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1.  ABSTRACT 

Solid rocket motor chamber fluid dynamics are modeled using the 
full Navier-Stokes equations.    Mass injection from the sidewall of a 
cylinder simulates the propellant gasification.      Prescribed boundary 
disturbances in velocity or pressure induce acoustic waves and other 
transients into the chamber geometry.    Vorticity is generated on the 
sidewall from an  inviscid interaction between transient pressure 
gradients and the fluid injected from the surface.    Axisymmetric and 
three dimensional solutions obtained from analysis and computation 
are used to predict the dynamics of the co-existing acoustic and 
rotational flows.     Results suggest that intense transient vorticity is 
present throughout much of the chamber during a firing as long as 
acoustic transients are present.    The rotational flow component is 
associated with intense transient shear stresses on the sidewall. 
Meanflow profiles and RMS intensity distributions are similar to 
those found  in traditional turbulent pipe flows with  injection. 
Traditional  acoustic stability theory,  based on  purely irrotational 
flow assumptions, may describe the pressure variations in chamber 
models, but cannot describe the rotational component of the flow 
found in the present model. 



2. PROJECT OBJECTIVES, STATUS AND ACCOMPLISHMENTS 

Our project has focused on the modeling of the transient flow 
dynamics that occur in coldflow and thermally active versions of a 
motor chamber.    The results provide new perspectives about the 
physical processes occurring in these systems. Their application to 
the design process should foster the development of more reliable 
motors  with  predictable  performance. 

The substance of our work can be divided broadly into two major 
tasks: 

(i) Analysis and numerical simulation of an injected internal flow 
when equal magnitude acoustics and vorticity co-exist. 

Our numerical simulations of coldflow processes describe 
instantaneous velocity and pressure distributions in a model motor 
chamber, including the development and convection of vorticity from 
the sidewall, where time-dependent normal injection is imposed. 
The results predict the characteristics of a high Reynolds and low 
Mach number flow with co-existing, equal magnitude acoustic and 
rotational flow fields.    Uniquely, we have separated the acoustic and 
rotational components of the complete  numerical velocity response 
to the imposed transient sidewall disturbance.    We use turbulent 
flow data reduction techniques to describe the spatial 
characteristics of the mean flow, and the RMS-intensity of the 
combined acoustic and rotational fluctuating flow fields.    The 
results can compared with  relevant experiments and with turbulent 
flow models involving various closure schemes( k-e, k-CO and full 
Reynolds stresses).   Comparison of mean and instantaneous axial 
shear stresses at the injection surface enable us to determine if the 
former are helpful for predicting where erosive burning might occur, 
or if one must focus on the impact of the transient surface stress, 
which is considerably larger than the mean stress, on propellant 
burning. 

(ii) Non-axisymmetric ,  transient flow dynamics in a coldflow model 
chamber. 

An analytical method has been developed to describe three- 
dimensional transient flows in a cylindrical chamber with steady 
sidewall injection and a time-dependent disturbance on the headend 



that varies azimuthally and radially.    The results show that 
nonaxisymmetic flow dynamics exist only in a limited portion of the 
chamber adjacent to the headend, and that azimuthal and radial 
velocities decay swiftly in the axial direction over a few cylinder 
radii. Further downstream, in a high aspect ratio chamber, only 
axisymmetric disturbances appear.    The results are in excellent 
agreement with a numerically intensive, three dimensional 
turbulence model by Sabnis et. alO).    Our three-dimensional analysis 
is also used to evaluate the impact of transient, azimuthally 
dependent sidewall injection on the co-existing acoustic and 
rotational flow field in a high aspect ratio cylinder. In this case, the 
time-dependent   injection   distribution   emulates   non-axisymmetric 
propellant burning.     We are not aware of any comparable numerical 
or experimental studies,  where explicit transient propellant burning 
emulation is used as the source of the flow dynamics in the chamber. 

Each of these research efforts will now be described in more detail. 

(I) Analysis and numerical simulation of an injected internal flow 
when equal magnitude acoustics and vorticity co-exist. 

Our numerical simulations of the transient flow response to 
prescribed boundary disturbances*2"4) have been used to study the 
generation and evolution of intense transient vorticity in a cylinder 
with sidewall injection.    The complete axial velocity is divided into 
the numerical analog of the steady CulicM5) profiles, and transient 
responses for the co-existing, equal magnitude acoustic and 
rotational flow fields. The latter is used to describe the time- 
varying spatial distribution of vorticity in the cylinder.  Ref.3 (see 
Appendices for copies of papers by this group) contains examples of 
the  instantaneous,   rotational  axial velocity distribution  at a 
specified  axial  location,  and the vorticity distribution  throughout 
the cylinder at a specified time. 

Our numerical data has also be analyzed in terms of mean flow and 
fluctuating  flow  properties!6), so that comparisons with more 
traditional turbulent flow modeling can be carried out.    Liou and 
Lien(7) summarize many important contributions to chamber flow 
turbulence modeling, based on k-e, k-co and full Reynolds stress 
methods.    In general, the modeling results often tend to predict 
larger turbulent intensities,  and fuller mean velocity profiles than 
found in experiment.    It is suggested the Navier-Stokes based DNS's 
will  require far fewer assumptions about flow injection boundary 



conditions imposed on the chamber sidewall, and may give more 
accurate  representations of the turbulent properties of the flow. 
Results of DNS calculations for flow in a large aspect ratio channel 
are reported in Ref. 7 for mean flow profiles, transition to 
turbulence and turbulent intensity distributions.  The  injection 
speed, v'w=0(1m./s.), is unusually large, the Reynolds number, 
Re=O(106), and the axial Mach number in the downstream half of the 
channel takes on significant subsonic values.    The calculations are 
run for about 15 axial acoustic time scales.    Comparisons of mean 
flow and turbulent intensity predictions with experiments appear to 
be better than those of the traditional turbulence models.    The 
results are significantly affected  by compressibility,  so that the 
mean flow evolution  differs significantly from that predicted by the 
Culick(5)profile, which is valid only for an incompressible flow.    The 
turbulent intensity shows a single peak across the channel, with the 
location of the peak moving toward the sidewall with increasing 
downstream location.    It is recognized that such an effect may 
enhance erosive burning on the downstream section of a solid 
propellant.    The authors do not specify the specific initial and 
boundary conditions used in the DNS.    It is difficult to know what 
types of disturbances are used to drive the solution, or whether the 
DNS resolves acoustic phenomena that may be present.   No 
instantaneous profiles are displayed. 

Our low Mach number, high Reynolds number numerical simulation of 
injected flow in a cylindrical geometry is based on the parabolized 
Navier-Stokes equations and imposed disturbances on the 
sidewalK3'8)-    We generate a flow with co-existing, equal amplitude 
acoustics and vorticity, and a pressure disturbance field that is 
between 1% and 10% of the reference static pressure.   A 
methodology is developed for separating these two transient flow 
fields.    Thus, we can consider the contribution of acoustics alone, 
the vorticity alone and the explicit interaction between the two 
flow   fields. 

A comparison of the mean flow and instantaneous axial velocity 
profiles for Re=104, M=0.02 and an aspect ratio of 20 is given in Ref. 
6.    One notes the former does not hint at the spatial variations of 
the axial velocity shown in the latter.    In particular, the relatively 
large wall shear stress in the instantaneous profile (which varies in 
time between positive and negative values) is not reflected in the 
mean flow value.   The latter alone, may not be a useful measure of 
the "scouring" effect arising from a time dependent, rapidly varying 



wall shear stress on the fizz-foam surface layer of a decomposing 
solid   propellant. 

The RMS intensity distribution in the cylinder is also given in Ref 6. 
The result includes the effects of both the rotational and acoustic 
transients.    One notes several local peaks across the radius, with 
the largest value near the sidewall.    In general, the amplitude 
increases, and the local peaks move toward the sidewall with 
increasing axial distance downstream.    The single peak results 
described in Ref. 7 are qualitatively similar.    Our multiple peaks 
arise from vorticity generation driven by axial acoustic waves in the 
cylinder.   The latter may not be present in any of the turbulence 
models discussed in Ref. 7 or in the DNS discussed there. 

We have extended our numerical simulations to a variety of Mach and 
Reynolds number values, and to other frequency ranges(9).  The 
boundary condition representation has been improved by using 
ingoing and outgoing characteristic relationships.    This permits a 
more accurate description of wave behavior at the headwall, 
sidewall and exit plane. 

By driving the co-existing acoustic and rotational flow transients 
with explicit    boundary disturbances, we establish a clear cause and 
effect  relationship  between  the transient internal flow dynamics 
and the imposed conditions on the endwall or sidewall.    Forcing on 
the  latter boundary is particularly relevant to simulating unsteady 
propellant burning.    Our numerical simulation involves fewer 
assumptions than those needed in more traditional turbulence 
modeling(7)(e.g., closure models), and may provide considerable 
insights into the transient dynamics of weakly viscous, low Mach 
number, compressible flows with co-existing acoustics and 
vorticity. 

An understanding of oscillatory, intense axial shear stress on the 
sidewall will be useful for developing physically viable boundary 
conditions at the decomposing interface of a burning solid 
propellant.    The idea here is account for the "scouring" effect of 
oscillatory shear stress on the fizz-foam zone thought to exist at 
the gas-propellant interface.    Although the axial velocity in the 
combustion zone may be small, the results of the coldflow studies in 
Refs. 2-4, 8,10 and 14 suggest that the velocity gradient will be 
relatively large, and hence can be a source of axial deformation, and 
perhaps stripping of easily deformable surface material. 



(II) Non-axisvmmetric transient flow dynamics  in  a coldflow  model 
chamber 

Our initial analysis of three dimensional unsteady flow dynamics in 
a model chambeK11) was motivated by the computational result of 
Sabnis et. aK1),  showing that nonaxisymmetric effects disappear 
entirely within about two cylinder diameters in axial distance from 
a cross-section on which asymmetric distributions of velocity and 
pressure are imposed.    This observation from a turbulent numerical 
solution suggests that certain type of imposed boundary conditions 
or forcing cannot produce sustained tangential disturbances in a 
long,  narrow motor configuration. 

To test this hypothesis, and to confirm the result in Ref. 1, we 
developed an asymptotic analysis of the three dimensional Navier- 
Stokes equations for a transient flow in a cylinder of length U and 
radius  R'  (L7R'»1), with steady sidewall injection(6-11).   An 
asymmetric transient, axial velocity disturbance is imposed on the 
headend cross-section. The entire flow response in most of the 
cylinder must be  axisymmetricC10)., and is not compatible with the 
asymmetric head end condition.    We find that three dimensional flow 
exists only in a confined transition layer adjacent to the headend, 
with axial extent O(R').    There, the describing equation is inviscid 
and incompressible , so that no acoustic response occurs for the 
driving frequencies associated with the lower order axial modes. 
Solutions for the pressure and axial velocity show exponential decay 
of all three dimensional effects as the edge of the layer is 
approached.    The radial and azimuthal velocities decay similarly. 
The remaining time dependent terms drive the axisymmetric 
disturbances found in Ref. 10. 

The asymmetric transverse velocity field on a cylinder cross- 
section is given in Ref. 11 for a specific headend disturbance.    One 
notes the asymmetric character of the flow with respect to the 
diameter between 8=-TC/2 and 6= 7i/2, and the horizontal flow across 
the cylinder axis.    Other quantitative results show that the 
amplitude of the three dimensional pressure effect has decreased to 
about 1% of the overall value at an axial distance of about 2.5R'.   The 
agreement with the numerical result in Ref. 1  is very satisfying. 
Hence, we have a viable explanation for the rapid disappearance of 
transient asymmetric disturbances, associated with the idea that 
certain types of acoustic modes cannot propagate in particular wave 



guides. 

The three dimensional solutions described above do not satisfy the 
no-slip conditions on the endwall and sidewall.   We have derived a 
rotational,  inviscid,  incompressible solution valid in a thin sublayer 
adjacent to the former.    Due the oscillatory and large injection 
associated with the disturbance boundary condition, a no-slip 
condition is compatible with an inviscid, but rotational process(15). 

Weakly viscous solutions in a boundary layer next to the sidewall 
describe the transition to zero axial velocity.    Here again, large 
injection concepts must be used to understand the three dimensional 
process in the layer, including two large components of intense, 
transient vorticity(  axial  and  azimuthal). 

Azimuthally-dependent propellant burning transients are being 
simulated in more recent and ongoing work(6 ) by imposing a 
transient sidewall  injection  rate that varies with the angular 
variable 6 as well as with time and axial location.    Both standing and 
traveling waves can be imposed on the interior circumference of the 
cylinder.    Solutions for standing wave sidewall disturbances show 
that only axial, planar acoustic waves are driven in a large aspect 
ratio cylinder.    However, there is also a non-acoustic time- 
dependent three dimensional flow induced in the chamber.     Non- 
axisymmetric cross-sectional flow is described in Refs. 6 and 11, 
where one observes a non-zero velocity across the axis of the 
cylinder. 

The axial and azimuthal pressure gradients associated with the 
transient response to the boundary disturbance interact with the 
fluid injected from the sidewall to produce two components of 
intense transient vorticity at the sidewall surface.    In addition to 
the familiar azimuthal  vorticity component found  in  axisymmetric 
flows, we now have in addition an axial component of similar 
magnitude.    This means that an oscillatory shear stress will "scour 
"the circumference of the cylinder. 

The non-axisymmetric vorticity front shape can be calculated from 
first principles as part of our analysis.    Results in Ref. 16 show 
instantaneous  configurations for two  different distributions  of the 
azimuthally dependent injection rate.    Our solutions show that for 
times large compared to the axial acoustic time in the chamber, the 
front shape approaches an axisymmetric configuration. 



There are, of course, other means for generating transverse 
disturbances in the largely inviscid shear flow that exists in a 
steady, sidewall injected chamber flow     For example, our group has 
shown that refraction of axial acoustic modes by a shear flow in a 
channel can produce surprisingly asymmetric acoustic responses(12> 
13).    This early analytical work demonstrates explicitly that axial 
acoustic waves can be distorted by refraction to generate purely 
transverse, and even oblique waves in the channel.     This type of 
acoustic wave-shear flow interaction is a "higher order" effect in a 
low Mach number asymptotic expansion, so that the amplitude of the 
asymmetric response is smaller than that of the axial mode itself. 
Hence these types of asymmetries are smaller than those driven by 
boundary disturbances. 
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A study is made of flow dynamics in a model solid rocket engine cham- 

ber flow induced by strong sidewall mass injection. The system is subjected 

to either a large endwall transient disturbance, or a to large sidewall transient 

disturbance which mimics unsteady mass addition due to irregular propellant 

burning. 

Perturbation methods are used to derive systematic approximations 

to the complete compressible Navier-Stokes equations. An initial-boundary 

value approach is used to formulate a generalized unsteady mathematical model 

capable of describing both non-resonant and resonant time histories of solu- 

tions. Fourier series representations of the velocity and pressure are obtained 

in terms of eigenfunctions that satisfy all the prescribed boundary conditions. 

Finite difference schemes have been adopted to solve the final nonlinear diffu- 

sive equations in order to obtain the explicit results. In addition, in the case 

of endwall forcing, systems of truncated, time dependent, nonlinear coupled 

ordinary differential equations have been solved to evaluate the validity of the 

modal approach for different frequencies. 

Axial waves, generated directly by an endwall forcing or indirectly by 

a sidewall forcing, propagate through the basically inviscid shear flow field, and 

perhaps unexpectedly, create significant vorticity at the surface of the porous 

cylinder. The radial component of the injected flow field carries vorticity into 

the entire cylinder. 

The formulation and analysis describe the transport and time-history 
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of the spatial distribution of vorticity within the cylinder on the time scale 

for axial acoustic waves to traverse the cylinder length. Finally, results show 

that transient rotational flow effects are crucial to the evolution and stability 

of internal fluid dynamics when the characteristic cylinder Reynolds number 

(Re) and axial Mach number (M) are very large and small, respectively. 
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Abstract 

Analytical and numerical modeling methods are 
used to predict the transient flow dynamics gen- 
erated by time-dependent boundary conditions in 
a solid rocket motor chamber model. Non- 
axisymmetric, time-dependent boundary forcing on 
a sidewall of the cylinder, which emulates unsteady 
propellant gasification, is used to establish asymmet- 
ric, three-dimensional flow in a model chamber. An 
asymptotic analysis is used to reduce the full Navier- 
Stokes equations to a simpler set of equations, which 
describe the acoustic processes and the vorticity in 
the cylinder. The results show that the presence of a 
non-axisymmetric time-dependent boundary condi- 
tion drives planar axial acoustics waves and a non- 
axisymmetric flow response throughout the cham- 
ber. The interaction of the three-dimensional flow 
repsonse to the non-axisymmetric boundary condi- 
tion with the injected fluid produces two vector com- 
ponents of vorticity along the sidewall of the cylinder 
of magnitude 0{M~X). The voriticity is convected 
into the cylinder by the injected flow field. 

I Introduction 

Internal flow dynamics in a cylinder with mass ad- 
dition from the sidewall are studied as an analogue 
to flows within solid fuel rocket motors. The mass 
addition models the gasification of the burning pro- 
pellant in the rocket motor. 

The work presented here is related to that of Staab 
and Kassoy1, which describes a three-dimensional 
study of the flow in a cylinder with sidewall mass ad- 
dition. The primary interest is to determine the in- 
fluence of a non-axisymmetric, axial velocity bound- 
ary condition, applied to the closed end wall of the 
cylinder, on the internal flow process.   Staab and 

Kassoy1 show that a non-axisymmetric core flow 
is present adjacent to the endwall, within an ax- 
ial length scale on the order of the cylinder radius. 
Within the region, the flow is incompressible and 
inviscid, and the non-axisymmetric velocity field de- 
cays exponentially fast in the downstream direction. 
A viscous boundary layer exists near the sidewall of 
the cylinder. All three components of the vorticity 
exist within the boundary layer. The axial and az- 
imuthal components of vorticity have a magnitude 
on the order of 0{M~l). 

The present analysis is also similar to the work of 
Zhao et. al.2 which models the axisymmetric flow 
within a solid rocket motor, by imposing an axisym- 
metric radial velocity boundary condition along the 
sidewall of the model cylinder. The results of the 
analysis reveal the structure of the vorticity. The 
interaction of acoustic waves with the sidewall mass 
addition generates vorticity of magnitude of order 
0{M~l). The vorticity is convected away from the 
sidewall. Weak viscous effects diffuse the vorticity 
on a fine radial scale of order 0{M) as it approaches 
the centerline. 

The objective of the present work is to describe 
the characteristics of the three-dimensional flow in- 
duced in the cylinder by a non-axisymmetric side- 
wall boundary condition, in contrast to the non- 
axisymmetric endwall boundary condition used in 
Staab and Kassoy1. 

Mathematical Formulation 

The objective of the present work is to model a 
wall injected, semi-confined internal flow driven by 
a non-axisymmetric, time-dependent velocity distur- 
bance on the sidewall. The flow occurs in a cylinder 
of length L', and radius, R', with a pressure node 
at the open end as shown in Figure 1. The primes 
represent dimensional variables. 
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Fluid is injected steadily through the side wall with 
a characteristic velocity Vr'0 and induces an axial 
flow characterized by Vz0. The mathematical model 
is based on the following non-dimensional Navier 
Stokes equations: 

g + " [id,  ...     19,,,; 
rä-r{rpVr)+er¥e{pVe) 

Dt r 

DV* _. *,V'V»' — \- M  
Dt T 

DVZ 
p~m 

DT 

= 0, (1) 

7 M or        Re 

S2   ldP      2M 

-^Mrl6+STeSe{3) 

1   dP      2M 

~Wd7 + 6R-eSz    (4) 

pCv^ = -M(1-l)PV-V 

P   =   pT, (6) 

where 

dVr     Vr     edVe     8VZ V • V = —- H—- H  H - 
dr       r      r 86       dz ' 

D    a    .,(.. a     i_, a    .. a\ 
m = m+M{Vrd-r+erVede + v^a-z)' 

Sr, Se, Sz are viscous terms, and $ is the dissipation 
function. Equations (l)-(6) are non-dimensionalized 
using the following definitions: 

Vr = XL ■tr   _      8        y          z VB — -.T,   >     vz — T/,   ) 
Vi so V, zO 

P ~ n' ' P" T'' Po M) -10 
M - -r,  CV - «-• 

Mo °vo 

_ r'        _ .z'        _ f        _ *c' 
r"pJ' 2-£" '"«f K-«0' 

where PQ is the initial static pressure in the cylin- 
der, and p'0 and TQ are the density and temperature 
of the fluid being injected from the sidewall. The 
aspect ratio is given by 8 — jfr, where 8^1. The 
induced characteristic axial velocity and the char- 
acteristic endwall velocity disturbance Vz0 is defined 
with respect to the injection reference sidewall veloc- 

ity, Vr'0 by overall mass conservation, tfp- = S. The 

size of the initially unknown reference azimuthal ve- 
locity VgQ is related to Vr'0 by \ßP- = e. Later, it is 

shown that e = 1. 
The time is non-dimensionalized using the axial 

acoustic time scale, t'a = jfr, where C0 = (JTI'TQ)? 

is the speed of sound, TV is the gas constant, and 7 
is the ratio of specific heats. The thermal diffusiv- 
ity, viscosity, and specific heat for constant volume, 
K0,^0, and C'vo are characteristic properties of the 
injected fluid. Also the Reynolds number, Prandtl 
number, and Mach number are defined as 

Re = 
Mo     ' 

Pr = 
VoC' pO 

where Re » 1, M < 1, and Pr = 0(1). 
Initially, a steady flow is generated by the side- 

wall injection, Vr = —1. At t = 0+, the ra- 
dial speed on the sidewall begins to oscillate with 
a non-dimensionalized sinusoidal variation, Vr. = 
-1 + F(8, z) sincjt, where u = 0(1). 

The full boundary conditions are: 

z = 0; Vz = 0 

z = l; P=l, 

r = 0;       P, p, T, Vr,Ve, Vz finite, 

(7) 

(8) 

(9) 

r~ \ -1 +F{6,z) sincjt,   t>0r' ' ^  —x-t-r[p,z)suiui,    1 p» i 

r = 1;        Vz=V„=0, (11) 

and solutions must be periodic in 6. 

II Steady Solution 

In general, solutions to (l)-(6), with boundary 
conditions (7)-(ll), are found in terms of the de- 
pendent variables, written as 

(Vr,Ve,Vz,P,p,T)    =    (Vrs,Ve„Vz„P„p„Ts) 

+(Vr,Ve,Vz,P,p,f), 

where the subscript "s" represents the steady part of 
the flow and (") represents the unsteady flow. The 
steady parts of the solutions satisfy the condition 
VT, = —1 at r = 1 for all t. As a result of the ax- 
isymmetric boundary conditions, the steady solution 
is axisymmetric. 

The steady variables are expanded as 

(Vr„V9„Vz,)    ~   J^M^Vrt^Vw.,^.), 
»=o 
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(Ps,ps,Ts)    ~    l + Y2Mi+2(Pis,pia,Tis),. the leading order equations are found with M ->• 0 
i=0 

for the limit M -+ 0. 
The solutions to the first-order steady equations, 

1  .   ft i\ Vr0s    =    -;Sin(-rj, 

Vgos   =   0, 

Vz0s    =    7rzcos(|r2J, 

Po,   =   7y(l~A 

(12) 

(13) 

(14) 

(15) 

are those derived by Culick3 and Taylor4. 
The initial conditions for the unsteady flow are 

given by the steady solution profiles. In terms of 
the unsteady variables, at t = 0, 

(Vr,Ve,Vz,P,p,f) = 0. (16) 

III Three-dimensional Unsteady Flow 

The unsteady flow in the cylinder is described in 
terms of asymptotic expansions 

(p,P,T)    ~    l + ^M^tö.Pi.Ti), 

(Vr,Vg,Vz)      ~      (Vr0„Ve0„Vzo,) (17) 

+ Y,Mi{Vri,Vei,Vzi) 
i=0 

valid in the limit M -*■ 0. 
To resolve the flow structure, a multiple spatial 

scale analysis is required. The first spatial scale, 
n = 1 — r, is the cylinder radius, and the second, 
r2 = ^jf is needed to resolve the fine scale structure 
of the vorticity. The radial gradients in (l)-(6) are 
replaced by 

d_ 
dr 

dr2 

_d_ 
dr\ 

d2        2 + 

j__d_ 
M dr2' 

d2 i d2 

dr2     Möriör2     M
2 dr2' 

(18) 

Leading Order Mathematical Model 

The unsteady expansions in (17) and the multiple 
radial scales in (18) are substituted into (l)-(6), and 

^Cl, and 8 = jfi. The first asymptotic relation- 
ship is the hard-blowing condition and the second 
relationship is used to simplify the analysis. The 
aspect ratio, S and the Reynolds number, Re, will 
be written in terms of the Mach number. The as- 
pect ratio is taken to be Ö = -fa, where A; is an order 
one constant. Although this relationship is done to 
simplify the mathematics, it is also physically rele- 
vant. In real solid rocket motors, the aspect ratio is 
between 15 and 50 and within the core of the mo- 
tor chamber and upstream of the nozzle, the Mach 
number is between 0.05 and 0.3. 

After  considerable 'technical  manipulation  like 
that used in Zhao et. al.2 one finds, 

dVT rO 

dr2 

= 0, (19) 

dP°     «r   j_v    sa*>     la(rV-ro)   ,  ld(rVrl) 
-Q^-(VrO+VrOs)g^---^- + --Q^- 

€ dVeo     dVz0 

T de dz 

dPo 

dr-2. 
= 0, 

,   (20) 

(21) 

^>+^L = 0, 
dri      dr-2 

(22) 

dri      dr2 

(23) 

dVr0 _ k2 (dP2      dP^ 
dt       7  ydrx      dr2j 

),(24) 

dPo    dP1 

de     de 
(25) 

dVeo 
dt 

(v     ,y ^Veo_     k2   dP2 -(vr0s + vr0) dr2 -  €ir de: (26) 

dVz0 

dt 
(v   +v \dv*°-   ldP° (27) 

dfo 
dt 

-(Vros + Vro)^-      7        m, (28) 

Po = Po + T0. (29) 

Equations (19) and (20) are found from the con- 
servation of mass, (1). The radial momentum equa- 
tion (2) gives rise to (21)-(24). Equations (25) and 
(26) are first-order approximations of (3). Equations 
(21)-(23), and (25) arise due to the large aspect ra- 
tio of the motor. Equations (27)-(29) are leading 
order versions of (4)-(6). 
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A further division of the variables is used to de- 
scribe the acoustic and rotational parts of the flow 
field, written as 

f0=To(z,t)+To(rltr2,e,z,t), 

P0 = Po(z,t), 

Pi=Pi(z,t), (30) 

Vz0 = Vx0(z,t) + ^(ri^a.Ö.Z,!), 

Veo=Veo(rltz,0,t) + Veo(ritr2Aztt) 

VrO = Vro(r1,0,z,t), 

where a ( ) refers to irrotational acoustics and a 
(     ) refers to the rotational component of the flow. 

The leading order pressures, PQ and P\ contain 
only the irrotational term, which depends only on 
z and t. This will be shown later. The irrotational 
part of the leading order temperature, density, and 
axial velocity (To, po, and VZQ) are related to Po as 
will also be shown later. Similarly, the irrotational 
parts of Vgo, Vr0 are related to iV 

The irrotational variables and the pressure de- 
scribe the acoustics within the chamber, and the 
rotational parts describe the vorticity. 

Irrotational Equations 

The expansions in (30) are substituted into (19)- 
(29) to form two sets of equations. The irrotational 
equations are 

dPo 
dt 

dVeo 
dt 

dVz0 

dt 

dT0 

1 d(rVrQ) 
r     drx 

k2 1 dP2 

7 er 66 

IdPp 
7 dz ' 

7 - 1 dP0 

edVeo 
r   86 

dv zO 

dz 

dt 7     dt 

Po = Po + T0, 

(31) 

(32) 

(33) 

(34) 

(35) 

The irrotational conservation of mass (31), can be 
further divided into two equations, 

?h + WjO = I rF{e,z) sinu;M36) 
dt        dz       7T ./_„. 

= -- [F{9,z)sxnut.(37) 
ldjrVro)  |  edVeo 
r    dr\ T   d6 

Integrating (31) over the cross-section of the cylin- 
der, and using the sidewall boundary condition in 
(10), yields (36). This equation only depends on z 
and t. The second equation, (37) is found by the 
difference between (31) and (36), and depends on z, 
r, r\ and 6. 

Equations (33)-(35) and (36), can be combined to 
yield an axial wave equation, 

d2p0   d2p0 -2f" * J-K dt2 dz2 

with boundary/initial conditions: 

dP0 

F(6, Z)UJ cos utd6,   (38) 

dz 
= 0,    z = 0; P0 = 0,    z = 1, 

r = 0. 

Standard techniques can be use to find the solution: 

p -dPo-o 

= 7   75 ^r (cos ut ~ cos &n*) cos b„z,    (39) 
n=0    n 

i r1 r 
where a„ = — /   /    F(z,0)cos&nz d6 dz and 

* JO J-V 

bn = (n + |)7T. The solution above is valid for 
u ^ bn, n = 0,1,2,... in order to avoid resonance, 
which is not studied in the present work. 

The leading order velocity, found from (33), is 

V zO ——j    7-smM-sm.t 
n=0 

bn 

) sin bnz 

(40) 
The above results indicate that the pressure and 

axial velocity contain both the driving frequency of 
the sidewall as well as all eigenfunctions associated 
with the cylinder length. 

Higher Order Pressure Terms 

Because the solution to the leading order pres- 
sure in (39) does not depend on rx, the second order 

dP 
pressure satisfies -r— = 0 from (22). An integration 

or2 
of the third-order conservation of radial momentum, 
(23), gives 

P2 = -r2 
an 
dri 

G2(ri,6,z,t). (41) 
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The secular growth term in r2 must be suppressed, 
Qp 

therefore —— = 0.   Consequently, the first- and 
OTx 

second-order pressure terms axe dependent only on 
z and t. Also, the third-order pressure, P2, cannot 
depend on r2, from (23). 

Similarly, an integration of (23) with respect to r2 

yields 

A-'teTr-Tsr)^''"'0' (42) 

since neither Vr0 nor P2 depend on r2. Suppressing 
the secular growth in r2 results in 

dVr0 _ k2 dP2 

dt   ~ 7 örx ' 

First-Order Transverse Flow 

(43) 

Equations (31), (32), and (43) can be combined 
to give a Poisson equation of the form: 

k2 8  ( dP2\    k2d2P2      1*  /"* Wfl 

(44) 
where the original radial variable r is used instead 
of ri. The boundary conditions are: 

r = 0, 

r=l, 

P2 finite, 

dP2 

(45) 

Or 
= 7wF(6,z) cos ujt, 

with P2 periodic in 6. 
The solution to (44) is 

—       7U 
P2 = -j-j-coswr '-F{0,z) + Mz) 

+ ]T rn (An(z) cosnO + Bn(z) sinn9) 
n=l 

oo 

+ Y^ r2 (an(z) cosnö -1- bn(z) sinnö) 
n=l 

(46) 

where 

bn(z) = ~J" F(B,z)sinne de, 

An(z) = —an{z) 
n 

Bn(z) = --bn(z) 
n 

(47) 

and AQ{Z) is an unknown function to be determined. 
Equations (32) and (43), can be used to show that 

V,n = sin ujt -rF{e,z) 

^ nrn-1 (An(z) cos no + Bn{z) sinnÖ) 
n=l 

oo 

- Y^ 2r (an(z) cosnö + 6„(z) sin nö) 
n=l 

yeo = -sinwt 
e 

(48) 

rdF(e,z) 
Y 00 

+ Y^ nr"-1 (An(z) sinne - Bn(z) cosnö) 
n=l 

oo 

+ Ynr (an(z) sin nS ~ bn(z) COS TlB) 
n=l 

(49) 

In the absence of a time derivative in (44), the 
pressure solution in (46) cannot satisfy the initial 
condition. If one looks at the problem for t = O(M), 
the radial acoustic time scale, a hyperbolic equation 
for ~P2 is recovered, for which an acoustic solution 
satisfying the initial condition can be found. In con- 
trast to the axial velocity in (40), the solutions in 
(46), (48), and (49) are time-dependent non-acoustic 
responses of the flow to the sidewall boundary con- 
dition. 

Figure 2 shows a cross-section of the vector field 
for the boundary condition F(9,z) = cos ^ sin2 f. 
The vector field consists only of the vector sum of 
the leading-order radial velocity, Vros + Vro and the 
azimuthal velocity, Veo- The values z = \, t = \ 
and UJ — 1 are chosen for the plot, which reveals 
a flow from right to left across the centerline. The 
boundary condition contains a non-zero Fourier coef- 
ficient, Ai(z), which will be shown to be an indicator 
of cross-axis flow. 

Determination of the Parameter e 

v' 
2    rw The parameter e in the definition of e = ^5°- can be 

°n^ = ~~ 2TT /_  F^9'^ COS Ue d9' found bv examining the flow at the centerline of the 
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cylinder. The magnitude of the flow here can only 
depend on z and not 9. Values of the radial and 
azimuthal velocities along the axis of the cylinder 
are 

V, 
1 

00 r-»0 
(J4i(z)sin0-.Bi(z)cos0)sinu>t, (50) 

V'r0|    (. = (Ai(z)sm6 + Bx{z)sm6)smujt.     (51) 

The magnitude of the transverse velocity vector 
along the centerline is 

v2 
r-O 

r->0 
+ v 00 = sin2 ut 

r-vO 

stffl + ^Ufr) 

+ (2 —5-} Ai(z)ßi(2)sinöcos0 

+ [C0SH+S^A)B2(z) (    2n     sin20\ 

and does not depend on 9 if e = 1. The square of 
the speed transverse to the cylinder axis is 

r0 
r-»0 

V% 
i—>o 

= {A\{z) + Bl{z))sw2ujt. 

This result demonstrates that if Ai{z) or £i(z) 
is non zero then there is flow across the centerline 
of the cylinder. Flow across the axis of the cylinder 
occurs only when the coefficients Ai(z) and B\(z) 
are nonzero. These are the coefficients for the eigen- 
functions sin<? and cosö given in (47). These are 
the only ^-dependent eigenfunctions which are not 
symmetric about the center of the cylinder. 

Rotational Equations 

The solutions to the irrotational velocities in (40), 
(48), and (49) describe the acoustic and non-acoustic 
response characteristics of the flow. In contrast, the 
rotational equations contain vortical characteristics. 
An analogous procedure to that used to find the ir- 
rotational equations is now employed to find the ro- 
tational equations. The expansions in (30) are sub- 
stituted into (26)-(29) to give the leading order ro- 
tational equations, 

dVe°-(VrO, + Vro)^=0, 
dt 

dVz0 

dt 

dr2 

-(VrO, + Vr0)^ = 0, 
OT2 

(52) 

(53) 

f-(VrOs+FrO)g = 0, (54) 
Po + f0 = 0. (55) 

The latter two equations can be combined to show 
that the rotational part of the density, is described 
by 

fMwFrO)|g = 0. (56) 
Equation (56) and the rotational part of the con- 

servation of mass (20) can be used to derive an in- 
compressible rotational conservation of mass, 

aVn     1 dV0o     8Vz0 

dr2      T  36 dz 
= 0. (57) 

Boundary conditions along the sidewall for (52)- 
(56) are found from the no-slip boundary condition 
(11) and the known values of the axial and azimuthal 
velocities in (40) and (49). The density and the tem- 
perature on the sidewall can be found from (31) and 
(35). The boundary conditions for (52)-(56) are 

n=r2 = 0, Veo = -Veo(r = 1, z, t), 

n=r2=0, Vz0 = -VzQ(z,t), 

r1= 7-2 = 0, T0 = -T0(z,t), (58) 

n = r2 = 0, po = -Po(z, t). 

Equation (53) can be written, 

dVz zO 

dt 
= 0, (59) 

along a characteristic surface f = f (rx, r2,9, z, t) de- 
fined by 

^■ = -(VrOs + Vr0), (60) 
at 

where the derivative is taken with r\,6, and z con- 
stant. The equations (52)-(54) and (56) can be writ- 
ten in the form (59). Each of these equations have 
the form of a one-dimensional wave equation. The 
solutions of these equations will each be waves trav- 
eling toward the center of the cylinder and convected 
by the radial injection velocity, VHJ + VTo,. 

Using (12) and (48), (60) can be solved for r2, 

Z + r2 = t 
sindd-n)2) 

1-ri 
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+ ^-^[(1_rl)F(M)        (61) 

oo 

+ ^ n(l - n)"-1 (An{z) cos no + Bn sinnö) 
n=l 

oo 

+ y22(l -n)(an(z)cosn0 + 6„(z)sinn0) 
n=l 

where ri, 6, and z are taken as parameters. The 
rotational parts of the azimuthal velocity, axial ve- 
locity, temperature and density can be written as 

To = To(Z;r1,e,z),  . p0 = Ä(f;ri,0,z). 

Each value of f = constant in (61), describes a 
surface in (t,ri,r2) for z and 6 parameters. The 
physical front of the vorticity, £ = 0 is found from the 
intersection of the surface with the plane rj = Mr2. 

Figures 3 and 4 show a series of cross-sections of 
the vorticity front for two different boundary con- 
ditions. The curves represent the boundary be- 
tween the rotational unsteady flow and the unsteady 
irrotational and steady rotational flow, for times, 
t = 2,4,8,12, and 16. The largest curve represents 
the sidewall of the cylinder. The front closest to 
the sidewall corresponds to t = 2 and they become 
smaller as time increases. 

The plot in Figure 3 shows cross-sectional projec- 
tions of the vorticity front for the radial boundary 
condition VT = — 1 4- cos2 § cos fzsinwr for z = \ 
and u = \. The plot reveals that the front shifts 
to the left for t = 4,8, and 12. The maximum of 
the offset occurs as r = 2it. It is also noted that 
as time increases, the vorticity front becomes more 
axisymmetric. 

The plot in Figure 4 shows cross-sectional projec- 
tions of the vorticity front for the radial boundary 
condition Vr = -1 + cos2 30 cos § zsinwr for z = \ 
and u = \. The effect of the non-axisymmetric 
boundary condition is evident for the fronts at t = 2 
and t = 4. The shape of the vorticity fronts remains 
nearly axisymmetric for i > 8. 

IV Vorticity 

The vorticity, SI = (£lr, fig, f2z) along the sidewall, 
r = 1, is calculated by examining the leading or- 
der azimuthal and axial momentum equations (26) 
and (27).. The no-slip boundary condition applied 
at the sidewall is Vgo = Vz0 = 0. The result is that 

the radial velocity gradients are proportional to the 
pressure gradients, which are known. 

dVeo 

dr2 

dVz0 

dr2 

k2 dP2 

1 r VrQ3 ■ 

1      1 

Vr0 ae 
dPo 

lVr0s + Vr0 dz 

The vorticity on the sidewall can be calculated 
using the pressure gradients (39) and (46) and the 
radial injection boundary condition (10). 

Qff 
1 dVz0 

M dr2 

E~=o T*^- (cos ut ~ cos 6"*)sin bnZ 

nz  ~  - 

M(-1+ F(6,z) sin ut) 

1 dVeo 

M dr2 

=    -MCOSU)t{2—d6— 
oo 

- 52 n{An(z) sinnö - Bn(z) cosnö) 
n=l 
oo N 

-52n(an(z)sinn^ - &n(z) COS no)   j 
n=l ' 

/ (-l + F(e,z)cosu>tj , 

ür     ~     0(1). 

The azimuthal component of vorticity is 0(M-1), 
as found by Zhao et. al.2 This component of vortic- 
ity contains both a time-dependent response to the 
boundary condition as well as all eigenfunctions. A 
large axial component of vorticity, 0{M~l) exists 
due to the nonaxisymmetric boundary condition. It 
contains only the time-dependent response associ- 
ated with the boundary condition. 

V Higher Order Equations 

A higher order analysis must be done to resolve 
the effect of the second radial scale on the rota- 
tional variables. The procedure used in section III 
is employed here to divide the higher-order veloci- 
ties, density and temperature into irrotational and 
rotational parts, using the following expansions: 
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Vzi = Vzi(z,t) + Vzl(ri,r2,8,z,t), 

px = p1(z,t)+pi{ri,T2,6,z,t) (62) 

.Vei = Vei{rx,e,z,t) + Vei{n,r2,d,z,t), 

fx = r1(z,f)+f1(r1,r2,Ö,Z,t) 

The second order rotational azimuthal and ax- 
ial momentum equations are found by substituting 
(17) and (62) into (3) and (4), using 6 = p- and 
Re = c\j7, where C = 0(1). Similar to the aspect 
ratio, the Reynolds number is written in terms of the 
Mach number to simplify the model. This particu- 
lar relationship is chosen to include a weak viscous 
effect for the first-order velocities. 

Additional equations that describe the effect of 
the shorter length scale, r2, are found by suppress- 
ing terms on the right hand side of (63) and (64) 
that cause secular growth in Ve\ and Vz\. These 
equations will not be discussed in the present work, 
but a set of nonlinear convection-diffusion equations, 
which are similar but more general than those found 
by Zhao et. al.2, is expected. 

acoustic radial and azimuthal velocities are time- 
dependent responses to the boundary condition. 

The two largest components of vorticity are the 
azimuthal and axial parts, and each are of the order 
0{M~l). Each component arises from an interac- 
tion between either the axial irrotational acoustics 
in (40) or the azimuthal component of the trans- 
verse velocity in (49) with the radial injection on 
the sidewall. 

