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ABSTRACT 

In this report, we describe the total effort at The Ohio State University on the Project 
Analysis and Control of Interconnected Structures, initiated on September 1, 
1992, sponsored by the Air Force Office of Scientific Research (AFSC), under Contract 
F49620-92-J-0460. 

The main thrust of our effort has been to consider the control of interconnected rigid 
and flexible structures. In order to accomplish this, we have utilized different analysis 
approaches including partial differential equations representing simple substructures 
and finite element models, radial basis function neural networks and wavelet neural 
networks representing complex structures. Finally, we have introduced the use of a 
multiresolutional technique with wavelets. As far as control techniques are concerned, 
we have concentrated on sliding mode control with a detailed analysis of sampling 
effects. The multiresolutional wavelet approach which we concentrated on during the 
last year has naturally led to a multiresolutional controller design in the H2 domain. 

in 
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OVERVIEW 

In this report, we describe the total effort at The Ohio State University on the 
Project Analysis and Control of Interconnected Structures which was initiated 
on September 1, 1992 and sponsored by the Air Force Office of Scientific Research 
(AFSC) under Contract F49620-92-J-0460. 

The first part of this report focuses on sliding mode control for sampled-data sys- 
tems. In the second part of the report, we concentrate on a generalized sliding mode 
approach to vibration suppression in flexible structures. Methods for block control 
of differential-difference systems and a sliding mode approach to control of dispersive 
flexible structures are discussed. Examples of each method are also presented. The 
third part of the report emphasizes a general design procedure for radial basis function 
and wavelet neural networks. Simulation results for these two types of networks based 
on predicting actuator nonlinearities occurring in a flexible structure. The last part 
of the report explores uses for time-frequency wavelets. These include the modeling 
and control of structural systems and subsystems. Versatile structure model based 
on time-frequency wavelets are developed. A multiresolutional controller which min- 
imizes the sensitivity function for a SISO flexible structure is derived. The controller 
utilizes the structural models based on time-frequency wavelets. Implementation is- 
sues for the multiresolutional controller are also discussed. 

Contributors to this three-year research effort were: 
Students: 
Wu-Chung Su 
Layne Lenning 
Daniel Clancy 
Shyamala Raghunathan 

Post-doctoral researchers: 
Dr. S. Drakunov 

Principal Investigator: 
Prof. U. Ozgüner 

A number of publications have appeared based on this project. They are listed in the 
Appendix. 

This project is also linked to AASERT Project F49620-92-J-0299 entitled Integrated 



Circuits for Distributed Control-(AASERT FY91). The major portion of the research 
performed by the students supported under this AASERT Project is documented 
separately. Some of the developments which were produced in the AASERT project 
are integral to the research reported here and, therefore, are included to produce a 
stand-alone document. 
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INTRODUCTION 

In this report, we describe the total effort at The Ohio State University on the Project 
Analysis and Control of Interconnected Structures, initiated on September 1, 
1992, sponsored by the Air Force Office of Scientific Research (AFSC), under Contract 
F49620-92-J-0460. 

The main thrust of our effort has been to consider the control of interconnected rigid 
and flexible structures. In order to accomplish this, we have utilized different analysis 
approaches including partial differential equations representing simple substructures 
and finite element models, radial basis function neural networks and wavelet neural 
networks representing complex structures. Finally, we have introduced the use of a 
multiresolutional technique with wavelets. As far as control techniques are concerned, 
we have concentrated on sliding mode control with a detailed analysis of sampling 
effects. The multiresolutional wavelet approach which we concentrated on during the 
last year has naturally led to a multiresolutional controller design in the H2 domain. 

The following chapters will provide details of the results obtained through the tenure 
of the project. 

In Chapter 2 several results for sliding mode control of sampled-data systems will 
be outlined. The sampled-data sliding mode control results will be used to design 
controllers for a flexible structure. These controllers were verified on an actual flexible 
structure (which was developed under a previous AFOSR grant). 

In Chapter 3, we introduce a new approach for vibration damping in flexible struc- 
tures based on the sliding-mode control approach. Previous use of this approach 
has been for finite dimensional (approximate) models of flexible structures. Here, we 
retain the infinite-dimensional model for the structures and investigate exact solu- 
tions using sliding-mode control. The use of neural networks in conjunction with this 
method are also investigated. 

In Chapter 4, consideration of neural networks let to our development of a new 
general design procedure for radial basis function neural networks and wavelet neural 
networks. These type of neural networks are especially well-suited for dealing with 
irregularly positioned data points. We present simulation results for these two types of 
networks based on predicting actuator nonlinearities occurring in a flexible structure. 

In Chapter 5, we explore uses for time-frequency wavelets. These include the mod- 
eling and control of structural systems and subsystems. We develop a versatile struc- 
ture model based on time-frequency wavelets as opposed to the traditional finite 
element/modal models. The wavelet models are developed for the purpose of being 
utilized during the controller design phase. We then present some theoretical results 



necessary for developing a sensitivity minimization controller based on a wavelet 
model. 

This project is also linked to AASERT Project F49620-92-J-0299 entitled Integrated 
Circuits for Distributed Control-(AASERT FY91). The main results of the research 
performed by the students supported under this AASERT Project are documented 
separately, although some of the neural network related efforts are reported here for 
completeness. (The AASERT document concentrates on related yet distinct efforts of 
developing and using a FEM analog integrated circuit chip for substructure control.) 



2.    IMPLEMENTATION OF VARIABLE STRUCTURE CONTROL 
FOR SAMPLED-DATA SYSTEMS 

2.1     Background on Sampled Data Variable Structure Control 

The characteristic feature of a continuous time variable structure systems (VSS) is 
that sliding mode occurs on a prescribed manifold, or switching surface, where switch- 
ing control is employed to maintain the state on that surface [1, 2, 3, 4, 5]. Since the 
theory has been originally developed from a continuous time prospective, implemen- 
tation of sliding mode for sampled-data systems encounters several incompatibilities 
due to limited sampling rate, sample/hold effect, and discretization errors. As a 
result, a direct translation of continuous time variable structure control design for 
discrete implementation leads to the chattering phenomenon in the vicinity of the 
switching surface. 

This chapter deals with the implementation of variable structure control for sampled- 
data systems by maintaining sliding mode in discrete time. Although a considerable 
amount of work has been done analyzing discrete time sliding mode, very little was 
directly addressed to the sampling issues. In [6], Milosavljevic studied the oscillatory 
characteristic (quasisliding) in the neighborhood of the discontinuity planes due to 
discretization of continuous time signals. Existence conditions of quasisliding mode 
were derived as a discrete extension from the continuous time VSS theory. For con- 
trol law design, Utkin and Drakunov proposed a definition of discrete time equivalent 
control that directs the states onto the sliding surface in one sampling period [7]. To 
remain on the surface, the associated control appears to be non-switching. Subse- 
quently, the theoretical basis was furnished with a formal definition of sliding mode 
for discrete time systems in the context of semigroups [4]. 

Related works from different prospectives can be found in [8, 9, 10, 11, 12, 13]. Sarp- 
turk et al. took a Lyapunov point of view for discrete time linear systems. It was 
asserted that the switching control be bounded in an open interval to guarantee con- 
vergence of sliding motion. This interval was later found to depend linearly on the 
distance of the state from the switching surface [9], which suggested a nonswitch- 
ing control when discrete time sliding mode is attained. Sira-Ramirez imposed the 
geometrical concept to general nonlinear SISO systems along with the existence is- 
sues [11]. Parallel results with continuous time VSS's were obtained. To implement 
discrete time sliding mode control law in compliance with the existence conditions. 
Furuta proposed the idea of sliding cone (sliding sector), where switching control 
takes place only when the states are out of the sector, while inside of the sector, 
the control law remains continuous [10]. Kaynak and Denker used an ARM A model 
to characterize the control-sliding surface relationship and yielded a non-switching 
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Figure 2.1: Discrete time sliding mode in sampled-data systems 

type of control with a predictive-corrective scheme [12]. Bartolini et al. incorporated 
adaptive control strategy to account for system uncertainties and designed control 
law in terms of a discrete time equivalent control [13]. 

Our work has mainly extended the original idea of [7] to more general problems with 
detailed analysis of the sample/hold effects. Preliminary results were reported in [14, 
15, 16] and the full development is presented here. The control objective is to maintain 
the states on the switching surface at each sampling instant. Between samples, the 
states are allowed to deviate from the surface instead of being constantly and exactly 
on the switching surface, even the equivalent state travels within a boundary layer 
of that surface (see Figure 2.1). It will be demonstrated that the thickness of this 
boundary layer can be reduced significantly by proper consideration of the sampling 
phenomenon in the control design. Three classes of systems (linear, nonlinear, and 
stochastic systems) will be investigated individually. Robustness against both internal 
and external uncertainties will be considered. Furthermore, the chattering problem 
will be addressed. 

The chapter is organized as follows: in Section 2.2, we consider discrete time slid- 
ing mode in linear sampled-data systems. The intersample behavior as well as the 
matching condition will be examined. Robustness against system uncertainties are 
elaborated. Three types of uncertainties will be studied individually. The overall 
effects can be treated as a linear combination of the three. In Section 2.3, the re- 
sults are extended to nonlinear systems. Based on similar assumptions, the control 
strategies can be directly translated from the linear case. Section 2.4 deals with linear 
stochastic systems. Sliding mode is defined in terms of a conditional probability func- 
tion, given the cr-algebra generated by the measured state information. Both cases 
with continuous measurement and discrete measurement will be considered. To min- 
imize the deviation from the sliding manifold in the mean square sense, the optimal 
filtering problems will be solved. In each of the above, the chattering phenomenon 
will be effectively removed with robustness. An experimental example of a flexible 
structure vibration control is given in section 2.5 to demonstrate the effectiveness of 
the proposed sampled-data sliding mode control technique. Finally, the conclusion 
section summarizes the chapter. 



2.2     Linear Systems 

Consider the dynamic system with a prescribed switching surface 

x = Ax + Bu + Df (2.1) 

S = {x\s(x) = Cx = 0}, (2.2) 

where the state x G Rn, the control u G Rm, the disturbance vector / G Rl, and 
the sliding surface vector s G Rm; A, B, D are constant matrices of appropriate 
dimensions; and the m x n matrix C is chosen so that the system, when traveling 
on S, will achieve the desired sliding mode dynamics [2]. We say the disturbance is 
"rejectable" if there exists a control u that can eliminate its effect instantaneously in 
the dynamic system. If the closed loop system behavior does not depend on /(£), we 
say the controlled system is disturbance invariant. It is well known that the matching 
condition [3] 

ran k{B,D} = rank[B] (2.3) 

has to be satisfied for the system ((2.1)) to be disturbance invariant in sliding mode. 

The discrete time representation of the dynamic equation ((2.1)) is obtained by ap- 
plying u through a zero-order-hold: 

Zfc+i = §xk + Yuk + dk, (2.4) 

where $ = eAT, T = |0
T eAXd\B, dk = f^eAXDf((k + l)T - \)d\.   Note that the 

magnitude of V and dk are both 0(T) if f(t) is bounded. 

The discrete time sliding mode control is to steer the states towards and maintain 
them on the surface S at each sampling instant such that 

Sk = Cxk — 0     k > ks. (2.5) 

During the sampling interval kT < t < (k + [)T. the state will deviate from S. The 
following Lemma provides bounds on the deviation from the sliding surface. 

Lemma 1 If the disturbance /(£) in ((2.1)) is bounded and smooth in the intersample 

interval kT < t 

sampling period. 

interval kT < t < {k + 1)T, then i   Sk     _       implies s(t) = 0{T2) during that 
I   Sk+i — U 



The 0(T2) deviation is inevitable for sampled-data systems. It is the ultimate per- 
formance a sampled controller can attain for continuous time plants. Note that if 
Sk — (T2) and Sk+i = 0(T2), the intersample value of the sliding surface vector is 
still 0(T2). 

The sample/hold effect not only destroys perfect sliding mode as depicted above, 
it also invalidates the complete disturbance rejection property for the discrete time 
system ((2.4)). 

Lemma 2 The sampled-data system ((2.4)) is disturbance invariant on the discrete 
time sliding manifold ((2.5)) only if the continuous time matching condition ((2.3)) 
holds. 

The above lemma states the necessity of the continuous time matching condition, 
however, the sufficiency is not confirmed. The zero-order-holcl is applied to the control 
variables only. A similar "hold" does not take place in the disturbance channels. In 
general, the discrete time disturbance dk will not lie in the range space of the control 
coefficient matrix F and hence can not be rejected completely even if discrete time 
sliding mode occurs. 

Although perfect sliding mode and complete disturbance rejection are not possible in 
sample-data systems, one can still maintain the states in the vicinity of the sliding 
surface and retain satisfying disturbance rejection character by proper consideration 
of the sampling phenomenon in the control design. 

We will consider three different types of uncertainties that are important in affecting 
a dynamic system's behavior; namely, exogenous disturbances, system parameter 
variations, and control coefficient variations. It will be shown that these uncertainties 
can be rejected to at least 0(T2) accuracy and that the chattering phenomenon 
inhabiting in continuous time variable structure systems can be removed. 

Since the control in the sampled data system will show jumps from the continuous 
time point of view, the formal concept of continuity is not compatible with the notion 
of discrete time control; In order to make the analogy in between, let us introduce 
the following definition: 

Definition 1 The discrete time control law Uk is said to be equivalent to discontin- 
uous if Ant = 0(1), continuous if Auk = 0{T), smooth if A2uk = 0(T2), where A 
denotes the backward differencing operator 1 — z~l. 

To avoid a cumbersome description, the "continuity"' of discrete time control to appear 
in the following text will refer to its equivalent meaning as defined above. 



