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ABSTRACT 
This document summarizes the three year investigation of transitional and turbulent wall jets 
using direct numerical simulation (DNS) and large eddy simulation (LES). Towards this end, a 
three-dimensional, incompressible Navier-Stokes code developed in our research group for DNS of 
boundary-layer transition was adapted to the wall jet geometry. The code is based on the spatial 
model and is fourth-order accurate. For the LES, a Smagorinsky based subgrid-scale turbulence 
model and explicit fourth-order accurate compact filtering were incorporated. As an initial condi- 
tion, a base flow close to Glauert's similarity solution of the laminar wall jet was employed. This 
flow was forced by blowing and suction through a slot in the wall. Periodic forcing was used for 
investigating primary and secondary instabilities in transitional wall jets (Regm « 200). We discov- 
ered competing two-dimensional (2-D) and three-dimensional (3-D) instability mechanisms which 
can be influenced significantly by the type of forcing. 2-D large-amplitude forcing produces (2-D) 
large coherent structures which reduce wall shear but may lead to ejections of vortices from the wall 
and even to a detachment of the wall jet. Additional 3-D forcing weakens these coherent structures 
(especially in the near-wall region) and can thus prevent vortex ejections. In our LES of turbulent 
wall jets, rapid breakdown to turbulence was triggered by large-amplitude 3-D random forcing. 
Despite the purely 3-D forcing, 2-D coherent structures still emerge in the free shear layer-like 
outer region, an indication of the strong 2-D instability of the wall jet. A fully turbulent mean flow 
which compares well with experiments is obtained for higher Reynolds numbers {Resm ~ 2000). 

INTRODUCTION 
The objective of this three year investigation has been to identify and understand the relevant 
mechanisms that govern the evolution and the dynamical behavior of large (coherent) structures in 
wall jets in view of applying wall jets efficiently to such tasks as boundary layer control or surface 
cooling. For achieving this goal, transitional and turbulent wall jets were investigated using direct 
numerical simulations (DNS) and large eddy simulations (LES). This approach enabled us to study 
nonlinear mechanisms in wall jets in greater detail than experiments and with greater realism than 
previous linear studies. A major emphasis of this work was investigating primary and secondary 
instabilities in transitional wall jets using DNS. Our strong belief is that the instability mechanisms 
that generate large coherent structures in transitional wall jets are also present in turbulent wall 
jets. We therefore studied these instability mechanisms, individually and in combination, for a 
periodically forced transitional wall jet at a low Reynolds number, where DNS can be used as 
an efficient tool for numerical experiments. For studying turbulent wall jets at higher Reynolds 
numbers, LES was employed as the more cost effective approach. 



CODE DEVELOPMENT AND CODE VALIDATION 

Based on our research over many years of numerical simulations of transitional flows, we have 
developed highly accurate and efficient Navier-Stokes codes [see for example Fasel (1990), Meitz 
(1996)] that are now tailored for DNS and LES of wall jets. 

Features of the Navier-Stokes Code 

The code is based on the complete incompressible Navier-Sokes equations in a vorticity-velocity 
formulation and is based on a spatial model (Fasel 1990). The numerical scheme employs a fourth- 
order Runge-Kutta method for the time integration, fourth-order accurate compact differences in 
the streamwise and the wall-normal directions, and a pseudo-spectral approximation in the spanwise 
direction. 

Typically, using the two-dimensional version of the code, a two-dimensional steady base flow is 
computed first. As an example of a laminar wall-jet base flow, the numerical solution [which is very 
close to Glauert's (1956) similarity solution] is given in Figure 1. For investigations of transition or 
for investigating the effects of periodic forcing, this base flow is then disturbed (two-dimensionally 
and/or three-dimensionally) by blowing and suction through a slot in the wall near the inflow 
boundary of the computational domain (Figure 1). An example of the streamwise and temporal 
variation of the wall-normal velocity over the blowing and suction slot is given in Figure 2. The 
introduced disturbances may grow in the downstream direction and (in the case of three-dimensional 
forcing) may lead to transition to turbulence. To avoid upstream feed back of the outflow boundary, 
the flow is relaminarized in a buffer domain close to the outflow with a technique similar to that 
proposed by Kloker et al. (1993). 

