear strap is broken; and for circum- 
ferential crack, the user will be given an option on whether is stringer is broken. 
Having completed the software input, the program will automatically generate the 
appropriate global-intermediate-local models for the analysis. 

For the fatigue analysis shown in Fig. 1.40, the user can input the MSD crack 
sizes for each of the fastener holes between two frame sections. These fastener 
holes are located on the first row of fasteners for the upper panel of a lapjoint. As 
an additional safety feature, the program accepts a minimum MSD crack size input, 
in which a MSD crack with a minimum size would be assumed on both sides of 
all the rivet holes. The program allows two options in which the fatigue growth 
analysis is carried out. It can calculate the number of fatigue cycles, it takes for (i) 
a first crack link-up between two rivet holes or (ii) any cracks to reach a maximum 
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Figure 1.40: GUI for fatigue growth analysis 

crack size. At the end of the residual life analysis, the program will output the 
estimated fatigue life and the final crack size for all the MSD cracks. 

§ 1.4.2    Two-bay longitudinal cracks at various locations 

The fuselage shell panel under consideration is a typical wide body commercial 
aircraft. It is stiffened along the longitudinal direction by stringers and circumfer- 
entialy by frames and tear straps. The tear strap at the center of the two-bay crack 
is assumed to be broken. The skins, frames, stringer and rivets are assumed to be 
made of aluminum while the tear strap is made of titanium. The overall dimensions 
of the fuselage are given in Fig. 1.41. A critical stress intensity factor of 90 ksiy/in 
is used for the aluminum skin. For elastic-plastic analysis, T* integral (with an 
equivalent critical value of 0.771 ksi ■ in) is used as the fracture criterion. 

In this study, the residual strength of the fuselage panel has been calculated as a 
function of the lead crack size. Fig. 1.42 shows that the analysis based on the linear- 
elastic assumption would overestimate the critical pressure by about 30% when 
compared with the elastic-plastic solution. Therefore, the linear-elastic solution is 
significantly anti-conservative. 

A two-bay crack has been placed at three different locations to examine the 
effect that the location of the two-bay crack would have, on the overall residual 
strength curve as shown in Fig. 1.43. In case (a), the two-bay crack lies in the 
middle of two stringers; in case (b), the two-bay crack lies in the row of fasteners 
on top of a stringer; and finally in case (c), the two-bay crack lies on the top of 
the fastener row of the upper skin section of a lapjoint. It has been found that the 
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Figure 1.41: The geometric dimension of the fuselage panel 
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Figure 1.42: Residual strength as a function of crack size 
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(a) (b) (c) 

Figure 1.43: Locations of the two-bay crack: (a) in between two stringers (b) on a 
stringer (c) on a lapjoint 

residual strength of a two-bay crack for case (a) is significantly higher than case 
(b) and case (c) as shown in Fig. 1.44. Furthermore, assuming that the operating 
pressure on the fuselage is 8.6 psi, Fig. 1.44 shows that a two-bay crack for case (a) 
would be arrested ahead of the frame while the two-bay crack for case (b) would 
not be arrested until the crack tip passes the frame location. The difference in the 
residual strength for these three locations can be attributed to the design of the 
frame structure. As can be seen from Fig. 1.45, when the crack lies between two 
stringers, there is an additional frame clip which constrains the two-bay crack from 
opening. However, when the crack lies on the stringer or on the lapjoint, there is 
no secondary frame to constrain the crack from opening. 

§ 1.4.3   Interaction of multiple longitudinal cracks 

The first numerical example concerns the interaction of a two-bay crack with a 
single-bay crack. Both of these cracks lie in the middle between two stringers. The 
center of the two-bay crack would lie on the frame while the center of the single- 
bay crack would lie in the middle of the bay. The sizes of these two cracks are 
varied such that both crack tips have an equal distance, d, to the frame position as 
shown in Fig. 1.46. 

The result from Fig. 1.46 shows little interaction between these two cracks 
when the distance between the two crack tips is more than 4 in apart even though 
the size of the lead crack may be as large as 36 in. However, when these two crack 
tips are only two inches apart, the residual strength of the fuselage panel is reduced 
by more than 20%. These strong interactions between these two cracks can be at- 
tributed to the fact that the plastic zones for these two crack tips are interacting with 
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Figure 1.44: Residual strength curve for a two-bay crack at different location 

each other. 
As shown in Fig. 1.42, the maximum arresting capability of the stiffener occurs 

when the size of the two-bay crack exceeds the two frame interval. Therefore, to 
understand how a secondary crack can reduce the maximum arresting capability 
of the stiffener, the size of the lead crack in this example is chosen to exceed the 
two frame interval by 4 in. In this example, the secondary crack is 2 in ahead of 
the lead crack and the size of the secondary is crack is varied from 2 in to 8 in, 
as shown in Fig. 1.47. The result shows that the reduction of critical pressure in 
the presence of the lead crack varies linearly with the size of the secondary crack, 
from 10% to 30% (based on elastic-plastic analysis). Furthermore, the result also 
shows that the larger lead crack has more influence on the smaller secondary crack, 
than the influence the smaller secondary crack would have on the lead crack. A 
comparison between linear elastic and elastic-plastic analysis shows that the linear 
elastic solution would significantly underestimate the severity of the interaction 
between these two cracks. 

In the next example, studies have been carried out to examine the extent of the 
reduction in residual strength due to three smaller cracks in front of the two-bay 
crack. The elastic-plastic analysis shows that the residual strength of the lead crack 
is not only influenced by the size of the smaller cracks but more importantly by the 
distance of these cracks from the lead crack as shown in Fig. 1.48. Furthermore, 
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Figure 1.46: Interaction between two large cracks 

it has been found that when the same analyses for the 1 in cracks are performed 
using the linear elastic assumption, the residual strength would be underestimated 
by a factor of two. Similar studies are also carried out to examine the effect of the 
interactions of MSD cracks with the two-bay crack. The result given in Fig. 1.49 
shows that the residual strength of the lead crack would be reduced by 10% when 
the size of the MSD cracks is 0.2 in. Again in Fig. 1.49, the linear-elastic assump- 
tion greatly underestimates the interaction between the lead crack and the MSD 

cracks. 

§ 1.4.4   Circumferential cracks 

Much research has been devoted to the studies of cracks in the fuselage lap joints. 
However, circumferential cracks may result in more serious consequences if their 
growth cannot be arrested by the stiffened structure of an aircraft fuselage . Cir- 
cumferential cracks received less attention due to the fact that the axial stress due 
to pressurization is smaller than the hoop stress caused by pressurization. How- 
ever, the axial skin stress at certain locations on the aircraft fuselage, as illustrated 

in Fig. 1.50, can be higher than the hoop stress, due to the fuselage down bending 
and the cabin pressure. The axial stress can be as high as 34 ksi [see Swift (1995)], 
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Figure 1.50: A critical location on the aircraft fuselage for circumferential damages 

which is about 70% of the inital yield stress. (The initial yield stress of AL 2024- 
T3 is 47 ksi.) Since the panel works at such a high level of gross stress, even a 
small stress concentration factor can lead to yielding. Therefore, extensive plastic 
deformation can be expected in the presence of a lead crack; and nonlinear material 
behavior becomes very important in the study of residual strength in such a case. 

Global-intermediate-local modeling strategy is used to perform the detailed 
analyses of circumeferential cracks. The crack configuration in Fig. 1.51 ischoosen 
because there was a component test [Swift (1984)] carried out in such a configura- 
tion. At the time of the test it was considered to be the most critical situation for a 
circumferential crack. 

The following is a brief description of the panel under consideration. More 
details may be found in Swift (1984). The skin is AL 2024-T3 and 0.071 in thick. 
Stringer spacing is 8 in. The cross sectional area of each stringer is 0.5471 in. In 
the test the panel failed at the gross stress of 39.7 ksi, with the half crack length 
equal to 9.88 inch. The fracture toughness of the skin material is 198 ksiy/in, as 
suggested by Swift (1995). 

Residual strength analysis 

Fig. 1.52 shows the residual strength curves obtained using Linear Elastic Frac- 
ture Mechanics (LEFM) approach and using Elastic-Plastic Fracture Mechancis 
(EPFM) approach. When the computed residual strength is compared to the load at 
the failure as predicted in the test, it is seen that the LEFM prediction over-estimates 
the residual strength of the panel by a large amount. However, the EPFM approach 
only slightly under-estimated the residual strength of the panel as determined by 
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experiment. Here, the residual strength curve is obtained by computing the failure 
load at different crack sizes. Therefore, the effect of stable tearing of the skin is 
not considered. In the test, a static loading was applied on the panel to force the 
crack grow from a half crack length 7.38 in to the final failure. Due to the plastic 
hardening the panel can take slightly higher load than the load at the crack initia- 
tion. Therefore, the load at crack initiation will be slightly smaller than the failure 
load observed in the test. Thus, we consider the prediction obtained by the EPFM 
approach to be very good. 

Fig. 1.53 shows the equivalent plastic strain contour plots for cracks of differ- 
ent size at the critical loads. It is seen that the plastic zones are very large, with a 
radius of more than 5 in. The plastic deformations around the rivet holes can also 
be recognized by the small dark zones near the locations of the rivet holes. As the 
crack size increases, the center broken stringer takes less load. This is indicated by 
the disappearing of plastic deformations near the rivet holes located at the center 
stringer. More and more load is transfered onto the crack arresting stringers as the 
crack size increases, as indicated by the plastic deformations near the rivet holes at 
the crack arresting stringers. As the crack tips approach the crack arresting stringer, 
the plastic deformations around the crack tips are restricted by the stringers. How- 
ever, right after the crack tips penetrate the crack arresting stringers, as seen in the 
contour plot Fig. 1.53(g) (a = 8 in), the size of plastic deformation reaches the 
maximum. At this point, the residual strength curve reaches a local maxium point 
(see Fig. 1.52); and the crack arresting stringers are behind the crack tips. 

The plastic deformations are nearly symmetric about the crack plane for all 
crack sizes, though they are disturbed near the location of the frame(located below 
the crack in the contour plots). This indicates that the effect of the frame is not 
significant. Fig. 1.54 shows the residual strength curves for the circumferentially 
cracked panel with frames of different size. In this analysis, the size of the frame 
was doubled to study the effect of the frame. It is seen that that the size of the 
frame almost makes no difference. In a real structure, the skin of the fuselage will 
buckle in the presence of a large crack. A frame near the crack can act as an anti- 
buckling guide. In this hierarchical analysis, no buckling is allowed. Therefore, the 
anti-buckling effect of the frame is not studied here. 

Fig. 1.55 shows the effect of pressurization, in which we compute the residual 
strength for the case where there is only axial loading and the case where there 
are both axial loading and hoop direction loading (due to pressurization). Since 
the pressurization changes mainly the hoop stress, which does not affect mode-I 
loading of the circumferential crack, little difference in residual strength curves is 
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observed in both the linear elastic fracture analysis and the elastic-plastic fracture 
analysis. 
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Figure 1.56: Nonlinear rivet flexibility curve 

Effects ofMSD and nonlinear behavior of rivets 

In the test, it was observed that the panel failure was precipitated by rivet failure 
in the crack arresting stringers. Since the rivets on the crack arresting stringers 
transfer the load from the skin to the stringers, the nonlinear behavior of the rivets 
can have a considerable effect on the crack arresting capability of the panel. To 
study this effect, we use the emperical flexibility curve[Swift (1995)] to model the 
nonlinear effect of the rivets on the residual strength of the panel. The emperical 
flexibility curve is shown in Fig. 1.56. This flexibility curve in Fig. 1.56 was ob- 
tained using from an experiment in which a riveted joint was loaded until the rivet 
failed. Therefore, this flexibility curve includes actually the plastic deformation of 
the skin. The effect of nonlinear behavor of rivets can be seen in Fig. 1.57. Due to 
the yielding of rivets, less load is transfered onto the stringer from the skin. This 
decreases the residual strength of the cracked panel. The reduction is observed in 
both the LEFM analysis and EPFM analysis. However, the influence of the non- 
linear behavor of rivets is smaller in the EPFM analysis, since the yielding of skin 
around rivet holes were modeled in the EPFM analysis. 
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Figure 1.59: Residual strength in the presence of MSD cracks and a lead crack with 
a half crack length 8 in 

Multiple site fatigue damages can reduce the residual strength of an aircraft 
fulelage in the presence of a large circumferentical crack. Fig. 1.58 shows the 
percentage reduction in residual strength for the case where the lead crack tips just 
penetrated the crack arresting stringers, and the distance between the first MSD 
and the tip of the lead crack is one inch. Three different cases were analysed, 
corresponding to i) there is one MSD crack ahead of a lead-crack tip; ii) there are 
3 MSD cracks ahead of a lead-crack tip; iii) there are 5 MSD cracks ahead of a 
lead-crack tip. Fig. 1.59 shows how the residual strength decrease as the size and 
the number of MSDs increase. The more the MSD cracks the larger the reduction 
in residual strength. Although the fatigue damages can reduce significantly the 
residual strength of the panel, this panel will not degrade to loosing the capability 
to arrest a two-bay circumferentical crack at the operating stress level (assumed 
to be 34 ksi) until the MSD cracks are of significant length. This can be seen in 

Fig. 1.59. 

Conclusions 

A circumferentical crack at a critical location with high axial stress is analyzed. 
Very large plastic zones are observed, with a radius of more than 5 in at the critical 
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loads. Plastic deformation near rivet holes is also very significant. The yielding 
and failure of the rivets on the crack arresting stringers decrease the crack arresting 
capability of a circumferenticaly cracked fuselage; so do the multiple site damages 
in the skin of the fuselage. Since the LEFM approach significantly over-estimates 
the residual strength of a cracked panel and under-estimates the influence of MSD, 
EPFM approach is mandatory for the study of residual strength of a circumferenti- 
cal crack at critical locations 

§ 1.5   Widespread Fatigue Damage Threshold 

The fatigue damage due to the repetitive loading condition of pressurization is one 
of the major concerns among the civil aviation industry. There exist two different 
types of approach in dealing with the multiple site fatigue damage problem. One 
of them is the Multiple Site Damage Threshold (MSDT) approach; the other is 
the Widespread Fatigue Damage Threshold (WFDT) approach [Jeong and Tong 
(1995)]. In the MSDT approach the severity of MSD is measured by the potential 
of their link-up; while in the WFDT approach it is indicated by the reduction of 
residual strength of the aircraft. 

As shown in the Fig. 1.60(a), the MSDT approach requires the study of fatigue 
growth and link-up of a number of small fatigue cracks. If the MSD cracks do 
not link-up during service inspections, it is considered safe. However, small MSD 
cracks may reduce significantly the residual strength of an aircraft in the presence of 
a lead crack, as illustrated in the Fig. 1.60(b). For an aircraft designed to operate at 
a high level of working stress with a small amount of redundant residual strength, 
very small undetectable fatigue cracks can reduce the residual strength to below 
an acceptable level. On the other hand, aircraft with sufficient redundant residual 
strength can have enough residual strength in the presence of detectable fatigue 
cracks. Therefore, using the MSDT approach alone may lead to a false feeling 
of safety; and the MSDT approach alone is not sufficient for the evaluation of the 
severity of multiple site fatigue damage on an aircraft. 

From an operational view point, it is important to predict the widespread fa- 
tigue damage threshold, i.e. the number of loading cycles that will produce fatigue 
cracks such that the residual strength of the aircraft is reduced to bellow an ac- 
ceptable level. With the knowledge of widespread fatigue damage threshold, aging 
aircraft operators can schedule service inspections economically without compro- 
mising safety requirements. This section presents a methodology to predict the 
WFD threshold with numerical examples illustrating the typical characteristics of 
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Figure 1.60: MSD threshold approach and WFD threshold approach 
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Figure 1.61:  A global-intermediate-local hierarchical approach for the residual 
strength analysis of an aircraft fuselage 

an aging aircraft. 

§ 1.5.1   Residual strength analyses 

Global-intermediate-local hierarchical modeling is an efficient approach for the 
residual strength analyses of aircraft fuselages, in the presence of a lead crack and 
MSD. Fig. 1.61 illustrates graphically such a hierarchical approach. 

The intermediate model contains a smaller portion of the cracked fuselage, 
where stringers and frames are modeled in detail, using shell elements. Each rivet 
is modeled individually using spring elements. The empirical formula suggested 
by [Swift (1984)] is used to model the flexibility of rivets. Thus, the influence 
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Figure 1.62: Residual strength curve for the lead crack only case 

of the detailed structure on the membranous stress in the skin can be determined 
through this linear elastic intermediate analysis. Again, the lead crack is modeled 
explicitly; but no mesh refinement around crack tip is made in order to reduce the 
computational cost. 

A rectangular skin model is obtained from the intermediate analysis. In the 
local model the boundary loading conditions at the four edges, and the rivet pin- 
loads on the rivet holes are obtained from the intermediate analysis. The skin-only 
local model is analyzed using Elastic-Plastic Alternating Method, where none of 
the cracks is modeled explicitly. Analytical solutions for an embedded crack in an 
infinite domain, subjected to arbitrary crack surface loadings, are used to capture 
the singular fields near the crack tips. 

A typical residual strength plot obtained from such global-intermediate-local 
analyses is illustrated in Fig. 1.62. In the analysis shown in Fig. 1.62, we assume 
the aircraft fuselage has a radius of 118 inches. The longitudinal lead crack is 
located at a lap joint splice. We assume a broken center tear strap while the center 
frame remains intact. The skin thickness is 0.071 inch. The critical stress intensity 
factor for the skin is taken as Kjc = 90 ksiy/in. Rivets are of radius 0.095 inch. The 



90 Draft dated: May 12, 1991 

frame spacing is 20 inches; and the stringer spacing is 10 inches. 
Fig. 1.62 shows the critical cabin pressure Pcr versus the half crack length a 

of the lead crack. The critical pressure is defined as the cabin pressure at which 
the stress intensity factor(or its equivalent elastic-plastic counter part, T*, which 
is same as J for stationary cracks) at the lead crack tip reaches the critical value. 
It is seen that the residual strength reaches a local maximum shortly after the lead 
crack penetrates the first crack arresting frame. In the numerical modeling, we 
assume that the crack arresting frame remains intact and the tear strap under the 
crack arresting frame is broken, when the lead crack penetrates the crack arresting 
frame. The residual strength curve is obtained by computing the critical pressure 
for different sizes of the lead crack. Therefore, no stable tearing is considered. It is 
seen that the linear elastic analysis significantly over-estimates the residual strength 

of the cracked fuselage. 
The local maximum (see Fig. 1.62) is above the operating pressure, which is 

assumed to be 8.4 psi. Therefore, if a large damage, due to link up of fatigue 
cracks and/or a foreign impact, is induced during the operation, the lead crack will 
be arrested around the local maximum at the operating pressure, provided that the 
damage extends to no more than two bays. However, MSD cracks ahead of the lead 
crack can bring down the local maximum to below the operating pressure. In such a 
case, the fuselage no longer has the required crack arresting capability. The aircraft 
with MSD can still operate with sufficient strength, provided no large damage is 
present in the fuselage. However, it becomes vulnerable to damage, since it no 
long has the capability to arrest a two bay damage. 

Fig. 1.63 shows how the residual strength at the local maximum point decreases 
as the number and the size of fatigue cracks ahead of the lead crack tip increase. 
Here, we assume equal length fatigue cracks emanating from both sides of a rivet 
hole. The crack lengths are measured from the edges of rivet holes to the tips of 
fatigue cracks. The distance between the lead crack tip and the center of the first 
rivet hole is 1 inch. Three different MSD cases are presented. They correspond to 
fatigue cracks emanating from i) the first rivet hole ahead of the lead crack tip; ii) 
the first three rivet holes ahead of the lead crack tip; iii) the first five rivet holes 
ahead of the lead crack tip. From this analysis, we can find the critical size of 

fatigue cracks that will pose a WFD problem. 
Fig. 1.64 shows the reduction of residual strength for the MSD case in which 

there are only two equal-length fatigue cracks emanating from the first rivet hole 
ahead of the lead crack tip, as indicated in the figure. The result obtained using 
Linear Elastic Fracture Mechanics(LEFM) approach and the result obtained using 
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Elastic-Plastic Fracture Mechanics(EPFM) approach are shown in the plot. It is 
seen that LEFM predicts a very small reduction in residual strength. LEFM over- 
estimates the residual strength for the lead-crack only case by a large amount, as 
shown in Fig. 1.63. However, LEFM under-estimate the effect of MSD cracks as 
shown in Fig. 1.64. Thus, using LEFM will lead to the false impression that this 
structure is too strong to have WFD problems. Therefore, we conclude that EPFM 
approach is mandatory in the study of WFD problem. 

The reduction of residual strength depends also strongly on CIMSD, the distance 
between the lead crack tip and center of the first rivet hole. The smaller <iMsD> 
the stronger the influence of MSD cracks. Fig. 1.65 illustrates such an effect. In 
practical application it is difficult to determine accurately and rationally the spacing 
dyisD- The regulatory agency has to decide this requirement. From another point 
of view, the discrete source damage is random in nature. A probabilistic descrip- 
tion seems to be more natural; and a probabilistic analysis is more suitable than a 

deterministic analysis. 

§ 1.5.2   Fatigue crack growth analyses 

After the analyses of the effect of MSD on the crack arresting capability of the 
aircraft fuselage panel, we can perform fatigue crack growth analyses to determine 
the WFD threshold. The hierarchical modeling strategy described in the previous 
subsection is also used for the fatigue analysis. The local fatigue analysis uses 
FEAM and LEFM. Fig. 1.66 shows the results from a simple, straight forward 
fatigue analysis. Forman's crack growth equation [Forman, Kearney, and Engle 
(1967)] is used in the analysis. It is 

j£=       CW (157) 
dN     (\-R)Kc-AK K      ' 

where AK is the stress intensity factor range and R is the stress ratio in cyclic 
loading. The values of Kc, C and n were given by Forman et a/.Forman, Kearney, 
and Engle (1967) as the following 

Kc   —   83 ksivin 

C   =   3 x 10"4 kcyc ksi~2 in'2 

n   =   3 

However, the initial residual stresses near rivet holes can change the fatigue 
life of these MSD cracks significantly. Residual stress due to rivet misfitting, cold 



94 

C/3 

U 

o 

0) 

E 
3 

140 

120 

100 + 

80 

60 

40 

20 

Draft dated: May 12,1991 

- 

0      ©   «0.    ©      © 

-- 

©   -®- -^H"^-   ©                     \ 

-- ^f" 
-©- -©- -o- -O- -^- 

,^J_—. H 1 1 1 1 1 H —1- —1—1—1—1—1—1—1— i  

0.02 0.05 0.08 0.11 0.14 0.17 0.2 

Fatigue Crack Length a (in) 

Figure 1.66: Fatigue crack growth, without considering the effect of residual stress 

working, and rivet clamping forces, and fretting, etc, can all change the fatigue 
behavior. For illustration purpose, we demonstrate a case with the consideration of 
residual stress due to rivet misfitting and cold working. More details of the effect 
due to cold working and rivet misfittingfPark and Atluri (1993)] are presented in 

§ 1.8.6. 
Fig. 1.67 shows the prediction of fatigue growth with the consideration of resid- 

ual stress. It is seen that in the presence of residual stress the fatigue growth be- 
havior changes significantly. When compared to the case where there is no residual 
stress, as seen in Fig. 1.68, the small cracks grow faster and large cracks grow 
slower. Thus, the catch up phenomenon due to such residual stress, i.e., small fa- 
tigue cracks may grow faster to catch up with the sizes of larger cracks, may be 

observed. 
This example of numerical analysis is based on a simplified residual stress 

model. In practice, rivet misfitting and cold working are displacement controlled 
processes. A more elaborated procedure may be needed to evaluate the effect of 
misfitting and cold working. Again, due to the random nature of residual stresses, 
a probabilistic analysis as a follow up to the deterministic analysis is necessary. 
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Figure 1.67: Fatigue crack growth, considering the effect of residual stress 

§ 1.5.3   Conclusions 

It is necessary to use WFDT approach to study the effect of MSD on the crack ar- 
resting capability of an aircraft fuselage, in order to enforce truly the damage toler- 
ance concept. With the knowledge of widespread fatigue damage threshold, aging 
aircraft operators can schedule service inspections economically without compro- 
mising safety requirements; and the aircraft designer can optimize aircraft designs 
for better trade off between production cost, operating cost, maintenance cost and 
structural strength redundancy. Plasticity is very important in the residual strength 
analysis of not only the lead crack in the presence of MSD, but also of the lead crack 
itself. Residual stresses, induced by rivet misfitting, cold working, rivet clamping 
forces, fretting, etc, can change significantly the behavior of fatigue crack growth 
on an aircraft fuselage and WFD threshold. Since discrete source damages are 
random events and the magnitude of residual stresses has also a large scatter, a 
probabilistic analysis as a follow up of the present deterministic analysis is neces- 

sary. 
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§ 1.6   Degradation of Residual Strength in the Presence of MSD: Stable 
Tearing Analyses 

Practical methods for predicting the residual strength of a stiffened aircraft structure 
with a lead crack in the presence of MSD include the plastic zone technique[Swift 
(1985)], the crack tip opening angle (CTOA) method [Newman, Dawicke, Sutton, 
and Bigelow (1993)], and the T*-integral method [Pyo, Okada, and Atluri (1994, 
1995); Singh, Park, and Atluri (1994a); Brust (1995b,a); Wang, Brust, and Atluri 
(1995b,a,c)]. 

The plastic zone method is a simple engineering approximation method. It does 
not require much computational power, but its result may not be reliable. It predicts 
that the main crack will link with an MSD crack if their plastic zones overlap. The 
plastic zones are estimated using an elastic analogy such as an Irwin estimate. Only 
the main crack and the first MSD ahead of the main crack are considered in the 
computation of plastic zone. And, the Irwin estimate of the plastic zone size is not 
very accurate, especially for hardening materials. Further more, crack growth is 
ignored. Thus, significant errors can occur when the ligaments between the cracks 
are large enough to permit crack growth before any link up occurs. This actually 
happened in a series of tests performed at the National Institute of Standards & 
Technology [deWit, Fields, Low, Harne, and Foecke (1995)]. 

The CTOA method, which requires a rather detailed finite element analysis to 
apply, has been shown to be able to predict MSD failures. But, CTOA is a geomet- 
ric parameter and cannot be used under more general fracture conditions such as 
cyclic loading and rate dependent fracture. The CTOA for fracture initiation and 
stable growth is measured in small planar specimens, wherein the crack axis lies in 
the plane of the specimen and the crack plane is perpendicular to the plane of the 
specimen. In this case, the CTOA has a reasonably clear physical basis. However, 
for cracks in cylindrical-shell type fuselage structures, and when such cracks bulge, 
the CTOA and the plane in which it should be measured are ambiguous. Thus, it 
is difficult to use CTOA as a fracture parameter in a predictive analysis for a real 

structure. 
T*-integral is a promising and versatile fracture parameter (as summarized in 

Chapter ??). Being an energy quantity, it is applicable under severe operating con- 
ditions of cyclic loading and rate dependent fracture. Furthermore, it can be defined 
for cracks in any geometry (including a shell type fuselage structure) and when 
cracks bulge [see § 1.7]. 

This section provides validation of the EPFEAM method [presented in Chap- 
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ter ??] and the use of the T*-integral [summarized in Chapter ??] for stable tearing 
analysis. The validation is made by comparing computational predictions of resid- 
ual strength using these techniques, to experimental data produced by The National 
Institute of Standards and Technology (NIST). The experimental data was devel- 
oped on large panels which contained a large main crack with Multiple Site Damage 
(MSD) cracks ahead of each tip of the main crack. The predictions provided here 
are true predictions, i.e. no' fudging' of either the experimental data or the analysis 

predictions are made to make the predictions look better. 

§ 1.6.1   Prediction methodology 

The well accepted resistance curve methodology is used in conjunction with the 
Elastic-Plastic Finite Element Alternating Method (EPFEAM) and 7*-integral frac- 
ture parameter to carry out the computational prediction for the NIST MSD tests. 
The philosophy of the resistance curve methodology is the following. An experi- 
ment on a fracture specimen is analyzed. The values of a fracture mechanics pa- 
rameter is computed for the fracture process. The computed curve of the fracture 
mechanics parameter versus the crack growth magnitude is called the resistance 
curve, which is assumed to be a material property that governs the fracture process. 
This analysis phase was termed "generation phase" by Kanninen (1978); Kanninen 
and Popelar (1985), since the purpose of the analysis is to generate information 
about material properties. Once the resistance curve is available, predictions can 
be made by forcing the fracture process to follow the resistance curve. Details are 

presented in the following. 
Fig. 1.69 shows the flow chart for a simulative analysis. The test panel is first 

loaded to the crack initiation load. Then, the crack is extended by a small amount, 
while the load is changed simultaneously according the load versus crack growth 
curve obtained in the experiment. After computing a fracture parameter (such as T* 
or CTOA) for all the steps during the crack growth simulation, a resistance curve 
(fracture parameter versus crack growth) can be obtained. 

Generation phase analyses of test data to develop a resistance curve are usu- 
ally performed when obtaining the curve directly from the test is time consuming, 
expensive, and impractical. It should be noted that both CTOA [see Newman, 
Dawicke, Sutton, and Bigelow (1993)] and T* [see Okada, Suzuki, Ma, Lam, Pyo, 
Atluri, Kobayashi, and Tan (1995)] resistance curves can and have been obtained 
directly from experiments but doing so is not practical nor necessary. 

In a predictive analysis, which is termed "application phase", the crack exten- 
sion is controled by the T*-resistance curve. A flow chart for the application phase 
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Figure 1.69: EPFEAM crack-growth simulation based on an experimental load 
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Figure 1.70: Predictive EPFEAM crack-growth algorithm based on a T* fracture 
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Table 1.9: Test matrix for NIST tests 

Test 

No 

Main crack MSD cracks 

la 
(in) 

a 
(in) 

dkfSD 
(in) 

SMSD     2&MSD 
(in)       (in) 

number 
per side 

MSD-1 14.0 7.0 

MSD-2 8.0 4.0 

MSD-3 20.0 10.0 

MSD-4 14.0 7.0 7.5 1.0        0.4 3 

MSD-5 5.6 2.8 3.5 1.5        0.6 3 

MSD-6 20.0 10.0 (no anti-buckling guides) 

MSD-7 20.0 10.0 10.5 1.5        0.5 5 

MSD-8 19.0 9.5 10.5 1.5        0.5 10 

MSD-9 10.0 5.0 6.5 1.0        0.4 10 

MSD-10r 20.0 10.0 10.5 1.5        0.5 5 

r repeat of MSD-7 

is shown in Fig. 1.70. It is assumed that i) increase the load(displacement) at the far 
field will increase the T* value at crack tip; ii) extend the crack will cause the T* 
value drops; and iii) 7*-resistance curve does not decrease as the crack extension 
increases. Under these condition, the simple predictive algorithm in Fig. 1.70 can 

be used. 
In the following sections, the test performed at NIST is first summaried; then, 

the results for the generation phase and the applications phase are presented. 

§ 1.6.2   NIST multiple site damage experiments 

A short summary of the Multiple Site Damage (MSD) tests, performed at National 
Institute of Standards and Technology (NIST), is provides in this section. More 
details can be found in [deWit, Fields, Low, Harne, and Foecke (1995)]. 

The series of tests carried out at NIST is summarized in Tab. 1.9. The spec- 
imens were made of 2024-T3 aluminum, 90-inches wide, 150-inches high, 0.04- 
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Figure 1.71: A typical NIST 90 MSD test panel 
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Figure 1.72: Crack locations and MSD spacings on a test panel 

inch thick. Fig. 1.71 shows a typical test panel, where there are two MSD cracks 
in front of each of the main crack tips. The MSD crack definition parameters in 
Tab. 1.9, such as MSD crack spacing SMSD etc, are defined graphically in Fig. 1.72. 
MSD cracks were equally spaced. The specimens were symmetric about their hor- 
izontal and vertical center lines. These flat sheet tests were performed to eliminate 
complications due to curvature and stringers so that good load and displacement 
control data could be obtained. In this fashion, good basic fracture properties were 
obtained. 

As seen in Tab. 1.9, the first three tests were single center crack panel tests with 
different initial crack sizes. Tests MSD-4 through MSD-10 were tests of panels 
with multi-site damages (MSD) in front of the main cracks (except MSD-6 which 
was a repeat of MSD-3 without the use of anti-buckling guides). The numbers of 
MSD cracks ahead of each of the main crack-tips can be found in the last column 
of the Tab. 1.9. It is seen that these MSD tests had various different main crack 
sizes and different spacing of the MSD cracks. 

The cracks were introduced by a series of saw cuts. The crack tips were made 
by the sharpest jeweler's saw cuts available, having a tip radius of 0.003 inch. To 
simulate cracks emanating from rivet holes as occurs in aircraft fuselage, the MSD 
cracks were cut from 0.22-inch holes that were drilled into the sheets before the 
saw cuts. 

These test specimens were the largest structural panels that have been tested 
in tension. Because of the large size of these specimens, a 400 kips machine with 
extended grips was used. The grips were specially designed to enforce uniform 
stress applied to the specimens and were verified with strain gauges at low loads 
during the beginning of the tests. The measured strains were within ±10% of the 
uniform value. It should be noted here that after crack growth and extensive plastic 
deformation, the uniformity of these stresses will not be achieved. In addition, 
anti-buckling guides were used, except for the MSD-6, so that the specimens did 
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not buckle out-of-plane due to the small thickness. 
The test procedure consisted of pulling the specimen to fracture under displace- 

ment control. The displacement was generally applied at load intervals of 20 to 45 
KN. The entire tests typically lasted from 15 to 20 minutes. It was also clear that 
both tips of the main crack did not grow at the same loads [deWit (1995)], due 
to the imperfection in the symmetric condition. This must be kept in mind when 
reviewing the results since crack growth was only recorded at one crack tip. 

Fig. 1.73 provides a graphical representation of the crack growth behavior and 

MSD link-up results as observed from the tests. It is drawn to scale so that the 
main crack size, MSD crack size and crack spacing can be directly observed. In 
Fig. 1.73, the right side of the specimens is shown from the center line of the Center 
Cracked Panels (i.e., centerline of the main large crack) to the edge of the specimen. 
The half width is seen in Fig. 1.73 to be 45 inches. The ligaments that failed 
simultaneously, as observed from the experimental results, are illustrated with gray 
shading. The detailed experimental loads and crack growth response from these 
tests will be summarized in the next section during the discussion of comparisons 
between prediction and test results. The experimental failure loads during the link- 
ups and at the end of the tests are also shown in the next section. 

The tests analyzed are: MSD-1 to MSD-5 and MSD-7 to MSD-9. MSD-6 is a 
single crack test with a crack size identical to the MSD-3 test. This test (MSD-6) 
was performed without buckling guides to observe the differences between a test 
with and without buckling guides. Since the computational analyses conducted 
here were two dimensional, the result is corresponding to the case with an anti- 
buckling guide. Also test MSD-10 is a repeat of test MSD-7. Hence, all unique 
tests in Tab. 1.9 have been modeled. 

In addition, analyses were also performed on three of the Foster-Miller tests 
[Broek (1993)] that had a single crack. These aluminum test panels are flat center- 
cracked panels, only 20 inch wide, 48 inch long, and 0.04 inch thick. They were 
much smaller when compared to those used at NIST. 

