
AL/HR-TP-1996-0030
UNITED STATES AIR FORCE
ARMSTRONG LABORATORY

Information Integration for Concurrent
Engineering (IICE) IDEF3 Process

Description Capture Method Report

Richard J. Mayer, Ph.D.
Christopher P. Menzel, Ph.D.

Michael K. Painter
Paula S. deWitte, Ph.D.

Thomas Blinn
Benjamin Perakath, Ph.D.

KNOWLEDGE BASED SYSTEMS, INCORPORATED
ONE KBSI PLACE

1500 UNIVERSITY DRIVE EAST
COLLEGE STATION, TEXAS 77840-2335

JoAnn M. Sartor, Capt, USAF
James C. McManus

HUMAN RESOURCES DIRECTORATE
LOGISTICS RESEARCH DIVISION

2698 G Street
Wright-Patterson AFB OH 45433 7604

April 1997

19971002 065
tfEOQTTHlB Tfi ji.1. 5D'

Approved for public release; distribution is unlimited

Human Resources Directorate
Logistics Research Division
2698 G Street
Wright-Patterson AFB OH 45433 7604

NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation, or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

The Public Affairs Office has revised this paper and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nations.

This paper has been reviewed and is approved for publication.

/JAMES C. MCMANUS
Program Manager

&o~**i

BERTRAM W. CREAM, GM-15, DAF
Chief, Logistics Research Division

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

^ss^^s^^sss^^^^s^s^^^^^^
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

 April 1997

3. REPORT TYPE AND DATES COVERED

Final - February 1991 to September 1995

4. TITLE AND SUBTITLE

IDEF3 Process Description Capture Method Report

6. AUTHOR(S)

Richard J. Mayer, Ph.D.
Christopher P. Menzel, Ph.D.
Michael K. Painter

Paula S. DeWitte, Ph.D.
Thomas Blinn

Jo Ann M. Sartor
James C. McManus

Benjamin Perakath, Ph.D.
: PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Knowledge Based Systems, Inc.
One KBSI Place
1500 University Drive East
College Station, TX 77845

Armstrong Laboratory
Human Resources Directorate
Logistics Research Division
2698 G Street
Wripht-Pattersop AFR OH 45433 7604

5. FUNDING NUMBERS

C - F33615-90-C-0012

PE - 63106F
PR - 2940
TA - 01
WU - 08

8. PERFORMING ORGANIZATION
REPORT NUMBER

AL/HR-TP-1996-0030

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES)

Armstrong Laboratory
Human Resources Directorate
Logistics Research Division
2698 G Street
Wright-Patterson AFB OH 45433 7604 .
11. SUPPLEMENTARY NOTES

Armstrong Laboratory Monitor: James C. McManus, AL/HRGA, DSN 785-8049.

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) »u. i„to„,»inl,
This document provides a method overview, practice and use description, and language reference for the Integration
Definition (IDEF) method for Process Description Capture (IDEF3). IDEF3 is designed to help document and analyze the
processes of an existing or proposed system. Proven guidelines and a language for information capture help users capture
and organize process information for multiple downstream uses. IDEF3 supports both process-centered and object-centered
knowledge acquisition strategies enabling users to capture assertions about real-world processes and events in ways
paralleling common forms of human expression. IDEF3 includes the ability to capture and structure descriptions of how a
system works from multiple viewpoints. As an integral member of the IDEF family of methods, IDEF3 works well in
independent application or in concert with other IDEF methods to document, analyze, and improve the vital processes of a

business.

14. SUBJECT TERMS

IDEF
information engineering
information systems

integration
knowledge acquisition
method

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

methodology
process
re-engineering

requirements definition
systems engineering

15. NUMBER OF PAGES

194

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

SAR
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHSIDI0R, Oct 94

TABLE OF CONTENTS
TABLE OF CONTENTS üi

LIST OF FIGURES vi

PREFACE • ix

FOREWORD. .x

METHOD ANATOMY *
FAMILY OF METHODS xn

SECTION 1 1

INTRODUCTION]

MOTIVATION l

Enhance the Productivity of Business Systems Analysis 1
Facilitate Design Data Life-Cycle Management 2

Support the Project Management Process 2

Facilitate the System Requirements Definition Process 2

Support Coordinated Activity and Integration of Effort 3
DESIGN FEATURES OF IDEF3 3

APPLICABILITY 6

BENEFITS 6

DOCUMENT ORGANIZATION 8

SUMMARY 9

SECTION 2 9

IDEF3 OVERVIEW 9

SCENARIOS: THE ORGANIZING STRUCTURE FOR IDEF3 PROCESS DESCRIPTIONS 9
PROCESS-CENTERED VIEWS: THE PROCESS SCHEMATICS H
OBJECT-CENTERED VIEWS: THE OBJECT SCHEMATICS 13

SECTION 3 18

IDEF3 PROCESS DESCRIPTION LANGUAGE • 18

BASIC ELEMENTS OF IDEF3 PROCESS DESCRIPTIONS 18
PROCESS SCHEMATICS 18

1 Q
Units of Behavior 10

Links 20

25 Junctions
UOB Decompositions 36

UOB Reference Numbering Scheme 38
Partial Descriptions 40

Referents 40

OBJECT SCHEMATICS 44

Objects and Object States 45

Transition Schematics • 45

Conditions 47

in

Using Referents in IDEF3 Object Schematics 48
Transition Junctions 56
Hiding Object State Information 60
Enhanced Transition Schematics 61

ELABORATIONS 75
Some Examples of the Elaboration Language 76

NOTES 79
REPRESENTING STOCHASTIC PROCESSES 80

SECTION 4 .: 82

DEVELOPING IDEF3 DESCRIPTIONS 82

THEIDEF3 DESCRIPTION EVOLUTION CYCLE 82
IDEF3 DESCRIPTION CAPTURE ACTIVITIES 83

Define the Project 83
Define the Purpose 83
Establish the Context 84

ORGANIZE FOR DATA COLLECTION 85
COLLECT AND ANALYZE DATA 87

Prepare for Interviews 87
Interview Domain Experts 89
Collect and Catalog Source Material 91

FORMULATE IDEF3 SCHEMATICS 94
Formulate Process Schematics 95
Formulate Object Schematics 104

INCREMENTALLY REFINE AND VALIDATE IDEF3 PROCESS DESCRIPTIONS 113
Motivation.'. 113
Types of Validation 113
Build and Distribute Kits 114

REVIEW PROGRESS AND MAKE ADJUSTMENTS 123
USING OTHER IDEF METHODS IN PROCESS DESCRIPTION CAPTURE 123

Using IDEF0 with IDEF3 123
Using IDEF1 and IDEF1X with IDEF3 124
Using IDEF5 with IDEF3 125

SECTION 5 125

IDEF3 DEVELOPMENT: MATERIAL ORDERING PROCESS EXAMPLE 125

DEFINE PURPOSE AND CONTEXT 125
COLLECT DATA 126

Interview Domain Expert and Acquire Initial Description 126
Analyze Description for Data Identification 128

FORMULATE PROCESS SCHEMATICS 129
Layout Initial Process Schematic 130
Develop Elaborations 133
Review Process Schematic with Domain Experts 136

FORMULATE OBJECT SCHEMATIC 140
Select Objects of Interest 140
Identify Object States 140
Layout Initial Object Schematic 141
Add Junctions As Required 142

IV

Attach Referents 142

Develop Elaborations 142

Review Object Schematic with Domain Experts 146

SECTION 6 149

UNDERSTANDING IDEF3 PROCESS DESCRIPTIONS 149

DESCRIPTION READING STEPS 149

QUICK READING OF IDEF3 PROCESS DESCRIPTIONS: AN EXAMPLE 150

The Big Picture 151

1 C1
Scan the Schematic 1J1

Understand the Description 1*1

BIBLIOGRAPHY 157

APPENDIX A: IDEF3 ELABORATION LANGUAGE 163

A.l DESCRIPTION OF THE ELABORATION LANGUAGE CORE 163
A.l.l Basic Syntactic Types 163

A. 1.2 Operators 164

A. 1.3 Terms 155

A. 1.4 Sentences 167

A. 1.5 Definitions 169

A.2BNF FOR THE ELABORATION LANGUAGE CORE 169
A.2.1 Alphabet 170

A.2.2 Basic Syntactic Types 170

A.2.3 Operators 171

A.2.4 Terms 171

A.2.5 Sentences 171

A.2.6 Definitions 172

A.3 BASIC DEFINITIONS, AXIOMS, AND AXIOM SCHEMAS 172
A.3.1 Basic Semantic Categories I73

A.4 BASIC SITUATION THEORY 175

A.4.1 Situations and Infons i76

A.4.2 Types, UOBs, and Processes I77

A.4.3 Basic Situation Theoretic Relations I79

A.5 A FORMAL LANGUAGE FOR IDEF3 ELABORATIONS 179
A.5.1 Extending the Core Elaboration Language I80

A.5.2 Basic Situation Theoretic Semantic Categories 18°
A.5.3 Basic Situation Theoretic Relations I82

A.5.4 Basic Temporal Relations I83

A.5.5 The Interval Over Which a Situation Occurs I84

A.5.6 Using Sorted Variables I84

APPENDIX B: IDEF3 GLOSSARY 18T

LIST OF FIGURES
Figure F-I Anatomy of a Method xi
Figure 1-1 IDEF3 Captures Multiple Viewpoints of a Process 5
Figure 1-2 IDEF 3's Focus on Description Capture Enables Maximized Reuse 6
Figure 1-3 IDEF3 Can Facilitate Business Improvement 7
Figure 2-1 Example of a Process Schematic 12
Figure 2-2 Example of a Transition Schematic 15
Figure 2-3 Example of an Enhanced Transition Schematic 17
Figure 3-la Symbols Used for IDEF3 Process Description Schematics 19
Figure 3-1 b Alternative Symbol Conventions for First-Order Links 20
Figure 3-2 IDEF3 Link Types 21
Figure 3-3 Basic Precedence Link Syntax 21
Figure 3-4 Activation Plot for Figure 3-3 22
Figure 3-5a Example of a Schematic Involving a Constrained Precedence Link 23
Figure 3-5b Further Examples of Constrained Precedence Links 23
Figure 3-6 General Constrained Precedence Link 24
Figure 3-7 Example of a Relational Link 24
Figure 3-8 Nonbranching IDEF3 Schematic 24
Figure 3-9 Activation Plot for Figure 3-8 25
Figure 3-10 Classification of Junction Types 26
Figure 3-11 Diverging and Converging Parallel Subprocesses 27
Figure 3-12 Graphical Conventions for Precedence Links Connecting to Junctions 27
Figure 3-13 Sample Schematics to Illustrate Semantics of AND Junctions 28
Figure 3-14 Sample Schematics to Illustrate Semantics of OR Junctions 29
Figure 3-15 Schematic with Asynchronous AND Junctions 30
Figure 3-16 Activation Plot for Figure 3-15 30
Figure 3-17 Synchronous AND Junctions 31
Figure 3-18 Activation Plot for Figure 3-17 3 1
Figure 3-19 Asynchronous OR Junctions 32
Figure 3-20 Synchronous OR Junctions 32
Figure 3-21 Activation Plots for Figure 3-20 33
Figure 3-22 Fan-out AND Junction Followed by a Fan-in OR Junction 33
Figure 3-23 Activation Plots for Figure 3-22 34
Figure 3-24 Asynchronous AND Junction Example 34
Figure 3-25 Synchronous AND Junction Example 35
Figure 3-26 Asynchronous OR Junction Example 35
Figure 3-27 Invalid XOR/AND Structure Example 36
Figure 3-28 Decomposition 3.1 of the UOB Receive and Activate Contract 37
Figure 3-29 Decomposition 10.1 of Hold Kick-off Meeting UOB 38
Figure 3-30 The Project Manger's View Decomposition 38
Figure 3-31 Unit of Behavior Numbering Scheme 39
Figure 3-32 Disconnected UOB Example 40
Figure 3-33 Referent Symbol Syntax 41
Figure 3-34 Referent Symbol Structure 41
Figure 3-35 Process Schematic with Go-To Referents 44
Figure 3-36 Kind Symbols 45
Figure 3-37 Object-state Symbols 45
Figure 3-38 Basic State Transition Schematic 45
Figure 3-39 Basic State Transition Schematic with a Strong Transition Link -...46

Figure 3-40 Object Schematic Conditions 47

Figure 3-41 Basic Transition Schematic with UOB Referent 49
Figure 3-42 Interval Diagrams Representing Instances of Figure 3-41 50
Figure 3-43 Patterns Excluded by the Semantics of Figure 3-41 50
Figure 3-44 Transition Schematic with a Call-and-Continue Referent 51
Figure 3-45 Call-and-Wait Referent Syntax 51
Figure 3-46 Sustaining an Object in a State 52
Figure 3-47 Instantiation Patterns for Figure 3-46 52
Figure 3-48 Object Schematic with Multiple, Temporally Ordered Referents 53
Figure 3-49 Object Schematic with Multiple Temporally Simultaneous Referents 54
Figure 3-50 Object Schematic with Temporally Indefinite Referents 54
Figure 3-51 Complex Transition Schematic 55
Figure 3-52 Transition Schematics Not Jointly Equivalent to Figure 3-51 56
Figure 3-53 Possible Instantiation Pattern for the Schematics in Figure 3-52 56
Figure 3-54 Disjunctive State Transition Schematic 57
Figure 3-55 Exclusive Disjunctive State Transition Schematic 57
Figure 3-56 Conjunctive State Transition Schematic 58
Figure 3-57 General Semantics of Figure 3-56 58
Figure 3-58 Converse Schematic 59
Figure 3-59 Using Multiple Junction Symbols to Display Complex Transition Logic 59
Figure 3-60 Object Transitions in a Heating Process 60
Figure 3-61 Hiding State Transition Information 60
Figure 3-62 General Form of a Basic First-Order Schematic 61
Figure 3-63 Example of a Basic First-Order Schematic 62
Figure 3-64 Example Illustrating Alternative Syntax for Basic First-Order Schematics 62
Figure 3-65 Example of a Basic 3-Place First-Order Schematic 63
Figure 3-66 Alternative Syntax for Figure 3-65 63
Figure 3-67 Example Illustrating the Use of an Individual Symbol 64
Figure 3-68 Fully Particularized Example 64
Figure 3-69 Small Complex Schematic 65
Figure 3-70 Complex Schematic Involving Multiple Relations 65
Figure 3-71 Peripheral Connections to a Personal Computer 65
Figure 3-72 Composition Schematic 66

Figure 3-73 Composition Schematic 67
Figure 3-74 Basic Second-Order Schematic 68
Figure 3-75 Example of a General Second-Order Schematic 69
Figure 3-76 Example of a Second-Order Schematic with Subkind-of. 69
Figure 3-77 Different Types of Classification 70

Figure 3-78 Classification of Resources 71

Figure 3-79 Hiding Composition Information 71

Figure 3-80 Classification of Resources with Hidden Information 72
Figure 3-81 Combined Schematic Displaying States and Transitions 73
Figure 3-82 Object Schematic Involving Object Transition Constructs 73
Figure 3-83 Another Object Schematic Involving Object Transition Constructs 74
Figure 3-84 Paint/Queue/Dry Process 76

Figure 3-85 Note Associated with a Junction 80

Figure 3-86 Transition Schematic Illustrating Possible Complex State Transition Logic 81
Figure 3-87 Transition Schematic Convention for Representing Stochastic Processes 81
Figure 4-1 IDEF3 Description Summary Form 84

Figure 4-2 Source Material Log 91
Figure 4-3 Source Material Description Form 92

vn

Figure 4-4 Example IDEF3 Object Pool 93
Figure 4-5 Process Schematic Summary Form 198
Figure 4-6 UOB Elaboration Form 99
Figure 4-7 Junction Elaboration Form 100
Figure 4-8 Precedence Link Elaboration Form 101
Figure 4-9 Dashed Link Elaboration Form 103
Figure 4-10 Object Schematic Summary Form 107
Figure 4-11 Object State Elaboration Form 108
Figure 4-12 Transition Link Elaboration Form 109
Figure 4-13 Object Elaboration Form 111
Figure 4-14 Relation Link Elaboration Form 112
Figure 4-15 IDEF3 Kit Cycle 115
Figure 4-16 IDEF3 Kit Review Cover Sheet 119
Figure 4-17 IDEF3 Kit Contents Sheet 120
Figure 4-18 IDEF3 Kit Schematic Form 121
Figure 4-19 Unit of Behavior Fields 124
Figure 5-1 First Steps in Process Schematic Development 130
Figure 5-2 Schematic with the First Path Complete 131
Figure 5-3 Schematic Near Completion 132
Figure 5-4 Complete Process Description Schematic Before First Review 133
Figure 5-5 Elaborations for UOBs 1 and 2 134
Figure 5-6 Elaborations for UOBs 3 and 4 134
Figure 5-7 Elaborations for UOBs 5 and 6 135
Figure 5-8 Elaborations for UOBs 7 and 8 135
Figure 5-9 Elaborations for UOBs 9 and 10 136
Figure 5-10 Final Process Schematic 138
Figure 5-11 Example Junction Elaborations 139
Figure 5-12 Precedence Link Elaboration Document 139
Figure 5-13 Initial Transition Schematic 141
Figure 5-14 Transition Schematic for Path where Authorization is Not Required 141
Figure 5-15 Transition Schematic for Path where Authorization is Required 142
Figure 5-16 Combined Transition Schematic Combining Figures 5-14 and 5-15 143
Figure 5-17 Complete Schematic Before First Review 144
Figure 5-18 Elaboration for Object State PR: Prepared 145
Figure 5-19 Elaboration for Object State PR: Approved requiring authorization 145
Figure 5-20 Elaboration for Object State PR: Authorized 146
Figure 5-21 Completed Transition Schematic 147
Figure 5-22 Final Object Schematic 148
Figure 6-1 Example IDEF3 Process Schematic 151
Figure 6-2 Example Partitioning of Figure 6-1 152
Figure 6-3 Analyzing the Groupings 153
Figure 6-4 Example IDEF3 Object State Transition Schematic 154
Figure 6-5 Example Partitioning of Figure 6-4 154
Figure 6-6 Analyzing the Groupings 155
Figure A-l Paint/Review/Dry Scenario 178

VIII

PREFACE

This document provides a method overview, practice and use description, and
language reference for the IDEF3 Process Description Capture Method developed under
the Information Integration for Concurrent Engineering (IICE) project, F33615-90-C-
0012, funded by Armstrong Laboratory, Logistics Research Division, Wright-Patterson
Air Force Base, Ohio 45433, under the technical direction of United States Air Force
Captain JoAnn Sartor and Mr. James McManus. The prime contractor for IICE is
Knowledge Based Systems, Inc. (KBSI), College Station, Texas. KBSI also
acknowledges the technical input to this document made by previous work under the
Integrated Information Systems Evolutionary Environment (IISEE) project sponsored by
the Armstrong Laboratory Logistics Research Division.

IX

FOREWORD

Significant technological, economic, and strategic benefits can be attained through the
effective capture, control, and management of information and knowledge resources.
Like manpower, materials, and machines, information and knowledge assets are
recognized as vital resources that can be leveraged to achieve a competitive advantage.
The Air Force Information Integration for Concurrent Engineering (IICE) program,
sponsored by the Armstrong Laboratory's Logistic Research Division, was established as
part of a commitment to further the development of technologies that will enable full use
of these resources.

The IICE program was chartered with developing the theoretical foundations,
methods, and tools to successfully evolve toward an information-integrated enterprise.
These technologies are designed to leverage information and knowledge resources as the
key enablers for high quality systems that achieve better performance in terms of life
cycle cost and efficiency. The methods research described in this report reflects recent
advancements in technology for leveraging available information and knowledge assets.

The name IDEF originates from the Air Force program for Integrated Computer-
Aided Manufacturing (ICAM) which developed the first ICAM Definition, or IDEF,
methods. Continued development of IDEF technology supports an overall strategy to
provide a family of mutually-supportive methods for enterprise integration.. More
recently, with the expanded focus and use of IDEF methods as part of Concurrent
Engineering, Total Quality Management (TQM), and business re-engineering initiatives,
the IDEF acronym has been re-cast as an integrated family of Integration Definition
methods. Before discussing the development strategy for providing an integrated family
of IDEF methods, the components and general nature of methods are described.

Method Anatomy

A method is an organized, single-purpose discipline or practice (Coleman, 1989).
A method may have a formal theoretical foundation, although this is not a requirement.
Generally, methods evolve as a distillation of the best-practice experience in a particular
domain of activity. The term tool is used to refer to a software system that supports the
application of a method.

Though a method may be thought of informally as a procedure for doing
something as a representational notation, it may be described more formally as consisting
of three components (Figure F-l). Each method has (1) a definition, (2) a discipline, and
(3) a use component. The definition specifies the basic intuitions and motivations behind

the method, the concepts involved, and the theory of its operation. The discipline
component includes the syntax of the method and the procedure for applying the method.
The method procedure gives the practitioner a reliable process for consistently achieving
good results. The method syntax eliminates ambiguity when developing complex
engineering products. Many systems analysis and engineering methods use a graphical
syntax to provide visualization of collected data so that key information can be easily
extracted.1 The use component characterizes how to successfully apply the method in
different situations.

Figure F-l
Anatomy of a Method

1 Graphical facilities provided by a method language serve not only to document the analysis or design
process undertaken, but more importantly, to highlight important decisions or relationships that must
be considered during method application. The uniformities to which an expert, through experience,
has become attuned are thus formally encoded in visualizations that emulate expert sensitivities.

Ultimately, methods are designed to facilitate a scientific approach to problem
solving. This goal is accomplished by first creating an understanding of the important
objects, relations, and constraints that must be discovered, considered, or determined.
Second, scientific problem solving occurs by guiding the method practitioner through a
disciplined approach that is consistent with good-practice experience and leads toward
the desired result. Formal methods, then, are specifically designed to raise the
performance level (quality and productivity) of the novice practitioner to a level
comparable to that of an expert (Mayer, 1987).

Family of Methods

John Zachman, in his pioneering work on information systems architecture,
observed:

[Tjhere is not an architecture, but a set of architectural representations.
One is not right and another wrong. The architectures are different. They
are additive, complementary. There are reasons for electing to expend the
resources for developing each architectural representation. And, there are
risks associated with not developing any one of the architectural
representations.

The consistent, reliable creation of correct architectural representations requires the
use of a guiding method. These observations underscore the need for many "architectural
representations," and, correspondingly, many methods.

Methods, and their associated architectural representations, focus on a limited set
of system characteristics and ignore those that do not pertain to the task at hand. Methods
are not intended to evaluate and represent every possible state or characteristic of the
system under study. Hence, the search for a single method, or modeling language,
supporting the specification, analysis, design, and representation of all relevant system
characteristics continues to frustrate those making the attempt. If such a goal were
achievable, the exercise would itself build the actual system, negating the benefits of
method application (e.g., problem simplification, low cost, rapid evaluation of anticipated
performance, and so forth).

On the other hand, lack of integration among special-purpose methods can be
equally frustrating. The IDEF family of methods is intended to strike a balance between
special-purpose methods, which are limited to specific problem types, and "super
methods" which attempt to include everything. This balance is maintained by providing
explicit mechanisms for integrating the results of individual methods within the IDEF
family.

Previous research identified critical needs for new methods2 and led to a renewed
effort in IDEF method development, with a mandate for compatibility among the family
of IDEF methods. New method development has gone in directions where obvious voids
existed (rather than reinventing existing methods) with the mission to forge integration
links among existing IDEF methods. When applied in a stand-alone fashion, IDEF
methods embody knowledge of good practice for the targeted activity. As with any good
method, the IDEF methods are designed to raise the performance level of novice
practitioners by focusing attention on important decisions while masking irrelevant
information and unnecessary complexity. Viewed as a toolbox of complementary
methods technology, the IDEF family is designed to promote the integration of effort in
an environment where effective results have become increasingly dependent on effective
use of enterprise information and knowledge assets.

2Notably, the Knowledge-Based Integrated Information Systems Engineering Project was conducted at
the Massachusetts Institute of Technology (MIT) in 1987, where a collection of highly qualified
experts from academic and research organizations, government agencies, computer companies, and
other corporations identified method and tool needs for large-scale, heterogeneous, distributed
systems integration. See Defense Technical Information Center (DTIC) reports A195851 and
A195857.

xm

SECTION 1

INTRODUCTION

One of the most common communication mechanisms to describe a situation or process is a
story told as an ordered sequence of events or activities. For example, an engineer often
describes the design process of his company by telling a story about a product that was recently
developed. Likewise, a shop floor supervisor may describe the operation of his manufacturing
system by describing the process of building a product in his shop.

The IDEF3 Process Description Capture Method was created specifically to capture
descriptions of sequences of activities. The primary goal of IDEF3 is to provide a structured
method by which a domain expert can express knowledge about the operation of a particular
system or organization. Knowledge acquisition is enabled by direct capture of assertions about
real-world processes and events in a form that is most natural for capture. This includes the
capture of assertions about the objects that participate in the process, assertions about supporting
objects, and the precedence and causality relations between processes and events in the
environment.

IDEF3 supports this kind of knowledge acquisition by providing a reliable and well-
structured approach for process knowledge acquisition, and an expressively powerful, yet easy-
to-use, language for information capture and expression. These two dimensions of IDEF3—the
procedure embodying proven practices and an expressively powerful language—work together to
focus user attention on relevant aspects of a given process and provide the expressive power
necessary to explicitly represent information about the nature and structure ofthat process.

Motivation

In the most general sense, a process is simply an ordered sequence of events. In human-
designed systems, the events that constitute a process are designed and ordered to achieve some
desired outcome. A business process, in particular, is an ordered sequence of events involving
people, materials, energy, and equipment that is designed to achieve a defined business outcome
[(Davenport & Short, 1993, 103), (Pall, 1987)]. The importance of business processes is self-
evident. They not only define what the business does, but more importantly, they determine how
well the business does what it does.

Several motivating factors led to the development of IDEF3. Some of the more prominent
motivations are described in the following sections.

Enhance the Productivity of Business Systems Analysis

One major motivation behind IDEF3 development was the need to speed up the process of
business systems modeling. Business systems analysis often begins by acquiring an accurate

description of the problem situation. Domain experts express recurring situations in terms of an
ordered sequence of events or activities. Moreover, domain experts generally describe the
specific ways in which activities and the objects that participate in them are related. There is a
need for both a method to facilitate the capture of the dynamics of business activities and process
descriptions, and for a representation medium to store and manipulate this captured knowledge.
IDEF3 fulfills these requirements with a structured approach to communicate such process
information described by domain experts.

Facilitate Design Data Life-Cycle Management

Earlier studies to identify method needs revealed the lack of methods to capture descriptions
of design-data life cycles (Mayer 1987). To describe the engineering design-data life cycle, it is
necessary to describe: (1) design information artifacts (e.g., drawings, CAD models, etc.), (2)
state transitions through which these artifacts proceed, and (3) the decision logic or processes
that determine the state transitions. IDEF3 provides mechanisms to describe this data life cycle
information.

Support the Project Management Process

Project management techniques are used to monitor and control projects in various
application domains. Several software tools support these project management techniques.
However, many of these techniques are not expressively powerful enough to capture many of the
complexities that occur in project management situations. IDEF3 provides mechanisms to
capture the constraints (including resource and temporal relationships) between the activities of a
project. The IDEF3 language also represents detailed information about the objects that
participate in, are produced by, or are used by the project activities. Furthermore, the activation
of IDEF3 diagrams, which can be supported by an automated tool, will provide the means to
monitor and control project activities in real-time.

Facilitate the System Requirements Definition Process

Another motivation for the development of IDEF3 was the need to provide the concepts,
syntax, and procedures for building system requirements descriptions. These descriptions must
be adequately detailed to determine whether a delivered system is acceptable. This requirement
implies that the IDEF3 method must support descriptions of the following items.

1. Scenarios of organizational activities.

2. Roles of user types in these organizational activities.

3. User scenarios or user interaction with the information system at the user-
function level.

4. System response to user functions.

5. User classes and delineation of user classes.

6. Declaration of timing, sequencing, and resource constraints.

7. User interface objects (e.g., menus, keywords, screens, and displays).

Support Coordinated Activity and Integration of Effort

The process view of business systems is critical to the business decision-making process.
This view does need to be coordinated, however, with other views (e.g., the function,
information, and organization views). Recognizing this need, the IDEF3 method was designed
explicitly to work well both independently and jointly with other methods which address
different areas of concentration (e.g., the IDEF0 Function Modeling method) as a
complementary addition to the IDEF method family.

Design Features of IDEF3

The needs expressed above levied special requirements on the IDEF3 team of method
designers. Given the need to provide an efficient process knowledge capture and display
mechanism, IDEF3 was designed to:

1. Be easy to learn and use by individuals having little or no training in
structured techniques while promoting consistent, reliable practice.

2. Store, manage, and reuse process information for a variety of downstream
uses.

3. Provide an effective means for rapid, reliable, and cost-effective
management of both individual and team-based applications.

4. Enable users to readily recognize key differences between alternative
process architectures.

5. Enable tailored application to small- and large-scale efforts, and collect
process information at both coarse- and fine-grained levels of detail.

6. Function well across varying system domains (e.g., engineering,
manufacturing, logistics, and business systems domains).

7. Support integration of effort when applied with other IDEF methods.

IDEF3 achieves these goals by focusing user activity on capturing descriptions of how a
particular system operates, making it easier to use than traditional modeling methods and
enabling maximized downstream reuse of the collected process information. This feature of
IDEF3 allows users to concentrate efforts on collecting observations and beliefs about how

business systems operate without having to concern themselves with the time-consuming and
decision-intensive creation of idealizations characteristic of modeling. In contrast, methods that
presume the intent to do modeling are designed to assist in the development of mathematical
idealizations, or models, that predict what a system will do under a predefined set of conditions.

The distinction between descriptions and models, though subtle, is an important one. In the
context of Integration Definition methods, these terms have a precise technical meaning. The
term description is used as a reserved technical term to mean records of empirical observations;
that is, descriptions record knowledge that originates in or is based on observations or
experience. The term model is used to mean an idealization of an entity or state of affairs. That
is, a model constitutes an idealized system of objects, properties, and relations that is designed to
imitate, in certain relevant respects, the character of a given real-world system. Frictionless
planes, perfectly rigid bodies, the assumption of point mass, and so forth are representative
examples of models.

The power of a model comes from its ability to simplify the real-world system it represents
and to predict certain facts about that system by virtue of corresponding facts within the model.
Thus, a model is a designed system in its own right. Models are idealized systems known to be
incorrect but assumed to be close enough to provide reliable predictors for the predefined areas
of interest within a domain. The true benefit of models stems from the speed and low cost with
which relevant aspects of a real or proposed system can be evaluated. However, the usefulness
of a model is limited to the range of questions addressed by its design and the reliability of its
approximations in differing contexts.

A description, on the other hand, is a recording of facts or beliefs about something within the
realm of an individual's knowledge or experience. Such descriptions are generally incomplete;
that is, the person giving a description may omit facts that he or she believes are irrelevant, or
which were forgotten in the course of describing the system. Descriptions may also be
inconsistent with respect to how others have observed situations within the domain. IDEF3
accommodates these possibilities by providing specific features enabling the capture and
organization of alternative descriptions of the same scenario or process (See Figure 1-1).
Modeling necessitates taking additional steps beyond description capture to resolve conflicting or
inconsistent views. This, in turn, generally requires modelers to select or create a single
viewpoint and introduce artificial modeling approximations to fill in gaps where no direct
knowledge or experience is available. Unlike models, descriptions are not constrained by
idealized, testable conditions that must be satisfied, short of simple accuracy.

The purpose of description capture may be simply to record and communicate process
knowledge or to identify inconsistencies in the way people understand how key processes
actually operate. By using a description capture method users need not learn and apply
conventions forcing them to produce executable models (e.g., conventions ensuring accuracy,
internal consistency, logical coherence, non-redundancy, completeness). Forcing users to model
requires them to adopt a model design perspective and risk producing models that do not
accurately capture their emperical knowledge of the domain.

Figure 1-1
IDEF3 Captures Multiple Viewpoints of a Process

Description capture may also be undertaken to produce models. Whether accomplished
implicitly or explicitly, descriptions are the raw material from which models are made. Thus, the
utility of descriptions may also be realized through their reuse in constructing multiple
idealizations or models (Figure 1-2).

Interestingly, models are a form of description. The reverse, however, is not true. A
description is not a model. Models are exercised to create analysis data that is not available in
descriptions. Unlike models, descriptions do not create analysis data; they may, however, serve
as one form of analysis data. For example, descriptions of bus routes and arrival times may be
useful forms of data for developing a model of the public transportation system but do not
themselves constitute that model. Similarly, descriptions of an automobile, while potentially
useful for other purposes, cannot be used to generate finite element analysis data.

When compared to model building, description capture is attractive as a strategy for
knowledge acquisition for several reasons. First, practitioners generally require less training to
produce descriptions, rather than models, of their domains. Second, a description of a given
situation can easily be reused for a variety of purposes, including model building (e.g., function
models, simulation models). IDEF3 is a description organizing and capture method that directly

addresses these needs.

W orljlow m aniißtm ent

application development
E nßin eerinß data

man aßemen t

Si »MI lation moid

des i an

F u notion model

dev elov men

Figure 1-2
IDEF 3's Focus on Description Capture Enables Maximized Reuse

Applicability

IDEF3 has been successfully applied in subject areas spanning all segments of the enterprise.
IDEF3 has also been designed to be useful throughout the system development and business
evolution process, as illustrated in Figure 1-3.

Benefits

Benefits previously realized through the application of IDEF3 can be measured in terms of
cost savings, schedule gains, quality improvements, organic capability improvements, and lasting
changes to organizational culture. IDEF3 has been used to:

1. Identify obscure process links between organizations.

2. Highlight redundant and/or non-value-added activities.

3. Rapidly design new processes.

Obtain approval for

Document current processes

Identify and capture critical process knowledge

Analyze curr ant processes

Design new processes
>'

Evaluate and selec t among alternatives

Develop a businc ss case for action

mplementing change

Plan for and impler lent process change
T

Maintain competitive advantage through continuous
process improvement

Figure 1-3
IDEF3 Can Facilitate Business Improvement

Additional benefits gained through IDEF3 have been realized through its usefulness as a
mechanism to:

1. Capture and distribute detailed manufacturing process knowledge (e.g., Hubble
telescope mirror fabrication process) among geographically dispersed units.

2. Determine the impact of an organization's information resource on the maj or
operating scenarios of an enterprise.

3. Provide an implementation-independent specification for human-system interaction.

4. Define data configuration management and change control policy.

5. Document the decision procedures affecting the states and life cycle of critical
shared data.

6. Speed the development of high quality IDEF0 function models.

7. Speed the development and validation of simulation models.

8. Develop real-time control software by providing a mechanism to clearly define
facts, decision points, and job classifications.

9. Define the behavior of workflow management systems and applications.

10. Prescribe the process by which change within an organization will be
achieved.

Document Organization

This document is divided into the following eight sections:

Section 1 Introduction

Section 2 IDEF3 Overview

Section 3 IDEF3 Process Description Language

Section 4 Developing IDEF3 Descriptions

Section 5 IDEF3 Development: Material Ordering Process Example

Section 6 Understanding IDEF3 Process Descriptions

Appendix A IDEF3 Elaboration Language

Appendix B Glossary of Terms

A brief method overview is presented in Section 2, including a description of the basic
building blocks used to develop IDEF3 Process Descriptions. Section 3 presents a detailed
discussion of the IDEF3 language and its semantics together with advanced concepts for
experienced users. Sections 4 and 6 offer practical guidelines for systematically applying the
method. A detailed example is described in Section 5. Appendix A describes the IDEF3
elaboration language and Appendix B defines the principal terminology of the IDEF3 method.
The elaboration language is a computer-processable medium for reusing the information captured
through IDEF3 application.

The authors anticipate the use of this document for a wide variety of purposes. Thus, the
material is presented in a manner that allows readers to obtain information without having to read
the entire document. The following guidelines are suggested.

1. For an executive overview, read Sections 1 and 2.

2. To become proficient in the development of accurate IDEF3 Process Flow
Descriptions, read the entire manual. Place special emphasis on Sections 2,
3, 4, and 6.

3. Experienced IDEF3 analysts can use Section 3 as a language reference.

4. To become proficient in reviewing IDEF3 Process Descriptions, read
Section 6 in detail and browse Sections 2 and 3.

5. An IDEF3 project leader should study Sections 3 and 4 in detail, but must
also have an understanding of the method in its entirety.

Summary

IDEF3 is designed to assist those engaged in capturing and analyzing the vital processes of
an existing or proposed system. Guidelines and simple-to-use graphical language structures aid
users in successfully capturing and organizing process information for multiple downstream uses.
IDEF3's unique design includes the ability to capture and structure descriptions of how a system
works from multiple viewpoints, thereby enabling users to capture information conveyed by
knowledgeable experts about the behavior of a system rather than directing user activity toward
constructing engineering models to approximate system behavior. This feature is among the
central characteristics distinguishing IDEF3 from alternative offerings. As an integral member
of the IDEF family of methods, IDEF3 works well in independent application or in concert with
other IDEF methods to identify and develop the vital processes of a business.

SECTION 2

IDEF3 OVERVIEW

This section provides a broad overview and examples of the IDEF3 method. Because any
discussion of the organizing structures requires references to the basic IDEF3 elements,3 these
will be referred to but not fully defined until Section 3, "IDEF3 Process Description Language."

Scenarios: The Organizing Structure for IDEF3 Process Descriptions

The notion of a scenario or story is used as the basic organizing structure for IDEF3 Process
Descriptions. A scenario can be thought of as a recurring situation, a set of situations that
describe a typical class of problems addressed by an organization or system, or the setting in
which a process occurs. Scenarios establish the focus and boundary conditions of a description.
Using scenarios in this way exploits the human tendency of humans to describe what is known in
terms of an ordered sequence of activities within the context of a given scenario or situation.
Scenarios also provide a convenient vehicle to organize collections of process-centered
knowledge.

3 IDEF3 elements are the basic language constructs of IDEF3, including UOBs, junctions, links, object states,

referents, and so forth.

Since the primary role of a scenario is to bind the context of an IDEF3 Process Description, it
is important to name it appropriately. Scenario names often take the form of an imperative (e.g.,
verb or verb phrases like Issue Purchase Order, Test Fit, and so forth) and at times may take the
form of a gerund (e.g., a verb that functions as a noun like Performing Consistency Checks). A
well-chosen scenario name will ensure that the users of the description make the appropriate
associations with the real-world situations being described. Correctly identifying, characterizing,
and naming scenarios is a necessary step to creating process-centered IDEF3 Process
Descriptions. The following examples are typical scenario names.

1. Develop Die Design for Side Aperture Panel

2. Processing a Customer Complaint

3. Implement Engineering Change Request

An IDEF3 Process Description is developed using two knowledge acquisition strategies: a
process-centered strategy and an object-centered strategy. The process-centered strategy
organizes process knowledge with a focus on processes and their temporal, causal, and logical
relations within a scenario. The second dimension organizes process knowledge with its focus
on objects and their state change behavior in a single scenario or across multiple scenarios.

Using one or both of these process knowledge acquisition strategies, IDEF3 users develop
IDEF3 Process Descriptions. Both strategies use the basic elements of the IDEF3 language to
capture and express the assertions that form the description. Graphical projections of the
information contained in process descriptions are created using IDEF3's graphical language.
These graphical projections—used to both record process information directly and as a
mechanism to display process information—are called schematics.

Two types of IDEF3 schematics parallel the two process knowledge acquisition strategies.
The IDEF3 Process Schematic displays a process-centered view of a scenario. Object
Schematics support the graphical display of object-centered information. Object Schematics that
display an object-centered view of a single scenario are called Transition Schematics. Transition
Schematics that display additional objects and object relations to provide context-setting
information are called Enhanced Transition Schematics. Object Schematics that display object-
centered information spanning multiple scenarios are simply called Object Schematics.

An IDEF3 Process Description may contain zero or more Process Schematics and zero or
more Object Schematics. For example, recording that a particular object is recognized by
participants in a domain is considered part of the description ofthat domain. An object so
identified may or may not have an Object Schematic associated with it in a description. Yet
these objects are considered part of the description. The scenario concept is used to organize
both the process-centered and object-centered views. The collection of scenarios and the
information they serve to organize is the IDEF3 Process Description.

The following two sections briefly introduce the description representation concepts and
syntax available in the two types of IDEF3 schematics.

Process-Centered Views: The Process Schematics

IDEF3 Process Schematics are the primary means for capturing, managing, and displaying
process-centered knowledge. These schematics provide a graphical medium that helps domain
experts and analysts from different application areas communicate knowledge about processes.
This includes knowledge about events and activities, the objects that participate in those
occurrences, and the constraining relations that govern the behavior of an occurrence.

A process-centered description is constructed systematically, using the basic building blocks
of the IDEF3 schematic language, linked together in different ways. These building blocks have
specific semantics associated with them. That is, they are used to represent certain kinds of
activities or relations in the real-world. A detailed specification of these building blocks is given
in Section 3. In this section, some of the important building blocks are introduced, along with an
example illustrating how they are used to develop IDEF3 Process Schematics.