2.2.1    Exogenous Disturbances 

Consider the case when only the exogenous disturbance f(t) is present.   We define 
the discrete time equivalent control by solving Sk+i = 0 [7], which leads to 

u -(CVy'C^Xk + dk) (2.6) 

assuming CT is invertible. Note that uk is generally not accessible because it requires 
the value of 4, which depends on the future values of the disturbance f(t) from the 
present sampling instant kT to the next one (k + 1)T. It is impossible to evaluate 
4 exactly unless f(t) is known. Nevertheless, with boundedness and smoothness 
assumptions imposed on f(t), dk can be predicted by its previous value 4-i [17], 
which can be computed from ((2.4)). The error is 

(k+\)T-\ . 
4 - 4-i = /    e    D / f(a)dad\ = 0{T 

J0 JkT-X 

assuming f(t) is bounded. To approximate ue
k, we define 

uk
n = -(Cr)-1C(^Xk + dk-1). (2.7) 

Taking the Taylor's series expansion of $ yields the relationship C§Xk = Sk + {AT + 
^i-A2 • ■ -)xk- Since the magnitude of CT and Cdk-i are both 0(T), in order that uk

n 

be admissible, the magnitude of C$Xk must also be 0(T). In other words, Xk must 
lie within an 0(T) boundary layer of S (or Sk = 0{T)) for u\n to be admissible. 

In order to define the boundary layer of the sliding surface, let us adopt the following 
notation: 

ST = {xk\ul
k
n € U} is the 0(T) boundary layer of S. 

We propose the variable structure control law 

Uk 

-(Cry'C^Xk + 4-i)     when i-, <E ST, 
-(CT)-1C($xfc + 4-i - sk + Ksfjn(sk)), (2.8) 

otherwise. 

The positive definite matrix K will determine the stepsize for the state to approach 
the boundary layer ST- The magnitude of A' has to be chosen small enough not to 
overshoot ST- 



Theorem 1 For a linear sampled-data system ((2.4)) with the exogenous disturbance 
satisfying the matching condition ((2.3)), the effect of f(t) can be reduced to 0(T2) 
if the variable structure control law ((2.8)) is applied. 

2.2.2 System Parameter Variations 

Consider a dynamic system subject to parameter variations 

x = {A + AA{t))x + Bu. (2.9) 

The matching condition for the uncertainty AA(t) is 

Rank[AA(t)Q, B] = Rank[B]   Vt, (2.10) 

where 0 is an n x (n — m) matrix with the columns forming a basis of the subspace 
null(C) [3]. The unknown AA{t)x may be treated as a disturbance. The associated 
sampled-data representation is given in ((2.4)), where 

dk= [   eAXAA((k + l)T-X)x((k + l)T-X)dX. (2.11) 
Jo 

Assuming AA(t) is bounded, c4 can be predicted by <4_i with 0(T2) error, and we 
have the following theorem. 

Theorem 2 For a linear system with parameter variations ((2.9)), the control ((2.8)) 
will lead to Sfc+1 = 0(T2) if AA(t) satisfies the matching condition ((2.10)). Further- 
more, the state will attenuate to zero asymptotically. 

2.2.3 Control Coefficient Matrix Variations 

Systems with unknown' control coefficient matrix variations have the following dy- 
namic equation 

x = Ax + (B + AB{t))u. (2.12) 

The matching condition is 

Rank[AB{t), B] = Rank[B]   Vi. (2.13) 

The system dynamic equation in discrete time is the same as ((2.4)), where 



dk — ATkuk, 

ATk = JoT eAXAB({k + 1)T - X)d\. 

Employing the control law u'k
n induces a dynamic feedback in Uk through dk-i. Since 

sk+l = C$xk + C(T + ATk)uk, (2.14) 

the stability of sk implies stability in xk, which ensures stability in uk if C(T + ATk) 
is invertible. 

Introduce the following notation: 

eArk=Ark-ATk_u    Ak = CAr^CT)"1. (2.15) 

The quantity Ak can be regarded as a measure of variations in the control coefficient 
matrix with respect to the known one I\ If AB(t) and AB(t) are bounded, we have 
eAr, = 0{T2) and Ak = 0(1). 

Lemma 3 For the linear system with control coefficient matrix variation ((2.12)), if 
AB(t) satisfies the matching condition ((2.13)); and the states xk-i, xk are in the 
boundary layer ST, then the control ul

k
n will lead to 

sk+i = -2Aksk + Afc-iSfc_i + Sk (2.16) 

with Sk = 0(T2). 

Stability of sk in ((2.16)) can be assured if Ak is small enough; that is, the variation 
of AB(t) is small with respect to B. Since the quantity 8k is 0{T2), the state will 
enter the 0(T2) boundary layer of S if ((2.16)) is stable. 

Theorem 3 The state -Xk attenuates to zero asymptotically if 

1. The conditions in Lemma 3 hold. 

2. Equation ((2.16)) is stable. 

3. The m x m matrix C(T + ATk) is nonsiiujular. 

If all three types of uncertainties are present in the dynamic equation, the variable 
structure control law ((2.8)) can still be employed to compensate the uncertainties 
simultaneously. In this case, dk is the lumped effect of all disturbances, the resultant 



sliding mode accuracy is s(t) — 0(T2). As long as the states remain in the 0(T2) 
boundary layer of the sliding surface, u™ becomes continuous and chattering in the 
control is removed. 

Theorem 4 The control u™ is continuous if Sk-\ = 0(T2). Furthermore, Uk ap- 
proaches the continuous time equivalent control as the sampling rate approaches 

infinity. 

uk ^ ueq{t) = -{CB)-lC{Ax + Df). (2.17) 

2.3    Nonlinear Systems 

In the previous sections, we have developed a discrete time sliding mode control 
method applied to linear sampled-data systems to alleviate chattering. Here, we 
extend it to nonlinear systems. We assume the nonlinearities and uncertainties are 
bounded and smooth, in this case the past values of the states can be utilized to 
predict the effect. This approach allows us to keep the state in the 0(T2) vicinity of 
the sliding manifold. 

Consider the nonlinear system 

x = a(x) + b(x)u + v(x,t) (2.18) 

with a prescribed sliding manifold 

S = {x\s(x) = 0}, (2.19) 

where a(x) and b(x) are known differentiate functions with dimensions n x 1 and 
n x m respectively; v(x,t) is an n x 1 unknown vector-valued differentiable function. 
The disturbance matching condition is 

Rank[b(x),v(x,t)] = Rank[b(x)}  when .»■ € S. (2.20) 

Let G(x) = j^s(x) be the m x n Jacobian matrix of s(x) so that the dynamics of the 
sliding surface vector can be expressed as 

s{x) = G{x)a(x) + G{x)b{x)u + G{x)v(.v.t). (2.21) 

Applying a zero-order-hold to the control yields the discrete time representation ol 
((2.18)) and ((2.21)) 
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xk+i=   xk + J{
kT       a{x)dt + J{

kT       b{x)dtuk 

+ JkT       v(x,t)dt 

sk+1 =   sk + f£+1)T G(x)a(x)dt + /g+1,T G(x)b(x)dt uk 

+ f&+1)TG{x)v(x,t)dt. (k+l)T rn -\..i -   X\JJ. 12.23) 

The control objective is to keep the states xk on the sliding surface S in discrete time 

s(xk) = 0,   for   k > ks (2.24) 

The following Lemma is the nonlinear version of Lemma 2. 

Lemma 4 The sampled-data system ((2.22)) is disturbance invariant on the discrete 
time sliding manifold ((2.24)) only if the continuous time matching condition ((2.20)) 
holds. 

2.3.1    Matched Disturbances 

Consider the system ((2.18)), in which the disturbance v(x,t) satisfies the matching 
condition ((2.20)). Introduce the notation: 

Fk = f£+1)T G(x)a(x)dt 

Bk = fk
(k

T
+1)T G(x)b{x)dt 

hk = IkT       G(x)v(x,t)dt 
.25) 

so that the discrete representation ((2.23)) can be rewritten as 

sk+1 = sk + Fk + Bk uk + hk. (2.26) 

The equivalent control is 

ti? = -B?{sk + Fk + hk) (2.27) 

assuming Bk is invertible. The magnitude of Fk, Bk, and hk is 0{T) if G(x), a(x), 
6(.r), and v(x,t) are bounded. Fk, Bk, and hk usually cannot be evaluated exactly 
since they depend on the future value of the state and the unknown disturbance. 
Nevertheless, with some mild smoothness condition on the functions G(x),a(x),b(x) 
and u(x,i), they can be approximated by the following expressions: 
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Fk = G(xk)a(xk)T 
Bk = G{xk)b{xk)T_       _ (2.28) 

hk = Sk+i — Sk — Fk — Bk. 

With ((2.28)), we obtain an approximation for the equivalent control ((2.27)) 

u^ = -B^(3k + Fk + hk-i), (2.29) 

where Bk is invertible by assumption. Similar to ((2.7)), xk must lie in the boundary 
layer ST for uk

n to be admissible. The proposed variable structure control law is: 

_ / -B^(sk + Fk + />,_:) when x1? G ST . 
Uk-\ -B^iKagnis^ + Fk + hk-i)   otherwise l^Uj 

Theorem 5 If the disturbance in dynamic system ((2.18)) satisfies the matching 
condition ((2.20)), then the effect of v(x,t) can be reduced to 0(T2) if the control 
((2.30)) is applied. 

2.3.2    Control Coefficient Variations 

Consider the case when there is an unknown variation b(x) in the control coefficient 

x = a(x) + b(x)u + b(x)u. (2.31) 

The matching condition is 

Rank[b(x), b(x)] = Rank[b(x)}   when x G S. (2.32) 

Following the same discretization procedure yields the discrete representation indi- 
cated in ((2.26)) with 

hk = Bkuk 

Bk = !iT
+l)TG{x)b{x)dt. 

Introduce the following notation: 

epk = Fk - Fk, epk = Fk - F-\,     cFk = Fk - Fk-i, 
eBk - 

Bk ~ Fk, esk - 
Bk ~ Bk-i, 

eBk = Bk-Bk-i, eäk = Bk-Bk-i, (2.33) 
ehk = hk - hk-\, e-hk = hk - hk 

Ak = BkBk-1, eAk = Ak-Ak-l. 

12 



It can be proved that Ak = 0(1), eAk = 0{T), and eJk = 0(T2), eJk = 0(T2), where 
j = F, B, F, B, B. 

Lemma 5 When the state is in the boundary layer ST, the following equalities are 
true: 

Sk+i = hk- hk-i + a\(2sk - st-i) + a\ (2.34) 

hk = -Ak[(sk + Fk + hk-i) + ßl(2sk - sjt-i) + ßtl (2.35) 

where a\ = 0(T), a\ = 0(T2), ß\ = 0(T), ß\ = 0(T2). 

The equalities in Lemma (5) can be obtained by direct substitution from ((2.33)) and 
((2.29)) into ((2.26)). Furthermore, 

«fe = ~eBkBk 
xFk + eFk + eBkBk 

1epk + e^ 
+eBkB^{Fk-x + Bk-iuk-i) (2.36) 

ßl = eBkB'k
l 

ßl = -eF, - ehk^
eBkBk\

eFk - Bk-iUk-i). 

They serve as preparation for the theorem stated below: 

Theorem 6 For the nonlinear system with control coefficient matrix variation ((2.31)), 
the control ((2.30)) will lead to sk —> 0(T2) asymptotically if 

1. The state lie in the boundary layer ST- 

2. The variation b(x) satisfies the matching condition ((2.32)) and that b(x) is 
bounded. 

3. The following dynamic equation for sk is stable. 

sk+i = a°ksk + a\sk-i + a\sk-2 + 6k, (2.37) 

where 
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a°k = -2Afe - 2Akßt + 2a\ = -2A, + 0{T) 

at l _ = A,_! + 2Aka\ - eAk + Akß
l

k + 2Ak^ßl - ai 

= A,_x + 0(T) 
al = eAk-Akai-Ak^ßl = 0(T) 
8k = -AkeFk - eAkFk_x + Aka

2
k 

+ tAk{Fk-2 + Bk--2Uk-2) 
-Akßl + Ak_xßU + al = 0(T2 

If the sampling rate is sufficiently high, the dynamic equation ((2.37)) is reduced to 
second order 

5/m = -2Aksk + Afc-iSfc.!. (2.38) 

This agrees with ((2.16)), the result for linear systems. Stability of sk can be assured 
if At is small enough; that is, the variation of the control coefficient g(x) is small 
with respect to b(x). If the 0(T) terms in ((2.37)) are not negligible, the dynamic 
equation for sk becomes third order with an 0{T2) input. Stability of ((2.37)) implies 
that sk —* 0(T2) asymptotically. 

2.4    Stochastic Systems 

This section is devoted to discrete time sliding mode control for continuous time linear 
systems with stochastic disturbances. The disturbance is assumed to satisfy an Ito 
type stochastic differential equation [18] 

dx   =   Axdt + Budt + {Didt + Rduh) (2.39) 

d(   =   W£dt + Qdw2, (2.40) 

where Wi(t), w^it) are independent standard Wiener processes. Here D£ represents 
the colored part of the noise and the formal expression R^jf-, the white part. Without 
loss of generality, the autocovariance matrices of the white noises are assumed to be 
identity. 