§ 1.6.3   Resistance curve calculation - generation phase 

A generation phase analysis was performed on the two single crack tests MSD-2 
and MSD-3. The resistance curve could be CTOA but in this case we obtained the 

T* -Resistance curve. 
The load versus crack growth data from NIST tests MSD-2 and MSD-3 are 

plotted in Fig. 1.74. It is difficult to identify the crack initiation load from the 
experiment data, since it is difficult to detect accurately a small amount of crack 
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Figure 1.74: Experimental data for NIST 90 MSD-2 and MSD-3 

growth. The scattering of measured data points among the different measurement 
methods, such as the data from the optical microscopy and from the video tape 
are significant at the crack initiation stage. Curve fitting can help us removing the 
scattering; and provide us a continuous representation of the test data. These data 
were fitted with curves, as shown in the Fig. 1.74. 

Two generation-phase analyses were performed for each of the two MSD test. 
In the first analysis, the EPFEAM code was used. In the second analysis, a classical 
Finite Element Analysis (FEA) was performed. For the classical finite element 
analysis crack growth was modeled using a node release technique, while for the 
EPFEAM analysis, the method discussed in Chapter ?? was used. The plane stress 
assumption was used and eight node isoparametric elements were modeled. Either 
half or quarter symmetry of the cracked plates were used for analyses (a half model 
is useful to validate the code). The material properties used for the analyses are 
illustrated in the Fig. 1.75. The same material properties were also used for the 

predictive analyses described in the next section. 
The calculated T*-Resistance curves from this generation phase analysis are il- 

lustrated in Fig. 1.76 and Fig. 1.77 for cases MSD-2 and MSD-3, respectively. It is 
clearly seen that computed T* values are basically identical between the two meth- 
ods, i.e. the EPFEAM and the classical FEM. This is a complete validation of the 
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Figure 1.76: The T* for NIST 90 MSD-2 using EPFEAM(ALT) and classical FEM 
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Figure 1.77: The T* for NIST 90 MSD-3 using EPFEAM(ALT) and classical FEM 
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Figure 1.78: The T* for NIST 90 MSD-2 and MSD-3 using EPFEAM(ALT) and 

classical FEM 
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EPFEAM code since the numerical evaluation of T* consists of (see Chapter ??) 
integrating stress and strain (and their derivatives) type quantities at many locations 
along many paths surrounding the growing crack tip. Fig. 1.76 and Fig. 1.77 illus- 
trates the evaluation along 6 paths ranging in size from e = 0.087 inch to e = 0.35 
inch for a complete description of the path definitions for T*). In addition, T* was 
calculated along many other paths with identical good comparison. 

The good agreement of computed T* along many paths between the the EPFEAM 
and classical FEA indicates that the full field solution using EPFEAM throughout 
the entire body is calculated accurately. It has been shown that EPFEAM can cap- 
ture the asymptotic HRR solution (see,) for a power hardening material. However, 
the present comparison is stronger proof of the accuracy of EPFEAM since the 
HRR field comparison is only near the crack tip and the effect of stress and strain 
derivative terms are not considered when comparing results to HRR fields. 

To compare the T* -resistance curves obtained from different tests, Fig. 1.78 
places all of the results on Fig. 1.76 and Fig. 1.77 on a single plot. It is seen that 
the r*-resistance curves for the MSD-2, which had an initial crack size la — 8 
inch, and the T* -resistance curves for the MSD-3, which had an initial crack size 
la = 20 inch, are very close throughout the crack growth history. Ideally, the T*- 
Resistance curves for a given e would be identical regardless of the crack size. The 
differences illustrated in Fig. 1.78 are quite small, well within the scatter band of 
experimental error, and the lot to lot material variability. Indeed, variations of the J- 
Resistance curves from specimen to specimen (especially the initiation value, 7/c) 
are quite significant [Rahman and Brust (1995)]. Thus, the obtained T* -resistance 
curves can be viewed as a material property that governs the stable crack growth 
for aluminum 2024-T3. 

The resistance curves for £ = 0.087 inch in Fig. 1.78 were fitted with an equa- 
tion. The result is 

0.0697 
T* = 0.706 -0.0398Aa-———— (1.58) 

0.175 + Aa v      ' 

where the unit of T* is (Klb/in) and the unit of Aa is in. This curve represents 
an average of the resistance curves obtained from the tests MSD-2 and MSD-3; 
and it was used for all other application phase analyses discussed throughout the 
rest of this dissertation. A discussion of the meaning for the different e path size 
definitions and their physical significance is presented in the Chapter ??. 
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§ 1.6.4   Prediction of single crack tests - application phase (1) 

The predictions are application phase analyses. The tests were analyzed using a dis- 
placement control condition and the T* -Resistance curve is followed. The analysis 
is controlled by the driving force value of T* being forced to follow the Resistance 
Curve throughout the crack growth history (see Fig. 1.70). As such, it is a true 

prediction. 
The first prediction shown here is for the single crack test MSD-1. Among the 

single crack tests(with anti-buckling guides) of NIST, it is the only test that was 
not analyzed in the generation phase (see Tab. 1.9). The analysis was forced to 
follow the T* -Resistance curve obtained in the generation phase. Recall that the 
7*-Resistance curve was the average of these curves (see Fig. 1.76-1.78) obtained 
from the test MSD-2 and MSD-3 in the generation phase analyses. The T* curve 
for e = 0.087 inch was used for all predictions. However, the 7"*-Resistance curve 
for all of the other values of e shown in Fig. 1.78 could have been used and the 
results would be identical. 

Both the load and the crack growth are predicted from the displacement control 
analyses. Fig. 1.79 shows the analysis prediction compared with the experimental 
data. The /""-Resistance curve equation, which was determined from MSD-2 and 
MSD-3 for the use in the prediction, is also shown at the top of the Fig. 1.79. Notice 
that this case is for a crack with a crack length (2a = 14 inch) between those in the 
MSD-2 (2a = 8 inch) and MSD-3 (2a = 20 inch). As seen in Fig. 1.79, both loads 
and crack growth predictions compare well with the experimental data. 

The "steps" in Fig. 1.79 are due to the nature of the predictive analysis. Con- 
sider a crack growth step. An increment of displacement is applied. When the driv- 
ing force value T£ reaches the material resistance value T£ for the current crack 
size, the displacement is held constant while an increment of crack growth is per- 
mitted. If, after the increment of growth, Tp > T^ , the crack must grow more. 
So again, the displacement is held constant and an increment of crack growth is 
modeled. As such, the horizontal "steps" in Fig. 1.79 represent the amount of crack 
growth for a given displacement. Note also that, during a growth step with the 
displacement held constant, the load, which is predicted, drops slightly. If after an 
increment of crack growth, T£ < T£, the growth of the crack is stopped. Hence, 
an additional increment of displacement can be applied. This application phase 
predictive methodology is illustrated graphically in Fig. 1.70. It is emphasized that 
the analyses in Fig. 1.79, as well as all analyses shown in the next section (which 
presents MSD analyses), provide predictions of both load and crack growth using 

only one T* -Resistance Curve. 
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Figure 1.79: Load and crack growth predictions for NIST 90 MSD-1 compared 
with experimental results 

This fashion of predictive analyses allows the numerical test follows the given 
T* -Resistance Curve in an average sense. Small increments of displacements or 
crack growth are necessary in order to follow closely the T* -Resistance Curve. At 
the expense of computational time, it is possible to design a more sophisticated 
algorithm to follow closely the 7*-Resistance Curve and to provide smoother pre- 
dictions without "steps" in the predicted load versus crack-extension diagram. 

Foster-Miller's[Thomson, Hoadley, and McHatton (1993)] fiat panel test PI, 
P2 and P3 are also analyzed to provide additional verification of the predictive 
capability of the method and the obtained T*-resistance curve (Eq. (1.58)). These 
were tension tests of center-cracked panels, with initial crack size 2a = 4,7,11 inch 
for tests PI, P2 and P3 respectively. Fig. 1.80 compares the predictions for three 
tests with different initial crack sizes. Good comparison is observed. Note that the 
resistance curve used for these analyses was obtained from the NIST material and 
not the Foster-Miller material. The mechanical properties of the material were also 

assumed to be the same (Fig. 1.75). 
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Figure 1.80: Load and crack growth predictions for Foster-Miller single crack pan- 
els PI, P2, P3, compared with experimental results 

§ 1.6.5   Prediction ofMSD tests • application phase (2) 

This section describes the results of the analytical predictions of NIST 90 MSD 
tests using EPFEAM and the 7*-resistance curve (Eq. (1.58)), which is obtained 
from the simulation of NIST 90 MSD-2 and MSD-3 in the generation phase. 

Cases MSD-4 and MSD-5 

The experiments labeled MSD-4 and MSD-5 in Tab. 1.9 are seen to contain three 
MSD cracks on each side of the main crack. The main crack size and the spacing 
for the MSD cracks are illustrated schematically in Fig. 1.73. Fig. 1.73 is drawn to 
scale so that the main crack size and spacing can be directly observed. As seen, the 
main crack for MSD-4 is larger than MSD-5 while the MSD cracks are smaller and 

spaced closer together. 
Fig. 1.81 and Fig. 1.82 illustrates the finite element meshes used for MSD-4 

and MSD-5. Half symmetry was used for MSD-4 and MSD-5, i.e. the top half of 
the specimen was modeled and both the left and right half sections of the cracks 
were considered. Fig. 1.81 and Fig. 1.82 illustrates a blowup of left main crack and 
corresponding MSD cracks for these two cases. These mesh details are to scale 
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and the numbers on the scales represent real distances in inches. Also, the MSD 
cracks drawn at the bottom of each mesh and their occurrence in the mesh are also 
illustrated. 

Of course, a quarter model rather than a half model could have been used (and 
was used for cases MSD-7, -8, and -9). However, modeling each crack tip sepa- 
rately provides an excellent check on the computational methodology. More im- 
portantly, the versatility of the EPFEAM method combined with the T* -integral 
fracture methodology can be considered. For instance, by introducing an initial 
perturbation, the effect of uneven crack growth rates for each crack tip can be stud- 
ied. For instance, the right half main crack tip could be made slightly larger than the 
left crack, and the effect of uneven right and left side crack tip growth and the cor- 
responding non-symmetric crack growth (which was observed experimentally) can 
be accounted for very easily. The specimens, which had all cracks machined with 
a saw, did not have "perfect" crack lengths and the corresponding MSD separation 
(illustrated in Tab. 1.9) certainly have a statistical scatter associated with their dis- 
tances. The perturbations associated with the left and right side crack tips growing 
at different rates can have an important effect on failure loads. This should be kept 
in mind when observing the following predictions since the left and right cracks 
did indeed grow at different rates in the experiments. The experiments tracked the 
left side crack only. Finally, it is important to note that in real aircraft fuselages, the 
same effect will occur and can have an important effect on residual strength. This is 
especially true since stringers and frames are present. This "crack tip perturbation" 
effect is not studied here, but should be considered in future work since it has not 
been studied to date in the literature. 

The application phase predictions for tests MSD-4 and MSD-5 are shown in 
Fig. 1.83 and Fig. 1.84, respectively. In these figures (and all other similar fig- 
ures shown subsequently) the abscissa represents crack growth and the ordinate 
represents load as predicted using the algorithm shown in Fig. 1.70. The predicted 
results are for the right crack tip. The right and left side cracks grew symmetrically, 
since no initial crack size or other perturbation sources, such as slight statistical dif- 
ferences in the 7*-Resistance curves within the specimen, were considered in the 
analyses here. In Fig. 1.83 or Fig. 1.84 the point of zero crack extension is corre- 
sponding to the initial position of the right tip of the main crack. The MSD cracks 
are drawn to scale in these figures so that the extension of the main crack and MSD 
link-up points, and corresponding simultaneous ligament failure predictions can be 
observed. 

It is seen that the MSD-4 predictions (Fig. 1.83) are excellent. Both the link-up 
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Figure 1.81: FEM mesh, in the vicinity of the left MSD cracks, for NIST 90 MSD-4 
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Figure 1.82: FEM mesh, in the vicinity of the left MSD cracks, for NIST 90 MSD-5 
in the EPFEAM analysis 
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Figure 1.83: Load and crack growth predictions for NIST 90 MSD-4 compared 
with experimental results 

loads, maximum load, and crack growth predictions are almost identical with the 
experimental values. Fig. 1.84 likewise shows good predictions for MSD-5 except 
that the failure load is predicted to be identical to the second/third link-up load. Ex- 
perimentally, a slight increase in load was observed (after the third link-up) at about 
4.5 inches of crack growth. However, these predictions are considered excellent 
given the many sources of statistical variability for these experiments. This vari- 
ability includes: material lot variability of material properties such as stress-strain 
response and T* -Resistance curves, slight errors in specimen fabrication which led 
to the experimentally observed crack growth rate differences between the left and 
right side crack tips, etc. The sources of statistical variability are discussed further 

in the discussion section. 

Case MSD-7 

The application phase prediction for test MSD-7 is shown in Fig. 1.85. This test had 
five MSD cracks ahead of both tips of the main crack. The crack spacing and crack 
sizes are illustrated in Fig. 1.73 and at the top of Fig. 1.85. As seen in Fig. 1.73, 
all of the MSD cracks joined together after the second link-up (gray shaded regions 
- Fig. 1.73). Excellent predictions of both link-up loads, link-up instability, and 
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Figure 1.84: Load and crack growth predictions for NIST 90 MSD-5 compared 
with experimental results 

crack growth behavior are seen in Fig. 1.85. Note that MSD-10 test data is also 
presented here. Having the same crack size, the MSD-7 and MSD-10 tests were 
identical. Some of the statistical variability in results can be seen here with the test 
results for MSD-10 higher than those for MSD-7. The analyses for this case, as 
well as for MSD-8 and MSD-9 (discussed next), used a quarter model, i.e. only the 
right crack was modeled. 

Cases MSD-8 and MSD-9 

These tests had ten MSD cracks ahead of both main cracks. Fig. 1.73 illustrates the 
crack configurations, sizes, and MSD separation. It is seen that test MSD-8 had a 
larger main crack, larger MSD spacing, and larger MSD separation compared with 

test results for MSD-9. 
The application phase predictions for tests MSD-8 and MSD-9 are shown in 

Fig. 1.86 and Fig. 1.87, respectively. The MSD spacing is illustrated at the bottom 
of these figures. Again, the initial position of the right main crack tip is correspond- 
ing to the point of zero crack extension in Fig. 1.86 and Fig. 1.87, with the MSD 
spacing ahead of the main cracks. The initiation load prediction for MSD-8 (Figure 
14) is quite good. The predicted load at first link-up is slightly higher than the test 
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Figure 1.85: Load and crack growth predictions for NIST 90 MSD-7 compared 
with experimental results 

data. In addition, the predicted load at second link-up is higher than the test data. 
After the second link-up, the MSD cracks all linked together as seen in Fig. 1.86 
after about 2.5 inches of crack growth. This link-up instability was predicted by the 
EPFEAM model quite well. 

At this point it is interesting to observe the results after the unstable MSD link- 
up. This unstable link-up occurs when the main crack links with all of the MSD 
cracks between crack growth of about 2.5 to 14 inches. The experiments were 
performed via displacement control (as were the analyses). When the MSD insta- 
bility occurred between crack growth of 2.5 to 14 inches the crack was observed 
to ' pop' in an unstable fashion, i.e., the crack propagated in a dynamic unstable 
fashion as all of the MSD cracks linked together. Since the displacement was held 
constant while the crack jumped almost 12 inches, the load must drop. This is seen 
in Fig. 1.86 where the experimental load is about 20 Kips after the crack jump at 
a crack extension value of about 15 inches. The experimental displacement is then 
increased until the final load of about 40 Kips is reached. The predictions, which 
are all quasi-static, cannot account for this dynamic crack jump at present. There 
are two important events that occurred experimentally here, and which certainly 
would occur in a real aircraft. These are: (i) The inertial effects of the crack jump 
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Figure 1.86: Load and crack growth predictions for NIST 90 MSD-8 compared 
with experimental results 

and the greatly increased crack speed and corresponding strain-rates near the grow- 
ing crack tips reduce the size of the plastic zone and lead to a more 'brittle type' 
crack growth compared with quasi-static growth, and (ii) because the displacement 
was held constant during the crack jump, the load decreased, and as a result, an 
unload-reload cycle occurred. It is well known that such unload/reload effects re- 
duce the load carrying capacity of stable growing cracks. This latter effect can be 
accounted for with the current model (except it may be necessary to implement 
a more appropriate cyclic plasticity constitutive law since an isotropic hardening 
model was used for these analyses). Both the dynamic crack jump effect and the 
cyclic effect should be considered in future work, since they can reduce signifi- 
cantly the load carrying capacity of a structure. It should be emphasized that both 
effects are present in real aircraft since, due to the stringers, frames, and tear straps, 
displacement control MSD' crack jumps' will occur in service. Note from Fig. 1.86 
that the predicted load slowly decreases at the predicted' crack instability' since we 

use a quasi-static analysis. 
Fig. 1.87 illustrates the prediction for MSD-9. Note that the initial link-up 

led to a rapid crack jump (Fig. 1.73 and Fig. 1.87). The rapid crack jump was 
also predicted via the model. The maximum load is somewhat under-predicted 
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Figure 1.87: Load and crack growth predictions for NIST 90 MSD-9 compared 
with experimental results 

compared with the experimental results. The same effect of the crack jump and 
unload/reload effect (discussed above regarding Fig. 1.87) is observed here after 
about 13 inches of crack growth. 

Predictions of plastic zones and stresses 

It was seen in the previous section that the load versus crack growth predictions 
based on the EPFEAM method and the T* -integral fracture theory provided good 
predictions of the phenomena of MSD crack growth, link-up, and unstable fracture. 
Thus, the tools presented above can be readily used to make residual strength pre- 
dictions of aircraft fuselage MSD cracking. In this section, some examples of full 
field solutions of displacements, stresses and strains are presented to show that the 
tools presented here can also provide detailed information in helping understanding 
the MSD phenomena. For the purpose of this presentation, results for plastic zones 
and stresses for case MSD-4 are illustrated. The results for all of the other cases 
are similar to these. 

Fig. 1.88 illustrates the development of the equivalent plastic strains ahead of 
the main crack and around the MSD cracks, while Fig. 1.89 through Fig. 1.91 
shows the evolution of various stress components. The vicinity of the left crack tip 
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of the main crack and the associated MSD cracks ahead of it is shown in each of 
these contour plots. The dimensions along the ordinate and abscissa represent real 
dimensions in inches. Thus, the shapes of plastic zones and stress zones are not 

distorted. 
Recall from Tab. 1.9, Fig. 1.73 and Fig. 1.83 that MSD-4 had a main half crack 

initial length of 7 inches, with three MSD cracks ahead of each main crack tip. The 
current position of the left tip of the main crack and the position of the remaining 
MSD cracks, i.e. those have not been absorbed by the main crack, are indicated at 
the bottom of each contour plot, using a black-white bar. The black parts indicate 

the ligaments, while white parts correspond to the cracks. 
Contour plots are provided at four different locations of crack growth. They are 

(a) right before the first link up (2a = 7.2 inch); (b) after the first link up (2a = 8.0 
inch); (c) after the second link up (2a = 9.0 inch); (d) after all MSD cracks are 
linked up (2a = 9.9 inch). Detailed discussions about these plots are provided in 

the following. 
(1) Plastic zones 
Fig. 1.88 illustrates the development of the equivalent plastic strains ahead of 

the main crack and around the MSD cracks. The predicted plastic zones can be 
observed in Fig. 1.88 without distortion since the aspect ratio of the plot is reserved. 

Fig. 1.88(a) illustrates the plastic zone contours near the crack tip regions just 
after the main crack has begun growing. Fig. 1.88(a) shows the tip of the main 
crack at -7.2 inches. Observe that the plastic zone size at the main tip, is about 
the order of the MSD crack lengths. The corresponding load at this point is about 
45 Kips as obtained from Fig. 1.83 for 0.2 inches of crack growth. Note that the 
minimum plastic strain contour plotted here is 0.002 (i.e., the 0.2% offset strain). 
Note that the presence of the MSD crack ahead of the main crack "stretches" the 
plastic zone in the crack growth direction as compared with the usual plane stress 
plastic zone shape for a single crack and that the entire net section between the first 
MSD crack and the main crack is plastic. Observe also from Fig. 1.88(a) that the 
plastic zone at the left tip of the first MSD crack is becoming larger, and that the net 
section between the left tip of the first MSD crack and the right tip of the second 
MSD crack is approaching full plasticity. Note also that there are small zones of 
plasticity already developing at the tips of all cracks at this point just after main 

crack initiation. 
Fig. 1.89(b) illustrates the plastic zone when the main crack is 8 inches long. 

This represents a point after the main crack and first MSD crack have linked and the 
current main crack is half way through the ligament between the first and second 
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MSD cracks. The residual plasticity at the ligament between the main crack and the 
first MSD crack (which is now a region of the current main crack tip since the main 
crack has grown through the first MSD crack ligament) is seen to be very similar 
to that seen in Fig. 1.89(a). It is also important to observe that the net ligament 
between the current main crack tip (at 8-inches) and the second MSD crack is fully 
plastic. Moreover, the ligament between the second and third MSD crack is fully 
plastic. From Fig. 1.83 the load is about 49 Kips for crack growth of 1-inch and 
the link-up between the current main crack and the second MSD crack occurs at 
a crack growth of 1.3 inches. This indicates that the load carrying capacity of the 
ligaments between the MSD crack is about reached. But this does not mean that 
the loading carrying capacity of the panel is reached, since the main ligament that 
is the part after the MSD cracks may still be able to carry load. It is seen that the 
plastic zone at the left tip of the third MSD crack is still very small. 

Fig. 1.88(c) shows the plastic zone profiles when the main crack is 9 inches 
long, i.e., total crack growth of 2 inches has occurred. At this point the main crack 
has linked with both the first and second MSD cracks and is currently halfway 
through the ligament between the second and last MSD crack. As seen from 
Fig. 1.83, the current load is about 50 Kips at this point. Again, the plastic zones 
along the main crack faces at the locations where the first two MSD crack ligaments 
were located are similar in size and shape to the zone sizes before linkage occurred 
[see Fig. 1.88(a) and (b)]. Note that the ligament ahead of the left side of the last 
MSD crack is beginning to attain a significant plastic zone. 

Finally, Fig. 1.88(d) shows the plastic zone profiles after all MSD cracks have 
linked and the current main crack has grown 0.2 inches ahead of the left tip of the 
last MSD crack. At this point the main crack has grown a total of 2.9 inches and 
the load (from Figure 11) is currently about 54 Kips. As seen in Fig. 1.83, at this 
point there is still a significant amount of residual strength left in this specimen. 

(2) Stresses 
Fig. 1.89 illustrates ax at four different crack growth lengths for MSD-4. The 

x-component of stress is along the crack growth direction. The x-coordinate of - 
7 represents the initial position of the left tip of the main crack. The three MSD 
crack lengths and locations appear at the bottom of Fig. 1.89. For Fig. 1.89(a) the 
main crack has grown 0.2 inches through the ligament between the main and first 
MSD crack and at that point the ligament is only 0.1 inches long. This ligament 
can be identified by the red color (high cx in tension) above the x = -7.2 and - 
7.3 in Fig. 1.89(a). In addition, the ligament between the first and second MSD 
cracks experiences a large stress state. Also, observe the "cyclical" stress pattern 
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that develops along the crack extension direction caused by MSD. Fig. 1.89(b) 
shows the ox stresses after the main (half) crack has grown to 8.0 inches. Likewise, 
Fig. 1.89(c) and (d) show this stress component for main (half) crack lengths of a 

9.0 and 9.9 inches, respectively. 
By observing the progression of ax as the main crack grows in Fig. 1.89 (a) 

through (d), the following trends are noted. 

1. A large zone of compressive stress develops above the main crack. Despite 
the fact that these figures show a blowup of the region in front of the left 
crack tip, it should be clear that this compressive zone is large and extends 
above and along the entire main crack. Indeed, these stresses are the reason 
that buckling guides are required for the experiments. 

2. A compressive ' wake' zone of larger magnitude stresses above the MSD 
crack ligaments is seen, after these ligaments are absorbed by the main crack. 
This may be seen from the dark blue color above the ligaments between the 
second and third MSD cracks (i.e. above the -8.0 and -9.0 coordinates). 
This large wake compression zone is well known to exist for the single crack 
growth problem [see Brust, Nishioka, Atluri, and Nakagaki (1985); Brust, 
McGowan, and Atluri (1986) for instance] and can result in significant resid- 
ual stresses after removal of the load. This zone contributes to the 'un- 
load/reload' phenomena where a cycle of unloading followed by reloading 
reduces the load carrying capacity of the cracked structure [Brust, McGowan, 

and Atluri (1986)]. 

Fig. 1.90(a) through (d) show the shear stress component (a^y) at these same 
four crack growth locations as discussed for Fig. 1.88 and Fig. 1.89. The locations 
of the current main crack tip as well as the MSD cracks can be observed by focusing 
on the large (pairs of dark red and dark blue contours) stresses. It is interesting to 
observe that the zone size of the large shear stresses at the main crack tip is rather 
small when MSD is present [Fig. 1.90(a) through (c)] while it is much larger when 
all cracks have linked up and only one large crack remains [Fig. 1.90(d)]. However, 
the zone size of the large shear stresses for the MSD cracks [Fig. 1.90(a) through 
(c)] is quite large compared to the MSD crack lengths. 

Fig. 1.91(a) through (d) show the same type of contour plots for ay, where the 
y coordinate direction is perpendicular to the crack. Again, the crack tip locations 
may be easily identified by the large (red) stress contours and the net section liga- 
ment stresses are quite large. The traction free condition at crack surfaces results 
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Figure 1.90: Stress contour plot(Oxy) at different locations of crack growth 
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in the dark blue zones (low ay stress) above the cracks, especially the large zone 
above the main crack. These plots provide a graphical check on the accuracy of 
the EPFEAM algorithm, since the traction free condition is achieved by erasing the 
traction at the locations of cracks with analytical solutions. 

§ 1.6.6   Conclusions 

This section presented the computational predictions and corresponding compar- 
isons with test data developed at National Institute of Standards and Technology(NIST) 
on large panels with MSD. NIST performed ten experiments on wide panels, of 
which eight were unique and two were repeats. All eight unique tests were ana- 
lyzed using the Elastic-Plastic Finite Element Alternating Method(EPFEAM). In 
addition, three tests performed by Foster-Miller were analyzed. Of the eight NIST 
tests, three were single crack tests and five had MSD cracks ahead of a main crack. 
The three Foster-Miller tests considered here were single center crack panel tests. 

The predictions were performed as follows: 

• First, the tensile stress-strain properties are obtained for the material (2024- 
T3 aluminum). This curve is used to define the elastic and plastic material 
properties. 

• Second, a T* material resistance curve was obtained by modeling two of the 
single crack NIST tests. In such a generation phase analysis, the experimen- 
tal load versus crack growth record from a single crack test is modeled and 
the result is the 7*-Resistance curve. This curve is then assumed to be an 
intrinsic material property that is only a function of crack growth and is used 
to predict the failure of all other tests. 

• Finally, all the analyses are performed using the Elastic Plastic Finite Ele- 
ment Alternating Method (EPFEAM) using the stress strain properties of the 
first step. The driving force value of T* (i.e., Tp) is forced to follow the 
T*-Resistance curve (i.e., TR) from the second step. Since the analyses were 
performed via displacement control, the predictions consisted of loads and 
crack growth. These were then directly compared with experimental data. 

It is emphasized that these predictions are simple to obtain with this newly 
developed methodology. Moreover, all predictions were made using the simple 
three step procedure described above and no "fudging" of any results was made. 
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Figure 1.92: Bulging of a longitudinal crack 

Many of the predictions compared exactly with the experimental data and at worst, 
a difference of 15% between analysis and experiment was obtained. These results 
are considered excellent given the material and test statistical variability. 

§ 1.7   Crack-Bulging in a Pressurized Aircraft Fuselage: Large Deformation 
Analyses 

§ 1.7.1   Introduction 

Large longitudinal cracks in a fuselage may control the residual strength of the 
structure. Such cracks tend to bulge or "pillow", developing a double-curvature 
near the crack tip (see Fig. 1.92). For a bulged crack of sufficient length, the lon- 
gitudinal stress in the immediate vicinity of the crack tip may equal or exceed a 
certain critical value. As a consequence, the crack may change its growth direction 
from longitudinal to circumferential, a phenomenon known as napping. Flapping 
is a favorable phenomenon in that it prevents the explosive decompression of the 
aircraft by relieving the internal pressure and thereby stopping the crack growth. 
Thus, a knowledge of the stress field around the tip of such a crack is essential 
for the economic design of new aircraft and the structural integrity evaluation of 
aging aircraft. Computational tools are needed to achieve this goal. The computa- 
tional problems associated with large longitudinal cracks in pressurised fuselages 
are thus twofold: (1) obtain the values of a suitable fracture parameter that quanti- 
fies the severity of the conditions near the crack tip; and, (2) obtain a quantitative 



§ 1.7: 133 

criterion for flapping [Atluri and Tong (1991)]. 
The stress field near the crack tip is affected by various factors viz. the large de- 

formation, presence of stiffeners and other structural elements, and plasticity near 
the crack tip. Previous work has ignored the plasticity effects and utilized the stress 
intensity factor as the fracture parameter. The bulging of the crack edges leads 
to an increase in the mode-I stress intensity factor from that of an equivalent flat 
sheet and can be expressed in terms of a "bulge factor". Swift (1987) obtained 
an empirical formula for the bulge factor by comparison of fatigue test results of 
full-scale DC-10 fuselage panels with those of flat panels. Swift's factor was found 
to be valid for cracks that were sufficiently far away from the stiffeners. Lemaitre, 
Turbat, and Loubet (1977) were the first to perform large deformation analysis of 
these problems and obtained the energy release rate. Riks (1987) performed a ge- 
ometrically nonlinear analysis to obtain energy release rates which were used to 
determine bulge factors. In addition, he found that the bulging displacement at the 
center of the crack is a nonlinear function of the pressure and that the bulge factor 
decreases with increasing internal pressure, thereby demonstrating the importance 
of a geometrically nonlinear analysis. Ansell (1988) performed a geometrically 
nonlinear analysis and reported deformation patterns similar to those reported by 
Riks. He also performed a large number of experiments, and parametric studies, 
and proposed an empirical formula for the bulge factor. Chen (1990) and Chen and 
Schijve (1991) have also developed empirical formulae for bulge factors. Their 
analysis was performed on a simplified model of the zone of bulge, using an en- 
ergy balance approach and an expression for the out-of-plane displacement based 
on experimental observations. Rankin, Brogan, and Riks (1993) have developed 
a computational procedure to evaluate the energy release rates of cracks in pres- 
surised fuselages based on geometrically nonlinear shell finite elements. They used 
a "crack-closure integral" approach to determine the energy release rate. 

Other workers have computed stress intensity factors or energy release rates di- 
rectly for particular configurations. Miller, Kaelber, and Worden (1992) computed 
stress intensity factors for cracks in narrow-body and wide-body configurations us- 
ing a geometrically nonlinear finite element analysis and found good comparison 
of fatigue life predictions made using these stress intensity factors with results of 
full-scale pressurised panel tests. Potyondy (1993) developed a methodology for 
simulating curvilinear crack growth in thin, stiffened, pressurised shells and a mod- 
ified crack closure integral for computing various components of the energy release 
rate from the results of a geometrically nonlinear shell finite element analysis. He 
obtained good comparison of crack trajectory and fatigue life with results of a full- 
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Figure 1.93: Hierarchical modeling strategy. 

scale pressurised panel test. 
It is worth noting again that the plasticity at the crack tip has been ignored com- 

pletely in all previous work. The present work describes a computational method- 
ology which incorporates the plasticity effects and allows one to compute a suit- 
able nonlinear fracture parameter, the T* -integral, that is valid in the presence of 
the large deformations and plasticity occurring near the crack tip. The method- 
ology consists of a hierarchical modeling of the cracked fuselage involving three 
stages of analysis. The global analysis is a linear shell finite element analysis of a 
large portion of the fuselage; the intermediate analysis is a geometrically nonlinear 
shell finite element analysis of a smaller portion (the section in which bulge effects 
are predominant); and, the local analysis is a hypoelastic-plastic three-dimensional 

solid finite element analysis of the fuselage skin. 
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Table 1.10: Load and geometric properties of the fuselage model 

Internal Pressure 8.0 psi 

Radius 74.0 inches 

Longitudinal Stiffener (Stringer)      Height - 1.0 inches 

Thickness - 0.342 inches 

Circumferential Stiffener (Frame)    Height - 2.0 inches 

Thickness - 0.171 inches 

Stringer Spacing 9.3 inches 

Frame Spacing 20.0 inches 

§ 7.7.2   Computational models 

The three models in the hierarchical strategy are illustrated in Fig. 1.93. The first 
stage (global model) is a linear elastic shell finite element analysis in which the 
stiffeners are modeled using beam elements. A linear model suffices, since global 
buckling and related instability phenomena are not investigated. Symmetry bound- 
ary conditions approximating a closed cylinder are imposed on the global model. 
The portion of the fuselage containing the crack, where the nonlinear bulging is 
prominent, is contained within the geometrically nonlinear shell finite element 
model which forms the second stage (intermediate model) of the analysis. Stiffen- 
ers are modeled using shell elements. Displacements and rotations from the global 
model are imposed on the panel boundary. The third stage (local model) is a 3D 
solid finite element analysis of a portion of the cracked skin. The portion is cho- 
sen so that the plastic zone is contained well within its boundary. Displacements 
and rotations from the intermediate model are imposed on the portion's boundary 
after transformation from the shell space to 3D. A hypoelastic-plastic constitutive 
model is used with an objective stress update. The nonlinear fracture parameters 

are evaluated from the local model. 
The present methodology was exercised on a number of example problems. The 

bulging of cracks is affected by many factors such as the presence of stiffeners, fas- 
tener flexibility, and skin thickness. In the present examples, fastener flexibility 
is not modeled; the skin is assumed to be attached rigidly to the stiffeners. (Note 
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Table 1.11: Example problems 

Name Stiffened Crack Length Offset Skin Thickness 

(inches) (inches) (inches) 

Case 1 No 10.0 - 0.036 

Case 2 No 15.0 - 0.036 

Case 3 Yes 10.0 0.0 0.036 

Case 4 Yes 15.0 0.0 0.036 

Case 5 Yes 10.0 2.08 0.036 

Case 6 Yes 15.0 2.08 0.036 

Case 7 Yes 10.0 0.0 0.072 

Case 8 Yes 10.0 2.08 0.072 

that fastener flexibility could be modeled by incorporating it into the global and 
intermediate models.) The example fuselage model is representative of the narrow- 
body fuselage configuration studied by Rankin, Brogan, and Riks (1993) (cf. Fig. 
1.95 and Tab. 1.10). The effects of stiffening elements, crack length, crack loca- 
tion, and skin thickness are examined for the eight cases shown in Tab. 1.11. The 
offset value in Tab. 1.11 is the distance by which the crack has been offset from the 
midbay towards the stringer (in the positive X2 direction of Fig. 1.94). 

The Young's modulus of the skin and the stiffeners are 10,500 ksi and 10,700 
ksi, respectively. The Poission's ratio for both skin and stiffeners is taken to be 
0.33. For the local analysis of the skin, a piecewise approximation of the uni-axial 
stress strain curve of A12024-T3, given in MTL-HDBK-5E (1987), is adopted for 
the flow rule [see Fig. 1.75]. 

