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Abstract 
Because of their capabilities for adaptation, nonlinear function approximation, and par- 

allel hardware implementation, neural networks have proven to be well-suited for some 

important control applications. 

However, several important issues are present in many real-world neural-network control 

applications that have not yet been addressed effectively in the literature. Four of these 

important generic issues are identified and addressed in some depth in this thesis as part of 

the development of an adaptive neural-network-based control system for an experimental 

free-flying space robot prototype. 

The first issue concerns the importance of true system-level design of the control system. 

A new hybrid strategy is developed here, in depth, for the beneficial integration of neural 

networks into the total control system. The basic philosophy is to borrow heavily from 

conventional control theory, and use the neural network as a key subsystem just where its 

nonlinear, adaptive, and parallel processing benefits outweigh the associated costs. 

A second important issue in neural network control concerns incorporating a priori 

knowledge into the neural network. In many applications, it is possible to get a reasonably 

accurate controller using conventional means. If this prior information is used purposefully 

to provide a starting point for the optimizing capabilities of the neural network, it can 

provide much faster initial learning. In a step towards addressing this issue, a new generic 

"Fully-Connected Architecture" (FCA) is developed for use with backpropagation. This 

FCA has functionality beyond that of a layered network, and these capabilities are shown 

to be particularly beneficial for control tasks. For example, they provide the new ability to 

pre-program the neural network directly with a linear approximate controller. 

A third issue is that neural networks are commonly trained using a gradient-based 

optimization method such as backpropagation; but many real-world systems have discrete- 

valued functions (DVFs) that do not permit gradient-based optimization. One example is 

the on-off thrusters that are common on spacecraft. A new technique is developed here that 

now extends backpropagation learning for use with DVFs. Moreover, the modification to 

backpropagation is small, requiring (1) replacement of the DVFs with continuously differ- 

entiable approximations, and (2) injection of noise on the forward sweep. This algorithm 

is applicable generically whenever a gradient-based optimization is used for systems with 

discrete-valued functions. It is applied here to the control problem using on-off thrusters, 



as well as for training neural networks built with hard-limiting neurons (signums instead of 

sigmoids). 

The fourth issue is that the speed of adaptation is often a limiting factor in the imple- 

mentation of a neural-network control system. This issue has been strongly resolved in this 

research by drawing on the above new contributions: the FCA and an automatic growing 

of the network combine to allow rapid adaptation in an experimental demonstration on a 

2-D laboratory model of a free-flying space robot. The neural-network controller adapts 

in real time to account for multiple destabilizing thruster failures. Stability is restored 

within 5 seconds, and near-optimal performance is achieved within 2 minutes. This perfor- 

mance is obtained despite the implementation on a serial microprocessor; implementation 

on parallel-processing hardware would provide dramatically faster performance. 

VI 
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Chapter 1 

Introduction 

This dissertation presents generic theoretical and experimental investigations into the use of 

neural networks for control. As a significant "challenge problem," a free-flying space robot 

prototype equipped with on-off gas thrusters was controlled well, despite major thruster 

failures, by using a new, hybrid neural-network-based reconfigurable control system. This 

research was conducted at the Stanford University Aerospace Robotics Laboratory (ARL) 

at Stanford University from 1990 to 1994. 

1.1    Motivation 

Due to their capabilities for adaptation, nonlinear function approximation, and parallel 

hardware implementation, neural networks have proven to be well suited for control appli- 

cations. They have been used successfully by engineers in the chemical-processing indus- 

tries [12] [62], steel industry [16] [17] [47] [54], and semiconductor-processing industry [17], 

as well as a number of research applications [20] [24] [38] [64] [67]. In some cases their 

learning abilities and inherent nonlinear nature allow them to solve control problems and 

provide performance unmatched by conventional methods. In other cases their distributed 

nature and resulting computational power allow them to implement known solutions more 

quickly and robustly than conventional serial processors. 

Neural networks derive their advantage in solving very complex problems from the emer- 

gent properties that come with the massive interconnection of simple processing units. With 

good training techniques, the networks are capable of implementing very complex behaviors. 

For example, neural networks may be used to implement arbitrary mappings of inputs to 
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outputs, such as from sensor signals to actuator commands in a control problem. Further, 

since the mapping can be taught indirectly, neural networks are especially attractive for 

poorly understood systems - they can generalize from training inputs and then respond by 

interpolation in untaught situations. 

Due to the distributed nature of the processing and their adaptive capability, networks 

are often robust to internal component failures. Even without re-training, the distributed 

processing gives the network the ability to withstand failure of several neurons without 

significant impact on the functionality. In addition to this, if on-line re-training is used, the 

remaining processors can adapt to account for the failure. Robustness is also contributed by 

the network's ability to adapt to changes in the environment, plant, performance criteria, 

etc. 

These features of neural networks make them particularly attractive for control appli- 

cations.   Several of these features will prove useful in the control application presented 

here. 

The central question is when - and how - will the incorporation of neural network 

components provide a clear, cost-effective advantage in real-time control? 

One central goal of this research, then, is to study the use of neural networks for con- 

trol, and to determine the characteristics of control applications that can benefit from the 

application of neural networks. In certain cases, the merging of neural-network technology 

with control-systems engineering can lead to the development of highly capable control sys- 

tems. Much neural-network theory and control theory already exists such that significant 

advances in control capability could be produced simply through their astute integration. 

1.2     Research Issues 

Neural networks have proven themselves valuable in a number of control applications. See 

for example [20] [24] [54] [64]. There are, however, four important issues, that are often most 

germane in a real-world control application, that have not yet been addressed effectively in 

the neural-network literature: 

1. For a given control need, should a neural network be used? 

• Does using a neural network provide a clear advantage over not doing so? 

• If it does, then to achieve that advantage optimally, just where in the control 

system should the neural network be used; and where should it not? 
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2. A priori knowledge is often available in the form of models of the system's key compo- 

nents and a preliminary control design (e.g. provided by "conventional" control design 

techniques). Is it possible to use this a priori information to improve greatly the per- 

formance (i.e. better initial performance, final convergence to a better solution) that 

the neural network can then enable? 

3. Many control applications involve the use of discrete-valued devices. For example, 

thrusters often operate "on-off" rather than with analog-valued outputs. This presents 

a problem for backpropagation learning, since these discrete-valued functions are not 

continuously differentiable. Is it possible to modify backpropagation to accommodate 

the discrete-valued functions? 

4. Speed of learning is very often important in real-time control applications. It is 

generally accepted that neural networks can run quickly during implementation (i.e. 

once the weights have been selected) due to the availability of parallel hardware; but 

the speed of learning (i.e. finding the weight values) is a separate, very critical issue. 

Can backpropagation-based learning be made fast enough to be feasible for rapid 

on-line adaptation? 

A "challenge problem" was formulated to focus the study of these important issues: 

a reconfigurable neural-network-based adaptive control system was developed and experi- 

mentally demonstrated on a free-flying space robot prototype. In addressing this challenge 

problem, the issues were studied, neural-network developments were made, and a working 

reconfigurable control system was developed [69] [70] [71] [72] [73]. 

The experimental apparatus is shown in Figure 2.1. Specifically, the air-bearing-sup- 

ported robot's position and attitude are controlled with eight on-off gas thrusters. The 

task was this: after the random, severe mechanical failure of a number of these thrusters, 

identify the new thruster-system characteristics, and reconfigure the control system to regain 

stability and near-optimal performance. This challenge problem is interesting not only for 

its practical applicability to space operations per se, but also - and even more pervasively 

- as an application that raises and focuses on several important fundamental generic issues 

in neural-network control. 

The challenge problem addresses the first issue, since it is a fairly complex, yet realistic 

control problem. Also, the excellent experimental performance of a pre-existing conventional 

control approach is available for comparison; this is valuable for evaluating the performance 
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trade-offs between neural and conventional approaches. The application also helps to moti- 

vate the second issue, a desire to make use of a priori knowledge: an approximate solution 

can be calculated quickly before neural-network training begins. The desire to use this a 

priori information to accelerate learning is especially present here due to the need for rapid 

reconfiguration. The existence of on-off thrusters requires the development of a learning 

method to deal with discrete-valued functions, highlighting the third issue. Finally, the 

speed-of-learning issue is relevant, since stability must be regained quickly due to the limits 

enforced by the experimental implementation (i.e. the granite table is of limited size). 

1.3    Contributions 

In addressing the research issues outlined above, the research reported in this thesis makes 

the following contributions to the fields of neural networks, automatic control, and robotics: 

1. An adaptive neural-network-based thruster control system for a free-flying space robot 

is developed. This highly nonlinear complex control problem was solved in a very 

new way: by using a combination of conventional and neural network approaches, 

resulting in a "hybrid" control system. The balance between neural and conventional 

approaches will, in general, vary from one application to another. At issue is how to 

determine the correct balance on an application-by-application basis. To address this 

issue, systematic evaluation criteria have been proposed and demonstrated to aid in 

the system-level design. 

2. A new "Fully-Connected Architecture" is developed for neural network control. This 

architecture is a generalization of the standard layered neural-network architecture. 

The value of the extra connections it offers is studied. Of particular importance for 

control, this new architecture allows for direct pre-programming of prior-known linear 

solutions. This benefit is used in the robotic application to reduce dramatically the 

time required for adaptation: a linear approximate controller is quickly calculated 

and implemented before training begins. The major hurdle for successful use of this 

architecture, excessive complexity, is addressed by the implementation of a systematic 

complexity-control method that manages the extra connections. 

There are a number of possible advantages to using prior information.   Since the 

network begins training with a reasonably good solution, initial performance is good; 
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and a better solution may result due to the better starting point for the nonlinear 

optimization. It also serves as a bridge to conventional control techniques. Optimizing 

the network from a starting point that is a direct emulation of a conventional controller 

may facilitate valuable understanding of what the network is doing. 

3. A new algorithm was devised that now permits gradient-based optimization of systems 

with discrete-valued functions (DVFs). Gradient-based optimization of systems with 

DVFs is difficult because the gradient of the DVF is zero everywhere, except at the 

transitions, where it is undefined. The new algorithm works by forming a smooth, 

continuous approximation to the DVF, and then adding noise during training. It has 

been applied to a number of different applications; and each time, the value of noise 

injection is clearly demonstrated. Although originally developed for application to 

the on-off thruster control problem, this algorithm for gradient-based optimization 

for DVFs is broadly applicable. Three applications are: 

• Training a neural network control system equipped with on-off actuators. 

• Training neural networks built with hard-limiting neurons. 

• Design optimization with discrete-valued design options (proposed, not yet im- 

plemented). 

4. An experimental demonstration was performed, where the neural-network-based con- 

trol system reconfigured itself rapidly in response to multiple, major, destabilizing 

thruster failures. Stability is restored within 5 seconds, and near-optimal performance 

is achieved within 2 minutes. This performance is obtained despite the implementa- 

tion on a serial microprocessor; implementation on parallel-processing hardware would 

provide dramatically faster performance. 

The experimental demonstration pulls together each of the above contributions: #1 

led to the efficient system-level (hybrid) design that combines optimally the benefits 

of both conventional control and neural networks; #2 resulted in rapid recovery of 

stability, through the direct infusion of a linear approximate controller; #3 allowed 

the use of gradient-based optimization with this control problem. The ability to use 

gradient information at all dramatically improved the rate of adaptation (beyond 

what non-gradient-based methods could provide). These advances, combined with an 
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automatic network-growing method, increase the speed of the learning process to a 

point where it becomes a viable alternative for on-line adaptive control. 

Each contribution is addressed individually and presented in Chapters 3 through 6 of 

this thesis. 

1.4    Background on Neural Networks 

A brief background on neural networks is presented here to familiarize the reader with the 

biological motivation, history, and mathematical foundation of artificial neural networks. 

More complete overviews may be found in [22] [29] [67]. 

1.4.1    Biological Motivation 

Artificial Neural Networks are named after and motivated by the biological neural net- 

works that allow phenomenal computing performance in humans and other living organ- 

isms. Despite the relatively slow computation rate of the individual human neuron, the 

human brain's sound and image recognition capabilities far exceed those of current comput- 

ers. The naturally fault tolerant and adaptive nature of the parallel distributed processing 

model (both biological and artificial) make it well suited for ambiguous tasks or uncertain 

environments. 

The following lists highlight the different characteristics and capabilities of computers 

and the human brain. 

• Conventional Digital Computers: 

— Sequential instructions 

— Digital 

— Address memory 

— Speed measured in nanoseconds 

— Highly accurate 

— Not-necessarily fault tolerant 
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• Human Brain: 

- Massively parallel architecture 

- Analog 

- Associative Memory 

- Neuron response times on order of 1 millisecond 

- Less accurate than computers 

- Fault tolerant, naturally adaptive 

Currently, conventional digital computers work by implementing a series of instructions, 

and provide highly accurate arithmetic and logic computations in cycle times on the order 

of nanoseconds. 

Biological neural networks are difficult to study, and not completely understood. What 

is known is that computations are carried out in parallel, with thousands to billions (e.g. the 

human brain has roughly 1010 processing units (neurons) and 1014 connections (synapses)) of 

low-precision processors operating with rise times on the order of milliseconds. The neurons 

communicate by sending 100 mV impulses to other neurons. Since the magnitude of these 

pulses is fixed, information is encoded in the frequency of firing. By comparison, modern 

microprocessors have typically 106 to 107 transistors, but only one to four computations 

are executed at a time. This lack of parallelism is offset by the fast processing time on the 

order of 1-20 nanoseconds (50 MHz to 1 GHz clock rate). 

Despite the slow processing of each individual neuron, the massive parallelism results 

in certain computing capabilities that are impossible with conventional sequential digital 

processors. Some of these capabilities that are most-nearly reachable with conventional 

processors are: vision processing, sound processing, pattern recognition, adaptive control, 

and planning. The key idea is that designing a computer with some attributes of the 

biological neural network, such as parallel computation and adaptive capability, may yield 

greater success in these areas than trying to push incrementally the state of the art in 

conventional computing hardware and algorithms. 

The potential benefits of a parallel-distributed-processing approach create an incentive 

to cast a problem into a form that can use the computational capabilities of this architecture. 
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1.4.2    History of Neural Networks 

When people began attempting sustained heavier-than-air flight, the first thought was to 

build an aircraft modelled after birds. Early ornithopters attempted to reproduce the 

flapping-wing motions that allow birds to fly. These designs failed. The first successful 

solution, by the Wright brothers in 1903, used instead a fixed wing to produce lift, with a 

wing-warping method to control the lift of each wing (similar to birds), but with an internal- 

combustion-engine-powered propeller for thrust. Most aircraft today resemble birds only 

slightly, in that they have a wing on each side of the fuselage, and the control system sits up 

front with the vision sensors. However, the propulsion system, control system, materials, 

etc. are very different. Using nature as a motivation was useful; but it has been important 

to incorporate the best engineering available, and not rigidly follow the biological model. 

Similarly, one of the earliest ideas for building a computer was that it should be modeled 

after the human brain. Once biologists began to understand the basics about how the brain 

works on a microscopic level, early neural-network researchers modelled these neurons, and 

designed artificial neural networks. 

However, before they understood how the brain worked, artificial computing systems 

had been built in the form of mechanical adding machines. These produced precise compu- 

tations, one instruction at a time. As these mechanical linkages were replaced with electrical 

circuits, vacuum tubes, transistors, and finally an integrated circuit consisting of many tran- 

sistors, the computational performance has increased dramatically, but the highly accurate 

and serial attributes have persisted. This development of conventional serial processors has 

continued in parallel with the development of neurally-inspired processors. 

A sequence of major developments in neurally-inspired computing follows. 

In 1943, McCullough and Pitts modelled the neuron as a simple threshold device, and 

analyzed the computational capabilities of networks of these functions. 

In 1948, Hebb proposed a way for neurons to change the effect they had on other neurons, 

forming the foundation for a model of learning. 

In 1957, Kolmogorov's Theorem laid the mathematical foundation for neural networks. 

This theorem proved that networks of simple neuron-like processors are able to produce 

arbitrarily complex functions of their inputs [28]. This existence proof is described again in 

Chapter 4. 

Around 1960, Rosenblatt invented the Perceptron, a simple neuron with binary output. 

An important feature of the Perceptron is the simple learning rule that is guaranteed to 
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converge to a solution, if one exists [43]. The functionality of the Perceptron is limited, as 

discussed again in detail in Chapter 5. 

About the same time, Widrow and Hoff invented the LMS algorithm for training binary- 

output neurons [18] [67]. This algorithm was later applied extensively to adaptive filtering 

and control [68], and is the foundation of the backpropagation algorithm. 

In 1969, Minsky and Papert proved the limitations of the Perceptron: 1. some input- 

output mappings are impossible (e.g. XOR x) with a single hidden layer, and 2. the number 

of Perceptrons (neurons) required grows faster than exponentially with an increase in prob- 

lem complexity [32] [33]. 

In 1974, Werbos developed the backpropagation algorithm as part of his Ph.D. thesis 

in Economics [60]. Its discovery was not widely noticed until Rumelhart's publication in 

1986 [46]. The backpropagation algorithm will be described again in Chapter 5. 

In 1982, Hopfield developed networks for associative memory. 

In 1984, Hinton developed the Boltzmann Machine, a type of Hopfield Network that 

uses an annealing learning process governed by Boltzmann statistics. 

In 1986, Rumelhart developed the backpropagation algorithm for training networks 

with multiple hidden layers [46]. The hidden-layer neurons use continuously differentiable 

sigmoid functions to permit the backpropagation of error signals used for training. This was 

an important discovery, as it removed the first limitation of the Perceptron model. Although 

Werbos is often credited with development of the backpropagation algorithm, Rumelhart 

is credited with the development of it as a useful tool for neural-network training. The 

backpropagation algorithm can be traced back further to Bryson's work in the 1960s with 

multistage optimization for dynamic systems [6]. 

The neural network field has expanded greatly since 1986, as many researchers have 

added capabilities to the backpropagation algorithm and experimented with applications. 

1.4.3    Different Types of Neural Networks 

Two major families of neural-network types exist: memory-based and function-based. 

Function-based networks include feedforward sigmoidal networks (used in this thesis), 

feedforward radial basis function networks, recurrent networks, and Adaptive Resonance 

Theory (ART) networks [14]. These networks work by attempting to form & function that 

Hhe EXCLUSIVE OR logic function, f(0,0) = 0, f(0,l) = 1, f(l,0) = 1, f(l,l) = 0. 
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"fits" the data, or training cases they are presented. The hope is that this function forms 

a generalization of the training data, and the network will perform well on new data. 

Function-based networks such as backpropagation-trained feedforward sigmoidal net- 

works can be thought of as a means of data compression. For example, if 1000 bytes of 

data are used to train a network whose weights can be described with 100 bytes, the data 

has been compressed. As with all data-compression methods, this one relies on finding and 

taking advantage of regularities in the data set - generalizing. If regularities do exist and are 

exploited successfully, the original data set may be reproduced to a high level of accuracy. 

Memory-based networks include the Cerebellar Model Articulation Controller (CMAC) 

[2] [3], nearest-neighbor interpolation, probablistic neural networks [51] [52], and Kohonen 

Learning Vector Quantization [27]. Rather than learn a generalizing function of the data, 

these methods store examples of the training data in memory (for example, input-output 

training patterns). When presented with a new input training pattern, nearby training 

patterns are recalled from memory and the output is a function of these patterns (e.g. a 

linear interpolation among the 5 nearest neighbors). The specifics of the processing during 

learning and recall vary among the architectures listed here. 

Briefly, the tradeoff is that memory-based approaches learn very quickly since they 

simply remember each training input, but the recall can be much slower, since the near- 

est neighbors must be found and then an interpolation performed to produce an output. 

Function-based approaches train more slowly, as they must compress the data into the 

functional format created by the network topology, but have very fast recall. Also, the dis- 

tinction between these groups is sometimes blurred, as some systems involve a significant 

amount of processing, but may be built around stored training examples. 

From a controls perspective, function-based networks fit better with existing methods, 

providing a generic nonlinear control element. Function-based neural-network controllers 

have been used in many applications [16] [17] [38] [47] [54] [62] [67]. However, CMAC [2] [3] 

is one example of a memory-based neural network that has been used extensively in control 

applications [23]. 

Feedforward neural networks2 built with sigmoidal activation functions (as described 

above) were used exclusively in this research. Due to their general function-approximation 

capabilities, it was clear that they would work well for this application. However, another 

reason for their use here is that they have been used successfully for a wide variety of 

2Those employing no internal feedback. 
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applications, and do appear to hold much promise for neural-network-control applications in 

particular. Other neural-network architectures exist of course, with different characteristics 

that may prove to offer advantages depending upon the application. 

Radial-Basis-Function (RBF) networks are similar in that they have a feedforward struc- 

ture, but the activation function is different. A sigmoid forms a hyperplane (i.e. a point in 

1-D space, a line in 2-D space, a plane in 3-D space, a 3-dimensional hyperplane in 4-D 

space etc.) that separates the mapping space into high and low regions with a transition 

region near the hyperplane. A radial basis function (typically a Gaussian function) pro- 

duces an activation near a certain point in space (i.e. a line segment in 1-D space, a circle 

in 2-D space, a sphere in 3-D space, etc.). Statistical or iterative methods may be used to 

choose the centers of these radial basis functions, and the weightings of these basis func- 

tions may be calculated directly or iteratively. These can be significant advantages over 

sigmoidal networks for some problems that happen to fit well with the functionality offered 

by these networks - namely one- or two-dimensional mappings. However, a major problem 

with RBF networks is that large numbers of hidden units are required for high-dimensional 

input spaces. This can be understood by considering how the relative volume of a sphere of 

influence of a RBF decreases as the dimensionality of the space increases. The problems ex- 

tending to high-dimensional input spaces provided a motivation to avoid RBFs in the study 

of general neural-network-control issues in this research. However, for a low-dimensional 

input space (3-D for this application, 6-D for a 6-dof robot), RBFs may be viable. 

These and other different neural-network architectures have many common aspects (e.g. 

the issues of overfitting or system-level design), and therefore, many conclusions of the 

research here will be directly applicable to these different architectures. 

1.5     Reader's Guide 

This chapter has served as an introduction to the research that is presented in this disser- 

tation. The remainder of this thesis is organized as follows: 

In Chapter 2, the experimental equipment (i.e. the robot) that provides the "challenge 

problem" is described in detail, and the particular thruster-mapping problem addressed is 

presented. 
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In Chapter 3, the generic issue of neural network value to specific control problems is 

addressed. Criteria are presented that will aid the control systems engineer in the system- 

level design of each given control system, deciding which segments, if any, it will be beneficial 

to implement with neural networks. 

In Chapter 4, the new concept of "Fully-Connected Architecture" (FCA) is presented. 

It is used with backpropagation, and is shown to have greater functionality than a standard 

layered network. Benefits of the FCA are outlined, with emphasis on its advantageous 

applicability for control. 

In Chapter 5, a new method is presented that allows backpropagation learning with 

systems containing discrete-valued (and therefore not continuously differentiable) functions 

(such as the on-off thrusters). This enabling method requires only simple modifications to 

standard backpropagation, and extends to multiple layers of hard-limiting neurons or to 

the FCA with no need for modification. 

In Chapter 6, the reconfigurable neural control system for the free-flying robot is pre- 

sented. It draws upon each of the developments detailed above. Its good experimental 

response to drastic destablizing changes in the thrusters verifies rather dramatically the 

viability of each of the new contributions made. 

Chapter 7 concludes this dissertation with a summary of results and recommendations 

for future research. 



Chapter 2 

Robot Control Application 

The control task addressed in this research is the control of position and attitude of a 

free-flying space robot using on-off thrusters. The challenge presented here is to (abruptly) 

damage mechanically a number of thrusters, and then have the control system autonomously 

and rapidly reconfigure itself in real time, so as to maintain good control throughout. 

Moreover, some thruster failures are strongly destabilizing, which places high demands on 

the speed of recovery. The experimental system is shown in Figure 2.1, and an example 

thruster failure mode is shown in Figure 2.2. 

Control using on-off thrusters is a complex, nonlinear problem that is important for real 

spacecraft [63], and the nonlinear and adaptive capabilities of neural networks make them 

attractive for this application. 

The robot used here has in fact previously been successfully controlled without the use of 

neural networks [56]. However, the (conventional) method relies on geometric symmetries in 

the thruster layout and does not scale well to thruster controllers with higher-dimensionality 

in the input and output spaces. A neural-network-based approximation method does scale 

well to higher-dimensional thruster controllers, and does not rely upon geometric symme- 

tries, so it provides a structure conducive to reconfigurable control. Additionally, the neural 

approach offers computational flexibility, since the network can be designed with the de- 

sired speed/accuracy trade-off. If implemented in parallel hardware, it can be made to be 

extremely fast. 

This challenge problem was chosen as an aid in highlighting and defining some of the rel- 

evant issues in neural network control. It also serves to facilitate discussion and explanation 

of the neural network control developments made in the course of this research. 

13 
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Figure 2.1: Stanford Free-Flying Space Robot 

This highly autonomous mobile robot operates in the horizontal plane, using an 
air-cushion suspension to simulate the drag-free and zero-g characteristics of space. 
It is a fully self-contained planar laboratory-prototype of an autonomous free-flying 
space robot complete with on-board gas, thrusters, electrical power, multi-processor 
computer system, camera, wireless Ethernet data/communications link, and two 
cooperating manipulators. 
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Nominal Configuration After Multiple Failures 

Figure 2.2: Example Failure Mode 

Magnitude and direction of each of the eight thrusters is indicated by the length and 
direction of the lightly shaded triangles. Thruster failures were simulated mechani- 
cally with weaker thrusters and 90° and 45" elbows. Some of the elbows destabilize 
the robot by changing the sign of the thrust in the rp direction. 