The example shown in Figure 2-1 depicts a Process Schematic of the scenario entitled, Order
Material. In IDEF3, scenarios bound the context of descriptions and are convenient artifacts for
describing similar situations from different perspectives. In this example, the owner of a
business used IDEF3 to document the material ordering process to assist with new worker
training and to enforce company purchasing standards. In particular, the owner wanted to record
how Purchase Requests are processed for the benefit of new employees. When asked to describe
the process, the business owner related the following.

The first thing we do is request material using a Purchase Request form. Then the
Purchasing department either identifies our current supplier for the kind of
material requested or sets out to identify potential suppliers. If we have no current
supplier for the needed item, Purchasing requests bids from potential suppliers
and evaluates their bids to determine the best value. Once a supplier is chosen,
Purchasing orders the requested material. Those requesting material must first
prepare a Purchase Request. The requester must then obtain the Account
Manager's approval, or that of the designated backup, for the purchase. Purchase
Requests submitted for Account Manager approval must include the Account
Number for the Project that will fund the purchase. Account Managers, or their
designated backup, are responsible for, and must approve, all purchases made
against their project accounts. After the Account Manager approves the purchase,
an authorization signature may be required. To avoid a potential conflict of
interest, the requester cannot be the same individual who approves or authorizes
the request. Purchase Requests involving Direct projects require an authorization
signature, whereas Indirect projects do not. Once all the appropriate signatures
are in place, the requester submits the signed Purchase Request to Purchasing.
Purchasing then orders the requested material. The Purchase Request is thereafter
tracked as an issued Purchase Order.

11

Scenario Name: Order Material

a
3 -a

"3 'JE
U in

T
Crt
1) to
3 T3
STS
Pi

■*

I
<&.2 fe
giia

-K « a. DO? 1—1 CXK

\

•duB
O <3<g

I
X
X

/

/

/

/

Id
en

tif
y

cu
rr

en
t

su
pp

lie
r

/ m

20
J

X

{/l T3
2*C
<L> ra

e*£ *

/ •a
CD

/
öflä^ to

■art« MJ2 3
ijUcy

c

3
(Z)

T

»
^

c
.9 <u

r* +-» *-<

O
bt

ai
i

tio
riz

a
ig

na
tu

ON

I" i—I

cd

T -

X

e
3»-

A
ce

ag

er

ro
va

•sjg: oo
2S& _;
X> , ,
o

i i

m u <-■
&* W M
is d a>
OH-0 5.
K b i> r-

■

Figure 2-1
Example of a Process Schematic

The processes in the owner's description are represented in the schematic as labeled boxes
numbered 1 through 10. Each box represents distinguishable packets of information about an
event, decision, act, or process. That is, boxes represent types of happenings. Such happenings
are referred to by the neutral term units of behavior (UOBs). Each UOB box represents a real-
world process. The information recorded about a UOB includes (1) a name (often verb-based)

12

that indicates what the UOB represents, (2) the names of the objects that participate in the
process and their properties, and (3) the relations that hold between the objects. The arrows
(called links) connecting the boxes in Figure 2-1 indicate the precedence relationships (or more
generally constraints) that hold between the processes being described. Thus, an instance of the
UOB at the source of a link would complete before an instance of the UOB at the end of the
same link starts. For example, the UOB labeled Request bids would complete before the start of
the UOB Evaluate bids. The small box containing the "X" denotes a junction. A junction is a
point in the process where a process splits into multiple paths, or where multiple paths merge.
Junctions represent constraints (or the effects of constraints) of the activation logic for the
process. For example, the first junction in the above figure indicates that only one path will be
taken in an activation of the described process.

The IDEF3 method allows users to capture descriptions at varying levels of abstraction by
providing a mechanism called a decomposition. A decomposition provides a means of
organizing a more detailed description of a UOB. The decomposition schematic follows the
same syntactic rules as those for a scenario and is created using the same IDEF3 elements. A
UOB can have any number of different decompositions, all on the same level. The use of more
than one decomposition for the same UOB represents different points of view or provides greater
details of the processing relating to the UOB. The UOB Request Material in Figure 2-1 has been
decomposed into UOBs 7 through 10. The numbers in the lower-left corner of UOB boxes 7
through 10 include a reference to UOB 1 (the first digit) and the decomposition (decomposition 1
of UOB 1). This is illustrative of the IDEF3 numbering scheme which allows explicit
traceability between levels of detail in the description. The process description depicted in
Figure 2-1 shows the material ordering process from a particular point of view—that of the
business owner. It is possible to conceive of other views for this process—for example, that of
the Account Manager. Each view to be described would be presented in a separate
decomposition with a unique label and number.

The Process Schematic in Figure 2-1 represents a process-centered view of the material
ordering process. This view focuses on assertions about the processes that occur and their
ordering. Sometimes it is convenient to organize the description of a situation from an object-
centered view (i.e., where a participating object or set of objects is the focus of attention). The
next section describes how IDEF3 facilitates process description capture using an object-centered
view.

Object-Centered Views: The Object Schematics

IDEF3 Object Schematics capture, manage, and display object-centered descriptions of a
process—that is, information about how objects of various kinds are transformed into other kinds
of things through a process, how objects of a given kind change states through a process, or
context-setting information about important relations among objects in a process.

In IDEF3, an object is any physical or conceptual thing that is recognized and referred to by
participants in the domain as a part of describing what happens in their domain. Correctly

13

identifying, characterizing, and naming objects is a necessary step in the creation of object-
centered IDEF3 Process Descriptions. Object names are often nouns or noun phrases that may or
may not be coupled with a state descriptor. Below are some typical examples.

1. Water: Boiling

2. Purchase Order: Approved

3. Chassis

Object Schematics may be developed in the context of a single scenario, thus characterizing
the state transitions traversed by participating objects in an occurrence of the scenario.. These
schematics, called Transition Schematics, allow users to specify the rules that govern the
transitions between object states in a scenario occurrence. Alternatively, Object Schematics may
evolve in a more opportunistic fashion, capturing descriptions of objects, object states, and their
transitions across multiple scenarios. Object Schematics developed in this fashion make no
attempt to define the structure for object state change behavior in a scenario occurrence. This
cross-scenario Object Schematic development approach is often useful when exploring what
object-centered process information merits a more detailed focus or when attempting to discover
context-setting information about the objects encountered in a description. Object Schematics
may be distinguished from the more specialized Transition Schematics (and Enhanced Transition
Schematics) by the absence of a context-setting scenario name. Generally speaking, IDEF3
Object Schematics are developed to provide an object-centered description of a particular process
or scenario. Transition Schematics therefore tend to dominate the attention of those developing
IDEF3 Object Schematics.

The schematic in Figure 2-2 represents an Object Schematic for the Order Material scenario
derived from the business owner's description. This example happens to illustrate a Transition
Schematic since it characterizes the nature and structure of object state transitions for
occurrences of the Order Material scenario.

A key document in this process is the Purchase Request form. This form is eventually
transformed into a Purchase Order (PO) via the Order Material process. A circle containing the
name of an object represents an object of a certain kind (e.g., Purchase Request, Account
Manager, Project). These labeled circles are known as kind symbols. A certain kind of object
being in a certain state is represented by a circle with a label that captures both the kind itself and
a corresponding state, thereby representing the type (or class) of objects that are in that state
(within a given process). For example, an approved Purchase Request (PR) would be indicated
by the label PRrapproved, an authorized PR by PR:authorized, and so on. One of the first
steps to develop an Object Schematic is to identify the possible states in which the object can
exist. Though a real-world object often evolves through a continuum of states, an Object
Schematic focuses on those distinguished states of particular interest to the domain expert. The
transition arcs (arrows with triangular, filled-in heads) connecting the circles symbolize as a state
transition, the activity of changing from one state to another. The conditions that establish when
an object is in a given state, how it exists a state, how it can transition between states, and

U
O

B
/O

rd
er

R

eq
ue

st
ed

M

at
er

ia
l

y

ON

U
O

B
/O

bt
ai

n
A

ut
ho

ri
za

tio
n

Si
gn

at
ur

e

wo \
C.tJ \

1

r>

U
O

B
/P

re
pa

re

Pu
rc

ha
se

V

ou
ch

er

1 a

Figure 2-2
Example of a Transition Schematic

how it can enter a new state are recorded on a special form. The banded boxes linked to the
arrows (called referents) are aids to describe the relationships between objects states and UOBs,
scenarios, or other Transition Schematics that participate in a scenario occurrence. For example,
during the transition of the object PR from its state of having been prepared for review by an

15

Account Manager (i.e., PR:prepared) to an approved state (i.e., PR:approved or PRiapproved
requiring authorization), the process represented by the UOB Obtain Account Manager
approval must initiate and complete. The transition junctions containing an "X" (for exclusive
or) indicate the choice of exactly one path among several possible paths in an occurrence.

Thus, Figure 2-2 indicates that Purchase Requests transition from an unprepared to a
prepared state and from a. prepared state to either an approved state or an approved requiring
authorization state. If the Purchase Request requires authorization, it will transition to an
authorized state before transitioning to a submitted state. Otherwise, it will transition directly to
the submitted state. After the Purchase Request reaches the submitted state, the object will
transition to an issued Purchase Order. UOBs, scenarios, and other Transition Schematics that
participate in a transition between states are indicated by attaching appropriately labeled referents
to the Object Schematic. The relative positioning of referents on the Transition Schematic
indicates the order in which they occur. For example, the position of the UOB Prepare Purchase
Request in Figure 2-2 indicates that it initiates and completes before all other UOBs referenced
by the schematic in an occurrence of the scenario.

It is interesting to note that among the possible state transitions represented, none reflect a
failed request. This is simply because the original dialog contained no information about such
situations. This is a key point in the use of IDEF3. IDEF3 is intended as a mechanism for
structuring the assertions made by the domain expert. It does not force the completion of partial
information with modeling assumptions.

The schematic in Figure 2-2 may be embellished to include additional context-setting
information. An example of this is provided in Figure 2-3. In this figure, the Transition
Schematic has been supplemented with objects and appropriate relation links that provide
additional information. For example, the three-place relation that stands between the kinds PR:
Prepared, Direct Project, and Authorization Signature indicates that Purchase Requests
involving Direct Projects require an authorization signature. Furthermore, an Authorization
Signature is included on each Purchase Request that has been authorized. The schematic also
indicates that a Requester may not be the same individual who approves or authorizes a Purchase
Request.

Section 5 contains a more detailed exposition of the example provided here. In particular, the
step-by-step process used to develop both the Process and Object Schematics is provided. For a
more detailed description of the basic IDEF3 schematic elements and their semantics, readers are
invited to continue with Section 3.

vO

T3
4>

4)

§•
tu ^g

pa £ <u
O^ to
30 E / «

l # 6

Figure 2-3
Example of an Enhanced Transition Schematic

17

SECTION 3

IDEF3 PROCESS DESCRIPTION LANGUAGE

The following sections describe the basic elements of the IDEF3 process description
language and how those elements can be combined to dynamically form semantically rich
descriptions of dynamic systems. An IDEF3 process description organizes the network of
relations between situations in a specified scenario. IDEF3 descriptions are developed from two
different perspectives: process-centered and object-centered. Because these approaches are not
mutually exclusive, IDEF3 allows cross-referencing between them to represent complex process
descriptions. The mechanisms for cross-referencing among statements made in each of these
languages are introduced as part of the individual language specification. Examples are
interspersed throughout these sections to illustrate how the basic syntactic elements are combined
to build IDEF3 schematics.

Basic Elements of IDEF3 Process Descriptions

The basic syntactic elements of the IDEF3 process description language are shown in Figure
3-1 a. Figure 3-lb displays alternative symbol conventions for first-order relations.

The informal syntax and semantics of these symbols and the more complex structures that
can be constructed from them are presented in the following sections.

Process Schematics

Process schematics tend to be the most familiar and broadly used components of the IDEF3
method. These schematics provide a visualization mechanism for process-centered descriptions
of a scenario. The graphical elements that comprise process schematics include Unit of Behavior
(UOB) boxes, precedence links, junctions, referents, and notes. Referents and notes are
constructs that are common across process and object schematics. Each of the graphical
elements used for developing process schematics is presented below, together with discussions of
how to formulate more complex statements using those graphical elements. The discussion
begins with the most fundamental of these building blocks: the UOB.

Units of Behavior

To be clear about the meaning of UOB (and, hence, the meaning of a UOB box) a distinction
must be made between types and instances. The distinction is familiar in the field of database
design. To design a database schema, a database designer abstracts away from the particular
objects found in a given system and isolates the classes, or types, of which those objects are
instances. Similarly, the designer abstracts away from the particular attributes of those objects to

Process Schematic Symbols

UOB Symbols

UOB Labels

Node Ref# IDEFRef#

Links

-^- Simple Precedence Link

-^ ► Constraint Precedence Link

— — — — - Relational Link

Junctions

&

o

-AND

-OR

&

Object Schematic Symbols

Object Symbols Individual Symbols

Links
►- Weak Transition Link

►- Strong Transition Link

Relation Label
n - Place First-order
Relation Symbol

2 - Place Second-order
Relation Label Reiation Symbol

o

X

- Synchronous AND

- Synchronous OR

-XOR

Junctions Connecting Symbols

> 8L) -AND

(O) -OR

© XOR o

Call and Continue Referent

Referents and Notes

Call and Wait Referent Note

Referent Type/
Label

Locator

Referent Type/
Label

Locator

Note ID

Figure 3-la
Symbols Used for IDEF3 Process Description Schematics

19

Alternative First-Order Link Conventions

2-place relation
symbols

3-place relation
symbols

4-place relation
Symbols

2 2

Relation Label \ 1 3 1 3
Relation

Label
Relation

Label

4

Figure 3-lb
Alternative Symbol Conventions for First-Order Links

identify attribute types (e.g., color, model, hardness) common to all instances of the same type.
This information is then used to design the relation schema for a particular type of object about
which one wishes to keep information. This is the kind of information expressed by a database
schema in the Entity Relationship (ER) or IDEF1X modeling language; it describes the types of
objects in a given system, the types of attributes objects of any given type exhibit, and the logical
constraints that bind them together.

By the same token, when one captures "what's going on" in a given system, one describes
not what in fact happened in the system at a particular time, but rather what happens in general
in the system; one abstracts the general dynamic patterns, the general types of situation, that can
occur again and again in the system. A UOB, then—e.g., a Planning Activity, or Make or Buy
Decision, or Contract Award Event—describes a type of situation; an instance of a UOB is
simply an occurrence of the UOB. Like a database schema, a process description describes a
system at the type level. A process description represents the types of situations (processes,
functions, etc.) that can occur in the system and the logical and temporal constraints that bind
them together.

As illustrated in Figure 3-la, a UOB is represented by a special kind of box with a unique
label. Though it is important to bear in mind the distinction between a UOB box and the UOB it
stands for (just as it is important to distinguish a name from the person the name stands for), in
practice, the term "UOB" is often used ambiguously to refer, at some times, to a given UOB box
within a schematic, and at other times, a given UOB in the scenario represented. Context is
usually sufficient to determine which is meant on a given occasion. Many times, because of the
structural similarity between a schematic and the scenario it represents, the ambiguity doesn't
matter.

Links

Links are the glue that connect UOB boxes to form representations of dynamic processes.
Links are used primarily to denote significant relationships among UOBs. Links draw attention
to important relations between UOBs in a process. Examples of the types of relations that can be
highlighted by IDEF3 links include temporal, logical, causal, natural, and conventional.

20

However, the vast majority of the time, users are most interested in indicating simple temporal
precedence. Hence, a special class of links is devoted to expressing this relation. The
precedence link elaboration document enables users to capture additional details about a
particular precedence link. Links are drawn to start or terminate at any point on a UOB box or
junction symbol. There are two basic types of links used in IDEF3 process schematics:
precedence links and dashed links. The symbols that represent each type are shown in
Figure 3-2.

-4-

Simple Precedence Link

Constrained Precedence Link

Relational Link

Figure 3-2
IDEF3 Link Types

Simple Precedence Links

Precedence links express temporal precedence relations between instances of one UOB and
those of another. They are the most widely used link and are denoted by a solid arrow, perhaps
with an additional marker attached to the stem of the arrow, as indicated in Figure 3-2.
Precedence links connect UOB boxes, as illustrated in Figure 3-3, with a simple precedence link.

A

1 1

Figure 3-3
Basic Precedence Link Syntax

Box 1, (labeled "A") at the "back" end of the link is known as the source of the link and box
2 (labeled "B") at the "front" end of the link is known as the destination. Considered as an
IDEF3 schematic, box 1 is known as the (immediate) predecessor of box 2 in the schematic, and
box 2 the (immediate) successor of box 1.

The meaning of this schematic, as with IDEF3 schematics generally, can be understood in
terms of possible activations of the schematic. An activation of a schematic is a collection of
instances of some or all of the UOBs in the process represented by the schematic whose temporal
and logical properties satisfy the conditions specified in the schematic. In general, there are
many different patterns of activation for a given schematic. For example, one possible activation
pattern for simple two-box schematics like Figure 3-3 is when a single instance a of UOB A is

21

followed by an instance b of UOB B. More precisely, any pair of instances a and b of A and B,
respectively, where b does not start before a completes would be a legitimate activation of Figure
3-3.

Activation Plots

Activation plots are used to represent activations. The UOB instances in an activation must
occur within a single, finite interval of time that begins when the first instance in the activation
begins, and ends when the last instance ends. To determine whether a given collection of UOB
instances is an activation of a given description, it is useful to plot the general pattern of their
occurrence over such an interval. For description development purposes, it is often useful to plot
the activation pattern for a collection of observations over a given interval in order to discover
the general pattern. This can be done by vertically listing the names of the UOBs and plotting
the instances of each UOB according to the time and duration of its occurrence. For example, an
activation plot of the schematic in Figure 3-3 is shown in Figure 3-4, where the line to the right
of each UOB name represents the time interval in which an instance ofthat UOB occurs. The
fact that there is no horizontal overlap in the projections of the two lines indicates that the
instance of B does not begin before the instance of A ends, as required by the semantics of
Figure 3-3. Hence, the plot does indeed represent an activation of Figure 3-3.

A

B

Time

Figure 3-4
Activation Plot for Figure 3-3

Constrained Precedence Links

Figure 3-3, with a simple precedence link, says nothing about whether instances of either
UOB can occur in the system being described without a corresponding instance of the other. For
all Figure 3-3 says, an instance of A could occur without an instance of B; or an instance of B
could occur before an instance of A. The semantics of the simple precedence link is thus rather
permissive. Constrained precedence links add constraints over and above the activation
semantics of simple precedence. The first of the constrained precedence links indicates that any
instance of the source UOB must be followed by an instance of the destination UOB. This is
what is meant by the "directionality" of the link; the constraint is in force only from "left to
right." So, for example, as with simple precedence, an activation of the schematic in Figure 3-5a
consists of an instance of Sign timesheel followed by an instance of Obtain timesheet approval.
However, the constrained link in the schematic also expresses that any instance of Sign timesheet
must be followed by an instance of Obtain timesheet approval. Lack of such an instance
indicates an inconsistency with the system as described. That is, such a collection of events
would not be classified as an activation of the IDEF3 description.

22

Sign
timesheet

T

Obtain
timesheet
approval

T
Figure 3-5a

Example of a Schematic Involving a Constrained Precedence Link

Given the directionality of the link in Figure 3-5a, instances of Obtain timesheet approval
alone are not prohibited by Figure 3-5a; such cases might occur, e.g., when an employee quits
before timesheets for a given pay period are turned in (in which case the subsequently approved
timesheet was never signed).

Two remaining constrained precedence links are illustrated in Figure 3-5b. These links
indicate similar constraints extending in the opposite direction and in both directions,
respectively. That is, the top schematic indicates (again, in addition to the activation semantics
of simple precedence) that an instance of B must be preceded by an instance of A, and the bottom
schematic indicates both that any instance of A must be followed by an instance of B, and that an
instance of B must be preceded by an instance of A. These constraints add a normative
component to the description of a system, i.e., a component that expresses not just how the
system has been observed to behave, but how it ought to behave. Constrained links are thus
particularly useful when IDEF3 is used to model a system, not just record beliefs and
observations about its behavior.

A
A 1
^

1 1

T
Figure 3-5b

Further Examples of Constrained Precedence Links

Clearly, these three links do not exhaust the possible constraints that might hold between
UOBs. For instance, one might wish to add to the simple precedence semantics of Figure 3-3
that no more than five minutes can separate the completion of any instance of A in any
activation, and the beginning of an instance of B that follows. The final constrained precedence
link indicates the presence of general constraints of this sort. For this reason, it is called a
general constrained precedence link, and is illustrated in Figure 3-6. Because the nature of these
constraints can vary widely, they must be recorded explicitly in the precedence link elaboration
document. (See Precedence Link Elaboration Document subsection below).

23

T~ T
Figure 3-6

General Constrained Precedence Link

Dashed Links

Dashed links carry no predefined semantics. For this reason, they are often referred to as
user-defined links or relational links. This type of link highlights the existence of a (possibly
constraining) relationship between two UOBs. For example, the relational link in Figure 3-7
might indicate that the constraint between Sign timesheet and Obtain timesheet approval is "one
cannot approve one's own timesheet." The precise character of the relationship indicated by a
relational link is specified in the Relational Link Elaboration document.

Sign
timesheet

Obtain
timesheet
approval

. 1 i
2 1

Figure 3-7
Example of a Relational Link

Link Numbers

All links have an elaboration and unique link numbers. Precedence link numbers are
prefaced by the letters PL (for "precedence link"). Relational links are prefaced by the letters DL
(for "dashed link"). For example, precedence links may be numbered PL1, PL2, and so on. The
uniqueness of link numbers is ensured by using a procedure similar to the UOB numbering
scheme. That is, link numbers are assigned sequentially from a pool allocated to an author.
Displaying link numbers on the process schematics is optional.

Activation Semantics for Nonbranching Process Schematics

Before introducing junctions (which give IDEF3 the capacity to describe the structure of
branching processes), it is useful to generalize the semantics for the different link types for
larger, nonbranching schematics. Consider the simple schematic in Figure 3-8 that describes the
process of holding a meeting to discuss committee reports.

Call
Meeting
to Order

A

Discuss
Committee
Reports

Close
Meeting

Distribute
Minutes

\

1 2 3 4

Nonbranch
Figure 3-8
ing IDEF2 > Schematic

24

As with IDEF3 schematics generally, the basic semantics of this schematic is to be
understood in terms of the pattern of possible activations it describes. In other words, the
schematic specifies exactly what counts as a meeting in the given context. As in the simple two
box case, an activation will generally exhibit the following pattern: An instance of Call Meeting
to Order is followed by an instance of Discuss Committee Reports, which in turn is followed by
instances of Close Meeting and Distribute Minutes, where each instance in the series begins no
earlier than its predecessor ends. As with all nonbranching schematics (and indeed, all
schematics without disjunctive branches), the typical activation pattern for Figure 3-8 is
illustrated in the activation plot in Figure 3-9.

Call Mtg to Order

Discuss Committee Rpts

Close Mtg

Distribute Minutes

Figure 3-9
Activation Plot for Figure 3-8

The constrained precedence links indicate further constraints on the process: committee
reports must not be discussed before the meeting is called to order; and after the meeting,
minutes must be distributed. The absence of any constraint between the second and third UOBs,
for example, allows for the possibility of a meeting ending before the Discuss Committee Reports
UOB completes. In such a case, the truncated meeting would be an activation of the described
process; it would not violate any constraints, and hence would be consistent with the description.
The constraints indicated by constrained links are to be understood as being independent of any
activation. So even if the meeting is closed without the UOB Discuss Committee Reports being
completed, the constraint between the last two UOBs nonetheless requires the distribution of
minutes after the close of the truncated meeting.

Junctions

Junctions in IDEF3 provide a mechanism to specify the logic of process branching.
Additionally, junctions simplify the capture of timing and sequencing relationships between
multiple process paths.

Junction Types

IDEF3 schematics are, in general, type-level descriptions of complex processes (i.e., process
types). Such processes are rarely linear. More typically, they involve any or all of four general
sorts of branch points:

1. Points at which a process diverges into multiple parallel subprocesses;

25

2. Points at which a process diverges into multiple (possibly nonexclusive) alternative
subprocesses;

3. Points at which multiple parallel subprocesses converge into a single "thread;" and

4. Points at which multiple alternative subprocesses in the process converge into a
single thread.

IDEF3 introduces four general types of junctions to express the four general sorts of branch
points. The first two sorts are expressed by fan-out junctions: Conjunctive fan-out junctions
represent points of divergence involving multiple parallel subproceses, while disjunctive fan-out
junctions represent points of divergence involving multiple alternative subprocesses. The last
two sorts of branch points are expressed by fan-in junctions: conjunctive fan-injunctions
represent points of convergence involving multiple parallel subproceses, while disjunctive fan-in
junctions represent points of convergence involving multiple alternative subprocesses. There is
one type of conjunctive junction, or AND junction, indicated by "&". There are two types of
disjunctive junctions: inclusive and exclusive junctions, or OR and XOR junctions, respectively,
depending on whether the alternatives in question are mutually exclusive. This classification of
junctions is depicted in Figure 3-10. Their semantics is discussed more fully in the following
sections.

Fan-out Fan-in

Conjunctive Disjunctive Conjunctive Disjunctive

Inclusive Exclusive Inclusive Exclusive

Figure 3-10
Classification of Junction Types

Basic Junction Syntax

Junctions represent branch points in a general process, points at which either a single
"thread" in the process diverges into multiple (parallel or alternative) threads, or multiple threads
converge into one. In IDEF3, such divergence is represented by a single junction serving as the
source of multiple precedence links and convergence by a single junction serving as the
destination of multiple precedence links. Divergence to, and convergence from, multiple
parallel subprocesses are indicated by the use of an AND junction, as illustrated in Figure 3-11.

26

B

&
C

Figure 3-11
Diverging and Converging Parallel Subprocesses

Similarly, divergence and convergence from multiple alternative subprocesses are indicated
in Figure 3-11 except by the use of either an OR or an XOR junction, depending on whether the
alternatives are mutually exclusive.

As a convention, the precedence link coming into a fan-out junction (if there is one) will be
drawn without an arrow tip, and the outgoing precedence links in a fan-out junction will be
drawn with a single stem, and with rounded rather than sharp corners. Parallel conventions hold
for fan-injunctions. To illustrate, these conventions are applied to the top two schematics in
Figure 3-12, yielding the bottom two schematics.

C

A

B

n c

Figure 3-12
Graphical Conventions for Precedence Links Connecting to Junctions

Note that junction symbols are not intrinsically fan-out or fan-in. Rather, a given occurrence
of a junction symbol in a schematic is fan-out or fan-in depending on whether it is a source or a
destination, respectively, of multiple paths.

27

Junction Numbering Scheme

To make unambiguous references to the junctions in an IDEF3 schematic, an identification
scheme for IDEF3 junctions is provided. Recall that precedence links are assigned unique
numbers beginning with the letters PL. Junction numbers follow an identical numbering scheme,
except that junction reference numbers start with the letter J, thus: Jl, J2,..., in. As with links,
no two distinct junctions can be assigned the same junction number.

Basic Junction Semantics

A fan-out AND junction in a schematic means that, in an activation of the schematic that
reaches the point of the process represented by that junction, instances of all UOBs will be
denoted by the UOB boxes that are (immediate) successors of the junction. If & synchronous
AND junction is used, then, to be an activation of the schematic, those instances must all start
simultaneously. Similarly, the intuitive meaning of a fan-in AND junction in a schematic is that,
in an activation of the schematic that traverses that junction, there will be instances of all UOBs
denoted by the UOB boxes that are (immediate) predecessors of the junction. And if a
synchronous AND junction is used, then, to be an activation of the schematic, those instances
must all end simultaneously. Thus, an activation of the left schematic in Figure 3-13 will consist
of an instance of UOB A followed by instances of both B and C. Similarly, an activation of the
right schematic in Figure 3-13 will consist of an instance of UOB C preceded by instances of
both A and B; if & synchronous AND junction is used, then, to count as an activation of the
schematic, A and B must end simultaneously.

A C

Figure 3-13
Sample Schematics to Illustrate Semantics of AND Junctions

A fan-out OR junction in a schematic indicates that, in an activation of the schematic, there
will be an instance of at least one of the UOBs connected to the junction to the right. Similarly, a
fan-out XOR junction in a schematic indicates that, in an activation of the schematic, there will
be an instance of exactly one of the UOBs connected to the junction to the right. If a
synchronous OR junction is used, then those instances must all start simultaneously. (This
constraint does not apply to XOR junctions, since there can be only one such instance in an XOR
activation.) Likewise, the intuitive meaning of a fan-in OR junction in a schematic is that there
will be at least one instance of the UOBs connected to the junction to the left. If a synchronous
OR junction is used, then, those instances (if there is more than one) must all end simultaneously.
Hence, an activation of the schematic to the left in Figure 3-14 consists of an instance of UOB A
followed by an instance of either B or C, or both B and C. Similarly, an activation of the

28

schematic to the right in Figure 3-14 consists of an instance of UOB C preceded by an instance
of either B or C, or both. If the schematics in Figure 3-14 used XOR junctions, then legal
activations would not include those in which both B and C occur in the first case and both A and
B in the second.

A 0
1 c

Figure 3-14
Sample Schematics to Illustrate Semantics of OR Junctions

Although not a part of their actual semantics, junctions in an IDEF3 schematic often have an
associated "decision logic." The decision logic of a junction determines the timing and
sequencing of the succeeding UOBs. For OR and XOR junctions, the decision logic documents
how the process will branch in a given activation. Similar logic is captured for AND junctions
(e.g., when the logic involves more than mere synchronicity). The decision logic of a junction is
recorded in the elaboration for the junction.

Because of the possibility of both conjunctive and disjunctive branching in a process,
branching is never indicated in IDEF3 by the presence of multiple outgoing precedence links
from a UOB box. Such a construct is semantically ambiguous between a splitting of the process
into concurrent subprocesses or a conditional branch in which only one (or perhaps more) of the
branches is instantiated in any given activation. Use of a junction, however, makes the meaning
of the branch entirely clear. A similar ambiguity can arise if a UOB box is the destination of
multiple arrows; there are cases—often called "loopbacks"—in which this is acceptable.

Junctions are always used in IDEF3 to indicate branching in a process; branching is never
indicated by linking a single source UOB with multiple destinations by means of several
precedence links; such schematics are semantically ambiguous between the three different types
of branching that are identified and distinguished in IDEF3.

Combining Junctions

The real power of IDEF3 lies in its ability to represent processes in which multiple parallel
and alternative threads are woven together into a single complex whole. The key to such
complex representations lies in the proper use of junctions, in particular, finding the right
combinations of junctions to represent the process in question. Some of the most basic
combinations are illustrated in this section.

It is common to find processes in which a single thread diverges into multiple threads and
then, at some later point converges back into a single thread. In IDEF3, such processes are
represented by combining fan-out junctions and fan-injunctions. Figure 3-15 represents a

29

process in which a thread diverges into parallel subprocesses and then converges. Because the
processes run in parallel, they are represented by AND junctions.

A

*<

B

TL

E

1

C

XT >

D

5 1

&

J2 XI

Figure 3-15
Schematic with Asynchronous AND Junctions

Because junction Jl separates UOB box 1 and boxes 2, 4, and 5, in any activation of Figure
3-15, an instance of UOB A will complete before any of the succeeding UOBs are instantiated.
An activation of the schematic in Figure 3-15 will proceed in the following manner. After an
instance of UOB A, the three UOBs (B, C, and D) will be instantiated. Because Jl is
asynchronous, these instances can begin in any order. Because all three paths converge to J2,
UOB F will be realized only after the instances of UOBs E, C, and D complete. Because J2 is
also asynchronous, no particular order or timing of the completions is implied. This pattern of
activation is illustrated by the plot in Figure 3-16.

A

B

C

D

E

F

Figure 3-16
Activation Plot for Figure 3-15

As in Figure 3-15, the precedence link LI shown in Figure 3-17 requires that an instance of
UOB A be completed before the UOBs signified by the succeeding boxes can be instantiated.
Synchronous logic is indicated by junction boxes having two vertical bands (Compare Figure 3-
15 and 3-17). The synchronous AND junction Jl indicates that, in an activation, the instances of
UOBs B, C, and D will initiate simultaneously. Likewise, the synchronous AND junction J2

30

indicates simultaneous completion of those instances of UOBs B and C and an instance of UOB
E before the process continues past the junction to an instance of UOB F.

B E

"^
2 1 3 1

A
&

< —

C
^ &

F

J

f
l 1 4 1 6 1

Ji SA

^

D

5 1

Figure 3-17
Synchronous AND Junctions

Figure 3-18 illustrates the added structure on activations imposed by the synchronicity
constraints.

A

B

C

D

E

F

Figure 3-18
Activation Plot for Figure 3-17

Figure 3-19 is structured like Figure 3-15 except that junctions Jl and J2 are asynchronous
OR junctions. In an activation of the represented process, Jl indicates that, following an instance
of A, one or more of the UOBs B, C, and D will be realized. This will initiate one to three
"threads" in the activation. Because J2 is an asynchronous OR junction, only one of the threads
needs to complete before an instance of F initiates.

31

f B

*-

E

\
2 I 3 1

A
O)

c
o -

F

\ r
i 1 4 I

)

6 1
ji sz

^

D

5 1

Figure 3-19
Asynchronous OR Junctions

Figure 3-20 illustrates the use of two synchronous OR junctions in combination. The fan-out
OR junction implies that, in an activation, instances of one or more of the UOBs B, C, and D will
start after an instance of A.

f— B

-

E

"N
2 I 3 1

A
O

< —

c
o -

F

r
i 1 4 I

)

6 1
JI J2

^

D

5 1

Figure 3-20
Synchronous OR Junctions

Because the junction is synchronous, when more than one UOB is instantiated, the instances
occur simultaneously. If one of these is an instance of UOB B, it will be followed by an instance
of UOB E, which will compete simultaneously with whatever instances are initiated along with
the instance of UOB B, as illustrated by the left activation plot in Figure 3-21. An activation in
which UOB B is not instantiated is also illustrated by the right activation plot. Note that in the
latter plot, the fact that both JI and J2 are synchronous forces the instances of UOBs C and D to
start and complete simultaneously.

32

A

B

C

D

E

F

A

B

C

D

E

F

Figure 3-21
Activation Plots for Figure 3-20

Figure 3-22 is an example of a way to combine two different types of junctions to allow more
freedom in the timing and sequencing of activations.

B
f ^

)

2 1

A
&

< V o
E

l 1 6 I

L^ c
^

D

4 1 5 1

Figure 3-22
Fan-out AND Junction Followed by a Fan-in OR Junction

Although instances of UOBs B and C occur after an instance of A in activations of Figure 3-
22, possible activations of the process are represented in which an instance of one or the other
may not complete, or even initiate, before the activation "proceeds" through the fan-in OR
junction and an instance of E occurs. Such activations are allowed because of the use of an
asynchronous fan-in OR junction which governs the convergence of the two threads. For a
successful process activation, although both threads must complete at some time or other, it is
sufficient for only one of the threads to have completed prior to an instance of E. Figure 3-23
provides plots of three basic activation patterns permitted by Figure 3-22. The leftmost plot
exhibits a pattern that would be permitted if the OR junction were an AND junction instead (or,
equivalent^, if the OR junction were synchronous). In the leftmost plot, instances of both B
and D (hence also C) complete before an instance of E. In the middle plot, an instance of E
begins before an instance of B completes (or even starts), and in the right plot, an instance of E
begins before an instance of D completes.

33

A — A — A
B B B
C — C — c

D D D

E E E

Figure 3-23
Activation Plots for Figure 3-22

Of course, additional constraints on activations could further narrow the class of possible
activations; e.g., one could require that the instance of B in an activation always begin before the
instance of E completes. This constraint rules out the activations characterized by the middle
plot (in which the instance of B occurs after E completes).

Some Concrete Examples

The following examples give further illustrations of the constructs discussed in the preceding
section. Figure 3-24 depicts a scenario in which the receipt of a proposal is followed by cost and
technical evaluations. The evaluations must be completed prior to contract award. Because the
junctions are asynchronous, no constraints are placed on the relative timing of the initiation and
completion of the evaluations. They must simply follow the receipt of the proposal and precede
the contract award.

(*»

Evaluate
Cost
Proposal -v

Receive
Proposal

2

y- Award
Contract

& A &

1 Evaluate
Technical
Proposal

/

4

U*
3

Figure 3-24
Asynchronous AND Junction Example

Contrast this with the scenario displayed in Figure 3-25 in which the synchronous AND
describes a situation in which the cost and the technical evaluation must start simultaneously, but
may end separately. If there had been an organizational rule that required both to end together as
well, Figure 3-25 would additionally have used a synchronous fan-in AND junction to describe
the intended process.

34

(*

Evaluate
Cost
Proposal

Receive
Proposal

2 Award
Contract

& -< y- &

1 1

U*
Evaluate
Technical
Proposal

)

4 1

3 1

Figure 3-25
Synchronous AND Junction Example

Figure 3-26 shows a description of the Select Contractor scenario. This process description
states that, following evaluation, one either rejects the proposal, or accepts the proposal for core
contract work or for options to the contract (both) before awarding the contract.

^

Reject
Proposal

Evaluate
Proposal

2 1 Accept
Proposal for
Core Contract X -<

1 1 3 1

>~

Award
Contract ^-~ o -< o

Accept
Proposal for
Options

5 1

4 1

Figure 3-26
Asynchronous OR Junction Example

In the scenario depicted in Figure 3-26, Reject Proposal is a terminating activity; however,
either of the other two activities (or both) will result in contract award. Note that a relational link
indicates some relationship between the Accept Proposal for Core Contract and Accept Proposal
for Options UOBs. Note also that this description is still partial in that it does not indicate what
happens when the negotiations do not succeed. For example, in most situations, the contract
award depends upon contractor acceptance of the terms of the funding agency, which may
require the contractor to resubmit the proposal as a part of the negotiation process. Such
information can be easily represented in IDEF3 as additions to the current schematic or a
decomposition of Award Contract. Note that there is nothing about the schematic that requires
that the contract be awarded. The contract award would be forced only if a constrained
precedence link (in the "left to right" direction) had been used to connect the fan-in OR junction
with the Award Contract UOB.

35

Not all combinations of junctions represent genuine process logic. In particular, an XOR fan-
out junction may not be followed by a fan-in AND junction in the fashion illustrated in Figure 3-
27, since this would represent an inconsistent process, one that could not possibly be activated.

-4
r+»

Evaluate
Cost
Proposal

Receive
Proposal

2 Award
Contract X y &

1 Evaluate
Technical
Proposal

4

V
3

Figure 3-27
Invalid XOR/AND Structure Example

In Figure 3-27, after the Receive Proposal UOB, an XOR junction leads to two UOBs. This
indicates that only one UOB—either Evaluate Cost Proposal or Evaluate Technical Proposal—
will be realized on any given activation of the schematic. Consequently, the Award Contract
UOB could never be realized because the requirement stating that both UOBs preceding the
AND junction be realized in the same activation can never be met. Note that such schematics
may nonetheless be useful, as the AS-IS process being captured may involve an undetected
inconsistency. In the situation characterized in Figure 3-27, perhaps contracts were never
awarded; thus, the IDEF3 schematic identified an organizational problem and enabled conflict
resolution. This type of structure is never correct in a TO-BE description of some proposed
system, organization structure, or process. In either case, however, the description validation
process should identify structures of this type as IDEF3 schematic errors.

UOB Decompositions

Elaborations capture and structure detailed knowledge about processes. If the UOB
represented by a box in a given schematic is highly complex, it may be useful to decompose the
UOB explicitly into its component UOBs. The way this is represented in IDEF3 is that the
original box is correlated with another IDEF3 schematic which represents an "exploded"
description of the UOB, providing a further level of descriptive detail about the UOB. This
schematic is known as the decomposition of the original UOB box. Decompositions allow the
user to capture descriptions at varying levels of abstraction. Decompositions enable users to
apply the "divide and conquer" principle—a powerful mechanism for managing complexity. By
applying this principle repeatedly, it is possible to structure a process description to any level of
detail. Decomposition also provides the ability to model the same process from different
knowledge sources or different points of view. This is possible because IDEF3 allows the same
UOB to have a number of different decompositions, or "views." This capability is also useful in
domain situations where a given process involves multiple functional organizations.

36

As noted, a UOB decomposition is just another IDEF3 process schematic. In Figure 3-28,
the use of decompositions is illustrated by an example from the domain of contracts
management. The decomposed UOB box 3, which refers to the UOB Receive and Activate
Contract, is called the parent UOB box. Where there is no danger of ambiguity (i.e., where no
other box refers to the same UOB), the indicated UOB can also be called the parent UOB. Each
decomposition of the parent box is a child decomposition. Each child decomposition is given a
label and a unique number identifying it as one of potentially several decompositions of the
parent UOB. The UOB boxes in a decomposition may have subsequent decompositions. (As
seen in the figure, decompositions demand a special reference numbering scheme that is
explained in the next section. For the moment, note that the rightmost digits in each UOB box is
the UOB number. Moving to the left, the other two numbers in the UOB box provide additional
information to the reader of an IDEF3 schematic.)

