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Objectives:
The study was conducted in the following areas:
A. Truncation
B. Statistical properties of high-energy vibrations
C. Dynamical potential
D. Diffusional creep at high temperatures

Objectives of topic A : to develop methods of truncation of
continuum equations in structural dynamics which
capture the major features of vibrations

Objectives of topic B : to study the properties of the energy
threshold in high-energy vibrations

Objectives of topic C : to study dynamical potential of vibrating
systems theoretically and experimentally

Objectives of topic D : to develop theory of diffusional creep at
high temperatures

Accomplishments:

Topic A : Study of dynamics of elastic structures is usually based on
modeling the structure by a finite-dimensional system with a few
degrees of freedom. In this connection it is important to understand
(1) in which way these degrees of freedom should be chosen, (2) how
many degrees of freedom should be kept, and (3) how do the
neglected degrees of freedom affect the kept ones. These issues have
been addressed in the research. It turns out that the answers to the
posed questions depend significantly on the level of excitation: there
is an energy threshold such that if energy exceeds this threshold the
laws of statistical mechanics become valid and none of the degrees of
freedom can be neglected. We study the case of moderate energy of
excitation which is lower than the energy threshold but is still high
enough to activate nonlinear interactions. For the case of string
vibrations, a simple methods has been developed which allows one to
capture the leading degrees of freedom and take into account the
influence of neglected modes on the leading ones. The reasoning is
quite general, and the answers are given in the form which admits
application to many elastic structures.

Topic B : It was known for about 25 years that there exists an
energy threshold for vibrations of elastic structures such that, for
energy vibrations exceeding the energy threshold, vibrations are
practically chaotic. We established also that the laws of statistical



mechanics are valid for vibrations with such high energy. In the
previous studies, the value of energy threshold was found to be
relatively small. We found that this is caused by the specifics of the
models used, and small “physical disturbances” of the models (we
add wave dispersion) yields much higher values of the energy
threshold.

Topic C: If parameters of excitation applied to an elastic structure
are tuned, the system undergoes the changes which in many cases
are reminiscent of phase transitions in classical thermodynamics.
The question arises: is there an analogy of thermodynamical energy
for structural vibrations?  The positive answer for systems with
small dissipation has been given by the PI (1993). The properties of
the corresponding “thermodynamical function”, dynamical potential,
have been studies theoretically and experimentally in this project.
The very fact that the dynamical potential exists seems as important
as the existence of energy for elastic bodies. It has immediate
applications: usually, one is interested in establishing the relations

between excitations and responses of vibrating systems; the
existence of dynamical potential reduced the number of
experimentally determined functions to one. The theory of

dynamical potential is applicable only to devices with high efficiency
(small dissipation). An experimental setup has been developed to
determine the dynamical potential of a nonlinear oscillator. The
experiments confirmed the theoretical predictions.

Topic D: One of the promising directions in material sciences is the
development of materials with grain size on the order of nanometers.
In such materials, the major mechanism of plastic deformation is the
vacancy diffusion. This mechanism is also a leading one for usual
polycrystals at high temperatures and low stresses.  Diffusional
plasticity theory differs significantly from dislocational plasticity
theory because vacancy diffusion is a scalar phenomenon.
Development of the theory of diffusional plasticity has been
conducted in collaboration with Dr. R. Bagley (UTSA) and Dr. P.
Hazzledine (Wright-Patterson Lab). Nonlinear theory of diffusional
plasticity has been proposed. A linear version of this theory has
been applied to the prediction of macroscopic and microscopic
behavior of polycrystal bodies with periodic microstructure.
Constitutive equations have been obtained in an explicit form. The
cell problem for microfields was formulated for secondary creep, and
the corresponding variational principle was established. Dependence



’

of macroparameters on microcharacteristics has been found. It was
shown that primary creep is governed by nonlocal equations.
Numerical simulations were conducted for honeycomb structures.
Byproducts : An understanding of statistical mechanics of continua
achieved helped to develop statistical mechanics of point vortices (V.
Berdichevsky, Statistical Mechanics of Point Vortices, Physical
Review E, v.51, pp. 4432-4452, 1995) and obtain for the first time
the velocity profiles of turbulent flows without the wuse of
phenomenological constants (V. Berdichevsky, A. Fridlyand, V.
Sutyrin, Prediction of Turbulent Velocity Profiles in Couette and
Poiseuille Flows from First Principles, Physical Review Letters, v.76,
no. 21, pp. 3967-3970, 1996).

Personnel Supported:

PI: Prof. V. Berdichevsky (1 summer month)

Post Doc: Dr. V. Sutyrin (part-time)

Graduate Students: E. Mueller, P. Matusov (part-time)
Consulting: Dr. B. Shoykhet

Publications:

1. V. Berdichevsky, Thermodynamics of Chaos and Order, Longman,
1997 (to appear)

2. Berdichevsky, V., Kim, W.W., Ozbek, A., Dynamical Potential for
Nonlinear Vibrations of Cantilevered Beam, J. Sound and Vibrations,
v. 179, 151-164, 1995

3. Berdichevsky, V., Possible Scenarios of Nonlinear Vibrations of
High Energies, Proc. ASME Conference of Acoustics and Vibrations, v.
3B, 877-879, ASME, NY, 1995

4. Berdichevsky, V., Shoykhet, B., Homogenization problem for Bulk
Diffusional Creep, Proc. of Conference on Continuum Models and
Discrete Systems, Varna, 1995, pp. 100-111, World Scientific, 1996
5. V. Berdichevsky, P. Hazzledine, B. Shoykhet, Micromechanics of
Diffusional Creep, Int. J. Engineering Science, 1997 (to appear)

6. V. Berdichevsky, Thermodynamics and Parametric Response of
Slightly Dissipative Systems, J. Appl. Mech. 1996 (submitted)

7. V. Berdichevsky, P. Matusov, Truncation in Elastodynamics:
Influence of Neglected Degrees of Freedom on the Leading Ones, J.
Appl. Mech., 1996 (submitted) ,

8. P. Matusov, Experimental Determination of Dynamical Potential
for Nonlinear Oscillator, J. Appl. Mech., 1997 (submitted)



A review of topics A and B is given in Chapters 3 and 4 of the
monograph [1] (Attachment 1).

The original results on these topics are presented in papers [7]
(Attachment 2) and [3] (Attachment 3).

Papers [2] (Attachment 4) and [6] (Attachment 5) are
concerned with theoretical and computational aspects of the theory
of dynamical potential while the experimental results are presented
in paper [8] (Attachment 6). Theory of diffusional creep is studied in
[4] (Attachment 7) and [5] (Attachment 8).

Interactions:

a. Meetings.

V. Berdichevsky, P. Hazzledine, B. Shoykhet, Micromechanics of
Diffusional Creep, ASME Mechanics and Materials Conference, UCLA,
June 1995

V. Berdichevsky, Possible Scenarios of Nonlinear Vibrations at High
Energies, ASME Conference on Acoustics and Vibrations, Boston,
September 1995

V. Berdichevsky, B. Shoykhet, Homogenization Problem for Bulk
Diffusional Creep, Conference on Continuum Models and Discrete
Systems, Varna, June 1995

V. Berdichevsky, Diffusional Creep, Seminar Presentation at
Mechanics Lab at the University of Paris, France, June 1995

Workshop on Mathematical Methods in Material Sciences, University
of Minnesota, September 1995 (participation)

Annual Meeting of Division of Fluid Dynamics, American Physical
Society, CA, November 1995 (participation)

Workshop on Ultra-High Reynolds Number Flows, Brookhaven
National Lab, June 1996 (participation)

V. Berdichevsky, Research in Structural Dynamics, AFOSR Structural
Mechanics Workshop, VA, June 1996




Statistical Mechanics Conference, Rutgers University, December 1996
(participation)

Statistical Mechanics Conference, Rutgers University, May 1997
(participation)

V. Berdichevsky, On statistical mechanics of ideal fluid, Workshop on
Arnold’s stability and Arnold’s Festival, Toronto, June 1997

b. Collaboration.

The study of topic D was conducted in close collaboration with R
Bagley and P. Hazzledine from Wright-Patterson Lab and Dr. B.
Shoykhet (Reliance Electric).

New Discoveries:
Two findings seem possible to qualify as discoveries:
1. A method of truncation of continuum equations which takes
into account the influence of the neglected modes.
2. A method of fast calculations of mode interactions based on
the identity found in [1].

List of Attachments:

Chapters 3 and 4 of the monograph [1]
Paper [7]

Paper [3]

Paper (2]

Paper [6]

Paper [8]

Paper [4]

Paper [5]
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Chapter 3

Free Vibrations of a System of
Oscillators

Usually, mechanical and physical low-dimensional Hamiltonian systems are not er-
godic. Nevertheless, they can be approximately ergodic if the parameters are in a
certain range. In this chapter, systems of nonlinear oscillators are considered. They
demonstrate ergodic properties if energy exceeds some threshold value. This behavior
is, perhaps, generic for all elastic vibrational systems.

3.1 Hendn-Heiles oscillators

The Hendn-Hetles oscillators. One of the first examples of chaotic motion of a low-
dimensional system was discovered by M. Henén and C. Heiles in 1964 [90]. They
considered a system of two oscillators. The first oscillator is simply a harmonic
oscillator with the Hamilton function

H = (p,* +q.%)/2

The second oscillator is a nonlinear oscillator with the following properties: it has a
stable equilibrium point at g, = 0, the frequency of linear vibrations in the vicinity of
this equilibrium point is equal to the frequency of the first oscillator, and if ¢, exceeds
some value, the oscillator tends to escape the origin. The potential energy Us(gs) is
chosen as
1o 1,
Vi) = 56— 3¢
Of course, this is an approximation of a situation where the second oscillator has two
stable equilibrium positions and one studies vibrations in the vicinity of one of them.
The oscillators interact. The interaction energy is asymmetric and is

Hyiz = g1%g,
so the total Hamilton function is

1

!
Ulan ) = 50 + Unlas) + glan (3.1)

The dynamical equations are

G=p, G=p, bh=-—(q+20q), p=-(0-d+4d) (3.2)
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Fig. 3.1: Contour plot of the potential energy of the Henén-Heiles oscillators

This system has one stable equilibrium point at the origin, g, = g2 = 0, and three
unstable equilibrium points: Pi(q; =0, g = 1), Py(V3/2,-1/2), Py(—/3/2,-1/2).
They are shown in the contour plot of potential energy U(qy,¢2) (Fig. 3.1). The
separatrics connecting the unstable points are straight lines. These separatrics corre-
spond to an energy level U = 1/6. All contour lines with energy levels less than 1/6

are inside the triangle P, P P;.

Poincare sections. The dynamics of oscillators can be described in a very informa-
tive way by means of Poincare sections. Consider a trajectory p;(t), g1(t), p2(2), g2(t)
of equations (3.2). Since energy is the integral of motion, the trajectory is, in fact,
given by three functions, and the fourth one is determined by the energy equation

H(p1,q1,p2,g2) = E = const (3.3)
9, 9,
/A
| % 9,
P P,
a b

Fig. 3.2: Image on a Poincare section of a periodic trajectory (a) and invariant torus

(b)
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q,

b,

Fig. 3.3: Chaotic trajectory and its image on a Poincare section

For definiteness, let the energy equation be used to find p;(¢). Then, the trajectory
of the system is a curve in three-dimensional space of the variables q;, p; and g¢,.
Consider cross-sections of the trajectory with the plane ¢; = 0. This is a set of points
which is called a Poincare section. If the trajectory is periodic, the Poincare section
consists of a finite number of points.

Two points on a Poincare section correspond to the trajectory shown in Fig. 3.2a.
If the trajectory lies on a torus in (gi, p2, g2)-space, then the successive cross-sections
of the trajectory and the plane ¢; = 0 belong to the curves v; and 7, shown in
Fig. 3.2b. In a typical situation, a torus is a member of family of embedded tori, and
one sees two families of embedded curves in the Poincare section. If the successive
cross-sections of the trajectory and the plane do not form a certain pattern, the
trajectory is thought to be chaotic (Fig. 3.3).

Qualitative picture of vibration. The behavior of Hendén-Heiles oscillators depends
on the energy level of the initial disturbance. If the energy is small enough, the
interaction is not profound and the oscillators vibrate independently. In (g1, p2, g2)-
space there is a family of embedded tori. Cross-sections of these tori with the plane
g2 = 0 are shown in Fig. 3.3a for E = 1073. The cross-sections are obtained by
numerical integration of dynamical equations for various initial data. For E = 1072,
a new family of tori appears, as is seen from Fig. 3.4b. For E = 0.125 one observes a
chaotic sea with islands of ordered motion (Fig. 3.4c). The islands are images of tori
similar to the one shown in Fig. 3.2b. Although the “chaotic component” of motion
is well presented, the the motion is far from being ergodic: the chaotic trajectory
does not cover the whole energy surface. Note that the scales are chosen different in
Fig. 3.4a,b,c because the maximum magnitudes of vibrations are different for various
values of energy; they are on the order of VE.

The chaotic sea expands if the-energy is increased. For E = 1/6, the chaotic
sea occupies almost the whole energy surface (Fig. 3.4d) except for four thin islands.
There might also be some small islands which are not visible at this resolution. Since
the total volume of the islands of ordered motion is small, one can expect that the
motion of the Hendn-Heiles oscillators is approximately ergodic, and all the relations
~ of statistical mechanics and thermodynamics apply. In this section the results of
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Fig. 3.4: Poincare sections of Henon-Heiles oscillators for the values of energy E =
1073 (a), E=10"2 (b), E = 0.125 (c), E = 1/6 (d)

numerical experiments which show that this is really the case are presented and
discussed.

Phase volume. The key quantity in the “thermodynamics” of Hendn-Heiles
oscillators is the volume of phase space, I'(E), bounded by the energy surface
H(pi,p2,q1,¢2) = E. This volume can be expressed in terms of the area, Ale),
of the region in the (g1, ¢2)-plane, bounded by the curve U(qi, g2) = e. Indeed, one
can write

F(E) = £ dp1dp.dqidg, =

-/H(Phpz ,91,92) <

=[] dpdps | dgsda, =
p}+p3/2SE-U(q1,92)

- 27r/[E — U(a1,92))dg1dg
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Fig. 3.5: Dependence of area, A(e), bounded by the contours in Fig. 3.1, on the
energy level

This last integral is taken over the region where the integrand is positive. It can also
be written as

I(E) = 2r / *(E = e)dAe)

0
Integrating by parts, we obtain

I(E) = 2r /0 ® Ale)de (3.4)
Hence, i
=5 = 2mA(E) (3.5)

From (1.61) and (1.50), we obtain the following expressions for entropy and temper-
ature of the Hendn-Heiles oscillators

E
S(E) = ln/ A(e)de + const,

0

T(E) = — ; | © Ale)de (3.6)

A(E)

The area A(e) can be calculated using the expression

1/2
Z_[f—_U@J_J ir (3

Ale) = / dzdy = 2 / [ 1+ 2z

%y2+Uz(:x:)+y2::Se e=Uz(2)20

The integral in (3.7) could be reduced to a standard elliptic integral. However, nu-
merical integration is just as efficient. The dependence of A on e is shown in Fig. 3.5.

Probability density function. Besides temperature, we shall study probability den-
sity functions of the coordinates and momentum of each oscillator and denote them
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by fi(p,q) and fa(p, q), respectively. Consider first the probability density function
of the second oscillator, f2(p,q). This probability density function is equal to zero
outside the region of possible values of p,, go, i.e. the set of all points in the (P2, q2)-
plane which could be visited by trajectories of the system. Denote this region by R,.
If the oscillators move ergodically, R, is a set of such points (ps, g;) that for some
values of (pi,q,), the equality H(p;,ps,q1,92) = E is satisfied. In order to describe
R, explicitly, it is convenient to introduce the function

ha(p2, ¢2) = min H(py, p2, g1, g2) (3.8)

The region R; is determined by the inequality

ha(p2,q2) < E (3.9)

The value of the function hy(ps,¢2) is obviously equal to the energy of the second
oscillator,
ha(p2, g2) = %pa® + Uz(ga),

and the region of admissible values of ps, g, coincides with the interior of the energy
surface of the second oscillator in its free vibrations.

Following the general scheme, in order to find f, one has to calculate the entropy
of the system with the kinematic constraints p, = p, ¢ = ¢. Trajectories p;(t) and
1(t) of the constrained system lie on the curve

W’ +a®) + o’ = E— o’ — Ua(q) (3.10)

Curve (3.10) is an ellipse with half-axes

e ] = b

The area bounded by this ellipse is

1
La(B,p,q) = 2 |E = 3* = Ua(a)]| /y/1+ 20
Hence, the entropy of the constrained system is

E — 3p} — Usx(q0)
V1+2g
From the generalized Einstein relation (2.3) and the expression for entropy (3.11)

and phase volume (3.5), we find the probability density function of the coordinates
and momentum of the second oscillator:

Sa2(E,qa,p2) =In + const (3.11)

— 1 _i S2Epq) 1 9
12(B.p9) = 3r75F 3 © = A(E)It2g (312)

Note a remarkable peculiarity of this function: it does not depend on momentum.
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Fig. 3.6: Convergence of the temperature of the oscillators to a common value for a
trajectory in a chaotic sea

Similarly, one can find the probability density function of the first oscillator. The

domain of this function is
hl(pl) Q1) S Eu

where
ma(erq) = min Hpnpaang) = 59+ — 2+ + = (3.13)
’ p2.92 reerEn 2 134 ! 12
The trajectories of the constrained system with the prescribed values of p; = p and
g1 = ¢ lie on a curve in the (ps, go)-plane:
1

1 1 1
S22 e 2B %0 = E — —(p? 4 o2
st oR 3Rt 2(@ +¢%)

It bounds the region with area

I'(E,pgq) = 2/P2dQ2 =

b 1o, o 1, 1, 5 17
= 2\/5/ HE — 5" +q )] ~3ht3% -4 Q:z] dgs (3.14)
where a and b are the two smallest zeros of the integrand. Thus,
1 o

he9) =535 o8

Since the integrand is zero at the bounds, the differentiation with respect to the
energy can be interchanged with integration. Hence,

_1/2
filpg) = \/— / [ p +¢%) - %xz + %3:3 - qzx] dz (3.15)
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Fig. 3.7: a) Temperature distribution along the line p, = 0 for energy level E = 1/6.
Islands of ordered motion are “hotter” than the chaotic sea b) Dependence of the
temperature of chaotic trajectories on energy; the solid line corresponds to ergodic
theory (formula (3.6)), crosses show numerical results

This integral can be found for each p, ¢ by numerical integration. Now we proceed to
the comparison of these relations with numerical results.

Temperature. The first important question is: how strongly do the islands of
ordered motion affect the equipartition law? It is natural to calculate the “tempera-
tures” of the oscillators,

T—l/e""dt T-—l/ezdt | (3.16)
=5 | Adt, o= [ 5} .

for various energy levels and various starting points. Figure 3.6 shows the dependence
of Ty and T3 on the averaging time 8 for a chaotic trajectory at the maximum energy
level, E = 1/6. It can be seen clearly that T} and 75 converge to a common value
T = (T +Ty)/2 = 0.07433. The error |T; — T5| /T is less than 0.1%. A number
of calculations performed for chaotic trajectories on this energy level yield the same
result. This supports the validity of the equipartition law for the highest energy level.

Temperatures of trajectories of ordered motion show the same behavior; however

the rate of convergence is much faster. One might assume that it occurs because of
the smaller dimensionality of a torus compared with that of an energy surface.

On the islands crossing the g-axis, the temperatures 77 and T3 converge quite
quickly towards T = 0.0819. On the left islands, the temperatures 77 and T, clearly
stabilize but they apparently do not converge towards the same value. However, the
difference between T} and T, is rather small (AT = 0.0007 or about 1% of the average
temperature).

Figure 3.7a shows a profile of the mean temperature T along the ¢, axis (p, = 0)
for the maximum energy, E = 1/6. It can be seen that the temperature on the islands
of ordered motion is slightly higher than the temperature of the chaotic sea.
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Fig. 3.8: Probability density functions of the second oscillator: a) numerical calcula-
tion; b) ergodic theory, formula (3.12)

Similar numerical experiments for lower energy levels show the same type of be-
havior as observed for the maximum energy. Figure 3.7b shows the mean temperature
T of chaotic trajectories as well as the ergodic temperature T, calculated according
to (3.6), versus energy E.

A surprising result of numerical simulations is that the equipartition law is approx-
imately valid even for moderate and low energy levels for both chaotic and ordered
trajectories, although in these cases the fraction of the phase space that is occupied by
islands of ordered motion is quite large and the assumption of ergodicity is strongly
violated. It is natural to assume that this is caused by coincidence of the linear fre-
quencies of the two oscillators and the special form of the energy of interaction which
results in resonance. In order to eliminate resonance effects, a modification of the
Henoén-Heiles system,

H= %pf + %api + %qf + Uz(g2) + ¢l
was tested for different values of the distortion parameters o (such as @ = 1.5 or
a = 2.5). It turns out that for chaotic trajectories the equipartition law is valid
with approximately the same accuracy as for Hendn-Heiles oscillators if the size of
the region of ordered motion is small compared to the size of the region of chaotic
motion. The temperatures of trajectories on islands of ordered motion can differ
essentially, no matter how big these islands are. That justifies the assumption that
the validity of the equipartition law in the case of moderate energy vibrations of the
Henén-Heiles oscillators is due to their resonant frequencies.
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Fig. 3.9: Two-dimensional slices of the probability density function of the second
oscillator for maximum energy, £ = 1/6, a) along the line p, = 0, b) along the line
g2 = —0.3. Solid and dashed lines correspond to numerical simulation and ergodic
theory, respectively.

Numerical simulations of probability density functions. A numerical probability
density function was obtained by a simple bin-counting experiment, during which the
trajectory of the system is calculated for a very long time interval. The probability
of the event that the trajectory of the system is within a region A of its phase space
is determined by the number of times the trajectory was observed to be within A
divided by the total number of observations. Figure 3.8b shows the probability density
function f; according to (3.12) for E = 1/6, while Fig. 3.8a depicts its numerically
obtained counterpart. In order to compare the “ergodic prediction” (formula (3.12))
and numerical results, two-dimensional slices of the probability density functions for
specific g or p are shown in Figs. 3.9a, 3.9b, 3.10a and 3.10b. Figure 3.9a shows
the ergodic and numerical probability density functions of positions of the second
oscillator at p; = 0 for the maximum energy level. The values of the real curve
are captured very nicely by the ergodic theory; maximal error is below 3%. The
small fluctuation should presumably level out for longer calculation times. However,
there are some dents, like the one between g, = 0 and g = 0.2 that are caused by
islands of ordered motion (compare to Fig. 3.4d). Fig. 3.9b shows the probability
density function of the momentum of the second oscillator for g» = —0.3. According
to ergodic theory, the probability density function f, of the momentum is constant
(see Fig. 3.8). The real probability density function obeys this property well at all
points except at the two dents. Apparently, they are caused by two islands of ordered
motion which are crossed by the line g, = —0.3 on Fig. 3.4d. Similar results for the
probability density function of the first oscillator are shown in Figs. 3.10a and 3.10b.

For lower energies, these deviations from ergodic theory are larger. The probability
density functions are shown in Figs. 3.11a and 3.11b for moderate energy, £ =1/8.

It is interesting that with respect to the real one, the ergodic curve is located
in such a way as to provide similar momentum characteristics. In particular, the
differences in the calculation of temperature do not exceed 3%.
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solid line represents numerical simulations, the dashed line and crosses correspond to
ergodic theory '
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3.2 Fermi-Pasta-Ulam problem

A few decades ago it was a common belief that systems with many degrees of free-
dom move chaotically. There was much indirect evidence, like Brownian motion of
small heavy particles in fluids, but direct experiments were difficult. This is why,
when a new powerful computer appeared at Los Alamos Lab in 1952 and challeng-
ing problems were solicited from physicists to show the abilities of the new machine,
Fermi, Pasta and Ulam suggested studying numerically the dynamics of a multidi-
mensional nonlinear system, and checking the validity of the equipartition law. The
mechanical system chosen was a chain of mass particles connected by nonlinear springs
(Fig. 3.12a). Computer simulations were run for 64 particles with two end particles
clamped. It was expected that the system would evolve to equilibrium, and that the
particle temperatures, T; = (¢?/m) (g is the coordinate of the ith particle), would
become equal. Surprisingly, this was not observed. On the contrary, the system
showed an ordered recurrent motion. This “paradox” is usually referred to as the
FPU (Fermi-Pasta-Ulam) problem.

An understanding of the FPU problem was achieved by KAM (Kolmogorov-
Arnold-Moser) theory. KAM theory studies the dynamics of slightly disturbed in-
tegrable Hamiltonian systems. Integrable systems are systems which can be trans-
formed to a system of noninteracting oscillators by some change of generalized coor-
dinates. That determines the geometrical structure of the phase flow for integrable
systems. In the case of one oscillator, the trajectories are some closed curves in phase
space. For a system of two oscillators, each trajectory 7; of the first oscillator and
each trajectory 7y, of the second oscillator form a curve on a two-dimensional torus in
four-dimensional (p1, g1, 2, ¢2)-phase space. Choosing various initial data for Y1, Yo,
one gets different curves on the torus. There is only one trajectory passing through
a given point of the torus. The torus is determined by the curves v, and v, i.e. by
two parameters, say, the initial values of the energies of each oscillator. Thus, there
is a two-parameter family of tori. The tori are called invariant tori because each tra-
jectory starting on some torus stays on this torus forever. The two-parameter family
of two-dimensional invariant tori covers the whole four-dimensional phase space.

For a system of n oscillators, the invariant tori are n-dimensional. Each torus
is determined by n parameters, the initial values of the energies of each oscillator.
The n-parameter family of n-dimensional invariant tori covers 2n-dimensional phase
space.

KAM theory studies Hamiltonian systems with the Hamilton function

where Hy(p, q) is the Hamilton function of an integrable system, e H; is a disturbing
Hamilton function, and ¢ is small. Can the Hamiltonian system (3.17) be ergodic?
KAM theory gives a negative answer. It turns out that the majority of invariant tori
survive a small disturbance, they are just slightly deformed. Some of the invariant
tori are destroyed by the disturbance and transformed into a chaotic sea. The volume
of the chaotic sea (and destroyed tori) tends to zero for ¢ — 0. The disturbed system
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For definiteness, we focus on the chains with two fixed ends,

=0, ¢gu1=0 : (3.19)

So, the system has n degrees of freedom, ¢;,...,¢,. The summation in (3.18) is carried
over 1 from 1 to n, and conditions (3.19) are used to determine the energy of the end
springs. The dynamical equations are

o= o u__) (_q__l)] . P
pz—A[Q( A ¢ A = (3.20)

In linear theory, ® = %,C~?, where C=constant. Fermi, Pasta and Ulam consid-
ered models where

® = C(7+37 +§7> (3.21)

In the current literature, the cases @ = 0 and # = 0 are called the S-FPU model and
the a-FPU model, respectively. In most cases we deal with the 8-FPU model.
Strings. One of the ways in which chains can appear is a finite-dimensional trun-
cation of one-dimensional continua. To be specific consider plane nonlinear vibrations
of an elastic string of length ! with the ends pinned (Fig. 3.12b). Let w(¢, z) be the
lateral displacement of the string.
For moderate amplitudes, the kinetic and potential energies of the spring are

I
K= / %pAwfdz (3.22)
0
1 2 1 2,2
U= /AEy <7+2w > + §h wi, | dz (3.23)

Here p, A, ¥ and Ey are the mass density, cross-sectional area, initial longitudinal
strain and Young’s modulus, respectively; derivatives with respect to z and t are
denoted by the corresponding indices. The string is supposed to be stretched, so
¥ > 0. The constant h is determined by the diameter and the shape of the cross-
section and is proportional to v/A. For a circular cross-section of diameter d and
isotropic material, h = d/4. The two terms of (3.23) are the extension and the
bending energies.
It is convenient to introduce dimensionless variables

e w Ey'y
7 T =

(3.24)
o 2
27 pl

1
1 1 1
R ALJ[LTE T YRR
0
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The parameter ¢ = h?/ Y1? determines the dimensionless bending rigidity of the
spring; it is small for a thin string with high initial tension and increases if the initial
tension is released.

The string dynamics is governed by the equation

Urr = (uy +ul — O"Uyyy)y (3.26)
and the boundary conditions
u(1,0) =u(r,1) =0; ouy(r,0) = cuy(r,1) =0 (3.27)
If ¢ = 0, the equations are considerably simplified:
— 3
Uy = (uy + uy)y (3.28)

u(r,0) =u(r,1) =0 (3.29)

The corresponding Lagrange functional is

1
L= / (%uz - %uz - %ué) dy (3.30)
0

To perform numerical simulations of string dynamics, one needs to develop a
finite-dimensional truncation of the continuum model. There are many ways to do
that. One way, the finite-difference truncation, yields the 8-FPU model. In this case,
the segment [0, 1] is divided into equal pieces of length A, and the values ¢; of the
function u at the points A are considered as independent degrees of freedom. The
derivative u, is approximated by (g:+1 — ¢:)/A on the segment [(z + 1)A,iA], while

the integral
(i+1)A

/ uldy

iA
is approximated by ¢?,.;A. Then, the Lagrange functional (3.30) is transformed into
the approximate Lagrange function

E(lo 1/gn—a\_1/(¢n—a\*
L= _-2__<L> __<_1+_=) A .
; (2‘1’ 2\ A i\ A (3:31)
The corresponding Hamilton function,
N 2 4
1 5,1 Qi+1"Qi> 1 (Qi+1_Qi> :
= 2 o (B N oA (R .
H ;(mp,+2<, X +3 % A (3.32)

is the Hamilton function of the 8-FPU model with f=1,and C =m = A.
Rubber rods. Chains also appear as finite-difference truncations of other contin-
uum models, in particular, nonlinear longitudinal vibrations of elastic isotropic rods.
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In this case, the motion is characterized by one function, u(¢,z), the longitudinal
displacement of the material point z. The Lagrange functional is

/IA (-;—puf -U (u,))dz

where p and A are the mass density and cross-sectional area in the unloaded state,
uy = Ou/0z is the strain, and U is the volume density of elastic energy. To have
a pronounced nonlinearity, the strain u, should be on the order of unity. There are
materials (rubber and some polymers) which remain elastic at such high strains. For
such a material at moderate strains

U= %Ey (uz + %aui + %ﬁui) (3.33)
is an acceptable approximation. The finite-difference truncation of (3.33) yields the
FPU chain model. For strains close to —1, approximation (3.33) fails because U
has a singularity at strain value u, = —1. This value corresponds to the collapse
of the material segment to a point. The simplest model that takes into account the
singularity at u; = —1 is a Neo-Hookian material, which has the energy density

u 9 3+ Uz

Uv=~t
2 I1-{—uI

(3.34)

Here 4 is the shear modulus for small strains. Model (3.34) describes the elastic
properties of rubber-like materials quite well. Numerical simulations performed for
the finite-difference truncation of model (3.34) show that it behaves qualitatively
similarly to the #-FPU model, and we focus here only on the 8-FPU model.