The global model consisted of 5 frame bays and 7 stringer bays with symme- 
try boundary conditions approximating a closed cylinder. Each of the eight finite 
element models contained approximately 12,000 degrees of freedom. The interme- 
diate model consisted of 2 frame bays and 3 stringer bays (a slightly larger inter- 
mediate model was required for Case 2 since the bulge out zone was considerably 
larger), with an average of approximately 15,000 degrees of freedom. The local 
analysis was performed on a rectangular portion of the skin with a side length of 5- 
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Figure 1.94: Crack tip coordinate system. 

6 inches with approximately 8,000 degrees of freedom. For the computation of the 
T* -integral, the ^-function was chosen to be constant through the thickness, with 
sixteen elements about the crack tip used in the computation. The total analysis 
time did not exceed eight hours (global: 0.4-0.5 hours; intermediate: 1.5-2.0 hours; 
local: 3-5 hours) on a HP-735 workstation. Deformed meshes of the various stages 
of the analysis for Case 6 are shown in Figs. 1.96,1.97, and 1.98. As expected, the 
global model significantly overestimates the bulging deformation which is modeled 
more accurately in the intermediate and local models. 

§7.7.3   Numerical results 

The computed values of T* are presented in Figs. 1.99,1.100,1.101, and 1.102. In 
most cases, plasticity began to develop after a load factor of 0.25, and at large load 
factors (greater than 0.5) the variation of T* is nearly linear. Stiffening produces 
a large reduction in T{ (cf. Fig. 1.99). Offsetting the crack by one quarter of bay 
length has no significant effect on T{ (cf. Fig. 1.100). Doubling the skin thickness 
while maintaining the same loading, reduces 7j* by more than half (cf. Fig. 1.101). 
The computed value of T2* is negligible for the cases in which the crack is centered 
between the stringers and becomes nearly 40% of the 7j* value for the offset crack 
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Figure 1.95: Example fuselage model. 

Figure 1.96: Deformed global model, Case 6 (magnification 5.0). 
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Figure 1.97: Deformed intermediate model, Case 6 (magnification 5.0). 

Figure 1.98: Deformed local model, Case 6 (magnification 5.0). 
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(cf. Fig. 1.102). 
In an industrial setting, a nonlinear analysis may not be feasible, and often only 

a linear stiffened shell analysis is performed. The present methodology can be used 
to develop correction factors which account for both the geometric nonlinearity and 
the plasticity. The correction factors are defined as 

T* 
Correction Factor = -^-, (1.59) 

Tu 

where T^ denotes the value of 7j* obtained from a linear elastic analysis. Note 

that 7j* is identical to the energy release rate G/, and is related to the various stress 
intensity factors via well-known relations [Hui and Zehnder (1993)]. 

The computed correction factors are presented in Figs. 1.103 and 1.104. They 
were obtained by performing a geometrically linear elastic analysis of the inter- 
mediate model and computing G/ using the extension of the modified crack closure 
technique described in Potyondy (1993). The correction factors decrease as the load 
is increased because of the growing discrepancy between the bulging displacements 
of the linear and nonlinear models. As the nonlinear effects increase with increas- 
ing load factor, the correction factor decreases. The trend in the correction factors 
for the thicker shell differs from that of the thinner cases (cf. Fig. 1.104). The non- 
linear effects do not develop as rapidly for the thicker and thus stiffer shell causing 
these correction factors to remain near unity for small load levels. 

As stated previously, the present work is the first attempt to evaluate quan- 
titatively the effect of plasticity occurring at the tips of a bulging crack. In the 
presence of plasticity, the stress intensity factors are no longer theoretically valid 
fracture parameters, and the T* -integral may be used. For a monotonically loaded 
elastic-plastic structure, T* has the meaning of an energy-flux to the crack tip. For 
an elastic-plastic structure with growing cracks, T£ has the meaning of an energy 
flux to the process-zone of size e near the crack tip. It is valid for the behaviour 
occurring in all three hierarchical models (global: linear elastic; intermediate: ge- 
ometrically nonlinear elastic; and local: both geometrically and materially nonlin- 
ear). The effect of both the geometric nonlinearity and the plasticity is quantified 
in Figs. 1.103 and 1.104 by the correction factor of Eq. 1.59. The effect of the 
plasticity alone upon T* is quantified in Fig. 1.105 by plotting the ratio of T{ to 
Tj*, where If is computed both with and without plasticity. The plot in Fig. 1.105 
demonstrates that the plasticity results in a reduction of T{. (Geometric nonlin- 
earity is present for both cases. The cases with no plasticity were computed using 
the energy release rate of the geometrically nonlinear solution using the technique 
described in Potyondy (1993). This approach was verified for Case 1 where the 
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0.6 

2    0.3   - 

0.1 

Case Stiffened  Crack Length Offset Thickness 
3 Yes              10' No 0.036"     -•— 
S Yes              10" Yes 0.036"     -1— 

■;$'" 4 Yes              15" No 0.036"     -B- 
6 Yes              15" Yes 0.036"     -X-- .#' 

■ 

**'' 
*,#'' 

..?;" 
.•jff"     - 

jr^*' 

.■M" ->£T' 

^gg- '                 » ■            ■            i            i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Load Factor 

0.9 

Figure 1.100: Tf-Integral, effect of offset. 



142 Draft dated: May 12, 1991 

c   0.25 

0.2 

0.16 

1 

Case 

 1 1 1—  

Stiffened  Crack Length  Offset 

-i 1— ■ 

Thickness 

1 

/ \ 

- 

3 
7 
5 
e 

Yes              10- 
Yes              10" 
Yes              10" 
Yes              10" 

No 
No 
Yes 
Yes 

0.036-    ■*— 
0.072-    -I- 
0.036"    -B- 
0.072-     -*-- 

s® 
& 

 i  

,-+--".-x-" 

.-■X""" 

J7 

--■X"' 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Load Factor 

Figure 1.101: T{-Integral, effect of skin gauge. 

8   -0.1 & 
S 

 1 1— i             i ""I T ■     '       1                     1 

■"Hb.-.?.    "      " 
"**■-. "+~~~-+-_ 

X... ""■+■*» 

'"■"x. 
"■+--- 

"x '*"+.. 
x._ "t-. 

-■+ 

v"x„ 

"~~+^-_" 

" ""x,. 
Case  Stiffened Crack Length Offset Thickness                       ^c^ 

3          Yes 10" No 0.036"     -♦— ""^ 5          Yes 10" Yes 0.036'     -H- 
4          Yes 15" No 0.036"     -B-- ^x"'~-- 
6          Yes 15' Yes 0.036"     -*- 

i      i 1 1_ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Load Factor 

Figure 1.102: T2*-Integral 



§ 1.7: 143 

1 

—r~ 1 1 

Case Stiffened 

 1 r 

Crack Length Offset 

"I" -   1 

Thickness 

1 No 10" No 0.036"    -•— 
3 Yes 10" No 0.036"     -+•- 
? No 15" No 0.036"     -B-- 
4 Yes 15" No 0.036"     -x  

0.8 ' 

o *4 
CD 
u. 0.6 - 
o 

<D 
a 

Ö 
0.4 - 

Ö Ms, 

•Q. 
■x, 

0.2 - ■B.. 
■Q. 

'-G- 

•x- 
■-X- "^fe ■5^" -gh^-_4  - 

..1. l 

•B-..a... Q-- ■•Q....Q....Q ...Q-. -B—-B----Q. —Q....J 

i                   i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Load Factor 

Figure 1.103: Correction factors, Cases 1-4. 

1 „     H=:.:.:.g.... Case  Stiffened Crack Length Offset Thickness 

X.   -Q... 5         Yes             10" Yes 0.036"     -»— 
N, "*■ 6          Yes              15" Yes 0.036"     -i— 

\                    ~~~'x m          7          Yes              10" No 0.072"     -B-- 
v_ ■•..      8          Yes              10" Yes 0.072"      x 

0.8 

w "■»C-B. 

Ti "X-.'-Q. 

LL 0.6 ■  \   \ 
- 

C 
o 
•6 
P 

*        N, 
;;;S--,: 

"*;;:*-.ü41..   „ ~«---*,,,M 
K \               Nv 

0.4 

0? . '-"--.-.,. ^♦ 

■               i               i               i               i i               i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Load Factor 

Figure 1.104: Correction factors, Cases 5-8. 



144 Draft dated: May 12, 1997 

u.    0.6 

0.4  - 

0.2   - 

r              i              i 

Case Plasticity 

1 

Stiffened Crack Length Offset Thickness 

% 

3 
3 
4 
4 

Yes 
No 
Yes 
No 

Yes 
Yes 
Yes 
Yes 

10" 
10" 
15" 
15" 

No 
No 
No 
No 

0.036"    -»- 
0.036"    -I— 
0.036"     B-- 
0.036"     -X  

B\ 

- ■ 

El\_  -:Ä"-*;.r.----. 

. '"■Q. '■BiT^~- 
 -*=t — 

i                   i                   I 1 i < i              l 

0.4 0.6 0.6 
Load Factor 

Figure 1.105: Correction factors both with and without plasticity. 

energy release rate computed using this method (1.090 kips /inch) was compared 
to the value of Tj* (1.010 kips/inch) computed by turning off the plasticity in the 
local model and using the EDI method. An additional verification was obtained by 
comparing the energy release rates for Cases 3 and 4 to energy release rates ob- 
tained by Rankin, Brogan, and Riks (1993). For Case 3, the energy release rate was 
2.7% less than Rankin's value, and for case 4, it was 7.9% less.) 

Additional qualitative information about the plasticity occurring at the crack tip 
is presented in Figs. 1.106 and 1.107 where the size and shape of the plastic zone at 
the shell midsurface under the full applied loading is shown. The plastic strains at 
the eight Gauss points of the 20-noded brick elements were averaged through the 
thickness to obtain a value on the midsurface which was then depicted as a color 
contoured image such that a positive plastic strain indicates the presence of plastic- 
ity. For all eight example cases, the plastic zone shape is that expected for a plane 
stress crack, and the diameter is between 0.7 and 0.9 inches (approximately 14 and 
12 percent of the half crack length). The effect of offsetting the crack toward the 
stringer causes the plastic zone to become skewed in the direction away from the 
nearest stringer (cf. Fig. 1.107). The longitudinal and hoop stresses on the shell 
midsurface (defined in terms of the deformed shell coordinates) are presented in 
Figs. 1.108 and 1.109 for the offset crack of Case 6. Offsetting the crack signif- 
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2.8 inches 

Figure 1.106: Plastic zone, Case 4 (drawn on deformed shape with magnification 
5.0). 

Figure 1.107: Plastic zone, Case 6 (drawn on deformed shape with magnification 
5.0). 
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Figure 1.108: Longitudinal stress contour, values in ksi, Case 6 (drawn on deformed 
shape with magnification 1.0). 

icantly effects the symmetry of the longitudinal stress but has little effect on the 
symmetry of the hoop stress. The longitudinal stress is skewed in the same way as 
the plastic zone (compare Figs. 1.107 and 1.108). 

The phenomenon of flapping is an important issue in the design and structural 
evaluation of aircraft. A survey of various crack path stability criteria and their 
application to flapping is provided by Zaal (1992). None of the existing criteria ac- 
count for plasticity directly. We do not develop an explicit criteria for flapping here; 
rather, the following discussion will suggest a possible mechanism for flapping and 
explore its application to the example cases. 

Flapping results from the large nonlinear deformation which causes an increase 
in the longitudinal stress parallel to the crack. It is postulated that for a crack of suf- 
ficient length, the longitudinal stress acting on a plane perpendicular to the crack 
and straight above the tip will reach a critical value causing the material on this 
plane to separate and thereby allowing the crack to flap. The variation of the longi- 
tudinal stress (normalised by the yield stress, ay = 47.0 ksi) acting on the line where 
this plane intersects the shell midsurface is presented in Figs. 1.110, 1.111,1.112, 
and 1.113. These values were obtained by transforming the Gauss point stresses 
from the global coordinates to the deformed shell coordinates, then extrapolating 
and averaging these values at the row of nodes directly above and below the crack 
tip. As one would expect, the longer crack has higher values (cf. Fig. 1.110). Al- 
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Figure 1.109: Hoop stress contour, values in ksi, Case 6 (drawn on deformed shape 
with magnification 1.0). 
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Figure 1.111: Normalised longitudinal stress (10 inch crack). 

though the values of the stiffened cases are smaller than those of the unstiffened 
cases away from the crack, they grow faster as the crack tip is approached (cf. 
Figs. 1.111 and 1.112). Offsetting the crack causes the distribution of values to be- 
come unsymmetric, with greater values on the side away from the nearest stringer 
(cf. Fig. 1.113). An examination of the longitudinal stress contour in Fig. 1.108 
indicates that the longitudinal stress does not attain a maximum directly above the 
crack tip but rather at some finite distance away from the crack tip. 

§ 1.8   Fatigue Life Estimation & Linkup of MSD Cracks Due to Fatigue: 
Generic Methodology and Illustrative Examples 

§ 1.8.1   Introduction 

In this section, a simple and efficient computational method to study the fatigue 
growth of MSD cracks is presented. This method can be implemented on a modern 
personal computer. It relies on the Schwartz-Neumann alternating method pre- 
sented in Chapter ??. The key ingredient in this method, viz., the analytical solu- 
tion for the problem of multiple collinear cracks in an infinite sheet, the crack-faces 
being subject to arbitrary tractions, has been discussed in Chapter ??. 

The effect of the initial radial pressure induced near a hole in the skin due to a 
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Figure 1.112: Normalised longitudinal stress (15 inch crack). 
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Figure 1.114: A schematic representation of multiple cracks emanating from the 
upper-row of fastener holes in a bonded lap-joint in a fuselage 

rivet misfit; and the effect of the plastic deformation near the hole due to rivet misfit, 
are both considered. These effects alter the range of stress-intensity-factor imposed 
on a crack-tip during cyclic loading; and thus affect the fatigue crack growth rates. 
It is shown that these effects are responsible for a phenomenon whereby the shorter 
cracks near a row of fastener holes, may, in certain specific situations, grow faster 

than longer cracks. 
As the cracks grow under fatigue, the situation eventually arises when the un- 

cracked ligament between two crack-tips may fully yield; leading to a crack-link 
up. This link up of MSD cracks, especially if they are ahead of a single dominant 
crack, may result in unarrested fast fracture. 

§ 1.8.2   Multiple-site-damage near a row of fastener-holes in a bonded fuselage- 
lap-joint: A Model Problem 

The problem is schematically represented in Fig. 1.114. It is assumed that an arbi- 
trary number of cracks, of arbitrary lengths, emanate from the fastener holes in the 
upper-row. In the initial phases of fatigue, corner surface cracks may emanate from 
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Figure 1.115: MSD ahead of a single dominant crack in a fuselage 

the counter-sunk rivet holes in the skin. At later stages, these surface cracks evolve 
into through-the-skin cracks. The central issues to be analyzed are: 

1. If cracks of unequal lengths emanate from the fastener holes, is there a mech- 
anism by which the shorter cracks may grow faster than the longer cracks, 
thus involving a "catch-up phenomenon" ? 

2. Can a simple analytical methodology be developed to predict the fatigue 
growth of these MSD cracks and their link-up, especially when MSD-cracks 
are present ahead of a single dominant crack as in Fig. 1.115? 

The primary aim of this section is to attempt to answer these questions. 

1. The hoop stress in the fuselage may vary in the longitudinal direction, be- 
tween frames, as shown in Fig. 1.116. These hoop stresses and longitudinal 
stresses, on a position of the lap joint are obtained from a global analysis of 
the fuselage as depicted in Fig. 1.116. 

2. The rivet flexibility, as shown in Figs. 1.117aand 1.117b, must be accounted 

for. 

3. The fuselage lap splices are assumed to be adhesively bounded. 

4. The contact stresses between the rivet and the hole, due to the external load 

carried by the rivets, are accounted for. 
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Figure 1.116: A schematic of a bonded, riveted lap-joint in a fuselage 
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Figure 1.118: A free-body diagram of the inner skin in a fuselage lap-joint 

5. The residual stresses in the skin, due to the misfit of an oversized rivet in the 
fastener hole, are accounted for. 

6. Even though mode II crack behavior is present for cracks near pin-loaded 
fastener holes the mode II component is assumed to be small in comparison 
to the mode I component. 

The key steps in the solution procedure presented in this section are: 

1. To isolate the free-body diagram of each skin (the inner and the outer) as 
shown in Fig. 1.118. For instance, the inner skin shown in Fig. 1.118 is 
subject to hoop stress OQQ, longitudinal stress GLL fastener-reaction loads P, 
in the ith row of fasteners, and adhesive shear stresses x^. 

2. A finite-element stiffness analysis, with a very coarse mesh as in Fig. 1.119 
(wherein the fasteners and fastener-holes are modeled as points) is used to 
analyze the load transfer through the rivets and the adhesive. The cracks near 
the fastener holes are modeled with unconnected finite elements, even though 
the crack-tip stresses are not modeled at this stage. 
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Figure 1.119: Coarse grid for a load-transfer analysis to determine rivet forces on 
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Figure 1.120: The isolated sketch of a strip containing a row of fastener holes with 
MSD 
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Figure 1.121: A strip with a row of fasterner holes and MSD, subject to far field 
stresses and rivet contact stresses 

3. From the analysis in Step (2) above, the inner (or outer) skin is isolated as in 
Fig. 1.120. From this, the row of fastener holes with cracks is isolated, as in 

Fig. 1.121. 

4. Fig. 1.121 represents a strip of the fuselage with a row of fastener holes with 
MSD. The strip is subject to hoop stress Oee at one longitudinal edge and a 
hoop stress (aee - P\ /Wt) at the other edge. Here, P\ is the load carried by 
each fastener in this row, W is the rivet-spacing, and t is the skin thickness. 

The longitudinal stress is Oi±. 

5. The fastener-load Pi is distributed along the periphery of the hole, by us- 
ing the analytical solution for the contact problem between the rivet and the 
hole. In the present section, however, for simplicity, the fastener load Pi is 

distributed as shown in Fig. 1.121. 

6. The problem in Fig. 1.121 is solved by using the Schwartz-Neumann al- 
ternating method as sketched in Fig. 1.122. This involves two solutions as 

follows: 

(a) An analytical solution for a row of cracks, each of arbitrary length, in an 
infinite sheet; the crack-faces are subject to arbitrary self-equilibrating 

point forces as shown in Fig. 1.122A. 
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Figure 1.122: The two basic solutions needed in the alternating method 
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Figure 1.123: Finite element mesh of uncracked body 

(b) A numerical (finite element or boundary element) solution for a strip 
with a row of holes, but without cracks, subjected to the loading system 
as shown in Fig. 1.122B. 

(c) The finite element model for the uncracked strip with holes is shown in 
Fig. 1.123. Since the cracks are not numerically modeled, this finite el- 
ement model remains the same irrespective of the lengths of the cracks. 
Thus, as cracks grow during the fatigue-crack-growth process, the finite 
element mesh remains the same. Thus, the entire fatigue-crack-growth 
analysis of the MSD problem, including the analysis of link-up, can be 
performed on a personal computer. 

The details of this alternating method for fatigue-crack growth of MSD cracks 
are further elaborated upon below. 

§ 1.8.3   Analysis of load transfer through fastener and adhesive bonding in a 

fuselage lap-splice joint 

The methodology to account for the effect of the flexibility of the fastener on the 
load transfer through the fasteners has been discussed in detail in Park, Ogiso, and 
Atluri (1992). Here we discuss briefly the additional effect of the adhesive bonding 
of the skins on the load transfer between the two skins in the lap joint, to analyse 

the problem developed in Fig. 1.119. 
The total strain-energy of the lap-joint, with flexible fasteners and flexible ad- 

hesive bonding, in linear-elastic deformation, is given by: 

W   =     I   5(Va)("^)("&) + X5(Va)(^)('te) 
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where "3^ is the vector of nodal displacements of the upper-skin; lqSk is the vector 
of nodal displacements of the lower skin; Ke

Sk is the stiffness matrix of the skin 
element, KF is the stiffness of the fastener, and F is the flexibility of the adhesive 
layer (as discussed in Park, Ogiso, and Atluri (1992)); "u and lu are the vectors of 
inplane displacement in the upper and lower skins respectively. 

Following the details as given in Park, Ogiso, and Atluri (1992), the global 
stiffness equations for the present case can be derived as: 

{uKSk+
lKSk + KF + Ka) ~{KF + Ka) 

-(KR + Ka) {"KSk+
lKSk + KF + Ka) 

"qsk 

'<lSk 

uQsk 

'Qsk 

(1.60) 

From Eq. 1.60, the fastener and adhesive layer forces on the skin can be deter- 

mined to be: 

PFa = (KF + Ka)("qSk-
lqSk) (1.61) 

The effect of cracks, near the upper row of fastener holes on the loads carried by 
the rivets is accounted for, in the present analysis. The cracks are modeled simply 
by unconnected finite elements, while the crack-tip singularities themselves are not 
modeled by any special finite elements. If there are no cracks in the upper row of 
fastener holes, this row of fasteners in a lap joint can be expected to carry more 
load than the middle row. In the presence of cracks, however, load shedding from 
this row may be expected to occur. 

The solution for PFa enables one to draw the free-body diagrams for one of the 
skins as in Fig. 1.119. Thus, one is in a position to consider the problem shown in 

Fig. 1.121. 
As mentioned before, the problem in Fig. 1.121 is solved by using the Schwartz- 

Neumann alternating method, which relies on the two solution steps outlined in 
Fig. 1.122. These two solution steps are discussed below: 

§ 1.8.4   The finite element alternating method for MSD near a row of fastener 

holes 

A general and detailed description of the finite element alternating method (FEAM) 
has been given in Chapter HI. In order to analyze the present problem of MSD near 
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a row of fasteners, the conventional FEAM is modified as follows. 

1. Consider the problem of a section of the fuselage panel, with a row of fastener 
holes with MSD cracking. Let the number of fastener holes be arbitrary. Let 
the lengths of the cracks emanating from each hole be arbitrary. 

2. Using the analytical solution for the problem of an infinite sheet containing 
a single hole, but no crack, and subjected to far-field stresses as well as the 
sine pin-loading [Muskhelishvili (1953)], obtain the residual tractions at the 
boundaries of the finite sheet, the other hole-surfaces, and at all the locations 

of the cracks. However, for fastener holes that are far removed from the 
presently considered hole, the residual tractions from the present solution 

are nearly zero. 

3. To create the traction-free crack-surfaces, erase the stresses, as found in Step 
(2), on the crack-surfaces, using the analytical solution for an infinite sheet 
containing multiple collinear cracks, as obtained in Chapter n. Determine 
the SIP at each of the crack-tips of each of the cracks. Let the x coordinate 
of the center of the ith hole be x*{. Let the x coordinates of the tips of the left 
and right cracks emanating from the ith hole be x'i and xj" respectively. Then 
the integration to obtain the SIFs from the Green's functions is performed in 
the range of x\ < x < (x? - R) and (xf + R) < x < x\. Suitable Gaussian type 
integration formulae are used in the presence of a \/^Ji type singularity. 

4. Corresponding to the solution in Step (3) determine the residual tractions at 
the surfaces of all the holes, as well as at the other boundaries of the finite 

strip of the lap-splice joint. 

5. In order to satisfy the given traction boundary conditions at the outer bound- 
aries of the finite strip as well as at the surfaces of all the fastener holes, 
reverse the residual tractions at these surfaces, as calculated from both Steps 
(2) and (4). Using the finite element method, calculate the equivalent nodal 
forces at the finite element nodes on these surfaces. A typical finite element 

mesh is shown in Fig. 1.123. 

6. Using the finite element method, obtain the stresses at the location of the 
crack, corresponding to the nodal forces as calculated in Step (5). 
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Figure 1.124: MSD (multiple cracks of unequal lengths) near a row of fastener 
holes 

7. Erase the residual stresses on all crack-surfaces, as computed in Step (6), by 

repeating Step (3). 

8. Continue this iteration until the increments in SIF resulting from Step (7) are 
vanishingly small. 

9. By summing all the appropriate contributions, compute the total SIF for each 
of this tips of each of the cracks. 

§ 1.8.5   Multiple site damage near a row of fastener holes 

Problem description 

Consider a typical multiple site damage problem illustrated in Fig. 1.124. Twelve 
cracks of different lengths emanate from six equally spaced fastener holes. Let the 
lengths of the cracks (as measured from the holes surfaces) be a\,a2, ■ ■ • and an 
respectively. A cyclic hoop stress, varying from zero and C\ = 82.74 MPa (12 ksi) 
is assumed to exist in the fuselage skin (see Fig. 1.114). We assume that three rows 
of rivets carry this applied load in the fuselage lap joint (see Fig. 1.114) and that 
MSD exists in the top row of rivets. While a load-transfer analysis for each of the 
rows of the rivets, per se, is not included here, it is clear that the top row of rivets 
will carry more load than the middle row if there are no cracks near the top-row of 
fastener holes. However, as cracks develop and grow near this top row of holes, the 
load carried by the fasteners in this row will be reduced. We focus our attention 
on only the strip of the fuselage containing the top row of rivet holes and the MSD 
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Figure 1.125: Finite element mesh 

cracking. We assume that the upper surface of the strip containing the top row of 
rivet holes be subject to a cyclic load of ao and the bottom surface to a cyclic load 
of CTi. Thus, cyclic load varying between zero to 0o = 55.16 MPa (8 ksi) is assumed 
to be applied on the lower surface of the strip. At the maximum applied loading 
state, the contact stresses due to the fastener, on the hole surface are described as: 

or = 
AW 

(Oi-a0)|sin8|    -7t<6<0, (1.62) 

Here W is the half of the distance between the holes, and R is the radius of the 
holes. In this problem W = H= 12.7mm (0.5m) and R = 2.045 mm (0.0805 in) are 

used. 
Since the loads applied on the strip are not symmetric in the y direction, mode II 

SIF as well as mode I SIF exists. However, we assume that the magnitude of mode 
II SIF is small compared with mode I SIF. Thus, only the mode I SIF is considered 
in this study. The mode I SIF can be obtained by superposition of two symmetric 
problems. One is the problem when only uniform normal stresses are applied on 
the outer boundaries and the other is when only the symmetric pin loads are applied 

on the hole surface. 
The finite element model used in this problem is shown in Fig. 1.125, where 

one third of total mesh is shown. Here 264 8-node isoparametric elements and 981 
nodes are used to analyze the problem with six holes. And the material is assumed 
as 2024-T3 aluminum alloy with Young's modulus E = 78500 MPa and Poisson' s 

ratio v = 0.32. 
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Fatigue crack growth 

The fatigue growth of the twelve cracks shown in Fig. 1.124 is obtained as a func- 
tion of loading cycles. In order to take into account the stress ratio effect, Forman' s 
crack growth equation [Forman, Kearney, and Engle (1967)] is used. This equation 
is given by: 

da _       C(AK)n 

dN     (l-R)Kc-AK (      } 

Here AK is the stress intensity factor range and R is the stress ratio in cyclic loading. 
For 2024-T3 aluminum alloy, the values of Kc = 83,000 psiy/in, C - 3 x 10-3 in 
and n = 3 are used as given in Forman, Kearney, and Engle (1967). 

In this study, the crack length increments are calculated at each 500 cycle inter- 
val, a constant rate of crack growth is assumed during the interval. 

Multiple "symmetric " cracks near a row of fastener holes 

Consider the fatigue crack growth of multiple symmetric cracks emanating from 
fastener holes. Here "symmetric cracks" implies that the lengths of the two cracks 
emanating from the same hole are equal, but the cracks emanating from different 
holes can have different lengths. Initial crack lengths are assumed as follows: 

a\ = Ü2 = a$ = aio — a\\ = a\2 = 0.03m = 0.762mm 

a3 = A4 = 0.04 in = 1.016mm 

a5 = a6 = 0.06 m = 1.524 mm 

a7 = a8 = 0.05 m = 1.270 mm  # (1.64) 

Fig. 1.126 shows the fatigue growth of each crack. First, we examine the cracks 
excluding a\,a2,a\\ and an- It can be noticed that the longer crack always grows 
faster than the shorter crack. Thus, the difference in length between the longer crack 
and the shorter crack always keeps increasing with an increasing number of loading 
cycles. In some specific case, the SIF of the shorter crack subject to only the pin 
loading can be greater than that of the longer crack. However, in this problem, the 
ratio of pin loading to the total external loading is such that there is no possibility 
that the SIF of the shorter crack is larger than that of the longer crack. We also 
find that the crack growth curves of the two cracks with the same length, coincide 
with each other. In the later loading cycles, however, the separation between crack 
growth curves increases gradually, due to the interaction effect of adjacent cracks. 
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Figure 1.126: Fatigue growth of equal-length multiple cracks near a row of fastener 
holes, without considering the effects of residual stresses 

From Fig. 1.126, we notice that the growth rates of a\, a2,au anda^ are greater 
than those of the interior cracks with the same length. As expected, positive axial 
stress, ox may produce negative ay stress a long the x axis near the hole, and this 
negative oy stress will reduce the SIF values of the cracks near the holes. 

Multiple "unsymmetric" cracks near a row of fastener holes 

Here the term "unsymmetric" implies that the lengths of the two cracks emanat- 
ing from the same fastener hole are unequal. Initial crack lengths are assumed as 

follows: 

ax =a2 = a6 = aio = au =a\2 = 0.03 in = 0.762mm 

a3 = a% = 0.04 m = 1.016mm 

aA = <29 = 0.06 m = 1.524 mm 

a5 = a1 = 0.05 m = \.210mm. (1.65) 

Fig. 1.127 shows the fatigue growth of each crack. We can observe the "catch- 
up" phenomenon for the two cracks emanating from the same hole. For exam- 
ple, consider a3 and aA. Initially a3 = 1.06mm and a4 = 1.524mm, so the differ- 
ence in the crack lengths is 0.408mm. After 25,000 loading cycles, a3 becomes 
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Figure 1.127: Fatigue growth of unequal length multiple cracks near a row of fas- 
tener holes, without considering the effects of residual stresses 

9.455 mm and a^ becomes 9.690mm. So the difference is reduced to 0.235 mm 
from 0.408 mm. This is because the SIF of 03 is greater than that of 04 during the 
whole loading cycles. The same phenomenon can be observed also in the other 
cracks emanating from the same hole. 

§ 1.8.6   Effect of residual stresses in the fastener hole 

In a riveting process, since the fastener hole surface is expanded by plastic defor- 
mation, there are residual stresses near the fastener hole. In this section we employ 
a simplified model to account for these residual stresses. Assuming that the rivet is 
rigid, and that its radius is larger than that of the hole by an amount vo, the resid- 
ual stress due to the riveting process is considered to be equivalent to a constant 
residual radial pressure on the hole surfaces. Thus the likely partial separation be- 
tween the rivet and the hole surface is not considered, and the effect of friction is 
not included. 

When the applied far-field loads are such that, the radial displacement at the 
hole surface is greater than v0, the radial pressure on the hole surface will reduce to 
zero, as there is not longer a misfit between the hole and the rivet. Thus, the actual 
radial pressure on the hole surface, due to the rivet misfit, is taken to depend on the 
applied far-field load, and hence on the displacement v (in the y direction) at the 
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upper most point in the y direction (see Fig. 1.124) of each hole. This is done as 

follows. 
For a single hole in an infinite sheet [Muskhelishvili (1953)], if a rivet of radius 

(R + vo) is inserted into a hole with a radius R, the relation between the radial 
pressure on the hole surface and its radial displacement vo is given by: 

Po = W)j = koj 0-66) 

Eq. 1.66 assumes that there is no crack present near the hole; &o is the "stiff- 
ness" of the hole in an infinite sheet for purposes of the initial stresses. 

We assume that the rivet misfit is equal to vo for all the fastener holes in a row; 
and that the initial radial pressure on each hole in a row of fastener holes, without 
cracks and without any far field loading, is equal in magnitude to po as in Eq. 1.66. 

Assuming once again that the rivets are rigid, and a rivet radius misfit of vo, 
when cracks are present near the holes, the initial radial pressure on the hole will 
be a function of the crack-length, in the absence of any other far-field loading. 

Thus, 

or 

Pi = ki(j) o-67) 

HT) (1.68) 

These initial radial pressures pt may be solved for, using the finite-element-altemating 
method described earlier. 

The stiffness &, in Eq. 1.67 would depend on the lengths of the cracks emanating 
from the ith hole. 

Corresponding to the initial radial pressure p, at each hole, and in the absence 
of external loading, let the K factor at the rth crack emanating from each hole be 
given by Kfr We now assume that once the stiffness &, of the ith hole is determined 
from Eq. 1.68, the residual radial pressure on the ith hole is determined solely by 
the maximum v displacement v; at the ith hole, in the presence of MSD near the 
holes. Let the applied far-field stress be <Ji, and let the maximum v displacement at 
the ith hole due to G\ alone be designated as v,i. Clearly v,i, which is determined 
from the alternating method described earlier, is a function of the lengths of the 
cracks emanating from the ith hole. If v,i is greater than vo, there is no longer a 
radial pressure exerted by the fastener on the hole due to fastener-misfit. Thus, the 
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radial pressure exerted due to initial fastener-misfit, is given during the course of 

far-field loading, by: 

Pn = < 
h |v,i -vQ\/R   when vn < v» x 6g 

0 when v,i > v,o 

where it, is given by Eq. 1.68. 
If, for a specified applied loading Oi,pn ¥" °> the effect of the non-zero pn on 

the SIF for the crack near the ith hole must be computed. 
It is clear from the discussion in this section, even at zero far-field applied load, 

there is a non-zero SIF at each of the crack-tips; and for a non-zero far-field applied 
stress 0i, the stress-intensity factors at each crack-tip must be computed by ac- 
counting for not only C\ but also the radial pressure pn at each hole, as determined 
from Eqs. 1.69. Thus, it is clear that the stress-intensity range AK that affects the 
fatigue crack-growth rate, is affected by the initial stresses due to fastener misfit. 

An example of a residual stress effect 

Residual stresses can affect fatigue crack growth by two factors: one by reducing 
the SIF range AK, and the other, by increasing the stress-ratio R. 

We illustrate these effects now by considering the case when radial cracks of 
equal lengths, of magnitude a,, emanate from either side of the ith hole. Let the 
cyclic load be a far-field zero-to-tension load, say 0 to C\ at the upper edge; and 0 

to Co at the lower edge. 
AT,: Be the SIF at the crack at the ith hole, due to far-field [ay and o0 at the 

upper and lower edges] alone. 
Ki0: Be the SIF at the crack at the ith hole, due to the initial (at zero far-field 

tension) radial pressure due to fastener misfit. 
Kn: Be the SIF at the crack at the ith hole, due to the residual pressure pn as 

defined in Eqs. (1.68,1.69) when the applied far-field stress is (G\ and o0). 
Consider the case when pQ = 3C\, where d is the higher of the far-field tensions 

as shown in Fig. 1.124. [Recall that for the results presented in Figs. 1.126 and 

1.127, Ci = 12 psi and a0 = 8 psi]. 
Fig. 1.128 shows the values of K,,K,o and Kn, (for the cracks emanating from 

the 3rd hole as in Fig. 1.124) as a function of the length of the crack, (a/R). It 
is seen that Kn decreases rapidly after its maximum value and becomes zero at 
a/R = 1.46, while Ki0 decreases gradually from its maximum value. Ki, on the 
other hand, as expected, becomes a monotonically increasing function of {a/R). 
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Figure 1.128: Variation of SIF and stress-intensity range as functions of (a/R), with 
the effect of residual stresses being considered (p0/G\ = 3) 

The actual SIF at the maximum applied load G\, is seen to be (A, + Kn) at the 
ith crack, and that at the minimum (i.e. zero) applied load is seen to be /Qo- Thus 
the SIF range is (K + Kn -Ki0). If Kn decreases more rapidly than the increase of 
(Ki - Kio), AK will decrease with crack growth. From Fig. 1.128, it can be noticed 
that AK decreases in the range of 0.2 < (a/R) < 1.46. For crack lengths when 
Ka = 0, AK increases rapidly. Thus, if cracks of different lengths are present in the 
range 0.2 < (a/R) < 1.46, then the "catch-up" phenomenon can happen. 