Receive and
Activate
Contract

3l

Receive
Contract &

3.1.6 |

Organize
Team

JJTJ_

SetUp
Subcontracts

3.1.8 |

Construct
Plan

3.1.9 |

&

Activate
Plan

3111 I

Hold Kick-
off Meeting

3.1.10 |

Figure 3-28
Decomposition 3.1 of the UOB Receive and Activate Contract

Multiple view decompositions may be consolidated into an objective view. The view
presented in Figure 3-29 is an example of an objective view of the UOB Hold Kick-off Meeting.
This is the view perceived by a neutral observer of the Kick-off Meeting process. However, the
project manager of the contract will have a different perspective of this process; therefore, IDEF3
enables him to express his viewpoint via an alternative decomposition of the UOB. The project
manager's decomposition of the UOB Hold Kick-off Meeting is shown in Figure 3-30.

37

• ^

Hold Kick-off
Meeting

3.1.10 |

S *
■s.

Review
Proposal

'■>,

\

10.1.16 1
s

'S.

■"""'

Review
SOW

Decide on
Final Plan

Determine
Assign-
ments

Close
Meeting

& &

~)

f
10.1.17 | 10.1.19 1 10.1.20 1 10.1.21 1

Review
Draft Plan

10.1.18

Figure 3-29
Decomposition 10.1 of Hold Kick-off Meeting UOB

Hold
Kick-off
Meeting

3.1.10

- - ~ "
— —

" ~ - - ----__

Call
Meeting
to Order

Negotiate
Positions

Close
Meeting

Ensure
Contract
Satisfaction

10.2.12 10.2.13 10.2.14 10.2.15

Figure 3-30
The Project Manger's View Decomposition

UOB Reference Numbering Scheme

A UOB box number is assigned to each UOB box in an IDEF3 Process Description. In
general, however, a single IDEF3 description can be extremely complex, containing many UOB
boxes, many of which can have multiple decompositions. In such schematics, the simple
assignment of numbers to boxes, though sufficient for uniquely identifying each box, may not
provide enough information. In particular, a single UOB box number conveys no contextual
information about that UOB, i.e., information about where it fits in the overall process
description. To provide this information, a more robust numbering system may be used in
IDEF3 schematics. These more informative designators are known as reference numbers.
Specifically, at the top level in a hierarchy of decompositions, a box's UOB number and its

38

reference number are identical. At lower levels of a decomposition, the reference number of a
UOB box B consists of three distinct numerals separated by periods. The first number is the last
number in the reference number of B's parent UOB. The second number is the number assigned
to the particular decomposition of the parent box in which B occurs. (Numbers are generally
assigned to decompositions and UOB boxes in order of creation, but this is arbitrary.) Finally,
the third number in the reference is simply B's UOB box number. The reference numbering
scheme thus displays a UOB box's UOB box number, the decomposition to which it belongs,
and its parent UOB. The assignment of reference numbers is illustrated in Figure 3-31.

<* 1 5 3 4

Decomposition
Number 1 of UOB 3

(i.e., decomposition 3.1)

-
1.1.47 1

Decomposition
Number 1 of UOB 43

43.1.76 43.1.79 43.1.77

Figure 3-31
Unit of Behavior Numbering Scheme

If more than one person is involved in creating the description, constraints are enforced on
the assignment of numbers to ensure that every UOB box is assigned unique box and reference
numbers. The procedure suggested for a UOB box number assignment is as follows. Each
person is assigned a set of numbers (e.g., Joe gets 1-99, Jane gets 100-199, etc.), and can assign
UOB box numbers only from his or her allocated set. Once the initial set of numbers is used,
additional numbers can be assigned as necessary. By applying this number assignment
procedure, the lead analyst in the development effort can be assured that each UOB in the final
combined description will contain unique box and reference numbers.4

4 The UOB reference numbering scheme is provided to facilitate coordinated team effort and easy navigation
across multiple views and varying levels of granularity in the description. The UOB reference numbering
scheme is particularly important in a paper-based environment or one where the software tools being used
provide limited integration support. For convenience in presentation, however, users may choose not to
display UOB reference numbers or to number UOBs from left to right and from top to bottom as they appear

in the schematic.

39

Partial Descriptions

UOB boxes are joined together by links. Because of the description capture focus of IDEF3,
it is possible to conceive of UOBs without links to other parts of an IDEF3 schematic, as the
example in Figure 3-32 illustrates. Typically, these result early in the fact collection activity as
references are made by the domain expert to the existence of events or activities, without
assertions being made about how they fit together.

Define
System
Requirements

Determine
System
Design

Code
System

Test Install
System

1 2 1 3 1 5 1 6 1

Proj. Manager
Compares
Progress to
Schedule

4 1
Figure 3-32

Disconnected UOB Example

In Figure 3-32, UOB 4 has no links to the rest of the schematic. This could either represent
the actual situation or reflect the uncertainty of the domain expert's knowledge about the
presence or absence of links. In this illustration, the schematic represents the actual situation.
The concept that makes the Project Manager Compares Progress to Schedule UOB part of this
schematic is the object Project Schedule shared by other UOBs in the schematic. The IDEF3
method, by allowing the creation of such stand-alone UOBs, facilitates the creation of partial
descriptions. It allows users to represent the state of the world as they know it, with no enforced
constraints on completeness. In fact, a common error that can be committed in the course of
developing descriptions is to attempt to "drive to completion" inherently incomplete sets of
descriptions.

Referents

Referents enhance understanding, provide additional meaning, and simplify the construction
(i.e.,'minimize clutter) of both process schematics and object schematics. Referents may be used
in IDEF3 Process and object schematics to do the following.

1. Refer to a previously defined UOB without duplication of its definition to indicate
that another instance of a previously defined UOB occurs at a specific point in the
process (without loopback).

2. Transfer control or indicate a loopback in the processing.

3. Form references or links between the process schematics and object schematics.

40

The graphical symbols for the two basic styles of referents are displayed in Figure 3-33.
Each type of referent may be used either in a process schematic or an object schematic, although
process schematics tend to make more extensive use of the Call-and-Continue style referent.
Using a Call-and-Continue referent indicates that the referenced element needs only to initiate
before the focus IDEF3 element (that is, the IDEF3 element that makes the reference) can
progress to completion. The use of a Call-and-Wait referent indicates that the referenced element
needs to both initiate and complete before the focus IDEF3 element can progress to completion.

Call and Continue Referent

Referent Type/
Label

Locator

Call and Wait Referent

Referent Type/
Label

Locator

Figure 3-33
Referent Symbol Syntax

The type ofthing signified by a referent—known, therefore, as the referent type—is indicated
by prefixing one of the terms "UOB," "SCENARIO," "TS," or "GO-TO," followed by a slash, to
a label for the thing signified (e.g., UOB/Perform Mission Area Analysis). Referents also
include a field to note a locator for the thing signified. A summary of the referent types and
referent labeling guidelines is provided in Figure 3-34.

Referent Type Referenced Element
Label

Locator

UOB UOB Label UOB#

SCENARIO Scenario Label Scenario #

TS Transition Schematic
Label

Transition Schematic #

GO-TO (used only in
process schematics)

UOB Label

Scenario Label

Junction Type (i.e., &, 0,
or XOR)

UOB#/Scenario # or
Decomposition # in which the
ID occurs

Scenario #

Junction #/Scenario # or
Decomposition # in which the
ID occurs

Figure 3-34
Referent Symbol Structure

41

The following paragraphs summarize the semantics of the possible uses for referents in both
the process and object schematics. To acquire a full understanding of the semantics associated
with referents, readers need to become more familiar with object schematics. Readers may find
it useful to read the following subsections which describe Call-and-Wait and Call-and-Continue
referents, paying particular attention to their use in process schematics. Readers should then
proceed to the discussion of object schematics. Once a basic understanding of object schematics
is acquired, the reader may return to the Call-and-Continue and Call-and-Wait referents
subsections to obtain a full understanding.

Call-and-Continue Referents

If the call-and-continue referent type is "UOB," "SCENARIO," or "GO-TO," it may have no
outgoing precedence link. To do otherwise would be inconsistent with the semantics of a
precedence link. To understand why, one need only consider the semantics of call-and-continue
referents and precedence arrows. A call-and-continue referent indicates that when an instance of
the referenced UOB begins, for example, the process may continue. The precedence constraint,
however, specifies that the process may continue only after an instance of the UOB both starts
and completes. Hence, the two differing semantics cannot be applied simultaneously without
violating the grammar.

If the referent type is "UOB," the label must be a UOB label; this means that another instance
of a previously defined UOB occurs at a specific point in the process (without loopback). If this
referent type is attached to a transition arc in an object schematic, an activation of the referenced
UOB must be initiated before the state transition is allowed (see referent discussion in the object
schematics subsection). If this referent type is attached to an object state in an object schematic,
it indicates that the referenced UOB sustains the object in the state. Similar semantics apply for
Scenario-type referents attached to object states. See the subsection entitled, "Referents
Attached to Object States," for more detail.

If the referent type is "SCENARIO," the label must be a Scenario label. If this referent type
is used in a process schematic, it indicates that the next happening in the process flow is an
occurrence of an activation of the referenced Scenario. That is, all decompositions of the named
Scenario would be activated. If this referent type is attached to a transition arc in an object
schematic, an activation of the referenced Scenario must start before the state transition is
allowed (see referent discussion in object schematics subsection).

If the referent type is "TS," the label must be a Transition Schematic label. If this referent
type is used in a process schematic, it must be attached to a UOB with a simple connecting link
(i.e., no precedence links). This use indicates that the referenced Transition Schematic must
initiate sometime during an activation of the UOB. If this referent type is used in an object
schematic, it must be attached to some point on a transition arc between states (i.e., it may not be
attached to an object or object state). A Call-and-Continue TS referent attached to a transition
arc between states indicates that the object must initiate a transition through the states of the
referenced Transition Schematic before the state transition is allowed (see referent discussion in
object schematics subsection).

42

If the referent type is "GO-TO" and it refers to a UOB, the next happening in the process is
an occurrence of the referenced UOB. This type of referent is often used to document loops in a
process. If the referent type is "GO-TO" and it refers to a Junction, the next happening in the
process is an occurrence of the UOB(s) following the referenced junction. Go-to referents are
always Call-and-Continue type referents.

Call-and-Wait Referents:

If the referent type is "UOB" or "SCENARIO," it may have an outgoing precedence link.
Call-and-wait "GO-TO" referents are not permitted.

If the referent type is "UOB," the label must be a UOB label; this means that another instance
of a previously-defined UOB occurs at a specific point in the process (without loopback). If this
is attached to a transition arc in an object schematic, an activation of the referenced UOB must be
initiated and completed before the state transition is allowed (see referent discussion in object
schematics subsection). If this referent type is attached to an object state in an object schematic,
it indicates that the referenced UOB sustains the object in the state throughout its duration.
Further, using a Call-and-Wait referent adds the constraint that the succeeding object state(s)
may not be realized prior to completing the process represented by the UOB. Similar semantics
apply for Scenario-type referents attached to object states. See the subsection entitled,
"Referents Attached to Object States," for more detail.

If the referent type is "SCENARIO," the label must be a Scenario label. If the referent type
"SCENARIO" is used in a process schematic, the next happening in the process flow is an
occurrence of an activation of the referenced Scenario. That is, all decompositions of the named
Scenario would be activated and completed before the next happening in the process flow. If a
Scenario-type referent is attached to a transition arc in an object schematic, an activation of the
referenced Scenario must complete before the state transition is allowed (see referent discussion
in object schematics subsection).

If the referent type is "TS," the label must be a Transition Schematic label. If this referent
type is used in a process schematic, it must be attached to a UOB with a simple connecting link
(i.e., no precedence links). This use indicates that the completion of the attached UOB is
conditioned on an object transitioning through the referenced Transition Schematic. If this
referent type is used in an object schematic, it must be attached to some point on a transition arc
between states (i.e., it may not be attached to an object or object state). A Call-and-Wait TS
referent attached to a transition arc between states indicates that the object must transition
through the states of the referenced Transition Schematic before the state transition is allowed
(see referent discussion in object schematics section below).

Using Referents in IDEF3 Process Schematics

In this section, the use of referents in process schematics is discussed. The use of referents in
object schematics will be discussed in a later section after introducing the basic state transition

43

schematics. This presentation strategy is intended to facilitate discussion about how to integrate
the process-centered and object-centered views of a process.

Figure 3-35 is a process schematic depicting the requirements planning process. The referent
in Figure 3-35 (a) indicates that a Transition Schematic (with Transition Schematic number 1)
must be traversed before the Prioritize Needs UOB can initiate in an activation of the process.
This construct reflects the notion that a Statement of Need (SON) traverses through a number of
states that must be realized sometime during mission area analysis. Figure 3-35 (b) demonstrates
the use of a Go-To referent to show the possibility of looping back to the Perform Mission Area
Analysis UOB. The junction referent in Figure 3-35 (c) indicates that the processing after the
UOB Explore Concept is transferred to the junction J4 in decomposition 2.1. Referents may also
be used to indicate that the situation represented by a UOB box in some other location is to be
duplicated at some point. This use of a referent is illustrated in Figure 3-35(d). In the example,
an instance of a process path traversing through the Define Concept UOB is followed by the
duplication of the processing that occurs in the UOB Perform Alternative Trade-offs (with UOB
number 15 and also found in decomposition 9.1).

(b)

TS/Statement
of Need
(SON)

1

Perform
Mission Area
Analysis

XI

GO-TO/Perform
Mission Area
Analysis

l/i

(c)
Explore
Concepts

GO-TO/
XOR Needs

O
\ *"

2 3 1 J4/2.1
J i

(d)
Define
Concepts

UOB/Perform
Alternative
Trade-offs

4 1 9.1.15/9.1

Process
Figure 3-35

i Schematic with Go-To Referents

Object Schematics

This subsection describes how to express detailed object-centered process information; that
is, information about how objects of various kinds are transformed into other kinds of things
through a process, or how objects of a given kind change states through a process. Thus, for
example, a drive train, a chassis, and an auto body might be combined into a car. Again, in a
given heating process, a quantity of water might change states from frozen, to cold, to warm, to
hot, to boiling. An object-centered representation should, therefore, capture both various kinds
of things, as well as the kinds of things in various states.

44

Objects and Object States

An object of a certain kind, like a chassis, will be represented simply by a circle containing
an appropriate label, as illustrated in Figure 3-36. These will be known as kind symbols.

I Chassis 1

Figure 3-36
Kind Symbols

A certain kind of object being in a certain state will be represented by a circle with a label
that captures the kind itself and a corresponding state, representing thereby the type, or class of
objects that are in that state (within a given process). For example, frozen water will be indicated
by the label "Watenfrozen", cold water by "Waterxold", and so on. These new constructs are
called object-state symbols, and are illustrated in Figure 3-37.

Figure 3-37
Object-state Symbols

The construction of complex representations built from kind symbols and object state
symbols are known as object schematics. The remainder of this section is devoted to the syntax
and semantics of these constructs. For a lengthy and detailed discussion of the background to
these constructs and to ontology modeling in general, see the IDEF5 Method Report (KB SI
1994).

Transition Schematics

The first and most basic construct is the basic state transition schematic (or simply,
transition schematic, for short) shown in Figure 3-38.

Figure 3-38
Basic State Transition Schematic

45

Intuitively, a basic transition schematic signifies a certain pattern of events, a certain type of
situation that can occur, namely, a situation in which there is an object a in a given state A
followed by an object b in state B. Typically the object a is, over a certain time, modified,
transformed, or consumed to yield b. More often than not, a and b will be the same object, such
as a quantity of water that transitions from a solid to a liquid state, or a given car body changing
from an unpainted to a painted state. However, this is not always so; for instance, an incineration
process might involve a state transition in which a piece of wood is consumed, yielding a pile of
ashes. Hence, for the sake of generality, the default semantics of a basic transition schematic is
the weaker of the two readings. Should one wish to express the stronger reading explicitly
whereby one and the same object undergoes the state transition, one can use a double-headed
arrow, as shown in Figure 3-39.5

Figure 3-39
Basic State Transition Schematic with a Strong Transition Link

Just as the transition from A to B typically involves the same object, the object in state A
ceases to be in A prior to its transition to B. Thus, a quantity of water transitions from solid to
liquid; a car body transitions from unpainted to painted; and so on. However, this needn't
always be the case. For example, a room with (at least) one person in it might transition to a
room with (at least) ten. That is, a room with at least ten people in it is also transitions to a room
with at least one person in it.

In general, then, the semantics of a basic state transition schematic is that, in an occurrence of
the indicated transition, there is first an object a in state A, and subsequently an object b that
comes to be in state B; that is, it is required that a be in state A before b comes to be in state B. It
is permitted, though perhaps not typical, that the object in state A be distinct from the object that
comes to be in state B; and it is permitted, though perhaps not typical, that a remain in state A
after b comes to be in state B.

It is important to note that, despite having roughly the same appearance, the semantics of a
solid-tipped arrow in an object schematic is different from the semantics of an arrow in a process
schematic. In process schematics, an arrow implies full temporal precedence: an instance of the
UOB indicated at the tail of the arrow must complete no later than the point at which an instance
of the UOB indicated at the head of the arrow begins. By contrast, in an object schematic, the

5 Identity may be in terms of chemical structure, mass, physical form, function, etc. For example, grape juice
becomes wine after undergoing a fermentation process. One might argue that the "stuff of the kind grape
juice is the same as that of the resulting kind wine. Other people having different attunements may perceive
the two kinds as being entirely different based on, for example, chemical composition of the two kinds. We
recommend that the assumed criteria for identity be established or characterized when there is possible
ambiguity.

46

arrow implies precedence only with regard to starting points: the object in the state indicated at
that tail of the arrow must begin to be in that state before the transition to an object in the state
indicated at the head of the arrow. The reason for the switch to this weaker sort of precedence in
state transition schematics is noted above: a transition only involves a change from an object in
one state to an object (possibly the same object, possibly different) in another; though it may
typically be so, the object in the initial state of the transition needn 't cease being in that state after
the transition. To allow for this type of transition, the weaker semantics is used for the arrow in
object transition schematics.

Conditions

It is important to distinguish between the characterization of an object of a given kind (or in a
given state) and the conditions or rules that govern how the object comes to be of another kind
(i.e., how it transitions to and from that state). (Henceforth, explicit reference to kinds will be
omitted, as states are the central focus of this section). Four general classes of conditions are
distinguished in IDEF3: entry, transition, state, and exit. State and exit conditions are associated
intrinsically with states, while entry and transition conditions are associated with the interface
between states and transition links as depicted in Figure 3-40. Consequently, the former two are
listed in the elaboration for an object state, while the latter two are listed in the elaborations for
transition links. (Figure 3-40 is not illustrating new graphical elements for object schematics!
The purpose of the figure is to picture where each type of condition is applicable in an object

schematic.)

State Conditions Trans. Conditions State Conditions

Exit Conditions Entry Conditions Exit Conditions

Figure 3-40
Object Schematic Conditions

47

State conditions are those necessary for an object to be in the state in question. For example,
to be in a frozen state (at sea level), water must satisfy the condition of being at or below 32°F
(though other conditions—e.g., salinity below a certain degree—may be required for that
condition to be sufficient for water to be frozen). Note that this information is independent of
how some quantity of water might come to be in that state. Exit conditions are simply conditions
sufficient for an object in a given state to cease being in (i.e., to exit) that state. For instance,
water ceases to be in a frozen state if heated to a temperature above 32°F.

Notice that there is no implication of what state, if any, an object in a given state S transitions
to upon satisfying an exit condition for S; this is the essential difference between an exit
condition and a transition condition. Transition conditions apply to the "interface" between a
state and an outgoing link, and consist of conditions that are individually necessary and jointly
sufficient for there to be a transition (or, at least, an attempted transition) of an object in a given
state (A in Figure 3-40) to a (possibly different) object in the destination state of the relevant link
(B in Figure 3-40). Finally, entry conditions apply to the interface between a state and an
incoming link and consist of conditions that are sufficient for an object to enter that state given a
(possibly different) object in the source state ofthat link that has met the relevant transition
conditions.

Note that for any given transition from one state to another in an object schematic, there is no
requirement for any determinate or identified conditions of any of the four types. In relatively
simple schematics, for example, the semantics will be evident from the labels on the state and
UOB symbols.

Using Referents in IDEF3 Object Schematics

As with process schematics, the finer details of a state transition are left to the elaborations of
the object states. However, by attaching referents to arcs one can add explicitly useful
information about a state transition to a corresponding schematic.

Referents Attached to Transition Links

Referents used in object schematics can signify either a UOB, a scenario, or a transition
schematic. Intuitively, if the referent is a UOB or Scenario referent, the referent signifies the
process during which the indicated transition occurs, or at least a process involved in the
transition. On the other hand, if the referent is a transition schematic, the referent indicates that
the transition—from an object in state A to an object in state B, in Figure 3-41—involves
transitions through the intermediate states signified in the indicated transition schematic.

The syntax for the most typical case—a single referent attached to a transition arc in a basic
transition schematic—is illustrated in Figure 3-41.

48

UOB/
P

Figure 3-41
Basic Transition Schematic with UOB Referent

Typically, P will be the process during which the indicated transition occurs. Thus, in typical
occurrences of the indicated process, there will be an object a in state A at the beginning of an
instance p of P, and subsequently an object b at some point after the beginning of P. However,
as noted, the referent in Figure 3-41 might indicate only a process involved in the transition from
state A to state B. Thus, the general semantics of Figure 3-41 requires only that, in an occurrence
of the indicated transition, there must be an object in state A prior to or at the start of an. instance
of P.

This semantics of transition schematics can be presented in terms of "interval diagrams"—as
seen in Figure 3-42—that illustrate the temporal relationships between the various situations that
occur in an instance of the pattern of events represented by an object schematic. Each horizontal
line in an interval diagram represents the time interval over which a given UOB or scenario
occurs, or over which a particular object is in a given state. A vertical line represents the starting
or ending point of an interval, "Aa" is short for "a is in state A", and likewise for "Bb". These
diagrams are useful because even a basic state transition schematic permits multiple
"instantiation patterns," multiple ways that real world events can count as instances of the
schematic. Thus, all of the interval diagrams in Figure 3-42 depict legitimate instantiation
patterns for the schematic in Figure 3-41. Interval diagram 1 shows a case in which there is an
object a in state A prior to the beginning of an instance/? of P, and in which the object b to which
there is a transition continues in that state until after the end of P. Interval diagram 2 indicates a
state transition of an object a from A to B that is instantaneous (relative to some time grain).
Interval diagram 3 indicates two important possibilities. First, it illustrates that/? could begin
simultaneously with (but not prior to) a's coming to be in state A. Second, it illustrates that b's
coming to be in state B might occur before a ceases to be in state A. Typically, of course, in such
a case a and b will be distinct objects; a's being in state A might be a precondition for b's coming
to be in state B during/?, as, for example, in a certain circuit (a) being open (A) might be a
precondition for a certain warning light (b) to activate (P). Finally, interval diagram 4 indicates a
case in which a ceases to be in state A prior to the start of/?, and then comes to be in state B after
p ends.

49

Instance/? of P l I Instance p of P

1) I Aa I I Bb I 2) I Aa \ Ba

Instance pofP

Aa I I Ba

I Instance yofP

3) I Aa I 4)

I Bb I

Figure 3-42
Interval Diagrams Representing Instances of Figure 3-41

Because the referent in a basic transition schematic typically indicates the process by which
the indicated transition occurs, cases with the structure depicted in interval diagram 4 might seem
unwarranted. But again, the referent in Figure 3-41 need indicate only a process involved in the
transition and not necessarily the complete transitioning process. For example, suppose that A is
the state water-.frozen and B is the state water .-gaseous and P is a heating process (involving a
heating element); but suppose in addition that in the indicated process, a block of ice is allowed
to melt naturally and is only then heated by P which is operative only until the water boils, at
which point the heating process is ended and the hot water is just allowed to transition into a gas
naturally by evaporation.

The point of this weaker semantics is that IDEF3 is, among other things, a process (and state
transition) description capture method. When describing a certain transition, one simply may
not know what the full transition process involves, and in particular may know only about some
intermediate process in the transition. The given semantics allows such a possibility.

It is often as important to understand what is ruled out of the semantics of a given
representation as it is to understand what is permitted. Essentially, the only thing that can rule
out a given course of events is the ordering of the starting points of its constituent situations.
Thus, for instance, the two interval diagrams in Figure 3-43 do not depict legitimate instantiation
patterns for Figure 3-42. Specifically, as in the first case of Figure 3-43, b comes to be in state B
before the instance/? of P begins, and, in the second case, p begins without a being in state A.

Instance of P
Instance of P

Aa _|
 I Aa I I Bb

Bb

Figure 3-43
Patterns Excluded by the Semantics of Figure 3-41

50

This semantics holds regardless of whether the referent is a UOB or a Scenario referent; this
is logical, since every scenario can be thought of as a finer-grained decomposition of a UOB.
Matters are more or less the same if the referent is a TS referent. Consider the schematic in
Figure 3-44, and suppose the referent refers to the schematic in Figure 3-41.

Figure 3-44
Transition Schematic with a Call-and-Continue Referent

This schematic signifies that, in an instance of the indicated transition, there is first an object
c in state C, at which point an instance of Figure 3-41 begins, and hence some object a begins to
transition to state B through an instance of the process P; c then transitions to state D at any point
after the transition from A to B begins. The analyst determines exactly what it means for a
transition to have begun in a given case. The main points here are that (1) the series of
transitions referred by a TS referent must in some sense begin before the transition from C to D
completes, and (2) the transition from C to D can occur regardless of whether or not that series of
transitions has completed.

Additional information about the temporal sequencing of the events involved in a state
transition can be added with a Call-and-Wait referent. Such a referent differs graphically from a
Call-and-Continue referent by the addition of a second vertical line to the right of the referent
name, as shown in Figure 3-45.

Referent Type/
Label

Locator

Figure 3-45
Call-and-Wait Referent Syntax

A Call-and-Wait referent indicates that the called situation must terminate before the next
situation in the transition can transpire. Thus, again, with respect to Figure 3-41, an instance/? of
the UOB P would have to terminate before the object in state A could transition to state B. Note
that the end of p could coincide with the completion of the transition in question. This is not

51

implied in a state transition schematic with a Call-and-Continue referent. Rather, the process
indicated by the referent must only start before the transition is completed; it may complete
before the transition, but it could also legitimately continue well past the point of transition.
Similarly, if the Call-and-Wait referent in question is a TS referent, then the referenced series of
transitions must complete before the transition indicated in the schematic completes. Thus, if the
TS referent in Figure 3-44 was a Call-and-Wait and was again referring to the schematic in
Figure 3-41, then there would have to be a complete instance of a transition from A to B before
an object c could complete a transition from C to D.

Referents Attached to Object States

It is not uncommon for a given situation to "sustain" an object in a given state; a refrigeration
process, for example, might sustain a given substance in a solid state. Situations of this type can
be represented by the construct in Figure 3-46.

~0
Figure 3-46

Sustaining an Object in a State

More generally, in an occurrence of Figure 3-46, there is an instance/? of the UOB P and an
object a in state A throughout the duration of/?. This requires that such an a must exist when p
begins. However, a could be in state A prior to the start of/?; that is, it could be brought into
state A by some other process prior top (the substance noted above might actually become solid
through some sort of chemical reaction), and then sustained in that state by p. Thus, the two
instantiation patterns in Figure 3-47 are both compatible with Figure 3-46.

Instance of P

Aa Bb

Instance of P

Aa

Bb

Figure 3-47
Instantiation Patterns for Figure 3-46

52

Note that in the right diagram, b's coming to be in state B prior to the end of the instance/» of
P could be ruled out by changing the Call-and-Continue referent in Figure 3-46 to a Call-and-
Wait. In that case, only the left diagram would represent a legitimate instantiation pattern.

Object Schematics with Multiple Referents

Often a more complex course of events than can be indicated by a single referent is involved
in the transition from one state to another. The details of such a course of events, as one would
expect, can be provided by a separate process schematic. However, it is useful to be able to
represent that course of events explicitly in an object schematic. For this purpose, multiple
referents can be attached to a single arc.

To interpret such schematics, think of the arc in a basic state transition schematic as a rough
timeline signifying the period over which the indicated transition occurs. Thus, the position at
which a referent attaches to the line in a state transition schematic D signifies the relative
temporal order in which the indicated UOBs, scenarios, or series of transitions begin in an
instance of the transition signified by D. So, for instance, in Figure 3-48, a transition from A to B
involves, first an instance p of the UOB P, followed by an instance q of Q. Since the first
referent is a Call-and-Wait, p must complete before q begins.

UOB/
P

UOB/
Q

Figure 3-48
Object Schematic with Multiple, Temporally Ordered Referents

Figure 3-49 signifies a transition in which instances/» and q of two UOBs begin
simultaneously. Note that since the first referent is once again a Call-and-Wait, p must complete
before the transition to B completes; since the second referent is a Call-and-Continue, the same
does not hold for q.

53

Figure 3-49
Object Schematic with Multiple Temporally Simultaneous Referents

Finally, Figure 3-50 illustrates the use of an additional symbol—a temporal indeterminacy
marker (indicated by the small circle on the transition link)—to represent a transition in which
there is (as far as is known) no definite temporal ordering to the UOBs involved in a transition.
Instances of P, Q, and R are known to be involved in the indicated transition, but in any instance
of the transition they can occur in any order relative to one another.

Figure 3-50
Object Schematic with Temporally Indefinite Referents

Because there is no definite temporal ordering between the indicated UOBs, only ordinary
(i.e., Call-and-Continue) referents are used; Call-and-Wait referents would have no clear
meaning.

Complex Transition Schematics

The processes that one might use to describe or model from an object-centered point of view
are often too complex to be captured adequately by a basic transition schematic. Hence, it is
possible to build complex transition schematics, i.e., schematics with multiple object state
symbols. Complex transition schematics correspond, roughly, to complex process schematics.
This supports the central role of transition schematics, providing object-centered views of
processes. Hence, process schematics and transition schematics should be structurally similar.
However, transition schematics are only a subclass of the entire class of object schematics that
can be constructed in IDEF3.

54

Consider first the complex transition schematic, illustrated in Figure 3-51.

UOB/
Identify Key
Concepts

4/1

UOB/
Validate
Concepts

6/1

UOB/
Explore Key
Concepts

JZL

Figure 3-51
Complex Transition Schematic

The process described in this transition schematic involves a kind of system (called simply
system) that transitions through three states: Milestone 1, Milestone 2, and Milestone 3. Because
the first referent is a Call-and-Wait, in order for the system to transition from Milestone 1 to
Milestone 2, the UOB Identify Key Concepts indicated by the referent must complete. The UOB
Explore Key Concepts must then start, but because the referent in question is not a Call-and-
Wait, it need not complete before the transition to Milestone 2; for instance, it may be sufficient
for transition that most of the identified key concepts be explored. The UOB Validate Concepts
must then begin after the transition to Milestone 2 and subsequently finish before, or at least no
later than, the point at which the system has successfully transitioned to Milestone 3. Note that it
is only relative placement on a transition arc that is important; the distance between two points
of attachment is irrelevant, unless that distance is zero, (i.e., unless two referents are attached at
the same point), which signifies that instances of the indicated events are to begin
simultaneously.

As with process schematics, a transition schematic is a structural whole; it describes, in a
general way, the structure of the state transitions (or, at least, a prominent set of the state
transitions) that one or more of the objects involved in a complex process undergo. Thus, a
transition schematic cannot, in general, be broken into smaller pieces without
losing information, as a transition schematic in general depicts an entire series, or network, of
state transitions. The two basic transition schematics in Figure 3-52, for instance, do not carry as
much information as the schematic in Figure 3-51.

55

UOB/ Identify
Key Concepts

4/1

UOB/
Explore Key
Concepts

5/1

UOB/
Validate
Concepts

6/1

Figure 3-52
Transition Schematics Not Jointly Equivalent to Figure 3-51

These two schematics simply document the individual transitions from Milestone 1 to
Milestone 2, and from Milestone 2 to Milestone 3. For all these schematics, these two transitions
might never be successive in the system in any given instance. Because there is no implication
in the semantics for basic transition schematics that Milestone 1 and Milestone 2 are mutually
exclusive states (regardless of whether they actually are), these two figures are compatible with a
situation in which there is a transition from Milestone 2 to Milestone 3 before a transition from
Milestone 1 to Milestone 2, as depicted in Figure 3-53 (where "Ml(s)n means the system is in the
state Milestone 1, and so on):

Ml(s) M2(s)

M2(s) M3(s)

Figure 3-53
Possible Instantiation Pattern for the Schematics in Figure 3-52

Transition Junctions

Transition junctions provide a mechanism to specify the logic of potentially multiple paths in
state'transition behavior. For example, Figure 3-54 illustrates the use of an inclusive disjunctive
junction, indicating that an object state may transition alternatively to one of a number of other
states.

56

Figure 3-54
Disjunctive State Transition Schematic

Using a disjunctive junction that is inclusive permits a transition from A to one or possibly
more than one of the subsequent states. To indicate exclusive disjunction, which permits
transition to no more than one of the subsequent states, the construct in Figure 3-55 is used.

Figure 3-55
Exclusive Disjunctive State Transition Schematic

57

By the same token, a conjunctive schematic is introduced to indicate a transition from a given
state to all of several subsequent states, as illustrated in Figure 3-56.

Figure 3-56
Conjunctive State Transition Schematic

The semantics for schematics including logical junctions is a generalization of the semantics
for basic transition schematics. Intuitively, once again, the schematic in Figure 3-56 represents a
type of situation in which there is a transition involving the process P, from an object a in state A
to objects a\,. . ., an in states A\,..., An, respectively. As with basic transition schematics, the
object a must be in state A prior to, or at least no later than, the start of/?; and bt must be in state
Bi or must begin to be in state Bt after the start ofp. The possible variability of starting and
ending points for the bj is indicated by the use of dotted lines in the general instantiation pattern
pictured in Figure 3-57. .

1 Instance ofP \
1

Aa Bxb,

B2b2

BnK

Figure 3-57
General Semantics of Figure 3-56

58

These logical schematics also have "converses"—specifically, where * is O, X, or &. Figure
3-58 is also a schematic.

Figure 3-58
Converse Schematic

The semantics in each case will be exactly the converse of the corresponding schematic

above.

Finally, it is possible that a transition can involve complex logic at both the beginning and
end of the overarching process. For instance, it might be that objects in states A \ andAi can
transition either to state B\ or B2 in the course of a process P. The general syntax for
characterizing such transitions is depicted in Figure 3-59, where * and # are any two of the
logical symbols O, X, or & (possibly the same symbol).

UOB /
P

Figure 3-59
Using Multiple Junction Symbols to Display Complex Transition Logic

59

Schematics of this sort are generally ambiguous; for instance, letting n = m = 2, if * is & and
is O, Figure 3-59 could mean that, in an instance of P, aj and 02 objects in states A \ and A2 can
both transition to either B\ or B2, or that a\ transitions to state B\ and «2t0 ^2, and so on. Such
ambiguities can be resolved in the elaboration form for the link.

Hiding Object State Information

As with composition and classification schematics, it is possible to hide information in object
schematics. That is, for certain purposes, it may often prove useful to collapse complex state
transition information about a given object into a single object state. For example, a series of
state transitions involved in the process of heating water from freezing to boiling is depicted in
Figure 3-60.

Figure 3-60
Object Transitions in a Heating Process

If, from a certain perspective, the intermediate transitions from ice to boiling water are
irrelevant, then these transitions can be hidden in a single state in which the only relevant state is
the coarse-grained Water being heated as depicted in Figure 3-61. Again a double circle is used;
in this case an 'S' indicates that the type of information hidden is state transition information:

UOB/
Heat to 40l> C

Figure 3-61
Hiding State Transition Information

60

The procedure for generating a coarse-grained schematic from a finer-grained schematic is
not quite algorithmic. In the example, the state symbol for Water being heated can be thought of
as directly replacing the "schematic" of Figure 3-60, consisting of the middle three kind symbols
and their connecting links. However, the instantaneous transition schematic in Figure 3-60 had
to be replaced by an ordinary state transition schematic, and an appropriate label had to be found
for the attached process box. The exact nature of this alteration had to be determined by the
nature of the represented process, and is, in general, a nonalgorithmic modeling decision.

Enhanced Transition Schematics

In the course of describing an object transition, it is often highly useful to be able to provide
surrounding contextual information that, while not intrinsic to the actual transition, is nonetheless
closely related to it. Cataloging these context-setting objects and relations may not only be
useful, but necessary. To provide this capacity, a variety of constructs from the IDEF5 ontology
capture method are made available in the IDEF3 object schematic language. These constructs
are entirely optional. If an analyst wishes to describe only transitions, there is no need to delve
into the additional constructs discussed here. However, familiarity with these constructs
provides an analyst with a good deal more expressive power. In the following subsections, the
additional constructs will be presented independent of transition schematics. The integration of
the two will then be demonstrated.

First-Order Schematics

Individual objects (i.e., individuals) are of a different logical type than the properties of those
individuals. Properties are the abstract, general features that are shared by distinct individuals,
the respects in virtue of which distinct individuals are the same. In a similar way, relations are
the general associations which can be shared by distinct pairs (triples, etc.) of individuals.
Properties and relations are identified by abstracting particular features of individuals and, hence,
are often characterized as being of a higher (i.e., roughly, more abstract) logical type than the
individuals that exemplify them. Individuals are thus frequently referred to as first-order objects,
and properties and relations of first-order objects as first-order properties and relations. The
transitions-to relation is a typical example of a first-order relation.

Displaying first-order relations between objects involves connecting two object symbols with
a first-order relation symbol, as shown in Figure 3-62.

Figure 3-62
General Form of a Basic First-Order Schematic

61

Such schematics need a default semantics (i.e., an accepted meaning that can be assumed in
the absence of any further clarification in the elaboration language). For this purpose, consider
the concrete example in Figure 3-63.

Figure 3-63
Example of a Basic First-Order Schematic

Roughly, the default meaning of this construct is a type specification for the part-of relation;
that is, it specifies that spark plugs and engines are the sorts of things that can legitimately stand
in that relation. It is not saying, for example, that every spark plug is a part of some engine, or
that every engine has spark plugs; there may be loose spark plugs or plugless engines in the
domain in question. Rather, in its basic, default meaning, it is simply documenting the fact that a
Sparkplug is the kind ofthing that can be Part-ofan Engine. If one wishes a stronger reading, it
can be specified in the IDEF3 elaboration language.

As an alternative syntax for the schematics illustrated above, it is permissible (and often
preferable) to replace the two connecting symbols and the relation symbol with a single arrow
labeled by the same relation label, as illustrated in Figure 3-64. There is some potential for
confusion here with transition schematics, but using an "open" rather than "closed and filled"
arrowhead together with other particulars of the schematic should prevent ambiguity.

Part-of v „ .
7\ Engine Spark Plug

Figure 3-64
Example Illustrating Alternative Syntax for Basic First-Order Schematics

Relations like part-of that hold between two entities are often referred to as 2-place relations,
indicating that the number of arguments in the relation, or the "arity" of the relation, is two.
However, there is no theoretical bound on the "arity" of a relation; the relation between, for
instance, holds between three objects. More artificial but nonetheless useful relations can easily
be defined with four or more arguments.

The semantics for first-order schematics involving 2-place (first-order) relation symbols
generalizes to schematics involving «-place relation symbols. So, for example, Figure 3-65
indicates only that an instance of the Conveys-to relation can involve a Conveyer, a Car body,
and a Paint primer vat.

62

Figure 3-65
Example of a Basic 3-Place First-Order Schematic

The numbers (optionally) attached to the spokes generalize the arrows on connecting symbols
in the 2-place case. Specifically, they indicate that Conveyer, Car body, and Paint primer vat are
to be associated with the first, second, and third argument places of the Conveys-to relation,
respectively, as they occur in the natural English reading of the label: a Conveyer conveys a Car
body to a Paint primer vat.

In the 2-place case, the relation symbol can be omitted and labeled links can simply be used,
as in Figure 3-66. In this document, this notation will generally be preferred.

(Car body J

Conveys-to

Figure 3-66
Alternative Syntax for Figure 3-65

Though they are somewhat uncommon, relations of "arity" four and greater can be expressed

in a similar fashion.

The use of individual symbols eliminates some of the indefmiteness of the schematics in
Figure 3-66. For instance, the situation depicted by Figure 3-66 permits multiple paint primer
vats. However, it might be desirable in some situations to focus on one particular vat, and to
represent it explicitly by an individual symbol as in Figure 3-67.

63

I Car body 1

Conveys-to
-(PPV-1 }

Figure 3-67
Example Illustrating the Use of an Individual Symbol

This schematic now expresses that a conveyer can convey a car body to paint primer vat
PPV-1, as indicated by the individual symbol, providing a more definite proposition than the one
expressed in Figure 3-66.