String vibrations in mode coordinates. Consider now the modes of continuum
string vibrations. The linear eigenmodes of string vibrations are

uk(y) = sin mky

Any function u(7,y) can be presented as a Fourier series of eigen-modes,
oo
Z ) sin mky (3.35)

The functions ax(7) are the mode coordinates. To obtain dynamical equations for
ax(T) one has to express the Lagrange functional in terms of a;. Substituting (3.35)
into (3.25), we have

4 o
2L = Z [ ai — = (1 + a(wk)2) (ﬁk)zai] - zr_2_ > klmnAgimnaraaman (3.36)
k.l

Here we use the following notation:

1
Apimn = /cos wkz cos wlx cos mmz cos TnT dTr =
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=%[5(k+l—m—n)+5(k—-l+m+n)+

+6(k+l+m-n)+6k+1l-m+n)+

+6(k—l+m-n)+86k—-1l-m+n)+
+68(k — 1l —m —n)] (3.37)

The dot denotes derivative with respect to dimensionless time 7.
The Lagrange functional, and, henceforth, the equations, can be simplified by the
change of unknown functions, a, — by:

be = wkay (3.38)

In terms of by, the Lagrange functional is

L=K-U, (3.39)
‘ 2K=§:.__1—.(}2 2U=i-1—<1+07r2k2)b2-—-1- i Arimnbibibmb
= 272]{:2 k3 = 5 k 9 it kimnVEVVmUn
The corresponding equations of motion are
1 . 9\ 12 X
(Wk) klmn=1

The coefficients A;jx; characterize nonlinear interactions between modes. They
are all on the order of unity. Note an important property of Ajjn which follows
from (3.37): if i is even and j,k,[ are odd, then, since *£j, &k, ! are also odd,
Aijre = 0. Similarly, A,y = 0if ¢ is odd, and j, k,! are even. This means that even
modes themselves cannot excite odd modes and vice versa. Even modes act on odd
modes only if the latter have already been excited (b; is not zero for at least one
odd mode). The same is true for the influence of odd modes on the even ones. This
suggest that there are invariant subspaces on the energy surface. They are formed
by trajectories which start from even initial data and odd initial data. The existence
of multidimensional invariant sets does not contradict ergodicity, but might increase
the time needed to approach equipartition.

Thermodynamical and continuum limits. The laws of statistical mechanics are
often derived in the so-called thermodynamical limit. This means that the number of
particles and energy per unit volume are kept constant while the size of the system,
the total energy and the the total number of particles, N, tend to infinity. In our
case, this corresponds to a fixed particle distance A, and fixed energy per unit length,
while the length of the chain, | = NA, and the total energy, E, tend to infinity.

One might consider another limit, a continuum limit, where the length [ and total
energy E, are fixed, while the total number of particles, IV, tends to infinity. In
this case, the distance between neighboring particles, A = [/N, tends to zero. In
general, these two limits are different. However, the chain dynamics possesses the
following remarkable property: the thermodynamical limit can be obtained from the

. continuum limit by scaling. Indeed, consider a finite-dimensional truncation of the
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string dynamics (3.31). Let us make a change of variables ¢; — w,, ¢; = w;A, and
simultaneously scale the time, t — 7, ¢ = 7N. Then the Lagrange function becomes

L=+L, (3.41)

> [ (d“> % (it — )% — % (uia1 — ) (3.42)

The Lagrange function L corresponds to the dynamics of N particles with the spacing
equal to 1. If N — oo, the length of the chain goes to infinity. Keeping the ratio of
total energy to IV constant corresponds, as follows from (3.41), to the continuum limit
in g-variables. For definiteness, in discussing the case of large N we always deal with
the continuum limit. The energy in the continuum limit corresponds to the “energy
per particle” in the thermodynamical limit.

Note one more useful scaling. For the 8-FPU model in u-variables,

- 1 [dy 2 1
ek [5 (?u“> =g (e ) = g - ”)4J

The change of variables u; — 4;,

de

Ui =

transforms the Lagrange function to

.1 1 /dw\® 1, 2 1 )
L= ELly L= Z [5 (E"T‘) ~3 (i — )% — 1 (g1 — U)4] ,

where L, is the Lagrange function of the S-FPU model with 8 = 1 Hence, without
loss of generality, one can set 8 = 1.

3.4 Energy threshold

Now we proceed to the discussion of experimental evidence for ergodicity of motion
of chains and strings. The behavior of chains and finite-dimensional truncations of
string dynamics are similar, therefore we focus mostly on string vibrations in mode
coordinates. The simplest probe for ergodicity is equipartition of energy. One has to
measure the temperatures of each mode,

; |

1

Ti=3 [ szdet (3.43)
0

and determine whether they are equal. The time of observation should be long enough
to warrant the convergence of the right-hand side of (3.43) to a limit value.
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Fig. 3.13: Typical evolution of mode temperatures in time for moderate energies
E = 0.02 in an 8-mode system.

A typical dependence of temperatures on the time of observation is shown in
Fig. 3.13 for an 8-mode system. Time is measured in “cycles”, the period of the
slowest mode, which is 2 (in terms of dimensioniess time 7). Initially, all modes were
excited in such a way that amplitudes and velocities were decaying with the mode
number. The total energy of initial excitation is 0.02. It seems that after about 5000
cycles all temperatures approach their limit values. These values differ. Other runs
for the same value of initial energy show similar behavior. This suggests that the
system is not ergodic for £ = 0.02.

For higher values of energy, E = 0.095, temperatures show a clear tendency to con-
verge to a single value (Fig. 3.14). After 1000 cycles, the difference in temperatures
is on the order of 10%,; after 10000 cycles it does not exceed 2%.

Do we really observe the absence of equipartition for £ = 0.027 Could it be
that temperatures eventually converge to a common value after a longer time of
observation? It is not clear at present, and computer experiments can hardly answer
these questions. All the conclusions we are going to make are based on the assumption
that the results of the observations made for the time of about 10* — 10° periods of
the slowest mode stay the same for an infinite time of observation.

To quantify the degree of equipartition, one can use the following characteristic:

2
T T

C* = L——,—- (3.44)
?:1 ’I;;?

It has a simple meaning. If only one mode is excited, say Ty # 0,75 = ... = Ty = 0,

then C* = 1. If all modes are excited and equipartition holds, then T} =T, = ... =
Tw, and C* = N. Thus, C* characterizes the number of degrees of freedom involved
in the motion. The maximum value of C* is equal to N. This value is reached if
and only if equipartition holds. Hence, C* is a measure of equipartition as well. To
compare the motion of different systems, it is convenient to normalize C* and consider
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Fig. 3.14: Typical evolution of mode temperatures in time for a high energy of excita-
tion, £ = 0.095 in a 12-mode system. The insert shows the temperature distribution
over the modes

the number C = C*/N, which represents the relative amount of effectively excited
degrees of freedom. The dependence of C on time shows the process of involving in
the motion the additional degrees of freedom. If equipartition holds, C = 1.

A typical dependence of C on time is shown in Fig. 3.15. In this figure, the
results are presented for four runs with duration of 1,500 periods of the slowest mode
(or cycles); initially, the potential energy was evenly distributed among the first four
modes, while all velocities were zero; the total number of modes is 12. The values of
the energy are 0.002, 0.01, 0.05 and 0.095.

Figure 3.15 shows that the system provided with higher energy reaches equipar-
tition very fast, within a few hundred cycles. The less energy is supplied to the
system initially, the longer it takes to reach equipartition. When the energy is small,
equipartition does not seem to be reached. The insert in the figure shows the tem-
perature spectra at the end of the runs. In the case of £ = 0.002, the temperatures
of the first and second modes are by more than an order of magnitude higher than
those of modes 7-12, showing no equipartition. The next figure (3.16) suggests that
transition to equipartition is, to some extent, a threshold-like phenomenon. In this
figure, values of C are plotted for the 12-mode system after 1000 cycles. Each point
corresponds to some initial data. It shows that for £ < 0.05, all values of C are
possible for each value of energy. However, for £ > 0.05, C = 1 for all runs made.

The value of energy E, = 0.05 is the critical value of energy at which the transition
to equipartition occurs. Of course, in reality, the qualitative change of the character
of motion occurs in some range of values of energy, and the particular value E, = 0.05
is a rough location of this range.

Above the energy threshold, the trajectories exponentially diverge and numerical
errors grow exponentially. The numerical trajectory can go far away from the true
trajectory with the same initial conditions. A discrepancy appears between the nu-
merical results and the real dynamics of the system. It is natural to expect, however,
that, although the trajectories of the “numerical dynamical system” may be far from
the trajectories of the original dynamical system, the statistical characteristics are
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Fig. 3.15: Typical dependence of the number of effectively excited degrees of freedom
on time for four levels of energy. The insert shows the temperature distribution over
the modes for these values of energy

1.0 v ry * n
: o LB eaatr +¢ 20atene SR 2 4 “w e4 wm*
: : 2R : :
: LI AU D
. H . | \ .
. ‘ v
H * .
: . : :
08 prormeeees T e e T [
L ' H
: .
) * S
*e ; :
R | .
. ’ . ' . E 1
C Y Y
L e PREEEE D S A frrmmesessoesocooeeeons mmees e
. ' :
H 'S ; .
. L 3 ' '
: $ 4 ;
- . : :
: o :
. ' :
* ‘ ;
: * : . :
0.4 }eremmemanann oo g RN S omeeneas
H e H H '
. :
K J .
: . : :
02 1 ! 1 :
10” i0* 10" 10°
Energy

Fig. 3.16: Determination of the energy threshold. Each point corresponds to some
choice of initial conditions. For energies exceeding 0.05, equipartition is practically
exact



104 Free Vibrations of a System of Oscillators

0.2

1 10 100 1000
Time, cycles

Fig. 3.17: Dependence of effective numbers of exited degrees of freedom on ¢. The
insert shows final temperature distribution

predicted correctly, and the above-mentioned numerical results can be applied to the
original dynamical system. It was proved ([4], [37]) that a numerical (or noisy) tra-
jectory will stay close to some true trajectory (with, maybe, different initial data) for
all time if the system is uniformly hyperbolic. Similar results were obtained for some
nonuniformly hyperbolic systems in [89].

Probes of equipartition are the roughest tests for ergodicity. It is much more
convincing of a test to compare probability density functions predicted by ergodic
theory with numerical results. These comparisons have been conducted in [148] and
support the expected ergodic character of motion above the energy threshold.

3.5 Role of mode resonances

The value of the energy threshold depends on the number of degrees of freedom and
the characteristics of bending rigidity, ¢. It turns out that the dependence on bending
rigidity is quite strong. This can be explained by the ease of energy transfer between
modes for ¢ = 0 due to commensuration of natural linear frequencies. Indeed, let the
first mode be excited initially. The first mode has frequency u:J = 7. The coefficient

Az11r # 0. Therefore, the spectrum. of the elastic interaction force As111b;® contains
the frequency 3ul°J = 37 which is the linear eigenfrequency of the third mode. Hence,
vibrations of the third mode are resonant and are easily developed. Considering the

fifth mode we note that the coefficient Assz;; is no equal to zero. The spectrum of
the interaction force, Assi1bsbi?, acting on the fifth mode contains the frequency 5w,
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which is its eigenfrequency. Thus, the fifth mode also goes into a resonance regime.
In the same way, other interaction forces have in their spectra resonant frequencies,
and energy easily flows from one mode to another. If o # 0, the natural frequencies
are detuned and energy transfer is impeded.

This hypothetical picture of string vibrations is supported by numerical simula-
tions. Figure 3.17 shows the dependence of C on time for a 12-mode system for
the following values of ¢ 0,107% and 1072, and the same value of energy of initial
excitation. The insert shows the terminal temperature spectra. For ¢ = 0, energy
is equipartitioned among all modes. Detuning of linear oscillators by adding small
o = 1074, perhaps, increases the energy threshold, and vibrations become noner-
godic. For ¢ = 1072, further growth of the energy threshold occurs, and the number
of initially excited degrees of freedom does not change. - :

3.6 Massless approximation

Experiments show that, usually, only a few degrees of freedom are effectively excited
in vibrating elastic structures which possess, in principle, infinitely many of them. In
part, this may be caused by friction. For example, the viscous friction force acting
on the kth mode is proportional to uk?, where p is the friction coefficient. Thus,
there is some number k3 of modes with non-negligible amplitudes, while all modes
with higher numbers are damped. The number of undamped modes, kg, depends on
p and grows if 4 — 0. There is also another reason for low dimensionality which is
not related to dissipation. Consider expression (3.39) for the Lagrange function. The
coefficients of the interaction energy, A;ji, are on the order of unity. The rigidities
1+ om2k? are on the order of unity for ¢ = 0, and grow as k? for ¢ # 0. “Masses” of
modes, the coefficients in the expression for kinetic energy decay as k2. If by is on
the order of bk, then kinetic energy of kth mode can be neglected in comparison with
elastic energy of this mode for large k, and the problem of the determination of b
becomes a static problem. In this case, all degrees of freedom can be separated into
two categories: leading degrees of freedom with low k&, k < ko, and driven degrees of
freedom with large k, k > ko. Driven degrees of freedom follow the leading ones. The
dependence of driven degrees of freedom on the leading ones is determined from the
static equations

ou

Oby
Low-dimensional dynamics is governed by Hamiltonian equations with the effective
Lagrange function

0, k> ko (345)

ko 1 .
=K-U, erf =2 550k 2Ueps(by, o bey) = i 4
Lerg =K =Uesry 2Keys kE:Zl PRt 1y by = min U (346)

The number of leading modes, ko, is determined by a desirable accuracy.

There is an obstacle for this mechanism of low-dimensionality to work. If higher
modes are in resonance with low modes then the kinetic energy of high modes is
of the same order as the elastic energy and cannot be neglected. If resonances are
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Fig. 3.18: Two scenarios for the dependence of the critical energy on the number of
degrees of freedom

absent and excitation energy is below the energy threshold, the vibrations are really
low-dimensional. The reader is referred to [21] for further details.

3.7 Possible scenarios of nonlinear vibrations

To discuss the behavior of the elastic continuum, one may consider the limit N — oo
for a finite-dimensional truncation (for example, a mode truncation) of continuum
equations. The character of vibrations depends crucially on the dependence of energy
threshold E, on N for large N. Numerical simulations conducted as N < 128 indicate
that E, decreases when N grows. In the range 10 < N < 130, the critical energy
behaves approximately as 1/N. It is not known what happens for larger N. Logically,
there are four possible situations: if N — oo, then either £, — 0 or £, — E* = const
or £, — oo or the limit of E, does not exist. The first case, where the critical energy
E, goes to zero for N — o0, is probably not realized because one would observe
chaotic continuum motion for any, even a very small, energy of excitation. This
would contradict the infinite-dimensional version of KAM theory, which is likely to
be valid for elastic continua. Two other cases, where E, tends to some finite limit E*
and E, — co for N — oo, are schematically shown in Fig. 3.18. They correspond to
two qualitatively different behaviors of continua which we refer to as scenario 1 and
scenario 2.

Scenario 1 (Self-dissipation). This is the case of the existence of the finite limit for
critical energy. The major features of the dynamics of continua in this case seem to be
the following. If the energy of initial excitation E is less than £*, then nothing special
occurs. The bulk of studies of linear and nonlinear elastic vibrations pertains to this
case. However, if the energy of excitation exceeds E*, then the continuum shows a
very peculiar behavior. For definiteness, let only a few modes be excited initially. In
the course of the motion, energy is redistributed over all modes in a such a way as
to reach equipartition. Since an infinite number of modes is involved in the motion,
the energy of each mode is equal to zero at the final stage. So, one would observe
a process with an increasing number of excited modes, in which the energy of each
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Fig. 3.19: Truncation of the continuum for scenario 2: (a) choice of initial energy,
(b) energy spectrum for continuum vibrations (2) and truncation (1)

mode eventually tends to zero, while the total energy is conserved. Since the energy
of each particular mode tends to zero, the displacement goes to zero. Derivatives of
displacements remain finite due to conservation of energy. Therefore, displacements
are getting more and more nonsmooth. One might call this case “self-dissipation”
due to the decay of displacements in time. Remember that the system does not have
a “built-in” dissipation.

Scenario 2 (Universal Spectrum). In this case, the energy threshold tends to
infinity for N — oo. Therefore, the laws of statistical mechanics are not valid for any,
even a very high, energy of excitation. However, one can speculate on a possibility of
other “universal laws.” Let the initial energy be E, and let this value correspond to
the number NV on the graph the “critical energy vs. number of degrees of freedom”
(Fig. 3.19a). Consider an excitation of the continuum where only the first N modes are
excited initially. For N-degrees-of-freedom truncation of the continuum, the motion
would be approximately ergodic while the energy would be equally distributed over

modes (Fig. 3.19b, line 1).

In the continuum, other modes take energy from the first N modes. Therefore,
for a continuum the energy spectrum should have the form of line 2 in Fig. 3.19b.
Note that the energy transfer from low to high modes may be a fast precess as the
development of shock waves during a finite time indicates.

It is natural to assume that the spectrum 2 is universal in the following sense: it
is the same for any choice of initial excitation of the first N modes possessing the
same energy E. It is interesting that the spectrum 2 in Fig. 3.19b looks qualitatively
the same as Planck’s spectrum for quantum oscillators: high-frequency oscillations

are frozen.

None of the numerical experiments for chains show the growth of critical energy for
large NV and the feasibility of scenario 2. This relates, probably, to the fact that only
chains with the nearest neighbor interaction have been considered so far. These chains
do not have any characteristic dimension (in the limit N — oo), while the minimum
point on the plot in Fig. 3.18 is determined by some characteristic length. Continua
with higher space derivatives may provide the necessary additional parameter with a

dimension of length.
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3.8 Miscellaneous

In this section the facts which were useful in numerical experiments for chains and
strings are summarized. :

Normal modes of chains. Let the energy of the chain vibrations be small. Then,
the nonlinear terms are negligible, ® (v) = % C¥?, and the equations of motion (3.20)
become

mgs = % (gs+1 — 295 + gs-1) (3.47)
Here s = 1,...,nand gg = gnt1 = 0. If ¢(¢, ) is a smooth function and ¢(¢, sA) = ¢,(¢),
m = pA, C = c?A, then, for A — 0, equation (3.47) transforms to the wave equation
&%q(t,z) _ ,0%(t 1)
e ¢ T e
as it should.

Our next goal is to find a coordinate transformation such that the chain becomes a
system of noninteracting oscillators. It is convenient to extend the chain and introduce

gs with negative s, setting ¢-; = —¢q1,..,.0-n = —qn, §-n-1 = —@n+1- 1Lhen, the
dynamics of the original chain is equivalent to the dynamics of a chain of N = 2n +2
particles with fixed ends and antisymmetric motion in space, gs = —g—s.
Consider traveling wave solutions of equations (3.47)
g = e (3.48)

where s and w are some parameters. Substituting (3.48) into (3.47), we see that
(3.48) is a solution of the dynamical equations if and only if A and w are linked by
the dispersion relation

2= EA% (1 —cos A) (3.49)

If A - 0and A = kA, m = pA, C = cA, the dispersion relation for chains
transforms into the dispersion relation for the wave equation,

muw

pw2 — CQkQ

For each couple (w, A) which satisfies the dispersion relation (3.49), the couple (w, —A)
also satisfies the dispersion relation. Thus, the functions

eilsA=wt) _ gi(=sA-wt) _ oj=iwt gin o) (3.50)

are the solutions of the dynamical equations.
Consider the solutions of the form (3.50) which obey boundary conditions go = 0,
gn+1 = 0. Since sin(n + 1)A = 0, there are n admissible A,
T . 2T nmw

— =—, .., Ap =
n+1’ T a1’ ntl

/\1=

and the corresponding n modes of vibration,

S (s) = sin 2ms (s) = sin nmws
nt1 COITER LT e WIEAR T

1 (s) =sin (3.51)
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The remarkable feature of the functions ¢, (s), ..., ¢n (s) is that any vibration of
the chain, i.e. the set ¢,(¢),...,gn(t), can be presented as a linear combination of mode
vibrations,

0(t) = ; 6()ou(s) (3.52)

and there is a one-to-one correspondence g, < §i. Moreover, in mode coordinates
dr the chain splits into a system of noninteracting oscillators. The frequencies of the
oscillators are determined by the dispersion relation (3.49),

2C

2C k 4C k
2 O e -— I r—— —_— B — —— g} 2 —_—
mwi, 5 (1= cos Ay) N (1 c05 —— 1) 5 sin IO (3.53)

Derivation of these properties is based on the discrete Fourier transform, the
essential facts about which are reviewed in the next subsection.
Discrete Fourier transform. Consider N complex numbers o, ..., §y—1 and sums

N-1
gk = Z q~me2m’mk/N’ k=1,..,.N ‘ (354)

m=0

Let us multiply (3.54) by e~27*/N and take the sum over k. We get

N ) N-1 N .
Z qke—Qmsk/N — Z ém Z e?m(m-—S)k/N (355)
k=1 m=0 k=1

The sum on the right hand side of (3.55) can be simplified by the means of the
following identity: for integer 7, 0 <7 < N —1,

N
> e = N6 (r) (3.56)
k=1

where 6(r) = 0if r # 0 and §(0) = 1. Indeed, e?™/N 4 22mr/N 4 4 N-2mir/N -
a+ o+ ...+ o where o = e2™/N, Since

1—aV

l—«o

l+a+a®+...+aV 1= (3.57)
and oV = ™" =1, the sum (3.57) is equal to zero for any o # 1, i.e. for any 7 # 0.
For r =0, o = 1, the sum is equal to N. So, (3.56) is true.

The proof shows that identity (3.56) holds for any number r if the function §(r)
is replaced by a periodic function éy(r), with the period N: 6x(r) = 0 if r # £Nk,
k is any integer, On(r) = 1 if 7 = £ Nk,

N
> PN = Ny (r) (3.58)
k=1 :

Return now to (3.55). The last sum in (3.55) can be calculated using identity (3.56).
Since m < N and s < N, [m — s| < N, and the sum is equal to N§(m ~ s). Thus,

1 N

Gm =55 2 qee TN (3.59)

k=1



110 Free Vibrations of a System of Oscillators

The transform of ¢, to gk in (3.54) is called a discrete Fourier transform. Formula
(3.59) shows that the discrete Fourier transform is reversible.

The discrete Fourier transform has two properties which make it useful for our
purposes:

N N-1
kZ wae =N ZO Gm0r, (3.60)
=1 m=
and
al * * = L2 T
kZ (g — qe-1)(¢"x — ¢"11) = 4N Zosm 7 dmm (3.61)
=] m=

Here a star denotes the complex conjugate. Formulas (3.60) and (3.61) can be checked
by direct inspection,

N N-1 . N-1N-1 N .
Z qkq .= Z Z qmeme /N z qt —2misk/N __ quq*; Ze2ﬂz(m—s)k/N —
k=1m=0 m=0 s=0 k=1
N-1N- 1 N-1
m@sN6(m — s) =N )} 4mdp, (3.62)
m=0 s=0 m=0
and
A’
Z (Qk - Qk-—l)(q‘k"’q*k—-l) =
k=1
N N-1 N-1
Z ~m(827rimk/N _ 627rim(k—1)/N) Z q;(e—-?m’sk/N _ 627ris(k—1)/N) —
k=1m=0 =0
N~-1N-1 N
Z ém —Qmm/N)q (1 _ eZm’s/N) Z e27.'i(m—s)k/N —
m=0 s=0 k=1
N-1N-1 . ) ) )
Z qme—mm/N(emmN e—-mm/N)qwems/N( —-mis/N __ evrzs/N)Né-(m _ S) —
m=0 s=0
N-1
. ™ .. ..
=4N ) sin® — dmlm (3.63)
m=0

Note that (3.54) and (3.59) stay valid if shifts in the numbering of g and §,, are
made: k may take values 1+1;, ..., N+{; while m may have values l5, [+1, ..., N+, —1
for any integers li,lo. Equations (3.60) and (3.61) also admit such shift as one can
check writing the chain of equalities (3.62) and (3.63).

Applying the discrete Fourier transform to chain vibrations, we choose k& and m
taking values —n,-n+1,..,n,n+ 1, and N = 2(n + 1). We have

n+l ok /N 1 n+l LN
Q= Z qme2mm / , Qm N Z Qk e-27r1.m / (364)
m=-—n k=—n '

Actually, the summation in (3.64) should be conducted up to n: by the condition
gns+1 = 0, while ¢n4+1 = 0 due to the antisymmetry of g, ¢g_xr = —gqx:

A 1 = =2ri(n 1 - —_i
Qn+1=ﬁ Z qre 2 (+1)k/N=_]\7 Z qxe nik _

k=-n k=-n
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n

Z —mk mk) — _..ngz z Gk sin mk = 0

k= k=-n

It follows from (3.64) that §, are pure imaginary and antisymmetric due to the
antisymmetry of g:

q‘“m = —fmy Gm = —GQ-m (3-65)
If one sets §m = —Y%idm, the Fourier transform (3.64) can be written in real variables
as
LA mmk
= sin , k=1,..,n
2 ngl T+l
4 Z mmk
Jg = — i s = 1, ceey 3
q Nmz=1q’csmn+1 m n (3.66)

However, it is usually more convenient to work with the complex form (3.64).
The identities (3.60) and(3.61) take the form

n n R n+1l n . m .
Sa=NI sl 3 (g = ge-1)’ =4N 3 sin® = |gn|” (3.67)
k=1 s=1 k=1 m=1

Normal modes of chains (continued). Comparing (3.66) with (3.51) and (3.52), we
see that in the problem under consideration, the discrete Fourier transform is identical
to the transformation to mode coordinates. Let us derive the energy expression in
mode coordinates. Since in translational coordinates g

o1&, 13 Qk_Qk—1>2
_2;mqk, U—2§C< X ,

using the properties (3.67) of the discrete Fourier transform, in mode coordinates we
obtain

. -

2
, U= CQ4NZsm

ﬁ
2 84

m g  (3.68)

So, in mode coordinates the chain is a set of noninteracting oscillators with natural

frequencies
wy = 1|5 25— 3.69
=\ maz 250 5m 1 1) (3.69)
as claimed.

Interaction energy in terms of translational coordinates. We constructed two
finite-dimensional truncations for string dynamics: truncation (3.31) in terms of trans-
lational coordinates, g;, and truncation (3.39) in terms of mode coordinates. Each
one has certain advantages. In translational coordinates, interactions are local: each
particle is affected only by its nearest neighbors. This makes numerical simulations
very effective: one needs to perform O(N?) numerical operations per time step. In
mode coordinates, modes do not interact at all in a linear regime, but for high en-
ergy of excitation each mode affects the motion of almost all others. An unpleasant
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consequence is that the number of numerical operations per time step is on the order
of O(N*). On the other hand, there is a considerable pay off in the use of mode
coordinates: the mechanisms of vibrations are seen more clearly. The increase of the
number of numerical operations is compensated to some extent by a decrease in the
number of modes to be considered. To have the same accuracy of the approximation
of the continuum motion, one needs 10-20 nodes per the shortest wave length which
causes the number of degrees of freedom in translational coordinates to be increased
accordingly. Note also that incorporation of bending rigidity is much simpler in mode
coordinates.

Fortunately, for string vibrations it is possible to develop a form of dynamical
equations which combines the advantages of both truncations. This form is based on
the following identity.

Let gx and g, be related by the Fourier transformation (3.64). Note that g are
periodic with period N due to (3.64). In particular,

An+1 = G—n-1 and Jn+2 = q-n ‘ (370)
Consider the sum 1
n+
Z (qrs+1 — Qk)z(q*k-}-l - q*k)2 (3.711)
k=-n

in the general setting when g, may be complex and not necessarily antisymmetric
(gx # —g-x). In the calculation of the end terms of the sum, the periodicity condition
(3.70) is imposed. The following identity holds for this sum:

n+l

Z (Qr+1 — Qk)z(Q‘k-i-l - Q‘k)Q =
k=-n
ntl ™m , wr . Tws . wt
8N )  §(m+r—t—s)sin N sin N sin ~ sin — N GmGrsG: (3.72)

m,r,s,t=-n

Before proving this identity, let us discuss its consequences. Let ¢ be real and
antisymmetric, and gn4; = 0, while §; is purely imaginary and antisymmetric, and
gn+1 = 0. We introduce real variables

m
bm = 21 Im SIN —— .
1m SN — (3.73)
Then, identity (3.72) becomes
2Y (1= aq)'=N 3 S(m+r—s—1t)bubbh, = (3.74)
k=0 .m,r,st=-n

The variables by, are symmetric: b_,, = b,,. Thus, (3.74) is transformed into

n

Z = Qk- 1 = 16N Z Amrstb b b bt

k=0 m,r,s,t=1
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where A5 are the coefficients (3.37). Finally,
1 & 1 2
(I) = Z Z Amrstbmbrbsbt = "_N Z q&+1 - Qk (375)

Here, g related to b,, by

Z G e2mmL/N Z Gm ( 2mimk/N _ e—21rimk/N) —

m=-n

" gin 2rmk

= Z 27 sin 27ka =) Xb, (3.76)

m=1 sin N

We see that the mode interaction (3.75) can be made local in translational coordi-
nates g if the latter are introduced by means of (3.76). This suggests the following
procedure for calculating the interaction force, ®/9b,,. Since

6 1 & 5(Qk+1 )
W 8 Z Jk+1 "Q m@bm =
n k=0 2rm(k+1) . 2rmk
sin === — gjn &£
ZQL+1_QL3 N pesmey b=
k=0 SlnT
n m(2k + 1
Z (qe+1 — g)® cos mm(2k +1) 7 ) (3.77)
k=0

one has, for given b, to find gxi1 — gx from (3.76). This reduces the problem to the
discrete cos-Fourier transform of b,,. Indeed,

Q1 — Qe = Xn: Gim (e2m'm(k+l)/N _ e27rimk/N) —

m=-n

— Xn: Gm p2mimk/N mim/N ( e™im/N _ e-m’m/N) —
m=-n
n
524G, sin 71]\7/3 emim¥ (3.78)

m=-n

Thus,
2k +1

n
Qk+1 — Qe =2 ) by cosTm

m=1
If N is a power of 2, one can use the fast Fourier transform to find gp.; — ge. It
requires O(N log N) numerical operations. Then another O(N log N) operations are
required to perform the calculations in (3.77) since this is also a discrete cos-Fourier
transform of (ges1 — qi)°.
Identity (3.72) can be proved by plugging (3.78) into (3.71):

n+1
Z (@k+1 = @) (T i1 — 0°)° =

k=-n
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Zn: g:l 2ig sinZT2i*sin£ZZi‘sinE
m N ar N as N

k=-n mrysit=-m

t . i
22-th Sin % e27¥1(m+r"s-1)k/N e"n(m"_r—s—t)/N (3.79)
Since
n+1
erilmtr=s=t) |7 5> eamilmir=s=0K/N _ N§(m 7 — 5 ) (3.80)
k=-n

(3.79) transforms into (3.72) (the last factor in (3.79) can be set equal to unity due
to (3.80)).



Chapter 4

Slightly Damped Systems

Classical equilibrium thermodynamics and statistical mechanics were derived in chap-
ters 1 and 2 for Hamiltonian ergodic dynamical systems. The next question is: what
kind of thermodynamics takes place if the underlying microdynamics is neither Ha-
miltonian nor ergodic? It is very unlikely that something general can be said about
these cases. However, it is likely that some features of classical thermodynamics are
inherited by “slightly non-Hamiltonian” systems from Hamiltonian systems. An im-
portant class of slightly non-Hamiltonian systems is systems with small dissipation.
In this chapter, “thermodynamics” of such systems is considered. It turns out that
the major feature of classical equilibrium thermodynamics, the existence of thermo-
dynamic potentials, is characteristic also for thermodynamics of slightly dissipative
systems. “Macrobehavior” of slightly dissipative systems is governed by constitutive
equations which are potential. The potential is the Lagrange function averaged over
the attractor. In the first section, the main features of what we call equilibrium
thermodynamics are summarized.

