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Objectives: 
The study was conducted in the following areas: 

A. Truncation 
B. Statistical  properties  of high-energy  vibrations 
C. Dynamical potential 
D. Diffusional creep at high temperatures 

Objectives of topic A :    to develop methods of truncation of 
continuum  equations  in  structural  dynamics  which 
capture  the  major features  of vibrations 

Objectives of topic B :    to study the properties of the energy 
threshold   in   high-energy   vibrations 

Objectives of topic C :    to study dynamical potential of vibrating 
systems   theoretically   and   experimentally 

Objectives of topic D :    to develop theory of diffusional creep at 
high    temperatures 

Accomplishments: 
Topic A : Study of dynamics of elastic structures is usually based on 
modeling the structure by a finite-dimensional system with a few 
degrees of freedom. In this connection it is important to understand 
(1) in which way these degrees of freedom should be chosen, (2) how 
many degrees of freedom should be kept, and (3) how do the 
neglected degrees of freedom affect the kept ones. These issues have 
been addressed in the research. It turns out that the answers to the 
posed questions depend significantly on the level of excitation: there 
is an energy threshold such that if energy exceeds this threshold the 
laws of statistical mechanics become valid and none of the degrees of 
freedom can be neglected. We study the case of moderate energy of 
excitation which is lower than the energy threshold but is still high 
enough to activate nonlinear interactions. For the case of string 
vibrations, a simple methods has been developed which allows one to 
capture the leading degrees of freedom and take into account the 
influence of neglected modes on the leading ones. The reasoning is 
quite general, and the answers are given in the form which admits 
application  to  many  elastic  structures. 
Topic B : It was known for about 25 years that there exists an 
energy threshold for vibrations of elastic structures such that, for 
energy vibrations exceeding the energy threshold, vibrations are 
practically   chaotic.    We established   also  that   the   laws   of statistical 



mechanics are valid for vibrations with such high energy. In the 
previous studies, the value of energy threshold was found to be 
relatively small. We found that this is caused by the specifics of the 
models used, and small "physical disturbances" of the models (we 
add wave dispersion) yields much higher values of the energy 
threshold. 
Topic C: If parameters of excitation applied to an elastic structure 
are tuned, the system undergoes the changes which in many cases 
are reminiscent of phase transitions in classical thermodynamics. 
The question arises: is there an analogy of thermodynamical energy 
for structural vibrations? The positive answer for systems with 
small dissipation has been given by the PI (1993). The properties of 
the corresponding "thermodynamical function", dynamical potential, 
have been studies theoretically and experimentally in this project. 
The very fact that the dynamical potential exists seems as important 
as the existence of energy for elastic bodies. It has immediate 
applications: usually, one is interested in establishing the relations 
between excitations and responses of vibrating systems; the 
existence of dynamical potential reduced the number of 
experimentally determined functions to one. The theory of 
dynamical potential is applicable only to devices with high efficiency 
(small dissipation). An experimental setup has been developed to 
determine the dynamical potential of a nonlinear oscillator. The 
experiments confirmed the theoretical predictions. 
Topic D : One of the promising directions in material sciences is the 
development of materials with grain size on the order of nanometers. 
In such materials, the major mechanism of plastic deformation is the 
vacancy diffusion. This mechanism is also a leading one for usual 
polycrystals at high temperatures and low stresses. Diffusional 
plasticity theory differs significantly from dislocational plasticity 
theory because vacancy diffusion is a scalar phenomenon. 
Development of the theory of diffusional plasticity has been 
conducted in collaboration with Dr. R. Bagley (UTSA) and Dr. P. 
Hazzledine (Wright-Patterson Lab). Nonlinear theory of diffusional 
plasticity has been proposed. A linear version of this theory has 
been applied to the prediction of macroscopic and microscopic 
behavior of polycrystal bodies with periodic microstructure. 
Constitutive equations have been obtained in an explicit form. The 
cell problem for microfields was formulated for secondary creep, and 
the  corresponding   variational  principle  was   established.     Dependence 



of macroparameters on microcharacteristics has been found. It was 
shown that primary creep is governed by nonlocal equations. 
Numerical simulations were conducted for honeycomb structures. 
Byproducts : An understanding of statistical mechanics of continua 
achieved helped to develop statistical mechanics of point vortices (V. 
Berdichevsky, Statistical Mechanics of Point Vortices, Physical 
Review E, v.51, pp. 4432-4452, 1995) and obtain for the first time 
the velocity profiles of turbulent flows without the use of 
phenomenological constants (V. Berdichevsky, A. Fridlyand, V. 
Sutyrin, Prediction of Turbulent Velocity Profiles in Couette and 
Poiseuille Flows from First Principles, Physical Review Letters, v.76, 
no.  21, pp.  3967-3970,   1996). 

Personnel     Supported: 
PI:  Prof.  V.  Berdichevsky (1  summer month) 
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3. Berdichevsky, V., Possible Scenarios of Nonlinear Vibrations of 
High Energies, Proc. ASME Conference of Acoustics and Vibrations, v. 
3B, 877-879, ASME, NY, 1995 
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A review of topics A and B is given in Chapters 3 and 4 of the 
monograph   [1]   (Attachment   1). 

The original results on these topics are presented in papers [7] 
(Attachment  2)  and  [3]  (Attachment 3). 

Papers [2] (Attachment 4) and [6] (Attachment 5) are 
concerned with theoretical and computational aspects of the theory 
of dynamical potential while the experimental results are presented 
in paper [8] (Attachment 6). Theory of diffusional creep is studied in 
[4]  (Attachment 7) and [5]  (Attachment 8). 

Interactions: 
a.    Meetings. 
V. Berdichevsky, P. Hazzledine, B. Shoykhet, Micromechanics of 
Diffusional Creep, ASME Mechanics and Materials Conference, UCLA, 
June   1995 

V. Berdichevsky, Possible Scenarios of Nonlinear Vibrations at High 
Energies, ASME Conference on Acoustics and Vibrations, Boston, 
September    1995 

V. Berdichevsky, B. Shoykhet, Homogenization Problem for Bulk 
Diffusional Creep, Conference on Continuum Models and Discrete 
Systems,  Varna,  June   1995 

V. Berdichevsky, Diffusional Creep, Seminar Presentation at 
Mechanics Lab at the University of Paris, France, June  1995 

Workshop on Mathematical Methods in Material Sciences, University 
of  Minnesota,   September   1995   (participation) 

Annual Meeting of Division of Fluid Dynamics, American Physical 
Society,  CA,  November   1995  (participation) 

Workshop on Ultra-High Reynolds Number Flows, Brookhaven 
National  Lab,  June   1996  (participation) 

V. Berdichevsky, Research in Structural Dynamics, AFOSR Structural 
Mechanics Workshop,  VA, June  1996 



Statistical  Mechanics  Conference,  Rutgers  University,   December   1996 
(participation) 

Statistical    Mechanics    Conference,    Rutgers    University,    May    1997 
(participation) 

V. Berdichevsky, On statistical mechanics of ideal fluid, Workshop   on 
Arnold's stability and Arnold's Festival, Toronto, June  1997 

b.    Collaboration. 
The study of topic D was conducted in close collaboration with R 
Bagley and P. Hazzledine from Wright-Patterson Lab and Dr. B. 
Shoykhet (Reliance Electric). 

New    Discoveries: 
Two findings seem possible to qualify as discoveries: 

1. A method of truncation of continuum equations which takes 
into account the influence of the neglected modes. 

2. A method of fast calculations of mode interactions based on 
the identity found in [1]. 

List   of   Atta chments: 
1. Chapters 3 and 4 of the monograph [1] 
2. Paper [7] 
3. Paper [3] 
4. Paper [2] 
5. Paper [6] ' 
6. Paper [8] 
7. Paper [4] 
8. Paper [5] 
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Chapter 3 

Free Vibrations of a System of 
Oscillators 

Usually, mechanical and physical low-dimensional Hamiltonian systems are not er- 
godic. Nevertheless, they can be approximately ergodic if the parameters are in a 
certain range. In this chapter, systems of nonlinear oscillators are considered. They 
demonstrate ergodic properties if energy exceeds some threshold value. This behavior 
is, perhaps, generic for all elastic vibrational systems. 

3.1    Henon-Heiles oscillators 

The Henon-Heiles oscillators. One of the first examples of chaotic motion of a low- 
dimensional system was discovered by M. Henön and C. Heiles in 1964 [90]. They 
considered a system of two oscillators. The first oscillator is simply a harmonic 
oscillator with the Hamilton function 

Hi = (Pl
2 + gi

2)/2 

The second oscillator is a nonlinear oscillator with the following properties: it has a 
stable equilibrium point at q2 = 0, the frequency of linear vibrations in the vicinity of 
this equilibrium point is equal to the frequency of the first oscillator, and if q2 exceeds 
some value, the oscillator tends to escape the origin. The potential energy U2(q2) is 
chosen as 

Of course, this is an approximation of a situation where the second oscillator has two 
stable equilibrium positions and one studies vibrations in the vicinity of one of them. 

The oscillators interact. The interaction energy is asymmetric and is 

#12 = 9i2?2, 

so the total Hamilton function is 

H = -(pl+pl) + U{qi,q2), 

U(qi,q2) = 2?i + ^(92) + <?2<?2 (3-1) 

The dynamical equations are 

Qi=Pu     <?2=P2,    Pi = -(<?i + 2gi<?2),    P2 = -(g2 -?2 +?i) (3-2) 
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Fig. 3.1: Contour plot of the potential energy of the Henön-Heiles oscillators 

This system has one stable equilibrium point at the origin, gi = q2 = 0, and three 
unstable equilibrium points: Pfa = 0, q2 = 1), P2(V3/2,-1/2), P3(-v/3/2, -1/2). 
They are shown in the contour plot of potential energy U{quq2) (Fig. 3.1). The 
separatrics connecting the unstable points are straight lines. These separatrics corre- 
spond to an energy level U = 1/6. All contour lines with energy levels less than 1/6 
are inside the triangle PiP2P3. 

Poincare sections. The dynamics of oscillators can be described in a very informa- 
tive way by means of Poincare sections. Consider a trajectory p\{t), qi(t),p2(t), q2(t) 
of equations (3.2). Since energy is the integral of motion, the trajectory is, in fact, 
given by three functions, and the fourth one is determined by the energy equation 

H{pi,qi,p2,q2) = E = const (3.3) 

a 

Fig. 3.2: Image on a Poincare section of a periodic trajectory (a) and invariant torus 
(b) 
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Fig. 3.3: Chaotic trajectory and its image on a Poincare section 

For definiteness, let the energy equation be used to find p\(t). Then, the trajectory 
of the system is a curve in three-dimensional space of the variables ft, p2 and ft. 
Consider cross-sections of the trajectory with the plane ft = 0. This is a set of points 
which is called a Poincare section. If the trajectory is periodic, the Poincare section 
consists of a finite number of points. 

Two points on a Poincare section correspond to the trajectory shown in Fig. 3.2a. 
If the trajectory lies on a torus in (ft,p2,ft)-space, then the successive cross-sections 
of the trajectory and the plane ft = 0 belong to the curves 71 and 72, shown in 
Fig. 3.2b. In a typical situation, a torus is a member of family of embedded tori, and 
one sees two families of embedded curves in the Poincare section. If the successive 
cross-sections of the trajectory and the plane do not form a certain pattern, the 
trajectory is thought to be chaotic (Fig. 3.3). 

Qualitative -picture of vibration. The behavior of Henön-Heiles oscillators depends 
on the energy level of the initial disturbance. If the energy is small enough, the 
interaction is not'profound and the oscillators vibrate independently. In (ft,P2>ft)- 
space there is a family of embedded tori. Cross-sections of these tori with the plane 
ft = 0 are shown in Fig. 3.3a for E = 10~3. The cross-sections are obtained by 
numerical integration of dynamical equations for various initial data. For E = 10-2, 
a new family of tori appears, as is seen from Fig. 3.4b. For E = 0.125 one observes a 
chaotic sea with islands of ordered motion (Fig. 3.4c). The islands are images of tori 
similar to the one shown in Fig. 3.2b. Although the "chaotic component" of motion 
is well presented, the the motion is far from being ergodic: the chaotic trajectory 
does not cover the whole energy surface. Note that the scales are chosen different in 
Fig. 3.4a,b,c because the maximum magnitudes of vibrations are different for various 
values of energy; they are on the order of vE. 

The chaotic sea expands if the-energy is increased. For E = 1/6, the chaotic 
sea occupies almost the whole energy surface (Fig. 3.4d) except for four thin islands. 
There might also be some small islands which are not visible at this resolution. Since 
the total volume of the islands of ordered motion is small, one can expect that the 
motion of the Henön-Heiles oscillators is approximately ergodic, and all the relations 
of statistical mechanics and thermodynamics apply.   In this section the results of 
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Fig. 3.4: Poincare sections of Henon-Heiles oscillators for the values of energy E 
10"3 (a), E = 10-2 (b), E = 0.125 (c), E = 1/6 (d) 

numerical experiments which show that this is really the case are presented and 
discussed. 

Phase volume. The key quantity in the "thermodynamics" of Henön-Heiles 
oscillators is the volume of phase space, T(E), bounded by the energy surface 
H{jPi,p2,q\,q2) = E. This volume can be expressed in terms of the area, A(e), 
of the region in the (g^^-plane, bounded by the curve U(qi,q2) = e. Indeed, one 
can write 

r(E) - L 

■III 

P2,q\m)<E 
dpidp2dqidq2 = 

dpidp2 
Jpl+Pl/2<E-U{qliq2) 

= 2ir J[E-U{q1,q2)}dq1dq 

dqidq2 = 
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0.05 0.10 0.15 

Fig.   3.5:   Dependence of area, A(e), bounded by the contours in Fig. 3.1, on the 
energy level 

This last integral is taken over the region where the integrand is positive. It can also 
be written as 

T{E) = 2TT I   (E- e)dA(e) 
Jo 

Integrating by parts, we obtain 

Hence, 

T(E) = 2TT [   A(e)de 
Jo 

§ = 2,A(E) 

(3-4) 

(3.5) 

From (1.61) and (1.50), we obtain the following expressions for entropy and temper- 
ature of the Henön-Heiles oscillators 

S(E) = In /   A(e)de + const. 
JO 

A(E) 

The area A(e) can be calculated using the expression 

A{e) = I dxdy = 2       f 
h2+U2(x)+y2x<e e-U2{x)>0    L 

2[e-U2(x)) 
l + 2z 

1/2 

dx 

(3.6) 

(3.7) 

The integral in (3.7) could be reduced to a standard elliptic integral. However, nu- 
merical integration is just as efficient. The dependence of A on e is shown in Fig. 3.5. 

Probability density function. Besides temperature, we shall study probability den- 
sity functions of the coordinates and momentum of each oscillator and denote them 
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by fi{p,q) and Mp,q), respectively. Consider first the probability density function 
of the second oscillator, f2ip,q). This probability density function is equal to zero 
outside the region of possible values of p2, q2, i.e. the set of all points in the (p2l 92)- 
plane which could be visited by trajectories of the system. Denote this region by R2. 
If the oscillators move ergodically, R2 is a set of such points (p2, ^2) that for some 
values of (pi.ft), the equality H(pl,p2,ql,q2) = E is satisfied. In order to describe 
R2 explicitly, it is convenient to introduce the function 

h2ip2,q2) = mmH{pl,p2,qi,q2) (3.8) 

The region R2 is determined by the inequality 

A2(P2,92) < E (3.9) 

The value of the function h2(p2,q2) is obviously equal to the energy of the second 
oscillator, 

h2iP2,q2) = 1MP22 + U2(q2), 

and the region of admissible values of p2, q2 coincides with the interior of the energy 
surface of the second oscillator in its free vibrations. 

Following the general scheme, in order to find f2 one has to calculate the entropy 
of the system with the kinematic constraints p2 = p, q2 = q. Trajectories p\(t) and 
q\ it) of the constrained system lie on the curve 

%iPi2 + q2) + q2q = E- V^2 - U2(q) (3.10) 

Curve (3.10) is an ellipse with half-axes 

a =  <l2\E-±p*-U2(q) and   b E-\P>-UM 
VTT^? 

The area bounded by this ellipse is 

1 
E-^-p2-U2iq) ?2iE,p,q) = 2TT 

Hence, the entropy of the constrained system is 

A/1+ 2? 

S2iE,q2,p2) = In E ~ \P}-U2iq2) + const (3.11) 
Vl + 2g2 

From the generalized Einstein relation (2.3) and the expression for entropy (3.11) 
and phase volume (3.5), we find the probability density function of the coordinates 
and momentum of the second oscillator: 

ME,P,t)   -   gjgs^S«™   =   J^^ (3.12) 

Note a remarkable peculiarity of this function: it does not depend on momentum. 
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Fig. 3.6: Convergence of the temperature of the oscillators to a common value for a 
trajectory in a chaotic sea 

Similarly, one can find the probability density function of the first oscillator. The 
domain of this function is 

hi{Pi,Qi) <E, 

where 

1 2  1 1 
hi(pi,qi)  = mmH(p1,p2,qi,q2)  =  ^p\ + q\ - g(- + q\)Z/2 + — (3.13) 

The trajectories of the constrained system with the prescribed values of pi = p and 
qi = q lie on a curve in the (p2, g2)-plane: 

2P' + 2& ~ 3q* + g2q2 = E~2{j>2 + q2) 

It bounds the region with area 

?i{E,P,q)  = 2jP2dq2 

2?2 + 3?2 - 1 12 
1/2 

d<72 (3.14) -2^/  [[E--tf + f) 
where a and b are the two smallest zeros of the integrand.   Thus, 

h^q) = ^Ä[E)jE 

Since the integrand is zero at the bounds, the differentiation with respect to the 
energy can be interchanged with integration. Hence, 
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Fig. 3.7: a) Temperature distribution along the line p2 = 0 for energy level E = 1/6. 
Islands of ordered motion are "hotter" than the chaotic sea b) Dependence of the 
temperature of chaotic trajectories on energy; the solid line corresponds to ergodic 
theory (formula (3.6)), crosses show numerical results 

This integral can be found for each p, q by numerical integration. Now we proceed to 
the comparison of these relations with numerical results. 

Temperature. The first important question is: how strongly do the islands of 
ordered motion affect the equipartition law? It is natural to calculate the "tempera- 
tures" of the oscillators, 

r>-!jf»?*' T*-\C&* (3.16) 

for various energy levels and various starting points. Figure 3.6 shows the dependence 
of T\ and T2 on the averaging time 6 for a chaotic trajectory at the maximum energy 
level, E = 1/6. It can be seen clearly that Ti and T2 converge to a common value 
T = (Ti + T2)/2 3S 0.07433. The error \Ti-T2\/T is less than 0.1%. A number 
of calculations performed for chaotic trajectories on this energy level yield the same 
result. This supports the validity of the equipartition law for the highest energy level. 

Temperatures of trajectories of ordered motion show the same behavior; however 
the rate of convergence is much faster. One might assume that it occurs because of 
the smaller dimensionality of a torus compared with that of an energy surface. 

On the islands crossing the g2-axis, the temperatures T\ and T2 converge quite 
quickly towards T = 0.0819. On the left islands, the temperatures Ti and T2 clearly 
stabilize but they apparently do not converge towards the same value. However, the 
difference between Tx and T2 is rather small (AT = 0.0007 or about 1% of the average 
temperature). 