The field of neural network control is vast, so the scope of this research has been limited 

to the use of feedforward neural networks1 for a specific application. End-to-end devel- 

opment of a neural-network controller for a real, complex application highlights the truly 

important issues for this application, and these issues are relevant to other real-world ap- 

plications. Where possible, information will be provided to allow extension of these devel- 

opments to other applications. 

Several specific attributes of the challenge problem common to other control applications 

include: 

1. The complete control system is complex, involving the integration of several subsys- 

tems. Its level of complexity is similar to real-world control applications - it has 

requirements for high-level human interface, trajectory planning, system identifica- 

tion, and reconfiguration strategy, as well as low-level control. 

2. Practical issues such as sensor integration, sample-rate selection, input/output control, 

and processor selection, are very much present. 

'That is, networks with no internal feedback, such as directly from network outputs to network inputs. 
These feedforward networks will be used as part of a feedback control loop. 
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3. Much relevant control theory exists, in addition to specific control knowledge regarding 

this control application. 

4. Information about the changed plant will need to be extracted through an identifica- 

tion process, so the learning task is evolving continually. 

5. Rapid adaptation is required to regain stability and prevent the system from damaging 

itself. 

6. On-off actuators present a non-differentiable function that leads to problems with 

current learning algorithms. 

The complexity of the research task generates the requirement for a basic strategy in 

addressing this control problem: The system-level issues in items 1 through 4 are handled 

with a hybrid approach that involves an analysis at the system level of where the neural net- 

work can contribute, segments the problem, and makes full use of conventional control and 

system identification methods. To address issue number 5, a modified network architecture 

is developed to provide fast initial learning, and to allow initial infusion of a pre-calculable 

stabilizing controller. To address issue number 6, a new algorithm is developed to perform 

optimization with the on-off thrusters, while still allowing the use of gradient information 

to accelerate the optimization. 

This chapter has three major sections: 

1. The control application and experimental system (robot) hardware are described. 

2. The thruster mapping problem at the center of the control application is defined. 

3. A solution framework is presented, including three separate solution methods for the 

thruster mapping problem. 

2.1    Experimental System 

The experimental system used to study issues in autonomous navigation and control of 

free-flying space robots is shown in Figure 2.1. The design and construction of this robot 

are discussed thoroughly in [56]. In that work, Ullman designed and built the robot, and 

gave it the capability to intercept and capture a free-floating object autonomously. The 

only major hardware modification required to perform the experiments described here was 
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the installation of accelerometers and an angular-rate sensor. These sensors are used in the 

identification of the characteristics of each thruster after mechanical thruster failures occur. 

These minor hardware modifications allow the robot to sense the acceleration resulting from 

each of its thrusters, thus enabling the reconfigurable control system that is the focus of 

this application. 

Operating in a horizontal plane, the mobile robot simulates the drag-free and zero-g 

characteristics of space: it exhibits nearly frictionless motion as it floats above a 2.74 x 3.65 

meter (9 x 12 foot) granite surface plate on a 50 micron (0.002 inch) cushion of air. It 

is a fully self-contained planar laboratory-prototype of a free-flying space robot complete 

with on-board gas supply, eight cold-gas thrusters for propulsion, electrical power, multi- 

processor computer system, on-board camera, wireless Ethernet data/communications link, 

and two cooperating manipulators[56]. 

The robot has a mass of 70 kg, and is controlled with eight thrusters, each nominally 

producing 1 Newton of thrust. Position feedback comes from a pair of CCD cameras 

mounted to the ceiling above the robot. Two cameras are required to cover the total 

surface area of the granite table. The cameras detect a pattern of LEDs mounted to the 

top of the robot. A custom vision processing board processes the camera output, and 

produces position information at a 60 Hz update rate that is accurate to better than 1 mm. 

This [x, y, tfi] vector is digitally filtered and differenced to produce a velocity vector. The 

processing is performed off-board and then communicated back to the robot via a Motorola 

Altair wireless Ethernet data/communications link. 

The specifics of the control-system components are described in greater detail in Chap- 

ter 6. This section will focus on the hardware central to the reconfigurable control system: 

the thrusters and the accelerometers. 

2.1.1    Thrusters 

Central to the control system design are the actuators themselves, as shown in Figure 2.3. 

Eight on-off air thrusters are used to provide redundant actuation in all three degrees of 

freedom of the base. Each thruster produces about 1 N of thrust, and can operate effectively 

at rates up to 30 Hz. For the purposes of this control application, they can be modelled as 

pure on-off actuators, ignoring transient effects. However, the transient effects will be shown 

to impact selection of the sample rate and design of the filters used for the accelerometer 

signals. 
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Figure 2.3: Photograph of Thruster Assembly 

One of the eight cold-gas thruster assemblies is shown. The brass hexagonal plug 
with 6 holes is the thruster nozzle. The brass valve assembly is behind it, and 
the solenoid is to the right. The entire assembly is mounted with an aluminum 
bracket. Gas used is air at 690 kPa (100 psi) reservoir pressure, exiting to one 
atmosphere. The converging-diverging nozzles are designed with an exit velocity of 
Mach 2, resulting in one Newton of thrust per thruster [56]. The solenoid valve has 
a response time of about 5 ms. 

The nominal thruster nozzles are described in [56]. The six converging-diverging open- 

ings in each nozzle were machined with a custom form tool. The expansion ratio of 1.7, 

reservoir pressure of 690 kPa (100 psi), and exit pressure of 101 kPa (14.7 psi) are designed 

to yield an exit velocity of Mach 2. Figure 2.3 shows an individual thruster assembly, in- 

cluding a solenoid valve that controls the flow through the nozzle. The solenoid, shown to 

the right of the valve, is spring loaded to stay closed, and opens fully in about 5 ms when 

current is applied. The valve has a choke point of about 1.65 mm (0.065 inch) diameter. 

One of the pairs of thruster assemblies that is located at each of the four corners of the 

robot is shown in Figure 2.4. The nominal layout of all eight thrusters can be seen in the 

left side of Figure 2.2. 
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Figure 2.4: Photograph of Two Thruster Assemblies 

To study control reconfiguration, a number of "failed" thrusters were built to simulate 

different failure modes. These failures include: zero thrust, reduced thrust, 45° misalign- 

ment, and 90° misalignment. The hardware used to simulate physically these failures is 

shown in Figures 2.5 and 2.6. 

The use of a converging-diverging design resulted in a performance increase of 6.5% [56]. 

This may be significant for thrusters that are to be used every day, such as the nominal 

thrusters on this robot. However, the "failed" thrusters with ofF-nominal thrust characteris- 

tics were built with straight walls formed by drilling with standard bits ranging in diameter 

from 0.25 mm (0.010 inch) to 0.69 mm (0.027 inch). Thrusters were tested on the robot, 

measuring robot acceleration to determine the thruster strength. 

It was not possible to build thrusters with greater thrust capability than about 1.2 

Newtons by nozzle modification alone. As more air is required, the choke point in the valve 

causes a greater pressure drop across the valve, and less across the nozzle. As more openings 

were added, and the total nozzle area increased, thrust peaked at 1.2 Newtons with a 150% 

increase in area beyond nominal, and then declined. Obtaining greater thrust would require 

machining a larger valve orifice, or complete replacement of the solenoid-valve assembly. 

Completely failed thrusters were simulated by nozzles with a single 0.25 mm (0.010 inch) 

diameter hole rather than being plugged completely. This resulted in about 0.025 Newton of 
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Figure 2.5: Thruster Failure Modes - Reduction in Thrust Level 

Thruster failures are simulated by replacing the nominal thruster nozzles with me- 
chanically altered nozzles. The ßrst thruster has a single 0.25 mm (0.010 inch) 
diameter hole, and simulates a complete thruster failure. The second thruster has 
three 0.69 mm (0.027inch) holes, simulating a reduced-strength thruster. The third 
thruster is a nominal thruster, with 6 converging-diverging holes. 

thrust, which was l/40th of nominal, and effectively zero. However, the presence of a small 

hole means the thruster can be heard to fire, allowing an observer a better understanding 

of the identification and reconfiguration process. 

The volume of the chamber between the valve and the nozzle opening has a transient 

effect on thruster performance. When the valve opens, it takes a finite length of time for 

the pressure to rise to the steady-state pressure (which is defined by the reservoir pressure 

minus the pressure losses in plumbing and across the valve). Similarly, thrust continues 

after the valve closes, while the chamber empties. This effect may be seen in Figure 2.10. 
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Figure 2.6: Thruster Failure Modes - Change in Thrust Direction 

Thruster failures are simulated by adding elbows to change physically the direction 
of thrust. The 45° and 90° elbows simulate severe (and potentially destabilizing) 
thruster misalignments. 

Since the 45° and 90° elbows used to simulate thruster failure increase the volume of 

this chamber, this effect is increased significantly to the point that it is greater than the 

sample period of 100 ms. Fortunately for the system ID process, thrusters tend to remain 

in the on position for several sample periods, so the transient effects can be tolerated. 

2.1.2     Accelerometers, Angular-Rate Sensor 

Accurate acceleration information is crucial to the identification process. Acceleration data 

are used to identify thruster failures and build a model of the robot for reconfiguration. 

Issues such as sensor noise, sensor placement, sample-rate selection, mechanical vibration, 

electrical noise, and thruster transient characteristics all contribute to the difficulty in ob- 

taining accurate acceleration signals. 
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Figure 2.7: Accelerometer Photograph 

Photograph of the Systron Donner 4310A Linear Servo Accelerometer. Actual size 
is as shown: overall length is 76.2 mm (3.0 inches). Two accelerometers are mounted 
to the robot base to measure translational accelerations. 

Two Systron Donner 4310A Linear Servo Accelerometers are used. These accelerome- 

ters, shown in Figure 2.7, have a range of ± 1 g, and are accurate to better than 0.1 milli-g2. 

The accuracy of acceleration measurements is limited not by the accelerometers, but by the 

presence of extraneous vibrations. For example, the small cooling fan in the wireless Eth- 

ernet receiver at the top of the robot produces a 70 Hz vibration that is clearly measurable 

at accelerometer mounting positions on the robot base plate. 

As with all Systron Donner accelerometers, the 4310A uses a force balance. A proof 

mass is suspended within the accelerometer, and moves slightly in response to acceleration, 

as depicted in Figure 2.8.   This displacement is measured by a position detector, and a 

2A full set of specifications is presented in Appendix B. 
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control circuit and torque coil are used to drive the displacement to zero. The control 

current used to keep the proof mass from moving is amplified and used as the accelerometer 

output signal. 

ttüi 
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L- 
Figure 2.8: Accelerometer Circuit 

The servo-control circuit contained within the force-balance accelerometer is shown. 
The control current used to keep the proof mass from moving is amplified and used 
as the acceleration signal. 

A Watson Industries angular-rate sensor (model # ARS-C131-1AV) is used. This device, 

also called a tuning-fork gyro, vibrates a tuning fork and measures the Coriolis force on each 

of the beams as the fork rotates, thus producing the angular-rate signal. Accuracy is better 

than 0.1 °/sec, but this needs to be differentiated to obtain angular acceleration. 

The accelerometer signals and angular-rate signal pass through analog pre-filters with 

two critically damped poles at 75 Hz. They are then sampled by the A/D converter at a 

200 Hz sample rate (while the control loop runs at 10 Hz). The accelerometer signals are 

digitally filtered with fourth-order Butterworth filters with poles at 25 Hz, and the angular- 

rate signal is digitally filtered with a second-order Butterworth filter with poles at 10 Hz. 

Angular acceleration is obtained by a first difference of the rate signal. 
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At this point, the filtered accelerometer signals are combined with the angular-rate and 

angular-acceleration signals to produce the base accelerations in [a;, y, ip]. The computa- 

tions made to combine these signals are highly dependent upon sensor placement, so the 

sensors were placed to yield the highest possible accuracy, as shown in Figure 2.9. 

The accelerometers measure acceleration in one direction at one location on the robot 

base, so the basic task is to convert these acceleration signals into acceleration at the center 

of the base. If it were practical to locate both accelerometers with their proof masses 

exactly coincident with the robot mass center, one pointing straight ahead in +x, and the 

other pointing in +y, no compensation would be required. This is not practical, so the 

compensation requirements are: 

1. Remove angular-acceleration effects (needed if the accelerometer measurement axis is 

not aligned perfectly with the center of mass (cm.), i.e. has a tangential component). 

2. Remove centrifugal-acceleration effects (needed if the proof masses are not located at 

the cm. and the measurement axes have some radial component - e.g. these effects 

occur even when the robot spins about its cm. with no acceleration of the cm.). 

3. Rotate translational-acceleration vector to robot frame (needed if accelerometers are 

not aligned with x and y axes) 

In theory, the accelerometers could be placed anywhere on the base (as long as they are 

not perfectly parallel), and centrifugal and angular-acceleration effects could be subtracted 

by calculation. However, due to the differences in accuracy for each type of sensor, choosing 

the correct configuration will result in better acceleration measurements. Taking these 

factors into consideration it was found that: 

1. Angular acceleration effects would be difficult to compensate due to a relatively noisy 

angular acceleration signal. For this reason, the accelerometers are aligned accurately 

with the cm. of the robot, eliminating any angular acceleration effects. 

2. The angular-rate sensor (ARS) provides a clean signal, so centrifugal acceleration 

effects can be accounted for by computation. However, the effect is proportional 

to the radial distance from the proof mass to the cm., so the accelerometers are 

positioned as close to the cm. as possible. The distance is 46.5 mm (1.83 inches). 

An additional complication is the saturation of the ARS. This usually occurs only 
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robot geometric 
and mass center 

seismic center 

Figure 2.9: Accelerometer Mounting Locations 

The accelerometers are mounted orthogonal to each other, with their seismic centers 
as close to the robot center of mass as possible, and aligned radially with the center 
of mass. This facilitates the removal of extraneous acceleration signals (i.e. from 
centrifugal and angular-acceleration effects) by minimizing their size and providing 
good sensors for their removal. For example, the angular-rate signal is cleaner than 
the angular-acceleration signal, so angular-acceleration effects are zeroed by align- 
ment with the center of mass, while centrifugal effects are cancelled by calculation. 

when the robot spins out of control, before reconfiguration, but some sensing is needed 

(both for centrifugal compensation and for angular-acceleration measurement). When 

saturation is detected, angular rate and acceleration are obtained by digitally filtering 

the vision-system position signal. The angular-rate sensor is used when possible, since 

it is one derivative closer to the measurement needed, and therefore less noisy. 

3. Rotational transformation is accomplished with a 2 x 2 transformation matrix. 

The resulting accelerometer mounting locations are shown in Figure 2.9. The calcula- 

tions used to go from the sensors to the final acceleration signals are shown graphically in 

Figure 6.3. 

This reconstruction of the acceleration vector is carried out at a 200 Hz update rate 

on-board the robot. Examples of dynamically corrected and filtered output from the ac- 

celerometers and angular-rate sensor are shown in Figure 2.10. 
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Figure 2.10: Translational and Angular-Acceleration Signals 

Shaded areas indicate the sign and duration of a thruster pulse. 100 ms is the 
minimum-length pulse used for control. Lag is due to the transient response of the 
thruster and the effects of the analog and digital ßltering. Acceleration persists for 
longer than the thruster pulse width due to the finite chamber size between the 
valve and nozzle in the thruster assembly. This data is still noisy after filtering, 
but leads to accurate identification when used with the linear-regression processes 
described in Chapter 6. 
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2.2    Thrust er Mapping 

2.2.1    Problem Definition 

The three degrees of freedom (x, y, ip) of the base are controlled using eight thrusters posi- 

tioned around its perimeter, as shown in Figure 2.11. Each thruster produces both a torque 

and net force on the robot. This coupling, combined with the on-off nature of the thrusters, 

substantially complicates the control task. 

desired force, 
[Fx, Fy, Ty] Thruster 

Mapper 

thruster pattern 
[Tl, T2,... T8] 
 ► 

Figure 2.11: Thruster Mapping, Problem Definition 

At every sample period, the Thruster Mapper takes a desired force vector, 
[^rj... Fy^.> T<l>d..]> and finds the thruster settings, [Ti, T2, ... , T8], to mini- 
mize a specified cost function. The on-off thrusters and coupling between forces 
and torque make this problem difficult. This mapping is calculated several times 
per second, motivating the development of a nonlinear approximate solution that 
can run in real time. The thruster mapper must adapt to changes in thruster char- 
acteristics. Development of a neural network to implement this "Thruster Mapper" 
is the focus of this application. 

The thruster mapping task, also shown in Figure 2.11, that must be performed during 

each sample period is to take an input vector of continuous-valued desired forces and torques, 

[^d«> Fva*,i r</-deJ> and nnd tne output vector of discrete-valued (off, on) thruster values, 

[Ti, T2, ..., Is]) that minimizes a specified cost function. 

The robot-base-control strategy developed for this system is shown in Figure 2.12. The 

complete control system is described in detail in Chapters 3 and 6. A proportional-derivative 

control law produces a continuous vector of desired forces, Fdea, based on position and 
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velocity information from the overhead vision system. The thruster mapper takes this force 

vector and outputs the pattern of thrusters to be fired on the robot. 

Partitioning the controller into a "control module" (PD controller in this case) and a 

"thruster mapper" greatly simplifies controller design since both components can be de- 

signed independently. Smooth actuation is still possible due to the low thruster impulse, 

which results from high sample rate (10-60 Hz), low thrust (force per thruster, F = 1 N; 

torque per thruster, r = 0.14 N-m) and high mass (mass, M = 70 kg; moment of inertia, 

/ = 3.1 kg-m2). This strategy was originally developed as part of a conventional control 

system for the robot [56]. 

desired 
state vector, 

Xdes      ' 

X 
PD 

controller 

desired 
force vector, 

Fdes     " 

0.9 N 
-1.3 N 

0.4 N-m 

Thruster 
Mapper (NN) 

thruster 
pattern, 

T 
Robot 

r \ 
Position 
Sensor 

Figure 2.12: Robot-Base-Control Strategy 

The control module treats the thrusters as linear actuators. The thruster mapper 
must find the thruster pattern producing a force closest to that requested by the 
base control module. 

2.2.2    Cost Function 

Since each thruster can output only full thrust (nominally 1 Newton) or nothing, the thruster 

mapper is not capable of exactly producing the requested force. The basic approach to this 

problem is to define a cost function, and then to find the thruster pattern, [Ti, T2, ... , T8], 

that minimizes this function. The specific search or neural-network functional mapping used 

to "find the thruster pattern" will be discussed in Chapter 3. In this research, a general 

cost function was used that incorporates the normalized force-error vector and the amount 

of gas used. This function is shown in Equation 2.1. 
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min J 
T 

where, 

J 

T 

i 

^.rr(T) 
r^err(T) 

F 
Enorm 

F •*- Vnorm 

'norm 
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FXerr(T)V 
F J 

+ 
Vnorm    ) \    rnorm    / {=1 

1 Verr 

F 

thruster-mapping performance cost 

binary thruster values, [ Tx   T2   T3   T4   T5   T6   T7   T8 ] 

thruster number 

net force error in x-direction, (FXdes - FXact), resulting from T 

net force error in y-direction, (Fydes - FVact), resulting from T 

net torque error about V'-axis, {r^des - r^act), resulting from T 

normalizing factor for Fx 

normalizing factor for Fy 

normalizing factor for r^, 

gas-weighting parameter 

(2.1) 

In matrix form, this can be expressed as Equation 2.2. 

J = Ferr(T)T N Ferr(T) + agas £ T, (2.2) 

where, 

Ferr(T) 

N 

[FXerr(T) Fyerr(T) r^rr(T)]J 

1—        0 0 
l 

Xnorm 

0 

0 
w Vnorm 

0 

0 
1 

T1 
'norm 

=   force vector 

=   normalizing matrix 
(2.3) 

If the robot were equipped with linear actuators (i.e. "proportional thrusters"), a vector 

of continuous-valued actual forces, [FXact, Fyact, T^act], could be produced that exactly 

equalled the desired force vector, [FXdes, Fydes, r^dej], requested by the controller (i.e. J = 0). 

However, a perfect mapping is not generally achievable with discrete-valued thrusters, and 

the weighting parameters selected in the cost-function define the distribution of error (i.e. 

translational force error vs. rotational force error vs. gas usage). Selection of the normalizing 
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factors and gas-weighting factor in Equation 2.1 define the cost function and the resulting 

optimal thruster mapping. 

Throughout this thesis, the normalizing factors used are the nominal force and torque 

values produced by firing a single thruster. These values are indicated by Fthruster, force-per- 

thruster, and TthTUSter, torque-per-thruster. With no weighting on gas usage, this results in 

the minimum-length force-error vector in normalized-force space. This is a simple, straight- 

forward method that results in a good thruster mapper, and is used for analysis purposes 

in Chapters 4 and 5. This is shown in Equation 2.4. 

min J = 
T 

(FXerrm\2 + (Fyerr(T)\2 + /WT)Y 
V Fthruster J \ Fthruster ) \ ^thruster / 

(2.4) 

For the experimental implementation, discussed in Chapter 6, an additional practical 

issue is present: gas usage should be reduced if it can be achieved with minimal effect on 

force-mapping performance. To achieve this, an additional cost is placed on gas usage, 

so that if two candidate vectors produce similar size force errors, the more fuel-efficient 

one will be chosen. A good balance between control accuracy and gas usage is found with 

agas = 0.5. This cost function is shown in Equation 2.5. 

T V r thruster J \ * thruster J \~thruster / * ,=1 

(2.5) 

In minimizing the force error only, the thruster mapper does not consider the dynamics 

of the plant. It assumes that the Fdes vector output by the controller feedback law is 

chosen carefully enough that it needs only concern itself with producing the closest matching 

Fact. In this application, the controller component is a simple proportional-plus-derivative 

controller (shown in Figure 2.12) that does not take into account the thruster limitations. 

Ideally, the controller component would be aware of thruster limitations, possibly leading to 

a merging of the control and mapping components. This complex nonlinear control problem 

is not addressed here, but a first step is proposed in the form of a modified cost function in 

Appendix A. 
In summary, the cost function was chosen to be the length of the normalized force-error 

vector augmented by a cost on gas usage, where the normalization factors were the force- 

per-thruster, Fthruster, and torque-per-thruster, rauster- For neural-network analysis only, 

the cost function shown in Equation 2.4 was used. For experimental implementation, the 

function shown in Equation 2.5 was used, reducing gas usage. This thruster mapper trades 
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off force error for a reduction in gas usage, just as an optimal controller balances error with 

control effort. 

Selection of the cost function defines the correct thruster pattern for any given Fdesired 

vector. The mechanics of how this correct vector is actually found (i.e. search or neural- 

network-based functional approximation) is described below. 

2.3    Solution Strategy, Mapping Methods 

The reconfiguration strategy proposed in Figure 3.1 requires an "Indirect Training" ap- 

proach, where the neural network attempts to find the best mapping based on the latest 

estimate of the plant model, and then adapts itself to optimize mapping performance. This 

indirect training approach is shown as the top part of Figure 2.13. The word "indirect" 

here refers to the lack of an optimal teacher, so the network adaptation is directed by 

experimentation (in simulation) with a model of the plant. As seen in Figure 2.13, the 

network's thruster pattern is passed through a model of the robot, and the resulting force 

vector is compared with the desired force vector, resulting in the error signal used to train 

the network (without the direction of an optimal teacher). 

While "indirect learning" is the ultimate goal here, two other methods, "direct learning" 

and "exhaustive search," are developed as steps towards of this goal. All three methods are 

summarized in this section. 

In the development of an indirect training procedure, several issues must be addressed, 

including neural-network architecture and optimization (also referred to as training, learn- 

ing, or adaptation). To "separate variables," and permit the study of these generic issues 

separately, an intermediate step, "Direct Training," is introduced. This step, shown in the 

middle part of Figure 2.13, permits the development of neural-network architecture selec- 

tion and optimization procedures which can then be carried over directly to the indirect 

training problem. 

In direct training, the network is taught simply to copy an "optimal teacher," in this 

case the optimal thruster mapping. To obtain this optimal mapping, a search must be 

performed over all possible thruster combinations. Fortunately, when all thrusters are 

working correctly (i.e. before the reconfiguration due to thruster failures), symmetries exist 

that can simplify the search process. This non-neural-network approach is shown in the 

bottom part of Figure 2.13. 
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Figure 2.13: Thruster-Mapping Methods 

Indirect training (i.e. with no optimal teacher, adaptation is based upon perfor- 
mance with the robot model) is the ultimate goal, but direct training is used to 
study architecture and optimization issues, and an exhaustive search (symmetry- 
aided) is used to generate the optimal mapping required by direct training. 

These three different techniques have also been used to make possible evaluation of 

performance and comparisons. Due to the discrete nature of the thrusters, even the optimal 

thruster mapper results in significant errors. This optimal performance level is used to 

evaluate the performance of the neural-network control system. Also, use of the direct 

training performance as a benchmark for evaluation of the indirect training performance 

allows study of the issues involved in indirect training. 

Although the final goal is indirect training, the methods need to be developed in reverse 

order, i.e. (1) optimal search, then (2) direct training, then (3) indirect training. Each suc- 

cessive method builds upon knowledge gained in the previous step, as they work towards 

the final goal of indirect learning. The first step contributes the robot-base-control strategy, 

and an optimal solution to be used as a benchmark. The second step contributes under- 

standing of architecture and optimization issues. The final step contributes a new learning 
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algorithm to accommodate the on-off thrusters. The result is a learning system that can 

be used in the reconfigurable control application. Segmenting the problem in this manner 

resulted in a "separation of variables," and allowed for concentration on one issue at a time. 

These methods are presented in the order they were developed, since each one builds 

upon the previous step; but the final method, indirect training, is the one used in the 

reconfigurable control system required when thruster failures occur. Presenting the search 

method first also serves as a motivation for the neural-network approach, as the limited 

extensibility of this method is highlighted. 