4.1 What is equilibrium thermodynamics?

Equilibrium thermodynamics of a system studies the response of this system to a
slow change of external parameters. Schematically, one can speak of a black box
with some input, external parameters ¥, ...y, and some output, the characteristics
of the response Fj,...F,, which are also called thermodynamical forces. Without loss
of generality, the number of output parameters can be taken equal to the number
of input parameters. The internal dynamics of the black box is governed by some
dynamical system. The input parameters have to change slowly on the characteristic
scale of the internal dynamics.

The behavior of the black box is characterized by the dependence of the output,
F;, on the input, y;,

Fy =Fi(y1,  Yn), o Fo=Fy(y1, .- yn) (4.1)

Equations (4.1) are called constitutive equations. They determine the “macrobehav-
ior” of the black box.

The central assertions of equilibrium thermodynamics can be stated in the follow-
ing way: . ’

1. For some choice of thermodynamical forces, the constitutive equations are
potential. More precisely, there exists energy, E, a function of yy,...,y,, and some
parameter, entropy, such that

8E(Sy Yy -0y yn)

k= 3y

(4.2)
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2. Entropy, S, is the only characteristic of the internal state of the black box
which penetrates in “slow” macrodynamics. Entropy is not changed in the course
of a slow change of y. The initial value of entropy depends on the internal state of
the black box at the beginning of the process. One may say that the macrodynamics
of the black box remembers the initial data of the microdynamics only by means of

entropy.
3. There is a characteristic of the black box, temperature,
OE
T= 35 (4.3)

which possesses the following property: two bodies in contact have equal temperatures
after some transitional period. ,

All three statements can be derived from the assumption that the internal dy-
namics of the black box is Hamiltonian and ergodic. ! Thermodynamic forces are
averaged over the fast motion derivatives H/3y. The question under consideration
is: what is different if the internal dynamics is not Hamiltonian? Here, we consider
two examples: elastic vibrations damped by small dissipation and fluid motion at
high Reynolds numbers. We show that the major feature of equilibrium thermody-
namics of ergodic Hamiltonian systems, the potentiality of constitutive equations, is
characteristic for these dissipative systems as well.? Entropy disappears from consti-
tutive relations because dissipative systems do not remember initial conditions (there
is another possible view on entropy of dissipative systems which is discussed in sec-
tion 4.4). .

In order to have steady vibrations which seem analogous to thermodynamical
equilibrium states some exciting force should be applied to the system; otherwise,
the system returns to the rest position. We proceed with the discussion of dynamical
effects caused by the external periodic force and small dissipation for the case of
Duffing’s oscillator.

4.2 Duffing’s oscillator: geometry of phase space

Consider an oscillator with one degree of freedom, z, and potential energy ® =
Y.kz? + Y,lz*. The motion of the oscillator is governed by the equation

mi + x»% + kz + lz° = F(t) (4.4)

Here F(¢) is an external force which is assumed to be periodic, and x is the friction
coefficient. This equation was first studied by Duffing at the beginning of this century
and was named after him. It has received a lot of attention in the last few decades

1Statements 1 and 2 were derived in chapter 1. The third statement can be obtained if one
assumes that a) “to put two systems in contact” means to form a new Hamiltonian system with
Hamilton function H = H; + Hy + Hi; where H; and H, are the Hamilton functions of the two
systems and H, is the interaction energy, b) His << H; and H)z << H; and c¢) the new system is
ergodic.

2For fluid motion this statement is conditioned by vanishing the term (4.50) in the limit of zero
viscosity.



4.2 Duffing’s oscillator: geometry of phase space 117

D)

@

Fig. 4.1: Curves of constant energy in (p, g)-phase space for a free Duffing oscillator

(@a=F=1)

as it presents one of the simplest nonlinear systems which demonstrates extremely
complex behavior.

To acquire a better understanding of the dynamics of Duffing’s oscillator with
small dissipation, it is very useful to investigate first the geometry of trajectories for
zero dissipation which will be done in this section.

First, let us transform Duffing’s equation to a nondimensional form,

2
g;% + uj—i +oagq+pg° = f(r) (4.5)

where f(7) is a periodic function with period 1, and

2
oz a—k(%) ﬁ__lros f__F
q—:ro’ T oom T om)\ ] T m\
Nz (w)2 oYy _ 2mx
0 \on/) T PE L
zo and w are some characteristic length and the frequency of the external force,

respectively.
Let us start from the case of zero external force. In this case, we have an au-
tonomous nonharmonic oscillator with the Hamilton function

A & :
H—-E"'a'é-'*',@z, rp=4q (46)

We assume that @ > 0 and 8> 0. The trajectories of this oscillator are closed
curves H(p,q) = E = const. They are shown in Fig. 4.1 for « = f = 1. Since we are
going to investigate the nonautonomous case, it is convenient to view the trajectories
in three-dimensional (p, ¢, 7)-phase space.

In (p, q, 7)-phase space, all trajectories lie on surfaces of cylinders, the bases of
which are the closed curves of Fig. 4.1.  The structure of the phase space is the
same as in integrable Hamiltonian systems; the inessential difference is that we now
have a family of embedded cylinders instead of invariant tori. It turns out that

KAM theory is applicable to this case, and the addition of a small periodic force
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Fig. 4.2: The Poincare section of a trajectory in (p, ¢, 7)-phase space is a projection
of points A4, B, C, ... on (p, g)-plane

can be considered as a small perturbation of the integrable system. The periodic
force disturbs periodically the majority of cylinders, while the rest of the cyhnders
are destroyed and replaced by chaotic trajectories.

A good method to visualize the trajectories is to utilize Poincare sections, which
should be adjusted to the periodic character of the exciting force: Poincare sections
show successive positions of phase points for times 7 = 0,1,2,... (see Fig. 4.2).
(Remember that unity is the period of the exciting force.)

For periodic trajectory with period one, the Poincare section consists of one point.
The Poincare section contains two points for the periodic trajectory with the period 2,
etc. The absence of a certain pattern is a characteristic feature of a chaotic trajectory.

Consider the harmonic excitation

f(r)=a+bsin2n7 (4.7)

A typical Poincare section for a relatively small excitation (a = 0, b = 2) is presented
in Fig. 4.3. Figure 4.3 shows the following. If a trajectory starts at some point
A, the next positions would be A;, A, .... After a long time, the positions densely
cover a closed curve, a. It is clear that this Poincare map represents a trajectory
which goes along a cylinder, and a is the cross-section of the cylinder and the plane
7 = 0. Since the cylinder is periodic in 7, the cross-sections of the cylinder with
the planes 7 = 1,2, ... form the same curve, a. Starting from other initial points one
obtains other closed curves. So, there exists a family of periodic cylindrical surfaces.
If the radius of the cross-section decreases, the cylindrical surfaces become slender,
and eventually collapse to a curve in (p, g, 7)-phase space. This curve is periodic in 7
with period 1. It is represented by the point O in Fig. 4.3.
The functions p(7) and ¢(7) are some periodic functions,

p(r) +7g(r Z AgemiT (4.8)

In principle, all harmonics are presented in the sum (4.8). In this sense, one speaks
of superharmonic resonance: all frequencies, which are multiple frequencies of the
~ external force, are excited.
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Fig. 4.3: Poincare section for Duffing’s oscillator for small amplitude of excitation
(a=0,b=2)

Figure 4.3 reveals a remarkable phenomenon - the appearance of subharmonic
resonance, which is the motion with frequency less than the frequency of the external
force, and, correspondingly, the period of response is larger than the period of the
exciting force. This motion is represented by three “islands” in Fig. 4.3. If the initial
position is chosen at point B, then, after time 7 = 1, the next position, B, is on
the other “island”. After time 7 = 2, the trajectory is at the point B,, on the third
island. After time 7 = 3, the trajectory returns to the first island. After a while,
the points densely cover the curves b,b; and b,. It is clear that these curves are the
cross-sections of a cylindrical surface in (p, g, 7)-phase space with planes 7 =0, 7 =1
and 7 = 2. The cylindrical surface is periodic with period 3.

The three-dimensional picture of two cylindrical surfaces with periods 1 and 3 is
shown in Fig. 4.4. The darker tube corresponds to vibrations with period 1, while
the lighter tube represents the vibrations with period 3. Cylinders with period 3 also
form a family of nested surfaces. If the diameters of cross-sections are decreased, the
cylinders collapse to a curve with the period 3. It is represented by three points C,
C, and Cj which are the centers of the three islands. So, the subharmonic. resonance
observed is the motion which contains harmonics with frequency equal to 1/3 of the
frequency of the external force (and all its multiple frequencies as well).

KAM theory predicts the existence of destroyed cylinders for arbitrarily small
values of the force amplitude, b, but for b which are very small it is not easy to find

destroyed cylinders by computer simulations — they occupy too small a part of phase
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p

Fig. 4.4: Two tubes in phase space corresponding to vibrations with the period of
the exciting force (darker one) and tripled period of the exciting force (subharmonic
resonance).
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space and, in addition, can be hidden by computational errors.

If b is large enough, a chaotic sea emerging from the destroyed cylinders can easily
be seen (Fig. 4.5). An interesting pecularity of this picture is the appearance of
additional islands: subharmonic resonances with the periods 2 and 5. The families
of cylinders are numbered in Fig. 4.5 by their periods. A family of cylinders with
period 5 is embedded in the family of cylinders with period 1. The period 1 family
is surrounded by the family with period 3. On the periphery of this figure, there are
two families with period 2.

Increasing the amplitude of the excitation leads to more and more complex pic-
tures of motion. The Poincare section is shown in Fig. 4.6 for a = 0, b = 12, where
subharmonic vibrations with periods varying from 1 to 40 can be seen; the correspond-
ing islands are marked by their periods, and different families of the same period are
marked by letters.

The complexity of the geometry of phase space is a generic feature of nonlinear
vibrations. As another example, the Poincare section of a cantilevered beam exited
by a periodic force at the unclamped edge! is shown in Fig. 4.7. The reader is invited
to give a mechanical interpretation of this picture.

The dynamics of Duffing’s oscillator is certainly nonergodic - there are many
islands of ordered motion. The picture of vibrations looks so complicated that no
simple thermodynamical relations can be expected to describe them. Help comes from
a source which has been ignored so far — dissipation. It turns out that dissipation
significantly simplifies the complex pictures considered and makes “thermodynamical
questions” sensible.

Dissipation causes all complex “microstructure” of the phase space to disappear:
all trajectories fall on a number of attractors. For moderate a and b, the trajectories
leave the invariant cylinders and approach the central trajectories of the corresponding
islands, which become limit cycles. Some islands can be completely destroyed by
dissipation. The number of limit cycles depends on the value of the friction u, and
parameters a, b, o and B. If the friction p is small enough, a number of limit cycles
survive. For the large enough value of p there is only one limit cycle. In general,
tubes with smaller periods do survive for larger values of dissipation, and the ones
with large periods disappear even with small dissipation.

For larger amplitudes a and b, a strange attractor might appear. A natural con-
jecture is that a strange attractor emerges at a place previously occupied by a chaotic
sea of a Hamiltonian system. This conjecture is supported by the Poincare sections
in Fig. 4.8a and Fig. 4.8b. Figure 4.8a shows the Poincare section of a Hamiltonian
system for a = 0, b = 2975, p = 0. Figures 4.8b, Fig. 4.8¢c and Fig. 4.8d are the
Poincare sections for 4 = 0.1 and g = 1.0. The same initial data were chosen for
all four cases. It is seen from Fig. 4.8a and b that the chaotic sea of Hamiltonian
system really transforms into some chaotic attractor while two islands collapse to a

1The Lagrange function in this example is [19]

1 1
(1 + cq2) ¢® - =ag? - qu4 + Ag + Bgsinvt,

L= 5

N =

the value of parameters are a = 10,6 =0,c=1,4A =0,B = 10,v = 2~.
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Fig. 4.5: Poincare section for moderate excitation (a = 0,b = 10). Subharmonic
resonances with the periods 2, 3 and 5 are seen.




4.2 Duffing’s oscillator: geometry of phase space _ 123

10.0 | . " I

-10.0

-20.0 " ! . I " 1 L .
-5.0 -3.0 -1.0 1.0 3.0 5.0

Fig. 4.6: Poincare section for large excitation (a = 0,b = 16, u = 0)
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Fig. 4.8: Poincare section of a) undamped, harmonically exited Duffing oscillator
(@ = 0,b= 2975, u = 0), b) slightly damped Duffing oscillator (a = 0,b = 2975, =
1072), ¢) Duffing oscillator with moderate damping (a = 0,b = 2975, 4 = 0.05) and
d) Duffing oscillator with large damping (a = 0,b = 2975, 1 = 1.0)
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limit cycle. Chaotic attractor seems close to the chaotic see for small friction though
“the handle” in Fig. 4.8a is lost. For large value of p the limit cycle dies, and only
the strange attractor exists. We return to the discussion of Fig. 4.8 in section 4.5

4.3 Thermodynamics of limit cycles

Now we are going to show that slow change of parameters of limit cycles yields
potential constitutive equations.

Consider a mechanical system with one degree of freedom and the Hamilton func-
tion which depends on time explicitly; this dependence is caused by external periodic
forces. The period of the external force is 2m/w. After scaling time to make the
period equal to 2,

d
L= wpgg - H(p,q,7,y) (4.9)

Here y are the slowly changing parameters, and H is periodic in 7 = wt with period
2m. The dynamical equations are

dp  8H B8H dg _0H

YT e Mo Ve o (4.10)
The friction coefficient y is small.
For Duffing’s oscillator excited by an external force F(7),
2 2 4
_ P T T
H= S +k 7 +l4 (r)g (4.11)

In applications, the most interesting slow parameters are the characteristics of the
external force. For example, the coefficients of the Fourier series for F(7)

F(r)=)_ay cos kT + b sin kt (4.12)

can be the slowly changing parameters.

Consider a limit cycle of equations (4.10). The period of the limit cycle, #, may
be equal to the period of the exciting force, 27w, or may have larger values 4w, 6, ...
The limit cycle is a periodic curve in (p, ¢, 7)-phase space. This curve depends on the
values of the parameters y. The parametric equations of the limit cycle are

p=p(r,y), ¢=4q(r,y) (4.13)

Let us average the Lagrange function of the oscillator over the limit cycle,

L

i

=1 0/ wrr, )LD Hipry) () ) (419)

The average Lagrange function, L, is a function of the slowly changing parameters,
Y.
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Let us find the derivatives L with respect to y. We have
= 8
8L 1 q qu 0H 8p OH 8q OH
=l etk § 2 A Ty
5y~ 0/ “oyar tParay  op oy G dy ay (4.15)

Integrating the second term of the integrand by parts and taking into account the
fact that contributions at 7 = 0, 8 cancel out due to periodicity of p and ¢, we rewrite
(4.15) as

= 8
OL _1{[op(,0a_0H\ 0s( 0p, OH)_ oH
Oy —80/[ ( or 3p) 0y< 87’+0q> ay}dr (4.16)
The last expression can be simplified using (4.10). We obtain
oL __[oH\, [ 940
5y < By > + <w 5, 8y> (4.17)

If the derivatives of 9¢/07 and 9¢/0y remain bounded for yu — 0, then the last
term of (4.17) vanishes in the limit of small dissipation, and we get

oL  [6H (4.18)

oy Ay '
Recalling that y is actually a set of parameters, ¥y, ..., Ym, and defining the “thermo-
dynamic forces”, F;, by the relations

F=- <%§—f> | | (4.19)

we obtain the constitutive equations,

dL(y)

E —
Ay

(4.20)

Introduction of “thermodynamic forces” by (4.19) is analogous to that in classical
thermodynamics. The thermodynamic forces (4.19) usually have an obvious physical
interpretation. For example, if the slow parameters are the Fourier coefficients ay, by
of the series (4.12), then

- <g—i> = (g cos kt), — <Z—Z> = (g sin k7) (4.21)

The quantities (4.21) are the Fourier coefficients of the response. We denote them
by g and §i, correspondingly. The constitutive equations (4.20) mean that there is
a function, L, of the Fourier coefficients of the exciting force, ax, b, such that

0L(a,b) . 8L(a,b)

_ - 22
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So, the Fourier coefficients of the response are potential functions of the Fourier
coefficients of the exciting force.

The function L can be considered as a function of all a, and b, k = 1,2,.... If
this function is known, then, for a particular excitation, say,

F(r)=ap+0b sinT (4.23)

the response characteristics are determined by the equations

oL )/
%= 6(10 ay=az=...=0 ’ “= <9a1 ay=az=...=0 ’
ba=b3=...=0 ba=b3z=...=0
oL oL
~ — —— , Yoy == e ’ 424
n 6b1 a1=az=...=0 e 8b2 a1=az=...=0 ( )
by=b3=...=0 by=b3=...=0

If one is interested only in the “reciprocal” characteristics of the response, § = (g)
and ¢ = (g sin 7), then the function P can be introduced by the variational problem

P(ag, b)) = aEl]axztf L(ag, a1,az,...; by, by, ... ) (4.25)
b2,b3,...

Here Ezbtr stands for the calculation of the stationary point with respect to a, b.
a,

The constitutive relations for § and ¢ can be written in terms of the functions P

as
8P(ao, bl) BP(ao, bl)

9= T 6e, ' 9T 7oy

For nonlinear vibrations, the functions L and P can be found, probably, only from
real or numerical experiments. The range of viscosity in which potentiality holds with
acceptable accuracy can also be determined only experimentally. For the Duffing
oscillator (4.5) with & = # = 1 and periodic excitation F' = a+bsin 7, the function P
has been found [22] for the limit cycle corresponding to the central island in Fig. 4.5:

(4.26)

P(ag, b)) = ag + 10 + apa® + azb® + aga’®d (4.27)

Here ap = —0.1584, a; = 0.3835, a; = 0.1787, a3 = —0.0065, ag = —0.0003. The
constitutive equations are
g= 8_P =) + 2apa + 204ab, §= ?ﬁ = aj + aya’
da 0b

The errors in the constitutive equations (4.28) are less than 0.1% for small friction,
i < 0.1. Errors reach 8% for high friction, u = 10.

We call the function P the dynamical potential of an attractor.

The constitutive equation (4.22) can be inverted, and the excitation characteris-
tics, ax and by, can be expressed in terms of the response characteristics, g, and g.
In order to do that, consider the average value of Hy(p,q) — pg over the limit cycle,

(4.28)
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where Hj is the Hamilton function of free vibrations (the total Hamilton function,
H, is equal to Ho(p, q) — F(7)q). Setting

L* = (Ho - pd)
we have
L*=(F(r)g) — (pg — H) = (F(r)g) =L = Zakq_k +bege — L (4.29)

If L is considered to be a function of ax and by, then L” is Legendre’s transform of L,
the function of §x and §x, and the following relations hold:

oL+, _oL
T 9,

4.30
. (4.30)

aE =

This statement can be put into the form of a variational principle: the response
of the system is a stationary point of the function

L* (e, @) = D (ardi + bide) (4.31)

The function L*(G, dx) contains all the necessary information on the response.
In principle, it is determined by the following variational problem: find a stationary
point of the action functional of free vibrations

na=1/ (wng? - Holo)Jar (4.32)

on the set of all functions p(7) and ¢(7) with period §, which obey the constraints
(q cos k7) = Gk, (gsinkt) =g (4.33)

The stationary value of the functional I is a function of g, k. It is equal to —L*.

If the external force is presented not in terms of Fourier series but in a series of
some set of functions, ¥k (7),

F=> aw(r)

the previous relations stay valid if §; are determined by
e = (g k)

If the oscillator has a number of limit cycles, each limit cycle is characterized by
some potential. A change of parameters causes the limit cycles to deform, disappear,
bifurcate, etc. The dynamical potential should play in these transformations a role
which is similar to internal energy in the theory of phase transformations.



130 Slightly Damped Systems

4.4 On thermodynamical entropy of limit cycles

The constitutive equations for limit cycles (4.20), in contrast to the constitutive
equation of classical thermodynamics, do not contain entropy. This seems quite
natural because in the constitutive equations of classical thermodynamics entropy
represents memory of initial data, while no memory of initial data exists for dissipative
systems. Although, beyond doubt, there are no characteristics of limit cycles which
possess all the properties of the entropy of classical equilibrium thermodynamics,
there are characteristics which have some features of entropy. In this section, we
show that for an oscillator excited by a periodic force, the relation between logarithm
of the frequency of the external force and temperature of vibrations is similar to that
between entropy and temperature in classical thermodynamics, and, in this respect,
the logarithm of frequency is analogous to entropy.

To establish this fact, we differentiate (4.14) with respect to w. The dependence
of the functions p(7) and ¢(7) on w, which is not mentioned explicitly in (4.14), stems
from the fact that the dynamical equations (4.10) contains w as a parameter. The
total contribution of the derivatives of Op/0w and 0g/dw is zero in the same way that
the contribution of dp/dy and dq/dy is zero in (4.15). Thus,

oL _ <pfl-‘-]-> (4.34)
Ow dr

According to the dynamical equations (4.10), the right-hand side of (4.34) can be
written as w™! (pOH /8p). We can define the temperature of vibrations in the same
way as in the nondissipative case, as

()

oL 1
=T
Ow w
So, in addition to the previous constitutive equations (4.20), we get the constitutive

equation

Hence,

9L
dlnw/wy
where wy is some characteristic frequency, for example, the frequency of linear vibra-

tions.
In the case of linear vibrations, the validity of the constitutive equations can be

checked by inspection. Indeed, let Hy = p?/2m + kq¢?/2 and F = a sinwt. We have
to check the relations -

T (4.35)

)
" 0 Inw/w

g = (g sinwt) = @7 T= <mq2>

= (4.36)

The limit cycle of the linear oscillator with the friction coefficient » is

g(rya,w)=asint+ P cosT
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where the constants a, § are

_ (k—ma?) _ swa _ 919 )
a=a A , ﬁ——A—, A = (k — mw?)® + saw
Therefore,
2 2 2, 2
2\ _ QW o _ 1 _ o\ _ Ma‘w
and 2} \
L= E_L_Z%m__w_)_ (4.38)
For x—0
- a? a ma?w?
] = ———— J= —m = ——— .
4(k — mw?)’ g 2(k — mw?)’ T 2(k — mw?)? (4.39)

and the constitutive equations (4.36) follow from (4.39).

For linear friction-free vibrations the dynamical potential has a singularity when
the frequency of excitation approaches the eigenfrequency of the oscillator, wy =
vEk/m.

In the vicinity of resonance, one might expect violation of the constitutive equa-
tions because, in principle, the neglected terms s (¢8¢q/0a) and » (¢8¢q/0w) might be
finite even if the friction tends to zero since ¢ and ¢ go to infinity. Inspection shows
that the first relation (4.36) turns out to be true even for finite », while the second
one is no longer valid. It follows from (4.37) and (4.38) that for » # 0

oL _ xz(w2 -+ k/m)
8w (& = ma?) + 22

Thus, the second constitutive relation (4.36) is true for small » away from resonance,
and its error is on the order of »%. In the vicinity of resonance the value wdL /0w
is not equal to T. For wy = w we have wOL/6w = —T. Note that the cause which
keeps the oscillator from exploding at the resonance is the friction force. One might
expect that in the case of nonlinear resonance, when the oscillator does not blow up
due to an elastic Hamiltonian force, the second relation (4.36) may still be valid in
the vicinity of resonance.

It is natural to consider the variable § as a variable characterizing the “internal
state” of the oscillator. Then, the variable a is the corresponding “thermodynamical
force”. In classical thermodynamics, the constitutive equations of a system with an
internal variable ¢ are

_9E(@,S) _9E(S)
a= FT T= 35 - (4.40)

To put equation (4.36) in this form, we introduce Legendre’s transform of the
function L{a,w) with respect to the variable a:

P=qaj-L
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Then, _
oP 0P oL

MY W
and (4.40) holds for the oscillator if entropy is determined by the relation

=
§=In— (4.41)

while P plays the role of energy.

4.5 Is there thermodynamics of strange attrac-
tors?

The limit cycle is an example of an attractor, a set in phase space which “attracts”
the trajectories. If the force is small, then there is one attractor — the limit cycle.
For a larger force, an additional limit cycle might appear. Depending on the ini-
tial conditions, the trajectory approaches one or another limit cycle. The region in
(p, g, 7)-phase space for every point of which the trajectory goes to the same limit
cycle is called a basin of the attractor.

The appearance of two limit cycles is accompanied by an interesting phenomenon:
vibrations become in some sense unpredictable. The matter is that the boundary
between the two basins is extremely intricate, and a small physically unobservable
change of initial data may turn the trajectory from one attractor to another.

Note that each limit cycle is a solution of the dynamical equations: if the initial
data are chosen exactly on the limit cycle, the phase trajectory coincides with the
limit cycle.

Further increase of the magnitude of the external force leads to the appearance
of additional attractors with very complex geometrical structure, due to which they
acquired the name of “strange attractors”. In contrast to a limit cycle, for which
Poincare’s map consists of a single point for a cycle of period 1 or of m points for
a cycle of a period m, the Poincare section for a strange attractor is a set of points
with a complex geometry. A numerical approximation of this set by a trajectory of
Duffing’s equation is shown in Fig. 4.8b. Strange attractors also consist of trajectories
of dynamical equations. In (p,q,7)-phase space they form a set which looks like
spaghetti. Each trajectory of Duffing’s oscillator approaches some trajectory on the
attractor.

To have sensible “thermodynamics” we need the time average over a trajectory not
to depend on the initial data. This requires the average value of any smooth function
over each trajectory of the attractor to be the same. It is natural to call such attractors
ergodic attractors. The first problem we face in considering the “thermodynamics”
of the strange attractor of Duffing’s oscillator is that it is not known whether or
not this attractor is ergodic. There are some numerical observations undermining its
ergodicity [22]. Calculation of the average value of ¢ as a function of 6,

/8 q(t)dt

D
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shows that the average value keeps vibrating even for very large 6, on the order of
7 = 10°. A possible reason is that the attractor consists of a number of simply
connected interwoven attracting sets, and the trajectory keeps moving from one set
to another.

Another difficulty is the contribution of dissipation. Limit cycles are some dis-
turbed trajectories of a Hamiltonian system. The disturbance vanishes if the friction
coefficient goes to zero. An attempt to observe similar behavior for attractors has
been undertaken in [22]. For the value of force parameters at which the strange at-
tractor exists (a = 0.05, b = 2975), the Poincare sections for a Hamiltonian system
were obtained (the friction 4 was set equal to zero). This map is shown in Fig. 4.8a.
The well-developed chaotic sea can be seen. For small dissipation, two attractors
were observed: a large chaotic sea and the limit cycle (Fig. 4.8b).

Depending on the initial conditions, the trajectory approaches either the chaotic
set or the limit cycle. It was expected that the strange attractor should appear
within the chaotic sea if 1 # 0, while the family of tubes collapses to a limit cycle.
Calculations during the first 50,000 cycles confirmed this hypothesis. However, longer
runs (f = 100, 000) revealed that each trajectory leaves the chaotic sea and goes to the
limit cycle. There might be two reasons for such behavior. First, the strange attractor
does exist but its distance from the basin boundary is small and the trajectory jumps
from the basin of the strange attractor to the basin of the limit cycle due to numerical
errors. Second, the strange attractor does not exist for very small . The chaotic set
is a set of “transitional chaos”. After passing through this set, the trajectory falls
into the limit cycle. It is not clear at the moment which reason is the real one.

For larger friction, the strange attractor certainly does exist. The corresponding
Poincare’s map is shown in Fig. 4.8c. It is interesting to observe the transformation
of the chaotic sea in Fig. 4.8a through the chaotic set in Fig. 4.8b and the strange
attractor in Fig. 4.8¢c to the familiar worm-type structure of Fig. 4.8d.

If strange attractors do not exist for 4 — 0 and appear only for finite u, then
the existence of thermodynamical potentials seems questionable in the exact math-
ematical sense. Approximately, the potentiality of the constitutive relations may,
nevertheless, hold for finite p with good accuracy, as we have seen for limit cycles of
Duffing’s oscillator.

4.6 On thermodynamics of attractors:
general case of a closed system

The derivation of the potentiality law can be generalized to an arbitrary closed system.
We assume that the kinematics of the system is characterized by variables u(¢) where u
is either a finite-dimensional vector or a finite-dimensional vector field. The governing

equations are

%— + flu,u) =0 (4.42)

where L is the Lagrange function, 6L/6u is its variational derivative and f is the
friction force. The external force which causes the motion of the system is supposed to
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be potential, and the potential of external force is included in the Lagrange function.
It is assumed that trajectories in phase space tend to an attractor, and for f — 0 the
attractor converges to a set consisting of the trajectories of the limit system

6L
E—_O

The attractor is supposed to be ergodic in the following sense: average values of any
functional ¢(u,u,) over a trajectory of the attractor do not depend on the trajectory.
This assumption makes the average value of any functional independent of initial
data.

Let L be a function of the parameters y = (v1,...,yx). The average value of any
function becomes a function of the parameters y. Denote the average value of L by

P,

9

0}
We assume that §L/6u, and §u/éy; are bounded for all ¢. Then, the last term vanishes
for § — oco. The first terms approaches zero when friction goes to zero. Therefore,

oP oL
(&) (443)

The averaged derivatives L /3y form “generalized forces” which are reciprocal to the
parameters y;. If y; are considered to be the input parameters of the system, (0L/0y)
are the corresponding output parameters, and equations (4.43) are the constitutive
equations.

P(y) = (L)

Determining the derivatives of P with respect to y, we get

8 8
OP o1 6L Ou oL 6L Bu

4.7 On thermodynamics of closed fluid flows

An interesting particular case is that of a fluid flow in a container. Let us first state
the corresponding variational principle. Consider a container (a finite region V in 3-D
space) occupied by an ideal fluid. Let €% (a = 1,2, 3) be the Lagrangian coordinates
of the fluid particles. The Lagrangian coordinates take values in some region V; in
the 3-D space of Lagrangian coordinates. Denote by z* the Cartesian coordinates of
an observer’s frame in the actual 3-D space. The trajectory of a particle £* is

' =1t (69, ¢t) (4.44)

“To know the fluid motion” means “to know the functions z*(€¢,t)".

The Jacobian A = det ||0z!/0€%|| characterizes the change of volume in the tran-
sition from Lagrangian coordinates to Eulerian coordinates. The density p is deter-
mined by the law of conservation of mass,

b= M)ﬁoj‘l (4.45)



4.7 On thermodynamics of closed fluid flows 135

where py and A, are the values of the density and A at the initial time instant t,.
Note that A can be either greater or less than zero; the determinant Ay has the same
sign as A, thus density is necessarily positive.