Figure 3.7a shows a profile of the mean temperature T along the q2 axis (p2 = 0) 
for the maximum energy, E = 1/6. It can be seen that the temperature on the islands 
of ordered motion is slightly higher than the temperature of the chaotic sea. 
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Fig. 3.8: Probability density functions of the second oscillator: a) numerical calcula- 
tion; b) ergodic theory, formula (3.12) 

Similar numerical experiments for lower energy levels show the same type of be- 
havior as observed for the maximum energy. Figure 3.7b shows the mean temperature 
T of chaotic trajectories as well as the ergodic temperature T, calculated according 
to (3.6), versus energy E. 

A surprising result of numerical simulations is that the equipartition law is approx- 
imately valid even for moderate and low energy levels for both chaotic and ordered 
trajectories, although in these cases the fraction of the phase space that is occupied by 
islands of ordered motion is quite large and the assumption of ergodicity is strongly 
violated. It is natural to assume that this is caused by coincidence of the linear fre- 
quencies of the two oscillators and the special form of the energy of interaction which 
results in resonance. In order to eliminate resonance effects, a modification of the 
Henön-Heiles system, 

H 2?i + 2ap2 + 2^i + Ü2^ + q*q2 

was tested for different values of the distortion parameters a (such as a = 1.5 or 
a = 2.5). It turns out that for chaotic trajectories the equipartition law is valid 
with approximately the same accuracy as for Henön-Heiles oscillators if the size of 
the region of ordered motion is small compared to the size of the region of chaotic 
motion. The temperatures of trajectories on islands of ordered motion can differ 
essentially, no matter how big these islands are. That justifies the assumption that 
the validity of the equipartition law in the case of moderate energy vibrations of the 
Henön-Heiles oscillators is due to their resonant frequencies. 
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Fig. 3.9: Two-dimensional slices of the probability density function of the second 
oscillator for maximum energy, E = 1/6, a) along the line p2 = 0, b) along the line 
q2 = -0.3. Solid and dashed lines correspond to numerical simulation and ergodic 
theory, respectively. 

Numerical simulations of probability density functions.  A numerical probability 
density function was obtained by a simple bin-counting experiment, during which the 
trajectory of the system is calculated for a very long time interval. The probability 
of the event that the trajectory of the system is within a region A of its phase space 
is determined by the number of times the trajectory was observed to be within A 
divided by the total number of observations. Figure 3.8b shows the probability density 
function f2 according to (3.12) for E = 1/6, while Fig. 3.8a depicts its numerically 
obtained counterpart. In order to compare the "ergodic prediction" (formula (3.12)) 
and numerical results, two-dimensional slices of the probability density functions for 
specific q or p are shown in Figs. 3.9a,   3.9b,   3.10a and  3.10b.    Figure 3.9a shows 
the ergodic and numerical probability density functions of positions of the second 
oscillator at p2 = 0 for the maximum energy level.   The values of the real curve 
are captured very nicely by the ergodic theory; maximal error is below 3%.   The 
small fluctuation should presumably level out for longer calculation times. However, 
there are some dents, like the one between q2 = 0 and q2 = 0.2 that are caused by 
islands of ordered motion (compare to Fig. 3.4d).   Fig. 3.9b shows the probability 
density function of the momentum of the second oscillator for q2 = -0.3. According 
to ergodic theory, the probability density function f2 of the momentum is constant 
(see Fig. 3.8). The real probability density function obeys this property well at all 
points except at the two dents. Apparently, they are caused by two islands of ordered 
motion which are crossed by the line q2 = -0.3 on Fig. 3.4d. Similar results for the 
probability density function of the first oscillator are shown in Figs. 3.10a and 3.10b. 

For lower energies, these deviations from ergodic theory are larger. The probability 
density functions are shown in Figs. 3.11a and 3.11b for moderate energy, E = 1/8. 

It is interesting that with respect to the real one, the ergodic curve is located 
in such a way as to provide similar momentum characteristics. In particular, the 
differences in the calculation of temperature do not exceed 3%. 
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Fig. 3.10: Two-dimensional slices of the probability density function of the first 
oscillator for maximum energy level, E = 1/6: a) along the line pi — 0, b) along 
the line q\ = —0.5. The solid line corresponds to numerical simulations, crosses to 
ergodic theory 
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Fig. 3.11: Probability density function of the second oscillator for moderate energy, 
E = 0.125: a) slice along the line p2 = 0, b) slice along the line q2 = —0.5. The 
solid line represents numerical simulations, the dashed line and crosses correspond to 
ergodic theory 
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3.2    Fermi-Pasta-Ulam problem 

A few decades ago it was a common belief that systems with many degrees of free- 
dom move chaotically. There was much indirect evidence, like Brownian motion of 
small heavy particles in fluids, but direct experiments were difficult. This is why, 
when a new powerful computer appeared at Los Alamos Lab in 1952 and challeng- 
ing problems were solicited from physicists to show the abilities of the new machine, 
Fermi, Pasta and Ulam suggested studying numerically the dynamics of a multidi- 
mensional nonlinear system, and checking the validity of the equipartition law. The 
mechanical system chosen was a chain of mass particles connected by nonlinear springs 
(Fig. 3.12a). Computer simulations were run for 64 particles with two end particles 
clamped. It was expected that the system would evolve to equilibrium, and that the 
particle temperatures, T{ = (qf/m) (ft is the coordinate of the ith particle), would 
become equal. Surprisingly, this was not observed. On the contrary, the system 
showed an ordered recurrent motion. This "paradox" is usually referred to as the 
FPU (Fermi-Pasta-Ulam) problem. 

An understanding of the FPU problem was achieved by KAM (Kolmogorov- 
Arnold-Moser) theory. KAM theory studies the dynamics of slightly disturbed in- 
tegrate Hamiltonian systems. Integrable systems are systems which can be trans- 
formed to a system of noninteracting oscillators by some change of generalized coor- 
dinates. That determines the geometrical structure of the phase flow for integrable 
systems. In the case of one oscillator, the trajectories are some closed curves in phase 
space. For a system of two oscillators, each trajectory 7X of the first oscillator and 
each trajectory 72 of the second oscillator form a curve on a two-dimensional torus in 
four-dimensional {pu gi,p2,92)-phase space. Choosing various initial data for jx, 72, 
one gets different curves on the torus. There is only one trajectory passing through 
a given point of the torus. The torus is determined by the curves 7! and 72, i.e. by 
two parameters, say, the initial values of the energies of each oscillator. Thus, there 
is a two-parameter family of tori. The tori are called invariant tori because each tra- 
jectory starting on some torus stays on this torus forever. The two-parameter family 
of two-dimensional invariant tori covers the whole four-dimensional phase space. 

For a system of n oscillators, the invariant tori are n-dimensional. Each torus 
is determined by n parameters, the initial values of the energies of each oscillator. 
The n-parameter family of n-dimensional invariant tori covers 2n-dimensional phase 
space. 

KAM theory studies Hamiltonian systems with the Hamilton function 

H = H0(p,q)+eH1{p,q) (3.17) 

where H0(p, q) is the Hamilton function of an integrable system, EHX is a disturbing 
Hamilton function, and e is small. Can the Hamiltonian system (3.17) be ergodic? 
KAM theory gives a negative answer. It turns out that the majority of invariant tori 
survive a small disturbance, they are just slightly deformed. Some of the invariant 
tori are destroyed by the disturbance and transformed into a chaotic sea. The volume 
of the chaotic sea (and destroyed tori) tends to zero for e —> 0. The disturbed system 
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For definiteness, we focus on the chains with two fixed ends, 

go = 0,    gn+1 = 0 (3.19) 

So, the system has n degrees of freedom, qi,...,qn. The summation in (3.18) is carried 
over i from 1 to n, and conditions (3.19) are used to determine the energy of the end 
springs. The dynamical equations are 

Pi = Ä 
$' Qi+l - Qi _$' 9.-1 

Qi = — m 
(3.20) 

In linear theory, $ = %C~f2, where C=constant. Fermi, Pasta and Ulam consid- 
ered models where 

(3.21) 

In the current literature, the cases a = 0 and ß = 0 are called the /3-FPU model and 
the a-FPU model, respectively. In most cases we deal with the /3-FPU model. 

Strings. One of the ways in which chains can appear is a finite-dimensional trun- 
cation of one-dimensional continua. To be specific consider plane nonlinear vibrations 
of an elastic string of length I with the ends pinned (Fig. 3.12b). Let w(t,x) be the 
lateral displacement of the string. 

For moderate amplitudes, the kinetic and potential energies of the spring are 

K -Ik« w\dx (3.22) 

"-jA*\k(H'4+12h 2    2 
Wxx dx (3.23) 

Here p, A, 7 and By are the mass density, cross-sectional area, initial longitudinal 
strain and Young's modulus, respectively; derivatives with respect to x and t are 
denoted by the corresponding indices.   The string is supposed to be stretched, so 
o 
7 > 0. The constant h is determined by the diameter and the shape of the cross- 
section and is proportional to \f~A~. For a circular cross-section of diameter d and 
isotropic material, h = d/4. The two terms of (3.23) are the extension and the 
bending energies. 

It is convenient to introduce dimensionless variables 

y 
x 
—,    u 
I' 

w 
T = 

N 
Eyl 

/V27 

With these variables, the dimensionless Lagrange functional becomes 

l 

L = 
K-U 

o2 
2EYAh l&-¥ 1    4        1       2 

4Uy - a™»» dy 

(3.24) 

(3.25) 



3.3 Strings and chains ^  97 

The parameter a = h2/ll2 determines the dimensionless bending rigidity of the 
spring; it is small for a thin string with high initial tension and increases if the initial 
tension is released. 

The string dynamics is governed by the equation 

UTT    =     (iLy   +   llj    ~   (JUyyy^j (3.26) 

and the boundary conditions 

u(r, 0) = U{T, 1) = 0 ;    auw(r, 0) = auyy(r, 1) = 0 (3.27) 

If a = 0, the equations are considerably simplified: 

uTT = (uy + ufj (3.28) 

u(r,0)=w(r,l) = 0 (3.29) 

The corresponding Lagrange functional is 

L = I (^ " \< ~ \uy)dy <3-3°) 
0 

To perform numerical simulations of string dynamics, one needs to develop a 
finite-dimensional truncation of the continuum model. There are many ways to do 
that. One way, the finite-difference truncation, yields the /3-FPU model. In this case, 
the segment [0,1] is divided into equal pieces of length A, and the values q{ of the 
function u at the points zA are considered as independent degrees of freedom. The 
derivative uy is approximated by (qi+i — ?t)/A on the segment [(i + l)A,iA], while 
the integral 

(t+l)A 

J    uldV 
»A 

is approximated by qf+iA. Then, the Lagrange functional (3.30) is transformed into 
the approximate Lagrange function 

-£ö<H(^y-i(^)>    (-) 
The corresponding Hamilton function, 

.=1 V2A"*     2 V"    A     J 4 V     A 

is the Hamilton function of the /5-FPU model with ß = 1, and C = m = A. 
Rubber rods.  Chains also appear as finite-difference truncations of other contin- 

uum models, in particular, nonlinear longitudinal vibrations of elastic isotropic rods. 
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In this case, the motion is characterized by one function, u(t,x), the longitudinal 
displacement of the material point x. The Lagrange functional is 

J A^-pu2-U(ux)jdx 
o 

where p and A are the mass density and cross-sectional area in the unloaded state, 
ux = du/dx is the strain, and U is the volume density of elastic energy. To have 
a pronounced nonlinearity, the strain ux should be on the order of unity. There are 
materials (rubber and some polymers) which remain elastic at such high strains. For 
such a material at moderate strains 

U = l-EY (U\ + |au* + \ßutj (3.33) 

is an acceptable approximation. The finite-difference truncation.of (3.33) yields the 
FPU chain model. For strains close to —1, approximation (3.33) fails because U 
has a singularity at strain value ux = — 1. This value corresponds to the collapse 
of the material segment to a point. The simplest model that takes into account the 
singularity at ux = — 1 is a Neo-Hookian material, which has the energy density 

z      1 + ux 

Here \i is the shear modulus for small strains. Model (3.34) describes the elastic 
properties of rubber-like materials quite well. Numerical simulations performed for 
the finite-difference truncation of model (3.34) show that it behaves qualitatively 
similarly to the /?-FPU model, and we focus here only on the /3-FPU model. 

String vibrations in mode coordinates.   Consider now the modes of continuum 
string vibrations. The linear eigenmodes of string vibrations are 

uk(y) = sirnrky 

Any function U(T, y) can be presented as a Fourier series of eigen-modes, 

oo 
u(r. y) = Y2 ak(T)sin *ky (3-35) 

fc=i 

The functions ak{r) are the mode coordinates. To obtain dynamical equations for 
ak{r) one has to express the Lagrange functional in terms of ak- Substituting (3.35) 
into (3.25), we have 

-4 oo 

2L = Y^  öäl ~ ö f1 + cr{-Kk)2\ {-nkfal   - —     YL    klmnAk[mnakaiaman   (3.36) 

Here we use the following notation: 

l 

Akimn = / cos nkx cos nix cos rrmx cos irnx dx = 
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= ~[6{k + I - m - n) + S[k - I + m + n)+ 
o 

+S(k + I + m - n) + 6(k + I - m + n)+ 

+8(k - I + m - n) + 8{k - I - m + n)+ 

+ 6(k-l-m-n)\ (3.37) 

The dot denotes derivative with respect to dimensionless time r. 
The Lagrange functional, and, henceforth, the equations, can be simplified by the 

change of unknown functions, a^ —► b^. 

bk = irkak (3.38) 

In terms of bk, the Lagrange functional is 

L = K-U, (3.39) 

00     I 00 1 1      00 

2^ = E 2^ % • 2U = £ 2 (: + a7r2^2) hl ~ 2     ^    Aklmnbkkbmbn 
fc=l fc=l fc,i,m,n=l 

The corresponding equations of motion are 

—— 6* = - (l + a(irk)2) b\ - 2    £    4,m„^J„ (3.40) 
(xky k,l,m,n=l 

The coefficients Aijki characterize nonlinear interactions between modes. They 
are all on the order of unity. Note an important property of Aijki which follows 
from (3.37): if i is even and j, k, I are odd, then, since ±j,±k,±l are also odd, 
Aijki = 0. Similarly, A^ki = 0 if i is odd, and j, k, I are even. This means that even 
modes themselves cannot excite odd modes and vice versa. Even modes act on odd 
modes only if the latter have already been excited (6; is not zero for at least one 
odd mode). The same is true for the influence of odd modes on the even ones. This 
suggest that there are invariant subspaces on the energy surface. They are formed 
by trajectories which start from even initial data and odd initial data. The existence 
of multidimensional invariant sets does not contradict ergodicity, but might increase 
the time needed to approach equipartition. 

Thermodynamical and continuum limits. The laws of statistical mechanics are 
often derived in the so-called thermodynamical limit. This means that the number of 
particles and energy per unit volume are kept constant while the size of the system, 
the total energy and the the total number of particles, N, tend to infinity. In our 
case, this corresponds to a fixed particle distance A, and fixed energy per unit length, 
while the length of the chain, I = iVA, and the total energy, E, tend to infinity. 

One might consider another limit, a continuum limit, where the length I and total 
energy E, are fixed, while the total number of particles, N, tends to infinity. In 
this case, the distance between neighboring particles, A = l/N, tends to zero. In 
general, these two limits are different. However, the chain dynamics possesses the 
following remarkable property: the thermodynamical limit can be obtained from the 
continuum limit by scaling.  Indeed, consider a finite-dimensional truncation of the 
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string dynamics (3.31).  Let us make a change of variables q{ —► uu q{ = mA, and 
simultaneously scale the time, t -> f,    t = fN. Then the Lagrange function becomes 

i = E 

L=NL' 

1   /dü^ 1 , V2       1 / >4 

df --(Ui+i-u)    --(Ui+i-u) 

(3.41) 

(3.42) 

The Lagrange function L corresponds to the dynamics of N particles with the spacing 
equal to 1. If N —► co, the length of the chain goes to infinity Keeping the ratio of 
total energy to N constant corresponds, as follows from (3.41), to the continuum limit 
in q-variables. For definiteness, in discussing the case of large N we always deal with 
the continuum limit. The energy in the continuum limit corresponds to the "energy 
per particle" in the thermodynamical limit. 

Note one more useful scaling. For the /3-FPU model in u-variables, 

i 

The change of variables U{ —> üi, 

1 /' du{ 
2 [if - {ui+l - uf - -ß (ul+1 - uf 

Ui = 
Vß 

transforms the Lagrange function to 

L=-ßL,,    LX = Z 
1 f dv.i' 

2 [if. {ui+1 - u)  - - (ui+1 - u) 

where L\ is the Lagrange function of the /?-FPU model with ß = 1 Hence, without 
loss of generality one can set ß = 1. 

3.4    Energy threshold 

Now we proceed to the discussion of experimental evidence for ergodicity of motion 
of chains and strings. The behavior of chains and finite-dimensional truncations of 
string dynamics are similar, therefore we focus mostly on string vibrations in mode 
coordinates. The simplest probe for ergodicity is equipartition of energy. One has to 
measure the temperatures of each mode, 

eJ 2TT2 2^dt (3.43) 

and determine whether they are equal. The time of observation should be long enough 
to warrant the convergence of the right-hand side of (3.43) to a limit value. 
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Fig.   3.13:  Typical evolution of mode temperatures in time for moderate energies 
E = 0.02 in an 8-mode system. 

A typical dependence of temperatures on the time of observation is shown in 
Fig. 3.13 for an 8-mode system. Time is measured in "cycles", the period of the 
slowest mode, which is 2 (in terms of dimensioniess time r). Initially, all modes were 
excited in such a way that amplitudes and velocities were decaying with the mode 
number. The total energy of initial excitation is 0.02. It seems that after about 5000 
cycles all temperatures approach their limit values. These values differ. Other runs 
for the same value of initial energy show similar behavior. This suggests that the 
system is not ergodic for E = 0.02. 

For higher values of energy, E = 0.095, temperatures show a clear tendency to con- 
verge to a single value (Fig. 3.14). After 1000 cycles, the difference in temperatures 
is on the order of 10%; after 10000 cycles it does not exceed 2%. 

Do we really observe the absence of equipartition for E = 0.02? Could it be 
that temperatures eventually converge to a common value after a longer time of 
observation? It is not clear at present, and computer experiments can hardly answer 
these questions. All the conclusions we axe going to make are based on the assumption 
that the results of the observations made for the time of about 104 - 105 periods of 
the slowest mode stay the same for an infinite time of observation. 

To quantify the degree of equipartition, one can use the following characteristic: 

C* = 
[S£i Tj 

t=l -M 

(3.44) 

It has a simple meaning. If only one mode is excited, say T\ ^ 0, T2 = ... = TN = 0, 
then C* = 1. If all modes are excited and equipartition holds, then Tx = T2 = ... = 
Tjv, and C* = N. Thus, C* characterizes the number of degrees of freedom involved 
in the motion. The maximum value of C* is equal to N. This value is reached if 
and only if equipartition holds. Hence, C* is a measure of equipartition as well. To 
compare the motion of different systems, it is convenient to normalize C* and consider 
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Fig. 3.14: Typical evolution of mode temperatures in time for a high energy of excita- 
tion, E = 0.095 in a 12-mode system. The insert shows the temperature distribution 
over the modes 

the number C = C*/N, which represents the relative amount of effectively excited 
degrees of freedom. The dependence of C on time shows the process of involving in 
the motion the additional degrees of freedom. If equipartition holds, C —\. 