Indefmiteness is eliminated completely if only individual symbols are used. Thus, the
schematic in Figure 3-68 is taken to express that the particular car body CB-J27-S121 is (as
opposed to only can be) at some time conveyed by conveyer Conv-2 to the paint primer vat
PPV-1.6

Figure 3-68
Fully Particularized Example

Multiple circles can be connected to the same circle by different arrows to create complex
schematics. In general, complex object schematics that do not involve transition links are
essentially just conveniences; they simply enable one to reuse graphical elements and enable one
to make several assertions in the language by means of a single complex schematic. Thus, for
instance, if one wished to express both that spark plugs can be parts of engines and that engines
can be parts of cars, there is no need for two circles representing the kind engine. Rather, the two
facts in question can be expressed more succinctly, as in Figure 3-69.

6 That is, in terms of the elaboration language, Figure 3-68 translates to (conveys-to Conv-2 CB-J27-SI21
PPV-1).

64

Spark Plug
Part-of M Engine

Part-of
* ©

Figure 3-69
Small Complex Schematic

Similarly, one might want to add the information that, in the given domain, cars can be made
in Detroit and be shipped from there to dealers. This information is conveniently expressed in
Figure 3-70.

Figure 3-70
Complex Schematic Involving Multiple Relations

At the same time, an object schematic may involve only one type of relation. In such a case,
to prevent needless clutter the analyst can omit labels and simply note the (single) meaning of the
relation symbols at the bottom of the schematic, as illustrated in Figure 3-71.

I Power \ ^
(Supply r+-

/surge\
"i Protector r^

Server

Connected-to (Mouse j

Figure 3-71
Peripheral Connections to a Personal Computer

65

Composition Schematics

Because the part-of relation is so common in design, engineering, and manufacturing
ontologies, the "part-of label and associated axioms are explicitly included in the IDEF5
languages. In particular, this capability enables users to express facts about the composition of a
given kind of object. Bills of Material (BOM) are common examples of this form of expression.
In general, expressing composition relations among objects is achieved by means of schematics
of the form illustrated in Figure 3-72.

Figure 3-72
Composition Schematic

The default semantics of Figure 3-72 mean mate's (instances of .40 can be parts of ZTs,
A2's can be parts of B's,. . ., and Afs can be parts of 2?'s. However, in the context ofpart-of, a
stronger reading is often desired. For instance, in a BOM, one wishes to say not simply that A\$
can be parts of 5's, and so on, but that every B does in fact consist of an A\, an A%, and so forth.
For example, one might wish to represent the component structure for a certain kind of ballpoint
pen, as in Figure 3-73.

66

Part-of
>

Figure 3-73
Composition Schematic

To capture this stronger meaning, one must resort to a note or to the elaboration language.7

On this stronger semantics, then, the schematic in Figure 3-73 expresses that a ballpoint pen in
the domain in question has both an upper body and a lower body, that the former consists of a
button, a retraction mechanism, and an upper barrel, while the latter consists of a lower barrel
and a cartridge, which in turn consists of a spring and an ink supply.8

7 Specifically in the case of a kind B whose instances have three parts of kinds Al, A2, and A3, one would add
the elaboration language statement (forall ?x (-> (B ?x) (exists (?yl ?y2 ?y3)(and (Al ?yl) (A2 ?y2) (A3 ?y3)
(part-of ?yl x) (part-of ?y2 x) (part-of ?y3 x)))).

8 Adding junctions to composition schematics also serves to narrow the range of possible interpretations. For
example, using an '&' junction to 'join' multiple part-of links precludes the possibility of excluding one or
more of the attached objects in the composition. In the absence of the above elaboration language statement
for example, Figure 3-73 permits ballpoint pens without springs and retraction mechanisms. By adding
junctions to the schematic, the analyst can indicate that, for example, springs and ink supplies can be parts of
cartridges for ballpoint pens but cartridges without springs cannot exist, and so forth.

67

Second-Order Schematics

Properties and relations that hold among individuals are identifiable (albeit abstract) objects
themselves. But because they are one level of abstraction above ordinary first-order objects, they
are said to be of a higher logical type and, hence, classified as second-order objects. When
treated as objects, first-order properties and relations can themselves have properties. Such
properties are typically known as second-order properties because they apply to second-order
objects. Second-order objects can also stand in relation with one another. Thus, kinds,
properties, and relations that apply to individual objects are commonly known as second-order
objects, since they are of a "higher," more general logical order than individuals, ox first-order
objects. Like individuals, second-order objects can stand in relation to other (first- or second-
order) objects. A prominent example is the subkind-of relation that holds between kinds, while a
paradigm of a relation that holds between individuals and kinds (or properties generally) is the
instance-of relation.

A distinct type of arrow is needed to represent second-order relations because both types of
arrows connect circles, and because the associated semantics in the two cases are quite different.
The basic form of a second-order schematic looks just like that of a first-order schematic, except
for the presence of a so-called second-order relation arrow (as shown in Figure 3-74) instead of
a first-order relation arrow.

/ L_ Relation Label
I Kind Label P" ~

Figure 3-74
Basic Second-Order Schematic

The semantics for second-order schematics is much more definite than the semantics for most
first-order schematics. Specifically, second-order schematics are about the indicated kinds,
rather than about their instances. In Figure 3-74 the kind represented by the left-hand circle
stands in the (second-order) relation indicated by the arrow with the kind represented by the
right-hand circle. Furthermore, the default semantics are not qualified; unlike general first-order
schematics, the semantics are not merely about how things can be in the domain but about how
two kinds are in fact related.

The schematic in Figure 3-75 expresses that there are more U.S. citizens than Canadian
citizens (i.e., more literally, that the kind U.S. Citizen has more instances than the kind Canadian
Citizen).

68

Has-more-
instances-than

Figure 3-75
Example of a General Second-Order Schematic

Figure 3-76 illustrates a schematic involving the second-order relation subkind-of. By the
semantics just given, the kind hex-headed bolt is a subkind of the kind fastener.9

Subkind-of / \
— 1 Fastener I

Figure 3-76
Example of a Second-Order Schematic with Subkind-of

Classification Schematics

Because the subkind relation is so common, the default meaning of the second-order relation
arrow with no associated label represents the subkind relation, thus permitting users to avoid
having to attach the label subkind-of repeatedly throughout a schematic. This choice is
motivated by the observation that among the more common mechanisms for representing
knowledge are taxonomy diagrams (Brachman, 1985). Domain experts engaged in knowledge
acquisition often make statements such as A is aB,A is a type ofB, or A is a kind ofB. The
cognitive activity involved in organizing knowledge in this fashion is called classification.
There are several identifiable varieties of classification. Two particularly prominent types of
classification are description subsumption and natural kind classification. In description
subsumption, (1) the defining properties of the "top-level" kind K in the classification, as well as
those of all its subkinds, constitute rigorous necessary and sufficient conditions for membership
in those kinds, and (2) the defining properties of all the subkinds are "subsumed" by the defining
properties of K in the sense that the defining properties of each kind entail the defining properties
of K; the defining properties of K constitute a more general concept.

In natural kind classification, by contrast, it is not assumed that there are rigorously
identifiable necessary and sufficient conditions for membership in the top-level kind K, but that,
nonetheless, there are some underlying structural properties of its instances that, when
specialized in various ways, yield the subkinds of K. The best examples of such classification
schemes are, of course, genuine natural kinds such as metal, feline, and so forth, but the idea can

9 In terms of the elaboration language again, we have simply (subkind-of hex-headed-bolt fastener).

69

be extended to artifactual kinds like automobile and NC machine. These two types of
classification are illustrated in Figure 3-77.

Description
Subsumption

Natural Kind
Classification

Figure 3-77
Different Types of Classification

Clearly, with its central notion of a kind, a natural application for the general object
schematic language is the development of taxonomy diagrams, or as we shall call them,
classification schematics.

Classification is typically much more detailed than the examples suggest. Most classification
schemes will involve several levels of more specialized subkinds "below" more general kinds in
the scheme. (Both the subkind-of and instance-of relations are often ambiguously expressed by
the relation "is-a" in semantic nets and other graphical languages. Such schemes are often called
'is-a hierarchies,' but the use of 'is-a' is strongly discouraged; either the subkind-of 'relation or
the instance-of 'relation should be used instead, depending on the intended meaning.) To
illustrate, it is essential in project planning that one categorize the kinds of resources that will be
needed for the project's success. Informally, a resource can be defined as an object that is
consumed, used, or required to perform activities. Resources play an enabling role in processes.
Classification schematics provide a natural way of categorizing necessary resources, as, for
example, in Figure 3-78.

Hiding Composition and Classification Information

As illustrated above, use of composition relations can yield quite detailed schematics. Such
detail can cause a great deal of clutter. For instance, in addition to describing the component
structure of the kind ballpoint pen, one might also want to talk about many of the other relations
it and its instances are involved in (for example, that the pens can be made in Sequim,
Washington, that fountain pens generally cost more than ballpoint pens, that ballpoint pen is a
subkind of pen, and so on). In many contexts, the component structure of the kind might well be
irrelevant, and in such cases it would be useful to be able to hide that information. That such

70

information is being hidden is indicated on a diagram by using a double circle (instead of a
standard single circle) to represent the kind, along with a 'P' (for part-of) in the top of the circle
to distinguish the kind of information that is being hidden, as illustrated in Figure 3-79.

Figure 3-78
Classification of Resources

Figure 3-79
Hiding Composition Information

71

This example illustrates the use of first- and second-order relation symbols in the same
schematic.

In a similar fashion, it often proves useful to hide classification details in an object schematic.
In some contexts (e.g., those in which facilities and personnel need to be highlighted),
information about computer systems might not need to be explicit. As with the composition
relation, hidden information will be indicated by a double circle, annotated in this case with a 'C
(for 'classification') at the top of the circle. Thus, one might alter Figure 3-78 by hiding
information about computer system subkinds and adding information about facilities to obtain
the schematic illustrated in Figure 3-80.

Figure 3-80
Classification of Resources with Hidden Information

72

Creating Enhanced Transition Schematics

The general schematic constructs can be applied to enhance transition schematics with
additional information useful to the context and purpose of the description development effort.
Using the Transition Schematic as the central focus, context-setting information is added, as
illustrated in Figure 3-81. Here, the states through which water traverses in a heating process are
represented. The subkind-o/relation has been added to the schematic, illustrating that the kind
water has subkinds represented by the various object states.

UOB/
M e It ic e

UOB/
Heatto 40tC

UOB/
Heatto 100IC

Figure 3-81
Combined Schematic Displaying States and Transitions

Another simple example of a schematic that integrates general object schematic constructs
with transition schematics is seen in Figure 3-82.

Figure 3-82
Object Schematic Involving Object Transition Constructs

73

In this example, in addition to indicating the transition of a quantity of paint from a wet to a
dry state via a drying process, relation symbols are used to indicate that the states Paint: Wet and
Painf.Dry are also related to other kinds, as indicated by the labels on the arrows.

For a more complex example, consider the schematic shown in Figure 3-83.

Figure 3-83
Another Object Schematic Involving Object Transition Constructs

At its center, the schematic represents a transition in which a Widget in state SI and a
Grommet in state S2 participate in a Make Frammitz process that yields a Frammitz in state S3.
The use of relation links, however, enables one to express in addition that the widget and
grommet are in an Oven in the process. Also, one is able to express a good deal of additional
contextual information, such as (1) widgets are Direct material whereas grommets are Indirect
material, (2) both of those are kinds of Material, (3) to what accounts such materials are billed,
and so on. The general object schematic constructs introduced above enable an analyst to fill in a
wide variety of contextual details surrounding a given transition.

It is important to observe that the above interpretation of the schematic in Figure 3-83 is not
the only possible interpretation. Most notably, how is one to determine when a piece of
information added to a transition schematic holds only relative to the transition in question, and
when it holds in general? For instance, the In link between Widget:SI and Oven was interpreted
to mean that in (instances of) the indicated transition, the widget in the transition is in an oven.
There is nothing in the schematic proper that prevents one from interpreting this to mean that, at
all times, a widget is in state SI when and only when it is in an oven. Similarly, there is nothing
about the schematic that determines whether widgets are always considered direct material, or

74

only that the widgets used in instances of the transition in question are so considered. Widgets in
other contexts (in the same state) might be considered indirect material. In IDEF3, the general
interpretation will be taken as a default. That is, unless otherwise noted, the relations recorded in
a schematic will be taken to hold in the widest possible context. If a narrower context is
intended, this can be recorded in a note, or more formally in the elaboration language.

Elaborations

The elaborations that can be attached to the schematic elements (e.g., UOB boxes, junctions,
links, object symbols) are critical to understanding a process description. Elaborations provide
detailed characterizations of the entities referred to by the schematic element in question. These
detailed characterizations are presented in an elaboration document. Elaboration documents
typically include: (1) the schematic element's name, label, and number; (2) listings of the object
types and instances, facts, and constraints that are associated with the entity the element
signifies; and (3) a textual description ofthat entity.

The distinction between facts and constraints deserves some clarification. A fact is simply a
statement that has been observed to hold in at least one instance of a process. For instance, in a
paint/dry process, an instance of'thepaint-part UOB might have been observed to have a
duration of 4.5 minutes; or, the color of a part entering the process might have been observed to
be gray. Descriptive facts like these simply record what has happened in some instances of the

UOB in question.

A large store of descriptive facts is useful in the early stages of building an IDEF3
description. These facts generally serve as the raw data from which a more definite and accurate
process description emerges. As knowledge of a process grows, facts are needed to record not
only what has happened in some instances of the process, but what must happen in all instances
of the process. These facts are called constraints in IDEF3. Because a fact that must hold also
holds as a matter of contingent fact, constraints are thus a special kind of fact. Two broad sorts
of constraints can be distinguished: absolute and conditional. An absolute constraint is stated
without qualification (e.g., All pieces of mail must have a zipcode displayed). Conditional
constraints are conditional in form: IF a certain state of affairs A holds, THEN a certain other
state of affairs B must hold as well. For example, it might be a constraint in a paint/dry process,
that IF (in an instance of the paint-part UOB) the object being painted is of kind K, THEN the
duration of the paint-part instance must be exactly five minutes. An object of another kind, by
contrast, might be painted for only four minutes.

Every identified element in a process description has an elaboration document associated
with it. The elaboration document may consist of only a reference number and, optionally, a
label. However, by adding more information, the elaboration document
provides an important key to understanding the elements that constitute complex processes. A
detailed discussion of elaboration documents and their contents is provided in Section 4,
Developing IDEF3 Descriptions.

75

Generally speaking, elaboration documents are populated with natural language statements.
When something more structured and precise than natural language statements is required in the
elaboration, users can use IDEF3's elaboration language. The elaboration language will be
illustrated with two examples in the following section. See Appendix A for a complete account
of the elaboration language and further examples.

Some Examples of the Elaboration Language

The elaboration language is a logical language based (with some modifications) on a subset
of the emerging information-sharing standard known as the Knowledge Interchange Format
(KIF) (Genesereth & Fikes, 1992). This subset is known as the elaboration language core which
contains the basic elements needed for almost any logical language. The core is extended by a
number of IDEF3-specific constructs designed to express precise information about the processes
and transitions represented in the IDEF3 schematic languages. However, for this to be done
effectively, it is essential to have a clear semantics for the language. The intuitive semantics for
IDEF3 schematics are based upon situation theory, a recently developed theory of information
[(Barwise & Perry, 1983); see Section A.4 of Appendix A for an informal overview of the
theory]. In the elaboration language, basic concepts of IDEF3 such as UOB, process, and the
like are identified with certain basic semantic categories of situation theory. The constructs
added to the elaboration language core correspond to these categories.

To illustrate the use of the elaboration language in conjunction with a process schematic,
consider the process in the schematic in Figure 3-84. Call this process "PQD".

(

">

Paint
Part

1
Queue Part Dry Parts

X X i ^

r
Paint
Part

3 1 4

2

Figure 3-84
Paint/Queue/Dry Process

In addition to constraints indicated in the schematic, there could be a wide variety of
additional constraints on the process that cannot be expressed in the graphical language. For
instance:

In an activation of PQD, exactly one part is painted in any given occurrence of Paint Part.

76

This constraint is expressed as follows:

(forall (?coe : (activation-of ?coe PQD))
(forall (?sit: (and (occurs-in ?sit ?coe) (occurrence-of ?sit Paint-part)))

(exists!-1 ?x (supports ?sit (painted ?x +)))))

In this constraint, the variable "?coe" ranges over courses-of-events, i.e., activations, or
instantiations, of general processes like PQD. The variable is further restricted by the expression
to the right of the colon—(activation-of ?coe PQD)—to those courses of events that are
activations of the process PQD. Then for any such course of events c, the remaining two lines
then say that, for any situation s that is an occurrence of the UOB, or situation type, Paint Part in
c, there is exactly one object (the meaning of "exists!-1") x such that x is being painted in s—i.e.,
in the language of situation theory, such that s supports the information that x is being painted.

Note that this constraint, as expressed, applies to the entire PQD scenario depicted in the
diagram. However, it may be more natural to add the constraint directly to the characterization
of Paint Part, where it is intended to apply to each occurrence of Paint Part in a given activation
of PQD. The general universally-quantified conditions at the beginning of the constraint can
thus be dropped and the constraint can be expressed much more simply and directly as follows:

(exists!-l ?x (supports ?sit (painted ?x +))).

Note that, as a constraint on Paint Part, the situation variable "?sit" is not thought of as
implicitly universally-quantified but rather as a parameter playing the role of a given occurrence
of Paint Part in a given activation; similarly for the object variable "?x."

A second example presupposes that a number of auxiliary notions have been defined, viz.,
the relation in-queue — which holds between an object, a queue, and an interval just in case the
object is in the queue during the interval — and a function start-of that takes a situation to the
point (a variety of interval) in time at which it starts. The elaboration language provides
powerful facilities for creating such definitions. Consider, then, the following constraint on
PQD.

In an activation of PQD, no instance of Paint Part begins at any time if there are five objects
in the queue at that time.

(forall (?coe : (activation-of ?coe PQD))
(forall (?sit: (and (occurs-in ?sit ?coe) (occurrence-of ?sit Paint-part)))

(not (exists-5 ?x (and (instance-of ?x Part)
(supports ?sit (in-queue ?x Q (start-of ?sit) +)))))).

That is, for any activation of PQD there is in that activation no occurrence s of Paint part
such that there are five (or more) objects in the queue at the start of s. Again, this constraint is
expressed generally about PQD, but if it is added directly to the characterization of Paint Part
where it is intended to apply to the occurrences of Paint Part within a given activation, it can be
expressed directly as follows:

77

(not (exists-5 ?x (and (instance-of ?x Part) (in ?x Q (start-of (interval-of ?sit)))))).

To illustrate the use of the elaboration language with object schematics, consider the
enhanced transition schematic in Figure 3-83. As noted above, in such schematics there is some
semantic indeterminacy as to the scope of the surrounding contextual information. For example,
are grommets generally considered indirect materials or are they so considered only in more
restricted contexts like the depicted process? Such information can be added explicitly in the
elaboration language. Thus, the following constraint might be added explicitly to the elaboration
document for the schematic, expressed as indicated.

Grommets are considered Indirect Materials in all situations.

(forall (?sit ?x : (supports ?sit (grommet ?x +)))
(supports ?sit (indirect_material ?x)))

That is, any situation at all (relative to the given enterprise) that supports the information that
x is a grommet also supports the information that it is indirect material.

As noted previously, an object symbol in a transition schematic indicates, in addition to the
state in question, the type of situation in which an object is in that state. Hence, enhanced
transition schematics are a bit ambiguous with regard to the meaning of object symbols. For
example, in Figure 3-83, in the context of the embedded transition schematic, the Widget symbol
indicates the type of situation in which there is a widget, whereas, in the context ofthat symbol
being linked to the Direct Material symbol, widgets are indicated as a kind of direct material. To
sort out this ambiguity in the elaboration language, we will use the term "Widget*" to signify the
type of situation in which there is a widget.

Given this, it is now possible to illustrate how one would use the elaboration language to
express the following constraint.

The widget and the grommet in an instance ofWGF are in the oven at 500 degrees for a
period of 5 minutes before they are assembled into aframmitz.

(forall (?coe : (activation-of ?coe WGF))
(forall (?sit ?sitl ?sit2: (occurs-in ?sit ?coe)

(occurs-in ?sitl ?coe)
(occurs-in ?sit2 ?coe)
(occurrence-of ?sit Frammitz*)
(occurrence-of ?sitl Widget*)
(occurrence-of ?sitl Grommet*))

(forall (?x ?y) : (supports ?sitl (Widget ?x))
(supports ?sit2 (Grommet ?y)))

(exists (?sit3 ?oven: (during ?sitl ?sit3)
(during ?sit2 ?sit3)
(precedes ?sit3 ?sit)
(supports ?sit3 (Oven ?oven)

78

(supports ?sit3 (= (temp-of ?oven) 500)))
(and (supports ?sit3 (in ?x ?oven))

(supports ?sit3 (in ?y ?oven))
(supports ?sit3 (= (in-oven-during ?x 5)))))))

That is, in any occurrence c of WGF, if ?sit, ?sitl, and ?sit2 are occurrences of Frammitz*,
Widget*, arid Grommet*, respectively, in c, then if ?x and ?y are the Widget and the Grommet in
Widget*'and Grommet*, respectively, then there is an object ?oven and a situation ?sit3 such that
(1) ?sitl and ?sit2 occur during ?sit3, (2) ?sit3 precedes ?sit, and (3) ?oven is an Oven whose
temperature is 500 degrees in ?sit3, and such that ?x and ?y are in the oven in ?sit3.

Notes

A note box may be attached to a UOB, junction, object, link, or referent. Notes allow the
IDEF3 analyst to perform the following.

1. Emphasize the participation of particular obj ects or relations associated with
the attached UOB or junction.

2. Tie in specific examples of referenced data or objects (e.g., screen layouts).

3. Highlight special constraint sets associated with a given junction
elaboration. Notes can be used to call attention to, or list the contents of, a
junction elaboration (e.g., additional facts, constraints, or decision logic
which describe how that junction works).

Notes may be used to provide additional information about a particular IDEF3 model element
or to attach illustrations, text, screen layouts, comments, etc. to the description. New IDEF3
users will often find that notes provide an easy way to express ideas or concepts in lieu of
junction types, dashed arrows, or constraint language statements.

The example in Figure 3-85 illustrates how a note can be used to highlight the association of
special constraint sets with junctions. This description states that, for certain conditions, it will
be required to loop back to UOB Perform Mission Area Analysis. In this case, the note on
Junction Jl is used to display the conditions under which the referent UOB/Perform Mission
Area Analysis would be activated.

The note box is divided into two sections. The band across the top of the note is used for
note identification. It contains a Note ID comprised of the referenced element number and the
Note number (e.g., Jl/Nl). The bottom section of the note box, called the note field, is provided
for the note itself. No formal structure is imposed on the contents of this field, although
authoring conventions established for project-specific purposes are permitted. For example, the
note field may be structured to provide references to a set of notes associated with the referenced
element, thereby permitting a restriction of no more than one note for each schematic element.

79

Alternatively, the note field may be structured to begin with some kind of note classification,
thereby alerting readers to the main focus of the note.

TS/
Statement of
Need (SON)

1

Perform Mission Area
Analysis

i 1

Prioritize Needs

O

GO-TO/
Perform Mission
Area Analysis

1/1

-<

ji

Hxplore Conccpls GO-TO/
XOK

J4/2.I

Jl/NI

When data is weak.
Mission Area Analysis
must be performed
again.

Define Conccpls I JOB/
Perform Allernalive
Trade-offs

9.1.15/9.1

Figure 3-85
Note Associated with a Junction

Representing Stochastic Processes

Markov chains and other types of stochastic processes are obvious candidates for
representation via object schematics with logical branches. Such processes consist of a set of
states of a given system S together with, for any state Al, and for any other (possibly the same)
state A2, the probability that S will transition from the former to the latter. A system is a certain
kind of complex object; hence, it is natural to represent the
possible transitions from Al to any other state as a sort of exclusive disjunction as in Figure 3-
86, where, in addition, real numbers representing probabilities have been assigned to each
transition link extending from the XOR junction.

There is such a schematic for each state An. Although this is illustrative in each case, it is
clearly more efficient, and less cluttered, to represent the entire process—the entire collection of
probabilistic transitions from any state to any other—in terms of the more standard graphical
representation in which arcs extend directly between any two given states in both directions.

There is no reason why Transition Schematic syntax cannot be adapted to permit such
representation as a convention, that is, as a sort of abbreviation for the collection of all Transition
Schematics like the one in Figure 3-86. Use of IDEF3 transition links enables one to augment

80

such schematics with actual descriptions of the processes that effect the transitions in question.
The convention in question is illustrated in Figure 3-87; probabilities are suppressed to reduce

clutter.

Figure 3-86
Transition Schematic Illustrating Possible Complex State Transition Logic

Figure 3-87
Transition Schematic Convention for Representing Stochastic Processes

81

SECTION 4

DEVELOPING IDEF3 DESCRIPTION

This section presents a procedure for using IDEF3 as a process description capture,
consolidation, and validation method. The procedure is targeted at the needs of a large effort
involving a team approach; projects more narrow in scope may not require all of the activities
described here. Because the application procedure depends largely on the purpose for which the
method is being used, project leaders are encouraged to prepare a detailed method application
guide at the beginning of the project.

The description development procedure is presented first in terms of the evolutionary cycle
through which IDEF3 descriptions are realized and then in terms of a functional description
amenable to project phasing.

The IDEF3 Description Evolution Cycle

Developing IDEF3 descriptions involves the creation of Process Schematics, Object
Schematics, and their associated elaborations. The description capture and validation process is
highly recursive and iterative. As with any recursive process, process termination criteria are
important—i.e., it is important to know when to stop. Although it is not possible to give precise
criteria for the completion of description development activities, some basic guidelines apply.
First and foremost, description development is generally undertaken to accomplish some
purpose. That purpose may be simply to document a process—in which case the development of
schematics and elaborations is an end unto itself. In most cases, however, description
development is undertaken to assist with some discovery or decision-making activities. In these
situations, the time and effort spent on description development will be determined by the
information needs of the project. Whether IDEF3 is used to document a process or to assist with
discovery and decision-making, descriptions approaching completion exhibit increasingly
reduced rates of change in terms of their structure, scope, and level of detail.

The development of IDEF3 descriptions is a process of capturing knowledge about how
activities are performed in a given organization. In general, when using IDEF3 to collect and
organize these descriptions, the following five steps are applied recursively.

1. Collect: Acquire observations and written descriptions of both process instantiations
and generalizations across process instantiations.

2. Classify: Individuate situation types, objects, object types, object states, and relations.

3. Organize: Assemble the data that has been collected and classified using IDEF3
structures.

82

4. Validate: Ensure that the statements made in IDEF3 are grammatically correct and that
they corroborate the collected descriptions of the actual or idealized situation.

5. Refine: Make adjustments to the existing structures to incorporate newly discovered
information, to simplify the presentation, or to highlight important elements of interest.

Recursive application implies that the same development process continues until the
information and knowledge available in the domain has been collected and organized into a
structure that satisfies the termination conditions of description development.

IDEF3 Description Capture Activities

Experience with IDEF3 indicates that description capture is similar to knowledge acquisition
and design endeavors. It is highly iterative, driven by findings, and often stylized by the
participants. The activities described in this section should be considered "modes of thought"
rather than sequential steps. The user should not expect to apply these activities in a strictly
sequential manner. With these ideas in mind, the framework presented in this section provides a
default structure for first-time IDEF3 users.

Define the Project

The development team must establish the purpose and context of the description capture
effort as early as possible in the project. The purpose statement provides a completion criteria
for the description capture effort. The purpose is usually established by a list of (1) statements of
objectives for the effort, (2) statements of needs that the description must satisfy, and (3)
questions or findings the client wants answered. The context statement bounds or delimits the
area of the domain addressed by the project. The context is established by scope statements and
the identification of the initial scenarios for the description capture project.

The purpose and context can rarely be determined completely in advance. The client often
revises his list of needed findings or questions as data compilation begins. The area an analyst
thinks will lead to the answer often turns up leads in other areas that were considered out of
scope. The purpose and context generally evolve during the initial part of the project. The
purpose and context of an IDEF3 description are captured on an IDEF3 Description Summary
Form similar to the one shown in Figure 4-1.

Define the Purpose

Defining the purpose is an important initial step in the development effort. Without a
purpose statement, the only completion criteria is the budget and time allocated to the effort.
Defining the purpose can be separated into two parts: (1) defining a Needs Statement and (2)
defining the information goals in terms of how that descriptive information will be used.

83

The Needs Statement should identify the source of the request (person or project) and
paraphrase the stated objectives of the client. Identifying the information goals is simplified by
answering the following questions:

1. Who will use the description once it is available?

2. What question(s) does the client need answered?

3. What issues are behind the need for the process description?

4. What decisions are behind the need for the process description?

PROJECT LEADER: DATE;

COMPANY:

PROJECT NO.: TASK NO.:

WORKING REVIEWER: DATE:
DRAFT
RECOMMENDED
RELEASED

Purpose:

Context:

List of Scenarios: List of Objects:

DESCRIPTION NAME: FORM TYPE:
Description Summa ry 1

Establish the Context

Figure 4-1
IDEF3 Description Summary Form

Once the purpose of the effort has been characterized, it is possible to define the context of
the project in terms of the scope of coverage and level of detail.

84

Defining the context of the project begins with defining the boundaries of the description
capture effort and documenting those boundaries in a set of scope statements. Specifying project
scope involves defining which parts of the system are to be included and which are to be
excluded. Ideally, the scope should identify only those areas relevant to the needs of the client.

An effective mechanism for defining the scope of the project is identifying the important
scenarios of operation to be considered and those that, although related, fall outside the project
boundaries. Identifying a scenario involves achieving a consensus among the team members on
a title and paragraph description of a commonly-occurring situation or problem that the system
(organization) addresses. It is common for different scenarios to represent alternative viewpoints
of essentially the same process. When possible, the beginning and ending UOBs of the scenarios
should be established. Additionally, activities that impact or feed the scenarios, but are outside
the context of the description, should be identified to further refine the boundary of the
description capture effort. While the statements of purpose and scope provide useful guidelines
for the successful completion of this activity, the insight of domain experts must be relied upon
to actually identify the scenarios. The project leader should be aware that the scenarios identified
are still at a tentative level and that some change can be expected as the data is collected and
analyzed.

An activity closely related to defining the scope is determining the level of detail of the
description capture effort. The required level of detail is determined by identifying what detail is
needed to resolve an issue, make a decision, or answer a question. The level of detail
specification is normally documented in the form of a set of examples.

Scope and level of detail decisions are tentative at this stage of the project and should be
updated as the description data becomes available. An astute project leader will regularly assess
the adequacy of the description data captured against the specified needs and information goals
of the client.

Organize for Data Collection

Once the initial project purpose and context have been determined, the task of organizing for
data collection can begin in earnest. At this point, the makeup of the project team will be
solidified, team member roles will be established, and scenario development responsibilities will
be assigned to team members.

The following roles are normally assumed by personnel involved in an IDEF3 process flow
description capture process.

1. Analyst: The IDEF3 expert who will be the primary developer of the IDEF3 process
flow description.

2. Client: The person or organization requesting the description development.

3. Domain Expert: The knowledge source person in the application domain of interest.

85

4. Primary Contact: The individual who acts as the interface between the analyst and the
domain expert.

5. Project Leader: The person ultimately responsible for the entire description
development effort.

6. Reviewers: Persons knowledgeable of the domain and/or the IDEF3 method who are
responsible for reviewing and approving draft descriptions and documents. Reviewers
authorized to make written critiques of IDEF3 schematics are commentors. The
remainder are readers. Both team members and domain experts can be reviewers (see
Section 4).

7. Librarian: A person assigned the responsibility of maintaining source material logs
and files of documents, making copies, distributing IDEF3 kits, and keeping records.

8. Team Members: All personnel involved with the IDEF3 process flow description
development project.

Among the roles assigned to team members is that of the project librarian. With large
systems, the role of the librarian is essential. In smaller efforts, that role may be assumed by the
analyst. In establishing the librarian function, the project leader assigns an individual(s) to be
responsible for collecting, cataloging, controlling, and distributing source material, IDEF3 kits,
glossaries, files, and so forth throughout the project. Additionally, the librarian function is
responsible for assembling reference models and materials from external sources (e.g., process
benchmarks in industry) that can be used to accelerate team efforts. A glossary of terms may
also be maintained by the librarian as a reference to ensure that analysts understand terminology
that is unique to a discipline, industry sector, company, or company segment. Whether
maintained by the librarian or informally shared among analysts, the glossary of terms will grow
and undergo incremental refinement throughout the project.

A pivotal task in organizing the data collection effort is identifying the key sources of
knowledge and information in the domain. Working with the primary contact, the project leader
or analyst compiles a list of experts to be interviewed. In compiling this list, it is helpful to
obtain background information about each expert from the primary contact. This includes
information about the responsibilities, current assignments, and other areas within or related to
the domain in which the expert has experience. The name, location, and telephone number for
each expert should also be recorded.

Throughout the data collection effort, other valuable sources of information will be sought
and identified. Some of these might include operating instructions, procedure manuals,
employee handbooks, regulations, policy manuals, project files, reusable IDEF models, and
models derived through the use of other methods and techniques.

In addition to organizing the structure of the team, the project leader also needs to organize
the activities of the team. Organizing process description capture activity may begin by casting
the general IDEF3 procedure into a more formalized method application guide tailored to the

86

specific needs of the project. A method application guide outlines a project-specific application
of the IDEF3 procedure tailored to meet the needs of the effort. Among the items that may be
included in the method application guide are modeling conventions to be used, standard outlines
for interviewing domain experts, method and tool interface specifications, project library use
procedures, and a standard glossary of terms. This guide may be accompanied by a project plan.
A typical project plan will delineate phases of effort with clearly established tasks and
milestones, intermediate and final deliverables, individual team member assignments, informal
and formal reporting structures, and so forth.

Collect and Analyze Data

At this point, the stage is set for actual data capture. The main information sources available
to the team are domain experts and source documents in the organization. The analyst must
work closely with domain experts to effectively capture data relevant to the description
development effort.

The data collection process is both iterative and interactive. Preliminary data provides
guidelines for organizing the knowledge acquisition effort. Analysts interact with domain
experts to obtain initial descriptions, both written and verbalized, of the process under study.
The names of the activities and participating objects are extracted from these initial descriptions.
Often, it is necessary to interview different experts who are knowledgeable about different
aspects of the process. It is also often necessary to conduct follow-up interviews and multiple kit
reviews with domain experts. The data gathered through this process must be carefully recorded
so that the final description can be easily consolidated as an accurate reflection of domain expert
observations.

Prepare for Interviews

No specific format for data collection is prescribed by the IDEF3 method. However, before
the interview, the analyst should prepare a tentative agenda and some specific questions.
Analysts are encouraged to prepare a brief outline of: (1) the purpose of the interview with the
expert, (2) the topics to be covered, (3) the types of information being sought, (4) the authority
for requesting the interview, and (5) questions that can be used to motivate discussion. On large
projects, project leaders may wish to include more formalized interview preparation guidelines
and standards in a method application guide—including standard interview planning sheets,
question templates, glossaries of terms, and so forth.

A number of activities contribute to successful interview preparation, each of which is left to
the discretion of the analyst, as dictated by the needs of the project and the constraints involved.
In general, the following activities are accomplished prior to the interview:

1. Schedule the interview and make necessary logistics preparations.

2. Establish the goal(s) of the interview.

87

3. Prepare candidate questions.

4. Anticipate the probable questions and concerns of the person being interviewed and be
prepared to resolve those concerns.

Additional interview preparation activities may also be needed or desirable. For example,
analysts may wish to analyze previously collected documents describing the client's formal
system or process, and prepare IDEF3 descriptions from those documents as a launching point
for discussion. Similarly, analysts may use benchmark models of similar systems to afford the
opportunity of interactively working with the domain expert to identify similarities and
differences.

Once a list of experts to be interviewed has been compiled, an interview schedule can be
developed. Interviews are normally scheduled with domain experts through the primary contact.
Whether done through the primary contact or by more direct means, the analyst should make sure
that the scheduled time and duration of the interview is coordinated with the person being
interviewed and his or her supervisor.

Additional logistical considerations are important to the success of the interview, such as
finding and reserving a suitable location to conduct the interview and arranging for the necessary
supplies. Analysts also generally find it useful to plan the attire they wear to the interview in
order to convey a professional appearance and still set the interviewee at ease.

The goal(s) of the interview should be established up front. In establishing the interview
goal(s), analysts state why the interview is being scheduled and what information is minimally
required from the domain expert. Preparing a goal statement is often helpful if it is kept as
succinct as possible so as to provide a general direction for the interview line of questioning.

Once the goal(s) of the interview has been established, candidate questions can be
formulated. Candidate questions should be written down and organized into a logical sequence.
With experience and practice, analysts will eventually become proficient in developing questions
that are clear, that use words and phrases appropriate to the educational level and cultural
background of the person being interviewed, and which invite rather than lead answers.
Although the analyst should be cautious not to over prepare, the exercise of writing questions
down and analyzing the way they are formed helps develop good interviewing skills. The time
invested in this activity must be balanced, however, against the possibility that the questions
formulated may or may not actually be used. Their necessity may be eliminated through the
discovery of new information; or, the interview may go down a line of discussion that was not
previously anticipated.

Several preparatory items are often overlooked. Analysts need to provide the person being
interviewed with the information necessary to understand why they are being interviewed, what
will be done with the information they provide, and what they can expect in return. Each
interview, and particularly the first, should begin by establishing a mutual understanding of these
items before attempting to satisfy the information needs of the analyst. The following list is

representative of the questions and concerns the analyst should be prepared to address
(Harrington, 1991).

1. Why is the interview being conducted?

2. Who authorized the interview?

3. Who else is being interviewed?

4. How was the interviewee selected and by whom?

5. How will the information be used?

6. Will the interviewee remain anonymous?

7. Will the interviewee be quoted in summary findings?

8. What feedback will the interviewee receive?

9. How might the interviewee participate in the outcome of the process?

10. What does the interviewee stand to gain?

11. Why is highly detailed, accurate information important to the success of the interview
and the project?

12. How does the interviewee play a key role in an important process?

Interview Domain Experts

Interviews may be conducted throughout the project to collect additional information, to
clarify previous information, or to validate IDEF3 models with the domain expert.

The interview with the expert is critical. The analyst (interviewer) should create a positive
and friendly atmosphere during the interview. The interviewer should attempt to convey to the
domain expert the feeling that they are working together to create the required description and to
solve some problem for the organization. Analysts should constantly remind themselves that the
expert is the one with the knowledge of how a process should or does work. Generally, the
expert is interested in helping and will often provide questions and lines of investigation that the
interviewer had not thought of pursuing.

The expert often provides copies of documents and forms used in the current process. This
documentation may actually outline the process flow, or rather, the "Should-Be" process flow.
The interviewer must remember that the main focus must be on the process actually performed,
rather than formally documented procedures that may or may not be followed. When focused on
how the process is performed today, analysts should be cautious to avoid talking about the "To-
Be" system to avoid introducing bias in the domain expert's answers.

89

Collect Nantes of Objects

Under normal circumstances, one of the first types of information an expert provides are the
names of objects involved in the domain. The interviewer should carefully note these objects.
During the analysis following the interview, the analyst/interviewer will prepare a list of all these
objects. This list (object pool) will be analyzed later to associate the objects of the domain with
the UOBs that are relevant to the domain.
Collect Activity Names

The named activities provided by the expert should be carefully noted. These will often
become the names of UOBs that will be arranged to form process schematics. As the names of
the activities are collected, some notion of their sequencing and structure should be determined
and noted. During the analysis that follows the interview, the analyst/interviewer will prepare a
list of all these activities. This list is referred to as the pool of potential UOBs for the IDEF3
schematics.

Collect Facts and Constraints Related to Process Occurrences

Facts relative to UOBs and objects and constraining relationships between objects and facts,
objects and UOBs, and facts between UOBs should also be noted during the interview. The
types of information to focus on during the interview include:

1. Constraints that govern the initiation of a process.

2. Conditions that must hold during the process.

3. Conditions that signal the termination of a process.

4. Processes triggered by the initiation or termination of the process.

5. Properties of an occurrence of the process (e.g., duration, interruptability).

6. Objects that participate as agents, information, resources, or products in the process.

7. Properties of the objects (e.g., particularly those associated with the process such as
arrival rates or spoilage rates).

8. Relations or associations between the objects in a single process.

9. Relations or constraints on objects between processes (e.g., shared resources).

10. Conditions that must be satisfied relative to the objects participating in the process.

11. The distinction between normal and exceptional situations in the occurrence of a
process.

Collectively, this set of information is referred to as facts.

90

Collect Situation Descriptions

In IDEF3, we refer to a situation description as the characterization of an occurrence of a
process. This characterization includes the association of activities with the collection of objects
standing in a particular relationship during an occurrence. It also includes the association of an
activity with the other activities that precede or follow its occurrence. Situation descriptions
often can be obtained by observing the process in action (e.g., visiting the factory where a
particular part is made). However, such direct observation generally only provides information
on the normal processing of short-duration situations. Generally, the analyst must rely on the
domain expert to provide special insight into both the normal processing of long-duration
situations and the processing of exceptions to the norm. During the analysis of these situation
descriptions, the analyst will add to the lists of objects and activities previously discovered.
Analysis of the situation descriptions will provide the necessary insight into the sequencing of
activities, the list of facts, and the constraints associated with the process to be described.