Fig. 1.129 shows another set of results for Kt, K®, and Kn, when p0 = 4ai. The 
magnitudes of Ko and Kn have increased as compared to those in Fig. 1.128, but 
the trends are similar. In this case, the value of (a/R) where Kn becomes zero 
is larger than that in Fig. 1.128. Thus, the range of (a/R) values for which the 
"catch-up" phenomenon is possible, is widened. 

Fig. 1.130 shows the variation of stress ratio, R, with (a/R) when P0/ai = 3 and 
4. As the residual stress increases, so does the stress ratio. As the crack extends, 
the stress ratio increases to a maximum value, and then decreases gradually. 
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Figure 1.129: Variation of SIF and stress-intensity range as functions of (a/R), with 
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Effect of plastic deformation due to cold-working 

The rivet misfit (or cold-working) generally induces a plastic deformation near the 
hole2. In this section, the effect of this plastic deformation on the fatigue crack 
growth is estimated. In order to simplify the analysis, it is assumed that the plastic 
deformation is caused solely by cold-working of the fastener-hole; and that the 
applied far-field hoop stress does not produce any plastic deformation. The material 

is regarded to be elastic-perfectly-plastic. 
When the radial pressure, po applied on the hole surface is small, the material 

deforms elastically; and the stress-field near the hole can be expressed as: 

orr   =   -Po(jj  , (1-70) 

oee   =   Po(jj 0-71) 

where r is the distance from the center of a hole of radius R. 
As the pressure po is increased, the material near the hole begins to deform 

plastically. Let the region, R<r<ry deform plastically and let the region outside 
this deform elastically. The stress field inside and outside the plastically deforming 
region can be obtained easily by solving the corresponding field equations, with the 
simple Tresca yield condition. For the region R < r < ry, the stresses are given by: 

arr   =   -po + Oy,ln^J R<r<ry, (1.72) 

oee   =   (<*ys-Po) + <*ysto(£)    R<r<ry (1.73) 

and 

On   =    -^(^)2    r>ry, (1.74) 

oee   =   °-f(^f      r>ry. (1.75) 

Here cys is the yield-strength of the material and ry is the radius of the plastic- 

region, which is related to po as: 

2 The effect of rivet clamping force may also be significant. It is not considered here. For an 

experimental evaluation and a simple analysis of this effect, see Müller (1995) 
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Figure 1.131: Residual stress along a radial line from the center of the hole, due to 
cold-working induced plasticity 

po = o ys i^m (1.76) 

The residual stress-field can be obtained by subtracting the elastic stress field 
of Eqs. 1.70 and 1.71 from the stress fields of Eqs. 1.72 to 1.75. Fig. 1.131 shows 
the distribution of this residual stress field along the radial direction from the hole- 
surface, for various values of initial pressure, (po/oys). 

Let a crack exist in the compressive residual stress-field near the fastener-hole 
surface. Then this crack will not open until the SIF due to the applied far-field load 
reaches a certain threshold value. Let this value be Kop. If a far-field cyclic loading 
is applied on the cracked sheet, and the SIF due to the applied minimum load is 
less than Kop, the compressive residual stress field will thus decrease the effective 
SIF range, and reduce the crack-growth rate. We examine the effect of the residual 
stress field by obtaining Kop values for various values of the lengths of a crack in 
relation to the radius of the plastic zone near the hole due to cold-working. We 
consider again the case of the MSD situation depicted in Fig. 1.124. It is assumed 
that each hole has the same residual stress field as in Fig. 1.132. The yield stress of 
the material is taken to be: ays — 414 MPa (60 ksi). 

Let the value of Kop for the ith hole be designated as K(op. Fig. 1.132 shows the 
values of Kiop for / = 3, for various values of po, as a function of the crack-length 
(a/R). It is seen that, initially, Kop increases rapidly as the crack-length increases 
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2.0 T 

Figure 1.132: Variation of the Kep needed to open the crack, for cracks of various 
length as compared to the radius of the plastic zone due to cold working 

upto a certain value of {a/R), and decreases very rapidly. 
As discussed in earlier in this section, when there is a rivet misfit, because of 

the presence of the initial radial pressure /?,-, the SIF at the ith crack at zero applied 
far-field loading is not zero, but of magnitude Ki0. However, in that analysis, the 
effect of plastic deformation near the hole surface was not considered. However, 
the effect of plastic deformation alone is characterized by the value of Kiop that 
is needed to open the crack. Thus, in accounting for the effect of rivet misfit, the 
values of Kjop and must be superposed, in order to determine the value of SIF at 
zero far-field load. However, if we compare the Kiop values in Fig. 1.133 with the 
Ki0 values of Fig. 1.128 [{p/ays) = 0.6 is equivalent to p0 = 3a0] and of Fig. 1.129 
[(p/CyS) = 0.8 is equivalent to po = 4ao], it can be noted that the Kiop values are 
much smaller than the Ku> values. It means that the effect of the plastic deformation 
near the hole surface due to a rivet misfit is not significant in reducing the effective 
stress intensity range, as compared to the effect of the initial radial pressure on the 
hole surface, but treating the problem within the theory of elasticity. 

MSD fatigue growth under residual stress effect 

The effect of residual stress on the fatigue crack growth of symmetric multiple 
cracks is examined. In order to compare with the case of no residual stress, the 
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Figure 1.133: Fatigue growth of multiple cracks of equal length, emanating from a 
row of fastener holes; with the effect of the residual stresses being accounted for 

same crack lengths as given in Eq. 1.64 are used. Fig. 1.133 shows the fatigue crack 
growth when po = 3o"i, and G] — 12 psi, and Co = 8 psi as in Fig. 1.124. From 
Fig. 1.133, we can notice that the growth rate of each crack is much reduced as 
compared with the case without residual stress (see Fig. 1.126). Thus, the residual 
stress may have a beneficial effect on the fatigue crack growth. We can see also that 
the shorter crack grows faster than the longer crack, until the longer crack grows 
to a/R = 1.46. Thus, the difference between the growth rates of the longest crack 
and the shortest crack decreases until about 30,000 cycles. It is an example of the 
"catch-up" phenomenon. 

Next we consider the effect of residual stress on multiple unsymmetric cracks 
near holes. In order to compare with the case of no residual stress, the same crack 
lengths as given in Eq. 1.65 are used. It can be also noticed from Fig. 1.134 that the 
fatigue crack growth rate of each crack is much reduced as compared with the case 
of no residual stress. Also the "catch-up" phenomenon is observed as in multiple 
symmetric crack case. 
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Figure 1.134: Fatigue growth of multiple cracks of unequal length, emanating from 
a row of fastener holes; with the effect of the residual stresses being accounted for 

§ 1.9   Growth of Multiple Cracks and Their Linkup in a Fuselage Lap Joint: 
A Realistic Aircraft Structure 

A multi-bay shell panel of a typical narrow body fuselage, with all of its structural 
features and a lap splice, is modeled. An arbitrary Initial crack configuration, at 
the outer critical row of fasteners, is chosen as a starting point. The fatigue loading 
applied is the cyclic pressurization of the fuselage. The pressurization induces a 
hoop stress that is transferred across the shell skins mainly through the lap joint 
and partly through the circumferential stiffening elements, i.e., frames and tear 
straps. In a perfectly bonded lap, the adhesive transfers most of the load through 
shear, but with aging the bond may deteriorate and the load is transferred primarily 
through the countersunk rivets. The cracks grow up to a certain length under the 
fastener heeds and make the detection difficult When the cracks start showing up 
from under the head of the fastener, they are long enough, have a reasonably high 
growth rate, and can soon become catastrophic, through linkup. 
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Figure 1.135: Shell panel configuration 
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§ 1.9.1   Problem definition 

Shell panel 

Consider a typical narrow body fuselage shell stiffened longitudinally by stringers 
and circumferentially by frames and tear straps. Tear straps are present at all frame 
locations and midframe stations. Refer to Fig. 1.135 for a typical configuration. 
The geometrical details are as follows: 

Shell radius R 74.0 m. (187.96 cm) 

Shell skin thickness t 0.036 m. (0.0915 cm) 

Distance between frames 20.0 in. (50.8 cm) 

Distance between stringers 9.25 in. (23.495 cm) 

Distance between tear straps 10.0m.(25.4cm) 

Width of tear straps 2.0 in. (5.08 cm) 

Thickness of tear straps tt 0.036m.(0.0915cm) 

Frame area 0.160m.2( 1.032cm2) 

Frame moment of inertia 0.120m4(5.0cm4) 

Frame neutral axis offset 3.15m.(8.0cm) 

Stringer area 0.186 in.2{ 1.2 cm2) 

Stringer moment of inertia 0.040 m4l. 67 cm4) 

Stringer neutral axis offset 0.18 in. (1.98 cm) 

Fuselage internal pressure 9.0psi{62kPa) 

Rivet diameter D 0.15625 m. (0.397 cm) 

Pitch of rivets 1.0m.(2.54cm) 

Material Al 2024 -73 

Consider a longitudinal lap joint with the following particulars: 
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Length of overlap 3. Oin. (7.62cm) 

Number of rivet rows 3 

Pitch of rivets 1.Oin. (2.54cm) 

Number of rivets in each bay 20 x 3 

Rivet diameter D 0.15625m. (0.397cm) 

Adhesive layer thickness ta 0.0025in. (0.00635cm) 

Material Al2024-T3 

The material properties of Al 2024-T3 are taken as follows: 

Young's modulus E 10.5 xl03Jbi (72.3 GPa) 

Shear modulus G 4.2 xl03Jtsi (28.9 GPa) 

Poisson' s ratio v 0.32 

Yield strength oy 41.0ksi{323MPa) 

Ultimate tensile strength au 64.0ksi{440MPa) 

Crack tip linkup stress (1/2) (ax + cy) 55.5ksi{3SlM Pa) 

Elongation 18 

Fracture toughness K\c 93.0ksi VJii {\02MPaVm) 

The adhesive shear modulus is: 

Ga = \09ksi{15\MPa) 

Consider a panel of this shell, consisting of five frames (nine tear straps), seven 
stringers, and a longitudinal lap joint. Initially all of the stiffening elements are 
presumed to be intact. As the cracks grow and link up to form a dominant crack, 
these stiffeners get overloaded and may fail. The adhesive is treated to be degraded 
to 1% of its original strength due to aging, so that the fasteners transfer all of the 
load through the joint. Consider the problem of multiple cracks of finite lengths 
emanating from the outer critical row of fastener holes in two adjacent bays, across 
a frame (called frame 1). Fig. 1.136 shows the initial crack configuration of six 
cracks (with two tips each) numbered 1L to 6R (L for left and R for right) emanating 
from six fastener holes. All of the MSD cracks in a bay are considered in the same 
half of the bay, i.e., between two tear straps, numbered T-strap 1 and 2 in this 
care. The crack lengths of 0.10 in. (0.254 cm) are chosen to typically represent 
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Figure 1.136: Initial crack configuration in the shell panel 

a situation where the cracks are hidden well under the countersunk head of the 
fastener. The cracks lengths are measured from the center of the hole and thus 
include the fastener radius. At the central ligament, the cracks 3R and 4L have 
been specifically chosen to be a length of 0.11 in. (0.279 cm) so as to insure the 
first linkup at this location. The configuration is chosen to be symmetric about the 
frame for ease of analysis. Thus we need to analyze only one-half of the damaged 
panel, i.e., three frames and five straps. The fatigue loading applied is the cyclic 
pressurization of the shell from 0.0 to 9.0 psi (62 KPa). Under this loading, the 
MSD cracks are expected to link up to form two long cracks, one in each bay, 
which will framer link up at the frame location to form a single dominant two-bay 
crack. Fatigue growth of the initial set of cracks is considered up to the formation 

of a hill two-bay-long crack. 
Whenever there is a crack linkup, and if there is no crack emanating at the 

other end of the hole, it can be treated as having arrested, and fatigue growth has 
no meaning beyond this point. However, in reality there could be small cracks and 
they will grow, and so to perform fatigue analysis, very small cracks are presumed 
to exist at all other fastener holes but are considered in the analysis only when the 
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dominant crack tip comes close enough. 

Coupon configuration 

Laboratory test of MSD fatigue crack growth at a lap joint in a flat coupon, per- 
formed at the Aeronautical Research Laboratory, Melbounse, Australia, has been 
simulated to verify the analysis procedure. The configuration for the coupon is 
shown in Fig. 1.137. The sheet thickness is 0.04 in. (0.1 cm) in the present case. 
The width of 8 in. (20.32 cm) represents the portion of the skin between the tear 
straps. The lap splice configuration is identical to that in the shell panel joint, with 
a fastener diameter of 5/32 in. (0.3968 cm). The initial crack configuration con- 
sidered is shown in Fig. 1.138. In the experiments the cracks were generated using 
an electrical spark erosion technique. The cracks were taken tube 0.047244 in. 
(0.12cm) long so that the defect was obscured by the fastener head and represents a 
possible undetectable flaw. This would correspond to a crack tip distance of 0.124 
in. (0.315 cm) from the hole center In the experiment the local bending was mini- 
mized by testing the specimens bonded back to back and separated by a honeycomb 
core 0.492 in. (1.25 cm) thick. The fatigue loading on the sheet is uniaxial tension 
varying between 0.67 and 13.4 ksi (4.61 - 92 MPa), corresponding to a stress ratio 
of 0.95. The sheet material is Al 2024-T3. 

§ 1.9.2   Analytical approach 

The analytical approach employed for the present study consists of a repetitive 
global-local analysis. A global finite element analysis is first carried out on the 
initial crack configuration to determine the fastener loads and the sheet stresses 
some distance away in the meridional direction from the longitudinal crack axis. 
A local analysis on the isolated, loaded, and cracked skin segment is then carried 
out to obtain the crack tip parameters using the Schwartz-Neumann finite element 
alternating method (FEAM). With the evaluated crack tip parameters, the crack is 
allowed to grow as per the Paris equation. The local analysis is performed for crack 
increments small enough not to alter the load flow through the panel. Whenever 
the crack growth is significant to effect the load flow pattern or the crack linkup 
occurs, a fresh global analysis is performed to update the fastener loads and the 

sheet stresses. 
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Figure 1.137: Flat coupon lap joint configuration 
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Figure 1.139: Comprehensive picture of MSD crack growth in the coupon 

§ 1.9.3   Results and observations 

Coupon problem 

The fatigue growth analysis of MSD in a lap joint in a flat coupon of Fig. 1.137 with 
an initial crack configuration of Fig. 1.138 is carried out as per the procedure dis- 
cussed in the preceding sections. The local and the global analyses are performed 
at crack length increments of 0.015 in. (0.0381 cm) and 0.060 in. (0.1524 cm), re- 
spectively. The comprehensive picture of the fatigue damage is shown in Fig. 1.139. 
Each stage marked by the number of fatigue cycles represents a state when the fresh 
global analysis was carried out to up date the load distribution. Since the problem 
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Figure 1.140: SIF and crack length variation with number of cycles 
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is symmetric, only one-half of the domain is analyzed. In Fig. 1.139, the left-hand 
side represents the crack lengths and the right-hand side gives the corresponding 
SIFs. The numbers within the ellipse denote the location and the magnitude of the 
maximum net ligament stress. The variations of SIF and the length of longest crack 
with number of cycles is presented in Fig. 1.140. The crack growth rate increases 
substantially at around 25,000 cycles. The first linkup occurs at 33,925 cycles, and 
then the cracks snap through all of the other ligaments almost instantaneously. This 
is both due to load redistribution as well as a substantial increase in crack tip SIF af- 
ter the first linkup. The stress intensity factors increase with crack length and shoot 
up at linkup, thus increasing the crack growth rate to over 1/4 inVcycle. The load 
redistribution at first linkup shows that the next neighboring ligament has yielded. 
After the second linkup, the dominant crack tip SIF is high enough to snap through 
the third ligament within two cycles. Now, at the linkup of all cracks, there exists a 
central crack of 5 in. (12.7 cm). If there are no cracks in the next outer ligaments, 
the cracks can be treated as being arrested. However, if there is even a small crack, 
it can grow to the outermost hole in just a cycle, and then the outermost ligament 
yields, causing a complete failure of the panel. The significant observation is that 
the fatigue life of the coupon was only up to first linkup. 

The load flow through the fasteners in the damaged row of fasteners at various 
stages is given in Tab. 1.12. Tab. 1.13 gives the row-wise load distribution at all 
of the stages. Interestingly, after first linkup, the damaged row takes up more load. 
The explanation may be as follows: As the cracks grow, the stiffness of the fasteners 
comes down, and they shed the load to the intact ligament, which now carries more 
stress. But at linkup the ligament can no longer take any load, and the entire load 
is diverted to the end rivets, which get heavily loaded. 

The experimental effort considered 10 specimens of this coupon. Out of these, 
five specimens were subjected to fatigue loading until failure, which occurred al- 
most instantaneously after the first linkup. The five specimens demonstrated a fa- 
tigue life of 25,000, 105,700, 67,000, 41,400, and 57,370 cycles, respectively, 
loading to a mean life of 59,300 cycles. The analytical results give a life of about 
34,000 cycles. Our analysis has given a conservative estimate that could be due 
to two main reasons. First, the plasticity effects on fatigue crack growth, such as 
the crack closure effects, have not been modeled in the analysis. Crack closure due 
to crack tip plasticity is known to reduce the effective stress intensity factor range 
over which fatigue crack growth occurs and thus to result in a prediction of slower 

growth. Previous investigations of static residual strength of damaged panels 1 did 
bring out the importance of plasticity in establishing the linkup criterion under sta- 
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Table 1.12: Rivetwise load (in pounds or X4.45N) distribution in the outer row at 
various stages of the panel fatigue failure  

Rivet No. 

Cycles      1 7    8 

Initial 172 172 172 172 

19,700 182 184 147 152 

27,868 182 185 140 144 

32,003 183 186 135 139 

33.485 185 188 129 133 

33,827 187 191 126 128 

33,925 188 193 125 

First linkup 

124 

33,925 196 205 133 98 

33,927 235 262 113 43 

33,928 290 352 51 29 

33,928 612 78 36 21 

Symmetric 
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Table 1.13: Row-wise load (in pounds or x 4.45 N) distribution at various stages of 
the panel fatigue failure  

Cycles       Row 1        Row 2    Row 3 

Initial 1370 1118 1370 

19,700 1328 1157 1372 

27,868 1306 1167 1384 

32,003 1286 1177 1395 

33.485 1272 1184 1401 

33,827 1265 1188 1405 

33,925 1261 

First linkup 

1190 1407 

33,925 1268 1188 1405 

33,927 1314 1155 1388 

33,928 1447 1065 1330 

33,928 1494 1020 1296 
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Table 1.14: Crack lengths and the crack tip SIF at various stages of fatigue 
MSD crack engthSA in or x 2.54cm 

Cycles 1L 1R 2L 2R 3L 3R 4L 4R 5L 5R 6L 6R 

Initial 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

7,003 0.116 0.116 0.132 0.132 0.154 0.159 0.164 0.160 0.145 0.144 0.131 0.131 

10,166 0.123 0.124 0.152 0.154 0.203 0.207 0.222 0.220 0.178 0.178 0.148 0.148 

11,685 0.127 0.128 0.165 0.167 0.245 0.249 0.282 0.280 0.205 0.204 0.160 0.159 

12,210 0.129 0.129 0.170 0.172 0.264 0.269 0.342 0.338 0.216 0.214 0.164 0.164 

12,435 0.129 0.130 0.173 0.175 0.277 0.286 0.403 0.392 0.222 0.219 0.166 0.166 

12,548 0.130 0.130 0.174 0.176 0.285 0.299 0.465 0.442 0.225 0.222 0.168 0.168 

12,594 0.130 0.131 0.175 0.177 0.289 0.475 0.266 0.223 0.168 0.168 

12,595 0.130 0.131 0.175 0.177 0.306 0.491 0.227 0.223 0.168 0.168 

12,597 0.130 0.131 0.175 0.177 0.347 0.223 0.168 0.168 

12,598 0.130 0.131 0.175 0.177 0.457 0.317 0.168 0.168 

12,599 0.130 0.131 0.175 0.479 0.168 0.168 

12,599 0.130 0.131 0.175 Linkup 0.168 

12,600 0.130 0.168 

MSD crack tip SIF Oai-\/in or x 1.1 Mpa-\/m 

Cycles 1L 1R 2L 2R 3L 3R 4L 4R 5L 5R 6L 6R 

Initial 9.3 9.4 10.6 10.6 11.8 11.8 12.0 12.1 11.4 11.3 10.5 10.5 

7,003 9.3 9.4 11.2 11.3 13.4 13.4 14.0 14.0 12.5 12.5 11.0 11.0 

10,166 9.4 9.5 11.7 11.7 14.6 14.6 15.9 15.9 13.2 13.2 11.5 11.5 

11,685 9.5 9.5 11.9 12.0 14.9 15.3 19.1 19.0 13.6 13.4 11.6 11.6 

12,210 9.5 9.6 12.1 12.2 16.1 16.9 22.0 21.6 13.8 13.4 11.8 11.8 

12,435 9.6 9.7 12.2 12.3 16.5 18.4 24.9 23.8 14.2 13.4 11.9 11.9 

12,548 9.6 9.7 12.3 12.4 17.0 20.1 28.3 26.2 14.6 13.3 12.0 11.9 

12,594 10.1 10.3 11.9 11.5 40.8 40.6 14.5 12.9 12.7 12.6 

12,595 10.2 10.3 11.6 11.1 43.1 42.7 15.1 12.7 12.8 12.6 

12,597 10.8 10.9 11.7 11.0 55.8 54.5 11.4 12.4 

12,598 11.0 11.2 10.8 11.2 59.6 59.5 10.6 11.6 

12,599 11.2 10.2 71.4 73.5 10.8 10.4 

12,599 11.6 10.6 804 Linkup 79.1 

12,600 78.8 646 

ble growth due to static monotonic loading. Another factor could be that the crack 
tip in the experiment is initially blunt as it was generated due to spark erosion. 
Considering these points, the analysis seems to give a reasonably good estimate 
of fatigue life, with only a few hours of computational effort. By incorporating 
plasticity into the local analysis, we will be able to have better estimates. 

Shell panel problem 

The shell panel of Fig. 1.135 is now analyzed with the initial crack configuration 
of Fig. 1.136. The local and the global analyses are performed at crack length 
increments of 0.01 in. (0.0254 cm) and 0.04 in. (0.1016 cm) respectively. The 
fatigue damage is pictorially presented in Fig. 1.141.  The corresponding crack 
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Figure 1.141: Pictorial representation of fatigue damage in the shell panel 
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Figure 1.142: Fatige crack growth of the 12 carcks in the shell panel 
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Figure 1.143: Crack tip SIFs of the 12 cracks in the shell panel 
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lengths and the SIFs are pinned in Fig. 1.142 and 1.143, respectively, and their 
numerical values are listed in Tab. 1.14. Once again the same striking feature can 
be clearly seen; the "sudden death" of the panel. The first linkup occurs at 12,594 
cycles, and then within 6 cycles, in each bay, all of the cracks link up to form a long 
crack. Within the next two cycles, the two long cracks across the frame coalesce 
to form a single dominant tow-boat crack of over 20 in. (50.8 cm) in length. This 
dominant crack, due to its length and the associated tip SIF, has a growth rate of 
almost an inch/cycle. Even when the growth rate is less than an inch/cycle, it is 
large enough to reduce the length of the intact ligament, which fails under direct 
stress. Thus, with every cycle, the crack grows to the next fastener hole. At 12,607 
cycles, when the crack spans over 15 holes in each bay, the mid-bay tear straps 
yield. From this stage onward, these are treated as having failed and modeled as 
not to take any more load (this is a conservative approach, as they might continue 
to bear some load). Because of this failure, the crack tip SIF suddenly shoots up 
and so dues the crack growth rate. The tear straps do not appear to arrest the crack 
growth. By 12,611 cycles, there exists a full two-bay-long crack spanning from 
frame to frame. Thus, from the first linkup up to the formation of a two-bay crack, 
all it took was just 17 cycles. The analysis is stopped at this stage. 

From Fig. 1.142, the crack closest to the frame has the lowest growth rate. The 
initially longer cracks (0.11 in.) are the fastest to grow and the first ones to link up 
(as intended at the time of initial crack configuration selection). Fig. 1.143 shows 
the shootup of SIF after the first linkup. The presence of a frame dues reduce the 
SIF (increasing the static residual strength) and dues slow down the crack growth, 
but the effect adds virtually nothing to the countable cycles of residual life. These 
observations are, of course, within the limitations of applicability of the Paris equa- 
tion to low cycle fatigue. 

Fig. 1.144 and Tab. 1.15 present the load flow pattern in the frames and the tear 
straps as the cracks grow. Yielding of the mid-bay strap can be seen to overload the 
intact frame/straps. Tear strap 3 shows a negative lusd for a small range; this could 
be due to the local in-plane bending moments being generated out of substantial 
load diversion. 

Both the coupon and the shell panel with MSD are found to have fatigue lives 
only up to the first linkup. This is because after the first linkup the crack has a 
dominant length with high stress intensity factors. This is an important piece of 
information for the analyst involved in fatigue life estimation of similar structural 

components with widespread damage. 
In a lap joint, the growth of multiple cracks emanating from a row of fastener 
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Figure 1.144: Fracme and the tear strap loads during fatigue 
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Table 1.15: Frame and tear strap loads at various stages of fatigue 

Frame and tear strap loads, lb or x4A5N 

Cycles    Frame 1    Tear strap 1    Tear strap 2    Tear strap 3    Frame 2 

264 

264 

265 

265 

266 

266 

267 

269 

269 

278 

282 

291 

327 

357 

3178 

3474 

Fail 

Initial 1019 31 

7,003 1019 31 

10,166 1020 31 

11,685 1021 32 

12,210 1021 32 

12,435 1021 32 

12,548 1022 32 

12,594 1028 34 

12,595 1029 34 

12,597 1037 36 

12,598 1040 37 

12,599 1067 46 

12,599 1082 50 

12,600 1110 57 

12,606 2106 612 

12,607 2110 613 

12,609 3185 1031 

12,610 3314 1071 

12,611 3430 1105 

12,612 3490 1121 

30 1010 

30 1010 

30 1010 

30 1010 

30 1010 

30 1010 

30 1010 

29 1010 

29 1010 

29 1011 

28 1011 

27 1011 

26 1011 

25 1012 

-54 1080 

-60 1083 

166 1636 

428 2038 

1055 2681 

1609 3434 
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holes has been investigated under cyclic loading. A flat plate coupon and a stiff- 
ened shell structure, typical of an air-liner fuselage, were analyzed. The most im- 
portant feature that emerges is that the fatigue life of the lap splice with widespread 
cracking is only up to the first linkup. Beyond this, the crack lengths, the corre- 
sponding stress intensity factors, and the crack growth rates become prohibitively 
high. A good linkup criterion is thus very important for residual life estimation of a 
structural component with multisite damage that is subject to fatigue loading. The 
second feature is that the frames or tear straps are hardly capable of arresting the 

growth of dominant cracks under fatigue loading. 

§ 1.10   Prediction of Fatigue Crack Growth and Linkup for a Full Scale 
Curved Stiffened Panel 

The fatigue life of an undamaged structure subjected to a repeated external load 
can be divided into two periods. The first period is the fatigue crack initiation 
period. Depending on the design, material, manufacture and operating environment 
of structure, detectable fatigue cracks may be found near the regions of high stress 
level, such as the edges of rivet holes, after years of service. This period of fatigue 
life can be obtained from the service record of aging flight vehicles. The second 
period is the fatigue crack growth period, during which the initial fatigue cracks 
(MSD) grow and propagate, resulting a local failure. Estimating the second period 
is significant for aging flight vehicles in economy and safety. In this section, the 
focus is on the estimation of second period of fatigue life. A numerical analysis 
is carried out to predict the number of cycles to failure for a full scale curved test 
panel. Numerical results are compared with the experiment measurements obtained 
by Foster-Miller, Inc. [Samavedam, Hoadley, and Thomson (1992)] 

§ 1.10.1    Foster-Miller curved panel test 

The Full Scale Fuselage Panel 12 tested for fatigue in Foster-Miller, Inc. [Samavedam, 
Hoadley, and Thomson (1992)] is considered as an example. The geometrical de- 
tails are listed below. Both skin and tear strap were made of Al 2024 T3. 
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Outer Skin 

Inner Skin 

Lap Joint 

Figure 1.145: Full Scale Fuselage Panel 

length 120 m 

radius 75 in 

width 68 in 

number of frames 6 

number of tear straps 11 

number of stringers 6 

frame spacing 20 m 

tear strap spacing 10 m 

stringer spacing 9.6 in 

skin thickness 0.04 in 

Tear strap thickness 0.04 in 

This test fuselage panel was designed to represent critical construction features 
of the aging commercial aircraft. The panel has a 2.7 in wide lap joint. All through- 
skin rivets are low profile, shear head 100° countersunk rivets, with a diameter of 
5/32 in. The minimum diameter of rivet bucktail of panel lap is 1.26 d, where d is 
the rivet diameter. The maximum diameter of rivet bucktail of panel lap is 1.48 d. 
The three dimensional fuselage test panel 12 is shown in Fig. 1.145. The fatigue 
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Figure 1.146: Fatigue Damage 

load is cyclic pressure. The pressure was applied at 0.2 Hz over a pressure range of 
8.5 psi with a loading ratio of 0.11. 

At 75,000 loading cycles, the cracks were found on the underside of the panel 
along the lower rivet line at lap joint 27, 28, 29 in inner skin. The rivet number 
and fatigue damage are denoted in Fig. 1.146. The test report shows that the cracks 
between the rivet hole 27 and 28 link-up after 114938 cycles of loading. 

§ 1.10.2    Computational models 

Global analysis 

The fuselage panel consists of outer skin, inner skin, 22 peaces of tear strap, 106 
fillers, 6 stringers, 6 frames, 24 stringer ties and rivets. The longitudinal length of 
global model is L = 112 in, the circumferential width is B = 53 in ( circular angle 
a = 40.49°, skin radius R = 75 in ). The outer and inner skins are modeled by 
3-dimensional 4-node doubly curved shell element. The tear straps and fillers also 
are modeled by 3-dimensional 4-node doubly curved shell element. The stringers 
and frames are modeled by the 3-dimensional 2-node linear beam element. The 
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Figure 1.149: Spring Model 

rivets between the tear straps and the frames, between the tear straps and strangers, 
between the filler and stranger, and between the stringer and the frames are modeled 
by beam element, but the rotations of two ends of this beam are constrained to be the 
same. The boundary conditions are fixed except the rotation about the longitudinal 
axis on the longitudinal boundary and the rotation about the circumferential axis on 
the circumferential boundary. The cracks are considered in the global model. The 
crack size in the global model increases by moving the crack tip node. The mesh in 
the crack area is refined to satisfy the requirement of elements. The pressure load 
on the skin is 8.5 psi. The total number of nodes is 10798. The total number of 
elements is 14161. The global analysis is carried out by using a commercial finite 
element analysis code, taking about 714 sec CPU time on HP 735 workstation. 

The rivets between the outer skin and inner skin at lap joints, between the skin 
and tear strap, and between skin and filler are modeled by the spring model. The 
spring model consists of three spring elements. They are shown in Fig. 1.149. 
The stiffness of the rivet in the transverse plane of rivet is presented by the spring 
element stiffness K\, K2. They are given by following equation [Swift (1984)] 

^•2 = A + C(D/h+D/t2) 
(L77) 

The #3 is the stiffness of rivet in the direction of rivet axis. 

where Esh (E) are the Young's modules of skin (rivet); D is the rivet diameter, t\ 

and t2 are the thicknesses of the jointed sheets; A = 5.0 and C = 0.08 for aluminum 

rivet. 
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Intermediate analysis 

Intermediate model contains structural detail around the area of MSD. The longitu- 
dinal length of intermediate model is L = 35 in , circumferential width B = 16.7 in 
( circular angle 6 = 12.77°, skin radius R = 75 in ). Intermediate model consists of 
outer skin, inner skin, 8 tear straps, 4 fillers, 1 stringer, 2 frames, 2 stringer ties and 
rivets. The outer skin, inner skin, tear straps, fillers, stringers, frames and stringer 
ties are modeled by 3-dimensional 4-node doubly curved shell element. At the 
crack area, the fine mesh have been used. The shell elements near to the cracks are 
about 0.13 in x 0.1125 in All rivets are modeled by the spring model. The bound- 
ary condition is the displacement, which is provided by the global analysis. The 
displacement of nodes on the boundary of intermediate model is produced by an 
interface code. The displacement of nodes on the boundary of intermediate model 
is determined by the displacement obtained from the global analysis. The external 
load is the pressure 8.5 psi on the skin. The crack growth can be modeled by mov- 
ing the node at crack tip. The number of nodes of intermediate model is 6180. The 
total number of elements is 6685. A single intermediate analysis takes about 207 
sec at HP 735 workstation. 

Local analysis 

Finite element alternating method is used to analyze a two-dimensional model of 
a small area near MSD to obtain the stress intensity factors at the crack tips. The 
local model is a piece of inner skin, which contains the rivets holes 26, 27, 28, 
29, 30. The local model consists of the 8 - node plane finite elements. Traction 
boundary conditions are obtained from the intemediate analysis. 

The length of local model is L = 5 in , height is H = 0.9 in and thickness is T= 
0.04 in The rivet reaction forces are applied on the surface of rivet hole and normal 
stresses are on the boundary of local model. It is illustrated in Fig. 1.150. The finite 
element mesh for the local model has only 1605 nodes and 480 elements. 

§1.10.3   Fatigue crack growth analysis 

The numerical solutions for the normalized Stress Intensity Factor histories of the 
cracks at right side of rivet hole 27 and at left side of rivet hole 28 are shown in 
Fig. 1.151. To estimate the fatigue life, the Paris' model is used. The Paris' Model 

is: 
'AK\ 
~C  I (1-79) 

da__ ft 
dN~ \ 
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Figure 1.152: Initial Fatigue Crack in the inner skin 

where a is the crack length; n = 6.0, C = 0.364 x 10~n; and N is the number of 
external load cycles. 