We consider the motion which is not detached from or does not penetrate the
walls: each particle, which is on the wall at the initial moment, stays on the wall in
the course of the motion. In terms of the functions z' (¢, £%) that means

' (t,€%) e 8V if €€ dV, (4.46)

where 0V and 9V, are the boundaries of V' and V,, respectively. Note that the
boundary 0V may consist of a number of pieces, some of which move. The moving
part of 8V is denoted by T (t). For example, X (t) might be the surface of rotor

blades.
Let the initial and final positions of the particles be given,

Tt (t0,€%) = 74 (€%), ' (t1,€%) =z} (€%) (4.47)

Then, the adiabatic motion of the ideal compressible fluid is a stationary point of the
functional

MG / v/ peaﬂc‘ ((;t £°) bz, étt,gﬂ) -U(p)> Adedi  (4.48)

on the set of the functions z* (¢, £%) which obey the constraints (4.46) and (4.47).
Summation over repeated indices is implied.
Stationary points of the functional (4.48) satisfy the equations of motion of an
ideal fluid in Lagrangian coordinates
8%t (¢%,t) _ Op

5~ 5a. (4.49)

Here p is the notation for function p*8U/dp.

Now, let the viscosity of the fluid be not equal to zero. Fluid dynamics is governed
be the Navier-Stokes equations which have the form (4.42) with friction force pAv; (u-
viscosity). Assuming that the problem contains slow parameters y and differentiating
(4.48) with respect to y, we obtain under the same assumption as in section 4.6,
the constitutive equation (4.43). The assumptions made are the boundedness of
the derivatives L/0u; and Ou/dy, and vanishing of the term < (0L/du,, Ou/dy) >
when the viscosity tends to zero. In the case of fluid flow, OL/0u; has a physical
interpretation of fluid velocity and, thus, is bounded. The derivative du/dy for fluid
flow is 0z(¢, £, y)/dy. Its boundedness (after an appropriate time scaling, if necessary)
seems intuitively correct. The major concern is the term < (§L/éu, du/dy) > which,
for viscous fluids, is

9

. 1 al'i t,f,y)

611’1'{.1‘J 7 //——,uAvi—%?;——-dszdt (4.50)
oV
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This term is reminiscent of the average dissipation of the flow,

) Ouv; (Ov;  Ov;\ 4
0151; 7] //“axJ (62:1 3:1:,) d'z df (4:51)

Kolmogorov conjectured that the integral (4.51) remains finite when u — 0 because
the gradient of the velocity grows. The total orders of derivatives of z(t, €, y) in (4.50)
and (4.51) are the same (remember that v* = 8z*/8t). Nevertheless, it is perhaps
possible that the integral (4.50) tends to zero if 4 — 0 because the derivative with
respect to parameters may reduce the smoothness of z(¢, €, y) less than the derivatives
with respect to space coordinates and time. If this is the case, the parametric response
of turbulent flow is controlled by one function, the dynamical potential.

4.8 On thermodynamics of open fluid flows

Thermodynamics of open flows differ drastically from thermodynamics of closed flows.
The matter is that the system does not consist of the same set of particles: new
particles permanently come into play. In order to understand the situation, we must
first extend the Hamilton variational principle, which was originally formulated for
closed systems, to open ones. We will do that for fluid flows; the extension to other
open systems is similar.

It is convenient to consider open flows in terms of Eulerian coordinates. We start
from consideration of the Hamilton variational principle for closed systems in Eulerian
coordinates.

Variational principle in Eulerian coordinates. To obtain the variational principle
in Eulerian coordinates, one needs to choose some functions of z* and ¢ as required
functions instead of functions of Lagrangian coordinates z*(£2,¢). A natural candidate
for the basic required kinematical characteristics are inverse functions of z*(£2,t):

e =¢ () (4.52)

The velocity v* (€2,t) = 8z* (€°,t)/Ot becomes a function of the Eulerian coordinate
zt if €2 is expressed in terms of 7' and t by the means of (4.52). To obtain an explicit
expression for the velocity in terms of the derivatives of the functions £°(t, z), we set
the condition that the Lagrangian coordinates do not change along the trajectories
of the particles,

age ()t .o¢e
£ (@) 08

ot ozt
Equation (4.53) can be considered as a system of three linear algebraical equations
with respect to three unknown quantities v*. The determinant of this system,

t af.

=0 (4.53)

1
A

(4.54)

is not equal to zero, therefore ' _
= “ILE? (455)
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where £ = 0€°/0t, and z! are the components of the matrix which is the inverse
of the matrix [|2]| with £ = 0¢°/0z*. The functional (4.48) can be considered as a
functional on the set of functions £ (%, t)

t ‘ 131 a
1{5" (xi,t)} = //p (%vivi - U(p))daxdt = //p {%ziribaai _36_5; - U(p)} dzdt

to V to V
(4.56)
where p is given by (4.45), while A is determined by (4.54).
The set of admissible functions €% (z*,¢) is determined by the constraints
g(dt)edv, if zedv (4.57)
£ (ri, t) = £ (xi) , & (x‘, tl) =8 (xi) (4.58)

Constraints (4.57) and (4.58) are inversions of (4.46) and (4.47), respectively.

The variational principle in Eulerian coordinates states that the real motion of
an ideal fluid is a stationary point of the functional (4.56) on the set of functions
€% (z',t), determined by the constraints (4.57) and (4.58). Varying the functional
(4.56) with respect to the admissible functions £° (z',¢), one gets the equations of
motion of an ideal fluid. For the reader’s convenience, we present here a derivation
of this fact; the derivation follows [24].

Consider first a functional of the general form

I=? / A(e, €62 dzdt

to V()
Then,
t
. 6A o 3 o (GA  OA )
6I—/dtL s 0e T + / o€ (a&lm 8§?C>“}+
0 t) av(t)
t
+ ggagad?’x} (4.59)
Vi o

where §A/6€% is the variational derivative,

A OAN 0 OA 9 OA

5 " G 5w 06 BiOE (4.60)

n; are the components of the unit outward normal vector at 8V, and c is the velocity
of the surface OV along the normal to this surface.

Let us show that the equation §A/66* = 0 can be transformed into the usual form
of equations of an ideal fluid,

Opv; 8 » y 00 (z) _ 90U (p)
+ — (pv,v +p51) +p Frca 0, p=p B (4.61)

ot oI
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A=s(S-VGe)-00) (4.62)

® (z) is the potential of the body forces, and the density and velocity are expressed
in terms of £2, £¢ and &7 by (4.45), (4.54) and (4.55). To transform (4.60) into (4.61),
we need the identity

SN _Q_ . OA a sk .
Ei éfa - atA 6Ik (Et aé-z, Aat) <€ aft) (463)
and the relations
. OA o L8Uy BA, 8D
fi 8551 - p’U{UJ P ap 51;1 65? i = —PUi, aiA - paxi (464)

Identity (4.63) is obtained by multiplying (4.60) by £, summing over a and dif-
ferentiating by parts,

6A §A d EaaA __a_gazx OA 8ge  OA e
Pgea T Sigge Bk \ M ace oce ) ot ot O€¢ Ot

P - AR O\
= -an- o (e - ast) - £ (@ 55)

Here ;A is the partial derivative of A with respect to z; for fixed £2,£72,&;. To derive
(4.64), we need the relations

3

6‘7:;; _ i k a 810 5] aavj Ukéf a?ﬁi

- - ) i - i3 i i) i = —63 4.65

The first formula, (4.65) is obtained by differentiating the equality z}& = &} with
respect to &g,

9 .4 i cb ck

and contractlng with z7. The second formula (4.65) follows from the relation 28~ agc =
A=zl Indeed,

0p 0O ;
0D A™! =
ogr ~ og” &
The last two relations (4.65) can be derived from the first one and (4.55)
ot _ 0 i, kgb ik OV i
— i€l = zixfel = —zi", - = —Z,
deg — ogg e 9

Equation (4.61) follows from (4.60) and (4.64).
If the positions of the particles are prescribed at ¢ = tg,t;, then 9* = 0 at t = tp, ¢,
“and the last term in (4.59) vanishes. If the particles do not penetrate through or
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Fig. 4.9: Geometry if the particle trajectory in space-time for closed (a) and open
(b) flows

detach from the boundary, ¢ = v;n;, and the second term in (4.59) vanishes as well.
Thus, the condition 6] = 0 results in the equations of motion of an ideal fluid.

Note for further reference that in accordance with (4.64), the variation of the
action functional becomes

t

L—.—J

(5I~/dt / “‘[( —pvit? + (A - p)5’)n]+pv, d*z y — /afxapv,
to av(t) V(t) o
' ‘ (4.66)
Variational principle for open flows. To obtain an extension of the formulated
variational principle to open flows, consider motion in four-dimensional space-time.
A symbolic picture of motion in a closed container is shown in Figure 4.9a. Each
trajectory connects the initial and final positions of the fluid particles, which are
considered to be given. A typical open flow is shown in Fig. 4.9b. Each trajec-
tory also connects the initial and final positions, but now some of the initial posi-
tions are at the inlet of the flow, while part of the final positions are at the outlet
of the flow. In closed flows, the most natural choice of Lagrangian coordinates is
an identification of Lagrangian coordinates with Eulerian ones at the initial time,
€ (i, to) = z1, €% (24, tp) = 22,&%(z',t) = z3. In open flows, it is easy to identify
one of the Lagrangian coordinates with the moment of the appearance of the parti-
cle, while two others can be coordinates of the point at the inlet, where the particle
appears for the first time.

Consider now the initial and the final positions of the fluid particles at the inlet
“and outlet as given. The stationary points of the action functional are sought on
. the set of functions £°(z',t), which satisfy constraints (4.57), (4.58) along with the
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following conditions at the inlet and the outlet:
& (Ii, t) =& (:ci, t) at the inlet

£ (Ii,t) =& (zi, t) at the outlet

(€2 and €2, are some prescribed functions). Then, the second term in (4.59) vanishes
even if there is a flow through OV. Thus, the action functional has a stationary point
at the real motion of an ideal fluid.

Parametric response of open flows. Consider the flow of an ideal compressible
fluid through a region V. To include into consideration the case of compressor flow,
we assume that there are some moving rigid bodies (e.g. rotor blades) inside the
region V. The surface of the moving bodies is denoted by X(t). In addition, there
might be vortex sheets: the moving surfaces S (t) on which the tangent components
of the velocity have a jump while the normal components are continuous.

~ The inlet and outlet are flat surfaces. Denote the Cartesian coordinates of the
inlet by z%(c = 1,2). The coordinate z° is directed along the normal to the inlet and
the outlet. Particles entering the flow field are marked by Lagrangian coordinates
£, €% = £. We choose £* to be equal to the coordinates z° of the point of the inlet
where the particle appears for the first time, while £ is identified with the time when
the particle enters the flow.

The derivatives 9¢%/8z* and 9€/dz* can be expressed in terms of velocity at the
inlet as “ 1

(o (63 (o3 v
§5=5ﬁ, §3="—v‘, §;'§=0, 5:33:—; (4‘67)

where v® and v = v3 are the transversal and the axial components of velocity at the

inlet.
To derive (4.67), we note that according to the way €% and £ were introduced, at

the inlet oee oee o o

— §a P —_— O — = .

58 =% =0 e T (4.68)
Using equations (4.53) at the inlet,

og> | 9¢° o€
B -2 = — =
v 508 +U8x3 0, 1+v5x3 0
and (4.68), we arrive at (4.67).
At the inlet, the matrix ||z%|| has components
=, a3= v, =0, B=-v

and the determinant A, = —v.

The natural control parameters of fluid flow are discharge @, frequency of rotation
of the moving body v, and the parameters of the geometry X. (We denote by A the
set of geometrical parameters Ay, ..., As-)

It is assumed that £° are some functions of z%,7 = vt, v, Q, A\, and have bounded
- derivatives with respect to these arguments.
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- According to the formulated variational principle, we define the dynamical poten-
tial P by the relation

P(Q,v,A) = </p (%viv‘ - U(p))d3z> | (4.69)

Here and until the end of this section (.) means the average with respect to dimen-
sionless time 7 over the attractor.

Let us find the derivatives of P with respect to parameters @, v and \. As
for a nonlinear oscillator, one can use formula (4.59) to determine these derivatives.
However, there are complications requiring some corrections of (4.59) for this purpose.
First, the integrand in (4.69) depends explicitly on parameter Q. Dependence on
Q appears by means of the determinant Ay through the expression for the density
p = poA,/det ||0&/0z]|. Since Ag = —v, where v is the velocity at the inlet, a change
of @ causes a change of Ay. One may assume that v is proportional to Q: v = Qu,
where u is some function of z independent of Q). Second, the integrand in (4.69)
depends also explicitly on v. Dependence on v is caused by the dependence of the
velocity on v for any given 7,v' = —zi£%v (€2 = §€°/87). Third, the geometry of the
region V is changed due to the variation of the parameters A.

The contributions to (4.59) caused by the variations @ and v are

OA po 07 aA—ia N\
<£ (55@%‘5 + 5 (-7i7) 6u>dz>__

_</ 8A 8lnA,
®
6Q

0 It el 3 —_
<6p" 50 Tt v)“>‘

== (P - < / pd3:13>‘> + 5—5 < / pvivid3x> (4.70)
v v

The change of position of piece B of boundary 0V causes an additional term

< / A&ndzr> (4.71)
B

to appear where én is the displacement of B along its normal. Collecting (4.59),
(4.70) and (4.71) and taking into account (4.66), we obtain

6P = ng (P - <{//pd3x>> + 57’/ <V/ pvivid3z> + |
< / a¢°zt [(~pvv? + (A —p) &) n; + puic) d2:c> + < / Aénd2x> (4.72)
B

The last two terms may be written more elaborately. The boundary 0V consists
of inlet, outlet, moving surfaces £(t) and S(t), varied surface B and a remainder,
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which is some immovable surface A. At A4, én =0, ¢ = 0, v'n; = 0. The vector §€°z}
is a tangent to A. Thus, the surface integral over A in (4.72) disappears.

At the inlet, £* = z® and £ = ¢ independently of the value of the parameters @,
v and A. Therefore, 9¢* = 0. Since én = 0 at the inlet as well, the surface integral

over the inlet vanishes.
At the outlet, ¢ = 0, én = 0, and the integral over the outlet is

a,.i j P ,v2 vl 2
oz, | —pviv) — p ;-}- U- 0} 6 | n;d°z (4.73)

The vector 8¢°z% has a simple geometrical interpretation. Consider the position
vector of the particle £2 : £* (1,£%, ). The identity

(1,8 (r, 5,2, \) =1 (4.74)
holds. Differentiating this identity with respect to A, we get

o' ge  oxt _
s o\ N

0 (4.75)

Hence, dz' = —0€°z! is the translation vector of the particles at the outlet caused

by variation of the parameters.
It is convenient to write (4.73) in terms of enthalpy, ¢ = U + (p/p),

2 .
{v acezkp (vkvj + (z - %) 51) njd2x> (4.76)
tlet

At the surface, T (t) v/n; = c. If the set of parameters A does not contain geomet-
rical parameters of the surface £(t), i.e. £(¢) moves in the same way for all values of
), then én = 0 at T (t), while the vector 8z* = —z}0€° is tangent to . Therefore,

the integral over ¥ is equal to zero.
At the surface S, integration is conducted over both sides of S. Since on each side
vin; = ¢ and Oz'n; = én, the integral over S is equal to

<S/ oz'n' [p] d2x> (4.77)
®

where [p] is the pressure drop across S. One may assume that pressure is continuous

on vortex sheets. Then (4.77) vanishes.
At the surface B, 8z'n; = én and v/n; = c. Therefore, the integral over B is

< B/ 6npd2$>

Denote by F a generalized force corresponding to a change of A,

om
F—<B/6—)‘pdm>
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Note an important case: if A is the radius of some pipe inside V, then F coincides
with the integral of the average pressure over the pipe surface,

F=/@M%
B

Finally, for 6 P, we have

§P = %Q (P—<V/pd3z>> +2‘57” (P+<V/pUd%>) +
- <} / o¢erip <vkv" + (i - g) 6i> njd2x> + < / 6npd2x> (4.78)

B+E
Consider the most practically interesting case, where the tangent velocity at the outlet
is negligible compared to the axial velocity. Then, the third term becomes

otz np | vpv® + 1) d°z (4.79)
(L e et e )

Assume that fluctuations of &%z’ and dynamical enthalpy v?/2+i are small compared
to their average values. Accept also that the average value of the dynamical enthalpy
is practically constant over the outlet. Then, the integral (4.79) is simplified to

—I./ ) nid’e (4.80)

outlet

where I is the average dynamical enthalpy,

f==<p(%vﬂﬁ-+i>> (4.81)

Further simplifications are possible if we assume that the average value (£%) does
not depend on A due to turbulent mixing: it seems reasonable to accept that any fixed
point of the outlet can be reached from any point of the inlet with some probability
and the probability distribution does not depend on values of A\. Then, the average
value (£%) certainly does not depend on A. The difference t — (£) is the average time
which particles spend inside the device, and we denote it by ©()). The factor (z%) n;
can be transformed into (8z'/8¢) n; = 8Z/9€, where Z = (z3). The function Z (€, \)
determines the (average) position of a particle on the z3-axis, which was at the inlet
at instant £. Since fluctuations of £ (¢, z, ) are assumed to be small compared to
(€ (t,z,N)), in the vicinity of the outlet (€) =~ ¢t — © (}), and differentiation of Z with
respect to £ is equivalent to differentiation with respect to time. Thus, 0Z/9€ is equal
to the average velocity at the outlet, v,y Finally, (4.79) becomes

180 (4.82)

where [ =1 SoutVout, and S,y is the cross-sectional area of the outlet.
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If the integr
values of the discharge @), the
found from experiments in order to establish the ¢

als of p and U in (4.83) can be neglected (

Collecting (4.78)-(4.82), we arrive at the constitutive equations

o°P 1 00
5@——-@<P—<‘[pd3z>> +I-8_C§

8P _ 2 . 80

== (P + < v/ pUd x>> 1% (4.83)
opP 00

_3—7: = Fm I_é;; , M= 1, s S

which seems possible for high

n we have three functions P, [ and © which should be
onstitutive relations.
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Truncation in Elastodynamics: Influence of Driven

Degrees of Freedom on the Leading Ones
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Abstract. The problem of truncation of continuum equations is discussed. It is shown that,
under some conditions, the modes are splitted into two categories: leading modes and driven modes.
Dynamics of driven modes is completely determined by dynamics of leading modes. There is also
some backward interaction: the standard truncation ignoring the influence of the neglected modes
on the kept ones may yield incorrect fesults. A simple rule for incorporation of the influence of the
driven modes is proposed. The limitations for this rule are outlined. The general statements are

supported by numerical simulations for string vibrations.

1 Introduction

Experiments show (see, for example, [1], [2]) that, usually, only a few degrees of freedom are
effectively excited in vibrating elastic structures which possess, in principle, infinitely many
of them. The purpose of this paper is to discuss this phenomenon, and develop a method of

constructing adequate finite-dimensional models.

*Member of ASME



The truncation problem can be formulated as follows. Kinematics of any elastic contin-
uum can be described by a countable set of generalized coordinates qy,...,¢qn,.... Vector
with the components (gi,...,¢n,...) is denoted by ¢. Physical properties of the structure
are given by the expressions for kinetic energy K(q, ¢), elastic energy U(q), and dissipative
function D(q.q). External forces are assumed to be potential, the potential is denoted by

®(g.t). Lagrange’s function of the system has the form
L(g.4,t) = K(g,4) — U(q) + ®(q. 1). (1.1)
We assume that K and D are positive quadratic forms with respect to ¢;:
K = -a,(9)did; (12)
D= %/lij(Q)qz’Qj» (1.3)

Summaticn over repeated indices is implied. The governing dynamical equations are

d oL oL + oD
dtdg 0g O
Friction coefficients u;; are supposed to be small; the only role of dissipation in our study

0 (1.4)

is to lead phase trajectories to an attractor.
A distinctive feature of elastic structures in the framework of physically linear theory is

that elastic energy is a quartic polynom of g:
U= ':‘AijQin + iAiijinQk + i‘AijkIQinQkQI» (1.5)
while “masses” a;; are some constants.
The questions under consideration are: in which cases the infinite-dimensional dynamical
system (1.1)-(1.5) can be approximated by a low-dimensional system? How to construct the

low-dimensional system?

We single out a class of problems for which we show that the low-dimensional system has

coordinates qi, ..., gx and the effective elastic energy of the system can be taken as
Gk +1Gk+21+

2



For the case of string vibrations, truncation (1.6) works with good accuracy while the stan-

dard truncation

Ua(qr, -+ a6, t) = U(g) — ®(q,t) : (L.7)

Gk +1=Gk+2=-..=0
may yield incorrect results.

In terms of continua the truncation (1.6) means the following. Let U(u) be the energy
functional of elastic medium occupying the region V, u is displacement field in V. Denote
by ¢ the eigenmodes of linear vibrations of this media normalized by the condition (p - mass
density):

/pgbig{)deI = 6. (1.8)
14

Let ®(u,t) be the linear functional of the work done by external forces. Consider the varia-

tional problem

U =min[U(u) - ®(u,t)], ' (1.9)

u

where minimum is sought on the set of all admissible functions u obeying the constraints

(ugr) = qu, ..., (ugr) = g (1.10)
and ¢ is a parameter. Minimum value in the variational problem (1.9) is a function of

qi,..-gx and ¢ : (7=U(q1,-.-,Qk,t)-

The Lagrange’s function of the proposed truncation has the form:

@ -Ulg, -\ qx, t). (1.11)
The way to choose the leading modes ¢, ..., ¢ and the number of modes k is discussed in
Section 6.

The text is organized as follows. In the next Section we describe the idea underlying
our approach. In Section 3 the basic equations for the example studied numerically, the
string vibrations, are presented. In Sections 4 and 5 the counter examples for validity of the
proposed truncation are presented; they outline the expected range of applicability of our
approach. Then, in Section 6, we show that our truncation works better than the traditional

one.



2 An observation

First, consider the truncation problem in the simplest case of linear vibrations when g are so
small that the terms of the third and fourth order in (1.5) can be neglected. It is convenient
to make a linear change of variables diagonalizing matrices ai; and A;;; matrix a;; can be
made unit under this transformation. The new variables are called mode coordinates and
have the sense of the amplitudes of eigenmodes. We keep for the mode coordinates the same

notation, ¢. In mode coordinates, Lagrange function takes the form
1 1
L=3. (593 - AG Fi(t)Qi> : (2.1)
i

The system forms a set of noninteracting oscillators with unit masses and rigidities A;.
Q 02

Rigidity A; is related to eigenfrequency of the ith mode w; by A; =w,. It is assumed, for

simplicity, that all modes have different eigenfrequencies. The modes are numbered in the

order of increased eigenfrequencies.

Truncation of an infinite-dimensional system makes sense if its motion is finite-dimensional.

This means that the motion of the system can be recovered with an appropriate accuracy in
terms of motion of some finite-dimensional system. At first glance, truncation of the linear
system (2.1) is impossible because external forces may excite as many modes as one wishes.
However, the situation is not so hopeless due to the following property of elastic structures:

@;— 0o if i— 00. To make use of this property let us change variables
Qi 2 I 1 T =‘401i ;- (2.2)

In the new variables Lagrange function takes the form

1 Fi(t
L= Z (é—?:ﬁ? - é:vf + &,}( ):ci> : (2.3)

1

2 .
We see that ”"masses” L?Ji tend to zero for i — oo. Therefore, if the spectra of F;(t) are

. . . . 4 . .
bounded and do not contain components with the eigenfrequencies w;, inertia terms can be



neglected for large 7, and we arrive at the static problem: to find z; for large 7 one has to
minimize the function
min . (122 - £
In this formula time ¢ blays the role of a parameter.
This simple observation forms the basis of our approach in nonlinear case. Let us denote

by Aijr and Ajjx the ratios

Biix B:.

A = % Aijr = w5~
ijk =™ T o o 1ijkl = oo o o -
Wild; Wi Wildjwie Wi

The equality sign = means that there is no summation over repeated indices.

The change of variables (2.2) yields the following expression for energy function U — @ :

1 1 1 °
U—-0 = 5TiTi + §Aijinl'jZEk + ZAiijIi.’EjIkCE[ - Fi(t)xi/ wj .

Let Ay and Ayji be bounded for all 4, 7, k, I. Masses of modes in z;-variables tend to zero
for i — oc. It is natural to assume that for sufficiently large k, depended on the accepted
accuracy, masses of all modes with i > k can be set equal to zero. Then determination of all
z; with 7 > k becomes a static problem: for given z;,...,zr and ¢ find the minumum value
of the function

Ulzy,z9,...,2k,t) = min (U - ). (2.4)

Tht1:Lh2,-
Then dynamics of the truncated system is governed by Lagrange’s function

L=S"22-0(zy,...,z0t). (2.5)

2
Returning back to the g-variables we obtain the formulas given in Introduction.

In reality, the situation is not so simple. There are some obstacles for our rule to be true.
We discuss them in Sections 4 and 5 for the case of nonlinear string vibrations. In the next

Section the equations of string dynamics are introduced.



3 Strings

Consider plane nonlinear vibrations of an elastic string of the length [ with pinned ends
(Fig.1). Let w(t, z) be the lateral displacements of the string.
For moderate amplitudes, kinetic and potential energy are as follows:

l

= [ 1402
K—O/QpAwtdI, (3.1)
!
2
U= /{AEY [1(7 + 1wI?) + %thng - F(z, t)w} dz. (3.2)
J 2 2

Here p, A, v and Ey are mass density, cross-section area, initial longitudinal strain and
Young modulus, respectively; derivatives with respect to = and t are denoted by the corre-
sponding indices. Constant h is determined by the diameter and shape of cross-section and
proportional to v/A. For circular cross-section of diameter d and isotropic material h = d/4.
The first two terms in (3.2) are extension and bending energies, the last term is the potential
of external force F(z,t).

Let us introduce dimensionless variables

E Fl\/2
y= _‘T_, u = LJ T = _)ilet/ f = z (33)
l I\/2vy 2pl AEyy

In these variables the dimensionless Lagrangian takes the form:

1
_ K_ U _ 1 2 1 2 1 4 1 9 ) ]
L=gam= 0/ [2% <2uy + Uy Souy )+ f(Ty)u) dy. (3.4)

Parameter 0 = h%/~(? is the dimensionless bending rigidity, it is small for thin strings with
high -initial tension and increases if initial tension is released. Nonzero bending rigidity
provides the dispersion of linear waves.

String dynamics is described by the equation
Upr = [uy + ”2 - auyyy]y + f(r,y) + g(u, u,), (3.5)

6



where g is friction force. Physical nature and special form of friction force is inessential for
what follows since damping is assumed to be small.

Consider a pinned string:
u(7,0) = u(1,1) = uyy(7,0) = uy (7, 1) = 0. (3.6)
The linear eigenmodes of linear vibrations are:
uk(y) = sinmky.
Any function u(7,y) can be presented in the form of Fourier series of eigenmodes

Z )sinTky. (3.7)

In modal approach the dynamics of strings is considered in terms of mode amplitudes
ax(7). To obtain dynamical equations for ax(7) one has to express Lagrange’s functional

(3.4) in terms of mode amplitudes ax. Substituting (3.7) into (3.4) we have:

4 o0

2L = Z { ak —= (1 -+ 0'(7rk)2) (rk)%a? + fkak} - 7—;— Z KlmnAgimnaraiama,. (3.8)
klmn=1
Here we use the notation:
2 1 nmkyd
fk - /(; f(Ta y)SZTLﬂ' yay,
1
Akimn / cos Tkx cos wlx cos mmzx cos Tnxdr =
0
1
=3 [ 6(k+l+m—n)+6k+1—m-+n) (3.9)
+ 6k+l-m-n)+86k—1+m+n)
+ §(k~l+m-n)+b6k—1-m+n)
+ 6(k=1l-m-n)],

where 6(k) means the function which is equal to zero for k # 0, and equal to unity for
k = 0. Dot denotes derivative with respect to 7. Note that interaction between modes is

very complex: each mode interacts with all other modes.

7



It is seen from (3.8) that Lagrange’s functional, and, henceforth, the equations, can be

simplified by the change of unknown functions ay — by:
bk = ‘/Tkak. (310)

In terms of by, Lagrange’s functional takes the form

o 1 .2 1 flc 1 [ee]
2L = —— b —-(1 k)?) b2+ —by| — - Akimnbibibnby. .
L kzz:l {2(71’/{)2 k 2( + o(mk) )bk+7rk k} Zle’mZ,n:l Kl £Dib (3 11)
The corresponding equations of motion are
1 bk= — <1 + 0'(77,1\7)2> b — 2 i Aklmnbibmbn + ff— - k. (312)
(Wk)z klmmn=1 Tk

Coeflicients A;j,; characterize nonlinear interactions between modes. They all are of order
unity. Note an important property of A;j following from (3.9) : if i is even and 7, k,{ are
odd, then, since &5 & k £ [ are also odd, A;;x; = 0. Similarly, Aijr =01if 7 is odd and j, &,
are even. This means that even modes themselves cannot excite odd modes and vice versa.
Even modes act on odd modes only if the latter have already been excited (g; for at least
one odd ¢ are not zeros). The same is true for influence of odd modes on the even ones.

Let spectrum of external force is zero for frequencies greater than mkoy/1 + o(mko)?, ko
is some integer. In accordance with the recipe proposed, one has to put the left hand
side of equations (3.12) equal to zero for all k > ko. Then equations for by, k > ko.
become algebraical equations. This simplifies essentially the numerical procedure because
the time step for integration (which should be a small fraction of the shortest timescale in the
system) now can only be chosen small enough to resolve the vibrations with the frequency
Tkoy/1 + O‘(ﬂ‘k‘o)z, much larger than if we had to resolve vibrations with higher frequencies.

There are some obstacles for this recipe to be universial. One of them is equipartition of

energy for high energy vibrations.



4 Obstacle One: Equipartition of Energy.

Free vibrations.  For the first time equipartition of energy in string-like systems has been
studied numerically by Fermi, Pasta, and Ulam in 1954 [3]. They considered a finite-
difference truncation of equation (3.5) with ¢ = 0, f = 0,9 = 0. Equations of their finite-
difference approximation are equivalent to dynamical equations of a finite chain of mass
particles connected by nonlinear springs. It was a common belief that nonlinear systems
with very many degrees of freedom should move ergodically. One of the features of ergodic
motion is equipartition of energy. In the case of a chain of mass particles equipartition of

energy means that averaged kinetic energies of all particles are equal:

<m1<jf> = <m2qg> =..= <qu"2v>~ (4.1)

Here mn; and ¢; are the mass and displacement of the ith particle, and (-) means time average

over trajectory: for any function ¢(q, q)

L
}%5/ dt. (4.2)
0
Average value in (4.1) does not depend on trajectory for ergodic systems. The common
value (4.1) is called by definition absolute temperature.

Numerical simulations have been conducted by Fermi, Pasta, and Ulam for a chain of
initially disturbed 64 particles. The expected equipartition of energy has not been observed.
This “paradox” was named Fermi-Pasta-Ulam (FPU) problem. Explanation has been given
by KAM theory [4]. For small values of initial energy the nonlinear system stays close
to the linear system which is integrable and, therefore, is not ergodic. Further numerical
studies supported this explanation. It was shown ([5] - [8]) that there is energy threshold
exceeding of which yields equipartition. In their experiments Fermi, Pasta, and Ulam did
not reach energy threshold. Note that the laws of equilibrium statistical mechanics, and, in
particular, equipartition of energy, are based only on ergodicity of motion and stay valid for

low-dimensional systems (see [9], [10]).