A typical dependence of C on time is shown in Fig. 3.15. In this figure, the 
results are presented for four runs with duration of 1,500 periods of the slowest mode 
(or cycles); initially, the potential energy was evenly distributed among the first four 
modes, while all velocities were zero; the total number of modes is 12. The values of 
the energy are 0.002, 0.01, 0.05 and 0.095. 

Figure 3.15 shows that the system provided with higher energy reaches equipar- 
tition very fast, within a few hundred cycles. The less energy is supplied to the 
system initially, the longer it takes to reach equipartition. When the energy is small, 
equipartition does not seem to be reached. The insert in the figure shows the tem- 
perature spectra at the end of the runs. In the case of E = 0.002, the temperatures 
of the first and second modes are by more than an order of magnitude higher than 
those of modes 7-12, showing no equipartition. The next figure (3.16) suggests that 
transition to equipartition is, to some extent, a threshold-like phenomenon. In this 
figure, values of C are plotted for the 12-mode system after 1000 cycles. Each point 
corresponds to some initial data. It shows that for E < 0.05, all values of C are 
possible for each value of energy. However, for E > 0.05, C ~ 1 for all runs made. 

The value of energy Ec = 0.05 is the critical value of energy at which the transition 
to equipartition occurs. Of course, in reality, the qualitative change of the character 
of motion occurs in some range of values of energy, and the particular value Ec — 0.05 
is a rough location of this range. 

Above the energy threshold, the trajectories exponentially diverge and numerical 
errors grow exponentially. The numerical trajectory can go far away from the true 
trajectory with the same initial conditions. A discrepancy appears between the nu- 
merical results and the real dynamics of the system. It is natural to expect, however, 
that, although the trajectories of the "numerical dynamical system" may be far from 
the trajectories of the original dynamical system, the statistical characteristics are 
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Fig. 3.15: Typical dependence of the number of effectively excited degrees of freedom 
on time for four levels of energy. The insert shows the temperature distribution over 
the modes for these values of energy 
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Fig. 3.16: Determination of the energy threshold. Each point corresponds to some 
choice of initial conditions. For energies exceeding 0.05, equipartition is practically 
exact 



104 
Ttr 

Free Vibrations of a System of Oscillators 

0.2 

  c = 0 
 a = 0.0001 
  0 = 0.01 

10 100 1000 
Time, cycles 

Fig. 3.17: Dependence of effective numbers of exited degrees of freedom on a. The 
insert shows final temperature distribution 

predicted correctly, and the above-mentioned numerical results can be applied to the 
original dynamical system. It was proved ([4], [37]) that a numerical (or noisy) tra- 
jectory will stay close to some true trajectory (with, maybe, different initial data) for 
all time if the system is uniformly hyperbolic. Similar results were obtained for some 
nonuniformly hyperbolic systems in [89]. 

Probes of equipartition are the roughest tests for ergodicity. It is much more 
convincing of a test to compare probability density functions predicted by ergodic 
theory with numerical results. These comparisons have been conducted in [148] and 
support the expected ergodic character of motion above the energy threshold. 

3.5    Role of mode resonances 

The value of the energy threshold depends on the number of degrees of freedom and 
the characteristics of bending rigidity, a. It turns out that the dependence on bending 
rigidity is quite strong. This can be explained by the ease of energy transfer between 
modes for a — 0 due to commensuration of natural linear frequencies. Indeed, let the 

O 

first mode be excited initially. The first mode has frequency ui = -K. The coefficient 

A31H 7^ 0. Therefore, the spectrum, of the elastic interaction force A^mb^ contains 
the frequency 3UJ — 2,-K which is the linear eigenfrequency of the third mode. Hence, 
vibrations of the third mode are resonant and are easily developed. Considering the 
fifth mode we note that the coefficient ^45311 is no equal to zero. The spectrum of 
the interaction force, ^531163612, acting on the fifth mode contains the frequency 5ir, 
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which is its eigenfrequency. Thus, the fifth mode also goes into a resonance regime. 
In the same way, other interaction forces have in their spectra resonant frequencies, 
and energy easily flows from one mode to another. If a ^ 0, the natural frequencies 
are detuned and energy transfer is impeded. 

This hypothetical picture of string vibrations is supported by numerical simula- 
tions. Figure 3.17 shows the dependence of C on time for a 12-mode system for 
the following values of a 0,10"4 and 10~2, and the same value of energy of initial 
excitation. The insert shows the terminal temperature spectra. For a = 0, energy 
is equipartitioned among all modes. Detuning of linear oscillators by adding small 
a — 10-4, perhaps, increases the energy threshold, and vibrations become noner- 
godic. For a = 10"2, further growth of the energy threshold occurs, and the number 
of initially excited degrees of freedom does not change. 

3.6    Massless approximation 

Experiments show that, usually, only a few degrees of freedom are effectively excited 
in vibrating elastic structures which possess, in principle, infinitely many of them. In 
part, this may be caused by friction. For example, the viscous friction force acting 
on the kth mode is proportional to fik2, where fj, is the friction coefficient. Thus, 
there is some number k0 of modes with non-negligible amplitudes, while all modes 
with higher numbers are damped. The number of undamped modes, ko, depends on 
jx and grows if ^t —»■ 0. There is also another reason for low dimensionality which is 
not related to dissipation. Consider expression (3.39) for the Lagrange function. The 
coefficients of the interaction energy, Aijki, are on the order of unity. The rigidities 
1 + aTT2k2 are on the order of unity for a = 0, and grow as k2 for a ^ 0. "Masses" of 
modes, the coefficients in the expression for kinetic energy decay as k~2. If bk is on 
the order of bk, then kinetic energy of kth. mode can be neglected in comparison with 
elastic energy of this mode for large k, and the problem of the determination of bk 
becomes a static problem. In this case, all degrees of freedom can be separated into 
two categories: leading degrees of freedom with low k, k < k0, and driven degrees of 
freedom with large k, k > k0. Driven degrees of freedom follow the leading ones. The 
dependence of driven degrees of freedom on the leading ones is determined from the 
static equations 

Q£- = 0,    k > k0 (3.45) 

Low-dimensional dynamics is governed by Hamiltonian equations with the effective 
Lagrange function 

Leff = K- Ueff,    2Keff = f] -^-62,    2^/(6!, ... bk0) =       min       U (3.46) 

The number of leading modes, k0, is determined by a desirable accuracy. 
There is an obstacle for this mechanism of low-dimensionality to work. If higher 

modes are in resonance with low modes then the kinetic energy of high modes is 
of the same order as the elastic energy and cannot be neglected.  If resonances are 



106 Free Vibrations of a System of Oscillators 

scenario 2 
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Fig. 3.18: Two scenarios for the dependence of the critical energy on the number of 
degrees of freedom 

absent and excitation energy is below the energy threshold, the vibrations are really 
low-dimensional. The reader is referred to [21] for further details. 

3.7    Possible scenarios of nonlinear vibrations 

To discuss the behavior of the elastic continuum, one may consider the limit N —> co 
for a finite-dimensional truncation (for example, a mode truncation) of continuum 
equations. The character of vibrations depends crucially on the dependence of energy 
threshold Ec on N for large N. Numerical simulations conducted as N < 128 indicate 
that Ec decreases when N grows. In the range 10 < N < 130, the critical energy 
behaves approximately as 1/N. It is not known what happens for larger TV. Logically, 
there are four possible situations: if N —* co, then either Ec —* 0 or Ec —+ E* — const 
or Ec —► co or the limit of Ec does not exist. The first case, where the critical energy 
Ec goes to zero for TV —► co, is probably not realized because one would observe 
chaotic continuum motion for any, even a very small, energy of excitation. This 
would contradict the infinite-dimensional version of KAM theory, which is likely to 
be valid for elastic continua. Two other cases, where Ec tends to some finite limit E* 
and Ec —> co for N —> co, are schematically shown in Fig. 3.18. They correspond to 
two qualitatively different behaviors of continua which we refer to as scenario 1 and 
scenario 2. 

Scenario 1 (Self-dissipation). This is the case of the existence of the finite limit for 
critical energy. The major features of the dynamics of continua in this case seem to be 
the following. If the energy of initial excitation E is less than E*, then nothing special 
occurs. The bulk of studies of linear and nonlinear elastic vibrations pertains to this 
case. However, if the energy of excitation exceeds E*, then the continuum shows a 
very peculiar behavior. For definiteness, let only a few modes be excited initially. In 
the course of the motion, energy is redistributed over all modes in a such a way as 
to reach equipartition. Since an infinite number of modes is involved in the motion, 
the energy of each mode is equal to zero at the final stage. So, one would observe 
a process with an increasing number of excited modes, in which the energy of each 
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number of modes number of modes 

Fig.  3.19: Truncation of the continuum for scenario 2:  (a) choice of initial energy, 
(b) energy spectrum for continuum vibrations (2) and truncation (1) 

mode eventually tends to zero, while the total energy is conserved. Since the energy 
of each particular mode tends to zero, the displacement goes to zero. Derivatives of 
displacements remain finite due to conservation of energy. Therefore, displacements 
are getting more and more nonsmooth. One might call this case "self-dissipation" 
due to the decay of displacements in time. Remember that the system does not have 
a "built-in" dissipation. 

Scenario 2 (Universal Spectrum). In this case, the energy threshold tends to 
infinity for N —* oo. Therefore, the laws of statistical mechanics are not valid for any, 
even a very high, energy of excitation. However, one can speculate on a possibility of 
other "universal laws." Let the initial energy be E, and let this value correspond to 
the number N on the graph the "critical energy vs. number of degrees of freedom" 
(Fig. 3.19a). Consider an excitation of the continuum where only the first N modes are 
excited initially. For ./V-degrees-of-freedom truncation of the continuum, the motion 
would be approximately ergodic while the energy would be equally distributed over 
modes (Fig. 3.19b, line 1). 

In the continuum, other modes take energy from the first TV modes. Therefore, 
for a continuum the energy spectrum should have the form of line 2 in Fig. 3.19b. 
Note that the energy transfer from low to high modes may be a fast precess as the 
development of shock waves during a finite time indicates. 

It is natural to assume that the spectrum 2 is universal in the following sense: it 
is the same for any choice of initial excitation of the first TV modes possessing the 
same energy E. It is interesting that the spectrum 2 in Fig. 3.19b looks qualitatively 
the same as Planck's spectrum for quantum oscillators: high-frequency oscillations 
are frozen. 

None of the numerical experiments for chains show the growth of critical energy for 
large N and the feasibility of scenario 2. This relates, probably, to the fact that only 
chains with the nearest neighbor interaction have been considered so far. These chains 
do not have any characteristic dimension (in the limit N —* oo), while the minimum 
point on the plot in Fig. 3.18 is determined by some characteristic length. Continua 
with higher space derivatives may provide the necessary additional parameter with a 
dimension of length. 
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3.8    Miscellaneous 

In this section the facts which were useful in numerical experiments for chains and 
strings are summarized. 

Normal modes of chains. Let the energy of the chain vibrations be small. Then, 
the nonlinear terms are negligible, $ (7) = \ C72, and the equations of motion (3.20) 
become 

m^ = Ä2 (&+1 ~ 2^ + 9*-i) (3-47) 

Here s = l,...,n and go = Qn+i = 0. If g(i, x) is a smooth function and q(t, sA) = qs(t), 
m = pA, C = c2A, then, for A —► 0, equation (3.47) transforms to the wave equation 

d2q (t, x) =   2d
2q(t,x) 

P     dt2 °      dx2 

as it should. 
Our next goal is to find a coordinate transformation such that the chain becomes a 

system of noninteracting oscillators. It is convenient to extend the chain and introduce 
qs with negative s, setting <?_i = —qi,...,q^n = —qn, q-n-\ = —Qn+i- Then, the 
dynamics of the original chain is equivalent to the dynamics of a chain of N = 2n + 2 
particles with fixed ends and antisymmetric motion in space, qs = —q~s. 

Consider traveling wave solutions of equations (3.47) 

qs = e*(^-u»0 (3>48) 

where s and u> are some parameters.   Substituting (3.48) into (3.47), we see that 
(3.48) is a solution of the dynamical equations if and only if A and ui are linked by 
the dispersion relation 

2C 
mu2 = — (1 - cos A) (3.49) 

If A —+ 0 and A = kA, m = pA, C — cA, the dispersion relation for chains 
transforms into the dispersion relation for the wave equation, 

pJ1 = c7k2 

For each couple (u, A) which satisfies the dispersion relation (3.49), the couple (u, —A) 
also satisfies the dispersion relation. Thus, the functions 

ei(s\-ut) _ ei(-sA-wt) = 2-e-iwt sin 5A (3 50) 

are the solutions of the dynamical equations. 
Consider the solutions of the form (3.50) which obey boundary conditions <j0 = 0, 

qn+i = 0. Since sin(n + 1)A = 0, there are n admissible A, 

7T 2-7T nit 
Ai = ——7 , A2 = ——— , ..., An n + 1 n + 1 n +1 

and the corresponding n modes of vibration, 

V?i(s) = sin——,    <p2{s) = sm——-, ... ,<pn (s) = sin—— (3.51) 
n + 1 n+1 n + L 
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The remarkable feature of the functions \px (s), ..., (fin («) is that any vibration of 
the chain, i.e. the set qi(t),...,qn(t), can be presented as a linear combination of mode 
vibrations, 

n 

ft(0 = £&(0wfc(s) (3.52) 
Jfc=l 

and there is a one-to-one correspondence qs 4$ qk. Moreover, in mode coordinates 
<lk the chain splits into a system of noninteracting oscillators. The frequencies of the 
oscillators are determined by the dispersion relation (3.49), 

2      2C . x .      2C / irk  \      AC  . 2      irk , 
m.fc = - (1 - cos A,) - - (l - cos — J = - am* ^-^ (3.53) 

Derivation of these properties is based on the discrete Fourier transform, the 
essential facts about which are reviewed in the next subsection. 

Discrete Fourier transform. Consider N complex numbers %, ...,gw_i and sums 

<fc= Y,qme2*imk/N,    k = l,...,N (3.54) 
m=0 

Let us multiply (3.54) by e~2msk/N and take the sum over k. We get 

AT N-\         N 

Efte"w = =   £ Qm J2 6 

k=l m=0        ik=l 

2TTi(m-s)k/N (3.55) 

The sum on the right hand side of (3.55) can be simplified by the means of the 
following identity: for integer r, 0 < r < N — 1, 

N 

Y, e2™k/N = NS (r) (3.56) 
jfc=i 

where <5(r) = 0 if r ± 0 and 6(0) = 1. Indeed, e2nir/N + e
2^ir/N + ... + e

N-2*ir/N = 
a + a2 + ... + aN,where a = e27rir/;v. Since 

l-aN 

l + a + a2 + ... + aN~1 =  (3.57) 
1 — a 

and aN — e2wir = 1, the sum (3.57) is equal to zero for any a ^ 1, i.e. for any r ^ 0. 
For r = 0, a = 1, the sum is equal to N. So, (3.56) is true. 

The proof shows that identity (3.56) holds for any number r if the function 5(r) 
is replaced by a periodic function 8N(r), with the period N: 5u(r) = 0 if r ^ ±Nk, 
k is any integer, S^(r) = 1 if r = ±Nk, 

£ e2«irk'N = N8N (r) (3.58) 
fc=i 

Return now to (3.55). The last sum in (3.55) can be calculated using identity (3.56). 
Since m < N and s < N, \m — s\ < N, and the sum is equal to N6(m — s). Thus, 

lm = ^ £ qke-
2*isk'N (3.59) 

1   fc=i 
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The transform of qm to qk in (3.54) is called a discrete Fourier transform. Formula 
(3.59) shows that the discrete Fourier transform is reversible. 

The discrete Fourier transform has two properties which make it useful for our 
purposes: 

N N-l 

E^fc = Ar£<7m?m (3-60) 
fc=l m=0 

and 

E (Qk ~ Qk-i){q\ ~ q\-i) = 4iV E sin2 -jj-qA (3.61) 
fc=l m=0 ;V 

Here a star denotes the complex conjugate. Formulas (3.60) and (3.61) can be checked 
by direct inspection, 

N N  N-l N-l N-l N-l N 

E ™\ = ZY, fc.^'" E ze-w = E E Qrng; E e7^~s)k/N = 
k=l fc=lm=0 s=0 m=0 s=0 fc=l 

= E E GmZNOfa -8)=NJt qmq'm (3-62) 
m=0 s=0 m=0 

and 

Y,(Qk-Qk-i)(q\-q*k-i) = 

AT   N-l N-l 

E E qm(e27rimk/N - e
27rim(-k~1)/N) E q*(e~2irisk/N - e

2™(k-l)lN) = 
fc=lm=0 s=0 

= E' E19m(l - e-2Tim^)g;(l - e2™/") E e^-'W" = 
m=0 s=0 Jfc=l 

= E E gme-'rim/;v(e'rim;v - e-*irn/N^yi,/N(e-*i,/N - e7r"/")iV5(m - s) = 
m=0 s=0 

= 47VEsin2^mg; (3.63) 
m=0 iV 

Note that (3.54) and (3.59) stay valid if shifts in the numbering of qk and qm are 
made: A; may take values l+h,..., N+l\ while m may have values l2, /2+I, •••, N+l2 — 1 
for any integers /i,^- Equations (3.60) and (3.61) also admit such shift as one can 
check writing the chain of equalities (3.62) and (3.63). 