When the crack length grows from initial fatigue crack length a0 to the link- 
up crack length a/, the fatigue life can be calculated by the following equation or 
approximately 

raf   C" N=L. wfda (1'80) 

or approximately 
N=££*aj_ 

(1.81) AW 
where Aaj is the increment of crack length from initial fatigue crack length a0 to 
the link-up crack length a/ 

af-a0 = Aaj + A«2 H 1- Aa„ (1.82) 

§ 1.10.4   Results and discussions 

Before the test, the full scale fuselage panel 12 did not contain any crack. After 
75,000 cycles of external loading, the rivet holes 27,28,29 at lower row in the inner 
skin were inspected for microcracks. The test report did not present crack length. 
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Figure 1.153: The Estimated Fatigue Life with Initial Fatigue Cracks 0.045 in 

But the inspected microcrack length can be estimated from the rivet bucktail size. 
In the test report, the rivet bucktail diameters were manufactured to recommended 
1.4d specification. The rivet bucktail diameters have been controlled in the range 
between the minimum 1.26d and the maximum 1.48d in fatigue test panel 12, where 
d is the rivet diameter (= 5/32 in). The micraocrack length, i.e. initial fatigue crack 
detectable length are estimated about 0.045 in to 0.05 in ( see the Fig. 1.152). At 
98782 cycles of loading, cracks at rivets 36-38,48-50 were inspected. 

The test report shows that the cracks between the rivet hole 27 and 28 is link-up 
at 114938 cycles of loading. The computational estimated loading cycles from the 
initial fatigue cracks 0.045 in ( 75000 cycle ) to local failure, 27-28 link-up are 
42942 cycles by using the methodology presented in this analysis. Since cracks at 
rivets 36-38, 48-50 were inspected at 98782 cycles of loading, the cracks at rivets 
hole 36-38,48-50 are considered when the crack length at rivets hole 26-28 are 0.06 
in. The fatigue life of fuselage panel is 117942 cycles. The difference from the test 
result is 2.6%. (Fig. 1.153 ). If the initial fatigue crack length are considered to be 
0.05 in , the estimated fatigue life is 113389 cycles. The difference from the test 
result is 1.3 %. (Fig. 1.154) Thus, the estimated fatigue life excellently agrees with 
the test result. It shows that the fatigue life estimation methods based on FEAM 

and computer codes are effective. 
Another case, in which the cracks length at rivets 26-28, 36-38, 48-50 started 
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Figure 1.154: The Estimated Fatigue Life with Initial Fatigue Cracks 0.050 in 

at 0.045 in is considered in this analysis. In this case, the estimated fatigue life is 
108339 cycles. The fatigue life reduce 8% from the above estimated fatigue life 
117945 cycles. This result shows that more initial fatigue cracks will reduce the 
fatigue life of structure. 

§ 1.11    Residual Life and Strength Estimates of Aircraft Structural 
Components with MSD/MED 

The Industry Committee on Widespread Fatigue Damage has identified about 15 
different aircraft structural details that are susceptible to widespread fatigue dam- 
age. These include: 

1. Longitudinal skin joints, frames, and tear straps (MSD, MED) 

2. Circumfrential joints and stringers (MSD, MED) 

3. Stringer cutouts in frames at successive locations in the fuselage (MED) 

4. Aft pressure dome outer ring and dome web splices (MSD, MED) 

5. Other pressure bulkhead attachments to the skin, (i.e.  web attachment to 
stiffener and pressure decks) 

6. Stringer to frame attachments (MED) 
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Figure 1.155: Computational procedure for analysis of MSD in Structures 

7. Window surround structure 

8. Over wing fuselage attachments (MED) 

9. Latches and hinges of nonplug doors 

10. Skin at runout of large doubler (MSD) in the fuselage, wing or empennage 

11. Chordwise splices (MSD, MED) 

12. Rib to skin attachments 

13. Stringer runout at tank end ribs 

14. Spar cap/web (MSD multiple cross-section). 

This section presents the generic computational framework for the analysis of the 
above mentioned structural components with wide-spread fatigue damage. As a 
typical illustration of the developed generic methodology, this section presents an 
investigation of MSD and MED at a stringer - frame junction of a pressurized 

fuselage stiffened shell panel. 



§ 1.11: 205 

§ 1.11.1   Computational framework 

Analysis of Multi-Site Damage 

For the analysis of structural components with MSD, Fig. 1.155 describes the com- 
putational procedure. Starting from the geometric and the initial damage database, 
the Multibay modeler generates the global model that is fed into the FEM code 
SOFRAC for global analysis. The Halfbay modeler generates the finite element 
model based on same initial geometric and damage information, with boundary 
conditions as prescribed displacements, extracted from the solution of SOFRAC. 
At this stage, another set of files is also written, containing information necessary 
to post process the output of STAGSPP and generate the local model. The local 
modeler picks up the necessary information from the output of Halfbay Modeler 
and STAGSPP, generate the local model and feeds into the FEAM. The FEAM 
code is capable of handling multiple cracks of arbitrary lengths. This local analysis 
gives the cracktip parameters for multiple cracks, which are now used to estimate 
the residual strength and crack growth rates. The cracks was grown at this stage 
with net ligament yield as the linkup criterion (Research is now being completed 
to use T* as the link-up criterion). For very small crack growth, local analysis 
is performed with updated damage information. If the crack growth is large or a 
crack linkup occurs, the damage is updated at the intermediate analysis level. For 
substantial crack growths, the global analysis is redone. This procedure simulates 
the crack growth and provides with information about residual life. Experience has 
shown that for every 5 stages of local analysis, intermediate analysis needs to be 
done and for every 5 stages at intermediate analysis (25 local analyses), there is a 
requirement for a fresh global analysis. 

Analysis of Multi-Element Damage 

The modular nature of the subprocedures and their interfacing through regular 
ASCII files, lends itself to various possibilities. One of them is the handling of 
structural components with MED. The Halfbay Modeler generates database for 
multiple local analyses, each local zone covering a damage which can be a single 
crack or an MSD. The Local Modeler generates multiple models and these are now 
be analyzed independently, using. FEAM. The cracks are grown in each of these 
analyses independently. Whenever required, the Halfbay Modeler can integrate the 
current damage configuration and perform fresh intermediate analysis. Fig. 1.156 
explains this procedure pictorially. The methodology at and above the level of in- 
termediate analysis in the hierarchy remains same as before. Since the FEAM local 
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Figure 1.156: Computational procedure for analysis of MED in Structures 

analyses can handle multiple cracks, this procedure has the power to resolve situa- 
tions where MSD exists in neighboring elements, viz., MSD as a subset of MED. 

Analysis of problems with bending 

For the analysis at the local level, if there is a significant bending involved, the 
Halfbay Modeler can generate two sets of information, one for inplane and one 
for bending problems. The local modeler will generate two models which will 
go independently into two different Finite Element Alternating codes. The crack 
tip parameters for the two loading situations will then be integrated to evaluate 
the residual strength and the crack growth rates. This methodology, presented in 
Fig. 1.157, depends upon FEAM for cracked plate bending problems. 

The power of all these procedures emerges from the fact that a wide range of 
problems with widespread fatigue damage can be handled. Multiple cracks can 
grow irrespective of where they are in the substructure. The efficiency has been 
achieved by automating the procedures to an extent where more than half a dozen 
modules work from a single set of initially generated input files. 
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Figure 1.157: Computational procedure for analysis of MSD/MED with significant 
bending 

§ 1.11.2   An example computation: MSD/MED at a frame stringer junction 

We now employ the above described methodologies to analyze a situation of MSD 
and MED at the frame stringer junction in a typical narrow body fuselage panel, to 
demonstrate the potential of the developed computational procedure. 

Consider an airliner fuselage formed by 0.036 thick, Al 2024-T3 shell, of ra- 
dius 74 and stiffened by ' Z' section frames 20 apart, 2 x 0.036" tear straps at 
each frame location and 'Z' section stringers 9.25 apart, all of them attached with 
fasteners, 5/32 in diameter spaced at 1 . The stringers run through the cutout in 
the' L' section shear clips which attach the frames to the skin through the tear strap. 
The internal pressure in the fuselage is 9.0psi. 

For the purpose of global analysis, we consider a multibay panel of 5 frames 
and 9 stringers. A typical deformed finite element model from SOFRAC, (approx 
15,000 degrees of freedom, magnification = 5), is shown in Fig. 1.158. On an HP 
workstation 7000 900 series, the CPU time for the problem of this size is about 10 

minutes. 
For an intermediate analysis, a section of this consisting of a single frame, shear 

clip & tear strap and 3 stringers is modeled. Fig. 1.159 shows an exploded view of a 
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Figure 1.158: Deformed View of the Global Modal of 4 x 8 Bays of Fuselage Panel 

typical deformed FE model (approx 20,000 dof, magnification = 5). This problem 
takes about 15 minutes on an HP workstation. 

The local model consists of a flat rectangular cracked sheet and depends upon 
the type of damage being analyzed. It takes approximately 3 minutes per crack tip 
for the local analysis to be complete. The damage is considered in various forms 
and is categorized in the following three sets. 

Multi-Site Damage in the skin 

Consider the situation of an MSD cracking in the skin at the row of fasteners j oining 
the skin and the central stringer. Let the initial crack configuration-consist of 5 
cracks of length 0.125" on both sides of the fasteners, along the row of fasteners, 
at a location directly below the central frame. This location is marked by ' A' in 
Fig. 1.159. This situation was run through the procedure of Fig. 1.155 and it was 
found that the first linkup of cracks occurs at 8,920 fuselage pressurization cycles. 
The same MSD situation was analyzed with the tear strap fully cracked at the same 
location. The type of the damage considered in the tear strap is apparent from the 
Fig. 1.159. The effect of broken strap is to reduce the life to only 2,518 cycles 
(about 28%). This analysis is presented graphically in Fig. 1.160 The analysis is 
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Figure 1.159: Exploded Deformed View of the Intermediate Model of 1 x 3 bays 
of fuselage panel 



210 Draft dated: May 12,1997 

Fastener 
holes 

MSD 
Cracks 

Local Model of the MSD in the Skin 

Initial 5 x 0.125", 0.125" 

■o- -o- -o o o 
-o- -o -o -o- -o- 

■ I     I 
■ I     I 

■O -0--0--0- -o- 
-o -o—o—o- -o- 

First Linkup at 8,920 cycles 

MSD in Skin 

Initial 5 X 0.125", 0.125" 

-o -o- o -o- -o 
-o- -o -o- -o- -o- 

-O- -O- -0--0- -o 
-O-  -O--0—0--0- 

First Linkup at 2, 518 cycles 

MSD in Skin + Broken T-Strap 

Figure 1.160: Analysis of MSD in the Skin 

carried out only upto first linkup as it has been observed [Park, Singh, Pyo, and 
Atluri (1994)] that the first linkup is virtually the end of the life of a panel with 
MSD. A lot of other damage scenarios with MSD can also be analyzed in a similar 
manner. 

A crack in the frame 

Consider the situation of a single crack in the frame, emanating from a fastener, 
running normal to the row of fasteners joining the frame and the shear clip, located 
directly above the cutout in the clip through which the central stringer runs. This 
location is marked by 'B' in Fig. 1.159. Initially, let the crack lengths be 0.122" 
& 0.228" respectively towards & away from the shear clip. The crack lengths are 
measured from the hole center to the crack tip, and have been chosen arbitrarily. 
The fatigue analysis is done, as per the procedure described in Fig. 1.155, upto a 
situation where the plastic zone size ahead of the lower crack tip (towards the shear 
clip) touches the flange of the frame. This corresponds to a crack length of about 
0.372". The scenario is presented in Fig. 1.161. 

The above described growth of the crack is found to take 451,811 cycles of 
fuselage pressurization. But the situations gets suddenly worse if any of the other 
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0.372" 

Crack at a Fastener Hole in the Frame 

Figure 1.161: Analysis of a Single Crack in the Frame 

Table 1.16: Effect of damaged eleemnts on crack growth in frame 

Tear strap    Shear Clip      Skin        Cycles 

intact intact intact      451,811 

broken intact intact 4,476 

intact broken intact 2,172 

broken broken intact 284 

broken broken MSD 268 

broken broken 5" crack 84 
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Figure 1.162: Analysis of MED in the Skin and the Frame 

stiffening elements are damaged. The same crack grows about 100 times faster 
with a broken tear strap, about 200 times faster with a broken shear clip, about 
1600 times faster with both strap and clip broken. Cracking in the skin further 
speeds up the crack growth. This is presented in Tab. 1.16. Although, in actual 
case, the MSD or the lead crack in the skin will grow as the crack in the frame 
grows, but that is not modeled in this particular example, and is looked at in the 
following subsection. 

Multi-Site Damage in the skin and a crack in the frame 

Consider now a situation of Multi-Element Damage with a crack in the frame, MSD 

in the skin and a broken tear strap. The initial crack configuration corresponds to 
the combination of initial MSD situation with a fully cracked tear strap and the 
initial crack configuration in the frame analyzed in the previous two subsections. 
The MSD cracking in the skin and the crack in the frame are grown by running 
two independent models at the local level, as described in Fig. 1.156. The first 
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linkup of MSD in the skin occurs at 2,212 cycles. The analysis is stopped at this 
stage. Comparing this with results of Fig. 1.160, the crack in the frame speeds up 
the MSD crack growth by about 12%. In the mean time the lower crack in the 
frame had grown to a length of 0.354", as shown in Fig. 1.162. For the problem in 
the previous subsection, the crack in the frame had grown to this length in 2,390 
cycles. This implies that the MSD in the skin speeds up the crack in the frame by 
about 8%. Thus both MSD in the skin and the crack in the frame are found to speed 
up each others growth. 

The above set of examples were analyzed in less than 24 computer-man hours. 
This shows the power and efficiency of the developed procedures. 

§ 1.12   Fatigue Growth of Surface Flaws 

§ 1.12.1   Introduction 

The finite element alternating method, which has proved to be an extremely effi- 
cient scheme for the accurate calculation of stress intensity factors, is augmented 
here by an algorithm to calculate the fatigue life, under cyclic loading, of three 
dimensional structural components. The advantage here is that mesh generation 
and computational time are considerably reduced since this finite element approach 
only entails an analysis of the uncracked body. These simplifications make it possi- 
ble to implement a three dimensional fatigue crack growth algorithm into the alter- 
nating method. This approach has been applied here to various fatigue problems in 
complex aircraft components. Solutions were initially developed for constant am- 
plitude loading and then extended to the more difficult case of variable amplitude 
loading. 

The presence of cracks in complex three dimensional components is always a 
cause of concern to engineers. This is primarily due to the fact that accurate cal- 
culation of stress intensity factors, using the finite element method or some other 
numerical technique, has been a non-trivial task. Conventional three dimensional fi- 
nite element fracture mechanics techniques require the construction of an extremely 
fine mesh in the vicinity of the curved crack front with a large number of elements 
in this region. This is likely to be very time consuming both from a mesh generation 
stand-point and also with regard to the computational time. Analysis difficulties are 
compounded in many instances due to the sub-critical crack growth that can take 
place under conditions of cyclic loading. The effort required to integrate a fatigue 
analysis directly with conventional finite element stress intensity factor calculations 
is prohibitive due to difficulties inherent in ensuring that the mesh must coincide 
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with the crack front during the growth process. 
The finite element alternating method (FEAM), which has been described in 

Chapters II and HI is an innovative computational scheme for stress intensity factor 
calculation that offers significant savings in time without sacrificing any accuracy. 
The major advantage of the alternating method is that it overcomes many of the 
limitations inherent in other numerical techniques. The FEAM has been imple- 
mented into a software package called SAFEFLAW3. Both two dimensional and 
three dimensional versions of SAFEFLAW have been developed. This section is 
exclusively confined to three dimensional applications. The alternating method has 
been successfully exploited to analyze a wide variety of engineering components 
including semi-elliptical surface cracks in pressure vessels and off-shore structures 
and quarter elliptical corner cracks in aircraft components. Motivated by a number 
of practical problems in the aircraft industry, several enhancements have recently 
been made to the FEAM. These applications involve part elliptical cracks emanat- 
ing from countersunk rivet holes and quarter elliptical cracks emanating from holes 
in wing components. In addition, a fatigue crack growth algorithm has now been 
integrated with the FEAM and provision is made to consider both constant am- 
plitude and variable amplitude loading. These enhancements are described in this 
section. 

The aging of the commercial airline fleet is increasing the anxiety in all seg- 
ments of the industry, particularly as there is a desire to operate the aircraft beyond 
their original design lives. Crack formation and growth in the vicinity of rivet holes 
in the fuselage has been identified as a serious problem. Fig. 1.163 schematically 
illustrates plan and elevation views of the fuselage skin in the vicinity of a counter- 
sunk rivet. The elevation section X-X shows that cracks can form in three possible 
initiation sites around the rivet hole, labeled A, B and C. Due to the cyclic loading 
on the aircraft fuselage, one or more of these cracks can grow over a period of time 
until the crack extends through the skin. This crack can then grow, again under 
cyclic loading, along the fuselage in the direction of the adjoining rivet. In some 
instances, this phenomenon has been observed to occur at several locations along a 
row of rivets and is referred to as multiple site damage. The subsequent link up of 
these cracks can lead to catastrophic consequences [Hendricks (1991)]. 

Clearly it is important to examine the fatigue crack growth of flaws emanating 
from the countersunk rivet hole. One of the primary objectives is to investigate the 

3 This is a trade mark of a comercial software package developed by Knowledge System, Inc. 
of Forsyth, GA. Further information on this software can be obtained at the email address: 

ksi@mylink.net 
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Figure 1.163: Schematic of countersunk rivet configuration 

early stages of this crack growth; i.e. prior to the crack propagating through the 
wall of the fuselage. Thus, stress intensity factor computations and estimates of the 
fatigue life must be made for the cracks shown in Fig. 1.163. The crack surfaces in 
this instance can be assumed to be flat and have part elliptical shapes. For example, 
the crack at location A in Fig. 1.163 is a quarter elliptical corner crack. The sizes 
of the cracks at locations B and C will depend on the countersunk rivet angle, a. 
Typically, this angle is 40° - 50°. 

A second application motivating the present work stems from the presence of 
cracks in the vicinity of weep holes in the wing region of the USAF C-141B air- 
craft. The relevant geometry is illustrated in Fig. 1.164. The cross section here is 
essentially an inverted T shape consisting of the lower wing skin and a riser. In 
some instances under flight loads, quarter-elliptical cracks were found to emanate 
from a small hole (called a weep hole) in the riser. The cracks were either on 
the top or bottom of the hole as indicated by locations D and E of Fig. 1.164 and 
are subject to cyclic loading. Prior to the crack breaking through the wall of the 
riser, the crack growth can be viewed as three dimensional. However, soon after 
breakthrough, the crack front becomes relatively straight and can be idealized using 
a two dimensional approach. The analysis work described here is focused on the 
three dimensional phase of the growth. Test specimens, consisting of the Fig. 1.164 
geometry with appropriate end connections, were subjected to variable amplitude 
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Figure 1.164: Schematic of weep hole configuration 

loading normal to the crack front. Comparisons between these experimental data 
and the numerical analysis model are presented in this section. 

The most significant feature that contributes to the simplicity and efficiency of 
the FEAM approach is that the finite element analysis is for the uncracked com- 
ponent. Thus, a relatively coarse mesh will suffice since the crack is not modeled 
explicitly and there is no need to have special crack tip elements. The only require- 
ment for the mesh in this region is that an accurate representation of the uncracked 
stress distribution is obtained at the location of the crack. In addition, it is not nec- 
essary for the edges of the elements to conform to the curved surface of the crack 
front. Straight sided elements can therefore be used in this region, greatly simpli- 
fying the mesh generation effort. Because of this, the same mesh can frequently be 
used for cracks of different size (a big advantage in fatigue simulations) and even 
for cracks at different locations in a given component. These factors greatly reduce 
pre-processing time and computational time when compared with other numerical 
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techniques. For example, comparable accuracy was achieved for a rivet hole crack 
problem between a 90 element FEAM solution and an analysis with conventional 
elements containing 1430 elements [Park, Ogiso, and Atluri (1992)]. 

§ 1.12.2   Cracks emanating from rivet holes 

Fig. 1.163 illustrates the geometrical complexities associated with cracks of arbi- 
trary shape emanating from countersunk rivet holes. This section describes the 
modifications to the alternating method that were necessary to analyze part ellipti- 
cal cracks of arbitrary shape. 

Implementation 

The analytical solution for an elliptical crack in an infinite solid requires the resid- 
ual stresses to be defined over a complete ellipse. The crack configurations in 
Fig. 1.163 are only part ellipses. Consequently, to utilize the infinite body solution, 
it is necessary to establish a stress distribution over the entire ellipse, including the 
fictitious portion that lies outside the physical component. The validity of such 
an approach has already been established for semi-elliptical and quarter elliptical 
cracks [Nishioka and Atluri (1983)]. The approach for a part elliptical crack, such 
as at location B or C, is now described. With reference to Fig. 1.165, the stress 
distribution along the line O-P is extended into the fictitious portion of the sec- 
ond quadrant such that it remained constant in the x direction. This is illustrated 
by the stress distribution in the section Z-Z (Fig. 1.165). In the fictitious region 
—c < v < 0, the distribution remained constant in the y direction and varied in 
the x direction in accordance with the distribution on y = 0. Finally, in the region 
—a < x < 0, —c < y < 0, the stress is constant having the value at the origin and 
this is consistent with the extensions into the other fictitious regions. 

Results 

The rivet hole configuration of Fig. 1.163 was analyzed here under the action of 
remote tensile loading (unit loading unless otherwise stated). Both the X-X and Y- 
Y axes were planes of symmetry. Although not illustrated in Fig. 1.163, this implies 
that there are diametrically opposed cracks in the component. Because of the two 
planes of symmetry, it is only necessary to analyze one quarter of the structure. 
A detail of the crack plane geometry is shown in Fig. 1.166 and this indicates the 
relative dimensions that were used in the analysis. The half width of the plate is 
6.5 times the hole radius, R and the half length is 13 times the hole radius. In each 
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Normal 

Figure 1.165: Extension of crack surface stresses to fictitious region 

analysis just a single crack was considered to exist, at location A, B or C. Thus 
there are no multiple flaws and no interaction effects between the cracks arise in 
the present analysis. The finite element models consisted of conventional twenty 
node isoparametric three dimensional elements. All results reported in this section 
are plotted as a normalized stress intensity factor variation along the crack front. 
The crack front position is given as a function of the elliptical angle, 0, and the sign 
convention for this is given in Fig. 1.166. The normalizing factor is these analyses 
is given by 

Ko   = 

K0   = 

G0y/na 

^/(l + 1.464(a/c)1-65 -<1 
c 

a->l 
c 

(1.83) 
v/(l + l-464(c/a)1-65 

where o0 is the remote tension, c the major axis and a the minor axis. 
The first study investigated the convergence of the numerical solution. The 

results in Fig. 1.167 clearly illustrate the excellent convergence that was obtained 

with the FEAM. Here, a/t = 0.2 and a/c = 0.4 and the crack is at location A. Three 
analyses have been conducted using 216 elements, 372 elements and 496 elements 
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Figure 1.166: Rivet geometry detail in vicinity of crack location 

(1265, 2047 and 2655 nodes respectively). The maximum variation between the 
three solutions is just a few percent at most. This demonstrates that accurate solu- 
tions can be obtained with the FEAM using relatively few elements. 

A number of studies illustrating typical parametric results (normalized stress in- 
tensity factor as a function of elliptical angle, 6) for cracked countersunk rivets are 
shown in Figs. 1.168, 1.169 and 1.170. Note the sign convention for the elliptical 
angle in Fig. 1.166 differs for each crack location. The results for a crack at location 
B with a/t = 0.2 and four different crack aspect ratios are given in Fig. 1.168. The 
corresponding result for a/t = 0.4 is given in Fig. 1.169. Fig. 1.170 illustrates the 
normalized stress intensity factor variation for a crack at location C with a/t = 0.2 
and four different crack aspect ratios. 

§ 1.12.3   Fatigue crack growth 

This section describes the integration of a fatigue crack growth model into SAFE- 
FLAW to be used in conjunction with the FEAM. This is used here to analyze the 
countersunk rivet configuration under constant amplitude loading. 

Implementation 

A general form for fatigue crack growth is as follows 
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da     A{l-R)m(AK)n{AK-(AK)th}P 
(1.84) 

dN {(l-R)Kc-AK}i 

where a is the crack length, TV is the number of cycles for crack growth, R is the 
stress intensity factor ratio and AK is the stress intensity factor difference. The 
fracture toughness of the material is Kc, the threshold stress intensity factor is AK,f, 
and A,n,m,p and q are constants in the fatigue relation. Some of the more common 
fatigue relations such as Paris, Gomez, and Anderson (1961); Paris and Erdogan 
(1963); Forman, Kearney, and Engle (1967); Walker (1970) are special cases of 
Eq. (1.84). For example, the Paris relation can be obtained by setting /? = g = m = 0. 
In the case of a part elliptical crack, the distance from the origin to the crack front 
varies from point to point. Here the definition of crack length is very important. 
When performing a fatigue calculation, such as to determine the number of cycles 
for crack growth, it is best to take the crack length as the major axis or the minor 
axis. 

As a part elliptical crack begins to grow, it will generally have different growth 
rates in the different directions. This is to be anticipated since the stress intensity 
factor (AÄ") will vary along the crack front. Therefore the shape of the crack will 
change during the growth process. It is appropriate to assume that the crack will 
always maintain an elliptical or part elliptical shape. In this case the shape change 
of the ellipse will be completely described by the major and minor axis lengths. 
Therefore, Eq. (1.84) can be viewed as an equation that describes the change of 
length of the major and minor axes. 

A fatigue calculation generally involves either the calculation of the number of 
cycles for a crack to grow a specified length or else the amount of crack growth in a 
given number of cycles. To calculate the number of cycles during crack extension, 
it is necessary to integrate. Eq. (1.84) for N. The limits for this integration will rep- 
resent the starting and ending crack lengths. Generally these will be the initial and 
final minor axis lengths. This integration is performed numerically by subdividing 
into a number of crack growth intervals (twenty or less is usually sufficient). This 
sets the minor axis growth increment for each step. The stress intensity factor dis- 
tribution is calculated at each interval. Using an integrated form of Eq. (1.84), the 
number of cycles for this increment is calculated. Substituting this into Eq. (1.84), 
the major axis growth increment is calculated for this step. While the minor axis 
increment is constant for each step, the major axis increment is generally different 

for each step. It is in this manner that changes in the crack aspect ratio during crack 
growth can be considered. The total number of cycles is obtained by summing the 
values from each step. This computational approach is valid for constant amplitude 
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loading but is not directly applicable to variable amplitude loadings. An approach 
that considers the latter is presented in the next section. A somewhat similar proce- 
dure can be used to calculate the amount of crack growth when the number of load 
cycles is known. 

Fatigue analyses using conventional finite element techniques can be very labo- 
rious since a separate mesh must be generated for each crack configuration and the 
changing aspect ratio will then add to the complexity of this analysis. Fortunately, 
the FEAM overcomes this difficulty. Since the finite element mesh does not have 
to explicitly model the crack front, it is sufficient to use just a single mesh for the 
entire fatigue simulation even though the crack size increases during the growth 
process. The only requirement is that the finite element mesh has sufficient reso- 
lution for the uncracked stress distributions in the vicinity of the crack location. In 
addition to eliminating the manual effort in recreating the finite element mesh, res- 
olution procedures can be used at the calculation stage, necessitating just a single 
reduction of the element stiffness matrix. Therefore the alternating method offers 
several distinct advantages to efficiently carry out fatigue crack growth calculations 
for complex three dimensional components. 

Results 

To illustrate these constant amplitude fatigue crack growth concepts, the counter- 
sunk rivet configuration of Fig. 1.163 was subjected to a remote tensile cyclic load 
with a single crack at location A. The maximum load was 69 MPa and the mini- 
mum value was zero. The half width of the plate is 43.4 mm and the half height 
of the plate is 70.6 mm. The plate thickness, t, was 1.73 mm with the hole radius 
being 5.18 mm. The initial minor axis length was 0.173 mm and a/c = 2 with 
reference to Fig. 1.166. The crack was allowed to grow such that the minor axis 
doubled in length to 0.346 mm. The Paris growth relation was used in this case (ie. 
m = p = q = 0) and this is given by. 

%=*mn (1-85) 

The constants in the Paris relation were n = 4 and A = 1.8x 10~8 mm/cycle 
(MPa m1/2)-4. These values are typical for the 2024-T3 aluminum used for aircraft 
fuselages. Fig. 1.171 shows the stress intensity factor variation (not normalized) 
along the crack front as a function of the elliptical angle at three values of the major 
and minor axis lengths during crack growth. In the actual calculations, the stress 
intensity factors were calculated at nine aspect ratios during the growth process. 
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Figure 1.171: Stress intensity factor variation with elliptical angle with increasing 
crack size during fatigue for crack at location A near rivet hole 

The fatigue life calculation then gave 25,110 as the number of cycles for the crack 
minor axis to double in length. In this period, the major axis increased to 0.450 
mm. Thus the crack shape changed from an initial aspect ratio of 2 to a final aspect 

ratio of 1.3. 

§ 1.12.4   Variable amplitude loading 

In many practical applications, engineering components are subjected to variable 
amplitude loading. A computational strategy to calculate the fatigue behavior under 
this loading category is now outlined here for the C-141B weep hole configuration 
of Fig. 1.164. However this approach can also be used for any other cracked com- 

ponent subject to variable amplitude loading. 

Implementation 

The complexities associated with fatigue analyses under variable amplitude load- 
ing have not been included in SAFEFLAW. Consequently, it was necessary to link 
this code with NASA-FLAGRO to facilitate the calculation of the fatigue life under 
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Figure 1.172: Flowchart illustrating approach to variable amplitude loading analy- 
sis 

this loading category. NASA-FLAGRO has many advanced fatigue features that 
are ideally suited to variable amplitude loading. However, while FLAGRO con- 
tains built in solutions to a number of commonly occurring fracture configurations, 
it does not include complex configurations such as the weep hole. Thus, it is nec- 
essary to integrate the capabilities of NASA-FLAGRO and SAFEFLAW to obtain 
the solution. 

Fig. 1.172 illustrates the various elements involved in the analysis for variable 
amplitude loading. The steps in this analysis are as follows: 

1. FLAGRO is used to calculate the constants in the fatigue crack growth rela- 
tion. 

2. Stress intensity factors are calculated for a wide range of crack sizes using 
SAFEFLAW. 

3. Spectrum loading data are prepared. 

4. The results from the first three steps serve as input to FLAGRO in the com- 
putation of the fatigue life. 

These steps are now explained in detail. This scheme is valid for variable am- 
plitude loading acting on an arbitrary component. However, the discussion here 
focuses on the application to a corner crack emanating from a weep hole in a C- 

141B aircraft. 
Firstly, experimental fatigue crack growth data for the C-141B aircraft alu- 

minum (7075 T651) were available and these were used to determine the constants 



226 Draft dated: May 12,1997 

1 
S 
I 

0.0 
■   I  ■   I  ■   I  ■   I  '   I  ■   I  ■   I  ' 

0.4   0.8   1.2   1.6   2.0  2.4  2.8   3.2   3.6  4.0  4.4   4.8 

In (AK) (MPaV m) 

Figure 1.173: Data used to determine constants in fatigue crack growth relation 

in the fatigue crack growth relation. The Forman model for fatigue was used here 
and crack closure was allowed. Since there was very little load reversal (negative 
end levels) for the flight load data in this example, crack closure effects were not 
very significant in this instance. The Forman relation is obtained from Eq. (1.84) 
by setting m = p = 0 and q=\. The Forman relation is given by: 

da_ 
dN 

A{AK)n 

(1.86) 
(\-R)Kc-AK 

The material constants were calculated using FLAGRO. The (da/dN) vs. AK 
data used to determine these constants are given in Fig. 1.173. The yield stress 
was taken as 448 MPa, the plane strain fracture toughness as 29.7 MPa ml/2 and 
the wall thickness in the riser was 4.57 mm. These data resulted in a critical stress 
intensity for fracture of 63.3 MPa ml/2. This quantity is of course thickness depen- 
dent. The constants A and n were determined to be 4.31 xlO-5 mm/cycle (MPa 
mi/2) -2.531 gjjj 2.531 respectively 

In step 2, these constants were then input into SAFEFLAW and the weep hole 
fracture test configuration was analyzed. The purpose of these analyses is to obtain 
the stress intensity factor distribution for the range of crack sizes that are likely to be 
encountered during fatigue crack growth. Curve fits for these data will then be used 
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27 mm 

Figure 1.174: Detail of crack emanating from weep hole vertically up the riser 

in step 4 to calculate the fatigue life under variable amplitude loading. Because of 
symmetry about the crack plane, only one half of the test configuration need be 
analyzed. The geometrical dimensions for the specimen are given in Fig. 1.164. 
A uniform load of 100 MPa was applied at both ends of the specimen. In reality, 
this is just a reference value as the actual flight spectrum loads will be applied in 
the step 4 analyses. A quarter elliptical crack was assumed to be located on the 
top of the hole and this would subsequently grow along the bore and up along the 
riser. The initial crack dimensions were 1.78 mm along the bore and 1.27 mm in 
the radial direction (up the riser), which is typical of the component under test. A 
detail of this crack configuration is shown in Fig. 1.174. A further set of analyses 
were conducted for a crack on the lower end of the hole and growing down the 
riser towards the wing skin. This analysis is also described in the results section. 
Comparisons are made between the latter and some test data. 

For the crack on the top of the weep hole, two separate finite element meshes 
were used in the analysis, having 596 and 868 twenty node block elements respec- 
tively. Fig. 1.175 indicates that convergence has been obtained in view of the very 
good agreement between the two sets of results with the maximum discrepancy be- 
ing four percent at most. Here the stress intensity factor is given as a function of 
the elliptical angle where this angle is measured from the bore of the weep hole. 
With the good agreement between the two meshes, it was decided to use the smaller 
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Figure 1.175: Illustration of good convergence of stress intensity factor computa- 
tion for weep hole crack 

mesh in all subsequent calculations. A typical stress intensity factor computation 
with this model took 11 minutes on a HP workstation. 

The analysis focused on growth of the crack along the bore and the three di- 
mensional phase was considered to be complete when the crack reached the end 
of the bore and broke through the riser. The loading in the SAFEFLAW computa- 
tional simulation was limited to constant amplitude with a maximum value of 100 
MPa and R = 0. This fatigue load was applied until the crack grew along the bore 
through the riser. Clearly this was different from the spectrum loading in the actual 
tests. The important point however is that the change of shape of the quarter ellipti- 
cal crack during the growth process is relatively independent of the type of loading 
(constant amplitude or spectrum). Thus the analysis calculates the correct change 
in crack shape and the correct stress intensity factors during growth but makes no 
attempt to calculate the number of cycles for growth. It is necessary to use FLA- 
GRO to perform the latter computation. Specifically, the stress intensity factors at 
the tips of the major and minor axes have been computed for different crack sizes. 
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Table 1.17: Computed stress intensity factors and the major and minor axis loca- 
tions during fatigue crack growth of constant amplitude 100 MPa load 

Major Axis 

(mm) 

K 

(MPa m'/2) 

Minor Axis 

(mm) 

K 

(MPam1/2) 

1.93 11.78 1.35 9.37 

2.38 12.50 1.61 10.20 

2.81 13.55 1.86 10.58 

3.25 13.93 2.12 11.27 

3.67 14.64 2.37 11.94 

These data are given in Tab. 1.17 for the crack emanating from the top of the weep 
hole. 