Finally, a higher order analysis is done to de- 
scribe the effect of the shorter radial variable. A 
set of nonlinear convection-diffusion equations are 
expected which includes the effect of viscosity. 
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y'(r'»R>-V'(z'.6.l') 

e = it 

Figure 1: A solid rocket motor is modeled by a cylin- 
der of length L' and radius R'. A pressure node, 
P' = PQ exists at the open end, z' = L'. A non- 
axisymmetric radial velocity is imposed. The aspect 
ratio is 8 = jfr "» 1. 

Figure 3: The plot is a series of cross-sections of 
the vorticity front for radial velocity boundary con- 
dition, VT = -1 + cos2 | cos § z sin cjt for z = \ and 
u = _   l The outer curve is the boundary of the 
cylinder and the inner curves are the cross-sections 
for t = 2,4,8,12, and 16. 
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Figure 2: The plot of a projection of the velocity 
vector field onto a cross-sectional plane at z = 1/2 
for t = n/4. The field consists of the_vector sum of 
the radial, Vr0s+Vro, and azimuthal, Veo velocities. 
The function F(z,6) = cos(7rz/2)sin2(0/2) is used 
for the sidewall velocity boundary condition. 

Figure 4: This plot is a series of cross-sections of an 
example vorticity front for radial velocity boundary 
condition, Vr = -1 + cos2 30 cos \z sin art for z = \ 
and UJ = |. The outer curve is the boundary of the 
cylinder and the inner curves are the cross-sections 
of the vorticity front for 4 = 2,4,8,12, and 16. 
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Abstract 

Numerical and analytical modeling methods are 
used to predict the transient flow dynamics gener- 
ated by time-dependent boundary conditions in a 
solid rocket motor chamber model. First, nonax- 
isymmetric boundary forcing on the endwall is used 
to establish asymmetric, three-dimensional flow in a 
model chamber. Results of an asymptotic analysis 
provide an understanding of why such a flow is con- 
fined to a limited spatial region, and why most of 
the flow away from the endwall is axisymmetric. 

Prescribed time-dependent sidewall mass addition 
is used to simulate irregular burning rates that char- 
acterize motor instabilities. The flow field consists of 
co-existing, equal magnitude acoustic (irrotational) 
and vorticity (rotational) fields present across the 
entire diameter of the cylindrical chamber. The nu- 
merical flow data is used to calculate mean flow and 
fluctuating flow properties, including RMS-values. 

I Non-Axisymmetric Flow in a 
Model Solid Rocket Motor 

Most studies of rocket motor flow dynamics are fo- 
cused on the behavior and impact of axial acoustic 
disturbances. In principle, azimuthally dependent, 
time varying burning rates could be the source of 
non-axisymmetric acoustic disturbances that initiate 
three-dimensional motor chamber flow transients. 
Sabnis et. al.1 describe a three-dimensional numer- 
ical solution to a turbulent flow model, driven by 
an imposed non-axisymmetric pressure disturbance 
on a cross section of a long, narrow cylinder. The 
results show that the nonaxisymmetric portion of 
the flow exists only within two diameters from the 
cross section on which the pressure disturbance is 
imposed. 

The flow dynamics in a solid-rocket chamber are 
modeled mathematically in the present work by us- 
ing a cylinder with uniform sidewall mass injection. 
The unsteady flow is generated by a nonaxisymmet- 
ric oscillation of the axial velocity on the endwall. 
Asymptotic analysis, using a perturbation series in 
small Mach number, is used to find approximate so- 
lutions to the Navier-Stokes equations for a high as- 
pect ratio rocket motor and a high Reynolds number. 
Except near the endwall, the flow is characterized by 
axisymmetric properties. A thin, three-dimensional 
incompressible flow transition layer exists between 
the endwall and the downstream axisymmetric re- 
gion. The unsteady components of the radial and az- 
imuthal velocities vanish as one moves downstream 
toward the edge of the layer as does all r and 9 de- 
pendence of the axial velocity and pressure. The 
basic result is in excellent agreement with that de- 
scribed by Sabnis et. al.1, and is valid for driving 
frequencies similar to those associated with the first 
few acoustic normal modes in the cylinder. 

Mathematical Formulation 

The flow occurs in a cylinder of length L', and 
radius, R', with a pressure node at the open end 
as shown in Figure 1. Fluid is injected steadily 
through the sidewall with a characteristic velocity 
V^'o and induces an axial flow characterized by V^0. 
The imposed axial velocity on the endwall also has a 
characteristic velocity V^0. The mathematical model 
is based on the following non-dimensional Navier 
Stokes equations: 

$+" 
Id.   Tr.       1 d . Tr. 
__(rpVr) + e-_(pV.) 

■hw = 0, (1) 
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*  aP + ^£Sr,   (2) 
7 M dr       Re 

ldP      2M 

1eM7-de+SR-eSe^) 

DVZ 
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i 

l dp 
+ 62—S 

7M dz Re  z (4) 

DT 

Re PrRe 

where 

P   =   pT, (6) 

Dt     dt \    dr       r    dd dz) 

Sr, Se, Sz are viscous terms, and # is the dissipation 
function. Equations (l)-(6) are non-dimensionalized 
using the following definitions: 

V 
V = — 

P' 

^90 
Vz = YL 

P=—.   ^=^7'   T=™>   ^TT'   ^-C7-' 
Po 'VO 

f 

where P<, is the initial static pressure in the cylin- 
der, and p'0 and TQ are the density and temperature 
of the fluid being injected from the sidewall. The 
aspect ratio is given by <5 = jjp, where 6 » 1. The 
induced characteristic axial velocity and the char- 
acteristic endwall velocity disturbance Vz0 is defined 
with respect to the injection reference sidewall veloc- 

ity, VJ.'o by overall mass conservation, pS2- = S. The 
size of the initially unknown reference azimuthal ve- 

locity Ve'0 is related to V^ by $* = e. Physically 
meaningful solution on the axis, r = 0, are found 
only if e = 1. 

The time is non-dimensionalized using the axial 
acoustic time scale, fa = £r, where CQ = (T^'^O)* 

is the speed of sound, TV is the gas constant, and 7 
is the ratio of specific heats. The thermal diffusiv- 
ity, viscosity, and specific heat for constant volume, 
Ko,/io, and C'vo are characteristic properties of the 
injected fluid. Also the Reynolds number, Prandtl 
number, and Mach number are defined as 

Re = Pr = 
ß'oC'P pO M=^> cr 

where Re » 1, M «: 1, and Pr = 0(1). 
Initially, a steady flow is generated by the sidewall 

injection, Vr = -1. At t = 0+, the endwall begins 
oscillating with the non-dimensionalized sinusoidal 
axial velocity, Vz = F(r, 6) sin ut. 

The full boundary conditions are: 

2 = 0 Vz = F{r,6)sinut, t > 0, (7) 
z = i P = l, (8) 
r = 0 P,p,T,Vz,Ve,Vz finite, (9) 
r = l Vr = -1, (10) 

r = l ys = y9 = 0, (11) 

and solutions must be periodic in 9. 
In general, solutions to (l)-(6), with boundary 

conditions (7)-(ll), are found in terms of the de- 
pendent variables, written as (Vr,Vß,Vz,P,p,T) = 
(Vrs,Ve„Vzs,Ps,ps,Ts) + (VT,Ve,VZ,P,p, f), where 
the subscript "s" represents the steady part of the 
flow and (") represents the unsteady flow. The 
steady parts of the solutions satisfy the endwall con- 
dition Vz = 0 at z = 0 for t < 0. As a result of the 
axisymmetric boundary conditions, the steady solu- 
tion is axisymmetric. 

The steady variables are expanded as 

{Vra,Ves,V2S)    ~   J^M'iVn^Veu^is) 

(Ps,Ps,Ta)   ~   l + ^Mi+2(Pis,pis,Tis) 
*=0 

for the limit M -* 0. 
The solutions to the first order steady equations, 

Vros    =    -;sin(|r2) 

Veos   =   0 

VzQs   =   7rzcos(|r2J 

■K" 

Pos   =   7y(l-*2) 

(12) 

(13) 

(14) 

(15) 

are those derived by Culick2. 
The initial conditions for the unsteady flow are 

given by the steady solution profiles. In terms of 
the unsteady variables, at t — 0, 



(Vr,Ve,Vz,P,p,T) = 0. 

Three-dimensional Unsteady Flow 

(16) 

The unsteady flow field is driven by the non- 
axisymmetric boundary condition in (7), which is 
a generalization of the purely time dependent dis- 
turbance considered by Zhao et. al.3 Their results 
describe axisymmetric, co-existing acoustic and ro- 
tational flow fields where the radial extent of the 
vorticity depends on the magnitude of the sidewall 
blowing. If Möi

Re <Cla purely acoustic core can be 
described away from the sidewall. A viscous tran- 
sition layer containing vorticity is present adjacent 
to the sidewall, thicker than a traditional acoustic 
boundary layer, but small compared to the cylin- 
der radius. The transition layer is described by two 
length scales. The smaller is on the order of the 
radial distance traveled by an injected fluid parti- 
cle during one period of oscillation of the endwall 
velocity and the larger is a viscous damping length. 

If MjiRe ~ 0(1), then the transition layer grows 
to fill the entire cylinder. For this parameter regime, 
no purely acoustic core exists as in the previous 
case. Instead, distinct acoustic (irrotational) and 
rotational flows co-exist. Acoustic waves driven by 
the endwall disturbance interact inviscidly with fluid 
injected from the wall to create vorticity. Subse- 
quently, the rotational flow is converted into the 
cylinder by the injected flow field. Weak viscosity 
diffuses the vorticity on a short radial length scale, 
0(MR') and weak nonlinear effects alter the flow in 
the axial direction. The Zhao et. al.3 results are 
valid for 0 < z < 1. A numerical solution for a 
related problem is given by Kirkkopru et. al.4 

For the present work, the condition M s
Rt < 1 is 

used, and we expect a sidewall transition layer as in 
Zhao et. al.3 

Core Flow: Region I 

Certain essential results of Zhao et. al.3 are red- 
erived from the three-dimensional equations. If the 
velocities and thermodynamic variables in region I 
are expanded as 

(Vr,Ve,V2)     ~     (VrOsMos^Os) 

+ ^2Mi(VrUVeiXi),   (17) 
»=0 

(P,p,T)   ~   l + ^M'+HJUi.Ti) 
»=o 

then the leading order equations can be found in a 
manner similar to that of Zhao et. al., 3. The leading 
order acoustic solutions are found by substituting 
(17) into (l)-(6). It follows from the limit, M -» 
0, with the hard blowing condition, ^ < 1, and 
the large aspect ratio assumption, 5 » 1 that the 
acoustic core equations have the form, 

(18) 

(19) 

(20) 

7     dt ' 
(21) 

(22) 

Equation (19) arises because the radial and az- 
imuthal pressure gradients are vanishingly small in 
the chosen limit. The large aspect ratio condition 
causes the pressure in (19) to vary only in the axial 
direction. This is consistent with the acoustic core 
of the solution found in Zhao et. al. 3. One can 
combine (19) with boundary conditions on r = 1; 
VTo = 0 and Veo = 0, to show that the radial and 
azimuthal velocities are zero. The injection bound- 
ary condition, Vr = — 1 at r = 1 is satisfied by the 
steady solution cited in (12). Equations (18)-(22) 
yield the familiar wave equation: 

d2Vz0      d
2Vz 

dt2 dz2 
zO (23) 

The solution to this equation will consist only of 
planar acoustic waves in the z direction due to the 
form of P0 in (19) and Vz0 in (20). This equation 
is valid away from the endwall, where the oscillat- 
ing r—, and ^-dependent endwail condition, (7) is 
imposed and away from the sidewall where the no- 
slip boundary concuion in (11; prevaiii. It appear 
that a region (denoted by II in Figure 2) near the 
endwall, z = 0, must exist where a transition i. -•■ 
curs from a three-dimensional to a one-dimensional 
flow. One must find the appropriately scaled axial 
variable in the transitional layer. 



Endwall Core: Region II 

The radial and azimuthal pressure gradients, lost 
in the limiting form of the momentum equations 
in region I, can be restored by using the following 
rescaled -variables, 

z = 
1^ 

p = 1 + MPoo(t) 

vr = VrQs + SVrO, 

Vg = Vsos + SVeo, 

vz -= Vx0s + Vz0 

TPo 

(24) 

in order to get physically meaningful equations in 
the limit M -¥ 0. _The ( ~ ) denote variables in 
region II, and the P00(<) term is needed to obtain 
a proper matching of the pressures in regions I and 
II. The above expansions can be used in (l)-(4), to 
find the first order unsteady equations: 

r dr er dB 8z 

1 dPp      SVrO 
7 dr ~   dt ' 

1 1 dPp     dVeo 
7 e r 86        dt 

l dPp = dvz0 

7 dz        dt 

(25) 

(26) 

(27) 

(28) 

in the limit, M ->■ 0, with S » 1,MS < 1, jg <C 1. 
The second inequaüty ensures that the equations 
are linear. The incompressible form of the conti- 
nuity equation, (25) implies that acoustic propaga- 
tion does not occur in region II. This means that 
the flow in region II responds to the imposed time- 
dependent axial velocity in (7), without downstream 
signal propagation. The result is valid for u = 0(1) 
on the time scale t = 0(1). 

Equations (25)-(28) can be combined to show that 

d2Pp     IdPp 
dr2  + r dr 

1 PPo  1 d2Pp = 0 

T2 dB2       dz2 

The boundary conditions: 

z = 0;       ^ = -7u;F(r,0)cosu;f, 
dz 

(29) 

(30) 

r = 0;       PQ finite, 

dP0 r = l; 
8r 

= 0, 

(31) 

(32) 

are found from (7), (9), the unsteady component of 
(10), (26) and (28). In addition, Po must be periodic 
in 9. Given that the unsteady flow in region I de- 
pends only on the axial variable, then the pressure 
matching condition between regions I and II implies 
that 

2-+CO,       P0~Po(z,t). (33) 

This condition, (26), and (27) together with the ini- 
tial condition, Veo = Ko = 0 at t = 0, implies 
that the radial and azimuthal velocities vanish as 
z -*■ co. The full three dimensional time-dependent 
solution to (29)-(33), found using standard separa- 
tion of variables techniques, is 

P0(r,9,z,t) = Ao(t) - yucosut (oo0z+ 

£ amoe-»™° Vo(A«mor) + £ E ^^ 
m=\ "»=1 "=1 

X J„(Mmr.r)(amn COS710 + bmn sinn0)J      (34) 

where 

a«.« = Xmn f f   F{r, B)rJn (/xmnr) cos n9 d9 dr, 

bmn = Xmn f f   F(r, 9)rJn(fimnr) sinn9 d9 dr, 

am0 = ^ ff F{r,Ö)rJo(A^or) dB dr,      (35) 

aoo = - I r F(r,9)rd9dr, 
TJoJ-v 

vmn = /   rJ2(ßmnr) dr, 
JO 

Am„ = -l/infimnVmn), and Mmn is the mth zero 
of J„{r), which is needed to satisfy (32). The first 
few values for fimn are /imo « 3.83171, 7.01559, 
10.1735, ..., fimi * 1.84118, 5.33144, 8.53632, ... 
and /iro2 « 3.05424, 6.70613, 9.96947, .... The p's 
for larger n satisfy /xmi > 3 for m > 3. Thus the 
smallest eigenvalue is 1.84118. It is noted that the 
terms decay quickly as n and m increase. The solu- 
tion is dominated by the first few terms in (34), and 

1 



these solutions are valid for u not equal to any of 
the resonance frequencies (bn — (n 4- |)7r for n > 0) 
of the cylinder. 

The function Ao{t) in (34) is as yet undeter- 
mined. It will be found when the region I solution 
is obtained. It may be noted from (34) that the r 
and ^-dependence of PQ decays exponentially fast as 
z -» co. At the edge of the transition layer, 

plr-+=o ~ i + MP0o(t) 
M 

+— (Ao(t) - aooz'yu;cosu>t). (36) 
o 

The velocities in region II are found from the pres- 
sure field in (34) using (26)-(28) and the initial con- 
dition (16), 

Vzo = sinu;£ ooo - 53 °"»oM»noe Mm02 Mfimor) 
m=l 

m=ln=l 

x (amn cos nö + bmn sin nö) (37) 

yro = sin ujt 53 am0Mmoe ßm0Z Jo(Prnor) 
Lm=l 

oo     oo 

m=ln=l 

x (flmn cos nö + bmn sin nö) (38) 

Veo = -sinu;* 
e 

J- J-ne-^z_Jn(/Xinnr) 

.m=l n=l 

x (-amn sin nö + bmn cos nö) (39) 

Here again, one may observe exponential decay of 
the r and 6 solution dependence as z -» oo. As a 
result, the amplitude of the axial speed at the down- 
stream edge of the transitional layer depends on the 
endwall mass addition through the coefficient aoo de- 
fined in (35). The azimuthal and axial velocities (39) 
and (37) do not satisfy the no-slip condition (11). 
A viscous boundary layer, adjacent to the sidewall, 
T = 1, is considered in a fuller study of this problem.5 

Also, the solution does not satisfy a no-slip bound- 
ary condition on the endwall (z = 0). A viscous 
layer thinner than region II must exist adjacent to 

the endwall in order to satisfy the no-slip condition 
on the radial and azimuthal velocities. This region 
will not be described in the present work. 

The decay of all non-axisymmetric flow occurs 
within region II. The dimensional length scale of the 
region, jL' = R', is the radius of the cylinder. In 
the non-axisymmetric numerical calculation of Sab- 
nis et. al.1, it is noted that the asymmetry of the 
flow exists in a region about two diameters upstream 
of the exit plane, where a non-axisymmetric pres- 
sure boundary condition is imposed. The analyti- 
cal results in the present work appears to provide 
an explanation for the local character of the three- 
dimensional flow found in the numerical solution. 

Solution to the Region I Wave Equation 

The solution to the acoustic flow in region I, 
described by (23) can now be found. The ini- 
tial/boundary conditions are: 

t = 0; 

z = l; 

v  -5v;°-o VZ0 — —57~ — U' 

dVz0 

dz 

dt 

= 0, 

(40) 

(41) 

A condition at z = 0 comes from the matching of 
the solution between regions I and II. The condition 
is derived by taking the limit of (37) as z -» co. 

z = 0;       Vxo = aoo sin uit. 

The solution to (23) with (40)-(42) is: 

Vzo    =   ooo sinwi+ 

y^ T5 ö \ T sinut - sinM \ sin o„z ^bl-u2 \bn J 
n=0 

(42) 

(43) 

,(44) 

where bn = (n + |)TT. 
The coefficient aoo in (35) represents a non- 

dimensional instantaneous mass addition due to the 
velocity endwall condition. Waves will propagate in 
region I only if aoo ^ 0. The pressure field in region 
I is found by using (44), (28) and the pressure node 
boundary condition, (8), 

P0 (z, t)    =   -aoo [(z — 1)7W cos ut+ 

y^ T5 ö \ Tö~ cos ut ~ cos bnt > cos bni 
n=0 

• (45) 



is 
The pressure in region I near the edge of region II 

'|2_,.0 = 1 + Maoo frw cos art 

-M [aoozjucosurt] + 0(z2) 

COSUt — COSÖ «n*J 
(46) 

The unknown function Poo(*) hi the expansion of 
P in (24) can now be found by matching the order 
M terms of the pressure between regions I and II, 
using (36) and (46) 

Poo(t)    =   aoofrwcoswt 

-E 5^? (5—•—«)]■ «4" 
The term Ao{t) can be found from a higher order 

solution in region I and matching terms at order —. 
If this is done, it is found that Ao{t) = 0. 

The composite solution for the pressure can now 
be found using (24), (47), and (34), 

P(r, 6,z,t)    =    1 + Maoo [~(z - 1)7^ c°sw* 

—„ 7a; , ( TT- cos ut - cos bntj cos bnz 
bl-bfi\bl J J 
M .)——fu) cos ut 
0 

.n=l 

+ Y^Yje-^
SzJn{nmnr) 

m=ln=l 

x(amncosn0 + bmnsmnO)} + 0(M2).    (48) 

The results in Figures 4, 5, and 6 are computed 
using a 20 term truncated Taylor series of (37)-(39) 
for the case F(r,9) = r2(l -r)2 sin2(f), correspond- 
ing to the endwall axial velocity shown in Figure 3 
at t = §. The series is alternating, hence the error 
is bounded by the coefficient of the next term, which 
is bounded by 10-3. 

Figure 4 shows a two-dimensional cross-section of 
the velocity vector field in region II at a fixed ax- 
ial location z = 0.01 for t = §. Only the r and 
0 components of the velocities are represented and 
the dimensional lengths of the arrow vectors are 

Koföo + **>) = • Tne flow ™ Fig"16 4 ^ symmetric 

with respect to a horizontal diameter of the cylin- 
der from 0 = 0 to 0 = 7r, but there is flow from 
the left to right side of the cylinder. The source of 
the flow appears to be located at r = | and 0 = jr. 
The source corresponds to the point of highest ve- 
locity of Figure 3. A pattern similar to the vector 
field of Figure 4 appears for larger z, however with 
a smaller amplitude. The field is dominated by the 
first few terms of the Taylor series in (38) and (39), 
hence the amplitude of the vector field lines decrease 
exponentially. 

Figure 5 shows an axial cross-section of the ve- 
locity vector field in region II for fixed azimuthal 
location 0 = 0 and 0 = TT. The variable y is defined 
as y = r for 0 = 0 and y = -r for 0 = TT. Only 
the r and z components of the velocities are shown, 
with the dimensional magnitude of the vector field, 
Vzo(^2o + V&)'. The plot in Figure 5 shows that 
there is flow across the centerline from the bottom 
to the top. There is flow across the centerline of the 
cylinder due to the asymmetry of the endwall ve- 
locity. The maximum velocity at the horizontal line 
y = -i, corresponds to the region of high velocity of 
the endwall condition at r = \ and 0 = JT of Figures 
3 and 4. 

Figure 6 shows an axial cross-section of the veloc- 
ity vector field in region II for the fixed azimuthal 
location 0 = f and 0 = -f, perpendicular to that 
in Figure 5. The variable y is defined as y = r for 
0 = | and y = —r for 0 = -f. As with the results 
in Figure 5, only the r and z components of the ve- 
locities are shown, and the dimensional magnitude 
is the same. However, since the length of the fines in 
each figure is scaled to the maximum cross-sectional 
velocity, the absolute magnitude of the velocity fields 
in Figures 5 and 6 are different. The symmetry of 
the vector field across the centerline at y = 0 is due 
to the symmetry of the endwall condition . As with 
the results in Figure 5, the vector field near the line 
z = 1, is composed essentially of an axial velocity 
because the radial and azimuthal velocities have de- 
cayed away exponentially fast. 

II Turbulence Characteristics 
of Solid Rocket Motor Flow 

Kirkkopru et. al.4 describe a computational model 
for high Reynolds number flow in a cylinder with 
transient sidewall mass addition. The parabolized 
Navier-Stokes equations are solved using a 4th-order 
accurate MacCormack scheme to predict transient 



flow characteristics driven by a harmonically vary- 
ing, positive wall injection speed that varies in the 
axial direction. In particular, the solution is used to 
study the generation and evolution of intense tran- 
sient vorticity in the flow field, arising from an acous- 
tic wave interaction with the fluid leaving the porous 
surface. 

The complete axial velocity is divided into the 
numerical analogues of the steady Culick2 profile, 
and of the transient responses for the co-existing, 
equal magnitude acoustic and rotational flow fields 
discussed by Zhao.6 The latter is used to describe 
the time-varying spatial distribution of vorticity in 
the cylinder. It is shown that the radial gradients of 
vorticity occur on a length scale (MR'), where the 
Mach number M < 1. 

Asymptotic methods ( Zhao6, Zhao and Kassoy7, 
and Zhao et. al.3), have been used to show that the 
flow physics are only weakly viscous. Irrotational 
acoustic disturbances arise from the transient side- 
wall injection. The vorticity is generated by an invis- 
cid interaction between the acoustic waves and fluid 
exiting the sidewall and convected into the cylin- 
der by the radial component of the injection veloc- 
ity field. The only role of viscosity is to diffuse the 
vorticity on the short 0(MR') length scale. 

High Reynolds number and low Mach number in- 
ternal flows driven by injection, described either by 
asymptotic or numerical solutions, have several fea- 
tures in common with a turbulent flow field. They 
are essentially transient, primarily inviscid and con- 
tain vorticity distributions that have a length scale 
small compared to the overall geometry. In this 
sense, it is illustrative to examine the relationship 
between results obtained from traditional studies of 
turbulence in injection driven tubes and channels, 
and those found in our direct numerical simulations. 

Liou and Lien8, hereafter L&L, summarize many 
important contributions to chamber flow turbulence 
modeling, based on k-e, k-u and full Reynolds stress 
methods. In general, the modeling results over pre- 
dict turbulence levels and are not very successful in 
predicting the radial location of the turbulent inten- 
sity peak. It is suggested that Navier-Stokes based 
DNS's require far fewer assumptions about the tur- 
bulence properties of the injected fluid and may give 
more accurate representations of the turbulent prop- 
erties of the flow. 

The L&L DNS calculations for flow in a large as- 
pect ratio channel are carried out for an injection 
speed, v'w = 0(1 m./s.), and an axial Reynolds num- 

ber, ite=O(106). The axial Mach number in the 
downstream half of the channel takes on significant 
subsonic values. The calculations are run for about 
15 axial acoustic time scales. Comparisons of mean 
flow and turbulent intensity predictions with exper- 
iments appear to be better than those of the tra- 
ditional turbulence models. The results are signifi- 
cantly affected by compressibility particularly in the 
downstream portion of the flow. The turbulent in- 
tensity shows a single peak across the channel, with 
the location of the peak moving toward the sidewall 
with increasing downstream location. It is recog- 
nized that such an effect may enhance erosive burn- 
ing on the downstream section of a solid propellant. 

Linear stability theory for a channel with side- 
wall injection has been studied by Varapaev and 
Yagodkin9. They find that for a specified injec- 
tion Reynolds number Res, based on the channel 
width and wall injection speed, disturbances will 
grow when the axial Reynolds number Rec, based on 
the center-line speed and the channel width, reaches 
a critical value. This is interpreted to mean that for 
a given Res, instability will occur in a sufficiently 
long duct. 

Transition of the mean flow profile from a lami- 
nar to a turbulent shape occurs even further down- 
stream, meaning a larger value of Rec. Beddini10 

summarizes experimental results from numerous 
sources to show that the transition process occurs 
over a distance that is invariant to the value of the 
injection Reynolds number when Res > 100. His 
computational model drives the turbulence with a 
prescribed value of the RMS injection velocity fluc- 
tuation at the porous surface. Predictions for axial 
location of a fully turbulent profile, identified from 
a study of the momentum-flux coefficient variation 
with axial location, can be made compatible with 
experiments if appropriate magnitudes of the RMS 
value are employed. L&L indicate that such values 
have not been related to conditions in relevant ex- 
periments. 

The DNS reported here is for a cylindrical geom- 
etry, and is based on the parabolized Navier-Stokes 
equations with an imposed sidewall injection speed 
Vw = -1 - 0.4cos(3f )(1 - cos(ut)). The parameter 
values are Re = 4 x 105,M = 0.02,8 = 20. The 
predicted flow contains co-existing, equal amplitude 
acoustics and vorticity, and a pressure disturbance 
field that is between 1% and 10% of the reference 
static pressure. A methodology borrowed from the 
asymptotic analyses is employed to separate the two 



transient flow fields. Hence, one can consider the 
contribution of acoustics alone, the vorticity alone 
and the explicit interaction between the two flow 
fields. This separation enables us to differentiate the 
RMS values associated with the acoustic field from 
those of the rotational field, not possible in a more 
traditional turbulence study. 

The parameter values for the Reynolds and Mach 
number cited above can be reinterpreted in terms of 
the injection and axial Reynolds numbers used in the 
stability and transition literature. In particular the 
former Res a 2.5 x 103 and the latter Rec a 5 x 104. 
This point on the stability diagram lies above the 
neutral stability fine but below the region for which 
a fully transitioned mean flow can be expected. Our 
aspect ratio of twenty is not large enough to enable 
a fully turbulent mean flow to develop in the cylin- 
der. It is also noted that the analogue to the RMS 
injection velocity fluctuation used by Beddini varies 
between 0.343 and zero as one moves from the head- 
end to the exit of the cylinder. This variation occurs 
because the time-dependent part of the injection dis- 
tribution, cited above, varies in the axial direction. 

A comparison of the time-averaged mean flow 
((Vz)) and instantaneous axial velocity (Vz - (Vz)) 
profiles for Re = 4 x 104,M = 0.02 and an aspect 
ratio of 20 is shown in Figure 7. The results are 
given at four axial locations for t = 30. The smooth 
shape of the mean flow does not hint at the spatial 
variations present in the instantaneous profiles. In 
particular, the relatively large wall gradient in the 
latter is not reflected in the former. Similar results 
at other values of time show that the instantaneous 
wall gradient fluctuates between positive and nega- 
tive values. In this sense, the mean flow wall gradi- 
ent may not be a useful measure of the "scouring" 
effect arising from a time dependent, rapidly varying 
wall shear stress on the fizz-foam surface layer of a 
decomposing solid propellant. 

Figure 8 shows the distribution of the RMS fluctu- 
ation intensity for the axial velocity in the cylinder, 
where Vz = {Vz} + u'p + u'v, u'p is the acoustic fluc- 
tuation and u'v is the rotational fluctuation. The 
axial fluctuation intensity can be decomposed into 
three parts: pure acoustics, acoustic-rotational in- 
teraction, and pure rotational. The ramp-like sur- 
face near r = 0 shows the contribution from the 
pure acoustics alone, since the vorticity generated 
at the sidewall has not yet reached the centerline 
when t = 30. One notes several local peaks across 
the radius, with the largest value near the sidewall. 

In general, the amplitude increases, and the local 
peaks move toward the sidewall with increasing ax- 
ial distance downstream. The single peak results 
described in L&L are qualitatively similar. Our mul- 
tiple peaks arise from vorticity generation driven by 
axial acoustic waves in the cylinder. The latter may 
not be present in any of the turbulence models dis- 
cussed in L&L or in the DNS discussed there. 

The contribution from the pure rotational effect is 
shown in Figure 9 where the surface is less wrinkled 
than Figure 8. The rotational fluctuation intensity is 
larger near the sidewall and the exit. Contributions 
from the acoustic-rotational interaction effect and 
the pure rotational effect, of similar magnitude, are 
responsible for the corrugated surface in Figure 8. 

The fluctuation intensity of the radial velocity is 
shown in Figure 10. The radial fluctuation is larger 
near near the sidewall and closed endwall where the 
sidewall injection is stronger. The radial fluctuation 
intensity is smaller in magnitude than axial fluctua- 
tion intensity as predicted in a theory by Zhao6. 

Results of the kind described here may help to 
identify high heat transfer and erosional burning lo- 
cations in motor chambers. An understanding of 
oscillatory, intense axial shear stress on the side- 
wall will be useful for developing physically viable 
boundary conditions at the decomposing interface 
of a burning solid propellant. The idea here is ac- 
count for the "scouring" effect of oscillatory shear 
stress on the fizz-foam zone thought to exist at the 
gas-propellant interface. Although the axial veloc- 
ity in the combustion zone may be small, the results 
of these coldflow studies suggest that the velocity 
gradient will be relatively large, and hence can be a 
source of axial deformation, and perhaps stripping 
of easily deformable surface material. 
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Figure 2: The regions of the cylindrical vessel inves- 
tigated in this work. Zhao et. al. studied region 
I. This region is characterized by co-existing rota- 
tional and planar acoustic flow. Regions II and III 
are studied here. 

Figure 1: A radial cut through a cylinder of length L' 
and radius R'. There is a (r',0,independent axial 
velocity disturbance at the endwall z' = 0. A pres- 
sure node is imposed at the open end, z' = L'. On 
the sidewall r' = R', fluid is injected at a constant 
speed Vr'0. The aspect ratio is 5 = ^ > 1. 

Figure 3:   Example endwall condition with Vz = 
r2(l - r)2 sin2(f) sin art, with u = 1 at t = §. 
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Figure 4: Two-dimensional vector field plot show- 
ing only the radial and azimuthal velocities. The 
cross-section is taken along the plane z = 0.01 and 
for the endwall velocity condition: Vz = r2(l - 
r)2sin2(f)sinwt and for u = 1 when t = f. The 
symmetry about a line connecting 0 = 0 and 9 = n, 
corresponds to the symmetry in the endwall veloc- 
ity condition. There is net flow from the left to right 
side of the line connecting 9 = § and 9 = -f. 
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Figure 5: Two-dimensional vector field plot show- 
ing only the radial and axial velocities. The cross- 
section is taken axially with 0 = 0, (for values y > 0, 
y = r), and 9 = IT, (for values y < 0, y = -r). 
The endwall velocity condition, as in Figure 4 is 
Vz = r2(l - r)2 sin2(f) sin art, for u = 1 and t = §. 
There is net flow from the bottom to the top of the 
plot, representing flow across the centerline. The re- 
gion of high velocity near y = — 0.5 is due to the 
high flow region at 9 = -K and r = \ of Figure 3. 
The flow near z = 1 is nearly planar. 
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Figure 6: Two-dimensional vector field plot show- 
ing only the radial and axial velocities. The cross- 
section shown is for 9 = -|, (y < 0,y = —r), and 
9 = §, {y > 0,y = r) Again, the endwall velocity 
condition used is Vz = 7^(1 - r)2 sin2(|) sin art, for 
u = 1 and t = |. The symmetry with respect to 
the centerline in this plot is due to the symmetry of 
the endwall velocity condition in Figure 3. The flow 
near z = 1 is nearly planar. 
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Figure 7: A radial profile of axial velocity at four 
different axial locations. The dotted lines are mean 
velocity and the solid lines are instantaneous veloc- 
ity. The sidewall is at r = 1 and the centerline is at 
T = 0. The closed endwall and the exit are located 
at x = 0 and x = 1, respectively. Parameter values 
are Re = 4 x 105, M = 0.02, u = 1, and 6 - 20. 

Figure 9:  The pure rotational part of RMS axial 
velocity fluctuation, [{uj,u«)]1/'2- 

a^ 

o.o 0.-2- 
(OO.^^ 
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Figure 8: RMS axial velocity fluctuation intensi- 
ties defined as [((u'p + u'v){u'p + u'v))]

1/2 = K«X> + 
2(u'pu'v) + (u'vu'v)]

1/2, where u'p is the pure acoustic 
fluctuation velocity, u'v is the pure rotational fluctu- 
ation velocity, and {) denotes the time averaging. 

Figure 10: RMS radial velocity fluctuation intensity 
defined as [{v'v')]1/2 where v' is the radial velocity 
fluctuation. 
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Three-Dimensional, Unsteady, Acoustic-Shear Flow Dynamics in 

a Cylinder with Sidewall Mass Addition 

P. L. Staab*    and D. R. Kassoy1 

Three-dimensional internal flow dynamics axe studied in a cylinder 

with mass injection from the sidewall. A time-dependent, harmonic, non- 

axisymmetric axial velocity disturbance is imposed on the endwall of the 

cylinder to create a non-axisymmetric velocity field. An asymptotic analy- 

sis is used to reduce the Navier-Stokes equations to more elementary forms in 

two regions adjacent to the endwall with distinct physical characteristics: an 

incompressible, inviscid and irrotational core near the endwall, and an incom- 

pressible viscous boundary layer containing all three components of vorticity 

adjacent to the sidewall. Solutions to these equations for disturbance fre- 

quencies associated with the lowest order axial acoustic modes show that the 

non-axisymmetric nature of the flow is confined to the core region adjacent to 

the endwall with a characteristic axial dimension on the order of the cylinder 

radius. Within the region, axial, radial, and azimuthal velocities exist. These 

non-axisymmetric effects decay exponentially fast so that only axisymmetric 

acoustic modes exist further downstream. These results are valid for driving 

frequencies below the "cut-off" value that one would find in a duct. 

'Graduate Student, Department of Applied Mathematics, CB-526, University of Colorado, Boul- 

der, CO 80309. 

tProfessor. Mechanical Engineering Department, CB-427, University of Colorado, Boulder, CO 

80309. 



I. INTRODUCTION 

Internal flow dynamics in a cylinder with mass addition from the sidewall are studied as 

an analogue to flows within solid fuel rocket motors. Mass addition models the gasification 

of burning propellant in the rocket motor. 

Most previous modeling, whether analytical, numerical or experimental, has employed 

axisymmetry to simplify the problem. Experimental work by Brown et al. [1] is based on 

axisymmetric oscillatory wave motion and mean flow response. Smith et al. [2], employ 

numerical techniques to model the experiments of Brown. Baum [3], and Vuillot and Avalon 

[4] also use numerical methods to investigate acoustic wave processes and flow dynamics in 

an axisymmetric internal flow. Beddini [5], develops computational solutions for a turbulence 

model of an internal flow in a symmetric duct with sidewall injection. 

Culick's [6] linear stability analysis for three-dimensional disturbances does not provide 

specific non-axisymmetric flow results. Sabnis et al. [7] use numerical experiments to describe 

turbulent axisymmetric and non-axisymmetric flows. One example includes an azimuthally 

and radially dependent boundary condition on a cylinder cross-section, used to force non- 

axisymmetric flow in a portion of the internal flow. The computational results show that 

the flow becomes fully axisymmetric within an axial distance of about two diameters away 

from the plane on which the boundary condition is imposed. 

The work presented here is an extension of Zhao [8] and Zhao et al. [9] These papers 

contain asymptotic analyses for the axisymmetric Navier-Stokes equations that describe 

low Mach number, high Reynolds number and high aspect ratio flows with acoustic waves 

and vorticity. In the present work a study is made of non-axisymmetric flow in a region 

adjacent to the closed endwall of the cylinder where a radially and azimuthally-dependent, 

harmonically-varying velocity boundary condition is imposed. The driving frequency is on 

the order of the inverse of the axial acoustic time scale, t'A = L'/C0, where V is the length of 

the cylinder and C'0 is the reference speed of sound. Radial and azimuthal velocities are found 



to vanish exponentially fast in the downstream direction within the core zone adjacent to the 

endwall, with a characteristic axial dimension measured by the cylinder radius R'. Hence, 

axisymmetric flow persists in most of the cylinder. A thinner inviscid layer is needed for the 

solution to satisfy the no-slip condition on the endwall. These results provide an analytical 

explanation of those found from computational analysis by Sabnis et al. [7] Non-axisymmetric 

flow near the endwall contains cross-sectional velocity patterns that include flow across the 

cylinder axis. A viscous boundary layer adjacent to the sidewall and near the endwall is 

studied to find the transition between the transient core flow and the no-slip condition on 

the sidewall. It is found, as in Zhao et al. [9], that the azimuthal component of the vorticity 

is proportional to the inverse of the Mach number. In addition, the axial component of the 

vorticity driven by the non-axisymmetric boundary condition at the endwall is also found to 

be proportional to the the inverse of the Mach number. 

II. FORMULATION OF THE PROBLEM 

The objective of the present work is to model a wall injected, semi-confined internal flow 

driven by a non-axisymmetric, time-dependent velocity disturbance on the closed upstream 

endwall. The flow occurs in a cylinder of length L', and radius R', with a pressure node at 

the open end as shown in Figure 1. Fluid is injected steadily through the sidewall with a 

characteristic velocity V^'0 and induces an axial flow characterized by V^0. The imposed axial 

velocity on the endwall also has a characteristic velocity V^Q. The mathematical model is 

based on the following non-dimensional Navier-Stokes equations: 
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and $ is the dissipation function.   Equations (l)-(6) are non-dimensionalized using the 

following definitions: 
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where PQ 
is tne initial static pressure in the cylinder, and p'0 and T'Q are the density and 

temperature of the fluid being injected from the sidewall. The induced characteristic axial 



velocity and the characteristic endwall velocity disturbance Vz0 is defined with respect to the 

injection reference sidewall velocity, V^Q by overall mass conservation, ^p- = Ö. The size of 
v 

the initially unknown reference azimuthal velocity Vg0 is related to VJ!0 by ^P- = e. Later, it 

is shown that e = 1. 

The time is non-dimensionalized using the axial acoustic time scale, fa = j&, where 

C'0 = (^TZ'TQ)^ is the speed of sound, TZ' is the gas constant, and 7 is the ratio of specific 

heats. The thermal diffusivity, viscosity, and specific heat at constant volume, K'0, ^'0, and C'vo 

respectively are characteristic properties of the injected fluid.  Also the Reynolds number, 

Prandtl number, and Mach number are defined as 

where Re > 1, M < 1, and Pr = 0(1). 

The Mach number is chosen as a small parameter to model the small magnitude found 

in a typical rocket motor chamber, as opposed to the rocket nozzle where larger values are 

possible. The aspect ratio, S = |£ » 1, is taken to be a large parameter because many 

chambers have aspect ratios between 15 and 50. Finally, it is assumed that the hard blowing 

condition, £«1 (Cole and Aroesty [10]) prevails. 

Initially, a steady flow is generated by the sidewall injection, Vr = —1. At t = 0+, 

the endwall begins oscillating with the non-dimensionalized sinusoidal axial velocity, 

Vz = F(r,8)sinujt, for u = 0(1). The magnitude of ü is compatible with the first few 

axial acoustic modes observed in high aspect ratio chambers. 

The full boundary conditions are: 

0, t < 0, 
z = 0;   Vs = {    ' (7) 

_ F(r,0)smvt, t> 0, 

z = 0;   Vr = Ve = 0,      '    ■ (8) 

* = 1;   P = l, (9) 

r = 0;   P,p,T,Vr,Ve,Vz finite, (10) 



r = l;   Vr = -1,. (11) 

r = l;   Vz = V9=0, .    (12) 

and solutions must be periodic in 6. 