2.3.1    Thruster Mapping by Exhaustive Search 

The first implementation, SEARCH, used an exhaustive search at each sample period to 

find the thruster pattern that minimizes the force-error vector [56]. Symmetries are used 

to reduce greatly the search space, enabling it to run in real time at a 60 Hz sample rate. 

This solution method does not scale well for a three-dimensional robot, or when thruster 

failures are allowed, disrupting the symmetries. This provides the motivation for using a 

neural network: the neural network is used to learn and implement an approximation to the 

optimal solution - one that can be computed in real time. 

The idea behind the exhaustive search is that there are a finite number of possible 

thruster combinations (in this case, with eight bi-level thrusters, there are 28 = 256 com- 

binations), so the thruster mapper can evaluate each possible combination, and choose the 

one that minimizes the specified cost function. This process must be executed at every 

sample period, so to speed up the process it is very helpful if the symmetries in the system 

can be exploited. 

Search Simplification Using Geometric Symmetries 

If the thrusters are all the same strength (the nominal configuration assumed in this 

example), firing two opposing thrusters (e.g. T\ and T4) will produce no net thrust. To 

eliminate these useless combinations, the eight on-off thrusters, [T\, T2, ... , T$], may be 

considered as four backwards-off-forwards thrusters [JKi, R2, R3, R4], where, for example, 

J?i represents the reaction force resulting from T\ and T4. This reaction force representation 

can be used here to reduce the possibilities to 34 = 81. Now the robot is considered to have 

4 tri-level thrusters instead of 8 bi-level thrusters. This simplification is valid whenever two 

thrusters of equal magnitude are directly opposing. 
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• possible force 
vector locations 
(normalized thrust units) 

Figure 2.14: Possible Force Vectors with Eight Symmetrical Thrusters 
Units are in normalized thrust units. Each of the 65 circles represents a force 
vector that is achievable with the nominal configuration of eight on-offthrusters. A 
simplified version of the thruster mapping problem is to find which of these circles 
is closest to the desired force vector. The problem is complicated by the additional 
desires to save gas and to accommodate for failed thrusters. 

The next level of simplification comes about due to the redundancy in actuation ca- 

pability. Elimination of redundant combinations (e.g. firing T\ and T2 produces the exact 

same net force vector as firing T3 and Tg) reduces this number to 65. Since redundant 

combinations occur due to many thrusters having common strengths and regular positions, 

this simplification fails when these conditions are not met. These 65 remaining available 

thrust vectors are plotted in Figure 2.14. 

Symmetries about the x — y, x — ip, and y — tj) planes allow us to consider candidates 

in the first octant only, reducing the search space to 16. The final symmetry is about the 

x = y plane. This further reduces the number of candidate vectors to 11, resulting in the 

11 locations shown in Figure 2.15. 

The procedure to implement this symmetry-aided search is to take the desired force 

vector and use the symmetries mentioned above to transform it into the first half of the 

first octant in force space ([FXdes, Fydes, r^,deJ). This is done by taking the absolute values 
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possible force 
vector locations 
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Figure 2.15: Possible Force Vectors after Symmetric Transformation 

With all thrusters equal strength, and a geometrically symmetric layout, the 65 
candidate thrust vectors can be reduced to 11 through symmetric transformation. 
This simplifies the search, allowing it to run in real time (this simplification is not 
possible when thruster failures occur). 

of the vector components, and swapping the x and y components if necessary. Then this 

vector is compared to each of the 11 prototypes, resulting in 11 costs (perhaps a weighted 

cost function involving gas usage and force error), one for each of the 11 candidates. The 

candidate corresponding to the minimum cost is selected as the optimum. The thruster 

pattern associated with this candidate is then transformed to undo the symmetric transfor- 

mations, bringing the force vector to the correct location in the full three-component force 

space. The resulting thruster pattern is implemented on the robot. 

Reduction of the search space from 256 candidates in the general case to 11 in the fully 

symmetric case is critical to allowing the thruster mapper to run in real time. The amount 

of computation required to transform the Fdes vector into this half-octant, search over 11 

vectors, and then transform the minimum-cost R vector back to the one corresponding to the 

full 3-space input, then produce the T vector, is significantly less than if these symmetries 

were ignored and the search included 256 patterns. 
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Difficulties in Extending This Method 

For a free-flying robot operating in three dimensions, the number of possible thruster combi- 

nations increases greatly (for example, with 24 on-off thrusters, there are 224 = 16,777,216 

combinations). This is partially offset due to the number of symmetries also increasing 

(for a fully symmetric 3-D robot with 24 thrusters, there are 469 combinations that would 

need to be searched after complete symmetric reduction - a significant reduction, but still 

computationally demanding3). 

Unfortunately, geometric symmetries may not exist, due to other spacecraft design con- 

straints, or due to unanticipated thruster failures. In this case, the full number of thruster 

combinations would need to be searched to obtain the optimal solution. This situation 

motivates the use of a neural network for the thruster-mapping component: it is used to 

implement a nonlinear approximation to the optimal solution that can be computed in real 

time. 

An alternative to developing a neural network to produce a function that approximates 

the result of the optimal search, is to use a sub-optimal search that can run in the time 

constraints imposed by the application. A simple example would be to limit the possible 

combinations to two thrusters firing at a time. In this case, only 24-23/2 (2 thrusters) -f 24 

(1 thruster) + 1 (no thrusters) = 301 combinations would need to be searched at each sample 

period. While this may make the problem tractable, mapping performance will be reduced 

drastically. Other sub-optimal search schemes may be developed that are more efficient than 

this simple example. One possible scheme is presented by Sperduti and Stork in "A Rapid 

Graph-based Method for Arbitrary Transformation Invariant Pattern Classification" [53]. 

This method was developed for an Optical Character Recognition application, highlighting 

the fact that this control application is similar to a pattern classification problem. 

2.3.2    Direct Training of a Neural-Network Thruster Mapper 

The search method described above defines the optimal solution to the thruster mapping 

problem. The next two methods are neural network approximations to this optimal solution. 

Since they are approximations, they will be sub-optimal, but can be designed to run in real 

time. 

3 An algorithm to automate derivation of the symmetric transformation functions has been developed by 
Kurt Zimmerman and Brian Kemper at the Stanford Aerospace Robotics Laboratory. 
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In the second method, DIRECT TRAINING, a neural network is trained to emulate 

the optimal mapping produced by the exhaustive search [71]. The network is repeatedly 

shown several desired force vectors along with the optimal thruster pattern chosen by the 

search algorithm. The weights in the network are adapted using backpropagation to make 

the network outputs match those produced by the search algorithm (the optimal solution). 

This DIRECT TRAINING approach is useful primarily in that it allows the study of 

network architecture and topology issues before tackling the additional problems that come 

with indirect learning. Hence it serves as a stepping stone to the goal of indirect learning. 

The approach also has potential advantages beyond that of an intermediate step. In 

particular, using a neural network as a function emulator may increase computational speed 

and system robustness very significantly due to the distributed, parallel nature of the com- 

putation. 

The investigation of the network topology issues associated with this DIRECT TRAIN- 

ING approach led to the Fully Connected Architecture, presented in Section 3. The FC A 

can also be used with the indirect training method described below. 

2.3.3    Indirect Training of a Neural-Network Thruster Mapper 

Once the topology issues have been investigated during the direct training exercise, the 

network architecture can be chosen. The topology of the network (i.e. the number of neu- 

rons and their interconnections) defines the functional complexity capacity of the network, 

whether it is trained directly or indirectly. With the architecture already selected to provide 

the required mapping accuracy, the next step is to focus on the training methods. 

In the third method, INDIRECT TRAINING, a neural network is trained to find the 

optimal solution when presented with a model of the plant, but no optimal teacher. This 

required back-propagation of error through the discrete-valued thrusters, which in turn 

motivated development of the noise injection method to be presented in Chapter 5. This 

structure, shown in the top part of Figure 2.13, reveals that the thruster mapper is forming 

an inverse of the thruster model. Using a neural network to learn a plant inverse, and using 

this inverse in the forward control loop, is a common approach for neural-network control. 

As will be discussed later, the presence of non-differentiable hard limiters complicates the 

development of this inverse. 
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With this form of training made possible, the neural network control system is able 

to reconfigure itself quickly in response to even drastic changes in thruster characteristics. 

There is no longer a need to develop the search algorithm as an optimal teacher. 

When evaluating mapping performance, the search method represents a lower bound, 

since it defines the optimal solution. Direct-training performance will be used as a bench- 

mark for comparison with indirect training, since it represents the lower bound defined by 

the finite mapping complexity available with the chosen network topology. 

2.4    Summary 

The control application chosen to study neural-network control is reconfigurable thruster 

control of a free-flying space robot prototype, a capability compelled by major failures 

in the robot's thrusters. This chapter has described the experimental equipment used, 

the thruster mapping problem that is at the center of this control application, and the 

approach taken towards solution of the thruster mapping problem (that includes the use 

of three separate solution methods in building towards the final implementation). The 

remainder of this thesis develops a complete solution to this control problem, and presents 

advances in neural-network theory made to address this specific problem and the rather 

broad generic range of important real-world control problems that it represents. 



Chapter 3 

Control System Overview 

This chapter presents an overview of the reconfigurable control system developed for the ap- 

plication described in Chapter 2. This is a complex control system, involving the integration 

of several components. As mentioned in Chapter 1, often the most important, and some- 

times the most difficult aspects of a neural-network control application are the decisions 

about how to structure the control system and which components are to be neural-network- 

based. 

Specifically, the first issue is to determine whether the application is one where neural 

networks can contribute efficiently better (and cheaper) control than is achievable without 

them. If they can, the second issue is to determine the optimal system architecture, that is 

to determine in just which segment(s) of the control system they should be used in order 

to do just that at minimal cost. This is the essence of astute hybrid control, a central 

contribution of this research. 

In addition to presenting the system-level control system design, the reasons for choos- 

ing this structure are given. While this particular structure does not represent a general 

architecture for developing neural-network control systems, the new methodology that led 

to this structure is general, and can be applied to the development of a wide variety of 

neural-network control systems and neural network applications in general. 

While this chapter discusses the overall control system and design considerations, Chap- 

ters 4 and 5 provide in-depth discussion of the specific neural-network issues encountered, 

and Chapter 6 provides a more detailed discussion of each of the control-system components. 

39 
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3.1     Control System Structure 

Figure 3.1 shows the overall system block diagram. The additions made here beyond the 

control system presented in Figure 2.12 include a user interface and an adaptive capability. 

These segments will be discussed in detail in Chapter 6. This chapter focusses on the 

system-level design considerations. 

The objective is to control the position and attitude of the robot base, while subject 

to multiple, large, possibly-destabilizing changes in thruster characteristics. The plant is 

linear and well-modelled, except for the actuators, which are on-off thrusters that could 

have altered characteristics. An accurate vision system provides high-bandwidth position 

feedback, which is then digitally filtered and differentiated to provide velocity. On-board 

accelerometers and an angular-rate sensor are used to provide base-acceleration measure- 

ments. 
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Figure 3.1: Reconfigurable Control System - Block Diagram 

This control system is based upon a conventional indirect adaptive controller, such 
as a self-tuning regulator. Examples of the continuous-valued Fde, vector and 
the corresponding discrete-valued T vector are shown. The ID block represents 
a recursive-least-squares identification of thruster strength and direction. This 
continually-updated model is passed to the neural network training block, shown 
in detail in Figure 5.6. The continually-updated neural thruster mapper is copied 
periodically into the active control loop. 
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3.1.1    Control System Design Considerations 

Some control-system design considerations for this application include: 

1. The robot is to be controlled by a human user at a high level, so path plan/-ning/traj/- 

ect/-ory generation is required. 

2. The robot must reject disturbances and, at a low level, be robust to actuator and 

plant-model inaccuracies; so a robust feedback system is required. 

3. Gas usage should be minimized where possible. 

4. High-performance control is desired. The requirements for a free-flying space robot 

are different from those for a simple satellite control system. A robot is expected 

to carry out multiple-degree-of-freedom trajectory tracking with high control band- 

width. Satellites tend to spend their time regulating attitude to a fixed direction, 

or slowly slewing to a new direction. Satellite thruster-control systems are therefore 

usually designed for regulation performance and stability provability, at the expense 

of trajectory-following performance. For example, a satellite control system may look 

for the largest desired torque (roll, pitch, or yaw), and enforce a one-dimensional 

bang-bang control law in that degree of freedom only [63]. 

5. A non-adaptive conventional control system already exists. 

Temporal issues that influence the control design include: 

1. Control bandwidth is below 1 Hz. 

2. Acceptable robot-base-control performance can be obtained with a 5 Hz thruster- 

update rate. 

3. Accelerometer bandwidth extends from 0 Hz to greater than 500 Hz. 

4. Extraneous vibrations exist from 30 Hz and up. 

5. Thruster transient effects are on the order of 30 Hz and up. 

6. During reconfiguration in response to thruster failures, stabilization is required within 

15 seconds due to limited table area. 
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Items 2-5 lead to the selection of a thruster-control update rate of 10 Hz, but with a 

sensor sample rate of 200 Hz. Analog prefiltering, and digital filtering are performed on 

this over-sampled data to produce clean acceleration signals. The time limit imposed by 

item 6 provides sufficient time to begin, but not necessarily to finish building a model of 

the system. This leads to a design that has the adaptation running concurrently with the 

identification - there is not enough time to wait for the identification to converge. 

3.1.2    Indirect Adaptive Control System 

These system characteristics happen to fit well with a standard control structure known as 

"indirect adaptive control." This refers to the use of sensor information to build a model 

of the system, and then to redesign a controller based upon the updated plant model. The 

"indirect" here refers to the intermediate step of building a model of the system. This is 

the structure shown in Figure 3.1. 

The user issues desired-position commands to the robot via a graphical user interface. 

The current and desired position are used by a trajectory generator to calculate the path 

for the robot to follow, resulting in a trajectory vector, Xdea, consisting of positions and 

velocities in the three degrees of freedom at each sample time. This desired state vector 

is input to a PD controller, along with the actual state vector, which is provided by the 

overhead vision system. The Proportional-Derivative controller can be used due to the 

simplicity of the plant (this is basically a 1/s2 plant, so no integral control is needed [8]), 

and the availability of a high-fidelity velocity signal. The PD controller output, Fdes is sent 

to the Thruster Mapper, resulting in the thruster pattern, T. This T is then implemented 

on the robot. 

This low-level portion of the control system, consisting of the trajectory generator, PD 

controller, thruster mapper, and position sensor, is always running, and does not have 

adaptive capability. The adaptive system is highlighted in Figure 3.1, and consists of three 

components: sensors, an identification process, and a controller redesign process. The 

accelerometers and angular-rate sensor produce a base acceleration measurement vector. 

These signals, along with the thruster firing signals, are used by the identification process 

to update a model of the robot's thruster characteristics. This model is periodically sent 

to a control redesign process that generates an updated thruster mapper based upon the 

updated robot model. This updated thruster mapper is periodically copied to the thruster 
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mapper running in the control loop, as indicated by the double arrow. The control, identi- 

fication, and controller-redesign loops are all running concurrently. Due to the possibility 

of a destabilizing failure, there is not enough time to wait to generate a new updated plant 

model before redesigning the controller. 

So far, this structure makes no mention of neural networks. The factors involved in the 

decision of where to use neural networks are outlined below. In this application, a recursive 

least squares linear regression ID component was used, since identification of the thruster 

characteristics is a linear process. The algorithm used to obtain acceleration measurements 

was nonlinear, but could be derived analytically, so no neural network was used there either. 

A neural network was used for the thruster-mapping component since it is an inscrutable 

nonlinear function that requires adaptation. The control redesign process is therefore a 

backpropagation-based neural-network training algorithm. 

The neural network is used precisely at the location where it is beneficial: the thruster 

mapper. If the robot were to remain perfectly symmetric, with no degradation, and it was 

restricted to in-the-plane motions with 8 thrusters, the symmetry-assisted search would 

work well enough, and no neural network would be required at all. In this application, the 

benefits of the neural network approach are required only if the symmetries are lost and 

adaptation is required. 

The selection of this system architecture, and the following development of a neural- 

network-based reconfigurable control system present one specific example of a successful 

application of neural networks for control. However, the decisions of how to structure 

the control system, and where and how to use the neural network are more general: The 

lessons learned during the construction of this system may in fact be applied to any can- 

didate neural-network control application. For example, although this application used an 

indirect adaptive control structure, the methodology that follows is not restricted to this 

architecture. 

3.2    Cost/Benefit Analysis 

To determine where neural networks can contribute effectively, the control systems engineer 

must consider the strengths of neural networks (nonlinear, adaptive, generic, unstructured, 

parallelizable) as well as the costs associated with these benefits (difficult to understand 

workings or prove stability, design is iterative, computationally complex). The cost/benefit 
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balance must be evaluated on an application by application basis. First at the system level, 

the system requirements and considerations of degree-of-nonlinearity, adaptation require- 

ments, and computational complexity, etc., lead to a candidate system architecture. Then 

at the component level, this cost/benefit analysis is repeated, leading to the decision of 

what sort of subsystem will be used in each segment of the control system. 

Before evaluating the applicability of neural networks for a control (or other) application, 

it is useful to examine, in more detail, the specific costs and benefits of neural networks, 

since these are what will be weighed in the design decision. 

3.2.1    Benefits of Neural Networks 

• Nonlinear - Since neural networks tend to be designed with an iterative gradient 

search, they can handle nonlinear internal and external (e.g. system to be controlled) 

components just as easily as linear ones. 

• General - The most common neural-network architecture, the multi-layer perceptron 

(feedforward network with sigmoidal activation functions) has been proven to be ca- 

pable of representing any MIMO function to an arbitrary degree of accuracy. This 

was presented by Hornik et. al. in "Multilayer Feedforward networks are universal 

approximators" [19]. This generality is important when neural networks are devel- 

oped in software, but also for hardware implementation, where the ability to build 

multi-purpose ICs is valuable. 

• Unstructured - Unlike a linear mapping or Fourier transform, there is no pre-specified 

structure to the computation a neural network can perform. The structure is devel- 

oped during training as the network parameters are set, defining the strength (or 

existence) of connections between neurons. 

• Parallelizable - Neural networks are designed to be implemented in parallel hard- 

ware. In most applications, they are developed in software, and implemented on 

serial-computing hardware, since that presents a more convenient development envi- 

ronment, and most of the effort is spent during the design and development phase. 

Hardware implementation then has the potential for vast improvements in processing 

throughput. An additional benefit of parallel hardware implementation is that the 

network is robust to partial processor failure.   For example, in a space application, 
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if cosmic rays were to destroy a few of the neurons, it is unlikely that the output 

would be significantly affected, since the output is determined by contributions from 

thousands or millions of neurons. Additionally, the remaining neurons would be able 

to adapt to compensate for the damage. 

3.2.2    Costs Associated With the Use of Neural Networks 

• Black Box - The functionality of a neural network is defined by the connection 

strengths, i.e. a large number of parameters. This, coupled with the fact that they are 

nonlinear, means that it is difficult to understand what they do. It may be possible to 

verify the network's performance for a sufficiently large range of conditions, leading 

one to trust that the network will work well, but it is not easy to understand why the 

network does what it does (contrary to a simple linear controller, where it is often 

possible to study the gains or poles and zeros to form an understanding of the function 

of the controller, and perhaps why the automatic design process chose that function). 

• Stability Proofs - Due to a neural network's nonlinearity and complicated structure, 

it is virtually impossible to develop rigorous stability proofs for it. This is a big 

concern for control systems that put high demands on stability, such as aircraft and 

spacecraft. One way to address this problem is to have a high-performance neural- 

network control system with a backup low-performance linear controller that has been 

proven stable. If instability were ever detected, control authority would be switched 

to the low-performance system. 

• Iterative - Function-based neural networks, such as those described in this thesis, 

are not calculated in one step, but are developed through an iterative process known 

as training or learning. This takes time, and since it is a nonlinear optimization, 

convergence to a global minimum is not guaranteed. Fortunately, the local minimum is 

rarely significantly worse than the global optimum. The FCA, presented in Chapter 4, 

addresses both of these problems: by pre-programming in a linear solution, the initial 

training performance is as good as the best linear solution; also, starting the network 

close to a reasonably good solution makes it less likely that the optimization will 

terminate in an undesirable local minimum. 

• Computational Complexity - The neural network may have excess neurons or con- 

nections, thereby offering more functional complexity than is needed.   This results 
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in slower execution, and creates a susceptibility to overfitting (poor generalization). 

Fortunately, many network pruning methods are available that eliminate the excess 

complexity, but this remains a complicating issue. 

The specific costs and benefits vary between different types of networks. For example, 

memory-based networks do not have the iterative cost mentioned above, as they just store 

all sensor information and recall the relevant information when needed. Also, some neural 

networks may be better than others for a specific problem - for example, MLPs vs. RBFs, 

as discussed in Chapter 1. 

3.3    Criteria For Valuable Application of Neural Networks 

Study of these costs and benefits, the focussed (experimental) experience with the robot 

application, and examination of other successful neural-network applications has led to the 

following summary. It is a concise list of criteria for an application where use of neural 

networks will be advantageous. The application should be: 

• Nonlinear - The powerful nonlinear capability of neural networks comes at the signifi- 

cant cost of computational complexity, slow convergence speed, and lack of provability. 

If no advantage will be obtained from this capability, it should be avoided. 

• Inscrutable - The fact that neural networks provide a general nonlinear function- 

approximation capability makes them particularly valuable for problems where the 

nonlinearity is inscrutable. If the exact form of nonlinearity is known (e.g. sin, cos, 

quadratic functions, etc.) it should be used explicitly; however, this may not be 

practical if the speed requirement calls for parallel hardware. For example, if 10,000 

sin(x2 + y2) operations are needed at a 1 MHz update rate, parallel hardware is re- 

quired, and it may not be feasible to custom design an Application-Specific Integrated 

Circuit (ASIC) for this application, where it may be feasible to train a neural network 

chip to emulate this function. 

• (possibly) Requiring Adaptation - Since neural networks are generally trained itera- 

tively based upon some form of error feedback, they are already set up for adaptation 

to changes in the plant or environment. Therefore adaptive capability can be added 

with minimal effort, enhancing their applicability in adaptive control situations. 
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or 

• Requiring parallel hardware (processing speed) - The availability of parallel neural 

network hardware may make a neural-network approximation to even a known non- 

linear function (for which parallel hardware does not exist and is not efficiently imple- 

mented using a microprocessor or programmable logic device) highly advantageous. 

An understanding of the alternative methods (statistics, linear adaptive control, etc.) 

is useful for determining whether the benefits a neural network can offer outweigh the 

costs for each application. It is common to see examples in the literature of neural network 

control systems used where a linear adaptive controller would have been easier to implement, 

and worked better. It is also common to see flawed justifications for neural control like 

"this is a difficult control problem that has not been solved using conventional methods, 

so we propose to use a neural network, (simply) because neural networks can do things 

conventional methods cannot." 

Once it has been determined that the application can benefit from the use of neural 

networks, these same principles should be used to determine which segments of the overall 

control system are advantageously implemented with neural networks and which are not. 

(This is the essence of the optimal hybrid system concept.) 

In applying these principles to the robot control application, the conclusion is that 

a neural network will be beneficial. As mentioned in the previous section, the task is 

to develop an approximation to the optimal thruster mapping, which can be calculated 

optimally, but is too complicated to run in real time. This mapping is indeed both highly 

nonlinear and inscrutable, and does require adaptation in response to changes in the thruster 

characteristics. Limitations of the neural network approach for speed of reconfiguration, 

and training with the on-ofF thrusters, will be addressed with extensions to neural network 

theory in those areas. 
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Chapter 4 

Fully-Connected Architecture 

A number of issues are present in the thruster mapping control application discussed in 

Chapter 2 that are common to many neural network control problems. 

• Prior information about the system exists, and it should be possible to exploit this 

information when generating the neural network. 

• Initial learning speed is important if the neural network will be trained on-line. 

• The neural-network topology (the number and connectivity of neurons) required to 

achieve an accurate mapping without over-fitting is unknown beforehand. 

• Some of the control outputs (thruster values) influence one another (e.g., directly 

opposing thrusters should never fire together). 

The most relevant of these features for the robot control application are the first and 

second ones. Reconfiguring in response to a destabilizing thruster failure places a high 

premium on speed of adaptation. The architecture presented here allows immediate imple- 

mentation of a linear solution that is calculated using conventional methods. This provides 

a low-performance, but immediately-stable controller to use as a starting point in the opti- 

mization. 

In this chapter, a general neural-network architecture that addresses these issues is 

suggested. This "Fully-Connected Architecture" is for feedforward neural networks that can 

be trained using backpropagation [46] [60], and refers to the structure shown in Figure 4.1. 

It was first presented by Werbos [61], and initially developed in a control context by Wilson 

and Rock [71]. 

49 
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The extra connectivity of this architecture, which is unavailable in a layered network, 

allows seamless integration of linear a priori solutions, communication among input and 

output neurons, and greater overall functionality than a layered network. The increase 

in parameters can exacerbate over-fitting problems, and a systematic complexity-control 

method is successfully demonstrated that lessens this problem. 

Inputs 

Layered 
Feed-Forward 

Network 
equivalent IT 

Outputs 

sigmoids on outputs of 
hidden neurons only 

Fully-Connected 
Architecture 

(FCA) 

both FCA 
and layered 

FCA only 

Inputs Outputs 

Figure 4.1: Extra Connections Available with FCA 

This general feedforward architecture subsumes more-familiar single or double- 
hidden-layer architectures. Here, the FCA is shown to have all the connections 
of a single-hidden-layer network, and some extras as well. The network's neurons 
are considered to be ordered, beginning with the ßrst input, ending with the last 
output, and having hidden units in between, perhaps interspersed among input or 
output units. Note that there is no longer a concept of layers. Backpropagation re- 
stricts information flow to one direction only, so to get maximum interconnections, 
each neuron takes inputs from all lower-numbered neurons and sends outputs to all 
higher-numbered neurons. 
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4.1    Background 

In the literature, the term "fully-connected feedforward neural network" usually refers to 

a layered network, with an input layer, one or more hidden layers, and an output layer. 