Step 3 involves preparation of the flight load spectrum. The loading spectrum 
was used for both the test and the numerical simulation. These data are comprised 
of peak-valley pairs representing six 504.5 equivalent flight hours passes or 3027 
total flight hours. In the tests, this spectrum is repeated on a number of occasions 
resulting in through wall crack growth up the riser or growth into the wing skin de- 
pending on the initial crack location. The number of peak-valley pairs is somewhat 
different for each pass in order to account for cycles that occur as little as once in 
3027 flight hours and for an accumulation of fractional occurrences in the correct 
sequence. The data has been filtered such that stress differences of less than 14 
MPa were filtered out. In the data, the highest peak was 123.3 MPa. The Forman 
relation for fatigue crack growth is likely to give better results than the Paris rela- 
tion for this spectrum as the R ratio is relatively large for many of the cycles. The 
Paris relation will generally over predict the fatigue life in this instance. 

Results 

In step 4, FLAGRO uses the major and minor axis stress intensity factor results 
from SAFEFLAW to calculate the number of cycles for the crack growth process 
under variable amplitude loading. Cubic spline curve fits of these two sets of data 
are developed and these are input into FLAGRO. The loading in this instance is the 



230 Draft dated: May 12,1997 

Table 1.18: Computed major and minor crack lengths during fatigue crack growth 
as a function of equivalent flight hours (C-141B spectrum loading) 

Equivalent 

Flight Hours 

Major Axis 

(mm) 

Minor Axis 

(mm) 

0 1.78 1.27 

504.5 2.40 1.65 

1009 3.19 2.14 

1513.5 4.18 2.79 

2018 Breakthrough 

flight load spectrum that was also used in the experimental work. The constants in 
the Forman relation, as described above, are also used here. The number of cycles 
for crack growth under the spectrum loading can then be calculated. This relatively 
simple and straightforward approach for spectrum loads is valid since, as expected, 
the predicted crack shape change is relatively independent of the loading. The 
results are presented in Tab. 1.18 where major and minor crack lengths are given 
as a function of equivalent flight hours. Between 1513 hours and 2018 hours, the 
crack (major axis) grows to the end of the bore and through the riser. This marks 
the end of the three dimensional stage of the crack growth. The subsequent analysis 
of through wall crack growth up the riser is essentially two dimensional. This was 
not considered in the present effort but would allow a more extensive comparison 

with the experimental data. 
A similar coupled SAFEFLAW/FLAGRO analysis was carried out for a crack 

emanating from the bottom of the weep hole and propagating down the riser to- 
wards the wing skin. Limited comparison was possible between these data and 
a weep hole test specimen referred to as RN0001 [O'Donoghue, Nishioka, and 
Atluri (1982)]. In this case, the initial major axis along the bore is 1.73 mm while 
the initial minor axis into the riser is 1.45 mm as in test RN0001. Tab. 1.19 gives 
the SAFEFLAW computed stress intensity factors (596 elements) at the tips of the 
major and minor axes of this crack as a function of crack lengths for a nominal max- 
imum load of 100 MPa. These data, along with the flight spectrum loading and the 
constants in the Forman relation, are input to FLAGRO and the number of cycles 
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Table 1.19: Computed stress intensity factors and the major and minor axis loca- 
tions during fatigue crack growth of constant amplitude 100 MPa load 

Major Axis 

(mm) 

K 

(MPa m1/2) 

Minor Axis 

(mm) 

K 

(MPam1/2) 

1.73 12.23 1.45 8.44 

2.08 12.30 1.62 9.15 

2.39 12.68 1.76 9.50 

2.69 13.29 1.92 9.67 

3.03 13.48 2.06 10.18 

3.33 13.86 2.21 10.28 

3.64 14.26 2.35 10.69 

3.95 14.58 2.50 10.90 

4.25 15.32 2.65 11.18 
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taken for the crack to propagate along the bore of the hole is calculated. Tab. 1.20 
gives the relevant crack lengths as a function of flight hours. Thus breakthrough of 
the riser is predicted to occur between 1513 and 2018 hours. The experimental data 
from test RN0001 however predicted breakthrough between 3027 and 6054 hours; 
about twice the length of the computed lifetime. A more precise test measurement 
was not available. It must be noted however that direct comparison is not possi- 
ble as some details of the test configuration and relevant material and geometric 

parameters were not fully known. 
Several reasons are likely to contribute to discrepancies that exist between the 

computational model and the test data. A difficulty with the data used to establish 
the growth rate constants is that it was generated for the case of R = 0. Much 
of the actual spectrum loading is for much higher values of R such as R = 1/2. 
Further, the constants in the fatigue crack growth relation came from a planar test 
specimen where properties such as the fracture toughness are thickness dependent. 
The applicability of these data to a three dimensional configuration may not be 
strictly correct. In addition, there appeared to be some difficulty in obtaining a 
uniform load over the specimen cross section in the experimental work. Thus, the 
actual load experienced by the specimen in the crack region maybe different to that 
applied in the computational model. 

In a further effort to check the accuracy of the numerical approach, an analysis 
was carried out using FLAGRO directly for a corner crack emanating from a hole 
in a rectangular plate. This geometry, particularly in the vicinity of the crack front, 
is similar to the weep hole configuration for a crack emanating from the top of the 
hole. In this analysis, the spectrum loading and fracture properties are identical to 
that described earlier. However, the stress intensity factors in this instance come 
from a well validated pre-existing solution that is already contained in FLAGRO. 
This analysis gave stress intensity factors that were typically 5% different from 
SAFEFLAW and the number of cycles for crack growth differed by less than 20% 
from the coupled SAFEFLAW/FLAGRO analysis presented above. This agreement 
is highly encouraging in view of the fact that the geometries are slightly different 
and lends further credibility to the combined SAFEFLAW/FLAGRO approach that 

has been used. 

§ 1.12.5   Discussion 

The finite element alternating method has been applied here to calculate stress in- 
tensity factors for cracks emanating from rivet holes in aircraft fuselages. Fatigue 
calculations have also been carried out. The FEAM is ideally suited to performing 
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Table 1.20: Computed major and minor crack lengths during fatigue crack growth 
function of equivalent flight hours (C-141B spectrum loading) as a 

Equivalent 

Flight Hours 

Major Axis 

(mm) 

Minor Axis 

(mm) 

0 1.73 1.45 

504.5 2.38 1.75 

1009 3.19 2.13 

1513.5 4.14 2.61 

2018 Breakthrough 

these calculations and offers significant advantages when compared to other anal- 
ysis techniques. This is primarily due to the fact that the finite element model is 
for the uncracked component and it is not necessary to explicitly model the crack 
front. Therefore a large number of elements is not required, reducing both the pre 
and post processing effort in addition to the computation time. Another major ad- 
vantage is that the same mesh can be used to analyze cracks of different size, clearly 
beneficial in the case of fatigue. 

The methodology described here can be easily used for three dimensional fa- 
tigue crack growth under spectrum loading in components of complex shape. FLA- 
GRO and SAFEFLAW are combined to obtain the solution to problems that are be- 
yond the individual scope of either code; FLAGRO is limited to a set of predefined 
3-D configurations while SAFEFLAW is restricted to constant amplitude loading. 
Therefore the methodology exploits the principal features of the two packages; 
superior fatigue crack growth capabilities in FLAGRO and efficient stress inten- 
sity factor calculation for complex three dimensional structures with SAFEFLAW. 
These developments now make three dimensional fatigue calculations a relatively 

simple task. 
The FEAM also addresses other aspects relating to crack growth in aircraft 

components. The schematic of Fig. 1.163 indicates a number of possible crack ini- 
tiation locations. In each of the analyses reported earlier, it was assumed that only 
one crack existed in the initiation region. It is plausible however that cracks might 
co-exist; for example at locations A and B. In this instance, the interaction effects 
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can become important resulting in stress intensity factor amplification. The tech- 
nology for this has already been included in the alternating method [O' Donoghue, 
Nishioka, and Atluri (1982)]. Remote tensile loads were assumed to act on the 
fuselage in the cases presented here. Additional loads can result from rivet bear- 
ing pressure acting on the edges of the hole. These loads can have a significant 
influence on the stress intensity factors. An approach that considers rivet bearing 
pressure has been developed for SAFEFLAW but the results have not been reported 

here. 

§ 1.13   Composite Patch Repair Technology 

In this section, the problems of composite-patch repair of (i) center and edge- 
cracked panels loaded in the far field; and (ii) cracks emanating from pin-loaded 
fastener holes are examined in thorough detail. The effects of various non-dimensional 
design parameters on the reduction in the stress-intensity factors near the crack-tip 
are determined, and are presented in the form of design charts. Both analytical 
and numerical methods are employed in this study. In the analytical method, the 
cracked metallic plate was considered to he infinitely large and the composite patch 
was modeled as a long orthotropic strip of finite height (in the direction perpendicu- 
lar to the crack axis). Next, by using the FEAM, a more general analysis capability 
that can treat arbitrary shapes of the cracked metallic sheet as well as the composite 
patches, is developed. This general FEAM is applied to: 

1. composite patch repairs of cracks emanating from loaded fastener holes (the 
MSD problem) 

2. composite patch repairs of semi-elliptical shaped surface flaws in thick-section 

plates 

3. composite patch repairs of quarter-elliptical shaped surface flaws emanating 

from fastener holes. 

The problem (1) is two-dimensional in nature, while problems (2) and (3) are fully 
three-dimensional. In all these cases, the effects of various design parameters on the 
reduction of the crack-tip (front) stress-intensity, due to repair, are fully discussed. 
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t 
base plate with 
a center crack 

Figure 1.176: Schematic of a cracked metallic sheet repaired with a composite 
patch 

§ 1.13.1   Repair of center or edge cracks in unstiffened panels 

Due to the fact that, in general, an analytical (as opposed to purely numerical) 
approach is more conveniently employed to examine the effects of each design 
parameter on the mechanical behavior of a repaired crack, a model problem of a re- 
paired crack is first analyzed. Fig. 1.177 depicts the problem of an infinite isotropic 
(metal) sheet containing a crack of length la, repaired by an adhesively bonded 
infinitely long orthotropic (composite) patch of height 2H (height is measured nor- 
mal to the crack-axis). It is assumed that the crack lies along the x-axis and that the 
principal material directions of the patch coincide with the geometric x and v axes. 
Let the thickness of the metal plate, the composite patch and the adhesive layer, be, 
respectively, hs, hp and ha. 

The metal sheet is subjected to a hoop stress of OQ as in Fig. 1.176. This mode 
I symmetric problem can be solved by a superposition of the two following prob- 
lems: 

Problem A: Determine the stress field in an isotropic metal sheet without a 
crack, to which is bonded an orthotropic patch as in Fig. 1.177a. 

Problem B: When the tractions at the location of the crack, as determined from 
the solution of Problem A above, are erased, determine the stress-intensity factors 
at the crack-tips. This problem is sketched in Fig. 1.177b. 



236 Draft dated: May 12,1997 

1 1 

T 
(a) (b) 

Figure 1.177: Linear superposition of problem A and problem B to solve the prob- 
lem in Fig. 1.176 

The relevant material and geometric parameters from Problems A and B are as 

follows: 

1. The Young's modulus Es, and Poisson' s ratio vs for the isotropic sheet. 

2. Thickness hs of the isotropic sheet. 

3. The Young's modulus Ex and Ey of the orthotropic patch; the Poisson ratio 
vy and the shear modulus G^, of the orthotropic patch. 

4. The height H; and thickness hp of the orthotropic patch; and 

5. The thickness ha, and the shear modulus Ga of the adhesive layer. 

By using the Buckingham's Ü theorem, the grouping of non-dimensional pa- 
rameters that arise from the above geometric and material data is determined to 

be: 

(¥)-(5)-(^)-w-®-®'W-(f)-     <"" 
It is the objective of the present analysis to determine the stress-intensity factor 

as a function of the above 8 non-dimensional parameters. This ensemble of curves 
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Figure 1.178: Basic problems needed in solving the problems of Fig. 1.177b 

would then lead to a design procedure to select the appropriate composite patch, 
and adhesive, for a given crack in a metallic sheet. This is the first comprehensive 
treatment of this problem in the literature. 

Problem A (Fig. 1.177a) 

Since the base plate and the patch have infinite lengths in the ^-direction and since 
there is no crack, we can treat this problem as a one-dimensional patch problem. 
Here it is assumed that the shear stresses in the adhesive layer are only in the y- 
direction (i.e.,TÄ = 0), the base plate and the patch are in states of plane stress, and 
that the shear stresses in the adhesive layer are applied on the base plate and the 
patch as body forces (Fig. 1.178). 

The equilibrium equations for a metal sheet and the composite patch are, re- 
spectively: 

d<fyy 

dy 
dc§y 
dy 

i,yz 

h„' 

(1.88) 

(1.89) 

Here cL and a£y are the normal stresses in the y direction in the base sheet and in 
the patch respectively, and iyz is the shear stress in the adhesive layer. 

The stress-strain relations of the base sheet and the patch are given by: 

1 
«4 =  -ETK*~V*°^)' (1.90) 
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^ = jK-**t*)' (L91) 

&   =   ^K-v^), (1.92) 

«&   =   ^-K-v^). (1-93) 

Here £$ and v^ are Young's modulus and Poisson's ratio of a base sheet respec- 
tively; and Ex,Ey and \x,\y are the moduli and Poisson's ratios of an orthotropic 

patch. Among these variables, the relation vx/Ex = vy/Ey is satisfied. 
As a compatibility condition between the metal sheet and the composite patch, 

the following relations proposed by Mitchell, Wooley, and Chivirut (1975), Jones 

and Callinan (1979) were used 

(1.94) 
t 

Here 

F = ^± + ^lL + ^lL) (1.95) 
Ga    8Gj     8Gp 

vs and \p are the y displacements in the sheet and the plate respectively, and Ga, Gs 

and Gp are the shear moduli of the adhesive, the base sheet and the patch, respec- 
tively. We assume that Gp has the same value as G^ in the patch plate. From the 
elaborate numerical results presented later, it will be seen that this assumption has 

little effect on the stress intensity factors. 
By using Eq. 1.94 and the following boundary conditions: 

0^ = 000^ = 0 aty = H, (1.96) 

we can solve Eqs. 1.88 and 1.89 easily. The stresses are obtained as 

*>   =   ^-^^(cosh^-cosh^), (1.97) 

*>   =    FE^o2AH^AH-COSh^ (1-98) 

(l-vflob 
yz FESA cosh AH 

Here, to simplify the problem, the additional assumptions E^ = 0 and e£c = Owere 

used. A2 is defined as 

T'yz — F 

ha   . 3hs 3hp 

Ga
l ZGS 8GP 
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A2      Iflzi + Iz^Z, (U00) 
F V £A      £yÄp 

From Eqs. (1.97-1.99), we can notice that o^, and xyz have their maximum 
values at y = H, and decrease exponentially as (H — y) becomes larger than zero. 
On the other hand, dyy is zero at y = H, but it increases exponentially as (H - y) 
becomes larger than zero. 

When coshAH > 1, the stresses near y = 0 can be expressed as 

* = °°-«S§°°' <U01) 

* = 70°°' (U02) 
%yz        =        0. (1.103) 

These stresses are the same as those when the patch is considered to be of an 
infinite height. Thus, when the value of cosh AH is much greater than 1, we can 
assume that the patch has an infinite height, because this assumption gives nearly 
the same values for the stress intensity factors at the cracktip, and induced stresses 

near y = 0. 

Problem B (Fig. 1.177b) 

In order to solve this problem, a superposition of the basic problems shown in 
Fig. 1.178a, b and c may be used. 

Fig. 1.178a is the case where uniform surface pressure po is applied on the crack 
surface in a metal sheet of infinite size. Its solution is well known [Gladwell and 
England (1977)]. Let the displacement field of this problem be usA = f\ (x, y), v"A = 
fi (x,y). Here us is the displacement in the x direction and Vs is the displacement in 
the y direction, in the sheet. 

Fig. 1.178b is the problem wherein point loads X,Y are applied symmetrically 
at the points (*o,yo), (-*0,yo), (*o, -yo) and (-ACO, -y0) on an infinite isotropic 
plate with a central crack. Let this solution be usB and v*B (x, y). The solutions can 
be found in Erdogan and Arin (1972) and Roderick (1980). By using the solution 
in Roderick (1980), the displacements at a point (x,y) for this problem can be 

expressed as: 

usB{x,y)   =   Hn(x,y;xo,yo)X+Hn(x,y,xo,yo)Y (1.104) 
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Figure 1.179: Green's function solution for a finite orthotropic plate, through su- 
perposition 

SB{x,y)   =   H2i(x,y;xo,yo)X + H22{x,y;xo,yo)Y (1.105) 

The problem of Fig. 1.178c is where the point loads X,Y are applied symmet- 

rically at the points (xo,yo), (-*o,yo), (*o, -yo) and (-*o, -yo) on an orthotropic 
patch of height 2H. The problem of Fig. 1.178c can again be solved through a 
linear superposition of two other problems as in Fig. 1.179b and c. Fig. 1.179b 
is of the problem of an infinite orthotropic sheet; and Fig. 1.179c is of a finite 
height composite patch with residual tractions, from the solution of the problem in 
Fig. 1.179b, acting on the edges y = ±H. The displacement field for the problem 
in Fig. 1.179b can be found in Lekhnitskii (1968). Now we consider the problem 
of Fig. 1.179c. Here, -p{x) and -q(x) are the normal and shear stresses acting on 
the y = if plane. Since, for the problem in Fig. 1.179c, the displacements upc (x,y) 
and vpc (x,y) are odd and even functions, respectively, with respect to x, we may 

define: 

,.pc 
(*»y) 

_  2 r 
~   nJo 

$ (a, y) sin oca/a, 

2  f°° 
v^foy)   =   - /   \i/(a,y)cosa»ta, 

% Jo 

(1.106) 

(1.107) 

where $ (a,y) and y(a,y) are the Fourier transforms of upc (x,y) and vpc (x,y) re- 
spectively. Since there are no further body forces, the equilibrium equations for the 
patch in Fig. 1.179c are written in terms of upc and vpc for this component problem 

of Fig. 1.179c, as: 

 \ dVc 

1-VjfVy/ dxdy 

\xEy 

{T^TW< 
9VC   d2vpc 

dxdy      dx2 0    (1.108) 
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Substituting Eq.l.106-1.107 into Eq.l.108-1.109, we obtain: 

f^HHtM* = °'       (,'110, 

The general solutions of Eqs. 1.110-1.111 are: 

<|) = g1AiCOshßi>' + e2A2COshß2>' + eiA3sinhßi>' + e2^4sinhß2)'        (1.112) 

\|/ = Aisinhßi)'+i42sinhß2)'+/l3COshßi)'+A4COshß2)', (1.113) 

where n r / ,. 
oßt[v^ + G^(l-vxvy)] 

*"   G^(l-v,vy)-«*^ '*-1,2 (L1M) 

and ßi and ß2 are roots of 

P4_a2^_2vx^
2 + a4| = 0 (1.115) 

Vt/jtj, / Üy 

Considering the symmetry conditions, upc (x,y) = upc (x, -y), and v^ (x,y) - 
-vpc (JC, -y), we see that the constants A3 and A4 must be zero in Eqs. 1.112-1.113. 
Using Eqs. 1.112-1.113 in Eq. 1.106-1.107, we obtain the displacements upc and 
vpc. From these, the corresponding stresses can be determined as: 

o£   =   ~ r°[(aMi*i+M2ßi)Aicoshßiy+ 
71 JO 

(aM\e2 +M2ß2)A2 cosh ß2y] cos curfa 

aft   =   -/  [(ocM2ei+M3ßi)Aicoshß1>'+ 
'' 71 JO 

(ccM2e2 + M3 ß2) A2 cosh ß2y] cos axda 

o£   =   -r[G^(«ißi-a)A,sinhß,y+ 
Gxy(e2ß2-a)A2sinhß2)']sinfX»ia, (1.116) 

where 



242 Draft dated: May 12,1997 

„ _      Ex        „ _     Vyg»     _    VxEy _     Ey 
Ml~ l-v.v/ M2~ l-Gvxvy- l_v,v/M3_ l-vxv/ 

If P (a) and Q (a) are the Fourier transforms of the tractions p (x) and q (x) in 
Fig. 1.179c, suchthat 

2 Z"00 

p(jc)   =   - /   P(a)cosara£x, (1.117) 
TtJo 

qr(jc)   =   - /   ß(a)sinaxJx, (1.118) 
TCJo 

then the boundary conditions at o££ (x,H) = +p (x) and a££ (x,H) = +q (x) result 

in the following equations: 

(oM2ei +M3ßi) (coshßitf)Ai + (oM2e2 + M3ß2) (coshß2#)A2 = P(a) 
(1.119) 

G^(«ißi - <x) {sinh$iH)Al + Gxy (e2ß2 - a) (sinhß2//)A2 = ß(a)     (1.120) 

from which Ai and A2 are solved for. Thus, the displacement solution upc (x,y) and 
vpc (x,y) is obtained for the problem in Fig. 1.179c. 

Let the displacement solution for the patch problem of Fig. 1.178c, obtained as 
a superposition of problems in Fig. 1.179b and c, be written as: 

upc (JC,y)   =   — / [Kii (*,y;XQ,yQ) xxz (xo,y0)+ 
ftp JD 

Kn{x,y;xQ,yo)iyZ(xo,yo)]dx0dyo (1-121) 

^ (*>?)   =   T I [^21 {x,y,xo,yo)i« (xo,yo) + 
hp JD 

K22(x,y,XQ,y0)'ZyZ(xo,yo)]dxodyo (1.122) 

wherein, the adhesive shear stresses (xxz/hp) and (WM are treated as body forces 
per unit volume, acting on the composite patch, as in Fig. 1.178c. 

The sheet displacements from problems 1.178A and 1.178B may be written as: 

us(x,y)   =   usA(x,y) + usB(x,y) 

=   f\ (x,y) - — I [H\\ (x,y;xo,yo) x„ (xo,>o) + 
ns JD 

Hi2{x,y;xo,yo)XyZ{xo,yo)]dxodyo (1.123) 
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v* fay)   -   h fay) - — I [#21 fay,xo,yo)i« (xo,yo) + 
ns JD 

H22fay;xo,yo)Xyz(xo,yo)]dxodyo (1-124) 

where D, the domain of integration, is the size of the composite patch. The body 
forces on the sheet are (-ixz/hs) and {-xyz/hs) in the x and y directions, respec- 
tively. 

The compatibility condition between the sheet and the patch is expressed as 

T«=(—^Jand V=(-ir-]. (1.125) —Jand hz=[—fr 

By substituting Eqs. 1.121-1.122 and Eqs. 1.123-1.124 into Eq. 1.125, one obtains 
the following integral equations for xxz and xyz: 

Ftnfay)+ / [knfay,xo,yo)xxz(x0,yo) + 
JD 

hi fay,xo:yo)xyz(x0,yo)]dxody0 = f\ fay) (1.126) 

Fiyzfay)+ / [k2ifay,xo,yo)Vxz(xo,yo) + 

k22 fay,xo,y0) tyz (xo,yo)]dx0dy0 = h fay) (1.127) 

*n=r^ + ^V*i2=(^ + *2 

where 

hs      hp J \ hs      hp 

In integral Eqs. 1.126 and 1.127, the domain of integration D is the size of 
the orthotropic patch, which is finite in the y direction, but °o in the x direction. 
For numerical purposes, however, the domain D in the x direction is also truncated 
to some finite value. In order to solve Eqs. 1.126 and 1.127, the domain D is 
discretized into a number of small sub-elements. In each subelement, xxz and xyz 

are assumed to be constant. Thus a system of linear equations, for discrete values 
of xxz and xyz, is obtained. By solving these, the shear stresses xxz and x^ are 
determined. Since the stress-state on the sheet, as in Fig. 1.178a and b, is thus 
completely known, the fc-factors can be evaluated from the analytical solutions for 

problems 1.178A and B. 
One example of descritization of D is shown in Fig. 1.180, for the case when 

{H/a) = 4. By varying the size of this D, it was determined that the obtained k- 
factors are insensitive to the size of D, as long as the dimensions of D are about five 
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0 t    a 
^ crack 

Figure 1.180: A typical finite element mesh of the adhesive layer 

times as large as a. Note also the finer mesh near the crack, in Fig. 1.180, as the 
adhesive shear stresses are expected to be maximum near the crack itself. 

Behavior of patched cracks in unstiffened panels 

Attention is focused in this study, on the variation of: 

1. non-dimensional stress intensity, i.e., KI/QQ^/TW. 

2. non-dimensional adhesive shear, t^/oo and XyZ/co 

3. non-dimensional patch stress, [o$yhp] / {oohs) 

as a function of the non-dimensional parameters: 

From the computed results, it was found that the more significant parameters are: 

1. (GsF/hs): which characterizes the adhesive flexibility. The "smaller" this 

number is, the "stiffer" is the adhesive. 
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2. (hpEy/hsGs): which characterizes the patch stiffness in the direction normal 

to the crack axis. 

The "larger" this number, the "stiffer" is the patch in the direction normal to the 

crack-axis. 
Fig. 1.181a shows the variation of the normalized stress-intensity factor as the 

crack-length increases, for the case of a very large composite patch, [H/a) -+ 
°o; (hpEy/hsGs) = 2; and (GsF/hs) = 3.0. Note that, in the absence of a com- 
posite patch, the normalized it-factor, i.e., [Ki/Cy/na] = 1.0. Thus, the vertical 
distance between the horizontal straight line [normalized fc-factor = 1.0] for the un- 
patched crack, and the curve for the repaired crack, indicates the reduction in the 
normalized ^-factor due to patching. Fig. 1.181a clearly shows that more and more 
reduction in the normalized ^-factor results as the crack-length increases. 

Also it is seen from Fig. 1.181a that, as (a/hs) < 1, the normalized ^-factor 
converges to that in a center-cracked sheet with the crack-face pressure of po (see 
Fig. 1.178a), which is smaller than the applied far-field stress OQ in the sheet (see 
Fig. 1.177a). Thus, when the crack length in the metal sheet is very small, the 
reduction in k -factor is achieved by the reduction in the crack-face pressure, po, 
in the metal sheet, due to the pressure of the composite patch. From Eq. 1.97 it is 
seen that po in Fig. 1.177b is given by 

Substituting for A2 from Eq. 1.100 into 1.129, it is seen that po is independent 
of the adhesive flexibility parameter "F'f for large values of H when cosh AH > 1. 
Thus, for short cracks, the reduction in the normalized fc-factor is unaltered by 
the adhesive flexibility. As the crack becomes longer, the adhesive shear stresses 
acting on the metal sheet have more dominant effect on the crack-tip /c-factor, and 
the reduction in the it-factor depends on the adhesive flexibility parameter F. 

Fig. 1.181b shows the variation of the actual Mactor as the crack grows, with 
and without the presence of a composite patch. It is seen that without the patch, 
the it-factor increases as y/ä as expected, but in the presence of a patch, the k- 
factor levels off to a constant value as the crack grows. This result has also been 
noted earlier by Rose (1981) and Atluri and Kathiresan (1978). It should be noted, 
however, that in the present analysis, the adhesive bond between the metal sheet 
and the composite patch is assumed to be perfect. However, the shear stress in 
the adhesive is maximum near the center of the crack, where the crack-opening 
displacement Vs in the sheet is maximum. Thus, for all adhesives whose maximum 
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Figure 1.181: (a) Reduction in normalized fc-factor due to patching, as a function of 
the crack length; (b) reduction in the actual k-iactor (for o0 = 1) due to patching as 
a function of the crack length. hpEy/hsG5 = 2, GsF/hs = 3, H/a = ~, Ey/Ex = 8, 
EjGxy = 3.5, v, = 0.32 and \y = 0.16. 
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Figure 1.182: Reduction in normalized fc-factor for a given crack length, as a func- 
tion of the patch stiffness and adhesive flexibility 

shear-strength is a finite value, a disbond can be expected to occur between the 
metal sheet and the composite patch near the center of the crack at y = 0, as well 
as possibly at y — H. When this disbonding is modeled properly, its effect is to 
increase the actual fc-factor of the repaired crack, as the crack length increases. 

Fig. 1.182 shows the effects of the "patch-stiffness" parameter and the "adhesive- 
flexibility" parameter on the normalized stress-intensity factor of the patched crack, 
for a given crack length (a/hs) = 5.0, and a given patch-height, (H/a) = 4.0. 

For a fixed "adhesive-flexibility" value, the stress-intensity factor (S.I.F.) of the 
patched crack decreases rapidly from its "unpatched" value, as the patch-stiffness 
increases. This S.I.F. reduction is, however, smaller as the adhesive flexibility in- 

creases. 
From Fig. 1.182, it is evident that the S.I.F. reduction due to a patch is maximum 

when one uses a very stiff composite patch, as well as a very stiff adhesive layer. 
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Figure 1.183: Variation of %yz at x = 0, y = 0 as a function of the patch-stiffness 
and adhesive flexibility 



§ 1.13: 249 

o 

•g    0.4 - 

13 

o 

0 2 4 6 8 10 

Patch stiffness parameter hpEy/hsGs 

Figure 1.184: Variation of % at x = 0, y = H as a function of the patch-stiffness 
and adhesive flexibility 

However, a stiff adhesive layer has a deleterious effect on the integrity of the 
bond itself as the adhesive shear stresses increase in such a case, as seen from 
Fig. 1.183 and 1.184. 

Fig. 1.183 shows the non-dimensional shear stress (Tyz/ao) in the adhesive 
layer, at the center of the crack, i.e., x = 0 and y = 0; while Fig. 1.184 shows 
the corresponding value at the end of the patch, i.e., x = 0 and y = H. It is noted 
that in all cases, x^ < iyz and hence xK is not shown. It is seen that iyz at y = 0 
arises only from the problem in Fig. 1.177b. Since xyz = (v*-vp)/F and since 
(v* _ VP ) is maximum at x — 0 and y = 0 in Fig. 1.177b, the maximum value for the 
problem in Fig. 1.177b also occurs at x = 0 and y = 0. Also, the stress xyz at x = 0 
and y = H for the problem in Fig. 1.176 are nearly the same as that for the problem 

in Fig. 1.177a, and given by Eq. 1.99 when y = H. 
From Fig. 1.183 it is seen that xyz at x = 0 and y = 0 increases rapidly as the 

adhesive becomes suffer (i.e., as F decreases), especially for moderate values of 



250 Draft dated: May 12,1997 

€ 

0 2 4 6 8 

Patch stiffness parameter hpEy/hsGs 

Figure 1.185: Variation of 0&, at x = 0, y = H as a function of the patch-stiffness 
and adhesive flexibility 

patch stiffness. For fixed values of F, (xyz/o0) at x = 0 and v = 0 decreases as 
the patch stiffness increases. For large values of adhesive flexibility, the maximum 
shear stress is nearly constant regardless of the value of the patch stiffness. 

From Fig. 1.184 it is seen that x^at x = 0 and y = H also increases as the 
adhesive layer becomes stiffer. However, for fixed values of F, this shear stress 

increases as the patch increases. 
Thus, we note that when a patch with a low stiffness ({hpEp) / {hsGs) < 3.0) is 

used, the value of xyz at x = y = 0 is larger than the value of xyz at x = 0 and y = H. 
As the patch becomes stiffer, xyz at JC = 0 = y decreases, while xyz at x = 0 and 
y = H increases. Thus as the patch becomes very stiff, %yz{x = 0,y = H)> xyz{x = 

0,y = 0). 
Thus, in general, depending of the values of the patch stiffness, the likelihood 

of a disbond between the metal plate and the patch exists both at the locations 

(x = 0,y = 0) and (JC = 0,y = H). 
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Figure 1.186: Schematic of repaired cracks near a loaded fastener hole in a metal 
sheet 

Fig. 1.185 shows the effect of the patch-stiffness and adhesive flexibility on the 

values of {Oyyhp) I (°ohs)- The value of (axy/°o) changes, on the other hand, ac- 
cording to the value of (hs/hp). For fixed value of adhesive flexibility, {Oyyhp) I (°o^ 
increases as the patch-stiffness increases. For fixed patch-stiffness, (o%yhp) / (cohs) 

increases as the adhesive stiffness increases. 
So far, we have assumed that the metal sheet is infinite, and the composite patch 

is of a finite height but infinitely long. In reality however, the base sheet as well 
as the patch are finite in size; moreover, the patch can be arbitrary in shape. To 
account for these size and shape effects, one may use the FEAM to determine the 
displacement fields in each of the component problems such as in Fig. 1.178a, b, 
c wherein each problem may have a finite, arbitrary, shape. The integral equations 
for xxz and xyz in these finite arbitrary shapes may be formulated in much the same 

way as described earlier. 

§ 1.13.2   Repair of cracks near loaded fastener holes in a lap joint 

Consider the model problem of repairing of symmetrical cracks emanating from a 

loaded fastener hole, as shown in Fig. 1.186. 
A circular hole of radius R is located at the center of a rectangular plate of 
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Figure 1.187: Linear superposition of problem B and C to solve a problem A: 

width 2WS, height 2HS and thickness Aj. Two radial cracks of equal lengths (a - R) 
each emanate from the hole, along the it axis. To repair these cracks, a rectangular 
orthotropic patch of width 2Wp, height 2HP and thickness hp is assumed to be 
bonded onto the metal sheet. The thickness of the adhesive is ha. The metal sheet 
is assumed to be subject to a far-field hoop stress Oo as well as the pin-loading p (0) 

of the type: 

„(9) = ^|sin9| (1.130) 

as Fig. 1.187a. Since the applied loading (o0andp(G)) is not symmetric in the 
v direction, the crack may exhibit mode II behavior also. However, this mode II 
/k-factor may be expected to be much smaller than the mode I component, and will 

be ignored hence forth. 
The problem of Fig. 1.187a can be solved by a superposition of the two sym- 

metric problems of Fig. 1.187b and c. If the crack-tip fc-factor in Fig. 1.187b is K,B 

and that in Fig. 1.187c is Kjc, respectively, then the k -factor of Fig. 1.187a may be 

written as: 

KIA = -^{KtB + Kic). (1.131) 
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Figure 1.188: Basic problems to be solved in solving the problems of Fig. 1.187 

Note that both the problems of Fig. 1.187b and c involve finite geometries. 
The problems in Fig. 1.187b and c, can, in turn, be solved by a linear superposi- 

tion of the basic problems in Fig. 1.188: (A) the problem of a finite sized isotropic 
metal sheet with radial cracks emanating from an unloaded hole, the sheet being 
subject to far-field hoop stress Oo; (B) the problem of a finite-sized isotropic metal 
sheet with radial cracks emanating from a hole, the hole surface being subject to 
symmetric load p (0) (Fig. 1.188b); (C) the problem of a finite-sized isotropic metal 
sheet with cracks emanating from a hole, the plate being subjected to shear trac- 
tions txz and xyz (from the adhesive layer) on its surface (Fig. 1.188c); and (D) the 
problem of a finite-sized orthotropic composite patch, subjected to shear tractions 
xxz and xyz (from the adhesive layer) on its surface (Fig. 1.188d). 

In order to solve the above four basic problems, the FEAM is employed. In the 
case of the problem in Fig. 1.188a, the FEAM procedure is as follows: 

First consider the analytical solution for the problem of a central crack in an 
infinite sheet, the crack-faces being subjected to arbitrary tractions. Earlier in this 
book, the solution of Gladwell and England (1977), wherein the crack-face pressure 
was assumed to be a sum of Chebyschev polynomials, was presented. However, in 
the present problem of cracks emanating from a hole, as in Fig. 1.188a, in the 
FEAM procedure, residual tractions would arise on the crack-faces, |*| > (R - a) 
(for a traction-free hole), and further, there will be steep stress gradient near \x\ = R 
because of the stress-concentration near the hole. Thus, in order to use the Gladwell 
and England (1977) solution, tractions on the fictitious crack-face \x\ < a will have 
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to be interpolated with Chebyschev polynomials which is not desirable, since the 
residual tractions on the fictitious crack-faces |jt| < R are zero, while those on \x\ 
> (Ra) have a steep gradient. Due to this fact, an alternate analytical solution for a 
central crack in an infinite sheet, the crack faces being subject to equal and opposite 
point-loads at an arbitrary location x as discussed in Charpter ??, is considered. 