In general, solutions to (l)-(6), with boundary conditions (7)-(12), are found in terms 

of the dependent variables, written as 

(Vr,Ve,Vz,P,p,T) = (Vrs,Ves,Vzs,P3,p3}Ts) + (Vr,V9,Vz,P,p,f), 

where the subscript "s" represents the steady part of the flow and (") represents the unsteady 

flow. The steady parts of the solutions satisfy the endwall condition Vzs = 0 at z = 0 for all 

t. As a result of the axisymmetric boundary conditions, the steady solution is axisymmetric. 

The steady variables are expanded as 

(Vrs, V9s, Vzs) ~ J2M'iVns, Veis, Vzis), 
i=0 

(Ps,Ps, Ts)~l + J2 Mi+2(Pis, Pis, Tis), 

for the limit M -> 0. 

Culick [11] derived solutions to the first-order steady equations: 

Ko, = -Jsin(|r2), (13) 

Veos = 0, (14) 

Vz0s = nzcos(lr2), (15) 

^ = 7y(l-^). (16) 

Initial conditions for the unsteady flow are given by the steady solution profiles. In terms 

of the unsteady variables, at t = 0, 

(Vr,V9,Vz,P,p,T) = 0. (17) 



III. UNSTEADY SOLUTION 

The unsteady flow field is driven by the non-axisymmetric boundary condition in (7), 

which is a generalization of the purely time dependent disturbance considered by Zhao et 

al. [9] Their results describe axisymmetric, co-existing acoustic and rotational flow fields 

where the radial extent of the vorticity depends on the magnitude of the sidewall blowing. 

If M2 Re <c 1, a purely acoustic core can be described away from the sidewall. A weakly 

viscous transition layer containing vorticity is present adjacent to the sidewall, thicker than 

a traditional acoustic boundary layer, but small compared to the cylinder radius. The 

transition layer is described by two length scales. The smaller is on the order of the radial 

distance traveled by an injected fluid particle during one period of oscillation of the endwall 

velocity and the larger is a viscous damping length. 

If M2
&2
Re ~ 0(1), then the transition layer grows to fill the entire cylinder. For this 

parameter regime, no purely acoustic core exists as in the previous case. Instead, distinct 

acoustic (irrotational) and rotational flows co-exist. Acoustic waves driven by the endwall 

disturbance interact inviscidly with fluid injected from the wall to create vorticity. Subse- 

quently, the rotational flow is convected into the cylinder by the injected flow field. Weak 

viscosity diffuses the vorticity on a short radial length scale, O(MR') and weak nonlinear 

effects alter the flow in the axial direction. The Zhao et al. [9] results are valid for 0 < z < 1. 

For the present work, the condition M
s2

Re <C 1 is used, and we expect a transition layer 

as in Zhao et al. [9] 

A. Core Flow: Region I 

Certain essential results of Zhao et al. [9] are rederived from the three-dimensional equa- 

tions. If the velocities and thermodynamic variables in region I are expanded as 



(K, V9, VZ) ~ (Vr0„ V$0s, Vz0s) + £ A^(Ki, Vw, V«-), 

i=0 

then the leading-order equations can be found in a manner similar to that of Zhao et al. 

[9] The basic acoustic solutions are found by substituting (18) into (l)-(6). It follows from 

the limit, M -> 0, with the hard blowing condition, £ < 1, and the large aspect ratio 

assumption, S > 1 that the acoustic core equations have the form, 

dpo        dVz z0 _  (19) 
at       dz ' K J 

Po = Po(z,t), (20) 

(21) dVz0 1 dPo 
dt 7 dz' 

dt 7     dt ' 

Po + f0 = P0. (23) 

Equation (20) arises because the radial and azimuthal pressure gradients are vanishingly 

small in the chosen limit. The large aspect ratio condition causes the pressure in (20) to vary 

only in the axial direction. This is consistent with the acoustic core of the solution found 

in Zhao et al. [9] One can combine (20) with boundary conditions on r = 1; Vr0 = 0 and 

VBQ = 0 to show that the radial and azimuthal velocities are zero. The injection boundary 

condition, Vr = -1 on r = 1 is satisfied by the steady solution cited in (13). Equations 

(19)-(23) yield the familiar wave equation: 

^o=?5 (24) 
dt2 dz2 ' 

The solution to this equation will consist only of planar acoustic waves in the z direction 

due to the form of P0 in (20) and Vz0 in (21). This equation is valid away from the endwall, 

where the oscillating r and 0-dependent endwall condition (7) is imposed, and away from 

the sidewall where the no-slip boundary condition (12) prevails.  It appears that a region 
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(denoted by II in Figure 2) near the endwall, z = 0, must exist where a transition occurs 

from a three-dimensional to a one-dimensional flow. One must also find the appropriately 

scaled axial variable in the transitional sidewall layer. 

B. Endwall Core: Region II 

The radial and azimuthal pressure gradients, lost in the limiting form of the momentum 

equations in region I, can be restored by using the following rescaled variables, 

M ~ 
P = l + MP00{t) + —P0, o 

Vr = Vr0s + 6Vr0, (25) 

Vg = Ve0s + SVeo, 

vz = vz0s + vz0, 

in order to get physically meaningful equations in the limit M —» 0. The ( ~ ) denote variables 

in region II, and the Poo(t) term is needed to obtain proper matching of the pressures in 

regions I and II. There is no need to rescale the axial velocity given the boundary condition 

in (7). The imposed axial velocity induces radial and azimuthal velocities of the same 

dimensional magnitude, which accounts for the scaling factor, 6 in the third and fourth 

equations in (25). The pressure disturbance consists of two distinct terms. The lower order 

term (O(M)) represents a spatially homogeneous pressure transient. The higher order term 

(O(y) describes the explicit response to the non-axisymmetric boundary condition in (7). 

The above expansions can be used in (l)-(4), to find the first order unsteady equations: 

Tor er dB        dz 
1 dPo _ dVT0 f    . 

lor"   dt ' {1() 



_J_löi^ = dt^o (28) 
7er 69        dt 

_lö^ = 9Ko      . (29) 
7 dz dt 

in the'limit, M -* 0, with 5 » 1,M6 « 1, & « 1, The incompressible form of the 

continuity equation, (26) implies that acoustic propagation does not occur in region II. This 

means that the flow in region II responds to the imposed axial velocity on the endwall, in 

(7), without downstream signal propagation. Equations (17) and (27)-(29) imply that the 

flow is irrotational. The result is valid for u = 0(1) on the time scale t = 0(1). 

The asymptotic relationship M6 « 1 is needed to ensure that the leading-order equations 

are linear. If this relationship is relaxed to M5 ~ O(l), then (26)-(29) will be the full 

incompressible Euler equations. 

Equations (26)-(29) can be combined to show that the scaled pressure, P0, satisfies La- 

place's equation, 
d2po ^ I2ii 4- L?!i± + ^ = o (so) 
~drT     r dr      r2 d92       dz? 

The boundary conditions: 

2=0-   ^° =-7u;.F(r,0)cosu;t, (31) 
'    dz 

r = 0;   Po  finite, (32) 

r = l;   5*1 = 0, (33) 
or 

are found from (7), (10), the unsteady component of (11), and using (27) and (29). In 

addition, Fo must be periodic in 9. Given that the unsteady flow in region I depends only 

on the axial variable, then the pressure matching condition between regions I and II implies 

that 

z-^oo,       P0~P0{ztt). (34) 

This condition, (27), and (28) together with the initial condition, V90 = VrQ = 0 at t = 0, im- 

plies that the radial and azimuthal velocities vanish as z -> oo. The full three-dimensional 
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time-dependent solution to (30)-(34), found using standard separation of variables tech- 

niques, is 

P0(r, 9, z, t) = A0{t) - 1LÜ cosüjt   amz + £ am0e "m0ZMßm0r) 

+ £5] e~^mnZ Jn (Vmnr) (amn cos n9 + bmn sin n8) \ , (35) 
771=1 71=1 

where 

Q"m.n. 
ffßmn ^rnn 
  f1 r F{r,0)rJn{ßmnr)cosnö d9 dr      for m > 1, n > 1, 
,r,Umn   JO     J-TT 

TtßmnVmn 
1— f\ f F{r, 0)rJ„(/w) sinnö d9 dr      for m > 1, n > 1, 
.r.I'rnn   JO     J-7T 

OmO 
i  fl f" F(r, 0)rJo{ßmor) d9 dr      for m > 1, 
Wnfl^mO JO    J-7T 

(36) 
27r/imo^mO 

aoo  =   - f1 T F(r,9)r d9 dr, 
7T JO   J-7T 

^mn   =    / rJl(timnr) dr. 
Jo 

and /w is the mth zero of j;(r), which comes from (33).   The first few values for ^ 

are //m0 « 3.83171,7.01559,10.1735,..., /xmi * 1.84118,5.33144,8.53632,... and ^m2 « 

3.05424,6.70613, 9.96947,....   The p's for large m satisfy ßmi > 3 for m > 3.   Thus the 

smallest eigenvalue is 1.84118. It is noted that the terms decay quickly as n and m increase. 

The solution is dominated by the first few terms in (35), and these solutions are valid for u 

not equal to any of the resonance frequencies (bn = (n + |)TT for n > 0) of the cylinder. 

The function A0{t) is as yet undetermined. It will be found when the region I solution is 

obtained. It may be noted from (35) that the r- and ^-dependence of P0 decays exponentially 

fast as z ->• oo. At the edge of the transitional layer, 

Ph      ~ 1 + MPoo(t) + -r (M*) ~ ooo^ cosut). (37) 

The velocities in region II are found from the pressure field in (35) using (27)-(29), and 

the initial condition (17), 
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Vro = sin cot GOO -  2 am0^mOe~MmOZJo(A'mOr) 
m=l 

oo     oo 

S £ Vmne'^Jn (/wO (amn cos no + bmn sin nö) 
m=ln=l 

oo 

(38) 

Kn = sin a>i 53 dmoVmoe ßmOZJ'0(ßmor) 
.JTl=l 

oo     oo 

+ £ Y/ßmne~ttmn7Jn{ßmnr)(amncosn9 + bmnsmnO) 
m=l n—\ 

Vm = - sin ut 
OO       OO ^1 

Y, S ne-""1^-J„(^mnr)(-amn sinnö + 6mn cosnÖ) 
J71=l 71=1 

(39) 

(40) 

Here again, one may observe exponential decay of the r and 8 solution dependence as 

z -> oo. As a result, the amplitude of the axial speed at the downstream edge of the 

transitional layer depends on the endwall mass addition through the coefficient a00 defined 

in (36). The azimuthal and axial velocities (40) and (38) do not satisfy the no-slip condition 

(12). A viscous boundary layer exists along the sidewall., r. = 1, and will be investigated 

later. Also, the solution does not satisfy the no-slip boundary condition on the endwall, 

2 = 0. An inviscid, rotational layer, thinner than region II, exists adjacent to the endwall 

which provides a transition from the irrotational velocities in (39) and (40) to the no-slip 

condition at z = 0. This region will also be described later. 

The decay of all non-axisymmetric flow in region II occurs over the dimensional length 

region -I! — R', the radius of the cylinder. In the non-axisymmetric numerical calculation 

of Sabnis et al. [7], it is noted that the asymmetry of the flow persists only in a region less 

than two diameters upstream of the exit plane, where a non-axisymmetric pressure boundary 

condition is imposed. 

C. Solution to the Region I Wave Equation 

Equation (24) can now be used to find the acoustic flow solution in region I, subject to 

the initial and boundary conditions; 
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(41) 

(42) 

A condition at z = 0 is derived by matching the solutions in regions I as z —>• 0 and II as 

£ —> oo. Equation (38) can be used in the limit z —> oo to derive 

z = 0;      V^o = aoo sin o>£. (43) 

The solution to (24) with (41)-(43) is 

VzO = ooo 
v-     2a;      fu   . .   ,    ,   .   , 

sin a;t + 2^ 7^ ^ ^ r- sin a>£ — sin oni )■ sin o„z 
n=0 "n ~ u     ^"n 

(44) 

where 6n = (n 4- |)7r, and a0o, defined in (36), represents a non-dimensional instantaneous 

mass addition due to the velocity endwall condition. It is noted that waves will propagate in 

region I only if a0o ^ 0. Equations (21) and (44) and the pressure node boundary condition, 

(9), can be used to find the pressure field in region I, 

Po — — aoo (z — 1)70; cos cot + ^2 —  \ — cos ut — cos bnt ^ cos bnz 
b2 — to2 I b2 

n=0 un       w     I un 
(45) 

The pressure in region I near the edge of region II, found from (25) and (45), 

P\z^o = l + M°oo 
^      ~     27o;    [to2 

70; COS Lüt—2_j Tl Ö ( 7T cos Ut — COS bnt 
n=0 °n       w     \ un 

M [üooZ'yLü coswi] + 0(z2). (46) 

can be compared with (37) to find the unknown function Poo(t) by matching the order M 

terms, (46), 

Poo(t) — aoo 
*     27o;     fu2 ,    > 

70; cos tot — 2_^ TO 2 \ 73"cos u^ ~ cos °nt 
^ b2 — Ld2 \ b2 
n=0 un       u     \ u-n 

(47) 

Finally, the term A0(t) in (35) can be found from a higher order solution in region I and 

matching terms at order y. It follows that A0(t) = 0. 

The composite asymptotic solution is constructed from (25), (35), and (47), 
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P(r, 9,z,t) = l + MaQ0 

27a;    (u2 ,   \ ' 
- (z - 1)70; COS U)t - — 7; I — cos ujt - cos bnt) cos bnz 

bl-u2 \bl 

M 
-f—7CJCOSO;I Eomoe-^'VoCiUmor) 

+ ]T £ e_/imn,JVn(/imTlr)(amn cosnö + bmn sin nö) 
m=l n=l 

+ 0(M2). (48) 

D. Determination of e 

Equations (38)-(40) can be used to find the unsteady speed on the cylinder axis (r = 0), 

l|v||2=.v;2o + *2K2o + <^2 
eo 

= sin2ut [D{z) + 82{A2{z) cos2 0 + 2A(z)B{z) sin0cos0 + B2(z) sin20) 

+L(A2(z) sin2 0 - 24(2)5(2) sin0cos 0 + B2(z) cos2 0) 

where 

1  °° _ 

^ m=l 

1     °° 
B(z) = - £ Wmie-"-12, 

^ m=l 
00 

D(z) = a00- Y^ amoAimoe_Mm02 

m=l 

^'0 On the axis, the fluid speed must be independent of 0, therefore e = -ß must be such 
Vr0 

that the speed at the centerline is only a function of z. A 0-independent function along the 

cylinder axis results only if e = 1, such that 

||V||2 = sin2a;t (D2(z) + A2{z) + B2(z)) 

This result demonstrates that if A(z) and B[z) are nonzero then there is flow across the 

centerline of the cylinder. The function D(z) corresponds to flow in the z-direction. Flow 

across the axis of the cylinder occurs only when ami and bml are nonzero. The corresponding 

eigenfunctions, sin0 and cos0, in (36) and (38)-(40) are the only 0-dependent eigenfunctions 

which are not symmetric about the center of the cylinder as shown in Figure 3. 
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E. Example of a Flow with a 8- and r-Dependent Endwall Condition 

A specific endwall condition is chosen in (7) to examine more closely the structure of the 

flow in this region. The function F(r,9) = r2(l - r)2sin2(|) has a zero radial derivative at 

both r = 0 and r = 1 which permits fast convergence of its Fourier Bessel series, and the 

azimuthal part, sin2(|) is positive everywhere and non-axisymmetric. It follows that a00 ^ 0 

and waves will propagate in region I. Figure 4 depicts the endwall condition for u = 1 at 

t=- i — 2. 

Figure 5 shows the decaying part of the pressure in (35), defined as PDl at four axial 

locations within region II. All r and 9 dependence of the unsteady pressure is contained in 

the terms in Pp. These terms directly relate to the radial and azimuthal velocities as in (27) 

and (28). The plot shows that the decay of PD is very rapid. The absolute value of PD when 

z = 1 is 84% lower than analogous pressure "at z = 0.01. 

Figures 6, 7, and 8 show two-dimensional projections of the largest asymptotic approxi- 

mation to the velocity vector fields on either the cross-sectional or an axial-radial plane. The 

dimensional velocities are written as 

vz ~ (vz0s + v,o)Ko ~ fcoKo + v**v* ~ VrtV* + o(i), 

v; ~ (vr0s + Ko)Ko ~ (^f + Vro) v;0 ~ vr0v;0 + o(l), 

Vt-VeoVJo-VeoV^ + OiM), 

where the steady velocities are asymptotically smaller than their unsteady counterparts, 

scaled with respect to V^Q. The axial steady velocity is small due to the linear z dependence 

in (13), where z ~ \ in region II. In comparison, the radial steady velocity is on the order 

of Fr'0, which is 0(|) smaller than V2'0, the scale of the unsteady radial velocity. 

The plots in Figures 6, 7, and 8 are based on a 20 term truncated, alternating Fourier 

series expansion of (38)-(40), is bounded by 10~3. 

Figure 6 shows a two-dimensional projection of the vector field in region II onto the cross- 
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sectional plane where z = 0.01. Only the r and 9 components of the velocities are represented 

and the dimensional lengths of the arrow vectors in the plot is Kotöo + %)*■ Fi§ure 6 

shows that the flow is symmetric with respect to a horizontal diameter of the cylinder from 

6 = 0 to 9 = ir, but not symmetric from the left to right side of the cylinder. The source of 

the flow, located at r = \ and 9 = TT, corresponds to the point of highest velocity of Figure 4. 

A pattern similar to the vector field of Figure 6 appears for larger z, however with a smaller 

amplitude. The field is dominated by the first mode of the Fourier series in (39) and (40), 

hence the amplitude of the vector field lines decrease exponentially. 

Figure 7 is a two-dimensional projection of the vector field in region II onto a plane 

containing the axis of the cylinder at the location 9 = 0 and 9 = TT. The variable y is defined 

as y = r for 9 = 0 and y = -r for 9 = TT. Only the r and z components of the velocities are 

shown, with the dimensional magnitude of the vector field, V^(V% + %)*• Figure 7 shows 

that there is flow across the centerline from the bottom to the top. There is flow across 

the centerline of the cylinder due to the asymmetry of the endwall velocity as discussed 

earlier in this section and in Figure 3. The maximum velocity at the horizontal line y = -\, 

corresponds to the region of high velocity of the endwall condition at r = \ and 9 = TT of 

Figure 4. 

Figure 8 shows a two-dimensional projection of the velocity vector field onto a plane 

containing the cylinder axis at the location 9 = f and 9 = -f. The variable y is defined as 

y = r for 9 = - and y = -r for 9 = -f. As in Figure 7, only the r and z components of the 

velocities are shown, and the dimensional magnitude is the same. However, since the length 

of the lines in each plot is scaled with respect to the maximum velocity in the plot, the actual 

magnitude of the velocity fields in Figures 7 and 8 differ. The symmetry of the vector field 

across the centerline at y = 0 results from the symmetry of the endwall condition. As with 

Figure 7, the vector field near the line z = 1, is composed only of an axial velocity because 

the radial and azimuthal velocities decay exponentially. 
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F. Region III: Viscous Boundary Layer 

The solutions in (38) and (40) do not satisfy the no-slip condition in (12) along the 

sidewall.   It follows that a viscous boundary layer must exist adjacent to the sidewall in 

region II. 

Region III is similar to the sidewall transition layer of Zhao et al. [9], when the sidewall 
■\jr2  r>„ 

blowing condition ^— < 1 is used. The boundary layer here must be resolved using a 

multiple scale analysis, where one scale is on the order of the distance a fluid particle moves 

during one cycle of the endwall oscillation, and the other scale is associated with a viscous 

damping scale. 

The following transformations and expansions, 

z 
z==y 

l—r •        1-r 
ri = __    and   r2 = —, 

Vr~-l + M6Vr0 + ---, 

Ve ~ 8Vg0 + -j-Vei + • • •, (49) 

_       M— 
vz ~ Vz0 + -jVzl + ■■■, 

M— 
P~l + MPoo(t) + —P0 + ---, 

o 
,     M_ 

p ~ 1 + ~7-Po H > 

M2 Re   - 
are employed to find the boundary layer equations, where ß = —-^—, P0o(t) is defined in 

(47), and (~) represents variables in region III. It is important to recognize the limitation 

M < ß < 1 ensures that the viscous damping length scale is larger than the second scale 

associated with the Mach number. The relationship M5 < 1 is the same as in region II, and 

arises to ensure that the leading order equations are linear. 

A balance of pressure and convective terms is used to find the O(M) scaling for n while a 

balance between second-order convective terms with the leading-order viscous term generates 
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the definition of/?. Equation (49) can be used in (l)-(4), with the limit M -> 0, to find the 

leading order equations in region III, 

dVr0 . dVeo . dVz0 + + 
drx        dB dz 

dPp = dPp 
dri       dr2 

dVeo + dVgo_ 

■ dt       dn 

= 0, 

= 0, 

IdPp 
"7 dB ' 

dVei     dVn = _dVJ1     cPVjo 

(50) 

(51) 

(52) 

(53) 

(54) 

  _ (55) 
dt   ""   dn dr2    '    dr\ 

Equations (50) and (51) are derived from (1) and (2) respectively. Equations (52) and 

(54) are the leading-order versions of (3) and (4), while (53) and (55) are the corresponding 

second-order approximations. The boundary conditions are found from (11) and (12), 

dr2    '    dr\  ' 

ldP0 

dt        dn 

dVjl + dVzo_:=  
dt        dri 7 dz ' 

dVzl     dV^ = _dVJ1     d2Vz0 

ri = r2 = 0      Vz0 = Veo = Vr0 = 0. (56) 

The region III solutions in the limit n -> 00 must match with the region II solutions as 

r -> 1, 

n —> 00; Vz0 -+ Vz0 T—>1 
Veo ->• V6 00 r->l' 

Vm ->  Vr rO r-fl 
(57) 

Equation (50) shows that the boundary layer flow is incompressible, as in region II. 

Equation (51) implies that the boundary layer pressure is equal to that at its edge. Therefore 

P0(z,e,t) = limPo = -'yu cos utH{z, 9), (58) 

where 

H{z,6) = a00z+ £ a™oe ßmOZM^mo) 

00     00 ^ 

+ £  E ^^ Jn{»mn){amn COS u9 + bmn SHI 710) 
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is obtained by taking the limit of (35) as r ^ 1. 

The quasi-steady solution of (52) will not satisfy the initial condition, but can be used to 

find the general properties of the boundary layer structure. The complex form of (58) can 

be used in (52), with V0O = Fg{r1,r2,9,z)eiu,t to find 

•   r,      dF<> dH t*Q\ luFe + _ = _,_ (59) 

This equation is compatible with the no-slip boundary condition in (56), and the solution is 

given by 

Fe = 0^,9,^-^+1—. (60) 

The smaller radial-scale behavior of Feo is found using (53). The form V6X = 

G{rx,r2,9,z)eiiJlt and (60) is used in (53) to yield 

icoGg + ^ = -4-Cifa, 9, z)e-™\ - u2Ct(r2,9, z)e~^ (61) 
drx dr2 

Secular growth of the solution is avoided by setting the right hand side of (61) to zero: 

^+a;2d = 0. (62) 
or2 

The solution to (62) is, 

Cx = C2{9,z)e-^T\ (63) 

It follows from the definition, Veo = FBe^, (60), and (63) and the boundary condition 

(56) that 

Vgo = Re lieiuJt^- (exp(-^2r2 - twn) - l) |, (64) 

where Re is the real part of the solution. Similarly, the solution to (54) is given by 

Vz0 = Re {«e*""!! (exp(-a;2r2 - twn) - l) } . (65) 
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The — term in (64) is equivalent to the azimuthal region II velocity in (40) as r -*• 1, 

and the W- term in (65) is equivalent to the region II axial velocity as r -»• 1. 

Finally from (50), 

Region III contains a transition between the region II azimuthal, radial and axial velocities 

and the no-slip boundary condition that exists at the sidewall r = 1. In the limit rx -¥ oo, 

(at the edge of the boundary layer), Vr0 ~ n. The edge of the boundary layer acts like a 

source or sink on the fluid in region II. 

The exponential decay effect in (64)-(66) can be written in terms of the radial variable 

r by using (49) and the definition of /?; 

exp [-o;2r2] = exp 
u252 ■2„ 

(1-r) 
M2Re 

The boundary layer thickness is proportional to the parameter M2 Re/u2 82. For a fixed 

value of r close to the sidewall, the boundary layer thickness decreases when Re, M, and 

to decrease, and 5 increases. In contrast, the thickness of a non-injected viscous acoustic 

boundary layer will increase with a decrease in Re. 

Interaction of the sidewall injection and axial pressure gradients arising from endwall 

velocity oscillation produces vorticity in region III. All three components of vorticity exist 

here. Azimuthal and axial components, proportional to the inverse of the Mach number, 

provide the largest contributions, while the smaller radial component is 0(1). The unsteady 

part of the vorticity in region III, denoted Ü, decays exponentially away from the sidewall, 

and is analogous to the behavior found in Zhao et al. [9], 

He „ i-^* = i-Re Le^ exp(-o;2r2 - iurA , 

Uz „ __L^£ =      * Re L^f exp(-u;2r2 - iur,)) , z        M dri M      { 89 J 

nr ~ o(i), 
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where (64) and (65) have been employed. 

Figures 9 and 10 show the azimuthal velocity profiles near the sidewall at several values 

of time. The graphs reveal the multiple scale structure of the boundary layer where a typical 

spatial oscillation wavelength is about 0.05 radial units. These oscillations in VQ0 arise from 

the harmonic variation in the endwall velocity as .can be seen from the iuri term in (40). The 

viscous damping is sensitive to the frequency u. For example, when u = 1.0 the boundary 

layer thickness is about 18% of the radius. In contrast, when u = 0.8, the spatial oscillations 

persist to about 25% of the radius. The results in Figures 9 and 10 also imply that the 

0-component of the wall shear stresses varies significantly in amplitude and direction during 

the time period shown. A similar result is found from the axial wall shear stress. 

G. Satisfying the No-Slip Boundary Condition on the Endwall 

The radial and azimuthal velocities in (39) and (40) do not satisfy the no-slip boundary 

condition in (8) on the endwall z = z = 0. One might expect to discover a classical 

"acoustic" boundary layer between the wall and region II (z = 0(1/5)) which provides a 

transition from the irrotational solution in (39) and (40) to the no-slip condition. However, 

in this problem with "hard" injection from the endwall viscous effects are very weak. It is 

found that the no-slip condition can be satisfied by a three-dimensional rotational solution 

to an inviscid equation (Cole and Aroesty [10]) in a thin transition layer of axial thickness 

z = O(M) < 0(1/6). 

The fluid dynamics in the thin layer are described by incompressible Euler equations to a 

first approximation. Radial and azimuthal pressure gradients, derived from (35) in the limit 

z —> 0, drive the radial and azimuthal momentum equations respectively. Solutions for the 

radial and azimuthal velocities satisfy matching conditions obtained from (39) and (40) in the 

limit z —> 0 and the no-slip condition on the endwall. These solutions are derived from first- 

order wave equations with coefficients that vary harmonically in time. The characteristics 
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for these equations, 77 =constant, are described by 

= MZ!M)(i_COsa;t-r7). (67) z 

The axial location of the vorticity front, 77 = 0, is confined to a region z < 2^ max F(r, 9), 

given the harmonic time-dependence in (67). Beyond the front the flow is always irrotational. 

Axial gradients of the radial and azimuthal rotational velocity components exhibit non- 

uniformities when ut = 0,7r,27T,.... This implies that a thinner fundamentally viscous 

sublayer is needed to resolve the weak singularity. 

The rotational analysis near the endwall shows that the irrotational results in Figure 6 

at z = 0.01 are downstream of the vorticity front as long as MS < 0.08. There are similar 

implications for the results in Figures 7-10. 

IV. CONCLUSION 

Three-dimensional flow dynamics in a cylinder with sidewall mass addition have been 

studied to examine the effect of a time-harmonic, non-axisymmetric, axial velocity endwall 

boundary condition when the driving frequency is close to those of the first few axial acoustic 

modes. The Navier-Stokes equations have been reduced to a form that can be solved ana- 

lytically. An asymptotic analysis based on a small axial flow Mach number, compatible with 

a large aspect ratio cylinder and a large Reynolds number, is used to derive the simplified 

equations. The non-axisymmetric boundary condition induces a three-dimensional flow that 

is confined to a region near the endwall of the cylinder. The region's axial length scale is on 

the order of the cylinder radius. The flow in this core region is incompressible, inviscid, and 

irrotational. Due to the incompressibility, an acoustic flow does not exist in this region for 

u = 0(1). The solutions to the reduced form of the Navier-Stokes equations show that; 

1. The unsteady radial and azimuthal velocities vanish exponentially fast and the flow 

becomes planar at the edge of the region. 
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2. The time-dependent behavior of the axial velocity solution at the downstream edge of 

the three-dimensional core region drives the planar acoustic waves found farther down 

the cylinder, 

3. A viscous boundary layer exists adjacent to the sidewall. Similar to the flow in the in- 

terior core, the boundary layer is incompressible. It is also weakly viscous and contains 

all three components of vorticity. 

4. A very thin inviscid, rotational layer exists adjacent to the endwall. The solution for 

the radial and azimuthal velocities satisfy the no-slip boundary condition. 

The analysis performed here is similar to that describing compact vortex sound. [12] There 

is an analogy between region II and the incompressible source region of a vortex, where the 

length scale of the source region is much smaller than that of the acoustic wavelength. 

Future work involves studying three-dimensional flow arising from a transient sidewall 

blowing condition that is 8-dependent. 
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FIG. 1. A radial cut through a cylinder of length L' and radius R'. There is a (r;, 6, independent 

axial velocity disturbance at the endwall z' •= 0. A pressure node, is imposed at the open end, 

z' = L'.  On the sidewall r' = R1, fluid is injected at a constant speed VJ.'0.  The aspect ratio is 

FIG. 2. Flow regions within the cylindrical vessel investigated in this work. Zhao et al.[9] studied 

region I, characterized by co-existing rotational and planar acoustic flow. Regions II and III are 

studied in the present work. 

FIG. 3. A graphical representation of the eigenfunctions sin0 and sin 20 in the region II of the 

tube. The eigenfunction sinö is not symmetric about the center of the tube because no diameter 

can be drawn which crosses only "+" regions or only "-" regions. The eigenfunction cos 9 is also 

not symmetric. On the other hand, sin 20 is symmetric, as are sin nö, and cos nö, n > 2, The only 

flows with mass across the centerline as those with a nonzero sin# or cosö component, (ami or bmi 

nonzero). 

FIG. 4. Example endwall condition: Vz = r2(l — r)2.sin2(|)sino;t, for u> = 1 at t = |. 

FIG. 5. Axial cross sections of the pressure for u> = 1 and t = \. Only the decaying part of 

the pressure in (35), defined as PD, is plotted at axial locations z = 0.01,0.1,0.25 and 1.0. The 

maximum absolute value of PD at z = 1.00 is about 14% of the analogous value at z = 0.01. The 

parameter values are 8 = 20, Re = 106, and M = 0.01, which give a viscous length scale at the 

endwallof O(10-3). 



FIG. 6. Two-dimensional vector field plot showing only the radial and azimuthal veloci- 

ties. A cross-section is taken along the plane £ = 0.01 for the endwall velocity condition: 

yz _ r2^ _ r)2sin2(f)sina;i with u = 1 and t = f. The symmetry about a line connecting 

0 = 0 and 9 = ir, corresponds to the symmetry in the endwall velocity condition. There is net flow 

from the left to right side of the line connecting 9 = § and 6 = -§. 

FIG. 7. Two-dimensional vector field plot showing only the radial and axial velocities. A 

cross-section is taken axially with 0 = 0, (for values y > 0, y = r), and 9 = TT, (for values 

y < 0, y = -r), and velocity condition, Vz = r2(l - r)2sin2(f)sinu;i, for OJ = 1 and t = f. There 

is net flow from the bottom to the top of the plot,' representing flow across the centerline. There is 

a region of high velocity near y = -0.5, which is due to the high flow region at 9 = TT and r = 5 of 

Figure 4. Nearly planar flow is found near z = 1. 

FIG- 8. Two-dimensional vector field plot showing only the radial and axial velocities. The 

cross-section shown is for 9 = -f, (y < 0,y = -r), and 9 = f, (y > 0,y = r) Again, the endwall 

velocity condition used is Vz = r2(l - r)2sin2(f)sinu;i, for w = 1 and t = f. Symmetry with 

respect to the centerline in this plot is due to the symmetry of the endwall velocity condition in 

Figure 4. The flow near z = 1 is nearly planar. 

FIG. 9. Azimuthal velocity profiles near the sidewall, r = 1, at t = 6,7.5,9,10.5,12, for w = 1, 

Re = 105, S = 20, M = 0.01, £ = 0.01 and 9 = f. The plot shows the boundary layer structure 

through almost a full cycle of the velocity boundary condition in 7. 

FIG. 10. Azimuthal velocity profiles near the sidewall, r = 1, at t = 6,7.5,9,10.5,12, for u = 0.8, 

Re = 105, 8 = 20, M = 0.01, £ = 0.01 and 9 = f. The plot shows the boundary layer structure 

through three-quarters of a cycle of the velocity boundary condition in (7). It is noted that the 

boundary layer thickness is larger than that in Figure 9, where to = 1. 
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Figure 7: Staab and Kassoy 
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Figure 8: Staab and Kassoy 
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Figure 9: Staab and Kassoy 
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Abstract 

A mathematical model is formulated to describe the initiation and evolu- 

tion of intense unsteady vorticity in a low Mach number (M), weakly viscous 

internal flow sustained by mass addition through the side wall of a long, nar- 

row cylinder. An O(M) axial acoustic velocity disturbance, generated by a 

prescribed harmonic transient endwall velocity, interacts with the basically in- 

viscid rotational steady injected flow to generate time dependent vorticity at 

the side wall. The steady radial velocity component convects the vorticity into 

the flow. The axial velocity associated with the vorticity field varies across the 

cylinder radius and in particular has an instantaneous oscillatory spatial distri- 

bution with a characteristic wave length O(M) smaller than the radius. Weak 

viscous effects cause the vorticity to diffuse on the small radial length scale as 

it is convected from the wall toward the axis. The magnitude of the transient 

vorticity field is larger by 0{M~l) than that in the steady flow. 

An initial-boundary value formulation is employed to find nonlinear un- 

steady solutions when a pressure node exists at the downstream exit of the 

cylinder. The complete velocity consists of a superposition of the steady flow, 

an acoustic (irrotational) field and the rotational component, all of the same 

magnitude. 
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1    Introduction 
Intense transient vorticity can be generated in a tubular internal flow by an interaction 
between a forced acoustic field and fluid injected normally from the cylinder sidewall. 
At a given axial location, the transient axial gradient of the acoustic pressure drives 
time-dependent wall shear stress variations. The resulting radial gradient in the 
axial speed is convected into the cylinder by the injected flow field so that one finds 
coexisting irrotational and rotational disturbances of the same magnitude. 

The spatial distribution and time-history of the vorticity depend upon the charac- 
teristic amplitude of the wall injection speed (V^,), the length (L') and radius (R') of 
the cylinder, the frequency of the acoustic forcing (u), and the fluid properties. It fol- 
lows that the crucial nondimensional parameters include, the flow Reynolds (Re) and 
Mach (M) numbers along with the aspect ratio (<5) and a frequency (w), all defined 
below. 

The intense transient vorticity is confined to a viscous acoustic boundary layer, 
small in transverse dimension with respect to the cylinder radius, when the wall 
injection speed is sufficiently small. As the injection rate increases, the boundary 
layer thickness grows and the importance of viscous forces is reduced, relative to the 
axial pressure gradient effect. Eventually, the boundary layer concept is invalid, the 
flow is onlv weakly viscous and transient vorticity is present throughout the cylinder. 
The objective of the present work is to describe a mathematical formulation based 
on perturbation methods, valid for wall injection rates sufficiently large to preclude 
the viability of the viscous acoustic boundary layer model. Solutions to the model 
describe the time-history of the coexisting acoustic and rotational flow fields. 

Flandro (1974) provides an early assessment of the importance of vorticity in an 
acoustic boundary layer. He studies the impact of a small axial pressure gradient, 
varying harmonically in time, on the viscous processes occuring adjacent to a surface 
from which a steady, spatially uniform transverse injection occurs. A linear equation 
for axial velocity contains a balance of convection, pressure gradient forces and viscous 
diffusion. The solution describes a shear wave convecting away from the wall, with 
an amplitude that is damped by viscous effects. One finds intense, transient vorticity 
in the boundarv layer, relative to the weaker steady vorticity associated with the 
inviscid, rotational Culick (1966) solution valid beyond the boundary layer. The 
solution is valid only when the small injection Mach number Mb = 0(R^ 2) where 
RA > 1 is the appropriate acoustic Reynolds number for the chamber. Related work 
has been described by Tien (1972) and Flandro (1986). 

Important extensions of Flandro's concepts have been developed by Zmn and 
coworkers ( Hegde et. al, 1986, Hegde and Zinn, 1986, Sankar et. al., 1988a,b, Chen 
et. al., 1990, Matta and Zinn 1993) in the context of acoustic boundary layers that are 
thin relative to the transverse dimension of the internal flow. These research efforts 
are motivated by the need to understand how energy is transferred from the axial 
acoustic field to the fluid injected from the sidewall as the latter is turned toward 
the axial flow direction from its initially transverse motion ( flow turning). Hegde 
et. al. (1986) recognized explicitly that for sufficiently large injection rates, "...the 
boundary layer may encompass a significant portion of the duct..." and that in this 
case "...viscous effects must then be included in the analysis of the (entire chamber)". 
However, there was no specific modeling of this particular situation. 

The pervasive presence of rotational disturbances throughout an injected internal 
flow was first demonstrated in the experiments of Brown et. al. (1986a,b), Brown 
(1986) and, Brown and Schaeffer (1992). They injected gas through the porous side- 



wall of a cylinder/nozzle configuration. A periodic mass injection technique is used 
to induce single frequency disturbances into the system. Hot wire measurements 
of the time-averaged axial velocity field at numerous axial and radial locations are 
used to show that large, local radial gradients of the time-averaged axial velocity are 
present across the entire cylinder cross section, with a characteristic length scale far 
smaller than the radius. The associated radial spatial oscillations in the axial speed 
are not compatible with profiles predicted by a traditional acoustic analysis, (Culick 
and Yang 1992), although associated pressure variations appear to be purely acoustic 
in character. The experimental observations suggest that the need for a mathematical 
model of the disturbed, sidewall injected flow system that can deal with coexisting 
acoustic and rotational flow processes throughout the chamber geometry, as well as 
resolve transverse flow processes on radial length scales short with respect to the 
overall transverse dimension of the chamber geometry. 

Vuillot and Avalon (1991) and Vuillot (1995) have repeatedly emphasized the 
importance of vorticity in these injected internal unsteady flows. They point out 
that the assumptions built into the acoustic stability theory reviewed extensively by 
Culick and Yang (1992) have the effect of "... cancelling all trace of vorticity of the 
flows". In particular, the velocity perturbation is proportional to the gradient of 
the pressure perturbation. Clearly, an irrotational formulation cannot account for 
the highly rotational, unsteady flow field observed in experiments, and seen in the 
computational results described below. 

Flandro and Roach (1992) describe an initial attempt at developing an analytically 
based model of the Brown and coworker experiments. A more complete version is 
given in Flandro (1995a) where a theory is developed for coexisting transient vorticity 
and acoustic waves throughout a cylindrical chamber. The steady, inviscid rotational 
Culick (1966) solution, associated with a uniform injection Mach number Mb < 1, 
is disturbed bv a smaller 0(e) acoustic velocity that varies harmonically in time. 
Perturbation methods valid for Mb -> 0 and a linear stability approach are used to 
derive an inviscid, linear, small disturbance equation for the rotational part of the 
axial velocity, which is assumed to have quasi-steady time dependence. 

The solution satisfies the no-slip condition on the sidewall, and symmetry con- 
ditions on the axis. The equation itself can be used to show that the amplitude of 
the vorticitv generated at the sidewall surface is O(efM^) relative to the vorticity 
associated with the steady Culick profiles. Hence for sufficiently large values of e the 
transient vorticity can be more intense than is the steady field vorticity. The rota- 
tional axial velocity solution is characterized by shear waves of small radial length 
scale that are convected into the cylinder by the steady Culick velocity components. 
The time-averaged axial velocity variation with radius is qualitatively similar to the 
spatial oscillations observed experimentally by Brown and co-workers. 

Flandro( 1995a) notes that viscous effects will have a minor impact on the inviscid 
rotational solution for the vorticity distribution, using an argument based on his 
earlier viscous acoustic boundary layer theory, Flandro(1974). That work is valid 
mathematicallv only adjacent to the injection surface because the transverse speed is 
assumed to be "constant. Hence it appears unlikely that the results can be applied to 
the entire cvlinder, where the radial speed must vanish at the centerline. 

A more "systematic effort is made to consider the impact of viscosity in Flandro 
(1995b), in the context of small disturbance, linear stability theory. As in the previous 
paper the asymptotic methods, valid for Mb -+ 0, are applied in an intuitive manner. 
It is not always apparent why terms in equations are included or neglected. The 
results of the linear analysis suggest that viscous effects are most important near the 
centerline of the cylinder, a result quite different from conclusions of the present work. 