Code Improvements for DNS 

Over the past three years, major improvements have been made that considerably increased the 
efficiency for computing wall-jet flows. Towards this end, we have implemented the capability of 
using variable grid spacing in the wall-normal direction. This is crucial for computing turbulent 
flows due to the wide range of scales in the wall-normal direction that have to be resolved in the 
simulations. Along the variable grid, the coefficients in the compact difference stencils are adjusted 
such that fourth-order accuracy is maintained. Our approach gives more accurate results than grid 
transformation methods. 

For computations with a high wall-normal resolution, the time step in the explicit scheme is 
limited due to numerical instabilities caused by the wall-normal diffusion terms in the vorticity 
transport equations. By treating these terms implicitly, we were able to speed up the time integra- 
tion by a factor of four when compared to the fully explicit fourth-order Runge-Kutta method. 

Code Validation for DNS 

We validated our DNS code for boundary-layer transition by comparing benchmark calculations of 
primary and secondary instability to results obtained with a nonlinear PSE solver that we developed 



(Schwolow 1994). Excellent agreement was found for all two-dimensional and three-dimensional, 
linear and nonlinear computations. 

For transitional wall jets, we compared our DNS results to linear stability theory (LST). We 
found excellent agreement for both velocity profiles and growth rates when forcing only the inner 
mode (Wernz 1993). For a combination of both modes, we applied a decomposition method pro- 
posed by Thumin et al. (1996) to determine the contributions from the inner and the outer mode 
to the DNS result. Some results obtained with this method are discussed in our attached AIAA 
paper (Wernz and Fasel 1997). 

Code Development for LES 

A subgrid-scale turbulence model was implemented into the Navier-Stokes DNS code and tested 
first for a fiat-plate boundary layer and then for a wall jet. As a first step, we chose a basic 
Smagorinsky-type subgrid-scale model suggested by Speziale, (Personal Communication, 1995). In 
this model, the Smagorinsky coefficient, which was first calibrated for a boundary-layer flow, is the 
only modelling coefficient. 

In the past, LES was carried out with, at most, second-order accuracy (often combined with 
inadequate filtering techniques). This resulted in a co-mingling of numerical errors (truncation 
error) with the effects of the subgrid-scale model. In contrast, in our LES, we are employing 
fourth-order accurate compact differences with spectral-like resolution (Lele 1992) and fourth-order 
accurate compact filters. We have insisted on fourth-order accuracy for the spatial discretization 
and for filtering since this allows a clean separation of the resolved scales (computed by Navier- 
Stokes) and the unresolved scales (modeled by subgrid-scale model). This approach will facilitate 
an objective evaluation of the performance of the improved subgrid-scale models that we plan to 
implement and test in the future. 

We were able to carry out "fully" transitional simulations (i.e., computing through transition 
all the way from laminar to turbulent flow x ) by using a spectral ramping function which turns on 
the subgrid-scale model when the fluctuation level surpasses a specified threshold in a (specified) 
high spanwise Fourier component (e.g., k=10). 

We have found efficient techniques to "turn-on" or "trigger" turbulence for DNS and LES of 
turbulent flows using, for example, "bypass transition" initiated by random forcing of purely oblique 
modes (spanwise Fourier components k=l and k=2) with forcing introduced by blowing and suction 
(see Figure 1). An example of some typical random time signals is given in Figure 3. We found this 
method to be very effective for rapid transition to turbulence, thus providing a good match of the 
turbulence statistics (turbulent mean flow, skin friction, rms-values) to experimental measurements 
early on in the turbulent flow regime. 

Code Validation for LES 

For validation of the LES code (including the subgrid-scale model), we used a flat-plate boundary 
layer because, for this flow, a wealth of experimental and numerical data is available for comparison. 
With our LES code, we performed calculations of bypass transition using the random forcing method 
mentioned above. We then compared our results with those from a DNS by Rai and Moin (1991) 

lrThis is not to say our current subgrid-scale model (equilibrium turbulence model) is already adequate in the 
transitional flow regime (non-equilibrium). 



and from experiments by Suder et al. (1988). Typical results of these comparison calculations are 
presented in Figures 4-6: 

An impression of the flow field for a typical case (Case 1) is given in Figure 4, which displays 
a snapshot at one time instant of the two-dimensional Fourier component (k=0) of the spanwise 
vorticity. In Figure 5, the mean flow profiles of the u-velocity and the Reynolds stresses for this 
case are shown in wall coordinates for different downstream locations in the transitional region. 
Both the u-velocity profiles and the Reynolds stresses quickly approach the shapes that appear in 
a turbulent boundary layer. 