"Feedforward" indicates that signals flow from the input layer, through hidden layers, and 

to the output layer in one direction only, which is required by the backpropagation algo- 

rithm. "Fully-connected" indicates that every input is connected to every neuron in the 

first hidden layer, and so on between successive layers. While this layered architecture may 

be particularly well suited for many applications and certain hardware implementations, a 

more general structure may be able to take advantage of the full capabilities offered by the 

backpropagation algorithm [46]. 

In this work, the term "fully-connected" will refer to the structure shown at the bot- 

tom of Figure 4.1. Instead of layers, a fully-connected network can be considered to have 

neurons that are ordered, beginning with the first input, ending with the last output, and 

having hidden units in between, perhaps interspersed among input or output units [61]. 

Backpropagation restricts information flow to one direction only; so, again, to get maxi- 

mum interconnections, each neuron takes inputs from all lower-numbered neurons and sends 

outputs to all higher-numbered neurons. For example, the last output neuron takes inputs 

from all the hidden neurons, just as in a layered architecture; however, it now also takes 

inputs from each of the input neurons and previous output neurons. 

The main benefit is not that it maximizes the connections-to-neurons ratio, but instead 

that, when combined with a systematic weight-pruning procedure, it allows a more flexible 

use of layering. There has been a recent trend in using not one but two hidden layers; the 

FCA is a generalization of that trend. 

In the application addressed in this work, the extra connections are found to be useful 

when coupled with a procedure to control over-fitting. In particular, the 3x4 matrix in the 

upper right corner of the weight matrix shown in Figure 4.2 provides direct linear informa- 

tion flow from input to output (sigmoids are used only for the outputs of hidden neurons), 

and the 3x3 upper-triangular matrix in the lower right corner provides communication 

between outputs. While these functions could be provided with processing components 

in series or parallel with the network, the fully-connected architecture provides a seamless 

integration of these capabilities. 
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4.2    Comparison with a Layered Network 

Figure 4.2 highlights the benefits of the extra connections that are unused in a single-layered 

network. 
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Figure 4.2: Weight-Matrix Representation to Highlight Benefits of FCA 

• Feedthrough Weights: this segment, shown in region 1 in Figure 4.2, is a matrix that 

implements a direct, linear connection from inputs to outputs (sigmoids are used only 

on hidden units). This provides fast initial learning and allows direct pre-programming 

of a linear solution calculated by some other method. This is particularly important 

for control applications, where there is a large body of linear control knowledge that 

can be drawn upon to provide a good starting point. The FCA provides for seamless 

integration of linear and nonlinear components. 

• Flexibility: since the FCA subsumes any number of hidden layers, when combined 

with a systematic weight-pruning procedure, the network topology (defined by the 

remaining connections) is set in a systematic manner based on gradient descent. The 

weights shown in region 2 of Figure 4.2 represent the flexibility of the FCA, in that 

the connections may be configured to provide one and two hidden layer topologies (in 

general, any feedforward network topology). 
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• Crosstalk among inputs and outputs: these connections, shown in regions 3 and 4 of 

Figure 4.2 may be valuable, i.e. one output may excite or inhibit another output, a 

feature unavailable with layered networks. 

The "disadvantages" (i.e. issues which must be addressed) of the FCA include: 

• Increased complexity: number of weights increases quadratically with the number of 

hidden units, versus linearly for a layered architecture. The extra weights increase 

susceptibility to over-fitting. 

• Slower hardware implementation: updating must be one neuron at a time, versus one 

layer at a time for layered networks. 

This general architecture makes full use of the backpropagation algorithm, while still 

allowing the use of modifications, such as the use of FIR connections in place of weights [57] 

or backpropagation through time [38]. Figure 4.1 shows the extra connections that are 

unused in a single-layered network. The question is whether the benefits of the enhanced 

functionality outweigh the increased computational load and susceptibility to over-fitting. 

This must be decided for each application. A more detailed description of each of these 

features of the FCA follows. 

4.2.1    Feedthrough Weights 

For the robot control application, the most important aspect of these connections is that 

they provide a means for directly pre-programming the network with a pre-calculated linear 

solution. This results in fast reaction to a destabilizing thruster failure. Initializing the 

network to a good linear solution may result in a better final solution, as described below. 

Another benefit is that the feedthrough weights make it easy for the network to implement 

a linear solution, so the FCA will work well when the actual solution has a strong linear 

component (a common situation) superposed with a nonlinear correction. 

Motivation: Infusion of Prior Knowledge 

Much is already known about how to find linear approximate solutions to many problems, 

both in control, and elsewhere. Often, the standard solution is a linear one, and there are 

many highly advanced, very powerful, linear design tools available. However, for many real- 

world problems, there are significant nonlinearities, and often the fallback procedure is to 
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use a linear controller designed for a linearized plant. Nonlinear design methods exist, but 

certainly not at the level of linear ones. One of the purported benefits of neural networks 

is that they address this problem with their adaptive, nonlinear approach [36]. 

Although a network often can be trained to solve a problem starting with no prior in- 

formation, taking advantage of the (often abundant) linear theory can improve the learning 

rate and provide a better solution if properly presented to the network. 

Beginning the network at a reasonably-good starting point can lead to a better final 

solution if it prevents the network from getting stuck in an unfavorable local minimum. 

This can also be useful as a learning guide. When Nguyen and Widrow trained the original 

truck backer upper [38], the initial learning runs were made with the truck pointed at, 

and a few steps away from the loading dock. After mastering this easy task, the initial 

conditions were made progressively more difficult, leading the control system through a 

gradual learning process. Backpropagation-through-time training for unstable systems like 

the truck can benefit greatly from some outside direction of the learning process. The 

teaching process used by Nguyen and Widrow, and linear initialization of an FCA network 

is another. 

In general, it is possible to use existing linear control theory to form a linear solution to a 

problem (possibly a linearized version of a nonlinear problem). In many cases, this solution 

will in fact be a reasonable solution to the full nonlinear problem. The feedthrough portion 

of the weight matrix offers a direct vehicle to import and implement this linear solution as 

part of the neural network. Similar alternative techniques to building in knowledge include 

first training the (layered) network to emulate the linear solution, then adapting from there, 

or running the linear solution in parallel with the network. One benefit of the FCA approach 

is the seamlessness of the network-linear solution integration - it immediately becomes part 

of the network. Adaptation to this portion of the network can be turned off, use the same 

algorithm as the rest of the network, or use an adaptation algorithm based on linear theory. 

Approximate Linear Solution: Thruster Mapping Example 

A simple example of this situation exists here: the exact solution to the thruster mapping 

problem is highly nonlinear and complex, but there is a linear approximate solution that may 

be easily calculated. The feedthrough weights of the fully-connected network architecture 

simplify infusion of this a priori knowledge. 
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The a priori linear solution used here was found by assuming that the thrusters are 

capable of continuous-valued thrust output (a linearized version of this problem). The 

solution is simply a 4 x 3 pseudo-inverse of the 3x4 matrix that maps reaction forces, R 

(the set of four [-1,0,1] thrusters), to base forces, F. Recognizing that the direct feedthrough 

segment of the fully-connected network provides exactly this computation (output = weight 

matrix x input), it is possible to incorporate this a priori knowledge by putting the pseudo- 

inverse linear solution directly into that sub-matrix, as an initial condition for the weight 

matrix. This linear mapper is then rounded off to the actual thrust positions possible at 

run time (-1,0,1). 

The problem is more complex if thruster failures are allowed, and the one-sidedness of the 

thrusters is considered. For example, the linear approximate solution may request negative 

thrust from a thruster, which is not physically possible (certainly in space, and practically 

elsewhere). The approach taken here is to find when negative thrusts are requested and 

attempt to reassign these thrusts to positively-valued thrusters. This is done exactly when 

two opposing thrusters exist, but is inexact when an opposing thruster does not exist for each 

thruster. Since this provides only the starting point for adaptation, it is not critical that the 

linear approximate solution is optimal. A solution that considers one-sided continuously- 

valued thrusters is presented in [25]. This was developed for the Gravity Probe B satellite, 

which is unique in having proportional thrusters, rather than on-off thrusters1. 

Approximate Linear Solution: General Case 

Alternatively, if a linear solution is expected to work well, but cannot be found through 

analysis, the network can find one adaptively. This involves zeroing all weights except the 

feedthrough ones, and using the standard backpropagation algorithm. At this point, with 

a linear problem, convergence will be very fast, as the cost function is parabolic (for direct 

supervisory training). This increase in initial learning rate can be valuable for certain real- 

time applications, both on start-up, and after a significant change in the system, where it 

is critical to find a stable solution very rapidly. Once the system is stabilized (if this is 

possible with a linear controller), the rest of the network can be freed up to deal with the 

nonlinearities. 

It is not necessary to zero the rest of the weights when training the linear portion 

- the linear weights initially learn at a much greater rate than the others when all are 

JThe satellite carries liquid helium that boils off slowly and must be expelled anyway. 
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subjected to the same training algorithm. This effect is explained below, and can be seen 

in Figure 4.3, which shows connection activation levels at various stages during training. 

If implemented on a serial processor, and speed is an issue, it may be useful to skip these 

extra computations during the initial learning phase, since they do not contribute much to 

the network performance. 

FCA 
Network 

Layered 
Network 

Figure 4.3: Network Connection Activity During Training 

Mesh plots show the magnitude of network connections (weights). A weight matrix 
format is used, as in Figure 4.2. Fully-connected networks are in the top row, layered 
networks in the bottom row. First plot is after 25 epochs. Second plot, top, is after 
training with the feedthrough connections frozen to the linear solution. Second plot, 
bottom, is after training the layered network. Third plot, top and bottom, are the 
ßnal solutions (local minima) after all weights were allowed to adapt. 

A weight must contribute significantly to the output before the resulting error signal will 

cause it to change significantly. If all weights are started small, the feedthrough weights learn 

fastest, since the input and output information provides an immediate error-gradient signal. 

Once these signals build up, the crosstalk weights receive strong learning signals and begin 

to adapt. Starting all weights with an initial condition of zero will allow the feedthrough 

and crosstalk weights to adapt, but all other weights remain at zero throughout the learning 
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because there is no error signal due to these weights to stimulate learning. It is common 

in network training to initialize these weights to some random values. Choosing the initial 

condition for the "random" weights is a problem in itself. The method presented by Nguyen 

and Widrow [37] has proven to be valuable in this application. 

Once the feedthrough weights have been found, either analytically or adaptively, they 

can be frozen or allowed to adapt, depending on the problem. In the case of an analytical 

solution, an adaptive algorithm distinct from backpropagation may be appropriate. 

4.2.2    Value of Cross-Talk Connections 

In addition to the value of linear feedthrough connections, the upper triangular matrices 

contribute by providing the capability for crosstalk among outputs and among inputs. These 

weights allow one output to excite or inhibit a higher-numbered output. As a clear example 

for the thruster mapping problem, if the network were to have an output (0,1) for each of 

the eight thrusters, and during training, a penalty was put on gas use, the network could 

use this segment to allow the firing of one thruster to prohibit the firing of the opposite 

thruster (which would provide zero net thrust and waste fuel). This is so clear that in this 

case, it could perhaps most-easily be implemented by manually programming these weights, 

although the network would eventually learn this as well. The example illustrates the value 

of crosstalk between input and output neurons that is unavailable in a layered network. 

Another example would be the capability to select between redundant output patterns: if 

[110 0] and [0 0 11] both produce the same net force, they may both be equally likely 

to activate when that force is requested. This could result in either [1 1 1 1] or [0 0 0 0]. 

The crosstalk would allow the network to use the first output to send it to either of the 

acceptable solutions, and avoid the ambiguity. 

Crosstalk between all outputs would be nice, but backpropagation limits us to uni- 

directional information flow. This may make it important to select carefully the ordering of 

inputs and outputs. If more complicated, nonlinear crosstalk is desired, extra neurons may 

be placed between individual output or input neurons. 
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4.2.3    Hidden-Neuron Interconnections 

FCA Generalizes the Concept of Hidden Layers 

The FCA is a generalization of the feedforward layered network. It therefore subsumes 

layered networks with any number of hidden layers, i.e. it has all the functionality of a 

two or three-layered network. This can be seen in Figure 4.4, which shows how two and 

three-layered networks can be represented by the FCA. 
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Figure 4.4: FCA Subsumes Any Feedforward Layered Network 

The FCA is shown to include (as subsets) all the connections available in two or 
three-layered networks. In general, it subsumes any feedforward network topology. 
The matrix representation here is similar to that in Figure 4.2. 

Since the FCA subsumes any number of hidden layers, when combined with a systematic 

weight-pruning procedure, the network topology (defined by the remaining connections) is 

set in a systematic manner based on gradient descent. The weights shown in region 2 

of Figure 4.2 represent the flexibility of the FCA in that the connections may be config- 

ured to provide one- and two-hidden-layer topologies (in general, any feedforward network 

topology). 

This flexibility is valuable, since often it is not known a priori which network topology 

is best-suited for the application. Coupled with a systematic network pruning method 

(presented below), the FCA allows for the network topology to be automatically chosen. 

One Hidden Layer or Two? 

The topology of a network can have a significant impact on the functional capabilities of 

the neural network. It is generally accepted that at least one hidden layer is necessary to 
m 
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perform mappings that are not linearly separable. However, the decision to use one hidden 

layer, two, or more, is an active area of research [1] [5] [7] [13] [19] [21] [26] [30] [35] [41] [49] 

[50] [55] [58]. This section presents some background in this area. There is no consensus 

among the researchers - the number of hidden layers needed appears to vary from one 

application to another. Fortunately, since the FCA subsumes all layered networks, this 

issue is not so critical if the FCA is used with a systematic network pruning algorithm. 

In "On the Representation of Continuous Functions of Many Variables by Superposi- 

tion of Continuous Functions of One Variable and Addition," A.N. Kolmogorov presents 

a mathematical proof regarding the functional complexity of neural networks. He shows 

that a one-hidden-layer network with 2n + 1 hidden neurons (where n is the number of 

inputs), can implement any continuous mapping from n inputs to m outputs [28]. This is 

important, since it provides a mathematical foundation for the functional capabilities of 

neural networks, but there are two difficulties: (1) The nonlinear activation functions of 

each of the hidden neurons is not specified; (2) He does not show how to find the weights 

or nonlinear functions. 

In "Multilayer feedforward networks are universal approximators," Kurt Hornik, Max- 

well Stinchcombe and Halbert White show that any function can be universally approxi- 

mated to arbitrary accuracy using a neural network with only one hidden layer [19]. This 

requires that the network has "sufficient" hidden units, but no method for determining the 

number of hidden units is given. Additionally, there may be cases where a network with 

more than one hidden layer can implement the mapping more efficiently (using fewer neu- 

rons and connections, although more layers). This is more applicable than Kolmogorov's 

work, since the authors worked with standard sigmoidal nonlinear activation functions. 

In "Feedback stabilization using two-hidden-layer nets" [50], E.D. Sontag shows that 

while single-hidden-layer networks may be sufficient to implement direct input-output map- 

pings, double-hidden-layer networks are required (to guarantee that it will work in the 

general case) to implement one-sided inverses of continuous mappings. This is especially 

important in control problems, where it is common to invert a plant model. This is the case 

in the thruster mapping, where the thruster mapper is an inverse of the thruster-to-force 

mapping defined by the thruster parameters. 

In "Why two hidden layers are better than one" [9], D.L. Chester presents an example 

where a simple two-hidden-layer network is sufficient, but an infinite number of hidden 

neurons would be required if a single hidden layer were used. 
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In "Threshold circuits of bounded depth" [15], A. Hajnal presents problems requiring an 

exponential number of nodes in a single-hidden-layer network, but a polynomial number of 

nodes in a double-hidden-layer network. 

As far as using one or two hidden layers for specific applications, different researchers 

have found success with both architectures. In [21] and [30], networks with one hidden 

layer are found to perform better than those with two hidden layers. In [26], [41], and [55], 

networks with two or more hidden layers are found to perform better. 

Since the decision to use one or two hidden layers is simply not an issue with the FCA, 

the lack of consensus on this issue is not a major concern. 

4.2.4    Learning Performance: FCA vs. Layered 

Figure 4.5 compares learning histories (thruster mapping error on the training set) for the 

thruster mapping problem (with direct training) outlined in Chapter 2. Three networks are 

compared, each with 5 hidden neurons. Each was trained to emulate the optimal mapping 

(minimizing force error). Training a neural network is an iterative nonlinear optimization, 

and will usually produce a different result each time it is run, provided with a different initial 

condition. For this reason, results are presented as the average of several runs, each from 

a different initial condition of the weights. In this plot, each curve in the figure represents 

the average performance for ten different sets of initial weights. 

This is the direct training problem mentioned in Chapter 2. Even though indirect 

training is the ultimate objective, in order to demonstrate the performance of the FCA, 

the direct training problem is studied here first. Direct training is much simpler, while still 

containing all of the architecture issues to be found in the indirect training problem. 

Looking at the initial learning performance, the FCA network performs better than 

the layered network, due to the weight gradient being instantly available via the direct 

connection of inputs to outputs. As expected, the FCA network with the a priori linear 

solution built in provides the best early performance. Although the randomly-initialized 

networks catch up fairly quickly here, this initial head-start can be critical for a control 

application because it can mean the difference between stability and instability. This will 

be demonstrated later, in Chapter 6. 

In the middle region, between 100 and 1000 epochs, the layered network performance 

surpasses that of the FCA, due to the reduced number of parameters, and simplified search 

space. However, after 1000 epochs, the greater functionality of the FCA network comes into 
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Figure 4.5: Training Performance Comparison 

The fully-connected network (FCA) learns much faster at first, due to the linear 
connections. After the initial surge, the layered network passes it due to the re- 
duced number of parameters and resulting faster learning. Towards the end, the 
fully-connected network's performance is significantly better - highlighting its extra 
capabilities. This is not surprising, since the FCA network subsumes the function- 
ality of the layered network. The network initialized with the linear solution begins 
with significantly better performance. 

play, and performance surpasses that of the layered network. This is of course expected 

since the FCA network has all of the connections of the layered network in addition to the 

extra ones described earlier. The FCA network with the a priori solution frozen in has 

slightly worse final performance, since the feedthrough weights are not adapted in this case. 
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4.3    Architecture Selection to Avoid Overfitting 

4.3.1    Overfitting 

The above has shown the potential value of the extra connections associated with a fully- 

connected neural network, both in faster initial learning and in better final performance. 

However, the high number of parameters, while increasing functionality, makes the network 

susceptible to over-fitting. A layered network with i inputs, h hidden neurons, and o outputs 

has (i + o)h weights, while a fully-connected network has ((i + h + o)(i + h-o-1)/2) weights, 

not counting bias weights. More parameters to adapt means the network will be slower to 

train, and possibly susceptible to overfitting. This is an important concern with the FCA, 

and must be addressed. 

A common method for evaluating the level of overfitting is to use a method known as 

"cross-validation." In this method, a set of input-output data (known as the "test set") is 

kept separate from the set of data used for training the network (known as the "training 

set"). Periodically, the network's performance on the test set is evaluated. A decrease in 

test-set performance coupled with an increase in training-set performance indicates overfit- 

ting. At this point, the weights in the network have begun to adapt to the particulars of 

the training set (e.g. noise or lack of sufficient data), rather than forming a generalization 

of the full population from which the training samples are chosen. 

Figure 4.6 shows how overfitting affects performance for different training set sizes. 

Overfitting becomes clear when the performance on the test set remains the same or wors- 

ens, while performance on the training set improves. It is common that during training, 

performance on test and training sets will improve until a certain point is reached when the 

network stops generalizing, and begins to fit the particular data set. Use of a "sufficiently- 

large" training set can reduce over-fitting problems, but this may not be practical due to a 

lack of data, or to an adaptation speed requirement that needs a faster solution than this 

data-intensive brute-force approach. 

4.3.2    Systematic Complexity Control 

When training function-based neural networks such as this FCA, the goal is to achieve good 

generalization by presenting the network with a large number of sample input patterns along 

with the desired outputs. The hope is that the parameters that define the functionality of 

the network will adapt to fit this training data, and will then respond correctly when 
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Figure 4.6: Training History, Performance on Test and Training Data 

Overßtting, as seen by the divergence on training and test performance, is more of 
a problem for small training sets. 

presented with new input patterns. The danger of overfitting arises when the network has 

an excess of parameters to fit: the danger is that these parameters will be used to fit the 

noise in the data and lead to poor generalization. 

It is generally accepted that the fewer parameters used in the model, the less chance of 

excess functionality being used to fit noise, resulting in better generalization. The task now 

is to find out which connections are required to implement the desired mapping, and build 

a network using only those weights. The network architecture selection could be performed 

manually, but this would not be practical. For this problem, a network with feedthrough 

connections, weights corresponding to a layered network with five hidden neurons, and the 
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crosstalk connections on the outputs, would probably work well and not be susceptible to 

overfitting, given a good training set. 

This heuristic approach may overlook some valuable extra connections, and may still 

result in overfitting, so a systematic network-pruning technique is desired. One that was 

found to be successful involves a modification of the cost function that the neural network is 

trained to minimize. This approach was first proposed by Rumelhart and Weigend [44] [59]. 

The cost function is augmented with a term that places a cost on the complexity of the 

neural network (complexity is defined by a mathematical function of the weight values). 

The neural network is then trained to minimize this new cost function, using the same 

gradient-based optimization methods as before. 

This complexity-control structure is based on the following assumptions: 

1. The best generalization is the least-complex one that still performs an input-output 

mapping with an acceptable error. Therefore, there is a user-defined parameter to 

determine this balance between complexity and mapping performance. 

2. The complexity of a mapping is related to the number of connections between neurons. 

Therefore, the cost associated with each connection is zero when the connection is zero, 

monotonically increases as the weight magnitude increases, then plateaus at a large 

weight level. This way, the total complexity cost varies with the number of non-zero 

weights, rather than with the size of the weights. The relatively-small weights will be 

reduced towards zero, leaving the larger (and supposedly useful) ones unrestrained. 

The complexity-control term is shown in Equation 4.1, and presented graphically in 

Figure 4.7. 

N      N 

•■=i ;«+i l.(S) +1 
(4.1) 

where, 

Jcomplexity    =   complexity cost 

i   =   number of neuron where connection originates 

j   =   number of neuron where connection terminates 
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Figure 4.7: Complexity-Cost Function 

Weights having values near zero cost little. Weights with high values (indicating 
that they contribute significantly to the network's function) cost A, but the gradient 
is small, so there is little incentive to decrease them. Weights near the inßection 
point are small (they do not significantly affect network performance). The slope 
here is highest, so the network has the most to gain by decreasing them. 

N   = 

Wij 

w0 

total number of neurons 

weight denoting the connection strength from neuron i to neuron j 

weight normalization parameter 

(4.2) 

Selecting the scale factor effectively sets the cutoff point for weights - it determines where 

the inflection point of the complexity cost function occurs. This defines the transition from 

a nearly-parabolic (for w « wo) cost surface to one that asymptotically approaches (for 

w » Wo) a flat surface (i.e., with zero gradient). For w « WQ, weights are very-strongly 

driven to zero, whereas for w » wo, the gradient is near zero, and weights are not restricted 

significantly. 
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Selecting a high WQ will result in a nearly-parabolic cost function that keeps all weights 

from growing too large. In the parabolic section, the gradient acting against each weight is 

roughly proportional to the magnitude of that weight. 

Selecting a low WQ will have the effect of shutting off completely some of the weights, 

while not affecting the others. This parameter is selected iteratively by the user. 

The complexity-control term is added to the total cost function with a weighting pa- 

rameter, A, as follows in Equation 4.3. 

"total — JperJ ormance T " Jcomplexity (4.3) 

where, 

Jtotal   =   total cost function to be reduced by gradient-based optimization 

Jperjormance    =   network-performance cost function, such as shown in Equation 2.5 

Jcomplexity    =   network-complexity cost function, shown in Equation 4.1 

A   =   complexity-cost weighting parameter 

(4.4) 

The weighting parameter, A, is set by the user on an application-by-application basis 

to achieve the desired balance between performance optimization (e.g., thruster-mapping 

performance) and complexity minimization (i.e., to reduce overfitting problems). The pa- 

rameter can be adjusted iteratively by observing performance on test and training data 

sets, such as those shown in Figure 4.8. 

Equations 2.5 4.1 and 4.3 are combined, resulting in the total cost function shown in 

Equation 4.5. 

Jtotal — 
V "thruster / \ "thruster / 

2   M^ + lJ2Tk 
\ Tthruster / £ 

+ 

(4.5) 

where, 
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Jtotal = total cost function to be reduced by gradient-based optimization 

^err(T) = net force error in x-direction, (Fx<tes - FXaet), resulting from T 

FyerrC1) = net force error in y-direction, (Fydes - Fyaet), resulting from T 

rV-err(
T) = net torque error about ^-axis, (r^des - r^act), resulting from T 

Fthruster = normalizing factor for FXerr and Fyerr, force per nominal thruster 

Tthruster = normalizing factor for r^err, torque per nominal thruster 

T = binary thruster values, [ Ti   T2   Tz   T4   T5   T6   T7   T8 ] 

k = thruster number 

A = complexity-cost weighting parameter 

i = number of neuron where connection originates 

j = number of neuron where connection terminates 

N = total number of neurons 

Wij = weight denoting the connection strength from neuron i to neuron j 

WQ = weight normalization parameter 

(4.6) 

The benefits of this method may be seen in the training histories shown in Figure 4.8. 