Collect and Catalog Source Material

As appropriate, analysts should request to see information artifacts of the process (e.g.,
forms, screens) that are included in the domain expert's description. To the extent practical,
copies of these information artifacts should be collected for further analysis. All data collected
during the course of the project should be logged on an IDEF3 Source Material Log, as
illustrated in Figure 4-2.

USED AT: X WORKING REVIEWER: DATE:

PROJECT: Example IDEF3 Description

NOTES: 123456789 10 REV:

DRAFT
RECOMMENDED
RELEASED

Source
Material

No.
Source Material Name Collected From Collected By

Date
Collected

SMI Purchase Requisition/Form PI-R6 4-72 U.R. Buyer

SM2
Procedure #079-003 /Rev. 00
"Preparation of the Requisition"

U.R. Buyer

SM3
Procedure #079-001/ Rev. 00
"Preparation of the Purchase Order"

Policy and Procedures
Manual

SM4
Procedure #101-506

"Purchasing Codes"

Policy and Procedures
Manual

SM5 B.J. Commodity Code List U.R. Buyer

SM6 B.J. Product Code List U.R. Buyer

SM

SM

SM

SM

SM

CONTEXT SETTING ITEM DESCRIBED: FORM TYPE:
Source Material L REFEREN CE: 39 1

Figure 4-2
Source Material Log

91

For each source material item referenced in the Source Material Log, there is a Source
Material Description that is used to record more detailed information. Figure 4-3 provides an
example of this form.

JSED AT: ANALYST: T.M. Modeler DATE: 08 Feb 95 X WORKING REVIEWER: DATE:

PROJECT: Example IDEF3 Description

NOTES: 123456789 10 REV:

DRAFT
RECOMMENDED
RELEASED

Source
Material

No.

SM

Source Material Name:

Supports:

Comments:

Abstract:

Source
Material

No.

SM

Source Material Name:

Supports:

Comments:

Abstract:

CONTEXT-SETTING
REFERENCE:

ITEM DESCRIBED: FORM TYPE
Source Material
Description

II
1 II

Figure 4-3
Source Material Description Form

Each entry on the Source Material Description Form is identified by the source material
number and name to which the entry corresponds. This enables traceability to the source
material from which candidate process description elements are individuated by member(s) of
the description development team. Additional fields included on the form include the following:

1. Supports: The IDEF3 element numbers (e.g., UOB numbers, Object State numbers)
supported by the source material are documented in this field, providing traceability for
description elements to specific source material.

2. Comments: This field is used to record special features or comments worth
referencing at a later date about the item being cataloged.

3. Abstract: The abstract provides a concise overview of the main concepts discussed in
the source material.

92

Analyze Collected Data

Following data collection, interview notes are analyzed, source material is studied and logged
in the Source Material Log, and the initial findings are cataloged into lists called pools. Four
pools are used in IDEF3: (1) object pool, (2) scenario pool, (3) UOB pool, and (4) object state
pool. Figure 4-4 shows an example of an object pool. All other IDEF3 pools use the same basic
layout as illustrated in Figure 4-4.10

USED AT: X WORKING REVIEWER: DATE:

PROJECT: Example IDEF3 Description

NOTES: 12345678910 REV:

DRAFT
RECOMMENDED

RELEASED

Object Source
Material No.

Object Source
Material No.

ID No. Name ID No. Name

01 Purchase Requisition SMI 018 Bill of Material SM38

02 Buyer SM2 019 Route Sheet SM40

03 Vendor SM3 020 Destination SM41

04 Purchase Order SM15 021 Approver SM43

05 Ship To Location SM6

06 Requester SM11

07 Department SM12

08 Pattern SM21

09 Part SM26

010 Purchase Req. Item SM23

011 Commodity SM30

012 Purchase Req. Item SM31

013 Job SM34

014 Account SM36

015 Product SM37

016 B.M. Page SM38

CONTEXT-SETTING 1 ITEM DESCRIBED: FORM TYPE:
Object Pool REFEEEN CE: | 1

Figure 4-4
Example IDEF3 Object Pool

Acquire Additional Information as Required

Both analysis of the data collected and initial attempts to construct IDEF3 schematics often
reveal the need for additional data. A number of approaches are available for collecting
additional information, including:

1. Conducting follow-up interviews to answer questions and/or identify additional source
material.

10 The field labeled "Object" on the form would be changed to Scenario, UOB, or Object State, as appropriate.
In addition, the ID No. fields would be prefaced by S (for Scenario), UOB, or OS (for Object State) to
compose the element identification numbers.

93

2. Using the kit review process.

3. Arranging for direct observation of the process or scenario in question.

4. Revisiting source material with a new focus of analysis.

5. Conducting facilitated workshops.

The approach or combination of approaches used will be determined by both the nature of the
information needed and the purpose for which IDEF3 is being used. Generally speaking,
workshops are used only for group brainstorming and consensus building, such as when
developing ideas for and consensus among alternative "To-Be" process designs.

Formulate IDEF3 Schematics

Two types of IDEF3 schematics provide a mechanism for collecting and displaying process
description information. The Process Schematic provides a process-centered view of a scenario.
The Object Schematic provides an object-centered view of a scenario or set of scenarios. Both
constitute graphical projections of domain expert descriptions.

A key point to remember in constructing IDEF3 schematics is that schematic development
should not be constrained by idealized, testable conditions that must be satisfied, short of simple
accuracy. For example, it is quite normal for Process Schematics to initially not show a logical
flow. These schematics often start out with a set of UOB boxes with little connectivity among
them. This may be because the complete picture has not yet been acquired. Descriptions, after
all, constitute a recording of facts or beliefs about something within the realm of a domain
expert's knowledge or experience. Such descriptions are generally incomplete; that is, the person
giving a description may omit facts that he or she does not think are relevant, which he or she has
forgotten in the course of describing the system, or of which he or she has no knowledge.1'
Incredible as it may seem, there are many systems that work which have elements that no single
person understands or even knows about.

The fact that a schematic includes elements that are disconnected should not cause
overwhelming concern. It is not uncommon for the project to end successfully while there are
still gaps in several of the schematics. This can happen when the goals of the project do not

1' When domain experts know that some activity, object, or relation exists and they know what that is, they can
easily display that knowledge using the IDEF3 schematic elements. When domain experts know that one of
these things does not exist, that fact is also easily captured. Specialized syntactic conventions may also be
established to explicitly document a domain expert's knowledge that something exists of which they have no
knowledge (i.e., Socratic versus Platonic information). For example, a squiggly-lined arrow extending
between UOBs might be used to indicate that some unknown collection of UOBs exist between those
indicated. A state represented in the shape of a cloud might be used to indicate knowledge of the existence of
a state, although what that state is may not be known. When used, however, such conventions should only be
used during intermediate stages of description development.

94

require expenditure of the necessary effort to fill those gaps. Furthermore, when using IDEF3 to
capture descriptions of the current environment, the IDEF3 user is not designing a system but
rather organizing known facts about how a system works. The resulting descriptions may serve
as the raw material from which models are made. Thus, in addition to providing a precise and
well-structured mechanism to capture and store process knowledge, IDEF3 descriptions can be
reused to construct multiple idealizations or models with which to simulate and predict system
behavior.

Formulate Process Schematics

Process Schematics provide a process-centered View of a process. These schematics
organize process knowledge with a focus on processes and their temporal, causal, and logical
relations within the context of a scenario.

The steps involved in constructing a Process Schematic are as follows.

1. Identify the UOBs.

2. Associate the UOBs with the appropriate scenario.

3. Identify precedence constraints between pairs of UOBs in a scenario and layout initial
schematic.

4. Add j unctions for logic description.

5. Add constrained precedence links as required.

6. Develop elaborations for UOBs, junctions, and links as needed.

7. Develop decompositions for selected UOBs.

8. Add relational links to highlight additional relationships of interest.
Identify the UOBs

Having completed initial data gathering activities, the analyst should have lists of objects of
interest, activities, facts, and constraints. Using this data and the situation descriptions, the
analyst identifies the UOBs and begins to formulate the general structure of the IDEF3
schematics.

The initial foundations for this activity occurred while establishing the context of the project,
wherein the analyst will have identified the scenario(s) of interest. At least one Process
Schematic will typically be developed for each scenario identified. The scenario serving as the
context for a given Process Schematic establishes the scope of the analyst's search for candidate
UOBs.

95

Identifying UOBs is a mental classification activity that uses knowledge of the IDEF3
paradigm and facts collected from the domain expert to identify and refine a candidate set of
UOBs. It is helpful in this process for analysts to be attuned to how people describe processes.
The capture of a description of "what's going on" within an organization or any complex system
needs to account for a number of natural language concepts. Each of the following concepts is
used in everyday language to describe "things that happen in the world."

1. Function 4. Activity 7. Action

2. Process 5. Operation 8. Event

3. Scenario 6. Decision 9. Procedure

Each of these concepts involves some circumscribed behavior. For instance, a reference to
the Planning Activity, Make-or-Buy Decision, or the Contract Award Event carves up the world
into spatio-temporal chunks to allow a description of "what is going on" in that chunk to be
separated from the rest of the world. In IDEF3, a generic packet of information (or UOB)
encapsulates concepts such as those listed above.

Lists of candidate scenarios developed in the project definition stage may be an early source
for candidate UOBs. For example, by analyzing the initial set of candidate scenarios used to
scope the project, analysts may question whether the scenarios may be "threaded together," or
subsumed by another candidate scenario listed.12

The initial fact set is also a valuable source of candidate UOBs. Identifying candidate UOBs
may begin by searching for named processes (e.g., acquisition process), imperative verb forms
(e.g., budget funds), and gerunds (e.g., identifying operational needs) in the domain expert's
description. Through this analysis process, both additional scenarios and candidate UOBs may
be identified. Unlike scenarios, which tend to be more general, UOBs are more specific, with
definite time constraints. That is, if one is able to identify strong causal or time-ordering
dependencies, it is probable that a UOB rather than a scenario has been identified. Thus, phrases
like, "Such events may require redefinition of assigned tasks in response to shifts in national
security policy," may yield two candidate UOBs {Redefine assigned tasks and Revise national
security policy) that stand in the causal relation in response to.

People also make extensive use of objectification and metonomy to describe processes
without names. That is, most processes, like most objects, do not have names. Objectification of
a process simply means that one takes a process and describes it as an object. For example, the
process Acquire Weapon System may be referred to by a member of Congress as weapon system
acquisition, or simply system acquisition. Metonomy is a form of expression that uses the name
of an important object or relationship (e.g., attribute) that is associated with the thing being

12 Some candidate scenarios listed may also be recognized simply as alternative names for the same situation
type.

96

described as a definite descriptor for that thing. For example, processes may be referred to by the
name of the principal product produced (e.g., mission needs determination, Milestone 1
decision).

Recognizing these forms of expression, the analyst can quickly identify candidate UOBs,
associate them with the appropriate scenarios, and begin the process of constructing the initial
Process Schematic.

Layout Initial Process Schematic

An initial Process Schematic is developed to illustrate the analyst's understanding of the
information collected from the expert. Using the initial schematic, the analyst reviews the
description with the domain expert to ensure the description is correct. These initial schematics
also assist the domain expert in recalling additional experience. The process of initial data
collection is limited by the ability of the domain expert to recall his or her internalized
knowledge.

Obtaining a reasonably accurate and complete description from an expert is an iterative
process that must be repeated until the analyst's schematic agrees with the domain expert's
knowledge. In some situations, it may be possible for the analyst and the domain expert to
develop the descriptions together, rather than developing a draft description followed by a review
procedure. The joint development approach can reduce the development time and produce
descriptions that are more complete the first time.

A Process Schematic Summary form (See Figure 4-5) aids the analyst in coordinating review
activity with domain experts and developing the Process Schematic from the raw data. A textual
description, or glossary of the Process Schematic, is part of this form. This text should contain a
statement of the purpose for the schematic and may contain other information that does not
readily fit into the other fields. In addition to the textual description, the analyst records the
UOBs and the other IDEF3 elements (UOBs, Scenarios, and Transition Schematics) that are
referenced in the schematic. Initial completion of this form is part of the analysis activity
associated with constructing the Process Schematic.

Develop Elaborations for UOBs, Junctions, and Links

An IDEF3 Process Schematic graphically describes a process in terms of the UOBs that
occur in it, with each relevant UOB in the process represented by a UOB box. However, a
cursory inspection of the UOB boxes in a schematic will not provide a complete picture of the
processes being described. Elaborations provide detailed characterizations of IDEF3 elements in
the schematic. Information on the elaboration forms provide the most detailed characterization
of the expert's description. The schematic is the graphical presentation of a portion of this
information. For most purposes, natural language statements suffice for IDEF3 element
elaborations. However, when the purpose for the schematics requires more structure and.
precision than natural English statements in the elaboration, users can use IDEF3's elaboration
language (See Appendix A).

97

US10I) AT: ANALYST:

PROJECT:

NOTKS: 1 2 IM 5 (7 8!) 10

DATE:

REV:

WORKINO REVIEWER: DATE:
DRAFT
RECOMMENDED
RELEASED

Process Schematic No.:

Process Schematic Name: Process Schematic Label:

UOB Set:

Referenced UOBs: Keferenc »d Scenarios: Referenced Transition Schematic

Object*:

Description:

I CONTEXT-SETTING ITEM DES IRIBED: F'ORM TYPE:
I'liM'.-iS :;i-hem.it. ir
Summ.l t v 1

Figure 4-5
Process Schematic Summary Form

Elaborations for UOBs, junctions, and precedence links are developed from the interview
data and are reviewed by the domain expert whose knowledge the description represents.
Initially, these elaborations may look like simple glossary entries. However, as the data analysis
progresses, the elaborations become more structured and concise. Typical information found in
an elaboration include sparticipating objects and their roles, facts of interest, and constraints.
These natural language elaborations will be entered on elaboration forms (See Figures 4-6
through 4-9).

A (JOB elaboration document includes: (1) the UOB's name, label, and UOB number; (2)
listings of the object types and instances, facts, and constraints that determine the nature and
structure of the UOB; and (3) a textual description of the UOB (See Figure 4-6).

The following list contains a description of the contents of each field on the UOB elaboration
document.

1. UOB No.: This section contains the UOB Number of the associated UOB. The UOB
number uniquely identities the UOB box associated with the elaboration document.

2. UOB Name: This section contains the UOB Name.

98

USED AT: ANALYST- DATE: WORKING REVIEWER: DATE:

PROJECT:

NOTES: 12345678910 REV:

DRAFT
RECOMMENDED
RELEASED

UOB
No.

UOB Name: UOB Label:

UOB
Objects:

Facts:

Constraints:

Description:

UOB
No.

UOB Name: UOB Label:

UOB
Objects:

Facts:

Constraints:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
UOB Elaboration REFEREN CE: 1

Figure 4-6
UOB Elaboration Form

3. UOB Label: This section contains the UOB Label (i.e., the UOB Name, some part of
the Name, or an abbreviation displayed in a UOB box).

4. Objects: This section lists the names of all the objects (types or instances) which
participate in the process being described by the UOB. These objects can be either
physical or conceptual. Objects can be created, modified, or destroyed during the
process. It may be useful to categorize an object as an agent, as an affected, as a
participant, or as a created or destroyed object:

a. Agent - if the objects (or objects of the type in question) play an active causal role
in instances of the UOB.

b. Affected - if the obj ect (or instances of the type) is changed during instances of
the UOB activity.

c. Participant - if no causality or transformation is associated with the object (or
instances of the type) in instances of the UOB.

d. Created or Destroyed - if the obj ect (or instances of the type) are created or
destroyed in instances of the UOB.

99

5. Facts: This field lists facts about instances of the UOB.

6. Constraints: This field lists constraints on the UOB, i.e., facts about what must hold in
all instances of the UOB.

7. Description: This field contains a glossary entry (textual description) for the UOB.
Typically, the glossary entry provides a textual recount of the information already in the
object, fact, and constraint lists.

To facilitate capturing the decision logic of a junction, an elaboration document can be
attached to a given junction in a Process Schematic, as illustrated in Figure 4-7.

USED AT: ANALYST: DATE: WORKING REVIEWER: DATE:

PROJECT:

NOTES: 123456789 10 REV:

DRAFT
RECOMMENDED

RELEASED

Junction
No.

Junction Type:

J
Objects:

Facts:

Constraints:

Description:

Junction
No.

Junction Type:

Objects:
J

Facts:

Constraints:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
Junction
Elaboration

REFEREN CE: 1

Figure 4-7
Junction Elaboration Form

The core fields in a junction elaboration document are as follows.

1. Junction No.: The junction number, prefaced by the letter "J" (for junction), that
uniquely identifies the junction within the description.

2. Junction Type: Asynchronous AND, asynchronous OR, synchronous AND,
synchronous OR, or XOR (exclusive or).

100

3. Objects: All significant objects (types or instances) associated with the junction.
Typically, these objects are the agents that enforce junction constraints.

4. Facts: Noteworthy, nonconstraining facts associated with the junction and, in
particular, facts involving the objects associated with the junction.

5. Constraints: A specification of the decision logic and any other constraints associated
with the junction. Ideally, this specification will be given in a logically precise form in
the IDEF3 elaboration language. The elaboration language is defined, discussed, and
illustrated in Appendix A.

6. Description: An informal description of the decision logic, along with any other useful
annotations or background information.

The special constraints indicated by constrained precedence links are recorded in a
precedence link elaboration document (see Figure 4-8). This document is similar to a UOB
elaboration in format and purpose.

USED AT: ANALYST- DATE: WORKING REVIEWER: DATE:

PROJECT:

NOTES: 12345678910 REV:

DRAFT
RECOMMENDED
RELEASED

Link
No.

PL

Path No. Source: Destination:

Objects:

Facts:

Constraints:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
Precedence Link
Elaboration REFEREN CE: 1

Figure 4-8
Precedence Link Elaboration Form

The following describes the main content of a precedence link elaboration document.

1. Link No.: A link number, prefaced by the letters "PL", that uniquely identifies the
precedence link within the description.

101

2. Path No.: A link path number, comprised of the Link No. and a unique integer,
separated by a period. For example, given a precedence link PL1 that separates into
three alternative paths following a junction, the path link numbers would be PL1.1,
PL1.2, andPL1.3.

3. Source: Name of the source IDEF3 element (i.e., UOB or referent) of the link in the
specified path.

4. Destination: Name of the destination IDEF3 element (i.e., UOB or referent) of the link
in the specified path.

4. Objects: All significant objects (types or instances) that participate in the relation that
the link represents. Typically, these objects are constituents in the source or destination
of the relation indicated by the link.

5. Facts: Noteworthy, nonconstraining facts involving the objects that participate in the
relationship represented by the link.

6. Constraints: Noteworthy constraints that hold between the source and destination
UOBs or between some of their constituent objects. This field contains, in particular,
the constraints indicated by the general constrained precedence link.

7. Description: The descriptive glossary associated with the link. Any descriptive
information that does not fit logically into any of the other fields in the document is
placed here.

As appropriate, objects, facts, and constraints that are uniquely associated with a particular
link path will be so identified.

Special constraints indicated by dashed links are recorded in a dashed link specification
document (see Figure 4-9).

The following describes the main content of a dashed link elaboration document.

1. Link No.: A link number, prefaced by the letters "DL" (for dashed link), that uniquely
identifies the dashed link within the description.

2. Source: Name of the source IDEF3 element (e.g., UOB, referent) of the relation
indicated by a link.

3. Destination: Name of the destination IDEF3 element (e.g., UOB, referent) of the
relation indicated by the link.

4. Objects: All significant objects (types or instances) that participate in the relation that
the dashed link represents. Typically, these objects are constituents in the source or
destination of the relation indicated by the dashed link.

102

5. Facts: Noteworthy, nonconstraining facts involving the objects that participate in the
relationship represented by the dashed link.

7.

Constraints: Noteworthy constraints that hold between the source and destination
elements or between some of their constituent objects.

Description: The glossary associated with the dashed link. Any descriptive
information that does not logically fit into the other fields in the document may be
placed here.

USED AT: ANALYST: DATE: WORKING REVIEWER: DATE:

PROJECT:

NOTES: 12345678910 REV:

DRAFT
RECOMMENDED
RELEASED

Link Source:
No.

Destination:
DL

Objects:

Facts:

Constraints:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
Dashed Link
Elaboration REFEREIv CE: 1 1

Figure 4-9
Dashed Link Elaboration Form

Develop Decompositions for Selected Units of Behavior

A decomposition of a UOB is a collection of other UOBs that provides additional details of a
process represented by the parent UOB from a particular perspective. UOBs at the scenario level
will usually have decompositions. The UOBs in these decompositions may also be decomposed.
Different decompositions normally result from different domain expert views of what happens
during an activity. They can also result from abstracting some participating object's view of the
process. For example, a decomposition view might be created to show the processing steps

103

required of the information system in order to support an organizational activity. Finally,
decompositions can be produced by the analyst for selected UOBs to simplify a schematic.
Decompositions are schematics providing a more detailed view or different perspectives of a
process with a clearly defined viewpoint. Decompositions are often developed to capture
alternative views of a process or to simplify a process description schematic.

Like IDEF3 description development, the decomposition development process is a
refinement process. Decomposition development follows the same procedure as that of the
primary description development. This refinement cycle consists of activities to (1) analyze the
activity, (2) collect additional data, (3) describe situations in terms of related UOBs, (4) review,
and (5) if necessary, return to a previous step in the procedure.

Formulate Object Schematics

Object Schematics are provided in IDEF3 to complement Process Schematics. Object
Schematics enable an object-centered view of the process being described by facilitating detailed
characterization of objects, object states, state transitions, and inter-object relations. Object
Schematic development may occur before, during, or after the development of Process
Schematics. This section provides guidelines for developing Object Schematics.

The steps involved in constructing an Object Schematic are as follows.

1. Select objects of interest.

2. Identify object states.
3. Characterize possible transitions between states and lay out the basic state transition

schematic.

4. Add junctions, as required, to reflect alternative state transition paths and object
composition logic.

5. Attach referents for participating UOBs, scenarios, and Object Schematics to
appropriate points on the schematic.

6. Develop elaborations as needed.

7. Develop object state decompositions for selected object states.

8. Identify and mark transitions yielding the same object.

9. Add other objects and relations to the schematic as needed to provide useful context-
setting information.

104

Select Objects of Interest

The first task in constructing the Object Schematic portion of a description is deciding which
object(s) to describe. Basically, the analyst must identify which objects play an important role in
the domain expert's knowledge about the system. The list of objects involved in a process may
be extensive. In comparison, the list of objects of special interest is likely to be small. These are
generally objects that are modified by the process being described. Since Object Schematic
creation normally follows the development of one or more Process Schematics, a primary source
for the objects of interest will be (1) UOB elaborations, (2) scenario descriptions, (3) models of
the information required by the scenario (e.g., other IDEF models), and (4) original interview
data. Regardless of the source of the objects, they have two features in common: (1) they
undergo noticeable changes in the process and (2) they exist in several states at various points in
the process.

Because an object theoretically can be any physical or conceptual thing, there is no scientific
method to decide which objects are in a domain. However, as a general heuristic, in IDEF3 we
are interested in objects that play an important role in the operation of the system. Such objects
will normally be named; that is, the analyst will find a word or phrase that appears frequently in
the interview information. Whatever this word or phrase refers to can be considered a possible
object for consideration. The second issue to consider is whether the objects of interest have
states of interest. Again, some of the heuristics are: (1) each object state should display
characteristics commonly recognized in the domain; (2) the object should be recognized to exist
in a state for a period of time; and (3) state changes can be enabled, caused, or inhibited by the
recognized constrains or processes. For each selected object, at least one Object Schematic is
developed.

Layout Initial Object Schematic

For each Object Schematic, the creation of an Object Schematic Summary form is necessary
(See Figure 4-10). A textual description, or glossary of the Object Schematic is part of this form.
This text should contain a statement of the purpose for the schematic and will generally contain
other information about the Object Schematic that does not readily fit into the other fields (e.g.,
ontology information that would later be included in an IDEF5 model). In addition to the textual
description, the analyst records the object states and the other IDEF3 elements (UOBs, Scenarios,
and Transition Schematics) that are referenced in the schematic. Initial completion of this form
is part of the analysis activity associated with constructing the Object Schematic. This initial
work aids the analyst in developing an Object Schematic from the raw data.

The following list contains a description of the fields contained in a Transition Schematic
description form.

1. Object Schematic No.: A unique identification number for the Object Schematic,
prefaced by the letters "TS" for transition schematics and "OBS" for Object
Schematics.

105

2. Object Schematic Type: The Object Schematic type may be described as a Transition
Schematic, Enhanced Transition Schematic, or an Object Schematic. Transition
Schematics (i.e., Transition and Enhanced Transition Schematics) are special types of
Object Schematics whose context is established by a single scenario.

3. Object Schematic Name: The name of the Object Schematic.

4. Object Schematic Label: The Object Schematic Name, some part of the Name, or an
abbreviation used for convenience when displayed in an IDEF3 graphical element (e.g.,
when displayed in a referent).

5. Object State Set: The set of object states that make up the state transition represented
by the Object Schematic, if the schematic is a type of Transition Schematic. If the
schematic is a general Object Schematic, this field lists the object states included in the
Object Schematic.

6. Referenced UOBs: The set of UOBs referenced by the Object Schematic.

7. Referenced Scenarios: The set of scenarios referenced by the Object Schematic.

8. Referenced Transition Schematics: The set of Transition Schematics referenced by
the Object Schematic.

9. Objects: The set of objects included in the Object Schematic for context-setting
purposes.

10. Description: A textual description, or glossary, associated with the Object Schematic.
Any descriptive information that does not logically fit into the other fields in the
document may be placed here.

The next step in Object Schematic development is to describe each object state and
characterize the state transitions. To accomplish this, the analyst will perform the following
tasks:

1. Identify the defining characteristics for each object state.

2. Identify the conditions for leaving each state.

3. Identify the criteria for entering each state.

4. Identify special conditions for enabling an object in the state to attempt a transition.

5. Identify the possible transitions between states.

6. Identify the activities that cause, allow, or are caused by each transition.

106

USED AT: DATE: nn Fph qs X WORKING REVIEWER: DATE:

PROJECT: Example IDEF3 Description

NOTES: 12345678910 REV:

DRAFT
RECOMMENDED
RELEASED

Object Schematic No.: Object Schematic Type:

Object Schematic Name: Object Schematic Label:

Object State Set:

Referenced UOBs: Referenced Scenarios: Referenced Transition Schematics:

Objects:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
Object Schematic
Summary REFERENCE: 1

Figure 4-10
Object Schematic Summary Form

Develop Elaborations for Object States, Objects, Junctions, and Links

The results of the first two activities are recorded on the object state elaboration form for
each affected state. The results of the third and fourth activities are documented on the transition
link elaboration form. The results of the last three activities determine the schematic layout. The
structure and content of these elaboration forms closely parallel those associated with Process
Schematic elements. Examples of these forms are provided in the following few pages (See
Figures 4-11 through 4-14).

The object state elaboration document is used to capture the elaborations of the object states
that participate in the state transitions depicted in an Object Schematic. An object state
elaboration document is constructed for every object state represented in the Object Schematic.
In addition to enabling a detailed characterization of a state, the object state elaboration docu-
ment form carries information about state and exit conditions, as discussed in Section 3, IDEF3
Process Description Language. The object state elaboration document is shown in Figure 4-11.

107

USED AT: ANALYST: DATE: WORKING REVIEWER: DATE:

PROJECT:

NOTES: 123456789 10 REV:

DRAFT
RECOMMENDED
RELEASED

Object
State

No.

OS

Object State Name:

Label:

Transitions From Object State(s):

Transitions To Object State(s):

Facts:

Constraints:
State Conditions:

Exit Conditions:

Other:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
Object State
Elaboration 1 1

Figure 4-11
Object State Elaboration Form

The following list contains a description of the fields that appear on an object state
elaboration form:

1. Object State No.: A unique identification number for the object state, prefaced by the
letters "OS."

2. Object State Name: The name of the object state.

4. Label: The Object Schematic name, some part of the name, or an abbreviation used for
convenience when displayed in an IDEF3 graphical element (e.g., when displayed in a
referent).

5. Transitions From Object State(s): The object state(s) from which the object
transitions.

6. Transitions To Object State(s): The object state(s) to which the object transitions.

7. Facts: Facts that hold about objects in this state.

8. Constraints: Constraints on objects in this state. In particular, three types of
constraints are listed:

a. State Conditions - Conditions that are individually necessary for an object to be
in the state in question.

108

9.

b. Exit Conditions - Sufficient conditions for an object to no longer be in the state in
question.

c. Other - Additional constraints of interest.

Description: A textual description, or glossary, associated with the Object State. Any
descriptive information that does not logically fit into any of the other fields in the
document may be placed here.

The transition link elaboration document is used to capture the elaborations of the transition
links in an Object Schematic. A transition link elaboration document is constructed for every
transition link represented in the Object Schematic. A transition link itself only indicates what
object states can transition to which others. Hence, a transition link elaboration consists of two
conditions: (1) the transition conditions for instances of its source state in an attempt to begin a
transition that brings about an instance of its destination state, and (2) the entry conditions that
objects arising from its source state must meet to enter the destination state. In addition to con-
taining this information, the transition link elaboration document also contains a unique trans-
ition link number for the link as well as the name of the Object Schematic that contains it (in the
context setting reference field). The transition link elaboration document is shown in Figure 4-12.

USED AT: ANALYST: DATE: WORKING REVIEWER: DATE:

PROJECT:

NOTES: 12345678910 REV:

DRAFT
RECOMMENDED
RELEASED

Link
No.

TL

Path No. Source: Destination:

Objects:

Facts:

Constraints:
Transition Conditions:

Entry Conditions:

Other:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
Transition Link
Elaboration KEEEKEN UE: 1

Figure 4-12
Transition Link Elaboration Form

109

The fields that appear on the transition link elaboration form include:

1. Link No.: A unique identification number for the transition link, prefaced by the letters
"TL."

2. Path No.: A link path number, comprised of the Link No. and a unique integer,
separated by a period. For example, given a transition link TL1 that separates into three
alternative paths following a junction, the path link numbers would be TL1.1, TL1.2,
and TL 1.3.

3. Source: Name of the source IDEF3 element (e.g., Object State) indicated by a link.

4. Destination: Name of the destination IDEF3 element (e.g., Object State) of the
relation indicated by the link.

5. Objects: All significant objects (types or instances) that participate in the relation
represented by the transition link.

6. Facts: Noteworthy, nonconstraining facts involving the objects that participate in the
relationship represented by the transition link.

7. Constraints: Constraints on objects in this state. In particular, three types of
constraints are listed:

a. Transition Conditions - Conditions that are individually necessary and jointly
sufficient for there to be an attempted transition from the source to the destination.

b. Entry Conditions - Sufficient conditions for an object to enter the state given an
object (possibly different) in the source state ofthat link that has met the relevant
transition conditions.

c. Other - Additional constraints of interest.

8. Description: The glossary associated with the transition link. Any descriptive
information that does not logically fit into any of the other fields in the document may
be placed here.

As appropriate, objects, facts, and constraints uniquely associated with a particular link path
will be identified.

At this point, it may be useful to identify other objects and relations that can provide
additional context-setting information relevant to the transition. Two elaboration forms are
provided to assist with this task: the object elaboration document and the relation link
elaboration document.

The object elaboration document is used to further characterize context-setting objects
included in the Transition Schematic which are not directly involved in the focus transition. An
example form for the object elaboration document is provided in Figure 4-13.

USED AT: DATF.- WORKING REVIEWER: DATE:

PROJECT:

NOTES: 123456789 10 REV:

DRAFT
RECOMMENDED
RELEASED

Object
State
No.

0

Object Name:

Label:

Facts:

Constraints:

Description:

CONTEXT •SETTING ITEM DESCRIBED: FORM TYPE:
Object Elaborati REFEREN CE: on 1

Figure 4-13
Object Elaboration Form

The following list describes the contents of each field on the object elaboration document.

1. Object State No.: An object number, prefaced by the letter "O" (for Object), that
uniquely identifies the Object.

2. Object Name: This section contains the Object Name.

3. Label: This section contains the Object Label (i.e., the Object Name, some part of the
Name, or an abbreviation).

4. Facts: This field lists facts about instances of the Object.

5. Constraints: This field lists constraints on the Object, i.e., facts about what must hold
in all instances of the Object.

6. Description: This field contains a glossary entry (textual description) for the Object.
Typically, the glossary entry provides a textual recount of the information already in the
object, fact, and constraint lists.

The relation link elaboration document is used to further characterize the relations between
objects and object states in an Object Schematic (other than the "transitions-to" relation). Figure
4-14 illustrates an example relation link elaboration form serving this purpose.

Ill

USED AT: ANALYST: DATE: WORKING REVIEWER: DATE:

PROJECT:

NOTES: 12345G789 10 REV:

DRAFT
RECOMMENDED
RELEASED

Link
No.

RL

Relation Name:

Relation Type (first-order, second-order):

Objects and Object States involved (i.e., arguments):

Facts:

Constraints:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
Relation Link
Elaboration 1

Figure 4-14
Relation Link Elaboration Form

The fields contained on the relation link elaboration form are as follows:

1. Link No.: A link number, prefaced by the letters "RL" (for relational link), that
uniquely identifies the relation link within the description.

2. Relation Name: This section contains the Relation name.

3. Relation Type: A description of the number of places and order of the relation (e.g., 2-
place, first-order).

4. Objects and Object States involved (i.e., arguments): A list of the Object(s) and
Object State(s) involved in the relation.

5. Facts: Noteworthy nonconstraining facts involving the objects that participate in the
relationship represented by the relation link.

6. Constraints: Noteworthy constraints that hold between the participating object(s) and
object state(s) or between some of their constituent objects.

7. Description: The glossary associated with the relation link. Any descriptive
information that does not logically fit into the other fields in the document may be
placed here.

112

Incrementally Refine and Validate IDEF3 Process Descriptions

Motivation

The leverage of IDEF3 for description capture is particularly noticeable when validation
activities are undertaken. Conventional process modeling often forces users to gloss over gaps in
the description or simplify facts with idealizations. IDEF3 does not impose such restrictions. It
provides a flexible yet formal mechanism for recording the facts known about the operation of
the system. Gaps and inconsistencies are made obvious in the schematic layouts specifically to
bring them to the attention of analysts and domain experts. Likewise, capturing multiple
viewpoints of a process serves to highlight differences. A better understanding of the process is
achieved by both the experts and the analyst as they attempt to fill gaps and resolve
inconsistencies both in a view and between views. This creates an understanding of how
perceptions about the process differ between experts.

In contrast, conventional techniques typically present the analyst's assumptions about the
process interspersed with his understanding of the expert's description. This model is then
presented to domain experts for validation. Often, the expert, either in the interest of expediency
or because of increasing pressure for consensus, signs off on a process model without completely
understanding the implications. Using IDEF3, it is possible to use process description
schematics as discussion focal points to resolve inconsistencies (if any) between differing
viewpoints of how a process works.

Types of Validation

Validation is the process of checking and ensuring that the IDEF3 process description
constructed is both syntactically and semantically correct. As one might assume from this
definition, there are two types of validation: syntactic and semantic. Syntactic validation
involves ensuring that the constructed IDEF3 schematic conforms to the grammatical rules of the
IDEF3 language. Semantic validation involves ensuring that the statements made in the IDEF3
description accurately capture the assertions of the domain expert.

The IDEF3 method provides the user considerable freedom in terms of how these
descriptions can be structured; the syntax of the language imposes few restrictions on possible
schematic layouts. These restrictions or rules ensure that the syntax and semantics of the
constructed descriptions capture the user's intent. Moreover, these validation checks try to
enforce standardization between the potential users of the language in a manner that enhances the
utility of the method as an unambiguous means of communication.

113

Build and Distribute Kits

A primary means of validating IDEF3 process descriptions is through the review and
approval of kits13. Kits represent portions of the total description that have reached some state of
completion. The kit review task can be performed any time during the description development
effort as a mechanism for acquiring additional facts or when a significant portion of analysis
work has been completed (e.g., completion of the initial lists of UOBs and objects, completion of
one or more Object Schematics, completion of a Process Schematic). Kit production and the
associated review cycle (discussed below) provide a disciplined approach that results in an
accurate description of the process.

Roles in the Kit Review Process

The team member roles described earlier in Section 4 are further specialized for the kit
review process. The roles of the personnel involved in the kit review process are as follows:

1. Analyst: IDEF3 expert who is the primary developer of the IDEF3 description. The
review process initiates and terminates with the analyst. The analyst relies on the
domain expert for the technical content of the description, during both description
capture and the kit review cycle.

2. Reviewers: All personnel involved in the review of IDEF3 kits.

3. Commentors: Reviewers who are knowledgeable in the application domain, and
proficient enough in IDEF3 to offer structured comments in writing. Commentors read
the material produced by analysts and verify its technical accuracy. They are
responsible for finding errors and suggesting improvements in the IDEF3 process
description. The commentor determines whether the purpose has been met, and
whether errors or oversights exist. Commentors are authorized to make written
suggestions during the review process.

4. Readers: Reviewers to whom IDEF3 kits are distributed for informational purposes
only. Readers are often individuals from whom analysts may have obtained
information via interviews.

5. Librarian: A person assigned the responsibility of maintaining files of project-related
documents and description artifacts, making copies, distributing IDEF3 kits, and
keeping records.

A "role" is not related to an individual's job title; therefore, the same person may perform
several roles.

13 The genesis of this kit review procedure comes directly from the original IDEF0 Function Modeling "yellow
book," AFWAL-TR-81-4023. This was done to maintain consistency among the IDEF methods. The input
from this document is greatly appreciated and acknowledged.

The IDEF3 Kit Review Cycle

Kits represent portions of an IDEF3 process description that have reached some state of
completion. These draft portions of a description are distributed for review in the form of a
standard IDEF3 kit. The IDEF3 kit review cycle illustrated in Figure 4-15 is based on the kit
review process for other IDEF methods. For clarity, the following steps do not mention the
librarian, but focus on the interaction between the analyst and commentor. With large systems,
the role of the librarian is essential. In smaller efforts, that role may be assumed by the analyst.

Analyst Librarian Commentor

Produces
New Kit

Writes
Response to

Comments
Control
Copy

Control
Copy To
Analyst

File

r N~w Kit "l

I
■ Commented ■

'■ Kit '

I Discussion
Requested

■ by Analyst *

I or I Commentor

I I

Writes
Comments
on Kit

Reviews
Analyst's
Comments

Kit to
Commentor

File

Figure 4-15
IDEF3 Kit Cycle

The following are the major steps in the IDEF3 kit review cycle.

1. The analyst assembles a kit (e.g., a pool kit, a scenario kit, an object kit, or a description
kit with Process Schematics and Object Schematics). The analyst retains one copy and
gives one copy to the commentor for review.

2. The commentor studies the kit within an agreed time period. The main purpose of this
review is to determine whether the description complies with the overall goals and
context of the development effort. Comments are made directly on the schematics,
other documents in the kits, and the cover sheet. The kit with comments should be
returned to the analyst by the date indicated on the cover sheet.

3. The analyst responds to the comments directly on the commentor's copy of the kit. The
analyst may agree with the comments, noting them on the working copy and
incorporating them into the next version of the IDEF3 description. If there are

115

disagreements, the analyst notes the points of disagreement on the kit and returns the kit
to the commentor.

4. The commentor will read and file the returned kit if the analyst's responses are
satisfactory. Otherwise, a meeting between the commentor and the analyst is arranged
to resolve the disagreements.

5. This cycle continues until a mutually acceptable (to the analyst and commentor) IDEF3
description is produced.

Throughout the cycle, a project librarian handles copying, distribution, filing, and transfer of
IDEF3 kits between the analyst and the commentor (see Figure 4-15).

The results of the IDEF3 kit cycle are an IDEF3 description to which the analyst and the
commentor have contributed, and, if necessary, a list of issues that require management action.
A valuable by-product of this review cycle is a recorded history of the review process.

Types oflDEFS Kits

IDEF3 kits have a structure similar to those for other IDEF methods. There are three types of
IDEF3 kits:

1. Scenario Kits address one scenario and all or part of its associated documentation. The
following items may appear in a scenario kit.

a. Process Schematics and all associated UOB decompositions. Some of the review
kits created early in the development process may omit some of the
decompositions.

b. All available UOB elaborations and link specifications. Some of the scenario kits
created early in the development process may omit some or all of these.

2. Object Kits address one or more objects and the associated Object Schematics, their
descriptions, and their associated object state descriptions.

3. Description Kits are created in the later stages of a development effort. A description
kit is a compilation from the completed scenario and object kits for a given project. It
contains all the scenarios in the IDEF3 description and their associated documentation.
An approved description kit is one of the final deliverables in a development effort.

Scenario kits can provide any level of detail from a single-scenario Process Schematic to a
complete process description that contains all elaborations and UOB decomposition schematics.
Description kits can also provide any level of completion; however, they reflect the current status
of the entire project as opposed to that of the single scenario of a Scenario Kit.

