
REPORT DOCUMENTATION PAGE 
f^e^sa- ~TT^ c-n>Q^4 

Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection ol information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data 
sources gathering and maintaining the data needed, and completing and reviewing the collection of information. Send oomments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Servioes. Directorateifor Information Operations and Reports, 
1215Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washington, 
DC 20503. 

AGENCY Usä ÖNlV (Leave blank) 2. ftEtoRT&ATE  

March 1997 
4. TITLE AM SUBTITLE  

Robust Multiresolution Integrated Target Sensing and 
Recognition 

REPORT TVP>ä AND DATES COVERED 

Final, October 1993- September 1996 
5. FUNDING NUMBERS 

6. AUTH0H(5) 

Dr. A. H. Tewfik 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(S) 

Dept. of Electrical Engineering 
University of Minnesota 
Room 4-174 EE/CSci Bldg 
Minneapolis, MN 55455 

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 

Dr. Jon Sjogren, 
AFOSR/NM 
Bldg. 410 
Boiling Air Force Base,Washington, D.C. 

11. SUPPLEMENTARY NOTES 

AFOSR-F49620-93-1- 
0558 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

r.pm'mmmoR STATE ggfliL 
laprored tea cubbc reieoa^ 

13. ABSTRACT (Maximum 200 words) 

12b. DISTRIBUTION CODE 

The main goal of this research effort was to develop an integrated target sensing and recognition strategy. 
Secondary goals of this work were to construct novel image representation and analysis algorithms to 
facilitate content based image retrieval. We derived a new adaptive waveform selection algorithm for 
radar range-Doppler target recognition. The algorithm selects the waveforms that provide maximum 
discrimination information at any given time by maximizing the Kullback-Leibler information number 
corresponding to the most likely hypothesis. As a result, it minimizes decision time for a given desired 
classification performance level and maximizes classification performance for a fixed data acquisition 
time. We have developed a novel theory of multiresolution representation of binary data that supports fast 
binary image matching algorithms. Only Boolean operation are needed to compute these representations. 
Finally, we have constructed a novel image coding technique that supports pictorial queries. The 
procedure minimizes a weighted sum of the expected compressed image file size in bits and the expected 
number of bits that need to be read to answer a pictorial query (query response time). 

14. SUBJECT TERMS 

target recognition, target sensing, wavelets, radar, SAR, ISAR, 
beamforming, adaptive algorithms, array, image databases, pictorial 
queries, image coding, multiresolution analysis 

17. SECURITY CLASSIFICATION 
OF REPORT 
UNCLASSIFIED 

NSN 7540-01-280-5500 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (REV. 2-89) 
Prescribed by ANSI Std. Z39-18 

296-132 

[$TIC QUALITY MCrEOx^li' 



Executive Summary 
The main goal of this research effort is to develop an integrated target sensing and recognition strategy. 
Secondary goals of this work are to construct novel image representation and analysis algorithms to facilitate 
content based image retrieval. 

We apply a sequential experiment design procedure to the problem of signal selection for radar target 
classification. In this approach, radar waveforms are designed to discriminate between targets possessing 
a doubly-spread reflectivity function that are observed in clutter. The waveforms minimize decision time 
by maximizing the discrimination information in the echo signal. Each selected waveform maximizes the 
Kullback-Leibler information number that measures the dissimilarity between the observed target and al- 
ternative targets. We discuss in details two scenarios. In the first scenario, the target environment is 
assumed fixed during illumination. In this case the optimal waveform selection strategy leads to a fixed 
library of waveforms. During actual classification, the sequence in which the waveforms are selected from 
the library is determined from the noise to clutter power in the range-Doppler support of the targets. In the 
second scenario, the target environment changes between pulse transmissions. In this case, the maximum 
discrimination information is obtained by a repeated transmission of a single waveform designed from the 
reflectivity function of the targets. We show that our choice of signals can produce significant gains in 
detection performance. 

We develop a new image representation which combines support for coding and content-based retrieval. 
The algorithm minimizes a weighted sum of the expected compressed file size and query response time. Our 
approach leads to a progressive refinement retrieval by successively reducing the number of searched files 
as more bits are read. Furthermore, no distance computation is required during a query. Only simple bit 
pattern comparisons are required. The approach supports compressed data modification and low-bit-rate 
high quality browsing. 

Finally, we construct a theory of binary wavelet decompositions of finite binary images. The new binary 
wavelet transform uses simple modulo-2 operations. It shares many of the important characteristics of the 
real wavelet transform. In particular, it yields an output similar to the thresholded output of a real wavelet 
transform operating on the underlying binary image. We introduce a new binary field transform to use as 
an alternative to the discrete Fourier transform over GF(2). The corresponding concept of sequence spectra 
over GF{2) is defined. Using this transform, a theory of binary wavelets is developed in terms of 2-band 
perfect reconstruction filter banks in GF{2). By generalizing the corresponding real field constraints of 
bandwidth, vanishing moments and spectral content in the filters, we cconstruct a perfect reconstruction 
wavelet decomposition. We also demonstrate the potential use of the binary wavelet decomposition in lossless 
image coding. 
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Chapter 1 

Introduction 

Today an automatic target recognition (ATR) system designer has a wide array of sensors to choose from. 
These include active sensors (e.g. millimeter and laser radars) and passive sensors (e.g. passive sonar, 
forward looking infrared (FLIR) systems). The price of these sensors can vastly increase the cost of the 
target recognition system. Some of these sensors could reveal the presence of the ATR system to an enemy. 
Furthermore, any sensor in the system can collect a large amount of information in short times. The size 
of this information can easily overwhelm the capabilities of today's most powerful computers. Yet only a 
fraction of the collected information may be relevant to the recognition task. Furthermore, an ATR system 
should make its classification decisions in real time. This of course is related to the computational complexity 
of the algorithm used as well as to the ability of the system to examine and seek only relevant information. 
Finally, an ATR system must perform well under a wide variety of scenarios. In particular, its performance 
should not degrade dramatically when it is used in an environment or domain for which it was not initially 
trained. Thus an ATR system can be characterized by four parameters: the amount of resources that it 
uses (sensors and computers), its computational complexity as measured by the time it takes to make a 
decision, its robustness to changes in the environment and its performance as described by its probability 
of correctly classifying a target (probability of detection) versus the probability of mistaking another type 
of targets for the desired type (probability of false alarm). A good ATR system is one that can produce 
accurate classification decisions in a minimum time while expanding a minimum amount of resources in a 
wide variety of circumstances. Its performance should degrade gracefully (rather than catastrophically) in 
adverse environments. The goal of this research program was to construct a methodology for designing 
such good ATR system. The methodology is general, i.e., it is applicable to a wide class of ATR and 
other pattern recognition tasks. However, we demonstrated the methodology using a particular choice of 
sensors. Specifically, we considered radar sensors and showed how recognition can be improved (in terms 
of performance and the time it takes to reach a classification decision) by dynamically selecting the radar 
waveforms. 

Our approach is to use an intelligent multiresolution integrated sensing and classification strategy . An 
intelligent and integrated strategy implies that there is feedback from the classification module to the sensing 
module. The feedback specifies which waveforms the radar ought to transmit. It means that the classification 
module uses a robust computationally efficient classification approach that adapts to the current environment 
and the target at hand. This adaptation is also used to control the data acquisition chore. Specifically, the 
algorithm uses its current classification of the target and information about the state of the environment 
to decide what data to collect next. It produces a sequence of progressively finer classification decisions. 
Relevant data is collected only when it is needed. Efficient data representations are used. Note that our 
approach to ATR may be best described as a robust adaptive approach that minimizes computational 
complexity while preserving a given classification performance. It goes well beyond most adaptive ATR 
algorithms that have been proposed recently. These algorithms change only certain parameters of the 
algorithm (e.g. the threshold at which an edge is detected). By contrast, our procedure uses an estimate of 
the state of the environment and its current knowledge about the target to select the next set of data that 
should be acquired. This is akin to changing matched filters as we collect more statistical information about 
a desired signal and an additive colored noise component. Furthermore, our procedure specifically tries to 



minimize complexity while preserving a given performance measure. 
Observe also that effective ATR necessarily builds on prior knowledge of the system. In particular, a good 

ATR system must be able to correlate the information that it receives with its own prior domain knowledge. 
In this project, we have focused on efficient querying of prior visual information (stored as image data) by 
pictorial content. We developed image coding techniques that minimize the bit size of the coded image and 
the retrieval time in response to a pictorial query. We have also developed a new binary multiresolution 
representation of binary images that is amenable to fast matching. The importance of this representation 
and the corresponding image matching algorithms is that they require only fast Boolean operations. 

In the remainder of this report we describe in details the results that we have obtained. We have grouped 
these results under three headings: 

1. Waveform selection for radar target classification. This part of our research is described in Chapter 2. 
The emphasis here is on integrated classification and data acquisition. The approach detailed in this 
chapter easily generalizes to multi-sensor systems with various degrees of freedom. 

2. Image coding for query by pictorial content. Queries in image based ATR systems are pictorial in 
nature. Furthermore, ATR systems may have at their disposition large collections of images. In 
Chapter 3, we describe a novel approach for coding images that supports fast retrieval by pictorial 
content. 

3. Binary wavelet decomposition of binary images. Images are often represented in binary form. We 
describe in Chapter 4 a new binary multiresolution representation of binary images that is amenable 
to fast matching. 



Chapter 2 

Waveform Selection for Radar Target 
Classification 

2.1    Introduction 
In this chapter we consider optimal signal design for the problem of radar target classification. The problem 
of radar signal design for classification is to find signals that discriminate between a collection of targets of 
interest by observing the backscatter from an illuminated unknown target. The objective is to find probing 
signals that enhance certain unique aspects of a particular target that distinguishes it from other targets. 
In order to assess the performance of a particular signal set, it is necessary to define a measure of goodness. 
For a classification problem, this measure is usually the probability of misclassification. A signal set is better 
than another in a given scenario, if it results in a smaller probability of misclassification. Very little has been 
done in the design of radar signals for target classification with the objective of minimizing the probability of 
misclassification. This is mainly due to the fact that it is generally difficult to obtain analytic expressions for 
the probability of misclassification that would indicate a favorable choice of one signal selection strategy over 
another. Employing techniques from sequential experiment design, we present a signal selection procedure 
for sequentially classifying targets that possess a doubly spread scattering function. A measure related to 
the probability of misclassification is used to assess the performance of the signal selection scheme. Signals 
are then selected to optimize this measure of dissimilarity. 

The echo signal that backscatters from the target contains information about the target environment, 
shape and motion. Since we seek to identify special targets, information related to the target environment 
such as clutter and noise is treated as interference. Target information appears in the echo in the form of 
amplitude and scale variation of the transmitted signal [1]. These variations are caused by the reflective 
properties of the target and the relative motion between the radar platform and each point on the target 
surface. The reflection from these surfaces can be described by the two-dimensional reflectivity or scattering 
function of the target [2, 3, 4]. When a particular signal illuminates a target, the return will be a projection of 
the reflectivity function onto the one-dimensional subspace spanned by the dilates of the transmitted signal. 
Therefore, only limited target information can be obtained from the echo signal. To develop an effective signal 
selection strategy for classification, it is essential to obtain signals that can extract distinguishing properties 
from the observed target. Unlike current techniques that separate between the problem of waveform design 
and classification, we seek to design waveforms suited to a particular classification task and with the intention 
of minimizing the probability of misclassification. 

There are two distinct approaches to target classification. The first is a nonparametric approach. In this 
approach, the backscatter from the targets of interests are experimentally or numerically determined. The 
pulse used to illuminate the targets is in general a short pulse and is unrelated to the ensemble of targets. 
Relevant features are then extracted from the backscatter signals of each target return and stored. Standard 
pattern recognition can then be applied by comparing the features of the observed target return to the stored 
target features and selecting the best match according to some distance criterion [5]. The nonparametric 
approach has been widely applied in practice for both standard and high resolution radar. In polarimetric 



techniques for example, certain parameters (features) are extracted from the polarization scattering matrix 
and are used to design a standard pattern recognizer [6],[7],[8]. Other nonparametric methods include the 
singularity expansion methods. These methods are based on the fact that at low frequencies a target can be 
described by a transfer function with several resonant frequencies [9]. These resonant frequencies determine 
the size and shape of the target [10]. Various discrimination waveforms, synthesized to identify a specific 
target response from these natural frequencies have emerged. These are linear filters which, when convolved 
with the target responses to which they are matched, annihilate preselected natural-frequency content of 
those responses. The natural frequencies of the relevant target can be measured in the laboratory using 
scale-model targets. Some of the suggested waveforms include the K-pulse, the E-pulse and the S-pulse. For 
an excellent discussion of these discriminant waveforms, see [11] and references therein. In the parametric 
approaches, the underlying target and clutter statistics are assumed to be known. In this case, the decision 
process can be posed as a test of statistical hypotheses. The target models are obtained from the scattering 
behavior of isolated centers such as flat plates and corner reflectors that dominate a wideband radar return 
[12]. The required threshold is set to minimize the probability of error. 

In contrast to the above approaches, we design a radar signal set to maximize classification performance. 
The resulting signal selection problem can essentially be treated in the context of experimental design 
[13]. Experiment design is an organized method for extracting as much information as possible from a 
limited number of observations. The number of observations need not be fixed and generally it is desirable 
to minimize the number of experiments that need to be performed to reach a decision. This leads to a 
sequential approach in experiment design. 

Here, we propose to use a sequential classification procedure that minimizes the average number of 
necessary signal transmissions. Instead of minimizing the probability of error, we use the Kullback-Leibler 
information numbers [14] as distance measures between the probability density functions of the observations. 
These measures are used in information theory [65] to obtain bounds on the probability of error through 
communication channels and in statistics to obtain asymptotic bounds on Bayes' risk [16] in a binary hy- 
pothesis testing problem. Our approach to signal design is derived from the sequential experiment design 
due to Chernoff [16]. In this approach, an experiment is selected based on maximizing one of the Kullback- 
Leibler information numbers at each decision stage. The resulting procedure is sequential where the classifier 
attempts to reach a decision after each echo is received. It is optimal in the sense that it minimizes the 
average number of observations used by the sequential test provided that the observations are independent 
and identically distributed. It is also asymptotically optimum in the sense that if the number of observations 
is sufficiently large, the probability of error is minimized provided again that the observations are indepen- 
dent and identically distributed. When the target environment remains unchanged during illumination, the 
proposed method finds a sequence of pulses that in general have different shapes. The sequence in which 
the signals are transmitted is determined offline and is calculated based on the nature and type of the in- 
terference that dominates the return signal. If the interference comes mainly from the target environment, 
such as clutter, then our procedure selects orthogonal signals that provide discrimination information along 
new directions of the target reflectivity function. This is because clutter interference is assumed to remain 
fixed during illumination and is statistically the same in all signal directions. On the other hand, when 
interference comes mainly from observation noise, the procedure selects repeated signal transmissions to 
improve the quality of our measurements by averaging. When the target environment changes between pulse 
transmissions, the procedure selects only one optimum signal. It is in a sense a "universal" signal capable 
of discriminating a particular target in various environments. 

After introducing our propagation and target models in section II, a finite dimensional approximation is 
obtained in section III. The criterion for signal selection and the sequential test procedure are discussed in 
section 2.3. Section 2.4 presents examples of radar classification models in which we apply our approach. In 
the remainder of the chapter we give simulation results that show the improvements that can be obtained 
by applying the procedure. 

2.2    Target Model and Problem Formulation 

Consider a point target at range r and radial velocity v relative to a transmitter and receiver located at the 
same position as shown in Fig.  2.1.  Suppose an arbitrary signal s(t) is transmitted.  The received signal 
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Figure 2.1: Source-Target setup 

after reflection from a point target is given by [17] 

r(t) = As(y(t - x)) (2.2.1) 

where 

x    = 

y 

2r 
c 

c — V 

c + v' 
(2.2.2) 

Here, A is a constant that depends on the range of the object, its reflectivity properties, frequency of 
operation among other factors and c is the speed of propagation. We will assume that we operate in a high 
frequency range where the reflectivity remains constant over a wide range of frequencies. The return signal 
is therefore a delayed and time-scaled version of the transmitted signal. Now suppose that we have a target 
that is composed of a continuum of point targets each having a return given by (2.2.1). It is then clear by 
the principle of superposition that the echo from such a target is given by 

/•oo /*oo 

r(t) = dy dxDc(x,y)s(y{t-x)). 
Jo        Jo 

(2.2.3) 

Here, Dc{x, y) is the target reflectivity function which describes the reflective properties of a point target at 
range cx/2 and radial velocity (1 — y)c/(l + y) similar to the constant A in (2.2.1). Note that the limits of 
the integration are determined by the physics of the underlying problem. Since x is related to the distance 
by (2.2.2), it takes only positive values. Similarly, the scale parameter y is related to the radial velocity v 
by (2.2.2) where v < c. 

The model described in (2.2.3) is based on several inherent assumptions. 

1. Objects are modeled as noninteracting point scatterers. 

2. Each point scatterer is frequency-independent. 

3. Operation is at a high enough frequency which allows the use of the geometric optics approximation 
to Maxwell's equations. Under this approximation propagation and reflection are very similar to their 
optical version. 

4. Measurement is free from clutter or measurement noise. 

The latter assumption will be dropped in section 2.3 where we will assume additive noise as well as clutter 
added to our observation model. The same model given by (2.2.3) has recently been used to derive algorithms 
for wideband radar imaging [2], [18], [19]. 



2.2.A    Problem Formulation 

We can now formulate the classification problem that we study in this chapter. We would like to determine 
a set of signals sn(t), n = 1,2,..., each of finite duration To, to minimize the expected decision time in 
classifying the radar targets of interest subject to achieving a desired classification performance (probability 
of error). A decision is made by measuring the return given by 

/•OO /-00 

r„(t)=/    dy        dxDc(x,y)sn{y{t-x)) + w(t) (2.2.4) 
Jo        Jo 

where w(t) is a noise process. 
Instead of solving the problem in its present continuous form, we will consider a discrete equivalent which 

we derive in the next section. We will then derive a suboptimal solution to that problem in section 2.3. 

2.2.B    Finite Dimensional Approximation 

In this section introduce a discretization of the Fourier transform of (2.2.3) with respect to t. This approx- 
imation is presented for two reasons. First, it allows us to simulate our results for arbitrary reflectivity 
functions. Second, it leads to a simpler presentation of the signal selection problem. 

We will assume that Dc(x,y) has finite L\ norm with respect to x, that Dc(x,y) has finite energy, i.e., 

/•OO /»oo 

dx dy\Dc(x,y)\2 < oo. (2.2.5) 
Jo Jo 

By taking the Fourier transform of (2.2.3) we obtain 

J?(fi) =  f 
Jo 

S(-) 
dy Ac(ü,y)^A (2.2.6) 

where Ü is the continuous frequency variable. In the above equation Ac(fl,y) is the Fourier transform of 
Dc(x,y) with respect to x, i.e., 

/OO 

Dc(x,y)e-1axdx. (2.2.7) 
-OO 

Define J2+(fi) = R{ü) for fi > 0 and R+(ü) = 0 otherwise. Similarly, let R-(ü) = R{ü) for fi < 0 and 
R~{Cl) = 0 otherwise. By the transformation u — ft/y in (2.2.6), we obtain for iü+(fJ) 

R+(ü)= r°T+(n,u)S+(u)— (2.2.8) 
Jo u 

where 

Similarly, 
/0 j 

T-(n,u)S-(u)f^- (2.2.10) 
-OO \u\ 

If f\S(ü)\2!§- < oo, it follows from (2.2.8) thatT+(fi,u) is the kernel of a map T+ from L2{R+,du/u) into 
L2(R+,dQ). Next, we discretize (2.2.8) by determining a discrete approximation for T+(Q,u), S+(u) and 
R+(Cl). 