Majdalani and Van Moorhem (1996) also describe a small disturbance, linear sta- 
bility theory that includes the impact of viscosity on the vorticity distribution. Their 
formulation is based on a limit of large acoustic Reynolds number with the injection 
Mach number, Mb fixed. Solutions are assumed to have quasi-steady time depen- 
dence. The results can be interpreted to mean that vorticity is weak but pervasive 
throughout the cylindrical flow. 

Significant efforts have been made to develop multidimensional computational 
models for wall injected internal flow including the resolution of the identifiable 
layers containing rotational flow. Baum and Levine (1987) used the Navier-Stokes 
(N.S.)equations to evaluate the internal flow response to imposed disturbances. Baum 
(1989, 1990) has used the Reynolds averaged compressible Navier-Stokes equations, 
including k - e model, to carry out initial value solutions for the transient flow in a 
cylindrical geometry. Sidewall injection is steady and uniform and disturbances are 
created by a prescribed harmonic variation of the axial speed on the endwall (piston 
effect). Results are obtained for RA = 3(107) and Mb = 2.2(1(T3). Acoustic bound- 
ary lavers adjacent to the injecting surface, containing significant radial gradients of 
the axial velocity, appear to be quite thin, usually confined to a few percent of the 
cylinder radius. In one case vorticity is seen as far as about 20% of the radius from 
the sidewall. These results are quite different from the experimental observations of 
Brown and co-workers which appear to include coexisting vorticity and acoustic waves 
across the entire cylinder. The difference likely rises from (a) the distribution of grid 
points across the cylinder (most are packed close to the sidewall in anticipation of 
traditional acoustic boundary layer behavior), and (b) short run times (not enough 
time has elapsed after the introduction of the disturbance to convect the vorticity 
generated at the sidewall very far out into the cylinder). The former condition im- 
plies that the computation can resolve the short length scale radial gradients only 
in the vicinity of the sidewall. Even if the vorticity convects beyond the region with 
sufficient grid resolution, its presence cannot be discriminated by the larger grids in 
the central portion of the cylinder. _  . 

Vuillot and Avalon (1991) use laminar Navier-Stokes equations to develop an ini- 
tial value study for flow in a planar rectangular chamber where a prescribed harmonic 
disturbance in pressure is applied on the exit plane. The calculation is carried out 
for RA = 3(104) and Mb = 0.0098, corresponding to a relatively viscous system. Here 
again the transverse gridding is packed near the wall, although a finer resolution is 
present further out into the field than in the Baum work. The computation times are 
long enough for the vorticity generated at the wall to reach the centerline. Significant 
transverse gradients in the axial velocity (vorticity) are found out to about 50% of 
the half height of the rectangle. 

Smith, Roach and Flandro (1993) also find vorticity present m a large portion a 
cylindrical geometry. Their computation is done to simulate the Brown and co-worker 
experiments. Significant radial gradients in the axial velocity are seen about halfway 
out toward the centerline. Here again, the run times are sufficiently long to move the 
vorticity well away from the injection surface, and the gridding distribution enables 
it to be resolved, at least part way out into the cylinder. The authors suggest that 
the spatial resolution may not be adequate further out into the cylinder. 

Acoustic processes in a thermally active internal flow with combustion have been 
studied computationally by Tseng, et. al.(1994), based on the use of the compressible 
N.S. equations. Steady, spatially uniform injection of a propane-air mixture occurs at 
the porous sidewall of a planar, rectangular geometry. A small (2%,) time-dependent 
harmonic pressure disturbance is applied at either the head end (traveling wave so- 
lutions) or the exit plane (standing wave solutions) of the chamber.   Vorticity, as 



represented by large transverse gradients in the axial velocity, is found in a thin layer 
near the injecting surface, on the order of 10-15% of the channel half height. This 
confinement of the rotational flow distribution is due in part to short run times and 
in part to a coarse grid distribution in the central portion of the rectangle. It is 
important to note that flame resolution requires a significant number of points near 
the injection surface, and not surprisingly the vorticity is seen most strongly in this 
highly resolved region. 

Roh and Yang (1995) have done a similar computation for combustion processes 
associated with double base propellants. Longer run times and better spatial res- 
olution leads to the appearence of vorticity through 75% of the half height of the 
rectangular height. 

The modelling in the present paper is described in terms of a quasi-analytical, 
asymptotic analysis for an initial-boundary value problem with imposed boundary 
disturbances of significant magnitude. In contrast to the previously cited small dis- 
turbance, linear stability-based theories with quasi-steady time dependence, we study 
an evolving fully transient flow including the complete acoustic field compatible with 
the cylindrical geometry and imposed boundary conditions. 

Our work focuses on the fluid dynamics occuring in the finite length (L ) cylinder of 
radius R' with one open end. Steady radial mass addition from the sidewall creates 
a primarily inviscid rotational internal flow which is affected weakly by viscosity 
(Taylor 1956, Culick 1966). The characteristic axial flow Reynolds number, and the 
axial flow Mach number are large and small respectively. The "large" or "massive" 
injection velocity needed to diminish the significance of viscosity near the sidewall 
has been considered in the context of injected boundary layer theory by Cole and 
Aroesty (1968). 

Imposed time-dependent axial velocity disturbances on the closed end add tran- 
sient energy to the internal flow and generate an acoustic field present throughout 
the cylinder. The characteristic magnitude of the imposed disturbance is chosen to 
be the same as that of the steady injection induced axial velocity in order to study 
a relatively large' transient response of the system. Axial acoustic waves interact 
with injected fluid particles to create intense transient, axially distributed vorticity 
on the sidewall, far larger than that of the primarily inviscid steady rotational flow 
produced by the sidewall injection alone. The vorticity is convected into the cylinder 
along pathfines associated with the internal flow. 

The transient vorticity is confined to a weakly viscous "transition layer" adjacent 
to the wall for sufficiently small values of the wall injection speed. This layer thickness 
is large compared to a viscous acoustic layer, but smaller than the cylinder radius. 
The convected vorticity is diffused on a transverse scale that is small compared to the 
transition laver dimension. However, over the latter scale, the accumulated impact of 
weak diffusion damps out the intense transient vorticity. Beyond the transition layer 
one finds a "core" flow consisting of the irrotational acoustic field and the less intense 
steady vorticity. 

Transient vorticity is present throughout the cylinder when the wall injection speed 
is sufficiently large, as defined explicitly by the model. In this case the transient flow 
field is weakly viscous across the entire cylinder. Again, vorticity is diffused on a 
short length scale, but the accumulated viscous damping is not sufficient to prevent 
the eventual appearence of vorticity at all radial locations except on the axis, where 
symmetry requires a zero vorticity value. 

The mathematical model is formulated in terms of an initial value problem with ex- 
plicit time-dependent forcing conditions on the closed end of the cylinder. A multiple 



scale approach is used to describe coexisting phenomena (steady, inyiscid rotational 
flow field; planar, irrotational acoustic wave field; transient, weakly viscous rotational 
flow field) evolving simultaneously on two, disparate transverse dimensions. 

Solutions for the transition layer/core model are given in analytical terms, based 
on asymptotic expansions in the small axial flow Mach number (M). The planar 
acoustic pressure and axial velocity solutions are eigenfunction expansions appro- 
priate to the geometry and prescribed boundary conditions. Both nonresonant and 
resonant cases are included. The axial speed in the transition layer depends upon 
two transverse variables of disparate size. A small scale variable is used to describe 
relative short wave length spatial oscillations embedded within the transition layer. 
The amplitude of the oscillations, dependent on the larger scale variable, vanishes 
exponentially fast as the transition layer edge is approached. Asymptotic properties 
of the solution are used to define the parameter conditions for which the transition 
layer/core concept fails, and for which vorticity can be present across the entire cylin- 
der. 

A multiple scale approach is used to formulate the model for the co-existmg acous- 
tic and rotational flow fields that evolve simultaneously in the cylinder when vorticity 
may be present at all radial locations. Planar acoustic solutions, composed of a forced 
mode and eigenmodes, are derived from a linear wave equation driven by a forced 
endwall boundary condition. The lowest order rotational part of the axial speed field 
is described by an invscid, linear first order wave equation. The latter implies that 
vorticity generated at the sidewall by an axial pressure gradient/injected fluid inter- 
action is convected toward the cylinder axis by the radial component of the injected 
flow field. For sufficiently small times a sharp front separates the intense transient 
vorticity initiated at the"wall from the much weaker steady vorticity of the Culick 
(1966) solution. Eventually, the front location asymptotes to the cylinder axis and 
vorticity is present everywhere. 

Although the lowest order vorticity transport process is described by an inviscid 
equation, a higher order analysis is used to prove that weak viscous and nonlinear 
effects are pervasive in the flow field for useful values of the significant parameters, 
including the relatively large boundary disturbance considered here. In particular, 
vorticity is diffused by viscosity on a length scale short compared with the cylinder 
radius. The complete initial value solution for the rotational part of the axial speed is 
derived from a nonlinear diffusion equation using both a truncated dynamical system 
(Wang and Kassoy 1990 a,b,c, 1992a,b, 1995) and direct numerical computations. 
Results are given for several parameter values and at various locations in the cylinder 
In particular, one may understand how the energy input at the endwall is partitioned 
between the acoustic and rotational components of the flow field. 

Evaluation and interpretation of the results show that a complex vorticity dis- 
tribution is present throughout the cylinder sufficiently long after the disturbance is 
initiated at the endwall. In part the spatial variations result from the inclusion of 
numerous Fourier modes in the acoustic solutions that are responsible for the ap- 
pearence of the vorticity. Fully computational methods are used by Kirkkopru et. 
al. (1995, 1996a,b) to provide supporting evidence for the solutions found here by 
quasianalytical means. 



2    Mathematical Formulation 
An internal flow arising from time-invariant side wall mass addition in a cylindrical 
tube of length L' and diameter D' is shown schematically in Figure 1. The oscillatory 
end wall disturbance in the axial speed Vz is the source of acoustic waves in the 
cylinder. A pressure node boundary condition is assumed at the downstream end of 
the tube. 

The complete non-dimensional equations describing the fluid dynamics and acous- 
tics for an axisymmetric system can be written in the form 

^   +   M 
dp 
dt 

DVr 

Dt 

' Dt 

pCv 
DT 
Dt 

ld(prVr)  | d{pVz) 
r     dr dz 

7M dr +    Re\ dzß 

P   = 

+2^ 

.—— + <52— 
7M dz Re 

M d 
+2-Red-z» 

-(7-l)M? 

<52M 7 Uf I _i ( for—  I 
dz J      r dr \    dr J 

M36* 

(1) 

(2) 

(3) 

(4) 

(5) 

where 
D d d 
^- = — + M[Vr— + VZ— 
Dt     dt dr dz 

and $ is the viscous dissipation function. The non-dimensional variables are defined 
in terms of dimensional quantities (with a prime) by 

V V 
r, — H     P — F    T — T/— —L-  V  — —— 
P —   ~Tl *      —   —T,J-     —   rri' >   Vr   —   T/<    )   vZ   —   -.rl    ) 

Po Po To vr rO V, zO 

z = 
r t k p 

r = -=j,t = -r,k = -r,p=—r,Cv = 
R' t' "-0 ßo C. 

(6) 
v0 

The reference value p0 is the initial static pressure in the cylinder, while the analogous 
density and temperature values p0, T'0 respectively represent properties of the injected 
fluid. The known characteristic injection speed V'rQ is related to the derived charac- 
teristic axial speed V'zQ by the approximate mass conservation relationship Vz0 = 6Vr0. 

Here, the large aspect ratio 6 = jg- > 1 and R' is the tube radius.  Characteristic 



length scales for the axial and radial variables are defined by L' and R' respectively. 

Time is nondimensionalized with respect to the axial acoustic time ta = p-, where 

Cj = (7J?'To)2 is the characteristic sound speed. The reference material properties 
k'0, /J,'0 and C'vQ are defined at temperature %. The parameter 7 is the ratio of specific 
heats and 

ße=Ä^,Fr = ^,M = ^, (7) 
Ho fco ^o 

where typically the Prandtl number Pr= 0(1), the axial Mach number M < 1 and 
the axial flow Reynolds number Re > 1. It is noted that the Reynolds number used 
here is O(M) smaller than the acoustic Reynolds number. 

Initially, a steady flow exists in the cylinder, driven by spatially distributed normal 
injection from the wall where the no-slip condition is satisfied. Symmetry prevails 
along the axis. The mathematical form of the steady flow boundary conditions may 
be written as 

r = 0;     Vr = ^ = 0,     r = 1;  Vr = -Vrw{z), Vz = 0, T = 1 (8) 
or 

z = 0;     Vz = 0, z = l;     P = l- (9) 

The steady flow is disturbed at z = 0 by imposing a harmonic end wall axial 
velocity variation that is independent of the radial coordinate; 

z = 0;     Vz = Asinut,     t > 0;     0 < r < 1, (10) 

where the amplitude A=0(1). 
It should be noted that the imposed end wall disturbance, of the same order 

of magnitude as that of the steady axial speed, is the source of mechanical and 
thermodynamical disturbances of like magnitude in the gas. These relatively large 
variations are described by a weakly nonlinear theory that differs from the small 
disturbance theory used by Flandro (1995). 

The sidewall injection is strong in the sense that VTQ > -^ (Cole and Aroesty 

1968), which implies that the parameter combination seen in (2) and (3), 62/Re < 1. 
The hard blowing condition implies that the flow is basically inviscid, even near the 
injecting surface, so that no acoustic boundary layer is expected. 

3    Steady State Flow 
The steady state flow generated by time independent mass addition on the side wall 
can be described in terms of the asymptotic expansions: 

(P,p,T) ~ 1 + M2(P0s,Pos,Tos) + o(M2),    (Vz,Vr) ~ (Vz0s,Vr0s) + o(l);(ll) 

valid in the limit M -► 0. Equation (11) can be used in (1)—(5) to find the leading or- 
der equations describing an incompressible, inviscid, rotational flow that satisfies the 
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no-slip and injection boundary conditions on the side wall and symmetry conditions 
on the axis, given in (8) and (9) 

1 d(rVr0s) | dVz0s = Q (12) 

r     dr dz 
P„, = Po,W (13) 

.^+Ko,^ = -I^, (14) 

The transport terms are excluded from the leading order equations because ^ < 1. 
Equation (13) arises because the aspect ratio 6 > 1. Solutions for the radial and 
axial velocity, as well as the pressure distribution can be written in the form 

Vr0s = _^sin(|r2),     Vz0s = (* fQVrw{T)dr) cos(|r2), (15) 

P03 = 7TT
2
 jf1 \vrw(z) fQ Vrw(r)dr] dz, (16) 

where -VTW(z) ^ 0 is an arbitary time-independent side wall injection distribution. 
Related solutions can be found in Culick (1966). It should be noted that Balakrishnan 
et al.(1991) obtained a fully compressible solution valid for M = 0(1) < 1. 

4    Core/Transition Layer Solutions 

Flandro's (1974) viscous acoustic boundary layer theory describes intense, transient 

vorticity generation and evolution in a layer of nondimensional thickness 0(RA
2) 

where the acoustic Reynolds number RA = Re/M > 1. The solution is valid formally 
_i 

for a small injection Mach number Mb = 0{RA
2). 

It is of interest to develop a theory for larger injection rates, when the transverse 
dimension of the layer containing vorticity remains smaller than the radius of the 
cylinder, but is larger than that permitted by Flandro's (1974) model. The conceptual 
approach focuses first on a central "core"region containing the weak vorticity of the 
steadv solutions in (15) and (16) and irrotational, linear acoustic disturbances of 
the same magnitude, driven by the prescribed end wall disturbances in (10). The 
thinner transition layer contains the intense, transient vorticity. A multiple length 
scale asymptotic analysis, used to develop the solutions, describes how weak but 
pervasive viscosity affects the flow physics in the transition layer. 

The asymptotic expansions for the unsteady core flow can be written as 

(P,p,T)~l + M£Mn(Pn,pn,Tn), (V2,K)~£M"(Vzn,Kn);        (17) 
n=0 "=0 

in the limit M -* 0. Equation (17) can be used in (1)—(5) to derive the lowest order 
equations, valid in the limit M -* 0, with ^ -+ 0; 

dpp  (  1 d(rVrQ)  { d{VzQ) = (18) 

dt      r     dr dz 



*£„-122L,      fl, = JW*,«); (19) 
at        7 oz 

-^- = (7-1)^; (20) 

Po = Po-T0. (21) 

The velocity components in (18) axe composed of both steady state and a transient 
parts of the same magnitude; (Ko,Ko) = (Vr0*,lr0«) + (Ko,Ko)- Subtraction of 
the steady state equations (12)-(14) from (18)—(21) provides the transient acoustic 
mathematical problem. The boundary condition in (10) implies that the radial speed, 

Vro = 0. 

4.1    The Planar Acoustic Solution in the Core 
The transient part of the leading order equations can be combined into a planar wave 
equation for the axial velocity component: 

d2VM      d2V, z0 V   VzQ 

dt2 dz2 

subject to the initial and boundary conditions; 

(22) 

* = 0,     VzQ = 0,     ^f = 0, (23) 

2 = 0,     V;0 = ^sinu;t; (24) 

z = l,     ^ = 0. (25) 
oz 

where (25) is obtained from (9). The simplicity of the equation can be attributed to 
the large aspect ratio condition 6 >>  1. 

The general solution for VZQ is : 

Ko(*>*)M   =   sinwi 

+ sm(bnt) - —  sin(wt) 
. 62 _ u2;   v n'  bi - u2 

n 

■ sin(6nz) 

-{(^)sin(6B.t) + *cos(6B.*)}sin(&».z), (26) 

where bn = (n + ±)7r. The last term describes a resonant effect present only when 
u = bn. and cannot be found from a quasi-steady analysis. The solution provides 
insight into the properties of the acoustical field compatable with the cylindrical 
geometry and prescribed boundary conditions. 

• The first term itself and the second part of the nonresonant Fourier series rep- 
resent quasi-steady motion at the driving frequency. The other Fourier series 
terms can each be decomposed into two counter-propagating planar travelling 
waves. 
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If u is very close to one of the natural frequencies, then beats will appear due 
to the interaction between the quasi-steady motion and one pair of travelling 
waves. 

• Resonance occurs when u = &„, and the amplitude of one mode grows linearly 
with time. 

Table 1 contains results for a system where t'A = 10~3 s, so that dimensional 
frequencies can be considered. When u « 159 Hz, the response shown in Figure 2 
for Vz0 at z = 0.5 is bounded and the contributions are primarily from the first few 
forced modes and the first few axial travelling modes. A beat is observed in Figure 
3 when u « 238 Hz. The period of the beat, about 90 time units, arises from the 
interaction between the driven frequency u = 1.5 and the first eigenfunction bQ = 7r/2. 
Linear monotonic amplitude growth seen in Figure 4 is primarily from the resonant 
axial mode in (26) when J = 250 Hz (u = b0 = TT/2). 

The pressure solution P0(z, t) can be obtained from a first integral of the unsteady 
part of (18) and the isentropic relationship P0 = 7Po- 

4.2    Transition Layer Solution 
The leading order core acoustic solution in (26) does not satisfy the no-slip boundary 
condition. Under certain conditions to be defined quantitatively, the transition to 
zero axial velocity at the wall occurs in a relatively thin transition layer which has a 
multiple scale structure that differs fundamentally from a traditional viscous acoustic 
boundary laver (Flandro,1974). In particular the overall radial thickness of the layer 
is defined by weak viscous considerations. But within it there is a smaller length scale 
associated with the distance traveled by an injected fluid particle on the time scale 

The hard injection condition V'rQ > V^/Re* implies that the transition layer is 
inviscid and rotational in the first approximation. Viscous stresses appear in a higher 
order description, but are essential to finding the complete solution, as might be 
expected in a multiple scale analysis. 

The multiple scale structure is defined in terms of stretched variables that measure 
distance from the tube wall; 

«■^     '-^ (27) 

where ß = M2/(62/Re) if the core/transition layer concept is valid. In order for 
the total laver thickness to be large compared to the smaller scale feature but small 
compared tö the tube radius, M < ß < 1. The partial derivatives with respect to r 
must be replaced by 

(28) 

Wß Kp^i)+ J2 Xßrf)' +   >J*)+U£\. (-) 
ii 



The variables, represented by the asymptotic expansions 

(P,p,T)~l + Y,Mn+\Pn,pn,Tn), (30) 
n=0 

VZ~VZ0 + JVZ1 + O(J),     Vr~-Vrw(z)+o(l), (31) 

valid in the limit M -* 0, are used with (28) and (29) in (l)-(5) to find the first two 
approximate equation systems for the transition layer. 

The lowest order version is, 

dVz0 dVz0 _    13P0.     p _ P/_ t\ (30) 

where Vrw(z) is known from (8) and PQ{z,t) is the acoustic pressure field obtained 
from (18) and (26). Equation (32) describes an inviscid rotational flow which can 
satisfy the no-slip boundary condition on the wall. In particular, an evaluation of 
(32) on the wall £ = TJ = 0 shows that the transient vorticity distribution created 
there, 

(dVz0\ 1      dPQ(z,t) (33) 

[dt )w        lVrw{z)      dz 

depends on both the local pressure gradient time variation and the local injection 
magnitude. This transition layer vorticity is 0(M_1) larger than that associated 
with the steady solution in (15) and (16), given the stretching transformation in the 
first of (27). 

The convective transport equation for the relatively intense transient vorticity, 
dVz0/d£, can be obtained from a ^-derivative of (32). In this case, the right hand 
side vanishes and one finds that vorticity is convected invariantly by the radial wall 
injection velocity Vrw along well defined characteristic lines, <p = t- (£;)■ 

The second order momentum equation is obtained from terms of 0(-j)\ 

dV*+V   ^1--V   ^£ + ^i£ (34) 
~dT+   rw d£   -      rw drj  +   de ' 

where a viscous stress term associated with Vz0 is present, and the pressure gradient 
is absent since /3<1. 

The acoustic solution in the core must match with the transition layer solutions at 
the outer edge (f —► oo, rj -* oo), and the no-slip condition on the side wall provides 
an inner boundary condition for (32) and (34). The acoustic core solution in (26) 
shows that, all thejterms can be classified into the following two forms: Vz0(z)elüt 

with f]=wor bn, VzQ(z) = smbnz, and -tcos(6n.t)sin(6B.z). It follows that; 

£ = r? = 0,   Vz0 = 0; (35) 

^-»oo;   Vz0~Vz0(z,t). (36) 

with the latter from (26). 
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Equations (32)—(36) are used first to find quasi-steady solutions to each relevant 
frequency in the core solution. For any of the nonresonant modes ft = u or bn but 
u / &n for any integer n, the transition.layer solutions can be written as 

Vz0 = F(£, 17, z)emt;     Vzl = G(£, 77, z)em. (37) 

These solution forms can be substituted into (32) and (34) to determine F and G. 
The former found from (32) , (35) and (36), is 

F(£, r), z) = C{rj, z) exp(-£-0 + V* 

where the undetermined coefficient function C(r), z) must satisfy the conditions 

,7 = 0;     C = -Vz0{z), 
77 —► 00;     C = 0. 

Equation (34) can then be rewritten in terms of G and C as 

in dG      in „ . —+ —G=-exp(- 
o£     Vrw V, <) 

TW 

dC_    tf_r 

(38) 

(39) 
(40) 

(41) 

where the second term in brackets arises from viscous effects. 
In order to avoid secular growth of G with respect to the variable f, the quantities 

in the square bracket must be set to zero. Therefore, 

^ + -^C = 0 (42) 

together with (39)-(40) are solved to find 

ft2 

Cfaz) = -V*0exp(-^3-77). (43) 

It follows that the axial velocity variation in the transition layer for each frequency 
n has the form: 

Vzoit, V, *,*) = - sm{bnz) \ exp 
ft2 

:V- 
tfi 

V2.0O'   v„(z) 
-1   e' ifit (44) 

where -Vrw(z) is the steady side wall injection velocity. The product of the expo- 
nential terms in (44) yields that part of the axial velocity component containing the 
intense transient vorticity of the transition layer; 

exp 
n2 

77   e iütp (45) 
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where ip = t-^- is the characteristic line for vorticity transport. The radial traveling 
speed for a constant y? line can be described by: 

dr ~«I = -MVrw{z) (46) 

This shows explicitly that the vorticity is convected in the transition layer by the 
steady wall injection speed. 

The first factor in (45) describes amplitude damping arising from viscous effects 
because the 77-variable defined in (27) is scaled with respect to Re, in part. The second 
part describes harmonic spatial oscillations associated with the acoustic solution in 
the core. 

When resonant driving is present Cl = u = &„., and the resonant mode represen- 
tation of Vz0 is found in a similar way to be; 

V„o(Z,Ti,z,t)   =   -*sin(6„.z)sin(&n.*) 
+ {t [sin(fcf) sin(6„.<) + &„* cos(fc£) cos(6„.t)] 

_1 
u 

(1+M 
Vl(z) 

cos(k£) + 
2Jfc2(l + &„.) 

sin(fc£) sin(fen*t) 

2(1+6„0 
£cos(kO-   1- 

bl. 

l + 6»v 
&2. 

sin(fc£) 

cos(&n.t)} — sin(6n.z) exp(-—tj-rrj) 
0n* Vrw\Z) 

(47) 

Vrw(z)' where k = 
When f = 77 = 0, the solutions satisfy the no-slip boundary condition on the wall. 

On the other hand, when f and rj -»■ 00, the core solution is recovered in an oscillatory 
manner since the amplitude of the exponential term goes to zero harmonically. The 
effective thickness of the transition layer depends strongly on Q and Vrw. A large 
value of Cl promotes relatively rapid exponential decay, implying that a high frequency 
disturbance is associated with a thinner transition layer. Alternatively, low frequency 
forcing.fosters thick transition layers. Thus, higher order modes tend to be associated 
with effectively thinner transition layers. The same type of argument demonstrates 
that increasing the value of Vw(z) enhances the overall transition layer thickness. 

A complete solution for the axial velocity in the transition layer consists of an 
infinite sum of terms obtained from (44) and (47); one for each frequency u> and bn 
in (26). The spatial structure of such a solution will be quite complex, given the 
oscillatory dependence on the value of Cl. It is perhaps more illustrative to look at 
the results for a single frequency. 

The reduced axial velocity inside the vortical layer, ^^uu^ is plotted against £ 
in Figure 5 with M = 0.01, ß = 0.1 and Vrw = 1 for fi = 2.5 and Q = 3.0. The core 
solution is recovered at about £ = 10 for Q = 2.5 which correspondes to r = 0.9 . 
In contrast, the transition layer thickness is a little smaller for the higher frequency 
fi = 3.0. Of course the overall transition layer thickness is determined by the lowest 
mode in the system. 

The viscous factors in (44) and (47) decay exponentially at the edge of the tran- 
sition layer when 77 -» 00. In dimensional terms, the layer thickness can be charac- 
terized by the decay length l'D = {ßV?w/ü

2)R' obtained from the dimensional form 
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of the argument of the exponential in (45) or the analogous term in (47). In order 
to assure the existence of a thin transition layer, l'D/R' = ßV?w/Q2 < 1. Given the 
definition of ß below (27), and that the characteristic injection Mach number can 
be defined by Mb = M/6, it follows that ß = M$RA, where the acoustic Reynolds 
number RA = Re/M. This shows explicitly that an increase in the characteristic wall 
injection Mach number will eventually cause the transition layer to be as large as the 
cylinder radius, l'D = O(R') or ß = 0(1), so that the core/transition layer concept 
fails. Then a new multiple scale perturbation technique is needed to find solutions 
where rotational effects coexist with an acoustic field throughout the cylinder. 

5    Co-existing Acoustic/Rotational Flow 

The failure of the core/transition layer asymptotic model, described in Section 4, 
when ß = 0(1) implies that one must develop a mathematical model for coexisting 
acoustic and rotational disturbances of equal magnitude. Flandro(1995) describes a 
theoretical formulation for such a situation when the amplitude of the transients is 
smaller than that of the steady Culick(1966) profiles in (15) and (16). Perturbation 
methods valid for Mb -* 0 are used to derive an inviscid. linear equation for the 
rotational part of the transient axial velocity component. Although the importance 
of a shorter radial length scale is recognized, a formal multiple length scale analysis 
is not employed. Further, an intuitive approach is used to determine which terms in 
the full equations are retained in the lowest order asymptotic analysis. The solution 
driven by a quasi-steady acoustic field, satisfies the no-slip condition on the side-wall 
and svmmetry conditions at the cylinder axis. It is characterized by harmonically 
varying shear waves on the short length scale that are convected into the cylinder 
by the Culick(1966) steady velocity components. The viscous damping of Flandro's 
(1974) earlier work, like that observed in (44) or (45), is replaced by a nonviscous 
attenuation function associated with the axial dependence of the acoustic velocity 
field. 

Here, an alternative formulation is developed based on a systematic, fully defined 
multiple scale analysis that includes the effects of weak viscosity. The asymptotic 
expansions for the velocity components and thermodynamic variables in the limit 
M —► 0 are 

V, ~ Vz0s(z, r) + £ MnVzn(z, r, t) (48) 
n=0 

Vr~Vr0s(z,r) + Y,MnVrn(z,r,t) (49) 
n=0 

(P,p,T)~l + M£Mn(Pn,pn,0n) (50) 
71=0 

where the axial speed transient disturbances are as large as the Culick(1966) profiles. 
It is recognized that two disparate length scales are important; the tube radius 

and a much shorter length associated with the radial distance traveled by a fluid 
particle on the acoustic timescale. A multiple scale analysis will be carried out in 
terms of the variables r\ and r2 defined by 

fri 1 
n = 1 - r;        r2 = /        ....    ,  >■ (51) 

Jo    -MVrOs(cr) 
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The second transformation includes an integral of the steady radial velocity field for 
the case of constant steady wall injection Vrw = 1 which simplifies the describing 
equations considerably. It is noted that when the center line is approached rx -> 1 
the integral diverges and r2 —► oo.        • 

Each of the dependent variables is written in terms of ri and r2 instead of r alone. 
The partial derivatives with respect to r in equations (l)-(5) must be replaced by 

(I) ■ -&VM& 
( d2\   _   fd2\     (2        d2   \ 

dr2J \dr2J      \MVrQadrldr2i 

+[MVJ   [dr2
2) 

+ MVX  drx   \dr2) ' K    } 

5.1    Lowest order mathematical model 
The relations (48)—(50) can be substituted into (1)—(5) to find the leading order 
equations in the limit M -»• 0. First, the spatially homogeneous boundary forcing in 
(10) and the condition 6 > 1 imply that Vr0 = 0. Then, 

dR0 | dR0 =    dVz0     /  1  \ dVrl (54) 

dt       dro dz       WroJ  dr. 
^i£ + ^iO = _I^o (55) 

dt        dr2 7 dz ' 
dP0      dP0 

dri       dr2 
= 0, (56) 

ddo + dh=z (.7-l)0Po (57) 

dt      dr2 7       dt 
P0 = Ro + 90. (58) 

Following a procedure related to that described by Lagerstrom(1964), and similar 
to that employed by Flandro (1995) the variables, except for PQ, are divided into 
coexisting irrotational planar and rotational nonplanar parts of equal magnitude, 

Vz0 = WQp(z,t) + W0(z,t,rur2), (59) 

Äo = Ä<fr(2,t) + A>(M,ri,r2), (60) 

e0 = 8op{z,t) + 60(z,t,rur2). (61) 

Equations (59)—(61) can be used in (54)—(58) to show that the planar functions are 
described by an irrotational acoustic system 

dWQp =     1 dP0 

dt 7 dz ' 
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dRpp _    dWpp /-g-x 
dt dz  ' 

^0 = ^0^,0. (63) 



(64) d60p ^j-ldPp 

dt 7     dt' 
P0 = R0p + 6Qp, (65) 

nearly identical to (18)—(21). 
The initial/boundary conditions are: 

* = 0,     W0p = 0,     ^ = 0, (66) 

2 = 0,     W0p = Asmut; (67) 

z = l,     ^ = 0. (68) 
dz 

in analogy to (23)—(25). . 
The nonresonant acoustic solution for the planar contribution is 

W0p{t, z)/A   =   - E On ( — sin(wt) - sin(Ant) ] sin(Anz), An ? u,        (69) 
n=l \U ' 
oo 

P0(*,*)M   =   7Han(-cos(u;t) + cos(Ani))cos(Anz),An#w, (70) 
n=l 

Fo   =   7%> (71) 

where an = -p^r and An = (n - ±)TT. Equation (69) is equivalent to (26) for the 
nonresonant case.'" The first term in the sums of (69) and (70) arises from forcing 
at frequency UJ, and the second term describes the eigenfunction response. Only the 
nonresonant case will be considered in the present work. 

The equations, for the rotational components are 

dR0     dR0        dWQ _ f  1  \ dVrl ,?2) 

dt   + dr2 ~      dz       VKoJ  dr2 ' 

^ + ^ = 0, (73) 
dt        dr2 

^ + |^ = 0, (74) 
dt      dr2 

R0 + k = 0. (75) 

Equations (74) and (75) can be combined to show that the leading order vortical flow 
is incompressible: 

^£ . ^£ = o (76) 
dt   ^ dr2 

Therefore, (72) can be rewritten as 

(1  )«k = 0, (77) 
WroJ  dr2 

dW0     (  1  ^ dVrl 

dz       \ vr0s 
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which can be used to find Vr\ once Wo is known. 
The relevant initial and boundary conditions are 

dW0 t = 0;    W0 = 0,    ~Qf = 0, (78) 

2 = 0;    W0 = 0, (79) 

* = l;    ^ = 0, (80) 

ÖW0 d0„ ,      v 
n = l, r2-oo; —= 0,    — = 0, (81) 

n = r2 = 0; Wo = - W0p(t, z), 0O = -M*>*) (82) 

The first of (81) can be combined with (73) and the initial condition (78) to prove 
that W0 = 0 on the axis n = 0 for all t. Equation (82) corresponds to the no-slip 
condition and isothermal flow injection. Equations (73), (74) and (76) show that W0, 
60 and R0 are invariant on a characteristic line defined by 

ri = t-r2, (83) 

but vary across the r? lines. On the sidewall (r2 = 0), the 77 = 0 line appears at t = 0+ 

and subsequently, at t = c> 0, 77 = c appears. At a particular time T, constant 77 
lines, which range in value from 0 to T, are transported toward the axis by convection 
at the local radial steady velocity, as found from a time derivative of (83) after using 
(51). 

The inviscid equation in (73) can be combined with the first of (82) and (63) to 
show that vorticity is produced on the sidewall by the transient axial gradient of the 
acoustic pressure field, 

dW0(t, z, 0,0) dW0 = dW0p(t, z) =     ldPp (g4) 

3r2 dt dt 7 dz 

where W0p and P0 are given in (69) and (70). Equation (84) is analogous to (33) in the 
core/transition layer description. It is noted that the largest unsteady nondimensional 

vorticity term is given by Qe = (äffe;) a^- The parameter, ^, arises from large 
gradients occuring in the spatially oscillatory velocity profile on the short length scale 
r2. Equation (73) also shows that the vorticity generated at the wall is convected into 
the cylinder by the steady radial velocity field Vr0s(r). 

It should be noted that the inviscid equation for W0 in (73) differs from Flan- 
dro's(1995) analogous equation which includes an axial convection term proportional 
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to äffiL.   The latter is retained on the basis of an intuitive rather than a formal 
dz 

asymptotic argument. .  _ 
In general, solutions to the inviscid first order hyperbolic equations m (73)-(75) 

can be written symbolically as, 

Wo = Wo(T],ruz),        80 = 60(ri,r1,z) = -R0,        rj = t-r2 (85) 

If the no-slip and isothermal boundary conditions (see (8) and (82)) are satisfied, 
then one finds results on r\ = 0; 

(7-1) 
W0{ri, 0, z) = -Wopiv, z),       e0{f], 0, z) = -y-L—LP^ z), 

7 
(86) 

where the quantities on the right hand side of the equality signs are given in (69) 
and (70). The results in (86) are essentially boundary conditions for higher order 
equations, which are used to find explicit functional dependence of the variables. 
Once WQ is found, then the mass conservation equation (77) can be integrated with 
respect to r2 to find the radial velocity VPl. The rotational temperature and density 
fields can be found using related methods. 

5.2    Higher order consideration 
Equations (48)—(50) can be combined with (1)—(5) to find the O(M) equation set in 
the limit M -> 0. The procedure used to find the leading order solution is employed 
so that the variables, except for Px, are divided into irrotational planar and rotational 
nonplanar parts, 

Vzl =Wlp{z,t) + Wl{z,t,rl,r2), 

Rx = Rip(z,t) + R1{z,t,rur2), 

ei=Bip{z,t) + el{z,t,rur2). 

The planar, acoustic equations, 

dR\p 

dt 
dWlp 

dt 

~\WiP + R -OpWop] 

-V.-^)+^ 7 2 

ae ip   _    a_ 

dt 

Pi 

dz 
d_ 

dz 

8 
dt 

Rip + $ip + RopBop 

wl 

(7-l)i2lp + (7-2X7-1)^2 
0p 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

containing quadratic driving terms associated with lower order acoustics are not con- 
sidered further here, although they may be important for studying acoustic streaming 
effects. 
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The largest possible viscous effect occurs when ß = ReM2/62 = 0(1) (see (27)), in 
which case the higher order axial momentum equation for W\ has the nonhomogeneous 
form 

dW!     dWi + 
dt dr2 

1   d2W0 ^lfidPo     ,„     , v ,d(V20s + Vzo) 
Ws~W   7 °~d7~{Vz0s + Ko)       dz 

+vz zOs dz 

WrOsJ 

zQ 

dr2 

-VT 

^. r TOS" 
OZ 

dVz0s 
TOS' dri 

(94) 

Equation (94), the higher order analogue to (73), provides additional information 
about the behaviour of the leading order axial speed solution. 

The corresponding energy equation for 0i analogous to (74) contains a conduction 
term. Thus, transport effects are important conceptually in the distribution and 
evolution of the rotational variables. 

If the transformation of the coordinate system from (t,ri,r2,z) to (rj,ri,r2,z) is 
made, then the derivatives with respect to t and r2 must be replaced by 

(95) 

It follows that (94) can be written as 

dWi 
dr2 

J_&Wo_v  d(VzOs + Wo) 
Ki  drf z0 dz 

-W0 
dWQ 

dz       VT rOs 

d(VrlW0)     d(VrlW0) 
dr2 drj 

^z0        rirdWQ                   dW0         1.    dP< 
— VzQs-T. VVQ—— h Vr0.s-^ 1 K< 

dVz{ 

dz dz dri 7 
to- 

0 

dz' 
(96) 

An integration of (96) with respect to r2, holding rj, n and z fixed will generate 
secular growth in r2 unless certain terms are suppressed. In considering the impact 
of each term, it is important to remember that the harmonic t-dependence of the 
planar acoustic solutions in (69)-(71) must be rewritten in terms of 77 and r2 by using 
(83). When written in the coordinate system (2,t,ri,r2) the suppressed terms take 
the form; 

d2W0     ..   dW, 
+ VrOs 

V&  dri 
_    [w2 + w0v2Qs}=o 

dri      dz 
(97) 

which is a nonlinear diffusion equation for the rotational axial velocity W0 with a 
time-like variable rx.   The solution for W0 must satisfy an "initial" condition from 
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(82) 

W0(t,z,n =0,r2)/A   =   -W0p(rj,z) 7] > 0 

V. =   ^ °n ( ~ sin(W77) -sm(An77) j sin(Anz), An ^ u, 
n=l 

Wb(*,^ri=0,r2)M   =   ° 7?<0 

and a boundary condition at the center line from (81) 

r% oo, dri 

(98) 

(99) 

In addition a condition must be specified on rx > 0, r2 = 0 which is compatable with 
(98) at the point n = r2 = 0. This is necessary because rx and r2 are treated as 
independent variables in (102). The reasonable choice is given by 

W0(t,z,rur2 = 0) = -WQp(t,z). (100) 

The nonlinear term in (97), (W$)z is present in our problem because the 0{M) bound- 
ary disturbance is larger than that used in earlier, basically linear studies (Flandro 
1974, 1995). Its presence suggests that wave steepening and other forms of insta- 
bility may occur in the evolving flow field. If the imposed endwall disturbance is 
smaller,and/or axial variations are ignored, then a linear, viscous diffusion equation 
is derived, which is related to that used by Price and Flandro (1995). 

The linear convection term in the diffusion equation (97), includes the axial con- 
vection effect, V,oa(Wo)„ retained somewhat arbitrarily by Flandro (1995) in his 
analogue to (73). In the present multiple scale formulation, the asymptotic analysis 
itself leads to the conclusion that the effect properly belongs in the higher order dif- 
fusion equation, rather than in the lower order inviscid axial momentum equation m 
(73). 

One solution approach is based on a finite difference approximation to (97)-(100). 
Solutions for W0(z, t, rur2) can be found by employing a second order accurate Adam- 
Bashforth/Crank-Nicolson scheme. Most of the results presented here (see Section 6) 
have been found in this way. . 