In Figure 6, the skin-friction coefficient is plotted versus the streamwise coordinate for two cases 
of our LES calculations with different forcing amplitudes. Comparison is made to the DNS and 
experimental measurements. During transition, the skin-friction coefficient of LES Case 1 (larger 
amplitude) closely follows that of the experiment, while the skin-friction coefficient of LES Case 2 
(smaller amplitude) closely follows that of the DNS. In both cases, however, very good agreement 
was reached at the end of the transition region (for the skin-friction coefficients, spreading rate, 
mean flow profiles, rms-values, and Reynolds stress). These calculations have shown that, with our 
subgrid-scale model and with the random forcing method (modeling bypass transition), we are able 
to effectively "trigger" turbulent flow and quickly arrive at realistic turbulent flow quantities. 

After completing the validation calculations for the flat-plate boundary layer, we have also 
performed validation calculations for a case of bypass transition for a wall jet. Figure 7 shows the 
instantaneous flow field (Fourier component k=0 of the spanwise vorticity) for a typical case. In 
Figure 8, the mean flow profiles of the u-velocity (normalized with local velocity maximum and 
half width) are shown for different downstream locations in the transitional region. A clear trend 
towards the shape of a fully turbulent profile can be observed. We can also observe good agreement 
with the experimental results by Wygnanski et al. (1992) for the spreading rate (half width) and 
the decay of the u-velocity maximum (see Figure 9a,b). 

However, the comparison with experiments should only be considered qualitative for this case 
as the Reynolds numbers of the experiments (Regmax > 1500) is considerably higher than that of 
the simulation (Resmax « 200, Figure 9c). The difference in Reynolds number might be the reason 
for the discrepancy in Figure 8 between the mean flow profiles in the near-wall region. Another 
possiblity is that the Smagorinsky coefficient has to be recalibrated for the wall jet flow. (Turbulent 
intensity has a greater influence in the inner region than in the outer region.) 

To determine the influence of the Reynolds number on the mean flow, we recently started 
investigating wall jets at Reynolds numbers that are ten times higher {Regmax > 2000). At these 
Reynolds numbers, the flow transitions very rapidly and reaches the turbulent flow regime at about 
the midpoint of the computational domain, as illustrated in Figures 10 and 11 for a typical case. 
Figure 10 displays the instantaneous flow field (Fourier component k=0 of the spanwise vorticity). 
Figure 11a shows the mean flow profiles of the u-velocity (again normalized with local velocity 
maximum and half width) for different downstream locations. For streamwise locations x > 335, 
the shape of a fully turbulent mean flow profile is matched very closely, especially in the inner 
region, which is in contrast to the low Reynolds number cases we have investigated previously. We 
therefore conclude that the shape difference between simulation and experiment observed in those 
cases is likely due to the difference in the Reynolds number, not due to the turbulence model. 

While the turbulent mean flow is reproduced well with the current LES, a considerable discrep- 
ancy between simulation and experiment exists in the rms-values value of the streamwise velocity 
(Figure lib), especially in the outer (shear layer) region of the wall jet. Investigations are under 



way to determine the cause for this discrepancy, in particular the role of the subgrid-scale model. 
We consider implementing a dynamic subgrid-scale model [similar to the one proposed by Germano 
et al. (1991)] where the Smagorinsky coefficient can be adjusted in wall-normal direction. 

SUMMARY OF RESEARCH ACCOMPLISHMENTS 

A summary of the work performed and of the accomplishments over the past three years is given 
here. Typical results and more details are provided in the Appendix. 

Meanflow Distortion due to Large Amplitude Forcing 

Our simulations confirmed the experimental findings by Zhou et al. (1992) concerning the distortion 
of the mean flow (decrease of wall shear and velocity maximum, increase of spreading rate) for large 
amplitude forcing (due to nonlinear interaction of the disturbance with itself). 

Two-Dimensional Resonance in a Transitional Wall Jet 

We investigated a two-dimensional secondary instability, which is the underlying mechanism for 
the "vortex merging" observed in experiments on transitional wall jets. We demonstrated that the 
"vortex merging" is a manifestation of two-dimensional subharmonic resonances that occur in wall 
jets in a fashion similar to a free shear layer. We studied in great detail a surprising phenomenon 
caused by this subharmonic resonance: the ejection of mushroom-shaped vortices from the wall jet 
layer. Results are presented in two attached papers (Wernz and Fasel 1996, Fasel and Wernz 1996). 