The network had five hidden neurons; and without any sort of complexity reduction, overfit- 

ting is clearly a problem, given the reduced training set. With the addition of the complexity 

term, overfitting was controlled, resulting in comparable performance on test and training 

sets. 

The complexity control function and training histories for a fully-connected network 

with 5 hidden neurons are plotted in Figure 4.8. Without complexity control, over-fitting 

becomes clear at around the 4000th epoch, as the performance on the test set worsens, 

while performance on the training set improves. With the addition of the complexity term, 

over-fitting is controlled, as performance histories on test and training sets no longer diverge. 

4.3.3    Other Complexity-Control Methods 

Many systematic network-pruning techniques have been proposed and used successfully in 

certain applications. For, example "weight decay" uses a cost function like A(w?) to try to 
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Figure 4.8: Complexity Cost Reduces Overfitting 

In the case with no complexity control, the divergence of network performance on 
the test and training sets indicates overfitting. Addition of a complexity cost term 
is successful in controlling overfitting. Although training performance is worsened, 
performance on the test set is improved, which is of course the desired outcome. 

reduce all the weights [39] [40]. Other methods completely eliminate connections or neurons 

in an iterative process [48] or with a genetic algorithm [65]. A survey of pruning methods is 

presented in [42]. The method used here has been shown to be effective in this application, 

but other methods may work as well or better at improving generalization performance. 

4.3.4    Automatic Growing of the Network 

The above-mentioned complexity control method works by selecting a network topology, 

and then trimming the excess connections to achieve the desired complexity. An alternative 
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is to begin with a small network, and add neurons to achieve the desired functionality. One 

advantage of growing a network is the potential for an increase in learning speed. With 

fewer hidden neurons, very quick learning takes place since fewer computations are required 

(this would not be true for a parallel hardware implementation, but is true for the more 

common serial implementation). Additionaly, fewer training patterns are required (to avoid 

overfitting), further reducing the number of computations required during training. 

Growing the network is not a new concept, it is similar to the Cascade Correlation net- 

work proposed by Scott Fahlman, in which the network is grown one neuron at a time [11]. 

This has been found to have benefits beyond the reduction in required computation: re- 

duction of the "moving-target" problem2, and reduction of susceptibility to getting stuck 

in local minima. The network adapts until performance asymptotically approaches an opti- 

mum; then a neuron is added. These extra degrees of freedom are often sufficient to break 

the network out of a local minimum. In Cascade Correlation, the previous hidden neuron 

weights are frozen while the weights for the new neuron are adapted. This simplification 

of the search space reduces the moving-target problem. It can reduce computation if batch 

training is used, and the previously-calculated neuron activations are stored in memory. 

In the real-time implementation required for the robot-control application, the network 

is grown automatically. Beginning with a small number of hidden neurons and a small 

training set, the initial learning rate is high. As network performance plateaus (measured by 

a sustained cessation of improvement in test set performance), hidden neurons are added, a 

small batch at a time. As the number of hidden neurons increases, the network performance 

approaches optimality, but at the expense of slower training. This approach fits well with 

the control application, since rapid stabilization and coarse optimization are important, 

while rapid attainment of near-optimal control is not so critical. 

4.4    Summary of Implementation Issues for the FCA 

The above has outlined the features of the new FCA developed in the present research, and 

of a number of issues in using it effectively. The specific use of complexity control, network 

growing, and the extra connections offered by the FCA, will vary from one application to 

another. The implementation issues for the robot-control application are outlined here. 

This refers to the weights changing directions and back-tracking throughout the training while the 
network approaches a final solution. While this is not necessarily bad, it can slow down learning. 
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• The FCA's feedthrough weights are the most important feature, as they provide 

near-immediate stabilization. Some implementation requirements, such as the use 

of parallel hardware, or the use of software optimized for vector-processing on a serial 

computer, can place a high cost on the use of hidden layer interconnections. In such 

a case, these connections may need to be eliminated. 

• The use of automatic growing has been found to produce a significant improvement in 

initial learning rate. Since the added coding requirements are minimal, this technique 

should be used whenever there is a requirement for fast initial learning. 

• Complexity control is simple to implement, and has been shown to reduce overfitting 

problems, so its use is recommended. 

Many modifications to backpropagation that claim to improve learning speed have been 

proposed in the literature. Backpropagation is an algorithm for efficiently calculating the 

derivatives of the weights with respect to a cost function in a neural network. Once this 

gradient estimate is obtained, any of the several existing gradient-based optimization meth- 

ods may be used. Some algorithms specific to neural networks have been developed that 

attempt to take advantage of some features specific to neural-network optimization. 

The simplest implementation multiplies this gradient estimate by a fixed parameter 

to calculate the change in weights. More complex implementations adapt this learning 

rate parameter, or add a "momentum" term that sums past gradient estimates to filter 

out high-frequency noise and integrate low frequency trends. Several other methods, such 

as conjugate gradient, Levenberg-Marquardt, Quickprop, and other second-order gradient 

optimization schemes have proven successful in certain applications. However, the benefits 

of each algorithm appear to be somewhat application-dependent. 

For the robot-control application, batch learning, adaptation of the learning rate (in 

this case, a matrix of independent learning parameters is used - adapted independently 

for each weight), and use of momentum are used to accelerate learning. For the thruster 

mapping application, this combination of enhancements to backpropagation has been found 

to provide the best trade-off between simplicity of implementation and rate of adaptation. 



Chapter 5 

Gradient-Based Optimization for 

Discrete Systems 

The previous chapter dealt with direct training, and led to the development of the neural- 

network architecture used to implement the thruster mapping. To allow indirect training, 

where the learning signal (error) is generated based on the robot-model output (rather than 

on an optimal teacher), the error must be backpropagated though the robot model. The 

discontinuity introduced by the use of the robot's on-off thrusters presents a significant 

obstacle, and makes absolutely necessary the development of the new training method 

presented here. The solution to this problem is, in turn, a general algorithm for performing 

gradient-based optimization for systems with discrete-valued functions. 

The discrete-valued functions did not cause a problem for direct training, since in 

that case the discrete values are supplied as the output patterns in the training set (e.g. 

[1.87 -0.76 0.11] gets mapped to [0 0 1 1 1 0 0 0]). The fact that the target outputs are 

restricted to l's or 0's does not affect the training. However, for indirect training, the on-off 

actuators are represented by discrete-valued functions that are used as a forward model in 

the backpropagation training. 

In this chapter, a new technique for backpropagation learning for systems with discrete- 

valued functions is presented. It is applied to the on-off thruster control problem de- 

scribed in Section 2, as well as to the genric problem of training multi-layer signum net- 

works [69] [70] [73]. 

71 
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5.1    Problem Statement 

Optimization methods that use gradient information often converge much faster than those 

that do not. Use of the backpropagation algorithm [46] [60] to get this gradient information 

for training neural networks has made them useful in many applications; however, back- 

propagation's requirement of continuous differentiability, not only for the network itself, but 

for anything through which the error is backpropagated (e.g. the plant model in a control 

problem), limits its applicability. 

This is a significant limitation since there are many applications where discrete-valued 

states arise. For example: on-off thrusters commonly used in spacecraft (the example 

used in this research); other systems with discrete-valued inputs and outputs; and neural 

networks built with Signums (also known as hard-limiters or Heaviside step functions) rather 

than sigmoids. Signum networks may be preferred to sigmoidal ones due to hardware 

considerations. 

In cases like these, one choice is to use an alternative method not restricted to con- 

tinuously-differentiable functions, such as unsupervised learning, simulated annealing, or a 

genetic algorithm; but these are usually significantly slower to train, because they do not 

use gradient information. 

Also, it is common for a problem to be well-suited for gradient-based optimization, ex- 

cept for the presence of discrete-valued functions. The neural-network thruster mapping is 

a prime example: a neural network (differentiable) produces an output that is discretized 

(with a non-differentiable function) and then passed through a model of the robot-thruster 

system (differentiable) before the performance can be evaluated and used for training. Ex- 

cept for the DVF, this problem is well-suited for gradient-based optimization. Rather than 

go to a completely different solution strategy, it is desirable to introduce a modification 

to gradient descent that will accommodate the non-differentiable functions. This sort of a 

situation is rather common when DVFs are involved - the DVFs often represent a small 

portion of the overall system, but the problem they present for gradient-based optimization 

is formidable. 

5.2    Related Research 

This problem is related to a similar problem that has received some attention in the field of 

neural networks: training multi-layered networks of hard-limiting neurons. The algorithm 
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presented here will be shown to be applicable to this problem. This section presents a 

historical background and related research directed towards training signum networks. 

5.2.1 History of Neural-Network Training With Smooth Activation Func- 

tions 

Before the task of training a network built with DVFs is examined, it is useful to consider 

the history of the feedforward neural network, and why the sigmoid function was chosen in 

the first place. 

Learning algorithms for single-layer signum networks date back to 1960, with Widrow's 

ADALINE (ADAptive Linear NEuron) [67] and Rosenblatt's Perceptron [43]. Unfortu- 

nately, neither of these methods extends directly to multiple layers. Minsky's proof of 

the functional limitations of single-layer Perceptrons [32] [33] combined with this lack of a 

learning algorithm contributed to a reduction in interest in neural networks in the 1970s. 

In 1974, Werbos [60] presented the backpropagation algorithm for the first time. While 

the mathematics of the algorithm may be traced back to work in 1969 by Bryson on optimal 

control [6], Werbos developed the algorithm for a number of applications, including neural 

networks built with sigmoidal activation functions in the hidden layer. Unfortunately, this 

work was largely unnoticed until its rediscovery and publication by Rumelhart in 1986 [46]. 

The key extension that allowed training of networks with hidden layers was the replacement 

of the signum with the sigmoid. This allowed Bryson's work with multistage optimization for 

dynamic systems to be applied to gradient-based optimization with the now-differentiable 

neurons. It is understood that use of a sigmoid in place of a signum is computationally 

more expensive, without providing significant added functional complexity; however, the 

use of a function that is continuously-differentiable allows for the application of the efficient 

gradient-based optimization methods developed by Bryson. 

5.2.2 Neural-Network Training With Discrete-Valued Activation Func- 

tions 

MADALINE (Many ADAptive Linear NEurons) Rule I was a two-layer network (one hidden 

layer) that had a trainable first layer, but the second layer was a fixed logic operation, 

such as OR, AND, or MAJ (majority) [18].   In MADALINE Rule II, Winter [74] used 
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a heuristic approach which had limited success at training a two-layer network of hard- 

limiters (ADALINEs). These methods may be classified as "error-correction rules" rather 

than "steepest-descent rules" (gradient-based) [67]. 

In recent research aimed at using gradient-based learning for multi-layer signum net- 

works, Bartlett and Downs [4] use weights that are random variables, and develop a training 

algorithm based on the fact that the resulting probability distribution is continuously dif- 

ferentiable. The algorithm is limited to one hidden layer, requires all inputs to be 1 or -1, 

and needs extra computation to estimate the gradient. 

Another method is to approximate the discrete-valued functions with linear functions or 

smooth sigmoids during the learning phase, and switch to the true discontinuous functions 

at run-time. This is similar to the original ADALINE, where the neuron was trained on its 

linear output, but in operation, this output passed through a signum function [67]. This 

method may work in cases where the behavior of the system with sigmoids is close enough 

to that of the real system; however, this assumption is very often unreliable. 

5.3    A New Training Algorithm: Approximation With Noi- 

sy Sigmoids 

The method of noise injection is introduced by applying it to the training of a single hard- 

limiting neuron, as shown in Figure 5.1. Although this neuron could be trained with the 

ADALINE or perceptron learning rules, those methods do not extend to multiple layers. 

The method presented here does not have this significant restriction. 

The first block diagram in Figure 5.1 shows the neuron as it appears at run time: a dot 

product with hard limiter. For simplicity in bookkeeping, the input, X, and weight, W, 

vectors are augmented to include the threshold bias for the output function. The next two 

diagrams show the neuron during training, where the signum has been replaced by a smooth 

sigmoid function. The input, X, is propagated through the forward sweep, finally resulting 

in an error, e, and a cost. The derivative of this cost is calculated and propagated though 

the backward sweep, resulting in a dcost/dX to be propagated to more units upstream, 

and a dcost/dnet to be used in calculating dcost/dW, which is used in the weight-update 

algorithm. 
This is almost the same as training a standard neuron with backpropagation; the only 

difference involves the injection of zero-mean noise, N, immediately before the sigmoid. 
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Figure 5.1: Training Algorithm 

During training, replace discontinuous Signums with sigmoids, and inject noise be- 
fore the sigmoid on the forward sweep. The backward sweep calculation is the same 
as standard backpropagation. 

While the mechanics of the backward sweep are identical, different weight updates result 

because the forward sweep resulted in a different error. 

Note that the noise injection does not corrupt the calculation of dcost/cW (just as the 

desired signal does not). Using an unmodified backward sweep is not only the simplest 

thing to do, it does precisely the right calculations for estimating the weight gradient. 

What makes this method useful is that as the noise level increases to cover the sigmoid's 

transition region, adaptation with the resulting <?cost/dW leads to a set of weights that 

work well for the signum network. 

To summarize, the training algorithm is: 

• Replace the hard-limiters with sigmoids during training 

• Inject noise immediately before the sigmoids on the forward sweep 

• Use the exact same backward sweep as with standard backpropagation 

5.4    Intuitive Explanation 

Without addition of noise, the network may train using sigmoid output values in the sigmoid 

transition region (roughly -0.8 to 0.8) that will be unavailable at run time. Simply rounding 
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off at run time may introduce significant errors. For example, in a hypothetical cost surface, 

a value of 0.4 may be optimal, but if forced to choose between -1 and 1, a value of -1 may 

be better. 

The problem is much more apparent when the DVF outputs are recombined, such as 

with the output layer of a network built with hidden signum units. This also occurs when 

the robot-thruster physical parameters combine to produce a three-element force vector 

based upon the binary eight-element thruster vector. 

The goal of noise injection is to move neuron activations away from the transition region, 

so that roundoff error will be small when the discrete-valued functions are replaced. For 

this reason, the standard deviation of the noise is chosen to be higher than the width of the 

transition region of the sigmoid. 

Figure 5.2 shows how the neuron output distribution changes as the noise level increases: 

with no noise, only a single output can result; but as noise increases to cover most of 

the transition region, the output distribution approaches that of a hard-limiting function. 

Differentiability is maintained, however, so that gradient information will be available to 

speed up learning. Since the noise has pushed the distribution to approximate a hard- 

limiting nonlinearity, when the hard-limiter is re-introduced at run-time the performance 

degradation will be small. 

5.5    Application Considerations, Extensions 

5.5.1    Selection of Noise Level 

One concern is the attenuating effect of the derivative-of-sigmoid function. When back- 

propagated through many layers of near-saturated sigmoids, the error signal is attenuated 

and may lead to slow learning. To handle this problem, it may be necessary to be gradual in 

increasing the noise level; slowly push the outputs from the linear region to the hard-limits, 

rather than all at once. However, since all the experiments presented here had a single layer 

of discontinuity, no such gradual increase was required. 

For training networks with simple bi-level sigmoids, once the noise reached a sufficient 

level (roughly 0.5 and 3 in two different applications), there was no degradation if it were 

increased beyond that level. The only possible drawback is the attenuation effect mentioned 

above. The required noise level varies in different applications depending upon how sharp 
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Figure 5.2: Effect of Noise Level on Sigmoid Output Distribution 

Lightly-shaded region in column 1 represents the sigmoid input probability distri- 
bution (in this case, -0.3 + uniformly distributed noise). Darkly-shaded region 
in column 3 is the sigmoid output distribution (from -1 to 1). Each distribution 
has an area of 1. Input and Output are plotted together in column 2 to show 
how the sigmoid produces this input-output relationship. As noise level increases, 
and the input distribution spreads out, the sigmoid output approaches that of a 
hard-limiter, while remaining differentiate. 

the decision boundaries would be with no noise (i.e. if it's a sharp sigmoid to begin with, 

not much noise is needed to force it off the transition region). 

When multi-level sigmoids are used, as seen in Figure 5.8, there is an upper limit to 

the noise level: too much noise may cause the individual sigmoids to overlap, which in this 

example would blur out the middle level.   The specific level of noise at which this effect 
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begins depends upon the sharpness of the sigmoids and the discrete values approximated. 

In Figure 5.8, with a sharpness factor of 4 (slope at midpoint = 4) and one unit between 

discrete levels (-1,0,1), this effect begins around N = 0.2 and is significant at around 

N = 0.3. These values could have been predicted by sketching the limits of the noise-altered 

function (the shaded region in Figure 5.8) and determining at what point the middle region 

(input = 0=> output = 0) becomes affected by the noise. 

The key idea in this algorithm is that the network performance error is linked to round- 

off error due to use of the sigmoid transition region. The goal of the noise injection is to 

discourage use of this transition region. Therefore, whether use is discouraged using Gaus- 

sian noise, uniform noise (used here), fixed-level noise, or additive penalty functions, the 

effect is qualitatively the same. 

5.5.2 Discrete-Valued Functions Other Than Bi-Level Signums 

If adapting a system that contains discrete-valued functions that are not simple Heaviside 

step functions, the method may work if a continuously differentiable approximating function 

is used. For example, a function whose output can take on multiple discrete values may be 

approximated by combining multiple sigmoid functions. For the thruster mapping problem 

described in Section 4, the thruster can take on three states: forward, off, or backward. 

Two bi-level (-1,1) sigmoids were summed to produce a tri-level (-1,0,1) sigmoid. 

In fact, the sigmoid-based approximation may be developed through a supervised train- 

ing technique using standard backpropagation. The limitation introduced by the atten- 

uation of error signals is again a factor, and must be considered when developing the 

smooth approximating function. This can be done by limiting the sharpness of the sig- 

moids if programming by hand. If training the approximating function, adding a complexity 

cost [59] [71] will keep the weights small, and will systematically limit the sharpness. 

5.5.3 Batch Learning 

The randomness introduced with the addition of noise could make learning slow because 

of the reduction in signal-to-noise ratio in the weight gradient estimation. Batch-learning, 

using the exact same training set from one epoch to the next worked well (considering 

the "training set" to include the "input set" and "noise set"). Freezing the training set 

and noise set defines a fixed deterministic cost hyper-surface. With a fixed cost function, 
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on-line tuning of momentum and learning rate can be applied to improve dramatically the 

convergence rate. 

5.5.4    Optimization of Discrete-Valued Parameters 

Another area where this method has potential is for optimization problems that have dis- 

crete valued parameters. For example, a design optimization problem where the task is to 

select the right DC motor, pipe diameter, or gear ratio from a finite set of discrete-valued 

options. It is expected that this method will extend well to this family of problems [31]. 

5.6    Application to Training Multi-Layer Signum Networks 

In this section, this method is shown to extend to multiple layers of hard-limiting units with 

no modification. Figure 5.3 summarizes the method: during training, replace each hard- 

limiter with a sigmoid and zero-mean independent noise source. Note that the sharpness 

of the sigmoids does not matter at all here (except for numerical considerations), since the 

sharpness factor simply multiplies the weights, and the weights are adapted. 

Run-time Training 

Figure 5.3: A Multi-Layer Signum Network, Seen at Run-Time and During Train- 
ing 

In the first test, an adaptive 3 — 5-4 signum network is trained to emulate the input- 

output mapping defined by an independent, fixed, 3-10-4 sigmoidal network. Fewer 

hidden neurons are used in the adaptive network to ensure that overfitting will not introduce 

unnecessary complications. The 3-10-4 network's fixed weights were randomly chosen 

between -2 and 2. 
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Figure 5.4:   Training with Noisy Sigmoids of a Multi-Layer Signum Network, 
Artificial Training Set 

Left: with higher noise levels, performance on the noisy sigmoidal network ap- 
proaches that of the signum network, indicating that the noisy sigmoid is a valid 
(and differentiate!) approximation for the signum. Right: As noise increases, the 
network adapts to sharpen its sigmoids, causing the ßrst layer weights to increase, 
and the sigmoid output distributions to approach hard-limiters. Activation distri- 
butions were collected over the whole training set, with no noise added. 

Performance is shown in Figure 5.4. Each dot on the graph represents the final perfor- 

mance after a full training run (10,000 epochs or until a local minimum was reached). Seven 

values for noise level were chosen, and ten different network initial conditions were used at 

each noise value. With no noise, performance is good for the sigmoidal network, but when 

the Signums are reintroduced at run-time, the error increases dramatically. One point is off 

the graph at an error of over 6 units. As noise increases, performance on the sigmoid network 

decreases, as expected, but the signum-network-performance improves, and approaches the 

sigmoid-network-performance. The weight magnitude and neuron activation distribution 

plots confirm that as noise increases, the noisy sigmoids behave like hard-limiters. Note 

that these activation distributions could not have been achieved by manually increasing the 

sharpness of the sigmoids: this would have had zero net effect, since the network would 

adapt the first layer weights to counteract exactly the sharpness increase. 
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Figure 5.5: Training a Multi-Layer Signum Network, Thruster Mapping 

In the second application, shown in Figure 5.5, the hard-limiting network is trained to 

emulate the optimal thruster mapping, which will be described in detail in the next section. 

For now, this mapping is used as an independent second test of the method. A similar 

dramatic improvement in hard-limiting performance occurs as noise increases past about 

0.5. It is not shown on the plot, but good performance is obtained at least up to a noise level 

of three. The training set for this mapping represents continuous values being mapped to 

discrete values, so the first-layer weights are high (indicating sharp decision hyper-surfaces), 

even for noise = 0. 

5.7    Application to Thruster-Mapping Problem 

In order to demonstrate this new training procedure, it was applied to the thruster mapping 

with indirect training, as shown in Figure 5.6 or the top section of Figure 2.13. In this case, 

the optimal mapping is not used, and the neural network must learn the mapping through 

experimentation with the plant model. This requires back-propagation of error through 

the discontinuous thrusters, which motivated development of the noise injection method 

presented in this chapter. 

Training without this noise-injection technique produces large errors, because the dis- 

crete-valued nature of the thrusters is not enforced during network training, and large 
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Figure 5.6: Thruster Mapping, Indirect Training Method 

roundoff errors result at run-time. For example if one unit of thrust is requested in the 

+x direction, during training, the network will set T4 and T5 to +0.5; but at run time, for 

requested forces near 1.0, T4 and T5 are likely to both be 0 or both be 1, resulting in a large 

error. 
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Figure 5.7: Results of Indirect Training, Two Differentiable Thruster Models 

The sigmoid-based approximation (without noise) is better than the linear model, 
but has limited performance. The results from direct training represent a lower limit 
for comparison. Mapping error is average percent error above the optimal mapping 
(which results from an exhaustive search of all possible thruster combinations). 
The shaded areas represent the mean ± a for ten different runs. 3-10-4 layered 
networks were used. 
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Figure 5.8: Results of Indirect Training, Noisy Tri-Level Sigmoid Thruster Model 

Left: the sigmoid sharpness factor (slope at the midpoint = 4) and noise level (0.15) 
for the noisy tri-level sigmoid appear to be intuitively correct. Right: as noise 
increases, performance approaches that of the network trained directly (emulating 
the optimal mapping), with best performance at a noise level of about 0.15. 3—10—4 
layered networks were used. 

Figure 5.7 shows the result of indirect training with two differentiable thruster mod- 

els. During training with the continuous thruster models, the neural network produces a 

mapping with a very low error, which is not plotted here. However, when the continu- 

ous thrusters are replaced by signum thrusters at run-time, the error is large, and is the 

"thruster mapping error" plotted in the right half of Figures 5.7 and 5.8. The errors are 

high because the network learned to optimize the solution using outputs that would be 

unavailable at run-time. The resulting roundoff error is unknown to the neural network 

during training. 

In Figures 5.7 and 5.8, each dot represents the final performance after a 10,000 epoch 

training run. The shaded regions represent mean ± a performance for ten runs. 

Figure 5.8 shows the results when the thrusters are modelled by noisy tri-level sig- 

moids. With noise = 0, error is high, corresponding to the data in Figure 5.7, but as 

noise increases, performance approaches that of the network trained directly (emulating the 

optimal mapping). 
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The direct-training performance represents a lower bound set by the functional com- 

plexity of the 3 - 10 - 4 layered network. The best noise value in this application seems 

to be around 0.15, and the resulting noisy sigmoid is shown in the left half of Figure 5.8. 

Examining this figure, the sigmoid sharpness and noise levels seem to be set correctly ac- 

cording to intuition. As noise increases beyond 0.2, error increases as expected (the "off" 

region of the sigmoid becomes blurred). The method is fairly robust to the noise value 

selected, and the effect of noise level on performance makes intuitive sense. 

A good solution results when noise is added, because it prevents the network from 

using a solution that uses non-saturated portions of the tri-level sigmoid. Such a solution 

would give a nearly random output and high error during training. The training algorithm 

must find a solution that works well despite the noise addition. This means the expected 

value of the output must be well into the saturated regions to work consistently well. The 

results approximate the optimal solution very well, and work when the tri-level sigmoids 

are replaced with tri-level Signums. 

5.8    Other Uses of Noise in Related Problems 

Noise has been shown to be central to the success of this new algorithm. While this par- 

ticular use of noise is new, artificially-injected noise has been used successfully in previous 

applications for control, neural networks, and optimization. 

In control and signal processing, quantization error results when an analog signal is 

sampled digitally (with inevitably finite precision) by an A/D converter. This effect was 

first studied extensively in the Ph.D. work of Bernard Widrow, and published in [66]. In 

analyzing this phenomenon, the roundoff error may be treated as a source of noise. While 

this work has little direct bearing on the algorithm presented here, the presence of noise 

and roundoff error in the same problem is interesting. 