We consider two possible state information channels: continuous measurement and 
discrete measurement. To compensate for the stochastic disturbances with a sampling 
controller, a mixed continuous-discrete type of filtering problem will be solved if 
continuous state information x(t) is used. On the other hand, the use of discrete 
state information xk will lead to a discrete time optimal filtering problem. In both 
cases, we apply the following assumption: 

Assumption 1 
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1. W has asymptotically stable eigenvalues; 

2. R is full rank; 

3. The processes Rw\{t) and Qtt>2(£) are uncorrelated. 

2.4.1     Continuous Measurement 

Consider the discrete time version of ((2.39)) 

xk+i = ®xk + Tuk + i]k + vk, (2-41) 

where rjk = JkT eA^k+1"lT~x^D^(X)dX is the colored part of the disturbance and 

vk = f^T eA^k+l^T~x'iRdw-i(X) is a white noise. Since the white noise can not be 
compensated, the control objective is to minimize the effect of the colored part nk in 
the sampled-data system ((2.41)). Applying the control law with an estimation of i]k 

uk = -(CT)"1C$xfc - {CY)-lCfjk, (2.42) 

we obtain 

sk+1 = C(i]k + vk - ijk). (2.43) 

For uk ((2.42)) to be admissible, it still requires that the state lie in the O(T) boundary 
layer ST- This boundary layer can be defined similarly as in the previous sections. 
Here, we only consider when xk £ ST- 

In the presence of stochastic disturbances, sliding mode is defined in terms of a 
probability measure. To minimize ^£7(1 s^_|_i ||2 given the observation of x(t) up to the 
instant IcT, the estimate rjk should be picked as a conditional expectation 

7% = E(rik\FkT), (2.44) 

where J-t denotes a cr-algebra generated by the process x{t) 

Ft = (T{x(T)\0<T<t}. (2.45) 

Since wi(t) is a martingale [18], the estimation i/k is obtained by taking a conditional 
expectation given the cr-algebra TkT 
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Vk = / eA«k+VT-»Dd\£(kT) = E6, (2.46) 

where the matrix E is of the form 

E=  fTewxDd\, (2.47) 
Jo 

and if is a conditional expectation 

i(t) = E({(t)\Ft). (2.48) 

Therefore, from ((2.46)) it suggests that in order to obtain the values of fjk we need 
a filter to calculate £*,. The following theorem provides the form of such a filter. 

Theorem 7 If assumption (1) holds, the optimal estimate of £k is 

£k = zk + LRTxk, ' (2.49) 

where zk satisfies 

zk = Azjfc_i + Ofc-i + nufc_! (2.50) 

with A, I! and (k defined by: 

A = eHT, 
n = /0

T eHXdXM, (2.51) 
Ck-x = I{Zl)T^H{kT-X)Nx(X)d\, 

where the matrices iJ., N, M, L are 

H = W - LRTD, 
N = -LRTA + WLRT -LRTDLRT, ,_ _. 
M = -LRTB, (2-52) 

L = PDTR(RTR)~2 

and P is the positive definite solution of the algebraic matrix Ricatti equation 

PWT + WP - PDTR(RTR)-2RTDP + QQT = 0. (2.53) 
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The filter ((2.49)) and ((2.50)) provides a way to calculate the conditional expection 
of £fc given the information from the continuous time process x(t). Substituting the 
estimate into the equation ((2.46)) we obtain an optimal rjk as: 

fik = E{zk + LRTxk). (2.54) 

The quantity rjk + vk — ijk from the right hand side of ((2.43)) is a discrete-time white 
noise process with variance of order 0(T). It means that the mean square deviation 

of Sk+i from zero is of order 0{T?). 

2.4.2    Discrete Measurement 

Suppose we only have access to the discrete state information, the cr-algebra generated 
by the discrete measurement xk, xk-\, • ■ •   is 

Tk = v{xj\0 <j< k}. (2.55) 

The discrete time representations of ((2.39)) and (??) to be considered are 

xk+i    =   §xk + T& 4- Tuk + vk + uk (2.56) 

&+i    =   *& + ?*, (2.57) 

where vk = /0
r eA^T'xW JX ew^Qdw2{kT+r)d\, qk = jg+1)T ew^h+^T-^Qdxo2(X) 

are discrete white noises generated form the process dw2; the matrices $ and T are 

$ = eWT,      T = eAT fT e~AXDewxd\. (2.58) 
Jo 

To minimize the effect caused by £k, we apply the control law 

Uk = -{cv)-lc$xk - (cvy'cr^, (2.59) 

where £k is the optimal estimation of £k given Tk 

ik = E{ik\Tk). (2.60) 

From ((2.56)), the discrete measurements xk and xk-\ yield the innovation process 

j/jt_i = xk - $xk-i - Yuk_x = T^_! + t-A-i + '^-i- (2.61) 
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Combining ((2.61)) with ((2.57)), one can construct a stationary Kaiman filter with 
the process noise qk-\ in ((2.57)) correlated with the measurement noise (vk~i + 
Vk-\) in ((2.61)) through dw2- To obtain a standard Kaiman filter formulation with 
uncorrelated noises, we rewrite equation ((2.40)) 

6+i = *Zk + HR-lyk + qk, (2.62) 

where H and R are the covariance matrices 

H = E(qk(vk + vky),    R = E{{vk + vk)(vk + UkY), 

and ,lr, (^ are defined as 

* = * - j^T,     & = qk - Äß-^Ufc + i/fc)- 

With ((2.62)) and the innovation process yk, an optimal estimation for £k is acquired 

ik    =    *6_! + HR-^k-i + Z(3/it_i - T^-i), (2.63) 
Z    =    PTr(TPTT +P)-1, (2.64) 

P   =   *(P-PTr(TPTT + Ä)-1TP)*T + gQT, (2.65) 

where QT is the autocovariance matrix of the discrete white noise qk in ((2.62)). 

Applying the control law ((2.59)) yields 

sk+l = C(T& + vk + vk- T6). (2.66) 

The quantity Y(£fc — £fc) + Ufc + J/fc from the right hand side of ((2.66)) is also a discrete 
time white noise with variance of order 0(T). Therefore, the mean square deviation 

of sk+i from the sliding surface is 0(Ti). 

2.5     Experimental Example - 0(T2) Sliding Mode Control on a Flexible 
Structure 

This section deals with sampled-data implementation of sliding mode for a flexible 
structure control problem. We apply the sampled-data sliding mode control tech- 
niques to a flexible structure developed for Large Interconnected Vibration Experi- 
ment (LIVE) at the Ohio State University. The truss structure, constructed of hol- 
low PVC tubes and Noryl nodes, is aligned on a vertically cantilevered configuration 
shown in Figure 2.2. 
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Cuiililcvwvd Ti» Wjll 

Figure 2.2: LIVE truss structure 

The physical properties, control hardware setups, preliminary dynamic modelling and 
experimental results were published in [19] by Redmill and Ozgiiner. Extended works 
in sampled-data sliding mode control experiment are presented here. 

The dynamic equations of the vertically cantilevered truss can be modelled based on 
the Euler-Bernoulli beam formulation. The bending motion is discribed by a fourth 
order partical differential equation (PDE). 

pAQ + EIQ"" = 0 (2.67; 

where El is the bending stiffness of the truss, .4 is the cross-sectional area and p is 
the density. The independent variable along the length of the truss is z, t is time. 
and Q(z,t) is the flexural displacement. 

The boundary conditions (BC) with one fixed end and one with an end mass ML are 
given as 

Q(o,t) = o 
Q'(0,t) = 0 
-EIQ"(l,t) = Q 
EIQ'"{l,t)-MLQ(l,t) = 

(2.68) 

At) 

To solve for Q(z, t), one can follow the standard Fourier method and convert the PDE 
into infinite assumed modes which are driven parallelly by the boundary control u(t). 
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Each mode can be expressed as a second order underdamped oscillation equation. 

oo 

Q(*,i) = S>W,-(*) (2.69) 
4 = 1 

q\ + 2£iWiC[i + w-qi = klu(t),   i - 1, 2, (2.70) 

where (j>i(z) is the spatially dependent mode shape coefficient, qi(t) is the time depen- 
dent modal state, W{ is the modal frequency, £,- is the damping ratio, and k{ is control 
gain for each mode. The system parameters are given in [19] and [20]. 

Control action is obtained using proof-mass actuators with neglected actuator dy- 
namics. Sensing of truss motion is accomplished through a piezoelectric accelerome- 
ter mounted on the structure to measure the relative velocity between the proof-mass 
actuator and the structure. 

Combining the dynamic equation ((2.70)) with the actuation and sensing mechanism, 
we come up with the following I/O relationship: 

2/(') = yo(0+ !>.(*) 
!=i 

j)i(t) + 2£iwlyi(t) + w?yi(t) = kii(t), i = 1, 2, • • •, 

(2.71) 

(2.72) 

where y(t) is the velocity measurement obtained from the output of the accelerometer; 
yo(t) is a low frequency (~ 0.1 Hz) measurement noise; y,(t), i = 1,2, • • ■ is the flexural 
velocity for each mode. 

With the system parameters Wi, £;, &,-, we obtain a state space representation for each 
mode of interest 

X{      —      AiXi -\- -Dt"U, 

(2.73) 

where x; = [<?,■ qi]T is an 2x1 modal state vector, u is th e sealer control, yi is the 
bending velocity of mode i, 

Ai = 
0 1 

■w ?     _9 2£iWi 
, B{ = 

0 

6,- 
, d = [0 a] (2.74) 

and 

bid — fcj'. (2.75) 
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There are infinitely many possible choices for b{ and c,- satisfying ((2.75)).  For sim- 
plicity, we choose 

(2.76) &f = v \h\,   Ci = sgn(ki)\/\ki 

The sampling frequency throughout this experiment is 100 Hz, which corresponds to 
sampling period T — 0.01 second. The experimental results presented here are for the 
first flextural mode only. To demonstrate the effectiveness of the proposed control 
method, we take the following senario: 

Part 1: 0 < t < 2 Settlement - uk = 0. 

Part 2: 2 < t < 12 

Part 3: 12 < t < 20 

0.3 

Shake up the truss - Uk = 0.3 sin {w\ ■ kT). 

Sliding mode control v.s. No control. 

FFT of the output in part 3 (12 < t < 20) for c= 1 

solid: Sliding mode control 
dashed: No control 

0.3 

0.2 

0.1 

15 20 25 30 35 40 45 

Frequency (Hz) 

Enlargement  

solid: Sliding mode control 

dashed: No control 

1 1.5 

Frequency (Hz) 

50 

2.5 

Figure 2.3: Frequency content: Sliding mode control (c=l) v.s. No control 

The sliding surface for the second order vibrating system is chosen as 

s(x) = [c l]x1 = cqi + q\ = 0. 
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0.3 FFT of the output in part 3 (12 < t < 20) for c=10 

0.3 

0.2- 

0.1 

dashed: No control 

solid: Sliding mode control 

.^l>O^MV>fl>^^W***V>^^ w-zM^». ,VSVA>WVH^! ^^^IMf^^^^^M^MiUH^XA^Vj^* 

10 15 20 25 30 35 40 45 50 

Frequency (Hz) 

 Enlargement  

dashed: No control 

solid: Sliding mode control1 

2.5 

Frequency (Hz) 

Figure 2.4: Frequency content: Sliding mode control (c=10) v.s. No control 

Experiments are conducted for c = 1 and c = 10. A saturation function is employed 
to limit the applied control 

uk = Sat(ue
k\0.l). 

Figure 2.3 depicts the frequency content (FFT) of y^ in Part 3 for c = 1.   Similar 
result for c = 10 is shown in Figure 2.4, in which better performance is obtained. 
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3.    VIBRATION SUPPRESSION IN FLEXIBLE STRUCTURES VIA 
GENERALIZED SLIDING MODES 

In this chapter the problem of supressing vibrations in flexible sructures by means 
of sliding-mode control is considered. Sliding mode control algorithms for flexible 
structures have been used previously, but these were based on finite-dimensional 
models (see for example [22] and [23]). 

Sliding mode control provides stable and robust closed loop systems for finite-dimensional 
plants, but the direct application of this design technique based on approximate 
models of flexible structures, may lead to undesirable performance of the infinite- 
dimensional system. This phenomenon is due to the delays which are inherent in 
such systems. The presence of delays can be explained by wave propagation across 
the structure. If the control is applied to the boundary of the flexible structure, its 
action can influence other parts of the structure only after the wave caused by the 
actuation propagates and reaches those parts. In the case of large flexible structures, 
these delays are not small and cannot be neglected. The application of sliding mode 
control ignoring these effects leads to chattering and may not be successful. 

Here we consider mathematical models in the form of partial differential equations 
(PDE) that permit us to take into account the features described above. Therefore, 
more appropriate control algorithms may be designed. 

The generalization of the sliding mode control concept to systems with delays and for 
more general dynamic systems described by semigroups of state space transformations 
was originally considered in [4], [24]. We base our approach on this concept, which 
can be called manifold control. The design procedure is divided into two steps. In the 
first step, the manifold is designed in such a way that it will be an integral manifold 
for the closed loop system. In the second step, the control which forces the system 
to move along this manifold must be found. The crucial point of the problem is to 
design the integral manifold which guarantees system stabilization. 

In this chapter, the nondispersive wave equation is chosen as a canonical form for 
distributed parameter systems described by partial differential equations. Since the 
nondispersive wave equation is equivalent to a system with delay, this allows for 
the transformed system to use sliding mode control algorithms developed earlier for 
systems of differential-difference equations [4]. 

Subsequently, a class of flexible structures with fourth order spatial partial derivatives 
is considered by using the same technique. "This is accomplished by going through 
a two stage process where they are initially trans formed into the second order form 
analyzed originally. 

23 



The problem of designing the control law which assigns the desired stable integral 
manifold to the system can be solved by using any of several different methods (in- 
cluding linear methods). The use of sliding modes, however, makes the closed loop 
system highly insensitive to external disturbances and parameter variations. 

3.1     Generalization of the Sliding Mode Control Concept 

There are two aspects in traditional sliding mode control design: the choice of the 
sliding surface and control synthesis in the reduced order space. From the point of 
view of dynamic system theory, the sliding surface is just a stable integral manifold 
of the closed loop system, with a specific property that in the area of attraction the 
system state is absorbed by the manifold in finite time. 