If equipartition of energy occurs none of the modes can be neglected. Thus, there is a
necessary condition for applicability of our truncation: energy of vibration should not exceed
energy threshold.

In order to determine the value of energy threshold we conducted a series of numerical
simulations for the system with the number of modes N = 8,12, and 16. In terms of finite-
difference truncation it corresponds to a chain of approximately 80 to 160 particles if one
put 10 particles per the shortest spatial wave period which is 1/16 - 1/8 in our case. The
integration has been performed using Runge-Kutta scheme of the 7th order, with resolution
of 70 to 200 points per period of the highest mode. The accuracy of integration has been
verified by two methods: conservation of energy and reverse integration. The total energy
was proven to conserve with 107 accuracy for the runs being as.long as 10,000 periods
of the lowest mode. Within a range of nondimensional energy values up to 1 (far above
equipartition threshold) the integration was reversible within an interval of approximately
5,000 longest cycles!.

To verify the tendency of the system to equipartition we create some initial perturbation
and track the temporal behavior of the mode temperatures T = (52/27r2k2), k=1,...,N.

A typical dependence of temperatures T; on time is shown on Fig.2 for a moderate value
of initial energy. It is seen that no equipartition is observed.

We found that for energy of initial disturbance exceeding some value £* = 5 * 1072 the
typical picture of dependence of modal temperatures on time is like shown in Fig.3. It is not
clear whether the value E* = 5 * 1072 is really a good approximation for threshold energy.
First, E* should be the energy threshold for most of initial data while we have checked
this fact for several dozens of initial data. Second, the trajectories of the dynamical system
(3.12) exponentially diverge if initial energy is of an order E*, and it is not clear whether

our numerical simulations reflect correctly the dynamics of original dynamical system.

IThe transition time to equipartition is typically longer with only a few modes excited initially, but for

initial values close to equipartition it is usually reached within a few thousand cycles.

10




The value of threshold energy E* = 5 x 1072 is very close to the values obtained earlier
in [11] (and, after appropriate scaling, [6] - [8]). In contrast to the previously conducted
computations for chains, in our simulations the equipartition state has been reached in
many cases with very low initial energy. The most probable cause is the absense of exact
mode resonanses in chains (see below).

To estimate whether the oscillations in real strings can be close to equipartition, consider
a 10m long steel string with Young modulus Ey = 2 x 10''Pa, cross-sectional area 0.1
cm?, and pre-strain v = 107%. Then energy of vibrations corresponding to non-dimensional
equipartition energy E* = 0.05 is about 2 Joules, characteristic strains are of order 3
107* while characteristic lateral displacements of order 0.5m, this value is large but not
unattainable.

Fig.3 exhibits the behavior of the mode temperatures in course of free dynamics of a 12-
mode system (3.12) without dispersion and dissipation. Initially the first four modes were
excited with amplitude 0.2 and zero initial velocity (corresponding to nondimensional elastic
energy of 0.095). The final temperature spectrum is almost homogeneous, thus very close to
equipartition state.

To quantify the degree of equipartition reached the following characteristic can be em-
ployed:

o lEnT)
- LT

where T; are the mode temperatures. The characteristics C* has a simple meaning. If only

(4.3)

one mode is excited, C* = 1. If all modes are excited and equipartition holds, T}, = T, =
... =Ty, and C* = N. Thus, C* measures how many degrees of freedom are involved
in motion. Maximum value of C* is equal to N. It is reached only if equipartition holds.
Hence, C* is also a measure of equipartition. To compare different motions, it is convenient
to normalize C* and consider the number C' = C*/N, which represents the relative amount
of effectively excited degrees of freedom. Dependence of C on time shows how the new

degrees of freedom are being involved in motion. The typical dependence is shown in Fig.4.
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This Figure illustrates the results for four runs with duration 1,500-3,000 cycles; the system
(3.12) has been excited with zero velocities and initial potential energy evenly distributed
among the first four modes. The computaions are performed for initial energy 0.002, 0.01,
0.05 and 0.095.

At moderate energies of initial perturbation, the process of establishing of temperature
equilibrium can take very long time. In such cases the temporal behvior of the value C can
give a clue to future dynamics.

It can be clearly seen that the system provided with higher energy reaches equipartition
very fast, just in a few hundred longest oscillation periods. The less energy is supplied to
the system initially, the longer it takes to reach equipartition. When the energy is less than
some certain value, equipartition seems never be reached. The insert in the Figure shows
the temperature spectra at the end of the runs. In a case of E = 0.002 temperature of the
first and second modes are by more than an order more than those of modes 7-12, showing
no equipartition.

Figure 5 supports our conclusion that energy threshold value is 0.05. It is seen that
for E* > 0.05 practically all modes are equally excited for all tested initial conditions. For
E* < 0.05 there are initial conditions for which energy is not equipartitioned among modes.

Note that the equipartition of energy can be reached from some initial conditions at
energies substantially smaller than E*. This implies further limitation for the truncation
proposed. |

Other aspects of this topic can be found in [11], [12].

Forced vibrations. In the case of forced vibrations energy is no longer an integral of
motion. The major characteristic of the level of nonlinearity becomes averaged energy.
We conducted numerical simulations for the case of a concentrated force F acting per-

péndicularly to the spring at a point very close to one end:

F(r,y) = Fé(y — yo) coswr, Yo K 1.
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The corresponding modal force magnitudes f are
fx = 2F sinmkyg cos wr =~ 2Fmkyy coswr.

The product M = Fy, represents the moment acting on the string near its pinned end.
Figure 6 represents the temporal behavior of the system being excited with a moment
M = 0.01,0.035, and 0.1 oscillating with a frequency w = 7. The excitation frequency
has been chosen equal to the eigenfrequency of the first mode to shorten the transient
process. The average values of total energy near the end of each run were 4.6, 0.31, and 0.07,

respectively.

5 Obstacle Two: Mode Resonanses.

In linear approximation modes do not interact. Each mode is excited directly by external
force. Our truncation does certainly work if the spectra of external forces do not contain
eigenfrequencies. Otherwise, inertia terms are of the same order as elastic forces and dynam-
ics of high modes is far from being static. If energy of vibrations increases, nonlinear mode
interactions are activated. The dynamical behavior of the structure becomes depending cru-
cially on whether the eigenmodes are in resonance. Consider for example system (3.12) for
o =0,fk = 0,g9r = 0. Let the first mode is excited initially. The spectrum of the first
mode contains the fréquency c51= 7. Coefficient A3y, # 0. Therefore the spectrum of elastic
interaction force Asq; 1:1:‘1‘ contains the frequency 3 aoJl= 37 which is the linear eigenfrequency
of the third mode. Hence, vibrations of the third mode will be resonant and inertia term
will be of the order of elastic force. Considering the fifth mode we note that the coefficient
Asa1y is non-zero. The spectrum of interaction force As3;37372, acting on the fifth mode,
contains the frequency 57 which is its eigenfrequency. Thus, the fifth mode also vibrates in a
resonance regime. Continuing this consideration we see that all modes have in their spectra

resonant frequencies, and inertia terms cannot be neglected. Fortunately, the considered
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case is the worst one: if o is not zero, the eingenfrequencies are, in general, detuned, and
our truncation start working. Here are some numerical examples.

Figure 7 illustrates the free dynamics of a 12-mode system (3.12) with a very small
dispersion coefficient ¢ = 1074, with initial conditions exactly the same as for a case shown
in Fig.3. The energy of initial excitation E = 0.104, which is definitely above the energy
threshold found in Section 4 for o = 0.

We see a remarkable phenomenon: the temperature distribution in the system is far from
equipartition - it eventually evolves to a steeply decaying spectrum shown in the insert,
where temperature of the first mode is six times greater than that of the 12th mode. This
shows that the resonances play a crucial role in the formation of ergodic behavior. The
system with a very small detuning from resonances does not exhibit ergodic motion for the
same level of energy.

To further explore the effect of detuning on equilibrium temperature spectrum, several
runs have been performed for ¢ = 0,...,0.01. The dependencies of C on time for cases with
o = 0,107%, and 1072 are shown in Figure 8 together with terminal temperature spectra.
In the last case the value of C is almost constant, showing very little energy transfer from
initially excited four modes to upper ones.

Note that if one approximates the string of length unity by a chain of N particles ([5])-
[7]), the following dependence of linear eigenfrequency of the kth mode on a mode number

k appears ([13]):

2 _9uin2 k. _
wi — 2sin” 55 = 0.

Since this dependence is nonlinear, there is no exact resonances between modes, and redis-
tribution of energy among modes occurs at higher energy levels. This explains the fact that

equipartition threshold found for chains exceeds that for system of modes (3.12) with ¢ = 0.
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‘6 A Justification of Truncation.

The above observations suggest that in a nonlinear system with many degrees of freedom
truncation is possible if there are no exact internal resonances between the modes, and the
vibration energy is less than energy threshold. If, in addition, energy is pumped into low
modes, the higher modes become driven by lower ones, while kinetic energy of high modes
is negligible, and the truncation proposed might work.

To check the accuracy of our truncation we consider the 12-modes vibration as “exact”,
and approximate it by 2-mode truncation, i.e. by putting masses of the 3rd to 12th modes
equal to zero. Amplitudes of the 3rd to 12th mode vibrations are determined by static
equations. The string is excited by a periodic moment acting near the pinned end, and
damped by equal friction forces gr = const. The standard 2-mode truncation corresponds
to equating the amplitudes of higher modes to zero.

Figure 9 represents the distribution of elastic energy over the modes for forced vibrations
of the exact 12-mode system, the standard 2-mode truncation and the proposed 2-mode
truncation. Elastic energy of the kth mode is, by definition, (3(1 + om?k?)b3). It can be
seen that the proposed truncation has remarkable accuracy, while the standard truncation
substantially overestimates the values of energy of lower modes and gives no information
about the motion of higher modes.

Fig.10 shows how increasing the number of the modes kept improves the standard trun-
cation. Comparing Fig.9 and 10 we see that even 6-mode standard truncation does not work
as good as 2-mode truncation proposed.

It is difficult to expect that any truncation can predict instant characteristics of vibra-
tions. Integral characteristics, nevertheless, should be predicted, otherwise the truncation
is useless. Among integral characteristics the most interesting are the energy spectra and
distribution functions. Distribution function f(a) of some function of time ¢(¢) determines
the portion of observation time, f(a)Aa, during which function ¢(t) takes the values in the

interval [a,a + Aa]. Figure 11 illustrate the distribution functions for the 1st and 2nd mode
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momenta, respectively. The distribution functions have been calculated after the transition
period is over, and the system moves over the attractor in phase space.

Note that distribution function of the harmonics, Acost, is f(a) = 1/v/A? — a%. It has
singularities at the points a = +A because the harmonics spend considerable time in the
vicinity of its maximum and minimum. In numerical simulations, since the averaging is made
over a finite time interval, singularities are transformed into sharp maxima. Multiple maxima
observable in Fig.11 correspond to multiple harmonics of the excitation frequency. It can
be seen that distribution functions of the proposed truncation match the exact ones with a
good accuracy for the first mode and qualitatively correct for the second one. Although the
- distribution function differs more for the second mode, it predicts average values {p?) and

(p*) with accuracy 0.12% and 0.44%, respectively.

7 Conclusion

We have shown that a possible mechanism of low dimensionality of elastic vibrations of
continua is the fast decay of inertia with the number of modes. The neglection of inertia
terms for higher modes yields a low-dimensional model with good predictive power. This
“massless” approximation fails if energy of excitation is too high and/or there are resonant

modes.
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Figure Captions
Fig.1. Elastic string with pinned ends.

Fig.2. A typical dependence of modal temperatures on time in free dynamics for moderate
energy excitation . Graph shows modal temperatures for 8-mode system without dispersion
or dissipation (¢ = g = 0). Time is measured in terms of cycle, the period of the lowest
mode oscillations. Initially all the modes have been excited with amplitudes and velocities

decaying with increasing of mode number, total initial energy is F = 0.0214.

Fig.3. Behavior of mode temperatures for free dynamics of 12-mode system (3.12) with
o = 0 and gx = 0. The insert shows the temperature spectrum at the end of a 1,500-cycle-
long run. Total energy of 0.095 has been initially evenly distributed among the first four

modes.

Fig.4. Time variations of C in free dynamics of the system (3.12) with ¢ = g = 0 pro-
vided initially with energy 0.002, 0.01, 0.05, and 0.095. The insert shows the temperature
spectrum at the end of 1,500-3,000-cycle long runs.

Fig.5. Values of C for a 12-mode system (0 = g = 0) obtained for different energies of
initial perturbation at 7 = 1000 periods of the 1st mode (or sooner if C = 1—-1/(2N) = 0.958

has been reached).
Fig.6. Forced dynamics of the string (3.12) excited with a periodic moment at one end

fr = 2rkMsinmt, M = 0.01,0.035, and 0.1. Dispersion and dissipation parameters are set

equal to zero.
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Fig.7. Behavior of mode temperatures for free dynamics of a 12-mode system (3.12)
with o = 107 and g, = 0. The insert shows the temperature spectrum at the end of a

2,000-cycle-long run.

Fig.8. Forced dynamics of the system (3.12) under the same excitation as shown in Fig.6,

but with dispersion taken into account: ¢ = 0,107, and 10-2.

Fig.9. Energy spectra for forced dynamics of a 12-mode system (3.12), standard and

proposed 2-mode truncation with o = 0.01, g = 0.01, and fi(7) = wksinT.

Fig.10. Energy spectra for forced dynamics of a 12-mode system (3.12) and standard

truncation with 2, 4, and 6 modes left with ¢ = 0.01, g, = 0.01, and fe(7) = wksinT.
Fig.11. Distribution functions for momentum of the Ist mode (left) and 2nd mode (right)

for forced dynamics of a 12-mode system (3.12), and the proposed 2-mode truncation (c =

0.01, gx = 0.01, and fi(7) = 7ksinT).
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POSSIBLE SCENARIOS OF NONLINEAR VIBRATIONS AT HIGH ENERGIES

Victor L. Berdichevsky
Mechanical Engineering Department
Wayne State University
Detroit, Michigan

ABSTRACT The results of numerical simulations of
nonlinear  string dynamics are considered.  Possible
extrapolations of these results to nonlinear elastic continua
leads to qualitatively different ways of dynamical behavior.
They are described and discussed.

The effects of nonlinearity in vibrations of elastic systems are
more or less understood if energy of vibrations is low enough to
make the nonlinear terms just a correction of the linear ones. If
energy of vibrations is high and nonlinearity plays a significant
or leading role, there is an expectation that dynamics becomes
so chaotic that the laws of statistical mechanics can be applied.
The first attempt to check this expectation has been made by
Fermi et al. (1955). They considered a chain of N mass
particles connected by nonlinear springs. In accordance with
statistical mechanics, equipartition of energy should be
observed

)= == i

. . T2 -2 .
where m is the particle mass, u1 soees U aTE the particle

velocities, and < > denotes the time average along a

trajectory: for any function p (uj, itj)
. 1@ )
(Pl )= im S ot 0 et

For systems considered in statistical mechanics (ergodic
systems) motion is chaotic and the average values do not
depend on the initia]l data. The common value (1) is called, by
definition. the absolute temperature T. Equipartition of energy
1s a necessary condition for the laws of statistical mechanics to
be true (for details see, for example, Berdichevsky (1988), and
Berdichevsky and von Alberti (1991)).

The system of 64 particles considered by Fermi. Pasta and
Ulam showed a surprising result: equipartition does not hold

while the system exhibits a recurrent motion. Further studies
(Boccier et al.(1970), Galgani and Scotti (1972), Chirikov et
al.(1973), and Thirumalai and Mountain (1989)) explained that
this result was caused by the small energy of initial excitation:
for energies exceeding some critical value one does observe
equipartition.

During last four years a detailed numerical study of chain
dynamics has been conducted by my graduate students A.
Ozbek, 1. Shekhtman, V. Volovoi, E. Mueller. Summary of this
study one can find in M.S. Thesis by E. Mueller (1994) and in
(Berdichevsky (1993)). An important point of the study is that
not only equipartition but also other laws of statistical
mechanics are valid if energy of initial excitation exceeds some
critical value E°.

To discuss the behavior of elastic continuum, one might
consider the limit N—> 00 assuming that elastic continuum can
be approximated by a chain of mass particles. Atézresent, the
reliable simulations have been conducted for N=128. The
qualitative graph of the dependence of critical energy E€ on N is
shown in Fig. 1.

Scenario 2

Scenario |

100 N

Fig. 1. Critical energy vs. number of particles



In the range 10SN<130 crtical energy behaves
approximately as I/N.

Dynamics of continua depends crucially on the limit behavior

of E€ for N—> 0. Critical energy E€ cannot go to zero for
N—> 00 because in this case one would observe chaotic motion
for any, even very small, energy of excitation. This contradicts
to KAM theory, established for elastic continua by S. Kuksin

(1989). Two other cases are possible: E€ tends to some finite

limit £ for N—> 00 or E€—» o0 for N—> 00. They correspond
to two qualitatively different behaviors of continua which we
refer to as scenario | and scenario 2.

Scenario 1 (Selfdissipation) This is the case of bounded
critica] energy. The major features of the dynamics of continua
in this case are the following. If energy of initial excitation E is

less than E°, then one does not have something peculiar.

However, if energy of excitation exceeds E * then continuum
shows a very unusual behavior. Let, for definitness, only a few
modes are excited initially. In the course of motion energy is
redistributed over all modes in a way to reach equipartition.
Since an infinite number of modes is involved in the motion,
energy of each mode is equal to zero at the final stage. So, one
would observe a process with an increasing number of excited
modes, in which energy of each mode eventually tends to zero
while total energy is conserved. Since energy of each particular
mode tends to zero, displacement go to zero. Derivatives of
displacements stay finite due to conservation of energy.
Therefore, displacements are getting more and more
nonsmooth. One might call this case "selfdissipation” due to
decay of displacements in time. Remind that the system
considered does not have a "built-in" dissipation.

Scenario 2 (Universal Spectrum) In this case upper energy
threshold tends to infinity for N—> 0. Therefore, the laws of
statistical mechanics are not valid for any, even very high,
energy of excitation. However, a possibility of other "universal
laws" appears. Let inital energy be E,, and this value
corresponds to the number 2N, on the graph "critical energy vs.
number of degrees of freedom” (Fig. 2).

100 2N,

Fig. 2. Critical energy vs. number of degrees of freedom in
Scenario 2.

Consider an excitation of the continuum when only the first
Np modes are excited initially. For "2N, degrees of freedom”

truncation of the continuum the motion would be approximately
ergodic while energy were equally distributed over modes (Fig.
3, line 1). In continuum, other modes take energy from the first
N, modes. Therefore, for continuum the energy spectrum has
the form of line 2 on Fig. 3. It is natural to assume that this
spectrum is universal in the following sense: it is the same for
any choice of injtial excitation of the first N, modes possessing

the same energy E,.

mode energy

N, Number of mode
Fig. 3. Energy spectrum in Scenario 2.

None of the numerical experiments show the growth of
critical energy for large N and a feasibility of the scenario 2.
This relates, probably, to the fact that only particle chains with
the nearest neighbor interaction have been considered so far.
These chains do not have any characteristic dimension (in the
limit N=—>©0), while the point of minimum on the plot in
Fig. 2 is determined by some characteristic length. Perhaps,
continua with the higher space derivatives provide the necessary
additional parameter with the dimension of length..

Note that the results of the above mentioned numerical
simulations can be used for speculations about continuum
behavior with great precautions, because, if equipartition takes
place, energy of short waves is comparable with energy of long
waves, and modeling of continuum with a chain does not make
sense. Strictly speaking, in numerical simulations for continua
one has to determine critical energy as energy threshoid for
long wave excitations allowing the total number of modes be,
say, 10 times larger than the number of long wave modes. To
my knowledge, numerical simulations of such kind have not
been conducted. However, it is difficult to expect that the
behavior of critical energy for long wave excitation is different
from the one shown in Fig. 1.

The above discussion shows that it is very interesting to study
the dynamics of chains for large N. Unfortunately, N =1000 is
very close to the maximum capabilities of modern workstations
because one has to conduct long term simulations with very
small time step to resolve high frequency oscillations.

Conclusion.

It is suggested that there are two types of behavior of
nonlinear elastic continua at high energies. For some continua
(like strings) the regime of selfdissipation might be developed
when displacements tends to zero while their derivatives stay



finite due to conservation of energy. For continua possessing
a characteristic length parameter (like coupled torsional-lateral
vibrations of elastic beams) another scenario is possible with
the formation of an universal energy spectrum. Although the
consideration in this paper concerns with the one-dimensional
case, the situation seems generic, and the same type of behavior
should be expected for two-dimensional and three-dimensional
elastic continua.
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Recently it was shown that averaged characteristics of non-linear vibrations are potential
functions of load parameters in the limit of small dissipation. The question of the range
of dissipation for which potentiality takes place remained open. In this paper, we study this
question for the case of non-linear vibrations of a cantilever beam excited harmonically at
the unclamped end. We develop a non-linear one-degree-of-freedom beam model and show
that the existence of a dynamical potential of beam vibrations can be guaranteed with
acceptable accuracy even for sufficiently large dissipation.

1. INTRODUCTION

The dynamical behavior of non-linear structures is extremely complex [1-5]. For engin-
eering applications, however, one usually needs some rough averaged characteristics of the
responses. For example, consider a cantilever beam excited by a periodic force applied at
the non-clamped end (Figure 1). The force F(7) is assumed to be harmonic:

F(t)=A + Bsinvt. @)

~ The constant force 4 and the amplitude of excitation B are assumed to be large enough
to create finite beam displacements. The vertical displacement of the right end, g(¢), might
be a very complicated function of time, even if it is periodic. Some rough information
about this displacement can be extracted from two characteristics:
§=<9>, §={gsinvt)

where (-} denotes the time averaging operator along a trajectory: for any function ¢ (¢),
{¢ > indicates the limit

1 [}
(¢>=lim = J @ () de.
f—x 9 0
For linear vibrations, it is known [6, 7] that

q(t) =g +rsin (vt + @),

where r is the amplitude of vibrations and ¢ is the phase angle. The phase angle ¢ is
proportional to damping. For small damping, we may neglect ¢ and, since {sin? vt} = 1/2,
151
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Figure |. The co-ordinate system of a cantilever beam excited by a harmonic force.

G = r/2. Therefore, for linear vibrations with small dissipation, § and § determine the tip
displacement completely. For general non-linear vibrations, there are also many other
characteristics. However, § and § are the most energetically important Fourier amplitudes
because the average value of the potential energy due to the external force F can be
expressed in terms of only § and §:

(Fg) = AJ + Bj. ¥)

The beamn motion occurs along the attractor. Usually, attractors are limit cycles, but
there are also chaotic attractors. In any case, § and § depend only on the attractor.
Attractors are changed in the course of slow changes in the load parameters 4 and B.
Therefore, quantities § and § are some functions of 4 and B:

§=4(4,B), §=4(4,B) A3)

Equations (3) are constitutive equations of averaged beam dynamics.

As was established in reference [8], there exists a function, the dynamical potential
P(A, B), such that the right sides of equation (3) are derivatives of this potential if damping
is sufficiently small:

G=0P|cA, §=CiPIOB. @)

For the sake of self containence, the derivation of equation (4) will be given in section 3.

The dynamical potential 2 completely determines the macro-behavior of the beam: one
has to know only one function 2 to predict the response of the system for any given value
of load parameters. The dynamical potential is equal to the averaged value of the
Lagrangian over the attractor.

One can take into consideration any number of characteristics of the response. For
example, if one is interested in knowing the quantity §, = {g cos v¢ >, one needs to consider
the more complicated excitation

F(t)=A + A, cos vt + B sin vt

and find the dynamical potential 2, as a function of three variables 2, = 2,(4, 4, B).
Then, g, 4, and § are determined from the equations

§=C2(A,A4,,B)6A.  §,=CP(A, A4, B)icA,. §=0P(4.4,.B)/CB. (5

The dynamical potential 2 in equation (4) can be obtained from 2, by taking 4, equal
to zero:

P(A, B) =P (A.0, B).
One might also consider the averaged characteristics of beam displacements somewhere

along the beam. To calculate the corresponding dynamical potential, the dynamical
problem should be studied., with the corresponding additional force as in the above
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example: a force is added at the point at which the averaged displacement is to be
calculated.

The potentiality of the above form of constitutive equations was established in the limit
of zero dissipation or, in other words, for a sufficiently small friction coefficient. It remains
unknown, however, how small is sufficiently small. The aim of this paper is to fill in this
gap for non-linear beam vibrations.

To simplify our considerations, we model the beam vibrations by a system with one
degree of freedom and conduct numerical simulations for this model. Classical beam
theory is presented in section 2, the existence of dynamical potential is established in
section 3, a one-degree-of-freedom beam model is developed in section 4 and the results
of the numerical simulations are discussed in section 5.

2. LAGRANGIAN OF CLASSICAL BEAM THEORY

Let x and y be Cartesian co-ordinates in the plane of beam vibrations; the x-axis
coincides with the undeformed centerline of the beam. Denote the x- and y-projections
of the beam displacements by u, and u,; u, = u.(¢, x) and u,=u,(t, x). We assume that
there is no extention-twist, twist-bending or bending-bending coupling for vibrations in
the x-y and x-: planes. Therefore, the lateral beam vibrations in the x-) plane can be
considered separately from the other vibrations. The Lagrangian L of beam theory has the
form [9] '

L=K-U  K=ipS@i, +ul,), U=YESy+EIQ%). (6)

Here. K and U are the kinetic and internal energy. respectively, commas in indices denotes
derivatives (u, , = fu, /01, u, = Cu,/0x), p, S, E and [ are the mass density, the cross-sec-
tional area, Young’s modulus and the inertia moment, and y and Q are measures of
extension and bending:
1 2 2 —
Y =U T+ i(u.v. <t us x)7 Q= Telyx ™ T_rrx.x' (77 8)

Here, t, and 7, are x- and y-projections of the unit tangent vector to the deformed
centerline:

l+u u, .
= + X, X , T, = X i (9)
V1+2y VI+2

The larger the lateral displacements, the smaller the contribution of extension ; should
be. Therefore, for finite displacements Kirchhoff's theory of inextensional vibrations can
be used. Since y =0, in Kirchhoff's theory, internal energy takes the simple form

U =3EIQ% (10)

The expressions of bending measure Q in terms of displacement is obtained by substituting
equation (9), where one takes y =0, into equation (8):

Q = (14 e Yty — Uy (U e (1)
where the displacements «, and u, are subjected to the inextensibility constraint
7= il Ul ) =0 (12)
and the kinematical boundary conditions are

u. =0, u =0, u, =0 at x =0. (13)
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The dynamical equation of beam theory follows from equating to zero the variation of
action:

ot o
f J.de dt=f f[%pS(uﬁ,,%—uf,_,)—%EIQ:]dx de. (14)
f JO f JO

Since the bending measure is a quadratic function of displacement derivatives, the
Lagrangian is a quartic function of derivatives. However, it is possible to reformulate
Kirchhoff’s theory in such a way that the Lagrangian is a quadratic function of
displacement derivatives, as it is in the linear theory. This modification was suggested in’
reference {9]. The modification is based on the identity

Qz = [(1 + U « )u_r. xx T u,\'. ol .\’.\']2 = u.i. xx + u)z‘. xx? (1 5)

which is valid for functions u, and u, obeying equation (12). To prove equation (15), let
us differentiate equation (12) with respect to x. We have

(I +u, Ju o +u, u =0 (16)

Squaring equation (16), we obtain the relation
(Ut ug Pul ot 20, (1 U Yy oty o+ U U] =0 (17)
Adding equation (17) to the left side of equation (15) and taking into account the relation
O +u S +ul. =1, (18)

which comes from equation (12), we obtain the right side of equation (15).
Substituting expression (15) for Q2 one obtains the Lagrangian

L =3pS(ui +ul ) =1 EIUS o+ 5 o). (19)

The remarkable point is that the Lagrangian (19) is quadratic as in linear theory.
Non-linearity comes into play only by means of the inextensibility constraint (12). The
penalty for removing non-linear terms from the Lagrangian is an increase in the order of
the derivatives. At a first glance, that leads to the possibility of satisfying two boundary
conditions for both displacements u, and u, at each end. However, conditions which are
additional to the classical ones are contained, in fact, in the inextensibility condition (12):
u, . can be calculated at both ends in terms of u, .. For example, for a cantilever beam,
u, .= 0 at x = 0. Therefore, in accordance with the inextensibility condition (12),

u =0 at x =0. (20)

The second root of equation (12), u, = —2, is not considered here. We do not need a more
detailed consideration of the boundary conditions because the beam motion will be
presented by a simplified model of one degree of freedom.

3. EXISTENCE OF DYNAMICAL POTENTIAL

Let a cantilever beam be excited by a periodic force F = 4 + B sin vt, which is applied
for definiteness at the unclamped edge. The motion of the beam is governed by the
equations

oL 6 L @ oL  4* oL C
== + —— ——— = dissipative terms,

XXX

L T
—'\.= —E;a—m:—aé—;:+5;—zm=dlsmpatwe terms. (21)
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Here, L is the Lagrangian, defined by equations (6)—(9). The specific form of the dissipative
terms is not important. The boundary conditions are

JL 0 dL
= = = = et e e T o 1’
u=u=u =0 atx=0, Gu. oxu_ 0 atx
oL 0 adL oL
— e e = 1 = m—— = l. 2
Ew e A+ Bsinvt atx=/ 30 0 atx (22)

)X
Motion occurs along an attractor. We assume that the attractor is a limit cycle with period
6, which is a multiple of the period of the exciting force 2n/v: § = 2nn/v, where n is an
integer. Displacements u, and u, are periodic functions of time with period 6. The limit
cycle depends on parameters 4 and B. Therefore, we may write

u, =@t x, A, B), u =y x, A4, B). (23)

Consider the quantity
/
P= <J L dx> + (A + Bsinvt)y(1,1, 4, B)). (24)
0

It is assume that functions (23) are substituted in the expression for L, equations (6)—(9),
in order to perform the integration in equation (24).

The quantity £ is a function of the parameters 4 and B. We are going to show that
2 is the dynamical potential of this problem, i.e., that in the limit of zero dissipation,

Ylia)=02/04,  (Yliaisinve) =02[0B. (25)

To prove equation (25), let us find derivatives of 2 with respect to 4 and B. For derivative
0P|0A, we have
02

04

! _6_[._ R + oL &% oL &% éL 3%
o0, 5004 " Ou, 5104 " ou, 0% 0A  ou, 0% 0A
oL Po AL W T,
Ou, .. 0x*04  du, . 0x* 04 ’

X, XX

(26)

After integration by parts, expression (26) takes the form
02 _/['(3Ldy  sLiae\ N\ /(3L 0 L)\
34~ \Jo\Ou,04 " w34 )" u,. Oxou. . )od

oL 0 oL . oy
+ <(_c7u)‘. - % ———auy. - — A — Bsin vt) 34 .\'=I>

+ oL d% + oL %
aux. xx ax aA auy. xx ax aA x=/

1 ('[ oL 3¢ oL oy

+'9-J;|:ma +m‘a—2]odx+<lp(t,1,A,B)>. 27
The terms omitted in equation (27) are the zeros due to the boundary conditions at the
clamped edge: ¢ = =0y /0x =0 at x =0 (note that é¢ /34 = 3y /0A =%y [0x 64 =0
at x =0 due to these conditions).