116

Guidelines for Analysts and Commentors

Commentor Guidelines

No set pattern of questions and rules can be adequate for commenting, since subject matter,
style, and technique vary widely. However, guidelines exist for improving quality. The major
criteria for quality are: Will the document communicate well to its intended audience? Does it
accomplish its purpose? Is it factually correct and accurate, given the bounded context? The
following are overall guidelines for commenting:

1. Make notes brief, thorough, and specific. As long as the analyst understands that
niceties are dropped for conciseness, communication is easier and less cluttered.

2. Use the © notation to identify comments. To write a © -note, check the next number
off the NOTES list, number the note, circle the number, and connect the note to the
appropriate part with a squiggle "~."

3. Make constructive criticisms. Try to suggest solutions rather than just making negative
comments.

4. Take time to gather overall comments. These may be placed on the cover or a separate
sheet. (Don't gather specific points on this sheet if they belong on the individual
pages.) Agenda items for analyst/commentor meetings may be summarized. Make
agenda references specific.

The time spent critiquing depends on several different factors: familiarity with the subject,
the number of times something has been reviewed, the experience of the commentor and analyst,
etc. An IDEF3 kit returned to an analyst with no comments means that the commentor is in total
agreement with the analyst. The commentor should realize that there is a shared responsibility
with the analyst for the quality of the work.

Analyst/Commentor Interchanges

When a commentor returns an IDEF3 kit, the analyst responds by putting a "V" or "X" by

each ©-note. A "V"means the analyst agrees with the commentor and will incorporate the
comment into the next version of the IDEF3 kit. An "X" means the analyst disagrees and
requires a reason to be noted where the comment appears. After the analyst has responded to all
comments, the IDEF3 kit is returned to the commentor.

After reading the analyst's responses, the commentor identifies remaining points of
disagreement and requests a meeting with the analyst. This specific list of issues forms the
agenda for the meeting.

117

Meeting Rules

Until comments and reactions are on paper, commentors and analysts are discouraged from
conversing.

When a meeting is required, the procedure is as follows.

1. Each meeting should be limited in length.

2. Each session must start with a specific agenda of topics to be considered; discussions
must not deviate from these topics.

3. Each session should terminate when the participants agree that the level of productivity
has dropped and individual efforts would be more rewarding.

4. Each session must end with an agreed list of action items which may include the
scheduling of follow-up sessions with specified agendas.

5. In each session, a "scribe" should be designated to take minutes and note actions,
decisions, and topics.

6. Serious, unresolved differences should be handled professionally (i.e., documenting
both viewpoints).

The result of the meeting should be a written resolution of the issues or a list of issues to be
settled by appropriate managerial decision. Resolution can take the form of more study by any
participant.

Contents ofIDEF3 Kits

An IDEF3 kit is a technical document. It may contain schematics, text, glossaries, decision
summaries, elaborations, background information, or other relevant material packaged for
review and comment.

General Guidelines for Kit Preparation

To avoid oversights, review the IDEF3 kit as if it were the only information available. Add
points of clarification as brief notes on the IDEF3 kit. Glossary definitions for terms that appear
in the IDEF3 kit should always be appended as support material.

Gather helpful materials and append these for the commentator's benefit. Never use this
supplemental material to convey information which should properly be conveyed by the
schematic itself Whenever possible, use the most natural means of communication to show
details that are important for the reader in understanding the concepts. Combine all material with
a completed cover sheet and submit to the librarian.

118

The Kit Cover Sheet

The Kit Cover Sheet distinguishes the material assembled with it as an IDEF3 kit. The cover
sheet has fields for analyst, date, project, document number, title, status, and notes. The
following describes what information should be provided in the fields of an IDEF3 Kit Cover
Sheet (see Figure 4-16).

DOCUMENT DESCRIPTION PROJECT INFORMATION KIT INFORMATION REVIEW CYCLE

TITLE: ANALYST: DATE:

COMPANY:

PROJECT NO.: TASK NO.:

DESCRIPTION KIT REVIEWER DATE

T.TFK.r.Yr.T.ERTEP:
SCENARIO KIT

IDEF METHOD: SYSTEM:
OBJECT KIT ANALYST DATE

SUPERSEDED OR REVISE!)

COPYFOR
REVIEWERS

COPY FOR
REVIEWERS FILE

AUTHOR
COM-
MEN!

R
E
A
D

COM-
MENT

R
E
A
1) NAME COMPANY

PHO.IEC
NUMBE

NAME COMPANY
PROJECT
NUMBER

KIT CYCLE DATES

RECEIVED [IV LIBRARY

KIT TO REVIEWER

COMMENTS DUE RACK TO LIBRARY

COMMENTS Tt) ANALYST

ANALYST RESPONSE DUE BACK TO LIBRARY

ANALYST RESPONSE TO COMMENTED

KIT CYCLE COMPLETE

COPYING INSTRUCTIONS

INDEX/CONTENTS

P„ inEFS Element Title I'IIRO Stntus COMMENTS/SPECIAL INSTRUCTIONS

DOCUMENT NUMBER

Figure 4-16
IDEF3 Kit Review Cover Sheet

The following sections and their contents are provided on the IDEF3 kit review cover sheet.

1. IDEF3 Process Description/Document Description:

a. Title - Should be descriptive of the IDEF3 kit.

b. Life-Cycle Step - "AS-IS" or "TO-BE" (does the kit contain a description of
something that is or something that might be).

c. System - Acronym for System or Subsystem.

119

2. Project Information:

a. Analyst - Name of person submitting the IDEF3 kit.

b. Date - Date sent to library.

c. Company - Name of the company submitting the IDEF3 kit.

3. IDEF3 Kit Information: Check Description Kit, Scenario Kit, or Object Kit. Indicate
document number assigned by the librarian.

4. Review Cycle: To be signed and dated after review by commentator and analyst.

5. Index/Contents: List the Scenario, Decomposition, Object, and Object State (if
relevant) names along with the page number where they can be found in the document.
An additional sheet called the IDEF3 Kit Contents Sheet (see Figure 4-17) is also filled
out if necessary along with the Kit Cover Sheet.

6. Comments/Special Instructions: Any other information for the reviewers. This can
also be used for special instructions to the librarian about handling the document. The
library also uses this field for special instructions to the recipients of IDEF3 kits.

DOCUMENT NUMBER ANALYST- nATR- DESCRIPTION KIT REVIEW CYCLE

COMPANY:

PROJECT NO.: TASK NO.:

SCENARIO KIT REVIEWER DATE
OBJECT KIT

SUPERSEDED OR REVISED
DOCUMENT NUMBER

ANALYST DATE

PR. IDEF3 Element Title Page Status Pe. IDEP3 Element Title Page Status

KIT NAME: FORM TYPE:
Kit Contents Sheet

Figure 4-17
IDEF3 Kit Contents Sheet

120

The Kit Schematic Form

The Kit Schematic Form, as shown in Figure 4-18, has a minimal structure and few
constraints. The sheet supports only the functions important to the discipline of structured
analysis: (1) establishing a viewpoint, (2) cross-referencing between sheets of paper, and (3)
documenting notes about the contents of each sheet. The form is divided into three major
sections: (1) Working Information (top), (2) Message Field (center), and (3) Identification Fields
(bottom).

USED AT: ANALYST: DATE: WORKING REVIEWER: DATE:

PROJECT:

NOTES: 123456789 10 REV:

DRAFT
RECOMMENDED
RELEASED

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
KEFEKENt JE:

1

Figure 4-18
IDEF3 Kit Schematic Form

The form is designed so that the working information at the top of the form may be cut off
when a final "approved for publication" version is completed. The schematic form should be
used whenever printed documents are used.

The following are the subfields of the Working Information field.

1. Used At: This is a list of schematics, other than the immediate context, which use this
sheet in some way.

2. Analyst/Date/Project: This documents who originally created the schematic, the date
it was first drawn, and the project title under which it was created. The "date" entry
may contain additional dates, written below the original date. These dates represent
revisions to the original sheet. If a sheet is re-released without any change, no revision
date is added.

121

3. Notes: This provides a check-off for © notes written on the schematic sheet. As
comments are made on a page, the notes are successively crossed out. This provides a
quick check for the number of comments, while the circled number provides a unique
reference to the specific comment.

4. Status: Four status classifications provide a ranking of approval: working, draft,
recommended, and released.

a. Working - The schematic is a major change, regardless of the previous status.
New schematics are, of course, working copy.

b. Draft - The schematic is a minor change from the previous schematic and has
reached some agreed-upon level of acceptance by a set of readers. Draft
schematics are those proposed by a project leader, but not yet accepted by the
project team.

c. Recommended - Both this schematic and its supporting text have been reviewed
and approved by the project team. This schematic is not expected to change.

d. Released - This page may be forwarded as is for final release or publication.

5. Reader/Date: This area is for the commentor to initial and date each form.

The Message Field contains the primary message to be conveyed. The field is normally used
for schematics, but the field can be used for any purpose (e.g., glossary, checklists, notes,
sketches).

The Identification Fields are as follows.

1. Context-Setting Reference: The information provided in this field helps to establish a
context for interpreting the information in the message field. That context is
established with a reference identifier that is the unique IDEF3 element number (e.g.,
Scenario 1, Decomp 1.1, UOB43, PL31, J5, 06, OS22). Use of the term "Global" for
the reference identifier may be used to indicate a global context. For example, if a
scenario elaboration were displayed in the message field, the context-setting reference
would be "global." If, on the other hand, a Process Schematic were displayed in the
message field, the context-setting reference would indicate a scenario number or a
parent UOB number.

2. Item Described: This field contains the name of the material presented in the message
field of the schematic form. If the message field contains a schematic, the contents of
the title field must precisely match the name written in the parent box.

3. Form Type: The standard IDEF3 kit form may be used as the basic structure for all
forms other than the kit cover sheet used during description development. This field is
used to establish how the standard IDEF3 kit form is being used. Recommended form

122

types include the Description Summary form, the Kit Contents Sheet, the Process and
Object Schematic Summary forms, the Source Material Log, the Source Material
Description form, individual pool forms, and IDEF3 element elaboration forms.

Review Progress and Make Adjustments

Throughout the description capture effort, the project team will find it necessary to frequently
review the purpose and scope of the project and assess progress. Adjustments requiring some
redefinition of scope often surface in projects with a purpose aimed at solving some ill-
understood problem situation. Frequent assessments of progress toward satisfying the purpose of
the project promote early detection of high payoff opportunities, and limit the time and expense
used in less fruitful activity. These discoveries often motivate subtle or dramatic changes in
scope. When the need for such changes arise, the client should be notified and his or her
approval should be sought. Analysts may also recognize the need to augment the use of IDEF3
with other methods.

Using other IDEF Methods in Process Description Capture

IDEF3 was designed to work independently or in concert with other IDEF methods.
Methods and techniques outside the IDEF family have been successfully applied with IDEF3 on
a number of projects.14 In these cases, it is necessary to establish clear roles for each method. It
is also important to clearly define the conventions that will be used in applying each method.
Selecting the appropriate set of methods for a given project depends on the nature and form of
the available information and on the purpose of the project. Each IDEF method is tailored for a
unique set of information and cognitive support applications. For example, the IDEF0 Function
Modeling and IDEF1 Information Modeling methods are useful for analyzing complex
situations. The IDEF5 Ontology Description Capture method provides additional expressive
power for describing object structures and relations. The choice to apply more than one method
over the course of a project underscores the nature of methods as mechanisms designed to
support predominantly narrowly-scoped tasks that may be applicable across a wide range
of general and project-specific systems engineering frameworks. These frameworks serve to
establish a context for the required integration among the multiple tasks, and consequently
among the methods supporting those tasks.

Using IDEF0 with IDEF3

In an IDEF0 model and the UOBs in an IDEF3 Process Description, IDEF3 is not intended
to be a replacement for IDEF0. If the system being analyzed is very large (e.g., Manufacture
Aerospace Product), precedence relations may not be evident. In these cases, it is often better to

14 See, for example, papers describing the use of IDEF3 in the Proceedings of the IDEF Users Group.

123

Start with an IDEF0 model. Such a model can then be decomposed to a level where the
precedence relations among activities become prominent. On the other hand, if the facts
collected can be organized into a cohesive story, it is generally better to formulate the IDEF3
process description first, then abstract an IDEF0 model from that description. The IDEF3
method was designed with this interaction in mind.

The IDEF3 syntax recognizes this relationship by providing a means of referencing
associated IDEF0 activities from within the IDEF3 UOB. All UOB boxes have a field (see
lower right of Figure 4-19) for providing a reference to an activity in an IDEF0 model, or
comparable function or process model (e.g., a node in a Logical Data Flow Diagram or HIPO
chart).

UOB Label

UOB# IDEF0 Activity
Ref#

Figure 4-19
Unit of Behavior Fields

The reference scheme in IDEF3 assumes that zero, one, or many IDEF0 activities will map
onto a single UOB. In cases where the UOB maps to only part of an IDEF0 activity, the activity
referent should point to the set of child activities in the IDEF0 model that is actually involved.
If the IDEF0 model is not defined to a low enough level of detail, the extent of the mapping
should be described in the UOB elaboration. As UOBs are identified, IDEF0 references should
be included.

Using IDEF1 and IDEF1X with IDEF3

In many large IDEF3 development projects, IDEF1 and/or IDEF1X models are available
prior to the project initiation. These can help identify the objects for Object Schematics. The
entity class number or attribute class (in IDEF1), or the entity number or attribute (in IDEF1X)
that relates to each object or object state, should be referenced in the glossary of the Object
Schematic or the appropriate Object Schematic Description form.

While capturing process descriptions is generally straightforward, determining the business
rules that are supported by the information system is more difficult. There are often hidden
pockets of information that constitute the "informal" information system of the enterprise. One
of the primary roles of information modeling is to define the informal and formal information
system. IDEF3 descriptions can be developed either before or after the development of
information models. When developed prior to information modeling, IDEF3 process
descriptions can help users develop information models by focusing domain expert attention on

124

the information required to support their process. The resulting information models constitute a
process-centered view of the information requirements of the enterprise. Integrating a number of
process-view information models will eventually yield a comprehensive information model that
can be used to develop enterprise-wide data standards.

Using IDEF5 with IDEF3

Because of the importance process kinds can have in the definition of a domain ontology,
IDEF5 permits one to refer to them as no less than object kinds. However, there are two distinct
contexts in which such references can occur, and the information that is kept about a process kind
will differ depending on the context. If a process kind P is referred to in the description of a
transformation or transition involving two kinds of objects, then the "internal" character of P is
described in accordance with the IDEF3 process description capture method. That is, P is
described in terms of the object kinds it involves, their properties, and the relevant relations that
hold between instances of those kinds when the process in question is instantiated. In particular,
in such contexts, the usual sort of information kept about an object kind—its defining properties
and so forth—is not kept about the process kind.

On the other hand, it may be important for understanding a domain not only to know how
objects are involved in the internal structure of a process, but also—as with object kinds
generally—how one kind of process relates logically to another kind of process, independent (in
general) of the details of its internal structure. For instance,
manufacturing process planning is a subkind of planning. In these cases, process kinds are
characterized using the procedure and language constructs provided within the IDEF5 ontology
capture method.

SECTION 5

IDEF3 DEVELOPMENT:
MATERIAL ORDERING PROCESS EXAMPLE

The example description of a company's purchase order process presented in this section
demonstrates the use of the IDEF3 method in a common setting. The example includes some
tips to help the user avoid common errors. Moreover, justifications for applying a structured
process to description development are documented as a guide to the novice user.

Define Purpose and Context

Assume that an owner of a business is interested in using IDEF3 to document the material
ordering process to assist with new worker training and enforce company purchasing standards.

125

Material. Assume that this project stems from the owner's desire to record how purchase
requests are processed for the benefit of new employees. One advantage of applying IDEF3 in
this situation will be that a new employee can quickly understand how to acquire needed material
by referring to the IDEF3 Process Description, without forcing the owner to spend time
communicating this knowledge. In this example, the boundaries of the problem will be restricted
to activities within the company. Only the information needed to clearly specify the workings of
the purchase order process to a new employee will be captured. This purpose and context would
be entered on the IDEF3 Process Description summary form. At this stage of the description
development process, the analyst would normally identify candidate scenarios and begin an
IDEF3 scenario pool. The contents of this pool will be refined and maintained throughout the
life of the project.

In this example, only three IDEF3 project team roles are illustrated: (1) the analyst (the
IDEF3 expert), (2) the domain expert (the business owner), and (3) the client (also the business
owner). The domain expert and the client are usually not the same individual. The remainder of
this section will often refer to these individuals by their project role names.

Collect Data

Having defined the project, the analyst prepares for and conducts data collection activities.
One of the most valuable mechanisms for this data collection is the interview. For this example,
we will focus primarily on this aspect of data collection.

Interview Domain Expert and Acquire Initial Description

Recognizing that well-planned and well-executed interviews are critical, the analyst prepares
carefully. When the scheduled interview time arrives, the analyst might begin by asking, "How
does one go about purchasing material once the need has been identified?" Suppose the domain
expert answers with the following description:

The first thing we do is request material using a purchase request form. Then the
Purchasing Department either identifies our current supplier for the kind of
material requested or sets out to identify potential suppliers. We like to develop
long-term relationships with our suppliers. That means we will always use a
current supplier whenever possible. In return, we expect their highest quality
products on time and at reasonable prices. Right now, we have contracts or
informal agreements with 7 trusted suppliers. If we have no current supplier for
the needed item, Purchasing requests bids from potential suppliers and evaluates
their bids to determine the best value. Once a supplier is chosen, Purchasing
orders the requested material.

During the interview, analysts often find it helpful to request to see copies of source material
associated with the process. The analyst may also find it helpful to obtain copies of relevant
segments of policy and procedure manuals, previously developed models, purchase requests,

126

supplier lists, solicitations, bid evaluation reports, purchase orders, and so forth. During the
example interview, let us assume that the domain expert provides a copy of the purchase request
form. The analyst notices three signature blocks at the bottom of the page—one titled
"Requester," another titled "Account Manager," and a third titled "Purchase Authorization."
This leads to a new line of questioning which the domain expert answers as follows.

To request material we must first prepare a purchase request. The information
required on the purchase request form includes the item description, the number
of items needed, the required receipt date (if applicable), the number of the
account that will fund the purchase, a written justification for the stated need, and
the requester's printed name and signature. The requester must then obtain the
account manager's approval, or that of the designated backup, for the purchase.
Account managers, or their designated backups, are responsible for, and must
approve, all purchases made against their project accounts. After the account
manager approves the purchase, an authorization signature may be required. To
avoid a potential conflict of interest, the person initiating the purchase request
cannot be the same individual as the one who approves or authorizes the request.
Once all the appropriate signatures have been obtained, the requester submits the
signed purchase request to Purchasing. Purchasing then orders the requested
material. The purchase request is then tracked as an issued purchase order.

Note that the second description, although more detailed, omits any description of how the
supplier is identified, although this information was deemed important enough by the domain
expert to include it in the first description. In practice, the completeness of the description
provided by an interview will depend upon several factors:

1. The amount of time the domain expert is willing (or allowed) to devote to
the interview.

2. The experience and domain-specific knowledge of the interviewer.

3. The domain expert's knowledge of the process being described.

During the interview with the domain expert, the analyst will acquire the initial description
that may include written documentation about the process. The purpose of acquiring a
description is to represent how the system actually works, rather than how the domain expert
thinks the system works (or how the domain expert thinks the system should work). Therefore,
the analyst needs to correlate facts captured in the interview process with first-hand observations
of the process. The analyst also must avoid completing the description with his or her own
(often preconceived) knowledge about how the system ought to work. Thus, it is important that
both the analyst and the domain expert understand that descriptions are often partial in nature and
curb their desire to make them ideally complete.

127

Analyze Description for Data Identification

Once the interview is over, the analyst needs to carefully study the recorded notes and
observations. This analysis identifies the objects, activities, facts, and constraints that occur in
the description. This step is a list-making process.

When describing processes, individuals often focus on the key objects in the process and
their roles in the process before actually describing the events or activities that occur during the
process. The following is a list of objects that were identified in the description.

Material Purchasing Department Contract

Order Potential Supplier Bid

Current Supplier Requester Purchase Request

Account Manager Backup Project Account

Purchase Order Chosen Supplier

It is important that the analyst explicitly record the list of objects in the IDEF3 object pool for
the following reasons.

1. The analyst may omit some of the objects at a later stage in the description
capture process.

2. This list of objects from the first analysis often contains the primary objects
in the process. Primary objects are those objects important enough to
warrant the creation of an Object Schematic.

After identifying objects, the interview notes are examined to determine the
activities/processes that occur in material ordering. The important activities are candidates to be
represented as UOBs (activities, actions, or processes) in the description. However, at this stage
of development, the sequence of the activities is not important. The primary goal is to list the
candidate UOBs (as shown in the following list). These candidate UOBs would be listed in the
IDEF3 UOB pool. It is likely that the list of UOBs is incomplete; however, this is not a matter of
much concern at this stage. The first description yields the following UOBs.

1. Request material.

2. Identify potential suppliers.

3. Identify current supplier.

4. Request bids.

128

5. Evaluate bids.

6. Order requested material.

The second description yields four additional UOBs.

7. Prepare purchase request.

8. Obtain account manager's approval.

9. Obtain authorization signature.

10. Submit signed purchase request.

The final step in the interview analysis involves identifying and listing facts and identifying
the constraints relevant to the processes described by the domain expert. Facts are assertions
made about the objects. Constraints are distinguished conditions that are known to hold between
the objects within a process, or between the processes themselves. To identify the occurrence of
constraints, look for negative terms such as not, never, or no (as well as quantifiers like every,
all, and only) in the recorded verbal description. The list of facts and constraints is likely to be
incomplete early in the development. Further interviews or conversations with the domain expert
will aid in making the lists of facts and constraints more complete. An initial list might include
the following:

1. There are seven current suppliers.

2. No one besides the designated account manager or his or her backup is
allowed to approve purchases against their assigned account.

3. The requester cannot be the same individual as the one who approves or
authorizes the request.

Formulate Process Schematics

Once the initial task of identifying objects, activities, facts, and constraints nears completion,
the IDEF3 Process Schematic (or a set of schematics) is ready to be formulated. The
observations recorded in the interviews are used as the basis for developing the Process
Schematics. Candidate UOBs listed in the data analysis phase will be used in this step to
construct the UOBs. Facts and constraints identified from the interview notes will be used to
construct UOB elaborations. Development of a Process Schematic occurs in two major stages:
constructing UOBs in correct sequence and developing UOB elaborations.

129

Layout Initial Process Schematic

The process of identifying the UOBs and specifying the precedence between them occurs in
several steps.

Step 1. Identify the left-most UOB in the process description, the UOB Request
Material.

Step 2. Identify the next UOB. In this example, two UOBs are possible: Identify
Current Supplier or Identify Potential Suppliers.

The second step implies a split in the process flow, indicating the need to use a fan-out
junction to represent the diverging flow. The analyst must determine the junction type that
initiates the split. In this example, the Purchasing Department can perform only one of the two
alternative activities; therefore, an XOR junction is used. The analyst may find it useful at this
stage to create the partial schematic shown in Figure 5-1.

Request
material x<

Jl

c
Identify
potential
suppliers

2 I

^

Identify
current
supplier

3 1

Figure 5-1
First Steps in Process Schematic Development

If a split in the process had not occurred, the development would have continued with the
sequential drawing of UOB boxes until a split did occur. After a split, each process path is
developed separately. These process paths may or may not converge within the context of the
given description. The order in which the process paths are developed is a matter of preference.

Step 3. The next step is to develop the path that begins with UOB 2. This path
continues sequentially with the UOBs Request Bids, Evaluate Bids, and Order
Requested Material. These UOBs result in the partial schematic shown in Figure
5-2.

130

Identify
potential
suppliers

Request
bids

*

Evaluate
bids

-

Order
requested
material

2 1 4 1 5 1 6 1

Request
material X <

1 Tl

Identify
contract
supplier
3 1

Figure 5-2
Schematic with the First Path Complete

Step 4. The fourth step is to complete the remaining path in Figure 5-2, resulting
in the Process Schematic shown in Figure 5-3. Note that the UOBs retain the
numbers assigned as they were placed in the activities list. The second path also
results in the placement of an order for the requested material. This implies a
convergence in the process flow and the need for a fan-injunction to represent the
convergence. The analyst must determine the appropriate junction type for the
convergence. In this example, only one of the two paths was possible, as
indicated by the fan-out XOR that precedes each path. Therefore, a fan-in XOR
junction is used.

Step 5. When the schematic illustrated in Figure 5-3 is finished, there are still
four activities in the list of potential UOBs. UOBs 7 through 10 are the domain
expert's description of the Request Material UOB. Some analysts find it easier to
begin schematic development at a more detailed level and later create
decompositions to simplify the schematic. Others find it more convenient to
begin schematic development at a higher level of abstraction and begin by only
classifying the activities and viewpoints that they might want to investigate later
through the creation of decompositions. Developing decompositions helps to
keep the schematic simple and also affords the analyst additional opportunity to
collect and organize alternative descriptions of how the Request Material activity
is performed. This choice yields the schematic displayed in Figure 5-4.

131

T3„
>- £.2
HJ 01 ^

T3 <L) <D _

O CT-S
5

t
X «

A
f ^

<D

2 OT

.3 T3
2 -S
u i/->

♦
c/l
ID i/l
3 TJ g-s

eJ
■*

1
,. r—< IT)

<&.2 Ö ^e S3
'5S3 'B D- ggo. «So, -a o 3 de

n
;u

rr

up
p

H"' DHüTI tN i—i — in C)

t 4 i
V
X ; -i

1

3 <U cr-e —
(L> ra

*S

] figure 5- 3
Schems iti c> [ear C omple tit >n

132

Request
material

LJ.
X

Ji

Identify
potential
suppliers
2 1

Identify" ~-
current
supplier
3 1

Request
bids

HE

Evaluate
bids

XI
^

> X
J2

Order
requested
material

XI

Prepare
Purchase
Request

Obtain Account
Manager's
approval

Obtain
authorization

signature

Submit signed
Purchase
Request

1.1.7| 1.1.8| 1.1.9 I 1.1.101

Figure 5-4
Complete Process Description Schematic Before First Review

Develop Elaborations

After the initial Process Schematic has been completed, elaborations must be added to each
UOB as shown in Figures 5-5 through 5-9. In the initial attempt, these may be somewhat
incomplete. One reason for this may be that the primary focus of the analyst in the first
interview is on the objects and activities. This is particularly true in the development of either a
description for a process with which the analyst was unfamiliar or a description of a large,
complex process.

When the analyst is familiar with the process type, more information can be obtained about
the particular process in the first interview. The analyst's questions would reflect this familiarity,
and in the first interview the analyst could determine how the process differs from other systems
of this type. In developing the elaborations, the analyst needs to avoid allowing personal
knowledge of the system type to influence the information placed in the elaborations.

The order in which the elaborations are developed is not important. It may often be useful to
develop elaborations in parallel with developing the Process Schematic because, in some
situations, this may aid the analyst in structuring the schematics. However, for this example, the
initial elaborations were developed after the rest of the Process Schematic was complete. The
elaborations that resulted are shown in Figures 5-5 through 5-9. For brevity in this example, we
have not included the constraint lists in these elaborations. Recall that each link in the Process
Schematic would generate a constraint entry in the elaborations of each linked UOB.

133

USED AT: ANALYST:

PROJECT:

NOTES:

DATE: 08 Feb 1995 X WORKING REVIEWER: DATE:

Process Description Capture

1 2 :M 5 (i 7 » !> I» REV:

DRAFT

RECOMMENDED

RELEASED

UOH
N«.

UOP. Name: Request Material Utin JjiIicO: Request Material

UOBl
Olijruls:

Fads:

Constraints:

Dcscriptinn:

Material
Requestor
Purchase Request

UOB
Nn.

UOB Name: Identify potential suppliers UOH Label: Identify potential suppliers

UOB2
Objects:

Furls:

Cnnslraints:

Descripliim:

Purchasing department
Purchase Request

CONTEXT-SETTING

enario 1

ITEM DESCRIBED: FORM TYRE:

UOB Elaboration REFERENCI Sc Request Material UOB, Identify potential suppliers UOB 1

Figure 5-5
Elaborations for UOBs 1 and 2

USED AT:

UOB
No.

UOB
No.

ANALYST: I M. Modeler DATE: 08 Feb 1995

PROJECT: Process Description Capture

NOTES: 123456789 10
RECOMMENDED
RELEASED

Purchasing department
Current supplier

UOB Name: Identify current supplier

Objects:

Facts: 7 current suppliers.

Constraints:

Description:

UOB Label: Identify current supplier

Material

Purchasing department
Potential supplier

UOB Name: Request bids

Objects:

Facts:

Constraints:

Description:

UOB Label: Request bids

CONTEXT-SETTING
REFERENCE:

ITEM DESCRIBED:
Identify current supplier UOB, Request bids UOB

FORM TYPE:

UOB Elaboration

Figure 5-6
Elaborations for UOBs 3 and 4

134

USED AT: ANALYST:

PROJECT:

NOTES:

I. M. Modeler DATE: 08 Feb 1995 X WORKING REVIEWER: DATE:

Process Description Capture

123456789 10 REV:

DRAFT
RECOMMENDED
RELEASED

UOB
No.

UOB Name: Evaluate bids UOB Label: Evaluate bids

UOB5
Objects:

Facts:

Constraints:

Description:

Purchasing department Bid
Potential supplier

UOB
No.

UOB Name: Order requested material UOB Label: Order requested material

UOB 6
Objects:

Facts:

Accounting and Finance department Purchase Request Current supplier
Purchasing department Purchase Order Chosen supplier

Constraints: Company will always use a current supplier when at all possible.

Description:

CONTEXT-SETTING

;nario 1

ITEM DESCRIBED: FORM TYPE:

UOB Elaboration KEFEKENl '"-'■ Sc Identify current supplier UOB, Request bids UOB 1

Figure 5-7
Elaborations for UOBs 5 and 6

USED AT: ANALYST:

PROJECT:

NOTES:

DATE: 08 Feb 1995 X WORKING REVIEWER: DATE:

Process Description Capture

123456789 10 REV:

DRAFT
RECOMMENDED
RELEASED

UOB
No.

UOB Name: Prepare Purchase Request UOB Label: Prepare Purchase Request

UOB7
Objects:

Facts:

Constraints:

Description:

Requester Project account
Purchase Request

UOB
No.

UOB Name: Obtain Account Manager's approval UOB Label: Obtain Account Manager's approval

UOB 8
Objects:

Facts:

Requester Project account
Purchase Request Account Manager

Backup

Constraints: No one besides the designated Account Manager or his backup is allowed to approve purchases against

Description:

their assigned account.
Requester cannot be the same individual as the one who approves the request.

CONTEXT-
REFERENC

SETTING
J ' Scenario 1

ITEM DESCRIBED:

Identify current supplier UOB, Req

FORM TYPE:

UOB Elaboration lest bids UOB 1

Figure 5-8
Elaborations for UOBs 7 and 8

135

USED AT: ANALYST: I. M. Mode er DATE: 08 Feb 1995 X WORKING REVIEWER: DATE:

PROJECT: Process Description Capture

NOTES: 123456789 10 REV:

DRAFT
RECOMMENDED
RELEASED

UOB
No.

UOB9

UOB Name: Obtain Authorization Signature UOB Label: Obtain Authorization Signature

Objects: Requester Project account
Purchase Request

Facts:

Constraints: Requester cannot be the same individual as the one who authorizes the request.

Description:

UOB
No.

UOBIO

UOB Name: Submit signed Purchase Request UOB Label: Submit signed Purchase Request

Objects: Requester Purchasing department
Purchase Request

Facts:

Constraints:

Description:

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE:
UOB Elaboration KEFEKEN ^: Scenario 1 Identify current supplier UOB, Request bids UOB 1

Figure 5-9
Elaborations for UOBs 9 and 10

Review Process Schematic with Domain Experts

In this example, the analyst has made the elaborations for UOBs 9 and 10 as complete as
possible, and will return it to the domain expert for an evaluation. In this interview, the structure
of the schematic would be evaluated to confirm that it communicates the expert's knowledge
about the scenario. The correctness of the schematics and the elaborations will be confirmed in
this process. The review may indicate that some changes need to be made to the captured
description. This can take the form of additional objects, activities, facts, constraints, or
modifications and deletions to the original lists.

After reviewing the IDEF3 description with the domain expert, the analyst made the
following observations which required changes in the IDEF3 Process Schematic.

1. Not all completed purchase requests require authorization signatures.

2. Purchase requests involving direct projects require an authorization
signature from accounting and finance to prevent billing material to a
contract that isn't set up to handle material purchases. Indirect projects have
no such restrictions.

136

3. No approvals for purchase requests will be made by account managers
without the requester having filled in all the needed information on the
purchase request form.

After the review and interview, the new data is evaluated and the lists updated. The
additional data is incorporated into the description in the following manner.

The following is a list of the added objects:

• Accounting and Finance Department

• Direct projects

• Indirect projects

The following are the additional facts and constraints:

• Not all completed purchase requests require authorization signatures.

• Purchase requests involving direct projects require an authorization
signature.

• No request will be approved unless a purchase request form has been
completed properly.

The additional data and changes suggested by the domain expert are incorporated into the
process description (i.e., schematics and elaboration forms). The resulting Process Schematic is
illustrated in Figure 5-10.

The decomposition of the UOB Request Material has undergone two structural changes.
First, a precedence link with constraints was added to describe the constraint that account
managers will not approve a purchase request until the requester has completed the required
paperwork. Thus, any instance of the UOB "Obtain Account Manager's approval" will always
be preceded by an instance of the UOB "Prepare Purchase Request." The second structural
change is the introduction of junctions to display the fact that not all purchase requests require an
authorization signature.

In the final schematic (See Figure 5-10), the logic associated with junction J3 needs a more
detailed explanation (See Figure 5-11). This is accomplished by developing an elaboration for
junction J3. On the elaboration form, the label field simply identifies the type of junction. The
number field is the number attached to the junction (J3). A junction elaboration form is prepared
to clarify the decision logic associated with the junction. In the case of an XOR junction, the
junction elaboration allows the analyst to fully describe the rules that determine the choice of a
particular path out of the junction.

Another addition to this process description is an elaboration for one of the links (See Figure
5-10). This link elaboration may not have been entirely necessary in a situation this simple;

137

however, it illustrates how a link elaboration can be associated with a particular link. The link is
assigned a number that allows a reader to associate a particular elaboration with the correct link.
This link elaboration will contain relevant information to the link between participating UOBs
and/or referents.

•a —
. U (8
a> w t- -a D <D

O a-2
*o

T

A r \

<L>

2 "> 2, "o a £
W i^i

I
/ w

<D en
3 -O / g"S

Pi -*

>

/

I /

/
£\S Ö <£>•£ «3

Id
en

ti
po

te
nt

su

pp
li

(N /

/

Id
en

t
cu

rr
e

su
pp

l

m

t / ^ i
/Y
X —

/

in cj

PS cr-t-;

oiB —
_—

-a
ID
C <U *_,
ößtrtöl ■H (3 o
OTJ3 3

Es5 o

3 , 1

00

I
X

^

O
bt

ai
n

au
th

or
iz

at
io

n
si

gn
at

ur
e

Os

1
X

3

§«-
" &>
< cd g
.13 H & OO

iSS * .—i

JO i

o

Figure 5-10
Final Process Schematic

138

JSED AT: I^TE ANALYST: I.M. Modeler DATE: 06 Feb 95

PROJECT: Process Description Capture

NOTES: 123456789 10 REV:

wwng
I DRAFT
IRECOMMENDE
I RELEASED

IMfli1 ■BW

Junction
No. Junction Type: XOR

Objects:

Facts:

Constraints: If there is a current supplier, the company will always purchase the item(s) from that supplier.
If there is no current supplier for the needed item, Purchasing identifiers and requests bids from
potential suppliers.

Description:

Junction
No.

Junction Type:

Objects:

Facts:

XOR

Some direct contracts aren't set up to handle material purchases.
Not all Purchase Requests require an authorization signature.

Constraints: Direct projects require an authorization signature.

Description: For direct projects, after the Account Manager approves the purchase, the requester must obtain an
authorization signature from Accounting and Finance to prevent billing material to a contract that isn't set
up to handle material purchases. No other accounts require an authorization signature to proceed with
issuing the Purchase Order.

CONTEXT-SETTING
REFERENCE Scenario 1

ITEM DESCRIBED:

XOR Junctions Jl and J3

FORM TYPE
Junction Elaboration

Figure 5-11
Example Junction Elaborations

fflf Maw i ms. JSED AT ANALYST: i.M. Modeler DATE:08 Feb 95

PROJECT: Process Description Capture
NOTES: 123456789 10 REV:

IRECOMMENDE
I RELEASED

Link
No.

Path No. Source: Destination:

PL6.1

PL6.2

Obtain Account Manager's approval (UOB8)

Obtain Account Manager's approval (UOB8)

"No op"

Obtain authorization signature (UOB9)

Objects: Purchase Request

Constraints: (PL6.2) Those authorizing Purchasing Requests must first ensure that the appropriate Account Manager
or designated backup has approved and signed the Purchase Request form.

Description:

CONTEXT-SETTING
REFERENCE: Decomp 1.1

ITEM DESCRIBED:

Precedence Link 6

FORM TYPE
Precedence Link
Elaboration

Figure 5-12
Precedence Link Elaboration Document

139

Formulate Object Schematic

To provide a detailed characterization of the objects that participate in a process, it is useful
to construct Object Schematics. These are typically developed only for the important objects of
the process description. Object Schematics provide a different view of the process being
described, i.e., an object-centered view. Object Schematics are most often developed after the
Process Schematic; however, some users find it easier to begin with the Object Schematic.

Select Objects of Interest

The first step in formulating an Object Schematic is to select the object or objects of interest.
Suppose that in the Purchase Order process the purchase request is the important object. It may
be useful to conceptualize the purchase request object as transitioning through several states in
the process being described. This would indicate an interest in examining the process from an
object-centered view beginning with the initial development of a purchase request through the
eventual issuance of a purchase order. The following example illustrates the process of
developing an Object Schematic with this focus.

Identify Object States

Having determined the main object of focus, the analyst begins to develop the Object
Schematic by identifying candidate object states. The key object of interest in this case is the
Purchase Request (PR), which requires close examination of perceived changes in its state
through the process. The terminating state, as indicated by the client, is the point at which the
PR finally becomes a Purchase Order (PO). Although there are likely many possible states of a
PO, the client's needs dictate no requirement to explore those states.

The first task for the analyst involves identifying candidate object states. A number of
sources directly identify these states or provide clues to indicate the possibility that domain
experts distinguish certain states. These sources include raw descriptions provided by the
domain expert, candidate UOB names, the objects themselves, and UOB elaboration forms.
Identifying the possible state changes that an object may undergo in a process often requires that
the analyst work with domain experts to either extract or bestow candidate names for object
states.

By reviewing the data provided in the interviews, the analyst produces a list of candidate
object states like the following list.

PR: Unprepared

PR: Prepared

PR: Approved

PR: Approved requiring authorization

140

PR: Authorized

PR: Submitted

PO: Issued

This list is likely to undergo change through the identification of logically identical states,
through name refinement, and through the identification of previously unnamed or unrecognized
states.

Layout Initial Object Schematic

The process of organizing the identified object states into a Transition Schematic occurs as
follows:

Step 1. The first step is to identify the initial, or leftmost object state in the
schematic. In this example, the leftmost object state is labeled PR: Unprepared.

Step 2. The second step is to identify the next state or states to which the object
can transition. In this example, the PR transitions from an unprepared state to a
prepared state.

Figure 5-13
Initial Transition Schematic

Step 3. The third step is to repeat steps 1 and 2 until all the possible state
transitions are identified.

It is generally helpful to identify and document one transition path at a time before
attempting to develop a schematic illustrating all possible paths. In this example, the first point
where alternative paths are encountered occurs when a PR is approved by the account manager.
At this point, the PR may require authorization. If no authorization is required, the PR may be
submitted to Purchasing. This yields the Transition Schematics illustrated in Figures 5-14 and
5-15.

Figure 5-14
Transition Schematic for Path where Authorization is Not Required

141

Figure 5-15
Transition Schematic for Path where Authorization is Required

Add Junctions As Required

The fourth step involves combining the two paths into a single schematic by introducing the
appropriate logical junction(s).

Attach Referents

Once the possible paths have been identified and integrated to reflect alternative state
transition paths, referents for participating UOBs, scenarios, and other Transition Schematics will
be identified and attached to appropriate points on the schematic. This step yields Figure 5-17.

Develop Elaborations

Once the initial Transition Schematic is completed, elaborations must be added to more fully
characterize the identified object states as shown in Figures 5-18 through 5-20. In developing the
elaborations, the analyst needs to avoid allowing his knowledge of the system type to influence
the information placed in the elaborations.

The order in which the elaborations are developed is not necessarily important. It is often
useful to develop elaborations in parallel with the rest of the Object Schematic. In particular,
concurrent development of the Transition Schematic and associated elaborations may lead to the
discovery of previously unidentified states. This example, however, illustrates a situation where
the initial elaborations are developed after the Transition Schematic is complete.