For finite dimensional systems in JRn modeled as 

i = /(*), (3.1) 

such manifolds can exist only if the right hand side does not satisfy the well known 
Lipschitz condition 

\Hx)-f(y)\<L\x-y\, (3.2) 

which is usually used to guarantee the uniqueness of the solution both for t > t0 and 
t < t0. 

Let F(t;to,Xo) be a solution of the system of ordinary differential equations (3.1) 
with initial condition x(to) = XQ, i.e. a transition function. Then the Lipschitz 
condition implies that F is defined for t > t0 and t < t0. The family of state 
space transformations F(t; to,.) is a group with respect to the composition operation. 
The inverse element to F(t;t0,.) is F(t0;t,.). For an asymptotically stable integral 
manifold, the trajectory initiated in its vicinity tends to, but never reaches it. 

In contrast to systems of equations whose right-hand sides satisfy the Lipschitz condi- 
tion, in systems with discontinuities there are integral manifolds which can be reached 
in finite time. 

Consider the system in IRn 

x = f(x) + B(x)u, (3.3) 

where f{x), B(x) are functions which satisfy the Lipschitz condition, and u € IRm is 
discontinuous on the smooth surfaces {x : .s,(.r) = 0} i = 1, 2,..., m in IR": 
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f uf(x)   iisi(x)>0 
Ut(X}      \ uj(x)   if 5f-(ar) < 0 [iA} 

If the sliding mode exists on the intersection of discontinuity surfaces a = n£Li{*T : 

Si(x) = 0} then 

1. a is an integral manifold since it consists of the system trajectories; 

2. the uniqueness of the inverse to the shift operator F(t; to,.) does not hold on a 
since each piont on a can reached from at least two different points: from outside 
(because of the finite time of convergence) and from points on the manifold. 
This is a characteristic feature of sliding mode and it is taken as a basis for the 
generalization of the sliding mode concept. 

The general definition of a dynamic system in any metric space X (including those 
under consideration described by partial differential equations) utilizes a description 
in the form of a transition operator F similar to the one considered above. The 
following Definition was introduced in [4] 

Definition 1 .cG X is said to be a sliding point at the time instant t if an equation 
F(t;to,£) = 0 for every t0 < t has more than one solution £. 

This Definition implies that the sliding manifolds are asymptotically stable manifolds 
to which the system state converges in finite time from any initial condition in the 
area of attraction. 

The underlying philosophy of the proposed approach as applied to PDE models of 
flexible structures is the same as in any sliding mode control design for finite di- 
mensional systems. After representing the system in a "convenient" form, a sliding 
manifold is chosen and then the control is designed such that the system state reaches 
this manifold in finite time and then "slides" along it. The control in this case is not 
necessarily discontinuous. 

3.2     Block Control of Differential-Difference Systems 

In this section we shall consider a class of composite systems in block form [25] and 
[26] comprized of blocks of differential equations coupled with blocks of difference 
equations. We shall demonstrate that sliding mode controllers may be effectively 
utilized in driving the state to zero. 
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We consider two configurations: 
Configuration A 

x(t)   =   Aux(t) + A12z(t) (3.5) 

z{t)   =   A2ix(t - T) + A22z{t - T) + B0u{t - T), (3.6) 

Configuration B 

z(t)   =   Anz(t - T) + Al2x(t - T) (3.7) 

x(t)   =   A2lz{t) + A22x{t) + B0u(t). (3.8) 

It is assumed that x € IR"1, z £ IR"2 and u 6 IRm. Au, Au, A2i, A22, BQ are matrices 
of appropriate dimensions. Since Au is not necessarily a full rank matrix, we can use 
the representation: 

A12 = BXC2, (3.9) 

where B\ and C2 have full column and row rank respectively. We assume that the pairs 
(An, B\) in both types of configurations are controllable and the system (C2, A22, BQ) 

is invertible. 

Denoting v = C2z we consider it as a new control variable in (3.5), (3.7) and as the 
output variable for (3.6) and (3.8). 

In the first block of Configuration A 

x{t) = Aux(t) + Bxv(t) (3.10) 

we use sliding mode control v(x) — col(vi,..., t>n2) to provide stability 

v(x) = l V*~{X)   if5'(x)>0 (3 11) Vl{X)     \v-(x) MSi(x)<0. [       ' 

The sliding manifold for this block is 

ao = {x:s{x) = 0}, (3.12) 

where 3 = col(s\,... ,sn2). 

Since the second block (3.6) is the difference system, under the invertibility condition 
it is possible to find a control u which provides the desired discontinuous function for 
the output v(x) = C2z [4]. This equality defines another manifold in the system state 
space 

26 



al = {(x,z):v{x)-C2z = 0}. (3.13) 

As a result, the state slides on the intersection a = GQ{\<7\. That means we can assign 
any desired rate of stability for the closed loop system (3.5)-(3.6). 

For the system in Configuration B the design procedure is different. On the first 
step we find a linear control v = Dz(t) for the first block (3.7) 

z(t) = Anz(t - r) + BlV(t - T) (3.14) 

to establish stability for the difference system (3.7), which can be achieved by using 
the sliding mode control on some manifold a2 system as described in the previous 
section. Then the problem is to steer s = Dz(t) — C2x(t) to zero or to reach the 
manifold 

<r3 = {(x,z):s(x,z)=Q}. (3.15) 

We solve this problem in the class of sliding-mode control algorithms: 

u.(x) = S utW   if*(*)>0 (316) 
lh[X}      \ u-(x)   ifs,-(s)<0. [i   Dj 

The resulting motion again will occur on the intersection a = a2C\ cr3. 

3.3     Sliding-Mode Control for Suppressing Vibrations of a Flexible Bar 

As a first example we consider the longitudinal or torsional oscillations of a flexible 
bar. The control is assumed to be a force or torque applied at one end of the bar, the 
other end is free. Let Q be the displacement of the bar from the unexcited position. 
We then have the following equations for a unit bar with normalized parameters [27]: 

d2Q{t,x)     d*Q{t,x) 

dt2 dx* (     ' 

dQ{t,0) 

dx 
dQ(t,i 

dx 

-u(t) (3.18) 

• = 0, (3.19) 
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where x is the position along the rod and u(t) denotes the actuation force or torque. 
Applying the Laplace transform to equation (3.17) and boundary conditions (3.18), 
(3.19) under zero initial conditions 

Q(0,z) = 0, (3.20) 

■^-Q{0,x) = Q, (3.21) 
ox 

we will have: 

p2Q(P:x) = Q"(p,x) (3.22) 

Q'(p,0) =-u(p) (3.23) 

g'(p,l)=0, (3.24) 

where Q(p,x) = £Q(t,x), u(p) = Cu(t). 

The solution of this boundary value problem for the ordinary differential equation 
(3.22) is 

Q(p, x) = -1— u(p). (3.25) 
ep — e p        p 

The solution of the stabilization problem depends greatly on what point of the bar 
is considered as the system output. We shall consider the free end of the bar as an 
output (thus this is the noncollocated actuator/sensor case). 

y(t) = Q(t,l).      - (3.26) 

From (3.25) we obtain 

y(p) = Q(p,i) = ^L—-Hp)- (3-27) 
ep — e p p 

In the time domain the correspondence between u(t) and y(t) may be written as 

y(t+l)-y{t-l)=2u(t) (3.28) 
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or 

y(t)-y(t-2) = 2u(t-l)..„ (3.29) 

We can now write this equation in the form of the differential-difference system Con- 
figuration A by introducing a new variable z: 

m   =   *(<) (3.30) 

z{t)   =   z{t-2)+2u{t-l). (3.31) 

The block representation of the differential-difference system simplifies the develope- 
ment of the control algorithm. Considering the variable z(t) in the first block (3.30) 
as the control, we can obtain sliding-mode [1] by assigning 

z{t) = -\sgn{y(t)). (3.32) 

This equality is valid if 

s(t) = z(t) + Xsgn(y(t)) = 0. (3.33) 

To achieve the above, we can use the control 

u(t) = -l-z{t - 1) - l-\sgn(y{t + 1)). (3.34) 

This control algorithm seems to be noncausal, however using an extrapolator it can 
in fact be realized as an operator on the current and the past values of the con- 
trol variables. To demonstrate this, solve equation (3.30) taking y{t) as an initial 
condition: 

rt+i 
y(t + l) = y{t) + Jt      z{r)dr. (3.35) 

or using (3.31) 

y(t+l) = y(t)+f  (z(T-l)+2u(T))dT = u(t)+!j{t-l)-y(t-2)+2 f   u(r)dr(3M) 
Jt-i Jt-i 

since y(t) = z(t). Substituting y(t + 1) from this expression to (3.34) and again using 
the fact that z(t) = y(t) we will have: 

u(t) = -U(t - 1) - l-\sgn(y{t) + y(t-l)- y(t - 2) + 2 /'   u(T)dr).    (3.37) 
I 2 Jt-i 
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With this control the system (3.30),(3.31) and therefore (3.17) is stabilized in finite 
time. 

3.4    Dispersive Flexible Structures: an Integral Transformation Approach 

The problem of supressing vibrations in the systems described by second order partial 
differential equations as studied in the previous sections was reduced to those for a 
differential-difference system. The delay in these systems is due to the nondispersive 
properties of such structures. The Euler-Bernoulli beam is an example of a dispersive 
structure. In this section we consider the Euler-Bernoulli beam and other dispersive 
structures of the second and fourth order. 

Consider now the problem of supressing normal vibrations along a unit length flexible 
beam described by equations of fourth order. One end of the beam is assumed to be 
clamped while a control force is applied to the other. The Euler-Bernoulli model of 
the beam with normalized parameters is : 

d*Q(t,x)        d*Q(t,x) 
dt2 'dx A 

Q(f,0) = 0 (3.39) 

Q'(t,0) = 0 (3.40) 

Q"(t,l) = 0 (3.41) 

Q'"(M) = «W- (3-42) 

where ' denotes partial differentiation with respect to the spatial variable x. 

The main idea of our approach is to reduce the order of the controlled part of the 
system by applying an integral transformation: 

P{t,t)= I* V(Z,x)Q{t,x)dx. (3.43) 
Jo 

Here P{t,£) is a new controlled variable and £ is a new independent spatial variable 
(0 < f < oo). The kernel of the transformation V is assumed to satisfy the same type 
of boundary value problem as Q but with homogeneous boundary conditions. 
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*D(£,0) = 0 (3.45) 

•D'(e,0) = 0 (3.46) 

V"(t,l)=0 (3.47) 

£>'"(£, 1) = 0. (3.48) 

£ in this equation is analogous to a time variable and its values can change from zero 
to infinity. 

It has been shown [28] that under these conditions P(t,£) satisfies an equation of the 
second order with control in the right hand side: 

where 

¥>(£) =-^(£,1). (3-50) 

In this equation in contrast to that with V, £ is a spatial variable. 

We can say that the transformation (3.43) "absorbs" the dispersive properties of 
the flexible structure as equation (3.49) describes how the waves are travelling there 
without changing their form. For more details on this approach and a more general 
formulation, see [28]. 

3.5     Use of Neural Networks with the Integral Transformation Approach 

For a given point, £ = £*, the integral transformation 

P(t,C)= f1 D(C,x)Q(t,x)dx (3.51) 
Jo 

may be realized with the aid of an artificial neural network as shown in Figure 3.1. 
As shown previously, P(£,£*) can be realized as the output of a differential-difference 

31 



system of the form of (3.5)—(3.6) with input u(t). Rather than solving for /)(£*, x) and 
performing the integral transformation analytically, a neural network may be trained 
to perform these tasks. It should be noted that the transformation is a functional 
depending only on x and £*-not on t. 

v(t) beam 

tfc    Vi    A^ 

fe    VL    4L. 

Neural Network 

•"       Model 

Figure 3.1: Configuration for Training Neural Network 

The input u(t) is assumed to excite both the beam and the differential-difference 
model (3.5)-(3.6). The output of the neural network yt = Ol is compared to y\ = 
P(t, £*) which is the output of the differential-difference model. The error 8t = y\ — y* 
is then used to train the neural network using some training algorithm such as the 
standard backpropagation techniques. [29, 30] 

The activation function of each neuron may arbitrarily chosen to be any differentiable 
function T{h). At some time t, the activation of the ith neuron in any of the layers 
is given by 

where h\ is the total input for the ith neuron 

hi = Y^ wijQtj + 0i 

(3.52 

(3.53) 

where äj is the output of the jth neuron in the preceding layer. 

Using the standard quadratic error measure for time t, 
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E* = t      t 
Vd-y (3.54) 

and the overall measure of error E = ^E1, the neural network is trained using a 
t 

gradient descent algorithm to adjust the weights.   Variations to the standard back- 
propagation algorithm such as inclusion of a momentum term in the update rule have 
been found to be useful in speeding the convergence of the network 

Awij(t+ 1) = 
dE ,      ,, -rj- hoAw.j f 

dwij 
(3.55) 

where Wij(t + 1) = Wij(t) + AIü,-J(£). 

For proper training of the neural network, all modes of interest of the beam must 
be excited. Therefore, the input to the beam, u(t), or any initial conditions must be 
sufficiently rich to excite these modes of interest. Also, due to the computational in- 
tensity of training an artificial neural network, it is advantageous to train the network 
off-line. 