In control applications, it is common to add an artificial dither signal to break the effects 

of stiction. This dither is usually chosen to cause a force just large enough to overcome the 

static friction, and is input at a frequency high enough that it does not affect the rest of 

the control system. Again, there is little direct connection with the noisy-sigmoid training 

algorithm, but it represents a previous application of artificial noise injection in control. 

In the human vision system, the limitation of a finite number of receptors in the retina 

is overcome by the artificial addition of a dither signal. Very small, high-frequency motions 



5.9.   SUMMARY 85 

of the eye are used to allow people to see thin far-away objects that might otherwise go 

unseen due to the finite number of receptors. 

When training a neural network with a limited set of training data, one approach to 

control the effect of overfitting is to duplicate the elements of the data set, and add different 

amounts of noise to each one, in an attempt to increase the effective size of the data set. 

Adding noise to the weight updates has been tried, with some success, to improve the 

learning speed of neural-network training [34]. This is a similar concept to simulated anneal- 

ing, the addition of a random element in the weight update rule whose magnitude decreases 

exponentially. The idea in simulated annealing is to prevent the common optimization 

problem of getting stuck in a local minimum. If the magnitude of the random element is 

decreased slowly enough (i.e., the time constant approaches infinity), convergence to the 

global optimum is guaranteed. This gradual reduction in temperature is similar to that 

in a metallurgical annealing process - hence the name. Simulated annealing is a common 

algorithm in optimization for systems other than neural networks. 

In genetic algorithms, species are evolved using two primary methods to go from one 

generation to the next: (1) crossover, the combination of traits between competitively- 

selected parents; and (2) mutation, the addition of a random element in the next-generation 

chromosome. 

While the above examples show that the concept of artificially-added noise for control 

and optimization problems is well-tested, the use of noise presented in this thesis - to 

produce an accurate differentiable approximation to a DVF for gradient-based optimization 

- is completely new. 

5.9    Summary 

This chapter has described a new technique that allows backpropagation learning to work 

with systems containing discrete-valued functions, despite the discontinuity that exists be- 

tween discrete values. The modification to backpropagation is very small, simply requiring 

sigmoidal approximation of the discrete-valued functions, and the careful injection of noise 

into the smooth approximating function on the forward sweep. The noise injection is critical 

to ensuring that the noisy sigmoid behaves like a signum during training. 

Multi-layered networks of hard-limiters require simpler processing hardware than do 

multi-layered sigmoid networks.   Sigmoid networks are commonly used, however, due to 
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their increased functionality as well as the lack of a reliable training algorithm for signum 

networks. Multi-layered signum networks have now been successfully trained using this 

noise injection method in two different applications, clearly demonstrating its usefulness in 

this area. 

Application to a complex thruster-control problem, with implementation on a labora- 

tory model of a free-flying space robot, has demonstrated the method's realizability and 

usefulness for on-off control problems. 

In each application, the training behavior in the presence of noise has been well under- 

stood, and the algorithm appears to be relatively robust to the amplitude of the injected 

noise. 



Chapter 6 

Experimental Demonstration of 

Reconfigur at ion 

Experiments were performed on the mobile robot described in Chapter 2 to verify the ap- 

plicability of these neural network results. Position and attitude of the robot base are 

controlled while subject to multiple, large, possibly-destabilizing changes in thruster char- 

acteristics. The plant is linear and well-modelled, except for the actuators, which are on-off 

thrusters that could have altered characteristics. An off-board vision system provides high- 

bandwidth position feedback, which is then digitally filtered and differentiated to provide 

velocity feedback. On-board accelerometers and an angular-rate sensor are used to provide 

base-acceleration measurements used by the failure-detection and control-reconfiguration 

capability. This chapter reviews the complete control system, and presents experimental 

results. 

6.1     System Overview 

Figure 6.1 shows the overall system block diagram which was discussed initially in Chapter 3. 

In this chapter, each block will be described in detail. 

The User issues motion commands with a mouse-based graphical user interface (GUI) 

that runs on a Sun1 workstation adjacent to the robot. The user views an image of the 

robot that is updated with real-time data from the Position Sensor described below. He 

or she can use the mouse to drag a ghost image of the robot to the desired final location, 

1Sun is a trademark of Sun Microsystems, Inc. 

87 
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Figure 6.1: Reconfigurable Control System - Block Diagram 

This control system is based upon a conventional indirect adaptive controller, such 
as a self-tuning regulator. Examples of the continuous-valued Fdes vector and 
the corresponding discrete-valued T vector are shown. The ID block represents 
a recursive-least-squares identification of thruster strength and direction. This 
continually-updated model is passed to the neural network training block, shown 
in detail in Figure 5.6. The continually-updated neural thruster mapper is copied 
periodically into the active control loop. 

adjusting its position and orientation. The motion is then initiated by clicking on a button 

that is part of the GUI. 

The Trajectory Generator receives the current and desired position and velocity vec- 

tors and generates a quintic-polynomial trajectory between the two locations. A quintic- 

polynomial means there are six coefficients of a polynomial function of time. These pa- 

rameters are chosen to match the initial and final position and velocity (four parameters) 

and set acceleration to zero at initial and final times (the two remaining parameters). The 

duration of the slew is minimized automatically while not exceeding the pre-defined accel- 

eration limits (corresponding to the limits in actuation). The result is a time history of 

desired states, Xdes, consisting of [xdes, Vdes, i>des, ides, Vdes, ^des]- 

The PD Controller takes the desired state, Xdes, from the Trajectory Genera- 

tor, and the measured state, X, from the Position Sensor. The translational propor- 

tional and derivative gains are 32.5 N/m and 91 N/(m/s), resulting in closed loop poles 
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at s = -0.65 ± 0.2j (neglecting effects of the on-off actuators). The output of this 

component is a continuous-valued desired force vector, Fdes = [Fxdes-> Fydes, 7"vdeJ, such as 

[0.9 N, -1.3 N, 0.4 N-m]. 

The Thruster Mapper takes the desired force vector, Fdes, and produces the thruster 

vector, T, that causes the thrusters to open or close. An FCA network is used to implement 

the thruster mapper. Like the rest of the low-level control loop, it is written in the C 

programming language and executed on a Motorola® 68040 processor (MVME 167) on 

the robot. The real-time control system was developed with ControlShell2 development 

software and the VxWorks3 operating system. Details of the network are described below. 

The signal flow of the thruster-mapper component is shown in Figure 6.2. The final output 

is the binary eight-element vector of thrusters to fire, T = [Ti T2 T3 T4 T5 T6 T7 T8]. 
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Figure 6.2: Thruster Mapper - Signal Flow 

The signal Row of the "thruster-mapper" component shown in Figure 6.1 is pre- 
sented. The mapper produces a Tmap vector based upon the desired force, but 
this signal may be changed by the "Fire Control Module" during the identification 
process. A list of thrusters to excite, TeXcin, is provided by the "ID" component. 
A FireOneOnly signal is also used to simplify the identification by limiting firing 
to one thruster at a time. Both of these ID-related functions may be over-ridden if 
the tracking error, Xerr, is too high. The parameters (neural-network weights) that 
define the function implemented by the thruster mapper are periodically copied 
from the neural-network training process. 

2 ControlShell is a trademark of Real-Time Innovations, Inc. 
3 VxWorks is a trademark of Wind River Systems, Inc. 
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The Robot has a mass of 70 kg, floats nearly frictionlessly on the granite table, has 

eight thrusters, each nominally producing 1 Newton of thrust. Since control of the robot 

manipulators was not relevant to this research, the arms are commanded to maintain a fixed 

position at all times. This involves RVDT sensors, an analog pre-filtering and differentiating 

circuit, A/D converters, a PD controller for each of the four joints, D/A converters, motor 

driver boards, and finally the brushless DC motors and cable drive system that actuate 

the arms. The arm endpoints are equipped with pneumatic plungers, allowing the robot to 

capture a free-floating target object. 

The Position Sensor is a pair of CCD cameras mounted to the ceiling above the 

robot. Two cameras are required to cover the total surface area of the 2.74 x 3.65 meter 

(9 x 12 foot) granite table. The cameras detect a pattern of LEDs mounted to the top 

of the robot. A custom vision processing board processes the camera output, and produces 

position information at a 60 Hz update rate that is accurate to better than 1 mm. This 

[x, y, V] vector is digitally filtered and differenced to produce a velocity vector. The 

processing is performed off-board and then communicated back to the robot via a wireless 

Ethernet data/communications link. 

The Sample Rate for the low-level control loop was chosen to be 10 Hz. This is 

more than an order of magnitude faster than the PD controller bandwidth, and is slow 

enough to allow transient acceleration effects to die out, leading to the accurate acceleration 

information needed for reconfiguration. If reconfiguration is not required, the sample rate 

can be increased to 60 Hz. Sampling faster than that produces no benefit, since the vision 

system operates at 60 Hz, and the thruster bandwidth is approximately 30 Hz. 

Summary of the signal flow in the low-level control loop: LEDs on top of the 

robot emit infrared light. CCD cameras on the ceiling receive the light, and send the signal 

via a coaxial cable to the custom vision processing board mounted on a fixed rack adjacent 

to the granite table. The "pointgrabber" vision board scans the image for bright pixels. 

When the known pattern of LEDs is located, the vision board calculates the orientation and 

geometric center of the robot. Velocity is also calculated on the vision board by digitally 

filtering the position information. The 6-element robot state vector is broadcast to the 

robot at a 60 Hz update rate (and less than 30 ms total time delay) over the Motorola 

Altair wireless Ethernet system. The robot then sends this information back to the user 

interface running on a Sun workstation. The on-board microprocessor takes the state vector 

and uses the PD controller to calculate the desired force, convert to robot coordinates, 
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and uses the Thruster Mapper to calculate the thruster vector (e.g. [10 10 0 0 0 1]). 

This vector is sent over the VME backplane to the digital I/O board, which then controls 

the opening and closing of the eight solenoid valves. This releases air from the 100 psi 

reservoir out through the converging-diverging nozzles to produce one Newton of thrust per 

thruster. 

The Acceleration Sensors are described in detail in Chapter 2. Two accelerometers 

are mounted on the base orthogonal to one another, along with an angular-rate sensor. 

The acceleration signals and angular-rate signal are pre-filtered to remove the effects of 

extraneous vibrations. The filtered signals pass through an A/D converter, and then through 

the VME backplane to the microprocessor. The base translational acceleration vector is 

derived by subtracting centrifugal accelerations (calculated using angular-rate information) 

and converting to the robot frame. The angular-acceleration signal is obtained by digitally 

filtering and differencing the angular-rate signal. The [x, y, il>] vector of the robot base is 

the output of this component, as shown in Figure 6.3. 
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Figure 6.3: Acceleration Sensors — Signal Flow 

The signal flow of the "acceleration sensors" component shown in Figure 6.1 is 
presented. The accelerometers are filtered with analog and digital ßlters to produce 
the Accel #1 and #2 signals. The angular-rate sensor signal is similarly filtered, 
with the additional step of a digital difference, which produces ip as well as tp. ip is 
output directly, while ip is used to compensate for centrifugal accelerations measured 
by the accelerometers. The acceleration signals are then rotationally transformed 
to align with the x and y coordinates of the robot. When the angular-rate sensor 
saturates, angular rate and acceleration derived from the overhead vision system 
are used, as indicated by the logical switches. 

The ID component identifies the characteristics for each of the eight thrusters. This is 

described in detail below. At a simple level, it takes in the acceleration vector and thruster 
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vector, and performs a recursive linear regression to identify the thruster parameters. The 

more-complicated factors, such as failure detection and thruster excitation, are described 

below, and summarized in Figure 6.9. A linear regression may be used here, since the 

forward model of the thrusters is linear, e.g. firing thruster (l) may produce -1.03 N in the 

x direction, 0.07 N in y, and 0.137 N-m in ip. The result is a 24-element matrix, containing 

the thrust produced by each of the eight thrusters in each of the three degrees of freedom. 

This is the "robot model" indicated in Figure 6.1. 

Thruster Mapper 
periodically copied 

to control loop on robot 
Model updates 

from ID process 

NN TRAIN 

Fdesired Thruster 
Mapper (NN) 

Figure 6.4: Neural-Network Training - Signal Flow 

The signal Oow of the "NN train" component shown in Figure 6.1 is presented. The 
model used in training is updated by the ID process, and the neural-network thruster 
mapper developed here is copied periodically to the thruster mapper running on the 
robot. The algorithm used to adapt the neural network based on the error signal is 
shown in Figure 5.6. 

The NN train component is responsible for redesigning the thruster mapper to account 

for changes in the robot model. It waits until a major change is detected, calculates a 

linear mapper, and implements it on the robot using the FCA, described in Chapter 4. 

When smaller changes occur (as the ID process converges), the model used for training 

is updated. If further major changes are detected, the network is reinitialized to a newly- 

calculated linear mapper. Indirect training is performed using the modified backpropagation 

algorithm described in Chapter 5. The thruster mapper being trained is copied periodically 

to the thruster mapper running on the robot. The network is grown gradually, resulting in 
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a fast initial learning rate. The details of the training are presented below, and summarized 

graphically in Figure 6.4. 

Summary of the signal flow in the adaptive system: Accelerometers and an 

angular-rate sensor measure motion of the robot base. The raw signals are prefiltered 

on-board, pass through an A/D converter to the microprocessor, where the dynamics are 

accounted for, and the base acceleration vector is computed. This signal is transmitted 

using the wireless Ethernet to a Sun workstation that is running the ID process. The ID 

process forms the robot model and transmits updates to the NN training process running 

on another Sun workstation. The updated neural-network thruster mapper is copied 

periodically to the robot via the wireless Ethernet, where it is substituted for the thruster 

mapper running in the control loop. 

6.2    Trajectory-Following Performance 

Before the reconfiguration capabilities are presented, trajectory-following performance with 

all thrusters working is discussed. This serves two purposes. First, it demonstrates that the 

base-control strategy of separating the thruster-control system into a control component 

and a thruster-mapping component is valid. Second, it demonstrates that a neural-network 

emulation of the search-based thruster mapper (which is optimal) can provide near-optimal 

performance. 

When evaluating performance, the effects of the on-off actuators should be considered. 

Due to the control structure, PD-control gains, and thruster-mapping cost function selected, 

a deadband exists within which the thrusters will not fire, even with an optimal thruster 

mapper. While the size of this deadband is difficult to characterize due to the thruster- 

coupling effects, the maximum static deadband (assuming zero velocity error and error in 

one degree of freedom only) is approximately 2.9 cm in translation and 10.6° in yaw angle 

(with the nominal thruster configuration). 

6.2.1    Trajectory-Following Performance: One Degree of Freedom 

Figure 6.5 shows the trajectory-following performance for a single-degree-of-freedom ma- 

neuver. The robot base position is commanded to follow a quintic-polynomial trajectory in 

the -\-x direction. The trajectory parameters are chosen to achieve the desired final position 

while setting initial and final velocity and acceleration to zero. Because of this, a couple 
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of seconds pass before the thrusters fire, even though the trajectory begins at t=0. The 

duration of the maneuver is set automatically, by keeping the peak acceleration within the 

actuation limits of the robot. In this case, the 1-meter slew took 20 seconds. 
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Figure 6.5:   Single-Degree-of-Freedom Trajectory Following, Experimental Re- 
sults 

Trajectory-following performance is plotted for a quintic-polynomial trajectory 
of length 1 meter and duration 20 seconds, in the +x direction. The nominal 
thruster conßguration is present. An FC A network with 5 hidden neurons pro- 
vides trajectory-following performance comparable to that of the optimal thruster 
mapper, which is implemented via exhaustive search. 

The control system used is the one described above, except that no adaptation is re- 

quired. Two different thruster mappers are used: a neural-network mapper implemented 

with an FCA network with 5 hidden neurons; and an optimal thruster mapper, implemented 
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via exhaustive search. Both mappers are aided by symmetries (as described in Chapter 2). 

Although the neural mapper is sub-optimal (mapping performance on a set of test data 

resulted in average force errors 3.5% greater than the optimal mapper), the trajectory- 

tracking performance is comparable. Due to the presence of feedback, the 3.5% mapping 

error is not significant, considering the other disturbing factors, such as imperfect thruster 

characteristics (steady-state and transient), sensor noise, and deadband. 
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Figure 6.6: Multiple-Degree-of-Freedom Trajectory Following 

The initial, middle, and final positions are illustrated for a multi-coordinate ma- 
neuver (x, y, i>). Quintic-polynomial trajectories are followed simultaneously in 
each of the three degrees of freedom. The position of the robot's geometric center 
obtained using the FCA mapper is also plotted (heavy black line). 

6.2.2    Trajectory-Following Performance: Three Degrees of Freedom 

For the multi-coordinate maneuver ([x, y, i>]) shown in Figure 6.6, good tracking is obtained 

again from both optimal and neural-network thruster-mapping components. In this 22- 

second-long trajectory, the robot simultaneously translates 1 meter in the +x direction, 
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1 meter in the +y direction, and 180° in the +V direction. The position of the robot's 

geometric center is plotted in this figure. Quintic-polynomial trajectories are used for each 

degree of freedom. Each is executed simultaneously, with the peak acceleration for each 

degree of freedom limited to the physical actuation limits. 
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Figure 6.7: Multiple-Degree-of-Freedom Trajectory Following, Experimental Re- 
sults 

Trajectory-following error for the multi-coordinate maneuver illustrated in Fig- 
ure 6.6 is plotted for each of the three coordinates, (x, y, i>). The performance of 
the FCA Mapper with 5 hidden neurons is excellent, and is comparable to that of 
the mapper implemented with exhaustive search ("Optimal Thruster Mapper"). 

Trajectory-following errors for this multi-coordinate maneuver are plotted in Figure 6.7, 

providing a comparison of the neural and optimal thruster mappers. This experiment 

used the same controllers used for the single-degree-of-freedom maneuver described above. 
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Again, the performance is excellent, and comparable results are obtained from the neural 

and optimal mappers. 

6.2.3    Trajectory-Following Performance: Summary 

This preliminary experiment has verified the applicability of the non-adaptive portions of 

the neural network control system. The neural mapper was shown to provide trajectory- 

following performance comparable to the optimal mapper, which was implemented by ex- 

haustive search. As discussed earlier, the advantages of the neural-network approach do 

not apply strongly in this application until there is the requirement for reconfigurability. 

6.3    Control Reconfiguration Problem Definition 

Figure 6.8 shows the thruster layout in the nominal configuration as well as an example of 

a dramatically-failed configuration. The magnitude and direction of each thruster is shown. 

Nominally, each thruster produces 1 Newton of force, directed as shown. The failures were 

produced by mechanically changing the thrusters. Failures include: half-strength (©), 

plugged completely ((§)), angled at 45°((5) and (§)), and angled at 90°((3) and (4)). The 

90° failure modes place high demands on the control-reconfiguration system, since they 

destabilize the robot (changing the direction of torque results in positive feedback!). 

Requirements for the reconfigurable control system include: 

1. The robot is not informed of the nature of these failures, or even that a failure has 

occurred. The adaptive system must first detect the failure(s), then identify the 

new thruster characteristics, and finally train and implement a new neural-network 

thruster mapper that accounts for these changes. 

2. Control must be maintained at all times, but artificial excitation is allowed when 

position errors are small. This requirement keeps the robot within the bounds of the 

workspace (i.e. on the table), and allows it to carry on with its mission during the 

reconfiguration. For example, in this case, the robot can be commanded to move 

throughout the workspace during reconfiguration. 

3. The entire adaptive system, including ID and re-training, is to be autonomous, re- 

quiring no user intervention at all. 
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Nominal Configuration After Multiple Failures 

Figure 6.8: Example Failure Mode 

Magnitude and direction of each of the eight thrusters is shown. Thruster failures 
were simulated mechanically with weaker thrusters and 90° and 45° elbows. Some 
of the elbows destabilize the robot by changing the sign of thrust in the ip direction. 

Six out of eight thrusters have failed in the case presented here. There is no theoretical 

limit to the number or type of failure that can be identified and be accounted for by the 

reconfigurable control system. However, there is a limitation if the controllability of the 

robot is impacted. For example, if both thrusters on the front of the robot (Q) and (8), 

as labelled in Figure 6.8) had failed completely, and no other thrusters contributed force 

in that direction (-x), there would be no actuation authority in the -x direction. If it 

were necessary to accommodate failures like this, a higher level process (perhaps part of 

the trajectory generator) could command the robot to rotate, bringing working thrusters 

in line to provide the required thrust. In the example failure mode shown in Figure 6.8, 

there is sufficient actuation authority in plus and minus directions for all three degrees of 

freedom, so this issue is not yet addressed here. 

To summarize, the basic reconfiguration strategy is to first detect the failure(s), then 

identify the new thruster characteristics, and finally train and implement a new neural- 

network thruster mapper. The structure of the control system is summarized in Figure 6.1. 

Running the adaptive process (neural-network training) in parallel with the identification 

process leads to stabilization within seconds, and causes the robot to be well-controlled 

during the identification. 
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6.4    Identification of Failures 

Before reconfiguration can occur, the failures must be identified. The control system is not 

informed of the number or type of failures beforehand. It must detect, and subsequently 

identify, each of the failed thrusters. Failure detection and system identification are closely 

related in this implementation, so they are presented together here. The signal flow of the 

identification process is shown in Figure 6.9. 
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Figure 6.9: Identification Process — Signal Flow 

Inputs are the thruster commands and acceleration signals, sampled from the real- 
time system at 10 Hz. The primary output is the model of thruster characteristics, 
a 3 x 8 matrix containing the forward mapping from thrusters to accelerations. 
Additional outputs, Texcite and FireOneOnly, are used in the control loop as part 
of the artificial excitation process. 

6.4.1    Identification Summary 

The task is to take in acceleration signals, (x, y, ^), an<^ thruster commands, and form a 

model of the strength and direction of each thruster. Since this is a purely linear relationship, 

there is no need for a neural network, and a linear-systems approach works well. When the 

thruster model is found to deviate from the nominal, a thruster failure is "suspected." The 

thruster in question will be excited artificially to obtain more information about it, speeding 

up the identification process. When a certain level of confidence is reached and the new 

characteristics of the suspected thruster are confirmed, the artificial excitation is turned 
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off. Throughout the identification, model updates are sent to the neural network training 

component. This procedure, explained here for one thruster, runs in parallel for each of the 

eight thrusters. 

There are a number of complicating factors for the system identification process: multi- 

ple thrusters may be fired simultaneously; the acceleration signals are corrupted by extra- 

neous mechanical vibrations of the robot in the frequency range of interest; the response 

time of the thrusters is on the order of the sample period; and variations in the reservoir 

pressure during the firing of multiple thrusters affects the thrust output. These problems 

are addressed by filtering, reduction of the sample rate to 10 Hz, and design of the system 

ID process (e.g. waiting for a certain confidence level to be reached - i.e. collecting enough 

data - before declaring a thruster failure) 

At the heart of the identification process are two recursive linear-regression processes 

running in parallel, incorporating acceleration and thruster signals as they become available. 

Each linear regression yields a 24-parameter model containing the x, y, and tp acceleration 

associated with each of the eight thrusters. 

6.4.2    Failure Detection 

The first recursive linear-regression process is used primarily to detect when a failure has 

occurred for each thruster. This "Failure-Detection" process has a weighting factor that 

causes it to focus on the most recent few seconds of data (the weighting parameter decays 

exponentially in time - a "forgetting factor"). The time constant of the exponential decay 

was chosen to allow quick response to a failure, but still allowing enough data collection to 

prevent premature failure declaration. 

This process, shown in Figure 6.9, is initialized with a model of the nominal thruster 

configuration; however, due to the forgetting factor, the model can change quickly based 

upon new data. The recursive process propagates a model (3x8 matrix representing the 

best estimate of the acceleration resulting from each thruster) and covariance matrix (8x8 

matrix representing the amount of information collected for each of the eight thrusters). 

Every time a thruster is fired, the ID process collects more information about that 

thruster, leading to a higher level of confidence in the estimate of the model parameters for 

that thruster. A "confidence factor" is calculated by taking the diagonal terms from the 

inverse of the covariance matrix. Due to the forgetting factor, the confidence factor does 

not rise monotonically - it will fall if the thruster is not fired for some time. 
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The model generated is compared with an "Accepted Model." The "Accepted Model" 

is the overall best estimate of thruster characteristics, and is the one sent to the neural- 

network-training process. It is set initially to correspond to the nominal thruster configu- 

ration, but may be updated by either of the two recursive linear-regression processes. 

If an error in the model is detected (i.e. difference between identified and accepted 

models exceeds a certain threshold) for one or more thrusters, and the confidence level for 

the thruster(s) is high enough, a suspected thruster failure is declared. This decision process 

is shown as the LOGIC ELEMENT in Figure 6.9. When this condition is met, three things 

happen: 

1. The suspected thruster is added to the "List of Suspects." 

2. A reset signal is sent to the "Model-Building" Recursive Linear-Regression process. 

For the newly-suspected thruster(s) only, all prior information is to be erased. This 

is achieved by inverting the covariance matrix, zeroing the row and column corre- 

sponding to each newly-suspected thruster, inverting this matrix (setting the diagonal 

element to a small number so the inversion is possible), and setting the covariance 

matrix equal to this quantity. This has the effect of eliminating any prior information 

concerning the newly-suspected thruster, while leaving the rest of the model intact. 

3. The identified model (for the newly-suspected thruster(s) only) is copied to the "Ac- 

cepted Model." This is shown by the closing of the switch in Figure 6.9. This new 

"Accepted Model" is then sent immediately to the neural-network training process. 

There, a linear approximate solution is calculated immediately4, infused into an FC A 

network and copied to the robot. The result is a near-instantaneous stabilization of 

the robot, once the thruster failure has been detected. 