The first term in the integral (27) is negligible in the limit of zero dissipation as a
consequence of the equations of motion (21). The second and third terms in equations (27)
are zero due to the boundary conditions (22). The fourth term is equal to zero because
the integrand is proportional to dL/dQ, the bending moment at the unclamped edge which

x=/>
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is zero in accordance with equation (22). The fifth integral is equal to zero due to
periodicity of motion. Therefore, equation (27) is reduced to the first relation (25). The
second relation (25) is proved similarly. The proof in the case of the inextensible beam is
also analogous.

Our goal is to investigate how large the contribution is of the neglected dissipative terms
in equation (25). To this end, in the next section, we deveope a one-degree-of-freedom
non-linear beam model and conduct numerical simulations in order to find the deviations
from the potentiality of the constitutive relations.

4. ONE-DEGREE-OF-FREEDOM BEAM MODEL

We consider beam vibrations for which u, , is small compared to unity. In this case, the
inextensibility constraint (12) takes the form

U o +3u7 =0, (28)
Equation (28), along with the clamping condition, u, = 0 at x = 0, allows to find u, in terms
of u,;

u, = -%f u? dx. (29)
0

Note that the displacement u,(, x) satisfies the boundary condition (20).
We assume the simplest approximation (one degree of freedom) of displacement u, (1, x):

u, (1, %) = $ (x)q(1). (30)

Here ¢ =d¢/dx =0 at x =0, and ¢ =1 at x =/ where / is the beam length. Substituting
equation (30) into equation (29), we obtain the approximate expression for u,:

u=y(x)g>,  Yx)= —%fx(b.:.\vdm (1)
0

Trial functions (30) and (31) lead to the expression for the Lagrangian of a one-degree-of-
freedom beam model:

=3q°(1 + c¢*) — }aq* — 3bq*, (32)
where
Qo ELh®ady  EIfyiodx ytdx
pS fhd dx pS fhprdx fhéTdx

The final equation governing the non-linear vibrations of the one-degree-of-freedom
cantilever beam is given by

(33)

(1 +¢q*)g +cq4* +aq +2bg> = A + B sin vt — pg. (34)

Here we have added a small linear viscous damping term to the right side. This equation
differs from the Duffing equation by two terms. cg*§ and cgg>.

4. RESULTS OF NUMERICAL SIMULATIONS

Equation (34) was integrated using the sixth order Runge-Kutta method. In all
simulations, coefficients a, b and ¢ were set to unity (in accordance with equation (33). these
coefficients are positive). Note that two of them can be always made equal to unity by
suitable rescaling. In order to understand the behavior of the beam for the case of small
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dissipation, it is very useful to consider first its motion for zero dissipation. We start from
the case of free vibrations.

4.]. FREE VIBRATIONS (4 = B =0, u =0)

Consider the trajectories of the beam tip in the phase space (4, p, ¢), p = (1 + cg*)¢. The
Hamiltonian of our model has the form

pZ
H(p.g)=t———+tag?+1ibg*. . 35
(p.q) T4 cqn 7209 +2b4 (35)
The trajectories are the curves defined by conservation of energy:
H(p, q) = E = constant. (36)

Equation (36) means that every trajectory, started from some point on an energy surface
H(p, q) = constant, belongs to this surface for all time. These trajectories are shown in
Figure 2.

Let I'(E) be the volume of the phase space bounded by the energy surface H(p, q) = E,

I'E)= [ dp dg. 37
JvHp. ) E

For a periodic trajectory, the volume I'(E) during one period can be rewritten as

r(E)=2 f ™ 1p1da, (38)

mn

where

p =% (1+cq*)2E - aq® - bg*), (39)

Gnact N [—a+/a +8bE)2b, 9= —/[—a +/a’ + 8bE)2b-  (40)

The dependence of I'(E) on E is shown in Figure 3.
The period of vibration P can be expressed in terms of function I'(E) [1]:

dar Imax 1+ cq?
P=—=2 ——dg. 41
dE Lm 2E—ag’—bg" 7 1

12 L

-12 I
-2.7 ‘ 2.7
q

Figure 2. The energy surfaces H(p.q)=constant in (p.q) phase space: a=b=c=1, A=B=0, u=0.
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Figure 3. The dependence of the phase volume '(E) onenergy E,u=b=c=1, A =8=0, u=0.

Limit values of the frequency of vibrations w = 2n/P for E -0 and E — oo can easily be
found from equations (40) and (41):

w=2/b as E-— o0, w=./a as E—-0.

We see that the frequency is in some finite range. In particular, for a = b = 1, the frequency
has a value between w =1 and w =2. In contrast, the frequencies of many dynamical
systems. such as the pendulum, tend to zero in the course of energy growth. The
dependence of frequency w on energy E is shown in Figure 4(a). This graph is useful in
order to determine the most pronounced resonance which occurs if the frequency of the
given harmonic force, v, coincides with the natural frequency w.

4.2. EXCITED VIBRATIONS

Now, let the beam be excited. Let us set the frequency of excitation v equal to some
natural frequency. If we take, for example, v = /2, the corresponding value of energy of
free vibration is E ~ 8-:384 for a = b = 1, as is seen from Figure 4(b). The trajectory- which
has that energy level should show chaotic behavior. The larger B (or A) is, the larger the
chaotic region will be. In Figures 5(a)—(e) is shown the onset of the chaotic region in the
course of the increase of B. Note that Figure 5(a) is a typical Poincaré map which shows
successive positions of points for times 1 =0, 7, 21,..., where t = 2n/v is the period of
the exciting force.

2.0 — T T T = 16 7 T T T LI
(a) (b) PR
i |
14F ]
16 4
3
14 4 ;
: 12r f 1
12F J
1.0 f | 1 n i 1’ 1'0’-/ I n L L 4
0 200 400 600 800 1000 O 2 4 6 8 10
E

Figure 4. The dependence of the frequency w onenergy Eca=b=c=1. 4 =B =0, u =0.(a)0< E <1000;
(b) 0< E < 10.
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Figure 5. The onset of the chaotic region due to an increase in B:a=b=c=1. 4 =0. u=0v=m:2 (a)

B=0;(b) B=1;(c) B=2.(d) B=4: (¢) B=10.

. If the dissipation u is non-zero, every trajectory falls on to limit cycles or strange

attractors. as we expect. Typical limit cycles and strange attractors are shown in Figures
6 and 7. The evolution of the phase portrait in the course of the increase of damping for
some fixed values of 4 and B is presented in Figures 6(a)-(c). For zero dampingand 4 = I,
B =10, the Poincaré map is shown in Figure 6(a). There are some characteristic regions
numbered 1, 4, 13 and 4a. Region 1 corresponds to conditionally periodic motions with
the two most pronounced frequencies, the frequency of the exciting force (which is equal
to 1) and the frequency of free vibrations. Region 4 corresponds to a subharmonic
resonance with period 4. The centers of four islands are the tracks of the periodic trajectory
with period 4. Analogously, 13 islands marked by number 13 correspond to the
subharmonic resonance with period 13, while 4 other islands, numbered 4a. are another
subharmonic resonance of period 4. We show in this figure only the most visible
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Figure 6. The influence of dissipation on the vibrations of a cantilever beam: a =b=c =1, 4 =1, B =10,

v=2n (a) u=0, (b) u =001l (c) pu=0-1.

resonances: there are many other resonances which occupy a small part of the phase space.
In Figure 6(b) are shown the successive positions of a number of trajectories if one switches
on a small dissipation, u = 0-01. It is seen that three limit cycles appear, one of which was
period | which the others have period 4. The subharmonic resonance of period 13 is killed
off by the dissipation. This is a general rule: only resonances with small periods survive
after the addition of dissipation. If the dissipation is large enough (u = 0-1 in Figure 6(c))
only one limit cycle survives.

For large 4 and B, a strange attractor might appear. It is natural to assume that a
strange attractor would emerge at the place occupied previously by a chaotic sea of
Hamiltonian systems. This assumption is supported by the Poincaré maps in Figure
7(a)-(c), which show the evolution of the phase portrait due to dissipation. For zero
dissipation (Figure 7(a)), we have some chaotic sea. The addition of a small amount of
dissipation (u = 0-1) transforms it into a strange attractor, shown on Figure 7(b). This
attractor looks close enough to the chaotic sea from which it was born. For a large value
of dissipation {(u = 1), we obtain the usual worm-like form of attractor which has been
observed in many studies.

4.3, CONSTITUTIVE EQUATIONS

We can write the Lagrangian of the non-linear beam vibration model subjected to a
harmonic force in the form
L =L,+ Aq + Bg sin vt, (42)
where

N

Ly=3¢°(1 + cq*) — 1aq* — $bg*. (43)
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Figure 7. The evolution of a chaotic sea into strange attractor; a=b=c=1, 4 =1, B=100. v=2n. (a)
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To formulate constitutive equations for our model, we note that the time averaging
operator {-) is reduced for a periodic trajectory by taking the average along the period
T:

-

— 1
@>EL=?J-MMLAB%MnABLABNL
0
Taking the time average, equation (42) becomes
L=L,+ Ad + B§. (44)

The time averaged value of the Lagrangian L depends on A, B and the attractor (if there
are a number of attractors):

L=1IL4.B). (45)

Now, we are going to check whether for the non-linear beam vibration, the dynamic
potential 2 in equations (4) coincides with the averaged Lagrangian (4, B):

P(A, B) = L(A4, B). (46)

The simplest way to check the existence of a dynamical potential is to test the validity of
the reciprocal relation following from equations (4):

3G/6B = 3G /2A. 47)

The range of dissipation u for which the reciprocal relation has acceptable accuracy can
be observed in Tables 1-5. It can be seen that errors grow with an increase in the friction
coefficient and reach about 2:6% for u = 1. For large values of A4, for example 4 = 10,
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TABLE |
The accuracy of the reciprocal relation Jor u=001 (a=b=c=1,v= 2n)
|69/¢B ~¢q/24) 100
A B 94/6B 04104 max (6G/¢éB)
1 1 0-00253801 0-00253800 0-000053
1 10 0-01881381 0-01881331 0-002658
10 1 0-00020625 0-00020628 0-000159
10 10 0-00199761 0-00199766 0-000266
TABLE 2
The accuracy of the reciprocal relation Jor py=01(a=b=c=1,v=2n)
[64/6B — 0¢/64 | x 100
A B éq/0B 94/0A4 max (3 /0B)
1 1 0-00253761 0-00253682 0-004199
1 10 0-01881242 0-01880703 0-028651
10 l 0-00020624 0-00020624 0-000029
10 10 0-00199758 0-00199748 0-000532
TABLE 3

The accuracy of the reciprocal relation for u = 1-0 (a=b=c=1,v=2n)

[6G/CB — 64/6A |

A B c4/2B c4/eA max (27,28) <%0
1 1 0-00249902 0-:00242185 0:413248
1 10 0-01867401 0-01818796 2:602815
10 | 0-00020573 0-00020471 0-005462
10 10 0-:00199293 0-00198311 0-052586
TABLE 4

The accuracy of the reciprocal relation Joru=20(a=b=c=1v=2n)

18§/CB - 64/cA|

am)a P 100
A B ¢q{0B 0¢/cA max (6q/6B) X
1 1 0-00238890 0-00210686 1-544751
1 10 0-01825796 0-01642023 10-065363
10 ! 0-00020420 0-00020016 0-022127
10 10 0-00197897 0-:00194023 0212181
TABLE 5

The accuracy of the reciprocal relation Joru=50(a=b=c=1v=2n)

[6G/¢B — &GéA|

JU. s ra 100
A B cqjicB 0g/cA max (¢4 /éB) .
| 1 0-00182529 0-:00079677 6604588
1 10 0-01557281 0-00764480 50:909309
10 1 000019410 0-00017123 0-146859

10 10 0-00188634 0-00166667 1:410600
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TABLE 6
The error in the constitutive equations for u =001, a=b=c=1,v=2n

\eLjeA - G|

A B Iy i “maxg 100
I 1 0-643936 0-591026 32605
2 2 0-829226 0-837931 0-5364
3 3 0-993152 1-004127 0-6763
5 5 1-256914 1241057 09772
10 10 1542458 1622770 4-949]

TaBLE 7
The error in the constitutive equations for u =001, a=b=c=1,v=2n

[6Lj¢B — g

A B 6[/63 q max |q | x 100
1 1 —0-01293267 —0-00996493 7-5124
2 2 —0-01605406 —-0-01613266 0-1990
3 3 —0-01911899 —0-02076706 4-1718
S 5 —-0-02507945 —0-02777094 6-8131
10 10 -0-03899240 —0-03950468 1-2968

reciprocal relations remain valid until g = §, with errors less than 1-5%. The relations are
virtually exact (with errors less than 0-03%) if u <0-1. Note that we checked reciprocal
relations for the limit cycle of period 1.

Numerical data allow us to express an approximate formula for L by means of a
three-dimensional curve fitting algorithm. For the case a=b =c =1 and p =001, we
obtain

L(A,B)=cyA’ + ¢y B> + 0, A°B + ¢, AB* + csA° + ¢, B*+ c;AB + ¢, A + ¢, B + ¢, (48)

where ¢, = —0-184079, ¢, = —0:0097548, ¢, = 0-437283, ¢; = 0-005255, ¢, = —0-00423055,
¢s = 010604, ¢, = 0-000288635, ¢; = —0-00047238, ¢ = —0.0000255619 and

¢y = —0-00334188. This means that the response can be found from the equations
G=0Lj6A =3cgA* +2c;AB + ¢ B + 2¢54 + ¢ B + ¢y,
G =0L/0B =3¢cg B>+ ¢;A* + 2¢,AB +2¢,B + ;A + ¢, (49)

The error in the constitutive equations (49) can be found in Tables 6 and 7. The
approximate formula for I, equation (48), satisfies the constitutive equations (49) with
errors of less than about 7.5%.

5. CONCLUSIONS

We have proved that the dynamical response of cantilever beams to periodic excitation
can be described in terms of a dynamical potential. We have found this potential for the
limit cycle of the same period as the exciting force, and established the corresponding
constitutive relations. To conclude, we would like to note that in the course of our study
we encountered many lovely ‘“‘creatures™, one of which is shown in Figure 8. This is the
Poincaré plot for a cantilever beam with parameter values of a = 10. b =0.c=1. 4 =0,
B=10, u=0and v =2m.
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Figure 8. A Poincaré map for a cantilever beam; a =10, b =0, c =1, A = 0, 8=10 u=0,v=2n
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Thermodynamics and Parametric Response of
Slightly Dissipative Systems

V. Berdichevsky
Mechanical Engineering, Wayne State University,
Detroit, MI 48202

Abstract. A point of view on thermodynamics is presented which raises
some natural questions on parametric response of various engineering
devices. In this regard parametric response of a “black box” device is
considered. The major information about the black box is that its inside is
governed by Hamiltonian equations complicated by a small dissipation. It
is established that such systems inherit a “thermodynamical property”:
parametric response is always potential. Nonlinear oscillator is considered
as an illustrative example. Parametric response of slightly dissipative open
systems has also some special structure. It is discussed for the case of
internal flows, a representative example of which is a gas flow in
COmpressors.

1. Introduction. Thermodynamical description of a body assumes that its
dynamics has two different time scales. Classical thermodynamics describes
macromotion which is slow compared to fast micromotion of particles
making up the body; micromotion is the subject of statistical mechanics.
This point of view goes back to L. Boltzmann [7]. Why does macromotion
obey to so specific laws as the first and the second laws of
thermodynamics? The remarkable point is that the laws of thermodynamics
take place, at least in equilibrium case, if microdynamics posesses two
properties: it is Hamiltonian and ergodic [8]. It is not essential that the
number of degrees of freedom is large [3, 4]. The laws of equilibrium
thermodynamics are true even for one-degree-of-freedom systems,
although they do not contain much information in this degenerated case.
(Perhaps, the number of degrees of freedom should be large for validity of
the laws of nonequilibrium thermodynamics). In this regard the question
arises: Which “thermodynamics” do we get if fast motion is not
Hamiltonian or ergodic? It seems that nothing like the first or the second
law of thermodynamics is valid in general. However, it is very likely that
the systems inherit some “thermodynamical properties” if they are “slightly
non-Hamiltonian.”  An important case of “slightly non-Hamiltonian”
systems is the case of Hamiltonian systems damped by small dissipation.
There are many engineering situations of this type. It is enough to mention



that all high Reynolds number turbulent flows fall in this category. Among
other examples are piezoelectric transducers, compressors, electromotors,
etc. This paper aims to outline the statement of the problem and present
some results of its study.

Generally speaking, any engineering device can be considered as a
black box which is controlled by some inputs z,z,...,z, and have some
outputs y,,y,...,y, -

outputs

Fig. 1

Without loss of generality we may assume that the numbers of inputs and
outputs coincide. The behavior of the device is characterized by the
dependence  of  the  outputs v, on the  inputs T,

Y, =y1(:z:,,...,xn) veers Yo =yn(a:,,...,xn) (1.1)

Equations (1.1) form “the passport” of the device. They are analogous to
constitutive equations of thermodynamics. Nothing specific can be said
about these equations in general. However, “thermodynamical property”
appears if we make additional assumptions: 1) internal dynamics is
governed by classical mechanics, 2) dissipation is small, 3) parameters
z,,z,...,z, are changed slowly compared to the internal dynamics of the
black box, 4) attractor of the internal motion is ergodic, 5) system 1is
closed, i.e., consists of the same material particles.

It is shown in this paper that the constitutive equations are potential

in this case: there exists function P(z,,....,z,) such that
oP oP
= ey = ]. .2
yl 9 : yn ; ( )

n

The term “dynamical potential” introduced in [5] is used here for function
P.

If the set of variables z,,...,r, contains a parameter determining the
time scale then an analog of entropy appears among the arguments of
function P. (It is discussed later in Section 2).



Of course, as in classical thermodynamics, potentiality does not take
place for an arbitrary choice of the output characteristics y,, but y, can be
chosen in such a way that potentiality holds.

Potentiality reduces the number n of experimentally determined
functions (1.2) to just one function, dynamical potential P. The larger the
number of parameters the more benefits one gets from the fact of the
existence of dynamical potential. In a sense, dynamical potential is
analogous to energy in classical thermodynamics.

Potentiality of constitutive equatlons is an asymptotical property
which appears if d1$51pat10n tends to zero, in the same way as potentiality
of constitutive equations in classical thermodynamics.

The assumption that the system is closed is essential for validity of
(1.2). To consider the corrections of (1.2) caused by openness of the
system the case of open turbulent flow is discussed in Sectlon 5. An
additional term appears in (1.2):

_oP &@(x)
v +1(x)—

where © is the average time which particles spend inside the flow field, 7 is
the product of averaged dynamical enthalpy, average velocity and cross-
sectional area at the outlet. Constitutive equations (1.3) hold under some
additional assumptions formulated in Section 5.

(1.3)

Relations (1.3) are based on a variational principle for open flows
of ideal fluid which is formulated in Section 4. Formula (1.3) might be of
interest in theory of compressors since it captures the influence of design
on performance characteristics. It would be very interesting to check this
formula experimentally. The specifics of fluid flow seem not to be
important for validity of (1.3), and similar relations should be true for
other open systems.

We start from the discussion of the simplest system: nonlinear
oscillator. Thermodynamics of nonlinear oscillator has been considered in
[5, 6]. Here the relations from [5] are extended by including the frequency
of excitation in the set of control parameters; this is an important extension
because the parameter reciprocal frequency turns out to be the temperature
of vibrations.

Further contents of the paper is completely covered in Sections 4.6, 4.7,
4.8 of the Attachment 1 and is ommitted here.
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Summary

It was shown recently that the averaged characteristics of nonlinear vibrations are
potential functions of load parameters, if the dissipation is small. In this paper the
existence of a dynamical potential is verified in experiment with a nonlinear oscillator
with one degree of freedom. However, near the resonance the effect of dissipation cannot
be neglected, and no dynamical potential exists. The limits of applicability of the

description of vibrations in terms of dynamical potential are outlined.



Introduction

It is known that the dynamics of nonlinear structures can be extremely complex (see, e.g.,
[1-3]). For engineering purposes, however, some averaged characteristics and estimates
can be more useful. In this sense, a tool for prediction the averaged characteristics as
functions of the load parameters without modeling of the system’s dynamics is extremely

welcome.

For the systems without dissipation, the variational principle can be employed to describe
the motion, and Lagrange’s function (or elastic energy only for static problems) is a tool
to examine the system’s response under the action of external loads. Recently, it has been
shown in [4-7] that in some cases the averaged characteristics of motion can be easily
derived from a single function, a dynamical potential, which plays for a dynamical system
the role similar to potential energy for static load-deflection problems. The existence of
the dynamical potential was demonstrated theoretically for various non-linear oscillators
without friction, including an important case of vibrations of cantilevered beams [6].
However, physical systems possess dissipation which may be significant; the variational
prihciple for the dissipative system is yet to be strictly formulated, and the applicability of
description in terms of the dynamical pot_ential needs to be verified. Nevertheless, it
seems reasonable that, small dissipation should not make substantial changes in average
properties of motion, and some kind of variational consideration can still be employed.

The estimates of the errors due to the small friction were made in [7] for the case of a



simplest one-degree-of-freedom non-linear oscillator. This validity of the concept of
dynamical potential was also examined in numerical experiments [6] for vibrations of a

cantilevered beam.

Let us consider the behavior of a single-degree-of-freedom nonlinear mechanical

oscillator (Fig.1) under the action of periodic external force F(t)=a sin vt :

o2 . 0
ma +1(g.0)+ 5 L= Fo M)

The friction force f(g,q)is assumed small. In such a system the friction causes the

oscillator’s motion to approach the attractor in phase space, so that the averaged

characteristics of the motion will not depend on initial conditions.

The equation (1) can also be represented in the variational form

L oL .
FL_9 — |=fq.9), (2)
8q ot aq

where the Lagrange’s function is

2

L(q,(},t)%c} ~U@)+F(t)q . 3)

The control parameters are the amplitude a and frequency v of the external force.



It was shown [4] that, the average value of Lagrange’s function L =(L)? over the

attractor plays the role of the dynamic potential, P. Two important averaged

characteristics of vibrations, the response
g =(gsinv 1) (4a)

and temperature

2
T=<q > (4b)

are linked to the control parameters a and v by the potential relations

_ OJP dP
q=a_"7 T= v’ (5)
a 0ln—
Vo

where v, is the eigenfrequency of the linear vibrations. Note that the temperature and

response are bound by the reciprocal relations

g _ 9P 9T

dlnv dadlnv da (6)

? Here and below angular brackets denote the time averaging along the trajectory: for any

function @, <®> indicates the quantity (@)= lim— J D(t) dr .
T T 5



The validity of (4)-(6) was proven theoretically for the linear vibrations (U(q) =%q2)

with small dissipation in [7], and an analytical expression for the dynamical potential has
been derived. However, no experimental evidences of the existence of the dynamical
potential for nonlinear vibrations is known yet. To fill this gap, the experiment with a

single-degree-of-freedom oscillator was conducted.

Experiment

The experimental verification of the concept of the dynamical potential for the nonlinear
vibrations of an oscillator with one degree of freedom is in general very simple. For this
purpose, one needs to excite an oscillator with external force in a domain of the force
amplitudes and frequencies, and to measure the response and temperature. If two latter
quantities fulfilled the reciprocal relations (6) (which is also an indicator of consistency of

measurements), the dynamical potential P could be reconstructed.

To conduct these measurements, one needs some tools for excitation and recording of the
vibrations. In reality, most instrumentation from the vibrations measurements toolbox
(e.g., vibro-exciters and accelerometers) are by the construction and principle of operation
harmonic oscillators, and are tightly linked with a system under consideration. The vast
majority of the experiments is conducted with the linear systems, and frequency ranges

are chosen to usually far from the resonant frequencies of the instruments, and the



dynamical features of instrumentation do not interfere with measurements. In some more
sophisticated systems a deep negative feedback is used to suppress the dynamical
properties of the exciter of vibrations. However, it was found in the preliminary
experiments, the feedback may even lead to the self-oscillations if quality factor of the

studied oscillator is high enough. A different device and technique were thus explored.

Experimental set-up and sensors. A simple device was employed, providing the
oscillator itself, an excitation engine, and measuring device in a single unit (see Fig.2).
Two small low-frequency electro-dynamical speakers were attached to the heavy steel
frame coaxially, and an aluminum cylinder glued between their voice coils. Such a
suspension allows the cylinder to move in the axial direction within the limits +6 mm
from the equilibrium position; the speaker’s cone suspension geometry ensures the
absence of lateral vibrations, and provides restriction on the amplitude of the axial
vibrations. A lateral elastic link was provided to enhance the non-linearity in the
suspension: a 0.05 mm-thick, 4mm-wide, and 10 mm-long steel strip attached to the

frame and the cylinder with a very small initial stress.

Two remarkable features of electromagnetic devices were employed: (a) a certain
amount of current fed to the coil results in the force which is directly proportional to the
current, and (b) if a coil is moved across the region with magnetic field with a certain
velocity, the induction voltage produced at the coil terminals is directly proportional to
the velocity. In both cases, the proportionality coefficient is equal to the product of the
wire length in the coil and magnetic induction, which is the same for both excitation and

measurement coils, since the identical speakers are used. It makes the calibration




essentially simple. Moreover, the speakers are designed in such a way that a certain
portion of coils remains at all times within the region of strong magnetic field even at
very large coil displacements, ensuring linearity of the coils as the force and velocity

transducers.

The friction in the considered mechanical model is contributed mostly by visco-elastic
losses in the speaker diaphragm’s suspension, losses resulting from air flow around the
moving body and diaphragms of the speakers, and electrical losses due to finite
impedance of excitation and measurement devices. The losses due to sound radiation are
negligible in the range of frequencies in which the experiments were carried out. Thus, all

losses may be incorporated as viscous friction, and evaluated by a single parameter C:

f(q,c})=Cc} : (7

The non-dimensionalized form of dissipation coefficient, & = € / v, will be empioyed

below, characterizing the relative energy loss during one period of oscillations.

A special power amplifier (current source) was designed to provide a certain current in
the force-exertincc; coil independent on the motion of the coil and its impedance,
controlled by the voltage applied to the amplifier's input. The force output of the coil was
measured in Newtons/Volt by the method of counterbalance: a voltage applied to the
input of current source resulted in some force exerted by the coil, displacing the
aluminum cylinder (suspended mass) from the equilibrium position. The displacement

was then compensated by the controlled counterforce and its value was measured. Such a



procedure was performed for various equilibrium positions within the limits of the

expected vibration amplitudes, ensuring the linearity of the force transducer.

The receiver coil, as a velocity transducer, was also calibrated by means of an
accelerometer. The acceleration magnitude of 10 m/s? has been maintained within the
frequency range from 32 to 78 Hz, and the dependence of the voltage output of the coil on
actual velocity magnitude was measured (Fig.3). The velocity transducer showed

acceptable accuracy of £1.5% .

Spring. Fig.4 illustrates the static load-deflection dependence of the spring used. The
measurements were made within the acceptable range of current through the force-
exerting coil. It can be seen that the spring is quite linear within the displacement range
0.4 cm, and it takes much higher force to displace the system out of these limits. Such a
behavior can be expected from the geometry of used suspension. At the linear interval of
load characteristics, the spring has a compliance of 0.28 cm/N with accuracy 3%. The
solid curve at the figure illustrates the polynomial fit of experimental data, expressed by

the formula

® _U 3.8756 ¢ + 0.37827 ¢* - 7.122¢* + 0.83379 ¢* + 3544 ¢° ,

q
where force is measured in Newtons and displacement in centimeters.
Data acquisition and processing. The input signal for the force transducer was provided

and the velocity sensor output measured by a PC-based Data Translation data acquisition

system. A DT-Vee code was derived to provide measurements within a certain force




amplitude - frequency domain, and calculate the response and temperature of the
vibrations according to the expressions (4a) and (4b). The raw response and temperature
data were later processed to calculate the reciprocal relations and reconstruct the

dynamical potential.

Temperature and response. Figures 5 and 6 represent the temperature and response of the
oscillator in the same force amplitude - frequency domain: O<F <0.5N, 20<v/2n<40Hz.
The analysis of data belonging in the low-force region of the parameters domain (quasi.—
linear motion) allow to estimate the dissipation coefficient § = 0.02 . The frequency shift
of the maximum of temperature up by 2 Hz from the linear resonance frequency of 26 Hz
indicates the strongly nonlinear regime of oscillations at higher force magnitudes. The
further increasing of force amplitude could result in the physical damage of suspension
near the resonance and thus was not exercised. It can also be seen that the typical large
values of the response are of an order of 0.5 cm. Note that the absolute value of

displacement can be significantly larger than the response value, because of the presence

of cosinusoidal component of amplitude g = <q cosv t), which reaches its maximum

value close to the resonance. Our measurements indicate thus that the vibrations in our

system substantially exceed the limits of linear displacements (Fig.4).

Another observation can be made: within the chosen domain of parameters the shift of the
resonant frequency due to the non-linearity is of the same order as the breadth of linear
frequency response curve (of an order of 1 Hz), and thus non-linearity and dissipation

play comparable roles in governing the oscillator’s motion near the resonance.
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Reciprocal relations. For the dynamical potential to exist, the reciprocal relations (6) are
to be satisfied (with some acceptable accuracy). The cross-derivatives of the response and
temperature have been calculated, and the ratio

0q 8_[
dlnv/ da

(8)

has been examined. The exact equality (6) corresponds to the unity value of the ratio (8).
The ratio (8) is plotted in Fig.7 as a function of the force amplitude and frequency in a
topographic way, where the white area corresponds to the value of (8) being within the
limits [0.9...1.1]. It can be seen that the reciprocal relations are fulfilled fairly well far

from the resonance, and are inconsistent within an approximately 4 Hz-wide region near

it for all force amplitudes. It means that, in the very vicinity of the resonance the
dissipation plays a key role in the system’s dynamics and cannot be neglected, and no
dynamical potential exists. Nevertheless, the consistency of reciprocal relations in the
most part of force-frequency domain ensures the possibility of reconstruction of the

dynamical potential.

Reconstruction of the dynamical potential. To build the dynamical potential, a force-
frequency domain left of 28Hz was selected. The reconstruction was conducted by means
of numerical integration of response and temperature data within this domain. Since the
dynamical potential is determined up to an additive constant, the procedure of integration
has been conducted in the following way. First, for each frequency in the range 28...40 Hz

' the response g was integrated with respect to force amplitude a, resulting in some

function of both force amplitude and frequency:

11



a=dp,, =0.5N
Pav)=  [g(av)da.

a=0

Another function of these parameters, P,(a,v ), was obtained by the integration of the response

g with respect to logarithm of frequency up to V., = 80m s', with the function

B(a,v =v_, =56ms™") used as a starting curve for integration:

B(aVv)=B(aV )+ [T(av)din—-,

v V0

min

Should the reciprocal relations be fulfilled exactly, these two functions would be the same
- the dynamical potential. In our computations, however, the inaccuracies in the
experimental data resulted in discrepancy of these two functions, with relative error
averaging near 7% and reaching the maximum at v,,, of approximately 20%. Figure 8
represents the mean value of these two functions P(a,v)=(P,+P,)/2, which may be

considered as the dynamical potential. The dynamical potential is measured in Joules.