Once the neural network has been trained, the network becomes the first stage of the 
controller as shown in Figure 3.2. The output of the neural network is fed to the 
sliding-mode controller which has been designed for the differential-difference model. 

v(t) beam 

Q(t,x) 

Neural Network 

Controller 

Figure 3.2: Closed Loop System with Neural Network 

Simulations of an Euler-Bernoulli beam example and more details of this work may 
be found in [31]. 
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RADIAL BASIS FUNCTION NEURAL NETWORKS AND 
WAVELET NEURAL NETWORKS 

The application of artificial neural networks for solving learning problems and for 
approximating nonlinear functions has occurred in various fields at a frenzied pace. 
A good summary/introduction into the field of neural networks can be found in [29]. 
When solving general pragmatic learning problems, the training data tends to be 
irregularly distributed over the input space. The radial basis function methodology is 
an approach for multivariable interpolation which is especially well-suited for dealing 
with irregularly positioned data points. The radial basis function technique constructs 
a function space which is linear and depends on a distance measure between the known 
data points. The idea of a multiresolution learning network or wavelet network is to 
have the capability of dealing with irregularly positioned data points, generalizing the 
nonlinear relationship between the given inputs and desired outputs, and being able 
to capture the desired fine details of the nonlinear mapping. This chapter presents a 
general procedure for designing neural networks. The procedure is applicable to both 
radial basis function neural networks and wavelet neural networks. 

4.1     Radial Basis Function Networks 

A radial basis function (RBF) neural network (RBFNN) is a network composed of 
input vectors X; = [ xn    X{2    • • •   xip ]T , X, G IRP and output vectors 
Y,- = [ yn    yi2    ■ ■ ■   Viq ] , Y,- G M.q for i = 1.2,... ,r exemplars with a hidden layer 
of radially symmetric kernel activation functions. According to Broomhead and Lowe 
[32], the RBFNN is given by the mapping yik : IRP -* E,   Vi = 1,2,..., r 

Vik = Ao* + £ \3k <j> fl|Xi~Cjl1^      Vfc = 1. 2,. .. , q (4.1) 

where: Y,- = [ ytl   yi2    • ■ ■   yiq } 
yik is Jäh output element for zth exemplar 
Xok represents the output bias for the Älh element of the output vector 
L is the number of kernel neurons 
Xjk is the weight between jth kernel node and kth output element 

<j)(z) : M+ —* M — Radial Basis Function 
Cj G IRP represents the centroid vector for the jih. kernel RBF 
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The solution to (4.1) yields a set of linear equations for the NN weights X,k which 
can be given as follows: 

rr 0      Ai    •••   A, 4.2) 

Making the following definitions: 

Vn 

l)m\ 

Vlq 

JJm 1   . 

4.3) 

Ai    •••   Af 

^01 

AJI A/1 

^Oq 

An    • • •    Ai, 

W<7 

(4.4) 

0 

^(IIXi 
«HI|X2 

c.l 
Cil 

1    ^(||Xm-C:| 

^(HXi-Cv/l 
0(||X2 - CMI 

A„ C.v/ 

(4.5) 

and closely examining (4.2) shows that the vectors of network weights A;, can be solved 
for independently by considering only the Y;. output. Since the system of equations 
(4.2) are decoupled, the RBF network can be uniquely determined by considering it 
as q multiple input, single output (MISO) systems. The NN output weights, Aj/t, can 
be found by solving the corresponding linear least squares optimization problem. 

When developing a RBFNN, the primary design parameters to be determined consist 
of choosing appropriate" centroids, C,-, and smoothing factor(s), CTJ. RBFNN perfor- 
mance is critically dependent upon the selected centroids and smoothing factors. Sev- 
eral methods are commonly used for selecting appropriate centroids. One approach 
uses the standard k-means clustering algorithm [33], [34], as an iterative process over 
the entire set of training data. The other approach uses the standard k-means clus- 
tering algorithm as an adaptive process in real time [34]. The common method for 
determining the smoothing factor(s) is the heuristic known as "P nearest-neighbor" 
[35]. The primary problem encountered with these selection procedures is that the 
resultant RBF networks tend to have a large number of kernel nodes, and some even 
have poor performance.   Chen, Cowan and Grant [36] have developed a systematic 
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approach to selecting the most significant centers from a set, usually large, of can- 
didate centers. The approach by Chen, et al. [36] uses an orthogonal least squares 
(OLS) procedure in a forward regression manner to determine the significant centers 
to within a specified tolerance p, 0 < p < 1. The selection of the tolerance p is the 
key to balancing the accuracy and complexity of the final RBF neural network design. 

4.2    Wavelet Neural Network Architecture 1 

One wavelet network structure follows readily from a reconstruction formula for any 
function in Hubert space, / £ H., based on the discrete wavelet transform coefficients 
for the function given by Daubechies [37] 

/ = ~^   E   </> K») tf'm.n    for  (B/A - 1) « 1 (4.6) 

as long as there exist A > 0 and B < oo satisfying 

^ll/H2<      £      \   (f^m,n)   I"   <  B\\f\\2 (4.7) 
m,n£Z 

where: (x,y) represents the inner product 
(f,ipm,n) represents the discrete wavelet transform coefficients 
{ipm,n(x) = ao~m'2ip(a0~mx — nb0)  Vm,n £ 2Z] represents a discrete family of wavelets 
A and B represent the frame bounds 

When the frame bounds satisfy the condition, A = B, the frame becomes a tight 
frame, and if ||0m,n|| = 1 \/m,n £ 2Z, then the (/'m,„ constitute an orthonormal basis 
for 7i, Daubechies [37]. In general, frames, whether tight or not, are not orthonormal 
bases, but instead simply span H, i.e. admit redundancy in representing any / £ 7i. 
Thus, the wavelet network given by equation (4.8) can approximate any function in 
7i, or for more practical purposes C2(IR). 

One form of the feedforward wavelet neural network (WNN) architecture is a network 
composed of input vectors X,- = [ xn   2;2    • • •    xvp ]T , X; £ IRF and output vectors 
Y,- = [ yn    yi2    • • •   yiq ] , Y,- £ Mq for i = L,2 r exemplars with a hidden layer 
of wavelet activation functions. According to [38],[39], the feedforward WNN can be 
represented by the mapping yik : JRP —+ IR,     V/' = 1,2,..., r 

L 

Vik = Aoi +E V i>(diag(aj)Xi -b,-)    VA- = 1,2,..., q (4.8) 
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where: tß(z) — Mother Wavelet Function 
diag(a;) represents a diagonal matrix whose elements are a; 

a; = diag(aO~m^1,..., aO~mi-r) £ Mp is the dilation vector for the jth wavelet 
m = [m^i,..., nijtP]T is dilation integer vector 
b; = boil is the translation vector for the jth wavelet 
n = [iijti,... ,njtP]T is translation integer vector 

Since the WNN equation (4.8) has the identical format as (4.1), it follows that the 
WNN can be uniquely determined by considering it as q MISO systems. 

4.3    Multiresolution Signal Analysis 

The theory of multiresolution signal decomposition of Mallat [40] provides the crucial 
framework for formulating and designing neural networks with wavelet activation 
functions. A recapitulation of these concepts as given in [40], [41], and [37] will now 
be presented. 

A multiresolution signal analysis entails a sequence of successive closed approximation 
subspaces, Vm with m £ 2Z, satisfying the following properties: 

1. • • ■ C V2 C V C Vo C V-x C V-2 C • • ■ (4.9) 

2. U  Vm = C2(R) (4.10) 

3- PI  Vm = {4>} (4.11) 
mez 

4. f(x) £ Vm <=> f(2x) £ Kn-i (4.12) 

5. f(x) £ V0 =» f(x - j) £ Vo Vj £ Z (4.13) 

which due to (4.12) implies f{x) £ Vm => f{x - 2mj) £ Vm Vj £ Z 

6. There exists a scaling function <j> £ Vo such that 

{^o,j) J ^ ^} z'5 an orthonormal basis in V0 (4.14) 

with <f>mij(x) = 2~m'2<i>(2-mx-i) Vj,m £ Z 

Equations (4.12) and (4.14) imply that {<Pm,}\ j £ %} is an orthonormal basis for 
Vm Vm £ 2Z. Define Pm to be the orthogonal projection operator onto Vm. By (4.10), 
limm^-cc, Pmf = / V/ £ C2(IR). The crux of multiresolution analysis is that if a set 
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of closed subspaces satisfies (4.9) - (4.14), then there exists an orthonormal wavelet 
basis of £2(IR) given by: 

ißm,n(x) = 2-m'24>(2-mx-n) (4.15) 

which for all / G C2(M) satisfies the relation 

Pm-if = Pmf+J2 {f,1>m,n)rl>m,n (4.16) 

For every m G Z, define the orthogonal complement of Vm in Vm-\ as Wm. At every 
scale 

Vm-l = Vm®Wm (4.17) 

WmJ_Wm/    ifm^m' (4. IS) 

1'^ C 14.«    ifm>m' (4.19) 

Then, for ??2 < M, 

M-m-l 

Vm = VM®    0    WM-,- (4.20) 
i'=0 

From equations (4.10) and (4.11), it follows that C2(M) can be decomposed into 
mutually orthogonal subspaces according to 

Wm = C2(R) (4.21) 
meZ 

Lastly, the Wm subspaces acquire the scaling property of equation (4.12): 

f(x) G Wm <^ f{2x) G Wm_! (4.22) 

With the above definition for Wm, equation (1. l(i) cqnivalently states that {?/'m,n; m, n G 
2Z] is an orthonormal basis for Wm for fixed /;/.   In addition, equation (4.22) guar- 
antees that if {ipo,n', n G %} is an orthonormal basis for Wo, then {ipmy, m,n G %} 
will also be an orthonormal basis for Wm, for any in. 

The orthonormal basis constructed above using the multiresolution signal analysis, 
given by equation (4.15), is only valid for £2(//?). The easiest way of constructing an 
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orthonormal basis for C2(MP) is to take the tensor product functions generated by p 
one dimensional wavelet bases: 

V'mi.m (^l)0m2,«2(-T2) • • • V'mp,np(-Cp) (4.23) 

where {$'mun1;m2,n2;-;mp,np\ m.i,rii G %} is an orthonormal basis for C2(MP). An- 
other construction for multidimensional wavelets comes from performing a multidi- 
mensional multiresolution analysis in which the dilations of the resultant multidimen- 
sional wavelets control the p variables simultaneously [37]. However, multidimensional 
wavelets generated using either construction suffer from the drawback of depending 
on the dimension p of the input space [37]. The generation of nonseparable multidi- 
mensional wavelets appears to be a viable technique for overcoming the dependence 
of multidimensional wavelets on the dimension /; of the input space [42]. 

4.4    Wavelet Neural Network Architecture 2 

A second architecture for the wavelet network comes directly from a multiresolution 
signal analysis. Let /m_i(x) be the approximation of f(x) at the (m — 1) scale. Then, 
since /m_i(x) G Vm_i and recalling equation (4.17), it follows from equation (4.16) 
that, 

fm-i(x) = fm(x) + ]T dmnxl)m<n{x) (4.24) 
n£2Z 

If f(x) ~ /m_i(x), i.e. the (m — 1) scale corresponds to the sampling rate of the 
function to be approximated, and recalling equation (4.14), then equation (4.24) 
becomes 

M 

f(x)  «   Yl  CMn^M,n(X) +  Yl   J2  din4\, n ( ■<' ) (4.25) 
ng/JT - i=m n£/Z 

Note from equations (4.14) and (4.12) that f.\i(x) = Y.„ez cMn4>M,n(x). The equation 
(4.25) was used in [43] to represent a wavelet neural network. 

Now it should be clear that the wavelet neural network given by equation (4.8) can 
alternatively be represented by the mapping ija- '■ Ui1' —► IR,     Vi = 1,2,..., r 

M S 

Vik = ^ok+Y, X'k ^(^afl'(a/)Xi-b/)+^ ,\jt c{diag{sLj)Xi-bj)    VA; = 1,2,..., </(4.26) 
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4.5    Wavelet Neural Networks 

When developing a WNN, the primary design parameters to be determined consist 
of choosing appropriate translation vectors, b0n, and dilation factors, a^m. This is 
equivalent to selecting kernel wavelets from the infinite set of candidate wavelets 
represented by 

{V>m,„(z) = (detA)p/V(Az - 6on)m,neF},z£F (4.27) 

where: A = diag(aO~mi,... ,a0~mp). For multidimensional input spaces, there is 
an additional consideration of deciding how the multidimensional wavelets are to 
be generated. The separable multidimensional wavelets suffer from the drawback of 
being dependent on the dimension p of the input space. Another approach is to 
generate nonseparable multidimensional wavelets [42]. Alternately, a radial wavelet 
function can be used, which is defined by the mapping <P : M+ —> M [39]: 

0(z) = ¥(||z||2) (4.28) 

Radial wavelets are not dependent on the dimension of the input space and are 
therefore better suited for large dimensional learning problems than direct product 
wavelets. Note that with radial wavelets the same dilation factor is used over each 
dimension of the input space, i.e., diag(aj) = diag(a0~m3,..., aO~mJ). 

It has been shown that for appropriately chosen </>, a0, and b0, equation (4.27) comprise 
frames of C2(MP) [39]. The first step in selecting appropriate kernel wavelets is to 
truncate equation (4.27) into a finite set, which requires a priori knowledge about the 
given approximation problem. When 0 is chosen to be a radial wavelet, the truncated 
wavelet set can be denoted by 

{Vv^z) = aöpmj/20(aömjz - 6on;)     nij eZc^eZC ^p}        (4.29) 

Any truncated wavelet set should sufficiently cover the domain of the input vectors 
at the desired resolution level, rrij, while maintaining the position of the wavelets, 
lij, somewhere within the domain of the input vectors and allowing the support 
of the wavelets to extend beyond the range of the input training data. The trun- 
cated wavelet set, equation (4.29), has the form of a regular pyramid, see Figure 4.2, 
meaning that wavelets corresponding to the same dilation parameter are equally 
spaced/translated within the domain, and as the dilation parameter increases, the 
corresponding wavelets become denser/narrower within the domain. The parallels 
between the RBFNN and the WNN should now be apparent. Choosing the centroids, 
Cj, for the RBFNN is equivalent to selecting the translation parameter vectors, b0iij, 
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for the WNN. Similarly, choosing the smoothing factor(s), a}, for the RBFNN is 

equivalent to selecting the dilation parameter(s), a0 
3, for the WNN. Thus, the OLS 

procedure [36] can be used on the truncated set of candidate wavelets equation (4.29) 
to determine the significant wavelets to within a specified tolerance p, 0 < p < 1, 
[44]. The selection of the tolerance p is also the key to balancing the accuracy and 
complexity of the final WNN design. 