Formulation of integral equations for the problem of repair of cracks near loaded 

fastener holes 

By using the FEAM outlined in Sec. § 1.13.2, we obtain the displacement fields 
in each of the four basic problems sketched in Fig. 1.188a-d, respectively. Let the 
displacement field of the problem in Fig. 1.188a be given by usA - Fu {x,y) and 
v** = FtA (x, y); and that for problem in Fig. 1.188b be given by usB = F\B (x, y) and 
Vs8 = FIB (*,y). Let the displacement field for the problem in Fig. 1.188c be given 

by: 

usC (x,y)   =   - — l [Hii (x,y;XQ,y0) x« (*o,yo) + 
fls JD 

Hn(x,y;xo,yo)tyz{xo,yo)]dxQdy0 (1.132) 

and 

v^foy) = -— f [#2i (x,y;xo,yo)Xxz(xo,yo)+]dx0dyo (1.133) 
ns JD 

where D is the domain of the finite patch (and of the adhesive layer). Likewise, the 

displacement field in the patch is given by 

up = upD (x,y)   =   T- I [Kn (^,y;^o,yo) x«(xo,yo) + 
ftp JD 

Ki2(x,y,xo,yo)tyz{xo,yo)]dxodyo (1.134) 

vp = vpD{x,y)   =   — [ [K2\ (x,y;xo,y0)ixz fayo) + 
Up JD 

K22 (x, y; XQ , yo) xyz (xo, yo)] dxodyo (1.135) 

The total displacement in the metal sheet (see Fig. 1.188a-c) is given by: 

us = 1 (usA + usB)+usC = 1 (fu + frf + u* (1.136) 
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Figure 1.189: A typical finite element mesh of the adhesive layer 

and 

V
s=1-{SA + V

sB)+SC=^(f2A + f2B)+VSC (1.137) 

The conditions of compatibility between the metal sheet and the orthotropic 

patch are given, again, by: 

JS - uP 
ixz =     F     and xyz =     F (1.138) 

where F is the adhesive flexibility as defined in Eq. 1.95. By substituting Eqs. 
1.132 to 1.137 in Eq. 1.138, one obtains the integral equations for xxz and xyz. Once 
these integral equations are solved for xxz and xyz, the free -body diagram of the 
stress-intensity factors near the crack-tips, as effected by the repair patch, can be 

computed. 
By assuming constant values of xxz and xyz within each subdomain, the integral 

equations in Eqs. 1.137 and 1.138 are solved for. One example of the mesh used 
for solving the integral equation over D, for the case Wp/R = 2 and Hp/Wp = 2.0 

is shown in Fig. 1.189. 
In the problems of Fig. 1.187, the /c-factor of the problems in Fig. 1.187a-c are 

identified as K,A, K1B and K,c respectively, [KIA = \ {K!B + K,c)]. In the follow- 
ing, the results for the normalized Jk-factors, as functions of the material parame- 



256 Draft dated: May 12,1991 

< 2 ■ 
i/i 

■o 
CD 
N 

D 
E 

z 1 •?/*    KIB/OOVäö 

x,+,o -.Cartwright et al. 
—»—•—      :present results 

2 3 
o/y?  »- 

Figure 1.190: Variation of normalized fc-factor as a function of the crack-length 
(unrepaired case) 

ters (GsF/hs), (hpEy/hsGs) and the geometrical parameters a/R, R/hs, W/R, and 
H/W, are discussed for the patched and unpatched cases. 

Results and discussions 

In order to examine the accuracy of the presently developed FEAM, first the prob- 
lem of cracks emanating from a loaded fastener hole, without the presence of 
the repair patch, is solved first. The present results are compared with those of 
Cartwright and Parker (1972), for the case when H/W = 2, and W/R = 4.0. In 
the present FEAM, 65 eight-noded isoparametric elements were used, and the CPU 
time required to solve one crack case was about 55 seconds on a Micro VAX Station 
n. The present results are seen from Fig. 1.190 to agree excellently with those of 

Cartwright and Parker (1972). 
Fig. 1.191a shows the effect of patching on the normalized stress-intensity fac- 
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emanating from a loaded fastener hole 
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Figure 1.192: Variation of nomalized /:-factor for a given crack length, as a function 
of the hole radius(repaired case) 

tor, as the crack length increases, for given material and geometrical parameters 
of the patch as identified in the inset of Fig. 1.191a. Comparing Fig. 1.190 and 
1.191a, the reduction in the normalized fc-factor, as the crack grows, due to the 
presence of the composite patch, can be observed. For small cracks this reduction 
is not much, but as (a/R) increases, the effects of patching increases as well. 

Fig. 1.191b shows the effect of patching on the actual stress-intensity factor, 
as the crack length increases, for given geometrical and material parameters as 
identified in the inset of Fig. 1.191b. Once again it is seen that even for a repaired 
crack near a loaded fastener hole, the actual k -factor becomes a constant as the 
crack-length increases under the patch. This appears to be a salient feature of all 
cases when the crack in a fuselage skin is repaired with a stiff composite patch. 
Fig. 1.192 shows the effect of the hole radius on the normalized ^-factors for the 

repaired cracks. 
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Figure 1.195: Variation of nomalized ^-factor, KJA, for a given crack length, as a 
function of the patch stiffness and adhesive flexibility 

Fig. 1.193 shows the effect of the adhesive layer flexibility and patch-stiffness 
on the normalized stress-intensity near the crack-tip, for the case of far-field hoop- 
stress loading (Xo- Fig. 1.194 shows similar results for the case of the fastener 
loading on the hole, while Fig. 1.195 shows the combined effect of far-field load- 
ing as well as the fastener loading. As in the case of the central crack discussed 
in Sec. § 1.13.1, the suffer the adhesive layer and the stiffer the patch, the more 
reduction is achieved in the ^-factor near the patched crack-tip. On the other hand, 
a stiff adhesive layer has a deleterious effect on the integrity of the patch itself, as 
the adhesive shear stresses also increase as the adhesive stiffness increases. 
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Figure 1.196: Uniaxial fuselage lap joint specimen 
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Figure 1.197: details of spark eroded crack starters 
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Multiple-site-damage in a fuselage lap-joint 

A model of a typical lap joint, and a typical multiple site damage near a row of 
fastener holes, are illustrated in Fig. 1.196 and b, respectively. Taking into account 
the fastener flexibility, the fastener reaction forces on the upper (or lower) skin 
can be determined for the lap-splice joint configuration of Fig. 1.196, through the 
finite element method [see Sec. § 1.2.2]. Once these reaction forces, treated as 
concentrated forces, are determined, one may use the known elasticity solution, 
to approximate the stress field on the hole-surface in the skin, that is equivalent 
to these concentrated forces. Under the action of these fastener-interaction stress 
fields and the far-field hoop tension, the stress-intensity factors for multiple cracks 
near fastener holes can be determined using the FEAM described in this section. 
The corresponding reduction in fc-factors due to patching can be obtained again, 
using the FEAM, as described in this section. 

§ 1.13.3   Three-dimensional analysis of surface-flaws with and without repairs 

In the FEAM applied to three-dimensional problems of embedded and/or surface 
flaws (of elliptical or part-elliptical shapes) in structural components, the key ingre- 
dient is the analytical solution for an embedded elliptical flaw in an isotropic elastic 
solid, the crack-faces being subjected to arbitrary tractions [Atluri (1986); Nishioka 
and Atluri (1983); Atluri and Tong (1991)]. Here we describe some applications of 
the three-dimensional FEAM to the analysis of surface-flaws in aircraft structural 
components, with and without composite-patch repairs. 

Corner flaw near a counter-sunk rivet hole 

The problem of a counter-sunk rivet hole with a surface-flaw emanating from the 
corner is shown in Fig. 1.198. This is a typical situation in an aircraft-fuselage 
lap-joint. In the early stages of fatigue, this surface flaw grows into a through-the- 
thickness crack emanating from the fastener hole leading ultimately to the devel- 
opment of multiple-site-damage near a row of such fastener holes. 

Fig. 1.199 shows a comparison of two different finite-element models: 

1. Fig. 1.199a shows a finite element model of (1/4) of the plate when two 
surface cracks are assumed to emanate symmetrically from either side of the 
hole. In this finite element model, crack-tip elements are used in an explicit 
numerical modeling of the crack-tip singularity. Because of this, this model 
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Figure 1.198: Schematic of a counter sunk rivet hole with a surface crack 
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Figure 1.199: Typical finite element models 
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Figure 1.200: Variation of ^-factor at minor axis of ellipse as a function of hole 
depth 

involves 1430 twenty-node finite elements, with a total of 20,484 degrees of 
freedom; 

2. Fig. 1.199b shows the finite element model in the present FEAM. In this 
model, only one surface crack is assumed to emanate from one side of the 
hole; and the crack-tip singularity is treated analytically through the solutions 
given in Vijayakumar and Atluri (1981) and Nishiokaand Atluri (1983). 

Because of this, the finite element model involves only 90 twenty-node elements 
with a total of only 606 degrees of freedom. Thus, the savings in computational 
time, as well as in the data preparation time, in the present FEAM are truly signifi- 

cant. 
In Fig. 1.200, a comparison of the results from a conventional FEM, and the 

present FEAM, is shown for the normalized ^-factor at the tip of the minor axis of 
the quarter-elliptical flaw, as a function of the ratio of the depth of the hole (without 
counter-sink) to the depth of the plate. The FEAM with only 1575 DOF gives as 
good a set of results as the conventional FEM with 20,484 DOF. 
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base plate with 
a surface crack 

Figure 1.201: Schematic of a patched, surface-flawed thick plate 

Three-dimensional problem of a plate with a surface crack: effect of patching 

Consider the problem of a base plate with a surface crack, with a composite patch, 
as shown in Fig. 1.201. We assume that the sizes of the base plate and patch are 
infinite (this assumption is reasonable as long as the widths and lengths of the plate 
as well as the patch are about five times the length of the semi-major axis of the 
elliptical surface flaw, as in Fig. 1.201), but that the thicknesses of the base plate as 
well as the patch are finite. Let the thicknesses of the base plate and the patch be hs 

and hp respectively. The loading is assumed to be far-field tension, as in Fig. 1.201. 
The problem in Fig. 1.201 can be solved by using the superposition principle 

as town in Fig. 1.202. In this case, the displacement fields of the basic problems as 

shown in Fig. 1.202 need to be solved for. 
Fig. 1.203a is the case wherein uniform stress Oo is applied on the crack-surface. 

The displacement field for this problem is generated by using an analytical alternat- 
ing technique, wherein the analytical solution for an infinite body containing an em- 
bedded elliptical flaw, subjected to arbitrary crack-face tractions, is employed. This 
analytical solution has been previously obtained by Nishioka and Atluri (1983). 

Fig. 1.203b shows the problem wherein point loads X,Z are applied symmet- 

rically at the points (xo,z0), (*o,-Zo), (-*o,zo), (-**>,-zo) on the plate with a 
semi-elliptical surface crack. Let the displacements at a point (JC,Z) on the front 
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Figure 1.202: Linear superposition of (a) a patched plate without a crack subjected 
to far-field stress, and (b) patched plate with a crack subjected to crack-face pres- 
sure 
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Figure 1.203: Linear superposition of basic problems 
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surface (y = 0) be expressed as 

u   =   Hu(x,z;xo,zo)X+Hi2{x,z;x(hzo)Z 

w   =   H2\(x,z;xo,zo)X+H22{x,z;xo,zo)Z 

The problem of Fig. 1.203c is one wherein point loads X,Z are applied sym- 
metrically on an infinite orthotropic plate. This solution has been reported on pre- 

viously. Let the displacements at a point (x,z) for this problem be expressed as: 

up   =   Ku(x,z;xo,zo)X + Kn{x,z;xQ,zo)Z 

wp   =   K2\(x,z;xo,zo)X + K22(x,z;xo,zo)Z 

Let the displacements U5 and w5 denote the total displacements from prob- 
lems 1.203A and B. The compatibility conditions between the base plate and the 

composite patch are expressed as 

us — up w5 — wp 

txz =     f    > Tyz =      ~p 

where F is the adhesive flexibility, defined as earlier, as 

ha     3hp 

Ga     8Gp 

By using these compatibility conditions, integral equations are derived for xxz 

and Xv7. Once these are solved for, the k-factors are obtained in a manner described 

in earlier sections. 
Fig. 1.204 shows the effect of the thickness of the base plate on the normalized 

stress-intensity factors for both the unrepaired and repaired cases. When the base 
plate thickness is small, about 50% reduction in k -factor is obtained. As the base 
plate becomes thicker, however, the effect of the patch is reduced (to about 40%), 
and the ^-factor converges to a constant value. (Note that in the case of the surface- 
flaw, the fc-factor that is considered is at the intersection of the crack-front with the 
front face of the base plate). From Fig. 1.204 it is also noted that if one uses a very 
stiff patch, a better reduction in the Mactor is obtained. However, a stiff patch may 

increase the adhesive shear stresses. 
Fig. 1.205 shows the effect of patch-stiffness parameters and adhesive flexibility 

parameters on the normalized Mactors. 
Fig. 1.206 shows the effect of patch stiffness and adhesive flexibility on the 

adhesive shear stresses^/oo at JC = 0, y = 0 and z = 0 . Finally Fig. 1.207 shows 
the effect of the patch-stiffness and adhesive flexibility on the values of a£r 
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Figure 1.204: Reduction in fc-factor due to patching as a function of crack-depth 
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Figure 1.205: Effects of patch stiffness and adhesive flexibility on the fc-factor of a 
surface flaw 
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Figure 1.206: Effects of patch stiffness and adhesive flexibility on the shear stress 
in the adhesive atx = y = z = 0 
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Figure 1.207: Effects of patch stiffness and adhesive flexibility on the tensile stress 
in the patch 
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Figure 1.208: Schematic of a surface flaw near a fastener hole 
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Figure 1.209: Linear superposition of basic problems in the analysis of patching of 
a surface flaw near a fastener hole 

Repair of a surface crack near a hole 

The problem is shown schematically in Fig. 1.208. To repair the crack, a patch of 
width 2WP and height 2Hp is applied, such that the center of the patch coincides 

with the center of the hole. 
The basic component problems to be analyzed are shown in Fig. 1.209a-c. For 

problem 1.209a, the displacement fields on the front surface and the stress intensity 
factors can be obtained by using the 3D finite element alternating technique [Atluri 

(1986)]. 
As for problem 1.209b, when a point force (X, Z) is applied at the point (x0, zo) 

and a symmetrical point load (X,-Z) is applied at (xo,-zo), once again the 3D 

finite element alternating technique can be used. 
In problem 1.209c, the displacement field in the patch is determined as before. 
The finite element mesh used for problems 1.209a and bare shown in Fig. 1.210. 

The finite element mesh used for problem 1.209c is shown in Fig. 1.211. 
The variations of the stress intensity factor along the crack front, with and with- 

out repair patch, are shown in Fig. 1.212. Once again, the significant reduction in 
the crack-growth retardation, achieved by the application of the patch, is evident. 

§ 1.14   Analysis of Repaired Cracks in Pressurized Aircraft Fuselages 

Repairs to pressurized fuselages have been done traditionally by using mechanical 

doublers. While bonding of metal structures and bonded repair techniques have 
existed for about 50 years now, bonded repairs have not gained as much acceptance 
as the mechanical doubler repairs. This is mainly due to the disappointing early ex- 
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Figure 1.210: FEM mesh for base plate (56 ele., 401 nodes) 

perience with bonding and the lack of widespread understanding of bonded repairs 
among technicians. This provides the motivation for the development of effective 
analysis techniques that can be implemented on low end workstations. In this inves- 
tigation, the mechanical doubler repairs have been compared with bonded repairs 
in the repair of cracks in the fuselage skin. To analyze the effect of global load- 
ing (viz. pressure loading in the fuselage shell), on the essentially local feature of 
repair, a hierarchical approach has been used. This allows the fuselage to be mod- 
eled with increasing detail over smaller regions. At the global level, the fuselage 
is modeled as a shell, with stiffeners modeled as beams, and with flexible fasten- 
ers. In the intermediate stage the degree of modeling is improved. A section of the 
fuselage from the global stage is now analyzed, with the stiffeners being modeled 
with shell elements. The kinematic boundary conditions applied to this smaller 
intermediate region are obtained from the global solution. The stress results from 
this intermediate zone are later applied to a still smaller zone that is analyzed in the 
local stage; and this local analysis is used to evaluate the stress intensity factors for 
repaired or unrepaired cracks. The local stage uses a 2D finite element alternating 
method (FEAM) to model the crack. At this stage, the bending effects caused by 
a bonded patch on one side of the skin are ignored. This assumption is considered 
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Figure 1.211: FEM mesh for patch plate, 64 2D 8 node isoparametric elements, 
225 nodes 
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Figure 1.212: Variation of S.I.F near the border of a surface flaw near a fastener 
hole, with and without patching 
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sufficient as the substructure of the fuselage will restrict the effect of bending from 
being of any significance. The local analysis accounts for the non-linearity of the 
adhesive material by modeling it as an elastic perfectly plastic material. A large 
difference in the extensional stiffness of patch and the skin results in large strains 
being induced in the adhesive. Therefore, the necessity to model the adhesive as an 
elastic perfectly plastic material becomes more critical when the patch extensional 
stiffness is large when compared to the skin extensional stiffness. Using this ap- 
proach the stress redistribution caused by mechanical doubler repair is compared 
with that caused by composite patch repairs. The residual strength and fatigue life 
of fuselages with composite patch repairs have been compared with those of the un- 
repaired case. The stress intensity factors have been evaluated by considering the 
adhesive as elastic material and as an elastic perfectly plastic material. Parametric 
studies of composite repairs are conducted using this methodology. 

Most of the present day repairs to cracked aircraft fuselages are performed by 
using mechanical doublers. The cracked portion is cutout, a sheet is placed in the 
region thus created; and finally, another sheet is riveted to this cutout portion and 

the skin. 
From the Second World War, successful applications of adhesive bonding have 

been made in aircraft structures. The Fokker F-27 aircraft is an example of success- 
fully operating aircraft that has employed adhesive bonding for primary structure 
[Baker and Jones (1988)]. While such success stories exist, doubts about adhesive 
bonded repairs still exist. In this section we study such bonded repairs and compare 

them with mechanical doubler repairs. 
There are several methods for the analysis of patched cracks. They can be 

broadly divided as 

1. Analytical 

2. Finite Element Approach 

The analytical approach of Rose (1981) is an elegant method based on Hart- 
Smith (1974) theory of bonds, elastic inclusion analogy, and on some simplifying 
assumptions. Fredell (1994), in his exhaustive thesis, has extended this analysis 
to include thermal effects. He has also carried out an evaluation of mechanical 
doubler repairs. Erdogan and Ann (1972) have used integral equations approach to 
study the patched cracks. The assumptions of Erdogan and Arm were subsequently 
used by Ko (1978) and Hong and Jeng (1985) in the analysis of sandwich plates 

with part-through crack. 
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Jones and co-workers [Jones and Callinan (1979)], Mitchell, Wooley, and Chivirut 
(1975); Chu and Ko (1989) used finite element method to study patched cracks. 
Park, Ogiso, and Atluri (1992) have used an integral approach combined with 
FEAM to estimate the stress intensity factors for patched panels. Tarn and Shek 
(1991) have combined boundary element method approach (for the plate) and finite 
element method (for the patch) to estimate the stress intensity factors. Other work 
in this area includes Atluri and Kathiresan (1978); Sethuraman and Maiti (1989); 
Kan and Ratwani (1981). 

In most of these approaches, only patches of infinite size, or very narrow strip 
type patches, or infinite sheet cases are considered. All of these cases are valid only 
for flat sheets. The loading for all these analyzes are hoop stresses evaluated from 
basic thin shell theory. While, in most cases this is a good approximation, this does 
not take into account the stress re-distributions due to the curvature and due to the 
presence of stiffeners. 

The present work addresses the problem of the study of patched cracks in actual 
commercial airliner fuselages. A hierarchical modeling strategy is used to study the 
repairs to fuselages. The methodology is as follows. The whole of the fuselage is 
studied in the first stage. In the next stage, a portion of this is studied with an 
increase in complexity of the model. Finally a small portion around the crack and 
the repairs is studied to estimate the stress intensity factors. The procedure used to 
analyze the local zone is the finite element alternating method. This methodology to 
study repairs to fuselages. The stress re-distributions caused by mechanical doubler 
repairs is contrasted with those by patch repairs. The effect of various parameters 
such as the patch dimensions, patch material, patch thickness, adhesive material 
and adhesive thickness on patch efficiency is studied. 

§ 1.14.1   Methodology 

The problem of cracks and their repairs is a localized phenomenon. The known 
loading conditions on the fuselage are essentially global - viz. the pressure load- 
ing. Therefore the analysis requirements are conflicting - a global loading and 
an essentially local phenomenon. This necessitates a hierarchical modeling strat- 
egy [Starnes and Britt (1991)]. Fig. § 1.14.1. This allows an increasing level of 
complexity and fidelity in the modeling without a prohibitively high computational 
effort. 



280 Draft dated: May 12, 1991 

Global Analysis 

Zone for Intermediate Analysis 

Intermediate Analysis 

Zone for Local Analysis 

Local Analysis 

Figure 1.213: Schematic of the Hierarchical Modeling Strategy 
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Local Analysis 

The local analysis is a two stage analysis. They are 

1. Evaluation of the stresses exerted by the adhesive and patch on the sheet, 

using a coarse mesh. 
2. The stresses obtained from stage 1 are applied as body forces on the base 

sheet, and the finite element alternating method is used to find the stress 

intensity factor. 

In step 1, a traditional finite element methodology is used to deduce the stresses 
exerted by the patch. As the crack tip is not meshed for the singularity, a coarse 
mesh is sufficient for this purpose. The sheet and the patch are modeled with eight 
noded 2D elements. The adhesive is modeled by elements as in Jones and co- 
workers [Jones and Callinan (1979)], Mitchell, Wooley, and Chivirut (1975). This 
element is obtained by assuming a constant shear stress in the adhesive. Under the 
present conditions the shear stress can be obtained from 

XxT= "VMp   , x (1.139) 

fcyz 

tn ■   3/ 't. {p\ 
+ Ö —+ — 

ga 8 \ \gs gpj 
vs -VP 1«= . /.       . v (1-140) 

- + !(- + *) ga      8 \gs      gpJ 

where u and v are the displacements in the x direction and y direction respectively, 
t, g are the thickness and shear modulus respectively. The subscripts a, s and p 

refer to the adhesive, sheet and the patch respectively. 
Large strains are induced in the adhesive when the difference between the patch 

stiffness and sheet stiffness is large. Therefore, this results in the yielding of the 
adhesive. This reduces the patched efficiency, and a linear elastic analysis would 
grossly overestimate the efficiency and would be anti-conservative. Therefore, the 
adhesive is modeled as an elastic perfectly plastic material. As there is no unloading 
( crack growth is not considered), a deformation theory of plasticity is considered 
sufficient. An initial stress algorithm [Nayak and Zienkiewicz (1972)] has been 
implemented. In view of the model as in Jones and co-workers [Jones and Calli- 
nan (1979)], Mitchell, Wooley, and Chivirut (1975), the Von Mises yield criterion 

reduces to 
^jz+xlz = cyp/Vl=XyP (1.141) 

The algorithm for this is as follows 
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1. A load step is taken and the displacements are found. 

2. Hie stresses are computed at each Gauss Point and yielding is checked for. 

3. The residual load is computed. 

4. The displacements for this residual load are then computed. 

5. Repeat steps 2, 3 and 4 for convergence. Convergence is reached when there 

is no yielding at any Gauss point. 

6. Repeat the steps 1, 2, 3, 4 and 5 for more load steps till the desired load is 

reached. 

In finite element alternating method, the stresses in the uncracked body are first 
analyzed, by a traditional finite element method, for the given system of external 
loading. To model the crack, the tractions at the locations of the crack in an other- 

wise uncracked body must be erased. 

§ 1.14.2   Analysis of repaired cracks 

The fuselage as described by Tab. 1.21 is used for the various test cases studied. 
The stringers used are of hat cross section and the frames are of Zee cross section. 
The stiffener properties are given in Tab. 1.22. It is noted that the frame is attached 
to the sheet on the tearstraps. This is considered as an approximation to attaching 
the frame to the sheet with shear clips. In view of the unavailability of the exact 
stiffener dimensions this is considered sufficient. The crack is assumed to be a 
mid-bay crack. The rivets used are NAS1097DD6 rivets of 0.15625 in diameter. 

The dimensions of the different models are given in Tab. 1.23. The finite el- 
ement meshes used for various models are shown in Fig. 1.214, Fig. 1.215 and 

Fig. 1.216. 

Patch repairs 

The above fuselage is repaired with a patch of dimensions 5 in X 3 in as shown in 
Fig. 1.217. The patch is 0.04 in thick and is made of Boron Epoxy. The adhesive is 
0.004 in thick and has a shear modulus of 104.73 ksi with 5.250 ksi being the Yield 

Point in shear. 
To analyze the effect of the patch, the crack length was varied from 1 in to 16 

in. The variation of the stress intensity factor, Ki, with the crack length is shown in 
Fig. 1.218.(Unless otherwise noted all the stress intensity factors are in ksiyfin and 
the crack lengths are in in.) The efficiency of crack patching is plotted in Fig. 1.219. 
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Table 1.21: Properties ofThe Fuselage Shell 

Internal Pressure 9.0 psi 

Radius 78 in 

Thickness 0.036 in 

Material Al 2024T3 

Young's Modulus 10,500 ksi 

Poisson' s Ratio 0.33 

Yield Point 47.0 ksi 

Table 1.22: Stiffener Properties 

Rivet Specification NAS1097DD6 

Rivet Diameter 0.15625 in 

Stringer Spacing 9.25 in 

Stringer Area 0.0384 in2 

Stringer Moment of Inertia 0.162 in4 

Axis to skin distance 0.465 in 

Frame Spacing 20.0 in 

Frame Area 0.1248 in2 

Frame Moment of Inertia 0.3271 in4 

Axis to skin distance 1.148 in 

Tear Strap Thickness 0.036 in 

Tear Strap Width 2 in 
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Table 1.23: Dimension of different fuselage models 

Global Region Length 100 in 

Global Region Arc Length 46.25 in 

Intermediate Region Length 40 in 

Intermediate Region Arc Length 18.5 in 

Local Region Length 10 in 

Local Region Width (Arc Length) 8 in 

?-   ,, u.~+>- .tyj^+ir* •■;■  ~,f-,V;:\  --  -*ri«Jrt/Vi   .',,   f;;-,   .?-,?•' ■-.,-   -   ■■:::•-. ~l\ 

Figure 1.214: Mesh for Global Analysis 
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Figure 1.215: Mesh for Intermediate Analysis 

Figure 1.216: Mesh for Local Analysis 
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Figure 1.217: Geometry of the Local Zone showing the patch 
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The asymptotic nature of the stress intensity factor, as in Fredell (1994) and Baker 
and Jones (1988) is clearly observed. Unlike the methodology of Rose (1981) and 
Fredell (1994), the present methodology can analyze cracks longer than the width 
of the patch. It is seen that while the stress intensity factors show a significant 
increase as the crack emerges from the patch, it still demonstrates an asymptotic 
behavior. In these two situations, viz. crack shorter than the width of the patch and 
longer than the width of the patch, the patch transfers load in significantly different 
ways. When the crack is shorter than the width of the patch, most of the load is 
transfered by the edges of the patch parallel to the crack. This is seen from the 
Fig. 1.221, where the effective stress in the adhesive has been plotted. As the crack 
grows longer than the width of the patch, the regions near the crack tips also start to 
transfer the load and the patch transfers the load as in bonded overlap joints. This is 
shown in the effective stress in the adhesive contour plot Fig. 1.222. This increase 
in the effective stress lead to a final yielding of the adhesive. Once the adhesive 
yields, a very significant reduction in the effectiveness in seen. (Fig. 1.219 and 

Fig. 1.220). 
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Figure 1.220: Effect of Plasticity 

Figure 1.221: Effective Stress in the Adhesive for Crack Length 3 in 
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Figure 1.222: Effective Stress in the Adhesive for Crack Length 15 in 

Patch repairs and mechanical doubler repairs 

A mechanical doubler repair, Fig. 1.223, for the above mid-bay cracked fuselage 
is also analyzed. The axial (Fig. 1.224) and hoop stress (Fig. 1.225) resultants for 
the doubler repaired fuselage has been compared with that of the composite patch 
(Fig. 1.226 and Fig. 1.227) repaired fuselage and the intact fuselage (Fig. 1.228 and 
Fig. 1.229). As can be seen, a patch repair, despite the presence of the singularity 
involves a much lower value stress. In the doubler repair case, the cutout provides 
a site for stress concentration. Therefore, the maximum hoop stress in the doubler 
repair case increases from 19.1 ksi in the intact fuselage to 30 ksi. Whereas, in the 
fuselage repaired with a patch, the hoop stress went up marginally to 19.4 ksi. A 
similar pattern is also seen in the axial stresses where the stresses went up from 6.5 
ksi to 11.7 ksi. 

Effect of patch geometry 

To study the effect of the patch overlap length of the patch (the length along the 
y direction), it was varied from 1.5in to 3.5 in. The results are in Fig. 1.230. The 
patch is 5 in wide and 0.04 in thick and is made of Boron/Epoxy composite. The 
adhesive is 0.004 in thick and has a shear modulus of 104.73 ksi. 
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Figure 1.225: Hoop Stress Resultant for Doubler Repair 

Figure 1.226: Axial Stress Resultant for Patch Repair 
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Figure 1.227: Hoop Stress Resultant for Patch Repair 

Figure 1.228: Axial Stress Resultant for Intact fuselage 
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Figure 1.229: Hoop Stress Resultant for Intact Fuselage 
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Figure 1.230: Effect of Patch Overlap Length on Stress Intensity Factor 



294 Draft dated: May 12,1991 

00 

15l 

14 

13-1 

12- 

11- 

10 

9 

i    i    i—^—[— i    i    i    i    i    i    i    i    i 

1.5 Inches 
2 Inches 
2.S Inches 
3 Inches 
3.5 Inches 

s.-.r.l 

..... -i 

8^.—i    i    i    i    i    i    i    i    i    |    i    i    i    '    i    '    '    ■    ' 

Crack Length 

Figure 1.231: Effect of Patch Overlap Length on Stress Intensity Factor 

When the crack is longer than the width of the patch, the patch serves to trans- 
fer the load across the crack and reduce the ligament stress near the crack tip. 
Therefore, a longer patch, having a longer overlap length and therefore larger area 
transfers this stress better and therefore perform better than the shorter patches 
(Fig. 1.230 and Fig. 1.231). Whereas, when the crack is shorter than the width of 
the patch, the longer patches perform poorly (Fig. 1.232). The composite system 
of the patch, adhesive and the sheet attracts parasitic load from other regions in 
the sheet, [Baker and Jones (1988). When the crack is shorter than the width of 
the patch, this parasitic load attaction, increases the load near the crack tip. Larger 
patches attract larger parasitic loads, therefore they perform poorly when compared 
to shorter ones. When the crack is longer, this parasitic load attraction does not in- 
crease the load near the crack tip, therefore a similar behavior in not seen in those 

cases. 
The patch width is varied from 4 in to 8 in. The results are shown in Fig. 1.233. 

The patch is 3 in long, and 0.04 in thick and is made of Boron/Epoxy. The adhesive 
properties remain the same as above. As was illustrated earlier, the stress intensity 
factors shows two asymptotic values, one obtained when the crack is shorter than 
the width of the patch and the other when the crack is longer than the width of the 
patch. When the crack is shorter than the width of the patch, the asymptotic value 
reached does not vary much with the patch width. While wider patches cause the 
second asmptotic value to be reached at a longer crack length (the cracks emerge 
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Figure 1.234: Effect of Patch Thickness on Stress Intensity Factor 

from the patch later with wider patches), the asymptotic value reached does not 
aprear to change. Therefore the narrower patches also seem to perform adequately. 
Wider patches, because of larger areas, have better damage tolerance. 

The patch thickness was varied from 0.01 in thick to 0.04 in. The patch is 5 
in wide and 3 in long and is made of Boron/Epoxy. As expected, thicker patches 

perform better (Fig. 1.234). 

Effect of patch material 

To evaluate different materials as possible candidates for patching materials several 
are investigated, following Fredell (1994). The properties of the materials are given 
in Tab. 1.22. In each of the cases the patch is 5 in wide and 3 in long and 0.04 in 
thick. The adhesive shear modulus is 104.7 ksi and the thickness considered is 
0.004 in. The Yield Stength of the adhesive is taken as 5254 psi. The results are 

depicted in Fig. 1.235. 
The composite patches perform the best, followed by Al 2024-T3, and finally 

the metal laminate GLARE. When the crack is under the patch, the difference is 
marked . But once the crack becomes longer than the width of the patch, the dif- 
ference is marginal. When the crack is shorter than the width of the patch, the 
induced strains cause larger stress to be transfered in stiffer patches. Therefore, the 
load near the crack tip is reduced and the stress intensity factor reduction is more 
pronounced for stiffer patches. On the other hand when the crack is longer than the 
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Table 1.24: Properties of Various Patching Materials Considered 

Material Ei E2 Vl2 G\2 

Boron/Epoxy 3.02 x 107 psi 3.69 x 106 psi 0.1677 1.05 xlO6 psi 

Carbon/Epoxy 1.97xl07psi 1.814 xlO6 psi 0.30 1.015 xlO6 psi 

Al 2024-T3 1.05 xlO7 psi 1.05 xlO7 psi 0.32 3.977 x 106 psi 

GLARE 9.565 x 106 psi 7.358 x 106 psi 0.33 2.685 xlO6 psi 

20- 

4-» 

a 

CO 

c/3 

10- 

A12024-T3 
Boron/Epoxy 
Caibon/Epoxy 
GLARE 

E."-.-T"T- 
x •«• •*""' 
* *-r -t-r' 

■•»••••■   < 

10 

Crack Length 

Figure 1.235: Comparison of Different Patching Materials 

width, the patch transfers the load as in a bonded lap joint and the load transferred 
is the ligament stress and has little relationship with the stiffness. This is confirmed 
by the fact that when the crack is extremely long, the stress intensity factor for 
patched cracks, with patch of various materials is almost the same. 

Effect of adhesive properties 

With the effect of the patch material and geometry determined the effect of the 
adhesive is now examined. With the boron-epoxy patch of 5 in X 3 in X 0.04 in, 
the adhesive thickness is varied from 0.001 to 0.005 for a crack of length 8 in. The 
results are shown in Fig. 1.236. Thin adhesive layers perform better than thick 
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Figure 1.236: Effect of Adhesive Thickness on Patching Materials 

adhesive layers because, a thick adhesive makes the composite system of the sheet, 
adhesive layer and patch softer. Often, a thick adhesive layer is needed for good 
durability as a thick adhesive will experience lesser strains. As can be seen from 
Fig. 1.237 the detrimental effect of having a thick adhesive is not severe. 