Applying the discrete Fourier transform to chain vibrations, we choose k and m 
taking values —n, —n + 1,..., n, n + 1, and N = 2(n + 1). We have 

9* =   E  Ime™"*'" ,    qm = ± E q*™*!» (3.64) 
m=—n l    k=-n 

Actually, the summation in (3.64) should be conducted up to n:  by the condition 
<?n+i = 0, while qn+i = 0 due to the antisymmetry of qk g_fc = — qk: 

q-n+i = J7  E qke-^^k'N = ±± qke-«ik = 
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= ^XXe -Ttik 

N fc=i •^   Jfc=-7l 

It follows from (3.64) that qm are pure imaginary and antisymmetric due to the 
antisymmetry of qk' 

Q*m = -Qn -9-TI (3.65) 

If one sets qm = —%iqm, the Fourier transform (3.64) can be written in real variables 
as 

k = 1, ..., n 
J?U irrnk 

Qk= l^Q™ sm 

m=l 

? = ^?E^ TV 
sm 

m=l 

n + 1' 

irmk 

n+1' 
771=1,  ..., 77. (3.66) 

However, it is usually more convenient to work with the complex form (3.64). 
The identities (3.60) and(3.61) take the form 

fc=i s=l 

n+1 

£ 
Jt=l 

£<z2 = w£i$.i2,  S>*-fc-i)a = 4Jv£ 
m=l 

2 7T771    .     2 

sm  -^-|?m| (3.67) 

Normal modes of chains (continued). Comparing (3.66) with (3.51) and (3.52), we 
see that in the problem under consideration, the discrete Fourier transform is identical 
to the transformation to mode coordinates. Let us derive the energy expression in 
mode coordinates. Since in translational coordinates qk 

k=\ Jfc=l 

using the properties (3.67) of the discrete Fourier transform, in mode coordinates we 
obtain 

N      n ■ 

z       s=l 

dqs 

dt 
mN  " 

8 s=l 

dqs 

dt 
U = 

C 
8A2 ANY, sin2 7TS 

3=1 2(n + l) fs (3.68) 

So, in mode coordinates the chain is a set of noninteracting oscillators with natural 
frequencies 

/   C     .   . ITS 
2 sin- (3.69) 

2(n + l) 

as claimed. 
Interaction energy in terms of translational coordinates. We constructed two 

finite-dimensional truncations for string dynamics: truncation (3.31) in terms of trans- 
lational coordinates, <£, and truncation (3.39) in terms of mode coordinates. Each 
one has certain advantages. In translational coordinates, interactions are local: each 
particle is affected only by its nearest neighbors. This makes numerical simulations 
very effective: one needs to perform 0(N2) numerical operations per time step. In 
mode coordinates, modes do not interact at all in a linear regime, but for high en- 
ergy of excitation each mode affects the motion of almost all others. An unpleasant 
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consequence is that the number of numerical operations per time step is on the order 
of 0(N4). On the other hand, there is a considerable pay off in the use of mode 
coordinates: the mechanisms of vibrations are seen more clearly. The increase of the 
number of numerical operations is compensated to some extent by a decrease in the 
number of modes to be considered. To have the same accuracy of the approximation 
of the continuum motion, one needs 10-20 nodes per the shortest wave length which 
causes the number of degrees of freedom in translational coordinates to be increased 
accordingly. Note also that incorporation of bending rigidity is much simpler in mode 
coordinates. 

Fortunately, for string vibrations it is possible to develop a form of dynamical 
equations which combines the advantages of both truncations. This form is based on 
the following identity. 

Let qk and qm be related by the Fourier transformation (3.64). Note that qk are 
periodic with period N due to (3.64). In particular, 

qn+l = <?_„_!    and    qn+2 = q~n (3.70) 

Consider the sum 
n+X 

£ (qk+1 - 5fc) Vfc+i " q\? (3.71) 
k=-n 

in the general setting when qk may be complex and not necessarily antisymmetric 
(<Jk T

1
 -Q-k)- In the calculation of the end terms of the sum, the periodicity condition 

(3.70) is imposed. The following identity holds for this sum: 

n+l 

£ (Qk+i - <7fc)2(?Vi - q\? = 
k=-n 

OAr        ^-^ c/ .     .     TTTTl     ,     7IT 7TS Itt 
87V     ^     S{m + r - t - s) sm — sm — sm — sin — qmqrqsqt (3.72) 

m,r,s,t=-n ■'* ■'* ■"" ^ 

Before proving this identity, let us discuss its consequences. Let qk be real and 
antisymmetric, and qn+i = 0, while ql is purely imaginary and antisymmetric, and 
qn+i = 0. We introduce real variables 

bm = 2iqm sm — (3.73) 

Then, identity (3.72) becomes 

n n 

2 £ {qk+1 - qk)
A = N     £     6(m + r - s - t)bmbrbsbt (3.74) 

fc=0 .m,r,s,t=— n 

The variables bm are symmetric: 6_m = bm. Thus, (3.74) is transformed into 

2E(9/=-<7fc-i)4 = 16/V    E    AmrstbmbrbA 
fc=0 m,r,s,t=l 
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where Amrst are the coefficients (3.37). Finally, 

(3.75) 
1      n 1     n 

* = 7 E Amrstbmbrbsbt =—53 (?fc+i - qky 
* m,r,s,t=l ,3Z-'V jfc=o 

Here, qk related to 6m by 

ft =   £  gme27rimfc^ = J2 qm (e2«imk'N - c-^™*/^ = 
"i=—n m=l 

"   n.   .    2-Kmk^ "   sin^, 
= E 2* *n -—gm = £ —-±rbm (3.76) 

m=l iv m=l   Sln 77" 

We see that the mode interaction (3.75) can be made local in translational coordi- 
nates qk if the latter are introduced by means of (3.76). This suggests the following 
procedure for calculating the interaction force, d$/dbm. Since 

db~ ' 8N hiqk+1 ~ ^        dbm       = 
1    " sin Zzpll _ sin y 

= 8N S(%+1 " «*>   InTf ~ = 

1   A,              ,3      7rm(2fc + l) 
= 7J7 E (ft+i - ft)3 cos —-^ 1 (3.77) 

one has, for given bm, to find gfc+i - qk from (3.76). This reduces the problem to the 
discrete cos-Fourier transform of bm. Indeed, 

ft+l - ft =    E    ?m (C
MmC*+D/Ar _ ^^/^  = 

m=—n 

n 
_    V^    ß    „2-Kimk/N  -rrim/N !  irim/N _    —Kim/N\  _ 

m=—n 

n 

Thus, 

2iqm sin — e™1" (3.78) 
m=-n                       •'" 

<7fc+l - <?fc = 2 2_^ 0m COS7T771 —- 
771=1 W 

If N is a. power of 2, one can use the fast Fourier transform to find qk+i — qk. It 
requires 0(N log N) numerical operations. Then another 0(N log N) operations are 
required to perform the calculations in (3.77) since this is also a discrete cos-Fourier 
transform of {qk+i — qk)3- 

Identity (3.72) can be proved by plugging (3.78) into (3.71): 

n+l 

E 
k=—n 
E (ft« - ft)2(?Vi - Q\)2 = 
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2_^      2iqm sin -— 2iqT sin — 2iqs sin — 
fc=-n  m,r,s,t=-m ■'* ■** *" 

TTt 
2iqt Sin — e2™(m+r-*-t)*//V e7ri(m+r-s-t)/W (3 ?g) 

Since 
N 

n+l 
^.•(m+r-,-«)/^   £   e2«(m+r-,-t)fc/iV = ^^ + r _ $ _ Q (3 gQ) 

fc=-n 

(3.79) transforms into (3.72) (the last factor in (3.79) can be set equal to unity due 
to (3.80)). 



Chapter 4 

Slightly Damped Systems 

Classical equilibrium thermodynamics and statistical mechanics were derived in chap- 
ters 1 and 2 for Hamiltonian ergodic dynamical systems. The next question is: what 
kind of thermodynamics takes place if the underlying microdynamics is neither Ha- 
miltonian nor ergodic? It is very unlikely that something general can be said about 
these cases. However, it is likely that some features of classical thermodynamics are 
inherited by "slightly non-Hamiltonian" systems from Hamiltonian systems. An im- 
portant class of slightly non-Hamiltonian systems is systems with small dissipation. 
In this chapter, "thermodynamics" of such systems is considered. It turns out that 
the major feature of classical equilibrium thermodynamics, the existence of thermo- 
dynamic potentials, is characteristic also for thermodynamics of slightly dissipative 
systems. "Macrobehavior" of slightly dissipative systems is governed by constitutive 
equations which are potential. The potential is the Lagrange function averaged over 
the attractor. In the first section, the main features of what we call equilibrium 
thermodynamics are summarized. 

4.1    What is equilibrium thermodynamics? 

Equilibrium thermodynamics of a system studies the response of this system to a 
slow change of external parameters. Schematically, one can speak of a black box 
with some input, external parameters yi, ...yn, and some output, the characteristics 
of the response Fi,...Fn, which are also called thermodynamical forces. Without loss 
of generality, the number of output parameters can be taken equal to the number 
of input parameters. The internal dynamics of the black box is governed by some 
dynamical system. The input parameters have to change slowly on the characteristic 
scale of the internal dynamics. 

The behavior of the black box is characterized by the dependence of the output, 
Fi, on the input, yi, 

Fi = Fi(yi, ...y„), ... ,Fn = Fn(y1, ...yn) (4.1) 

Equations (4.1) are called constitutive equations. They determine the "macrobehav- 
ior" of the black box. 

The central assertions of equilibrium thermodynamics can be stated in the follow- 
ing way: 

1. For some choice of thermodynamical forces, the constitutive equations are 
potential. More precisely, there exists energy, E, a function of j/i, ...,yn, and some 
parameter, entropy, such that 

Fi = dE(S,yi,...,yn) 
dyl 
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2. Entropy, S, is the only characteristic of the internal state of the black box 
which penetrates in "slow" macrodynamics. Entropy is not changed in the course 
of a slow change of y. The initial value of entropy depends on the internal state of 
the black box at the beginning of the process. One may say that the macrodynamics 
of the black box remembers the initial data of the microdynamics only by means of 
entropy. 

3. There is a characteristic of the black box, temperature, 

-I (-) 
which possesses the following property: two bodies in contact have equal temperatures 
after some transitional period. 

All three statements can be derived from the assumption that the internal dy- 
namics of the black box is Hamiltonian and ergodic. ! Thermodynamic forces are 
averaged over the fast motion derivatives dH/dy. The question under consideration 
is: what is different if the internal dynamics is not Hamiltonian? Here, we consider 
two examples: elastic vibrations damped by small dissipation and fluid motion at 
high Reynolds numbers. We show that the major feature of equilibrium thermody- 
namics of ergodic Hamiltonian systems, the potentiality of constitutive equations, is 
characteristic for these dissipative systems as well.2 Entropy disappears from consti- 
tutive relations because dissipative systems do not remember initial conditions (there 
is another possible view on entropy of dissipative systems which is discussed in sec- 
tion 4.4). 

In order to have steady vibrations which seem analogous to thermodynamical 
equilibrium states some exciting force should be applied to the system; otherwise, 
the system returns to the rest position. We proceed with the discussion of dynamical 
effects caused by the external periodic force and small dissipation for the case of 
Dufling's oscillator. 

4.2    Duffing's oscillator: geometry of phase space 

Consider an oscillator with one degree of freedom, x, and potential energy $ = 
l/2kx2 + Y^x4. The motion of the oscillator is governed by the equation 

mx + xx + kx + lx3 = F{t) (4.4) 

Here F(t) is an external force which is assumed to be periodic, and x is the friction 
coefficient. This equation was first studied by Duffing at the beginning of this century 
and was named after him. It has received a lot of attention in the last few decades 

1 Statements 1 and 2 were derived in chapter 1. The third statement can be obtained if one 
assumes that a) "to put two systems in contact" means to form a new Hamiltonian system with 
Hamilton function H = H\ + H% + #12 where Hi and Hi are the Hamilton functions of the two 
systems and H\i is the interaction energy, b) H11 «Hi and H12 « H2 and c) the new system is 
ergodic. 

2For fluid motion this statement is conditioned by vanishing the term (4.50) in the limit of zero 
viscosity. 
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Fig. 4.1: Curves of constant energy in (p, g)-phase space for a free Duffing oscillator 
(a = /?=l) 

as it presents one of the simplest nonlinear systems which demonstrates extremely 
complex behavior. 

To acquire a better understanding of the dynamics of Duffing's oscillator with 
small dissipation, it is very useful to investigate first the geometry of trajectories for 
zero dissipation which will be done in this section. 

First, let us transform Duffing's equation to a nondimensional form, 

g+„g+0,+A._/(T) 
where /(r) is a periodic function with period 1, and 

(4.5) 

9 = a *(?)' 
XQ m ß = 

IXQ
Z 

mX / = mA' 

X = X0 üV u 
t,   fl = 

2-KX 

K2it J 2TT mu 

Xo and u are some characteristic length and the frequency of the external force, 
respectively. 

Let us start from the case of zero external force.   In this case, we have an au- 
tonomous nonharmonic oscillator with the Hamilton function 

2 2 4 
rr        V *    ,       0.      ,   nT p = q (4.6) 

We assume that a > 0 and ß > 0. The trajectories of this oscillator are closed 
curves H(p, q) = E = const. They are shown in Fig. 4.1 for a = ß = 1. Since we are 
going to investigate the nonautonomous case, it is convenient to view the trajectories 
in three-dimensional (p, q, r)-phase space. 

In (p, q, r)-phase space, all trajectories lie on surfaces of cylinders, the bases of 
which are the closed curves of Fig. 4.1. The structure of the phase space is the 
same as in integrable Hamiltonian systems; the inessential difference is that we now 
have a family of embedded cylinders instead of invariant tori. It turns out that 
KAM theory is applicable to this case, and the addition of a small periodic force 
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Fig. 4.2: The Poincare section of a trajectory in (p, q, r)-phase space is a projection 
of points A, B, C,... on (p, g)-plane 

can be considered as a small perturbation of the integrable system. The periodic 
force disturbs periodically the majority of cylinders, while the rest of the cylinders 
are destroyed and replaced by chaotic trajectories. 

A good method to visualize the trajectories is to utilize Poincare sections, which 
should be adjusted to the periodic character of the exciting force: Poincare sections 
show successive positions of phase points for times r = 0,1,2,... (see Fig. 4.2). 
(Remember that unity is the period of the exciting force.) 

For periodic trajectory with period one, the Poincare section consists of one point. 
The Poincare section contains two points for the periodic trajectory with the period 2, 
etc. The absence of a certain pattern is a characteristic feature of a chaotic trajectory. 

Consider the harmonic excitation 

/(r) = a + b sin 27TT (4.7) 

A typical Poincare section for a relatively small excitation (a = 0, b = 2) is presented 
in Fig. 4.3. Figure 4.3 shows the following. If a trajectory starts at some point 
A, the next positions would be Ai,A2).... After a long time, the positions densely 
cover a closed curve, a. It is clear that this Poincare map represents a trajectory 
which goes along a cylinder, and a is the cross-section of the cylinder and the plane 
r = 0. Since the cylinder is periodic in r, the cross-sections of the cylinder with 
the planes r = 1,2,... form the same curve, a. Starting from other initial points one 
obtains other closed curves. So, there exists a family of periodic cylindrical surfaces. 
If the radius of the cross-section decreases, the cylindrical surfaces become slender, 
and eventually collapse to a curve in (p, q, r)-phase space. This curve is periodic in r 
with period 1. It is represented by the point 0 in Fig. 4.3. 

The functions p(r) and g(r) are some periodic functions, 

p(r)+Mr) = EA^lkT (4-8) 
k 

In principle, all harmonics are presented in the sum (4.8). In this sense, one speaks 
of superharmonic resonance: all frequencies, which are multiple frequencies of the 
external force, are excited. 
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Fig.  4.3: Poincare section for Duffing's oscillator for small amplitude of excitation 
(a = 0, b = 2) 

Figure 4.3 reveals a remarkable phenomenon - the appearance of sub-harmonic 
resonance, which is the motion with frequency less than the frequency of the external 
force, and, correspondingly, the period of response is larger than the period of the 
exciting force. This motion is represented by three "islands" in Fig. 4.3. If the initial 
position is chosen at point B, then, after time r = 1, the next position, J5X is on 
the other "island". After time r = 2, the trajectory is at the point B2, on the third 
island. After time r = 3, the trajectory returns to the first island. After a while, 
the points densely cover the curves b,bi and 62- It is clear that these curves are the 
cross-sections of a cylindrical surface in (p, q, r)-phase space with planes r = 0, r = 1 
and r = 2. The cylindrical surface is periodic with period 3. 

The three-dimensional picture of two cylindrical surfaces with periods 1 and 3 is 
shown in Fig. 4.4. The darker tube corresponds to vibrations with period 1, while 
the lighter tube represents the vibrations with period 3. Cylinders with period 3 also 
form a family of nested surfaces. If the diameters of cross-sections are decreased, the 
cylinders collapse to a curve with the period 3. It is represented by three points C, 
C\ and Ci which are the centers of the three islands. So, the subharmonic, resonance 
observed is the motion which contains harmonics with frequency equal to 1/3 of the 
frequency of the external force (and all its multiple frequencies as well). 

KAM theory predicts the existence of destroyed cylinders for arbitrarily small 
values of the force amplitude, b, but for b which are very small it is not easy to find 
destroyed cylinders by computer simulations - they occupy too small a part of phase 
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Fig. 4.4: Two tubes in phase space corresponding to vibrations with the period of 
the exciting force (darker one) and tripled period of the exciting force (subharmonic 
resonance). 
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space and, in addition, can be hidden by computational errors. 
If b is large enough, a chaotic sea emerging from the destroyed cylinders can easily 

be seen (Fig. 4.5). An interesting pecularity of this picture is the appearance of 
additional islands: subharmonic resonances with the periods 2 and 5. The families 
of cylinders are numbered in Fig. 4.5 by their periods. A family of cylinders with 
period 5 is embedded in the family of cylinders with period 1. The period 1 family 
is surrounded by the family with period 3. On the periphery of this figure, there are 
two families with period 2. 

Increasing the amplitude of the excitation leads to more and more complex pic- 
tures of motion. The Poincare section is shown in Fig. 4.6 for a = 0, b = 12, where 
subharmonic vibrations with periods varying from 1 to 40 can be seen; the correspond- 
ing islands are marked by their periods, and different families of the same period are 
marked by letters. 

The complexity of the geometry of phase space is a generic feature of nonlinear 
vibrations. As another example, the Poincare section of a cantilevered beam exited 
by a periodic force at the undamped edge1 is shown in Fig. 4.7. The reader is invited 
to give a mechanical interpretation of this picture. 

The dynamics of Duffing's oscillator is certainly nonergodic - there are many 
islands of ordered motion. The picture of vibrations looks so complicated that no 
simple thermodynamical relations can be expected to describe them. Help comes from 
a source which has been ignored so far - dissipation. It turns out that dissipation 
significantly simplifies the complex pictures considered and makes "thermodynamical 
questions" sensible. 

Dissipation causes all complex "microstructure" of the phase space to disappear: 
all trajectories fall on a number of attractors. For moderate a and b, the trajectories 
leave the invariant cylinders and approach the central trajectories of the corresponding 
islands, which become limit cycles. Some islands can be completely destroyed by 
dissipation. The number of limit cycles depends on the value of the friction ß, and 
parameters a, b, a and ß. If the friction ß is small enough, a number of limit cycles 
survive. For the large enough value of ß there is only one limit cycle. In general, 
tubes with smaller periods do survive for larger values of dissipation, and the ones 
with large periods disappear even with small dissipation. 