4.6    Network Design 

Figure 4.1 below shows the general architecture for the RBFNN and for the WNN. 

A. 01   — I02    ►: 9u,,put 
Nodes 

*ji 

) i.\\ vi r.i '',■... Kcmcl 
'j(,)! f j(-). i • • • Nodes 

Input 
Nodes 

Figure 4.1: RBF and Wavelet NN Architecture for Learning 

Once the training data has been determined, then the NN designs can be carried out. 
The kernel node activation function for the RBFNN (4.1) and the mother scaling 
activation function for the WNN when using the second architecture was selected to 
be a multivariate Gaussian function, 

4>{z) = exp (-zTz); z e Rp (4.30) 

The mother wavelet activation function for both architectures of the WNN (4.8) 
were selected to be the Laplacian of the multivariate Gaussian function, i.e. a radial 
wavelet, 

»(«)="     'S""     exp \-t±   ;,efP (4.3i: 
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where q represents the variance of the multivariate Gaussian. The development of 
the NNs involved a tradeoff between the complexity of the NNs and the resultant 
performance or accuracy of the NN interpolation. 

Design Goal: Minimize the complexity of the NNs by keeping the number of kernel 
nodes to a minimum, while maintaining the normalized error below 5%. 

For the RBFNN design, since a RBFNN with the same smoothing factor in each 
kernel node is capable of universal approximation [45], this characteristic should be 
exploited in order to simplify the number of design parameters to be determined. The 
initial smoothing factor can then be determined using a nearest neighbor criterion. 
Now the critical design parameters to be determined are the locations of the centroids 
for the kernel functions. 

For the WNN design, a grid of the wavelets at the multiple resolution levels for each 
input range must be determined as shown in Figure 4.2. The wavelet coefficients a0 

and bo affect the alignment of the grid of wavelets for each input range. Since for 
appropriately chosen a0 > 1 and b0 > 0, radial wavelets comprise frames of C2{IRP) 
[39], it was decided to utilize this property in order to simplify the number of design 
parameters to be determined. 

Resolution 
Level, m 

t 

m coarse 

mf. •-   xxxxxxxxxxx fine      I        r n 
i    Input Range     J 

Wavelet Position , n 

Figure 4.2: Grid of wavelets at multiple resolutions 

In order to form the grid of wavelets for each input range, the minimum distance 
between data points for each input range needs to be determined, Ax,-iTn,-n. Then the 
finest resolution necessary for the grid over each input range is given by a0 

,J,ne = 
Aa;,-,m,-n which yields: 

rriijine = round(\oga0 Ax,-,mt-n) (4.32) 

The coarsest resolution for the grid over each input range, m,-iCOoräe, is determined by 
the largest value of m for which the first occurence of the smallest, nonzero number 
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of wavelets in the input range exists. Now the set of dilation integers for each input 
range is given by 

{mtjine, rriijine + 1,..., mhCOarse) = Zt C Z (4.33) 

Once the corresponding grid for each input range has been determined, then the 
multidimensional wavelets need to be generated. The use of radial wavelets greatly 
simplifies this task, since only those values of m common to all input ranges need to 
be considered. Recall that the same dilation factor is used over each dimension of the 
input space, diag{&j) = diag(aO~mi,..., aQ~mJ), therefore 

        p   

Z = f) Zi ;      with m.j G Z C Z (4.34) 
! = 1 

Recall that radial wavelets have the added benefit, of being independent of the dimen- 
sion of the input space. Now, the corresponding set of translation integers for each 
common resolution level, rrij, is determined by 

Nm.    =    {round(Xi/(aQmibO)); t = 1 ;■} 

Z   =    {Nm; \m: eZc%} 

n;    G    Nm,cZcr (4.35) 

Note that, for each mj, there are | Nm. |, (number of elements in the set NrUj), 
corresponding n; vectors. Then the truncated wavelet set, equation (4.29), is formed 
by using equations (4.34) and (4.35). 

The design procedure utilized in developing RBF and wavelet NNs can be summarized 
for a given set of training data as follows: 

la. Select RBF function, <f>{z).     OR 

lb. Select mother wavelet, </'(z), the scaling function <?(z) if using the second 
WNN architecture, and the dilation constant. o0. 

2a. Select the RBF smoothing factor, a.     OR 

2b. Select the wavelet translation constant. <V 

3a.  Initialize the RBF centroids, Cj = X,-.     OR 
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3b. Determine the set of wavelet dilation integers, m, £ Z, by generating a 
grid for each input range and then, for each nij, find the set of translation 
integers, n, € Nmj C Z. 

4. Choose the selection tolerance, p (typical 0.0001), and use OLS algorithm 
[36] to determine significant RBF centroids or wavelets from the truncated 
set. 

5. Get least squares solution for weights, A,•/,-. 

6. Repeat above steps as necessary. 

sectionNeural Network Modeling for Control Applications A RBFNN and a VVNN 
will both be developed in order to model several actuator nonlinearities in a flexible 
structure. The purpose of the NNs will be to predict the dynamical characteristics 
of the actuator nonlinearity. A considerable amount of uncertainty exists in typical 
actuator nonlinearites. The output vector, Y,- = [ yn y^ ], for the NNs consisted 
of: 

1. Desired actuator torque. 

Each training run was sampled at a rate of 10Hz for 500 seconds, resulting in 5001 data 
points. It was determined that a minimum of 6 training runs were necessary to evenly 
partition the input space, and these 6 training runs were selected as the preliminary 
set of training data. This preliminary set of training data contained 30,006 data 
points. Since the kernel node centroids are initially selected to correspond with the 
set of training data, the centroid selection procedure would have to be carried out over 
an initial number of 30,006 kernel nodes. As can be observed, the amount of computer 
memory and computational time necessary for even the minimal set of training data 
is exorbitant! Also, if additional training runs are deemed necessary, the size of the 
set of training data will, only increase. One solution to the excessive data problem is 
to sample the training runs at a slower rate to reduce the number of data points down 
to a manageable number, and then test the performance of the resultant NN with 
the 10Hz set of training data. In theory, as long as the training data is chosen to be 
persistently exciting over the entire input space, retraining of the NNs, i.e. changing 
the kernel node to network output weights, will be unnecessary. In other words, the 
resultant NN performance with non-training set data should be comparable with its 
performance over the set of training data. Additional testing data not included in 
the training set was then used to measure the performance of the NNs. 

45 



4.7    RBF Neural Network Simulation Results 

The RBFNN designs presented in this section follow the procedure outlined in Section 
4.6 with only the smoothing factor, a, being modified between designs. The initial 
smoothing factor for each kernel node was determined from the plot of the nearest 
neighbor distance versus training data vector index. The mean nearest neighbor 
distance is 0.98. Based on the nearest neighbor data, the initial smoothing factor 
was selected to be 1.0. Then the centroid selection procedure [36] was employed for 
a tolerance p of 0.0001. The selection procedure resulted in 260 kernel nodes being 
selected and an output bias. The main trends observed in the RBF designs were that 
the accuracy of the RBFNN near points of discontinuity decreases as a increases and 
that the complexity of the resultant RBFNN tends to decrease as a increases. 

Scatter Plot of Nearest Neighbor Distance for Neural Network Training Data 
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Figure 4.3: Scatter Plot of Nearest Neighbor Distance for NN Training Data 

Table 4.1 summarizes the RBFNN designs discussed above in terms of the design 
parameter a, the number of kernel nodes L, and the normalized error for each training 
vector of exemplars, Ek', given by equation ((4.36)) for the set of training vectors. 

(4.36) 

where: Ek represents the normalized error 
for the A'th training vector 

r is the number of exemplars 
in each training vector 

Y* is desired output for ith exemplar 
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Yi is the NN output for ith exemplar 

a L Ex E2 E3 E4 £5 E6 

1.0 260 0.81 0.70 0.40 0.58 0.26 0.32 

5.0 61 0.45 0.52 0.59 0.67 0.70 0.12 

7.5 45 0.47 0.59 0.55 0.55 0.58 0.25 

10 44 0.70 0.62 0.57 0.61 0.38 0.16 

15 53 0.71 0.73 0.51 0.58 0.32 0.13 

25 41 0.82 0.99 0.82 0.78 0.39 0.06 

Table 4.1: RBFNN Training Design Summary 

Table 4.2 compares designs 3 and 4 when tested using additional data not included 
in the training set. 

a L Ex E-2 E3 EA E5 Ee 
7.5 

10 

45 
44 

0.48 
0.71 

1.17 
1.24 

0.55 

0.57 

1.07 

1.11 
0.58 

0.38 

0.25 

0.16 

Table 4.2: RBFNN Testing Design Summary 

Remark: If the normalized error was 5% at every point in a training run, Ek = 250. 
Therefore, the results shown in Tables 4.1 and 4.2 are excellent and more than satisfy 
the design goal stated in Section 4.6 

The RBFNN output responses are given in Figures 4.4-4.6. Figures 4.4-4.6 compare 
the RBF output responses for design 4 with the actual set of testing data and provide 
the resultant error and normalized error responses. Observation of Figures 4.4-4.6 
show that the performance is excellent and the goal of maintaining the normalized 
error below 5% everywhere except at an occasional point of discontinuity is satisfied. 

4.8    Wavelet Neural Network Simulation Results 

The WNN designs follow the procedure outlined in the Network Design Section with 
the translation constant, bo, and the mother wavelet activation function, equation 
((4.31)), being modified between designs. The mother wavelet was modified by vary- 
ing the variance parameter, s- Initially, s = 1. The dilation constant was set to 
aQ = 2 and the initial translation constant was chosen as bQ = 1. The resulting grid of 
wavelets for each input range is summarized below in Table 4.3, where | N | denotes 
the number of elements in the set Nm . 
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x1 a-'2 •1'3 x4 

mi ] iV | m2 1 N I 7713 1 ^v 1 m-4 1 ^v 1 
- i 1450 -7 1632 0 156 -7 52 
-6 731 -6 832 1 78 -6 27 
-5 366 -5 411 2 39 -5 14 
-4 183 -4 207 3 21 -4 7 
-3 92 -3 103 4 11 -3 4 
-2 46 -2 53 5 5 -2 3 
-1 24 -1 27 6 4 -1 2 
0 12 0 13 7 2 0 1 
1 7 1 7 8 1 
2 4 2 5 
3 3 3 3 
4 1 4 1 

Table 4.3: Grid of Wavelets for Actuator Data 

From Table 4.3 it follows that Z = {0} and therefore m3 = 0. The set of translation 
integers, n, € Nm , were determined using equation ((4.35)). Then the selection 
procedure [36] was employed for a tolerance p of 0.0001. The selection procedure 
resulted in 88 wavelets being selected and an output bias. The main trends observed 
in the wavelet designs were that the accuracy of the VVNN increases as 60 decreases 
and that the complexity of the resultant WNN tends to decrease as s increases. 

Table 4.4 summarizes the WNN designs discussed above in terms of the design pa- 
rameters b0 and c, the number of kernel nodes L, and the normalized error for each 
training vector of exemplars, Ek, given by equation ((4.36)). 

bo ? L £i E2 £"3 EA E5 Ee 
1.0 1 88 11.4 5.72 öS. 2 50.1 13.5 1.35 

0.5 1 245 0.81 0.58 0.53 0.70 0.34 0.32 

0.1 1 242 0.71 0.62 0.51 0.76 0.48 0.39 

0.5 4 104 0.46 0.63 0.15 0.65 0.94 0.10 

0.5 10 48 0.51 0.74 0.41 0.62 0.52 0.18 

0.1 10 46 0.55 0.61 0.15 0.66 0.54 0.24 

Table 4.4: WNN Training Design Summary 

Table 4.5 compares designs 5 and 6 when tested using additional data not included 
in the training set. 

The results shown in Tables 4.4 and 4.5 are also excellent and more than satisfy the 
design goal. Comparison of Tables 4.2 and 4.5 demonstrates that the performance of 
the RBFNN and WNN are basically identical for this application. The WNN output 
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bo <T L Ex E2 E3 E4 E5 £6 

0.5 
0.1 

10 
10 

48 
46 

0.52 
0.56 

1.35 
1.20 

0.40 
0.45 

1.05 
1.08 

0.52 
0.54 

0.18 
0.24 

Table 4.5: WNN Testing Design Summary 

responses are given in Figures 4.7-4.9. Figures 4.7-4.9 compare the WNN output 
responses for design 6 with the actual set of testing data and provides the resultant 
error and normalized error responses. Observation of Figures 4.7-4.9 shows that the 
performance is excellent and the goal of maintaining the normalized error below 5% 
everywhere except at an occasional point of discontinuity is satisfied. 

Neural Network Response vs. Actual Response for Sigma = 10 and Rho = 0.0001 
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Figure 4.4: RBFNN Design 4 - Testing Run 1 
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Neural Network Response vs. Actual Response for Sigma = 10 and Rho = 0.0001 
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Figure 4.5: RBFNN Design 4 - Testing Run 2 
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Figure 4.6: RBFNN Design 4 - Testing Run 4 
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■27 
Neu ral Network Response vs. Actual Response for a0=2,b0=0.1 ,Rho=0.0001 
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Figure 4.7: WNN Design 6 - Testing Run 1 
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Figure 4.8: WNN Design 6 - Testing Run 2 
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Neural Network Response vs. Actual Response for a0=2,b0=0.1 ,Rho=0.0001 
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Figure 4.9: WNN Design 6 - Testing Run 4 
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5.    MODELING AND CONTROL OF STRUCTURAL SYSTEMS 
USING WAVELETS 

In this chapter, we explore a couple of uses for time-frequency wavelets. These include 
the modeling and control of structural systems and subsystems. We develop a versatile 
structure model based on time-frequency wavelets as opposed to the traditional finite 
element/modal models. The versatility of these wavelet models provides a means of 
developing a best basis for a given structural system. These wavelet models can be 
easily modified to account for structural changes due to the operating environment, 
coupled dynamic loading and material degradation. The wavelet models are developed 
for the purpose of being utilized during the controller design phase. We then present 
some theoretical results necessary for developing a sensitivity minimization controller 
based on a wavelet model. The theoretical work for other controller objectives can 
also be performed as extensions of this work. Initial proof of concept studies will be 
performed on several flexible structure models using simulation. 