The shear modulus of the adhesive is varied for the same patch dimensions and 
for 0.004 in thick adhesive. The result is shown in Fig. 1.237. As can be seen, 
stiffer adhesives were found to perform better. While, the conditions considered 
were insufficient for adhesive yield, a stiffer adhesive would result in the yield 
point being reached earlier. Thus, the material would yield and reduce the patch 
effectiveness as illustrated earlier. This being the case, it is also noted that the 
advantage in using a stiffer adhesive (in terms of stress intensity reduction) is not 

significant. 

§ 1.14.3   Effects of Adhesive Nonlinearity, thermal Cycling & Debonding 

Comparison with the experimental data obtained by Denny (1995) has been carried 
out to determine the ability of the finite element alternating method in predicting 
the fatigue response of a cracked metal panel with a partially debonded composite 
patch. There is a total of 15 different specimens considered in this comparison. 
Some of the parameters that are varied in these specimens include the disbond lo- 
cation, the disbond area, the initial crack length, the maximum stress loading and 
the stress ratio. For all these specimens, it has been found that the numerical results 
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Figure 1.237: Effect of Adhesive Shear Modulus on Stress Intensity Factor 

correlate very well with the experimental data, when the adhesive nonlinearity is 
properly accounted for in the analysis. In addition to this comparison with the ex- 
perimental data, numerical studies have been carried out to examine the effect of 
the thermal cycling on the fatigue response of a bonded repair. It was found that 
due to the strong difference in the thermal expansion coefficient of the boron/epoxy 
patch and the aluminum panel, the fatigue life of a specimen which undergoes cy- 
cles of high-stress-at-low-temperature and low-stress-at-high-temperature loading 
is dramatically reduced. It was also found that the fatigue life of a specimen which 
undergoes a thermal-fatigue cycle is more sensitive to disbonds in the adhesive 
layer than a similar specimen which undergoes fatigue loading at a constant tem- 
perature. In addition to this study, numerical analysis has been carried out to study 
the interaction between two nearby composite patches. The study found very lit- 
tle interactions between the two patches when these two patches lie horizontal to 
each other. On the other hand, when the two patches lie vertical to each other, the 
fatigue life of this specimen can increase substantially when these two patches are 
very close to each other; however this may lead to failure of the metal in between 
the patches, but this is not considered in the present study. 

In general, the analysis of fatigue crack growth for composite repairs can be 
broadly categorized as either analytical or numerical. Based on the elastic inclu- 
sion analogy, Rose (1982) has obtained the solution for strip type patches by us- 
ing a successive approximation method to deduce the asymptotic behavior of the 
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modeled Fredholm integral equation. Rose (1988) further extended this method to 
obtain an approximate solution for a crack inside an elliptical patch. The solution 
for the elliptical patch is further extended by Fredell (1994) to include the effect of 
temperature. While the solution for Rose's model is simple and easy to implement, 
these solutions have strong limitations. Some of the limitations of the Rose's model 

include the assumptions that: 

• the patch has to be either an infinite strip type or an elliptical shape type, 

• the material behavior for the adhesive layer is linear elastic, 

• the load transfer length must be significantly smaller than the patch size, 
i.e. the adhesive must be relatively stiff, or the size of the patch must be 

significantly large, 

• the bonding of the patch is perfect without disbonds, and 

• the size of crack is small compared to the size of the patch. 

All of these assumptions limit the ability of the Rose's model to adequately 
analyze the effectiveness of most composite patches in reducing the fatigue crack 
growth. Therefore to overcome these limitations, numerical methods have been 
employed in analyzing the effectiveness of repairs using composite patches. Jones 
and Callinan (1979); Mitchell, Wooley, and Chivirut (1975); Chu and Ko (1989) 
have used the finite element method to study bonded patch repairs. Tarn and Shek 
(1991) have combined the boundary element method (for the plates) and finite el- 
ement method (for the patch) to estimate the stress intensity factors. Park, Ogiso, 
and Atluri (1992) have applied the integral equation approach in conjunction with 
the Schwartz-Neumann alternating method to calculate the stress intensity factors. 
In extending this work, the approach of the finite element alternating method was 
applied by Nagaswamy, Pipkins, and Atluri (1996) to model a rectangular compos- 
ite patch on a curved fuselage panel where the stress distributions due to curvature 
as well as the presence of stiffeners are accounted for. While these studies provide 
the methods to analyze a composite patch with perfect bonding, there have been 
few studies which concentrate on the verification of numerical analysis against ex- 
perimental results especially when delaminations exist on bonded repairs. 

Roderick (1980) have examined the cyclic growth of a crack inside an ellip- 
tical disbond of a composite patch. Baker (1993) has studied experimentally the 
effectiveness of composite repairs with disbond that occur during manufacturing. 
Denny (1995) has experimentally investigated the fatigue life of composite patch 
with intentional disbond of various locations and size. This experiment also studies 
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Table 1.25: Material properties for the aluminum panel, boron/epoxy patch, and 
adhesive layer 

Material EL/ET/G 

(GPa) 
Poisson 
Ratio 

CTE 
aL(10"6/°C) 

Thickness 
(mm) 

2024-T3 72.4/72.4/27.2 0.33 22.7 1 

Boron/Epoxy 210/25/72.4 0.168 4.5 0.127 

AF-163-2 NA/NA/0.405 - - 0.127 

the effect of initial crack length, maximum applied fatigue stress and stress ratio. 
In this section, analyses are performed using the finite element alternating method 
(FEAM) to study the fatigue life of partially bonded patches under different loading 
conditions. These numerical results are compared with the experimental data ob- 
tained by Denny (1995) to determine the ability of FEAM in predicting the fatigue 
life of partially bonded patches. Since debonds in bonded repairs are found fre- 
quently and the replacement of defective patches remains very difficult, the ability 
to predict the fatigue characteristic of partially bonded patches, and hence deter- 
mining the safety of the repaired structure would be an extremely important issue 
to be resolved before bonded repairs can be used widely in the aerospace industry. 
In addition to the comparison with the experimental results, this paper also eval- 
uates the effects of (i) temperature cycles, (ii) initial stresses due to the curing of 
the patch, and (iii) adhesive nonlinearity, on the fatigue characteristics of partially 
bonded patches. Furthermore, the interaction of two composite patches on fatigue 

life is also studied. 
The composite patch analysis presented in this section is to demonstrate the 

ability of the finite element alternating method in predicting the fatigue response 
of a cracked panel with partially bonded composite patch. For the present study, 
numerical analysis has been carried out to model the experiment performed by 
Denny (1995) on partially bonded composite repairs. In his experiment, the patch 
(made of three plies of unidirectional boron/epoxy laminate) is bonded to a 2024- 
T3 aluminum panel with AF-163-2 film adhesive. The dimensions of the geometry 
for the composite patch and aluminum panel are given in Fig. 1.238. The material 
properties of the boron/epoxy laminate, aluminum panel and adhesive layer are 
given in Tab. 1.25. In the current analysis, the patch and the panel are modeled 
with 8-noded isoparametric plane stress elements. The adhesive film is modeled 
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Table 1.26: Details of the specimens modeled 

Specimen Configuration Disbond 
Area(%) 

Peak Load 
(MPa) 

R 

Gmin/Gmax 

3 CBP 0 120 0.15 

4 FWD 20 120 0.10 

5 FWD 20 120 0.10 

6 CTD 20 120 0.10 

7 CTD 20 120 0.10 

10 CBP 0 120 0.10 

11 FWD 10 120 0.10 

13 FWD 20 100 0.10 

14 FWD 5 120 0.10 

16 CD 10 120 0.10 

17 CD 5 120 0.10 

20 CBP 0 120 0.10 

21 CBP 0 120 0.10 

23* CBP 0 120 0.10 

24* CBP 0 100 0.10 

* Initial crack length = 12.7 mm instead of 25.4 mm in other specimens. 
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508 mm 

Figure 1.238: Geometry of the aluminum patch with the boron/epoxy patch 

with isoparametric 16-noded adhesive elements developed by Chu and Ko (1989). 
The adhesive element is based on a linear adhesive relationship between the shear 
stress and the difference of displacements between the patch and the panel: 

KADHE = 

X = KADHE {Upatch - Upanel) 

tadhe    ,   3 / tpatch        tpanel 

8 \Gpatch 

-1 

(1.142) 

(1.143) 
.Gadhe      ° \Gpatch      Gpamij 

Here u is the displacement, t is the thickness and G is the shear modulus. In general, 
the shear modulus of an adhesive material is strongly nonlinear, but due to the lack 
of experimental data available, this nonlinear behavior can be approximated with 
an effective linear shear modulus. This effective modulus would be a function of 
the average shear strain on the adhesive layer. 

The finite element mesh for the composite patch on the aluminum panel is 
shown in Fig. 1.239. The mesh contains 4176 elements and 9337 nodes. To cal- 
culate the stress intensity factors of a cracked panel under a composite patch, two 
steps are involved. In the first step, the crack in the panel along with the compos- 
ite patch and the adhesive layer are explicitly modeled in the finite element mesh. 
From the finite element solution, the shear stress on the adhesive layer is calculated 
using Eqn. 1. In the second step, the stress intensity factors of the cracked panel 
are solved using the finite element alternating method which uses the same finite 
element mesh except the crack is not modeled explicitly. The shear traction on the 
cracked panel (transferred through the adhesive layer) calculated in Step 1 is con- 
verted to nodal force to be applied in Step 2. Since this shear traction accounts for 
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Figure 1.239: The finite element mesh of the composite patch on the aluminum 
panel 
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the "closing" force of the composite patch, only the cracked panel is required to be 
modeled in Step 2. Note that since finite element alternating method is used in Step 

2, very fine mesh near the crack tip is not required. 
The fatigue growth of a crack in general, can be calculated as a function of 

loading cycles. To take into account the effect of stress ratio, the Forman's crack 
growth equation [Forman, Kearney, and Engle (1967)] is used. This equation is 

given as 

* = ,    C|M:)" (1.144, 
dN     {l-R)Kc-AK 

Here a is the crack length, N is the number loading cycles, AK 
is the range of the equivalent stress intensity factor, and R is the stress ratio in 

the cyclic loading. For 2024-T3 aluminum alloy, the values of, Kc = 91 MNrrT3!1 

(83,000 psi\/in) C = 6.3 x 1021 Pa~2 (3J:10
_13

 psi~2) and n = 3 are used as given 
in Forman, Kearney, and Engle (1967). In general, a fatigue calculation involves 
the calculation of the number of cycles for a crack to grow to a specified length. 
Using a simple linear integration scheme to solve for the Eqn. 3, the fatigue life 
cycle of the crack is subdivided into a number of interval steps based on the finite 
element mesh. The total number of cycles is obtained by summing the values from 

each step. 
To account for the temperature effect during the curing process, two analyses 

are required for each interval step of the fatigue crack growth analysis; one for the 
load applied at cw and the other is for the load applied at om,„. In the numerical 
model, it is assumed that the cure would fully solidify at 121 °C and the specimen 
would undergo fatigue cycling between om,„ at 7\ temperature and 

Omax at 72 temperature. Due to the difference in the coefficient of thermal ex- 
pansion, CLL , between the boron/epoxy patch and the aluminum panel, residual 
stresses would be induced on the repaired area when the temperature of the spec- 
imen differ from the cure temperature. And these residual stresses, which is de- 
pendent upon the temperature of the specimen, would be superimposed with the 
mechanical loading applied on the specimen. Hence, in this numerical model, both 
the mechanical loading as well as the loading induced by thermal cycling are ac- 
counted for in the fatigue crack growth analysis. It is to be noted here that even 
if the specimens were to undergo fatigue cycling at a constant temperature where 
T\ — Ti (which is the case in the comparison analysis with the experiment per- 
formed by Denny (1995)), the drop in temperature after the curing process must be 
accounted for to properly model the fatigue crack growth of the specimens. Though 
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Figure 1.240: Disbond configuration types (i) a completely bonded patch (CBP); 
(ii) crack tip disbonds (CTD); (iii) a center disbond (CD); and (iv) a full width 
disbond (FWD) 

is not effected by the temperature drop after the curing process (because the 
fatigue cycle is at a constant temperature), the ratio of stress intensity factor, R = 
Kmin/Kmox, wouldbe affected by this temperature drop. Because of the boron/epoxy 
patch has a much smaller a*, than the aluminum panel, the patch contracts much 
less than the panel when the temperature drops. The residual stresses generated 
would cause the crack surface to open resulting a higher stress intensity factor and 
hence a higher stress ratio R. This higher stress ratio, R, would cause a faster crack 
growth in the Forman' s crack growth equation [Eq. 1.144]. 

Results 

Comparison of Numerical Result with Experimental Data 
This study involves the analyses of four different intentional disbond configu- 

rations as shown in Fig. 1.240: (i) a completely bonded patch (CBP); (ii) crack tip 
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Figure 1.241: Comparison of results from numerical model I and II with the exper- 
imental data for completely bonded patch (CPB) 

disbonds (CTD) at both ends of the crack; (iii) a center disbond (CD) over the crack 
length; and (iv) a full width disbond (FWD) extending the full width of the patch 
and covering the crack. In some of the configurations listed above, disbond areas 
of 20%, 10%, and 5% of the total bond area of the patch were investigated. These 
specimens would undergo fatigue cycling at room temperature, 20 °C. 

In the first configuration, there is no disbond on the patch repair. As has been 
determined from the Denny's experiment, the fatigue life of a perfectly patched 
specimen is about ten times longer than the unpatched specimen as shown in Fig. 1.241. 
However, using the material data provided in Denny (1995), it was found that the 
predicted fatigue life differs considerably from the experiment data for Specimen 
20. In the numerical model of the completely bonded patch (CPB), the predicted 
fatigue crack growth is notably slower than the experimental result, approximately 
by a factor of five (shown in Fig. 1.241 as linear model I). Since the material data 
for the boron/epoxy laminate and the aluminum panel are considered to be quite 
reliable, it would be easy to conclude that either the adhesive model or the ma- 
terial data for the adhesive film is not accurate. By simple trial and error, it was 
found that by reducing the shear stiffness, KADHE . of the adhesive layer, the pre- 
dicted fatigue growth curve would correspond very well to the experimental result 
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Figure 1.242: The nonlinear material behavior of adhesive layer where the shear 
modulus is strongly dependent on the shear strain 

as shown in Fig. 1.241 as linear model EL In this model, the adhesive stiffness, 
KADHE = 0-2 x 10nPa/m (0.73 x I06psi/in), is an order of magnitude less than 
the adhesive stiffness calculated from the material data, KADHE = 2.9 x \0nPa/m 
(10.6 x I06psi/in). The reason for the difference in the adhesive stiffness between 
these two models can be partly attributed to the fact that the shear modulus of a soft 
adhesive tends to be strongly nonlinear. In most cases, the shear modulus directly 
obtained from experiments is valid only for very small shear strain. However, the 
adhesive layer on the composite patch may undergo a much higher shear strain 
and hence has a much lower shear modulus as shown in Fig. 1.242. Nonetheless, 
a simple linear approximation (to the slope of the nonlinear stress-strain level at 
the current average operating stress level in the adhesive) seems to be sufficient in 
predicting the fatigue response of a bonded repair. 

Unlike the Rose's model which is only valid when the crack is well within 
the size of the patch, the numerical model based on the finite element alternating 
method was able to predict the fatigue response when the crack grows within the 
size of the patch as well as when the crack grows outside of the patch. Fig. 1.243 
plots the stress intensity factor, , as a function of the crack length calculated (i) 
based on the finite element alternating method (FEAM) and (ii) based on the Rose's 
model. In this figure, both models are based on the same adhesive stiffness, KADHE 
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Figure 1.243: The stress intensity factor as a function of crack length for FEAM 
and Rose's models 

(material model II). As shown in Fig. 1.243, when the crack size is small relative 
to the patch, the difference between these two models is about 10%. However, as 
the crack grows longer, the difference between these two models increases substan- 
tially, especially when the crack tip grows beyond the boundary of the patch. The 
difference between these two models is magnified even greater on the fatigue curve 
plotted in Fig. 1.244. It is to be noted here that one of the assumptions in Rose's 
modeB as is the characteristic load-transfer length, A, is not satisfied in this anal- 
ysis. To obtain the asymptotic behavior of a crack under a composite patch, Rose 
had to assume that the load-transfer length has to be significantly smaller than the 
size of patch: 

Gadhi I *^patch*patch T" ^panefpanel \ <k ■patch (1.145) 
*adhe   x^patch*patch     ^panel*panel/ . 

where E is the elastic modulus and hpatcn is the height of the composite patch. 
As described in the earlier section, the curing process of the composite patch 

on the aluminum panel has been modeled. Due to the incompatibility of the coeffi- 
cient of thermal expansion between the boron/epoxy patch and the aluminum panel, 
residual stresses would be induced when the temperature is dropped after the cur- 
ing process. Fig. 1.245 shows the contour plot of the residual stress, 022, on the 
aluminum panel generated after the panel has been cooled from the cure tempera- 
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Figure 1.244: Fatigue response based on FEAM and Rose's models 

ture of 121 °C to the room temperature, 20°C. The deformed shape in Fig. 1.245 
has been magnified by a factor of 100. Since the panel contracts much more than 
the composite patch, the crack surfaces would be opened by the residual stress gen- 
erated and hence resulting high stress concentrations on the crack tips as shown in 

Fig. 1.245. 
Unlike the Rose's model where disbonds cannot be modeled, the FEAM is 

used to predict the fatigue response of partially bonded patches. Using the adhe- 
sive stiffness obtained from the perfect patched specimen, the fatigue response of a 
composite patch with crack tip disbonds (CTD) is analyzed. In this configuration, 
two specimens were tested; Specimen 6 and 7. In both specimens, the disbond area 
is 20% of the patch area. Fig. 1.246 shows that the predicted fatigue curve cor- 
relates very well the experimental data from Specimen 6 and 7. Even though the 
disbond areas on both crack tips are quite large, both the analysis and the experi- 
ment show that the fatigue life of the specimens would be reduced by no more than 

20%. 
In the next analysis, the fatigue crack growth of specimens with a center dis- 

bond is evaluated. Specimen 16 has a disbond area of 10% and Specimen 17 has 
a disbond area of 5%. Fig. 1.247 shows that the fatigue responses predicted with 
FEAM agree quite well with the experimental data from Specimen 16 and 17. The 
predicted number of cycles to failure for Specimens 16 and 17 are 99,411 and 
114,707 respectively. These results correspond well with the experimental data 
where the number of cycles to failure for Specimens 16 and 17 are found to be 
92,624 and 116,817 respectively. Since the fatigue life of Specimen 16 (center dis- 
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Figure 1.245: Contour plot of the residual stress, O22, due to the curing process 
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Figure 1.246: Comparison of numerical result with experimental data for Crack 
Tip Disbond (CTD) 



312 Draft dated: May 12,1997 

140 

120 

•g-   100 

£      80 
c 
0 
-J      60 
j* o 
CO 

O      40 

20 

—I  

50 100 

K Cycles 

♦    SPECIMEN 16 
ANALYSIS 16 

■    SPECIMEN 17 
 ANALYSIS 17 
 1  

150 

Figure 1.247: Comparison of numerical result with experimental data for Crack 
Disbond (CD) 

bond with disbond area of 10%) is less than the Specimen 6 or 7 (crack tip disbond 
with disbond area of 20%), it can be inferred that the effectiveness of the composite 
patch is more sensitive to the disbonds located at the center of the crack rather than 

the disbonds located at the crack tips. 
Four full width disbond (FWD) specimens have been investigated by Denny; 

Specimens 4, 5,11 and 14. These specimens have disbond areas of 20% (for Spec- 
imen 4 & 5), 10% (for Specimen 11), and 5% (for Specimen 14). The numerical 
analysis seems to provide good correlation with the experiment when the disbond 
area is small. However, for specimens with larger disbond area, the numerical so- 
lution seems to over predict the reduction in the fatigue life as shown in Fig. 1.248. 
The predicted number of cycles to failure for Specimens 4,5,11 and 14 are 73,404, 
73,404, 95,048 and 115,108 respectively. These results correspond with the exper- 
imental data where the number of cycles to failure for Specimens 4, 5, 11 and 14 
are found to be 86,995, 82,324,97,278 and 114,423 respectively. 

To summarize the ability of finite element alternating method in predicting the 
fatigue response of partially bonded patch repair, the predicted results are displayed 
along with experimental data on a bar chart shown in Fig. 1.249. The parameters 
that are varied in these specimens include the disbond shape, the disbond area, 



§ U4: 313 

E 
JE 

e 
at 
_l 
je 
u 
E 
u 

120 

100 

80 

60 

40 

20 

*:>>: f.s 

i* 

♦    Specimen 14 
 Analysis 14 
■    Specimen 11 

— — Analysis 11 
▲    Specimen 5 

— - - Analysis 5 

50 100 150 

K Cycles 

Figure 1.248: Comparison of numerical result with experimental data for full width 
disbond (FWD) 

the initial crack length, the maximum applied stress, and the applied stress ratio. 
The details of each specimen are given in Tal. 1.26. Fig. 1.249 shows that overall, 
FEAM can effectively predict the fatigue life of the aluminum panels with partial 
bonded composite patch. The overall error of prediction is found to be 7.5%. 

Effect of Temperature Cycles 
In general, an aircraft would undergo a thermal cycle during each single flight. 

As the aircraft climbs to the cruising altitude, the air temperature can drop to less 
than -50 C. However, when the aircraft is parked in a depot under a heated sun, 
the temperature can rise to 70 C. Since the boron/epoxy patch has a lower thermal 
expansion coefficient, the patch would contract much less than the aluminum panel 
when the air temperature drops. This induces a cyclic thermal tensile loading on the 
crack tip at a time when the mechanical stress is highest. In the current analysis, the 
sensitivity of the adhesive stiffness to the temperature is not considered, however as 
pointed out in the earlier section, the initial stresses due to the curing process (at 121 
C) are accounted for in this numerical model. Fig. 1.251 shows the fatigue response 
of a completely bonded patch (CBP) for Case I where the fatigue load is applied at 
room temperature, and Case II where the maximum load, Omax, is applied at -50°C 
and the minimum load, CTm,„ , applied at 70°C. As shown in Fig. 1.251, the fatigue 
life of the specimen undergoing the thermal cycles would be reduced by more than 
60% when compared to the specimen loaded at room temperature. Furthermore, it 
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Figure 1.249: The predicted fatigue lives against the experimental data 

was found that when crack tip disbond (CTD) is considered (where the disbond area 
is 20%), the fatigue life of the specimen undergoing the thermal cycles is further 
reduced by another 30% as shown in Fig. 1.250. In contrast, the fatigue life of 
the CTD specimen loaded at room temperature is reduced by no more than 20% 
when compared with a perfect patched specimen. This model seems to indicate 
that the specimen undergoing a typical thermal cycle would be more affected by 
partial disbond than the specimen loaded at constant temperature. 

Interaction of Two Composite Patches 
Given that cracks are sometimes found quite close to each other, it is impor- 

tant to study how two composite patches would interact with each other. In this 
section, two types of patch interaction are considered. In both configurations, the 
two patches are considered to be perfectly patched. In the first configuration, both 
patches would lie on the same horizontal line as shown in Fig. 1.252. When the 
patches are 100mm apart, there seems to be very little interactions between these 
two cracks. As shown in Fig. 1.253, the fatigue response of the specimen with 
two patches is quite similar to the specimen with a single patch. When the distant 
between the two patches is reduced to 25mm, similar fatigue response is found 
in which there is very little interactions between these two cracks as shown in 

Fig. 1.253. 
In the second configuration, both patches would lie on the same vertical line as 

shown in Fig. 1.254. When the patches are 100mm apart, there seems to be very 
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Figure 1.250: The fatigue life of the specimen undergoing the thermal cycles with 
Crack Tip Disbond (CTD) 

little interactions between these two cracks as shown in Fig. 1.255. However, when 
the distant between the two patches is reduced to 25mm, the fatigue crack growth 
is slowed by a factor of three as shown in Fig. 1.255. Therefore, the specimen 
with two patches would have a longer fatigue life than the specimen with a single 
patch. However, it is possible that the metal in between the patches may fail in such 
situation; and this is not considered here. 

Conclusion 

Numerical analyses based on the finite element alternating method have been per- 
formed on several cracked panels with partially bonded composite patches. The nu- 
merical results are compared with the experimental data obtained by Denny (1995) 
and the comparison indicates that the numerical results correlate quite well with the 
experimental data. Furthermore, a numerical study has been carried out to study the 
effect of high stress low temperature and low stress high temperature cycles. The 
result shows a very significant drop in the fatigue life when the specimen under- 
goes the thermal-fatigue cycle. This numerical result also shows that the specimen 
which undergoes the thermal-fatigue cycles is more sensitive to partial disbond than 
a specimen which undergoes the fatigue cycles at constant temperature. Further- 
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Figure 1.251: The fatigue response of a completely bonded patch (CBP) for Case 
I where the fatigue load is applied at room temperature, and Case II where the 
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304 mm 

Figure 1.252: Geometry of the aluminum patch with two patches lying horizontally 



§ 1.14: 317 

E 

t 
e a 

o SINGLE PATCH 

—  - TWO PATCHES (d-ZSrnm) 
 TWO PATCHES (dHOOmm) 

20 40 

K Cycles 

60 80 

Figure 1.253: Interaction of two patches lying on a horizontal line 

152 mm 

Figure 1.254: Geometry of the aluminum patch with two patches lying vertically 
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Figure 1.255: Interaction of two patches lying on a vertical line 

more, numerical study has been carried out to examine the interaction between two 
nearby patches. It has been found that the interactions between two nearby patches 

do not reduce the fatigue life of the specimen. 

§ 1.15   Fracture and Fatigue Analysis of Curved or Kinked Cracks Near 
Fastener Holes 

Cracks emanating from fastener holes in a rivet lap joints of a fuselage do not al- 
ways grow in a straight trajectory but sometimes do deviate and become moderately 
curved. Possible reasons for these cracks to kink out of a straight trajectory include 
material irregularity, unexpected impact-type loading, and in particular the misfit 
between the rivets in the fastener holes. This section presents a study of fracture 
and fatigue growth of moderately curved cracks emanating from fastener holes in 
a pressurized fuselage. Realistic geometric dimension and loading will be applied 
on the lap joints as well as the fastener holes. This study will determine how well 
a straight crack can be used to approximate a moderately curved crack in a MSD 

analysis. 
Consider a central crack in an infinite body in which the normal of the crack 

makes a small angle with the direction of remote tensile loading as shown in 
Fig. 1.256. Since the crack is not perpendicular to the tensile loading, the asymp- 
totic stress fields near the crack tip would demonstrate both mode I and mode II 
behavior. As a result of this mix-mode behavior, there is a tendency for the crack 
not to propagate tangent to the crack tip but with a kink angle from the crack di- 
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Figure 1.256: A central crack in a infinite body in which the normal of the crack 
makes a small angle with the remote tensile loading and the kinking of the crack 
by an angle 6 as result of the mixed-mode loading. 

rection. In this study, the criterion based on the investigation by Erdogan and Sih 
(1963) is used to predict the kink angle. This criterion assumes the crack will grow 
in the direction where the singular circumferential stress near the crack tip is max- 
imum. The relation between the kink angle, 6, and the stress intensity factors, Kj 

and KJI, is given as 

Ki 
.6      .36 

sin - + sin — 
2 2 

+ K„ e       36 
cos - + cos —- 

2 2 
= 0 (1.146) 

This criterion also assumes that the crack will fracture when the maximum cir- 
cumferential stress of the mix-mode fracture matches the equivalent circumferential 
stress of a pure mode I fracture. As a result, the equivalent stress intensity factor 
used in the fracture and fatigue analysis becomes 

%9 = Ki 
3      6     1      36' 
-cos- + -cosT -K„ 

3.6    3  .   36 _sin_ + _sin_ (1-147) 

This equation would satisfy the condition that Kfq = Ä) if the crack propagation is 

self-similar that is, the kink angle 6 = 0. 
Having obtained the equivalent stress intensity factor, the fatigue growth of the 

curvilinear cracks emanating from the fastener holes can be calculated as a function 



320 Draft dated: May 12,1997 

of loading cycles. To take into account the effect of stress ratio, the Forman' s crack 
growth equation [Forman, Kearney, and Engle (1967)] is used. This equation is 

given by 

da C (AK)n 

  (1.148) 
dN     {l-R)Kc-AK 

Here a is the crack length, N is the number loading cycles, AK is the range of the 
equivalent stress intensity factor, and R is the stress ratio in the cyclic loading. For 

2024-T3 aluminum alloy, the values of Kc = 83,000 psi y/in, C = 3 x 10~13 psi ~2 

and n = 3 are used as given in Forman, Kearney, and Engle (1967). 

§ 1.15.1   A computational model 

Consider a lap joint in a pressurized fuselage which holds two overlapping skins 
together with three rows of fastener as illustrated in Fig. 1.257. As a result of fatigue 
growth due to the pressurized cycle, multiple cracks would emanate from these 
fastener holes and is often found that some these cracks are slightly kinked. Singh, 
Park, and Atluri (1994b) have performed a global, intermediate and local analysis 
to obtain the load distribution near the fastener holes and found that the maximum 
cyclic hoop stress on the skin for a typical aircraft fuselage due to the pressure 
cycle would vary from 0 ksi to 13.5 ksi. In the load-transfer analysis between the 
two skins, they have found that the top row of the fasteners would carry the most 
load (35% of the total load) in comparison with the middle and bottom rows. Using 
this load data, the present study would model a single fastener hole with two cracks 
of equal length under periodic boundary conditions as illustrated in Fig. 1.258. At 
the maximum applied loading state, the fastener accounts for 35% of the total load 
and the contact normal stress due to the fastener is approximated with 

cr= — sin0 (1.149) 
7tA 

where W is half of the distance between the holes, and R is the radius of 
the holes. The geometric dimensions of the model are as follow: 2W = 1.2 in, 
2R = 0.1875 in, the height of the model is 2H = 1.5 in, and the crack length ema- 
nating from the hole is 2a = 0.2625 in. Three sets of initial cracks are considered; 
the first set of initial cracks are straight, the second set of initial cracks kinked up- 
ward with the initial kink angle being +30 and the third set of initial cracks kinked 
downward with the initial kink angle being -30 as illustrated in Fig. 1.259. Due 
to the symmetry condition that exist in the specimen as well as the loads, only 
half of the specimen is modeled with finite element method. The half model of 
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Figure 1.257: Multiple Site Damage problem in a lap-splice joint in which some of 
the cracks are moderately kinked. 
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Figure 1.258: Two cracks of equal length enamating from the fastener hole. 
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the 30 kinked crack under plane stress condition is discretized with isoparametric 

quadratic elements as shown in Fig. 1.260. 
Using Eq.?? through ?? and 1.147, the mixed-mode stress intensity factors as 

well as the equivalent stress intensity factor of the crack tip are calculated and listed 
in Tab. 1.27. The result shows that even when the crack enamating from the fastener 
hole is straight, mode II behavior is not negligible as the ratio Ki/Ku = -0.04. 
However, the calculated result also shows that the equivalent stress intensity factor 
and the stress intensity factor for mode I of the straight crack have the same value. 
This would mean that the prediction of fracture for the case of initial kink angle=0 
can be solely based on the value of Kj. Therefore, the alternating method can be 
effectively used in the fracture analysis of straight cracks for MSD problem even 
though it can only calculate the value of Ä) and not Kn. Furthermore, the result 
from Tab. 1.27 also shows that the equivalent stress intensity factors, K]q, for the 
initial kink angle of +30 and -30 are within 2% of K\ for the initial kink angle of 0. 
Hence, the alternating method can still be effectively used to perform the fracture 
analysis for moderately curved cracks by using the fracture solution which assumes 

the cracks to be straight. 
In addition to the fracture analysis, this study also include the fatigue analysis 

of these moderately kinked cracks. The crack's trajectory is computed using Eq. 
1.146 and the crack growth propagation for the initial kink angle of +30 is shown 
in Fig. 1.261. The figure shows that as the crack propagates, the crack tends to 
straighten out and resemble a straight crack. As the crack grows, the stress intensity 
factors of the crack tip are calculated. Fig. 1.262 shows that the calculated equiv- 
alent stress intensity factors, ltfq, for the initial kink angle +30 and -30 are very 
close to the mode I stress intensity factor, Kh for initial kink angle 0. Based on the 
calculated stress intensity factor and the Forman's crack propagation equation, Eq. 
1.148, the fatigue life of each specimen is calculated. Since the equivalent stress 
intensity factors of all three specimens are very close to each other, it is expected 
that the fatigue life of the specimens with kinked cracks is very close to the fatigue 
life of the specimen with straight crack; N+w/N+o = 0.984 and AL3o/A+o = 0.991. 
As a result, it can be argued that the alternating method can be used to perform the 
fatigue analysis for moderately curved cracks by using the solution which assumes 

straight cracks. 
The present study also include the example of two fastener holes in which the 

kink angle of the cracks emanating from the left and right holes are +30 and -30 
respectively as shown in Fig. 1.263. The loading and boundary conditions of this 
specimen is similar to the specimens of a single hole described earlier. It is found 
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Figure 1.260: Half model of the +30 degree kinked cracked discretized with 8 
noded isoparametric elements. 
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Figure 1.261: Crack growth analysis of the 30 degree kinked crack. 

fa 
CO 

s 

45.0 

40.0 

35.0 

30.0 

25.0 

20.0     • 

15.0 
0.1       0.15      0.2       0.25      0.3       0.35      0.4       0.45 

Crack Length 

Figure 1.262: The equivalent stress intensity factor of the initial kinked angles of 
+30° and -30° in comparison to a straight crack with initial kinked angle of 0°. 
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Figure 1.263: Fatigue crack growth near two fastener holes under uniaxial load 
with the initial kink angle of the cracks emanating from the left and right holes 
being +30 and -30 degrees respectively. 

that the fatigue life of this specimen with kinked cracks are very close to the fatigue 

life of a specimen with straight cracks; 
NKINKI'^STRAIGHT = 0.976. The study also include another similar example of 

two fastener holes with kinked cracks but loaded in both directions as shown in 
Fig. 1.264. Using the approximation of a pressurized tube, the applied longitudinal 
stress is assumed to be a quarter of the applied hoop stress. Again, it is found that 
the fatigue life of this specimen with kinked cracks are very close to the fatigue life 

of a specimen with straight cracks; NKINK I'^'STRAIGHT = 0.973. 
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Figure 1.264: Fatigue crack growth near two fastener holes under biaxial load with 
the initial kink angle of the cracks emanating from the left and right holes being 
+30 and -30 degrees respectively. 

§ 1.15.2   Conclusion 

The present analysis has shown that the fracture and fatigue life for a slightly kinked 
crack near a fastener hole can be very well approximated approximated using the 
stress intensity factor for pure mode I behavior obtained by replacing the slightly 
kinked cracks with simple straight cracks. Henceforth, the alternating method can 
be applied in modeling moderately curved cracks that often exist in Multiple Site 
Damage problem, and therefore significantly reduce and simplify the fracture and 
fatigue analysis of such problem. 

§ 1.16   Interaction of Engine Rotor Fragments with Containment Structures 

§ 1.17   Finite Element Analysis of Engine Rotor Failure and Containment 

The complex dynamical interactions among failed rotor fragments and the engine 
containment structure is studied by the finite element method. DYNA3D is used for 
the finite element analysis which is an explicit, three-dimensional, transient finite 
element code. A number of different rotor fragments are considered for this study 