Three-Dimensional Resonances in a Transitional Wall Jet 

We also investigated the three-dimensional breakdown process based on the two "classical" types 
of (three-dimensional) secondary instability mechanisms: fundamental resonance and subharmonic 
resonance. We demonstrated that combinations between two-dimensional and three-dimensional 
resonances are likely to occur in wall jets. We performed detailed paramenter studies on the influ- 
ence of the disturbance amplitude and the spanwise wavenumber. Results of these investigations 
are presented in an attached paper (Wernz and Fasel 1997). 

LES Computations with Random Forcing 

We performed LES computations for turbulent wall jets where turbulence is "triggered" by three- 
dimensional random forcing (bypass transition). We obtained two-dimensional coherent structures 
in the flow similar to those observed in experiments on natural transition in wall jets (Bajura and 
Catalano 1975). 

Wall Jets with an External Stream 

We investigated the influence of a (weak) external stream on the transition process. We found that 
an external stream de-emphasizes primary and secondary instabilities associated with the outer 
(shear layer) region of the wall jet. We performed two-dimensional computations of laminar wall 
jets in external stream. It was found that ejected vortices are (mostly) convected downstream and 
provide little upstream feedback. 



CONCLUSION AND OUTLOOK 

With our investigation of transitional wall jets using DNS, we have gained insight into a flow 
whose dynamical behavior proved even more complex and interesting that we had anticipated, 
in particular, the competition and interplay of two-dimensional and three-dimensional resonances 
and the important role of the three-dimensional resonances for the stability of the observed two- 
dimensional large coherent structures. 

For the simulation of turbulent wall jets using LES, several improvements and additions to our 
computational approach are currently being made within the continuation of this project which 
will greatly enhance efficiency and accuracy of the simulations. These ongoing efforts include: 
incorporating into our code the capability of continuation calculations with grid refinement in all 
spatial directions, incorporating a dynamical subgrid-scale model which can adjust over the inner 
and the outer region of the wall jet, and improving our toolkit for analyzing the mixture of periodic 
and random fluctuations in periodically forced turbulent wall jets. 
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APPENDIX: RESEARCH ACCOMPLISHMENTS 

During each stage of our code development effort, we performed numerous simulations with our 
DNS code of forced transition to turbulence in wall jets. The objective of these investigations was to 
identify the key mechanisms during forced transition and to explore in detail nonlinear phenomena 
that may also be relevant for fully turbulent wall jets. The knowledge obtained from the transition 
investigations was also very helpful for our LES of turbulent wall jets for determining efficient ways 
to "trigger" transition in order to reach the turbulent regime as quickly as possible. 

Meanflow Distortion due to Large Amplitude Forcing 

During the first stage of our investigations, we focused on gaining an understanding of the nonlinear 
effects of two-dimensional large-amplitude forcing that have been observed in experiments of tran- 
sitional wall jets and could not be explained by linear stability theory. One important nonlinear 
effect we observed was the distortion of the mean flow such that the spreading rate of the wall jet 
was increased and both the velocity maximum and the wall shear were decreased. The mean flow 
distortion can be directly attributed to nonlinear interactions of the fundamental disturbance with 
itself. For a typical streamwise location, Figure 12 shows the percentile decrease of the mean flow 
velocity maximum, the increase of its wall-normal location, and the decrease of the wall shear as a 
function of the local amplitude of the fundamental disturbance. An increase of the local disturbance 
amplitude by one order of magnitude results in a percentile change of these mean flow quantities 
by two orders of magnitude (as can be expected from nonlinear interactions of sinusoidal travelling 
waves). Our numerical results are in very good agreement with experiments on a forced transitional 
wall jet by Zhou et al. (1992). 