142

Figure 5-16
Combined Transition Schematic Combining Figures 5-14 and 5-15

143

0\

U
O

B
/O

bt
ai

n
A

ut
ho

ri
za

tio
n

Si
gn

at
ur

e

ano \

oo

U
O

B
/O

bt
ai

n
A

cc
ou

nt

M
an

ag
er

A

pp
ro

va
l

[> <)

/ "°

r^

U
O

B
/P

re
pa

re

Pu
rc

ha
se

R

eq
ue

st

1 d

Figure 5-17
Complete Schematic Before First Review

144

mmam BBWEWBF m^ JSED AT ANALYST:!.M. Modeler DATE:08 Feb 95
PROJECT:Process Description Capture
NOTES: 12345G789 10 REV;

RECOMMENDED!
RELEASED

Object
State
No.

Object State Name:

Label:

PR: Prepared

PR: Prepared

Transitions From Object State(s):

Transitions To Object State(s):

PR: Prepared

PR: Approved
PR: Approved requiring authorization

Facts:

Constraints:
State Conditions: The Purchase Request form must include the item description, the number of items

needed, the required receipt date (if applicable), the number of the account that will
fund the purchase, a written justification for the stated need, and the requester's printed
name and signature.

Exit Conditions:

Other:

Description:

CONTEXT-SETTING
REFERENCE:

ITEM DESCRIBED:
Scenario 1 I Object State 2 - PR: Prepared

FORM TYPE
Object State Elaboration

Figure 5-18
Elaboration for Object State PR: Prepared

TJBEDAT: ANALYST: I. M. Model er DATE 08 Feb 1995 X WORKING REVIEWER: DATE

PROJECT: Process Description Capture

NOTES 12345678910 REV:

DRAFT
RECOMMENDED
RELEASED

Object
State
No.

OS 4

Objec t State Name: PR: Approved requiring authorization

Labe]- PR: Approved requiring authorization

Transitions From Object State(s): PR: Approved

Transitions To Object State(s): PR: Authorized

Facts: Not all completed Purchase Requests require authorization signatures.

Constraints:
State Conditions: Purchase involves use of Direct project funds.

Purchase Request form has been signed by the Account Manager or designated backup.

Exit Conditions:

Other:

Descrptioir.

CONTEXT-SETTING ITEM DESCRIBED: FORM TYPE
Object State Elaborati Scenario 1 Object State 4 - PR: Approved r eqi liring authorization on |

Figure 5-19
Elaboration for Object State PR: Approved requiring authorization

145

IBEDAT: er TlATF. OX Feh 1995 X WORKING REVIEWER: DATE

PROJECT: Process Description Capture

NOTES 12345678910 REV:

DFÄFT
RECOMMENDED
RFI .EASED

Obje et
State

N>.

OS5

Object State Mime: PR: Authorized

Label: PR: Authorized

Transitions From Object State(s): PR: Authorized requiring signature

Transitions To Object Sate(s): PR: Submitted

Facts:

Constraints:
State Conditions: Authorizing official has signed the Purchase Request form.

Approving official is not identical with the individual authorizing me Purchase Request.

Fxit Conditions:

Other

Inscription:

CONTEXT- SETTING ITEMDESCRBEO: FORM TYPE
Object State Elaborat REFEKENC] " Scenario 1 Object State5 -PR: Authorized on 1

Figure 5-20
Elaboration for Object State PR: Authorized

Review Object Schematic with Domain Experts

As with the Process Schematic, the correctness of the Object Schematic and associated
elaborations are confirmed through validation with the domain expert. After reviewing the
Transition Schematic, the domain expert observes that the allowable state transitions displayed in
the schematic do not include those representative of a failed request. Earlier descriptions
provided by the domain expert represented the typical case and had not included situations where
approval had been withheld or when authorization had been denied. The domain expert's
response introduced two entirely new object states.

1. PR: Disapproved

2. PR: Unauthorized

The domain expert also identified transitions through which the identity of the object was
preserved and transitions where the object was actually transformed into an entirely different
object. The domain expert's comments to the analyst yield the schematic depicted in Figure
5-21.

146

VO
U

O
B

/O
rd

er

R
eq

ue
st

ed

M
at

er
ia

l

1 cd

CO T3 i
rri v J
CQ c <
O .t*0 '

oo

U
O

B
/O

bt
ai

n
A

cc
ou

nt

M
an

ag
er

A

pp
ro

va
l

Figure 5-21
Completed Transition Schematic

Additional context-setting information is then added to the Transition Schematic as required.
For example, the domain expert's description indicated that purchase requests involving direct
projects require an authorization signature. Additionally, the description included discussion of a
constraint that account managers or their designated backups must approve all requests involving

147

their projects. This information is noted directly on the schematic. The resulting Object
Schematic is displayed in Figure 5-22.

^O

PO B

Figure 5-22
Final Object Schematic

148

SECTION 6

UNDERSTANDING IDEF3 PROCESS DESCRIPTIONS

The main purpose of an IDEF3 Process Description is to provide an accurate representation
of how a particular system or organization works. An IDEF3 Process Description captures the
factual descriptions of the process flow and object state transitions associated with a particular
scenario. Reviewers of IDEF3 descriptions may not create them, but must validate the facts in
the descriptions. Readers of IDEF3 descriptions may need to acquire knowledge from
descriptions that others have created. The general procedure for reading and understanding
IDEF3 process descriptions is addressed in this section.

An IDEF3 schematic, whether a Process Schematic or an Object Schematic, is usually read
starting with the leftmost element in the schematic. Conventionally, a schematic is read from left
to right. To obtain an overview of the described scenario, a mental walkthrough of the schematic
is performed. During a mental walkthrough of a Process Schematic, for example, the reader
notes precedence relationships and the logical layout of the UOBs. Such a reading will provide a
general understanding of the system. Further details of a description may be obtained by reading
each UOB and link with their elaborations or descriptions. A comprehensive understanding of
the IDEF3 Process Description can be obtained by systematically studying the logic in the
schematics.

Description Reading Steps

The facts collected about a system are structured in the IDEF3 Process Description as a set of
Process Schematics, Object Schematics, and their associated elaboration language statements.
The approach to reading IDEF3 schematics depends on the reader and the amount of information
the reader expects to derive.

Because the schematic reading process is highly individualized, it is difficult to express the
process in a strict algorithmic format. For example, some people first scan the schematic, then
break it up into logical pieces that are easier to understand. In Process Schematics, for example,
logical groupings may be created and analyzed to understand the relationships between the
UOBs and links in selected portions of the schematic. Once the meaning of the smaller pieces of
the schematic IS understood, the larger picture becomes evident by taking into account the
junctions and their associated logic.

The approach to reading an IDEF3 Process Description can be summarized as follows:

1. Carefully read the statement of purpose, the statement of scope, the
objective of the scenario being described, and the viewpoint of the IDEF3
process description.

149

2. Scan the individual schematic elements (e.g., UOBs, links, junctions, object
states) from left to right to gain a general impression of what is being
described and to understand generally the structure and logic of the
description.

3. Partition the schematic from left to right into logical groupings or structures
of schematic elements. Logical groupings are collections of elements that
constitute a convenient partitioning of the schematic, enabling systematic
review. These groupings most often coincide with process paths (in Process
Schematics) or transition paths (in Object Schematics) and may themselves
contain logical subgroupings. To achieve a better understanding of the
description, these groupings and subgroupings may have to be partitioned in
the same manner that the overall diagram was partitioned.

4. Starting with the first element in the left-most grouping, read the schematic
from left to right using the following guidelines.

a. For Process Schematics, read the UOBs and their elaborations. For
Object Schematics, read the object states and their elaborations.

b. Examine the links (precedence links in Process Schematics and
transition links in Object Schematics), noting the constraints
displayed on the links and the information in the link elaborations.

c. Study all referents and notes within the bounds of the selected
grouping.

d. Conduct a mental walkthrough of the description, one basic
grouping at a time.

e. When junctions are encountered, follow the paths noting the
conditions under which a path will be selected and those under
which other paths will be followed.

For more casual readers, a simpler approach is often used. This simpler approach is
described in the next section.

Quick Reading of IDEF3 Process Descriptions: An Example

More casual readers of an IDEF3 Process Description will follow a process similar to that
described in the preceding section. However, they can expect that as they gain experience in the
process, their approach will become personalized. An example approach for reading a schematic
is described in the following steps. This outline for reading a schematic would be repeated, with
few modifications, for all decompositions, whether found in a Process Schematic or an Object
Schematic. In general, decompositions are read after the parent schematic has been read and
understood.

150

The Big Picture

A crucial step in the description-reading process is to understand the big picture relevant to
the real-life situation described. This big picture can be gained by reading and understanding the
statement of purpose, statement of scope, objective of the scenario being described, and
viewpoint of the IDEF3 Process Description. These parts of the description bind the scope of the
schematic and tell readers (particularly those familiar with the process being described) what to
expect in the top-level schematic. They also indicate the level of detail anticipated.

Scan the Schematic

Readers should become familiar with the scenario by scanning the schematic from left to
right. This involves becoming familiar with the individual elements (e.g., UOBs, links, and
junctions) displayed in the schematic. This is not an in-depth study of the schematic; rather, it
provides readers with a general impression of the process being described and an overall
understanding of the logic flow in the scenario.

Understand the Description

In this step, readers gain a detailed understanding of the schematic associated with a scenario,
object, or a decomposition of a schematic element. This is the part of the communication process
that is most individualized and requires the most time. It is helpful to partition the schematic into
understandable pieces. Although there is no "right" or "wrong" way of partitioning a schematic,
a partitioning procedure based on the structure of the schematic is often helpful. This approach
will be illustrated using an example Process Schematic. Following this example, an illustration
of the same concepts applied to an Object Schematic is presented.

The example IDEF3 Process Schematic shown in Figure 6-1 can be partitioned along
structural lines as indicated in Figure 6-2.

» Ho
n~

& -<
J2

> &
J3

J4

Figure 6-1
Example IDEF3 Process Schematic

151

Figure 6-2
Example Partitioning of Figure 6-1

In Figure 6-2, the schematic has been partitioned into four major groupings: A, B, C, and D.
These groupings represent four process paths. An examination of these groupings reveals that B
can be further partitioned into subgroupings bl, b2, b3, and b4. Once the desired groupings and
subgroupings have been established, analysis of the individual structures can begin.

Numbering the groupings 1 through 8 (see Figure 6-3) and starting with grouping 1 on the far
left of the description, readers typically proceed from left to right and perform the following
activities:

1. Read the UOBs and their elaborations.

2. Examine links and note the information found in the link elaborations.

3. Consider all referents and notes within the bounds of the selected grouping.

After understanding grouping 1, the reader will study either grouping 6 or grouping 7. Note
that junction Jl is not immediately considered at this stage. Starting with grouping 6, each of the
subgroupings 2 and 5 (themselves groupings) will be analyzed. The analysis of grouping 2
means that one UOB and its elaboration must be studied. Grouping 5 is a complex grouping
which will be first subdivided into groupings 3 and 4. After completing the study of groupings 3
and 4, grouping 6 is analyzed in its entirety. This process involves understanding the logic of the
grouping that includes the J2 fan-out junction from grouping 2 to groupings 3 and 4. To
understand junction J2, readers examine the two paths leading from it and note the conditions of
flow to these paths. In general, the logic of a junction is analyzed by following all of the paths
leading in or out of it, and noting the conditions under which each path will be selected. The
study of grouping 5 is completed by analyzing the logic of the fan-injunction J3.

152

Figure 6-3
Analyzing the Groupings

The reader would then attempt to understand grouping 7. After completing the analysis of
grouping 7, reading of the description will continue with the analysis of fan-out junction Jl. The
reader would perform a mental walkthrough of the process starting from grouping 1, noting the
conditions under which the flow would branch at the junction and the conditions governing each
fan-out path. In this case, the reader would notice the presence of a constrained precedence link,
indicating a need to closely examine the associated precedence link elaboration form.

The next descriptive element of the diagram to be analyzed is the fan-injunction J4 that
enables merging of the process paths emerging from groupings 6 and 7. Readers would do a
mental walkthrough that involved analyzing the logic of junction J4, noting the conditions under
which the two process paths converge.

Finally, grouping 8 is analyzed by reading UOB 8 and its elaboration, and considering any
referent that may be attached to it. After this, readers may want to do a complete mental
walkthrough of the entire diagram. This will involve starting again at the left end of the
schematic and continuing through to grouping 8, considering all the junctions.

The mental walkthrough process for Object Schematics is very similar to that of Process
Schematics. The example IDEF3 Object Schematic shown in Figure 6-4 can be partitioned as in
Figure 6-5.

First, the schematic is partitioned into five major groupings: A, B, C, D, and E. For the most
part, these groupings center around the four transition links (one of which is a disjunctive
junction having two paths). Grouping D centers around a single object state rather than a
transition link, treating the state and its attached referent as a single logical unit. Groupings A
and B in this example have been further partitioned to include subgroupings al and bl.

153

Figure 6-4
Example IDEF3 Object State Transition Schematic

Figure 6-5
Example Partitioning of Figure 6-4

154

These groupings can then be numbered as items 1 through 7 (see Figure 6-6). Starting with
grouping 1 on the far left of the schematic, readers will typically proceed from left to right while
performing the following activities:

1. Read the object states and their elaborations, paying particular attention to
state and exit conditions.

2. Examine the transition links and their elaborations, paying particular
attention to transition and exit conditions.

3. Consider all context-setting objects, non-transition relations, and notes
within the bounds of the selected grouping.

Figure 6-6
Analyzing the Groupings

The process of reading the schematic then proceeds using almost the same pattern as that
used for reading the Process Schematic, with a few slight differences. Unlike the partitioning
process typically used for the Process Schematic—where groupings and subgroupings tend to
form in a strictly hierarchical fashion—Object Schematic groupings tend to overlap with other
groupings and to exhibit hierarchical structure. Whereas the context for reading and
understanding Process Schematic groupings is established by their place in the hierarchy, the
context for understanding an Object Schematic grouping is established by the left-most object
state(s) in the grouping. Hence, while proceeding left to right in a schematic, readers will, to

155

some extent, repeat their study of overlapping object states. The first reading of an overlapping
object state focuses primarily on the transition and entry conditions associated with the transition
link leading to the object state. The second reading focuses primarily on its state and entry
conditions. By conducting both readings—where the first reading considers the object state as
the right-most element in the grouping and the second reading considers the object state as the
left-most element in the neighboring grouping—reviewers gain a clear picture of an object's state
transition behavior. As with the Process Schematic, another complete review of the schematic
serves to solidify understanding of the description.

156

BIBLIOGRAPHY

Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23,
123-154.

Allen, J., & Hayes, P. (1987, December). Moments and points in an interval-based temporal
logic. Technical Report (TR 180), Departments of Computer Science and Philosophy,
University of Rochester.

Balci, O., & Nance, R. E. (1987). Simulation model development environments: A research
prototype. Journal of the Operational Research Society, 38(8), 753-763.

Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge, MA: MIT Press.

Brachman, R. J. (1985). On the epistemological status of semantic networks. In Brachman, R.
J., & Levesque, H. J. (Eds.), Readings in Knowledge Represenation. Los Altos, CA:
Morgan Kaufmann Publishers, Inc. 191-215.

Coleman, D. S. (1989). A framework for characterizing the methods and tools of an integrated
system engineering methodology (ISEM) (draft 2, rev. 0). Santa Monica, CA: Pacific
Information Management, Inc.

Cross, S. (1983). Qualitative reasoning in an expert system framework. Technical Report
(T-124). Urbana, IL: University of Illinois Coordinated Science Lab.

Cullinane, T., McCollom, N., Duran, P., & Thornhill, D. (1990). The human elements oflDEF.
Unpublished manuscript.

D. Appleton Co., Inc. (1985). Integrated Computer-Aided Manufacturing (ICAM): Information
Modeling Manual, IDEF1—Extended (IDEFIX) (F33615-80-C-5155), Albany, New York:
General Electric Company.

De Kleer, J., & Brown, J. S. (1984). A qualitative physics based on confluences. Artificial
Intelligence, 24, 7-83.

De Kleer, J. (1979). Causal and teleological reasoning in circuit recognition (TR-529).
Cambridge, MA: MIT AI Lab.

Devlin, K (1991). Logic and information, volume I: situation theory. Cambridge, MA:
Cambridge University Press.

Enderton, H. (1972). A mathematical introduction to logic. New York, Academic Press.

Forbus, K., (1984). Qualitative process theory. Artificial Intelligence, 24, 85-168.

157

General Electric. (1985). Integrated information support system (IISS), volume 5: common data
model subsystem; part 4: information modeling manual (DTIC-A181952). General
Electric.

Genesereth, M. R., & Fikes, R. E. (1992). Knowledge interchange format version 3.0-
reference manual, report logic-92-1. Logic Group, Stanford University, CA.

Gödel, K. (1931). Über Formal Unentscheidbare Sätze der Principia Mathematica und
Verwandter Systeme, I. Monatshefte Für Mathematik und Physik 38, 173-198.

IDEF Users Group. (1990). IDEF: framework, draft report (IDEF-U.S.-OOOl). Dayton, OH:
IDEF Users Group.

International Standards Organization. (1987, July). Information processing systems: concepts
and terminology for the conceptual schema and the information base (ISO/TR 9007).
International Standards Organization.

Knowledge Based Systems, Inc. (1991). Formal foundations for an ontology description
method, (KBSI-SBONT-91-TR-01-1291-02). College Station, TX: Knowledge Based
Systems, Inc. (1991).

Knowledge Based Systems, Inc. (1991). Knowledge based information model integration.
Final Technical Report, NSF SBIR, No. ISI-9060808. College Station, TX: Knowledge
Based Systems, Inc.

Knowledge Based Systems, Inc. (1991). The nature of ontological knowledge: A
manufacturing systems perspective (KBSI-SBONT-91 -TR-01 -1291 -01). College Station,
TX: Knowledge Based Systems, Inc.

Knowledge Based Systems, Inc. (1991). Ontology acquisition method requirements document
(KBSI-SBONT-91-TR-01-1291-03). College Station, TX: Knowledge Based Systems, Inc.

Knowledge Based Systems, Inc. (1991). Ontology capture tool requirements document (KBSI-
SBONT-91-TR-01-1291-04). College Station, TX: Knowledge Based Systems Inc.

Knowledge Based Systems, Inc. (1991). Reliable object based architecture for intelligent
controllers. DARPA SBIR 91-050. Contract No. DAAH01-91-C-R235.College Station,
TX: Knowledge Based Systems, Inc.

Knowledge Based Systems, Inc. (1992). IDEF4 method report. College Station, TX:
Knowledge Based Systems, Inc.

Knowledge Based Systems, Inc. (1992). Ontology capture tool: object-oriented design
document (KBSI-SBONT-9l-TR-0292-01). College Station, TX: Knowledge Based
Systems, Inc.

158

Knowledge Based Systems, Inc. (1991). IDEF5 method report. Prepared for Armstrong
Laboratory, Logistics Research Division, Wright-Patterson AFB, Ohio.

Kripke, S. (1963). Semantical considerations on modal logic. Acta Philosophica Fennica, 16,
39-48.

Lin, M. J. (1990). Automatic simulation model design from a situation theory based
manufacturing system description. Unpublished doctoral dissertation, Texas A & M
University, College Station, TX.

Link, G. (1983). The logical analysis of plurals and mass terms: A lattice theoretic approach.
In R. Bauerle (Ed.), Meaning, use, and interpretation. Berlin: De Gruyter.

Mayer, R. J. (1988). Cognitive skills in modeling and simulation. Unpublished doctoral
dissertation, Texas A&M University, College Station, TX.

Mayer, R. J. (Ed.). (1990). IDEF0 function modeling: A reconstruction of the original Air
Force report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J. (Ed.). (1990). IDEF1 information modeling: A reconstruction of the original Air
Force report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J. (Ed.). (1990). IDEFIX data modeling: A reconstruction of the original Air Force
report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J., et al. (1987). Knowledge-based integrated information systems development
methodologies plan, (vol. 2) (DTIC-A195851).

Mayer, R. J., Menzel, C. P., & de Witte, P. S. (1991). IDEF3 technical report. WPAFB, OH:
AL/HRGA.

Mayer, R. J., Menzel, C. P, & Mayer, P. S. (1991). IDEF3: A methodology for process
description, WPAFB, OH: AL/HRGA.

Mayer, R. J., Edwards, D. A., Decker, L. P., & Ackley, K. A. (1991). IDEF4 technical report.
WPAFB, OH: Al/HRGA.

Mayer, R. J., deWitte, P. S., Griffith, P., & Menzel, C. (1991). IDEF6 concept report. WPAFB,
OH: AL/HRGA.

Mayer, R. J., & de Witte, P. S. (1991). Framework research report. WPAFB, OH: AL/HRGA.

Mayer, R. J., & Painter, M. K. (1991). IDEF family of methods. College Station, TX:
Knowledge Based Systems, Inc.

Mayer, R. J., & Wells, M. S. (1991). Integrated development support environment (IDSE)
concepts and standards. WPAFB, OH: AL/HRGA.

159

Menzel, C, Mayer, R. J., & Edwards, D. (1994). IDEF3 process descriptions and their
semantics. In A. Kuziak, & C. Dagli (Eds.), Intelligent systems in design and
manufacturing. New York: ASME Press.

Menzel, C. P., & Mayer, R. J. (forthcoming). A situation theoretic approach to the
representation of processes. Proceedings of Working Conference on Models and
Methodologies for Enterprise Integration. New York: Chapman Press.

Menzel, C. P., & Mayer, R. J. (1990). IDEF3 formalization report. WPAFB, OH: AL/HRGA.

Neches, R., etal. (1991). Enabling technology for knowledge sharing. AI Magazine, 12(3),
36-56.

Overstreet, C. M., & Nance, R E. (1985). A specification language to assist in analysis of
discrete event simulation models. Communications of the ACM, 28(2), 190-201.

Painter, M. K. (1990). Modeling with an IDEF perspective: some practical insights. In
Proceedings, SMEAutoFact 90. Dearborn, MI: Society of Manufacturing Engineers.

Pegden, C. D. (1982). Introduction to SIMAN. State College, PA: Systems Modeling
Corporation.

Poole, D. (1990). A methodology for using a default and abductive reasoning system.
Internationaljournal of Intelligent Systems, 5, 521-548.

Pritsker, A. A. B., & Pegden, C. D. (1979). Introduction to simulation and SLAM. New York:
Halsted Press.

Ross, D. T. (1985, June). SADT today: A retrospective on an idea. IEEE Computer Magazine
(special issue on Requirements Engineering).

(1981). Integrated Computer-Aided Manufacturing (ICAM): Function Modeling Manual
(IDEF0) (AFWAL-TR-81-4023, Volume IV). Wright-Patterson Air Force Base, OH:
Materials Laboratory, Air Force Wright Aeronautical Laboratories.

(1981). Integrated Computer-Aided Manufacturing (ICAM): Information Modeling Manual
(IDEFI) (UM 110231200). Wright-Patterson Air Force Base, OH: Materials Laboratory,
Air Force Wright Aeronautical Laboratories.

(1981). Integrated Computer-Aided Manufacturing (ICAM): Dynamics Modeling Manual
(IDEF2) (UM 110231300). Wright-Patterson Air Force Base, OH: Materials Laboratory,
Air Force Wright Aeronautical Laboratories.

Soley, R. M. (Ed.). (1990). Object management architecture guide. Farmington, MA: Object
Management Group, Inc.

Tarski, A. (1956). Logic, semantics, and metamathematics. Oxford: Oxford University Press.

160

van Benthem, J. (1983). The logic of time. Dordrecht, Holland: D. Reidel Pub. Co.

Zachman, J. (1986). A framework for information systems architecture. IBM Systems Journal,
26(3), 276-292.

161

(This page inttentional left blank)

162

APPENDIX A: IDEF3 ELABORATION LANGUAGE

This appendix contains a detailed description of the IDEF3 elaboration language including a
Backus-Naur form (BNF) specification. The IDEF3 elaboration language is broken into two
parts: a core language that defines that basic syntactic apparatus and associated logical axioms
needed in almost any logical language, and an extension of the core language that includes
additional syntactic apparatus, definitions that introduce specialized terms for talking about
situations, UOBs and other IDEF3 specific entities, and axioms that constrain their basic use.
The core language is loosely based on the Knowledge Interchange Format (KIF) (Genesereth &
Fikes, 1992), though a number of constructs—set theoretic ones, in particular—are omitted. In
Section A.l, each syntactic category of the core is discussed and examples are given to illustrate
how elements of the category are used. A formal BNF is then specified in Section A.2, and a
number of definitions and concomitant axioms are provided. An overview of situation theory is
provided in Section A.4 to motivate the IDEF3-specific extensions that are introduced. The basic
behavior of these extensions is then axiomatized with commentary in Section A. 5.

A.l Description of the Elaboration Language Core

A.l.l Basic Syntactic Types

The basic syntactic types of the elaboration language core are quite standard. They include
the following:

• Letter: Letters are the upper and lower case letters of the alphabet.

Digits: The numerals 0 to 9. Positive digits are the digits from 1 to 9.

• Identifier: An identifier is any string of letters, digits, dashes, and
underscores that begins with a letter and ends with a letter or digit.

Punctuation: Punctuation consists of the ASCII characters that are neither
letters nor digits.

Polarity: A polarity is either the plus sign "+" or the minus sign "-". These
play a special role in terms denoting infons.

Posint: A posint is any sequence of digits of length greater than 0, i.e.,
intuitively, any numeral that denotes a positive integer. It must begin with a
positive digit unless it is simply the digit 0.

Unsigned int: An unsigned int is the digit 0 or a posint.

Int: An int is either an unsigned digit or a minus sign "-" followed by a
posint.

163

Exponents: An exponent is the letter "E" or "e" followed by an int.

• Float: A float is either an int followed by an exponent, or an optional plus
or minus sign followed by an int, followed by a decimal point, followed by a
string of digits, followed by an exponent.

Number: A number is either an integer or a floating point.

• String: A string is any sequence of ASCII characters (including white
space) preceded by and ending with the double quote character """.

• Variable: A variable is any identifier preceded by a question mark "?."
The variables of the core IDEF3 elaboration language are completely
untyped; no distinction is made even between relation variables and
individual variables, a distinction that is drawn in most logical languages.
Rather, typing is enforced by means of IDEF3 specific axioms and
definitions that introduce the basic semantical categories of the intended
semantics language and characterize their properties and the relations
between them; see Section A.3.

A. 1.2 Operators

Operators are reserved expressions used to form more complex expressions, specifically,
terms, sentences, and definitions. The operators that are part of the IDEF3 Elaboration Language
are presented in this subsection.

Definition Operators: These operators are used to form definitions for
identifiers that are intended to denote an object in one of the basic semantic
categories of the language: define-individual, define-function, and define-
relation.

Term Operators: These operators are used to form complex terms. There
are six such operators: Iistof, the, number-of, if, cond, lambda, and
kappa.

Sentence Operators: These operators are used to form complex sentences.
The IDEF3 Elaboration Language includes common Boolean and related
truth functional operators (not, and, or, xor (exclusive disjunction), =>
(implication), and <=> (co-implication). It also includes the standard
universal and existential quantifiers forall and exists, as well as an array of
numerical existential quantifiers exists-1 (there exists at least one—
equivalent simply to exists) existsM (there exists exactly one), exists-2
(there exist at least 2), exists!-2 (there exist exactly two), and so on.

164

A. 1.3 Terms

The IDEF3 Elaboration Language supports three types of expressions: terms, sentences, and
definitions. A term denotes an object of some sort, though exactly what sort is not determined by
the language itself (unlike highly typed languages) but rather separately by means of special
axioms (as illustrated below). Terms are divided into the following categories:

• Atomic Terms: This category includes all the central simple types of the
language, viz., identifiers, variables, ints, floats, and strings.

Complex Terms: A complex term is a term that is built up, ultimately from
simpler terms and (perhaps) a sentence and/or operator. The simplest sort of
complex term consists merely of a list of identifiers. The grammar of the
language allows one to form such terms regardless of what those terms
mean. Thus, one could form a term such as, "(Plato Socrates)." However, a
complex term of this sort containing n+\ terms is semantically meaningful
only if the first term is an «-place function. Thus, in the semantics for the
elaboration language "(Plato Socrates)"—assuming the terms "Plato" and
"Socrates" mean the philosophers Plato and Socrates, respectively—will be
considered meaningless; more precisely, the term will denote a special
"empty" individual known as null.

Term operators are used to form the other classes of complex terms. The expression listof
forms a list, or sequence, from its arguments. Thus, the term "(listof 2 3)" denotes the two-
element list consisting of the numbers 2 and 3, in that order. Semantically, lists are treated as
finite sequences, i.e., functions on proper initial segments of the positive integers.

The terms if and cond are used to form conditional terms, i.e., terms whose denotations
depend on which of several mutually-exclusive conditions hold. Thus, the term

(if (< (age-of ?x) 18) Galen (sister-of Galen))

denotes Galen if ?x is under 18, and it denotes Galen's sister otherwise. Terms formed
with operator cond work similarly, only they allow the specification of multiple
conditions. Suppose that Larry is talking about some unspecified politician. Since there
is exactly one such politician that he is talking about (let it be supposed), a corresponding
term for that politician can be given a complete definition:

(defme-individual POL := (the ?x (and (politician ?x) (talking-about Larry ?x))))

If one knew in addition that the object of Larry's attention had to be either the President,
Vice-President, or Speaker of the House (in August 1995), then one could denote the
object more specifically by means of the complex term:

165

(cond (president POL) Bill)
(vice-pres POL) Al)
(speaker POL) Newt),

which picks out Bill Clinton if Larry is talking about the President, Al Gore if Larry is
talking about the Vice-President, and Newt Gingrich if Larry is talking about the Speaker.
Such terms are especially useful in situations where one knows only that the object in a
given situation will be one of several objects that can be distinguished by appropriate
conditions. Without knowing which in particular it will be, one can nonetheless form a
term that picks out the right object depending on which condition holds.

The remaining operators are "variable binding" operators, i.e., they use a variable and some
condition involving the variable or variables they bind to specify their denotations. The
expression the forms a "definite description" term that denotes the unique object satisfying the
description in question. So, for example, (the ?x (current-U.S.-president ?x)) denotes (in 1995)
Bill Clinton. Note that a necessary and sufficient condition for a definite description term "(the
?x j)"—where j is any "description" (i.e., sentence; see below)—to denote is that one and only
one thing that is described by j. Thus, since there are many politicians, the term "(the ?x
(politician ?x))" does not denote; or, rather, in the semantics of the elaboration language, it
denotes the empty object null.

Similarly, number-of is used to form terms that denote the number of things satisfying a
certain description. Thus,

(number-of ?x (and (integer ?x) (> ?x 0) (< ?x 5)))

denotes the number of integers greater than 0 and less than 5, i.e., the number 4.

The operators lambda and kappa are used to form terms that, when semantically
meaningful, denote functions and relations. Thus, letting "*" stand for multiplication, the
term

(lambda (?x ?y) (+ ?x (* ?y ?y)))

denotes the 2-place function that takes a pair of numbers m and n to the sum of m and the
square of«. Similarly, the kappa operator enables one to form terms for complex
properties and relations. Thus, the term

(kappa (?x ?y) (and (person ?x) (house ?y) (owns ?x ?y)))

is the ownership relation that holds between a homeowner and his or her home.

As noted, terms formed from kappa, in which kappa binds only a single variable, denote
properties, or kinds. And, because object states are viewed as a subclass of kinds, they too can be
thought of as properties. Hence, in these cases, a convention will be to allow the use of kind-of
to denote kinds and states. Thus, for instance,

166

(kind-of ?x (and (person ?x) (> (age-of ?x) 40) (< (age-of ?x) 60))

denotes the kind person over 40 but under 60. Similarly,

(kind-of ?x (and (person ?x) (sleeping ?x))

is the way the elaboration language expresses the state that would be indicated by
person:sleeping in a state transition schematic.

An untyped language with operators like lambda and kappa are, of course, prime candidates
for paradox. For instance, the syntax of the language permits the formation of the term

(kappa ?r (forall ?x (<=> (?r ?x) (?x ?x)

which is the infamous Russell property of non-self-exemplification, the property true of
exactly those properties that are true of themselves. Such properties can cause trouble,
however, only in the context of a logic from which a paradox can arise—in particular, a
logic that includes the naive comprehension principle (<=>][varlterm\ ((kappa var])
term)), where j [var/term] is the result of replacing all free occurrences of the variable var
in the sentence j with term.15 We will assume the adoption of some appropriate logic in
which such paradoxes are avoided.16

A.1.4 Sentences

Intuitively, sentences are expressions that can be true or false. They come in three basic
varieties in the elaboration language: atomic sentences, Boolean sentences, and quantified
sentences. Atomic sentences are simple sentences consisting of two or more terms. Special
cases include equality and inequality sentences, e.g., (= Mark_Twain Samuel_Clemens), and
inequality, (/= Shakespeare Roger_Bacon). Similar to functions, any series of terms surrounded
by parentheses is a legitimate atomic sentence. However, in order to have any chance of being
true, such a sentence must consist of an «-place relation followed by n terms. All other sentences
are deemed false in the semantics.

All nonatomic sentences are built up recursively from atomic sentences and logical operators.
Complex sentences are of two sorts: standard Boolean sentences, built up using the Boolean and
other truth functional operators, and quantified sentences, built up using the quantifiers.
Examples of Boolean sentences, playing the role of descriptions in terms, have already been seen

15 An occurrence of a variable var in a sentence or term e occurs free in e just in case it does not occur within
an expression of the form (OP var y) or (OP (yar\ ... var ... varn) y) or OP (var\ ... var ... varn : q) y) in e,

where OP is (in the first form) the term-op 'the' or one of the numerical quantifiers 'exists-1', 'existsl-1,'
'exists-2', exists!-2', etc., or (in any of the three forms) one of the quantifiers 'forall', 'exists.'

16 More accurately, avoided as we know. For reasons first uncovered by the famous work of the logician Kurt
Gödel, it is not possible to prove (without begging the question) that any reasonably powerful theory is free of
contradiction. See [Gödel 31] or, for a more readable account in English, [Enderton 72], Ch. 3.

167

above, e.g., (and (person ?x) (> (age-of ?x) 40)). These examples, however, all involve free
variables. If these variables are replaced by actual names, they become closed sentences, e.g.,
(and (person Bill) (> (age-of Bill) 40)), which says that Bill—as opposed to some unspecified
?x—is a person over forty.

There are basically two types of quantified sentences: universally quantified sentences and
existentially quantified sentences. These, however, break into several forms. The most general
form consists of any quantifier followed by a single variable and a sentence; e.g.,

(forall ?x (=> (and (human ?x) (>= (age-of ?x) 21)
(adult ?x)))

which says all humans 21 years of age or older are adults, and

(exists ?x (and (person ?x) (> (age-of ?x) 100))

which says that there exists a person over 100 years of age.

A second form allows one to bind several variables with a single quantifier. Thus,

(forall (?x ?y) (=> (and (B-52 ?x) (F-16 ?x))
(weighs-more-than ?x ?y)))

says that every B-52 weighs more than every F-16.

The elaboration language provides an optional way to express quantified statements by
allowing one to put conditions directly on the bound variables. Thus, the proposition expressed
by the above sentence can be expressed a bit more succinctly as

(forall (?x ?y : (and (B-52 ?x) (F-16 ?x))) (weighs-more-than ?x ?y)).

While the unadorned existential quantifier simply states the existence of at least one thing
satisfying a certain description, the numerical existential quantifiers state the existence of
at least, or exactly, n things, for some specific number n. Thus, that there are fifty states
in the U.S. can be expressed simply as "(exists-50 ?x (state-in ?x US))." Similarly, the
fact that there is exactly one U.S. president can be expressed as "(exists!-l ?x (US-
president ?x))."

It should be noted that the numerical quantifiers are, strictly speaking, dispensable. That
is, anything that a numerical quantifier expresses can, in principle, be expressed by
ordinary quantifiers and the identity relation. Thus, "existsM ?x (US-president ?x))" is
equivalent to the sentence

(exists ?x (and (US-president ?x) (forall (?y : (US-president ?y)) (= ?x ?y))));

i.e., there is at least one U.S. president, and furthermore every U.S. president must be
equal to that one. Numerical quantifiers, however, are exceedingly convenient, as to

168

express that some number n of things satisfy a certain description requires the use of«
distinct variables instead of only one.

A. 1.5 Definitions

Definitions come in two varieties: complete and partial. In the case of an individual, a
complete definition provides a term that picks out the defined individual. In the case of a
function, a complete definition provides a term that picks out the defined function. In the case of
a relation, a complete definition provides a set of sentences that jointly specify necessary and
sufficient conditions for the relation being defined to hold. A partial definition puts constraints
on the individual, function, or relation being defined that (in general) falls short of a full and
complete definition. Partial definitions are frequently used simply to introduce a given term into
the language with no additional information. The operators:= and :=> are used in complete and
partial definitions, respectively. In a complete individual definition, the name of the individual
and a term defining the individual must be specified. In a partial definition, only the name of the
individual must be specified. Optionally, a sentence can be included in a partial definition to
restrict the definition of the individual. A constant may have only one complete definition but
several partial definitions.

To illustrate, the function age-of and the individual Larry might be introduced by means of
the following definitions.

(define-function age-of
(forall ?x (and (integer (age-of ?x)) (>= 0 (age-of ?x)))))

(define-individual Larry
(= (age-of Larry) 49).

The optional sentence following the (partial) definition of "age-of' specifies that the indicated
function must return an integer greater than 0. This function is then used in the partial definition
of the term "Larry" to specify his age.

Note that definitions can be used to explicitly introduce terms that denote functions and
relations equivalent to those denoted by lambda and kappa terms. Thus, for instance, the
property of being a person over 40 but under 60, referred to above by a kappa term, could be
named explicitly by an appropriate atomic term by means of the definition

(define-relation middle-aged :=
(and (person ?x) (> (age-of ?x) 40) (< (age-of ?x) 60)))).

A.2 BNF for the Elaboration Language Core

This section contains the basic grammar for the elaboration language core in extended
Backus-Naur form (BNF). The following conventions are used:

169

A vertical bar "|" indicates an exclusive disjunction; thus Cl | C2 indicates
an occurrence of either Cl or C2, but not both. An absence of such a bar
indicates a conjunction.

A star "*" superscript immediately following a construct (e.g., C*) indicates
that there can be zero, one, or more instances of a construct.

A plus sign "+" superscript immediately following a construct (e.g., C+)
indicates that there can be one or more instances of a construct.

A construct or combination of constructs surrounded by brackets (e.g., [C1 |
C2]) indicates that the construct or combination of constructs is optional.

In the following grammar, the terminals of the grammar—expressions that
are reserved in the elaboration language (i.e., that serve a particular purpose
in the language)—appear in bold face. Nonterminals—expressions
representing categories of expressions—start with "<" and end with ">."
For example, the identifier for a variable must start with a question mark.
Hence, the construct is shown as: <var> ::= ?<id>.

A.2.1 Alphabet

The alphabet for the core of the elaboration language consists of the 93 ASCII characters
with their standard print representations:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0 1 23456789()[]{ }<>
= + - * / \ & A ~' * ~ " _ @ # $ % :;,.!?

The space character is represented by <space>.

A.2.2 Basic Syntactic Types

<letter> ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|0|P|Q|R|S|T|U|V
W|X|Y|Z|a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|
v | w | x | y | z

<posdigit> ::= 1|2|3|4|5|6|7|8|9

<digit> ::=0 | <posdigit>

<id> ::= <letter> [[<letter> | <digit> | _ | -]* <letter> | [<letter> | <digit> | _ | -]* <digit>)]

<punct> : := _|-|~IM@l#l$l%lAl&l*KI)l + l = ri:l5l'l<l>UI-l?|/|l

]|{|}

<polarity> ::= + | -

170

<posint> ::= <posdigit> <digit>+

<unsignedint> ::= 0 | <posint>

<int> ::= <unsignedint> | - <posint>

<exp> ::= E <int> | e <int>

<float>::= <int><exp> |
<int> . <digit>+ [<exp>] |
[+ | -]. <digit> <digit>* [<exp>]

<number> ::= <int> | <float>

<string> ::= " [<letter> | <digit> | <punct> | <space> | \" | \\]* "

<var> ::= ?<id>

A.2.3 Operators

<operator> ::= <defop> | <termop> | <sentop>

<defop> :;= define-individual | define-function | define-relation | := | :=>

<termop> ::= number-of | if | cond | the

<boolop> ::= not | and | or | xor | => | <=>

<quant> ::= forall | exists | exists[!]-<posint>

<sentop> ::= <boolop> | <quant>

A.2.4 Terms

<term> ::=<atomterm> | <compterm>

<atomterm> ::= <id> | <var> | <int> | <float> | <string>

<compterm> ::= (<term> <term>+) |
(if <sentence> <term> [<term>]) |
(cond (<sentence> <term>) (<sentence> <term>)+) |
(the <var> <sentence>) |
(number-of <var> <sentence>) |
(lambda <var> <term>) | (lambda (<var>+) <term>) |
(kappa <var> <sentence>) | (kappa (<var>+) <sentence>)

A.2.5 Sentences

<sentence> ::= <atomsent> | <boolsent> | <quantsent>

<atomsent> ::= (= <term> <term>) | (/= <term> <term>) | (<term> <term>+)

171

<boolsent> ::= (not <sentence>) | (and <sentence> <sentence>+) | (or <sentence> <sentence>+) |
(xor <sentence> <sentence>+) | (=> <sentence> <sentence>) | (<=> <sentence>
<sentence>)

<quantsent> ::= (<quant> <var> <sentence>]) |
(forall (<var>+ [: <sentence>+]) <sentence>) |
(exists (<var>+ [: <sentence>+]) <sentence>) |
(exists[!]-<posint> (<var> : <sentence>) <sentence>)

A.2.6 Definitions

<defmition> ::= <partial-def> | <complete-def>

<complete-def> ::= (define-individual <id> := <term>) |
(define-function <id> (<var>+) := <term>) |
(define-relation <id> (<var>+) := <sentence>) |

<partial-dei> ::= (define-individual <id> := <term>) |
(define-function <id> <sentence>*) |
(define relation <id> (<var>*) :=> <sentence>)

A.3 Basic Definitions, Axioms, and Axiom Schemas

The syntax of the elaboration language is usually untyped; sentences and function terms are
just lists of terms with no enforced typing. Instead, typing is enforced semantically, in the sense
that axioms are provided to ensure that an atomic sentence can be true, or a function term can
denote a legitimate object, only if their constituent terms have the right sorts of denotations. This
is accomplished by first introducing appropriate semantic categories (i.e., types) and auxiliary
notions by means of a series of "define-relation" and "define-function" statements, and then
axiomatizing these notions to capture the relevant typing constraints. Note that these initial
semantic categories are completely general and independent of IDEF3. Only after these general
categories are introduced and axiomatized are IDEF3-specific semantic categories and
definitions explicitly introduced and axiomatized (see Section A.5).