Given the forcing condition in (98), it is also possible to find solutions in terms ot 
the eigenfunction set {sin(Anz)},n = 1,2, • • •; 

WQ(t, z, n, r2) = Yl An(t, ri. ra) sin(Anz) (101) 
71=1 

Coupled partial differential equations for the Fourier coefficients An, are found by 
using (101) in (97) and invoking orthogonality conditions for the eigenfunction set on 
the interval [0,1]. The results are; 

1   d2An     dAn_    1   dVzQs 2    . ^ 
Ki drl   + drx      Vr0s   dz     n     VrQa \n% 

/ „ o.nnin2AniAn2 + 1 I bnniAni 

712 = 1 

= 0 (102) 
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and are subject to conditions obtained from (98) and (99). 
(a) Initial Condition: 

An(t,r1=0,r2)/A   =   an I ^ sin u{t-r2)-sin Xn(t - r2)J 0 <r2 <t 

=   0 r2>t (103) 

(b) Boundary Conditions: 

r2 _ oo, ^S. = 0 (104) 
dr- 2 

where 

An(t,rur2 = 0)/A = an I-=■ sin(wt) -sin(Ant)J (105) 

annin2=2Xn2 I  sin(Xniz)cos(Xn2z)sin(Xnz)dz (106) 
«* u 

6nm = AB1 /   zcos(Aniz)sin(Anz)d2r (107) 

Equation (102) is a coupled system of quasi-linear diffusion equations with a time like 
variable ru and nonlinear source terms. The physical time t is a parameter of the 
differential equations, appearing explicitly only in the boundary conditions. Solutions 
to (102)-(107) are described in Section 7. A truncation approach is used to reduce 
(102) to a finite "dynamical" system for a finite number of coefficients An. 

6    Finite Difference Solutions for the Nonlinear Sys- 

tem 
Solutions to (97)-(100) for W0(z,t,ri,r2) have been found by using a finite differ- 
ence method based on the second order accurate 0(6rj, <5r|) Adam-Bashforth/Crank- 
Nicolson scheme. This scheme is a semi-implicit and neutrally unstable in the sense 
that it works well if the nonlinear effect is moderate in comparison with the viscous 
effect. For example, instability results if the amplitude of the initial condition for a 
given u) is larger than a threshold value. 

The far end boundary condition for r2 -+ oo is implemented by providing a suffi- 
ciently large number of grid points between the convected outer edge of the rotational 
layer and the finite location of the computational boundary with respect to r2. A 
total of 1000 grid points in the r2 direction with <5r2=0.1 is chosen. The function and 
derivatives must remain zero at a significant number of nodes in order to ensure that 
conditions at the computational boundary do not constrain the solution. 

At each value of the "parameter" t, the integration is initiated with the initial 
conditions in (98), subject to the boundary conditions in (99) . The spatial distribu- 
tion of the solution with respect to r2 evolves as the "time-like" variable n increases. 
Integration is carried out to a sufficiently large value of n to ensure that adequate 
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data fields W0(z,t,rur2) are available on the locus curve relating n and r2 defined 
by (51). Then the physical solution W0(z,t,r) is found from the intersection of the 
surface defined by Wo(z,t,rur2) and the vertical plane from the locus curve relat- 
ing rx and r2. In general this curve does not coincide with the computational grid 
points. Hence cubic spline interpolations in r2 are employed at every chosen revalue 
to obtain the desired real solution. The amplitude parameter in (26), is A=l in our 
computation unless otherwise noted. ' 

The first case studied is for u = 1.0, which is a nonresonant frequency smaller 
than the first natural frequency Ax = f. This particular case allows us to develop a 
relatively simple solution with minimal computational time. The initial condition is 
obtained from (98) by using the first 20 Fourier modes. 

It is important to resolve the solution in the axial direction by choosing a suffi- 
ciently large number of grid points in the z-direction, Kmax. Solution comparisons for 
Kmax = 9,21 and 28 at t = 40, M=0.01 and Z=0.25, 0.5 and 0.75 show considerable 
variations'between the first two values. Excellent comparisons for Kmax = 21 and 28 
suggest that the former is adequate for u = 1.0 . 

The evolution of the vorticity generated at the sidewall, defined in (84), can be 
described by showing how the axial rotational velocity component Wq varies with 
the radial variable n for a sequence of time values and at different axial locations. 
Figures 6, 7b and 8b give results at z = 0.5 when t = 20,30 and 40. 

The profile at t = 20 contains a little more than three complete spatial oscillations, 
comparable with the number of completed cycles of forcing at the endwall when u = l 
and t = 20. These quasi-periodic changes occur because fluid exiting the sidewall is 
driven by the time-varying local axial gradient of the acoustic pressure (see 70), 
as described by (84). During periods of negative (positive)gradients the particles 
are accelerated downstream (upstream). As a result, near the wall one will observe 
alternating periods of positive and negative axial velocity. The steady radial velocity 
field carries these alternating regions of forward and reverse flow away from the wall 
toward the axis. Part of the fluid particle response is purely acoustic. The remainder 
is given by W0. In this sense the spatial pattern of the axial rotational velocity at 
fixed z reflects the historical behaviour of the local pressure gradient on the sidewall. 

The O(M) length scale of the transverse spatial oscillations can now be explained 
easily since the approximately harmonic pressure gradient variation occurs on the 
acoustic time scale t'A (for w=0(l)) during which only limited radial motion is pos- 
sible. The large local shear stresses occur on the short r2-length scale, and represent 
the intense, transient vorticity as explained below (84). 

The oscillations are terminated in the vicinity of the undiffused vorticity front, 
defined by r\ = 0, or r2e = t, where the subscript e implies the existence of an "edge". 
One may employ (51) and (15) to show that the edge is located at 

ru(t) = l-^[tan-\e-^)}" (108) 

with respect to the rrcoordinate in Figure 6 and is invariant to axial location for spa- 
tially uniform sidewall injection. The value for the conditions in Figure 6, rie(20) = 
0.210, is marked by a dash. It compares very favorably with the diffused front loca- 
tion obtained from the complete numerical solution to (97), thus helping to verify the 
accuracy of the latter. 

The undiffused front speed %       = -MVrQs(r), obtained from the definition of r] 
°l 77=0 
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in (86) and the second of (51), defines the nondimensional radial speed of the "edge", 
which asymptotes to zero as the axis is approached, given the result in (15). 

At t = 30 and 40, in Figures 7b and 8b, one may observe that the front has 
moved further into the cylinder. Here again the undiffused edge locations rle(30) = 
0.312, rie(40) = 0.406 are in excellent agreement with those from the computational 
solution. The growing number of spatial oscillations is compatable with the number 
of completed cycles of the endwall forcing. 

One notes that the spatial oscillations are somewhat irregular in shape and ampli- 
tude, a combined result of the driving frequency and eigenvalues found in the "initial" 
condition in (98). 

The amplitude of a given oscillation becomes smaller as is convected deeper into 
the cylinder. Local viscous and nonlinear effects have some influence on the amplitude 
reduction which must occur because the vorticity vanishes near the front and certainly 
at the axis ri = 1. Spatial oscillation wave lengths decrease as ri increases toward 
the axis because the vorticity front speed declines as n increases. 

The scaled vorticity distribution corresponding to conditions in Figure 8b, calcu- 
lated from „ *, ,d^\ is given in Figure 9. The dimensionless vorticity Qe, defined 
below (84) is 0(M_1). One should note the significant magnitude of the spatial vari- 
ations in vorticity given the scaling factor ^. The large amplitude is associated with 
the O(M) length scale of the axial speed gradient and the factor M~l. 

These results are quite different from those given by Flandro (1995) for a single 
forcing frequency in an assumed axial' acoustic field. In particular, the present so- 
lutions are obtained from a nonlinear, diffusion equation where viscous effects cause 
the local shear stresses to diffuse on the short r2-length scale as the injected fluid is 
transported into the cylinder and convected downstream. Flandro's (1995) analogous 
result is entirely inviscid. The envelope of his spatial oscillations can be shown to be 
related directly to the axial dependence of the acoustic mode chosen and so has a 
characteristic shape not seen in the present W0-profiles. 

A comparison of Wo profiles at three axial locations z = 0.25,0.5 and 0.75 in 
Figures 7 and 8 shows considerable variation with the z variable, a result of the ax- 
ial and time dependence of the wall vorticity defined in (84) with (70). The radial 
dependence of WQ at a specified (z, t) combination arises from the time-history of 
many fluid particles that leave the sidewall from locations upstream of z and arrive 
at z at the specified t value. Each of these particles comes from a unique starting 
point and has experienced a unique time-history as it convects away from the initial 
location. Among the 6-plus spatial oscillations in Figures 8a-c one may note uniquely 
large negative amplitudes at z = 0.25 and relatively smaller amplitudes at the down- 
stream locations. The envelopes of the oscillations vary considerably among the axial 
locations.   Flandro's (1995) analytical result predicts similar shapes at every axial 
location. 

The role of the nonlinear term in the diffusion equation in (97) has been assessed 
by carrying out a computation with W$ reduced by a factor of 10-5. The results in 
Figure 10, corresponding to conditions in Figure 8, shows that the nonlinear term has 
a quantitative effect on the spatial distribution of W0, but does not fundamentally 
control'the qualitative spatial oscillations. The nonlinear effect is more important in 
the fore end at z = 0.25 than in the rear end at z = 0.75 near the the exit where 
nonlinear effect disappears because of the pressure node condition. 

Figure 11 is the counterpart to Figure 8 with a reduced viscous effect.  In this 
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case (97) is solved with the viscous term, ^-^-, multiplied by a factor of 0.25. 
The basic patterns of the complete solution, in Figure 8 persist. One notes that the 
maximum oscillation amplitudes in Figure lla,c are considerably larger than their 
analogues in Figure 8a, c, particularly away from the wall. Smaller differences are 
seen at z = 0.5 in Figure lib. In general, the impact of viscosity is greater at an 
axial location where the maximum oscillation amplitudes are relatively large. 

The results presented for M = 0.01 show that intense transient vorticity has filled 
a little more 40% of the cylinder radius at t = 40. Extended computational times 
at the small characteristic axial flow Mach number, are required to show further 
intrusion of the rotational flow into the cylinder. When M is larger, implying larger 
wall injection rates, the filling process is faster, so that less computational time is 
required. 

Figures 12 and 13 are the counterparts of the nonlinear result in Figure 8b when 
M = 0.05 and 0.1 respectively, and t = 40. The vorticity has filled nearly the entire 
cylinder for M = 0.05. The value of the undiffused front location from (108) is 
rie(40) = 0.951. This is expected because radial convection of vorticity occurs more 
quickly for a relatively larger steady radial velocity. At M = 0.1, where ne(40) = 
0.998, vorticity is present everywhere in the cylinder, the value at the axis is zero, as 
explained below (82). It should be noted that the local velocity gradients are smaller 
in Figures 12 and 13 so that the magnitude of the unsteady vorticity is similarly 
reduced for higher Mach number systems as predicted by the definition of fle below 

The complete transient axial velocity response at a spatial location (z,r{) in the 
cylinder arises from the superposition, W0p + W0. Figure 14 provides results at z = 
0.5, rx = 0.2 for the time-variation of Wpp, W0 and their sum Vz0, defined in (59) with 
Kmax = 21 and M=0.01. The acoustic signal in Figure 14a is initiated at about * = 0.5 
to account for the wave travel from the endwall to the location z = 0.5. At rx = 0.2 
the rotational response appears after a delay of almost 18 axial acoustic time units, 
the time needed for the vorticity wave front initiated at the wall to convect out to the 
specified radial location. At the location rx = 0.2, phase differences between W0p and 
W0 are relatively small and the sum in Figure 14c shows a total response of significant 
amplitude. This amplitude actually increases as r\ decreases until locations very close 
to the wall are reached, where the impact of the no-slip condition at rx = r2 = 0 forces 
Ko -+ 0. 

At higher driving frequencies one will find additional small scale structure in the 
Wo profile arising from the shorter time scale for sign changes in the axial gradient of 
the acoustic pressure. Results for u = 2.5, M = 0.01, A-™* = 21, A = 0.5 are given 
in Figures 15a-c for t = 40. In this case there are about 10 spatial cycles, compa- 
rable with the number of completed cycles associated with the first eigenfrequency 
in (70), Ai = 7T/2, rather than the forcing frequency u = 2.5. The result points 
out the importance of retaining eigenfunctions in the acoustical theory. The results 
show that the spatial distribution curves for u = 1.0 and 2.5 have similar charac- 
teristics although the smaller scale structure is much finer. Here again, one observes 
considerable variations in the axial direction. 

The relative solution complexity for u = 2.5 suggests that a more complex acoustic 
field, arising from multiple driving frequencies or perhaps sidewall injection oscilla- 
tions, may initiate a relatively irregular rotational flow time-response. In this sense, 
one could" ask whether "turbulent" responses observed in similar situations such as 
solid rocket chamber models are caused in part by wall generated vorticity that is 
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convected into the chamber by the injected field. 

7    Modal Solutions to the Nonlinear System 

The accuracy of finite difference solutions to (97) can be assessed in part by comparing 
results with those found using the modal analysis described earlier. Solutions found 
from (101)-(107) enable one to demonstrate how the energy is distributed among the 
Fourier modes. The coefficients An(rur2), n=l-N for specified N, have been found 
by using a finite difference method based on the Adam-Bashforth/Crank-Nicolson 
scheme described in Section 6. The procedure used previously to find W0 on the real 
locus is applied to each An(rl,r2). Once the A'ns are known, the solution for Wq is 
found by summing up N modal contributions according to (101). Careful attention 
must be given to the value of N in order to assure that the solutions are sufficiently 
accurate. In particular, solutions for W0 based on N and N + L modes, L > 0, 
are compared until the results exhibit little appreciable change for an incremental L 
value. Valuable insights into the solution development for this problem have been 
found from the transient solution to a Fisher equation (Fisher, 1936) in terms of a 
Galerkin expansion. Details are given in Appendix A. 

Figures 16-18 show Wo results for M = 0.01 and u = 1 at z = 0.5, t = 40 when 
N = 6,8,10 respectively. The W0 profile in each graph is obtained by using the sum of 
the last 6 modes, even though 8 and 10 modes were used in the numerical computation 
associated with Figures 17 and 18, respectively. A comparison of individual modes 
in the partial sum implies that the energy is concentrated primarily in the first two 
modes for u = 1. A comparison of results in Figures 16-18 with those in Figure 
8b is striking, including the appearance of some irregular small scale structure in 
the second and fourth spatial waves above the sidewall. There is little difference 
between the best result in Figure 18 and that from a direct finite difference solution 
with Kmax = 21. It is noted that the grid size in the axial direction for Kmax=2l 
is 0.05, just small enough to resolve the first six axial Fourier modes according to 
{Az)max = y-jö' wnere ^6 = ^- Hence the most meaningful comparisons should be 
carried out with N = 6. 

The six mode partial sum from the ten mode computation is closer to the finite 
difference result than the six mode summation from the six mode computation. A 
reasonable explanation of this observation may be based on the restricted energy 
transfer for modes near the truncation limit. Adding a few more modes permits 
realistic exchange between the lower modes. Hence a six mode partial sum from an 
TV = 10 calculation provides better results than the iV = 6 calculation alone. This 
effect occurs in related work by Wang and Kassoy (1995). 

The smaller amplitude radial rotational velocity can be calculated by integrating 
(77), 

VPl(,,t,™) = -Wn)jf ^«£™U (109> 
where Wo = 0, for r2 > r2e{t) and r2e is found from (52) and (108). The physical 
solution is found by intersection of Vri with the locus curve relating rx and r2. One 
may note that for r2 > r2e(t), the upper limit on the integral is fixed at r2e, so that 
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the primary radial variation arises from the factor Vr0s defined in (15). The result 
in Figure 19 for M = 0.01, u; = l,z = 0.5,t = 40 is a six mode partial sum for an 
N = 8 computation. For 0 < r < r2e one observes spatial oscillations resulting from 
those in the Wo profiles. The radial gradients in that region are far larger than those 
beyond the velocity front at r2e. This point can be understood by using the multiple 
scale derivatives in (52) to find the physical radial gradient of VrX\ 

dn       drx 
+ M dz 

(110) 

where (77) has been employed. The latter O(^) term prevails between the sidewall 
and the vorticity front. Beyond the front, the second term in (110) is identically zero 
so that one should find the 0(1) radial derivative observed in Figure 19. 

The satisfying comparison between finite difference and modal solutions provides 
strong confidence in the characteristic solution properties. It is noted that CPU 
time requirement for direct finite diffence computations is considerably less than that 
for modal solutions, given equivalent resolution requirements. However, the modal 
solutions can be used to obtain insights to the energy distribution at various length 
scales, not easy to find from finite difference calculations. 

8     Energetics of the Internal Flow 
The prescribed axial speed disturbance imposed on the endwall in (10) causes tran- 
sient work to be done on the flow system. Acoustic disturbances originating at the 
end distribute the energy into the flow field. Simultaneously, energy is transferred 
from the acoustic field into the rotational flow field as vorticity is generated at the 
sidewall and redistributed in the internal flow. This partition of transient energy 
between the acoustic and rotational flows, is of interest in understanding the flow 
dynamics. It has been considered in terms of the concept of "flow turning" used in 
the solid rocket motor stability literature (Flandro, 1995, for example). 

The endwall work input rate can be written in nondimensional form as 

We(t) = MA I P(0,t)sinutdt 

where P(0,t) is obtained from (50) and (70) to O(M). It follows that 

(111) 

v '    =   —(1 - cos(utf)) 
MA uv K    " 

+AuM ]T 
1 

ti (AS - ^2) 

1 — cos(2o;t) 

2u 

(l-cos(a; + AB)t)      (1 - cos(u; - Xn)t) 
0J + Xn u — \n 

describes the time-history of the work input to O(M). The long-time average, 

(112) 

We = lim — / 
T-oo T Jo 

Wedt = MA (113) 
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is positive definite and the series converges rapidly. This added energy must now be 
partitioned into the acoustic and rotational fields. 

One may write the nondimensional total energy per unit mass of a fluid particle 
in the form E = "A 

7(7 " 1) „,2 /\/2     ,   ly2  ' 
zOs   '    c2    rOs 

+M2 U + ih-lll (2Vz0a(W0p + Wo) + (W0p + W0f + 0(M, 1)] |ll4) 

The first two terms (in curly brackets) represent steady flow energy, while the third 
includes both acoustic and rotational components defined in (61). The O(M) 80 term 
arises directly from the endwall disturbance and is larger than the biggest kinetic en- 
ergy term of 0(M2) in this low Mach number flow. Energy in this thermal term and 
the analogous #i-term cannot be evaluated until solutions are developed in a future 
paper. However, it is clear from the present formulation that a thermal accomoda- 
tion layer will be present in order to satisfy an imposed wall temperature boundary 
condition (i.e. (8)), like those studied by Roh and Yang (1995). 

The largest component of the unsteady kinetic energy, A, can be written m the 
nondimensional form; 

A =VzQs{Wop + w0) + LWop + Wo)2 (115) 
7(7-1)M2      "^"^        ">     2 

which includes both acoustic and rotational flow contributions. Equations (63) and 
(73) can then be employed to derive an expression for the rate of change of A for fluid 
particles entering the cylinder from the sidewall; 

9
JL + J£ = _M2(7 - l)(Vz0s + WQp + W0)^ (lie) 

Then a variable transformation employing r\ = t-r2 can be used to write a Lagrangian 
equation for A(t, 77, n, z) 

dA 
dt 

gp 
= -M2(7 - l)(Vz0s + W0p + W0)-j£ (117) 

It follows that on a constant r?-line the kinetic energy is altered by an interaction be- 
tween the complete 0(1) axial velocity and the axial gradient of the acoustic pressure. 
One should note that the rotational field itself (W0) affects the change in A. 

One can integrate (117) by following a convecting fluid particle on a given 77-line 
from the time it exits the side wall (t = 77) to any larger value of time. It follows that 

A   =   7(7-l)M2(WQp(t,z)-WQp{T],z)) 
\r     . W0p(t,z) + W0p(r),z)  , Jir 

+A0    ' (118) 
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whereAo = A(r],r),ri,z) is obtained from (115). Equation (118) describes the 
evolution of the fluid particle kinetic energy on a given 77 line. It is perhaps more 
illustrative to find the time-average of (118), in order to integrate away harmonic 
function variations. The result is that 

1    ,r f 1    rT W2 W21 
lim i /  Adt = 7(7 - 1)M2    lim ± /   -&dt + Vz03W0 + -f (119) 

where the value of Ao has been used. 
The first term on the right side of (119) describes the average acoustic kinetic 

energy and is positive definite. One can observe a form of long-time kinetic energy 
partitioning between the acoustic and rotational fields. 

It is interesting to note that the long-time average of (117) on a constant 77-line 
vanishes; 

lim ^z I    -r- 
T-00 T L     dt 

dt = 0 (120) 

This result and (117) imply that the kinetic energy increases in some intervals 
and decreases in others, with the average value on a constant 77-line given by (119). 

These issues are worthy of additional consideration in the future because the flow 
is fundamentally rotational in character. As a result, traditional acoustic intensity 
arguments cannot be employed to elucidate the fundamental energy partitioning pro- 
cesses. 

9    Conclusions 
Systematic asymptotic methods have been employed to formulate an initial-boundary 
value model for coexisting acoustic and rotational flow fields in a long, narrow cylin- 
der. Boundary driven axial, planar acoustic waves interact with an inviscid, weakly 
rotational, injection induced steady flow to produce intense time dependent vorticity 
at the sidewall of the cylinder. The intense vorticity is convected into the entire cham- 
ber by the steady radial velocity field for appropriate ranges of Reynolds and Mach 
number and frequency. The amplitude and distribution of the vorticity is impacted 
by weak viscous and nonlinear effects. 

It is also demonstrated that there are parameter ranges of Mach number (as it 
relates to injection rate), driving frequency and Reynolds number for which vorticity 
is really confined to weakly viscous acoustic boundary layers, thin compared to the 
radius of the cvlinder, but larger than those discussed by Flandro (1974), Baum 
and Levine (1987). These structures can appear for relatively small injection rates, 
relatively high driving frequency and low Reynolds numbers, so that viscous damping 
of the vorticitv amplitude is profound. Then, the cylinder core will contain the 
relatively weak vorticity of the steady Culick (1966) solution and irrotational acoustic 
waves driven by the boundary forcing. 

There is now a considerable body of evidence in support of the presence of an 
unsteadv vorticity distribution within an appropriately high Reynolds number wall 
injected"flow in a cvlinder. The experiments of Brown et al.(1986a,1986b), the small 
disturbance, linear "stability modeling of Flandro (1995a,1995b) as well as Majdalani 
and Van Moorhem (1996), the computational solutions of Vuillot and Avalon (1991), 
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Smith et. al.(1993), and that of Kirkkopru et äl. (1995,1996a,b) as well as the current 
work show unequivocally that unsteady vorticity is generated at the cylindrical surface 
and is convected away by the injected fluid. The core of the cylinder is free of intense 
unsteady vorticity only during the very early phases of the transient process, prior to 
the arrival of a well defined unsteady vorticity front. 

Unlike Flandro's recent work (1995a, 1995b) and that of Majdalani and Van 
Moorhem (1996), which employs quasi-steady, linear, small disturbance stability the- 
ory for explaining the observed presence of rotational flow throughout the cylin- 
der, we have formulated an initial-boundary value theory for a weakly nonlinear and 
viscous flow process. A multiple length scale analysis, which is essential in forming a 
rational mathematical model, is used to demonstrate to the first order that the vor- 
ticity is generated at the surface by a fundamentally inviscid interaction between the 
acoustic pressure axial gradient and the injected fluid at the wall, and is convected 
away by a steady radial velocity field. Then, a higher order theory is used to prove 
that the basic vorticity is nonlinearized in the axial direction and viscously diffused 
on a small radial length scale. The latter result demonstrates that the weak viscosity 
is pervasive, although smaller in magnitude than the driving effect of the axial pres- 
sure gradient, and confirms the conjecture of Hedge et al.(1986). These results are a 
generalization of those by Flandro (1995b) and Majdalani and Van Moorhem (1996). 

The amplitude of the transient vorticity distributions described by Kirkkopru et 
al.(1995), and in the present work are 0{M~l) larger than that of the Culick(1966a) 
steady solution. It follows that there will be a relatively large transient axial shear 
stress on the cylinder surface, which can be calculated from equation (84), particularly 
for smaller M values. This result is important for applications of the theory to solid 
rocket motors. 

One can speculate that the large transient shear stresses will impact the burning 
rate of a propellant which is the source of the "injected" fluid used in the present 
model. Perhaps there is a direct relationship between the effect of surface shear stress 
transients, predicted in the present work, and erosive burning concepts used in the 
solid rocket engineering literature (Williams,1985). 

The linear acoustic pressure field in our theory is found independently of any 
vorticity distribution present in the cylinder. It is mathematically decoupled from 
the vorticity subsequently generated by the inviscid interaction between the axial 
pressure gradient and the fluid injected from the wall. As a result, the pressure 
field is determined from an irrotational formulation, using a homogeneous wave equa- 
tion with nonhomogeneous boundary conditions. The solution, composed of a forced 
(Helmholtz) response and eigenfuctions (traveling waves) resembles what one mea- 
sures in rocket motor models. However, the total axial velocity response arises from 
the coexisting acoustic and rotational flow fields of equal magnitude. The latter in- 
cludes the "shear waves" or vorticity distribution. The associated radial gradient 
cannot be predicted from acoustic stability theory. 

The conceptual approach used here has been extended by Kirkkopru et. al.(1996b) 
to disturbances driven by sidewall injection transients, rather than those applied at 
the closed endwall (Zhao(1994), Kirkkopru et al.(1995, 1996a)). The former type of 
disturbance emulates the effects of propellant burning rate variations in solid rocket 
motors. These methods have also proved effective for studying three dimensional 
flow responses to nonaxisymmetric boundary disturbances, Kassoy, et. al. (1997) 
and Staab and Kassoy (1996). 
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12    Solution to a Related Model Problem 
The nonlinear coupled system in (109) is sufficiently complex to require a computa- 
tional solution. In order to develop an effective numerical approach, it is desirable 
to consider the solution to an elementary model problem with related properties. A 
simple Fisher equation (Fisher,1936) with appropriate periodic initial and boundary 
conditions can be used: 

Initial Condition: 

^ = ^ + ^2, y>0,t>0 (121) 
oz      oyl 

U(0, y) = - sin(f - y)   for 0 < y < f; (122) 
1/(0,y) = 0 for y>t (123) 
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Boundary Condition: 

U(y = 0) = - sin(t) (124) 

When the parameter t is increased, the nonzero portion of the initial condition is 
spread farther into the y-domain. In the spirit of (109), the multiple scale independent 
variables are related by y = Q,2z and Q > 1. 

An analytical solution for linear diffusion (u = 0) is constructed for the odd ex- 
tension of (118) and (119) for the domain 0 < y < oo: 

(y-y')2 (y+yf)2 

4*     — e     4i 

_ y   rjMt^e-^dz,       0 
20F Jo  (z-z')\ 

dy' 

(125) 

A quasi-steady solution form U(y,z) = -sin(t - y)e~z, y > 0 can be recovered by 
taking the limits (fj|) —" ±°° and z ~+ 0+ simultanously. Physically, this means 
that the solution has a quasi-steady form at a specific value of t if y lies between 
y=0 and the inner edge of a diffusive boundary layer centered at y = t which is 
needed to smooth the discontinuous slope of the initial condition (118) and (119) 
at that location. Inside the diffusive layer, the solution is given by the full form of 
(121). The diffusive layer thickness is 8 ~ 0{^§). This linear result suggests that the 
assumed quasi-steady approximation employed by Price and Flandro (1993) is not 
uniformly valid in space. 

The solution to (117)-(120) along the locus y = Q?z, for v = 1 and W « 66,has 
been found from a computational analysis based on an elementary explicit finite 
different method. The boundary condition (120) is enforced at y = 0 for each in- 
tegration step in z direction. The integration of U with respect to z is carried out 
for 0 < z < 2.25 with step size 6z = 0.0015. The far end boundary condition is 
implemented in such a way that there are a sufficient number of grid points with zero 
value lying between the furthest grid point with nonzero value and the finite location 
of the computational boundary with respect to y after each integration in z direction. 
The dashed line in Figure 6 describes the linear solution when t = 100 obtained from 
(121). An analogous numerical result {v = 0) is indistinguishable from the analytical 
solution on the scale of the graph, thus verifying the numerical code. The linear solu- 
tion shows regular, nearly harmonic spatial oscillations that decay until the diffusive 
layer is reached near z « 1.5. There the solution makes a rapid transition to a van- 
ishingly small value for z > 1.5. In comparison the solid line represents the nonlinear 
numerical solution for v = 1. The frequency is nearly identical to the linear solution. 
However, the drift of the solution toward positive values of U is due to the positive 
definite source effect, uU2. Again the deviation from the pattern of oscillations near 
z « 1.5 is associated with the diffusive layer behavior. Given the parameters used in 
the calculation, the diffusive layer thickness with respect to the z coordinate is about 
0.1. The analogous results for v = -1, corresponding to a nonlinear sink, are given 
in figure 7 . There is no expectation of symmetry. 

The basic properties of the model problem solution can be used to develop an 
effective numerical method for the solution of (109). 
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Table 1: Table 1: Acoustic Response Properties for Several Driving Frequencies 

u w'(Hz) Properties Primary Response 

1 159 stable axial + quasi-steady modes 

1.5 238 beats quasi-steady modes 
with axial wave modulation 

TT/2 250 axial amplification linear growth 
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CAPTIONS 

Figure 1:  The cylindrical rocket engime chamber model of length L , diameter D , 
with endwall oscillations of frequency w. 

Figure 2: The time response of the axial acoustic velocity Vz0 at z=0.5 and u — 1.0. 

Figure 3:  The time response (beats) of the axial acoustic velocity VzO/30 at z=0.5 
and w = 1.5. 

Figure 4:   The time response of the axial acoustic velocity Vz0 at z=0.5 and u; 
7r/2,linear growth. 

Figure 5: The axial velocity in the boundary layer as a function of the variable of 
i fo M=0.01,/3 = 0.1 when tt = 2.5 and 3.0 . The boundary layer is thicker for the 
smaller frequency value. 

Figure 6: The spatial variation of the rotational axial velocity component W0 with 
the radial variable rx at t=20. It can be seen that the front is about 23% of the way 
to the centerline and nearly 4 spatial oscillations have entered the cylinder. 

Figure 7a,b,c: The spatial variation of the rotational axial velocity component W0 at 
t=30 for (a)z=0.25,(b)z=0.5 (c)z=0.75 with the radial variableri. The front is about 
35% of the way to the centerline and nearly 5.5 spatial oscillations have entered the 
cylinder. The amplitude of the oscillations near the front at this moment is noticably 
smaller those at t=20, an accumulative effect of viscosity on M scale. 

Figure 8a: The spatial variation of the rotational axial velocity component W0 with 
the radial variable n at t=40, z=0.25. The front is about 45% of the way to the cen- 
terline and nearly 7.5 spatial oscillations have entered the cylinder. Strong nonlinear 
effects alter the overall pattern. 



Figure 8b: The spatial variation of the rotational axial velocity component W0 with 
the radial variable rx at t=40, z=0.5. The front is about 45% of the way to the 
centerline and nearly 7.5 spatial oscillations have entered the cylinder. The amplitude 
of the oscillations near the front at this moment is substantially smaller those at t=20, 
an accumulative effect of viscosity on M scale. 

Figure 8c: The spatial variation of the rotational axial velocity component W0 with 
the radial variable rx at t=40, z=0.75 . It has the generic features as in Figure 8b. 

Figure 9: The spatial variation of unsteady vorticity Qg/100, with the radial variable 
T-i . The magnitude of tie is 0(1/M) bigger than the steady vorticity and therefore 
dominant in the cylinder. The shear stress on the wall imposed by the unsteady 
vorticity is significant. 

Figure 10a,b,c: The spatial variation of the rotational axial velocity component W0 at 
t=40 for (a)z=0.25,(b)z=0.5,(c)z=0.75, with the radial variable rx when the nonlinear 
term is suppressed. A comparison of these with Figures 8a,b,c demonstrates nonlinear 
effects are strong near the fore end, moderate at the middle, small at the rear end. 

Figure lla,b,c: The spatial variation of the rotational axial velocity component W0 at 
t=40 for (a)z=0.25,(b)z=0.5,(c)z=0.75, with the radial variable rx with the viscous 
term reduced by 50%. A comparison with Figures 8a,b,c demonstrates that local 
structure is altered by the reduction of viscosity. 

Figure 12: The spatial variation of the rotational axial velocity component W0 with 
the radial variable n at M=0.05, z=0.5, w=1.0 and t=40. The larger M corresponds 
to stronger injection rate on the cylinder wall. As a result, almost all the cylinder 
has been filled with the rotational flow compared to only 45% in the case of M=0.01 
in Figure 8c. 

Figure 13: The spatial variation of the rotational axial velocity component W0 with 
the radial variable rt at M=0.1, z=0.5, u/=1.0 and t=40. The larger M corresponds 
to a stronger injection rate on the cylinder wall. 

Figure 14 a,b,c (from top to buttom):  The time response of; (a) the axial acoustic 



speed W0p,(h) the rotational axial speed W0 and (c) the complete axial speed Vz0 

(W0p + Wo) for r^O.2^0.5, M=0.01 and u = 1.0. 

Figure 15a b c- The spatial variation of the rotational axial velocity component W0 

with the radial variable rx at u = 2.5,t=40 for (a)z=0.25,(b)z=0.5, (c)z=0.75 with 
the amplitude of the disturbance reduced by a half. More spatial oscillations are 
present in the structure due to the higher driving frequency, in comparison Figures 
8a,b,c. 

Figure 16: The spatial variation of the rotational axial velocity component W0 with 
the radial variable rx based on a 6 mode summation from a 6 mode, nonlinear com- 
putation (N=6). 

Figure 17: The spatial variation of the rotational axial velocity component W0 with 
the radial variable n based on a 6 mode partial summation from an 8 mode, nonlinear 
computation (N=8). 

Figure 18: The spatial variation of the rotational axial velocity component W0 with 
the radial variable rx based on a 6 mode partial summation from a 10 mode, nonlinear 
computation (N=10). 

Figure 19: The spatial variation of the rotational radial velocity component Vrl with 
the radial variable rx based on the 6 mode partial summation from an 8 mode com- 
putation. 

Figure 20: Solution U vs z for the nonlinear model problem on the locus curve y = ti2z 
with Q,2 w 66 and v = 1 The dashed line is the plot of U vs z from (A-5) on the same 
locus curve. 

Figure 21: Solution U vs z for the nonlinear model problem on the locus curve y -ü2z 
with Ü2 « 66 and v = -1 The dashed line is the plot of U vs z from (A-5) on the 
same locus curve. 
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Abstract 

I lie two-dimensional, axisyniinctrif Navier-Stokes 
equations art? solved numerically to study the ef- 
fect of simulated propellant burning transients on the 

generation and evolution vorticity in a finite cylinder. 

A steady internal flow field driven by constant, side- 
wall injection is perturbed by nonnegative axially dis- 
tributed unsteady injection from sidewall, which simu- 
lates the unsteady mass input from propellant burning 
transients. The unsteady injection amplitude is chosen 
to be the same order of magnitude as that of the steady 
sidewall injection so that nonlinear effects have impact 
on the evolution of the vorticity field. Solutions to an 
initial value problem are used to show how vorticity 
is generated at the sidewall and then is convected into 
the chamber flow. The flow fields contain large instan- 
taneous shear stress transients that are not considered 
in the traditional acoustic stability analyses. 

1.  Introduction 

Solid propellant combustion in a rocket motor gener- 
ates gaseous products that induce a low axial Mach 
number (M = 0(10"- - lCT1)), large Re number 
(Ii( = 0(lü4 - 106)) internal shear flow in a long, 
narrow rocket motor chamber where the aspect ratio 
t> >> 1. The complete time-dependent shear flow is 
now known to include vorticity distributions (Yuillot 
and Avalons. Flandro10, Kirkkopru et al.11, Tseng et 
al. b. and Zhao and Kassoy18) as well as the more fa- 
miliar acoustic disturbances studied by many investi- 
gators in the past (Grad1. Culick3, Hart and McClure4 

and Williams-'). 

Brown et al.5-6 and Brown and Shaeffer7 conducted 
laboratory experiments in a cold flow rocket motor 
chamber analogue. Velocity measurements taken along 
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and across the cylindrical chamber show that there ,., ;i 

significant unsteady rotational How component present 
everywhere.   This type of \orti. ny  t> se, n also in ihe 

study by Vuillot and Avalon* who used computational 
methods to solve the compressible Navier-Stokes equa- 

tions in a channel with constant sidewall III.LV, injection 
The numerical results of Vuillot and Avalon* demon- 
strate that unsteady vorticity is not always confined in 
thin viscous acoustic boundary layers adjacent to tin- 
injecting wall, suggested in numerical studies of Baum 
and Levine12 and Bauml:l and in the analytical study 
of Flandro10.   Flandro and Hoach" and in the relate,) 
study, Smith et al.17 attempted to simulate numencallv 
the Brown et al.5-'1 experiments   They captured the es- 
sential features of the vortical structures observed  |,v 

Brown et al.5-6, in spite of a numerical difficulty wnh 
the radial velocity distribution near the centerline of the 
chamber. Tseng and Vang15 and Tseng et al.16 included 
propellant combustion in the complete numerical solu- 
tion of Navier-Stokes equations and studied the effect of 
combustion on the unsteady phenomena in an analogue 
of a rocket motor chamber.  Flandro and Hoach M devel- 
oped an approximate model and analytical solution to 
describe vorticity generation at the injecting wall. The 
model is based on purely iuviscid. linear equations.   This 
work implies that there are two length scales for rota- 
tional effects, the tube radius and (>(.\t) smaller length 
where significant  local velocity variations occur     One 
may draw the conclusion from these experimental, nu- 
merical and analytical results that stability predictions 
based on the traditional acoustic analysis should be re- 
examined.   Clearly, the presence of vortical structures 
in the internal flow field has significant consequence.., for 

the conceptual validity of traditional irrotational acous- 
tic stability models where it  is assumed that  acoustic 
waves propagate through a quiescent chamber, and do 
not interact with sidewall gas injection. 

Recently, Zhao and Kassoy18 and Zhao et al.-'1 pro- 
vided an initial step in formulating a rational math- 
ematical model for internal flow dynamics which in- 
corporates both acoustic phenomena and vorticity dis- 
tributions. Perturbation methods are used to derive 
systematic approximations to the complete compress- 

ible Navier-Stokes equations. An initial-boundary value 



approach is used to formulate a generalized unsteady 
mathematical model capable of describing both non- 
resonant and resonant time history of solutions. The 
boundary disturbance is an O(M) axial, harmonic ve- 
locity variation on the closed end wall. The complete 
axial velocity is found from a superposition of three 
components of e<|ual magnitude. First, the steady com- 
ponent arises from a solution to inviscid. rotational Eu- 
ler equations known by Culick2. Secondly, there is a 
planar irrotational acoustic field, derived from a tra- 
ditional linear wave equation which satisfies boundary 

conditions at the closed and open ends of the cylinder. 
Finally, when Rr — 0(e-'/A/2), the rotational, weakly 
nonlinear viscous component varies on two disparate 
length scales, similar to those described in the study 
by Flandro and Roach'4. Analysis shows that the vor- 
ticity. generated at the wall by an interaction between 
the injected fluid and the propagating planar acoustic 
disturbances, is convected out into the primarily invis- 
cid core flow by the radial component of the injection 
induced flow field. 

Fully computational methods are used by Kirkkopru 
et al.11 to provide qualitative supporting evidence for 
the solutions described in Zhao et al.24. In this case 
the driving disturbance is a harmonic pressure transient 
applied on the downstream exit plane of the cylinder. 
(Jrid size and spatial distribution are chosen to acco- 
modate the multiple lengthscale structure known from 
the study by Zhao et al.-'4. The unsteady rotational 
component of the axial velocity is extracted from the 
total value found from a MacCormack scheme. The 
solution properties and characteristics are identical to 
those found previously and support the basic concepts 
of vorticity generation and transport. 

A closely related approach has been used in a new 
numerical effort to compute unsteady vorticity produc- 
tion and evolution in a finite cylinder with transient, 
side wall injection that mimics unsteady burning of 

solid propellant surface in the rocket motor chamber. 
In this case the chamber flow disturbances are gener- 
ated |i\ a spatially distributed imposed harmonic tran- 
sient component of the sidewall injection velocity. The 
disturbance quantity is super-imposed on a steady com- 
ponent nf the same magnitude. 

The How field is described by axisymmetric, two- 
dimensional, laminar, compressible Navier-Stokes equa- 
tions I'lii- Navier-Stokes equations are solved by using 

the l"wo-Four method-'1 which is a fourth-order vari- 
ant of the fully-explicit MacCormack method. The un- 
steady rotational component of the axial velocity, ex- 
tracted from numerical solutions, is used to describe t he 
general ion and evolution of the nonlinear unsteady vor- 
licn\ held in the cylinder. The present computational 
results sli,,w that, as found before (Zhao et al.-'1 and 
Kirkkopru et al ''). unsteady vorticity is generated at 

the ini'-ctini; sidewall by an interaction between the in- 
jicterl fluid and an axial planar acoustic wave induced 
b\ t he -|,|i-\vall injection transients   In the present case. 

the vorticity is convected away from the wall into the 
chamber by the more complicated spatially distributed 
unsteady injected flow field. In previous studies by 

Zhao et al.24 and Kirkkopru et al.11, where the sidewall 
injection velocity is uniformly constant, the unsteady 
vorticity is convected away towards the centerline of the 
chamber by the constant radial velocity field. The core 
of the chamber is free of vorticity only during the early 
phases of the transient process, prior to the arrival of a 
well defined unsteady vorticity front. The radial loca- 
tion of the vorticity front varies with the axial location; 
unlike that in the previous studies for constant sidewall 
injection. This occurs because the transient injection 
distribution is axially dependent. The arrival times and 
the magnitude of vortical axial velocity found from the 
present computational solution agree quite well with 
predictions found from generally valid concepts devel- 
oped in a parallel analytical study by Zhao et al.25. 
There is also an associated pressure field driven by the 
transient injection which has the characteristics of a 
traditional planar acoustic system. 