For larger amplitudes a and b, a strange attractor might appear. A natural con- 
jecture is that a strange attractor emerges at a place previously occupied by a chaotic 
sea of a Hamiltonian system. This conjecture is supported by the Poincare sections 
in Fig. 4.8a and Fig. 4.8b. Figure 4.8a shows the Poincare section of a Hamiltonian 
system for a = 0, b = 2975, ß = 0. Figures 4.8b, Fig. 4.8c and Fig. 4.8d are the 
Poincare sections for ß = 0.1 and ß = 1.0. The same initial data were chosen for 
all four cases. It is seen from Fig. 4.8a and b that the chaotic sea of Hamiltonian 
system really transforms into some chaotic attractor while two islands collapse to a 

:The Lagrange function in this example is [19] 

L = - (1 + cq2) q2 - -aq2 - -bq* + Aq + Bq sin vt, 

the value of parameters are a = 10, b = 0, c = 1, A = 0, B — 10, v = 2TT. 
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Fig.   4.5:  Poincare section for moderate excitation (a = 0,6 = 10).   Subharmonic 
resonances with the periods 2, 3 and 5 are seen. 
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Fig. 4.6: Poincare section for large excitation (a = 0, b = 16,/i = 0) 
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Fig.  4.7:  Poincare section for vibrations of a cantilevered beam exited by periodic 
force at the undamped end 
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Fig. 4.8: Poincare section of a) undamped, harmonically exited Duffing oscillator 
(a = 0, b = 2975,/x = 0), b) slightly damped Duffing oscillator (a = 0, b = 2975, /z = 
10~2), c) Duffing oscillator with moderate damping (a = 0,b = 2975, \i — 0.05) and 
d) Duffing oscillator with large damping (a = 0, b = 2975, (j, = 1.0) 



126 Slightly Damped Systems 

limit cycle. Chaotic attractor seems close to the chaotic see for small friction though 
"the handle" in Fig. 4.8a is lost. For large value of \x the limit cycle dies, and only 
the strange attractor exists. We return to the discussion of Fig. 4.8 in section 4.5 

4.3    Thermodynamics of limit cycles 

Now we are going to show that slow change of parameters of limit cycles yields 
potential constitutive equations. 

Consider a mechanical system with one degree of freedom and the Hamilton func- 
tion which depends on time explicitly; this dependence is caused by external periodic 
forces. The period of the external force is 2TT/U. After scaling time to make the 
period equal to 2ir, 

L = up^--H{p,q,T,y) (4.9) 

Here y are the slowly changing parameters, and H is periodic in r = ut with period 
27T. The dynamical equations are 

dp__dH__   8H_        dq_ = dH_ 
dr dq dp dr      dp 

The friction coefficient p. is small. 
For Duffing's oscillator excited by an external force F{r), 

In applications, the most interesting slow parameters are the characteristics of the 
external force. For example, the coefficients of the Fourier series for F{r) 

F(T) = Y2dk cos kr + bk sin kr (4.12) 

can be the slowly changing parameters. 
Consider a limit cycle of equations (4.10). The period of the limit cycle, 6, may 

be equal to the period of the exciting force, 2TT, or may have larger values 47r, 6IT, ... 
The limit cycle is a periodic curve in (p, q, r)-phase space. This curve depends on the 
values of the parameters y. The parametric equations of the limit cycle are 

P = p(r,y),    q = q{r,y) (4.13) 

Let us average the Lagrange function of the oscillator over the limit cycle, 

a 

I = (L) = -eJ (up(r,y)^^- - H{p{T,y),q(r,y),y))dT (4.14) 
o 

The average Lagrange function, L, is a function of the slowly changing parameters, 
y- 
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Let us find the derivatives L with respect to y. We have 

?L = lf(u?E?l d2g      dH dp     dH dq     dH 
dy      6 J      dy dr drdy      dp dy      dq dy      dy ' 

Integrating the second term of the integrand by parts and taking into account the 
fact that contributions at r = 0, 6 cancel out due to periodicity of p and q, we rewrite 
(4.15) as 

dv    el 

6 rdpf   dq_ dH\ _dq_(   dp     dH\ _ dH 
dy I   dr      dp j     dy I   dr     dq J      dy dr (4.16) 

The last expression can be simplified using (4.10). We obtain 

dl ldH\        I   dq dq\ ,      N 

If the derivatives of dq/dr and dq/dy remain bounded for y, —> 0, then the last 
term of (4.17) vanishes in the limit of small dissipation, and we get 

dl        ldH\ ,      s "U) (418) 

Recalling that y is actually a set of parameters, y\,...,ym, and defining the "thermo- 
dynamic forces", Fi, by the relations 

«--(£)■     ' 
we obtain the constitutive equations, 

F,-?%& (4.20) 
dyi 

Introduction of "thermodynamic forces" by (4.19) is analogous to that in classical 
thermodynamics. The thermodynamic forces (4.19) usually have an obvious physical 
interpretation. For example, if the slow parameters are the Fourier coefficients ak, 6fc 

of the series (4.12), then 

-{^) = {qC0SkT)>    -{^) = {qs[nkT) (421) 

The quantities (4.21) are the Fourier coefficients of the response. We denote them 
by qic and qk, correspondingly. The constitutive equations (4.20) mean that there is 
a function, L, of the Fourier coefficients of the exciting force, ak, bk, such that 

dl(a, b)       .       dl(a, b) 
qk = -daT-'    qk = -dbk- (422) 
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So, the Fourier coefficients of the response are potential functions of the Fourier 
coefficients of the exciting force. 

The function L can be considered as a function of all a^ and bk, k = 1,2,.... If 
this function is known, then, for a particular excitation, say, 

F(T) — a0 + bi sin r 

the response characteristics are determined by the equations 

9o = 

9i 

(4.23) 

dL dL 
dan a\ =02 = . 

! 
..=0 

9i = da. a\ =02 = ..=0 
02 = =63=- .=0 62- =63=. .=0 

dL dL 
06, ai =02 = . 

) 
..=0 

92 = db7 01 = =a2=. .=0 
02 = =63=.. .=0 02 = =63=.. .=0 

(4.24) 

If one is interested only in the "reciprocal" characteristics of the response, q = (q) 
and q = (q sin r), then the function P can be introduced by the variational problem 

P(a0,bi) = Extr  L(a0,ai,a2,...; bub2,...) 
£>2,03.... 

(4.25) 

Here Extr stands for the calculation of the stationary point with respect to a, b. 
a,b 

The constitutive relations for q and q can be written in terms of the functions P 
as 

da0 
9 = 

dP(a0,bi 
dbl 

(4.26) 

For nonlinear vibrations, the functions L and P can be found, probably, only from 
real or numerical experiments. The range of viscosity in which potentiality holds with 
acceptable accuracy can also be determined only experimentally. For the Duffing 
oscillator (4.5) with a = ß = 1 and periodic excitation F — a + 6sinr, the function P 
has been found [22] for the limit cycle corresponding to the central island in Fig. 4.5: 

P(a0, bi) = a0 + Qia + a2a
2 + a36

2 + a4a
26 (4.27) 

Here a0 = -0.1584, ax = 0.3835, a2 = 0.1787, a3 = -0.0065, a4 = -0.0003. The 
constitutive equations are 

9P r,       t        .      dP 2 -— = o>i + 2a2a + 2a4aö,     q = -^- = or3 + a4cr 
da ob 

(4.28) 

The errors in the constitutive equations (4.28) are less than 0.1% for small friction, 
^ < 0.1. Errors reach 8% for high friction, JJL — 10. 

We call the function P the dynamical potential of an attractor. 
The constitutive equation (4.22) can be inverted, and the excitation characteris- 

tics, Ofc and bk, can be expressed in terms of the response characteristics, q~k and fa. 
In order to do that, consider the average value of H0(p,q) — pq over the limit cycle, 
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where H0 is the Hamilton function of free vibrations (the total Hamilton function, 
H, is equal to H0(p, q) - F(r)q). Setting 

L* = (H0 -pq) , 

we have 

L* = (F(r)q) -(pq-H) = (F(r)g) - L = £ akqk + bkqk - L (4.29) 

If L is considered to be a function of ak and bk, then L  is Legendre's transform of L, 
the function of qk and qk, and the following relations hold: 

dl* dl* 
ak = -;—,    bk = —- 4.30 

oqk oqk 

This statement can be put into the form of a variational principle: the response 
of the system is a stationary point of the function 

L\qk,qk)-YJ^
a^ + h^k) (4-31) 

The function L*(qk]qk) contains all the necessary information on the response. 
In principle, it is determined by the following variational problem: find a stationary 
point of the action functional of free vibrations 

I(P, q) = lf ("P^ ~ Hoip, q)) dr (4.32) 
o   ^ ' 

on the set of all functions p(r) and q(r) with period 8, which obey the constraints 

(q cos fcr) = q~k,     (q sin kr) = qk (4.33) 

The stationary value of the functional / is a function of qk, qk. It is equal to — L*. 

If the external force is presented not in terms of Fourier series but in a series of 
some set of functions, ipk(r), 

the previous relations stay valid if qk are determined by 

Qk = {q^k) 

If the oscillator has a number of limit cycles, each limit cycle is characterized by 
some potential. A change of parameters causes the limit cycles to deform, disappear, 
bifurcate, etc. The dynamical potential should play in these transformations a role 
which is similar to internal energy in the theory of phase transformations. 
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4.4    On thermodynamical entropy of limit cycles 

The constitutive equations for limit cycles (4.20), in contrast to the constitutive 
equation of classical thermodynamics, do not contain entropy. This seems quite 
natural because in the constitutive equations of classical thermodynamics entropy 
represents memory of initial data, while no memory of initial data exists for dissipative 
systems. Although, beyond doubt, there are no characteristics of limit cycles which 
possess all the properties of the entropy of classical equilibrium thermodynamics, 
there are characteristics which have some features of entropy. In this section, we 
show that for an oscillator excited by a periodic force, the relation between logarithm 
of the frequency of the external force and temperature of vibrations is similar to that 
between entropy and temperature in classical thermodynamics, and, in this respect, 
the logarithm of frequency is analogous to entropy. 

To establish this fact, we differentiate (4.14) with respect to u. The dependence 
of the functions p(r) and q(r) on UJ, which is not mentioned explicitly in (4.14), stems 
from the fact that the dynamical equations (4.10) contains a; as a parameter. The 
total contribution of the derivatives of dp/du and dq/du is zero in the same way that 
the contribution of dp/dy and dq/dy is zero in (4.15). Thus, 

IHf) (4-34) 

According to the dynamical equations (4.10), the right-hand side of (4.34) can be 
written as u~l {pdH/dp). We can define the temperature of vibrations in the same 
way as in the nondissipative case, as 

Hence, 

du      u> 

So, in addition to the previous constitutive equations (4.20), we get the constitutive 
equation 

a In u/u0 

where u0 is some characteristic frequency, for example, the frequency of linear vibra- 
tions. 

In the case of linear vibrations, the validity of the constitutive equations can be 
checked by inspection. Indeed, let H0 = p2/2m -I- kq2/2 and F = a sin ut. We have 
to check the relations 

?=<«*»<■*>-£.  TsK) = äl^M (4'36) 

The limit cycle of the linear oscillator with the friction coefficient x is 

q(r, a, u) = a sin r + ß cos r 
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where the constants a, ß are 

(k — ma2) 
a = a- 

Therefore, 

and 

For 

A ß = 
xua 

A = (k - mu2)2 + XUJ 

«^  W-s- T=m« = 
L = 

2A' 

a2(k — ma;2) 
4Ä 

2    2 ma u> 
2A 

L = 
4(A:-mu;2)'    *      2(fc-mu;2)' 

T = 
2    2 ma u 

2{k-mu2Y 

(4.37) 

(4.38) 

(4.39) 

and the constitutive equations (4.36) follow from (4.39). 
For linear friction-free vibrations the dynamical potential has a singularity when 

the frequency of excitation approaches the eigenfrequency of the oscillator, o;0 = 
Jk/m. 

In the vicinity of resonance, one might expect violation of the constitutive equa- 
tions because, in principle, the neglected terms x {qdq/da) and x (qdq/du) might be 
finite even if the friction tends to zero since q and q go to infinity. Inspection shows 
that the first relation (4.36) turns out to be true even for finite x, while the second 
one is no longer valid. It follows from (4.37) and (4.38) that for x ^ 0 

u— = T 
du> 

x2{u2 + k/m) 
(k - mu2) + x2u2 

Thus, the second constitutive relation (4.36) is true for small x away from resonance, 
and its error is on the order of x2. In the vicinity of resonance the value udL/doj 
is not equal to T. For u0 = u we have udL/du = —T. Note that the cause which 
keeps the oscillator from exploding at the resonance is the friction force. One might 
expect that in the case of nonlinear resonance, when the oscillator does not blow up 
due to an elastic Hamiltonian force, the second relation (4.36) may still be valid in 
the vicinity of resonance. 

It is natural to consider the variable q as a variable characterizing the "internal 
state" of the oscillator. Then, the variable a is the corresponding "thermodynamical 
force". In classical thermodynamics, the constitutive equations of a system with an 
internal variable q are 

a = 
dE(g,S) 

dq 
T = 

dE(g,S) 
dS 

(4.40) 

To put equation (4.36) in this form, we introduce Legendre's transform of the 
function L{a, u) with respect to the variable a: 

P = aq-L 
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Then, 

— =        ^-_M 
dq        '     du du> 

and (4.40) holds for the oscillator if entropy is determined by the relation 

S = ln^ (4.41) 

while P plays the role of energy. 

4.5    Is there thermodynamics of strange attrao 
tors? 

The limit cycle is an example of an attractor, a set in phase space which "attracts" 
the trajectories. If the force is small, then there is one attractor - the limit cycle. 
For a larger force, an additional limit cycle might appear. Depending on the ini- 
tial conditions, the trajectory approaches one or another limit cycle. The region in 
(p, q, r)-phase space for every point of which the trajectory goes to the same limit 
cycle is called a basin of the attractor. 

The appearance of two limit cycles is accompanied by an interesting phenomenon: 
vibrations become in some sense unpredictable. The matter is that the boundary 
between the two basins is extremely intricate, and a small physically unobservable 
change of initial data may turn the trajectory from one attractor to another. 

Note that each limit cycle is a solution of the dynamical equations: if the initial 
data are chosen exactly on the limit cycle, the phase trajectory coincides with the 
limit cycle. 

Further increase of the magnitude of the external force leads to the appearance 
of additional attractors with very complex geometrical structure, due to which they 
acquired the name of "strange attractors". In contrast to a limit cycle, for which 
Poincare's map consists of a single point for a cycle of period 1 or of m points for 
a cycle of a period m, the Poincare section for a strange attractor is a set of points 
with a complex geometry. A numerical approximation of this set by a trajectory of 
Dumng's equation is shown in Fig. 4.8b. Strange attractors also consist of trajectories 
of dynamical equations. In (p, q, r)-phase space they form a set which looks like 
spaghetti. Each trajectory of Dumng's oscillator approaches some trajectory on the 
attractor. 

To have sensible "thermodynamics" we need the time average over a trajectory not 
to depend on the initial data. This requires the average value of any smooth function 
over each trajectory of the attractor to be the same. It is natural to call such attractors 
ergodic attractors. The first problem we face in considering the "thermodynamics" 
of the strange attractor of Dumng's oscillator is that it is not known whether or 
not this attractor is ergodic. There are some numerical observations undermining its 
ergodicity [22]. Calculation of the average value of q as a function of 6, 

1   e 
~eJq{t)dt 
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shows that the average value keeps vibrating even for very large 9, on the order of 
r = 106. A possible reason is that the attractor consists of a number of simply 
connected interwoven attracting sets, and the trajectory keeps moving from one set 
to another. 

Another difficulty is the contribution of dissipation. Limit cycles are some dis- 
turbed trajectories of a Hamiltonian system. The disturbance vanishes if the friction 
coefficient goes to zero. An attempt to observe similar behavior for attractors has 
been undertaken in [22]. For the value of force parameters at which the strange at- 
tractor exists (a = 0.05, b = 2975), the Poincare sections for a Hamiltonian system 
were obtained (the friction p was set equal to zero). This map is shown in Fig. 4.8a. 
The well-developed chaotic sea can be seen. For small dissipation, two attractors 
were observed: a large chaotic sea and the limit cycle (Fig. 4.8b). 

Depending on the initial conditions, the trajectory approaches either the chaotic 
set or the limit cycle. It was expected that the strange attractor should appear 
within the chaotic sea if p ^ 0, while the family of tubes collapses to a limit cycle. 
Calculations during the first 50,000 cycles confirmed this hypothesis. However, longer 
runs (9 « 100, 000) revealed that each trajectory leaves the chaotic sea and goes to the 
limit cycle. There might be two reasons for such behavior. First, the strange attractor 
does exist but its distance from the basin boundary is small and the trajectory jumps 
from the basin of the strange attractor to the basin of the limit cycle due to numerical 
errors. Second, the strange attractor does not exist for very small p. The chaotic set 
is a set of "transitional chaos". After passing through this set, the trajectory falls 
into the limit cycle. It is not clear at the moment which reason is the real one. 

For larger friction, the strange attractor certainly does exist. The corresponding 
Poincare's map is shown in Fig. 4.8c. It is interesting to observe the transformation 
of the chaotic sea in Fig. 4.8a through the chaotic set in Fig. 4.8b and the strange 
attractor in Fig. 4.8c to the familiar worm-type structure of Fig. 4.8d. 

If strange attractors do not exist for p —> 0 and appear only for finite p, then 
the existence of thermodynamical potentials seems questionable in the exact math- 
ematical sense. Approximately, the potentiality of the constitutive relations may, 
nevertheless, hold for finite p with good accuracy, as we have seen for limit cycles of 
Duffing's oscillator. 

4.6     On thermodynamics of attractors: 
general case of a closed system 

The derivation of the potentiality law can be generalized to an arbitrary closed system. 
We assume that the kinematics of the system is characterized by variables u(t) where u 
is either a finite-dimensional vector or a finite-dimensional vector field. The governing 
equations are 

— + f(u,ut) = 0 (4.42) 

where L is the Lagrange function, SL/Su is its variational derivative and / is the 
friction force. The external force which causes the motion of the system is supposed to 
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be potential, and the potential of external force is included in the Lagrange function. 
It is assumed that trajectories in phase space tend to an attractor, and for / —► 0 the 
attractor converges to a set consisting of the trajectories of the limit system 

8u 

The attractor is supposed to be ergodic in the following sense: average values of any 
functional <f>(u, ut) over a trajectory of the attractor do not depend on the trajectory. 
This assumption makes the average value of any functional independent of initial 
data. 

Let L be a function of the parameters y = (yi, ...,yk)- The average value of any 
function becomes a function of the parameters y. Denote the average value of L by 

P, 
P{y) = (L) 

Determining the derivatives of P with respect to y, we get 

''[(—   —)d       f—d       f^L^i 
JQ\8u'dyi)        J dy{ \8ut dyii 

We assume that 6L/5ut and 6u/6yi are bounded for all t. Then, the last term vanishes 
for 9 —»• co. The first terms approaches zero when friction goes to zero. Therefore, 

(4.43) 

The averaged derivatives dL/dy form "generalized forces" which are reciprocal to the 
parameters y^ If yi are considered to be the input parameters of the system, (dL/dy) 
are the corresponding output parameters, and equations (4.43) are the constitutive 
equations. 

4.7    On thermodynamics of closed fluid flows 

An interesting particular case is that of a fluid flow in a container. Let us first state 
the corresponding variational principle. Consider a container (a finite region V in 3-D 
space) occupied by an ideal fluid. Let £a (a = 1,2,3) be the Lagrangian coordinates 
of the fluid particles. The Lagrangian coordinates take values in some region VQ in 
the 3-D space of Lagrangian coordinates. Denote by xl the Cartesian coordinates of 
an observer's frame in the actual 3-D space. The trajectory of a particle fa is 

x{ = xi {C, t) (4.44) 

"To know the fluid motion" means "to know the functions z*(£a, £)". 
The Jacobian A = det ||5xl/9^a|| characterizes the change of volume in the tran- 

sition from Lagrangian coordinates to Eulerian coordinates. The density p is deter- 
mined by the law of conservation of mass, 

,-»«•>*««•> (445) 
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where po and Ao are the values of the density and A at the initial time instant to. 
Note that A can be either greater or less than zero; the determinant A0 has the same 
sign as A, thus density is necessarily positive. 