It should also be noted that some of the basic semantic categories of KIF (after which the
core elaboration language is modeled) are missing, most notably sets and lists, which are not
explicitly needed for purposes here. Strictly speaking, set theory is needed to justify definitions,
as one must (or at least ought to) be able to prove the existence of the objects one defines (except
in the case where one is simply postulating or introducing an object whose existence cannot be
proven from one's given axioms). Their omission here reflects the idea that users should have
the option to choose their own set theories; in particular, a user might wish to use one weaker
than the powerful von Neumann-Gödel-Bernays set theory of KIF. While acknowledging the
need for an associated set theory, commitment to a given set theory is left implicit in this report.

172

A.3.1 Basic Semantic Categories

In this section, the basic semantic categories individual, function, and relation are introduced,
as well as the null object, a special object used only to indicate that a term has no genuine
denotation.

(define-relation individual (?x))

(define-relation list (?x))

(define-relation relation (?x))

(define-individual null)

(define-relation function (?x))
:=> (relation ?x))

(define-relation interval (?x)
:=> (individual ?x))

(define-relation integer (?x)
:=> (individual ?x))

Most formalizations involving functions define functions as relations of a certain sort. For
instance, in set theoretic treatments such as in KIF, a two-place relation is a set of ordered pairs,
and a function is just a two-place relation, such that the first element of any given pair in the
relation is not also paired with any other object. Formally, this identification is very convenient.
Hence, this identification is added as a defining axiom for functions. Similarly, both intervals
and integers are taken to be kinds of individuals.

The duality of functions, viewed as both functions and relations, is captured in the following
series of axioms.

Two objects stand in the (binary) functional relation f if the value off applied to the first
object is the second.

(forall (?x ?y ?f: (function ?f)) (<=> (?f ?x ?y) (= (?f ?x) ?y))))

Three objects stand in the (ternary) functional relationfifthe value off on the first two
objects is the third.

(forall (?x ?y ?z ?f: (function ?f)) (<=> (?f ?x ?y ?z) (= (?f ?x ?y) ?z))))

In general, we have the following axiom schema:

(forall (Ivarj.. . 7varn+i ?f: (function ?f))
(<=> (?f Ivarj. . . lvarn+0 (= (?f var}.. . ?varn) ?w„+i))))

173

A.3.1.1 Arity

The arity of a function or relation indicates how many arguments it takes. Because functions
are also relations, two separate notions of arity are required: rel-arity and func-arity. The notion
rel-arity is a function that takes a relation as an argument and yields a positive integer as its
value.

(define-function rel-arity
(forall (?x ?y : (/= ?y null))

(=> (= (arity ?x) ?y)
(and (relation ?x) (integer ?y) (> ?y 0)))))

Let the lower case Greek letter "n" be the numeral for the number n. The following axiom
schema expresses the connection between the rel-arity of a relation and the truth of an atomic
sentence involving a term referring to that relation, viz., in essence: An atomic sentence can be
true only if it consists of a relation of arity n followed by n terms.

(forall (?r Ivarj... lvarn)
(=> (?r Ivari . . . lvarn)

(and (relation ?r) (= (arity ?r) n).

Note that this cannot be expressed by quantifying over numbers with a variable ?n. Using the
schematic letter n instead, as in the schematic expression "(?r ?varj . . . ?var„)" is not an
expression in the elaboration language proper.

Analogous to rel-arity, func-arity is a function that takes a function as an argument and
yields a positive integer as its value.

(define-function func-arity
(forall (?x ?y : (/= ?y null))

(=> (= (arity ?x)?y)
(and (function ?x) (integer ?y) (> ?y 0)))))

The connection between the func-arity of a function and the denotation of a function term
involving a term referring to that function is captured in the following axiom schema, which
says, in essence, that: An atomic function term that does not denote the null object must consist
of an n-place function followed by n terms.

(forall (?f Ivari . . . ?varn: (=/ (?f Ivarj . . . ?varn) null)))
(and (function ?f) (= arity ?f n)))

The following axioms put further constraints on the arity functions.

All relations and functions have a (non-null) arity.

174

(forall ?x (=> (or (relation ?x) (function ?x))
(/= (arity ?x) null)))

Because every function is a relation, both rel-arity and func-arity are defined on functions.
There is, of course, a close relationship between them, viz., if f is viewed as a function, func-arity
yields one value on f, and viewed as a relation, rel-arity yields another; more exactly, as the
following axiom states,

The rel-arity of a function is one greater than its func-arity.

(forall (?f: (function ?f)) (= (rel-arity ?f) (+ (func-arity ?f) 1)))

An atomic sentence consisting of an n-place relation and some number of argument terms
other than n must be false:

(forall (?var} ... lvarn ?r : (relation ?r) (= (arity ?r) m))
(not (?r Ivori . . . lvarn))), where m is not the numeral for n.

A function term consisting of an n-place function term and some number of argument terms
other than n must denote the null object:

(forall (?f Ivarj... lvarn: (function ?f) (= (arity ?f) m))
(= (?f Ivari... lvarn) null))), where m is not the numeral for n.

A.3.1.2 The Null Object

The following two axiom Schemas characterize the null object and its connections with
functions and relations.

An atomic sentence that contains a term denoting the null object must be false:

(forall (?r Ivarj... lvarn : (relation ?r) (or (= Ivarj null). .. (= 7varn null)))
(not (?r Ivari. .. lvarn)))

A function term that includes a term denoting the null object must itself denote the null
object:

(forall (?f ?varj . . . 1varn : (function ?f) (or (= Ivarj null) . . . (= ?varn null)))
(=(?f?si...?sn)null))

A.4 Basic Situation Theory

The underlying intuitive semantics for both process schematics and state transition
schematics is based upon situation theory. The purpose of the IDEF3 elaboration language is to
permit very precise expression of additional constraints and other information about a given

175

process or state transition. The core elaboration language is extended with situation theoretic
constructs tailored specifically for IDEF3. The theory implicit in these constructs is somewhat
less powerful than some versions of full-blown situation theory, but, in addition to a clear,
intuitive semantics, experience has shown that this theory is all that is needed for most enterprise
process capture and modeling. In the following sections, a brief overview of situation theory is
provided to guide the reader in formulating elaboration statements in the elaboration language.

A.4.1 Situations and Infons

The notion of a situation is the most fundamental notion of situation theory. This notion is
familiar in the literature of knowledge representation. Situations are (typically) concrete,
spatially and temporally extended pieces of the real world, such as a baseball game, a math class,
a manufacturing system (though situations in nonconcrete systems are admitted as well; e.g., the
field of real numbers). In situation theory, what distinguishes a given situation from any other
are the pieces of information it supports, or that hold in it. In situation theory, individual pieces
of information are known as infons. The infons in a given domain are themselves constituted by
objects, properties, and relations that exist in the domain. (Objects here are construed broadly to
include not only physical objects, but also abstract ones like numbers and intervals of time.)
More specifically, the basic infons in a given situation s are the fundamental units of
information, good and bad, "generated" combinatorially from the relations and appropriate
arguments for those relations within s; that is, the basic infons of s consist of all possible
legitimate units of information of the form

objects ai,..., an stand in relation r,

and

objects aj,..., aw do not stand in relation r,

where r and the a/ are all constituents of s. (Relations that hold among individual objects are
known as first-order relations.) These infons will be represented in the language that will be
developed here as "(r ai ..., a„ +)' and "(r ai ..., a„ -)', respectively. A situation s supports a basic
"positive" infon (r aj ..., an +)just in case its component objects a\,..., a„ are present in s (at least
at some time during s) and stand in the relation r in s, and s supports a basic "negative" infon (r a\
... a„ -) just in case a\, ..., an are present in s but do not stand in that relation in s. Situation
s denies (r aj ... a„ +) just in case its component objects ai,..., a„ are present in s but do not stand
in the relation r in s, and s denies (r a\ ... an -) just in case a\,..., a„ are present in s but do stand
in the relation r in s. Thus, for example, the infons (mother-of Hillary Chelsea +) and (mother-of
Chelsea Hillary -) are supported by, or hold in, typical White House situations s in 1995; by
contrast, such situations deny (mother-of Chelsea Hillary +)and (mother-of Hillary Chelsea -); we
also say that these infons/a/7 in such situations. In the language here, these facts would be
expressed as "(supports s (mother-of Hillary Chelsea +))", "(supports s (mother-of Chelsea
Hillary -))", "(denies s (mother-of Hillary Chelsea -))" and "(denies s (mother-of Chelsea Hillary
+)), respectively, where s is an appropriate White House situation.

176

Note that, because situations are (in general) limited pieces of the world, an object b that
exists in one situation s may not exist in another s0. Hence, s0 will be "silent" on b; more
exactly, it will support no information about b. Situations are partial with respect to
information; they do not answer every question about every individual or every state of affairs.
A typical baseball game in the Houston Astrodome, for example, carries no information about,
say, the price of Coho salmon in Seattle's Pike Place Market.

To say that s supports a given basic infon (r ai ... a„ +)is to say that the individuals ai,..., a„
stand in the relation r throughout s. However, things can change within a situation—e.g., one
changes from sleeping to waking in typical morning situations. This can be captured in situation
theory by counting temporal intervals as individuals, and including a temporal parameter
explicitly among the arguments of first-order relations whenever appropriate. Thus, for instance,
the property asleep will be conceived in fact to be a 2-place relation that holds between
individuals and temporal intervals. Thus, if s is a typical morning situation between 6:00 a.m.
and 8:00 a.m. at an individual b's house, it is likely the case both that (supports s (asleep b 0600
+)) and that (supports s (asleep b 0800 -)). (If the relevant temporal parameter is understood,
then, of course, it can be suppressed as a matter of convenience.) It is presupposed in the
semantics of the version of situation theory used with IDEF3 that all subintervals of the interval
over which a situation occurs are present in the situation. So, a situation occurring from 6:00
a.m. to 8:00 a.m. supports all relevant temporal information; for example, the interval from 6:00
to 6:15 precedes the interval from 6:30 to 6:45.

A.4.2 Types, UOBs, and Processes

In most physical systems, one observes multiple occurrences of situations that are similar in
some respect. In such cases, the similar situations are said to be of the same type. For instance, a
situation in which Bill Clinton is running on Tuesday and another in which he is running on
Wednesday, though perhaps different in many respects, are similar insofar as Clinton is running
in them, and are therefore instances of the same type of situation. Situation types are thus
general, repeatable patterns that can be exhibited by many different specific situations. This,
however, is precisely the character of a UOB in IDEF3, and UOBs are therefore identified with
situation types. A situation type is specified in situation theory by an operator that abstracts over
similar situations and an appropriate abstraction variable;17 here we will use the operator "type-
of." Thus, the activity just noted is represented as "(type-of ?sit (supports ?sit (running
Clinton)))." Similarly, distinct objects can be the same in certain respects, and can be thought of
as instances of the same object type. Thus, Bill Clinton and Jimmy Carter are alike insofar as
they are male politicians; i.e., they are both of the type male politician. Thus, male politician can
be thought of as a property shared by Clinton and Carter, and can be denoted in the elaboration
language by "(type-of ?x (and (politician ?x) (male ?x)))." In IDEF3, both situation types and

17 In situation theory proper, variables correspond semantically to actual "variable objects" in the world, known
sometimes as "parameters" or "indeterminates." For purposes here these entities can be avoided, though there
may be certain representational needs that require them.

177

object types can simply be identified with properties—of situations and individuals, respectively.
The operator "type-of' can be understood to be simply a notational variant of the property
abstraction operator "kappa" (see Section A. 1.3 above).

The importance of types in the context of process capture and process modeling—and,
indeed, in the context of modeling generally—is that the semantic content of most all process
descriptions concerns types. More exactly, a typical process is best thought of as a structured
collection of UOBs related to one another in a manner that reflects the process flow in a given
activation of the process; i.e., the temporal relations between the instances of those types in an
activation. For instance, consider the painting process depicted in Figure A-l. This diagram
depicts a general process that must begin with an instance of the UOB Paint Part (represented by
the Paint Part box with no predecessor), followed by an instance of Test Coverage. At that
point, depending on the outcome of the test, an instance of the process can either loop back to
another instance of Paint Part, or continue on to have the part dried. Thus, there are, in
principle, infinite ways this single process can be instantiated by particular courses of events,
depending on how many times such a course of events loops back to repeat the Paint Part

activity.

f
Paint
Part -N

1 Test
Coverage

Dry Part

X k
Paint
Part

1 3 4

2

Figure A-l
Paint/Review/Dry Scenario

More generally, a situation type—i.e., a UOB—is specified in terms of a variable "?sit"
ranging over arbitrary situations and a formula j specifying the conditions common to situations
ofthat type. Specifically, an activity is referred to by terms of the form "(type-of ?sit j)", read
"the type of situation such that j." Thus, recalling the example above, "(type-of ?sit (supports
?sit (running Clinton)))" is read "the type of situation such that it supports Clinton running," or a
little more naturally in this case, "the type of situation in which Clinton is running." A situation
s is of type T = (type-of ?sitj) just in case j is true when "?sit" refers to s. If j is of the form
"(supports ?sit i)," where i is an infon term, the activity is said to be specified internally;
otherwise it is specified externally. The difference is that an internal specification describes the
activity in terms of the infons that its occurrences support, whereas an external specification may
refer instead to properties of the activity beyond the infons that its occurrences support, such as,
e.g., the causes of its occurrences or the costs involved in maintaining them.

178

A.4.3 Basic Situation Theoretic Relations

Situation theory is highly typed in the sense that the world it describes is partitioned into a
number of different semantic categories; most notably, objects, first-order properties and
relations, infons, situations, courses-of-events, object types, situation types, processes, and
temporal intervals. To capture these distinctions, the theory of situations developed within the
elaboration language defines terms that denote each of these categories. In addition, a variety of
terms are defined that signify a class of special relations, along with axioms that express
precisely what categories of objects can stand in these relations. With these terms at his or her
disposal, a user is able to clearly express any additional information or constraints not
expressible in terms of the IDEF3 schematic language.

Specifically, then, the supports and denies relations between situations and infons were
discussed at length above. The occurrence-of relation holds between a situation s and a UOB U
just in case s is an instance of U. The activation-of relation holds between a course-of-events c
and the process P just in case c is an activation of P. The occurs-in relation holds between a
situation s and courses-of-events c just in case s occurs in c. The activity-in relation mirrors this
relation at the type level—it holds between a UOB U and a process P just in case U is among the
situation types that constitute P. The of-type relation holds between a situation s and a UOB U
just in case s is an instance of U. The object-in relation holds between an object b and either a
situation s or a UOB U just in case b occurs in s or in instances of U.

A variety of temporal relations are needed to describe the temporal structure of complex
processes. The only primitive relation required is meets, where, intuitively, one interval / meets
another y just in case the endpoint of i is the starting point of y. Further relations—e.g., precedes,
starts, finishes, overlaps, during—can be defined in terms of meet, as illustrated in Section A.5.4
below. Note that intervals are treated as first-order objects, thus the temporal relations are all
first-order relations. Temporal relations are used to define a variety of corresponding temporal
relations among situations.

A.5 A Formal Language for IDEF3 Elaborations

In this section the core elaboration language is extended with definitions that introduce the
basic semantic categories of situation theory along with appropriate defining axioms. To aid
comprehension, axioms are usually first given in English, and are formatted in italics to enhance
readability. Note that this extension of the elaboration language core is not a formalization of
full blown situation theory. Rather, it is a specification of the basic constructs needed to express
situation-based IDEF3 elaborations, as illustrated in the examples above and in Section 3,
"IDEF3 Process Description Language," of this report. Note also that no formal model theory is
provided here. Since the purpose of this report is to enable enterprise modelers and knowledge
engineers to effectively use IDEF3, informal, intuitive characterizations of the semantics of the
language have been provided instead.

179

A.5.1 Extending the Core Elaboration Language

The first task to be addressed is to extend the core elaboration language to the full IDEF3
elaboration language, including a new class of infon terms. This is accomplished by adding the
following clause:

<infonterm> ::= (<term> <term>+) |
(and <infonterm> <infonterm>+) |
(or <infonterm> <infonterm>+) |
(<quant> <var> <infonterm>)

Infon terms of the form (<term> <term>+) are known as atomic infon terms.

In addition, the category <compterm> is modified to include the category <infonterm>. For a
more robust version, the explicit set theoretic apparatus included in KIF could be added at this
point, but this is unnecessary for purposes here; see (Genesereth & Fikes, 1992) for details of the
set theory included in KIF.

A.5.2 Basic Situation Theoretic Semantic Categories

In this section the basic semantic categories of situation theory are introduced and
characterized.

(defme-relation infon (?x))

(defme-relation situation (?x))

(define-relation UOB (?x))

(defme-relation COE (?x))

(define-relation process (?x))

(define-relation interval (?x))

(define-relation polarity)

A single axiom expresses that the basic semantic categories are all disjoint; e.g., no
individual is an infon, function, or relation.

(forall (?x?y)
(=> (and (or (= ?x individual) (= ?x infon) (= ?x relation) (= ?x situation)

(= ?x UOB) (= ?x COE) (= ?x process) (= ?x polarity))
(or (= ?y individual) (= ?y infon) (= ?y relation) (= ?y situation)

(= ?y UOB) (= ?y COE) (= ?y process) (= ?y polarity))
(=/?x?y))

(forall ?z (not (and (?x ?z) (?y ?z))))))

180

A.5.2.1 First-order Relations

In the version of situation theory developed here, infons are constructed only out of first-
order relations and individuals. Hence, the notion of a first-order relation needs to be defined
explicitly and axiomatized with an appropriate schema.

(define-relation FO-relation (?rel)
:=> (relation ?rel))

A first-order relation is a relation that can only be true ofn-tuples of individuals.

(forall (?rel: (FO-relation ?rel) (= (arity ?rel) n)))
(forall (var\ . . . varn : (?rel var\ ... varn))

(and (individual var\)... (individual var„))))

Recall that change in the extension of a typical first-order relation over time is captured by
including a parameter for temporal intervals among its arguments. For example, the relation
walks is taken to be a 2-place relation that holds between an individual b and an interval t just in
case b walks throughout the interval t. Because intervals are themselves individuals, this is
accommodated by the above definition.

A.5.2.2 Axioms for Infon Terms

Given the notion of a first-order relation, axioms can be given that express what is required
for an infon term to denote a legitimate infon (as opposed to the null object).

A basic infon term denotes an infon if and only if it consists of a term denoting an n-place
first-order relation followed by n terms denoting individuals and a term denoting a polarity.

(forall (?rel var\ ... varn ?pol)
(<=> (infon (?r var\ ... varn ?pol))

(and (FO-relation ?r)
(individual var\)

(individual varn)
(polarity ?p))))

A conjunctive (disjunctive) infon term denotes an infon if and only if each conjunt (disjunct)
denotes an infon.

(forall (?infl ?inf2)
(<=> (and (infon (and ?inf 1 ?inf2)))

(and (infon ?infl) (infon ?inf2))))

181

(forall (?infl ?in£2)
(<=> (and (infon (or ?infl ?inf2)))

(and (infon ?infl) (infon ?inf2))))

Analogous axioms for quantified infons must be stated as a schema. Let Q be any quantifier,
var any variable, and infterm be any infon term. If var occurs free as the first term in any atomic
infon in infterm, then

(<=> (infon (Q var infterm))
(Ö (var '■ (FO-relation var)) (infon infterm)))).

Similarly, if var does not occur free as the first term in any atomic infon term in infterm (i.e.,
occurs bound, or occurs free elsewhere than as the first term in an atomic infon term in infterm,
or does not occur at all in infterm), then

(<=> (infon (Q var infterm))
(Q (var : (individual var)) (infon infterm)))).

A.5.3 Basic Situation Theoretic Relations

In this section, the basic situation theoretic relations are introduced and, by means of defining
axioms, their legitimate argument types are declared. Note that, as with the basic categories of
the elaboration language core, "legitimate" here is understood semantically, and enforced
axiomatically. Any terms whatsoever can be used to construct syntactically correct sentences
involving the relation terms introduced below. However, such sentences can be true only if the
axiomatized constraints are satisfied.

(define-relation supports (?x ?y ?z))
:=> (and (situation ?x) (infon ?y) (interval ?z)))

(define-relation denies (?x ?y)
:=> (and (situation ?x) (infon ?y) (interval ?z)))

(define-relation occurrence-of (?x ?y)
:=> (and (situation ?x) (UOB ?y)))

(define-relation activation-of (?x ?y)
:=> (and (COE ?x) (process ?y)))

(define-relation occurs-in (?x ?y)
:=> (and (situation ?x) (COE ?y)))

(define-relation activity-in (?x ?y)
:=> (and (UOB ?x) (process ?y)))

182

(defme-relation of-type (?x ?y)
:=> (and (situation ?x) (UOB ?y)))

(defme-relation object-in (?x ?y)
:=> (and (individual ?x) (or (situation ?y) (UOB ?y)))

A.5.4 Basic Temporal Relations

In this section, some basic temporal relations between intervals are introduced. The only
primitive relation needed for characterizing the temporal intervals used in IDEF3 is the meets
relation, which can be true only of intervals, as indicated in the following partial definition.

(define-relation meets (?x ?y)
:=> (and (interval ?x) (interval ?y)))

Intuitively, as noted, one temporal interval meets another just in case the end point of the first
is identical with the starting point of the second. A logic for the meets relation as found in (Allen
& Hayes, 1987) is assumed [see also (van Bentham, 1983)].

A variety of useful temporal relations can be defined in terms of meets. The first is strongly-
precedes, where one interval strongly precedes another just in case the first meets an interval that
meets the second.

(define-relation strongly-precedes (?x ?y)
:= (exists (?z ?w : (/= ?z ?w)) (and (meets ?x ?z) (meets ?z ?w) (meets ?w ?y))))

Note that, because points are intervals, we need to put two distinct intervals between ?x and ?y.
In fact, a point can be defined as an interval that meets itself (this is a divergence from Allen and
Hayes).

(define-relation point (?x)
:= (meets ?x ?x))

One temporal interval / starts another; just in case both are met by a given interval buty meets
an interval which is met by an interval met by i:

(define-relation starts (?x ?y)
:= (exists ?z (and (meets ?z ?x) (meets ?z ?y)

(exists ?w (and (meets ?y ?w) (strongly-precedes ?x ?w)))))

Similarly, a temporal interval i finishes another; just in case both meet a given interval but i is
met by an interval that starts/:

(define-relation finishes (?x ?y)
:= (exists (?z ?w : (starts ?w ?y)) (and (meets ?x ?z) (meets ?y ?z) (meets ?w ?x))))

183

/ overlapsj just in case some interval that finishes i starts/:

(define-relation overlaps (?x ?y)
:= (exists ?z (and (finishes ?z ?x) (starts ?z ?y))))

i is during/ just in case some interval that starts/ meets / and i meets some interval that
finishesy:

(define-relation during (?x ?y)
:= (exists (?z ?w) (and (starts ?z ?y) (meets ?z ?x) (finishes ?w ?y) (meets ?x ?w)))

Other useful relations can be defined in a similarly straightforward fashion.

A.5.5 The Interval Over Which a Situation Occurs

It is very important in describing processes and their activations to be able to talk about the
interval of time over which a given situation occurs. For this reason, a function is defined that,
when applied to a given situation, yields exactly that interval:

(defme-function interval-of
:=>(forall (?sit ?t)

(=> (= interval-of ?sit)?t)
(and (situation ?sit) (interval ?t)))))

Given the temporal relations, by defining the interval over which a situation occurs, a variety
of useful temporal relations among situations can be defined in terms of corresponding temporal
relations between the intervals over which they occur. See (Menzel & Mayer, forthcoming) for
details.

A.5.6 Using Sorted Variables

Note that the IDEF3 elaboration language proper is completely untyped; in particular, there is
only one sort of variable. However, the informal examples shown in Section A.4 and in Section
3 use a wide variety of sorted variables whose possible values are restricted to various semantic
categories—e.g., UOBs, situations, infons, etc. This practice can be viewed as simply a
convenient use of alternative notation, as any sentence in a so-called many-sorted language with
many different sorts of restricted variables can be translated directly into a sentence of a single
sorted language such as the elaboration language. The trick is simply to use the terms in the
single sorted language that denote the semantic categories to which the sorted variables are
restricted in the many-sorted language. For example, suppose "?sit" is a sorted variable ranging
only over situations and "?ind" is a sorted variable ranging only over individuals. Then the
sentence "(forall (?sit ?ind : (FOO ?sit)) (BAR ?ind ?sit)))" says that, for any situation s and
individual b, if s is a FOO, then b bears BAR to s. Clearly, however, this can be expressed in the
strict, single-sorted elaboration language as "(forall (?x ?y : (situation ?x) (individual ?y) (FOO
?x)) (BAR ?y ?x))." The use of sorted variables is therefore innocuous, and indeed, encouraged,

184

as their use typically decreases significantly the length of a sentence written in single sorted
notation. For a rigorous account of the relation between many-sorted and single-sorted
languages, see Chapter 4, §4.3 of (Enderton, 1972). In any case, regardless of whether one is
using a many-sorted or single-sorted language, it is generally good practice to choose variables
that reflect their intended semantic categories—«.g., "?ind," "?rel," "?f," "?sit," "?inf," "?uob,"
"?coe," and so on.18

18 Although this practice is adhered to in informal discussions in this document, it is not always followed in the
statement of the formalization above in order to drive home the fact that the elaboration language is itself
single-sorted, and that typing distinctions are introduced and enforced axiomatically.

185

(This page inttentional left blank)

186

APPENDIX B: IDEF3 GLOSSARY
Activation A collection of instances of some or all of the UOBs in the

process represented by the schematic whose temporal and
logical properties satisfy the temporal and logical conditions
specified in the schematic. See instance.

Conditions, Entry Sufficient conditions for an object to enter a state given a
(possibly different) object in the source state of the link leading
to the destination state that has met the relevant transition
conditions. Entry conditions are associated intrinsically with
the interface between object states and transition links.

Conditions, Exit Sufficient conditions for an object no longer to be in the state in
question. Exit conditions are associated intrinsically with
object states.

Conditions, State Conditions that are individually necessary for an object to be in
the state in question. State conditions are associated
intrinsically with object states.

Conditions, Transition Conditions that are individually necessary and jointly sufficient
for there to be an attempted transition from a source state to the
destination state. Transition conditions are associated
intrinsically with the interface between object states and
transition links.

Constraints Most generally, a statement which must (or equivalently, must
not) hold in a system. Most often, constraints express logical
properties of, or connections between, domain objects that must
be maintained if the system is to function as intended.
Constraints are distinguished conditions known to hold between
the objects in a process or between the processes themselves.

Context The parts of the system under study identified as the bounds
within which description development activity will occur and
which establish the environment or setting used to document
and interpret domain expert knowledge.

Context statement A written declaration identifying the boundaries of IDEF3
process description development activity (usually expressed in
terms of which parts of the system are to be included and which
are to be excluded) and the necessary level of detail. The
context statement is documented on an IDEF3 Description
Summary form.

Decomposition One of possibly many contextualized descriptions of one UOB
in terms of other UOBs. Schematics providing a more detailed
view or different perspective of a process with a clearly defined
viewpoint.

Description A recording of facts or beliefs about something within the realm
of a domain expert's knowledge or experience.

187

Domain A sphere of interest, such as the semiconductor domain or the
domain of abstract algebra. A domain has its own distinctive
vocabulary for talking about the characteristic kinds of objects
and processes typically found in the domain.

Domain expert An individual considered knowledgeable of, and conversant in,
most of the distinguishing characteristics of a certain aspect of a
domain. A role played by the primary sources of knowledge
from the application domain of interest.

Elaboration An elaboration provides a detailed characterization of an IDEF3
element (e.g., UOB, Object State, Junction, Link) in a
schematic. See Form, Elaboration.

Elaboration language A structured textual language designed specifically to express
process-related information. The IDEF3 elaboration language
has the full power of first-order modal logic and set theory.

Facts Relationships that hold in the actual world. Facts are assertions
made about objects.

Form, IDEF3 Description
Summary

A structured document that summarizes the evolving/completed
process description. It records the project purpose and context
and provides a summary of all the schematics and documents
used to record the process description.

Form, Elaboration A structured document used to provide a detailed
characterization of IDEF3 elements (e.g., UOBs, object states,
links, junctions) in the schematic. Elaboration documents
typically include: 1) the element's name, label, and number; 2)
lists of the object types and instances, facts, and constraints that
are associated with the element; and 3) a textual description of
the element.

Form, IDEF3 Schematic The basic framework for all IDEF3 forms. The IDEF3
Schematic Form is divided into three major sections: 1)
Working information (top), 2) Message field (center), and 3)
Identification fields (bottom). Working information fields are
used to support the kit review process. The identification fields
establish the context and purpose of the information on the
form. The message field contains the primary message to be
conveyed. This field is normally used for schematics, but can
be used for any purpose (e.g., glossary, checklists, notes,
sketches).

Form, Object Schematic
Summary

A structured document summarizing the contents of an IDEF3
Object Schematic.

Form, Pool A structured document used to list the scenarios, objects,
UOBs, and object states identified during description
development and provide traceability to the source material
supporting those elements.

Form, Process Schematic
Summary

A structured document summarizing the contents of an IDEF3
Process Schematic.

Form, Source Material
Description

A structured document used in conjunction with the Source
Material Log to record more detailed information about each
item tracked as source material. In particular, this form is used
to capture a concise overview of the main concepts discussed in
the source material and provide traceability from the source
material to IDEF3 description elements.

Form, Source Material
Log

A structured document used to identify and track all data
collected during the course of the project. The Source Material
Log serves as the primary index to all source material collected
and used in an IDEF3 project.

IDEF Acronym for Integration Definition. Also used to refer to a
family of mutually-supportive methods for enterprise
integration, including in particular IDEF0, IDEF1, IDEF IX,
IDEF3, IDEF4, and IDEF5.

IDEF0 Integration Definition (IDEF) method for Function Modeling
IDEF1 Integration Definition (IDEF) method for Information Modeling
IDEF1X Integration Definition (IDEF) method for Semantic Data

Modeling
IDEF2 Integration Definition (IDEF) method for Simulation Modeling
IDEF3 Integration Definition (IDEF) method for Process Description

Capture
IDEF4 Integration Definition (IDEF) method for Object-Oriented

Design
IDEF4/C++ A specialized Integration Definition (IDEF) method for Object-

Oriented Design targeted toward implementation using the C++
object-oriented programming language.

IDEF5 Integration Definition (IDEF) method for Ontology Description
Capture

Individual The most logically basic kind of real world object. Prominent
examples include human persons, concrete physical objects, and
certain abstract objects such as programs. Unlike objects of
higher logical orders such as properties and relations,
individuals essentially are not multiply instantiable. Individuals
are also known as first-order objects.

Instance As pertaining to an activation, a specific case where one of the
pattern of possible activations is exhibited.

Interview A face-to-face meeting with domain experts to pursue some line
of investigation.

Junction An element of the IDEF3 Schematic Language providing a
mechanism to graphically display logical branching.

189

Kit An assembly of diagrams, text, glossaries, decision summaries,
background information, or any portion of the total IDEF3
description packaged for review and comment. There are three
types of IDEF3 kits: object kits, scenario kits, and description
kits.

Kit, Description A compilation from the completed scenario and object kits for a
given project containing all the scenarios in the IDEF3
description and their associated documentation. An approved
description kit would represent one of the final deliverables in a
development effort.

Kit, Object Kits that address one or more objects and all or part of their
associated documentation. The items which may appear in an
object kit include Object Schematics, elaborations, etc.
packaged for review and comment.

Kit, Scenario Kits that address one scenario and all or part of its associated
documentation. The items which may appear in a scenario kit
include Process Schematics, associated UOB decompositions,
UOB and link elaborations, etc. packaged for review and
comment.

Kit Contents Sheet An extension to the kit cover sheet used when more space is
needed to list the contents of a kit.

Kit Cover Sheet A structured document that identifies the material assembled as
an IDEF3 kit, the review requirements, and an index to the
contents of the kit.

Kit Review A review and approval process used to validate IDEF3 process
descriptions.

Link A syntactic element of the IDEF3 Schematic Language used to
connect other IDEF3 syntactic elements. Links denote
significant relationships among UOBs, Object States, and
Objects. Examples of the types of relations that can be
highlighted by IDEF3 links include temporal, logical, causal,
natural, and conventional.

Link, Constrained
Precedence

A specialization of precedence links that adds further
constraints over and above the activation semantics of simple
precedence. See Link, Precedence.

Link, Dashed A syntactic element of the IDEF3 Schematic Language, used in
Process Schematics to highlight the existence of a (possibly
constraining) relationship between two UOBs. Dashed links
carry no predefined semantics. For this reason, they are often
referred to as s or User-Defined links.

Link, First-order Relations that hold between first-order objects.
Link, Precedence A syntactic element of the IDEF3 Schematic Language used to

express temporal precedence relations between instances of one
UOB and those of another.

190

Link, Relation A syntactic element of the IDEF3 Schematic Language used in
Object Schematics to express additional relations that hold
between objects, between objects and object states, between
object states, and so forth.

Link, Second-order Relations that hold between first-order objects and second-order
objects, properties, or relations; and relations that hold between
second-order objects, properties, and relations.

Link, Strong transition A specialization of transition links that conveys the additional
information that the object involved in the originating state of a
transition is the same object as that in the final state of the
transition.

Link, Transition A syntactic element of the IDEF3 Schematic Language used to
express the relation transitions-to between some source state(s)
and some other destination state(s) in an IDEF3 Object
Schematic.

Method An organized, single-purpose discipline or practice for accom-
plishing some set of tasks. The IDEF methods are specifically
designed to accelerate the learning process and help novice
practitioners emulate the performance of highly experienced
individuals engaged in a particular analysis or design activity.
IDEF methods guide users through a disciplined approach,
consistent with good-practice experience, to achieve
consistently high levels of performance (quality and
productivity)

Model An idealized system of objects, properties, and relations that has
been designed to imitate, in certain relevant respects, the
character of a given real-world system. Models are idealized
systems which are assumed to be "close enough" to provide
reliable predictors for the predefined areas of interest within a
domain.

Needs statement A statement that records the source of the request (person or
project) and paraphrases the objectives of the project.

Note box A syntactic element of the IDEF3 Schematic Language that
may be used to emphasize the participation of particular objects
or relations associated with the IDEF3 element to which it is
attached, to tie in specific examples of referenced data or
objects (e.g., screen layouts), to highlight special constraint sets
associated with a given elaboration, and so forth.

Object An individual or class of individuals that participate in a
process. See individual.

Object, First-order See individual.
Object, Second-order Classes of individuals and first-order relations are second-order

objects. See individual and First-order link.

191

Object State An individual or class of individuals that exhibit a specific
property or condition (generally indicated by an adjective rather
than a common noun). For example, a weapon system
development program undergoes a number of different phases
that may be viewed as state transitions inaugurated by milestone
decisions.

Occurrence An instance of a UOB within a scenario activation.
"Occurrence" is also used to indicate the use of an IDEF3 pool
item (i.e., Scenario, UOB, Object, Object State) in some portion
of an IDEF3 Process Description. For example, the same UOB
pool item may be used more than once in the same Process
Schematic.

Process A real-world event or state of affairs involving one or more
individuals over some (possibly instantaneous) interval of time.
Typically, a process involves some sort of change in the
properties of one or more of the individuals in the process.
Sometimes referred to as process instance.

Property An abstract, general feature or characteristic that is multiply
instantiable; that is, it can be shared by distinct individuals.

Purpose The object or end to be attained by engaging in IDEF3
description development activity. That purpose may be simply
to document a process—in which case the development of
schematics and elaborations is an end unto itself. In most cases,
however, IDEF3 description development is undertaken to
assist with some discovery or decision-making activities.

Purpose statement A written declaration specifying the 1) main objective(s) of the
effort, 2) needs that the description must satisfy, and 3)
questions or findings that the client wants answered. The
purpose statement can be separated into two parts, 1) defining a
Needs Statement and 2) defining the information goals in terms
of how the process description will be used. The purpose
statement is documented on an IDEF3 Description Summary
form.

Referent A syntactic element of the IDEF3 Schematic Language used to
refer to a UOB scenario or Transition Schematic

Relation An abstract, general association, or connection that holds
between two or more objects. Like properties, relations are
multiply instantiable (i.e., it can be shared by distinct objects.
The objects among which a relation holds in an instance are
known as its arguments.

Relation, Temporal A relation between temporal points or intervals such as before,
during, overlaps and so forth.

Role, Analyst IDEF3 expert who is the primary developer of the IDEF3
description.

192

IDEF3 project team member responsible for reviewing draft
IDEF3 descriptions and making written critiques.

Role, Commentor

Role, Librarian A person assigned the responsibility of maintaining files of
documents, making copies, distributing IDEF3 kits, and
keeping records.

Role, Project leader An administrative role that carries the responsibilities for
overseeing and guiding an IDEF3 description development
effort. In particular, the project leader is ultimately responsible
for the outcome of the description development effort, team
organization and leadership, and schedule and budget
management.

Role, Reader IDEF3 project team member responsible for reviewing draft
IDEF3 descriptions but who is not responsible for providing
written comments.

Role, Reviewer IDEF3 project team member knowledgeable of the application
domain and/or the IDEF3 method and responsible for reviewing
and/or commenting on draft descriptions and documents. Team
members and domain experts can be reviewers. See also reader
and commentor.

Role, Team member A person involved with the IDEF5 ontology description project.
Schematic A connected diagram constructed from the lexicon of the

IDEF3 schematic language, in accordance with the syntactic
guidelines of the language. A visualization, produced using the
IDEF3 schematic language, that aids in the construction of
process descriptions.

Schematic, Process An IDEF3 schematic supporting the capture and display of a
process-centered view of a scenario.

Schematic, Object An IDEF3 schematic supporting the capture and display of an
object-centered view of one or more scenario(s) of interest.

Schematic, Transition A type of Object Schematic characterizing the state transitions
traversed by participating objects in an instance of the scenario
(or process kind).

Schematic, Enhanced
Transition

A Transition Schematic that includes context-setting
information about the objects and relations that are relevant to
the scenario but which do not exhibit the state change behavior
of direct interest.

Scenario In the context of its decomposition, any UOB is a scenario.
Source material A textbook, a research article, an enterprise-specific document

such as a policy manual or a procedure manual, a set of an
interview notes, or direct observation notes that has relevant
information to the process description development project.

System A collection of physical and/or. conceptual objects that work
together to achieve a common objective.

193

Unit of Behavior (UOB)

UOB Box

UOB, Child
UOB, Parent

Validation

Validation, Syntactic

Validation, Semantic

Viewpoint

A term used in IDEF3 to describe types of "happenings."
Concepts such as function, process, scenario, activity,
operation, decision, action, event, procedure, and so forth each
represent "happenings" involving some circumscribed behavior.
The term UOB is used to encapsulate concepts such as these.
A syntactic element of the IDEF3 Schematic Language used to
represent a real-world process.
A UOB in a decomposition.
A UOB, acting in the role of a scenario, that establishes the
context for a process description.
The process of checking and ensuring that the IDEF3 process
description constructed is both syntactically and semantically
correct. A primary means of validating IDEF3 process
descriptions is through the review and approval of kits.
The process of checking and ensuring that the IDEF3 schematic
constructed conforms to the grammatical rules of the IDEF3
language.
The process of checking and ensuring that the statements made
in the IDEF3 description accurately capture the assertions of the
domain expert.
The perspective taken while examining or describing a system
or process. Role-specific and objective viewpoints are captured
using IDEF3's UOB decomposition mechanism.

194