In practice Dc(x,y) is given as samples on a two-dimensional rectangular grid and is defined by 

D(m,n) = Dc{x,y) (2.2.12) 
x~mAx,y=nAy 

where 



where m and n are index variables into the grid and Ax and Ay are the sampling intervals of the variables x 
and y, respectively. For most targets of interest one can assume that Ac(tt,y) is essentially bandlimitted in 
the frequency variable tt with a maximum frequency of ümax. To minimize aliasing we choose Ax to satisfy 
the Nyquist sampling rate 

Ax < ——. (2.2.13) 
"Umax 

With this choice of Ax, we obtain 
A(w,y) « Ac(QAx,y) (2.2.14) 

where w = üAx is the discrete frequency variable. 
To derive the sampling interval Ay, we note that Dc(x,y) has finite support and therefore 

Vmin < V < Umax- (2.2.15) 

Since we are seeking a finite-dimensional approximation to the kernel T+, sampling in the y direction must 
be at a sufficiently high rate to allow for the recovery of T+{ti,u) in the u direction for each fixed value of 
Q. The functional relationship between u and y for a fixed fi is 

u = - (2.2.16) 
y 

which for evenly spaced sampling points in the y domain produces a nonuniform sampling grid in u. For 
small values of u we have finer sampling while for larger values we have coarser sampling. Since y is bounded 
by ymin and ymax, u is also bounded by 

"    <u<—. (2.2.17) 
ymax ymin 

Soumekh [20] described several reconstruction schemes when the data is defined on an evenly sampled grid 
in one domain and it is required to obtain the data in another domain that has a one-to-one relationship to 
the first. He also determines the requirements on the sampling frequency and concludes that a signal can 
be recovered from its unevenly spaced samples provided that the variable sampling rate satisfy the Nyquist 
criterion, i.e., 

un+i -un< —— for all n. (2.2.18) 

Here T0 is the support of the transmitted signals and un = fi/y„. The sampling interval Ay can then be 
obtained by substituting for T0 in (2.2.18). 

Having determined the sampling intervals for both variables x and y, we can now write the discrete 
approximation of equation (2.2.6) for positive frequencies as follows 

tf-w-^E^nsj)- (2219) 

where k is the discrete frequency index. Note that this equation cannot be written in a matrix vector form 
since the signal vector changes for different values of k. By reordering the matrix [A+(k, n)], a matrix-vector 
form for this equation can be obtained. The resulting matrix is the discrete scaled version of T+. 

In Appendix 2.A, we show how (2.2.8) can be written in the matrix-vector form 

r = As (2.2.20) 

where the entries of A correspond to the interpolated samples of [A+(fc,n)]/nAy, vector r has entries 
corresponding to the samples of R+(k) and vector s has entries corresponding to rearranged and interpolated 
samples of S+ (^) . 

Note that when the target is observed in clutter, which has its own reflectivity function, the discretization 
of the reflectivity function of this clutter is added to the matrix A in (2.2.20). The matrix A, therefore, 
contains in general both target and clutter information. 



2.3    General Signal Selection Strategy 

The purpose of a radar classifier is to measure the backscatter from an unknown target and ascertain which 
of the possible targets can be associated with the return. We shall confine ourselves to two-class problems. 
A class consists of a collection of targets whose reflectivity function or matrix share common properties. As 
an example consider the backscatter from fighter jets versus civilian airplanes. Due to the larger size of a 
civilian aircraft the resulting backscatter will be spread in delay and scale more than the backscatter from 
a fighter jet. Since the backscatter is related to the reflectivity function through (2.2.3), we can form two 
classes each with a representative reflectivity function. The representative reflectivity function of a civilian 
plane will generally have a wider spread in delay and scale than a fighter jet. We shall formulate our binary 
classification problem as a test of statistical hypotheses. 

2.3.A    The Kullback-Leibler Information Numbers 

Let the null hypothesis and the alternative hypothesis each denote one of the target classes. We shall use 
the finite-dimensional observation model developed in the previous section. In this model, our representative 
class reflectivity matrices and clutter will be denoted by Ao and Ai. At time i, our observation r; is an 
M-component vector. In general, our test is performed repeatedly with possibly different signals each time. 
The received signal under both hypotheses is therefore given by 

H0 :    ri = AoSj-|-ni i = l,2,... 

Hi:    ri = AiSi+ni i = l,2,... 

where n; is the observation noise. 
Recall that our goal is to devise a sequential test procedure for this problem by selecting a sequence 

of signals Si,i = 1,2,    After each return is received a decision is made to either stop or to continue 
transmission. If we stop, we accept one of the hypotheses. If we decide to continue, we choose a new signal 
from a set of predetermined signals. We continue this process until the observed data allow clear distinction 
between the hypotheses. 

In principle, this sequential test should minimize the probability of incorrect decision. However, since this 
measure is in general difficult to compute, a discrimination measure is required that is easier to evaluate and 
manipulate. By optimizing this dissimilarity measure we hope to minimize the error probability. Chernoff 
[16] suggested an experiment design procedure that minimizes the probability of error. Under the condition 
that the observations are independent and identically distributed (i.i.d.), the procedure is asymptotically 
optimum,i.e., for a sufficiently large sample size, the experiment selection procedure leads to decisions that 
minimize the probability of error. 

For our purposes, the choice of an experiment corresponds to a selection of a signal. In this procedure, 
after each new observation r* is obtained, the more likely hypothesis is estimated based on all previous 
observations. Suppose we are at decision stage k and that we have received r^. Let 

rk = \T 
T-T...rT}T (2.3.21) 

be the concatenation of all received signals up to stage k. The probability density function of fk is fo{i*k) 
under Ho and /i(rfc) under Hi. In a sequential test the likelihood ratio of fk 

A Of -*      A to) A(rfc) = wiry 
is computed at each decision stage. Computing the likelihood ratio at each decision stage can be done 
recursively [21]. For the given misclassification or error probabilities P[decideHo\Hi] and P[decideHi\Ho], 
we compare the likelihood ratio to the thresholds A > 1 > B. Specifically, we select Hi if A(rfc) > A and 
Ho if Mfk) < B. The thresholds A and B are derived from the desired error probabilities [22]. As A ->■ co 
and B -> 0, the error probabilities P[decideH0\Hi] and P[decide.H"i|i7o] -> 0 at the expense of increasing 
the decision time. For our signal selection problem, we need to find signals that advance the likelihood ratio 
towards the correct boundary in the least possible time. 



Chernoff proposed a solution to this problem. His approach can be summarized as follows: 

select Hi if A(fk) >   A 

select H0 if A(rÄ) <   B (2.3.22) 

otherwise determine the more likely hypothesis. If A(r) > 1 then 
select the signal s^+i that maximizes KLINi, otherwise select Sk+i 
that maximizes KLINo- 

The distance measures KLIN0 and KLINi are defined by 

KLINo   =   jlog(^r)f0(fk)dfk 

=    -E[A(fk)\H0] and (2.3.23) 

KLINi    =   E[A{fk)\Hi]. (2.3.24) 

They are known as the Kullback-Leibler information numbers (KLIN) and in general we have KLINo ^ 
KLINi. 

The above procedure is also a sequential probability ratio test (SPRT). Chernoff shows that under the 
assumption of independent and identically distributed observations, the expected number of observations 
needed under a specific hypothesis to achieve a desired probability of misclassification is inversely propor- 
tional to the KLIN corresponding to that hypothesis. Therefore, by maximizing the KLIN after each new 
observation is received, we effectively minimize the average number observations needed to reach a decision. 
Although the observations in our case may not be independent, this result is generally true for correlated 
Gaussian observations as was pointed out in [23] where correlation between observations increased the deci- 
sion time compared to the i.i.d. case. This is consistent with the fact that little information is supplied by 
each additional observation if they are correlated. 

Chernoff's procedure has two possible limitations: 

1. The procedure is essentially an SPRT where the number of observations necessary to reach a decision 
is random. If the two hypotheses are not sufficiently separated, which happens when the reflectivity 
functions differ only slightly across classes, the procedure might take a long time before reaching a 
decision. This can be unacceptable. To circumvent this problem Wald [22] suggested to truncate the 
test at a certain maximum number of observation at the cost of slight loss in performance. 

2. A poor initial estimate of the more likely hypothesis might prolong reaching a decision. 

In the cases considered in this chapter, the second limitation will not be a problem since the signal sets we 
obtain are independent of which hypothesis is more likely. 

The sequence logA/t(f/t), k = 0,1,2,... constitutes a random process. A typical realization is shown 
in Fig. 2.2 where the two horizontal lines indicate the thresholds at which decisions in favor of either 
hypotheses are made when crossed by the log-likelihood ratio. At each stage where we decide to continue, 
the transmitted signal is selected such that the log-likelihood crosses either boundary in the least average 
time. This is depicted in the same figure, we also show another realization where by a better choice of signals 
a decision in favor of Hi is reached in a fewer number of transmissions. The motivation for the sequential 
test described above is to transmit signals only when necessary to make the decision. In some instances the 
observations point clearly to one particular hypothesis. In these cases, only a few number of transmissions 
are necessary. This is contrary to the fixed sample size test where the number of observations is always the 
same. In the next section we apply the above procedure to two problems that might arise in radar. 

2.4    Signal Selection for Gaussian Reflectivity Functions with Dif- 
ferent Means and Same Covariance 

Let us consider in some detail two models for the target and its environment. In both models we will assume 
that the reflectivity matrices under both hypotheses are composed of two parts: a known mean matrix and 
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Figure 2.2: Realization of a sequential likelihood ratio test. The dashed curve shows a better choice 
of signals for the same test conditions. 

a matrix with random entries. The random matrix is introduced for two reasons. First, it accounts for any 
target surface roughness that can be modeled by random variables distributed in the delay-scale plane. Since 
a large number of surface irregularities contributes energy in each delay-scale cell, we are led to assume by 
the central limit theorem that the random entries into the matrix 'due to surface roughness can be modeled 
as independent Gaussian random variables with variance a^r. Second, the random matrix accounts also for 
the unknown clutter which is a distributed interferer possibly overlapping with the delay-scale extent of the 
target [1]. Again, since the contribution to each radar delay-scale cell comes from a multitude of unknown 
reflectors, we assume that the randomness in each cell due to clutter is additive, statistically independent 
and Gaussian with equal variance a^. We will also assume that the randomness due to surface roughness 
and clutter are statistically independent. 

2.4.A    Case I: Fixed Target Environment 

In our first case we will assume that the target and clutter remain unchanged during the entire period of 
illumination. In (2.3.21), let 

Ao 

Ai 

=    A0+W, 
=    Ai+W. (2.4.25) 

Here, each reflectivity matrix is composed of a constant and a random part denoted by W which has Gaussian 
uncorrelated zero-mean elements with variance a\, = a\T + a\. Note that the entries of W may occur outside 
the delay scale extent of the target accounting for clutter at these location in the delay-scale plane. The 
matrix W remains fixed during the illumination period. The received signal under both hypotheses is given 
by 

H0:    Ti = (A0 + W) Si + Vf i = 1,2, •■ 

Hi :    ^ = (Äi + W) Si + Vf. i = 1,2, •■ (2.4.26) 

After each transmission, the vector r-j is received corrupted by a Gaussian vector Vj with covariance matrix 
J2V- This vector captures both the receiver and atmospheric noise. We will assume that ^2V —all where I 
is the identity matrix. The transmitted signals S{, i = 1,2,... are assumed to be of unit energy. 

Since a hypothesis testing problem is invariant to a bias adding transformation, we can rewrite (2.4.26) 
as 

H0 :    Ti = (A0 - Ai + W)si + v;      i = l,--- 
Hi :    Ti — Wsj + Vj. i = !,-•• 

10 



Following the steps of the procedure outlined in the previous section, we need to determine the KLIN 
under both hypotheses. Let n be the current decision stage and let 

-»       r   T £]3 (2.4.27) 

be the vector composed of all n observations. Under the null hypothesis, fn is a Gaussian random vector of 
length (n x L) with mean 

E[fn\H0] = [I„ ® (Äo - Äi)] • s = G • s (2.4.28) 

where ® denotes the Kronecker product and s — [sj ,s2 ,. 
,TlT ., s^ ]*. The covariance matrix of fn is given by 

Kr = 

2-<--2     alcos612 °w+°v CT
2
 cos0i„ 

, COS 6; 21 <T2 + o* 
'W 

4' C72„COS02„ 

CT2COS0ni      0-2COSOn2 er,2,, + al 

® Ijlf (2.4.29) 

where cosö^ = sfs^ and M is the row dimension of Ä0 or Ai. Under the alternative hypotheses, the mean 
and covariance of rn are E[fn\Hi] = 0 and Kr, respectively. 

At each decision stage n the observation vector r„_i is appended with a new observation rn and a new 
log-likelihood ratio is computed as follows: 

logA(f„)-=-j5!rGTK-1GI,+ s!rGrK-1f'n. (2.4.30) 

To determine the KLIN number under H0 we compute 

KLINo    =   -E[logA(fn)|Ho] 

(2.4.31) 

Similarly, the KLIN under Hx is given by 

KLINx EpogAfcJIfTi] 

\sTGTK;1Gs. (2.4.32) 

According to the optimal procedure in (2.3.22), we need to determine the more likely hypothesis in order 
obtain the KLIN to maximize. From (2.4.31) and (2.4.32) it is clear that under both hypotheses these 
measures are the same. Therefore, the same signal set that maximizes KLINo at each stage also maximizes 
KLINi. This has the implication that at each decision stage we do not need to determine which hypothesis 
is more likely to be true and can immediately send out the next optimal signal if a terminal decision cannot 
be made. This overcomes one of the shortcomings in Chernoff's procedure as was pointed out in the previous 
section. It also results in a fixed waveform selection strategy. 

2.4.A.1    Maximizing the KLIN 

We now study the maximization of the KLIN given in (2.4.31) or (2.4.32) under various conditions for the 
ratio al/a^. We shall use KLIN^ to refer to either Kullback-Leibler numbers at the nth decision stage. 
We shall also drop the \ factor and refer to KLIN and srGTK~1Gs interchangeably. 

First, we determine the initial signal to transmit.   This signal is sent at stage n = 1 when no prior 
observation is available. This signal is found by maximizing 

sTGTK-lGs 
sfÄTÄSl 

<T2   + <72 
(2.4.33) 

where A = A0 - Ai. The right hand side followed from the definition of Kr in (2.4.29). The maximizing 
signal s{ is clearly the eigenvector of ATA corresponding to its maximum eigenvalue Ai. 

11 
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Suppose that we are at the nth decision stage in our procedure (2.3.22) and that a terminal condition 
was not reached. We need to determine the next signal, s*, to transmit next by maximizing the KLIN. 
This signal can be obtained as follows: 

s*n = arg [ max sTGTK;lGg\ = arg [ max  [ sj    s^    • • •   <_x    s„ ]T G^^G      ...     ]    (2.4.34) 
l|s„|| = l l|Sn|l = l 

where the signals s^Sj, • • • ,s^_x are the optimum signals transmitted up to stage n - 1. We consider two 
cases. 

1. Noiseless Case 
In this case the observation noise variance is assumed to be zero. Substituting a\ = 0 into K^1 

in (2.4.34), we find that s* is the eigenvector of ÄTÄ corresponding to the nth largest eigenvalue. 
Therefore, in the noiseless case maximum discrimination is provided by transmitting the eigenvectors of 
ÄTÄ. The sequence of transmission is according to a decreasing order of magnitude of the eigenvalues. 
The details of this optimization problem is given in Appendix 2.B. The KLIN after n transmissions 
is given by 

KLINW = ±-J2\k. (2.4.35) 

2. Noisy Case 
When al > 0 and we are at the nth decision stage, all signals up stage n - 1 are either orthogonal and 
selected as in the noiseless case or some of them were repeatedly transmitted. A repeated transmission 
improves a previous measurement by averaging the effect of noise while an orthogonal signal obtains 
new independent information from the observed target. We will treat the two cases separately. 

(a)  Orthogonal Transmissions up to stage n — 1 
In this case one can write the KLIN at stage n — 1 as 

KLIN(n-V = y   o
Xi (2.4.36) 

We shall assume that the eigenvalues of ÄTÄ are ordered such that Ai > A2 > ••• > A„_i. 
At stage n, we can either transmit a new signal corresponding to A„ and add An/(<r^ + a^) 
to KLIN^-V or retransmit one of the signals st*, i = 1,2, ...n - 1. The selection here is 
determined by the value of the ratio cr^/cr^. If the observation noise dominates our measurements, 
corresponding to a larger value of <r^/cr^, then we can increase our discrimination by repeating a 
transmission so that the combined return from that transmission is more accurate due to averaging. 
If, on the other hand, the clutter dominates our measurement, a repeated transmission would 
not add any new discrimination information since the clutter is assumed to remain unchanged 
during illumination. In this case, a new independent transmission provides an increase in the 
discrimination information. In Appendix 2.B, we show that a retransmission of s*, for example, 
causes the corresponding term in the KLIN^-1^ in (2.4.36) to change to 

Ai (2.4.37) 
cl+oll* 

thereby effectively reducing the effect of the observation noise on this particular measurement. If 
we decide to retransmit a signal it is simple to see that it will be s* since Ai_> Aj, i ^ 1. In 
Appendix 2.B we show that retransmission occurs if the nth eigenvalue, An, of ATA is such that 

£i>2(£i)/(i-£ 5- > 0/(1 - ^) (2.4.38) 

12 



then retransmitting the first eigenvector of ÄTÄ, sj, results in a larger discrimination than 
transmitting the nth eigenvector. 

(b) Some Repeated Transmissions 
In this case we assume that up to stage n-lwe have transmitted the signals s^Sj!,.. . ,sj, 
ni, U2, ■ ■ ■, nj times, respectively where 

i 
Y,rii = n-1. (2.4.39) 

We need to determine the waveform to transmit at the nth stage. This is best done by rewriting 
the KLIN at stage n as 

KLINW = KLIN(n-V + AKLIN (2.4.40) 

where KLIN^n~^ is the discrimination information obtained from the signals transmitted up to 
stage n — 1 and AKLIN is the discrimination gain due to the new signal sn. To determine s*, 
we maximize the discrimination gain AKLIN. The choice of whether to retransmit a previous 
signal or transmit a new one follows the same reasoning as in the previous case. In Appendix 2.B 
we perform the above maximization and obtain s*. This waveform can either be a retransmission 
of a previous eigenvector or the new eigenvector corresponding to Xj+i- If the condition 

_Vri_ < max       i{<\ (2.4.41) 
l + £ *    (ni + l) + fr u w w 

is satisfied then we retransmit the fcth eigenvector of ÄTÄ where 

k = ar^max       *    '"    g2 ] (2.4.42) 
1    (ni + l) + %t 

and 

A; = 
(l + 2^i) 

Otherwise, we transmit the new eigenvector. Note that the previous case is just a special case with 
m = n2 = • • • = nn_i = 1 and the condition in (2.4.41) reduces to (2.4.38). As in the previous 
case, we have the choice of either transmitting a signal along a new direction or retransmit a 
previous signal. For given targets, the choice is made based on the value of the ratio o-^/a2 

'w 

2.4.B    Case II: Variable Target Environment 

In the previous example we assumed that the target and clutter remain unchanged during illumination. As 
a result, we fixed the random matrix W in (2.4.26). In this section we assume that the received signal under 
both hypotheses is given by 

H0 :    Ti = (Äo + Wj) Si + Vj i = 1,2,- ■ • 

JJi :    ri = (Äi+Wi)si + Vj. t = l,2,--- (2.4.43) 

As with our previous model, we assume that each reflectivity matrix is composed of a constant and a random 
part denoted by W; which Gaussian uncorrelated zero-mean elements with variance a\li — a2

sr. + a2.. The 
matrix Wj changes after each transmission and we will assume that each entry Wkj is statistically independent 
from the entries in the same kj location of some other random matrix Wj, j ^ i. We also assume that under 
both hypotheses the random matrix Wj has the same statistical characteristics. The transmitted signals 
Sj, i = 1,2,... are again assumed to be of unit energy. After each transmission, the vector i-j is received 
corrupted by a Gaussian vector v with covariance matrix E„ = a\ I. 