Once a thruster is suspected, it will not be labelled as a suspect again until the adap- 

tation process is reset. It will remain on the list of suspects until it is removed by the 

"Model-Building" Recursive Linear-Regression process. 

4The a priori linear solution used here was found by assuming that the thrusters are capable of continuous- 
valued thrust output (a linearized version of this problem). The solution is an 8 x 3 pseudo-inverse of the 
3x8 matrix which maps thrusters to base forces, F. Some simple adjustments are then made to account 
for the one-sided aspect of the thrusters (i.e. they can not produce negative thrust). 
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6.4.3    System Identification 

The second recursive linear-regression process is used to build the model of the thrusters 

that is used for neural-network training. This "Model-Building" process does not have a 

forgetting factor - it incorporates all of the information equally, so the result is exactly the 

same as if a single batch-least-squares identification were run using all of the data. 

This model is meant to be stable, basically changing only after a suspected thruster has 

been flagged. For this reason, it is initialized to the nominal model with a high level of 

confidence, and therefore does not vary significantly with random fluctuations in the data. 

However, when a thruster is flagged as being suspected by the "Failure-Detection" process, 

all information about that thruster is eliminated, as described above. Information about 

the other thrusters remains unchanged. New information about the suspected thruster is 

then incorporated into the ID process, and it reacts quickly to the new situation due to the 

elimination of old information. 

The model and covariance matrices are updated recursively as new data comes in, as 

with the "Failure-Detection" Linear Regression. Since there is no forgetting factor, the 

confidence factor rises monotonically. When certain levels of confidence are reached and 

error criteria are met, the "Accepted Model" is updated. When confidence reaches a high 

level, the thruster(s) in question will be removed from the "List of Suspects." 

During the time between first suspicion and final confirmation, the thruster in question 

is excited artificially, as described below. 

6.4.4    Artificial Excitation 

When a thruster is suspected of having failed, an artificial-excitation method will cause that 

thruster to fire more than it normally would, allowing for more information to be collected, 

and ultimately, expediting identification. The excitation is achieved with two basic methods: 

(1) when position-control errors are "small," a thruster may be fired open-loop for a brief 

period of time (until the thruster characteristics are identified or the errors are no longer 

"small;" (2) when position-control errors are "medium," the thrusters that are targeted for 

excitation are used exclusively for closed-loop control. When when position-control errors 

become "large," artificial excitation is suspended until the errors are reduced. 

The excitation is controlled by two signals sent from the identification process to the 

robot: 
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1. A list containing which, if any, of the eight thrusters should be subjected to artificial 

excitation: Texcite. 

2. A TRUE/FALSE command indicating whether the robot should limit itself to firing 

one thruster at a time: FireOneOnly. 

List of Suspects 

The "List of Suspects" component in Figure 6.9 keeps track of the suspected thrusters. 

Thrusters are added to the list by the "Failure-Detection" component, and then removed by 

the "Model-Building" component once their new characteristics have been confirmed (and 

possibly a confirmation of no change, if the initial failure-detection signal was erroneous). 

FireOneOnly 

If the "List of Suspects" contains any thrusters, FireOneOnly is set to be TRUE. Firing 

of multiple thrusters complicates the identification process, and identification accuracy will 

be improved if firing is limited to one thruster at a time. However, keeping the tracking 

error low is a priority, and may override this limitation. The flow of signals is summarized 

in Figure 6.2. 

List of Thrusters to Excite 

When suspected thrusters exist, they are copied directly to the List of Thrusters to Excite, 

and are sent to the robot as Texciie, shown in Figures 6.2 and 6.9. When all suspected 

thrusters have been cleared by the "Model-Building" process, any thrusters that have not 

yet been identified to a high level of confidence are added to Texcite. The logic behind this 

is that if some failures have been detected already, then whatever caused them (such as a 

plumbing failure, micro-meteorite impact, or intentional damage imparted by a graduate 

student) may have caused other as-yet-undetected failures, and identifying them quickly is 

important. 

Thruster excitation will be attempted as long as at least one thruster remains in Texcite- 

If the robot position error is "large," no excitation will be used - the robot is most concerned 

with maintaining control. If the position error is "medium," and FireOneOnly is set to be 

TRUE, the robot will fire exactly one thruster. The thruster is chosen by finding the thruster 

from those in Texcite whose currently-estimated characteristics best matches the desired force 
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vector. In this middle region, artificial excitation takes place, but also serves to control the 

robot. If the position error is "small," the robot will fire exactly one thruster. The thruster 

is chosen by finding the thruster from Texcite whose currently-estimated characteristics most 

differ from the nominal. Some hysteresis is added to prevent chatter across small/medium 

and medium/large boundaries. 

This artificial excitation method leads to quick identification. For the case presented 

here, with 6 of 8 thrusters failed, the ID process consistently takes less than 60 seconds 

from when the first thruster is fired until the last thruster is identified to a high level of 

confidence. 

A reconfiguration example, including error and thruster-firing plots, is presented at the 

end of this chapter. The effects of the ID process and neural-network training will be 

presented there. 

6.5    Neural-Network Training 

The system identification process can be completed less than 60 seconds, due to the artificial 

excitation. However, the control system requirements do not allow the system to remain 

unstable for that length of time (the size of the granite table is the limiting factor). Use 

of linear approximate solutions implemented via the FCA provide stability, but with a low 

level of performance. Running the neural-network training process in parallel with the 

ID process results in higher-performance control, as the nonlinear capabilities of the neural 

network optimize beyond the starting point of the linear approximation. The neural-network 

training process is shown in Figures 5.6 and 6.4. 

The neural-network training is not activated until the first thruster failure is detected. 

From this point on, it is running continuously, using the most-recent thruster model provided 

by the ID process. When a significant change is detected, such as the total loss of a 

thruster, a linear solution is calculated, and the network starts from scratch, with the linear 

solution input via the FCA. When small changes are detected, such as the convergence of 

an identification on the new final value, learning is continued with the updated model. 

The performance of the neural-network thruster mapper is evaluated periodically on 

a "test set" of thruster-mapping input-output patterns. If the performance (a weighted 

combination of force matching and gas conservation) is better than the test-set performance 

of the thruster mapper currently on the robot, it will be copied to the robot. The copying is 
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performed by sending the FCA weight matrix (as in Figure 4.2) over the wireless Ethernet. 

The neural-network function running on the robot swaps in these new parameters, resulting 

in an instantaneous change in the functionality of the thruster mapper. 

6.6    Rapid Reconfiguration 

One of the major issues in neural control is speed of learning. This is important in the robot 

application due to the goal of stabilizing an unstable system within a limited workspace. 

Rapid reconfiguration has been achieved here, and it is due to a combination of two aspects 

of the learning process: first due to the FCA, and second due to the growing of the network. 

1. The FCA helps before training begins by immediately giving the network a good linear 

solution that stabilizes the robot. 

2. The neural network is grown during training. This refers to starting with a few hidden 

neurons and gradually adding new ones as training progresses. With few hidden 

neurons, very-quick learning takes place, since fewer computations are required, and 

fewer training patterns are required (to avoid overfitting). As more hidden neurons 

are added, the learning rate slows down, but the greater functionality can be used to 

further optimize performance. 

The network begins with 3 inputs, 8 hidden neurons, and 8 outputs, and gradually 

grows to 30 or more hidden neurons as training progresses. New hidden neurons are 

added when performance begins to plateau. To prevent overfitting, the training-set 

size is grown proportionally with the number of hidden neurons. With this arrange- 

ment, a mapping with about 30% error above optimal results in 30 seconds, 20% 

above optimal within 60 seconds, and 10% above optimal5 within 300 seconds, run- 

ning on a Sun Sparc 10 workstation. As more hidden neurons are added, the network 

performance approaches optimality, but at the expense of slower training. 

5T Due to the use of discrete-valued actuators, there is almost always a force error vector. The error value 
reported here indicates that the average magnitude of the force error vector is 1.10 times the magnitude 
achievable with an exhaustive search. 
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Figure 6.10: Experimental Results of Reconfiguration 

[x, y, ip] position errors (desired - actual) are plotted during autonomous reconfiguration of the 
control system in response to the six severe thruster failures shown in Figure 6.8. Static control 
deadband is approximately ± 3 cm in translation and ±11° in rotation. The robot begins at 
rest within the deadband, is disturbed at t = 0, stabilizes itself within 4 seconds, and completes 
identification (aided by artificial excitation) after 48 seconds. The neural-network thruster mapper 
continues to optimize after the identification is complete. Thruster signals are shown in lower plot. 
Black rectangular regions indicate periods of thruster firing. Darkly-shaded regions indicate the 
time during which the thruster was suspected. In addition to artificial excitation of the suspected 
thrusters, excitation of unsuspected thrusters is used to expedite the identification process. These 
periods are indicated by the lightly-shaded regions. 



6.7.   EXPERIMENTAL RESULTS OF RECONFIGURATION 107 

6.7    Experimental Results of Reconfiguration 

The previous sections have provided a description of the structure of the control system 

used for reconfiguration, as well as detailed descriptions of several of the key components. 

In this section, experimental data from a typical reconfiguration to recover from multiple 

destabilizing thruster failures is presented. Figure 6.10 plots the position errors (desired - 

actual) and thruster-firing histories during the reconfiguration. 

The thrusters have been misconfigured severely, as in Figure 6.8. Before t = 0, the 

complete control system is active, but no thrusters fire, since the robot is drifting within 

the control deadband. With no thrusters firing, the thruster failures do not cause problems, 

but they also cannot be detected. 

At t = 0 seconds, a small disturbance is applied to the robot. One of the first thrusters 

to fire is thruster (4) (shown in Figure 6.8 and the upper right corner of Figure 6.10), 

which is destabilizing in yaw, causing the robot to begin spinning out of control. The error 

signals in all degrees of freedom grow significantly following the disturbance, as seen in 

Figure 6.10. The robot spins to its left, causing factual to increase and farr0r to decrease 

(farror = faesired - factual)- The lower half of Figure 6.10 shows how thrusters ® (§) and 

© stay on almost continuously (indicated by the black regions) due to the instability. 

During this time (t = 0 - 4 seconds), the "Failure-Detection" process, shown in Fig- 

ure 6.9, has been collecting data. At t = 4 seconds it declares failures in thrusters (4) (§) 

and (§). This triggers a series of events, all occuring at t = 4 seconds: 

1. The "Accepted Model" is updated with the new parameter estimates for thrusters 

@ © and (6), as identified by the "Failure-Detection" process. The exponentially- 

forgetting linear regression weights recent data more heavily than old data, so the 

model built between t = 0 and t = 4 may be used effectively as a crude first approxi- 

mation of the characteristics of thrusters (4) (5) and (§). 

2. The new "Accepted Model" is sent to the neural-network-training process, where a 

linear solution is calculated immediately and implemented on the robot in the form 

of an FCA network. The model at this point is just a rough estimate, and the linear 

controller is far from optimal, yet these methods combine to result in the immediate 

stabilization of the robot. 
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3. The neural-network-training process begins now, at t = 4 seconds, using the above- 

mentioned linear solution as a starting point for training a new thruster mapper to 

accommodate the updated model. This process continues indefinitely: model updates 

are received from the identification process and incorporated into the training; if the 

change in model is small (such as the change in force estimate from 1.03 N to 0.95 

JV), training continues; if the change is significant (such as the initial detection of a 

major failure), the training is re-started with the linear solution as a starting point. 

4. Thrusters @ © and © are added to the "List of Suspects" (shown in Figure 6.9), as 

indicated by the darkly-shaded areas for thrusters (4) © and © in Figure 6.10. 

5. The Texcite vector is set to [4 5 6] and sent to the robot, along with a TRUE 

FireOneOnly signal. As discussed earlier in this chapter, a TRUE FireOneOnly 

signal means that the controller will fire only one thruster at a time (to obtain a more- 

direct identification), unless the regulation error becomes excessive. Furthermore, it 

will select thrusters to fire from only those that are listed in the Texcite vector, again, 

unless the regulation error becomes excessive. This will expedite the identification of 

these newly-suspected thrusters. The effect of these actions is immediately apparent 

in Figure 6.10: after t = 4 seconds, only one thruster is fired at a time, and the firing 

of thrusters @ © and © is favored. 

6. The "Model-Building" process, shown in Figure 6.9, is reset for thrusters (4) © and 

©. That is, all information about thrusters © © and © in this model is immediately 

and completely eliminated, while the information about thrusters Q) (2) © (7) and ® 

remain unaltered. Since a dramatic failure has been detected for thrusters (§) © and 

©, these models are built from scratch, beginning at t = 4 seconds. 

Each of the 6 items mentioned above occurred at t = 4 seconds. 

The cumulative effect of these events at t = 4 is immediate and dramatic. The robot is 

stabilized immediately, as seen by the leveling off of position errors. This rapid stabilization 

is made possible by the quick estimation of what thrusters (4) © and © are doing, and the 

subsequent linear control design and implementation as an FCA-neural-network thruster 

mapper on the robot. The errors can be seen to increase initially due to the momentum of 

the robot, and it takes a few seconds for them to turn around, due to the limitation to firing 

of one thruster at a time, but the restoration of stability is clear. The initial identification 



6.7.   EXPERIMENTAL RESULTS OF RECONFIGURATION 109 

is so fast in this case that errors never grew to be "large." If they had, the restriction to 

firing one thruster at a time would have been lifted until the errors were reduced to lower 

levels. 

At t = 6 seconds, thruster (2) is suspected and the entire process described above is 

repeated: a linear mapper is calculated and implemented via FC A; Texdte becomes [2456]; 

and the "Model-Building" process is reset for thruster (2). The position-error results are 

less dramatic, as the failure of thruster (2) is not destabilizing. 

At t = 8 seconds, the "Model-Building" process reaches a sufficient confidence value 

for its estimate of thruster (5). It updates the "Accepted Model" and removes thruster (5) 

from the "List of Suspects" and then from Texcite. This is indicated on the plot by the 

termination of the darkly-shaded region for thruster (§). It stops firing at that point, as it 

is no longer subject to artificial excitation. 

At t = 13 seconds, thrusters @ and (6) are confirmed similarly, as is thruster (2) at 

t = 15 seconds. Observation of the thruster-firing histories and error plots shows what is 

happening during this time: the suspected thrusters are excited artificially, one at a time, 

resulting in a more-accurate identification. The regulation error is kept roughly constant 

during this period - i.e. within the bounds acceptable by the artificial-excitation process. 

When thruster (2) is confirmed at t = 15 seconds, no thrusters remain on the "List of 

Suspects." The remaining as-yet-unsuspected thrusters, [13 7 8], are added to the TexcUe 

vector. They do not fire immediately, as the error is too high, but once it is within acceptable 

range (after thruster (5) is used to reduce the error), they fire. 

Thruster (8) fires at about t = 17 and t = 19 seconds. Since no other thrusters are firing 

at these times, it does not take long to identify it as a suspect, which occurs at t = 20 

seconds. Thruster (§) simulates a complete thruster failure, producing only about l/40th 

of the thrust from a nominal thruster. It stays on for several seconds, yet the error plots 

are fairly straight lines during this period, indicating constant momentum and very little 

thrust. The "Model-Building" process confirms this at t = 28 seconds, removing it from 

the list of suspects. 

With an empty list of suspects, thrusters (D © and (?) are labeled for artificial excitation. 

Thruster (3), the other 90° elbow (the second strongly-destabilizing failure) is fired for the 

first time, causing a second loss of stability. Thruster (3) had not been excited up until this 

point for two reasons: 
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1. The artificial excitation algorithm restricts thruster use to those thrusters that have 

already been tagged as suspects, unless regulation errors exceed a certain limit. 

2. The new characteristics for thruster @ match the nominal characteristics of (3) except 

that (4) is more efficient in producing torque. This makes (4) more likely to fire than 

(3) for most (but not all) force-vector requests. 

These two effects conspire to prevent the firing before the first short pulse occurs at 

t - 26 seconds (when both of the above conditions allow firing for the first time), and then 

for a sustained firing at * = 28 seconds (when thruster (3) is targeted for artificial excitation 

to expedite the identification). 

The instability is caught quickly, since the rest of the plant is well-characterized at this 

point in the identification. When its new characteristics are confirmed at t = 36 seconds, 

this represents the identification of the sixth thruster failure and the final reset of the neural- 

network training process (the final major change detected in thruster characteristics). 

Thrusters Q) and (T), the only un-altered thrusters, are confirmed to have nominal 

characteristics at t - 48 seconds, marking the end of the artificially-excited identification 

phase. From this point on, model updates are small, and made only when they exceed a 

certain threshold, so as not to disrupt the neural-network-training process. In this case, one 

final minor adjustment was made at t = 95 seconds. 

With the completion of identification (all thrusters identified to a high level of confi- 

dence) at t = 48 seconds, artificial excitation ends, and the sole objective of the controller 

is to regulate to the desired position. Position errors in all degrees of freedom are reduced 

immediately, as seen in the top half of Figure 6.10 between * = 48 and t = 55 seconds. There 

is some overshoot in tp, peaking at t = 60 seconds. This is due primarily to the deadband 

associated with the on-off thrusters6. Following this single major overshoot, the regulation 

error is reduced to be well-within the static deadband, and results in an occasional single 

thruster pulse, as shown in the thruster-firing plot from t = 66 - 80 seconds. 

6Due to the control structure, PD-control gains, and thruster-mapping cost function selected, a deadband 
exists within which the thrusters will not fire, even with an optimal thruster mapper. While the size of this 
deadband is difficult to characterize due to the thruster-coupling effects, the maximum static deadband 
(assuming zero velocity error and error in one degree of freedom only) is approximately 2.9 cm in translation 
and 10.6° in yaw angle (with the nominal thruster configuration). 
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6.8    Summary of Experimental Results 

The performance of the neural-network-based reconfigurable control system, displayed in 

Figure 6.10, was excellent, providing stabilization of the robot within four seconds, despite 

the presence of six major thruster failures. 

The system-level design of the control system, discussed in Chapter 3, resulted in the 

selection of a linear-systems approach for identification, but a neural-network approach for 

the thruster mapping. The decision concerning identification was critical to achieving the 

quick failure detection and identification that resulted (initial recovery occurred after only 

four seconds). The neural-network mapper provided flexibility in adapting to the changes 

in thruster characteristics. 

The new Fully-Connected Architecture, discussed in Chapter 4, allowed the neural net- 

work to make immediate use of the model provided by the identification component. A 

linear approximate thruster mapper was calculated immediately following the initial failure 

detection at t = 4 seconds. Implementation of this linear solution with the FCA provided 

immediate stabilization. This was followed by optimization of the nonlinear portion of the 

neural network, resulting in near-optimal performance within 2 minutes. This performance 

was obtained despite the implementation on a serial microprocessor; implementation on 

parallel-processing hardware would provide dramatically-faster performance. 

The new learning algorithm described in Chapter 5 was used to allow gradient-based 

optimization, in spite of the presence of the non-differentiable thrusters. The use of gradient 

information to direct the optimization resulted in a dramatic improvement in learning rate 

over what could have been obtained with a method that was not gradient-based. 
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Chapter 7 

Conclusions 

This final chapter consists of two sections. The first section summarizes the findings of this 

research. The second gives suggestions for future research. 

7.1    Summary 

This thesis has described four new developments in neural-network control that grew out 

of a research program using a laboratory-based experimental prototype of a free-flying 

space robot. The advances were motivated by, and developed for, a complex reconfigurable 

thruster control problem applicable to real spacecraft. Focussing on a specific complex 

control task was useful in identifying some of the real-world issues in neural-network control. 

The work has led to the conclusions that follow. 

7.1.1    System-Level Design Approach: The Superiority of Hybrid Control 

One basic conclusion from this research is that a combination of the nonlinear processing 

capabilities of neural networks with existing conventional control theory can be very pow- 

erful. A careful system-level analysis and design that considers the costs and benefits of all 

available tools from the fields of neural networks and control is likely to be more successful 

than an approach that has already decided up-front what tools will be used. An objective 

evaluation of the costs and benefits of each available approach, followed by an efficient in- 

tegration of these approaches, and development of extensions to existing theory where they 

are needed, constitutes a powerful strategy for solving complex nonlinear control problems 

in the real world. 

113 
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In this work, the costs and benefits of neural network approaches have been outlined, 

and objectively compared with alternative conventional approaches. The overall success 

of the reconfigurable control system resulting from application of this strategy provides 

additional support to this conclusion. 

To summarize the criteria for valuable applications of neural networks, it was shown 

that applications should involve systems with inscrutable (if the exact form can be derived, 

that will probably be more effective than a neural approach) nonünearities (if the system is 

purely linear, linear methods tend to have better convergence and provability characteristics 

than do neural networks) that may require some form of adaptation (neural networks excel 

here, since they are already designed for iterative training). Additionally, neural networks 

are well suited to applications that require the processing speed of a parallel computer, 

since their architecture is inherently parallel. 

7.1.2    Quick Adaptation - FC A 

A major issue in neural network control, and particularly in reconfigurable or adaptive 

control, is the requirement for speed of adaptation. The control application addressed 

here highlights this need, since the robot suffers a destabilizing change in its actuators. The 

instability required a recovery within seconds, not minutes or hours. And this was achieved. 

A new fully-connected neural network architecture (FCA) was developed to address 

this speed issue. It is a feedforward network that brings together for the first time many 

useful architecture features developed by other researchers. It has connections beyond those 

provided by a layered network, yet is trainable with backpropagation. Aided by a systematic 

complexity control scheme, this network was shown to have certain advantages over layered 

networks, particularly for control problems. 

The most significant advantage in this application is the ability to incorporate seamlessly 

a linear solution before training begins. In control, as with other fields, linear approximate 

solutions are often easily calculated based upon prior knowledge of the system properties. 

Quickly calculating the linear approximation, and directly inputting that solution into the 

neural network facilitates rapid adaptation without the need for time-consuming iteration. 

This feature may be especially useful if it allows immediate stabilization, as it does here. 

Another feature of the FCA that contributes to its rapid rate of adaptation is the growing 

of the network. A smaller (fewer hidden neurons) network converges more rapidly, since 

there are fewer parameters to adapt, fewer calculations need to be made, and a smaller 
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training set is required to prevent over-fitting. The network begins with a small number of 

hidden neurons, and gradually adds more, as greater functional capacity is called for. 

7.1.3    Gradient-Based Optimization for DVFs - Noisy Sigmoids 

A new technique was developed that extends gradient-based optimization (e.g. backprop- 

agation learning) for the first time to systems involving discrete-valued functions (DVFs) 

(which are not continuously differentiable). This approach was motivated by the need for 

adapting to the changing properties of the on-off thrusters used to control the robot. The 

solution to this difficult, but specific problem is to approximate the DVFs with noisy sig- 

moids. This simple solution has been demonstrated to extend to other applications involving 

optimization with DVFs. One important example is for neural networks built with hard- 

limiting nonlinearities rather than sigmoid functions. These are attractive because they are 

cheaper and easier to implement in hardware. Another example is design optimization for 

systems with DVFs (e.g. a structural design optimization that chooses between 1/4 inch 

and 3/8 inch wall thickness, 3, 4, 5, or 6 screws, and 2 or 3 beams). This has not yet been 

demonstrated, but it is expected to work well. 

The modification to backpropagation is very small, simply requiring continuous-approx- 

imation of the DVFs, and injection of noise on the forward sweep; yet the improvement in 

network performance is dramatic. 

It works by solving the problem unaddressed by earlier methods: roundoff error. For 

gradient-based optimization to work, during training a gradient must exist and be non- 

zero; so the obvious first step is to approximate the DVF with a continuous approximation 

which is continuously differentiable (e.g. sigmoid-based functions). This method provides 

some success, but errors result when extensive use of the transition regions occurs during 

training, and round off to the nearest discrete level is required at run time. 

Identifying this roundoff error as the problem was probably as important a step as 

the solution. Identification was aided by the ability to compare the results to a known 

optimal solution, as is known for the thruster-mapping problem. Without knowing the 

level of performance that was possible, the problem of roundoff error might never have been 

identified. 

Once the problem was identified, several attempts were made to address it. The suc- 

cessful method involves the simple modification of injecting noise into the sigmoid during 

training. Noise creates random outputs if the transition regions are used, but has little effect 
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if saturated regions close to the allowed discrete levels are used. Therefore, the transition 

regions are avoided during training, and roundoff error is minimal at run time. 

7.1.4    Experimental Demonstration of Reconfigurable Control System 

The task of rapid reconfiguration in response to destabilizing thruster failures first motivated 

these developments and then drew upon them heavily in the experimental demonstration. 

• The system-level control design approach resulted in a system related to a conventional 

indirect adaptive control system, and used a neural network as an efficient, adaptive 

method to implement the nonlinear thruster mapping component. 

• The FCA resulted in near-immediate stabilization and rapid learning, due to the 

feedthrough connections, and growing of the network. 

• The gradient-based optimization for discrete-valued functions resulted in a more ac- 

curate mapping due to a good approximation to the on-off thrusters, while allowing 

the rapid optimization made possible with use of gradient information. 

When trained off-line and tested experimentally on the real robot, the neural-network 

thruster mapper provided near-optimal performance during multiple-degree-of-freedom tra- 

jectories. Arbitrary accuracy could be obtained depending upon the size of the network 

used. With no thruster failures (so symmetries may be used) and 5 hidden neurons, a 

thruster-mapping force error of S.5%1 was achieved. This small error is barely perceptible 

due to the use of feedback in the control system. 

When reconfiguring the control system in response to previously-unknown, major, desta- 

bilizing thruster failures, rapid stabilization and optimization were achieved, as seen in 

Figure 6.10. Detection of a destabilizing failure took from 2-5 seconds (the problem is 

complicated due to noisy accelerometers, and to firing multiple thrusters simultaneously). 