We consider the motion which is not detached from or does not penetrate the 
walls: each particle, which is on the wall at the initial moment, stays on the wall in 
the course of the motion. In terms of the functions x1 (t, fa) that means 

x{(t,C)edV    if    CedVo (4.46) 

where dV and dVQ are the boundaries of V and Vo, respectively. Note that the 
boundary dV may consist of a number of pieces, some of which move. The moving 
part of dV is denoted by £(£). For example, E (t) might be the surface of rotor 
blades. 

Let the initial and final positions of the particles be given, 

x* (to, C) = 4 (?),    x* (tuC) = x[ (C) (4.47) 

Then, the adiabatic motion of the ideal compressible fluid is a stationary point of the 
functional 

to V0       
x J 

on the set of the functions xl (t, £a) which obey the constraints (4.46) and (4.47). 
Summation over repeated indices is implied. 

Stationary points of the functional (4.48) satisfy the equations of motion of an 
ideal fluid in Lagrangian coordinates 

/*«"•') ,-iE. (4 49) 9    dt* dxi {    } 

Here p is the notation for function p2dU/dp. 
Now, let the viscosity of the fluid be not equal to zero. Fluid dynamics is governed 

be the Navier-Stokes equations which have the form (4.42) with friction force fj-Avi (fj.- 
viscosity). Assuming that the problem contains slow parameters y and differentiating 
(4.48) with respect to y, we obtain under the same assumption as in section 4.6, 
the constitutive equation (4.43). The assumptions made are the boundedness of 
the derivatives dL/dut and du/dy, and vanishing of the term < (dL/dut,du/dy) > 
when the viscosity tends to zero. In the case of fluid flow, dL/dut has a physical 
interpretation of fluid velocity and, thus, is bounded. The derivative du/dy for fluid 
flow is dx(t, £, y)/dy. Its boundedness (after an appropriate time scaling, if necessary) 
seems intuitively correct. The major concern is the term < (SL/8u, du/dy) > which, 
for viscous fluids, is 

lim i  / /'-ßAvidXl{t;U) d3xdt (4.50) 
>—oo 8 J J oy dy 

o v ä 
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This term is reminiscent of the average dissipation of the flow, 

0   V J    \      J «/ 

Kolmogorov conjectured that the integral (4.51) remains finite when \JL —> 0 because 
the gradient of the velocity grows. The total orders of derivatives of x(t, f, y) in (4.50) 
and (4.51) are the same (remember that vl = dxl/dt). Nevertheless, it is perhaps 
possible that the integral (4.50) tends to zero if ß —* 0 because the derivative with 
respect to parameters may reduce the smoothness of x(r, £, y) less than the derivatives 
with respect to space coordinates and time. If this is the case, the parametric response 
of turbulent flow is controlled by one function, the dynamical potential. 

4.8    On thermodynamics of open fluid flows 

Thermodynamics of open flows differ drastically from thermodynamics of closed flows. 
The matter is that the system does not consist of the same set of particles: new 
particles permanently come into play. In order to understand the situation, we must 
first extend the Hamilton variational principle, which was originally formulated for 
closed systems, to open ones. We will do that for fluid flows; the extension to other 
open systems is similar. 

It is convenient to consider open flows in terms of Eulerian coordinates. We start 
from consideration of the Hamilton variational principle for closed systems in Eulerian 
coordinates. 

Variational principle in Eulerian coordinates. To obtain the variational principle 
in Eulerian coordinates, one needs to choose some functions of xl and t as required 
functions instead of functions of Lagrangian coordinates xJ(£a, t). A natural candidate 
for the basic required kinematical characteristics are inverse functions of xl(£a, t): 

e = e(x\t) (4.52) 

The velocity vl {£a,t) = dxi {£a,t)/dt becomes a function of the Eulerian coordinate 
x{ if £a is expressed in terms of x* and t by the means of (4.52). To obtain an explicit 
expression for the velocity in terms of the derivatives of the functions £a(£, x), we set 
the condition that the Lagrangian coordinates do not change along the trajectories 
of the particles, 

Equation (4.53) can be considered as a system of three linear algebraical equations 
with respect to three unknown quantities vx. The determinant of this system, 

det 
d£,a 

i (4.54) 

is not equal to zero, therefore 

dx 

= -4ff (4-55) 
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where g = d£a/dt, and xl
a are the components of the matrix which is the inverse 

of the matrix ||£:
a|| with ft

a = d^a/dx\ The functional (4.48) can be considered as a 
functional on the set of functions £a (x{, t) 

I {? (*',*)} = Jfpfriv* ~ U(p))dhdt = JfpLx*aXa?£W - U(P)\ d*xdt 
to V to V 

where p is given by (4.45), while A is determined by (4.54). 
The set of admissible functions £a (x\ t) is determined by the constraints 

r(x\i)edK0   if   x'edV 

(4.56) 

(4.57) 

(4.58) 

Constraints (4.57) and (4.58) are inversions of (4.46) and (4.47), respectively. 
The variational principle in Eulerian coordinates states that the real motion of 

an ideal fluid is a stationary point of the functional (4.56) on the set of functions 
fQ(2\t), determined by the constraints (4.57) and (4.58). Varying the functional 
(4.56) with respect to the admissible functions £a(x\t), one gets the equations of 
motion of an ideal fluid. For the reader's convenience, we present here a derivation 
of this fact; the derivation follows [24]. 

Consider first a functional of the general form 

ti 

1 = j j h(?,Q,$,j)dzxdt 
to V(t) 

Then, 

to \y(t) dV(t) V ' 

+ 

BV(t) 

dA 

+ 

T tl 

ad3x (4.59) 

to 

where 8A/8^a is the variational derivative, 

6£a ~ d$*     dxidg     dtdtf 
(4.60) 

rii are the components of the unit outward normal vector at dV, and c is the velocity 
of the surface dV along the normal to this surface. 

Let us show that the equation <5A/<5£a = 0 can be transformed into the usual form 
of equations of an ideal fluid, 

-JL- + TTT [pViV3 + pSj) + p   Q_\ ; =0,    p = p2      KHJ 

dt       dxi dx{ 
dp 

(4.61) 
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if 

A = p(y-C/(p,r)-*(*)) (4-62) 

$ (x) is the potential of the body forces, and the density and velocity are expressed 
in terms of fa, f? and £t

a by (4.45), (4.54) and (4.55). To transform (4.60) into (4.61), 
we need the identity 

and the relations 

Identity (4.63) is obtained by multiplying (4.60) by £f, summing over a and dif- 
ferentiating by parts, 

faM = cadA _ _d_ (   dA\ _ d_       dk\      dAdtf     dAdtf 
* 6£a     * ae     dxk V?t dtf)     dt V?I d&J     d& dx'     dtf dx{ 

Here 5,-A is the partial derivative of A with respect to x{ for fixed £a, ff, ££
a. To derive 

(4.64), we need the relations 

The first formula, (4.65) is obtained by differentiating the equality xj,£* = 5} with 
respect to f£, 

and contracting with x{. The second formula (4.65) follows from the relation ^- = 

A-1^. Indeed, 

^r1 = 7T-P0A0A * = ox* 

The last two relations (4.65) can be derived from the first one and (4.55) 

^ - -JLx*f> - X*XW - -x'vk  — - -x* 

Equation (4.61) follows from (4.60) and (4.64). 
If the positions of the particles are prescribed at t = £0> *i. then <9£a = 0 at t = to, t\ 

and the last term in (4.59) vanishes.   If the particles do not penetrate through or 
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inlet outlet 

Fig.  4.9: Geometry if the particle trajectory in space-time for closed (a) and open 
(b) flows 

detach from the boundary, c = v&i, and the second term in (4.59) vanishes as well. 
Thus, the condition 51 = 0 results in the equations of motion of an ideal fluid. 

Note for further reference that in accordance with (4.64), the variation of the 
action functional becomes 

61 = Idtl    f dCxi [(-pViV* + (A - p) 5{) rij + pvic] d2x\ -     I d^x^pVidPx 
<o       lav« J      \y(t) J£o 

(4.66) 

Variational principle for open flows. To obtain an extension of the formulated 
variational principle to open flows, consider motion in four-dimensional space-time. 
A symbolic picture of motion in a closed container is shown in Figure 4.9a. Each 
trajectory connects the initial and final positions of the fluid particles, which are 
considered to be given. A typical open flow is shown in Fig. 4.9b. Each trajec- 
tory also connects the initial and final positions, but now some of the initial posi- 
tions are at the inlet of the flow, while part of the final positions are at the outlet 
of the flow. In closed flows, the most natural choice of Lagrangian coordinates is 
an identification of Lagrangian coordinates with Eulerian ones at the initial time, 
^l(xi,tQ) — z\£2 (x\£o) = z2!^3 ix\to) = z3- In open flows, it is easy to identify 
one of the Lagrangian coordinates with the moment of the appearance of the parti- 
cle, while two others can be coordinates of the point at the inlet, where the particle 
appears for the first time. 

Consider now the initial and the final positions of the fluid particles at the inlet 
and outlet as given. The stationary points of the action functional are sought on 
the set of functions £a (xl,t), which satisfy constraints (4.57), (4.58) along with the 
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following conditions at the inlet and the outlet: 

f (*'»*) =&(/>*)     at the inlet 

£a(x\ *)=&*(!',*)    at the outlet 

(£t
a
n and ^t are some prescribed functions). Then, the second term in (4.59) vanishes 

even if there is a flow through dV. Thus, the action functional has a stationary point 
at the real motion of an ideal fluid. 

Parametric response of open flows. Consider the flow of an ideal compressible 
fluid through a region V. To include into consideration the case of compressor flow, 
we assume that there are some moving rigid bodies (e.g. rotor blades) inside the 
region V. The surface of the moving bodies is denoted by E(0- In addition, there 
nüght be vortex sheets: the moving surfaces S(t) on which the tangent components 
of the velocity have a jump while the normal components are continuous. 

The inlet and outlet are flat surfaces. Denote the Cartesian coordinates of the 
inlet by xQ(a = 1,2). The coordinate x3 is directed along the normal to the inlet and 
the outlet. Particles entering the flow field are marked by Lagrangian coordinates 
£Q,£3 = f. We choose £Q to be equal to the coordinates xa of the point of the inlet 
where the particle appears for the first time, while f is identified with the time when 
the particle enters the flow. 

The derivatives d^/dx* and di/dxi can be expressed in terms of velocity at the 

inlet as a -, 

«-«. s-~- & = °- ä-~ (4-67) 

where va and v = v3 are the transversal and the axial components of velocity at the 

inlet. 
To derive (4.67), we note that according to the way £Q and f were introduced, at 

the inlet „ ac Pc 

?£-6«     Bl = o     A = 0     ?£ = 1 (4.68) 
dp-öl"     dt        '     dx°       'dt K      ' 

Using equations (4.53) at the inlet, 

dxP       dx3 ox3 

and (4.68), we arrive at (4.67). 
At the inlet, the matrix ||a£|| has components 

** = <!£,    Z3=-üQ>    4 = 0.    xl = ~v 

and the determinant AQ = —v. 
The natural control parameters of fluid flow are discharge Q, frequency of rotation 

of the moving body v, and the parameters of the geometry A. (We denote by A the 
set of geometrical parameters A1(..., Xs.) 

It is assumed that £a are some functions of xQ, r = i/t, v, Q, A, and have bounded 
derivatives with respect to these arguments. 
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According to the formulated variational principle, we define the dynamical poten- 
tial P by the relation 

P (Q, ", X) = UP (^ - U(p)yzx\ (4.69) 

Here and until the end of this section (.) means the average with respect to dimen- 
sionless time r over the attractor. 

Let us find the derivatives of P with respect to parameters Q, v and A. As 
for a nonlinear oscillator, one can use formula (4.59) to determine these derivatives. 
However, there are complications requiring some corrections of (4.59) for this purpose. 
First, the integrand in (4.69) depends explicitly on parameter Q. Dependence on 
Q appears by means of the determinant A0 through the expression for the density 
p = p0A0/det ||<9£/cb||. Since A0 = —v, where v is the velocity at the inlet, a change 
of Q causes a change of A0. One may assume that v is proportional to Q: v — Qu, 
where u is some function of xa independent of Q. Second, the integrand in (4.69) 
depends also explicitly on v. Dependence on u is caused by the dependence of the 
velocity on v for any given r, vl = —xx

a£%v (££ = dE^/dr). Third, the geometry of the 
region V is changed due to the variation of the parameters A. 

The contributions to (4.59) caused by the variations Q and v are 

V(t)  v 

The change of position of piece B of boundary dV causes an additional term 

(fASnd2x) (4.71) 

to appear where 8n is the displacement of B along its normal.   Collecting (4.59), 
(4.70) and (4.71) and taking into account (4.66), we obtain 

6p=fr(H)+v(/-^>+ 

(/ dCx\ [{-pViVj + (A - p) 5{) nj + pvic] d2x\ + U A6nd2x\ (4.72) 

The last two terms may be written more elaborately. The boundary dV consists 
of inlet, outlet, moving surfaces £(£) and S(t), varied surface B and a remainder, 
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which is some immovable surface A. At A, Sn = 0, c = 0, t/'nj = 0. The vector d£,axx
a 

is a tangent to A. Thus, the surface integral over A in (4.72) disappears. 
At the inlet, £Q = xQ and £ = £ independently of the value of the parameters Q, 

v and A. Therefore, d£a = 0. Since <5n = 0 at the inlet as well, the surface integral 
over the inlet vanishes. 

At the outlet, c = 0, Sn = 0, and the integral over the outlet is 

/ I dfxi {-poi6> -p(Z + U-jJ S^j n3d
2x^ (4.73) 

outlet 

The vector diax{
a has a simple geometrical interpretation. Consider the position 

vector of the particle £a : x{ (r,fa, A). The identity 

x{{T,e (r,x,A),A)=x' (4.74) 

holds. Differentiating this identity with respect to A, we get 

dxi dfa     dxl 

!±LEl. + ?±. = 0 (4.75) 
ae dX     dX y     ' 

Hence, dxl = — d^ax'a is the translation vector of the particles at the outlet caused 
by variation of the parameters. 

It is convenient to write (4.73) in terms of enthalpy, i = U + (p/p), 

/ f  dCxk
ap Lvi + (* " y) ti) M2*) (4-76) 

At the surface, E (£) vjrij = c. If the set of parameters A does not contain geomet- 
rical parameters of the surface E(£), i.e. E(£) moves in the same way for all values of 
A, then Sn = 0 at E (£), while the vector dxl = —xl

ad^a is tangent to E. Therefore, 
the integral over E is equal to zero. 

At the surface- S, integration is conducted over both sides of S. Since on each side 
vini = c and öx'rzj = Sn, the integral over 5 is equal to 

f dxini [p] d2x\ (4.77) 
?(t) ' 

where [p] is the pressure drop across S. One may assume that pressure is continuous 
on vortex sheets. Then (4.77) vanishes. 

At the surface B, dxlni = Sn and vjnj — c. Therefore, the integral over B is 

*x USnpd2 

Denote by F a generalized force corresponding to a change of A, 

-(/&*> 
F 

xß 
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Note an important case: if A is the radius of some pipe inside V, then F coincides 
with the integral of the average pressure over the pipe surface, 

F = j(j>)d2x 
B 

Finally, for 6P, we have 

- / J dCx{
ap (vkv> + (* - y) S{) njd2x\ + / f Snpd2x\ (4.78) 

hutlet ^ \ /       / / \g+2 / 

Consider the most practically interesting case, where the tangent velocity at the outlet 
is negligible compared to the axial velocity. Then, the third term becomes 

-I j  dCx[nkp {^vkv
k + i) d2x\ (4.79) 

butlet ' 

Assume that fluctuations ofd^x^ and dynamical enthalpy v2/2+i are small compared 
to their average values. Accept also that the average value of the dynamical enthalpy 
is practically constant over the outlet. Then, the integral (4.79) is simplified to 

-I  J  d{Sa){xi)md2x (4.80) 
outlet 

where / is the average dynamical enthalpy, 

/=(pQvfct;
fc + t)) (4.81) 

Further simplifications are possible if we assume that the average value (£Q) does 
not depend on A due to turbulent mixing: it seems reasonable to accept that any fixed 
point of the outlet can be reached from any point of the inlet with some probability 
and the probability distribution does not depend on values of A. Then, the average 
value (£a) certainly does not depend on A. The difference t — (£) is the average time 
which particles spend inside the device, and we denote it by 0(A). The factor (x\) rii 
can be transformed into (dx'/^O ^t = dx/dE,, where x = (x3). The function x (£, A) 
determines the (average) position of a particle on the x3-axis, which was at the inlet 
at instant £. Since fluctuations of £ (£, x, A) are assumed to be small compared to 
{£ (i, x, A)), in the vicinity of the outlet (£)«£ — 0 (A), and differentiation of x with 
respect to f is equivalent to differentiation with respect to time. Thus, dx/dE, is equal 
to the average velocity at the outlet, vout. Finally, (4.79) becomes 

Id® (4.82) 

where / = ISoutV0ut, and Sout is the cross-sectional area of the outlet. 
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Collecting (4.78)-(4.82), we arrive at the constitutive equations 

dP_ 
dQ 

(4.83) 

i r jr/infi M) ran be neglected (which seems possible lor nign 
U fh:ÄisÄ) h nt 'hTe toelunctd P, / and 6 which should be 
found hour ex"lt order to establish the constitutive relations. 
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Abstract. The problem of truncation of continuum equations is discussed. It is shown that, 

under some conditions, the modes are splitted into two categories: leading modes and driven modes. 

Dynamics of driven modes is completely determined by dynamics of leading modes. There is also 

some backward interaction: the standard truncation ignoring the influence of the neglected modes 

on the kept ones may yield incorrect results. A simple rule for incorporation of the influence of the 

driven modes is proposed. The limitations for this rule are outlined. The general statements are 

supported by numerical simulations for string vibrations. 

1    Introduction 

Experiments show (see, for example, [1], [2]) that, usually, only a few degrees of freedom are 

effectively excited in vibrating elastic structures which possess, in principle, infinitely many 

of them. The purpose of this paper is to discuss this phenomenon, and develop a method of 

constructing adequate finite-dimensional models. 

"Member of ASME 



The truncation problem can be formulated as follows. Kinematics of any elastic contin- 

uum can be described by a countable set of generalized coordinates qi,... ,qn,.... Vector 

with the components (91,..., qn,...) is denoted by q. Physical properties of the structure 

are given by the expressions for kinetic energy K(q,q), elastic energy U(q), and dissipative 

function D(q,q). External forces are assumed to be potential, the potential is denoted by 

$(g. t). Lagrange's function of the system has the form 

L(q,q,t) = K(q,q)-U(q) + $(q,t). (1.1) 

We assume that K and D are positive quadratic forms with respect to q{. 