Two-Dimensional Resonance in a Transitional Wall Jet 

A second important nonlinear phenomenon that we studied in great detail is the two-dimensional 
subharmonic resonance observed in several experiments on transitional wall jets (Bajura and Cata- 
lano 1975, Amitay 1994, Shih and Gogineni in 1995). This two-dimensional secondary instability 
mechanism is a manifestation of the relationship of wall jets to free shear layers, where the same 
type of instability mechanism exists. A typical example of a subharmonic resonance observed in 
our numerical simulations is given in Figure 13. Shown is the instantaneous vorticity field for a case 
of large-amplitude forcing with a fundamental frequency (A = 0.5%, / = 56Hz) and simultaneous 
small-amplitude forcing with a subharmonic frequency (A = 0.001%, / = 28Hz). Halfway through 
the downstream extent of the domain shown in Figure 13, merging of subsequent vorticity maxima 
occurs and, as a consequence, the fluctuation frequency is cut in half. The underlying resonance 
mechanism can be demonstrated nicely with a Fourier decomposition of the time-periodic distur- 
bance flow. Figure 14 displays, on a logarithmic scale, the Fourier amplitudes of the wall vorticity of 
the fundamental and subharmonic disturbances for various forcing amplitudes of the fundamental 
disturbance {Afund = 0.1% - 0.8%). The forcing amplitude of the subharmonic is kept constant 
(ASUbfi = 0.001%). For forcing amplitudes of the fundamental above A = 0.3%, small subharmonic 
disturbances grow rapidly up to a large amplitude level due to a resonance with the fundamental. A 
more detailed discussion of this subharmonic resonance mechanism is given in the attached paper, 



"Numerical Investigation of Unsteady Phenomena in Wall Jets", which was presented at the AIAA 
conference in Reno (Wernz and Fasel 1996). 

In our numerical simulations, the subharmonic resonance led to a surprising phenomenon during 
the startup of periodic forcing - the ejection of mushroom-shaped vortices. This phenomenon has 
been observed in many experiments on forced transition (Bajura and Catalano 1975, Amitay 1994, 
Shih and Gogineni 1995) but has never before been investigated numerically. Results of these 
numerical investigations are discussed in the attached papers; for the startup of periodic forcing 
in the AIAA paper (Wernz and Fasel 1996), and for a wall jet disturbed by a wave packet in the 
proceedings of the symposium on "Engineering Turbulence Modelling and Experiments" (Fasel and 
Wernz 1996). 

Three-dimensional Resonances in a Transitional Wall Jet 

Experiments by Amitay (1994) have shown that, at lower Reynolds numbers, the transition process 
was dominated by a two-dimensional subharmonic cascade with the ejection of mushroom shaped 
vortices. However, at higher Reynolds numbers, this cascade was not observed. Rather, breakdown 
occurred very quickly in a three-dimensional fashion. Since the near-wall region of the wall jet 
resembles a boundary layer, it should be expected that, in addition to the two-dimensional subhar- 
monic resonance, three-dimensional resonances similar to the secondary instability of a flat-plate 
boundary layer can contribute to the transition process as well. While experimentalists (Bajura 
and Catalano 1975, Amitay 1994, Shih and Gogineni 1995) have investigated the vortex merging 
due to the two-dimensional secondary instability in some detail, we are not aware of any exper- 
imental (or numerical) work on three-dimensional secondary instabilities in wall jets. Since our 
three-dimensional pseudo-spectral DNS code (see above) is perfectly suited for three-dimensional 
secondary instability investigations, we have also focused on exploring the three-dimensional break- 
down process. 

In these DNS, in addition to a large-amplitude two-dimensional disturbance wave, a pair of 
small-amplitude oblique disturbance waves was also introduced. We have studied two "classical" 
types of secondary instability mechanisms: fundamental resonance, where the oblique waves have 
the same frequency as the two-dimensional disturbance wave, and subharmonic resonance, where 
the oblique waves have half that frequency. 

Typical results of these investigations are presented in Figure 15 (three-dimensional fundamen- 
tal resonance) and in Figure 16 (three-dimensional subharmonic resonance). On the left side of 
Figures 15 and 16, contour plots are shown for the instantaneous spanwise vorticity of the two- 
dimensional Fourier component (top) and of the first spanwise Fourier component (bottom). In 
the graphs on the right side, the wall vorticity amplitudes of both Fourier components are plotted 
versus the streamwise distance for various forcing amplitudes of the two-dimensional component. 
In all cases the forcing amplitude of the three-dimensional component is kept fixed at 0.001%. As 
seen from Figure 15, fundamental resonance occurs for two-dimensional forcing amplitudes of 0.3% 
and above, which is comparable to the amplitude level required for two-dimensional subharmonic 
resonance. Therefore, combinations of three-dimensional fundamental and two-dimensional subhar- 
monic resonances are possible. In contrast, as shown in Figure 16, three-dimensional subharmonic 
resonance occurs already at the lower amplitude level of 0.2% where two-dimensional subharmonic 
resonance does not yet occur. 