13 



The analysis of this model proceeds along the same lines as the previous model and we shall only outline 
it and mention the relevant results. Our observation vector at the nth decision stage is 

r*n = [ T? tf f- 
Its mean and covariance are given by 

E[fn\H0] = [I„ ® (Äo - Äi)] • s = G • s 

E[fn\Hi] = 0 and 

Kro = Kn = diag{o-^ + o\,<2 + crv,...,aWn + av} <g> I M 

(2.4.44) 

(2.4.45) 

(2.4.46) 

(2.4.47) 

where M is the row dimension of A0 or Ai. 
It is simple to see that for this case also the Kullback-Leibler numbers are equal. This results in a fixed 

waveform selection strategy where one signal set is sufficient for our test procedure. The KLIN for this case 
is given by 

KLIN   =    -sTGTK-1Gs 

EsfÄTÄSj 
0-2    +a2 

(2.4.48) 

(2.4.49) 

where A = A0 - Äi. Maximizing the KLIN for this case is much simpler than in the previous example 
since the observations are always independent. This is apparent from the diagonal covariance matrix Kr. 
At stage n the KLIN is maximized by 

<    =    arg [max sTGTKr"1Gs] 
s»   =1 

(2.4.50) 

(2.4.51) 

which is the eigenvector of Ar A corresponding to the largest eigenvalue. The KLIN is therefore given by 

KLIN = J3 Ai 

»=i 
cri; + ai 

(2.4.52) 

The result indicates that when the target is observed in a continually changing environment, repeated 
transmission of one carefully selected signal provides the largest discrimination information. 

Figure 2.3: Mean reflectivity function of the first target 
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Figure 2.4: Mean reflectivity function of the second target 

2.5    Simulation Results 

We simulated a case with 2 targets and obtained the optimal waveforms for different values of the ratio o^/er^ 
for the first case of section 2.4. The reflectivity functions of these targets as a function of the scale parameter 
y and the delay parameter x are shown in Fig. 2.3 and 2.4. We assumed that these targets representatives 
of a larger class of targets and determined the associated reflectivity matrices Ao and Ai as described in 
Chapter 3. The eigenvectors of Ä0 — Äi were determined. These are the optimal discrimination signals for 
a noiseless environment. They also constitute the library of waveforms from which we select our transmitted 
signals. 

We examined the performance of the procedure we developed using the optimal signals relative to a 
rectangular pulse waveform defined by: 

rect( 
T>     \ 0 

0<t<T 
0    otherwise 

(2.5.53) 

where T is small compared to the delay extent of the target. We vary the ratio cjj/c^, and examine the 
performance by drawing the receiver operating characteristics (ROC) for a given value of n. The probability 
of false alarm for a given n is defined as Pp\n = Prob{acceptHi\H0,n} and the probability of detection for 
a given n is defined as PD|„ = Prob{acceptHi\Hi,n}. Figure 2.5 compares the performance of the optimal 
waveform to that of the rect{^) waveform in two cases. Once in a noiseless environment with a\ = 0 
and the other when noise is present. For both cases, the optimal waveform performs much better than the 
arbitrary signal. In Fig. 2.6 noise is added such that the optimal set consists of the first two orthonormal 
signals for n = 2 and then a repetition of the first signal when n = 3. Obviously, the performance of the 
optimal waveforms is again much better than the rectangular signal. In Fig. 2.7 the observation noise 
variance is increased such that the optimal waveforms are repetitions of the first one. This case corresponds 
to a\la\ » 2(%*■)/! - (jj2-) with noise dominating the received signal. Again, clearly the optimal waveforms 
outperform the rectangular signal. 

2.6    Conclusion 

We have proposed a signal selection procedure for radar target classification. The signals were designed to 
maximize a dissimilarity measure between target classes. During the classification process, the signals are 
transmitted sequentially in an order determined by the noise and clutter powers. The classifier continues 
to transmit the signals until a decision can be made with a specified level of confidence. The signals are 
obtained before actual classification from the reflectivity functions of the targets of interest. The signals 
are chosen such that at actual classification they maximize the Kullback-Leibler information numbers as a 
measure of dissimilarity between the returns from different targets. 
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Figure 2.5: ROC curves for n = 1 with optimal and red waveforms. 

0.9 /      jT 

^-" 

0.8 

1       / 
I     / 

"   /    / 
if 

..,>•'"'' 

0.7 -'/ 
c 
O 

|0.6 
m i 

..•;v 

°0.5 

|o.4 

// 
> ' - 

 2 optimal waveforms . 
o 
Q. 

.,'  3 optimal waveforms 

0.3 // — 2 rectangular waveforms 

  3 rectangular waveforms 

/ 
- 

0.1 
i 

i 
i          i          ■          i          i          i 

0.3        0.4        0.5       0.6        0.7 
probability of false alarm 

Figure 2.6: ROC curves for n = 2 and n = 3 for 2(^)/l - (^) < o\lo\, < 2(j£)/l - {%). 

1 

0.9 

0.8 

0.7 
c 

| 0.6 
■o 

»0.5 

n 
5 0.4 

Q. 

0.3 

0.2 

0.1 

'                        y<                                                                                             •>' 

*                /                                                                's " 

'               /                                                                                 ■''' 

t       /                                                  .•'.' 
" ; /                 - > • 

' /              •'' '  2 optimal waveforms 

 3 optimal waveforms ' 
i         .•*' — 2 rectangular waveforms 

/   3 rectangular waveforms 

'■          i            i            ■            .            i            ■            i            ■            i 

0.1        0.2        0.3        0.4        0.5        0.6        0.7        0.8 
probability of false alarm 
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16 



One can extend the above procedure in several directions 

1. In this chapter we only considered signal selection in a two-class problem. Naturally, we would like to 
extend the results to the multi-class case. The extension to such cases can still employ results from 
the two-class case. For example, one could find the signals that maximally discriminates between the 
most likely target hypothesis and the hypothesis closest to it [27]. These signals can be obtained using 
techniques developed in this chapter. 

2. Other target models than the ones described in this chapter can also be considered. We discussed the 
Gaussian unequal mean and equal covariance models. Other models such as Gaussian equal means 
and unequal covariances can also be considered. What needs to be seen is whether these models are as 
analytically tractable as the model we discussed in this chapter. The other issue such models can pose 
is the issue of estimating the more likely hypothesis during the course of classification and whether an 
erroneous initial estimate can still be recovered in an acceptable amount of time. 
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Figure 2.8: Forming the vector u from overlapping vectors u^. 

Appendix 2.A: Finite-Dimensional Approximation 

The matrix A in (2.2.20) can be obtained as follows.   Let y € [yi, yj] and w £ [0,7r].   For each value of 
Uk = irk/M,  k = 1, • • •, M we construct the vector ujt = u>k [^, 5777, • • ■, ^j}- The values in those vectors 
constitute the frequencies at which the signal vector s has to be determined. Figure 2.8 shows the overlap 
that occurs between the values of these vectors for different k. 

To construct s and the rows of A at these frequency values, we form a vector u by concatenating together 
all Ufc for all k. Since some of the values of u will either be redundant or occurring out of order due to the 
overlap, an ascending reordering of the values of u is done and repeated values are eliminated. The indexes 
in Ü where the changes occur are recorded and the matrix 

/    A+(o>i,y,;) A+(u>i,yj_i) 

A+(".!/) i 

VJ 
A+(ui2,yj) 

yj 

A+("M,!<j) 
yj 

yj-i 
A+(u2,yj-i) 

yj-i 

A+(qjM,yj-i) 
yj-i 

yi 
A+(uJ2,i/l) 

A+(u>M,yi) 
yi 

is reordered according to these changes. 
To see how these changes are applied to [Af^a''i/)], suppose that -^- < ^^^ < T^- where / > 1 and i, j 

and m are some integers. Also assume that the value ""+' has not appeared in any vector u& for k < m +1. 

In this case a 0 is placed temporarily in the rows k of [ " ] for k < m + I and in the column position 
between j — 1 and j, thus increasing the column dimension by one. This procedure is repeated for all M 
rows. Since the position of the temporary zeros in [ " ] actually corresponds to a certain frequency of 
5(tii), its value is determined from adjacent known values by interpolation. 

We still need to determine the values of the rows of the matrix [A+y1'' ] on an equispaced grid. This 
can be done by applying one of the reconstruction techniques described in [20] provided that the Nyquist 
criterion on Ay is satisfied as discussed earlier. The result is the matrix A in (2.2.20) and we will assume it 
is in general of size M x L with L > M. A similar procedure can be used to obtain the discrete version of 
T_. 
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Appendix 2.B : Solution of the Optimization Problem 

In this appendix, we determine the nth optimal signal, 55*, by carrying out the maximization in (2.4.51). 
The derivation of this signal will have 3 special cases. Each case discusses a particular scenario for the signals 
transmitted up to that stage and the corresponding ratio a\la\. In the first case, a noiseless environment is 
assumed where o-2 = 0. In the second case, we find s* when all previously transmitted signals were orthogonal 
and correspond to eigenvectors of the matrix ÄTÄ. The choice of sn will depend on the ratio cr2/^. In the 
third case, we assume that multiple signal transmissions have occurred during previous decision stages. 

2.B.A    Noiseless Case (o% = 0) 

We substitute o\ = 0 into Kr in (2.4.29) and use an induction argument to show that 

n 

max sorGTK-1Gs = ^-y"Afc. (2.B.1) 
K=i|| < f^ 

Here, A& is the fcth largest eigenvalue of ÄTÄ. The kth transmitted signal is the eigenvector of ÄrÄ 
corresponding to Xk, k = 1,2,..., n. Hence, in the noiseless case, the signals are the eigenvectors of ATÄ 
transmitted in the order of decreasing magnitude of the corresponding eigenvalues. 

2.B.B    No repeated transmissions 

We study this case when a\ > 0. We will assume that no repeated transmissions occurred up to stage n — 1, 
where n > 2, and that the transmitted signals were the eigenvectors of ÄTÄ corresponding to the n — 1 
largest eigenvalues. In section 2.4 we saw that the first signal to transmit was the first eigenvector of ATA. 
Therefore, assuming that the previous transmissions are the eigenvectors of ÄTÄ is at least valid for n = 2. 
We shall see in the sequel that this assumption is generally valid under certain conditions on the ratio cr2/^. 

Let s*, i = 1,... ,n — 1 be the eigenvectors of ÄTÄ corresponding to the ith largest eigenvalue. First, 
we determine the KLIN, and need to compute K"1. It can be shown that 

det(Kr) = (or* )»(1 + ^-)-2[(l + -f)2 - X>£s*)2] (2.B.2) 

and after some algebra we get 

£[ if Afc((l + f£)2 - 2(1 + -g)(s^)2 - g(#$)2) + (1 + ^)2s£G^Gsn] 

sTGTK-1Gs = — ^ •   (2-B.3) 
(l + £)[(l + £)2-E(s£s*)2] 

t=i 

Second, we solve for s* in (2.4.51). This is a constrained optimization problem since we are restricting s„ 
to have unit norm. 

Let V = span{s*s*. • • • s*^} and let 

sn = oisj +a2s*. H \-dnS1- (2.B.4) 

n 
where s-1 € V1- and X) a2 = 1- This assumes that s„ has components along all or some of the previously 

transmitted signals. It will turn out later that only ai or an can have a nonzero value. Substituting (2.B.4) 
into (2.B.3) and simplifying, we obtain 

^[x2(A+EAfc) + aTQa] 

^GTK;lGs    = . f1   T .  (2.B.5) 
x[x' — aJ aj 

=    /(a, A) (2.B.6) 
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2 

where A = s-LATÄsx and will be determined, x = (1 + ^t), a = [ oi 02 • • ■ o„_i ] and Q = [qu] is 

a diagonal matrix with entries qu = x2(Xi - A) - 2xXi - J2]^i ^j- To solve this maximization problem we 
first maximize /(a, A) with respect to a over the unit sphere ||a||2 < 1 while holding A fixed. This can be 
done using the Lagrange multiplier technique. Then we substitute the maximizing value of a into /(a, A) 
and maximize with respect to A to obtain an explicit form for s*. 

The maximum of /(a, A) with respect to a is determined from its stationary points that are found from 
the first order Karush-Kuhn-Tucker (KKT) necessary conditions [25]. The Lagrangian function for this 
problem is given by 

L(a) = /(a, A) + ^(aTa - 1). (2.B.7) 

A stationary point a* satisfies the following KKT necessary conditions 

VL(a*)    =    0 

=    H(a*)a*+^Ia*, 

(JL     >     0 

where H is a diagonal matrix with entries 

hi(a) = x2(x2(\i - A) - 2zAi + (Af + A)) + V (x - 1)2(A,- - Ai) a 

(2.B.8) 

(2.B.9) 
j^i 

We shall find the stationary points of /(a, A) in 2 cases. Once when \i = 0 and then when \i > 0. Each of 
these cases will result in one potential global maximum of /(a, A) in ||a|| < 1. 

2.B.B.1    Unconstrained Stationary Points: \i = 0 

Equation (2.B.8) becomes 

H(a) 

(b2 + T,j?2 o-2C2j)a2 

(b„-i + EjVn-i ajC„_ij)an_i _ 

=    0 

=    0 

(2.B.10) 

(2.B.11) 

Equation (2.B.11) forms a set of n — 1 nonlinear equations in 01,02,-•• ,an-i- Multiplying equation i in 
(2.B.11) by the corresponding Oj and summing using the fact that cy = — Cji we obtain 

ha2 + b2a
2

2 + ■■■ + bn-ial^ = 0. (2.B.12) 

This equation defines a conical surface [26]. A conical surface is made up of straight lines going through the 
origin of coordinates. For simplicity and clarity we will assume that bi ^ 0 for i = 1,2,..., n — 1. Obviously, 
one solution to (2.B.11) is ä1 = 0. Next, we show that there are no other feasible solutions to (2.B.11). 
From (2.B.11) we have the following set of equations 

{h+Y^OjCijtä    =    0 

(b2 + J2ahM = ° 
j^2 

(6„_1 +    Y,   a^Cn-ij)^-! 
j#n-l 

(2.B.13) 
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The solution to this set lies on the conical surface denned in (2.B.12) and therefore has more than one nonzero 
elements. Solutions other than a = 0 can be found by letting * > 2 of the n — 1 variables ai, 02,..., On-i be 
nonzero and letting 

K={ki:aki^0,  1 = 1,2,...,*} (2.B.14) 

be an index set. From (2.B.13) we obtain the following system of equations by dividing equation fcj € K by 
„2 
'■ki 

0 -c-kite 
-Ck2M 0 

~Cfct,fci ckt,k2 

~Cki,k3 ' '' '-fci.fct 

~C*2i*3 ' '' ~C-kikt 

-ck,,k,-i 0 

2 

**,   J 

6l 

62 

6t 

(2.B.15) 

which is linear in arki, a\2,..., a2
kt. Rewriting the last equation as 

Cy = b (2.B.16) 

where y = [a2. a\ ■ ■ ■ a\ ]. One can show that ranfc(C) = ranfc([C|b]) = 2 for any * > 2. Therefore, 
the solution to (2.B.16) is not unique. Among all possible solutions, we seek those that are feasible, i.e., lie 
inside the unit sphere. Applying elementary row operations to the augmented matrix [C|b] we obtain the 
following 2 constraints 

0 (x-l)2(Xkl-Xk2)    (x - 1)2(A! - \k 

1 1 1 

[ ^ 1 
fc3)    •••    (x-l)2(Afcl-Afct)- 

1 

a%2 

I < . 
' x\\kl-\)-2x3\kl-x'1{\ 

X2 
fei + A) ' (2.B.17) 

These constraints must be satisfied by any solution to (2.B.11). It is apparent from the second constraint 
that 5^7_i al = x2- -^ut since we assumed that x > 1, and X)3-=i a\ — a;2' any solution to (2.B.11) other 
than the origin, a = 0, is therefore infeasible. 

We have thus found the only stationary point of /(a, A) when \i = 0. To see when ä1 = 0 is a maximum 
point for /(a, A) we examine the second order sufficient conditions as follows: 

V^ä1) = 

Öl 0    • 0 
0 62 • 

0    ' 

0 

0 0    • •   K- 

(2.B.18) 

If all the bi's have the same sign, a = 0 is either a maximum point if the sign is negative or a minimum point 
if the sign is positive. If there is a sign change a = 0 is a saddle point. The point ä1 = 0 is a maximum 
when all the coefficients bi, i = 1,... ,n - 1 are negative. From the definition of bi in (2.B.9) this occurs 
when x = 1 + cr^/cr2 < (1 + A/Ai)/(1 - A/Ai). When ä1 = 0 corresponds to a maximum, it follows from 
(2.B.4) that sn = ansx. Since YH 

a1 = 1> an = 1 and therefore sn G Vx. We have established that the 
potential signal to transmit at stage n is orthogonal to, all previously transmitted signals. To determine an 
explicit form for sn in this case, we substitute with a = 0 into (2.B.5) and maximize with respect to A. One 
can easily see that the maximum occurs when A = A„, the the nth largest eigenvalue of ÄTÄ. The signal 
sn is therefore the eigenvector of ÄTÄ corresponding to An. 
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2.B.B.2    Constrained Stationary Points: /x > 0 

This case requires the constraint aTa = 1 to be active at the solution point. We can proceed as we did for 
H = 0 by determining the KKT points for this case. Alternatively, we could find the maximum point of 
/(a, A) on the unit sphere ||a|| = 1 by 

max/(a, A)    =    max — . k
0~

1   _ .  (2.B.19) 
Ha||=l 

!(A 

x[x2 — aTa] 
71-1 

+ E A*)+9n] 
k=i 

s    M^T]  (2'B'20) 

where the last inequality followed from the fact that qu > q>22 > • ■ • > <7n-i,n-i and that aTa = 1. Equality 
in (2.B.20) occurs when a = [1 0 • • • 0] at which point /(a, A) attains its maximum. Therefore, for the case 
fi > 0, we have one potential global maximum point. 

2.B.B.3    Global Optimality Conditions 

The global optimality conditions are determined by comparing the value of the function /(a, A) at ä1 = 0 
and ä2 = [1 0 • • • 0]. Prom (2.B.5), one can see that 

/(äi,A) = -VA + ££iAt, (2.B.21) 

/(ä2,A) = .^i+n^+^-S^iV (2.B.22) 
<JW x[x     i) 

One can show that when x < |*o*' , /(ä^A) > /(ä2,A). When this is the case, the signal to transmit at 

the nth stage s* is the the eigenvector of ÄTÄ corresponding to A„. Otherwise, s* should be a repetition 
of the first transmitted signal sj. If we decide to retransmit the first signal, we can obtain the new KLIN 
from (2.B.5) by the substitution ä = [1 0 • • • 0] as follows: 

KLIN™ = —^ + ff-TTT- (2.B.23) 

Note that the retransmission of s^ increased the KLIN by reducing the effect of noise in our measurement 
from the signal s\. 