The presence of rotational flow features imply that 
traditional acoustic balance theories, used widely to 
predict solid rocket motor chamber stability, must, be 
reevaluated. 

2.  Computational Model 

The flow field is described by the axisymmetric, two- 
dimensional, laminar, compressible Navier-Stokes equa- 
tions, for a perfect gas, written in nondimensional con- 
servative form: 

do      de      df     h 
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Ihr <'(|iiat ion of state for a perfect gas is 

P = pT. (4) 

Nondimensional variables, defined in terms of dimen- 
sional (juaritities denoted by a [»rime, are given by 

x    =    x'/L'      r = r'/R'      u = u'/l''H 

v    =    V'/V'H     .p = p'/(/0     P = p'/p'(l 

T   =   T/U     t = t'/t'a     CV=C'J('[.Ü      (5) 

Characteristic length scales for the axial and radial di- 
rections are chosen to be the length of the tube /.' and 
the radius of the tube R', respectively. The known char- 
acteristic sidewall injection speed of the fluid VJj is re- 
lated to the characteristic mean axial speed l"H through 
the global mass conservation relationship U'H = M'^ 
where 6 = L'/R' js the aspect ratio of the tube. Pres- 

sure is nondimensionalized with respect, to the static 

pressure compatible with the injected fluid density and 

pressure. p'n and T0', respectively. Time is nondimen- 

sionalized with respect to the tube axial acoustic time 

C = £'/"'o where a'0 = (7Po/Po)1/2 is the characteristic 
speed of sound. Here, the ratio of specific heats 7 = 1.4 
is used in the present computations. The viscosity, spe- 
cific heats and conductivity are treated as constants 
in this calculations because temperature variations are 
very small. 

The following expressions 

4W        u_ _ M'VQ 
k' 

Re = Pr = 
Ho a' 

(6) 

define the Reynolds number, the Prandtl number and 
the mean axial flow Mach number, respectively. In a 
typical solid rocket motor chamber Re >> 1, Pr = 
0(1) and M = 0(l(r2- 10-'). 

The Navier-Stokes equations are simplified by ignor- 
ing the axial transport terms. Justification for the re- 
duction is based on the asymptotic analysis in Zhao and 
Kassoy18 and Zhao et al.24 valid for M << 1, 6 >> 1 
and Re >> 1 provided that P / Re « 1. As a result 
the computation time is reduced significantly without 
sacrificing flow physics. Furthermore, the dissipative ef- 
fects of the remaining transport terms are sufficient to 
avoid artificial damping terms needed in other similar 
computations14,17'20. 

The Navier-Stokes equations are solved by using the 
Two-Four explicit, predictor-corrector scheme21. This 
method is highly phase-accurate and is therefore very 
suitable for wave propagation and wave interaction 
problems. 

The size and the number of uniformly spaced grids 
are chosen to accomodate properly the local variations 
of flow variables in the axial and radial directions as 
suggested in the asymptotic analysis by Zhao et al.24. 

Steady and Unsteady Computations 

A steady state flow solution is required as an initial 
condition for the transient flow computation. Boundary 

conditions include an impermeable head end at 1 = 0 

(u = 0), an assumed pressure node at the exit plane 
1 = 1 (p = 1), a specified injection velocity (t = -1). 

temperature (T = I), and no slip condition for the axial 
flow speed (u = 0) on the sidewall at 1 = 1 a* well <U) 

symmetry conditions on the ■ eni.-rline. r = 0 

The analytically calculated  ve|,„-|t>   profile., for in- 
compressible, rotational, mvivid Mow m a long, narrow 
cylindrical tube (Culick2) are use,) as darting profiles 

for the steady, compressible, viscous flow computation;. 
This approach reduces the computation tune required 
to reach the final converged steady How configuration 
relative to doing a complete transient solution b\  ini- 
tiating wall injection at /  - I)    In this . alculat ion the 
solution converges to a stead) state deline>i bv the , on 

ditiori that the total injected mass is equal to the total 
exiting mass. Then the solution is run for an additional 
O(10") axial acoustic tune to insure  thai  the M.-ad\ 

state solution is stable.    Results u.i\<-u in  Fig   1  s|„,w 

the steady normalized axial. t/sU \ »J/ u^\ x. r = 0). and 
radial velocity r.s-(r.r) profiles at different  axial I..ca- 
tions, x = 0.025,0.") and 1.0. when M = 1)00. c = -jo 

and Re = 105, respectively.   In these graphs. C11I1. k2 

incompressible flow profiles which are invariant to axial 
location are nearly indistinguishable from the compute,| 
profiles. Small differences arise from the small but finite 
axial flow Mach number used m the computation   Low 
Mach number compressible flow theory implies ()[ M • 1 
differences between the ('uliek2 solution for <* >> 1 and 
the computational result 

A steady state flow solution for each Mach number 
and Reynolds number is obtained initially in order to 
prevent introducing unwanted noise into the unsteady 
computations. 

Zhao et al.-4 have used formal asymptotic methods to 
show that the chamber flow is weakly viscous when tin- 
condition Re = 0(fi-/.\t-) is satisfied and when strong 
injection prevails The latter condition implies that 
Ifl >> I'R/RC

1
'- 

ly. The primär)- viscous stresses are 
in the radial direction. Hence, it is useful to retain flu- 
radial transport terms in the N'avier Stokes equations. 
The steady flow solution is obtained faster and. at the 
same time, the largest important viscous effects in ra- 
dial direction are responsible for physically meaningful 
damping, similar to the artificial damping terms that 
have been introduced in some earlier studies14 17-u. 

Once a converged steady flow configuration for spec- 
ified values of d>, M and Re is obtained, the flow is dis- 
turbed by adding an axially distributed unsteady side- 
wall injection component to the steady value. The total 
wall injection velocity is then given by 

v(x,r = 1,1) = -[l + .-l ros(iiTj-/2)(l-ro.v-.-/)](7) 

which can also be written in terms of a positive mean 
component 1 + Aco.s(inrx/2) and a fluctuating compo- 
nent proportional to COAW/. Here _■ is the diiiiensionles.s 
angular frequency, .1 = (7(1) is the amplitude of the 
unsteady wall injection and 11 is the spatial dependence 

3 



parameter. The total mass flow from the wall is always 
positive. The other boundary conditions are the same 
as those for the steady flow computations. 

Fnsteady computations are carried for several differ- 
ent axial Mach numbers and spatial dependence param- 
eters In this study the boundary driving frequency is 
-• = 1. This is a relatively low frequency in the sense 
that the period / = 2T is larger than the time required 
for an acoustic wave to do a complete circuit of the 
chamber. / = 2. 

3.  Result? «»suits an d Di scussion 

The numerical code has been run approximately ten cy- 
cles after the injection transient is turned on in order 
to check if spurious numerical oscillations develop. For 
example. Fig. 2 shows the time variation of the cen- 
terline axial velocity at the midchamber (x = 0.5) for 
flow parameters M = 0.1, 6 = 20, Re = 105, A = 0.4, 
it = 1 ami uj = 1. It is noted that the value at r = 0 
corresponds to the steady state value of the centerline 
velocity at the midchamber. The solution appears to be 
quasi-steady almost immediately. This solution prop- 
erty can be attributed to the transient pressure field 
seen in Fig. 3. The result given at x = 0.5 shows that 
pressure solution is almost purely planar (x-dependent 
only). For example, at x = 0.5 and t = 60, for three 
radial locations, r = 0, 0.5 and 1, are p = 1.1480096, 
1.1-179678 and 1.1479073, respectively. The invariance 
to radial location results from the use of a large aspect 
ratio, c = 20. It should also be noted that the pressure 
deviation from the base value, O(0.1), is fully compat- 
ible with the asymptotic prediction in Zhao et al25. 

The purely harmonic behavior in Fig. 3, seen in all 
similar computational results 8-15-16 is cause for concern 
because the analytical analogue to this study (Zhao et 
al.2') shows that a single eigenfunction of substantial 
amplitude should accompany the forced response. The 
eigenfunction arises from a solution to a linear acoustic 
equation driven by transient effects on the boundary. 
This is in contrast to the numerical solution which arises 
from a slightly viscous, weakly nonlinear mathematical 
system. It appears that there are at least two possible 
sources for the difference; 

(a) The nonlinear slightly viscous equations will not 
produce an eigenvalue-like response, or 

(b) The numerical boundary conditions at the exit 
plane (In not represent wave reflections in an appropri- 
ate wa\ 

'I he«.,- issues are the subject of the ongoing studies, 
h sh.,ii|,| |,e HI.till that acoustic wave viscous damp- 
ing ...viirs ,.n .1 time sr;i|e I >> Of 10'-') Ti for the 

Kewi"ls numbers considered here Hence on the time 
•«■ all   /   - ()\ In-'i damping cannoi annihilate an eigen- 

fllll'   '  I'  'II     fes|,,  .||-e 

|i-ll"'.Miig  a   pr-i'i'lure   described   by   Lagerst roni". 

and similar to that employed by Flandro and Roach 
14, Zhao and Kassoy18 and Zhao et al.24, the total un- 
steady axial flow speed may be divided into three parts 

u(x,rj) = us(x,r) + uP(x.t)+ u\(x.r,t)       (8) 

where us denotes the steady flow field which is known 
as an initial condition for unsteady computations. The 
second term up is the weakly viscous, slightly nonlinear 
analogue to the irrotational planar part of the flow field 

found by Zhao et al.2'1,25. It is found from the difference 
between the unsteady axial speed and the steady axial 
speed on the centerline of the tube. The remaining 
term uy, defined as the vortical (rotational, nonplanar) 
part of the unsteady axial flow speed, is found from 
Eqn.(8) once «5 and up are calculated. Once again it. is 
an analogue to analytically obtained rotational velocity 
field described by Zhao et al.24'25. It is used to describe 
the generation and evolution of the nonlinear unsteady 
vorticity field in the cylinder. Following the asymptotic 
analysis described by Zhao et al.24-25, one can show 
that the vortical part of the unsteady axial flow speed 
uv vanishes at the centerline at all times. 

Figure 4 shows the radial variation of the instanta- 
neous unsteady axial vortical flow speed at midchamber 
(x = 0.5) at three time values after the injection tran- 
sient is initiated at the sidewall. The flow parameters 
are M = 0.1, 6 = 20 and Re = 105. The correspond- 
ing injection Mach number M, = M/S = 0.005. The 
disturbance frequency is ui = 1.0 , a non-resonant fre- 
quency smaller than the first fundamental frequency of 
the tube, u\ = 7r/2. 

One observes a strong radial velocity gradient extend- 
ing out about 0.35 units from the wall at t = 3.00 (solid 
line). The unsteady vortical axial velocity field extends 
out to 0.65 radial units from the injecting wall when 
t = 6.00 . At time / = 9.90 the rotational flow field has 
spread throughout the chamber. 

The spatial distribution of the vortical part of the 
unsteady axial flow velocity at each time may be ex- 
plained in physical terms by considering an interaction 
between the total unsteady injected flow field and the 
axial planar acoustic wave induced and sustained by 
sidewall injection transients. The motion of a fluid par- 
ticle injected radially into the tube from the sidewall 
at a specified axial location is affected by the harmonic 
variation with time of the local axial planar pressure 
gradient. For instance. Fig. 5 shows the time variation 
of the axial pressure gradient, Dp/Or. at a point where 
x = 0.5 and ?• = 0.95 for the case being discussed above. 
As a result, a given fluid particle emanating from the 
wall will be accelerated alternately in the positive and 
negative axial directions as it is convected toward the 

axis of the cylinder by the unsteady radial flow field. 
Part of the fluid particle response is associated with 
irrotational acoustic effects. The rest is rotational, re- 
sulting from vorticity generation al the wall. 

Figure -I shows thai by / = III .unsteady vorticity 
fills the cvlind'-r.    Hut   Fig. 3 shows no change in the 



r-iiiili|)cii(l,.||t pressure field ;LS vorticity fills tin- sys- 
tem. It follows that vorticity dynamics do not affect the 
pressure field, as |)r<'(licted by the asymptotic analysis 
of Zhao el al.-'1,25. This provides an explanation why 
traditional acoustic theory yields transient pressure es- 
timates that compare well with those found experimen- 
tally. Of course, the acoustic field will differ consid- 
erably from the acoustic theory as found hv Brown et 
al.5ß.. 

Figure 6 shows the instantaneous spatial oscillation 
of vortical axial velocity at x = 0.5 with respect to the 
radius when t = 2.96, 5.92 and 10.05 for a smaller axial 
Mach number M = 0.06 (corresponding to the weaker 
injection, Mlnj = 0.001}) and for the same Rt = 10s. 

The forcing frequency w = 1.0 is the same as for the 
previous case. The amplitude of the nonresonant injec- 
tion transient, disturbance is .4 = 0.4. The sharply de- 

fined region of large velocity gradient is seen in Fig. (i at. 
0.23 units from the wall at t = 2.96 . One notes that at 

t - 5.92 the wavelength of the spatial oscillation of the 
vortical axial velocity field is smaller than that for the 
case when M = 0.1. This is an expected result because 
the total unsteady radial velocity field for M = 0.06, 
which transports the fluid particles into the cylinder, is 
characterized by a relatively lower speed than that for 
the .\/ = 0.1 case. Therefore, injected fluid particles 
are carried a shorter distance away from the sidewall 
towards the axis of the chamber in the same time inter- 
val, compared to that for the stronger injection speed 
case. A/ = 0.1. At t = 10.05 one notes spatial oscilla- 
tions fills the 70 percent of the cylinder. 

Solution resolution requires 41 grid points in the ax- 
ial direction and 101 grid points in the radial direction 
in the two cases discussed above. Figure 6 shows that 
near the injecting wall one wavelength of the spatial 
oscillation of the vortical axial velocity is represented 
by approximately 35-40 radial grid points. In contrast, 
near the centerline, where the wavelength is smaller, 
fewer but enough grid points per wavelength are avail- 
able to resolve the velocity gradients. 

The third case studied is for a smaller mean axial 
flow Mach number .\/ = 0.02 (M„tJ = 0.001), e = 20, 
slightly larger Reynolds number Re = 3.105 and the 
forcing frequency u/ = 1.0. The results for the pre- 
vious cases, M = 0.1 and Al = 0.06, imply that the 
number of radial grid points should be doubled for this 
weak injection case. There are 201 equally spaced grid 
points in the radial direction in order to represent the 
spatial variation of unsteady vortical axial velocity ac- 
curately. Figure 7 shows the instantaneous unsteady 
vortical axial velocity variation with respect to the ra- 
dius ati = 0.5 when t = 2.99, 4.93 and 10.00. It can 
be seen from this figure that axial velocity gradients 
are larger than those for larger Mach number cases pre- 
sented previously. This implies that the absolute mag- 
nitude of the unsteady vorticity generated at the wall 
is much larger than that of the higher Mach number 
flows.   This unsteady vorticity field is convected away 

from the wall towards tin- 0-111.-r ..f the , hamb-T l«\ .1 
relatively slower radial velocity «.<n 11»..ii.iit Then f.,re. 
at t = 10.00 only about 3D percent .,| ihe chamber 1- 
filled with the unsteady \..rti<n> 

figure « shows the instantaneous radial variation <>i 
vortical axial velocity at r - 1)5 for larger tune-, / - 
10.00. 20.01. 30 02 and -III 02 Ihe unsteady W.MMIV 

field spreads out towards the axis ;u- time inerea.se- 

One should  note here  again that   the  wavelength ..(' 
the oscillatory structure decrees a.s the centerline t- 

approached.   This occurs because of the slow-down in 

the convection process due to the decrease  in the ra- 
dial velocity component .us the axis of the chamber is 
approached.   The implication for mesh distribution- 1- 
that there must be adequate spatial resolution through 

out  the cylinder,  not just   in  an   "acoustic  bouiidan 
layer'  near the injecting surface a.s used  in a varieu 

of earlier computations8 K* '''   Of course this occur- lo- 
calise the injection velocity is large so that no thin lo- 
calized viscous layer can exist 

Figures 9-11 show the instantaneous unsteady vortic- 
ity distribution throughout the chamber for three ca.-e>. 
M - 0.1,0.06 and 0.02. discussed above, respectively 
Corresponding times are / = 30.00. 29 56 and 30.02. 
respectively. The unsteady vorticity is computed from 
the following expression 

fi= - ihly 1   ()(r - (s 

i)r 

The nondimensional vorticity is defined as {} = 

to' / WR/ R') where W is the dimensional vorticity As 
analysis of the present numerical results and the asymp- 
totic analysis of Zhao et al.21 show, the main contribu- 
tion to the unsteady vorticity is brought by the lirst 
term in (9). It is seen from Figs. 9-11 that the magni- 
tude of the instantaneous unsteady vorticity increases 
with decreasing mean flow Mach number. One should 
notice that the scales for i} are different in each of" 
Figs. 9-11. Computation for the Al = ().02 case is car- 
ried until and after the unsteady vorticity front reaches 
the centerline of the chamber. 

Figure 12 shows the variation of the instantaneous 
unsteady vorticity variation with radial location at 
x = 0.5 when / = 52.42. The presence of significant 
vorticity and hence shear stress near the sidewall is to 
be noted. The complete spatial distribution of the un- 
steady vorticity in the neighborhood of the centerline 
is shown in Fig. 13 where 0 < r < 0.25. 0 < 1 < 1 
when t = 52.42. Here, it is shown that the unsteady 
vorticity fills the entire chamber and vorticity front has 
axial dependence. 

Figure 14 provides the variation of the unsteady pari 
of the radial speed, r - r.s, with radial location at / = 
30.02 and x = 0.5 for Al = 0.02. h = 20. Rt = 3.10'. 
n — I, A = 0.4 and u> = 1. Here. r> is the steady radial 
velocity associated with constant wall injection. Tin- 
corresponds to the axial velocity result in Fig. 8. Our 
result is well converged throughout the cylinder, unlike 



that found l>y Flandro ami Roach14 ami Smith et al.17 induced flow in I he chamber to generate unsteady vnr- 
where unusual .solution behavior occured along t lie axis. ticity on the sidewall.    This l mit -dependent   vorticity 

When tin- sidewall injection transient is spatially de- is subsequently converted into the entire chamber In 
. pi-mifiii the radial location of the vorticity front seen for the unsteady radial flow field    The core of the chamber 
example in Figs.7 and S varies with the axial location. is free of vorticity only during the early pliases of the 
unlike that   in  the previous studies for constant  side- transient  process, prior to the arrival ol a well defined 
wall iii|eciion1H -■*.  Figures 1")-IS show the total spatial vort icily front ( see. for example. Figs. 7.15-18). 

variation of the iiistanteiioiis unsteady vorticit} distri- The   unsleady   vorticity   wave   front   radial   location 
billion throughout the cylindir at times/ = 7.-1M. M.SXi. varies in the axial direction m contrast  lo that  in the 
'12 11 and I'D !)1\ respectively, when the spatial depen- previos studies   with  constant   sidewall   injection   flow 
tiincc parameter n = .5 in (7).   In this ca.se. .\/ = 0.01». held subject to either endwall or exit flow disturbances 

e  = I'D.  !{,   =  :U05. ^  =   I  and  A  = 0.5.   The ob- (Figs. 15-18).   This occurs because the injection tran- 
served s|iatially dependent  front  configurations imply sient   is axially dependent   in  this work,  a reasonable 
that  there will be much more complicated front  mor- modelling effort that reflects the transient and nonuni- 
phologics if the sidewall injection transients have sufli- form propellant burning in solid rocket  motors.   More- 
cient spatial complexity.  As a result, one may find in- over,  the enhanced sidewall  injection  due  to the su- 
(«Tiniitent regions of strongly rotational unsleady How perimposed component  causes  the unsteady  vorticity 
on an axial traverse al a fixed radial distance from the to spread   more  rapidly  into the  chamber  than   that 
wall, reminiscent of turbulent structures, for  the constant   sidewall   injection  cases  studied   be- 

I'he amplitudeof the unsteady vorticity distributions fore.   The absolute magnitude of the unsteady vortic- 
is tJ(.\/-') larger than that of the ('uiick2 steady solu- ity is 0{\/M). This implies that large transient shear 
lion as predicted by Zhao et al.24-25.   This implies that stresses impact on the solid propellant surface, proba- 
tion- will exist  a relatively large transient axial shear bly influencing the burning rate directly. 
stresses on the sidewall surface, particularly for smaller These results and the asymptotic analysis by Zhao 
M values   One can speculate that these large transient et al.24 suggest  that the flow pattern is fundamentally 
shear stresses will impact  the burning rate of a solid viscous when the condition lie — 0(P~/A1~) is satisfied, 
propellant  which |s the source of the " injected"  fluid This condition is also satisfied by the numerical solu- 
used in the present model. Perhaps there is a direct re- lions of Smith et al.1' and Tseng et al.1".   In contrast, 
laiionship between the effect of the surface shear stress Flandro and  Roach14 describes a quasi-steady analyt- 
transieuts.  predicted  in the present   work, and erosive ical result, derived from a fully inviscid model, which 
burning concepts used in the solid rocket  engineering cannot be applied directly to the weakly viscous prob- 
liieralure'-'. lems. 

It is noted that the pressure field is independent ofthe 
unsteady vorticity distribution in the chamber. There- 
fore, one may imagine that the acoustic pressure predic- 

4.  Summary ami Conclusions tions obtained from traditional acoustic stability theo- 
ries, used widely for scientific and engineering purposes, 

I'nsteady vorticity generation and evolution due tosim- yield reasonable estimates.  However, it is unlikely that 
ulated   propellant   burning   transients   in   an   idealized velocity and shear stress predictions are accurate, given 
rocket   motor chamber are studied   in  the  context   of the irrotational basis of acoustic theories, 
an  initial boundary  value problem.   The nearly com- There is now a considerable body of evidence ( Rrown 
plete compressible Navier-Stokes equations are solved <>t. al.5'6, Vuillot and Avalon*, Kirkkopru et al.11, Flan- 
nunierically. An axially distributed harmonically vary- dro  and   Roach14,   Tseng  and   Yang15,   and   Zhao et 
ing sidewall injection component, is superimposed on a al.24'25) in support of the presence of an unsteady vor- 
similar magnitude steady sidewall injection in order to ticity distribution within a physically reasonable model 
simulate mass addition from irregular and iionuniform of a solid rocket motor chamber.  The presence of un- 

solid propellant burning. steady vorticity throughout  the domain suggests that 
In this study, instantaneous values of flow variables traditional irrotational acoustic  theories,  used  largely 

are used rather than time averaged values as presented to predict solid rocket motor flow stability, should be 
in studies by  Tseng and Yang15, Flandro and Roach14, reexainined. 
Smith et al.1' and Tseng et al.16.  Hence, the time evo- 
lution of unsteady vorticity creation and propagation 
can be investigated in contrast  to the aforementioned At:kiiowl<;<lß<;ui<;iit 
studies where instantaneous information is lost due to 
the time averaging process. This work is supported by the Air Force Office of Sei- 

The computational analysis shows that axial planar entific Research through a grant AFOSR M!)-002I5. 

acoustic waves induced and sustained by the sidewall 
injection transients interact, with the sidewall injection 
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Figure 2: The lime history of I lie renterline axial ve- 
locity at j- - 0 5 for .\/ = 0.1. e - 20. lit = 105. ~ - 1. 
A - 0.1. and n = 1. 

Figure 5: The time history of axial pressure gradient. 
dp)Ox. at x - U.S. r - ().!)", for .W = 0.1. <t = -JO. 
lit = 1()5. -/ = 1, .1 = 0.1, and n= I. 
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Figure 7: The radial variation of ?i„ at x = 0.5 when 
/ = 2.99 (solid line), / = 4.93 (dashed line) and t = 
10.00 (dotted line) for M = 0.02. 6 = 20, Re = 3.105, 

w = 1, .4 =0.4, and n = 1. 

Figure 9: Spatial variation of the unsteady distribution. 
£2, as a function of axial location and radial location at 
t =30 for M =0.1 and f> =20. 

Figure S: As Fig.7 hut for / = 10.00 (solid line). / 
20.01 (dashed line). / = 30.02 (dotted line) and / 
■10.02 (dash-dot  line). 

Figure 10: As Fig.9 hut at / = 29 ")(> and for M = O.lKi 
Note the different scale in S). 
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Figure I 1    As Fig.!) but ill / : 
.Noir I lie different scale in 12. 

■M).l)'2 and for M = 0.02. Figure 13: Unsteady vorticity variation in tin- region 
where 0 < x < 1, 0 < r < 0.25 for the same parameters 
and time in Fig. 12 . 

1 .0 

0« 

0.0 

0.4 

0.2 

0.Ü 

0 40      -O.iO        0.20      -O.'O 

(v vs) 

..-J 

Figur«- 12:   Radial variation of 12 at. x = 0.5 when / =      Figllr(, 1<1:  T|„. illst;ult r;u|j;l| variation of („ - vs) at 
52 12 for M - 0.02. Hi  = :UÜ\ -; =  1. A = 0.1 and      x - ().-, W|K.„ / - ;{().()2 for the same fl, 

" - ' as those in Fig.8 . 
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Figure 15: Instantaneous unsteady vorticity variation 
throughout the cylindrical chamber at / = 7.48 for M = 
0.02, f> - 20, Re - 3.105, u> = 1., A = 0.5 and n = 
'■]. The not mean injection speed from (8) is always 
positive. 

Figure 17: As Fig. 15 hut at / = 22.44. 

l-'innn- Hi   As Fig. 15 hut ;it / = 1-l.Wi. 
Figure IS: As Fig. 15 hut at t = 2!) 92. 
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NONLINEAR OSCILLATIONS IN A RESONANT GAS COLUMN: 
AN INITIAL-BOUNDARY-VALUE STUDY* 

MENG WANGf AND DAVID R. KASSOY* 

Abstract Acoustic resonance in a gas column driven by a vibrating piston is studied in terms of an 
initial-boundary-value formulation. If the boundary opposite to the piston face permits acoustic energy 
leakage, the linear solution prevails and describes the evolution to periodic, quasi-steady oscillations at the 
piston frequency. Resonant amplification of the wavefield may occur only if the opposite boundary is either 
closed (a rigid wall) or ideally open (an isobaric exit). A multiple-timescale perturbation analysis based on 
Fourier «^function representations, is used to find weakly nonlinear solutions that provide^unique 
physical insights in terms of acoustic modal interactions and transient waveform evolution to limit cycles It 
is shown thai quadratic modal interactions in a closed system lead to persistent shock appearance and 
relatively small limiting amplitudes, whereas cubic mode-coupling dominates in an open system and 
Songer shocks are created intermittently. Finite-difference solutions support these conclusions. The 
initial-value approach employed enables the prediction of shock waves in parameter regimes where no 
shock has been found by earlier investigators using a quasi-steady formulation. 

Key words, nonlinear acoustics, weak shock, perturbation methods, multiple scales, open- and 
closed-system resonance 

AMS subject classifications. 76N15, 76Q05, 35C20, 35L, 34E 

1 Introduction. This paper presents a theoretical investigation of the evolution 
of planar acoustic disturbances driven by a vibrating piston at one boundary of a 
perfect gas Detailed results from a weakly nonlinear analysis for linear resonant 
driving frequencies are obtained when the opposite boundary is either closed or 
isobaric A comparative analysis is used to demonstrate that the mathematical 
essentials, the character of the nonlinear phenomena, as well as the gasdynamic 
properties, differ fundamentally in the two cases. _ 

Forced acoustic oscillations play a significant role in a variety of practical 
systems, ranging from rocket engine combustors (Williams, 1985) to pulse combustors 
(Margolis 1993), for example. In these semiconfined configurations the flow is 
multidimensional and coupled with specific driving mechanisms. Acoustic stability 
analyses for rocket engines are often based on eigenfunctions for a closed chamber 
with rigid walls (Culick, 1976a, 1976b; Lores and Zinn, 1973), implying that velocity 
disturbances normal to the surfaces of the control volume vanish. In reality, such 
disturbances are present in chamber outflow and transverse gas injection from the 
burning propellant. The consequences of the approximation are difficult to evaluate. 
In particular, one is concerned about the accuracy of a nonlinear formulation based 
on eigenfunctions that do not satisfy realistic boundary conditions, both m terms of 
long-time amplitude predictions and the details of the flow dynamics, particularly the 
appearance of shock waves. 
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In comparison, a recent study of a combustion-driven acoustic resonator (model 
pulse combustor) by Margolis (1993) employs eigenfunctions that are compatible with 
a semiconfined chamber, open at one end to a constant pressure field. A formal 
perturbation procedure is carried out to demonstrate that the nonlinear wavefield 
characteristics are fundamentally different from those obtained in an analysis based 
on closed-system eigenfunctions. The resulting evolution equations for wave ampli- 
tudes are shown to involve cubic mode-coupling, instead of the usual quadratic 
coupling. 

The present study is motivated by the need for an explanation of the explicit 
effect of boundary conditions on wavefield evolution in acoustic chambers. The 
resonance tube offers an ideal model problem because of its simple geometry and 
simple source mechanism (piston motion). Furthermore, aside from its relevance to 
engineering applications, the investigation of oscillations in acoustic resonators pos- 
sesses its own scientific significance. It has been an active area of research in 
nonlinear acoustics for over three decades. 

Experimental evidence (Lettau, 1939; Saenger and Hudson, 1960) shows that in a 
closed tube, a piston vibrating in a narrow frequency band around each resonance 
frequency can amplify the gas oscillations to the extent that shock waves develop. The 
latter travel back and forth between the piston surface and the rigid tube end. In 
order to explain this fascinating observation, Betchov (1958) and Saenger and Hudson 
(1960) constructed theoretical models based on the existence of a propagating shock 
discontinuity. The solutions, obtained using the method of characteristics, describe 
periodic limit cycle behavior. Chester's (1964) theory provides more generality in the 
sense that shock waves appear as a natural outcome of the solution when the piston 
frequency approaches one of the resonant frequencies. Outside these narrow reso- 
nant frequency bands, the solution is continuous but not purely harmonic. This work 
was further extended by Keller (1976) to include the effect of boundary layer friction 
of arbitrary strength. Other related studies concerning closed resonance tubes can be 
found in, for example, Eninger and Vincenti (1973), Merkli and Thomann (1975), 
Zaripov and Ilhamov (1976), and Ochmann (1985). 

Jimenez (1973) and Seymour and Mortell (1973a, 1973b) conducted studies of 
acoustic resonance in both closed and open tubes to determine the periodic motions 
of the gas. A reflexion coefficient (or admittance) is used to characterize the acoustic 
response of the tube-end, ranging from a velocity node (closed) to a pressure node 
(ideally open). Limit cycle amplitudes and waveforms are predicted as a function of 
the reflexion coefficient and the forcing frequency. In both open- and closed-end 
resonance cases, shock waves are found to exist in certain parameter ranges. How- 
ever, the limiting amplitudes for the two cases are dramatically different, of 0(e1/3) 
and 0(e1/2), respectively, where e denotes the maximum piston Mach number. 

It is noted that nearly all the earlier investigators consider only quasi-steady 
oscillations, with the notable exception of Ochmann (1985), whose formulation is 
sufficiently general to include transient effects. In his study of a closed resonance tube 
excited by distributed forcing, the method of averaging is employed to describe the 
slowly varying wave amplitude. Ochmann derives an infinite system of coupled 
nonlinear ordinary differential equations for the coefficients of a Fourier series 
solution. The Fourier system is summable when transformed into characteristic 
coordinates, which leads to an inhomogeneous Burgers equation. 

More recently, Wang and Kassoy (1990a, 1990b) have developed a mathematical 
technique that combines a formal multiple-scale perturbation procedure with Fourier 
series expansions to study wavefield evolution in a cylinder subject to extensive piston 
compression and expansion. The problem differs fundamentally from the resonance 
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tube problem in the sense that the piston displacement is not small, and thus the 
variation in the mean gas state must be described. Acoustic disturbances, either 
caused by a rapid piston acceleration or specified as an initial nonequihbnum 
distribution, evolve into weak shocks on the timescale of one piston stroke. The 
evolution equations describing acoustic modal interactions contain quadratic nonlin- 
ear terms and are infinitely coupled, resembling those obtained by Ochmann (1985) 
and Culick (1976a). Adequate modal resolution ensures that the Fourier summations 
can resolve weak shock formation and, to some extent, subsequent evolution. 

In the present paper, the techniques developed by Wang and Kassoy (1990a, 
1990b) are employed and extended in order to investigate the piston-driven reso- 
nances in a gas column subject to a variety of boundary conditions at the far end. Our 
objective is to examine the effect of eigenfunction choice, compatible with the 
boundary condition, on the resulting wave evolution. In particular, we want to 
determine the mathematical and physical consequences of using a particular set of 
eigenfunctions to describe solution evolution. Relative to the studies of Jimenez 
(1973) and Seymour and Mortell (1973a, 1973b), the present analysis has the advan- 
tage of being fully transient, based on an initial-boundary-value formulation. As a 
result, not only the long-time solutions, but also the evolution processes en route to 
limit cycles, are revealed. 

A linear theory is developed first using an arbitrary boundary admittance, ot tue 
type proposed by Seymour and Mortell (1973a). The solution describes the damping 
of acoustic transients which leads to harmonic steady oscillations if the acoustic 
admittance is positive and finite. The main focus of the paper is, however, a 
comparative study of open- vs. closed-system resonance phenomena. Modal evolution 
equations containing quadratic or cubic nonlinearities, characteristic of processes m 
closed and open systems, respectively, are derived and evaluated numerically^ In 
contrast to the conventional stability analysis, adequate modal resolution is used m 
order to obtain the complete solution behavior, reflective of detailed nonlinear 
wave/shock structures. In addition, a finite-difference calculation is conducted to 
verify and extend the perturbation results. 

Since no periodicity requirement is imposed, in contrast to previous quasi-steady 
studies, our solution allows the spontaneous evolution of all the possible waveforms. 
In particular, weak shocks of relatively large strength are found to form and disappear 
alternately in an ideally open system (isobaric exit) driven at the linearly resonant 
frequency. Under the same circumstance no shock has been predicted by Jimenez 
(1973) and Seymour and Mortell (1973a, 1973b). The sensitivity of wave magnitudes 
and characteristics to the imposed boundary condition, demonstrated through this 
study, suggests the importance of using accurate eigenfunctions in modeling acousti- 
cally active systems. 

2 Problem formulation. We consider forced, one-dimensional acoustic wave 
motion in a gas contained in a region 0 <x* <L*. At the left end of the region, a 
piston executes small harmonic vibrations with velocity U* sm(co*t*). The physica 
conditions at L* are represented by a real admittance function that permits partial 
reflection of outgoing waves. The gas is initially stationary and has a reference state 
(p*o,Po'Tol w»th the associated sound speed c0* = (ypt/Po)1/2

; An acoustic distur- 
bance travels across the region on the acoustic timescale t* =L*/CQ. 

In terms of the dimensionless variables 

P* P* T* "*        _fl       -!l 
pt Po 1o co ^ '" 
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the equations describing the motion of an ideal gas with constant properties can be 
written as (Wang and Kassöy, 1990a) 

(2) Pt + (pu)x = 0, 
Px 

(3) ", + "", + — = 0> 
yp 

(4) P = P\       T = p*-\ 

where the subscripts t and x denote partial derivatives. Transport terms are ignored 
because the timescale for damping is very long with respect to the acoustic time 
variable t, for gradients on the length scale L* (Landau and Lifshitz, 1959). Only very 
short wavelength disturbances will be affected by viscous and thermal diffusion. Other 
flow regions where transport effects are not negligible include shock zones and 
acoustic boundary layers, of the type described by Wang and Kassoy (1992). The 
former can be treated as a mathematical discontinuity in the inviscid study, and the 
latter are not considered in the one-dimensional problem formulation. 

As a consequence of the transport-free assumption, (4) implies that the flow field 
is isentropic if the solution is continuous (no shocks present). This approximation is 
not restrictive for gradients with a characteristic length scale L* as long as the 
acoustic Reynolds number RA =c$L*/v$ » 1. If a weak shock appears, then one 
must consider weak (discontinuous) solutions to (2)-(4), and recognize that entropy 
changes are proportional to the third power of the shock strength (Whitham, 1974). 
Although relatively small, these changes will accumulate if a repeatedly reflected 
shock processes the gas in a closed container. Eventually, on a sufficiently long 
timescale, entropy changes will be significant, and the model in (2)-(4) will be 
inadequate. 

The initial and boundary conditions are 

(5) r = 0;   p = p = T=l,   ii = 0, 
e °" 

(6) x= cos(wf);   u = esm(o)t),   x=l;   w = —(p-1), 
a 7 

in which the dimensionless frequency of piston vibration to=co*t*, e = £/*/c* is the 

maximum Mach number of the piston, characteristic of flow speeds in the absence of 
resonance, and a is the acoustic admittance discussed below. The perturbation 
analyses presented in the subsequent sections are focused on the limit e-»0. 
Furthermore, it is assumed that a> = O(l), so that the piston displacement is of 0(e), 
small relative to the length of the gaseous region. 

The second boundary condition in (6) involves an acoustic admittance a which 
provides a general relationship between the velocity fluctuation and the excess 
(acoustic) pressure on the outflow boundary. This type of boundary condition, 
conventionally used for linear acoustic systems, was extended by Seymour and Mortell 
(1973a, 1973b) and Jimenez (1973) to characterize boundary responses to nonlinear 
wave phenomena. In this study we consider only values of a that are real, positive, 
and invariant to frequency and time. Negative values of admittance imply acoustic 
energy input through the boundary; and complex values imply a time delay in velocity 
response to the pressure disturbance, which can be accommodated by using a time-lag 
constant in real-valued derivations (Williams, 1985). Finally, one notices that when 
o-=0, u = 0 at * = 1, and a rigid wall is present. In contrast, a -* °° corresponds to an 
isobaric exit which is sometimes referred to as being "ideally open." 
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3. Linear oscillation. First, a linear perturbation study is carried out to (i) obtain 
general linear solutions describing piston-induced acoustic transients as well as 
evolution to quasi-steady oscillations; (ii) discover physical conditions, in terms of the 
acoustic admittance cr and driving frequency <o, under which resonant wave amplifi- 
cations may occur; and (iii) determine the timescales for wave nonlineanzation and 
the limiting amplitudes in resonant systems, to be used as a basis for an intricate 
weakly nonlinear analysis in the subsequent section. 

In the linear regime an O(e) piston oscillation initiates in the gas both mechani- 
cal and thermodynamical disturbances of similar magnitude. By applying the scale 
transformations 

(7) u = eü,       p = l + ep, 

to (2M6), the lowest-order approximate system for the induced acoustic velocity can 
be derived as 

(8) «„-"« = 0. 
(9) r = 0;       5 = ü, = 0, 

(10) x = 0;   ü = sm(wt),   x = l;   ü, =-crüx. 

The solution to (8)-(10), found from Laplace transform techniques, can be put into 
the form 

(11) ü = üQS + üTR, 

(17} Ti     =— ; s—-{ —<rsin(a>Jc)cos(<uf) 
(12) UQS

     sinHa) + a2 COSHW) 

+ [sin(ft>)sin(a(l -x)) + cr2 cos(w)cos(w(l -x))]sin(«f)}, 

(13) ÜTR=   L   -I^-Isin(Anx)e'A-', 
„ = - =c  An        w 

provided that the denominators do not vanish. The corresponding density disturbance 
can be readily obtained by integrating the lowest approximation to continuity equa- 

Equation (12) describes a quasi-steady gas oscillation at the forced frequency of 
the piston. The transient part, denoted by UTR in (13), arises from residuals of the 
integrand in the complex Laplace inversion formula at singular points 

(14) tan(A„) = io-, 

which defines the eigenvalues for the Fourier series. Note that A„ is a complex 
quantity in general even for real values of cr, due to the mixed derivatives in the 
boundary condition (10). The real and imaginary parts of A„ can be solved explicitly 
from (14) to obtain 

,.     Inv, 0<<T<1, 
CIS-) A(r)=(/       n ^i « = 1,2,..., 

1       l-o- 
(16) A

(;>=--ln 
l + o- 
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IVA.     } \ i\       J W      |      t     t|*-/v„   /I 

(18) e'*' = 

As a result, (13) can be put into a more illuminating form, 
oo      e.[A<„'>(r+x)-*„] =o       ei[Hi\i-x)-4>„] 

(17)   «„     2e ^    |A2_w2|        2e nLx    ]X2_w2l    . 

where the phase angle (0 < <f>„ < 2ir) is determined from 

(a2-(A'")2-^l+f[2Ay] 
|A^-^2l 

Clearly, (17) represents an infinite number of pairs of counterpropagating waves, 
whose amplitudes attenuate exponentially with time if A(,) > 0 or, equivalently, 
0 < cr < oo. in physical terms a finite-admittance surface acts as an energy sink for all 
the oscillatory modes, and only the mode at the forced frequency is sustained due to 
the continuous boundary work input from the piston. An important implication of this 
result is that the wave system remains linear always, because the eigenmodes do not 
survive, and hence no significant deformation in waveform can be accumulated on 
long timescales by weakly nonlinear effects. 

Another distinct effect of the boundary energy loss is to render the acoustic 
wavefield nonresonant across the entire spectrum of the piston-excitation frequency. 
It can be shown that, for 0 < cr < oo, the solution described by (11), (12), and (17) has 
positive-definite denominators and is therefore always bounded. An interesting spe- 
cial case arises for a = 1, which corresponds to a nonreflecting outflow boundary. In 
this case the expression for ü reduces to a simple traveling wave solution of the form 
sin[ <o(t — x)]. 