Adding all spanwise Fourier components provides an overall view in the physical domain of the 
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consequence of the secondary instability process. Figures 17-19 display the flow fields for three 
resonance calculations (with ten spanwise Fourier components): in Figure 17 a three-dimensional 
fundamental resonance, in Figure 18 the combination between a three-dimensional fundamental 
resonance and a two-dimensional subharmonic resonance, and in Figure 19 a three-dimensional 
subharmonic resonance. Shown are iso-surfaces of the spanwise vorticity over two spanwise wave- 
lengths. For the left portion of these perspective plots (when looking in streamwise direction), the 
top layer of negative vorticity has been removed to expose the layer of positive vorticity below. Also 
plotted in each case is a top view of the instantaneous spanwise vorticity at the wall, illustrating the 
variation in spanwise direction. In all three cases, the flow develops in streamwise direction from a 
purely two-dimensional to a strongly three-dimensional behavior. However, the three-dimensional 
stage is different for each resonance type. For the fundamental resonance (Figure 17), a strong 
steady streamwise structure can be observed in the outer region that is periodic in spanwise di- 
rection. This structure is associated with Fourier mode [0,1] and is characteristic for fundamental 
resonance. The same structure also exists for the combined resonance (Figure 18). However, (com- 
paring Figure 18 to Figure 17) the structures closer to the wall, as well as the wall vorticity, show a 
strong influence of the two-dimensional subharmonic, with a doubling of the dominant streamwise 
wavelength. It is important to note that in both cases all spanwise variations are aligned in the 
streamwise direction. This is different for the three-dimensional subharmonic resonance, as shown 
in Figure 19. Here, the structures show a staggered pattern, which is characteristic for subharmonic 
resonance in a flat-plate boundary layer as well. 

We also performed parameter studies on the dependence of the three-dimensional resonances on 
the spanwise wavenumber. We found that maximum amplification occurs for the three-dimensional 
subharmonic resonance when the streamwise wavenumber is about twice the spanwise wavenumber. 
This is in contrast to three-dimensional fundamental resonance, for which maximum amplification 
occurs when streamwise and spanwise wavenumbers are about equal. This is very similar to the 
situation in a flat-plate boundary layer (zero pressure gradient). However, three-dimensional sec- 
ondary instability mechanisms in a wall jet seem to be more complex. For example, the diagram 
in Figure 20, which illustrates the dependence of the growth of the first spanwise Fourier compo- 
nent on the spanwise wavenumber for three-dimensional subharmonic instability, shows a second 
local maximum at a higher wavenumber. It is possible that the wall jet not only has two un- 
stable two-dimensional modes, but also at least two unstable (subharmonic) oblique modes. In 
a complementary project we plan to compare our DNS results with Thumin's results (Personal 
Communication 1996), who is currently studying secondary instability mechanisms of the wall jet 
using weakly nonlinear theory. 

With our secondary instability investigations we have demonstrated that, in a wall jet, free 
shear layer-type transition mechanisms (two-dimensional subharmonic resonance) are competing 
with boundary layer-type mechanisms (three-dimensional fundamental and subharmonic resonance) 
allowing a wide range of potential combinations favoring one or the other mechanism. Hence, we 
were not surprised to encounter combinations of two-dimensional and three-dimensional structures 
in our recent LES computations of a randomly forced wall jet. We expect such resonances, and 
in particular the competition of resonance mechanisms, to be relevant as well for turbulent wall 
jets and for periodically forced wall jets where, dependent on forcing frequencies and receptivity 
mechanisms, certain resonances can be enhanced over others. In other words, such resonances can 
possibly be exploited advantageously for flow (separation) control. 
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LES Computations with Random Forcing 

As discussed above, we generate strong three-dimensionality of the transitional flows by randomly 
forcing with the first and second spanwise Fourier component only. Nevertheless, due to the strong 
nonlinear interactions at this high level of forcing, a significant two-dimensional Fourier component 
is generated as well. For very high-amplitude forcing (in the Reynolds number range investigated) 
the two-dimensional Fourier component develops - probably through a two-dimensional instability 
mechanism - into organized two-dimensional coherent sturctures in the (free shear layer-like) outer 
region. 