The main concept presented in this chapter is to use a wavelet basis to model the 
structural system and then determine the optimal controller using this same wavelet 
basis in an effort to obtain a nesting property between controllers of different order. 
The nesting property which wavelets possess is one of their primary strengths. The 
control problem to be addressed is that of minimizing the effect of disturbances on 
a SISO closed loop system, i.e., minimizing the sensitivity function, in terms of the 
H2 norm. This control problem solution will be discussed herein and appeared in 
[46]. The time/space localization property of wavelets provides for the capability 
of "localized" control action over a selected period of time. This type of control 
should prove invaluable for structural systems with stringent positional or pointing 
requirements. 

Wavelets provide a rich theory with a library of functions and algorithms available 
for modeling signals. Wavelets also have the ability to attain a best basis for a 
signal or class of signals. This means that a best basis of wavelet functions can be 
easily modified to account for uncertainties, failures, and changes in the operating 
environment of a structural system by simply changing the coefficients on the wavelet 
basis functions. Since wavelet coefficients tend to decay quickly and usually require 
substantially fewer basis functions compared with a Fourier basis, truncation of an 
infinite dimensional wavelet model to a finite dimensional model should introduce 
negligible modeling error. In addition, if the controller also depended on the same 
wavelet basis functions as the structural system, then the controller could also be 
easily modified to account for uncertainties, changes in operating environment of the 
structure, etc., making for a more robust controller. 
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5.1 Background on Time-Frequency Wavelets 

There are many excellent articles and books on general wavelet theory, for example, 
see [37], [47], [48], [49], [40], [50] and [41] and the references therein. Wavelets are a 
set of basis functions, '^m,n{x) which can be used to represent all admissible functions 
f{x) G 7i, Hilbert space, as follows: 

/(a0  =  X]Cm,n'0m,n(^) (5.1) 
m,n 

The interesting characteristic of wavelets is that the basis functions, 0m)„(x), are con- 
structed from dilations and translations of a mother wavelet, ip(x). Time-frequency 
wavelets are closely linked to the Short Time Fourier Transform (STFT) which was pi- 
oneered by Gabor [51]. However, "Gabor" wavelets suffer from serious algorithmic dif- 
ficulties and can never be an orthonormal basis for C2(M). A significant improvement 
over the "Gabor" wavelets has been the development of orthogonal time-frequency 
wavelets by Coifman and Meyer [52], and Malvar [53, 54]. These researchers use 
smooth window functions to split the signal and employ extension concepts from the 
discrete cosine transform (DCT-IV) to "fold" the overlapping parts back into the split 
signal. Their clever construction allows one to construct smooth orthonormal bases 
for £2(]R) which depend on arbitrary partitions of the real line [55], [48], [49]. 

The following definitions are essential to understanding the construction of orthonor- 
mal time-frequency wavelets. Some of these definitions can be found in Wickerhauser, 
[48]. 

Definition 2 (Function Polarity) A function f has positive polarity (+) loith re- 
spect to the point a on the interval [a — (\<t + e] <^=> f(t) = /(2a — t) for 
t e [a — e, a + e]. In other words, f is an even function about the point a. A function / 
has negative polarity (-) with respect to the point a on the interval [a — e, a + e] <^=> 
f(t) = —/(2a — t) for t G [a — e, a + e]. In other words, f is an odd function about the 
point a. 

Definition 3 (Cutoff Functions) A cutoff function, m(t) 6 Cd(IR), is a complex, 
continuous, d-times differentiable function with the following properties: 

• |m(0|2 + |m(-*)|2 = 1  Vie iR 

m      / 0,    if t < -1, 
* m{t) = I   1,   if t > 1. 
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Definition 4 (Bell Function)  A bell function, bj{t), supported on the interval [a3 — 
ej,aj+i + ej+i] is given by: 

f      mJ'(t?')'       tG[a3-e3,aj + e3] 

&,■(*)= j ^ * € [aj + ej,aJ+i - eJ+1] 

Definition 5 (Folding Operator)   The folding operator, F, is given by: 
( fn(^j±)g(t) - m(t-^)g(2a3 - t),   if a3 - e} < t < a3 

F(m)g(t) = |   m(}^.)g{t) + m{a-j±)g(2a3 - t),   if a3 < t < a3 + ej, 

[ g(t), otherwise 

Definition 6 (Unfolding Operator)   The adjoint of the folding operator, F* the 
unfolding operator, is given by: 

(rn{<h^)g{t) + m(t-^L)g(2a3 - t),   if a3 - e3 < t < a3 

™(^M0 - mC-^)g(2a3 - t),   if a3 < t < a3 + e3, 

g(t), otherivise 

Unitary Operator Property: F*(m)F(m)g(t) = F(m)F*(m)g(t) W / a3- 
Action Interval: [aj — e.j, a3- + e3] 

Definition 7 (Translation Operator)   The translation operator is given by: 
Sag(t) = g(t - a) 
The adjoint of the translation operator is given by: 
S*ag(t) = g(t + a) 

Definition 8 (Dilation Operator)   The dilation operator is given by:   Deg(t)  = 

The adjoint of the dilation operator is given by: D*ag(i) = el/2g(et) 

The translation and dilation operators can now be used to make the action region of 
the folding and unfolding operators the interval (a-e,a+e) as follows: 

F(mk,ak,ek)g(t) = SakDekF D*ekS*akg{t) 

rnk{^~)g{t) - mk{t-=^)g{2ak - t),   if ak - ek < t < ak 

mk{t-^)g{t) + mk{^)g(2ak-t),   ifak<t<ak + ek, (5.2) 

g(t), otherwise. 
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rnkC-T^)d(t) - m{^)g{2ak - t),    if ak < t < ak + e*, (5.3) 

F*{mk,ak,ek)g{t) = SakDekF* D*ekS*kg{t) 

mk(^r)g{t) + mkC-^)g{2ak - i),   if ak - ek < t < ak 

g(t), otherwise 

Notation: Let F(mk,ak,ek) = Fk and F*(mk,ak,ek) = Fk. 

Definition 9 (Disjoint Folding Operators) A family of folding {Fk} and unfold- 
ing {Fk} operators is disjoint, and therefore commutes, if 
(ak - ek,ak + ek)f)(ak+i - ek+i,ak+1 + ek+i) = 0- 

Now, the real line, M, is partitioned into compatible, disjoint intervals, FL = [jk Ik 

and f]k Ik = 0 as follows: 
Let {ck : k 6 %} be any sequence such that 

• For k < j, ck < Cj 

• ck —+ oo and c_k —»• —oo as k —» oo 

For each k € 2Z, define: 

ak   =    ^[cfc + Cfe+i] (5-4) 

efc    =    -[cfc+i - cfc] (5.5) 

/ik    =    [afc,afc+i] (5.6) 

Figure 5.1 shows how the intervals for the trigonometric basis are partitioned and 
demonstrates that any given interval Ik is only overlapped by the intervals Ik-\ and 
h+i- Figure 5.1 also demonstrates that the midpoint of the kth interval, Ik, is ck+\- 

This partition can then be refined by splitting the intervals at their midpoints. For 
the jth refinement level, the intervals are given by: 

/,-. k 
ak   dk+i 

1i     2i 
o.t 

The development of local trigonometric transforms which serve as a complete or- 
thonormal basis for £2(M) hinges on the properties of the bell functions, the def- 
initions of the folding and unfolding operators, and the polarity of trigonometric 
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Adjacent Intervals With Disjoint Action Regions 

l[k-1j l|k] 

e|k-1j     ' e[k-1|        e(k)      V e[k) e|k+1j   V e(k-n|      e|k+2j   '  e[kt2) 
<—^—x—a*?—x *te—x X > 

l|k*1] 
X > 

c(k-1)       a[k-1j       cjkj a[k| cjktl]      a[k+1]      c[k*2]      a(k+2]      c[k+3] 

Figure 5.1: Partition of intervals, {h}, constructed using disjoint action regions at 
the interval endpoints 

transform used. Two examples of complete, orthonormal local trigonometric bases 
are the Local Cosine Transform of Type IV (LCT-IV) and the Local Sine Trans- 
form of Type IV (LST-IV). When the bells bj(t) are symmetric with respect to their 
centers, i.e., ej = eJ+i Vj, and the same cutoff function is used throughout, i.e., 
rrij(t) = mj+i(i) Vj, the interval / = (a^-, a^+i) is compatible with its adjacent trans- 
late by |/| = a,k+i — dk- For this special case, the folding and unfolding operators 
simplify as follows: 

Definition 10 (Folding Operator for Compatible Intervals)   The folding oper- 
ator for compatible intervals, FC, is given by: 

rnC-TL)g{t) + m(E:27i)9(aj + aj+i ~ t),      lf aj < t < a? + e, 
m(?2±±zl}g(t) - fh{t-^^-)g{a} + aj+i -t),   if aJ+1 -e<t< aJ+1 

g(t), otherwise 
FC{m)g{t) = I 

Definition 11 (Unfolding Operator for Compatible Intervals)   The unfolding 
operator for compatible intervals, FC", is given by: 

™{t-zrL)g{t) - ™{^r)g{aj + «j+i - t),      if aj < t < aj + e, 
m{^^)g(t) + rh(t-^±1)g{aJ + aJ+1 - t),   if  a3+l - e < t < a1+1 

g(t), otherwise 
FC\m)g{t) = { 

With the use of these compatible interval folding and unfolding operators, there is no 
longer any need to step outside of the interval when performing folding and unfolding. 

The general form of a typical family of time-frequency wavelets is given by: 
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0n,*(t)  = FkFk+lXhitfcOSnAt) 7Wl.lt) COS 
n + I) (* ßjt 

;5.8) 

where: i[^k{t) e L2(iR) 

e* 

cosn,fc(i) = y^| cos 

1,   if ak < t < ak+i, 
0,   otherwise. 
^(n+^)(f-gfc)

s 

141 

(t) = mk (L^±) mk+l (E±^r1), Supp wk{t) = [ak - ek,ak+1 + ek+1] wk(t) = mk [*-£*■) mk+1 

h = [o-k,c-k+i] is the kth. interval 

\h\ = Ofc+l — dk 

The time-frequency wavelets allow for windows of varying length in which the time 
domain is divided into unequal intervals. Figure 5.2 shows a typical time-frequency 
wavelet. 

Local Cosine Wavelat 

Tima m seconds 

Figure 5.2: Typical Time-Frequency Wavelet 

Properties of ißn,k(^): - 

(i) Orthonormality: (^„,fc(f),VVj(O) = ^n.mh-.,,- 

(ii) Compact Support: Supp ipn,k(t) = 
[ak- ek,ak+l + efc+i] =4> */>„,*(*) G I1 (//?). 

(iii) Minimal Overlap: For a given interval. Ik, on,k(t) is only overlapped by ipn,k-i{t) 
and if>ntk+x(t) due to being constructed from disjoint folding and unfolding op- 
erators. 
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Remark 
The construction of disjoint intervals for M(0,oo) requires that c-k —> 0 as k —> 
oo. Such a partition yields a continuous, orthonormal local trigonometric basis for 
L2(0,oo) [55]. Now. for appropriately selected cutoff functions, an orthonormal H2 

wavelet basis can be determined by taking the Laplace transform of each element in 
this basis for £2(0,oo). 

5.2 Structural System Modeling and Identification 

The control of advanced structural systems is a demanding task due mainly to the 
intrinsic dynamic characteristics of these structures. Typical modeling approaches in- 
volve using structural analysis programs like NASTRAN for developing finite element 
models [56, 57]. Typically, finite element models can be characterized by the presence 
of densely packed modal frequencies with low damping [58]. In addition, finite element 
models do not account for the many uncertainties present in the structure, including 
structural uncertainties, failure of system components, and changes in the operating 
environment. For a 1% error in the dominant modal frequency, the modeling error 
could be as large as the contribution of the mode itself [59]. Truncation and round 
off inherent in using a finite-dimensional model for an infinite dimensional system 
invariable introduce additional errors in the modal frequencies and the mode shapes. 
Lastly, different modes may be excited during different operating/failure conditions 
requiring a versatile model of the structure. 

A general SISO structural plant model can be represented as: 

CO 

f("=g,»+2c£>.+Mi (5-9) 

where gk is a gain term. Assume that any rigid body modes have been stabilized by 
an inner loop. Then P(s) £ H2. The structural plant, P(s), can now be modeled by 
using a time-frequency wavelet representation of the form: 

P(s) = JTakVnk,k(s) (5.10) 

where tynkik(s) is an H2 wavelet basis function. Due to the linearity of the Fourier 
Transform, and the fact that the Fourier Transform is an isomorphism between 
L2[0,oc) and H2, the equivalent time domain representation of structural system 
is given by: 
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p(t) = Y,ak^nk,k(t) (5.11) 
fc=0 

where ^n/tl*(i) G L2(0, oc) f) L1 (0, oc). 