We have thus shown that the nth transmitted signal is determined by the ratio crl/cr^. If O-
2
/IT

2
 < 

2(^°-)/(l — y1-), then more information about the target type can be obtained if the nth signal is orthogonal 

to the previous n - 1 signals. If a\ja\ > 2(^n-)/(l - ^n-), then it is better to retransmit the first signal. 

2.B.C    General Case 
We started our search for the optimal signal by assuming that all previously transmitted signals were orthog- 
onal. We now relax this condition and assume that retransmissions have occurred and that at the n — 1st 
stage the signals s*, sj,...,s^ were repeated ni,n,2,...,rij times, respectively. Since Ai > A2 > • ■ • > Xj, we 
must have 

m >n2 > •■•>nj. (2.B.24) 

Let the signal to transmit at stage n be given by 

sn = aisj +O2S2 H HojS^ +Oj+isx (2.B.25) 
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where s1- is orthogonal toW = span{s*, s|,..., s!-}. Following steps similar to the ones that led to (2.B.3) 
and (2.B.5), one can show that 

^[(l + S)(A'+EA;) + aTQ'a] 
fGTK;1Gs = — 3-^i  (2.B.26) 

[(l + #)-aTDa] 

where the matrix Q' = [q'u] is diagonal with entries 

qii=a?i{\'i-\M)-2xi\'i-Yi\'J (2.B.27) 

and 

*, = (1 + ^),        h = ± AW = A,        A' = -^-. (2.B.28) 
<4 Xi x, (1 + &-) 

The matrix D is also diagonal with entries da = ^-. The maximization of (2.B.26) proceeds along the same 
lines as the maximization of (2.B.5). 

2.B.C.I    Unconstrained Stationary Points: /j, = 0 

By setting up the Lagrangian function as in (2.B.7), we can show that the only feasible solution with /i = 0 
is ä1 = 0. This point is a maximum of (2.B.26) when 

6i = (l + 4)Ori(A;-A(1))-2a;1A; + (A; + A'))<0, t = 1,2,.. .,n - 1. (2.B.29) 

The point ä1 corresponds to a selection of a signal from the subspace Wx. By substituting with ä1 in 
(2.B.26) and maximizing with respect to A the signal to transmit would be Sj+i, the eigenvector of ÄT A 
corresponding to the (j + l)st eigenvalue. The discrimination defined in 2.4.40 gain for this case is given by 

AKLIN-1 =   Xj+\ (2.B.30) 
v w 

where the superscript _L denotes that the signal Sj+i is orthogonal to W. 

2.B.C.2     Constrained Stationary Points: /z > 0 

The case when fi > 0 can also be examined by maximizing /(a, A) in (2.B.26) on the unit sphere ||a|| = 1 
as before. Since the solution lies on the unit sphere, it must come from W. Equation (2.B.26) can also be 
written as 

fGTK^Gs = Y        \,     + Y  5^ -• (2-B.31) 

The second part of the right handside of (2.B.31) is the discrimination gain due to some signal in W and 
can be written as 

4™'=Ä (2-B'32) 

where E is diagonal with entries eu = ■£ (^s ) and the superscript || denotes that the discrimination 
gain is due to a signal in W. The maximization of (2.B.26) on the unit sphere ||a|| = 1 is then equivalent 
to maximizing (2.B.32). Maximizing (2.B.32) on the unit sphere is a generalized eigenproblem where the 
solution is the unit norm eigenvector corresponding to the maximum eigenvalue of the matrix 

(xi - D)-^. (2.B.33) 
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Since this matrix is diagonal, the eigenvectors are the standard basis vectors. The maximizing eigenvector 
is the vector ä2 = [0 • ■ • 0 1 0 • • • 0] where the nonzero entry corresponds to the largest entry in the matrix 
of (2.B.33) and that is given by 

A'("'«("') 
max  —2s r. (2.B.34) 
i<i<j (n{ + 1) + £*- 

2.B.C.3    Global Optimality Conditions 

Global optimality conditions are determined by examining the discrimination gains AKLIN1- and AKLIN^ 
in (2.B.32) with ä2. If 

, \'/^/"i-v 
Aj+i AA^5-J 

>   max   -^ r (2.B.35) 
1 + £       i<i<j („, + 1) + £■ 

then transmit the (j + l)st eigenvector of ÄTÄ otherwise retransmit the fcth eigenvector where 

Jfe = arg max  2a  (2.B.36) 
i<<<* („« + 1) + ff- 
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Chapter 3 

Image Coding for Query by Pictorial 
Content 

3.1    Introduction 

The need for sophisticated data management techniques continues to grow with the proliferation of very large 
image databases, e.g., online digital libraries, digital art collections, biomedical image libraries, merchandise 
catalogs, satellite imagery, fingerprint and mug-shot archives, etc. Due to their size, most need to be stored 
in a compressed form to conserve storage space and delivery bandwidth. At the same time, some of the most 
important uses of such a collection are retrieving, manipulating, and browsing the stored images in terms 
of image content, e.g., colors, shapes, textures, etc. A schematic of a typical content-based query system is 
shown in Fig. 3.1. A user with an information need presents an example image object, texture swatch, or 
sketch and requests similar images from the image collection. 

To be effective, the image management system should provide 

• efficient storage of the image collection, 

• fast content-based searching of the images, and 

• user-friendly browsing of the database and retrieval results. 

These allow very large image collections to be stored while simultaneously helping users (even those unfamiliar 
with the database) retrieve relevant images based on objects, shapes, textures, colors, etc. 

The traditional image management approach is to handle compression and retrieval separately. The 
reason for this is that traditional compression techniques are oriented towards storage and transmission 
efficiency. They do not address the issue of retrieving files via content-based searches. On the other hand, 
the indexing methods used for retrieval concentrate on providing a structure to match queries. Usually, an 
index is a separate file or file header which provides marks or pointers to instances of terms in the database. 
No compression of the original data is obtained. In fact, compression and indexing are usually at odds. 
Without an index, compression makes content-based retrieval more difficult since the data usually must be 
decompressed before matching can be performed. With an index, additional storage space must be allocated 
to maintain the index. This diminishes the benefit of compressing the original images. A diagram depicting 
this problematic situation is shown in Fig. 3.2(a) and (b). Such a data management system is inefficient and 
often redundant, since the information contained in the content-based index consists mainly of data taken 
or derived from the file collection. 

We propose a new data representations which combines compact coding with support for content-based 
retrieval. In particular, we present a new coding algorithm to accomplish this task. In Fig. 3.2(c), we show 
the efficient storage requirements of this new data management technique. The approach implicitly indexes 
a file collection by building query support directly into the compressed files. Furthermore, the algorithm has 
several strong features which are particularly useful for an advanced data management system: 
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Figure 3.2: Storage requirements for a file collection in terms of (a) compressed files, (b) compressed files 
and separate index, and (c) our new coding technique. 
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• flexibility: can minimize a weighted sum of the expected file size in bits (compressed file size) and the 
expected number of bits that heed to be read to answer a query (query response time). In a system 
where storage space is scarce, emphasis may be placed on compressing the data. In applications where 
query speed is important, the system can sacrifice some compression to concentrate on retrieval. 

• universality: applicable to any data in which objects or primitives can be defined. We will describe the 
system for document and images, although audio and video are also possible. This property is very 
useful for the wide range of multimedia data types. 

• compressed data modification: allows manipulation and modification of compressed data. This is much 
more efficient as the data, when compressed, requires fewer operations and less memory. 

• retrieval based on bit patterns: no expensive computations (e.g., Euclidean distance) are required during 
retrieval. Retrieval of image files relies solely on bit pattern comparisons. 

• progressive refinement retrieval: successively reduces the number of searched files as more bits are 
read. Based on multiresolution techniques, each file is coded in terms of a coarse-to-fine discriminant 
structure. At the coarsest scale, only a few bits are read and a large number of files not matching the 
query criteria are quickly rejected. Searching the remaining documents proceeds in terms of the next 
discriminant scale. This offers a significant speed improvement by quickly rejecting files as potential 
retrievals and concentrating search resources on fewer files. 

• high quality data browsing at low bit rates: based on embedded prototypes, our approach supports 
high quality browsing even when a minimum number of query bits are read. Rather than retrieving 
and displaying images in blurred form (which is typical for progressive transmission systems), image 
objects are represented in full detail at each stage in the retrieval. Specifically, after a given number 
of bits are read, the images most similar to a query in the collection are returned and displayed with 
full detail prototype objects representing objects within the image. 

The coding algorithm we propose may be directly applied to compress existing separate indexes (see Sec. 
3.3) without compressing the data files. However, the approach offers considerable benefit when used to 
simultaneously compress and index a file collection. In what follows, we present our new integrated data 
representation, address the advanced database issues described above, and include retrieval and browsing 
examples. 

3.2    Overview of new data representation 

Our new representation is achieved by first extracting all the important information, i.e., query terms, from 
the document we wish to compress and index. For textual documents, query terms are words and phrases. 
These are the textual objects of interest. In a similar fashion, we define objects of interest for image retrieval 
in terms of image objects and regions, e.g., geometrical shapes, faces, trees, clouds, etc. In this way, the 
approach is consistent with the new generation of object-based coders (like MPEG-4) and other similarity 
retrieval systems (see Sec. 3.3). A multiresolution representation is then computed for each query extracted 
from the document. Our new coding algorithm then assigns codewords to the multiresolution representation 
of each query term. The algorithm also specifies a relative position for each query term codeword in the 
coded file. Codewords and position are obtained using the probability that the object occurs in a document 
and the probability the object will be queried. The text or image file is coded into three sections: 1) a 
file header consisting of concatenated query term codewords, 2) a set of indices denoting the locations of 
these terms in the file, and 3) the remaining non-query terms in the file. This is shown in Fig. 3.3. Using 
the ordering specified by the algorithm, each file header is constructed by concatenating the codewords of a 
multiresolution representation of each query term which appear in that file. 

The compressed file header contains all of the information needed to answer a content-based query. When 
a query is posed, the compressed file header of each document or image is searched sequentially for the query 
term codewords (i.e., bit patterns) instead of the original uncompressed file or a separate index. Since the 
relative order of the terms is known a priori, a search is terminated early once we read a codeword that 
corresponds to a query term that should appear after that corresponding to the actual query. 
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Figure 3.3: Diagram of new coding technique showing three sections of compressed file. 

To reconstruct a file from its coded version, the non-query data in the file are decompressed. Each term 
in the file header is then decoded and inserted into the main part of the document or image according to 
the coded term locations. Thus, there is no ambiguity during the decoding process. 

3.3    Previous work 

Traditional image retrieval systems are based on keywords and captions rather than content [28]. User 
supplied keywords are stored along with the compressed images. A query, "show me all images that have 
red cars in them," retrieves images by scanning the textual information appended to each image in the 
database. Although useful for some purposes, it is difficult to capture visual or image properties with 
textual descriptors. As a result, methods that address image retrieval based on image content are needed 
[29]. Recently, content-based image retrieval systems have received a great deal of attention in the literature, 
e.g., the special issue on content-based image retrieval systems of IEEE Computer, September 1995. We 
review here some of the pioneering techniques that have been proposed. 

IBM has developed the Query by Image Content (QBIC) system to explore content-based image retrieval 
methods [30, 31]. QBIC is commercially available in IBM's Ultimedia Manager software package. The QBIC 
system is based on feature vectors, which are numerical attributes constructed from image properties (e.g., 
colors, shapes, textures, transform coefficients). Feature vectors are used to describe an image in terms of 
content. During database population, a user manually or semi-automatically identifies regions of interest 
(i.e., objects) in the images. Feature vectors are computed for each image and each image object identified 
during database population and stored as side information with the image data. 

A query in QBIC may be posed using example images, user-constructed sketches, and color/texture 
patterns. In a query, features from the database are compared to corresponding features from the query 
specification to determine which images are a good match. Image similarity is defined in terms of a distance 
measure between corresponding feature vectors. Note that QBIC, like most content-based query approaches, 
uses degree of similarity rather than exact match to define similarity between the query term and the images 
in the database. This is unlike most text database systems which process queries based on exact match. 
After computing the degree of similarity for each image in the database, the JV most similar images to the 
query are displayed to the user. 

The Massachusetts Institute of Technology has developed a set of interactive tools for browsing and 
searching images called "Photobook" [32]. Photobook supports content-based image retrieval by using 
semantics preserving image compression. Photobook allows images to be searched on appearance, 2D shape, 
and texture. 

Photobook's semantics preserving image compression is a collection of transforms which are used to 
reduce an image or image object to a small set of perceptually-significant coefficients. Photobook uses a 
variety of image representations for different types of image objects and regions. For objects like faces and 
eyes, Photobook uses a Karhunen-Loeve transform (KLT) representation. Objects which are more texture- 
based are represented using a Wold decomposition. A Wold decomposition represents a texture in terms of 
three orthogonal components: harmonics, directionality, and noise. The transform coefficients (either Wold 
or KLT) of each object in an image are stored and used for similarity comparison.  During retrieval, the 
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transform coefficients of the query object are obtained and compared with images stored in the database. 
Their approach is similar to ours in that it builds query support directly into the coded image representation. 
Specifically, the transforms (like the discrete cosine transform used in JPEG [33]) are complete and may be 
used to represent the image object. 

Another technique uses a signature based scheme for image querying [34]. The images in the database are 
stored using a standard compression algorithm (e.g., JPEG, GIF, wavelet coder). Separate image signatures 
are stored for retrieval. A signature is created for each image in terms of wavelet coefficients. Specifically, an 
image signature is constructed by first applying a Haar wavelet decomposition to each YIQ color component 
of the image. Then, for each of the three color channels, the m largest magnitude coefficients are kept. 
Each of these coefficients is quantized to one of two levels: +1 representing large positive coefficients; or —1 
representing large negative coefficients. The overall signature for each image consists of the image's overall 
average color and the indices and signs of its m largest magnitude wavelet coefficients. The indices for all 
of the database images are organized into a set of data structures (inverted file indexes) for searching. For 
each query image, the same wavelet transform is applied with only the average color and m largest wavelet 
coefficients kept. The retained information is used for similarity comparisons. 

In [35], a technique for browsing large-scale aerial photographs is presented. The system works by building 
a texture thesaurus model for fast search and indexing. The texture features are computed by filtering 
the image with a bank of Gabor filters. This is followed by texture flow computation to segment each 
large airphoto into homogeneous regions. The overall system is used for searching over a large collection 
of airphotos for geographic features such as housing developments, parking lots, highways, and airports. 
Content-based retrieval systems are also proposed in [36] and [37]. In [37], an image object is represented by 
a set of structural components which represent a point in multidimensional space. A retrieval scheme which 
represents images using pseudo two-dimensional hidden Markov models is proposed in [38]. 

In general, all of these content-based retrieval schemes and several others provide significant advantages 
over keyword retrieval. Unfortunately, any techniques based on storing side information for retrieval are 
inefficient. In the QBIC system, for example, the numerous feature vectors appended to each image may 
require as much storage space as the images themselves! 

The current systems also suffer when it comes to query response speed. First, storing side information 
not only increases storage requirements but also increases response time. In particular, the appended search 
information must be read and processed during the retrieval. As the side information increases the amount 
of data increases. Furthermore, since image similarity must be computed during the retrieval, care must be 
taken to maintain high speed retrieval when computing similarity between high dimensional feature vectors 
in very large image collections. A typical distance metric between two length N vectors requires 2N additions 
and N multiplications. For example, retrieval by color using a length N = 256 histogram for a small database 
of 10,000 images and assuming 5 objects per image requires 107 additions and multiplications per query] A 
great deal of research effort focuses on this dilemma. 

In addition to similarity indexing, methods to manipulate and retrieve compressed data are also under 
investigation. These methods, like ours, access the data in compressed form. Techniques to extract and 
manipulate compressed image data are presented in [39]. In [40], the authors propose finding regions of 
interest (i.e., query terms) within JPEG and MPEG coded data using only the length of the compressed DCT 
coefficients. These methods and others provide a significant reduction in computational complexity compared 
to processing uncompressed forms. However, the bit streams from JPEG and other coding algorithms are 
difficult to search and the approaches are largely heuristic. The bit stream produced by our coding algorithm 
is designed to take searching into account. 

3.4    Combining compression and retrieval 

The key idea of our representation is the following: given any set of terms which have a probability of 
occurring in a file and a probability of being queried, we can code the terms to minimize a weighted sum of 
the expected compressed file size and expected query response time. 

We begin by discussing our approach of integrating compression and indexing in a text document envi- 
ronment. The coding algorithm works similar to the example shown in Fig. 3.4. In the example, three query 
terms have been extracted from the text document and placed in the file header.  Locations of the query 
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Figure 3.4: Example of a text document, query terms (words) and locations of the query terms. 

terms and the remaining portion of the document are also stored. This information must be retained so that 
the original document can be reconstructed. When a query is posed, the header is searched sequentially for 
the query term. For example, the query "get all documents with 'visual' in them" would result in a match 
for the example document. 

In our example, the important terms in the document have been grouped but not compressed or ordered 
for fast retrieval. Compression can be achieved by exploiting term probabilities. In particular, we can use 
entropy coding to represent common terms with short codewords and rare terms with longer codewords. To 
achieve fast retrieval, the query terms in the header must be properly ordered. Clearly, if we plan to search 
the header sequentially for query terms (i.e., bit patterns), we should put terms which are frequently queried 
near the beginning of the header. That way we can often determine whether a document contains a given 
term quickly. Both of these issues are addressed by our approach. 

Our algorithm assigns a codeword and relative ordering to each query term in the file to minimize a 
weighted sum of the expected compressed file size and the expected query response time. The weighted sum 
we wish to minimize can be expressed as 

C = E[Search Length] + A£[File Length], (3-1) 

where E[-] is the expected value. The user is free to choose the weight A > 0 to control the tradeoff between 
compression and query response. For A < 1, the emphasis of the data representation is better query response 
time. For A > 1, emphasis is placed on minimizing expected file length. This flexibility allows the algorithm 
to adapt to the needs of a given database environment. In Appendix 3.A and in [41], we define the cost 
function C in terms of the probability and query probability distributions of the query terms in the database. 
Furthermore, we show how it may be minimized by assigning codewords and ordering to the query terms. 

In addition to reducing storage overhead and increasing retrieval speed, our coding method has other 
distinct advantages. First, it has built in support for a nearness constraint between two or more query terms 
as the location of each query term is saved in the coded file. For example, two terms in a query may be 
required to occur adjacent to or within A'' words of each other. Second, the new coding technique directly 
supports modification or manipulation of the coded data. For example, we can perform an efficient "find 
and replace" operation on the compressed data. 

3.5    Combining compression and retrieval for images 

While described in terms of text documents, the integrated coding approach is readily applicable to image 
management. Image retrieval is based on properties of image regions and objects. In this section, we describe 
how image objects are defined and coded using our new coding algorithm. A description of our image coding 
algorithm may be found in Appendix 3.B and in [42]. 
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Figure 3.5: Defining two objects (peppers) in an image. 

3.5.A    Defining objects and processing 

In a text database, query terms (words) are relatively easy to define and extract. In an image database, 
we define query terms as objects and regions within the image. Image regions and objects may denote any 
entities of interest in the given database application. Examples include shape-based objects like faces, eyes, 
cars, buildings, windows, etc. Other examples include items more texture- or color-based than shape-based, 
e.g., regions of grass, sand, clouds, trees, etc. To extract the query terms, image regions and objects must 
be identified. Ideally, this process would be done automatically using a segmentation algorithm. This is 
currently an unresolved issue. In our implementation, objects are manually defined using a graphical user 
interface and a mouse. The result of defining two objects in an image is shown in Fig. 3.5. Defining objects 
is further described in Appendix 3.B. 