After the initial detection, calculation of a stablizing linear approximate solution, and im- 

plementation via the FCA took less than one second. As thrusters are suspected to have 

changed characteristics (e.g. to be angled at 45° or 90°, have degraded thrust output, or 

be plugged completely), they are artificially excited to speed up the identification. Sta- 

bility and closed-loop control are maintained during this time. With six out of the eight 

»Due to the use of discrete-valued actuators, there is almost always a force error vector. The error value 
reported here indicates that the average magnitude of the force error vector is 1.035 times the magnitude 
achievable with the optimal thruster mapper. 
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thrusters failed (two were strongly destabilizing), the identification converges within about 

60 seconds. The neural network thruster mapper is trained concurrently with the identifi- 

cation, and the model used for training is continuously updated. Near-optimal performance 

is achieved by the end of the identification phase (e.g. 20% error above optimal), and it 

improves to arbitrary accuracy with further training and growing of the network. 

7.2    Recommendations for Future Work 

Performing this research generated a number of ideas for possible future research. The 

following is a list of possible future project ideas. As this research has encompassed a broad 

range of issues, from the details of an experimental implementation to the derivation of 

a new optimization algorithm, the following suggestions have been grouped into specific 

areas. 

7.2.1    Integration of Neural-Network and Conventional Control 

• One of the conclusions of this research has been that the merging of neural network 

technology with control systems engineering can lead to the development of highly- 

capable control systems. Much neural network theory and much control theory already 

exist that could produce significant advances in control capability simply through 

astute integration of them. With this in mind, some possible research areas that are 

related to the robot application are suggested. Control systems for physical plants 

that are difficult to model, and have inscrutable nonlinearities are good targets. These 

may include high-angle-of-attack aerodynamics, or underwater robot control. 

• This research has presented a reconfigurable control system implemented in real-time. 

Reconfigurable control is an important area of research in the military aircraft indus- 

try, as it is desirable to have a control system that can recover from partial system 

failure - e.g. battle damage, where portion of a wing is shot off, or some control surfaces 

become inoperable. Neural networks are attractive for this application due to their 

ability to deal with the nonlinear aerodynamics, adaptive capability, and real-time 

processing speed if implemented in hardware. The reconfiguration time requirement 

for an unstable aircraft is likely to be measured in hundredths of a second, instead of 

seconds, as for the space robot application. Hardware implementation of the concepts 
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developed here, combined with further developments tailored to the aircraft applica- 

tion, could make this goal feasible. A memory-based approach may be required due 

to the high speed requirement and limited data availability. 

• Feedforward neural networks built with sigmoidal activation functions were used ex- 

clusively in this research, primarily because they appear to hold much promise for 

neural network control applications in general. Other neural network architectures 

exist, and may prove to offer advantages depending upon the application: 

1. Radial Basis Function (RBF) networks may be viable, as described in Chapter 1. 

2. Sigmoidal (and RBF) networks work by attempting to form a, function that "fits" 

the data (training cases) they are presented. The hope is that this function forms 

a generalization of the training data, and the network will perform well on new 

data. However, other neurally-motivated approaches are memory-based, rather 

than function-based. Rather than learn a generalizing function of the data, these 

methods remember the training inputs directly, and interpolate/extrapolate as 

needed when new points are input. CMAC [2] [3] is one example of a memory- 

based neural network that has been used successfully in control applications [23]. 

Briefly, the tradeoff is that memory-based approaches learn very quickly, since 

they simply remember each training input; but the recall can be much slower, 

since the nearest neighbors must be found and then interpolated to produce an 

output. Function-based approaches train more slowly, as they must compress 

the data into the functional format created by the network topology, but have 

very fast recall. 

7.2.2    Optimal (Hybrid) Combination of Neural Networks with Conven- 

tional Control: FCA 

• The ability to incorporate prior knowledge has proven to be the most useful aspect 

of the FCA for this application. It is currently limited to linear solutions. Extensions 

to other types of solutions, perhaps closely tailored to conventional control methods 

may be useful. 

• Fuzzy logic has been an area of recent interest in the control community recently. The 

appeal of fuzzy logic is its ability to incorporate knowledge from a human expert into 
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a logic system. A number of rules are programmed by the expert (e.g. "if you're close 

to your destination, and the brakes aren't too hot, and you're going medium speed, 

and there are no immediate obstacles, then apply the brakes gently"), and the fuzzy 

logic is used to blend the effects of these rules together, in a more-graceful manner 

than is possible with crisp logic. This ability to interface with human expertise has 

proven to be useful for tasks for which such human expertise can be encoded into a 

logic system. Research in incorporating this type of knowledge may be useful. Again, 

an astute "hybrid" combination of fuzzy logic and conventional control may well be 

superior to either alone. 

• The major drawback is the possibility for overfitting, and a complexity control method 

was applied to address this issue here. Several other neural network pruning methods 

exist that may deserve investigation. 

• The general problem of determining the optimal topology of neural networks (includ- 

ing the number and connections of nonlinear elements) remains an important research 

issue. The technique presented here (use of the FCA to allow the implementation of 

any possible set of layers or connections, and the gradual addition of hidden neurons 

until acceptable performance is reached) provides a workable solution, but there is 

room for other advances that may improve the efficiency of the topology selection. 

7.2.3    Gradient-Based Optimization for DVFs 

• A significant feature of the algorithm presented here is that the specific type of noise 

used (e.g. Gaussian, uniform, etc.) is not important. Furthermore, for bi-level DVFs, 

the algorithm is robust to wide variations in the magnitude of the noise distribution. 

Although tuning the noise level is a relatively simple operation, elimination of this 

requirement is a clear advantage. Unfortunately, for DVFs with more than two levels, 

tuning of the noise level is required (although selection is fairly robust and intuitive). 

It has been suggested that this tuning may be avoided if a different form of the 

continuous approximation function is chosen [45]. 

• The algorithm has been applied to two very different applications so far - optimization 

of a neural network built with hard-limiters, and optimization of a neural-network con- 

troller for a system with on-off actuators. The simplicity of the algorithm, combined 
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with the success on two unrelated problems, causes optimism for the applicability of 

the algorithm to other fields. One clear application is design optimization, as men- 

tioned in the research summary above. 

• The application to neural networks built with hard-limiters has provided an efficient 

training algorithm for a new class of neural network hardware. Study of the details of 

such an implementation, or modification of the algorithm to allow for on-chip learning 

would be beneficial. 

7.2.4    Thruster Mapping 

These suggestions reflect further advancements toward a better thruster control system. 

This project was chosen as a challenge problem to highlight some of the current issues in 

neural network control. However, if the goal were to make the best thruster control system 

possible, these are some issues that have not been fully addressed in this research. 

• A more complex mathematical model of the robot could be used: 

1. Include thruster transients: due to the response time of the solenoid valve, and 

additionally, the finite size of the chamber between the valve and the nozzle, the 

thrust output is time-dependent. These effects were ignored. 

2. Include low-gas-reservoir effects: the amount of gas remaining in the high and 

low pressure reservoirs affects the thrust output. In these experiments, reservoir 

levels were kept close to nominal so these effects were minimized (and ignored). 

3. Account accurately for multiple thruster firings: due to limited flow in the plumb- 

ing, the thrust from each thruster is reduced when multiple thrusters are fired 

simultaneously (on the order of 10% loss per extra thruster). A simple linear 

approximation was used for these experiments. 

• Identification of thruster characteristics is performed by analyzing the direct relation- 

ship between thruster firings and the resulting acceleration. While this is a robust, 

self-contained ID scheme that meets the requirements of this application, incorpo- 

ration of position information (available from a vision system or Global Positioning 

System) with a Kaiman filter should improve the identification. 
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• The initial decision to separate the controller into control (PD controller that ignores 

discrete-actuator effects) and thruster mapping components, was made to simplify 

the problem. It simplified the problem at the expense of optimality. A subsequent 

step, made possible by the developments in this work, is to merge the robot-base 

controller and thruster mapper design into a single component. This should result in 

improved total system performance, as the neural network provides a fast method for 

calculating an approximation to the optimal control solution that can be calculated 

in real time. One approach could be to use the network for trajectory optimization, 

accounting for the on-off actuators. 
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Appendix A 

Thruster-Mapping Cost Function 

This Appendix presents a variation on the cost function used to define the optimal thruster 

mapping. This function places weighted costs on the force-mapping error and the amount 

of gas used. 

The cost functions that were used for the neural-network developments in Chapters 4 

and 5 and the experiments in Chapter 6 were both presented in Chapter 2. The complexity- 

control term used to augment those cost functions was presented in Chapter 4. This Ap- 

pendix presents an alternative cost function that has merit, but was not used extensively 

in this research. 

In minimizing the force error (and possibly also gas usage) only, the thruster mapper 

does not consider the dynamics of the plant. It assumes that the Fdes vector output by 

the controller feedback law is chosen carefully enough that it needs only concern itself with 

producing the closest matching Fact. In fact, in this application, the controller component 

is a simple proportional-derivative controller (shown in Figure 2.12) that does not take into 

account the thruster limitations. 

The decision to separate control and mapping components was made largely for sim- 

plicity in design. Ideally, the controller component would be aware of thruster limitations - 

for example, a bang-bang controller instead of a PD controller. Implementing a bang-bang 

controller in real time would probably result in the same decision that was made for the 

thruster mapper here: use a neural network to implement a nonlinear approximation to 

the optimal controller - one that can be computed in real time. In this case, it may be 

beneficial to merge the neural-network control component with the neural-network mapping 

component. The single neural network would then map the six-element state error vector, 
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Xerr = [xerr, yerr, Verr, ierr, Verr, Aw], directly to the binary eight-element vector of 

thrusters to fire, T = [Z\ T2 T3 T4 T5 T6 T7 T8]. This even-more-complex nonlinear control 

problem is not addressed here, but a much-simpler first step is proposed. 

A first step to address the presence of plant dynamics in the thruster mapper is to use 

an alternative error-weighting scheme. This plan does not address the on-off nature of the 

thrusters directly, but does incorporate the effect of variations in the mass properties of the 

robot. For example, if the moment of inertia were relatively small compared to the mass, it 

might be more important to match the desired torque than the desired translational forces. 

In this plan, instead of minimizing normalized force error, the force error is considered 

to be a disturbance, and the resulting normalized acceleration error vector is minimized. 

The normalization factor chosen is the acceleration vector resulting at the perimeter of the 

base, radius r, when a single thruster is fired. In this instance, the error becomes: 

min J = 
T 

where, 
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thruster-mapping performance cost 

binary thruster values, [ 2\   T2   T3   T4   T5   T6   T7   T8 

thruster number 

net force error in x-direction, (FXdet - FXact), resulting from T 

net force error in y-direction, (Fydes - FVact), resulting from T 

net torque error about ^-axis, (r^de3 - 7y,oct), resulting from T 

robot total mass 

robot moment of inertia about ip axis 

robot base radius 

(A.l) 

Due to the dimensions and mass properties of the robot used in these experiments, this 

ends up being close to the original cost function, and the actual performance improvement 

in this case is minimal. 



Appendix B 

Accelerometer Specifications 

Two Systran Donner 4310A Linear Servo Accelerometers were used on the robot, as de- 

scribed in Sections 2 and 6. This Appendix contains specifications and dimensions for these 

accelerometers [10]. 
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Model 4310A & F Configuration 
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Figure B.l: Systron Donner 4310A Accelerometer - Dimensions 
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Figure B.2: Systron Donner 4310A Accelerometer - Accuracy Specifications 
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Physical 
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Figure B.3: Systron Donner 4310A Accelerometer - Physical Specifications 
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Figure B.4: Systron Donner 4310A Accelerometer - Environmental Specifications 



Bibliography 

[1] H.L. Akin and T. Tasoglu. Nuclear reactor control using backpropagation neural net- 

works. In M. Baray and B. Ozguc, editors, Computer and Information Sciences VI. 

Proceedings of the 1991 International Symposium, volume 2, pages 889-98, Amsterdam, 

Netherlands, 30 Oct.-2 Nov. 1991. Elsevier. 

[2] J.S. Albus. Data storage in the Cerebellar Model Articulation Controller (CMAC). 

Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME, 

Series G, 97(3):228-233, September 1975. 

[3] J.S. Albus. A new approach to manipulator control: The Cerebellar Model Articu- 

lation Controller (CMAC). Journal of Dynamic Systems, Measurement, and Control, 

Transactions of the ASME, Series G, 97(3):220-227, September 1975. 

[4] P.L. Bartlett and T. Downs. Using random weights to train multilayer networks of 

hard-limiting units. IEEE Transactions on Neural Networks, 3(2):202-210, March 

1992. 

[5] M. Bichsel. Image processing with optimum neural networks. In First IEE Interna- 

tional Conference on Artificial Neural Networks, pages 374-7. IEE, October 1989. 

[6] Arthur Earl Bryson, Jr. and Yu-Chi Ho. Applied Optimal Control. Hemisphere Pub- 

lishing Corporation, New York, NY, 1975. 

[7] A.B. Bulsari, B. Saxen, and H. Saxen. A chemical reactor selection expert system 

created by training an artificial neural network. In F. Dehne, F. Fiala, and W.W. 

Koczkodaj, editors, Advances in Computing and Information - ICCI '91. International 

Conference Proceedings, pages 645-56, Ottawa, Ontario, Canada, May 27-29 1991. 

Springer-Verlag. 

129 



130 BIBLIOGRAPHY 

[8] Robert H. Cannon, Jr. Dynamics of Physical Systems. McGraw-Hill, New York, NY, 

1967. 

[9] D.L. Chester. Why two hidden layers are better than one. In International Joint 

Conference on Neural Networks, volume 1, pages 265-268, Hillsdale, NJ, July 1990. 

Erlbaum. 

[10] Systron Donner. 4310 linear servo accelerometer, specifications. 2700 Systron Drive, 

Concord, California 94518, 800-227-1625. 

[11] Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. 

In D.S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 

190-196. Morgan Kaufmann Pulishers, Los Altos, CA, 1990. 

[12] R.B. Ferguson. Chemical process optimization utilizing neural network systems. In 

SICHEM 92 (Seoul, Korea), Hillsdale, NJ, July 1992. Erlbaum. 

[13] S. Geva and J. Sitte. A constructive method for multivariate function approximation 

by multilayer perceptrons. IEEE Transactions on Neural Networks, 3(4):621-4, July 

1992. 

[14] S. Grossberg. Adaptive pattern classification and universal recoding: Part I: Parallel 

development and coding of neural feature detectors. Biological Cybernetics, 23:121- 

134, 1976. 

[15] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of 

bounded depth. In Proceedings of the 1987 IEEE Symposium on the Foundations of 

Computer Science, pages 99-110, 1987. 

[16] C. Hall. Neural network technology: Ready for prime time? IEEE Expert, pages 2-4, 

December 1992. 

[17] D. Hammerstrom. Neural networks at work. IEEE Spectrum, pages 26-32, June 1993. 

[18] M.E. Hoff, Jr. Learning Phenomena in Networks of Adaptive Switching Circuits. PhD 

thesis, Stanford University, Stanford, CA 94305, July 1962. Tech. Rep. 1556-1, Stanford 

Electron. Labs. 



BIBLIOGRAPHY 131 

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net- 

works are universal approximators. Neural Networks, 2:359-366, 1989. 

[20] K. Hunt, D. Sbarbaro, R. Zbikowski, and P.J. Gawthorp. Neural networks for control 

systems - a survey. Automatica, 28(6):1083-1112, 1992. 

[21] Don R. Hush. Classification with neural networks: a performance analysis. In IEEE 

International Conference on Systems Engineering, pages 277-80, Fairborn, Ohio, Au- 

gust 24-26 1989. IEEE. 

[22] Don R. Hush and Bill G. Home. Progress in supervised neural networks: What's new 

since Lippmann? IEEE Signal Processing Magazine, pages 8-39, January 1993. 

[23] W. Thomas Miller III, F.H. Glanz, and L.G. Kraft. Application of a general learning 

algorithm to the control of robotic manipulators. International Journal of Robotics 

Research, 6(2):84-98,1987. 

[24] W. Thomas Miller III, Richard S. Sutton, and Paul J. Werbos, editors. Neural Net- 

works for Control. Neural Network Modeling and Connectionism. The MIT Press, 

Cambridge, MA 02142, 1990. 

[25] Haiping Jin. An optimal thruster configuration design and evaluation for Quick STEP. 

In IFAC Symposium on Automatic Control in Aerospace, September 12-16 1994. 

[26] M.I. Jordan. A neural network for improving terrain elevation measurement from stereo 

images. In Applications of Digital Image Processing XIV, pages 179-87, San Diego, 

CA, July 22-26 1991. SPIE. Proceedings of the SPIE, vol. 1567. 

[27] Tuevo Kohonen. Self-organized formation of topologically correct feature maps. Bio- 

logical Cybernetics, 43:59-69, 1982. 

[28] A.N. Kolmogorov. On the representation of continuous functions of many variables by 

superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk. 

USSR, 114:953-956, 1957. 

[29] R.P. Lippmann. An introduction to computing with neural nets. IEEE Acoustics, 

Speech and Signal Processing Magazine, 4(2):4-22, April 1987. 



132 BIBLIOGRAPHY 

[30] Ho Chung Lui. Decision boundary formation from the backpropagation algorithm. 

In International Symposium on Computer Architecture and Digital Signal Processing, 

volume 1, pages 17-22. IEE, October 1989. 

[31] Timothy W. McLain. Personal communication, 1993. 

[32] Marvin Lee Minsky. Perceptrons. MIT Press, Cambridge, MA 02142, 1988. Expanded 

ed. 

[33] Marvin Lee Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA 02142, 

1969. 

[34] A.F. Murray and P.J. Edwards. Enhanced mlp performance and fault tolerance re- 

sulting from synaptic weight noise during training. IEEE Transactions on Neural 

Networks, 5(5):792-802, September 1994. 

[35] M.R. Napolitano, C.I. Chen, and R. Nutter. Application of a neural observer as state 

estimator in active vibration control of a cantilevered beam. Smart Materials and 

Structures, l(l):69-75, March 1992. 

[36] Kumpati S. Narendra and K. Parthasarathy. Identification and control of dynamic 

systems using neural networks. IEEE Transactions on Neural Networks, pages 4-27, 

March 1990. 

[37] Derrick H. Nguyen and Bernard Widrow. Improving the learning speed of 2-layer 

neural networks by choosing initial values of the adaptive weights. In International 

Joint Conference on Neural Networks, volume 3, pages 21-26. Erlbaum, July 1990. 

[38] Derrick H. Nguyen and Bernard Widrow. Neural networks for self-learning control 

systems. IEEE Control Systems Magazine, 10(3):18-23, April 1990. 

[39] S.J. Nowlan and G.E. Hinton. Simplifying neural networks by soft weight sharing. 

Neural Computation, 4(4):473-493,1992. 

[40] D.C. Plaut, S.J. Nowlan, and G.E. Hinton. Experiments on learning by backpropa- 

gation. Technical Report Tech. Rep. CMU-CS-86-126, Carnegie-Mellon University, 

1986. 



BIBLIOGRAPHY 133 

[41] W. Raghupathi and B.S. Raju. A neural network application for bankruptcy prediction. 

In V. Milutinovic and B.D. Shriver, editors, Proceedings of the Twenty-Fourth Annual 

Hawaii International Conference on System Sciences, volume 4, pages 147-55, Kauai, 

Hawaii, January 8-11 1991. IEEE. 

[42] R. Reed. Pruning algorithms - a survey. IEEE Transactions on Neural Networks, 

4(5):740-747, September 1993. 

[43] Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain 

Mechanisms. Spartan Books, Washington, D.C., 1962. 

[44] David E. Rumelhart. Learning and generalization. In Proceedings of the IEEE Int. 

Conf. Neural Networks, San Diego, CA, 1988. (plenary address). 

[45] David E. Rumelhart. Personal communication regarding multi-level sigmoid, June 

1994. 

[46] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal 

representations by error propagation. In David E. Rumelhart, James L. McClelland, 

and the PDP Research Group, editors, Parallel Distributed Processing, page 318. The 

MIT Press, Cambridge, MA 02142, 1986. 

[47] J. Shandle. Neural networks are ready for prime time. Elect. Design, 41(4):51-58, 

February 18 1993. 

[48] J. Sietsma and R.J.F. Dow. Creating artificial neural networks that generalize. Neural 

Networks, 4(l):67-69,1991. 

[49] A.E. Smith and C.H. Dagli. Relating binary and continuous problem entropy to back- 

propagation network architecture. In Applications of Artificial Neural Networks II, 

volume 2, pages 551-62, Orlando, Florida, April 2-5 1991. SPIE. Proceedings of the 

SPIE, vol. 1469. 

[50] E.D. Sontag. Feedback stabilization using two-hidden-layer nets. IEEE Transactions 

on Neural Networks, 3(6):981-90, November 1992. 

[51] D.F. Specht. Probablistic neural networks. Neural Networks, 3:109-118, 1990. 



134 BIBLIOGRAPHY 

[52] D.F. Specht. A general regression neural network. IEEE Transactions on Neural 

Networks, 2(6):568-76, November 1991. 

[53] Alessandro Sperduti and David G. Stork. A rapid graph-based method for arbitrary 

transformation invariant pattern classification. In Advances in Neural Information 

Processing Systems 7. Morgan Kaufmann Pulishers, 1995. 

[54] William E. Staib and Santosh K. Ananthraman. Neural networks in control: A prac- 

tical perspective gained from Intelligent Arc Furnace (TM) controller operating expe- 

rience. In Proceedings of the World Congress on Neural Networks, volume 2, pages 

217-222, San Diego CA, June 1994. International Neural Network Society. 

[55] A.J. Surkan and J.C. Singleton. Neural networks for bond rating improved by multiple 

hidden layers. In International Joint Conference on Neural Networks, volume 2, pages 

157-62, San Diego, CA, June 17-21 1990. IEEE, INNS, Erlbaum. 

[56] Marc A. Ullman. Experiments in Autonomous Navigation and Control of Multi- 

Manipulator, Free-Flying Space Robots. PhD thesis, Stanford University, Stanford, 

CA 94305, March 1993. 

[57] Eric Wan. Temporal backpropagation for FIR neural networks. In International Joint 

Conference on Neural Networks, pages 575-580, San Diego CA, June 1990. Erlbaum. 

[58] Zhenni Wang, M.T. Tham, and A.J. Morris. Multilayer feedforward neural networks: 

a canonical form approximation of nonlinearity. International Journal of Control, 

56(3):655-72, September 1992. 

[59] Andreas S. Weigend, Bernardo A. Huberman, and David E. Rumelhart. Predicting the 

future: A connectionist approach. International Journal of Neural Systems, 1(3):193- 

209, 1990. 

[60] Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the 

Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA 02142, August 

1974. 

[61] Paul J. Werbos. Backpropagation through time: What it does and how to do it. 

Proceedings of the IEEE, 78(10): 1550-1560, October 1990. 



BIBLIOGRAPHY 135 

[62] Paul J. Werbos. Neural networks, system identification, and control in the chemical 

process industries. In David A. White and Donald A. Sofge, editors, Handbook of In- 

telligent Control: Neural, Fuzzy, and Adaptative Approaches. Van Nostrand Reinhold, 

New York, 1992. 

[63] James R. Wertz, editor. Spacecraft Attitude Determination and Control. Kluwer Aca- 

demic Publishers, Boston, MA, 1978. 

[64] David A. White and Donald A. Sofge, editors. Handbook of Intelligent Control: Neural, 

Fuzzy, and Adaptative Approaches. Van Nostrand Reinhold, New York, NY, 1992. 

[65] D. Whitley and C. Bogart. The evolution of connectivity: Pruning neural networks 

using genetic algorithms. In International Joint Conference on Neural Networks, vol- 

ume 1, page 134, Washington, DC, 1990. IEEE, INNS, Erlbaum. 

[66] Bernard Widrow. A study of rough amplitude quantization by means of nyquist sam- 

pling theory. IRE Transactions of the Professional Group on Circuit Theory, CT- 

3(4):266-276, December 1956. 

[67] Bernard Widrow and Michael A. Lehr. 30 years of adaptive neural networks: Per- 

ceptron, MADALINE, and backpropagation. Proceedings of the IEEE, 78(9):1415-42, 

September 1990. 

[68] Bernard Widrow and Samuel D. Stearns. Adaptive Signal Processing. Signal Processing 

Series. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, 1985. 

[69] Edward Wilson. Experiments in neural network control of a free-flying space robot. In 

Proceedings of the Fifth Workshop on Neural Networks: Academic / Industrial / NASA 

/ Defense, pages 204-209, San Francisco, CA, November 1993. SPIE. Proceedings of 

the SPIE, vol. 2204. 

[70] Edward Wilson. Backpropagation learning for systems with discrete-valued functions. 

In Proceedings of the World Congress on Neural Networks, volume 3, pages 332-339, 

San Diego CA, June 1994. International Neural Network Society. 

[71] Edward Wilson and Stephen M. Rock. Experiments in control of a free-flying space 

robot using fully-connected neural networks.   In Proceedings of the World Congress 



136 BIBLIOGRAPHY 

on Neural Networks, volume 3, pages 157-162, Portland, OR, July 1993. International 

Neural Network Society. 

[72] Edward Wilson and Stephen M. Rock. Neural network control of a free-flying space 

robot. In Proceedings of the World Congress on Neural Networks, volume 2, pages 

15-22, San Diego, CA, June 1994. International Neural Network Society. 

[73] Edward Wilson and Stephen M. Rock. Neural network control of a free-flying space 

robot. Simulation, June 1995. 

[74] Ron Winter and Bernard Widrow. Madaline Rule II: a training algorithm for neural 

networks. In IEEE International Conference on Neural Networks, volume 1, pages 

401-408, San Diego CA, July 1988. 