K = -a%j{q)qiqv (1.2) 

D = -ßij{q)qiqj. (1.3) 

Summation over repeated indices is implied. The governing dynamical equations are 

±dL_dL     dD_n 

dtdqi      dqx      dqi ^ ' ' 

Friction coefficients \x^ are supposed to be small; the only role of dissipation in our study 

is to lead phase trajectories to an attractor. 

A distinctive feature of elastic structures in the framework of physically linear theory is 

that elastic energy is a quartic polynom of q: 

U = -Aljqiq.j + -Aijkqtqjqk + -Aijklqiqjqkqh (1.5) 
2 3 4 

while "masses" a^ are some constants. 

The questions under consideration are: in which cases the infinite-dimensional dynamical 

system (1.1)-(1.5) can be approximated by a low-dimensional system? How to construct the 

low-dimensional system? 

We single out a class of problems for which we show that the low-dimensional system has 

coordinates qi,. ■ ■ ,qk and the effective elastic energy of the system can be taken as 

Ü(qi,...,qk,t)=      min     (U(q) - ${q,t)). (1.6) 
9k + l,<?k+2v 



(1.7) 
Qk + l=Qk+2=-=0 

For the case of string vibrations, truncation (1.6) works with good accuracy while the stan- 

dard truncation 

Üat(qi,...,qk,t) = U{q)-${q,t) 

may yield incorrect results. 

In terms of continua the truncation (1.6) means the following. Let U(u) be the energy 

functional of elastic medium occupying the region V, u is displacement field in V. Denote 

by </> the eigenmodes of linear vibrations of this media normalized by the condition (p - mass 

density): 

J p<pi(pjd3x = 6ij. (1.8) 
v 

Let $(u, t) be the linear functional of the work done by external forces. Consider the varia- 

tional problem 

Ü = mm[U{u)-${u,t)], (1.9) 

where minimum is sought on the set of all admissible functions u obeying the constraints 

(u<pi) = qu ..., (u(pk) = qk (1.10) 

and t is a parameter.   Minimum value in the variational problem (1.9) is a function of 

qi,...qkaadt: Ü = Ü{qu ...,qk, t). 

The Lagrange's function of the proposed truncation has the form: 

-      l   k 

L = ~J2q- -Ü(qu...,qk,t). (1.11) 
2 i=i 

The way to choose the leading modes fa,..., <pk and the number of modes k is discussed in 

Section 6. 

The text is organized as follows. In the next Section we describe the idea underlying 

our approach. In Section 3 the basic equations for the example studied numerically, the 

string vibrations, are presented. In Sections 4 and 5 the counter examples for validity of the 

proposed truncation are presented; they outline the expected range of applicability of our 

approach. Then, in Section 6, we show that our truncation works better than the traditional 

one. 



2    An observation 

First, consider the truncation problem in the simplest case of linear vibrations when q are so 

small that the terms of the third and fourth order in (1.5) can be neglected. It is convenient 

to make a linear change of variables diagonalizing matrices atj and Ai:j; matrix atj can be 

made unit under this transformation. The new variables are called mode coordinates and 

have the sense of the amplitudes of eigenmodes. We keep for the mode coordinates the same 

notation, q. In mode coordinates, Lagrange function takes the form 

L = JE[-qf-lAiqf + Fi(t)qi). (2.1) 
i •„      i 
-c 

The system forms a set of noninteracting oscillators with unit masses and rigidities Ai. 

Rigidity Ax is related to eigenfrequency of the ith mode ut by A{ =H>1. It is assumed, for 

simplicity, that all modes have different eigenfrequencies. The modes are numbered in the 

order of increased eigenfrequencies. 

Truncation of an infinite-dimensional system makes sense if its motion is finite-dimensional. 

This means that the motion of the system can be recovered with an appropriate accuracy in 

terms of motion of some finite-dimensional system. At first glance, truncation of the linear 

system (2.1) is impossible because external forces may excite as many modes as one wishes. 

However, the situation is not so hopeless due to the following property of elastic structures: 
O 

uii—* oo     if    i —► oo. To make use of this property let us change variables 

ft -► Xj : Xi =ut ft. (2.2) 

In the new variables Lagrange function takes the form 

i-Ef-^-H + ^'V (2-3) 
o-2 

We see that "masses" ui tend to zero for i —► oo. Therefore, if the spectra of Fi(t) are 

bounded and do not contain components with the eigenfrequencies ui} inertia terms can be 



neglected for large i, and we arrive at the static problem: to find xt for large i one has to 

minimize the function 

■^(^-T) 
In this formula time t plays the role of a parameter. 

This simple observation forms the basis of our approach in nonlinear case. Let us denote 

by Aijk and A^u the ratios 

A-u=   Bi# /I,,—    Bi>k 

The equality sign = means that there is no summation over repeated indices. 

The change of variables (2.2) yields the following expression for energy function U - $ : 

U - $ = \xxxx + ^AijkXiXjXk + \AijiaXiXjXkXi - Fl(t)xi/ ut . 

Let Aijk and Aijki be bounded for all i,j, k, I. Masses of modes in xt-variables tend to zero 

for i —► oc. It is natural to assume that for sufficiently large k, depended on the accepted 

accuracy masses of all modes with i > k can be set equal to zero. Then determination of all 

Xj with i > k becomes a static problem: for given xi,...,xk and t find the minumum value 

of the function 

Ü{x1,x2,...,xk,t)=     min     ([/-$). (2.4) 

Then dynamics of the truncated system is governed by Lagrange's function 

Z = Y,l-il-Ü{xu...,xk,t). (2.5) 

Returning back to the g-variables we obtain the formulas given in Introduction. 

In reality, the situation is not so simple. There are some obstacles for our rule to be true. 

We discuss them in Sections 4 and 5 for the case of nonlinear string vibrations. In the next 

Section the equations of string dynamics are introduced. 



3    Strings 

Consider plane nonlinear vibrations of an elastic string of the length I with pinned ends 

(Fig.l). Let w(t,x) be the lateral displacements of the string. 

For moderate amplitudes, kinetic and potential energy are as follows: 

K = J\pAw\ dx. (3.1) 

U ■/{ AEy :(7 + :u>x2)2 + -/i2u& F(x,t)w \ dx (3.2) 
.2 2 

0 

Here p, A, 7 and EY are mass density, cross-section area, initial longitudinal strain and 

Young modulus, respectively; derivatives with respect to x and t are denoted by the corre- 

sponding indices. Constant h is determined by the diameter and shape of cross-section and 

proportional to y/Ä. For circular cross-section of diameter d and isotropic material h = d/A. 

The first two terms in (3.2) are extension and bending energies, the last term is the potential 

of external force F[x.t). 

Let us introduce dimensionless variables 

y = 
w 

u — EYI 
t,     / = 

FlyfFi 
V V27'     '      V2p/2"'     J      AEvi2' 

In these variables the dimensionless Lagrangian takes the form: 

(3.3) 

K-U 
EYAl~f2 I [2^ " (2^ + T'y+ \au2yy) + /(r'y)u]dy- (3-4) 

Parameter a = h2/jl2 is the dimensionless bending rigidity, it is small for thin strings with 

high initial tension and increases if initial tension is released. Nonzero bending rigidity 

provides the dispersion of linear waves. 

String dynamics is described by the equation 

U-T = \uv + u: 
y 

au yyy Jy 
+ /(T.y) + g{u,uT), (3.5) 



where g is friction force. Physical nature and special form of friction force is inessential for 

what follows since damping is assumed to be small. 

Consider a pinned string: 

U{T, 0) = U(T, 1) = uyy(T, 0) = Uyy(T, 1) = 0. (3.6) 

The linear eigenmodes of linear vibrations are: 

Uk(y) = sirmky. 

Any function u(r, y) can be presented in the form of Fourier series of eigenmodes 

OO 

u{r,y) = 53 afe(r)sin7TÄI/. (3.7) 
jfc=i 

In modal approach the dynamics of strings is considered in terms of mode amplitudes 

ak(r). To obtain dynamical equations for ak{r) one has to express Lagrange's functional 

(3.4) in terms of mode amplitudes ak. Substituting (3.7) into (3.4) we have: 

00   f 1      2      1  / l7r4o° 
2L = Y,\-2

ak   -2\l + (J^k)2)W2al + fkak\-—    Y,    klmnAklmnakaiaman. (3.8) 
fc=l k,l,m.n=l 

Here we use the notation: 

fk   =   2 /   f(T,y)sinirkydy, 

o 
= ö    [    6(k + l + m-n) + 8(k +I - m + n) (39) 

+ 6(k + l-m-n) + 6(k-l + m + n) 

+ 6(k — l + m — n) + 8(k — I — m + n) 

+   6(k — I — m — n)}, 

where 6(k) means the function which is equal to zero for k ^ 0, and equal to unity for 

k = 0. Dot denotes derivative with respect to r. Note that interaction between modes is 

very complex: each mode interacts with all other modes. 



It is seen from (3.8) that Lagrange's functional, and, henceforth, the equations, can be 

simplified by the change of unknown functions ak —»• bk: 

bk = nkak. (3.10) 

In terms of bk, Lagrange's functional takes the form 

2£ = E 
jfc=i 

bk   —(l + a(irk)2)bl + ^bk   --    J2    Ak^bkbtbmbn.        (3.11) 
_2(TTA:)

2
   

K
      2 V K   "' ) "k     Trk 

The corresponding equations of motion are 

k,l,m<n=l 

1 " °° f 
-—^ bk= - (l + a{7Tk)2) bk-2    Y,    ^kimnbibmbn + 4 

Coefficients Aijki characterize nonlinear interactions between modes. They all are of order 

unity. Note an important property of Aijk{ following from (3.9) : if i is even and j, k, I are 

odd, then, since ±j ±k±l are also odd, Aijki = 0. Similarly, Aijki = 0 if i is odd and j, k, I 

are even. This means that even modes themselves cannot excite odd modes and vice versa. 

Even modes act on odd modes only if the latter have already been excited (& for at least 

one odd i are not zeros). The same is true for influence of odd modes on the even ones. 

Let spectrum of external force is zero for frequencies greater than 7rA;oy 1 + a(irk0)
2, k0 

is some integer. In accordance with the recipe proposed, one has to put the left hand 

side of equations (3.12) equal to zero for all k > k0. Then equations for bk, k > k0. 

become algebraical equations. This simplifies essentially the numerical procedure because 

the time step for integration (which should be a small fraction of the shortest timescale in the 

system) now can only be chosen small enough to resolve the vibrations with the frequency 

■nk0\Jl + a(7rk0) , much larger than if we had to resolve vibrations with higher frequencies. 

There are some obstacles for this recipe to be universial. One of them is equipartition of 

energy for high energy vibrations. 



4    Obstacle One: Equipartition of Energy. 

Free vibrations. For the first time equipartition of energy in string-like systems has been 

studied numerically by Fermi, Pasta, and Ulam in 1954 [3]. They considered a finite- 

difference truncation of equation (3.5) with a = 0, / = 0,g = 0. Equations of their finite- 

difference approximation are equivalent to dynamical equations of a finite chain of mass 

particles connected by nonlinear springs. It was a common belief that nonlinear systems 

with very many degrees of freedom should move ergodically. One of the features of ergodic 

motion is equipartition of energy. In the case of a chain of mass particles equipartition of 

energy means that averaged kinetic energies of all particles are equal: 

(™i??) = (m292
2) = ••• = {mNq2

N) . (4.1) 

Here m, and qt are the mass and displacement of the ith particle, and (•) means time average 

over trajectory: for any function (p(q, q) 

(4>)=}im^J<t>(q(t),q(t))dt. (4.2) 
o 

Average value in (4.1) does not depend on trajectory for ergodic systems.   The common 

value (4.1) is called by definition absolute temperature. 

Numerical simulations have been conducted by Fermi, Pasta, and Ulam for a chain of 

initially disturbed 64 particles. The expected equipartition of energy has not been observed. 

This "paradox" was named Fermi-Past a-Ulam (FPU) problem. Explanation has been given 

by KAM theory [4].   For small values of initial energy the nonlinear system stays close 

to the linear system which is integrable and, therefore, is not ergodic.   Further numerical 

studies supported this explanation.  It was shown ([5] - [8]) that there is energy threshold 

exceeding of which yields equipartition.  In their experiments Fermi, Pasta, and Ulam did 

not reach energy threshold. Note that the laws of equilibrium statistical mechanics, and, in 

particular, equipartition of energy, are based only on ergodicity of motion and stay valid for 

low-dimensional systems (see [9], [10]). 



If equipartition of energy occurs none of the modes can be neglected. Thus, there is a 

necessary condition for applicability of our truncation: energy of vibration should not exceed 

energy threshold. 

In order to determine the value of energy threshold we conducted a series of numerical 

simulations for the system with the number of modes N = 8,12, and 16. In terms of finite- 

difference truncation it corresponds to a chain of approximately 80 to 160 particles if one 

put 10 particles per the shortest spatial wave period which is 1/16 - 1/8 in our case. The 

integration has been performed using Runge-Kutta scheme of the 7th order, with resolution 

of 70 to 200 points per period of the highest mode. The accuracy of integration has been 

verified by two methods: conservation of energy and reverse integration. The total energy 

was proven to conserve with 10_T accuracy for the runs being as.long as 10,000 periods 

of the lowest mode. Within a range of nondimensional energy values up to 1 (far above 

equipartition threshold) the integration was reversible within an interval of approximately 

5,000 longest cycles1. 

To verify the tendency of the system to equipartition we create some initial perturbation 

and track the temporal behavior of the mode temperatures Tk = (62/27r2/c2), k = I,.... N. 

A typical dependence of temperatures T* on time is shown on Fig.2 for a moderate value 

of initial energy. It is seen that no equipartition is observed. 

We found that for energy of initial disturbance exceeding some value E* = 5 * 10-2 the 

typical picture of dependence of modal temperatures on time is like shown in Fig.3. It is not 

clear whether the value E* = 5 * 10~2 is really a good approximation for threshold energy. 

First, E* should be the energy threshold for most of initial data while we have checked 

this fact for several dozens of initial data. Second, the trajectories of the dynamical system 

(3.12) exponentially diverge if initial energy is of an order E*, and it is not clear whether 

our numerical simulations reflect correctly the dynamics of original dynamical system. 
:The transition time to equipartition is typically longer with only a few modes excited initially, but for 

initial values close to equipartition it is usually reached within a few thousand cycles. 
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The value of threshold energy E* = 5 * 10~2 is very close to the values obtained earlier 

in [11] (and, after appropriate scaling, [6] - [8]). In contrast to the previously conducted 

computations for chains, in our simulations the equipartition state has been reached in 

many cases with very low initial energy. The most probable cause is the absense of exact 

mode resonanses in chains (see below). 

To estimate whether the oscillations in real strings can be close to equipartition, consider 

a 10m long steel string with Young modulus EY ~ 2 * 10nPa, cross-sectional area 0.1 

cm2, and pre-strain 7 = 10-3. Then energy of vibrations corresponding to non-dimensional 

equipartition energy E* = 0.05 is about 2 Joules, characteristic strains are of order 3 * 

10~4 while characteristic lateral displacements of order 0.5m, this value is large but not 

unattainable. 

Fig.3 exhibits the behavior of the mode temperatures in course of free dynamics of a 12- 

mode system (3.12) without dispersion and dissipation. Initially the first four modes were 

excited with amplitude 0.2 and zero initial velocity (corresponding to nondimensional elastic 

energy of 0.095). The final temperature spectrum is almost homogeneous, thus very close to 

equipartition state. 

To quantify the degree of equipartition reached the following characteristic can be em- 

ployed: 

[EM2 

c* (4.3) 

where T{ are the mode temperatures. The characteristics C* has a simple meaning. If only 

one mode is excited, C* = 1. If all modes are excited and equipartition holds, I\ = T2 = 

... = TN, and C* = N. Thus, C* measures how many degrees of freedom are involved 

in motion. Maximum value of C* is equal to N. It is reached only if equipartition holds. 

Hence, C* is also a measure of equipartition. To compare different motions, it is convenient 

to normalize C* and consider the number C = C*/N, which represents the relative amount 

of effectively excited degrees of freedom. Dependence of C on time shows how the new 

degrees of freedom are being involved in motion. The typical dependence is shown in Fig.4. 
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This Figure illustrates the results for four runs with duration 1,500-3,000 cycles; the system 

(3.12) has been excited with zero velocities and initial potential energy evenly distributed 

among the first four modes. The computaions are performed for initial energy 0.002, 0.01, 

0.05 and 0.095. 

At moderate energies of initial perturbation, the process of establishing of temperature 

equilibrium can take very long time. In such cases the temporal behvior of the value C can 

give a clue to future dynamics. 

It can be clearly seen that the system provided with higher energy reaches equipartition 

very fast, just in a few hundred longest oscillation periods. The less energy is supplied to 

the system initially, the longer it takes to reach equipartition. When the energy is less than 

some certain value, equipartition seems never be reached. The insert in the Figure shows 

the temperature spectra at the end of the runs. In a case of E = 0.002 temperature of the 

first and second modes are by more than an order more than those of modes 7-12, showing 

no equipartition. 

Figure 5 supports our conclusion that energy threshold value is 0.05. It is seen that 

for E* > 0.05 practically all modes are equally excited for all tested initial conditions. For 

E* < 0.05 there are initial conditions for which energy is not equipartitioned among modes. 

Note that the equipartition of energy can be reached from some initial conditions at 

energies substantially smaller than E*. This implies further limitation for the truncation 

proposed. 

Other aspects of this topic can be found in [11], [12]. 

Forced vibrations. In the case of forced vibrations energy is no longer an integral of 

motion. The major characteristic of the level of nonlinearity becomes averaged energy. 

We conducted numerical simulations for the case of a concentrated force T acting per- 

pendicularly to the spring at a point very close to one end: 

T{r,y) = f6{y-y0)cosuT, y0 < 1. 

12 



The corresponding modal force magnitudes fk are 

fk = 2Jrsin7rA;yoCosa;r ss 2J7irky0cosu!T. 

The product M = Ty0 represents the moment acting on the string near its pinned end. 

Figure 6 represents the temporal behavior of the system being excited with a moment 

M = 0.01,0.035, and 0.1 oscillating with a frequency u — ir. The excitation frequency 

has been chosen equal to the eigenfrequency of the first mode to shorten the transient 

process. The average values of total energy near the end of each run were 4.6, 0.31, and 0.07, 

respectively. 

5    Obstacle Two: Mode Resonanses. 

In linear approximation modes do not interact. Each mode is excited directly by external 

force. Our truncation does certainly work if the spectra of external forces do not contain 

eigenfrequencies. Otherwise, inertia terms are of the same order as elastic forces and dynam- 

ics of high modes is far from being static. If energy of vibrations increases, nonlinear mode 

interactions are activated. The dynamical behavior of the structure becomes depending cru- 

cially on whether the eigenmodes are in resonance. Consider for example system (3.12) for 

c = 0, fk — 0, gk = 0. Let the first mode is excited initially. The spectrum of the first 

mode contains the frequency u1= ir. Coefficient A3ni ^ 0. Therefore the spectrum of elastic 

interaction force A3mxf contains the frequency 3 Ui= 3ir which is the linear eigenfrequency 

of the third mode. Hence, vibrations of the third mode will be resonant and inertia term 

will be of the order of elastic force. Considering the fifth mode we note that the coefficient 

A53n is non-zero. The spectrum of interaction force A53Ux3xl, acting on the fifth mode, 

contains the frequency 57r which is its eigenfrequency. Thus, the fifth mode also vibrates in a 

resonance regime. Continuing this consideration we see that all modes have in their spectra 

resonant frequencies, and inertia terms cannot be neglected.   Fortunately, the considered 
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case is the worst one: if a is not zero, the eingenfrequencies are, in general, detuned, and 

our truncation start working. Here are some numerical examples. 