The next step consists of finding an object representation that is useful for matching. We use a wavelet 
transform for this purpose since it is capable of compactly representing each object at different scales and 
resolutions [43]. The output of the wavelet transform is a collection of subbands ranging from low to high 
resolution which completely describe the original object. The subband decomposition for the bell pepper 
shown in Fig. 3.5 is shown in Fig. 3.6. 

An inherent property of the representation is that coarser subbands contain fewer transform coefficients 
than finer subbands. Note that we could use other object representations (e.g., KLT or Wold transforms 
used by MIT's Photobook). As shown in Sec. 3.6, the results obtained using the wavelet representation are 
promising. 

After the objects are extracted from the original image, the remaining non-object image regions are coded 
using a simple block coding algorithm like JPEG [33]. The coded background is stored in the last part of the 
encoded file (c.f. Fig. 3.3). In addition, the position and size of each object is stored for decoding purposes. 

3.5.B    New image representation 

Once objects are defined and transformed as above, our new coding technique is applied. The coder constructs 
the file header in terms of the wavelet transform subbands of the segmented objects to minimize the size- 
search cost function (Eq. 3.1). To obtain the probability and query probability estimates used by our coding 
algorithm, we use vector quantization (VQ) [44] to map the subbands to finite dictionaries. Using the 
techniques developed in Section 3.4, the probabilities associated with each term in the dictionary determine 
the proper location and codeword of each object subband in the compressed file header. To increase retrieval 
speed, the file header is further divided by resolution. Specifically, the image file header is ordered in a 
coarse-to-fine manner. 
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Figure 3.6: Subbands of bell pepper object, (a) original object, and (b) wavelet transform subbands. The 
upper left (lower right) subband corresponds to lowest (highest) frequency data. 

3.5.C    Search and retrieval of images 

To initiate a search, user-defined queries, in the form of sample image objects, are applied as an input to the 
wavelet transform. The resulting query term subbands are mapped to the finite VQ dictionaries to obtain 
the appropriate codewords (i.e., bit patterns) for the search. Note that, once the query term subbands are 
mapped to VQ dictionaries, no computations are required during the retrieval. A search begins by searching 
the coarsest subband codewords of each image in the database for the query term codeword bits. If the bit 
pattern is matched, we have found an image with a similar object at that scale. Since the relative order of 
the codewords is known a priori, a search is terminated early once we read a codeword that corresponds to 
a query term that should appear after that corresponding to the actual query. Files which do not match 
the query criteria are rejected. Searching proceeds on remaining documents in terms of the next coarsest 
subband. In this way, our new coding technique implements a progressive refinement retrieval by successively 
reducing the number of searched files as more bits are read. This approach significantly improves retrieval 
speed by quickly rejecting files as potential retrievals. 

Note that manipulation and modification of image objects regions are supported as the objects are 
encoded in the file header. This is difficult to do with a management system based on a separate index 
without first decoding the data. Usually an index is just a copy of the data, not the image data itself. 
We can also completely decode an image object while leaving the rest of the image compressed. Also, the 
similarity measure may be location dependent or independent. Since the location of each object in the image 
is stored, the query specification may include an image location where the object should appear. 

3.5.D    Embedded prototypes 

Our image coding algorithm supports two special kinds of progressive image transmissions for browsing. 
First, the image headers may be progressively decoded (coarse-to-fine) and placed in an image according to 
their locations. In this way, browsing of objects in an image is supported. Conventional progressive image 
transmission decodes a coarse-to-fine version of the entire image. Ours decodes a coarse-to-fine version of 
the objects in an image. For the same number of decoded bits, our decoder presents a much sharper version 
of important image objects (i.e., the query terms). 

The second, more powerful, browsing technique represents image objects with high quality image object 
prototypes. Rather than displaying objects in a blurred form, this technique replaces image objects with 
full detail object prototypes, i.e., representatives, at each stage during the retrieval process. The prototype 
which represents an object during the retrieval process depends on the number of bits read to that point 
in the retrieval. The displayed objects are correctly placed and scaled within the retrieved image, but they 
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Figure 3.7: Grayscale image of plane, (a) original image, and (b) image coded with new representation. 

may be only an approximate (i.e., "low resolution" in terms of information) version of the actual objects. 
Note that the displayed prototype objects are high quality, i.e., real objects, not blurred objects. Multiscale 
prototypes are constructed from the previously described embedded VQ books shown in Fig. 3.16 and are 
defined in Appendix 3.B. 

3.6    Examples of retrieval and browsing 

To illustrate some of our techniques, we encoded a collection of 100 grayscale images of size 256 x 256. The 
collection includes a wide variety of images, e.g., faces, boats, fruit, planes, aerials, etc. Each image contains 
4 to 8 objects of varying sizes. The number of objects in the database is about 500. 

The compression performance of the algorithm indicates a slight increase (about 5-10%) in the size of 
the compressed files versus simply coding the files with JPEG. This seems very reasonable compared to 
storing a separate index. Image fidelity between our technique and the JPEG standard (Quality factor 
Q = 75%) was chosen to be approximately the same. An example is shown in Fig. 3.7. The original image 
is shown in Fig. 3.7(a). After defining 5 objects in the image, the same image coded and stored using our 
new image representation is shown in Fig. 3.7(b). The images appear identical. Coding the original image 
using standard JPEG coding at quality factor Q = 75% results in a stored image size of 10158 bytes. The 
image stored using our technique requires 10988 bytes. The overhead in this case is 8.17%. 

A second example is shown in Fig. 3.8(a) and (b). The original image is shown on the left. The coded 
file with 7 objects is shown on the right. Storing the image using JPEG coding requires 20076 bytes. The 
image stored with coding for retrieval required 21972 bytes. This amounts to a storage increase of 9.44%. 

To illustrate the retrieval potential of this representation, we performed several queries. At retrieval time 
no similarity function (like Euclidean distance) needs to be computed. We are simply looking for a codeword 
(bit pattern) in the coded file. Since we know the relative position of the codewords a priori, a look-up table 
is consulted after each codeword is read to determine if the query codeword does not exist in the header. 
This allows searches to be terminated early. In Fig. 3.9 we show an example of a query object and two 
retrieved images ordered by similarity. In the query image, the user outlined the woman's face as the query 
object. As noted earlier, a wavelet representation of the query object is then computed and mapped to the 
finite VQ dictionaries to obtain codewords for each subband. Similarity is based on the number of subbands 
mapped to the same VQ terms as the query object. The objects outlined in the retrieved images were defined 
as query objects when they were coded and stored in the database. In this example, the query image exists 
in'the database. The second retrieved image (next best match) is also the face of a woman. 

In Fig. 3.10 we show a second example of a query object and two retrieved images ordered by similarity. 
The query term in this case is an airplane. The objects outlined in the retrieved images were defined as query 
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Figure 3.8: Grayscale image of bridge, (a) original image, and (b) image coded with new representation. 
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Figure 3.9: Retrieval example, (a) image with query object (face), and (b) two best retrieved objects. 
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Figure 3.10: Original image and retrieved images. 

objects when they were coded and stored in the database. Again, the query image exists in the database. 
Note, however, that when the image was originally coded and stored in the database, the plane object was 
defined somewhat differently than the user-defined query object. The similarity measure in this case is robust 
to some translation. Note too that the second retrieved image is the same image. However, in this case the 
plane object is a scaled and slightly rotated version of the original object. 

In Fig. 3.11 we show a third example of a query object and two retrieved images ordered by similarity. 
Note that the retrieved image has a contour very similar to the query object. 

We illustrate our browsing technique based on embedded prototypes on the plane retrieval in Fig. 3.10. 
Consider the images which could be displayed during the early stages of the retrieval. After reading the 
coarsest subband, the retrieved image could be displayed with the actual low resolution (i.e.,"blurred") plane 
object data as shown in Fig. 3.12(a). Another option is to use our embedded prototype approach. Using the 
VQ dictionaries, the prototype (i.e., representative) object is retrieved from the VQ codebook corresponding 
to the lowest resolution query codeword. Using the prototype, we replace the blurry data with the plane 
object's multiresolution prototype as shown in Fig. 3.12(b). The same number of bits are read during the 
retrieval for both images, yet the prototype image is easier to comprehend. 

Appendix 3.A: Size-Search Cost Function 

We define the cost function C in terms of the probability and query probability distributions of the query 
terms in the database. By assigning codewords and ordering to the query terms, we show how the cost 
function can be minimized. 

Let us assume that we have one or more text files from which a set of n query terms {ti, ti, ■ • •, tn} has 
been extracted. For each query term U, let pti be the probability that the term exists in a file, and let the 
query probability qti be the nonzero probability that term ti occurs in a query. 

The expected search length and expected file length depend on the length of the codewords assigned 
to each query term and the order with which the query terms appear in the coded file. For notational 
convenience, we introduce an ordered set of terms ai,a2,... ,an. The subscripts on these symbols are used 
to denote the relative ordering of the terms when they occur in the file header, e.g., a\ comes before 0:2 
when they both exist in a header. An ordering atj = $(t*) associates each U with an aj. Furthermore, let 
Lai be the codeword length of term at. Then the cost function we wish to minimize can rewritten as 

C   =   ^[Search Length] + A£[File Length] 
n n 

(3.A.1) 
i=l j=l 
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Figure 3.11: Retrieval example, (a) image with query object (plane), and (b) two best retrieved objects. 
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Figure 3.12: Possible retrieval displays (a) using coarsest subbands and (b) using plane prototype. 
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where the weights 
i-1 

Pai = iPa{ -^QajPaiaj) (3.A.2) 

i=i 

are functions of the ordering $(£). Note that search length and file length are measured in bits. The second 
summand in Eq. 3.A.1 is independent of the term ordering and query probabilities. 

To minimize C, we need to: 1) define an order $(£) for the terms in the file header, and 2) assign a 
codeword of length Lti to each term U. 

First we describe how to obtain the ordering $(£) which minimizes the expected search length (i.e., 
minimizing C with A = 0). Here we assume that codewords have already been assigned to the terms using 
a simple Huffman coder. The ordering $(£) of the term set {h,t2,• • • ,tn} which minimizes the expected 
search length is obtained using the following result. Suppose we have two term orders $(£) and $'(£) which 
define the order the terms in the header in an identical fashion except for two adjacent elements, i.e., 

$(*) :    ...titj... 

$'(*):    ...tjU... (3.A.3) 

Let E[SL] and E[SL]' denote their expected search lengths. Then £[SL] < E[SL]' if and only if 

^i < ^L. (3.A.4) 
Qu       % 

This result tells us that, given the codewords, the criteria for minimizing search length is completely in- 
dependent of the probabilities pai. This is a generalized result of [45] which deals with merging files in a 
storage device to minimize seek time. In that work, the files are known to exist, i.e., pai = 1 for all i. In our 
case, pai is arbitrary. 

Using this result, we may easily order the terms to minimize the expected search length. Simply define 
$(£) in an arbitrary manner to initialize the ordering. Compare Q„_I with an using Eq. 3.A.4, swapping 
the order of the two terms if necessary. Then compare an_2 with a„_i, and so on. After n compares, the 
correct ti will be assigned to ai. The procedure is repeated by comparing a„_i with an and comparing 
adjacent terms until we obtain a2, etc. The resulting algorithm relies on simple comparisons and can be 
performed in 0(n2). 

The result in Eq. 3.A.4 is intuitively pleasing. For example, if we assume all queries are equiprobable, 
then the file header is obtained simply by concatenating the codewords of all the terms which appear in 
that file, shortest codeword length first. Thus, to search for a particular query term in a file collection, we 
search each file header sequentially for the corresponding term codeword. The search is terminated when we 
find the codeword (successful) or when we find a codeword whose length is greater than the length of the 
codeword we are searching for (unsuccessful). Generally, for each query term tj in the file collection, we have 
a ratio Ltj/qtr To search the collection for term ti, each file header is searched sequentially. For each term 
tj read, the ratio Ltj/qtj is obtained from a look-up table and compared with Lti/qti- If Lti/qti < Ltj/qtj 
at any point in the file header, we terminate the search early as the query term does not exist in that file. 

To minimize search length, the codeword lengths LQj must be known. We have developed a procedure 
to simultaneously minimize both expected query length and file size as expressed in Eq. 3.A.1 which can be 
rewritten as 

n i—1 n 

C = ^L0i((l + X)pai -J2qaipaiaj) = Y^L*iWai (3.A.5) 
t=l j=l i=l 

The algorithm is shown in Fig. 3.13. 
In practice, it is reasonable to assume that the term probability estimates pt{ remain fixed for a given 

collection of documents. As a result, the codeword and codeword length assigned to each term remain 
fixed. With codeword lengths fixed, files remain fixed in size. The file headers can be regularly updated 
to. minimize expected search length by simply reordering the terms in the header according to a new set of 
query probabilities. This could occur, for example, once a fixed number of queries have been posed. This 
method is suboptimal as codewords do not change. However, the resulting system remains close to optimal 
if term probability estimates pti do not change drastically. 
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Figure 3.13: Given a probabilities of occurrence and of being queried for each term, the algorithm which 
assigns codewords and ordering to minimize the size-search cost function. 
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Figure 3.14: Block diagram of image coding algorithm. 

Appendix 3.B: Image Coder 

The block diagram of our image coder is shown in Fig. 3.14. In the next couple sections, we describe the 
image coder in detail. 

3.B.A    Preprocessing 

The first step consists of defining image objects (see, e.g., Fig. 3.5). Objects are first outlined by the user 
by defining a rectangle about the object with a mouse. The next step is to extract the object from the 
background. As each object block is defined, a close-up of the object appears in a separate window (c.f. Fig. 
3.15). Within this window, the user clicks on several boundary points of the actual object. A gradient-based 
search algorithm is used to extract the object curve. Once the object curve is defined, the exterior of the 
curve is filled with black (i.e., zeros) to ensure that background doesn't play a factor when mapping to the 
VQ dictionaries. 

The object blocks are removed from the original image. The remaining image regions are coded using 
a simple block coding algorithm (e.g., JPEG [33]). The JPEG codewords are stored in the last part of the 
encoded file (c.f. Fig. 3.14). In addition, the position of each object block is stored for decoding purposes. 
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Figure 3.15: Extracting object from background (a) defining object boundaries, and (b) final object. 
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Figure 3.16: Structure of embedded VQ codebooks and prototypes. 

The next step consists of applying a wavelet transform [43] to each object block. The number of levels 
in the wavelet decomposition depends on the original size of the object block. Specifically, the wavelet 
transform is applied until the lowest frequency subband is 8 x 8. In this way, the powerful multiresolution 
characteristic of a wavelet decomposition is exploited for recognition (c.f. Fig. 3.6). 

3.B.B    Object coding and embedded VQ 

Once objects are defined and transformed as above, our new coding technique is applied. The coder constructs 
the file header in terms of the wavelet transform subbands of the segmented objects to minimize the size- 
search cost function (Eq. 3.1). To obtain the probability and query probability estimates used by our coding 
algorithm, we use vector quantization (VQ) [44] to map the subbands to finite dictionaries. 

The structure is shown in Fig. 3.16. The VQ dictionaries constructed with our algorithm are embeddedby 
scale. The initial VQ dictionary consists of n terms (centroids cu) based on the lowest resolution subbands 
of the image objects. Each of the n terms in this dictionary, in turn, has an associated dictionary whose 
terms are based on the next higher resolution subbands. Since the finite dictionaries are embedded from 
one scale to the next scale, the probability and query probability assigned to each dictionary entry subband 
depend on previous (coarser) subbands, i.e., paij = Paij|a(i_1)fcPa(i_i)fc- The probabilities associated with 
each term in the dictionary determine the proper location and codeword length of each subband codeword 
in the compressed file header in the exact same manner as in the text case. 

To help take into account visual similarity, the mapping of an object's subbands onto the embedded 
VQ dictionaries is based on a perceptual distance measure. In particular, we construct a frequency domain 
masking model of each object [46]. The masking model determines when a signal component is perceptually 
invisible in the presence of another (masking) signal component. When computing distances to obtain 
the appropriate VQ dictionary entry, we set all masked components of the error image to zero, i.e., only 
non-masked components contribute to the norm of the error. 
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Figure 3.17: Ordering of file header in coded image. 

A prototype object is also defined for each VQ codebook term. In addition to having a centroid c^-, each 
entry in the VQ codebooks has an associated prototype object ptj. The prototype object for a codebook 
entry is defined as the object whose subband at that resolution (scale i) is nearest to the centroid Cij. Note 
that the prototypes are actual objects contained in the image collection. For example, consider the first terms 
in the lowest resolution codebook. Every object in the image collection whose coarsest subband is mapped 
to centroid en is a candidate prototype. The object whose coarsest subband is nearest to en is used as its 
prototype, pn. The prototype object is used to represent all of the other objects near it at a given scale. 
At low scale, the number of objects mapped to a codeword is large and the prototype is "low" in resolution. 
At higher scale, the prototype becomes more refined as the region it represents diminishes. 

To increase retrieval speed, the image file header is ordered in a coarse-to-fine manner. As shown in Fig. 
3.17, the first layer of the file header consists of the lowest resolution (coarsest) subband. Within this layer, 
the coarsest subband components (8x8 subbands) of all the objects in the image are ordered according to 
probability estimates obtained from the VQ mapping and codeword lengths. The next layer in the file header 
consists of all the 8 x 16 subbands of the objects in the image. The remaining subbands are likewise ordered 
in the file header. Also, the object residual for each subband is stored (second part of "Coded image" in Fig. 
3.14). The residual is the difference between the dictionary term which is used to represent each subband 
and the actual subband values. This is efficiently stored to maintain high fidelity between the original and 
coded image. 
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Chapter 4 

Binary Wavelet Transforms 

4.1    Introduction 
The multiresolution nature of a wavelet decomposition provides signal specific information localized in space 
or frequency which can be exploited for signal analysis and processing. Wavelet theory has received a great 
deal of attention recently as seen by the explosion of the literature in this field. Wavelets have been applied 
to many applications including edge detection [47, 48], image coding [49, 50], filtering [51, 52], stochastic 
processes and fractal models [53, 54, 55], time-frequency analysis [56, 57], radar [58, 59], etc. The special 
issues on wavelets of IEEE Transactions on Information Theory (March, 1992) and the IEEE Transactions 
on Signal Processing (December, 1993) include several others. 

The development of wavelet decomposition theory has occurred almost exclusively for real- and complex- 
valued functions. The data to be analyzed and the families of basis functions are real- or complex-valued, 
and arithmetic is performed in the real or complex field. Just as wavelet theory over real and complex fields 
has proven useful in many applications, wavelet theory over other arithmetic fields holds a great deal of 
potential. 

A field is any arithmetic system in which one can add, subtract, multiply, and divide under the usual 
properties of associativity, distributivity, and commutativity. Along with the real and complex fields, denoted 
by TZ and C, we have the finite (Galois) fields denoted by GF(p), where p is the characteristic of the field. 
Whenever p is a prime, we can construct the field GF(p) as the set of elements {0,1,2,... ,p — 1} together 
with modulo-p addition and modulo-p multiplication. The goal of this work is to generalize wavelet theory 
over the real and complex fields to GF{2), the binary field. 

There have been several attempts to generalize wavelet decomposition and perfect reconstruction filter 
banks to finite fields. The difficulties associated with the design of perfect reconstruction filter banks in 
GF(2) are discussed in a pioneering work [60] and are addressed further in [61]. It is shown in those papers 
that there is no universal factorization of paraunitary matrices in GF(2). The lack of universal factorization 
in GF{2) is unlike the real field case where it is known that any causal FIR paraunitary matrix of degree N 
can be factored into a product of iV degree-one causal paraunitary systems [62]. In contrast to the real case, 
a complete characterization of binary paraunitary systems is not possible. Note also that several authors 
have extended wavelet theory to finite fields with characteristics other than 2, e.g., [63] and [64]. However, 
these constructions exclude the binary field as they rely on Fourier transform techniques that are difficult to 
use in GF{2). The complications arising with Fourier techniques over GF(2) are addressed in Section 4.2.B 
.1. 