The experimentally derived dynamical potential can be approximated by some simple
analytical function of the force amplitude and frequency, ailowing rapid estimates of the

averaged characteristics of motion under given load parameters.

12



Concluding remarks.

1. It is shown in a laboratory vibration experiment with a single degree of freedom
nonlinear oscillator that the concept of dynamical potential can be employed for
description of averaged characteristics of motion under given load parameters. As an

example, the dynamical potential is reconstructed for the considered oscillator.

2. In the same time, it was found that even relatively small dissipation (of order 0.01) can
qualitatively change the system’s dynamics near the resonance, and apparently no
dynamical potential can be constructed. This situation occurs when the response of the
system is approximately equally governed by both non-linearity and dissipation, which in
terms of measurable quantities mean that the nonlinear frequency shift of the resonance is
of the same order as the breadth of the resonant curve (in given domain of loads and
deformations). Some systems, however, may exhibit the resonance at the frequencies far
from the linear eigenfrequency (“strong” non-linearity), and the estimates of the response

and temperature can be successfully derived from the dynamical potential.

3. Should the dynamical potential be deemed useful in the research in non-linear
vibrations, the data of multiple experiments with various mechanical or electrical systems
can be used to create a library of such functions, greatly reducing the need in numerical

simulations or experiments with physical systems.
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Figure Captions

Figure 1. Mechanical Model.

Figure 1. Experimental setup. 1-steel baseplate, 2-excitation speaker, 3-voice coil, 4-
diaphragm suspension, 5-aluminum cylinder, 6-lateral link, 7-steel frame stud, 8-receiver

speaker.

Figure 3. Velocity calibration: the receiver coil output as function of the velocity

magnitude.

Figure 4. Static load-deflection curve for the spring used in the experiment.

Figure 5. Temperature of the oscillator as function of the force amplitude and frequency.

Figure 6. Response of the oscillator as function of the force amplitude and frequency.

Figure 7. Checking the validity of reciprocal relations.

Figure 2. Dynamical potential as function of force amplitude and frequency.
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Figure 8.
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Abstract—In polycrystalline materials at high temperatures and low stresses, creep occurs mostly by
the diffusion of vacancies through the grain bodies and over the grain boundaries. A continuum theory
of vacancy motion is considered 1o analyze diffusional creep on a microscopical level. A linear version
of such a theory was formulated by Nabarro, Herring, Coble and Lifshitz We revise this theory from
the perspectives of continuum mechanics and present it in a thermodynamically consistent nonlinear
form. A certain difficulty, which one has to overcome in this endeavor, is the absence of Lagrangian
coordinates in diffusional creep, the major building block of any theory in continuum mechanics A
linearized version of the theory is studied for the case of bulk diffusion. We consider the derivation of
macro constitutive equations using the homogenization technique. It is shown that macroequations are
nonlocal in time and nonlocality is essential in primary creep. For secondary creep polycrystals behave
as a viscoelastic body. For secondary creep, a vanational principle is found which determines
microfields and macromoduli in stress-strain rate constitutive equations A two-dimensional
honevcomb microstructure and single crystal deformation are studied numerically by a finite element
method. © Elsevier Science Lid. All rights reserved. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Predictions of the mechanical behavior of solids can be roughly classified as short-term and
long-term predictions. In short-term prediction, the behavior can be elastic or plastic, depending
on the level of stress. For sufficiently low stresses, solids behave elastically. However, over long
time periods, even under very low stresses, solids develop irreversible deformations. This
phenomenon is called creep.

There are three points worth stressing in a discussion of creep. First, everything creeps.
Actually, solids creep even at zero external load, due to the fact that practically no
polycrystalline body is in thermodynamic equilibrium. Second, creep is an energy driven
phenomenon. Materials creep in order to decrease their energy (or other thermodynamical
potential, depending on the external conditions). The energy of a polycrystal, for example, can
be decreased by moving grain boundaries. This occurs in reality, but very slowly, by means of
thermodynamic fluctuations. The rate of change is magnified significantly by elevating the
temperature and/or applying an external load. Third, the mechanisms of creep are stress and
temperature dependent. :

Two major creep mechanisms are movement of dislocations and diffusion of vacancies. A
typical deformation mechanism map is shown in the stress-temperature plane in Fig. 1. Above
the curve (high stresses) the dominating mechanism is dislocation motion. Below the curve (low
stresses) deformations occur by the diffusion of vacancies. It is believed that at low
temperatures, vacancies move mostly over the grain boundaries (Coble creep), while for high
temperatures, motion of vacancies through the lattice dominates (Herring-Nabarro creep or
bulk diffusional creep). Diffusional creep is the leading phenomenon in many technological
processes at high temperatures. Superplasticity, sintering and void formation occur mostly by
diffusional creep. In this paper we focus on a thermodynamically consistent theory of diffusional

1
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Dislocation
Creep

Diffusional Creep

Grain
Boundary
Diffusion

Lattice Diffusion

- — - =/

Fig. 1. Deformation mechanism map.

creep. The foundations of this theory were laid down by Nabarro [1], Herring {2], Coble [3] and
Lifshitz [4]. Extensive reviews of various aspects of creep theory can be found in {5-24).

The mechanism of plastic deformation caused by bulk diffusional creep can be viewed as
follows. Let a monocrystal be loaded by an external force (Fig. 2). Consider the right-hand side
of the monocrystal. A surface external force might be thought of as a set of forces applied to
each atom of the very right column of atoms (Fig. 2(a)). Because of thermal fluctuations some
of the atoms of this column can jump to a new equilibrium position (Fig. 2(b)). Then the next
atoms may jump into the vacant places and we see that vacancies enter the crystal body. Then
vacancies can migrate inside the body and leave the body at the free surface (Fig. 2(d)).

The motion of vacancies is accompanied by the corresponding motion of material in the
opposite direction. The moved material is shaded in Fig. 2(e). Since the motion of vacancies is
dispersed over the material, one observes an effective elongation of the specimen (Fig. 2(f)).
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Fig. 2. Mechanism of plastic deformation caused by bulk diffusional creep.
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Fig. 3. Boundary diffusion.

In the case of boundary diffusion, material flows over the boundaries from unloaded to
loaded pieces of the boundary and that yields some macroscopic plastic deformation. This
process is shown schematically in Fig. 3, the moving material is shadowed.

A typical strain-time dependence for constant stresses is shown in Fig. 4. There are two
different regimes of the plastic flow. Initially, strains grow fast, then the strain rate decays until
it approaches some limiting value. These two regimes are referred to as primary and secondary
creep.

The aim of this paper is to construct the microequations of diffusional creep in the framework
of continuum mechanics and develop a homogenization procedure to derive macroequations of
creep. There are a number of reasons for pursuing these goals First, a phenomenological
approach to the derivation of macroequations for creep provides too many options. Realization
of our program may help to choose the right one.

Second, the problem seems challenging from the perspective of continuum mechanics.
Looking at the sketch of boundary diffusional creep shown in Fig. 5, one may observe that the
basic notion of continuum mechanic, Lagrangian coordinates, cannot be used in this case.
Really, material points which were on the grain boundary moves into the grain body, which is in
clear contradiction to the main postulate of continuum mechanics [25, 26] on the existence of a
diffeomorphism between the deformed and undeformed states and, as a consequence, to the
existence of Lagrangian coordinates. If a continuum deformation were a diffeomorphism, the
material points, which are on the boundary, stay on the boundary forever. Lagrangian
coordinates are used in continuum mechanics, for example, in the definition of velocity: one has
to ask “velocity of what?”. We suggest a way to overcome this difficulty.

e A
Primary Secondary t
Creep Creep
Fig. 4. Typical creep strain-time dependence.
UMD L

Fig. 5. Mixing by boundary diffusion.
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Third, a theory of diffusional creep must be a building block for the theory of dislocational
climb which is, at the moment, in a primitive stage.

The contents of the paper are as follows. Section 2 describes the main feature of the model
for bulk diffusional creep, which is the existence of a plastic displacement field. This is an
unusual situation in plasticity. The general kinematic relations for the bulk diffusion and surface
diffusion are given in Section 3. In Section 4 the closed system of equations of diffusional creep
is developed from thermodynamic considerations. The linear version of the general theory is
presented in Section 5. In the rest of the paper a linear theory of bulk diffusional creep is
studied, which aims to derive macroscopic laws for grain structure starting from a micromodel.
This is referred to as a homogenization problem. In Section 6 the formulation of the
homogenization problem is given for a particular case of periodic grain structure. The theorem
of uniqueness of the solution is proved, which is evidence for the correctness of the basic
equations. In Section 7 the general type of macroscopic constitutive relations is established.
Secondary creep is considered in Section 8. It is proved that, under constant loads, the transient
solution tends 1o a steady-state solution and the closed system of equations is found, which
allows one to find the macrocharacteristics of the secondary creep without “tracing” the
transient solution. A numerical example of the solution of this system is presented in Section 9.
A dimensional analysis of the equations and numerical modeling of the transient process are
discussed in Section 10.

2. MICROMECHANICS OF BULK DIFFUSIONAL CREEP: A LOGICAL
SKELETON OF THE THEORY

The logical structure of the theory is especially simple in the case of bulk diffusional creep
and before going into detailed discussion, we outline it briefly. The key point of the bulk
diffusional creep is that plastic strains ¥’ are compatible. There exists plastic displacement w{’
such that (in the linear case)

) »)
El(lp) = _1_ i&_ + I .
Ix; ax;

- &

Here, and in the following, small Latin indices run through values 1, 2 and 3, and correspond to
projections on the Cartesian axis of the observer frame; x; are the observer coordinates.

The compatibility of plastic deformation is a pure kinematical hypothesis. It aims to model
the process of deformation shown schematically in Fig. 2(e). In contrast to a general creep
theory where six additional equations are to be given for six unknown functions e,‘f), in bulk
diffusional creep one has to give only three additional equations for w{®.

It is clear that the plastic rate w®’ should be related to vacancy motion. Some kinematical
and thermodynamical consideration shows that the corresponding relation (in its simplest
version) is

W=D 25 @

where ¢ is vacancy concentration, dot denotes time derivative and D is the diffusion coefficient.
Equation (2) reduces the number of closing equations to one: an equation for vacancy
concentration c. This last equation is the diffusion equation for ¢

ac
— = DAc.
P c (3)

Equations (1)~(3) should be complemented by the usual equations of elasticity and provided
with the boundary conditions. Now we proceed to detailed considerations.
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3. CONTINUUM KINEMATICS

We are going to model, in terms of continuum mechanics, the following physical
phenomenon. If an external load is applied to an atomic lattice containing a cloud of vacancies,
vacancies migrate in some preferred direction. The motion of vacancies causes the motion of
atoms in the opposite direction. The motion of atoms is perceived by an observer as an
irreversible plastic deformation of the material. Our first step is to establish a kinematical
relation which relates the motion of vacancies to the motion of the material.

We model the motion of vacancies and material by two continua with velocities u; and v,
correspondingly. We assume that vacancies are not created inside the material and can only
come from the boundary. Then, as we shall argue:

vi9=(1 - +ey (4)
where v{® is an “elastic” velocity. If the elastic velocity v{® is zero, the relation equation (4)
expresses velocity of material (atoms) v; in terms of velocity of vacancies u; and vacancy
concentration c.

Usually, vacancy concentration is negligible in comparison to unity. Nevertheless, we keep the
factor (1 —c¢) until the final calculations in order to underline the physical origin of various
terms. Equation (4) is a postulate which is motivated by the following reasons.

Consider a piece of crystal lattice, a ““representative volume of material,” and think of v; as
the average velocity of all the atoms of this piece

1
v = N. g,vi (5)

where N, is the number of atoms, v{ is the velocity of the ath atom and the sum is taken over
all of atoms of the piece. Similarly, velocity of vacancies is the average value of the velocities of
all vacancies:

u;,=

> uf (6)

a

N,

Here N, is the number of vacancies and u[ is the velocity of the ath vacancy. The volume
average velocity v; is, by definition:

1
ﬁ,-=W<Zv,"+Zuf’> )

where N is the total number of lattice sites

N=N,+N, (8)
It follows from equations (5)-(8) that
U= (1 = o)y + cy, %)
where the volume fraction of vacancies c is, by definition,
N,
€= (10)

Relation equation (9) holds for a mixture of any two substances. Now we must express in some
way the fact that we are dealing with diffusion of vacancies. We may assume that in the process
of position exchange between an atom and a vacancy the velocities of the atom and the vacancy
are equal in magnitude and opposite in sign. Therefore, in accordance with equation (7), g, =0.
Then equation (9) links the velocities of atoms and vacancies. It is clear that atoms and
vacancies might have another common additional velocity. Then ¢, is not zero, but equal to this
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additional velocity. The additional velocity is not related to the process of vacancy diffusion or
irreversible deformation. We identify this velocity with *“elastic” velocity and denote it by v{.
Then equation (9) takes the form equation (4).

Note that the term “elastic” velocity is not quite exact. If one defines elasticity as, that part of
deformation which disappears after unloading, then velocity v might have a contribution form
a plastic rigid motion, a motion of the monocrystal after unloading as a rigid body. However, we
take some liberties in the terminology to simplify the notations and use the term elastic velocity
for the sum of the “real” elastic velocity and plastic velocity of rigid motion.

The flux of vacancies relative to material J; is given by

Ji=c(u; - U:('e))- (11)

In accordance with equations (4) and (11) material velocity v; can be expressed in terms of
elastic velocity and vacancy flux as

1
1-c¢

v =v9—

Jie (12)

This is a key kinematical relation.
Since vacancies can be generated only on the boundary, vacancy concentration obeys the
conservation law

dc deu;
oJt Jx;

=0. _ (13)

Equations (4), (11)-(13) form the basic kinematical relations of bulk diffusional creep. Now we
are going to incorporate into this picture the surface diffusion.

Consider a grain in a polycrystal. It occupies a region V. Region V depends on time. Imagine
that at an initial instance, f,, we cut the grain out of the polycrystal and unload it. The grain
occupies some region, V,, in an unloaded state. We refer both regions to some Cartesian
coordinates, x’. Besides, we introduce in the region V; some coordinates curvilinear in general,
£° which, in a “usual” situation, play the role of Lagrangian coordinates. Indices a, b and ¢ run
through values 1, 2 and 3, and correspond to projections on the axis £°

There is one-to-one correspondence between the observer’s coordinates x; and coordinates £°

xi - X”( fa)- (14)
Without loss of generality mapping equation (14) may be identical, however, it is convenient to
Jeave it without specifications because coordinates x' and £° obey to different groups of
transformations [27]. This is why we use another group of Latin indices, a, b and ¢, in the
notation for Lagrangian coordinates.

At each moment of time, ¢, there is mapping of the region, V,, to region V

x'=x'(£%0). : (15)
If this mapping is a diffeomorphism, then {“ are Lagrangian coordinates. In this case, if a point,
£° lies on the boundary, 4V, of the region, V,, its image is on the boundary, 4V, of the region, V,
for all instants, t. Velocity is defined as the velocity of the particle £ vi= ox'(£°0)/or. This is a
classical kinematical scheme of continuum mechanics (see, for example, [25-27]). As one sees
from Fig. S, this is not the case for boundary diffusion creep and we have to change the
kinematical scheme. We introduce, as a “primary” kinematical object, the region V which is
changed in time. In this region two velocity fields, material velocity v' and vacancy velocity u’
are defined. If mapping equation (15) were a diffeomorphism and v'= ax/(¢°r)/ar, then the
normal velocity of the boundary surface JV is equal 10 v;n,. In the case of boundary diffusion
these velocities are different. We denote the difference by w:

vboundary = vini +u. (16)

Velocity, u, is caused by the material flow over the boundary. It appears as an additional
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independent kinematical characteristic. However, a “more fundamental” characteristic might be
introduced as primary characteristics of boundary diffusion: boundary mass flux J°. Boundary
mass flux is defined in the following way. The mass of the material is conserved in the boundary
flow, therefore, a law of conservation of mass should exist. Denote by J* the vector of mass flow
on the surface. Greek indices run through values 1 and 2, and correspond to projections on the
boundary surface. If y is a curve on the boundary and v, is the unit normal vector to y at a
point P, then the scalar J*v,As means the mass flow through the arc of y of the length As at the
point P. Let p be the mass density of material. Then the law of conservation of mass has the
form

pu=V_J° (17)
where V_ is the covariant derivative on the surface éV.
Mass density obeys also the law of conservation of mass inside the region V
) apv’
o, e
at ax'

=0. (18)

Equations (16)—(18) provide the conservation of mass in volume V

J g dpv’
— pd3x = j ._p d3x + J pvboundarydzx = - j d 7 dsx + j pvboundarydzx
ot v v ot oV Ix 44

v
= j p(vboundary - vin:)dz = f pud2X = j Vr]"dzx = ().
v v v

It is natural to consider J as the primary characteristics of boundary diffusion, then velocity u
is determined by equation (17). ’

Now we come to the point where we have to introduce displacements. It is natural to define a
field of elastic displacements w!?(1,x) which has the domain V(r). Vector w!?(tx) means the
displacement of a crystal from the imaginary unloaded state to the actual state V(). If there are
no plastic strains, the displacement w{?(r,x) relates to velocity by the formula

gw.” +u® owi? o
o Vg x =v;p (19)
Equation (19) can be rewritten as
5k — ow'® O = ow'®
< i —.—&xk > S (20)

The latter relation can be considered as a system of linear equations with respect to velocity
v{?, if the displacement field is known. We keep formulas equations (19) and (20) as the
definition of the vector of elastic displacements if velocity v{” is considered as a primary
quantity. Remember that, by our convention, plastic (and, hence, elastic) deformations are
consistent for diffusional creep and a vector of elastic displacements exists.

4, THERMODYNAMICS OF DIFFUSIONAL CREEP

We derive the basic equations of diffusional creep following the usual thermodynamical
approach: we assume an expression for free energy of the material and construct the equations
in a way to warrant the negativity of the time derivatives of free energy.

The free energy F of a polycrystal has, by our assumption, an energy density per unit volume
F.

F= f Fd’x. (21)
V(1)
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We accept that energy demsity F is a function of the gradient of elastic displacement
w(O( = gw?/ 9x’), vacancy concentration ¢ and temperature T:

F=F(w.cT). (22)

LIV AR

Temperature T is maintained constant.

Note that the assumption equation (22) taken together with the definition of elastic
displacements equation (19) extracts a special class of models. For example, if elastic
displacement is defined, instead of equation (19), by the formula

W

=
8{ Vi (;Xk v, (23)

which may have some virtue, we would arrive at a class of models which differs from the one
under consideration in the nonlinear case.

Let us find the time derivative of free energy. We assume first that region V(r) is occupied by
a crystal and all fields are smooth inside V. We have

d¥ L I . VR B
—_— —_— W ; .
ar W o T e T )°F w(”" u)dx (24)

After substituting in equation (24) the expression for (dc/dr) from equation (13) and integration
by parts we obtain

d3 d oF
o [_( a ) (810 = WO+ (0¥ 1) = 2 ]ds"
v

dr 75 ax' dc

+ 9F (5 — wie (e)k__if_( (e)i+ji +F i 2
ov owS (8w = Wik e " i+ Fwni+u) \d'x. (25)

(o)

Here we expressed also in terms of elastic velocity from equation (20).

For further transformations we need an identity [27]

(_"_ _ii_>( m)—f_( i (5,m—w“’)+rsﬁ,)——ai % e

Xy ¥y awis), dc  Ix™

This identity can be checked by direct inspection. Using equations (26) and (12) we can rewrite
equation (25) in the form

dg do*m O d dF dF F
-2 - - 3 ]l —_— d3 + if (e) . + i 2
di fv< ox* o ac ) L, ki (ac [o¢ Jfmt e )dx

27)

Here we introduced a notation

. dF JF .
i= 2 s —wy+ (F=cZ s
g aw:?l( mi ) < Cc e )51- . (28)

It is seen from this expression that o have the sense of components of a stress tensor.
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Assume that J' do not depend on v{?. Since o} do not depend on v(? as well and v can be
chosen arbitrarily, equation (27) can comply with negativity of dF/dr if, and only if, the
equilibrium equations hold

o’

57 =0 (29)

The simplest expression for the vacancy flux which does not contradict the negativity of dF/dr is

é JF

Ji= - Di— —
ax dc

(30)

where D" is a positive tensor.
Consider now the boundary terms. Let V be a polycrystal. Denote by X the grain boundary
surface. Then the surface terms in dF/d: take the form

N I LI ) R R PN (31)
s ac 1-c¢ !

where for any quantity A the symbol [A] means the difference of A at two sides of the surface
p

Let us present the surface force o’n; as a sum of normal force ¢,.,'(0,,=0"nn;) and
tangent traction. Similarly, v{® is the sum of the normal velocity v{n,(v\” = v{”n) and the
tangent velocity. Then

a"vn;= aWPn + o,

n .

Greek indices a, B, v run through values 1 and 2, and correspond to projection on the tangent
plane to Z. Using also equation (12) we rewrite equation (31) in the form

Opn— F oF

[ teh+ ot )+ | (L5 = )0 = (o= Pue0. G2)

1-¢ dc
It is natural to require continuity of the total normal velocity of the adjacent grains

(v, +u] =0. (33)

Since o, (as well as other “generalized forces” in equation (32)) does not depend on velocity, it
is necessary that o ,, be continuous:

[Unn] =0. (34)

The normal vacancy flux J'n; can be arbitrary and vacancies on two sides of the grain
boundary seem to be produced at independent rates. Therefore, it is natural to accept that the
corresponding coefficient at J'n; in equation (32) are zeros: at both sides of the boundary
surface

Opn— F

_OF _,
1-¢ o (35)

In accordance with equation (17), the last term in equation (32) can be written as

f[(an,,—F)u]dzpf [—‘Tii—F-VaJ“]dzp —J' [J"Va ﬂ]dzx. (36)
X b p % p
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Here we integrated by part and dropped the term on the polycrystal boundary. Finally,

dF ¢ JF : o= F
_—= j— —d3x+j ([U“’vff)]n-—[.l"v,,—m'——— >d2x. 37
d: J;,j ox' dc v ! p (37)

There are different models which obey the negativity of equation (37). The most plausible
version is based on the assumptions that o *“n; are continuous and surface fluxes of material J*
are independent on both sides of . Then, neglecting reciprocal effects, one can put

o= - pfvlon s (38)
o — F
Jje = daﬁv3<0————> on each side of Z.. (39)
p

Note that, in contrast to o,,, the energy density is not continuous on X, therefore, material
fluxes J* are different on the two sides of . However, this is a nonlinear effect. The equations
derived in this section close the system of equations of diffusional creep.

5. LINEARIZED THEORY
In the linear case the system of equations is simplified greatly. First, in this case one can

neglect the changes of region V in the process of deformation. Second, kinematical relations
take a simple form

@ 9w
le = : = i + Cui
Y a (40)
v =v = J; (41)
ac + o7; =0
at dx; (42)
pu=V_,J". (43)

Third, energy density is a quadratic function of elastic strains

+ -

ax’ ox' (44)

el =112 (

and the deviation s=c — ¢, of vacancy concentration from its equilibrium value ¢, (for brevity
from now on the function s will be referred to as vacancy concentration)

W awe )

F= 1A"f‘“ el + —l—A ?+ function of T
= 5 A7ePeld + — As” + function of T (45)

Here A" are Young moduli, while A is an additional material constant. From some statistical
reasoning (5]
poTl
A== (46)

mcy

where m is the mass of one atom, p, is the mass density of an ideal lattice. In equation (45) we
neglect an interaction term A”e{?(c - c,).
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In accordance with equation (28), the stress tensor ¢/ in the linear theory has the form

ol = Ai/ktei',). (47)
It obeys the equilibrium equations
do’
palaly (48)
Vacancy flux J is given by equation (30)
i ij Is .
J'=—ADY W . (49)

Therefore, equation (42) transforms to the usual diffusion equation
as J . ds
— = —| ADY —}.
o (40 ) )

We assume that diffusion constants obey the positive definiteness condition

Digg;= DEg for VEL >0. (51)
On the grain boundary we have from equations (33)-(35), (38) and (39)
(v]=0 (52)
[0]=0 (53)
O .. = As at each side of grain boundary (54)
. aw'o
a - — ,,aB B

o¥n;= - p [ P } (55)

d=?
Je= p Vg0, at each side of the grain boundary. (56)

It foliows from equations (43) and (56) that the law of growth of grain boundaries due to
boundary diffusion

oB

pu= V/} Vczo-nn' (57)

Equations (40)-(57) form a closed system of equations of diffusional creep.
6. HOMOGENIZATION PROBLEM

From now on we shall consider a special case of the linearized theory, formulated in Section
5, when there is no boundary diffusion and, hence, the only irreversible deformation is due to
the bulk vacancy diffusion. Formally this means that coefficients d*# in equation (39) are
supposed to be zero, which eliminates equations (56), (43) and (57) from the system equations
(40)—(57).

Further we assume that constants x*? in boundary conditions equation (55) are zero, which
neglects the tangent stresses at the grain boundary:

o %n, = 0 at each side of grain boundary. : 58
J (58)

This is equivalent to an additional assumption that the process of shear stress relaxation at the
grain boundaries is much faster than the bulk diffusion process and is completed immediately
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after the load is applied, so that the adjacent grains can slide without resistance along their
common boundary.

In the absence of the boundary diffusion the deformation of the region V is described by the
displacement field w; (x',r), defined in V and related 1o the velocity v, by the formula

v(x.0)= wilx,)x e V. (59)

We introduce also the plastic displacements, which are determined by the flux J; by means of the
relation

wP(x, )= —J(xxe V. (60)
Then the displacements w; are the sum of the elastic and plastic displacements
wi=w® +w (61)
Similarly for the strains:
ow; ow; ) ow® Jw,(-”) @
= —_— W= = e »)
;=112 ( P + o ),eu 12 ( pw + o e;=¢g; +¢ef. (62)

Instead of equation (52), the continuity condition of normal displacement will be employed:

[wa] = 0. (63)
Condition equation (52) follows from equation (63), but not vice versa. The difference is that
equation (63) excludes the possibility that the normal displacements are discontinuous at the
moment =0 when the load is applied.
It is also necessary to complement the equations above with initial conditions for vacancy
concentration and plastic displacements:

s(x)=0,xe V,t=0 (64)
wP(x,)=0,xe V,=0. (65)

The closed system of equations in the case considered in the absence of boundary diffusion and
with zero boundary shear stresses, consists of the equations (44), (47)-(50), (53), (54), (58) and
(60)-(65).

Consider a polycrystalline body containing a huge number of grains. We are going to derive a
theory for predicting the mechanical behavior of the body. The experience gained in the
averaging of random structures shows that most results for bodies with random and periodic
structures are qualitatively similar. (See, for example, [27].) Therefore, we consider a body with
a periodic microstructure (Fig. 6) loaded with some constant or variable traction. The problem
is to find microfields, of elastic and plastic deformations and macroscopic constitutive equations.

For simplicity and consistency with the performed numerical modeling, only the 2-D plane
strain case of regular hexagonal periodical microstructure (Fig. 6(b)) will be considered. The
reason is that with boundary condition equation (58) not all microstructures can withstand the

(a) (b)

Fig. 6. Microstructures.
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instantaneous application of the external traction. For example, the rectangular microstructure
(Fig. 6(a)) cannot be loaded by shear stresses, applied parallel to the grain boundaries. In other
words, any macrodeformation of the structure should be the result of the application of
macrostresses. Here we decided to use one structure which possesses the necessary properties
rather than to formulate general restrictions on the grain geometry, which can be solved in 2-D,
as well as in the 3-D case. An accurate formulation of that property will be done at the end of
this section after the formulation of the homogenization problem.

We consider the asymptotical statement of the homogenization problem when the period of
the microstructure L tends to zero and averaged equations are the corresponding limit
equations (see, for example, [27]). Before presenting the results, some description of the
periodic structure is to be done.

We assume that the grains coincide with the cells of the periodic structure. Let @* be an
arbitrary cell and e be half the distance between the opposite hexagon edges, which will be
taken for the characteristic size of the grain. The boundary dw™* of the cell w” is comprised of
three pairs of lines S, S'y, S,, S'2, S5, §'3 such that for every line §,, there exists a translation
1, € G, mapping S, onto S’,. This notation is explained in Fig. 7.

The periodical regular hexagonal grain structure M is obtained by translation of that cell by
all elements of translation symmetry group, generated by vectors I’ and /%

G=(I")1"=ml'+ kI’ mk=0,+1,%2,..} (66)

For | € G we denote by w(/) the image of the cell @™ under the transiation /. Different cells w(!)
may have in common the boundary points only, and the union of the cells covers the whole
plane. Obviously, the translation —/, maps S’, onto S,. Thus, the periodic structure induces the
certain mapping of the cell boundary éw” > dw”, which will be used for the formulation of the
boundary conditions. For every point x € dw™ we denote by /(x) the corresponding translation
vector. The points x and x’ =x +/(x) will be referred to as the corresponding points. Note that
I(x) is constant within each line §,, §'...

The unit normal n to the cell boundary is assumed to be directed outward from the cell,
therefore at the corresponding points x and x' we have

a(x)}+n(x')=0I(x)= - 2en(x). (67)

Fig. 7. Hexagonal structure. The translation vectors mapping the corresponding pars of the cell
boundanes, shown by arrows.
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Let f{x) be an arbitrary function, which is continuous within each grain, but may be
discontinuous at the grain boundaries. Function f(x) is called periodic if

f(x +1)=f(x)foranyx e @™ and foranyl e G. (68)

Here &7 is the interior of a cell @ ™.

If function f(x) is known within any cell, it can be extended to the whole space by the formula
equation (68). From now on the term “periodic function™ will be used in the sense of the above
definition, unless otherwise is explicitly indicated.

Denote by w™ the cell, such that §;=w”"Nw™. It follows from equation (68) and the
definition of the corresponding points that

Ul=f"-f=f&x"n - f(x")=f(xn) - f(x'pforxe S (69)
Thus, for periodic functions the discontinuity conditions can be expressed in terms of function
values within one cell, which allows us to formulate the cell problem. Instead of applying the
formal procedure of homogenization (see, for example, [27]) we use here an “intuitive”
approach, which is easier to implement. Of course, it gives the some results as the general
approach.

Averaged constitutive equations by their physical sense relate a macroscopically
homogeneous deformation of a “large” (compared with grain size €) specimen to averaged
stresses. Instead of “large” specimen we consider the whole plane loaded by stress &7(r) at
infinity. One has to find microstresses in periodic structure and macrostrains &,(r). One may
prescribe at infinity macrostrains £,(r) as functions of time; then macrostresses &%(r) and
microdeformations in periodic structure should be found. For definiteness, we consider the case
of given macrostresses.