The control designer would like to be able to obtain a best basis for a given structural 
system, or possibly a best basis (BB) for a class of structural systems / subsystems. 
A best basis selection algorithm [60], based on a signal processing viewpoint, has 
already been developed. The BB selection procedure is an adaptive algorithm which 
determines the splitting locations for the time-frequency wavelets based on the signal 
to be decomposed. The decision is based on yielding a representation which has the 
most decorrelation. Entropy is one method out of many possible methods, [48], used 
to measure the decorrelation. There are also many other adaptive techniques which 
can be utilized in the selection of the best basis for a given signal. It should be noted 
that for the controller design presented herein, the BB selection procedure would 
have to be modified to ensure that the basis elements selected remain orthogonal to 
each other. Another possible approach is to determine the best level basis out of 
the total number of depth levels considered for the given structural system. This 
best level basis could serve as the structural basis and would maintain the required 
orthogonality between the basis elements. Figure 5.3 provides an example of possible 
splitting locations for a time-frequency wavelet representation of a particular signal 
and then gives a potential orthogonal basis and a potential level basis, which by 
definition is guaranteed to be orthogonal. 

Figure 5.4 outlines the procedure for the decomposition of a particular discrete signal, 
x(k), into cosine packets (Cosine Packet Analysis) and the procedure for the recon- 
struction of the discrete signal from the cosine packets (Cosine Packet Synthesis). 
Figure 5.4 demonstrates these procedures for a given depth level, d, in the packet ta- 
ble, corresponding to a level basis analysis/synthesis procedure. Note that DCT-IV 
denotes the discrete cosine transform of type IV. It should be noted that sine packets, 
using the discrete sine transform of type IV (DST-IV), or a combination of both sine 
and cosine packets can also be used. 

Figures 5.5 - 5.7 presents an example of a time-frequency wavelet decomposition, 
in particular, the cosine packet decomposition, basis selection, and cosine packet 
reconstruction of the impulse response for a structural system containing two modes. 
The basis to be determined was the best basis for the system with entropy as the 
information cost function to be minimized by the basis selection procedure. 

Figures 5.8 - 5.10 presents the same example of the cosine packet decomposition, etc., 
as figures 5.5 - 5.7, but the basis to be determined is the best level basis for the system 
with entropy as the information cost function. 

60 



5.3 Multiresolutional Sensitivity Minimization 

The feedback control system is shown in Figure 5.11, where P is the plant to be con- 
trolled and W is the weight modeling the disturbances. The Wiener-Hopf approach 
to the sensitivity minimization problem involves finding an internally stabilizing con- 
troller, C, such that the following performance is achieved: 

/*==      t$.    p\\WS\\3 (5.12) 
C stabilizing F 

The sensitivity function for the feedback control system is given by: 

,S := (1 + PC)"1 (5.13) 

The sensitivity minimization problem has been studied by numerous researchers in 
terms of minimizing the H2 norm and the H°° norm, see [61], [62] and [63] and the 
references contained therein. 

Assumptions 

1. W E MH2, i.e., W is real, rational, stable and strictly proper. 

2. P € H2, i.e., P is stable. 

The first step in our MC development is to perform a Youla parameterization [64] for 
the controller C according to: 

C = Q(l-PQ)-\      QeH°°,      (l-PQ)^O (5.14) 

The performance measure, equation (5.12), becomes 

fi   =   QMJW(1 - PQ)\\2 (5.15) 

li   =     inf  \\W-PQ)\\2 (5.16) 
Qem 

where: Q = WQ 
Now represent the performance criteria, equation (5.16), as an binner product: 

J=\\W- PQ\\l = (W - PQ, W - PQ) 

= (W,W) -2Re{{W,PQ)} + (PQ,PQ) (5.17) 
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Let the Fourier Transform of a signal x(t) be represented by X(juj) and recall the 
following theorem: 

Theorem 8 (Plancherel)  If f{t) e L2{R), then F(ju) € L2{jJR) and \\f\\ = ||F||. 
In addition, (f,g) = {F,G) for any two functions f,g £ L2(H). 

In light of this theorem, the performance criteria, J, can be represented equivalent!}* 
as: 

./ = (w,w) - 2Re{{w,pq)} + {pq,pq) (5.18) 

The next step in our MC development is to represent the plant P using an orthonor- 
mal, preferably best, H2 wavelet basis according to equation (5.10) given previously. 
Now, the disturbance weight W, and the controller function Q will also be represented 
by the same orthonormal, H2 wavelet basis as follows: 

W(s)   =    £>tf„fclfc(5) (5.19) 
fc=0 

Q(s)    =    J2fk*nk,k(s) (5-20) 
fc=0 

The equivalent time domain representation of these signals is given by: 

w(t)   =   JtßkiwAt) (5.21) 
fc=o 

q(t)   =    JtirtntAt) (5-22) 
fc=0 

Define: 

r := [7o7i72 ■■■}T ■ (5-23) 

The performance measure is to be minimized by choosing the optimal gains, T, for the 
controller function Q. However, due to the local nature of the wavelet basis functions 
used to represent the components of the system, the performance measure, equation 
(5.18), can be written as: 

,/(r) = ^Jfc(7fc) (5.24) 
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Making use of equation (5.24) and Figure 5.1 of Section 5.1, the optimal controller 
gains, ropt, are determined. The complete derivation is presented in [46]. The optimal 
controller gain for a given interval, k, can be represented functionally as: 

Ik = f{o(k-i,o>k,ak+i,ßk-i,ßk,ßk+u4,k-i-,4,k,4'k+i,Jk-u7k+i) (5.25) 

5.4    Multiresolutional Controller Development and Implementation 

The theoretical development of a multiresolutional controller for sensitivity minimiza- 
tion was presented in Section 5.3. The section discusses some of the implementation 
issues prevalent to the design of a multiresolutional controller (MC) for sensitivity 
minimization. First, the functional representation of the controller gains, 7^., found 
in equation (5.25), actually represents inner product terms of the time-frequency 
wavelets, ^(i), which can be evaluated numerically using equation (5.8) and the 
unitary operator property of the folding operators, see Definition 5, as follows: 

(/,^n,fc(*)) = (f,FZFZ+1xik{t)cosn,k{t)) 

= (Fk+1Fkf,xik(t)cosnik{t)) (5.26) 

Secondly, the optimal controller gains are a function of the best basis chosen for the 
plant. Therefore, the controller design is extremely problem and plant specific. This 
is by no means a drawback, and actually is exactly what a control designer would 
want. However, a suboptimal controller should be directly related to the optimal 
controller when represented using a wavelet basis. Determining the optimal algorithm 
to use for the selection of the best wavelet basis functions also needs to be addressed. 
However, the best basis selection algorithm [60] appears to be a good starting place, 
keeping in mind that the resultant best basis must be orthogonal so that the controller 
methodology developed is applicable. Next is the need to truncate the infinite wavelet 
basis representation for. the plant. Again, this is not a drawback, but a feature of 
wavelets that is usually exploited, especially in video compression problems. Wavelets 
are such a powerful tool since they require less basis functions than the standard 
Fourier methods due to their localization in both time and frequency. Another issue 
is selection of the best optimization technique to use when solving equation (5.25) for 
the optimal 7t's. Due to the coupling between the -■/,., ~jk-i and jk+i terms, a recursive 
solution is possible which would relate the first -, gain to the last 7 gain, and then 
all the intermediate gains would be found by back substitution. Other optimization 
procedures could also be employed, possibly a dynamic programming method starting 
at the last time interval or a conjugate gradient procedure. Lastly, suboptimal 7^'s 
could always be calculated by simply calculating bounds on the cross coupling terms, 
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and using these bounds in the calculation for the ~)'k's. Then the optimization problem 
is directly solved by determining the jk gains, for all k = 0,1, ..., N, using equation 
(5.25). 

64 



Potential splitting locations 
for a time-frequency 
wavelet representation 
over an interval I 

Depth Level 

d = 0 

d = l 

d = 2 

d = 3 

Orthogonal Basis    Hj 

d = 0 

d = l 

d = 2 

d = 3 

Level Basis 

d = 0 

d = l 

d = 2 

d = 3 

Figure 5.3:  Example of possible splitting locations for a particular signal and a po- 
tential orthogonal basis and a potential level basis 
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COSINE PACKET ANALYSIS:   For a given depth level, d 

x(k) For b = 0,..., 2 d, 
Partition into 

! Compatible 
Packet Intervals 

I[b-1] 

I[b] FC(mj);yb(k) 

DCT-IV 
CosPktb(n) 

I[b+1] 

COSINE PACKET SYNTHESIS: For a given depth, d 

For b = 0,..., 2 d, 

yb00 CosPktb(n) 
I[b-1] 

i DCT-IV ^ FC*(mj)     I[b]    ^   „    x(k)t 

I[b+1]    < 

Figure 5.4: Procedures for performing cosine packet analysis and synthesis on a dis- 
crete signal, x(k), for a particular depth level, d. 

Impulse Response for Two Modes with zeta = 0.01 & omega = 6.283 & 12.57 

Frequency Response for Two Modes with zeta = 0.01 & omega = 6.283 & 12.57 

3 4 
Frequency in Hz 

Figure 5.5: Impulse and frequency response for a flexible structure with two modes 
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Figure 5.6: Cosine packet decomposition and best basis selection for a flexible struc- 
ture with two modes at ui\ = 2TT and u>2 = 47r with the identical damping factor of 
C = o.oi. 
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Figure 5.7: Reconstruction of the impulse response for a flexible structure with two 
modes 
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Figure 5.8: Impulse and frequency response for a flexible structure with two modes 
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Figure 5.9: Cosine packet decomposition and best level basis selection for a flexible 
structure with two modes at u>\ = 2ir and UJ2 = 47r with the identical damping factor 
of C = 0.01. 
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Figure 5.10: Reconstruction of the impulse response for a flexible structure with two 
modes 

Figure 5.11: Feedback Control System 
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6.     CONCLUSION 

The main thrust of this project has been to consider the control of interconnected rigid 
and flexible structures. Due to the fact that we distributed our attention to different 
modeling, analysis and design techniques, we have obtained many new results in 
different areas. 

Conclusions obtained from individual aspects of our report are listed below, as they 
correspond to the chapters in this report: 

In Chapter 2 several results for sliding mode control of sampled-data systems were 
outlined. Due to limited sampling frequency and the "hold" processes in the control 
channels, perfect sliding mode never occurs in a sampled-data system. The control 
law being piecewise constant, the states can only be kept in a boundary layer of 
the sliding surface instead of being constantly and exactly on that surface. In this 
chapter, a new method of implementing discrete time sliding mode control for sample- 
data systems was developed to reduce the thickness of the boundary layer, to alleviate 
the effect of uncertainties, and to remove the undesired chattering in sliding mode. 
Three classes of sampled-data systems with uncertainties were investigated; namely, 
linear, nonlinear, and stochastic systems. By proper consideration of the sampling 
phenomenon in the control design, one can maintain the states in the vicinity of the 
sliding surface with accuracy up to at least 0(T2), 0(T2), and 0(T?) respectively. 
We have demonstrated these results on an actual hardware structure. 

In Chapter 3, we have introduced a new approach for vibration damping in flex- 
ible structures based on the sliding-mode control approach. Previous use of this 
approach has been for finite dimensional (approximate) models of flexible structures. 
Here, we retain the infinite-dimensional model for the structures and investigate exact 
solutions using sliding-mode control. In the particular strategy introduced here, the 
design is accomplished initially for a class of differential-difference systems. It is then 
demonstrated that the model of flexible structures with second order spatial partial 
derivatives, can be transformed into the above differential-difference form. A number 
of different cases have been analyzed. We then consider a class of flexible structures 
with fourth order spatial partial derivatives. An integral transform is introduced that 
changes the model into second order form. Thus, a two-stage design process can be 
utilized to eventually generate the sliding-mode controllers. Sliding mode algorithms 
considered make the closed loop system highly insensitive to external disturbances 
and parameter variations. Furthermore, from the applications viewpoint, the models 
considered are particularly appropriate for the ul ilization of distributed actuation and 
may be used in "smart structures" with piezoelectric materials. To avoid difficulties 
in solving for the transformation kernel and performing the integral transformation 
analytically, a neural network may be trained to perform these tasks.   By using the 
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neural network, exact knowledge of the kernel of the transformation is not required. 
The neural network then becomes the first stage of the vibration suppression con- 
troller. The second stage of the composite controller is the sliding mode controller 
which has been designed for the differential-difference system. 

In Chapter 4, we introduce a new general design procedure for radial basis function 
neural networks and wavelet neural networks. These type of neural networks are 
especially well-suited for solving general pragmatic learning problems in which the 
training data consists of irregularly positioned data points. A multiresolution learn- 
ing network or wavelet network, has the added capacity of being able to generalize 
the nonlinear relationship between the given inputs and desired outputs, along with 
capturing the desired fine details of the nonlinear mapping. We present simulation 
results for these two types of networks based on predicting actuator nonlinearities oc- 
curring in a flexible structure. The neural networks were trained using a set of training 
data and were then tested using additional data not contained in the training set and 
excellent performance was achieved and demonstrated. 

In Chapter 5, we explored a couple of uses for time-frequency wavelets. First, 
an overview of time-frequency wavelets was presented. We then presented the con- 
cept of modeling a structural system using a best basis made up of time-frequency 
wavelets. We developed a versatile structure model based on time-frequency wavelets 
as opposed to the traditional finite element/modal models. The decomposition and 
reconstruction schemes for time-frequency wavelets were presented. Then simulation 
results were presented for modeling the impulse response of a structural system using 
cosine packets. These simulation results demonstrated the cosine packet decompo- 
sition, the basis selection procedure, and the reconstruction process. The concept 
of a multiresolutional controller was formulated and discussed. A multiresolutional 
controller which minimizes the sensitivity function for a SISO flexible structure in the 
H2 norm was derived. This controller utilizes the structural models which were devel- 
oped using time-frequency wavelets. Implementation issues for the multiresolutional 
controller were also discussed. 
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