As we shall see in the sequel, the binary wavelet transform that we construct here shares many of the 
important characteristics of the real wavelet transform. In particular, it yields an output that is similar 
to a thresholded real field wavelet transform of the underlying binary image (c.f. Section 4.4 and Figs. 4.8 
and 4.9). Therefore, our binary wavelet transform of binary images can be used as an alternative to the 
real-valued wavelet transform of these images in binary image processing applications (e.g., coding, edge 
detection, recognition, etc.). Furthermore, this binary transform has several distinct advantages over the 
real transform when applied to binary (e.g., text, facsimiles, fingerprints) or thresholded data. First, the 
intermediate and transformed data produced by the binary wavelet transform are binary. No quantization 
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effects are introduced and the decomposition is completely invertible. The entire decomposition is performed 
in GF(2). Second, it is extremely fast. Modulo-2 arithmetic is equivalent to exclusive-OR operations. Hence, 
the transform can be performed using simple Boolean operations. Finally, as the data remains in GF(2), 
operations on the transformed data tend to be much simpler. For example, if the binary wavelet transform 
is mapped to a classification tree to allow further image analysis and understanding, all decisions in the tree 
would be based on simple mod-2 additions and multiplications of binary data. 

We construct wavelet decompositions in GF{2) by introducing a new binary field transform which char- 
acterizes the filtering properties of binary signals. The new transform allows us to avoid both paraunitary 
polyphase matrix characterizations and Fourier transform techniques. Furthermore, it retains the concept of 
spectral classification (e.g., lowpass, highpass, etc.) commonly associated with the Fourier transform. Using 
the new transform, we construct ID binary wavelets based on 2-band perfect reconstruction filter banks in 
GF{2). In the extension to the 2D case, we restrict our attention to separable 2D binary wavelets, where 
the 2D wavelets are defined as tensor products of ID wavelets. The theory described here is developed for 
the analysis of finite images. 

We conclude the chapter with an illustration of the potential application of this theory to lossless image 
coding. In particular, we discuss in Section 4.4 the results of several coding experiments that we have 
performed. In these experiments, we coded several binary images and their corresponding binary wavelet 
transform subbands for comparison. No special coding technique (like a modified version of zerotrees [50]) 
was used on the subbands. Rather, we applied simple run-length coding. The test images included letters (c.f. 
Figs. 4.11 and 4.13) and fingerprints (c.f. Fig. 4.10). Our results indicate that the transform gives a compact 
representation of each image. In addition, run-length results produced savings in storage requirements 
ranging from 14% to 70% over similarly coded original images. A coder modified to take advantage of the 
subband structure should result in even greater savings. 

4.2    The Binary Field 

This work unfolds in GF(2) where sequence elements take the values '0' and '1', and arithmetic is performed 
modulo-2. In this section, we review certain properties of this field and construct a new binary field transform 
which characterizes the response of binary filters. 

4.2.A    Linear Algebra and the Binary Field 

The multiresolution decomposition of a sequence in terms of wavelet bases takes the form of a linear system. 
While certain properties of matrices over the binary field differ from properties of matrices over the real 
and complex fields, matrix arithmetic (i.e., multiplication, addition, inversion, and determinant calculation) 
is performed in GF(2) as it is in 71 and C. The only difference is that all computations are followed by a 
modulo-2 operation. 

We will use bold faced capital letters (e.g., A) and bold faced small letters (e.g., v) to denote matrices 
and vectors, respectively. In addition, we will denote by A(j,k) the (j,k) element of A, and by v(k) the k 
element of v. A.(:, j) and A(i,:) are the jth column and ith row of A, respectively. AT is the transpose of 
A. A-1 is the inverse of a square matrix A. All indices start at 0. 

Matrices and vectors over GF{2) have some special properties that will be important in this chapter 
[60]. For example, note that for a vector v e 71 or C, vTv = 0 if and only if v = 0. On the other hand, a 
vector in GF{2) with an even number 2n of nonzero entries has zero energy (since 0 = 2n mod 2). In other 
words, the energy of a nonzero vector in GF(2) may be zero. Note also that since the only nonzero element 
in GF{2) is 1, an N x N matrix A in GF{2) is invertible if and only if det(A) = 1. Finally, no column of 
a unitary matrix U in GF(2) may have all elements equal to 1. An M x N matrix U is unitary in GF{2) 
if UTU = IN. In other words, a matrix is unitary only if the columns have unit energy and each pair of 
columns is mutually orthogonal. If M is even, no column of U can have all its elements equal to 1 since such 
a column would have zero energy. If M is odd, no column of U can have all its elements equal to 1 since 
all the other columns must then have an even number of l's by the orthogonality condition. This, however, 
implies that the other columns have zero energy. An example of a 4 x 4 unitary matrix U in GF(2) is shown 

42 



below 

ITU: 

1 1 1 0 1 
1 0 1 1 
0 1 1 1 
1 1 0 1 

1 1 0 1" 
1 0 1 1 
1 1 1 0 
0 1 1 1 

Mx4- 

We also consider circulant matrices. An N x N matrix C = [cjk]j,k=o N-I with entries from some field 
T is called circulant if its rows are generated by successive shifts of the first row in the matrix. A shift by 
1 generates a one-circulant matrix. As a one-circulant matrix C is specified by its first row, we will often 
denote C by 1 — circ(co, ci,..., c/v_i). A length N circular convolution of two sequences leads naturally to 
a representation of one sequence as an N x N one-circulant matrix and the other sequence as a length N 
vector. 

Sequence decimation is an inherent operation of filter banks and leads to the second circulant form we are 
interested in. Decimation of a sequence by a factor m leads to a new sequence which is composed of every 
mth sample of the original sequence. Suppose that we circularly convolve two sequences of even length N 
and follow the convolution operation with decimation by a factor of two. Then the equivalent one-circulant 
matrix followed by decimation can be replaced with an equivalent N/2 x N ituo-circulant matrix of the form 

D 

do di d2 

djV-2 d/v-i do 
d.N-4 d/V-3 dfj-2 

dN-i 
dN-3 
djV-5 

di 

(4.1) 

The matrix in Eq. 4.1 is specified by its first row and will be referred to as 2 — circ(d0,di,... , djv-i)- 
The binary wavelet decomposition we consider in later sections is based on circular convolution of binary 
sequences with binary filters (wavelet and scaling function coefficients) followed by decimation by 2. 

Let us now present a new theorem that we will use in the sequel to determine if a given filtering operation 
in GF(2) followed by decimation can be inverted. The proof of this theorem relies on transforming circulant 
matrices into upper Hessenberg matrices. Fig. 4.1 shows the structure of an upper Hessenberg matrix. It 
resembles a staircase version of an upper triangular matrix. For N even, an N x N upper Hessenberg 
matrix has N/2 submatrices of size 2x2 along the main diagonal. A straightforward analysis shows that 
the determinant of such a matrix in GF{2) is equal to the product of the determinants of the 2x2 matrices 
along the main diagonal. 

Now note that in a 2-band filter bank (c.f. Fig. 4.3), a signal is passed simultaneously through two filters, 
and the filter outputs are decimated by two. An equivalent filtering operation can be obtained by combining 
the two N/2 x N iwo-circulant matrices (Eq. 4.1) into one N xN matrix. The following theorem determines 
whether the resulting linear system is invertible. 

Theorem 1 Let C = 2-circ(c0,Ci,. ..,c^_x) andT> = 2-circ(d0,di,.. .,dN~i) be N/2x N two-circulant 
matrices in GF{2) where N = 2fc for some k>l. If we construct an N x N matrix T as 

T = C 
D 

(4.2) 

then T can be put in upper Hessenberg form using a pair of fixed transform matrices that are independent of 
T. Furthermore, the determinant ofT takes the form 

N-2 N-l JV-1 N-2 

det(T)=    53    a   Y,   di+   ]L   Ci    J2    di' 
i=0,even     i=l,odd i=\,odd     i=0,even 

(4.3) 

Proof. In Appendix 4.A we construct matrices which transform a2*x 2k tiuo-circulant matrix of the 
form Eq. 4.2 into upper Hessenberg form. The A^/2 submatrices of size 2x2 along the main diagonal of the 
Hessenberg matrix are all equal and take the form 
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EJV-2 TT^N-1 
i=0,even Ci 2^ii=l,odd Ci 

EN-2 , Y^AT-1        j 
i=0,even ai l-,i=ltodd °* 

which has a determinant given by Eq. 4.3. Since xp = x for any x £ GF{2) and integer p > 1, the product 
of N/2 such expressions equals the original expression. 

Consider the following example of a general 4x4 matrix T as described in Theorem 1. Using the results 
of Appendix 4.A, we can form an upper Hessenberg matrix as 

H 

1 0 0 0 1 
1 1 0 0 
0 0 1 0 
0 0 1 1 

CO Ci c2 c3 

C2 C3 Co Ci 

do di d2 ^3 

d2 ^3 ^o di 

1 0 0 0 1 
0 1 0 0 
1 0 1 0 
0 1 0 1 

Co + C2 C\ + C3            C2                  C3 

0 0 Co + C2 Ci + C3 

do + d2 di + d3        d2            d3 
0 0 d0 + d2 di + d3 

After applying a simple permutation, we have the upper Hessenberg form. The determinant of H can be 
calculated as 

((co + c2)(di + d3) + (ci + c3)(d0 + d2))
2 = (c0 + c^)^ + d3) + (cx + c3){d0 + d2) 

which agrees with Eq. 4.3. 

4.2.B    Filtering in the Binary Field 

The filtering properties of a sequence over the real field are typically obtained through the application of 
the discrete Fourier transform (DFT). These properties are used to characterize the wavelet and scaling 
coefficients of the real field wavelet transform. We will see that as the length iV of a DFT over GF(2) 
increases, the computational complexity of the DFT becomes unmanageable. This leads us to introduce a 
new binary field transform. 

4.2.B .1     Discrete Fourier Transform over GF{2) 

Although the DFT is usually associated with the real and complex sequences, it is not defined exclusively 
over these fields. A more general definition is as follows [65]. Let v be a length N vector over an arbitrary 
field T. The DFT of v is another vector v over T whose elements are given by 

^-i ,ik W'-Vi k = 0,...,N-l, (4.4) vk = Li=o 

where u is an element of order N in the field T. An element of order N satisfies uN = 1 and uk ^ 1 for 
k = 1,2,..., N - 1. The computation of the DFT is performed in the field T (i.e., modulo-p if jF is GF(p)) 
and all properties typically associated with the Fourier transform hold. Furthermore, if v is the DFT of a 
vector v, then v can be recovered from v by the inverse DFT. While the DFT is very useful, certain fields 
may have no element of order N. Therefore, it is not possible to evaluate an N point DFT in these fields. 
For example, GF(2) has only one non-zero element u> = 1. That element is of order 1. Hence, we can only 
compute the DFT of a length 1 sequence in GF(2). 

When a field T has no element of order N, it is still sometimes possible to obtain a length N DFT 
by entering an extension field Tm of T. An extension field is created by using a construction called the 
polynomial representation of the extension field [65]. The technique involves finding a polynomial p(x) of 
degree m which is irreducible over T. All elements of Tm are polynomials of degree at most m - 1 with 
coefficients taken from T. Addition in this new field is defined as polynomial addition and multiplication is 
defined as polynomial multiplication modulo the polynomial p(x). 

Using this technique, GF{2) can be extended to GF(2m) using appropriate polynomials of degree m. 
However, for a given length N, there may be no extension field in which one may compute a length N DFT. In 
particular, one cannot compute an even length N DFT for any m [65]. Furthermore, for GF(2m), the highest 
order of any element is 2m - 1. Therefore, we have to extend GF(2) to an arbitrarily large field to compute 
an arbitrarily long DFT. For example, to compute a length N = 2m - 1 DFT, we need to increase our data 
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dimension from 1 to m since we have to use polynomials of degree m. In contrast, computing the DFT of a 
real-valued signal increases the data dimension from 1 to 2 (real and imaginary parts) independent of length 
N. Working with high degree polynomials in GF{2) makes transform computation and interpretation very 
difficult. To avoid the increase in complexity associated with introducing extension fields, we will use a new 
binary field transform. 

Note that the difficulties associated with the DFT in GF{2) also arise with other transforms related to 
the DFT. For example, the discrete Hartley transform over GF(2) exists only for lengths N for which the 
DFT is defined [66]. Therefore, it exists only for lengths N that divide 2m - 1 for some m. In particular, N 
cannot be even. As even length convolutions are essential for 2-band filter banks (due to decimation), the 
Hartley transform over GF(2) cannot be used to characterize filters in a 2-band filter bank setting. 

4.2.B .2     Binary Field Transform 

Let us now return to the real field and review an alternative transform to the DFT which employs a class of 
nonsinusoidal orthogonal waveforms as its set of basis functions. The Walsh-Hadamard transform (WHT) 
is a real field transformation which has found applications in several signal processing and communications 
areas [67, 68]. The WHT is based on a complete orthonormal set of rectangular functions known as Walsh 
functions. Walsh functions take values '-1' and '1' and form a closed set [68]. The first four Walsh functions 
labeled (a)-(d) are shown in Fig. 4.2. 

What makes the individual Walsh waveforms unique is the frequency at which transitions from '-1' to '1' 
and from '1' to '-1' occur. This frequency, referred to as sequency, is defined as one-half the average number 
of zero-crossings per unit time [67]. Sequency can be thought of as a generalization of frequency as it can be 
applied to functions whose zero-crossings may occur at irregular intervals and which may be aperiodic. For 
the example in Fig. 4.2(a)-(d), the waveform sequencies are 0, 1, 1 and 2, respectively (by convention, the 
waveforms in (b) and (d) are extended to include a final transition near 1). The definition of sequency can 
be modified to include discrete functions. Specifically, if the number of sign changes of a discrete function 
equals k, the sequency of the discrete function is defined as k/2 when k is even and (k + l)/2 when k is odd. 

By extending on the ideas described above, we construct the binary field transform (BFT) for sequences 
in GF{2). The basis vectors of the BFT are rectangular waveforms which take values '1' and '0' with varying 
sequencies. In this case, we define sequency of a binary sequence in terms of transitions from '0' to '1' and 
T to '0' rather than sign changes. These basis vectors constitute the columns of our binary transform 
matrix. Note that a Fourier series expansion of a length TV periodic sequence includes sinusoidal terms up 
to a frequency of N/2. Likewise, our binary field transformation of a length N periodic sequence includes 
rectangular waveform components with sequencies up to N/2. Through the use of this transformation, 
we replace the conventional frequency information associated with the Fourier transform with sequency 
information obtained from the binary transform. 

For finite sequences, the BFT takes the form of a square symmetric matrix over GF{2). Since the BFT 
must be invertible, the basis vectors of the BFT cannot be Walsh functions with -l's replaced by 0's. The 
determinant of the matrix corresponding to a WHT is even, i.e., it is zero in GF{2). Hence, such a matrix 
is non-invertible in GF(2). We therefore proceed to construct the N x N BFT matrices Bjv recursively as 
follows. We define 

~ 1    1 B2 = 
1   0 

and 

B4 = 

For N > 6 and even, we construct B;v in terms of four submatrices as 

BJV = 

1  1 1     1 
1   1 0   0 
1   0 1  1 
1   0 1   0 

" four £ ubmat) 

T>Tll BN 
nil 

pur 

B% _ 

(4.5) 

(4.6) 

(4.7) 
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The upper-left (N - 2) x (N - 2) submatrix B# is defined as 

Bui   
N — 

lS2x2 lS2x(W-4) 

lS(JV-4)x2     B(/V-4) 
(4.8) 

In the above equation, the subscripts denote the sizes of the submatrices. The matrix ls^xM is an N x M 
matrix that consists of l's. Matrix B^_4 is the result of applying the logical-NOT operation to each element 
of the BFT matrix Bjv-4- The upper-right (N - 2) x 2 submatrix B^r and lower-left 2 x (N - 2) submatrix 
Bjy are defined as 

and 

>N 

-oil 

r i l ] 
0 0 
i l 

_ 0 0 _ 

jtirT 

Finally, the lower-right 2x2 submatrix Bjy is defined as 

Blr   
N - 

(4.9) 

(4.10) 

(4.11) 

1) For N odd, we construct B;v+i and define B;v as the upper-left N x N submatrix B(0 : N - 1,0 : N 

ofBjv+i- 
Note that the BFT matrix takes an analogous form to the Walsh-ordered, or sequency ordered, Walsh- 

Hadamard transform matrix. That is, the sequency ordering of the columns corresponds to a nondecreasing 
sequency ordering of Walsh functions. Furthermore, the number of l's in each of the first N/2 columns is 
even. As an example, consider the 8x8 BFT matrix 

B« = 

1 1 1 1 1 1 1 1" 
1 1 1 1 1 1 0 0 
1 1 0 0 0 0 1 1 
1 1 0 0 1 1 0 0 
1 1 0 1 0 0 1 1 
1 1 0 1 0 1 0 0 
1 0 1 0 1 0 1 1 
1 0 1 0 1 0 1 0 

(4.12) 

From left to right, the sequency value of each column is 0, 1, 1, 2, 2, 3, 3, and 4. 
Note that the first column of a BFT matrix corresponds to a DC basis vector of zero sequency. Every 

element in that first column is equal to 1. Therefore, the BFT matrix Bjv cannot be orthonormal. Fortu- 
nately, each Bj is invertible over the binary field (i.e., det(B») = 1 for all i > 2) and its inverse B^1 can be 
evaluated using a simple recursive formula. In particular, we show in Appendix 4.B that the inverse of Bjv 
for N > 6 is given by 

■D-l _       A(N-2)y.(N-2)     C(^_2)x2 
N   ~  [  C(N-2)X2 D2*2 

The sizes of the submatrices are given by their subscripts. They are constructed as 

(4.13) 

'  1 0 0 0 0    1 
0 1 1 0 0    1 
0 1 

{N-2)x(N-2) — 0 

0 
1 

0 

0 
1 

B^-4 (4.14) 

46 



'(N-2)-x2 

r i 0 ] 
i 0 
0 0 

0 o _ 
and 

D 2x2 
1      1 
1      1 

(4.15) 

(4.16) 

For the 8x8 BFT example, the inverse matrix is 

B7' = 

1 0 0 0 0 1 1 0 
0 1 1 0 0 1 1 0 
0 1 1 1 1 0 0 0 
0 0 1 0 1 0 0 0 
0 0 1 1 1 1 0 0 
1 1 0 0 1 1 0 0 
1 1 0 0 0 0 1 1 
0   0   0   0   0   0    11 

(4.17) 

Hence, the construction of both transform and inverse transform matrices relies solely upon shifting and 
embedding matrix elements. No matrix computation is required. 

Each BFT matrix of size N forms a basis for vectors of length TV in GF{2)N. Specifically, every vector 
in the space is a unique combination of the vectors which compose the columns of the BFT matrix. The 
columns of the matrix, in turn, are associated with the specific sequencies defined above. As a result, vectors 
in GF{2) can be written uniquely in terms of different sequency components ranging in value from 0 to N/2. 