If there were no grain boundaries, the homogeneous plane deformation history would be
generated by the displacement field

wi(x.0) = &,(Nx’. (70)
The grain structure results in additional periodic displacements Wi(x,1), so that total
displacements are given by the sum

wi(x,1) = éij(f)xj + Wi(x.0). (71)
Since the first term in equation (71) is obviously continuous over space coordinates, it follows
from equations (63) and (69) that the field W,(x,r) satisfies the condition

W (x.0)+ W (x')=0forx e dw™ > W,(x,1) + W,(x' 1) =0. (72)

The vacancy concentration s is a periodic function. With equation (69) taken into account,
equations (53) and (54) link the normal stress values and vacancy concentration at the
corresponding points of the boundary:

Ton(X 1) = 0p(x 1) fOrx e 6w™ (73)
s(x,) =s(x" 1) forx e w™. (74)

The macrostresses, or averaged stresses, are defined by formula

1

Fi) = ”

] L‘ ai(x,nd«. (75)

The full set of equations is as follows: equations (44), (47)-(50), (53), (54), (58), (60)-(62),
(71)—(75). For further references that system of equations is referred to system P Initial
conditions for the system P are equation (64) and (65). It is implied that all equations included
in system P and initial conditions should be satisfied in the cell w™. '

Now we are going to show, that the chosen microstructure cannot be subjected to
instantaneous macrodeformation, if stresses are zero. With zero stresses and zero vacancy
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concentration s, the elastic strain coincides with the total strain and is equal to zero, hence the
displacement field w, within cell w™ is rigid body motion:

w; = é,.jxj+ Wi = Aei,-xj+ a,X € 0)+,/\,ﬂi = Const,e“ =eén= 0, €12 = — €y = 1. (76)

Relation equation (76) allows us to express the displacement W, in terms of macrostrains and
rigid body motion:
W, = = &X' + Aeyx’ +a, 77

Inserting equation (77) into the continuity condition equation (72) yields
0=W,(x)+ W,y (x')=(—&;x'+ dejx) +a)n’(x) + (= &;x"" + Aeyx'' + a)n'(x’)
= (- ;5 + Aeyx +a)ni(x) = (= &;x" + Aeyx'T + a)n'(x)
(= 85+ Aey)(x — xyni(x) = = (= &;+ Aey)l(x)n'(x)
= £,/(x)n'(x) — e;f/(x)n'(x) = &,F(x)n'(x) — An(x) ®1(x) = &/ (x)n’(x),x € dw™. (78)
The vector product n® 1 in equation (78) vanishes because these vectors are collinear at each
boundary point (see equation (67)). Since normal is constant along each edge of the hexagon,

equation (78) provides three homogeneous linear equations with respect to three macrostrain

components £;. A direct check shows that its determinant is not zero, which implies that all
macrostrains have to be zero.
Let R be the set of periodic displacement fields V,, defined at the cell w* by formula for rigid

body motion

V,= Ae;x’ +a; A,a;= const (79)

and extended to the whole plane by the periodicity condition equation (68). Under the
displacement V, each cell shifts by the constant vector g; and rotates around its center by the
angle A. It follows from equations (76)-(78) that any such a field satisfies the continuity
condition equation (72) and does not produce macrodeformation. Figure 9 illustrates the
movement of the cells. The holes that one can see at the corners of the hexagons, are a second-
order effect and are ignored by the small deflection theory used here.

THeoreMm 1. Consider the solution of the system P with initial conditions equations (64) and-
(65). Macrostresses & (1) are given functions of time. The total and elastic displacements of this
solution are defined with the accuracy of the arbitrary displacement field from set R. All the
other components of the solution, such as vacancy concentration, plastic displacements and
strains, elastic strains, macrostrains and stresses are uniquely defined.

Proor. Introduce the notations

1 1
0=~ j Asdx + (6.6 2,6 )

w

ke (e) (e gs ds
= j‘ A‘lk 5,(]‘ )sf(,)dzx,[VS,Vs] = j- AD‘}—;;T E},—dzx, (80)

w

Since the system P is linear, it is sufficient to prove, that if macrostresses are zero, then the
system P with initial conditions equation (64) and (65) has only zero solution for all components
with the exception of displacements, which belong to the set R. At the initial moment r=0 the
plastic displacement is zero because of equation (65), the displacements coincide with the elastic
displacements and since the macrostresses are zero, the macrostrains are also zero at the
moment ¢=0. Hence

1(0) =0. (81)
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Using inequality equation (C.6) for #*=0 from Appendix C, we know that functional /(r) is zero
for r=0. Hence

s()=0,e=0,120> 0,=0,e=0. (82)

Hence, the displacement of the cell is rigid body motion, given by the formula equation (76). It
was proved above, that in order to satisfy the continuity condition equation (72), the
macrostrains have to be zero. The uniqueness theorem is proved.

Remark 1. Let us consider the loading case when the non-zero macrostresses are applied only
at some time interval [0,*], and were removed afterwards. Then from inequality equation (C.6)
we conclude that vacancy concentration s and elastic strains € exponentially tend to zero,
hence the stresses also tend to zero. In other words, after unloading the residual stresses are
relaxing to zero exponentially with respect to time.

We conclude this section with the presentation of averaged stresses in terms of values of
normal microstresses at the grain boundary (see Appendix B):

Fi= —=
lw

— o.n'ndx. (83)
M.

Relation equation (83) is valid for an arbitrary stress field satisfying equilibrium equation (48)
and boundary conditions equations (58) and (73). With equation (54) taken into account, the
averaged stresses can be expressed in terms of the values of vacancy concentration at the grain
boundary:

Ace€

|

-[]‘_

sn'nfdx. (84)

|w

It can be checked (see Appendix B) that for arbitrary constant C, the following identity holds:

- f Cn'n’dx. (85)
M)

Coi=

|w

It follows from equations (84) and (8S), that if vacancy concentration is constant over the grain
boundary then the corresponding macrostress tensor is spherical and the plane is under
hydrostatic compression or tension.

7. BOLTZMAN SUPERPOSITION PRINCIPLE AND MACROEQUATIONS.

As has already been stated above, the macromodel should provide the relations between
macrostresses and macrostrains &7(r) and £,(r). It seems almost obvious, that any parabolic
type linear system such as P satisfies the Boltzman superposition principle and, hence, the
stress~—strain relation would involve an integral operator.

Let us first assume that at r=0 the unit tension along axis x? is instantaneously applied to the
polycrystal and remains unchanged for r>0. Then the only non-zero stress component is
&''(t) =1. Denote by X(r), the solution of system P with initial conditions equations (64) and
(65), corresponding to load case under consideration:

N(r) = [€,(0,07(-1),e5(-0, 70,67 D SCOWL 0w WO nwP (). (86)
Solution N(r) is defined only for 1= 0. Let us formally define it for t <0:

N()=0fort <. (87)
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If the same tension &''(r) =1 is applied at some time 1, >0, then the solution is obviously equal
to R(t—1,) for t=0. Let us stress that R(r —1,) =0 for 1 <t, because of the definition equation
(87).
The next step is to consider the load history, when at discrete moments ¢, =i4, i=12,..., k
tension increments d&''(s,),d&''(ty),...,d& "1, are applied. Then at any particular time ¢,
1,, <t<tn., the total tension &''(z,) is given by the formula

)= S de(1) (88)

i=1
and the solution is given by the sum

S oV @R - 1), (89)

i=]

Extension of the formula equation (89) to a continuous loading process provides the following
formula for the solution:

j SV(EN (1 - £)dE. (90)

Let us denote by R,,[(r) the macrostrain £,(r) corresponding to the application of the
macrostress &*(¢) = 1,:>0. The values R, (r) at =0 are components of the tensor of elastic
compliances of a polycrystal. Because of that it is convenient to decompose R, (f) into the sum

Rijul) = Ry k(0) + Kijae8), Kijxe(0) = 0. (91)

By its mechanical sense the function K ,(f) is the &; creep strain component caused by
constant load &*(r) =1, while the other macrostress components are equal to zero. Then for an
arbitrary loading process the following holds:

! ‘7Ki,'k:(’ - )

o oNode (92)

(D)= f Riult = £)6X(£)dE = Ryu(0)5(1) + f
0

0

Equations of the type equation (92) are widely used for creep modeling of polymers and
concrete.

So we arrive at the conclusion. In order to find macrostrains, caused by an arbitrary loading
process, it is necessary and sufficient to know instantaneous elastic moduli tensor R;,(0) and
creep tensor Kj;,(r), which components are creep strains caused by the corresponding constant
macrostresses. Thus, in numerical modeling or experiment one may consider only loading cases
when constant load is instantaneously applied to the body and remains unchanged. This is
nothing else, but the classical experiment to find the creep property of a material.

Inversion of equation (92) renders

Ny ro . t gZik, —
&) = f QiH(t = £),,(£)dE = QPF(0)ExlD) + J L%—i)ekmdf ©3)
[+] 0

Q4 (1) = QIH(0) + ZIH(1), ZT(0) = 0. (54)

Here Q%*(r) is the macrostress component o §(r) caused by the instantaneous application of a
macrostrain £,(f) =1, while all the other macrostrain components are equal to zero. The tensor
Q%*'(0) is the elastic moduli tensor of the polycrystal.
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It is worth mentioning that creep curves Ky, (f) for small values of r have an asymptotic
behavior ’

‘7Ki'.kr(t) -
Kixdt) ~ 1'%, — " (95)
and, hence, the creep rate tends to infinity as t~? when  tends to zero:
g ~1""% >0, (96)

An important feature of the constitutive equations (92) and (93) is that these relations are not
local: there is a memory of the history of the process. This means that local theories of primary
creep are not adequate at least in the case of bulk diffusional creep.

8. SECONDARY CREEP

Generally speaking, the macroscopic constitutive equations are given by the integral
operators equations (92) and (93). However, for “slow™ loading processes and a developed
creep it is possible to use as an approximation the creep law

’
a =0kl okl -kl kl-ss
g, =Ejue' "0 ) 2 (97)

or

-~ 14

jhei =
&Y= e

(98)

Also the incompressibility condition is imposed:

g =0 (99)

which reflects the physically obvious fact that there is no volume change from bulk vacancy
diffusion. A tensor % is the inverse tensor to E ;.

The macrocharacteristics of the secondary creep E;;, are the limits of the creep rates k,,-k,(r)
when 71— <. The fact that under constant applied macrostresses the creep rates tend to some
constants when r— = will be formulated and justified below and constitutes the basis of the
approximation equations (98) and (99).

We start from formal description of how to compute the constants involved in the secondary
creep law equation (98). It turns out that they may be found from the following variational
principle. Let &; be an arbitrary constant macroscopic creep rates, satisfying the
incompressibility condition equation (99). Denote by J (s) the following functional of function
s(x).

1 .
J(s)= > [Vs,Vs] - ef gn'n’sdx. (100)

-

Here the notation equation (80) is used. Consider the minimization problem

J(s) — min,. (101)

Minimum is sought on the set of all functions s obeying the constraints equation (74). It follows
from equations (85) and (99) that the term linear with respect to s in equation (100) is zero for
s=const, hence the solution s* of the problem is determined up to an arbitrary constant. We fix
this constant by the condition

j s*(x)n*n*dx = 0. (102)
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The necessary and sufficient condition of the minimum is the following identity, which should
hold for every function satisfying the condition equation (74)

[Vs* Vs]=¢ j g n'n’sdx for Vsis(x) = s(x'),x € ow™. (103)

The differential form of the problem equation (101) is derived from equation (103):

%Ao'f% “Oxecw® (104)
Ua(x) = = 2e8;n'(x)ri(x), x € d ™ [1,)(x) = Jo(x) + 1 (x'), X € dw™ J,(x)

. ds(x
E—AD"—%)-ni(x), Xedw”. (105)
After the solution s* of the variational problem equations (100), (74), (101) and (102) are
found, the deviator of macrostresses is defined by the formula equation (84) which takes the
form

= — s*n'ndx. (106)
-

Macrostresses &'¥ are deviatoric because of condition equation (102) since

A€

||

= rkk

s*n*n*dx =0. (107)
-
The solution s* depends linearly on the parameters &; Hence, by putting this solution into
equation (106) one obtains macrostresses in terms of creep velocities &, i.e. the relation
equation (98). In more detail, consider two solutions, corresponding to two linear independent
loading cases:

12 .

s'2 =52 corresponds 10 &,, = &5, = 1/2, &,, =0, £,, =0,

s = — s corresponds t0 &, =&, =0, &), = = &5 =1/2. (108)
Then the solution s* is the linear combination
s* =& 5. (109)
Substitution of equation (109) into equation (106) provides the formulas for the
macrocharacteristics e/*

. A -
e = f f (s*yn'n’dx. (110)
T ).

It is obvious that only two constants among e?' are independent.

So far it was shown how to find the deviator of macrostresses if macroscopic constant
incompressible creep rates are given. Let us prove that the secondary creep law is reversible.
Multiplying equation (106) by &,; we obtain after summation over repeated indices and using

equation (103):
A€

"l

rif s
i

a s*gn'n'dx =

[Vs*, Vs*]. (111)

" e P

The left-hand side of the relation equation (111) is zero if and only if all creep rates & i =0,
which means that the matrix of the quadric form &, = e"“’é,-jék, is positive definite, hence the law
equation (98) may be inverted.
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Now we can describe how 1o find creep rates and vacancy concentration for secondary creep.
Let macrostresses &% be given constants. First the deviator of tensor &% should be
calculated v

7% =6%-5%, p=a%n. (112)
Then the creep rates &,; are found satisfying the creep law equations (97)-(99). The vacancy
concentration s° is the sum of the constant p and the solution of the variational problem
equation (101), corresponding to creep rates &5

s%(x) =p + &3s(x). (113)

The last step to define the microcharacteristics of the secondary creep is to determine the

elastic strains and stresses within the cell *. The normal stresses at the cell boundary are
determined from equation (51), since the vacancy concentration s° is found:

Tan(Xx)=As(x),X € 0™ (114)

Formulas equations (58) and (114) define surface tractions at the grain boundary. Thus, the

elastic displacements, elastic strains and stresses inside the cell may be found from the solution

of the elasticity problem equations (44), (47), (48), (58) and (114), if the principal vector and

moment produced by surface tractions are zero, which they are as is shown in Appendix B.

Denote this solution as wX?,e3?,o%. At this point all the characteristics of secondary creep are

determined.

Treorem 2. Under constant applied macrostresses &% the solution of the system P with initial
conditions equations (64) and (65) reveals the following asymptotic behavior:

e (x1) = ) (x), 0 ¥(x,1) = a%(x). (115)

Proor. It is shown in Lemma 2, <appr id="C", that the difference between two arbitrary
solutions of the system P, corresponding to the same loading process &7(r), tends to zero in the
following sense:

sU(x,0) = s¥(x,0) - O,éb([) - ?:,-Zl,-(t) — O,S}}-(’)(X,t) - eﬁ"’(x,z) — O,U‘i’(x,t) - U?‘Ej(x,l) — 0.

: (116)
Let us stress that solutions need not satisfy initial conditions equations (64) and (65) and need
not have the same initial conditions. This means that if some particular solution of the system P
is found, then any other solution tends to it, regardless of the initial conditions. Thus, to find the
asymptotics of the solution of the problem it is sufficient to find some particular solution of the
system P. We shall use upper case index “0” for all quantities related to this solution. This
implies that the functions introduced above with the same index are part of this particular
solution.
Let us first define macrostrains as a constant strain rate process:

ENN) = &L (117)
Second, define the plastic displacement. Since the plastic displacement velocity is expressed in

terms of the vacancy concentration from equations (60) and (49), the only freedom left is to
define the plastic displacements at t=0. We pose

s(x,1) — 5°(x),é,j(r) — &

wl?(x 0)= — wX(x)x e w™. (118)
Then

(4]
wlO(x,1) = = w(x) = UY(x),/? =~ ADY

P Xew xew”. (119)

Third, since the elastic and plastic displacements are defined over the cell, the additional
displacement in the equation (71) ought to be as follows:
Woxxp) = — g = JY(x),xew™. (120)

To conclude the construction of the particular solution, it is necessary Lo check the continuity
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condition equation (72). It obviously holds at =0 and, hence, it is enough to check a second
condition in equation (72) for r>0. It follows from equations (105) and (119) that

(Wil = —&n'n - [J7]=0. (121)
The theorem is proved.
RemaRrk 2. let us normalize the diffusivity tensor:
D"=DD" (122)
where D is some characteristic value of tensor D7 and introduce dimensionless coordinates

Y= (123)

which maps the cell w* onto unit cell Q The functional equation (100) is transformed to

1 - Jsds €? o
Js)= — | DT ——d% - &,n'n’sd”.
©=3 L syay 0 AD L e (124)

Then secondary creep macrocharacteristics can be represented as follows:

€’ . D
D Eju= Ejj =z (125)

ekl = ikl

where dimensionless constants &% and E,,; depend on the constants D7 and the unit cell shape
only. An important consequence is that secondary creep rates do not depend on the elastic
properties and even on the value of the constant A. Elastic properties influence only stress
microfields.

14. NUMERICAL RESULTS FOR SECONDARY CREEP

For definiteness, it was assumed that grains are isotropic, and hence only four physical
constants are needed: Young modulus E, Poison ratio v, the constant A in equation (54),
diffusivity constant D in equation (122) (with D" = §") and the grain size e.

14.1 Secondary creep rates.
In creep, the periodic hexagonal structure behaves isotropically. Thus, the creep law equation
(97) contains just one macrocharacteristic—the viscosity u:

&= pe (126)
The dimensional analysis of the cell problem shows that u depends on the grain size € and
the diffusivity coefficient D only

62
w=a= (127)

where a is some constant. Numerical simulations give the following value of the constant a for
the hexagonal structure

a=026. (128)

Formulas equations (127) and (128) inspire an assumption that a similar relation between
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macro- and micro-characteristics exists for the random structure as well, where € is the averaged
grain size and D is the characteristic diffusion coefficient of monocrystals, while the coefficient a
is of the order of unity.

14.2  Microdeformation.

The distribution of creep velocity over the cell in the regime of secondary creep is shown in
Fig. 8. The orientation of shear stress applied is given at the right top of Fig. 8. It is seen that
there are three pairs of opposite cell sides with different properties. Material departs from one
pair of sides and arrives at the other pair of sides. The remaining two sides consist of two pieces:
material leaves one piece and arrives at the other one.

15. DIMENSIONAL ANALYSIS AND TRANSITION TIME TO SECONDARY CREEP

Let E be some characteristic value of tensor A?*. Similar to equation (122), normalize the

tensor A% using the value E:
ijkt

E

A ifkt

(129)

Let us assume that dimensionless parameters 47 and D" remain unchanged in our analysis.
Then a solution of the system P depends on four constants: E, D, A (see equation (54)) and e-
characteristic grain size.
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Fig. 8. Creep velocity distribution during the secondary creep.
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Our intent is 1o transform the system P to dimensionless form. In addition to dimensionless
space coordinates y' (see equation (122)) introduce intrinsic time 7 and normalized
displacements and flux:

AD d 1 1
'r=t—2;fE—-—):,»'v=—W,W=——W,
€ or € €
ao=Lyogo Lye g L ¢ Juai= g (130)
€ ’ € ' e AD " A

Vacancy concentration and strains need not to be normalized. Then system P is reduced to
the system P:

(o) 1 o}
“=1n — + —L
Ejf ( 3y 3y ) (131)
:/ - EA ukt (e) (132)
9"
7 0 (133)
Fi _ [ as
Ji=- Y (134)
dgs d B as .
or 9y 3y’ (135)
Gpon=S5,y€ I (136)
'n;=0,y e dQ (137)
wiP(y, )= =J(y.")yeQ (138)
W =w+w? (139)
M, oW w®? P .
E;= 172 (—‘?—yl‘ + 3yi>, i =172 ( 3yi + 6},’. g;= 8,(-/-)+ 5[(/4’) (140)
Wiy, ) = & )y + W,-(y,f) (141)
W (y.7)+W,(y.r)=0forye oQ>Wn(y,r) + Wn(y',7)=0 (142)
Gnn(Y,7) = Gy ,7)fory e dQ (143)
s(y,7)=s(y .7)fory e Q (144)
5y = — | &%y, (145)
1 Ja ' '
Initial conditions:
s(y,7)=0,%®(y,7)=0,ye Q,7=0. (146)

We see that the only dimensionless parameter, ¢=E/A, remains in the equations. To get a
feeling what may be the actual value of parameter e, let us consider copper at 1000 K
temperature. It is known that equilibrium value of vacancy concentration varies in broad range
is Co~1078-107". Then it follows from equation (46) that e ~0.01-100.

Let us study numerically how the solution depends on parameter e. For simplicity
computations were done for the problem of compression of a single crystal by absolutely rigid
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o0
&

Fig. 9.

frictionless pistons (sce [4]). Region Q is a square, the characteristic size is the distance from its
center to the edges (see Fig. 10). Vertical crystal edges are free. For simplicity let us assume that
the crystal is isotropic. Under this assumption the compression of the crystal will not result in
piston rotation and from symmetry considerations we may assume that the displacement of the
cell center is zero. Let £(7) be the vertical displacement of the upper piston, which is the
unknown function and which is analogous to the macrostrain in system P. The normal average
stress & at the contact between the pistons and the crystal surfaces serve as an analog to the
macrostresses. The piston is loaded by a constant force, such that the average stress is equal to
-1

= 1 ! - 1 1 1 ! - 1 1

o= g.(y'\1,7)dy’ = 0 g,(y,—~1,7)dy’' = - 1. (147)

-1 -1

The system of equations of the problem of compression of a single crystal is the set equations
(131)-(139) and (147), initial conditions equation (146) plus boundary conditions:

Gan( £ 1yL7)=0,-1=y*<1 (148)
way', £ 1,7)=2&(7), ~1=sy's1L (149)

The Theorems 1 and 2 can be proven for this problem as well.
The steady-state solution for secondary creep can be obtained in closed form and the value of

the steady-state creep rate is é = 1.7. Hence, the analog of the formulas equations (126) and
(127) in this case is

2
& =05882—. (150)

One may notice that the numerical coefficients in equations (126) and (128) and in equation
(150) are of the same order of magnitude.
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Let us discuss numerical results for the transient solution. Parameter ¢ values were chosen to
be 0.1, 1, 10, which is in the middle of the expected range.

1.

As was expected, for small values of dimensionless time 7 creep rates fit very well the
asymptotic ~ 7~ ' (See Fig. 11-13).

When 7 is large, a steady-state creep rate of 1.7 is achieved (see Table 1). A practically
steady-state is reached at 7 ~1 (see Table 1).

Parameter e somewhat affects the transition time necessary to reach the steady-state
creep rate. The smaller the e the larger the transition time. However, the modeling
results do not allow us to conclude what kind of dependency is it. As one can see from
Table 1, the transition time for e=0.1 is much larger, than for e=1, but there is no
noticeable difference between cases with e=1 and 10.

. At the first moment of load application, the only non-zero stress component is & and

it is equal to —1 over Q With creep developed, stresses tend to limit, which do not
depend on the parameter e, which is as it should be because of Theorem 2. Figure 14
shows the stress distribution at the piston—crystal contact for e=10, r=0.5. Stars mark

-1.60

-1.721

80 1 L . 1 1 )| d 1 1 J
0.10 0.19 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91 1.00
T

Fig. 12.

el




V. BERDICHEVSKY et al

4.8F

-5.2¢

'S 6 L i 1 1 1 i 1 I bl
Y0 0.5 1.0 1.5 20 25 3.0 3.5 40 45
t(x107")

Fig. 13.

asymptotical the steady-state stress distribution. The transition time to steady-state
stresses is of the same magnitude, as the transition time needed for the creep rate to
become constant.

Table 1. Stabilization of the creep rate for various values of parameter ¢

e 0.1 1 10

r 25 08 0.65 0.3 0.5 0.25
1.74 2 172 2 1.73 2
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16. CONCLUSIONS.

Three interesting results of this study seem worth noting. First, the constitutive
macroequations of diffusional creep turn out to be nonlocal. It is not obvious how to eliminate
the nonlocality by introducing additional internal variables. Probably, the elimination of the
nonlocality on the macroscale is impossible in principle. Since this seems 10 be the case, a search
for adequate local constitutive equations for creep is doomed to failure. Second, there is an
intrinsic material time 7 =tDA/e’. Strain-time dependence (for constant stresses) is universal for
intrinsic time in the sense that it does not depend on the material and on the temperature (the
temperature dependence comes from the material constants D and A). Third, as the variational
principle shows, creep rates do not depend on the elastic properties in secondary creep: only
diffusion constants, the grain size and the grain geometry are important. Formula equation (87)
is an example of such a dependency.
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APPENDIX

A. THE EFFECT OF GRAIN BOUNDARY STRESS RELAXATION ON APPARENT
ELASTIC MODULUS

The assumption equation (58) that shear stresses at the grain boundaries can be neglected in creep problem is
believed 10 be correct by many authors It would be interesting to find an experimental evidence thai such an effect is
real. It may not be an easy task, because the numerical modeling revealed surprisingly low influence of grain shear
stress relaxation on apparent elastic modulus. In more detail, the averaged elastic properties were computed for the
periodic structure described in Section 6. Boundary conditions equation (58), (72) and (73) were applied and averaged
elastic moduli were calculated from the solution of the periodic elasticity problem. For definiteness it was assumed that
grains are isotropic and. hence, only two elastic constants need 10 be calculated. In addition, it is obvious that if the
hydrostatic pressure tensor is applied to the plane, the structure does not “feel™ the cuts made and, hence, the bulk
moduius of the polycrystal is the same as the bulk modulus of the grain itself:

E*  E
20 -v) 21 -v)

(A1)

where E, v and E*, v* are Young's modulus and Poisson's ratio of the grain and the polycrystal correspondingly.
Because of that the ratios £*/E£ and G*/G depend only on Poisson’s ratio. Results are listed in Table 2 and as one can
conclude the Young and shear moduli drop no more than 20% as a result of shear stress relaxation.

B. PROPERTIES OF PERIODIC STRESS FIELDS, SATISFYING THE
EQUILIBRIUM CONDITIONS

Let us prove formulas equations (83) and (85), which hold for an arbitrary stress field satisfying equilibdum equation
(48) and boundary conditions equations (73) and (58). Multiplying equation (48) by x* and integrating over cell w™ we

Table 2. Apparent elastic moduli of polycrystal with fully relaxed shear grain boundary stresses

v 0.3 0.34 0.45
E*E 0.830 0.829 0.828
G*G 0.806 0.811 0.823

v* 0.339 0.370 0.459
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get
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-3 Lam(x;)n‘(x)z*(x)dp - % L_a,,,n"l*dx= %J;.a,,,n"n"dx (B1)

r=1

Formula equation (83) follows from equation (B.1) and definition equation (75). In order to prove equation (85) let
us note that spherical tensor o¥=C5" may be substituted in equation (83), which is reduced in this case 10 equation
(85). Let s be an arbitrary function, satisfying periodicity condition equation (74). Let us define surface tractions on the
cell boundary éw™ by formulas equations (58) and (54). Then the principal vector F and principal moment M applied to
the grain from these tractions, are zeros.

F=L.- o (x)n(x)dx=0 (B.2)

M= L_am(x)n®xdx= s (J’Sam(x)(n(x)@)n n(x’)\®x‘)dx)

r=]

3

=3 (Lo',.,.(x)n(x')(@(x—x')dx) =~ i (Lom(x)n(x)(al(x)dx) =0 (83)

r=1 rel

The last term in equation (B.3) is zero because of equation (67).

C. ASYMPTOTIC BEHAVIOR OF THE SOLUTION AT LARGE TIME.

Lemma 1. For every solution of the system P the following identity holds:

d[ -l - ga
= + A[Vs.Vs] = |w™|6"%, (C.1)

Proor. It follows from equations (50) and (54) that

d/ as .
Q= =t A[Fs5,Vs] = A[Vs5,Vs] + f As—(—;d& + IAa"“eﬁ,"éﬁ?dzx
a . 05
=A[V:.Vs]+f A—| D¥——)d%+ j oMeddix
. ax' ax’ w*

w

. a
=A[V:.V5]—A[V5.Vs]+j _aMAD'/;}n,dﬁf oHed? =f or,,,,\'v,,")dx+f oMed  (C2)

O -’ o -

With equations (62) and (71) the elastic strains are expressed in terms of averaged strains, plastic strains and strains
€,;(W) generated by field W:

1
€9 =2+ e(W) — el e(w) = "‘(

3 &= &yt (W) - D, (C3)

aw, + aw;
ax! ax'

Substitution of equation (C.3) into equation (C.2) yields

Q= J' o wPdx + J' o+ e, (W) - eP)dx
™ -’

oo wiagse o 1 . ;
= f WP dx + j oédx+ f Oun W, = w)dx = |w™|57 ¢, + 7 f o Wldx=lu"[c7¢,.  (C4)
o w’ o O™

Boundary conditions equations (73) and (72) were used in the derivation equation (C.4). Lemma 1 is proved.



%——iim a

Micromechanics of fiffusional creep 29

Lemma 2. Let us assume that for 1 2 (% macrostresses are equal 10 zero:

i) =012 1= (CS)
Then for an arbitrary solution of the system P the following estimations hoid:
I(1) = e7PU=9f(t*)a = r*.8 = const >0 (C6)

and the following components of the solution tend to zero:
s—0, eff)-’ 0,00, 2,—0,1—0. (€7
Proor. For t = (* the identity equation (C.1) is reduced to the following:

ar
% +A[Vs,Vs]=0. (C8)
It follows from equations (C.S) and (84) that
I sn*n*dx= f sdx=0,12 %, (C9)
Lo Lo
Then the following inequalities hold [28):
f As’dix = C,[Vs,Vs] (C.10)
f A%idx = Cy[Vs, Vsl (C.11)
-

Adding, if necessary, to the solution some field VeR we may modify the elastic solution so that at each moment ¢
averaged over the cell w™ elastic displacements and rotation are zero:

j WOdix =0 (C12)
L(% - ‘9‘:’:’ )dzx =0, (C.13)
Then [29)
f (W) = €. e).C. = const. (C14)
Let us prove that
[€9.6) = C[Vs.Vs). (C.15)

With equations (48), (58) and (54) taken into account, the left-hand side of equation (C.15) is reduced to

[e“"e("]=‘[ a'"ef,"dzx=f a"n,wf"dx':J T Od x
-’ s ™ o

= f _Asn}wf,‘)dx = \/J’ _Azszdx \/j '(wf,")’s CeV [st'j,e(‘j] V{Vs,Vs) (C.16)

The inequalities in equatiyon (C.16) follow from equations (C.14) and (C.11). Estimation equation (C.15) follows from
equation (C.16). )
Combining equations (C.15) and (C.10) we obtain

A(Vs,Vs] = BI(1), B= const. (C.17)
It follows from equations (C.8) and (C.17) that
di() ’ dl(r)
0= T +A[Vs,Vs] = BT + BI() (C.18)
which results in the basic relation
) < e84y D I(1) = 0,1 > =, (C.19)

The first three statements in equation (C.7) follow immediately from equation (C.18). Since elastic strains and vacancy
concentration tend to zero, the same is true for elastic and plastic strain rates, if the solution of the system P is
sufficiently smooth. Hence

By=i,+ ey (W)= &l + &P > 1o, - (c20)

Using Levi-Civita formulas, we obtain the following equalities:
W= - &,x'+ Aeyx’ +a,+ T(8,).4,a,= const, T(A,) — 0. (C21)
The second and third terms in equation (C.21) represent the ngid body displacement, the last term stands for Levi-
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Civita integrals Substitution of equation (C.21) into continuity condition equation (72) is made similarly to evaluation
equation (78) and yields

(N (x)+T(A).T(A,) = 0,1 > =, (C22)

Since the normal vector is constant over S5, r=123, the relation equation (C.22) provides three different conditions,
which may be considered as a system of lincag equations with respect to three components &,. The determinant of this
system is not zero, and then it follows from equation (C.22) that £ — 0 -+ . Lemma 2 is proved.
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