In contrast, for the cases of cr = 0 (rigid endwall) and cr -> oo (isobaric exit), no 
acoustic energy exchange with the end boundary exists; the damping coefficient A(,) 

vanishes; and therefore the transient responses represented by the infinite series 
persist. We can derive the following from (11)—(18): 

sin[o>(l -;c)]sin(ü>/)       "       2<a 
(19)     cr=0;       ü = —— 2-, -j 2-sin(AnJc)sin(A„r) 

sin(w) _„, A„ - <>) 

and 

(20)    <r->oo;       M =  ,   N 2- T2 2 sin(Anx)sin(A„r), 
cos[ti)(l — ;t)]sin(<uf) 

cos(o>) „fj A^-w2 

where A„ = A(„r) is defined by (15). In reality, of course, transport effects which are 
excluded in the present analysis eventually damp out the acoustic transient modes on 
the timescale td = 0(RA/n2\ and the solutions converge to quasi-steady solutions 
(the first terms on the right-hand side of (19) and (20)) in the absence of resonance. 
Except for large mode numbers, td » 1 and is.larger than the characteristic nonlin- 
earization time for a system with anO(e) piston Mach number. 

Acoustic systems described by (19) and (20) are prone to resonance phenomena 
as the frequency of the acoustic driver coincides with one of the eigenvalues (<o = nir 
and (n - 1/2)TT, respectively). To avoid singularities and accommodate modal ampli- 
fication, new solutions are derived directly from (8)-(10) for the two special cases: 

(21) ü = 

»   2&> 
(l-x)sin(wf)- £ —-©„(Osin(A„x), cr = 0, 

n = l   An 

xsin(wt)- £ — ®n(t)sm(\„x), cr^> o°, 



where 
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' knsin(\nt)~ o>sm( <ot) l\n 3il»\."„»/ 
(i)¥= A 

A2"»2 

— sin(wf) + — cos(coO, 
2(o                 2 

a) = A„ 
(22) ©„ = • 

It is to be noted that although the solutions for the closed and ideally open resonant 
systems bear remarkable resemblance in form, the results are quite different because 
of the different eigenvalues (cf. (15)). ,. .,   •   ,~^    •„ 

The linear growth with time of the resonant mode, shown explicitly in (22), will 
be limited ultimately by nonlinear effects. In order to determine the limiting ampli- 
tudes and the timescales on which nonlinear damping offsets the resonant amplifica- 
tion it is necessary to use a perturbation expansion for u and p in powers of e, with 
(21)'and (22) as leading-order solutions. The analysis is carried out to higher orders 
based on the governing system (2)-(6), and the fastest growing secular terms at each 
order are determined. The following hold for e -* 0 and t -»<=°. 

(i) For a closed resonant system with a rigid endwall (er- 0), 

u(t-*<x>;x) etcos(o)t)sin(.o)x) 
(23) -€2plZl(OCos(2wt)sm(2<üx) + 0(eh5). 

24 
The asymptotic expansion breaks down as r-OU"1/2), at which point the second- 
ed third-order terms have the same magnitude as the leadmg-order term. The 
limiting amplitude u = 0(e1/2). .        . 

(ii) For an ideally open resonant system with an isobanc end to--» <*>), 

u(t-><x>;x) etcos(a)t)sin(a>x) 
-   [A2

n + 2(r-3)w2]sin(A„) 
- e2t2<o sin(2wt) £ -^ — rk sin(A„x) 

(24) -> U"-4W) 

(y    2)(y    3)
[3sin((t,f)sin(a,x) _ sin(3ftif)sin(3ft«)] 

+ e3tAw 32 
+ 

Unlike case (i), as t = 0U"2/3), the magnitude of the third term becomes comparable 
with that of the first term, and the limiting wave magnitude is thus characterized by 
u = 0(e

1/3) xhis is of course based on the assumption that the growth rate of the 
third term remains the same after its magnitude catches up with that of the second 
term at t = 0(e"1/2). A formal proof can be obtained by rederiving the asymptotic 
series on the latter timescale. 

It should be noted again for both cases that on the timescales for nonlmeanza- 
tion, transport property damping will be negligible, particularly if the resonance 
occurs in one of the lower-order modes (« not too large). The above results also 
illustrate a distinct advantage of the current initial-boundary-value approach over the 
more traditional steady-oscillation analysis. Here, both the limiting amplitudes and 
the timescales for the resonant systems to reach the limiting amplitudes are obtained 
through a relatively simple linear analysis. .,,._,,..!     A 

Finally, we remark that the two cases discussed above are highly idealized and 
extreme. In practical terms, if the admittance function lies in a small neighborhood of 
zero or infinity, and when the frequency of excitation becomes sufficiently close to 
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one of the resonant frequencies, strong wave amplification resulting from elongated 
beats also renders the linear solutions inappropriate for large t. The weakly nonlinear 
analysis presented in the next section will again be limited to the idealized cases to 
reduce the mathematical complexity. Nonetheless, it is conceptually straightforward 
to incorporate the effect of small deviations from the linear resonant frequency and 
the critical admittance values (0 and °°) by introducing additional small parameters 
used by Jimenez (1973) and Seymour and Mortell (1973a, 1973b). 

4. Weakly nonlinear analysis 

4.1 Resonant oscillations: The closed endwall. The nonuniformity which occurs 
at t = 0(e"1/2) in the linear asymptotic solution (23) suggests that 

(25) r= e1/2t 
constitutes a second important time variable for a two-timescale, weakly nonlinear 
study of resonance in a closed system. As is standard in multiple-scale formulations, 
the ordinary time derivative must be replaced by 

(26) II) Jl)    +.v." 
dt ] r     \ dt ]T_X \ dr 

and t and T are treated as though they were independent of one another despite the 
relation (25). In addition, since the system mass is conserved, it is more efficient to 
conduct the analysis in terms of the Langrangian coordinate 

(27) s=f    p(x,t)dx, 
J€Xp{t) 

in which the piston face x = exp(t) and the endwall x = 1 are represented by s = 0 
and 5 = 1, respectively. Since, as will be shown later, the displacement of the gas 
particle is at most of Oie1/2), there is practically no need to distinguish between the 
two coordinates in the leading-order results except near the piston surface. 

In the (s,t,T) space the governing equations (2)-(4) and boundary conditions (6) 
become 
(28) pt + el/2p7 + p2us = Q, 

(29) u, + e1/2uT + py-lPs = 0, 

(30) 5 = 0;   u = esin(cot),   s = 1;   u = 0. 
The velocity is zero on the right boundary because a = 0. Given the asymptotic 
behavior displayed in (23), the proper expansions for velocity and density on the 
timescale T are 

(31) u = el/2ul + eu2+-,       p=l +^/2px +ep2+-. 

These expansions are used in (28)-(30) to derive the leading-order, linear, homoge- 
neous equation system 

(32) Pi«+ «1,-0,       ult + pu = 0, 

(33) 5-0;   u,-0,   J-l;   i*i-0. 

One notices that the O(e) piston-driving function in (30) does not appear at this 
order, although it is the source of the excited disturbances. The two equations in (32) 
can be combined to generate a single second-order linear wave equation for Uj, 

(34) uUl-uUs = 0. 
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The general solution satisfying (33) takes the form 
oc 

(35) "i = L loc„(r)cos(.nirt) + j3n(r)sin(/i77r)]sin(«irs), 
n = l 

where a and ßn are slowly varying coefficients characterizing the evolution of the 
wave amplitude, to be determined from next-order considerations as well as initial 
conditions. Equation (35) can be used to integrate (32) to generate 

(36) 
00 

Pi" E l-an(T)sin(/i7rr) + i3n(T)cos(n7rr)]cos(n7rs). 
n = l 

In deriving (36), the integration constant ßQ(r) representing the bulk Founer mode 
has been set to zero. This can be justified by using the physical requirement that the 
spatially averaged density, tfpds, should remain constant (equal to the initial value of 
1) to the present order. Bulk density variations associated with the piston displace- 
ment occur on the short acoustic time t and appear at the next order. Alternatively, 
we may retain ß0 in (36) and determine its value together with an and ßn from 
next-order equations. The latter approach generates identical results but increases 
the algebraic complexity. .    . 

The next-order velocity equation system, derived from (28)-(3U is given oy 

(37) l2ll      U2ss       2 

y+ 1 
Pi«--T"(^)» 

and 
(38) s = 0;   u2 = sin(a)t),   s = l;   u2 = 0 

The transformation 
(39) u2 = w2 + (l-s)sin(cot) 

is employed to homogenize the boundary conditions, so that 

7+1 
W2„ - w2ss = 2 Pi«- "(Pi2),, + o)2(l -s)sin((ot), 

5 = 0;   w2 = 0,   5 = 1;   w2 = 0. 

(40) 

(41) 
Our objective is to identify and eliminate terms in the forcing function that contribute 
to the resonant growth in w2 and hence u2. To this end, a Fourier sine series solution 
of the form 

(42) w2= £ Tn(t,T)sm(rnrx) 
n = l 

is substituted into (40) to convert the partial differential equation into a set of 
ordinary differential equations, 

(43) 
y+\ 

r„„ + (^)27; = 2/o
1| Pi« ~ <P\\ + ü)2iX - s) sin( <ot) \ sinbnrs) ds, 

based on orthogonality properties of Fourier series. The integral on the nght-hand 
side of (43) is evaluated using (36); and following a systematic procedure developed m 
a related study (Wang and Kassoy, 1990a), harmonic terms of frequency n-rr, responsi- 
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ble for causing 0(0 secular growth, are collected and suppressed by setting their 
coefficients equal to zero. As a result one obtains the amplitude evolution equations 

(44) 

(45) 

y+ 1 
I——kit 

16 
2E (anak+n + ßnßk+„)- E («»«*-»-A, &-») -5, 'vk-> 

•y+1 
ß'k = krr Pk       16 

■      a. k-\ 

2  E  («» At- ~ "* + „ A) "   E  <«*-„ A, + <** Ak-„) 

for fc = 2,3,... . If A: = 1, the second summation in both equations must be replaced 
by zero. The quantity Svk is the Kronecker delta arising from the piston driving at the 
resonant frequency u> = VTT. 

Solutions described by (35) and (36) based on results from (44) and (45) are quite 
general in the sense that more general initial conditions than those in (5) can be 
accommodated. Given an arbitrary initial disturbance u(t = 0) = e1/2w,(s) and pit = 
0) = 1 + el/2Pi(s), it follows from (35) and (36) that 

(46) a„(0) = 2 CuXs) sin(n7rs) ds,       ßn(0) = 2 f p,(s) cosinirs) ds. 
Jo Jo 

The nonlinear evolution of the prescribed initial disturbance and its interaction with 
the piston-generated disturbances can be traced. If the forcing term Svk is dropped 
from (44), the results simply describe the nonlinear relaxation of the specified initial 
disturbance in a region of constant volume. 

In the present study we focus on the resonant evolution of disturbances initiated 
purely by piston excitation. In this case ak(0) = ßk(0) = 0; and (45), which is homoge- 
neous, implies that ßk(r) = 0. The amplitude evolution equations reduce to 

•y+1       /     " k~1 \ 
(47) a'k = —,Tfc7r   2 E  Otnak + n-   E  <*nak-n \-^k- 

16 \  «=i n=i / 

The quadratic mode-coupling exhibited in (44), (45), and (47) is characteristic of 
nonlinear interactions in closed acoustic systems (Wang and Kassoy, 1990a, 1990b). 
This mechanism enables acoustic energy to be transferred from lower modes, espe- 
cially the forced resonant mode, to higher frequency modes, so that the amplitude 
growth of any particular mode may be limited. Compressive wavefronts steepen to 
form shock waves, and rarefaction wavefronts flatten out. The weak solutions to the 
Euler equations evolve to limit cycles because there is an inherent balance between 
energy input by the driving piston and internal dissipation by the shock. This is 
supported by numerical calculations to be discussed in §5. Entropy changes induced 
by the 0(e1/2) shock occur at the 0(e3/2) level and have no impact on the present 
asymptotic solutions for T = 0(1). 

It can be shown that the results derived in this section are equivalent to those 
obtained by Ochmann (1985) using the method of averaging. The purpose of revisiting 
this problem is to demonstrate that useful insights can be extracted from the 
multiple-scale procedure, and that the approach can be employed in the investigation 
of more complex modal interactions arising in an open-ended resonant system. In 
addition, a systematic truncation strategy is developed to evaluate reduced versions of 
the infinitely coupled amplitude equation system by numerical means. Spatially 
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resolved solutions are found from summations of sufficient numbers of Fourier 
modes. These solutions, not available in Ochmann's work, are presented in §5 and 
employed in a comparative study of the effect of boundary conditions, and hence 
system eigenfunctions, on the evolution of acoustic phenomena in open- and closed- 
ended resonant systems. 

4.2 Resonant oscillations: The isobaric exit. In a resonant system with an 
isobaric exit boundary, Eulerian variables are used because the system mass varies 
with time. The multiple-scale formulation is carried out in terms of the time variables 
t and 

(48) r=e2/3r 

through the transformation 

(s).-GL-"(*L- 
implied by (24) and the subsequent discussion. As a consequence of the relatively long 
growth time T, the pertinent asymptotic expansions for u and p at the expected limit 
cycle are now 

(50) u = el/2ul + e2/3u2 + e«3 + ••-, 

(51) p=l + e1/3p1 + e2/3P2 + ep3+-•. 

In analogy with the closed system, the leading-order solution can be put into the 
form 

oo 

(52) «!= £ [aB(T)cos(ABf) + /3a(T)sm(ABr)]sin(ABx), 
n = l 

00 

(53) Pj= E [-a„(r)sin(Anr) + jß„(T)cos(Anr)]cos(Anx), 
71=1 

which satisfies the same homogeneous system as (32) and (33) except that at x-= 1, 
the disturbance density, instead of velocity, is zero because of the isobaric condition 
(o--»oo in (6)) and the isentropic approximation (4). Consequently, the correct 
eigenvalues have the form A„ = (n - l/2)ir for «-1,2,.... The slowly varying 
amplitude functions a„ and ßn in (52) and (53) are again to be determined from 
higher-order considerations. 

The relations in (49)-(51) can be applied to (2)-(6) to find the next two ordered 
equation sets, 

(54) P2, + "2*= -(Pi"i)*. 
(55) u2t + p2x=-ululx-(y-2)p1pu, 

(56) P3, + "3x=-PlT-(PlM2 + P2"l)*> 

(y-2)(y-3), 
(57) «3, + P3x=-"lr 1 (p3)J-["l"2 + (r-2)p1P2Jx, 

together with boundary conditions 

(58) x = 0;   u2 = 0,   u3 = sm(wt),   x = l;   p2 = p3=0. 



934 MENG WANG AND DAVID R. KASSOY 

The left boundary condition, imposed at x = 0 instead of the actual piston location, is 
consistent with the accuracy of the perturbation scheme because the piston displace- 
ment is of O(e) small (cf. (6)). It can be formally derived based on a Taylor series 
expansion of the exact condition u(exp,t) = e sin(wO, in the limit process e -»0. 

A suitable combination of (54) and (55) gives 

(59) h„ ~ U2xx = - I "l + 
y-1 

•pi 

which must be solved subject to boundary conditions derived from (54) and (58), 

1 
(60) 

If the transformation 

(61) 

x = 0;    K2 = 0,    x-1;    K2x- 2*H^''X"1■ 

"2SS•»''2+ j^' x=\ 

is substituted into (59) and (60), we obtain 

y-1 
(62) ">2,l-W2xx= ~    "l + 

*• 1 XI 

X 
— I 
2 "(«?)„, u-i 

and a set of homogeneous boundary conditions for w2. A general solution can be 
written as 

x 
(63) 

where 

(64) 

(65) 

"2=2("^' 
+ L T„(t, r)sm(X„x), 

T„ = 5n(r)cos(An/) + yn(r)sin(Anr) + f'Rn(i, T) cos[ \n(i-t))di, 

y-1 
i?„ = 2AnJ \u\ + -—-p\   cos(A„x)dr-sin(A„) TT(«I)„ + 2"I 

Lr=-1 

The functions 8n and y„, whose explicit forms are not needed in the determination of 
an and ß„, are the second-order counterparts of the latter. An integration of (55) 
with respect to x, combined with the requirement that p2U-i =0, gives the corre- 
sponding density disturbance 

(66) 
\-x2 

Pi •<"?>„ -i[u?-«?l,-, + (y-2)p?]+ £ ^4^cos(An*). 
n = l 

One might expect that the evolution equations governing the leading-order 
Fourier coefficients an and ßn should result from eliminating secular growth terms in 
the second-order solution (63)-(66), as is usually the case with two-scale expansions. 
Here, however, both u2 and p2 are found to be bounded as t -* *>, a conclusion drawn 
through a careful analysis of the solution structure. Evidently, the only plausible 
source of resonant growth lies in the particular solution associated with the integral in 
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(64), whose integrand contains triple products of harmonic functions of t (cf. (65), 
(52)! and (53)). These product terms are convertible into single functions such as 
cos[(A* ± Am ± \„)t) or sin[(A,±Am±A„)?]. Since the algebraic combinations of 
three arbitrary eigenvalues are never zero, the integral remains harmonic in t always. 

The fact that the second-order equations provide no clue toward a definitive 
leading-order solution may be explained from another perspective: the growth of the 
wave amplitude must be intimately related to the boundary driving effect, which 
manifests itself only at the next order. Therefore, secular relations have to be sought 
through an extension of the perturbation scheme to the third order. Margohs (1993) 
confronts similar issues in his study of a combustion-driven tube. 

The third-order analogues of (59) and (60), derived from (56M58), are 

(67) .       u3lt-u3„-E(t,T,x), 

(68) x = Q;   u3 = sm(wt),   x = l;   uix= ~(p:u2 +p2u1)x, 

where 

(69) 
(r-2)(r-3) 

E = 2plTX + (p1u2 + p2ul)xx p?+w1«2 + (T-2)PiP2 

Again, a transformation defined by 

(70) u3 = w3 + sin(o)t) -x( pxu2 + p2u})x\x= i 

renders the boundary conditions homogeneous for w3, and the differential equation 
becomes 

(71) w3ll - w3xx = o>2 sinicot) +x( pxu2 + p2"i),„lx-i +EU,T,X). 

As a result, a Fourier-series solution of the form 

(72) w3= £ ©n(r,r)sin(A„x) 
n = l 

exists. We now insert (72) into (71), multiply both sides by sinU^x), and integrate 
over the interval [0,1]. This leads to 

(73) 

@ktt + A20fc = 2 ['[ a>2 smiwt) +x( Pxu2 + p2w,) Jx= i + E(t, r, x)] sin(\kx) dx. 

If (69) is substituted into (73) and integration by parts is carried out, more explicit 
representations of the forcing terms can be obtained, giving 

w2 sin(a>t) r\ 
@ktl + X2

kek = 2\kJ pwcosUkx)dx 

(74) 
+ sin(Ak) 2 + ■^■■^j ( Pi"2 + P2«i)x'x-i 

+ A : dt'o 

(r-2)(r-3) 
p1

3+u1M2 + (7-2)p1p2 cos(\tx)dx 

-X2
k[ (p1u2 + p2M1)sin(Ajtx)dx. 
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Equation (74) describes the forced motion of a collection of linear oscillators, 
each associated with an O(e) acoustic mode. Nonhomogeneous terms on the right- 
hand side contain both the effect of piston driving (the first term) and the time-evolu- 
tion of various combinations of lower-order acoustic variables. The appearance of plT 

in the second forcing term is particularly encouraging, since it provides the ^deriva- 
tives of ak and ßk, an imperative ingredient in the desired evolution equations. First- 
and second-order solutions developed in this section are used to evaluate the 
right-hand side of (74). Resonance is then suppressed by equating to zero the 
coefficients of all the terms proportional to sin(A^) and cos(Xkt). This labor-intensive 
procedure, involving triple products of Fourier series, leads to 

' = — j E  E Aa
jkI[ak-jUlßj_l+l + aj_l+lßl) + ßk-jiaiaj_l+l- ß,ßi-l+l)] 

16   ;-i'- 
»      ; 

+ E  E A^/K+;(a//3;-/+i + «/-/+1 A> ~ At+y(«/«;-/+1 "A ßj-i+J] 

+ E E A%,[ay_*+1(a;ft_m + ay_,+ 1 ß,)-ßj-k+i<-*i«j-t+i ~ ßißj-i+J] 

(75) k-\  <* ^ 
+ 2 E  E A^f <*,_,( a, ft+y ~ «/+; A> + &-/<«/«/+; + A A+/>] 

00 00 

+ 2 E   E Vjkl["k+j(*l A+/ - «/+/ A) - A+;(<*/«/+; + A A+;)J 

+ 2 E  E A^,[ ay_*+1(<*; ft+y - a/+yft) - 0y_*+1( «,«,+; + A A+P] 
j=kl=l I 

~8
vk> 

/3; = ^iElLA%/[-aJl_y(a/a;._/+1-AjSy_/+1) + A./(a/py_/+1 + a;-_/+IA)] 
16 

.7-1 '=1 

+ E  E Ayi/[a,+y(a/ay_/+1 -ß,ßj-l+l) + ßk+}U,ßj-l+i + «y-i+i A)] 

+ E  EA%/[-ay-*+i(a/ay-/+i-AA-'+i) 

j=kl=\ 

(76) -ßj-k+i(«ißj-i+i + a;-/+i A)] 

+ 2 E  E A^[-a,_y(a;a;+y + ft ft+y) + ft_y(a, A+y " «/+/ A)] 

CO CO 

+ 2 E  E A%,[ at+y(a,a/+y + ft ft+y) + ßk+JUt ft+y - a/+y ft)] 

+ 2 E  E A^[-ay_Ä+1(a;a;+y + ft ft+y) - $-*+,(«, A+; " «/+/A)] [• 
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where the coefficients A%, through Af
jk„ defined explicitly in the Appendix, are 

constants depending only on the subscript indices and the parameter y, the ratio of 
specific heats of the gas. The Kronecker delta in (75) again signifies acoustic 
excitation by the piston when <o - A„. 

The infinite system of coupled differential equations described by (75) and (76) 
involves double sums of cubic modal interaction terms, in comparison to single sums 
of quadratic interaction terms exhibited in (44) and (45) for a closed resonant system. 
The increased mathematical complexity arises from the derivation of the evolution 
equations in terms of the first three expansion orders instead of the usual two. As in 
Margolis's (1993) related study, it is concluded that third-order nonlinear effects, 
characterized by cubic mode-coupling, are the dominant mechanism for wavefield 
evolution in an ideally open system. 

Another point to notice is that, unlike the evolution equations for closed systems, 
no simplification can be achieved for (75) and (76) if ak(0) = ßk(0) = 0, because 
neither family of the Fourier coefficients vanishes identically. On the other hand, a 
nonequilibrium initial state in the gas column can be treated in the same fashion as in 
(46), if rnr is replaced by the appropriate eigenfunction A„, and ut and p, are 
construed as the initial values of the 0(e1/3) quantities in the perturbation expan- 
sions (50) and (51). . 

The formulation described here is based on the isentropic equations in (2)-(4J 
and the expansions in (50) and (51). If an OU1/3) shock forms, it is conceivable that 
0(e) entropy production will occur. The third-order equations, represented by (56) 
and (57), may have to be altered to accommodate entropy-induced state changes 
subsequent to the appearance of a shock. In that circumstance the isentropic 
condition is unique at 0(e) on each side of the moving shock. This has the effect of 
changing the relationship between p3 and p3 by an additive quantity that is time- and 
space-dependent in general. The effect of this additional consideration on the 
resonance suppression conditions used to derive (75) and (76) is unknown, and should 
be more thoroughly examined in the future. 

5. Numerical solutions 

5.1. Solution techniques. The asymptotic results derived in the previous section 
form the basis for a comparative study of piston-driven acoustic resonance phenom- 
ena in closed and open systems. Were one interested in circumstances that promoted 
shock-free flows, it would be useful to follow the solution approach used by Culick 
(1990) and Margolis (1993), involving a severe truncation of the infinitely coupled 
system of amplitude equations to a level tractable by analytical means. The truncated 
system typically includes four to six equations with two to three modes, based on 
which the existence and stability of limit cycles are determined using the concept of 
nonlinear dynamical systems. This mathematically elegant approach provides accurate 
assessments of nonlinear acoustic stability behavior only when large wave number 
spatial resolution is not required. It is incapable of describing the detailed wavefield 
structure, particularly the appearance and evolution of steep-fronted waves including 
shocks, the primary concern of the present study. 

As an alternative, one can truncate the amplitude equation system at a suffi- 
ciently high level and integrate the resulting coupled ordinary differential equations 
numerically, so that the global solution behavior is described accurately based on 
Fourier modal summations. This second approach has been employed successfully in 
related studies to trace the evolution of acoustic and weak shock waves (Culick, 
1976b; Wang and Kassoy, 1990a, 1990b), and is adopted here once again. 
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The first step in the numerical evaluation is to develop truncated versions of (44) 
and (45) for the closed system and of (75) and (76) for the ideally open case. If it is 
desired to include JV modes in the calculations, 2N coupled equations for ak and ßk 

have to be solved simultaneously. All the infinite summations must be replaced with 
finite summations in order to close the mathematical systems. Thus, in (44) and (45), 
the infinite sums are replaced by sums of N - k modes, whereas in both (75) and (76), 
the appropriate upper limits for the infinite sums are, in the order of their appearance 
in each equation, N-k, N, N-j, N-k, N-j, N-j, and N-l. The truncation 
level N is determined ideally by the need for accurate representations of steep-fronted 
shock phenomena. Pragmatic considerations of computational time have limited the 
total number of modes to N < 200 for the closed-system case and N < 25 for the 
open case. 

Numerical integrations are carried out by utilizing a standard IMSL library 
subroutine, IVPRK, which is based on fifth- and sixth-order Runge-Kutta methods. 
The routine adjusts the step sizes automatically in accordance with the specified 
global error tolerance, which is set to be 10~4. This error is sufficiently small in view 
of the larger truncation errors in approximating the infinite systems. Once the first N 
Fourier coefficients ak and ßk are evaluated, the time and spatial variations of the 
acoustic velocity and density can be calculated based on (35) and (36) (closed system) 
or (52) and (53) (open system). It is observed that the computational values for ak and 
ßk become increasingly inaccurate as k approaches N, because the truncation 
prevents the cascade of energy to higher wavenumber modes. Consequently, only the 
first \N to \N terms are actually utilized in the finite Fourier series summations used 
to find the solutions described in the next section. 

Results obtained from the multiple-scale perturbation analysis are compared 
with finite-difference solutions based on the MacCormack scheme, a predictor-correc- 
tor type of hyperbolic system solver with second-order accuracy in both space and 
time, capable of capturing shock waves (Anderson, Tannehill, and Pletcher, 1984). To 
increase shock resolution and damp out the associated Gibbs phenomena, the 
flux-corrected-transport (FCT) technique (Book, Boris, and Hain, 1975) is incorpo- 
rated into the numerical code. In the results presented below, 201 spatial grid points 
are typically used, and numerical experiments show that a Courant number of 0.985 
generates the best results. 

In order to apply the scheme, conservative versions of the governing partial 
differential equations must be used. The present computations are based on (2)-(4) 
for an open resonant system and their Lagrangian analogue for a closed system, so 
that each solution is comparable to the appropriate perturbation result. The oscilla- 
tory left boundary is mapped exactly into a fixed point j = 0 in the Lagrangian 
coordinate and hence imposes no special difficulty; in the Eulerian coordinate, on the 
other hand, the piston is located at x = 0, an approximation compatible with that 
employed in the perturbation analysis. 

52. Closed-system solutions. Figures 1(a) and Kb) display the resonant growth of 
the scaled acoustic velocity ü (u = el/2u) and density p (p = 1 + e1/2 p), respectively, 
at a fixed Lagrangian coordinate s = \ in a closed resonant system. The gas, initially 
static, is being driven by a piston that operates at the fundamental frequency CO = TT 
(v=l) with a dimensionless velocity amplitude of e = 0.01. The characteristic gas 
velocity (really Mach number) is thus O(0.1) in value. Solid lines represent the 
lowest-order perturbation approximations calculated from (35) and (36) based on a 
summation of 50 Fourier modes from an N = 100 calculation, whereas the dashed 
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FIG. 1. Time variations of (a) the scaled acoustic velocity ü(u = e1/2ü); (b) the scaled acoustic density p 
(p=l + e,/2p) at Lagrangian coordinate s=j in a closed resonant system, driven by piston motion 
u = esin(wf). The solid lines represent the lowest-order perturbation approximations «, and p„ calculated 
from (35) and (36), respectively, and the dashed lines represent finite-difference solutions using the MacCormack 
scheme. The maximum piston Mach number e - 0.01. 

lines denote the computational solutions obtained using the MacCormack scheme. 
The agreement between the two types of solutions prior to shock formation is quite 
good, and easily within the limits expected for the perturbation and complete 
solutions. Both exhibit an initial period of linear amplification which leads to severe 
waveform deformation as nonlinear effect accumulates. Finally, steep line segments 
appear at t ~ 12, implying the occurrence of a weak shock wave. Subsequent to shock 
formation, the MacCormack solution describes the shock extremely well. On the 
other hand, spurious spikes appear in the Fourier-based perturbation curves, although 
the latter still capture some useful features such as the shock position and strength. 

The appearance of spurious signals in Fig. 1 is caused by the poor convergence of 
Fourier series associated with discontinuous functions (Gibbs phenomenon). In fact, 
the Fourier coefficients ak and ßk behave like \/k for discontinuous functions, 
compared to \/kr (r > 2) for those that are continuous. Errors involved in truncating 
the infinite evolution system (44)-(45) become significant and accumulate rapidly 
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during numerical integration. A more quantitative error analysis can be found in 
Wang and Kassoy (1990b). As with all Fourier-based spectral methods, increasing 
modal-resolution is ineffective for accuracy improvement when discontinuities are 
present Numerical experiments conducted with increasingly large mode numbers 
produce little change in the magnitude of erroneous spikes. Nonetheless, sharper 
shock descriptions are obtained with an increased modal truncation level, due to the 
inclusion of higher wavenumber components. 

Once a shock appears, it traverses the gas repeatedly as it reflects from solid 
walls at both ends. The time intervals between two neighboring passages are unequal 
because the observation of the shock occurs at a location three times farther away 
from the right boundary than from the left. Each shock passage tangs about a 
positive density jump (cf. Fig. lb), but the sign of the velocity jump is dependent on 
the direction of propagation (cf. Fig. la). As time progresses, the oscillatory amplitude 
growth is seen to become saturated, and a limit cycle is approached as is demon- 
strated more clearly in the longer-time result of Fig. 2. The latter shows the same 
acoustic velocity as plotted in Fig. la computed over an extended time using the 
MacCormack scheme. . .    , 

Insights about the physical phenomena occurring in the limit-cycle can be gamed 
bv using an energy perspective. Figure 3 depicts the instantaneous acoustic energy 
input by the piston pu\,-0 (the lower curve), and the cumulative acoustic energy input 
(the upper curve), both calculated using the MacCormack scheme. Evidently the 
piston velocity is basically in phase with the local pressure disturbance, and therefore 
the boundary work is predominantly positive. In the limit cycle, the energy input per 
unit cycle is seen to be a constant. Since the right end of the system is a reflector the 
only way to remove mechanical energy is through shock dissipation, which is also a 
constant per cycle because the shock amplitude is a periodic function of time. One 
may conclude that the limit-cycle shock oscillation in a closed system is supported by 
a balance between piston energy input and shock damping. 

53 Open-system solutions. Acoustic resonance in an open system is profoundly 
different from that found in a closed system. First, the magnitudes of the limiting 
amplitude and nonlinear growth-time are worth emphasizing. Based on the scale 
relations described in the previous sections, an 0(e) acoustic driver can excite 
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F!G. 2. The same acoustic velocity as depicted in Fig. 1(a) plotted over extended time, to demonstrate the 
evolution to limit cycle. The results are obtained using the MacCormack scheme. 
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FIG 3 Instantaneous (lower curve) and cumulative (upper curve) acoustic energy input into the closed 
resonant system by a vibrating piston, calculated based on finite-difference solutions under conditions identical to 

those in Fig. 1. 

0(e1/3) oscUlations over r = 0(e"2/3) in an open system, relative to the maximum 
amplitude of 0(e1/2) and the growth-time of 0(e"1/2) in a closed system. Other 
unique features of open-system oscillations are revealed by the following example 
calculations, conducted for e = 0.08 (e1/3 = 0.2) and v = 1 (to = ir/2) and with zero 
initial conditions. . 

The time-evolution of the acoustic velocity at x = i is plotted in Figs. 4(a) and 
4(b), based on the summation of 10 Fourier modes from an N = 15 computation, and 
the MacCormack solution, respectively. These time-response curves are the result of 
resonant growth and nonlinear waveform deformation to generate steep-fronted 
waves. The two types of solutions agree well when the solutions are smooth, and 
deviate more substantially as large gradient structures develop. The differences are 
due to the relatively poor convergence properties of truncated Fourier series repre- 
sentations of steep-fronted waves. 

To examine the effect of Fourier modal truncation, perturbation solutions using 
5, 10, and 18 Fourier mode summations from iV = 8, 15, and 25 calculations, 
respectively, are plotted in Fig. 5 in terms of acoustic velocity and density at x = j. 
The results of finite-difference calculations are depicted as dotted lines for compari- 
son. The time range is shorter than that in Fig. 4, so that details of nonlinear 
distortion of the time-response curves can be viewed with clarity. Near f = 40, the 
three finite Fourier series summations produce results that are essentially indistin- 
guishable from one another to the graphical accuracy, and closely resemble the 
finite-difference solutions, indicating satisfactory convergence of the series. The 
quantitative difference between the two solution types are within the error bound 
expected for the perturbation approximation, which, given e1/3 = 0.2, can be as large 
as 20%. As time evolves, the time-response curves contain steep gradients and sharp 
corners that are poorly represented by the Fourier modal summations. The truncation 
errors involved in approximating the infinite evolutionary system (75)-(76) become 
severe, rendering the numerical solutions less accurate. Furthermore, it is observed by 
comparing the numerical data from the three truncation levels that accuracy improve- 
ment with increased modal resolution is fairly marginal. This is again due to the fact 
that Gibbs phenomenon cannot be eliminated with finite modal summations (unless 
some strong damping mechanisms are introduced into the inviscid system to prevent 
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FIG. 4. Tune variations of the scaled acoustic velocity u(u = e1/3u) at x = £ in an open resonant system 

(isobaric eat), driven by piston motion up = e sin((ir/2)'). The maximum piston Mach number e = 0.008. (a) 
Leading-order perturbation solution u, calculated from (52); (b) finite-difference solution. 

the generation of small-scale structures unresolvable by the highest Fourier mode). 
Despite the apparent deficiency, both Figs. 4 and 5 indicate that some useful features, 
such as the oscillatory amplitudes and relative phase, are preserved by the truncated 
modal solutions. 

An interesting point to notice from Fig. 4 is that shortly after the formation of 
steep wavefronts, the oscillatory amplitudes reach a maximum and then decline 
instead of maintaining a constant value. A longer-time calculation based on the 
MacCormack method, illustrated in Fig. 6 for the acoustic velocity at x = {, shows 
beat-like patterns of nonlinear amplitude evolution. The peak-to-valley ratio of the 
envelope decreases with time, and it is expected that eventually the system relaxes to 
an equilibrium oscillation of constant amplitude. However, we do not have sufficient 
numerical accuracy to extend the computation reliably to the time required in order 
to support this assertion. 

The unusual character of the time-response curves in Figs. 4-6 can be better 
understood by examining the time variation of the spatial wave structure. In Fig. 7 the 
results of the finite-difference calculation are used to plot the velocity distribution at 
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FIG. 5. Comparison of leading-order perturbation solutions based on summations of 5, 10, and 18 Fourier 

modes and the finite-difference solution obtained using the MacCormack scheme. Plotted are the scaled acoustic 
velocity ü (u = 1 + e,/3u) and density p (p = 1 + e1/3 p) as a function of time atx=j, under conditions 
identical to those in Fig. 4. 

a sequence of times starting from t1 ~ 60.14. The direction of propagation at each 
instant is indicated by a small arrow. At tx we observe a compression wavefront 
propagating leftward. It reflects from the piston face to the right, and subsequently 
steepens to form a weak shock (t2). Compression signals emitted from the piston 
cause the shock strength to increase (r3). When the shock hits the isobaric right 
boundary, its phase is changed by v and a rarefaction wave appears (r4). During the 
next round-trip to the piston and back, the rarefaction wavefront gradient decreases 
until tv Then, upon reflection of the rarefaction wave from the isobaric boundary, a 
compression wavefront reappears (f8), leading to the formation of another shock. The 
passage of the rapidly evolving waveform is responsible for the drastically varying 
rates of change displayed in Figs. 4-6. One notices after-shock oscillations in Fig. 7 
that arise from the computational scheme even though the FCT approach was 
carefully employed. The Fourier series-based calculations give the same quantitative 
behavior, but with relatively poor shock resolution because only a limited number of 
modes are available. 

The intermittent occurrence of the weak shock in an open system discovered in 
this study is particularly interesting. According to Seymour and Mortell (1973b) and 
Jimenez (1973), there exist no shocked periodic solutions for an ideally open tube 
driven at the linearly resonant frequency (cf. the origin in Jimenez's Fig. 9). In other 
words, the limit-cycle solution for this parameter combination consists of smooth 
functions only. The results of our initial-boundary-value study suggest that en route to 
a limit-cycle, characterized by slow, periodic amplitude modulation, weak shocks are 
generated intermittentiy. 

The mechanism which limits the wave amplitude from growing indefinitely in an 
ideally open system is fundamentally different from that in a closed one. While the 
effect of shock dissipation may still play a role, the preeminent factor is a shift in the 
relative phase between the piston velocity and the local acoustic pressure, resulting in 
negative boundary work at times, as demonstrated in Fig. 8. It is believed that this 
occurs because the relatively large amplitude disturbances alter the wavespeed 
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FIG 6 Long-time evolution of the scaled acoustic velocity ü{u = e1/3u) at x=^ in an open-ended 
resonant system, under identical operating conditions as in Fig. 4. The results are obtained usmg the 
MacCormack finite-difference scheme. 

substantially due to nonlinear effects, so that the system resonant frequency deviates 
from the linear resonant frequency at which the piston operates. When the piston 
work is mostly negative during a cycle, the net effect is a decrease in the total acoustic 
energy and hence the wave amplitudes. However, a smaller amplitude oscillation 
pushes the nonlinear resonant frequency closer to the piston frequency, and wave 
amplification ensues. This type of negative feedback generates the slow amplitude 
modulation exhibited in Fig. 6. It is anticipated that the piston-generated net work 
should be zero after each period once a limit-cycle is reached. 

6. Discussion. The results presented for closed- and open-ended systems are 
based on the model in (2)-(4) which includes purely isentropic relationships among 
the thermodynamic variables. Given the magnitudes of the nonlinear disturbances, 
this model provides accurate p-p relationships with respect to the perturbation 
results, at least until the weak shock forms. Subsequently the mathematically weak 
solutions are capable of predicting the acoustic energy damping caused by entropy 
generation in the shock (Smoller, 1983; Wang and Kassoy, 1990b). However, one must 
be aware that entropy accumulation and spatial variation arising from repeated 
passages of time-varying shocks on timescales t» 0(1) may alter the state relations 
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FIG 8 Instantaneous (lower curve) and cumulative (upper curve) acoustic energy input into the 
open-ended resonant system by a vibrating piston, obtained from finite-difference solutions under operating 

conditions identical to those in Fig. 4. 
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sufficiently to invalidate, at least formally, the use of a single isentropic relationship 
throughout the entire region. Rather, one may have to account for small entropy 
changes across the shock and the accumulated effect of these changes by employing 
distinct isentropic results on either side of the propagating shock. These effects, not 
addressed definitively either here or in previous work focused on resonant systems, 
should be considered more fully in the future in order to evaluate the accuracy of the 
long-time solution presented here. 

The mathematical models employed in this study are paradigms for investigating 
the impact of specific boundary conditions on an idealized physical system. In 
particular, the isobaric end-condition imposed in the open tube analysis is a crude 
approximation to what is found in a laboratory experiment, since it precludes acoustic 
energy loss at the open end. The nonlinear boundary condition proposed by 
Wijngaarden (1968) and its variants provide a much more realistic alternative, 
because they contain adjustable parameters modeling certain physical effects (jet-like 
outflow and sink-like inflow) at the tube exit. Investigations along this line can be 
found in, for example, Keller (1977), Disselhorst and van Wijngaarden (1980), and the 
references therein. 

It should be recognized that the time-history of shock formation and subsequent 
gasdynamic evolution in the open-ended tube (cf. Fig. 7) is valid formally only for the 
pressure-node boundary condition associated with an infinite value of the admittance 
constant a. Jimenez (1973) and Seymour and Mortell (1973b) demonstrate that the 
long-time, quasi-steady waveform varies substantially as the acoustic admittance at 
the open end changes from infinity to large but finite values. Unfortunately, their 
analyses do not provide insights into the solution trajectories nor, therefore, into the 
evolution of wave systems leading to the assumed quasi-steady solutions. 

Closed-system eigenfunctions are frequently employed in the study of stability 
characteristics of rocket engine chambers (Culick, 1990). These systems are character- 
ized by axial outflow through a nozzle as well as by transverse injection of gaseous 
combustion products at the propellant surface. Hence, the imposition of a closed 
boundary condition, particularly at the downstream end of the chamber prior to the 
nozzle, is a significant approximation that has uncertain consequences. The resulting 
basic amplitude equations contain only quadratic nonlinear effects like those found in 
the present study of a closed system. In contrast, Margolis's (1993) nonlinear stability 
study of an open-ended pulse combustor, and that done here for an open resonant 
system, show that the appropriate basic amplitude equations should contain only 
cubic nonlinearities. Clearly, the flow dynamics produced for the open-ended system 
are quite different from those for the fully closed system. This suggests that the 
accuracy of predictions obtained from the rocket engine stability studies should be 
tested in order to determine the quantitative and qualitative impact of approximate 
eigenfunctions on the detailed evolutionary responses of the system. 