We compute the binary field transform in a manner that is different from that commonly associated with 
DFT or WHT spectra. Rather than computing the matrix-vector product B^x for a length N sequence x, 
we apply B^1 to all circular shifts of x. Specifically, to compute the NxN matrix BFT X of x, we begin by 
forming the equivalent one-circulant matrix X = 1 - circ(x). We then evaluate the matrix-matrix product 

X = XB^. (4.18) 

This definition of spectrum in GF(2) is motivated by the fact that a circular shift of x can lead to a 
different transform. In particular, a shift by one time or space unit in the discrete time or space domain is 
not equivalent to multiplication of the transform by a simple factor as with the Fourier transform on the 
real field. Another advantage of this definition is that it allows us to define the magnitude of the spectral 
components of x along each BFT basis vector simply by counting the number of l's in the corresponding 
column of X. 

The BFT as defined above has three distinct advantages over the generalized DFT discussed in Section 
4.2.B .1. First, no polynomial operations are required to compute the BFT. This significantly reduces 
computational complexity, as all operations are performed with simple modulo-2 addition. Second, we are 
able to compute the BFT for any size N input vector. The DFT, on the other hand, could only be computed 
for certain size N (excluding, for example, any even length N). Third, the BFT matrix is easier to interpret 
than a multidimensional DFT. 

A limitation of the BFT, as we have defined it above, is that the circular convolution of two sequences is 
not equivalent to multiplication of their transforms in the BFT domain. In particular, a filter that has large 
spectral components at high sequencies need not be a high pass filter! To characterize a filter as a lowpass, 
bandpass or highpass filter, we need to examine its effect on the basis vectors of a BFT. This may be done 
by evaluating the circular convolution of the filter with each basis vector via the product X = XBJV. Note 
that this is akin to evaluating a BFT with respect to the inverse BFT matrix B^1. We shall refer to X as 
the filter binary field transform (FBFT) of x. 

In summary, to study the effect of a filter h on all circular shifts of a sequence x we need to examine 
the FBFT of h and the BFT of x. In particular, a simple computation shows that the output y can be 
computed via the product X(l, :)HT, where X(l,:) denotes the first row of X. Furthermore, the output y 
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of a circular shift N in x can be computed via the product X(iV + 1, :)HT. While computing the circular 
convolution of x and h in the BFT domain via the product X(l, :)HT is not computationally less expensive 
than computing it directly, we will find in the sequel that the FBFT provides us with a powerful tool for 
characterizing and designing filters in GF(2). 

As an example, consider the vector x = [1 0 0 1]. Its BFT X is given by 

X = XB71 = 

1 0 0 1' 
1 1 0 0 
0 1 1 0 
0 0 1 1 

1110 
10   10 
1111 
0   0   11 

1 1 0 11 
0 1 0 0 
0 1 0 1 
1 1 0 0 

We interpret this result as follows. Viewed as a signal, x has no spectral component corresponding to the 
1-sequency basis vector [1011] (see B4 below), a maximum strength spectral component corresponding to 
the 1-sequency basis vector [1100] and half maximum strength spectral components corresponding to the 
0-sequency and 2-sequency basis vectors [1111] and [1010] (DC and high sequency). 

On the other hand, its FBFT X captures its performance as a filter and is given by 

X = XB4 = 

1 0 0 1" 
1 1 0 0 
0 1 1 0 
0 0 1 1 

1111 
110 0 
10 11 
10 10 

0 10 1 
0 0 11 
0 111 
0 0 0 1 

We interpret this result as follows. The FBFT matrix shows that the zero sequency component (column 0) 
is not passed by the filter. All three other BFT basis vectors are passed by the filter. We conclude that 
the filter corresponding to the impulse response x is of a high pass nature. Note in particular that even 
though the BFT of x is zero at the location of the 1-sequency basis vector [1011], x viewed as a filter passes 
[1011]. This of course confirms what we have mentioned above: the circular convolution of two sequences 
is not equivalent to multiplication of their transforms in the BFT domain. By examining X and X we can 
predict the effect of filtering x or circularly shifted versions of x using a filter with impulse response x. For 
example, the output of the filter x driven by the signal x is equal to the multiplication from the right of 
the first row of X by XT. Hence, it is given by [0101]. This result is confirmed by direct evaluation of the 
circular convolution of x with itself. 

4.3    A Theory of ID Binary Wavelets 

The wavelet theory over binary fields that we propose parallels the theory developed over the real field. In 
particular, we view the construction of 2-band discrete orthonormal binary wavelets as equivalent to the 
design of a 2-band perfect reconstruction (PR) filter bank with added vanishing moments conditions. The 
2-band PR filter bank is shown in Fig. 4.3, where the input signal is simultaneously passed through lowpass 
L and highpass H filters and then decimated by 2 to give approximation and detail components of the 
original signal (analysis section). The two decimated signals may then be upsampled and passed through 
complementary filters and summed to reconstruct our original signal (synthesis section). Often a filter bank 
is cascaded with 1 or more additional filter banks to provide further resolutions of the input signal. The 
cascade of filter banks, termed a multiresolution pyramid due to its structure, need not use the same filters 
at each stage. The conditions which follow can be applied to individual stages in the cascade to ensure that 
the overall pyramid satisfies the conditions. 

To guarantee that we can perform a useful multiresolution decomposition that inherits the important 
characteristics of the real wavelet decomposition, and still be able to reconstruct our original signal, the 
filters must satisfy 3 constraints: a bandwidth constraint, a vanishing moments constraint and a perfect 
reconstruction constraint. Specifically, we restrict the bandwidths of the lowpass and highpass filters to be 
approximately equal in size. This is needed to guarantee that no information is lost after we downsample the 
outputs of the two filters by a factor of two. We argue in the sequel that the vanishing moments constraint 
that real wavelet filters satisfy should be replaced by a constraint on the number of low and high sequency 
basis vectors that the highpass and lowpass filter block respectively. In particular, this constraint guarantees 
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that, as in the real field case, the binary wavelet transforms of slowly varying binary sequences are very sparse. 
Finally, we impose the perfect reconstruction constraint to guarantee that the binary wavelet transform is 
invertible. We address each of these constraints in the next few sections for the separable 2D case, where 
the 2D binary wavelets are defined as tensor products of ID wavelets. 

Since each stage in our binary wavelet decomposition involves decimation by a factor of 2, we will assume 
that the input sequence has a length N = 2K. In particular, all circular convolutions are of length N = 2K 

and any filter of even length N' < N will be padded with zeros to length N = 2K. In the sequel, we shall 
also use 1 and h to denote the vector representations of the N binary (zero-padded if necessary) scaling and 
wavelet filter coefficients respectively. 

4.3.A    Decimated FBFT Computation and Bandwidth 

To meet the first condition, we place bandwidth restrictions on the lowpass filter 1 and highpass filter h. 
Since we subsample the outputs of the lowpass and highpass filters by 2, we modify the computation of the 
FBFT discussed in Section 4.2.B .2 to directly incorporate this action. The decimation operation can be 
taken into account as follows. First, we form the equivalent iiuo-circulant matrices (Eq. 4.1) L2 = 2 - circ(l) 
and H2 = 2 - circ(h). Next, we compute the decimated FBFT's L2 and H2 by retaining every other row of 
L and H respectively, i.e., 

L2=L2Bjv=L(0:2:Ar-l,:) .       . 
H2 = H2Bw = H(0 : 2 : N - 1,:). v '    ' 

Note that the resulting FBFT matrices L2 and H2 are of size N/2 x N. For the bandwidth condition, we 
restrict the bandwidths of 1 and h to be approximately equal in size. Specifically, the number of nonzero 
columns of L2 and H2 are approximately equal. This helps maintain an even distribution of sequency content 
in the filter outputs. The even distribution allows for a better multiresolution decomposition of the input 
data, as we are able to successively half the resolution of the input data as we proceed through a multistage 
decomposition. In addition, we require 1 to be a lowpass filter, i.e., we set 

L2(:,iV-l) = 

0 
(4.20) 

4.3.B    Vanishing Moments 

The vanishing moments property of wavelets over the real field ensures that the Fourier transform of the 
wavelet coefficients will have zeros of a certain order at DC, i.e., it will decay smoothly to zero as the 
frequency approaches zero. In particular, a large number of vanishing moments leaves minimal power in the 
low frequency region of the Fourier transform of the wavelet. Therefore, a filter corresponding to a wavelet 
with a larger number of vanishing moments has a better low frequency attenuation performance (c.f. Fig. 
4.4). This guarantees a degree of smoothness in the wavelet in the time domain and allows for the compact 
representation of slowly varying data signals. 

The vanishing moments criteria takes on a somewhat different interpretation in GF(2). As we cannot 
have a "smooth" decay to zero in GF{2), the frequency domain smooth decay to zero as frequency approaches 
zero and high attenuation characteristics at low frequencies are replaced with multiple consecutive zeros at 
low sequency in the FBFT matrix. We will see in Section 4.4 that this property allows for a more compact 
representation of slowly varying GF{2) sequences. Compactness means here that filtered sequences consist 
mostly of zeros. This is intuitively apparent. The additional zeros at low sequency allow us to avoid 
representing (passing) the slowly varying regions in an input sequence. The wavelet filter output mainly 
represents edges and regions of a varying nature. 

Note that in the real field, the vanishing moments property is crucial for pointwise convergence of the 
continuous time wavelet derived from the discrete-time filter [69]. We have not addressed this issue yet 
for our binary filters. Here, we are simply addressing binary wavelet theory for discrete-time finite-sized 
sequences. 
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Based on the above discussion, our second condition states that the wavelet coefficients do not pass the 
DC sequency component. In terms of the FBFT, 

H2(:,0) = 

0 

0 

(4.21) 

The above equation guarantees one vanishing moment. We can define additional vanishing moments by 
forcing the filter h to block more low sequency basis components. As in the real case, the resulting wavelet 
filters would then have better bandpass or highpass characteristics. 

To impose two vanishing moments we set the first two columns of H2 to zero. Now observe that the 
decimated FBFT is computed by multiplying ftuo-circulant matrices (which shift filter coefficients by two 
in each row) from the right by B^. Furthermore, the first and second columns of B^ differ only in their 
last two entries. These last two entries are both equal to one in the first column and both equal to zero 
in the second column. Therefore, setting the first two columns of H2 to zero automatically constrains taps 
2n and 2n + 1 of h, h(2n) and h(2n + 1), to be equal, i.e., h(2n) = h{2n + 1) for 0 < n < N/2 - 1. Note 
also that each of the first N/2 columns of B^v has an even number of l's. The l's appear in pairs along 
each column. Specifically, denote by BN(n,j) the (n,j) element of matrix BN. If BN(2n,j) = 1 for a given 
n e [0, N/2-1] and any j € [0,iV/2-l]1, then BN(2n + l,j) = 1. Therefore, the condition h(2n) = h(2n+l) 
for 0 < n < N/2 - 1 also forces the first N/2 columns of the FBFT matrix to be zero. 

Furthermore, recall that, unlike the real field case, N here is the convolution length rather than the 
filter length. As mentioned at the beginning of this section, the convolution length may be equal to or 
larger (when zero-padding is used) than the number of taps in the wavelet filter. Therefore, the number of 
vanishing moments depends on the convolution length rather than the number of filter taps. Since padding 
with zeros does not change the fact that h{2n) = h(2n + 1), a filter of even length N' with N'/2 vanishing 
moments will have exactly AT/2 vanishing moments if it is padded with zeros to length N. 

Note also that we can set no more than N/2 columns of the FBFT matrix corresponding to the highpass 
filter equal to zero. If we try to do so, we end up with an overdetermined and inconsistent set of equations. 
This, in some sense, is the counterpart of the fact that in the real case, an N taps highpass filter corresponding 
to a wavelet decomposition can have no more than N/2 zeros at the origin of the frequency axis. In summary, 
the filter h can only have one or N/2 vanishing moments. 

Let us illustrate the points that we have made above with a simple example. Suppose that we wish to 
design a length N' = 4 wavelet filter with p = 2 vanishing moments. We compute the decimated FBFT of 
the 4 tap filter h as 

H0B4 — 
ho    h\    /i2    h3 

h^    hz    ho    hi 

1 1 1 1 ' 
1 1 0 0 
1 0 1 1 
1 0 1 0 

ho + hi 
h2 + h3 

ho'+ti2 + h3 

ho + hi+ /12 
h0 + hi 
h0 + hi 

By setting the first two columns to zero we obtain the following equations 

h0 + hi = 0 
h2 + h3 = 0 

Therefore, the filter h = [110 0] will have 2 vanishing moments. If we pad h with zeros to length N, the 
resulting filter will have N/2 vanishing moments. For example, the FBFT's of h and h padded to length 8 
are 

H2 = and H2 = 

0 0 0 0 0 0 1  1 
0 0 0 0 1 1 1   1 
0 0 0 0 0 1 1   1 
0 0 0 0 0 0 0    1 

As expected, the first two columns of the original H2 and the first four columns of the padded H2 are 
identically zero. In other words, the filter h padded to length 8 has 4 vanishing moments. 

xAs mentioned in Section 4.2.A, all indices start at zero in our notation. 
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4.3.C    Perfect Reconstruction 

For the third condition, we require the binary filters of the multiresolution decomposition to satisfy the 
perfect reconstruction (PR) property to ensure that the decomposition is invertible. Consider the two- 
circulant matrices L2 and H2 of the filter coefficients. When Theorem 1 was introduced, it was noted that 
we can compute the operation of the decimated filter bank by applying the matrix 

L2 

H2 
(4.22) 

to the input data sequence. The length N output sequence is then ordered with the first N/2 values 
representing the approximation signal (output of the decimator following the lowpass filter) and with the 
second N/2 points representing the detail signal (output of the decimator following the highpass filter). 
Perfect reconstruction is guaranteed if the matrix T is invertible. By Theorem 1, we know that T is 
invertible if and only if the filter coefficients U and hi satisfy 

JV-2 W-l JV-1 N-2 

det(T)=    £    U   Y,   hi +   E   li    E    h' = h (4.23) 
i=0,even     i=l,odd i=l,odd    i=0,even 

Now observe that Eqs. 4.20 and 4.21, imply that 

y-JV-2      ,. _ 0 
l^i=0,even '» — v 

£f=o1 hi = 0. 
(4.24) 

Therefore, we conclude that we must also have 

^N-l 

(4.25) 

(4.26) 

v^v-i     , _ , 
2^i=l,odd^ — ■"■' 

X^N-2 ,    _ 1 
l^i=0,even ni ~ -1' 

v->JV-l       ,    _ ■. 
l~,i=l,oddn'i — x- 

The above equations are also equivalent to 

L2(:,0)=H2(:,iV-l) = 

4.3.D    Filter Design 

With the conditions listed above, we can design lowpass and highpass filters for a useful binary wavelet 
decomposition. As mentioned in Section 4.3.B, the filter design procedure is simplified by the facts that a 
wavelet filter of length N' can only have one or N'/2 vanishing moments and zero-padding retains spectral 
properties. As a result, we can get a useful decomposition using filters with relatively small support, e.g., 
two to eight coefficients. 

To design the scaling and wavelet filters for a binary wavelet transform of length N = 2K we proceed as 
follows. We begin by selecting the length N' of the lowpass and highpass filters. The support (length) of the 
filters, N', is a design parameter that must be carefully selected depending on the application. The filter 
support determines how many image coefficients will contribute to each output of the convolution process. 
Therefore, filters with a small support will produce outputs that depend only on the properties of the image 
in'a small neighborhood of the location of each output sample. We will see in the next section that a useful 
decomposition can be obtained using relatively short filters. As an example, h = [1 1] performed very well in 
our experiments as it has N/2 vanishing moments for a convolution length N. A small support is particularly 
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useful for images composed mainly of high sequency basis vectors since it avoids filtering across multiple 
edges (e.g., Fig. 4.10). We have used both short and longer filters (e.g., JV = 8) with images which consisted 
mainly of low sequency regions. In particular, we have found that with binary 256 x 256 images it is usually 
sufficient to use a value for JV' that is less than or equal to 8. 

Next, we restrict the filter coefficients using Eqs. 4.24 and 4.25. This guarantees PR, a lowpass charac- 
teristic for 1, and one vanishing moment for h. As Eq. 4.25 reduces the number of degrees of freedom by 
two, there are 2N'~2 possible wavelet filters. Finally, we select a highpass filter with a maximum number of 
vanishing moments. Maximizing the number of vanishing moments reduces the number of degrees of freedom 
available to design the wavelet filter to JV'/2 - 1. We have found in our experiments that filters with equal 
number of vanishing moments and similar support yield equivalent results. This is partially a reflection of 
the fact that these filters completely block the same set of low sequency basis vectors. Since a filter with 
N'/2 vanishing moments is the best length JV' highpass filter that we can design, we select the wavelet filter 
to be any of the 2N'/2-1 length JV' filters with JV'/2 vanishing moments. By zero-padding the filter to length 
JV = 2K, we are then guaranteed N/2 vanishing moments. 

For example, suppose we wish to design a length JV' = 4 wavelet filter with p — 2 vanishing moments. 
We have seen in Section 4.3.B that the filter coefficients must satisfy 

h0 + hi = 0 
h2 + h3 = 0 

to guarantee that the filter h has two vanishing moments. The PR condition further implies that 

ho + h2 = 1 
h1 + h3 = l 

By combining these two sets of equations, we find that h = [ho ho (1 + ho) (1 + h0)]. Since ho = 0 or 
1, we have two possible wavelet filters with 2 vanishing moments: [1100] or [0011]. Finally, recall from 
Section 4.3.B that when h is zero-padded to JV > N', the number of vanishing moments increases to N/2. 
Therefore, we can use either of these two filters with any length JV binary wavelet transform. 

The lowpass filter is designed similarly by blocking high sequency BFT basis vectors. Unlike the real 
field case, the lowpass filter is not completely specified once we have designed the highpass filter. However, 
its coefficients are still constrained by the PR and bandwidth constraints. For example, we can use either of 
the lowpass filters [1110], [1011] with the highpass filter [1100]. Other choices are also possible when the 
highpass filter is padded to a length N > 4. 

4.4    2D Binary Wavelets and Examples 

Our 2D binary wavelets are tensor products of ID binary wavelets. In particular, the first stage of a 2D 
binary wavelet transform of an JV x N image F involves pre- and post- multiplying F by T (Eq. 4.22) 
and TT. This corresponds to passing the image through a lowpass 2D separable filter and 3 bandpass 2D 
separable filters and decimating by 2 in each direction (c.f. Fig. 4.5). The sequency regions of the transformed 
image are likewise the tensor product of the ID sequency regions. For example, we can compute a 3-stage 
decomposition of a binary image using the single stage of Fig. 4.5 by successively applying the decimated 
output of each LL filter as the input to the next stage. The resulting multiresolution image has sequency 
regions as shown in Fig. 4.6. 

To illustrate the binary wavelet transform, we designed a 2D scaling filter and wavelet with 4 vanishing 
moments using the procedure developed above. Next we performed a 3-stage multiresolution decomposition 
of the 256 x 256 binary plane image shown in Fig. 4.7. The filter coefficients for the lowpass and highpass 
filters were 1 = [1 1 1 0 1 0 1 0]T and h = [1 1 1 1 1 1 0 0]T, respectively. The result of the 3-stage 
decomposition is shown in Fig. 4.8. We can clearly see that the higher sequency edge transitions mapped 
into higher sequency regions of the multiresolution image map. Of the original 65536 pixels, the original image 
has 47999 nonzero pixels, while the transform has only 2875 nonzero pixels. To measure the compactness of 
the signal representation, we define an empirical entropy-based cost function 

Hip) = -plog2(p) - (1 -p)log2(l -p) 
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where p is the number of nonzero pixels in the image divided by the total number of pixels in the image. The 
measure takes values between 0 and 1 and is maximum when an equal number of zero and nonzero pixels 
exist in the image. A small value indicates a large discrepancy between the number of zero and nonzero 
coefficients and a more efficient coding representation. This measure corresponds to the Shannon entropy 
of the image when the pixel values are independent and identically distributed with probability p. Similar 
cost functions have been used to determine the compactness of different signal representations for best basis 
selection [70]. For this image, we observe a decrease in entropy from 0.838 bpp to 0.260 bpp. Most of these 
nonzero pixels are mapped to low sequency regions. A real-valued Daubechies wavelet transform with two 
vanishing moments was also applied to the binary plane image. The result of applying a threshold operator 
to the real-valued wavelet decomposition is shown in Fig. 4.9. Transform coefficients > 0 are shown in 
white. The results are almost identical. Unlike the real-valued wavelet transform which used floating point 
arithmetic, the binary wavelet transform introduced no quantization errors and was computationally simple. 