An example of a flow pattern caused by such forcing is shown in Figures 21. In this case, one of 
the counterclockwise-rotating vortices that develop in the shear layer has eventually lifted off from 
the wall jet's outer region. It now lingers above the wall jet and keeps growing stronger by entraining 
vorticity from the wall jet below. However, unlike the ejected vortex pairs in our two-dimensional 
simulations, the single vortex cannot propel itself further away from the wall since it lacks a strong 
clockwise-rotating partner from the near-wall region. The lack of strong two-dimensional vortical 
structures in the near-wall region is probably due to our three-dimensional random forcing method, 
which mostly triggers three-dimensional instability mechanisms in the near-wall region. These 
results are particularly exciting because they appear to be consistent with experiments by Bajura 
and Catalano (1975) on natural transition at moderate Reynolds numbers. They also reported the 
formation of large vortices in the outer region of the wall jet and a stationary growing vortex right 
above the wall jet. In the experiments, this vortex eventually grows so strong that it continually 
lifts off vortices from the inner wall jet layer and ejects them far into the ambient fluid. We plan to 
repeat our LES simulation of this case with a larger computational domain to confirm these highly 
important results. 

From a different point of view, these results also show that, even when strong three-dimensional 
structures are present originally, the flow is reorganized in predominantly two-dimensional struc- 
tures. This, of course, is relevant in the context of flow control using periodic forcing, as dom- 
inant two-dimensional structures are much easier to control in practical applications than three- 
dimensional structures. 

Wall Jets with External Stream 

For our goal of reaching the turbulent regime efficiently through a rapid transition process, we want 
to avoid the formation of any vortices lingering above the wall jet (as discussed above) because 
they would eventually destroy the wall jet flow along the wall. By introducing a small free-stream 
component, any vortical structures in the outer layer are convected downstream and eventually leave 
the computational domain. Results of a simulation with a free-stream velocity of about 10% of the 
wall jet at the outflow are shown in Figure 22. For this flow with an external stream, the forcing 
amplitude can be many times higher than before without generating stationary vortices in the outer 
flow. Two-dimensional computations of the startup of periodic forcing also show the fundamental 
difference in this respect between wall jets with and without a free-stream component. In Figures 
23 and 24, the disturbance flow during startup of periodic forcing is compared for two cases with 
a small free-stream component (Figure 23) and without external stream 2 (Figure 24). While the 

2This case was presented as a video entry into the "Gallery of Fluid Motion" at the APS meeting in Irvine 1995 
(see attached abstract). 
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initial vortex ejection is very similar in both cases (Figures 23a,b and 24a,b), the upstream motion 
of ejected vortices is weakened in the presence of an external stream (Figures 23c, 24c). Within 200 
forcing periods, all ejected vortex pairs are convected out of the flow domain (Figures 23d, 24d) 
compared to more than 3000 forcing periods that are required for the case without external stream. 

Preliminary calculations have also shown that flow instabilities (primary and secondary) asso- 
ciated with the free shear layer region of the wall jet are de-emphasized with increasing free-stream 
velocity (as expected). 



FIGURES 

coz—vorticity / vs-velocity 
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periodic modulation in spanwise direction 