As a related matter, it is important to recognize that if steep-fronted waves are 
created or appear spontaneously in an inviscid system, a modal description of then- 
evolution requires a high-order truncation. In this sense results of limit cycle analyses 
based only on a few lower-order modes preclude the appearance of shocks at any 
time. If a particular system is likely to develop compression waves, a higher-order 
truncation of a modal analysis is recommended. 

Finally, we conclude this section by commenting on the relative merits of the 
perturbation and finite-difference methods as applied to the present problem. The 
MacCormack scheme is used because it captures shock waves in an efficient way. 
However, it is difficult to ascertain the physical origins of the observed phenomena 
directly from the numerical output. On the other hand, the multiple-scale perturba- 
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tion analysis and the individual steps leading to the derivation of the amplitude 
equations can be interpreted physically to discover the origin of the predicted events. 
The powerful scaling laws discovered in the perturbation scheme allow us to predict a 
priori the limiting amplitudes and nonlinear growth times in an order of magnitude 
sense The analytical solution forms (35), (36), (52), and (53) give explicit representa- 
tions of standing waves (or, equivalently, pairs of counterpropagating traveling waves) 
with slowly modulating amplitudes. The amplitude evolution equations derived (cf. 
(44) (45) (75) and (76)) reveal the unique characters of closed- and open-system 
acoustics'in terms of quadratic and cubic modal interactions, and demonstrate how 
acoustic energy is transferred from the forced mode to other modes. Since these 
mode-coupling equations are independent of the amplitude parameter e once they 
are truncated and solved numerically, one can obtain complete solutions for any e by 
means of simple Fourier summations. The results demonstrate that the truncated 
systems can describe the evolving wavefields adequately until shock formation. How- 
ever the persistent appearance of shock phenomena undermines the effectiveness of 
the Fourier series solutions, and in this case the finite-difference method provides a 
useful remedy. This study exemplifies how analytical and computational approaches 
can complement one another to generate insightful and reliable solutions. 

7 Summary. In this paper the evolution of acoustic oscillations driven by a small 
amplitude vibrating piston is examined theoretically using an initial-boundary-value 
approach. Single- and multiple-scale perturbation techniques employing Fourier 
eigenfunction summations, as well as finite-difference calculations, are employed to 
obtain solutions. The primary objective is to elucidate the effect of the far-end 
boundary condition on the time-evolution and maximum amplitudes of the torced 
acoustic disturbances. . „„„j^,» 

When physical conditions at the far-end boundary are characterized by a positive 
and finite acoustic admittance, an 0(e) piston Mach number produces gasdynamic 
disturbances of the same order of magnitude. The lowest-order linear solution 
describes the exponential decay of acoustic transients, which leads to periodic, 
auasi-steady oscillations at the frequency of the driving piston. 

Linear resonant amplification is possible only when the admittance function 
approaches zero (closed end) or infinity (isobaric exit). Under resonant conditions the 
linear perturbation scheme is extended to higher orders to determine the wave 
nonlinearization time at which nonlinear effects suppress the linear amplitude ^growth. 
It is found that in a closed resonant system the wave growth time is of OU ) and 
the limiting amplitude is of 0(e1/2). In comparison, in an open system, the growth 
time and limiting amplitude are of (Xe~^) and O(e^), respectively _ 

Based on the above scales, a weakly nonlinear analysis using multiple-timescale 
expansions is used to study the nonlinear wave evolution under resonant conditions 
for *» (XI). The solutions are expressed in terms of Fourier summations of standing 
wave modes with slowly modulating amplitude functions. The latter are described by 
an infinite system of coupled ordinary differential equations. These equations are 
derived from a second-order perturbation analysis in a closed system and contain 
quadratic modal interactions. In an open system one must use a third-order analysis 
to obtain the amplitude evolution equations containing cubic modal interactions. As a 
result, solution behavior is drastically different for the two cases 

The closed-system solution describes the formation of weak shock waves and 
their repeated reflections from both boundaries leading to a limit cycle. In contrast 
shocks occur only intermittently in an open-ended system, disappearing upon each 
reflection from the isobaric boundary. It should be noted that the transient solution 
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described here accommodates shocks in an open-ended resonant system because 
spontaneous evolution of all waveforms is permitted. No such shocks have been 
predicted by earlier investigators using a purely periodic solution form to describe the 
limit cycle. 

The perturbation-based results are supported and extended by a computational 
solution based on the MacCormack finite-difference method. The numerical solutions 
are remarkably similar to those found from the weakly nonlinear, fully transient 
analysis. 

Appendix. The coefficients A"jkl - Af
jk, appearing in (75) and (76) are defined as 

follows: 

A%/-2;V(-l)y 

(Al) 

-lf,j-l+l,k-j.k-(y-2)H',j-l+Lk-j,k 

(-l)B+; 
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j-rr 
+ 7-(4c-;.n.* + (r-2)^-;.n.*) 

A*   =2;V(-l)y 

(A2) 
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+ 2 E $„.;,,-,+1 
n-1 

4- Tc — Jc 

^1n,k+j,k      2n,k,k+j 

jit 
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n-1 

(-1) ,»+; 
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Ai,-2M-iy 
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(A9) 

lmn= f xcos(\mx)sin(\„x)dx, Jo 
(A10) 

*L- (\l-x2)sm(\mx)sm(\nx)dx, Jo 
(All) 

Ifmn= f sin(A,x)cos(AmA:)sin(Anx)d[r, 
0 

(A12) 

I(imn = fX{0 - y)cos[(A, - A,)x] - (y- DcosKA* + k,)x\ -2(-l)*+'} 
•'o 

X sin( \mx) sin(A„x) dx, 

(A13) 

I'kimn - C{- <3 - r)cos[(Ak + k,)x] + (y- l)cos[(At - A,)*] - 2(-l)k+!) 

Xsm(\mx)sin(Xnx) dx, 

(A14) Ha
mn= f\l -x2)cos(\mx)cosU„x) dx, 

(A15) Himn= f cos(Xix)cos(\mx)cos(.\„x)dx, 
-'n 

(A16) 

Hc
klmn = 2JT1 j^y^ cosKA* - A,)*] - | cos[(At + A,)*] - (-1)*+'} 

Xcos(Amx)cos(Anx) dx, 

(A17) 

^/mn = 2/o
1{--^I^cos[(Ai + A/)x]+|cos[(A,-A/)x]-(-l)':+,j 

x cos( Am x) cos( Xnx) dx. 
The above equations are in a relatively primitive form that fostered algebraic 

accuracy in the course of a laborious derivation. Undoubtedly, more compact formu- 
las could be derived. To find numerical solutions of (75) and (76), explicit expressions 
for the integrals in (A9MA17) have been obtained, which are used in combination 
with (A1)-(A8) to compute the coefficients. 
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The cylindrical, axisymmetric Navier-Stokes equations are solved numerically to study the generation 
and evolution of vorticity in an injection-induced transient shear flow. An initially steady internal flowfield 
driven by constant sidewall injection is disturbed by positive transient sidewall injection, which simulates 
the unsteady mass input from propeliant burning variations. The disturbance amplitude is as large as 
that of the steady sidewall injection to ensure that nonlinear effects influence the vorticity field evolution. 
Initial value solutions show that relatively intense vorticity is generated at the sidewall and eventually 
fills the cylinder with a rotational flow. Although the pressure response is essentially that found in acoustic 
stability theory, the axial and radial velocity components contain large local radial velocity gradients that 
cannot be predicted from acoustic theory alone. 

I.   Introduction 
SOLID propeliant combustion in a rocket motor generates 

gaseous products that induce a low axial Mach number [M 
= C(10"2-10"')], large flow Reynolds number [Re = C(104- 
106)] internal shear flow in a cylindrical chamber where the 
aspect ratio is S » 1. Inert flows with these characteristics 
can be generated by injecting gas through the porous sidewall 
of a cylinder. Flow transients are then induced by specified 
time-dependent boundary conditions applied on some surface 
or on the exit plane. The complete time-dependent shear flow 
is now known to include vorticity distributions,1"8 as well as 
the more familiar acoustic disturbances studied by many in- 
vestigators in the past.9"12 

Brown et al.1-2 and Brown and Shaeffer3 conducted labora- 
tory experiments in a cold flow rocket motor chamber ana- 
logue. Velocity measurements taken along and across the cy- 
lindrical chamber show that there is a significant unsteady 
rotational flow component present everywhere. This type of 
vorticity is seen also in the study by Vuillot and Avalon" who 
used computational methods to solve the compressible 
Navier-Stokes equations in a channel with constant sidewall 
mass injection. Both results demonstrate that for sufficiently 
large wall injection rates unsteady vorticity need not be con- 
fined to thin viscous acoustic boundary layers adjacent to the 
injecting wall, like those observed in the numerical studies of 
Baum and Levine13 and Baum14 and in the acoustic boundary- 
layer analysis of Flandro.5 

Flandro and Roach15 and Smith et al.,s describe numerical 
simulations of the Brown et al.u experiments. Significant ra- 
dial gradients in the axial velocity are seen about halfway out 
toward the centerline. They capture the qualitative features of 
the spatial vorticity distributions observed by Brown et al.1"2 

Flandro and Roach15 describe an initial attempt at develop- 
ing an analytically based model of the Brown and co-worker 
experiments. A more complete version is given in Flandro,17 
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where a theory is developed for coexisting transient vorticity 
and acoustic waves throughout a cylindrical chamber. The 
steady, inviscid rotational Culick18 solution, associated with a 
uniform injection Mach number M, « 1, is disturbed by a 
smaller ü(e) acoustic velocity that varies harmonically in time. 
Perturbation methods are used to derive inviscid, linear, small 
disturbance equations for the rotational part of the axial ve- 
locity. The momentum equation itself can be used to show that 
the amplitude of the vorticity generated at the injection surface 
is 0(e/A/2) relative to the vorticity associated with the steady 
Culick18 profiles. Hence, for sufficiently large values of e, the 
transient vorticity can be more intense than that of the steady 
Culick velocity components. Calculated axial velocity varia- 
tion with radius is qualitatively similar to the spatial oscilla- 
tions observed experimentally by Brown et al.1-2 

Tseng and Yang1' and Tseng et al.7 provide a computational 
model for a premixed laminar flame adjacent to a cylindrical 
porous surface through which a combustible mixture is in- 
jected. The flame is a surrogate for solid propeliant combustion 
in a rocket chamber. Prescribed boundary disturbances are the 
sources of transients in the flowfield. In this reactive model of 
a chamber, flow vorticity appears in the vicinity of the wall 
and the adjacent flame. 

Roh and Yang20 have done a similar computation for com- 
bustion processes associated with double-base solid propel- 
lants. Longer run times and better spatial resolution lead to the 
appearance of vorticity through 75% of the half-height of the 
rectangular chamber. 

Zhao et al.21 as well as Zhao and Kassoy8 use a systematic 
asymptotic analysis to formulate an initial boundary value de- 
scription of vorticity production in a low Mach number (M « 
1), weakly viscous internal flow (Re » 1), sustained by mass 
addition through the sidewall of a long, narrow cylinder (5 » 
1). A hard blowing condition (characteristic injection speed is 
much larger than the characteristic axial speed divided by 
Re,n (Ref. 22)) is used. An 0(M) axial acoustical disturbance, 
generated by a prescribed harmonically time-dependent closed 
endwall velocity, interacts with the basically inviscid rotational 
steady flow to produce unsteady vorticity at the injecting si- 
dewall. Baroclinicity and volume dilatation are higher-order 
sources of unsteady vorticity production in this nearly isother- 
mal flow. The complete axial velocity is found from a super- 
position of three components of equal magnitude. First, the 
steady component is described by a weakly rotational, steady 
solution to inviscid Euler equations known by Culick.18 Sec- 
ondly,    there    is    a    planar    irrotational    acoustic    field. 
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derived from a traditional linear wave equation that satisfies 
boundary conditions at the closed and open ends of the cyl- 
inder. Finally, when Re = 0(S2/M2), the strongly rotational, 
weakly viscous, nonlinear component varies simultaneously on 
the length scale of the tube radius 0(1) and on an 0(M) smaller 
scale similar to those described in the study by Flandro and 
Roach.15 Mathematical formulas are used to prove that the vor- 
ticity is generated at the wall by an interaction between the 
injected fluid and the time-dependent axial pressure gradient. 
It is then diffused on the short Ü(M) radial length scale and 
convected subsequently toward the axis by the radial compo- 
nent of the injection-induced flowfield. Initially, the intense 
wall-generated vorticity is separated from the weakly rota- 
tional flow of the Culick18 solution by a sharply defined front 
that convects in the radial direction at the local radial speed. 
Eventually, the wall-generated rotational flow fills the entire 
cylinder. 

Computational methods are used by Kirkkopru et al. to pro- 
vide qualitative supporting evidence for the solutions described 
in Zhao et al.21 In this case the driving disturbance is a har- 
monic pressure transient applied on the exit plane of the cyl- 
inder, like that used by Vuillot and Avalon.4 Grid size and 
spatial distributions are chosen to accommodate the small 
length scale velocity variations throughout the cylinder known 
from the study by Zhao et al.21 In analogy with the analytical 
effort, the unsteady rotational component of the axial velocity 
is extracted from the numerically generated total value. The 
initial-boundary value solution properties and characteristics 
are similar to those found from the asymptotic analysis in 
Ref. 21. 

The objective of the present work is to compute unsteady 
vorticity production and evolution in a finite cylinder with spa- 
tially distributed, transient injection from the sidewall. The lat- 
ter mimics unsteady burning of a solid propellant surface. The 
two-four method23 is used to obtain solutions to the unsteady, 
compressible Navier-Stokes equations in a cylindrical axi- 
symmetric geometry. Parametric values for Re, M, and S are 
chosen to ensure that the hard blowing condition of Cole and 
Aroesty22 (82/Re « 1) is met and that the analytically derived 
weakly viscous condition Re = C(S2/M2) is satisfied. Grid 
points are distributed in the radial direction to resolve Ü(M) 
length scale velocity variations throughout the cylinder as pre- 
dicted by the asymptotic study.21 The unsteady rotational com- 
ponent of the axial velocity uv, extracted from the numerical 
solutions, is used to describe the generation and evolution of 
the nonlinear unsteady vorticity field in the cylinder. The pres- 
ent computational results show that unsteady vorticity is gen- 
erated at the injecting sidewall by an interaction between the 
injected fluid and the axial pressure gradient arising from a 
planar acoustic wave field induced by the sidewall injection 
transients. In the present case, the vorticity is convected away 
from the wall into the chamber by the spatially distributed 
unsteady injected flowfield. In previous studies by Zhao et al.21 

and Kirkkopru et al.,s where the sidewall injection velocity is 
spatially uniform and constant, the unsteady vorticity is con- 
vected by the simpler steady radial velocity field. For suffi- 
ciently short times, a well defined front separates the relatively 
low vorticity chamber core flow from a region of more intense 
unsteady vorticity generated initially at the wall. The radial 
location of the vorticity front varies with axial location because 
the transient sidewall injection distribution is axially depen- 
dent. 

Fully resolved, time-dependent results enable one to under- 
stand the source and evolution of unsteady vorticity in the 
system, its ultimate distribution, and the length scales on which 
it is important. These insights are difficult to extract from the 
cited previous work because 1) the radial spatial variations in 
the numerical solutions are not adequately resolved, and 2) the 
numerical results are frequently presented in time-averaged 
form, so that the information about the transient evolution of 
the field variables is lost. 

II.    Computational Model 
The flowfield is described by the cylindrical, axisymmetric, 

laminar, compressible Navier-Stokes equations, for a perfect 
gas, written in nondimensional conservative form: 

dt      dx      dr      r 
(1) 
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is the total fluid energy. 
The equation of state for a perfect gas is 

p = pT 

(3) 

(4) 

Nondimensional variables, defined in terms of dimensional 
quantities denoted by a prime, are given by 

x = x'lV        r = r'/R'        u = u'/U'K 

v = v'/V;        p = p'lp'a       p=p'/pö (5) 

T=T'/T0        t=t'lt'a        Cv = C'JClo 

Characteristic length scales for the axial and radial directions 
are chosen to be the length of the tube V and the radius of 
the tube R', respectively. The known characteristic sidewall 
injection speed of the fluid V'K is related to the characteristic 
axial speed U'R through the global mass conservation relation- 
ship U'K = SV'g, where 5 = L'lR' is the aspect ratio of the tube. 
Pressure is nondimensionalized with respect to the static pres- 
sure compatible with the injected fluid density and tempera- 
ture, p'a and To, respectively. Time is nondimensionalized with 
respect to the tube axial acoustic time t'„ = L'/ai, where a£ = 
(7/>o/Po)1/2 is the characteristic speed of sound. Here, the ratio 
of specific heats 7 = 1.4 is used in the present computations. 
The viscosity, specific heats, and conductivity are treated as 
constants in these calculations, because temperature variations 
are very small. 
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The following expressions define the flow Reynolds number, 
the Prandtl number, and the characteristic axial flow Mach 
number, respectively: 

Re = 
Mo 

Pr = 
do 

(6) 

Note that the acoustic Reynolds number ReA = Re/M, and the 
injection Mach number M, = M/S. In a typical solid rocket 
motor chamber Re = 0(10"-106), Pr = 0(1), M = 0(10-2- 
10-1), and 8 = 0(10). 

The Navier-Stokes equations are simplified by ignoring the 
axial transport terms. Justification for the reduction is based 
on the asymptotic analysis in Zhao and Kassoy8 and Zhao et 
al.21 valid for M « 1, 8 » 1, and Re » 1 provided that the 
hard blowing condition 82/Re « 1 is satisfied. As a result, the 
computation time is reduced significantly without sacrificing 
flow physics. Furthermore, the dissipative effects of the re- 
maining transport terms are sufficient to avoid artificial damp- 
ing terms needed in other similar computations.'3"1"4 

The Navier-Stokes equations are solved by using the two- 
four explicit, predictor-corrector scheme,23 which is a fourth- 
order variant of the fully explicit MacCormack scheme. This 
method is highly phase-accurate and is therefore very suitable 
for wave propagation and wave interaction problems. The 
number of conditions specified on a boundary are equal to the 
number of characteristics pointing into the computational do- 
main.7 The remaining numerically required conditions are ex- 
trapolated from the computational domain to the boundary. 

The size and the number of uniformly spaced grids are cho- 
sen to accommodate properly the local variations of flow var- 
iables in the axial and radial directions as suggested in the 
asymptotic analysis by Zhao et al.21 

A steady-state flow solution is required as an initial condi- 
tion for the transient flow computation. Boundary conditions 
include an impermeable head end at x = 0 (« = 0), an assumed 
pressure node at the exit plane x = 1 (p = 1), a specified 
injection velocity (v = — 1), temperature (7"= 1), and a no-slip 
condition for the axial flow speed (u = 0) on the sidewall at 
r = 1 as well as symmetry conditions on the centerline, r = 0. 

The analytically calculated velocity profiles for incompress- 
ible, rotational, inviscid flow in a long, narrow cylindrical tube 
(Culick18) are used as starting profiles for the steady, com- 
pressible, viscous flow computations. This approach reduces 
the computation time required to reach the final converged 
steady flow configuration relative to doing a complete transient 
solution by initiating wall injection at / = 0. In this calculation 
the solution converges to a steady state defined by the condi- 
tion that the total injected mass is equal to the total exiting 
mass. Then the solution is run for as much as 0(10) additional 
axial acoustic times to ensure that the steady-state solution is 
stable. Results given in Fig. 1 show the steady normalized 
axial, «J(JC, r)lus (x, r = 0), and radial velocity Vs(;c, r) profiles 
at different axial locations, x = 0.025, 0.5, and 1.0, when M - 
0.06, 5 = 20, and Re = 103, respectively. In these graphs, Cul- 
ick18 incompressible flow profiles that are invariant to axial 
location are nearly indistinguishable from the computed pro- 
files. Small differences arise from the small but finite axial 
flow Mach number used in the computation. Low Mach num- 
ber compressible flow theory implies C(Af2) differences be- 
tween the Culick18 solution for 8 » 1 and the computational 
result. 

A steady-state flow solution for each Mach number and 
Reynolds number is obtained initially to prevent introducing 
unwanted noise into the unsteady computations. 

Zhao et al.21 have used formal asymptotic methods to show 
that the chamber flow is weakly viscous when the condition 
Re = C(52/Af2) is satisfied and when strong injection (S2/Re 
« 1) prevails. The latter condition implies that V'R » U's/Reltt 

(Ref. 22). The asymptotic theory shows that the primary vis- 
cous stresses are in the radial direction. Hence, it is useful to 
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Fig. 1 a) Normalized steady axial velocity and b) steady radial 
velocity profiles at x = 0.025 (solid line), 0.5 (dotted line), and 1 
(dashed line) for M = 0.06, Re = 10s, and S = 20. 

ignore the axial transport effects and retain only the radial 
transport terms in the reduced Navier-Stokes equations. The 
steady flow solution is obtained faster and, at the same time, 
the largest important viscous effects in radial direction are re- 
sponsible for physically meaningful damping, similar to the 
artificial damping terms that have been introduced in some 
earlier studies.15'"'' 

Once a converged steady flow configuration for specified 
values of 8, M, and Re is obtained, the flow is disturbed by 
adding an axially distributed unsteady sidewall injection com- 
ponent to the steady value. The total wall injection velocity is 
then given by 

v{x, r = 1, f) = -[1 + A cos(.nirx/2)(l - cos wt)]     (7) 

which can also be written in terms of a positive mean com- 
ponent 1 + A cos(nirxl2) and a fluctuating component pro- 
portional to cos at. Here ca is the dimensionless angular fre- 
quency, A = 0(1) is the amplitude of the unsteady wall 
injection, and n is the spatial dependence parameter. The total 
mass flow from the wall is always positive. The other bound- 
ary conditions are the same as those for the steady flow com- 
putations. 

Unsteady computations are carried out for several different 
axial Mach numbers and spatial dependence parameters. In this 
study the boundary driving frequency is w = 1. This is a rel- 
atively low frequency in the sense that the period t = 2ir is 
larger than the time required for an acoustic wave to do a 
complete circuit of the chamber, t = 2. 

IQ.    Results and Discussion 
The numerical code has been run approximately 10 cycles 

after the injection transient is turned on to check if spurious 
numerical oscillations develop. For example, Fig. 2 shows the 
time variation of the centerline axial velocity at the midcham- 
ber {x = 0.5) for flow parameters M = 0.1, 8 = 20, Re = 103, 
A = 0.4, n = 1, and ta = 1. Note that the value at t = 0 cor- 
responds to the steady-state value of the centerline velocity at 
the midchamber. The solution appears to be quasisteady almost 
immediately. This solution property can be attributed to the 
transient pressure field seen in Fig. 3. The result given at x = 
0.5 shows that pressure solution is almost purely planar (x 
dependent only). For example, at x = 0.5 and t = 60 for three 
radial locations, r = 0, 0.5, and 1, p = 1.1480096, 1.1479678, 
and 1.1479073, respectively. The invariance to radial loca- 
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Fig. 2   Time history of the centerline axial velocity at x = 0.5 for 
M = 0.1, 8 = 20, Re = 105, o> = 1, A = 0.4, and n = 1. 

Fig. 3   Time history of pressure at x = 0.5 for 3f = 0.1, 5 = 20, 
Re = 10s, ft» = I, A = 0.4, and n = 1. 

tion results from the use of a large aspect ratio 5 = 20. Also 
note that the pressure deviation from the base value, C(10-1), 
is fully compatible with the asymptotic prediction in Zhao 
etal.25 

The purely harmonic behavior in Fig. 3, seen in all similar 
computational results,4,7-1' is cause for concern because the an- 
alytical analogue to this study23 shows that a single eigenfunc- 
tion of substantial amplitude should accompany the forced re- 
sponse. The eigenfunction arises from a solution to a linear, 
acoustic equation driven by transient effects on the sidewall 
boundary. In contrast, the numerical solution arises from a 
slightly viscous, weakly nonlinear mathematical system. It ap- 
pears that there are at least two possible sources for the dif- 
ference: 

1) The finite difference form of the nonlinear, slightly 
viscous equations will not produce an eigenvalue-like re- 
sponse. 

2) The numerical boundary conditions at the exit plane do 
not account for wave reflections in an appropriate way. 

These issues are the subject of the ongoing studies. Note 
that acoustic wave planar viscous damping occurs on a time 
scale i» 0(10*) (Ref. 26) for the Reynolds numbers consid- 

ered here. Hence, oil the time scale r = COO2) planar damping 
cannot annihilate an eigenfunction response. 

Following a procedure described by Lagerstrom,27 and sim- 
ilar to that employed by Flandro and Roach,13 Zhao and Kas- 
soy,' and Zhao et al.,21 the total unsteady axial flow speed may 
be divided into three parts 

u(x, r, 0 = us(x, r) + uf{x, t) + uv(x, r, t) (8) 

where us denotes the steady flowfield that is known as an initial 
condition for the unsteady computations. The second term uP 
is the weakly viscous, slightly nonlinear analogue to the irro- 
tational planar part of the flowfield found by Zhao et al.21 and 
Zhao.25 It is found from the difference between the unsteady 
axial speed and the steady axial speed on the centerline of the 
tube. The remaining term uv, defined as the rotational (non- 
planar) part of the unsteady axial flow speed, is found from 
Eq. (8) after us and uP are calculated. Once again, it is an 
analogue to the analytically obtained rotational velocity field 
described by Zhao et al.21 and Zhao25 and is used to describe 
the generation and evolution of the nonlinear unsteady vorac- 
ity field in the cylinder. Following the asymptotic analysis de- 
scribed by Zhao et al.21 and Zhao25 one can show that the 
rotational part of uv vanishes at the centerline for all times. 

Figure 4 shows the radial variation of the instantaneous un- 
steady axial rotational flow speed uv at midchamber (x = 0.5) 
for three time values after the injection transient is initiated at 
the sidewall. The flow parameters are M = 0.1, 5 = 20, and 
Re = 10s. The corresponding injection Mach number M, = 
M/S = 5 X 10"3. The disturbance frequency is a> = 1.0, a 
nonresonant frequency smaller than the first fundamental fre- 
quency of the tube, <u, = 17/2. 

One observes a radial velocity gradient (hence vorticity) ex- 
tending out about 0.35 units from the wall (r = 1) at / = 3.00 
(solid line) and to about 0.65 radial units when r = 6.00. At 
t = 9.90 the numerical data themself show that the rotational 
flowfield has spread throughout the chamber. 

The spatial distribution of the rotational part of the unsteady 
axial flow velocity at each time may be explained in physical 
terms by considering an interaction between the total unsteady 
injected flowfield and the axial planar acoustic wave induced 
and sustained by sidewall injection transients. The motion of 
a fluid particle injected radially into the tube from the sidewall 
at a specified axial location is affected by the harmonic vari- 
ation with time of the local axial planar pressure gradient. For 
instance, Fig. 5 shows the time variation of the axial pressure 
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Big. 4 Radial variation of u, at x = 0.5 when / = 3 (solid line), 
t = 6 (dashed line), and t - 99 (dotted line) for M = 0.1, 5 = 20, 
Re = 105, e* = 1, A = 0.4, and n = 1. 
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Fig. 5   lime history of axial pressure gradient, Bpldx, at x = OS, 
r = 0.95 for M = 0.1, S = 20, Re = 10s, to = 1, A = 0.4, and n = 1. 
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Fig. 6 Radial variation of u, at x = 0.5 when t = 2.96 (solid line), 
t = 5.92 (dashed fine), and t = 10.05 (dotted line) for M = 0.06, 
5 = 20, Re = 10*. to = 1, A = 0.4, and n = 1. 

the previous case. The amplitude of the nonresonant injection 
transient disturbance is A = 0.4. The sharply defined region of 
large velocity gradient is seen in Fig. 6 out to about 0.23 units 
from the wall at r = 2.96. One notes that at / = 5.92 the wave- 
length of the spatial oscillation of uv is smaller than that for 
the case when M = 0.1. This is an expected result because the 
total unsteady radial velocity field for M = 0.06, which trans- 
ports the fluid particles into the cylinder, is characterized by a 
relatively lower speed than that for the M = 0.1 case. Injected 
fluid particles are carried a shorter distance away from the 
sidewall towards the axis in a given time interval, relative to 
that for the stronger injection speed case, M = 0.1. At / = 10.05 
one notes that spatial oscillations are present about 0.7 radial 
units from the wall. 

Solution resolution requires 41 grid points in the axial di- 
rection and 101 grid points in the radial direction in the two 
cases discussed previously. Figure 6 shows that near the in- 
jecting wall one wavelength of the spatial oscillation of uv is 
represented by approximately 35-40 radial grid points. In con- 
trast, near the centerline, where the wavelength is smaller, 
fewer but an adequate number of grid points per wavelength 
are available to resolve the velocity gradients. 

The third case studied is for a smaller characteristic axial 
flow Mach number M = 0.02 (M, = 10-3), 8 = 20, slightly 
larger Reynolds number Re = 3 X 103, and the forcing fre- 
quency o> = 1.0. The results for the previous cases, M = 0.1 
and M = 0.06, imply that the number of radial grid points 
should be doubled for this weak injection case. There are 201 
equally spaced grid points in the radial direction to represent 
the spatial variation of u, accurately. Figure 7 shows the in- 
stantaneous variation of u» with respect to the radius at x = 
0.5 when t = 2.99, 4.93, and 10.00. It can be seen from this 
figure that axial velocity gradients are larger than those for 
larger Mach number cases presented previously. This implies 
that the absolute magnitude of the unsteady vorticity gener- 
ated at the wall is much larger than that of the higher Mach 
number flows. This unsteady vorticity field is converted away 
from the wall towards the center of the chamber by a rela- 
tively slower radial velocity component. Therefore, at t = 
10.00 only about 30% of the chamber is filled with the un- 
steady vorticity. 

Figure 8 shows the instantaneous radial variation of uv at 
x = 0.5 for larger times, / = 10.00, 20.01, 30.02, and 40.02. 
The computational data can be used to infer that the unsteady 
vorticity field spreads out toward the axis as time increases, 
so that eventually the entire cylinder is filled with an intense 

gradient, dp/dx, at a point where x = 0.5 and r = 0.95 for the 
case being discussed previously. As a result, a given fluid par- 
ticle emanating from the wall will be accelerated alternately in 
the positive and negative axial directions as it is converted 
toward the axis of the cylinder by the unsteady radial flowfield. 
Part of the fluid particle response is associated with irrotational 
acoustic effects. The rest is rotational, resulting from vorticity 
generation at the wall. 

Figure 4 shows that by t = 10 unsteady vorticity has filled 
the cylinder. But Fig. 3 shows no change in the /--independent 
pressure field as vorticity fills the system. It follows that the 
presence of vorticity does not affect the pressure field, as pre- 
dicted by Flandro and Roach" and in the asymptotic analysis 
of Zhao et al.21 and Zhao.25 This provides an explanation of 
why traditional acoustic stability theory yields transient pres- 
sure estimates that compare well with mose found experimen- 
tally, although the acoustic velocity field will differ consider- 
ably from that observed by Brown et al.u 

Figure 6 shows the instantaneous spatial variation of uv at 
x = 0.5 with respect to the radius when t = 2.96, 5.92, and 
10.05 for a smaller axial Mach number M = 0.06 (correspond- 
ing to the weaker injection, Mi = 3 X 10"3) and for the same 
Re = 10s. The forcing frequency a = 1.0 is the same as for 
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Fig. 7 Radial variation of u, at x = 0.5 when t = 2.99 (solid line), 
t = 4.93 (dashed line), and t = 10.00 (dotted line) for M = 0.02, 
S = 20, Re = 3 X 10s, to = 1,A = 0.4, and it = 1. 
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Fig. 9 Spatial variation of the unsteady distribution O as a func- 
tion of arial location and radial location at t = 30 for M = 0.1 and 
S = 20. 

level of voracity, approximately 0(l/M) larger than that as- 
sociated with the us velocity field 

Here again, the wavelength of the oscillatory structure de- 
creases as the centeriine is approached. This occurs because 
the rate of radial convection is reduced as the radial velocity 
component decreases toward zero near the axis of the chamber. 
The implication for mesh distributions is that there must be 
adequate spatial resolution throughout the cylinder, not just in 
an acoustic boundary layer near the injecting surface as used 
in a variety of earlier computations.4-7" Of course, this neces- 
sity arises because the injection velocity is sufficiently large to 
preclude the existence of a thin localized viscous layer like 
that considered by Flandro.5 

Figures 9-11 show the instantaneous unsteady voracity dis- 
tribution throughout the chamber for three cases, M = 0.1 (r = 
30.00), 0.06 (/ = 29.56), and 0.02 (t = 30.02), discussed earlier, 
where one notes significant variation in the axial direction. The 
unsteady voracity is computed from 

\buv      1 3(v - v5)l 
""     [dr      82       dx     J 

(9) 

20 r 
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.^ 

Fig. 10   Same as Fig. 9 but at * = 29-56" and M = 0.06. Note the 
different scale in fl. 

Fig. 11    Same as Fig. 9 but at t = 30.02 and M 
different scale in fl. 

-.<?> 

: 0.02. Note the 

defined as fl = Cl'l(U'RIR'), where primed quantities are di- 

mensional. The numerical results and the asymptotics of Zhao 
et al.21 show that the main contribution to fl is brought by the 
first term in Eq. (9). A comparison of Figs. 9-11, with sig- 
nificantly varying vertical scales, shows that the magnitude of 
fl increases with decreasing values of M. The distribution of 
voracity extends out to axis for the two larger Mach numbers 
in Figs. 9 and 10. Figure 11 shows a succession of wave-like 
morphologies extending to about r = 0.3. 

Long-time results (f = 52.42) for the M = 0.02 case are given 
in Figs. 12 and 13 to show that unsteady vorticity eventually 
fills the entire cylinder, even for a relatively small Mach num- 
ber. Although the graphical representation of fl in Fig. 12 ap- 
pears to imply that there is no vorticity close to the axis, the 
enlarged scale result in Fig. 13 demonstrates the presence of 
vorticity waves close to r = 0. 

Figure 14 provides the radial variation of the unsteady part 
of the radial speed, v - vs, at t = 30.02 and x = 0.5 for M = 
0.02, S = 20, Re = 3 X 105, n = 1, A = 0.4, and w = 1. The 
steady radial velocity vs, associated with constant wall injec- 
tion, is shown as curve b in Fig. 1. The result in Fig. 14 
corresponds to the axial velocity result in Fig. 8. A study of 
the numerical data shows that the vorticity front is located 
about 0.7 radial units from the wall. One may observe consid- 
erable spatial variation in the radial speed of the fluid toward 
the axis when 0.5 :£ r £ 1. 
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Fig. 12   Radial variation of ft at x = OS when t - 5ZA2 for M = 
0.02, Se = 3x 10s, <o = 1, A = 0.4, and n = 1. 
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<^ <=>^ 
Fig. 13   Unsteady vorticity variation in the region where 0 s x 
s 1, 0 £ r £ 0.25 for the same parameters and time in fig. 12. 
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Fig. 14   Instant radial variation of (v — Vj) at x = 0.5 when t = 
30.02 for the same flow parameters as those in Fig. 8. 

A more complex wall injection pattern is used to find the 
results in Figs. 15-18 for the case n = 3 in Eq. (7). The 
vorticity distribution fi is given for t = 7.48, 14.96, 22.44, and 
29.92 when M = 0.02, 8 = 20, Re = 3 X 105, <u = 1, and A = 
0.5. Note that the morphology of the surfaces is considerably 
more complex than those in Figs. 9-11 and 13 for n = 1. 
These graphs show at a fixed radial location that XI increases 
monotonically with axial position when the instantaneous wall 
injection speed decreases monotonically as x increases [n = 1 

^^ 
Fig. 15 Instantaneous unsteady vorticity variation throughout 
the cylindrical chamber at t = 7.48 for M = 0.02, 8 = 20, Re = 3 
X 1&, o> = 1, A = OS, and n = 3. The net mean injection speed 
in Eq. (7) is always positive. 

Fig. 16   Same as Fig. 15 but at f = 14.96. 

in Eq. (7)]. The relative increase in the radial gradient of uv 
with increasing x can be explained in terms of the vorticity 
generating interaction between the harmonically varying axial 
pressure gradient (see Fig. 5) and the fluid injected at a given 
axial location. In particular, the magnitude of the radial gra- 
dient of uv at the wall depends directly on the radial distance 
traveled by a fluid particle exiting from the injecting surface 
during one cycle in dpfdx. Downstream, more slowly moving 
injected fluid particles will be accelerated and decelerated by 
the variation in dp/dx on a shorter radial length scale than those 
upstream. As a result the radial gradient of uv is relatively 
larger at downstream locations. 

In contrast, the corrugated appearance of the surfaces in 
Figs. 15-18 arises from the variability of the injection speed 
along the cylinder surface. One may also observe that the ra- 
dial location of the front is dependent on axial position and 
reflects the characteristics of the sidewall injection distribution 
with axial coordinate in x. This implies that the front mor- 
phologies can be quite complex if the injection distribution is 
spatially irregular and complex. 

The amplitude of the unsteady vorticity distributions is 
0(Af"1) larger than that of the Culick" steady solution, a result 
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Fig. 17   Same as Fig. 15 but at t = 2Z44. 

Fig. 18   Same as Fig. 15 but at t = 2932. 

predicted by the Zhao et al.21 and Zhao25 asymptotic theory. 
This implies that there will exist a relatively large transient 
axial shear stress on the sidewall surface, particularly for 
smaller M values. One can speculate that these large transient 
shear stresses will impact the burning rate of a solid propellant 
that is the source of the injected fluid used in the present 
model. Perhaps there is a direct relationship between the effect 
of the surface shear stress transients, predicted in the present 
work, and erosive burning concepts used in the solid rocket 
engineering literature.12 

IV.   Summary and Conclusions 
Unsteady vorticity generation and evolution caused from 

simulated propellant burning transients in an idealized rocket 
motor chamber are studied in the context of an initial boundary 
value problem. An axially distributed, harmonically varying 
sidewall injection component is superimposed on a similar 
magnitude steady sidewall injection to simulate spatially var- 
iable, time-dependent mass addition from solid propellant 
burning. 

The nearly complete compressible Navier-Stokes equations 
are solved numerically, using a grid distribution that resolves 
locally large radial gradients of the axial velocity across the 
diameter of the cylinder. Instantaneous values of the flow var- 

iables are presented to describe the time evolution of unsteady 
vorticity creation and propagation. This provides an alternative 
to the studies by Tseng and Yang,19 Flandro and Roach,15 Smith 
et al.,16 and Tseng et al.,17 where an acoustic-based time-av- 
eraging approach is used to study mean spatial distributions. 

The computational analysis shows that axial planar acoustic 
waves induced and sustained by the sidewall injection tran- 
sients interact with the sidewall injection induced flow in the 
chamber to generate unsteady vorticity on the sidewall. This 
time-dependent vorticity is subsequently converted into the en- 
tire chamber by the unsteady radial flowfield. For sufficiently 
short times, there is a well-defined front that separates the in- 
tense transient vorticity generated at the injecting surface from 
the relatively weak vorticity in the initial steady shear flow. 

The instantaneous radial location of the front varies in the 
axial direction when the wall injection is spatially distributed. 
In contrast, flows generated by uniform constant sidewall in- 
jection, subject to either endwall or exit flow disturbances, 
have instantaneous front locations that are invariant in the axial 
direction.6"8,21 

The maximum amplitude of the intense vorticity, generated 
at the wall and converted subsequently into the cylinder by 
the radial component of the flow velocity, scales approximately 
like 1/Af (see Figs. 9-11) as predicted by the formal asymp- 
totic analysis in Ref. 25, in the model of Flandro and Roach15 

and Flandro." Near the sidewall, where the rotational part of 
the axial velocity uv is relatively small, one finds a large radial 
gradient as seen in Fig. 8. It is conceivable that these large 
transient gradients will persist to the surface of a burning solid 
propellant in a real rocket chamber and the resulting axial 
shear stresses may affect the characteristics of the combustion 
process. 

The results presented here satisfy the order of magnitude 
equality Re = Ü(82/M2) derived by Zhao and Kassoy8 and Zhao 
et al.25 for flows that are weakly, but pervasively viscous. This 
condition is also satisfied approximately by the parameters 
used in the computational solutions of Smith et al.16 and Tseng 
et al.7 Note that the equality satisfies the hard-blowing condi- 
tion of Cole and Aroesty,22 RelS1» 1, so that no thin localized 
viscous acoustic boundary layer can exist adjacent to the in- 
jecting surface. Rather, in this case of a confined geometry the 
viscous effect is present at a relatively low level across the 
entire cylinder on the C(Af) length scale of the axial velocity 
radial gradient. ]7 ]9 21JJ 

There is now a considerable body of evidence 
in support of the presence of an intense unsteady vorticity 
distribution within a physically reasonable model of a solid 
rocket motor chamber. In principle, the basic rotationaiity of 
the flowfield should impart traditional irrotational acoustic sta- 
bility theories. The latter appear to predict acoustic pressure 
fields seen in solid rocket engines, but are unlikely to give 
accurate descriptions of axial and radial velocity fields that 
possess significant rotationaiity as seen in the work by Brown 
et al.u 
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