We also coded several binary images and their corresponding binary wavelet transform subbands using 
a run-length coder. Test images included letters (c.f. Figs. 4.11 and 4.13) of size 256 x 256, and fingerprints 
(c.f. Fig. 4.10) of size 512 x 512. We applied two levels of decomposition to the letters, and four levels to 
the fingerprints. The filters used were 1 = [1 1 1 0]T and h = [1 1 0 0]T. Summaries of the results are 
shown in Tables 1 and 2. Our results show that entropy was significantly reduced in the transformed images, 
indicating that we have a more compact representation. In addition, run-length coding results indicate 
savings in storage sizes ranging from 14% to 70% over similarly coded original images. A coder modified 
to take advantage of the subband structure should result in even greater savings (e.g., a properly modified 
zerotree coder). 

Wavelet transforms have also been used as a pre-processing tool for character recognition systems [71]. 
We have applied the binary wavelet decomposition to images of single characters. Two original 256 x 256 
images of white letters on black backgrounds are shown in Figs. 4.11 and 4.13. The one stage decompositions 
shown in Figs. 4.12 and 4.14 agree well with the expected behavior. In particular, the lowpass images (a) of 
each letter show a "binary blurring", where the original edges are no longer sharp. The two bandpass images 
(b) and (c) show the vertical and horizontal edges of the original images, displaying some of the components 
between approximation and detail. Finally, the highpass image (d) in each case shows that the diagonal 
edges and corners of the original images were detected and reproduced in the detail images. We clearly see 
differences in the multiresolution components between the two letters 'a' and 'b'. Additional multiresolution 
images could be obtained by passing these images through more decomposition stages. 

4.5    Conclusion 

We have introduced a new sequency-based transform applicable to sequences over GF{2). Based on this 
transform, a theory of binary wavelets was constructed. It was shown that by constructing the theory in 
a manner similar to that used in the real field, a PR multiresolution analysis was possible. Using simple 
modulo-2 operations, the binary wavelet transform yields an output similar to the thresholded output of a 
real wavelet transform operating on the underlying binary image. Therefore, our binary wavelet transform 
of binary images can be used as an alternative to the real-valued wavelet transform of these images in binary 
image processing applications (e.g., coding, edge detection, recognition, etc.). Experimental results indicate 
character recognition and lossless subband coding are promising areas of applications for this theory. 

Appendix 4.A 

The derivation of Theorem 1 relied on the fact that iwo-circulant matrices could be transformed into the 
upper Hessenberg form independent of the circulant matrix. The transformation of a fwo-circulant matrix 
T into an upper Hessenberg matrix H is computed as 

H = STR (4.A.1) 

where S and R are the left and right transform matrices. All matrices are of size N x N where N is even. 
Consider the hybrid fwo-circulant matrices T (Eq. 4.2).  A natural starting point to obtain the upper 

Hessenberg form would be to zero the lower N/2 - 1 entries of the first and second columns of the N/2 x TV 
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submatrices C and D.  This is accomplished by adding the even columns, T(:,j), j = 2,4,...,N - 2, to 
column 0 and the odd columns, T(:, j), j — 3,5,..., N - 1, to column 1. The new matrix takes the form 

T' = 

^N-1 
2^=0, 

even 
N-2 

EN-1 
i=l,c odd^ 

2-ii=l,oddl CO 

^JV-2 
i=0,evenCi 2-ii=\,oddCi Ci 

EN-2 j ^pN-1        , , 
i=0,evenai Lji=l,oddai "2 

EN-2 , TpN-1       j , 
i=0,evenai 2->i=l,oddai a° 

EN-2 j y>iV-l        j . 
i=0,evenai 2-,i=ltoddai °4 

Cjv-l 

CN-3 

Cl 

d*N-3 

dy 

(4.A.2) 

We now zero rows 1 through N/2 
i = N/2 - 1,..., 1 and i = N - 1,. 

1 and rows N/2 + 1 through N — 1 by adding row i — 1 to row i, for 
., N/2 + 1. The resulting matrix is given by 

rpll    

TJV-2 
Z-/i=0,even   2 i=l,oddCi C2 

0 CQ + C2 

EN-2 
i=0 even 

0 

0 

0 
Y»JV-I 

0 

0 

dv 

C4 +c6 

rf2 

do + C?2 

^4 +^6 

CN-1 

CjV-3 + CiV-1 

Cl +C3 

djV-1 

diV-3 + C?N-1 

d\ + d3 

(4.A.3) 

We now apply the same procedure for columns 2 and 3, then for columns 4 and 5, and so on. When the 
procedures are complete, the resulting matrix needs to be multiplied by a simple permutation matrix to obtain 
the Hessenberg form. For general N even, the transformation into upper Hessenberg form becomes somewhat 
more complicated after the first two columns. However, for the special case N = 2fc, the transformation 
matrices S and R (Eq. 4.A.1) are given by a closed form formula. 

For N = 2, the right transformation matrix R takes the form 

R2 

For N = 2k, where k > 2, Rjv is given by 

Rjv = 
R 
R 

■N/2 

■N/2 

0 

R.IV/2 

where 0 is an N/2 x N/2 matrix of all zeros. 
The left transformation matrix S is defined in terms of Kronecker products. Let 

sn = s®s®...<g>s 

where <g> denotes the Kronecker product. For N = 2, let 

S2 = 

(n times) 

Then for N = 2k where k > 2, Sjv is given by 

Sjv = 

ilog2N-l 
'2 

0 
0 

ilog2N-l 

(4.A.4) 

(4.A.5) 

(4.A.6) 

(4.A.7) 

(4.A.8) 
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Appendix 4.B 

We prove that B^1 in Eq. 4.13 is the inverse of the N x N BFT matrix in Eq. 4.7. Multiplying the two 
matrices, we get 

X>ul       -our A     C 
CT   D 

B«(A + BurCT     Bu'C + BurD 
BurTA + B(rCT   BurTC + B'rD 

(4.B.1) 

The subscripts that denote the size of the submatrices have been dropped. We note that sizes of the upper 
left and lower right submatrices are (N — 2) x (N — 2) and 2x2, respectively. We now use Eqs. 4.8-4.11 and 
4.14-4.16. We have 

Bu'A + BurCJ = U7-/-.X  , 

0    1 0 0 [110. •   ° 1 U    1 u u 
0   0   0. .    0 

1   1 1 u u 
110. .    0 

u  u 
1   1 

u 
0 

1 
0 

u 
1 0 

u 
0 + 0   0   0. 

0   0   0. 

.    0 

.    0 

— I(JV-2)x(JV-2) 

u  u u 1 u 
110. .    0 

1   1 u u 1 

where I is the identity matrix. The upper-right submatrix of Eq. 4.B.1 is 

Bu(C + B"rD = 

1    1 
1    1 

1    1 
B JV-4 

[111 
[10] 0   0 

1    0 1  1 
0   0 + 0   0 1   1 

11 

0   0 1  1 
0   0 

= 0 + 0 = 0. 

The lower-left submatrix can be simplified as 

■turT A + BIrCJ = 
1    1   0 
1    1   0 + 1    1   0 

1    1   0 
0 + 0 = 0. 

Finally, the lower-right submatrix takes the form 

BurTC + B'rD = 
1   0 
1   0 

+ 0 0 
1 1 

= 1 2x2- 

Substituting these results in Eq. 4.B.1 shows that we do indeed have the correct inverse matrix. 
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Table 4.1: Summary of Coding Results for Letters. Originals: 256x256=8192 Bytes. 

Letter 
Original 
Entropy 

Original 
Run-length (Bytes) 

Transformed 
Entropy 

Transformed 
Run-length (Bytes) Savings 

a 0.706 320 0.158 220 45.5% 
b 0.753 315 0.168 182 73.1% 
c 0.596 257 0.128 186 38.2% 
d 0.765 353 0.174 218 61.9% 
e 0.630 261 0.137 195 33.9% 
m 0.671 262 0.158 181 44.8% 
n 0.504 176 0.111 114 54.4% 
0 0.660 292 0.147 200 46.0% 

Table 4.2: Summary of Coding Results for Fingerprints. Originals: 512x512=32768 Bytes. 

Print 
Original 
Entropy 

Original 
Run-length (Bytes) 

Transformed 
Entropy 

Transformed 
Run-length (Bytes) Savings 

1 0.971 14397 0.537 12615 14.1% 
2 0.924 12528 0.477 10977 14.1% 
3 0.854 13826 0.499 12104 14.2% 
4 0.895 15735 0.522 13754 13.9% 
5 0.901 12804 0.478 11202 14.3% 
6 0.979 11771 0.513 10227 15.1% 
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0 
Figure 4.1: General form of an upper Hessenberg 
matrix. 
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Figure 4.2: The first four Walsh waveforms defined 
over the interval [0,1). 

Figure 4.3:   2-band perfect reconstruction filter 
bank. 
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Frequency (rad/sec) 

Figure 4.4: Frequency characteristics of Daubechies wavelet filters 
with 1, 2, 4, and 8 vanishing moments (VM). 
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Figure 4.5: 2D 2-band perfect reconstruc- 
tion filter bank. 

Figure 4.6:   Sequency regions of 3-stage 
2D decomposition. 
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Figure   4.7:     Original   binary   image   of  plane 
(256x256). 

Figure 4.8: 3-stage decomposition of plane using 
binary wavelet transform. 

Figure 4.9:  3-stage decomposition of plane after 
thresholding real wavelet transform. 

Figure 4.10: Example of fingerprint image. 
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Figure 4.11: Original image of the letter 'a'. Figure 4.12: Multiresolution images of the letter 
'a': (a) LL; (b) LH; (c) HL; (d) HH. 

Figure 4.13: Original image of the letter 'b'. Figure 4.14: Multiresolution images of the letter 
'b': (a) LL; (b) LH; (c) HL; (d) HH. 
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A. H. Tewfik, 1995 IEEE Workshop on Nonlinear Signal and Image Processing, Greece, June 
1995. 

6. "Adaptive Signal Representations in Signal Acquisition and Processing", M. Ali and A. H. Tewfik, 
17th Annual Int. Conf. of the IEEE EMBS, Sept. 1995. 

7. "Transparent Robust image watermarking," M. Swanson, B. Zhu and A. H. Tewfik, in Proc. 1996 
IEEE Int. Conf. Image Proc, Lausanne, Switzerland, Sept. 1996. 

Papers presented at meetings, conferences and seminars by personnel supported by grant 

1. "Perfect Reconstruction Filter Banks with Arbitrary Regularity," A. H. Tewfik, in Proc. SPIE 
Conf. on Wavelet Applications, SPIE Proc. Vol. 2242, April, 1994. 

2. "Second Generation Audio Information Coding," A. H. Tewfik, M. Ali and V. Viswanathan, in 
Proc. SPIE Conf. on Wavelet Applications, SPIE Proc. Vol. 2242, April, 1994. 

3. "Generalized URV Subspace Tracking LMS Algorithm" S. Hosur, A. H. Tewfik and D. Boley, in 
Proc. of the 1994 IEEE Conf. on Acoust. Speech and Signal Proc, Adelaide, Australia, April 
1994. 

4. "Multiscale Difference Equation Signal Modeling and Analysis" M. Ali and A. H. Tewfik, in Proc. 
of the 1994 IEEE Conf. on Acoust. Speech and Signal Proc, Adelaide, Australia, April 1994. 

5. "Wavelet Domain Bearing Estimation in Unknown Correlated Noise" A. H. Tewfik, in Proc. of 
the 1994 IEEE Conf. on Acoust. Speech and Signal Proc, Adelaide, Australia, April 1994. 

6. "ECG Coding by Wavelet Transform Extrema," A. E. Cetin, A. H. Tewfik and Y. Yardimci, 1994 
IEEE Symp. Time-Freq. and Time-Scale, Oct. 1994. 

7. "Optimal Waveform Selection in Range-Dopier Imaging," S. Sowelam and A. H. Tewfik, 1994 
IEEE Int. Conf. Image Proc, Nov. 1994. 

8. "Wavelet Decomposition of Binary Finite Images," M. Swanson and A. H. Tewfik, 1994 IEEE 
Int. Conf. Image Proc, Nov. 1994. 

9. ""Waveform Selection for High Resolution Range-Dopier Imaging," A. H. Tewfik, 1995 ONR 
Wideband RF Science and Technology Workshop., Jan. 1995. 

10. "Low Bit Rate Transparent Image Coding With Optimized Mixed Representations," A. H. Tewfik 
and B. Zhu, in Proc. SPIE Conf. on Wavelet Applications for Dual Use, April 1995. 

63 



11. "Image Coding with Mixed Representations and Visual Masking" B. Zhu, A. H. Tewfik and 0. 
Gerek, in Proc. of the 1995 IEEE Conf. on Acoust. Speech and Signal Proc, Detroit, MI, May 
1995. 

12. "Detection of Weak Signals Using Adaptive Stochastic Resonance" A. Asdi and A. H. Tewfik, 
Proc. of the 1995 IEEE Conf. on Acoust. Speech and Signal Proc, Detroit, MI, May 1995. 

13. "Coding and Decoding Techniques for Multiscale Difference Equation Models," IEEE Workshop 
on Nonlinear Signal and Image Processing, Neos Marmaras, Greece, June 1995. 

14. "Space-Invariant True-Velocity Flow Mapping Using Coplanar Observations," Y. M. Kadah and 
Ahmed H. Tewfik, 17th Annual Int. Conf. of the IEEE EMBS, Sept. 1995. 

15. "Waveform and Beamform Design for Doppler Ultrasound Vector Flow Mapping," Y. M. Kadah 
and A. H. Tewfik, 17th Annual Int. Conf. of the IEEE EMBS, Sept. 1995. 

16. "Adaptive Multiuser Receiver Schemes for Antenna Arrays," S. Hosur, A. H. Tewfik and V. Ghazi- 
Moghadam, Sixth IEEE Int. Symp. On Personal, Indoor and Mobile Radio Comm. (PIMRC95), 
Toronto, Canada, Sept. 1995. 

17. "Theory of True Velocity Duplex Imaging Using A Single Transducer," Yasser M. Kadah and A. 
H. Tewfik, 1995 IEEE Int. Conf. Image Proc, Washington, D.C., Oct. 1995. 

18. "Visual Masking and the Design of Magnetic Resonance Image Acquisition," H. H. Garnaoui and 
A. H. Tewfik, 1995 IEEE Int. Conf Image Proc, Washington, D.C., Oct. 1995. 

19. "Image Coding with Wavelet Representations, Edge Information and Visual Masking," B. Zhu, 
A. H. Tewfik, M. A. Colestock, 0. N. Gerek and A. E. Cetin, 1995 IEEE Int. Conf. Image Proc, 
Washington, D.C., Oct. 1995. 

20. "True Velocity Estimation Using the Correlation Technique," Y. M. Kadah and Ahmed H. Tewfik, 
1995 IEEE Int. Ultrasonics Symp., Nov. 1995. 

21. "Compact Angular Support Beams for Space Invariant Vector Flow Mapping," Y. M. Kadah and 
A. H. Tewfik, 1995 IEEE Int.  Ultrasonics Symp., Nov. 1995. 

22. "Efficient Coding of Wavelet Trees and Its Applications in Image Coding," B. Zhu, E. Yang and 
A. H. Tewfik, 1996 Visual Comm. and Image Proc. (VCIP'96), Orlando, Fl, March 1996. 

23. "Image Coding for Content Based Retrieval," M. D. Swanson, S. Hosur and A. H. Tewfik, 1996 
Visual Comm. and Image Proc. (VCIP'96) Orlando, Fl, March 1996. 

24. "Coding for Content-Based Retrieval", M. Swanson and A. H. Tewfik, in Proc of the 1996 IEEE 
Conf. on Acoust. Speech and Signal Proc, Atlanta, GA, May 1996. 

25. "High Quality Audio Coding Using Adaptive Signal Representation," K. Hamdy, M. Ali and A. 
H. Tewfik, in Proc of the 1996 IEEE Conf. on Acoust. Speech and Signal Proc, Atlanta, GA, 
May 1996. 

26. "Optimal Subset Selection for Adaptive Signal Representation," M. Nafie, M. Ali and A. H. 
Tewfik, in Proc of the 1996 IEEE Conf. on Acoust. Speech and Signal Proc, Atlanta, GA, May 
1996. 

27. "Modeling Techniques for Multiscale Difference Equation Signal Models," M. Ali and A. H. Tewfik, 
in Proc. of the 1996 IEEE Conf. on Acoust. Speech and Signal Proc, Atlanta, GA, May 1996. 

28. "Wavelet transform domain RLS algorithm," S. Hosur and A. H. Tewfik, in Proc. of the 1996 
IEEE Conf. on Acoust. Speech and Signal Proc, Atlanta, GA, May 1996. 

29. "Digital watermarks for audio signals," L. Boney, A. H. Tewfik and K. Hamdy, in Proc IEEE 
Multimedia Conf., Hiroshima, Japan, June 1996. 

30. "Digital watermarks for audio signals," L. Boney, A. H. Tewfik and K. Hamdy, in Proc of the 
VII European Signal Proc Conf. (Eusipco-96), Trieste, Italy, Sept. 1996. 

31. "Robust Data hiding for images," M. Swanson, B. Zhu and A. H. Tewfik, in Proc. 1996 IEEE 
DSP Workshop, Loen, Norway, Sept. 1996. 

64 



32. "Transparent Robust Authentication and Distortion Measurement Technique for Images," B. Zhu, 
M. Swanson and A. H. Tewfik, in Proc. 1996 IEEE DSP Workshop, Loen, Norway, Sept. 1996. 

33. "Binary valued wavelet decomposition of binary images," M. Swanson and A. H. Tewfik, in Proc. 
of the VII European Signal Proc. Conf. (Eusipco-96), Trieste, Italy, Sept. 1996. 

34. "Dual Set Arithmetic Coding and its Application in Image Coding," B. Zhu, E. Yang and A. H. 
Tewfik, in Proc. of the VII European Signal Proc. Conf. (Eusipco- 96), Trieste, Italy, Sept. 1996. 

35. "Adaptive waveform selection for target classification," S. Sowelam and A. H. Tewfik, in Proc. of 
the VII European Signal Proc. Conf. (Eusipco-96), Trieste, Italy, Sept. 1996. 

36. "Embedded object dictionaries for image database browsing and searching," M. Swanson and A. 
H. Tewfik, 1996 IEEE Int. Conf. Image Proc, Lausanne, Switzerland, Sept. 1996. 

37. "Expert computer vision based crab recognition system," K. Han and A. H. Tewfik, 1996 IEEE 
Int. Conf. Image Proc, Lausanne, Switzerland, Sept. 1996. 

• Consultative and advisory functions to DoD 
- Visit to MIT Lincoln Laboratories, Nov. 1993. 
- Visit to NAWCWPNS, China Lake, CA, Dec. 1993. 
- Visit to NRaD, SanDiego, CA, Jan. 1995. 

• Patents 
Two filed in 1996. 
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