Figure 1: Computational domain in physical space with typical base How (wall jet with no external 
stream). The velocity field is represented by vectors and the spanwise vorticity CO, by color contours. 
Red indicates clockwise rotation (cw). blue indicates counterclockwise rotation (ccw). Disturbances 
arc introduced by blowing and suction through a slot in the wall, either 2-D or with a spanwise 
variation (3-D, plot). Before the disturbances can reach the outflow boundary, they are damped out 
in the buffer domain (relaminarization of the flow). 
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Figure 2: Disturbance generation (forcing) by blowing and suction through a slot in the wall. The 
flow can be forced in any spanwise Fourier component (for 3-D calculations). The wall-normal 
velocity over the blowing and suction slot for each spanwise Fourier component is specified by 
vs,k(x,t)=Ak*FVs(x)*TVs,k(t), where Ak represents the forcing amplitude. Shown in a) is the 
streamwise variation FVs(x) over the blowing and suction slot, shown in b) is the temporal forcing 
function TVs,k(t) of the spanwise Fourier component k. For this example, TVs,k(t)=H(t)*cos(27cft+(|>). 
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Figure 3: Example of the random forcing method used for triggering bypass transition in the LES 
computations: a) temporal forcing function TVstk=i(t), b) corresponding frequency spectrum. 
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Figure 5: For the LES results shown in Figure 4: a) meanflow velocity profiles, and b) corres- 
ponding Reynolds stresses in wall coordinates at five streamwise locations. 
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Figure 7: Bypass transition in a wall jet computed with our LES code. Shown are color contours of 
the two-dimensional Fourier component (k=0) of the spanwise vorticity. The flow is disturbed by 
random forcing (blowing and suction slot) in the first and in the second spanwise Fourier 
component (k= 1,0). 
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Figure 8: For the LES results shown in Figure 7: a) normalized meanflow velocity profiles, and b) 
rms-velocity profiles normalized with the half width and the local velocity maximum at five 
streamwise locations. Comparison with laminar profiles [similarity solution by dauert (1956)] and 
with turbulent profiles [from experiments by Wygnanski et al. (1992)]. 
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b) rms-velocity profiles normalized with the half width and the local velocity maximum at five 
streamwise locations. Comparison with laminar profiles [similarity solution by Glauert (1956)] and 
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Figure 13: Two-dimensional subharmonic resonances for large-amplitude forcing by blowing and 
suction. Shown are color contours of instantaneous spanwise vorticity (of the disturbance How) for 
two different forcing levels: a) smaller forcing amplitude (Afuncj=0.3%), b) larger forcing amplitude 
(Afund=0.5%). In this case, merging of vorticity concentrations is observed when the flow is also 
forced with a very small subharmonic disturbance. 
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Figure 15: Results of a DNS for a three-dimensional fundamental resonance. The plots on the left 
display contours of instantaneous spanwise vorticity (disturbance flow). The top graph shows the 
2-D Fourier component (k=0) with large-amplitude forcing at the fundamental frequency, the 
bottom graph shows the first spanwise Fourier component (k=l) with very small-amplitude forcing 
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Figure 16: Results of a DNS for a three-dimensional subharmonic resonance. The plots on the left 
display contours of instantaneous spanwise vorticity (disturbance flow). The top graph shows the 
2-D Fourier component (k=0) with large-amplitude forcing at the fundamental frequency, the 
bottom graph shows the first spanwise Fourier component (k=l) with very small-amplitude forcing 
at half that frequency. The corresponding graphs on the right show the Fourier amplitudes of the 
wall vorticity for both components and for several forcing levels of the 2-D component. 
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Figure 17: Results of a DNS for a three-dimensional fundamental resonance. Shown are iso- 
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Figure 18: Results of a DNS for a three-dimensional combination resonance (3-D fundamental + 
2-D subharmonic). Shown are iso-surfaces of the spanwise vorticity (left) and color contours of 
the spanwise wall vorticity (right). 
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Figure 19: Results of a DNS for a three-dimensional subharmonic resonance. Shown are iso- 
surfaces of the spanwise vorticity (left) and color contours of the spanwise wall vorticity (right). 
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Figure 20: Dependency of the three-dimensional subharmonic resonance on the spanwise wave 
number. Shown are the Fourier amplitudes of the spanwise wall vorticity versus the streamwise 
distance and the spanwise wavenumber. 
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Figure 1: Computational domain with base flow (Glauert's similarity solution) and method of forcing. 

Figure 2: Time sequence for the disturbance flow during startup of forcing with blowing and suction. 

Figure 3: Snapshots of the total flow (base flow + disturbance flow) at three instants in time (1, 3, 10 sec). 

EXI STEADY FORCED WALL JET 
by Stefan Wemz and Hermann F. Fasel 

(University o 

Transitional wall jets are being investigated using Direct Numerical Simulations (DNS). In the present 
simulation, the two-dimensional vorticity transport equation in disturbance flow formulation is solved 
numerically over the computational domain shown in figure 1 (Re50.5=277-701). The base flow for the 
computation is given by Glauert's similarity solution, as shown in figure 1 using color contours of spanwise 
vorticity. By forcing the wall jet with periodic blowing and suction through a slot in the wall (figure 1) 
traveling disturbance waves are introduced into the flow. During startup of periodic forcing with large 
amplitudes, a series of mergings of subsequent vorticity concentrations occurs within the disturbance waves 
(figure 2). These mergings are manifestations of a subharmonic resonance between the fundamental distur- 
bance wave (f=56Hz) and disturbance waves with lower frequencies that are generated momentarily by the 
sudden startup of forcing. This secondary instability process leads to an accumulation of vorticity within 
one pair of vorticities that is eventually ejected from the wall jet layer into the ambient fluid. By mutual 
induction this mushroom shaped vortex pair travels upstream and then interacts repeatedly with the wall jet. 
As a consequence, a very complex flow pattern develops (figure 3) that is sensitive to initial conditions and, 
in the present two-dimensional calculation, persists for about 30 seconds before the flow reaches a time- 
periodic state. In three-dimensional computations, breakdown to turbulence takes place shortly after the 
first vortex pair is ejected. This research is funded by AFOSR under contract number F49620-94-1-0208. 