Figure 7 illustrates the free dynamics of a 12-mode system (3.12) with a very small 

dispersion coefficient a = 10~4, with initial conditions exactly the same as for a case shown 

in Fig.3. The energy of initial excitation E = 0.104, which is definitely above the energy 

threshold found in Section 4 for a = 0. 

We see a remarkable phenomenon: the temperature distribution in the system is far from 

equipartition - it eventually evolves to a steeply decaying spectrum shown in the insert, 

where temperature of the first mode is six times greater than that of the 12th mode. This 

shows that the resonances play a crucial role in the formation of ergodic behavior. The 

system with a very small detuning from resonances does not exhibit ergodic motion for the 

same level of energy. 

To further explore the effect of detuning on equilibrium temperature spectrum, several 

runs have been performed for a = 0,..., 0.01. The dependencies of C on time for cases with 

a = 0,10~4, and 10~2 are shown in Figure 8 together with terminal temperature spectra. 

In the last case the value of C is almost constant, showing very little energy transfer from 

initially excited four modes to upper ones. 

Note that if one approximates the string of length unity by a chain of N particles ([5]- 

[7]), the following dependence of linear eigenfrequency of the fcth mode on a mode number 

k appears ([13]): 

c^-2sin2^ = 0. 

Since this dependence is nonlinear, there is no exact resonances between modes, and redis- 

tribution of energy among modes occurs at higher energy levels. This explains the fact that 

equipartition threshold found for chains exceeds that for system of modes (3.12) with «7 = 0. 
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6    A Justification of Truncation. 

The above observations suggest that in a nonlinear system with many degrees of freedom 

truncation is possible if there are no exact internal resonances between the modes, and the 

vibration energy is less than energy threshold. If, in addition, energy is pumped into low 

modes, the higher modes become driven by lower ones, while kinetic energy of high modes 

is negligible, and the truncation proposed might work. 

To check the accuracy of our truncation we consider the 12-modes vibration as "exact", 

and approximate it by 2-mode truncation, i.e. by putting masses of the 3rd to 12th modes 

equal to zero. Amplitudes of the 3rd to 12th mode vibrations are determined by static 

equations. The string is excited by a periodic moment acting near the pinned end, and 

damped by equal friction forces gk = const. The standard 2-mode truncation corresponds 

to equating the amplitudes of higher modes to zero. 

Figure 9 represents the distribution of elastic energy over the modes for forced vibrations 

of the exact 12-mode system, the standard 2-mode truncation and the proposed 2-mode 

truncation. Elastic energy of the kth mode is, by definition, (\{l + air2k2)b2
k). It can be 

seen that the proposed truncation has remarkable accuracy, while the standard truncation 

substantially overestimates the values of energy of lower modes and gives no information 

about the motion of higher modes. 

Fig. 10 shows how increasing the number of the modes kept improves the standard trun- 

cation. Comparing Fig.9 and 10 we see that even 6-mode standard truncation does not work 

as good as 2-mode truncation proposed. 

It is difficult to expect that any truncation can predict instant characteristics of vibra- 

tions. Integral characteristics, nevertheless, should be predicted, otherwise the truncation 

is useless. Among integral characteristics the most interesting are the energy spectra and 

distribution functions. Distribution function f(a) of some function of time 4>{i) determines 

the portion of observation time, f(a)Aa, during which function 4>(t) takes the values in the 

interval [a, a + Aa]. Figure 11 illustrate the distribution functions for the 1st and 2nd mode 
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momenta, respectively. The distribution functions have been calculated after the transition 

period is over, and the system moves over the attractor in phase space. 

Note that distribution function of the harmonics, Acost, is f(a) = 1/y/A2 - a2. It has 

singularities at the points a = ±A because the harmonics spend considerable time in the 

vicinity of its maximum and minimum. In numerical simulations, since the averaging is made 

over a finite time interval, singularities are transformed into sharp maxima. Multiple maxima 

observable in Fig. 11 correspond to multiple harmonics of the excitation frequency. It can 

be seen that distribution functions of the proposed truncation match the exact ones with a 

good accuracy for the first mode and qualitatively correct for the second one. Although the 

distribution function differs more for the second mode, it predicts average values (p2) and 

(p4) with accuracy 0.12% and 0.44%, respectively. 

7    Conclusion 

We have shown that a possible mechanism of low dimensionality of elastic vibrations of 

continua is the fast decay of inertia with the number of modes. The neglection of inertia 

terms for higher modes yields a low-dimensional model with good predictive power. This 

"massless" approximation fails if energy of excitation is too high and/or there are resonant 

modes. 
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Figure Captions 

Fig.l. Elastic string with pinned ends. 

Fig.2. A typical dependence of modal temperatures on time in free dynamics for moderate 

energy excitation . Graph shows modal temperatures for 8-mode system without dispersion 

or dissipation (a = g = 0). Time is measured in terms of cycle, the period of the lowest 

mode oscillations. Initially all the modes have been excited with amplitudes and velocities 

decaying with increasing of mode number, total initial energy is E = 0.0214. 

Fig.3. Behavior of mode temperatures for free dynamics of 12-mode system (3.12) with 

CT = 0 and gk = 0. The insert shows the temperature spectrum at the end of a 1,500-cycle- 

long run. Total energy of 0.095 has been initially evenly distributed among the first four 

modes. 

Fig.4. Time variations of C in free dynamics of the system (3.12) with a = g = 0 pro- 

vided initially with energy 0.002, 0.01, 0.05, and 0.095. The insert shows the temperature 

spectrum at the end of 1,500-3,000-cycle long runs. 

Fig.5. Values of C for a 12-mode system (a = g = 0) obtained for different energies of 

initial perturbation at r = 1000 periods of the 1st mode (or sooner if C - l-l/(2iV) = 0.958 

has been reached). 

Fig.6. Forced dynamics of the string (3.12) excited with a periodic moment at one end 

fk = 2nkMsmirt, M = 0.01,0.035, and 0.1. Dispersion and dissipation parameters are set 

equal to zero. 
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Fig.7. Behavior of mode temperatures for free dynamics of a 12-mode system (3.12) 

with a = 1CT4 and gk = 0. The insert shows the temperature spectrum at the end of a 

2,000-cycle-long run. 

Fig.8. Forced dynamics of the system (3.12) under the same excitation as shown in Fig.6, 

but with dispersion taken into account: a = 0,10~4, and 10~2. 

Fig.9. Energy spectra for forced dynamics of a 12-mode system (3.12), standard and 

proposed 2-mode truncation with a = 0.01, gk = 0.01, and fk(r) = irksinr. 

Fig. 10. Energy spectra for forced dynamics of a 12-mode system (3.12) and standard 

truncation with 2, 4, and 6 modes left with a = 0.01, gk = 0.01, and fk(r) = 7rfcsinr. 

Fig. 11. Distribution functions for momentum of the 1st mode (left) and 2nd mode (right) 

for forced dynamics of a 12-mode system (3.12), and the proposed 2-mode truncation {a = 

0.01, gk = 0.01, and fk(r) = irksinr). 
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POSSIBLE SCENARIOS OF NONLINEAR VIBRATIONS AT HIGH ENERGIES 

Victor L. Berdichevsky 
Mechanical Engineering Department 

Wayne State University 
Detroit, Michigan 

ABSTRACT The results of numerical simulations of 
nonlinear siring dynamics are considered. Possible 
extrapolations of these results to nonlinear elastic continua 
leads to qualitatively different ways of dynamical behavior. 
They are described and discussed. 

The effects of nonlinearity in vibrations of elastic systems are 
more or less understood if energy of vibrations is low enough to 
make the nonlinear terms just a correction of the linear ones. If 
energy of vibrations is high and nonlinearity plays a significant 
or leading role, there is an expectation that dynamics becomes 
so chaotic that the laws of statistical mechanics can be applied. 
The first attempt to check this expectation has been made by 
Fermi et al. (1955). They considered a chain of N mass 
particles connected by nonlinear springs. In accordance with 
statistical mechanics, equipartition of energy should be 
observed 

(1) mu   } = {mu   ) = ... = (mu 

where m is the particle mass, u",..., u" are the particle 

velocities, and < > denotes the time average along a 

trajectory: for any function p («.,«.) 

p(u.,«.))= lim -\p(u.(t),u.(t))dt (2) 

For systems considered in statistical mechanics (ergodic 
systems) motion is chaotic and the average values do not 
depend on the initial data. The common value (1) is called, by 
definition, the absolute temperature T. Equipartition of energy 
is a necessary condition for the laws of statistical mechanics to 
be true (for details see, for example, Berdichevsky (1988), and 
Berdichevsky and von Alberti (1991)). 

The system of 64 particles considered by Fermi, Pasta and 
Ulam showed a surprising result: equipartition does not hold 

while the system exhibits a recurrent motion. Further studies 
(Boccieri et al.(1970), Galgani and Scotti (1972), Chirikov et 
al.(1973), and Thirumalai and Mountain (1989)) explained that 
this result was caused by the small energy of initial excitation: 
for energies exceeding some critical value one does observe 
equipartition. 

During last four years a detailed numerical study of chain 
dynamics has been conducted by my graduate students A. 
Ozbek, I. Shekhtman, V. Volovoi, E. Mueller. Summary of this 
study one can find in M.S. Thesis by E. Mueller (1994) and in 
(Berdichevsky (1993)). An important point of the study is that 
not only equipartition but also other laws of statistical 
mechanics are valid if energy of initial excitation exceeds some 
critical value Ec. 

To discuss the behavior of elastic continuum, one might 
consider the limit A/—> oo assuming that elastic continuum can 
be approximated by a chain of mass particles. At present, the 
reliable simulations have been conducted for .V— 128.    The 
qualitative graph of the dependence of critical energy £° on .V is 
shown in Fig. 1. 

Ec 

Scenario 2 

Scenario 

100 N 

Fig. 1. Critical energy vs. number of particles 



In    the    range    10 ^ ,V < 130 
approximately as \/N. 

critical    energy    behaves 

Dynamics of continua depends crucially on the limit behavior 

of E? for N—> co. Critical energy E? cannot go to zero for 
;V—>• QO because in this case one would observe chaotic motion 
for any, even very small, energy of excitation. This contradicts 
to KAM theory, established for elastic continua by S. Kuksin 

(1989).  Two other cases are possible:  E? tends to some finite 

limit £ for N—t co or E? —> co for N—> co. They correspond 
to two qualitatively different behaviors of continua which we 
refer to as scenario 1 and scenario 2. 

Scenario 1 (Selfdissipation) This is the case of bounded 
critical energy. The major features of the dynamics of continua 
in this case are the following. If energy of initial excitation E is 

less than E , then one does not have something peculiar. 

However, if energy of excitation exceeds E then continuum 
shows a very unusual behavior. Let, for definitness, only a few 
modes are excited initially. In the course of motion energy is 
redistributed over all modes in a way to reach equipartition. 
Since an infinite number of modes is involved in the motion, 
energy of each mode is equal to zero at the final stage. So, one 
would observe a process with an increasing number of excited 
modes, in which energy of each mode eventually tends to zero 
while total energy is conserved. Since energy of each particular 
mode tends to zero, displacement go to zero. Derivatives of 
displacements stay finite due to conservation of energy. 
Therefore, displacements are getting more and more 
nonsmooth. One might call this case "selfdissipation" due to 
decay of displacements in time. Remind that the system 
considered does not have a "built-in" dissipation. 

Scenario 2 (Universal Spectrum) In this case upper energy 
threshold tends to infinity for iV—> co. Therefore, the laws of 
statistical mechanics are not valid for any, even very high, 
energy of excitation. However, a possibility of other "universal 
laws" appears. Let initial energy be E0, and this value 
corresponds to the number 2N0 on the graph "critical energy vs. 
number of degrees of freedom" (Fig. 2). 

critical energy 

Fig. 2. Critical energy vs. number of degrees of freedom in 
Scenario 2. 

Consider an excitation of the continuum when only the first 
Ao modes are excited initially.  For "2N0 degrees of freedom" 

truncation of the continuum the motion would be approximately 
ergodic while energy were equally distributed over modes (Fig. 
3, line 1). In continuum, other modes take energy from the first 
*V0 modes. Therefore, for continuum the energy spectrum has 
the form of line 2 on Fig. 3. It is natural to assume that this 
spectrum is universal in the following sense: it is the same for 
any choice of initial excitation of the first .V0 modes possessing 

the same energy E0. 

<u 

5 

Number of mode 

Fig. 3. Energy spectrum in Scenario 2. 

None of the numerical experiments show the growth of 
critical energy for large N and a feasibility of the scenario 2. 
This relates, probably, to the fact that only particle chains with 
the nearest neighbor interaction have been considered so far. 
These chains do not have any characteristic dimension (in the 
limit N—><X>), while the point of minimum on the plot in 
Fig. 2 is determined by some characteristic length. Perhaps, 
continua with the higher space derivatives provide the necessary 
additional parameter with the dimension of length.. 

Note that the results of the above mentioned numerical 
simulations can be used for speculations about continuum 
behavior with great precautions, because, if equipartition takes 
place, energy of short waves is comparable with energy of long 
waves, and modeling of continuum with a chain does not make 
sense. Strictly speaking, in numerical simulations for continua 
one has to determine critical energy as energy threshold for 
long wave excitations allowing the total number of modes be, 
say, 10 times larger than the number of long wave modes. To 
my knowledge, numerical simulations of such kind have not 
been conducted. However, it is difficult to expect that the 
behavior of critical energy for long wave excitation is different 
from the one shown in Fig. 1. 

The above discussion shows that it is very interesting to study 
the dynamics of chains for large N. Unfortunately, .V »1000 is 
very close to the maximum capabilities of modem workstations 
because one has to conduct long term simulations with very 
small time step to resolve high frequency oscillations. 

Conclusion. 
It is suggested that there are two types of behavior of 

nonlinear elastic continua at high energies. For some continua 
(like strings) the regime of selfdissipation might be developed 
when displacements tends to zero while their derivatives stay 



finite due to conservation of energy. For continua possessing 
a characteristic length parameter (like coupled torsional-lateral 
vibrations of elastic beams) another scenario is possible with 
the formation of an universal energy spectrum. Although the 
consideration in this paper concerns with the one-dimensional 
case, the situation seems generic, and the same type of behavior 
should be expected for two-dimensional and three-dimensional 
elastic continua. 
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Recently it was shown that averaged characteristics of non-linear vibrations are potential 
functions of load parameters in the limit of small dissipation. The question of the range 
of dissipation for which potentiality takes place remained open. In this paper, we study this 
question for the case of non-linear vibrations of a cantilever beam excited harmonically at 
the undamped end. We develop a non-linear one-degree-of-freedom beam model and show 
that the existence of a dynamical potential of beam vibrations can be guaranteed with 
acceptable accuracy even for sufficiently large dissipation. 

1. INTRODUCTION 

The dynamical behavior of non-linear structures is extremely complex [1-5]. For engin- 
eering applications, however, one usually needs some rough averaged characteristics of the 
responses. For example, consider a cantilever beam excited by a periodic force applied at 
the non-clamped end (Figure 1). The force F(t) is assumed to be harmonic: 

F(t) = A + B sin vt. (1) 

The constant force A and the amplitude of excitation B are assumed to be large enough 
to create finite beam displacements. The vertical displacement of the right end. q{t), might 
be a very complicated function of time, even if it is periodic. Some rough information 
about this displacement can be extracted from two characteristics: 

<7 = <<7>,       9 = <<7sinvr> 

where <•> denotes the time averaging operator along a trajectory: for any function <p(t), 
(cpy indicates the limit 

<<£>= lim- 4>(t)dt. 
0 

For linear vibrations, it is known [6, 7] that 

q(t) = q +r sin (vt + q>), 

where r is the amplitude of vibrations and <p is the phase angle. The phase angle cp is 
proportional to damping. For small damping, we may neglect cp and, since <sin2 vt} = 1/2, 
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FXt) 

1—' / 

Figure I. The co-ordinate system of a cantilever beam excited by a harmonic force. 

q = r/2. Therefore, for linear vibrations with small dissipation, q and q determine the tip 
displacement completely. For general non-linear vibrations, there are also many other 
characteristics. However, q and q are the most energetically important Fourier amplitudes 
because the average value of the potential energy due to the external force F can be 
expressed in terms of only q and q: 

<Fq} = Aq + Bq. (2) 

The beam motion occurs along the attractor. Usually, attractors are limit cycles, but 
there are also chaotic attractors. In any case, q and q depend only on the attractor. 
Attractors are changed in the course of slow changes in the load parameters A and B. 
Therefore, quantities q and q are some functions of A and B: 

q=q(A,B),        q=q(A,B). (3) 

Equations (3) are constitutive equations of averaged beam dynamics. 
As was established in reference [8], there exists a function, the dynamical potential 

&(A, B), such that the right sides of equation (3) are derivatives of this potential if damping 
is sufficiently small: 

q = d&ldA,        q = c3>loB. (4) 

For the sake of self containence, the derivation of equation (4) will be given in section 3. 
The dynamical potential & completely determines the macro-behavior of the beam: one 

has to know only one function SP to predict the response of the system for any given value 
of load parameters. The dynamical potential is equal to the averaged value of the 
Lagrangian over the attractor. 

One can take into consideration any number of characteristics of the response. For 
example, if one is interested in knowing the quantity g, = ^q cos vt >, one needs to consider 
the more complicated excitation 

F(r) = A + A] cos vt + B sin vt 

and find the dynamical potential dfx as a function of three variables ^ =&](A,Al,B). 
Then, q, qt and q are determined from the equations 

q=C.?l(A,Al,B)/cA.        qx = d&x(A, Au B);cAl.        q = dP^A, A,, B)/dB.     (5) 

The dynamical potential & in equation (4) can be obtained from &x by taking /), equal 
to zero: 

3»(A,B)=i?i(A,0,B). 

One might also consider the averaged characteristics of beam displacements somewhere 
along the beam. To calculate the corresponding dynamical potential, the dynamical 
problem should be studied, with the corresponding additional force as in the above 
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example: a force is added at the point at which the averaged displacement is to be 
calculated. 

The potentiality of the above form of constitutive equations was established in the limit 
of zero dissipation or, in other words, for a sufficiently small friction coefficient. It remains 
unknown, however, how small is sufficiently small. The aim of this paper is to fill in this 
gap for non-linear beam vibrations. 

To simplify our considerations, we model the beam vibrations by a system with one 
degree of freedom and conduct numerical simulations for this model. Classical beam 
theory is presented in section 2, the existence of dynamical potential is established in 
section 3, a one-degree-of-freedom beam model is developed in section 4 and the results 
of the numerical simulations are discussed in section 5. 

2. LAGRANGIAN OF CLASSICAL BEAM THEORY 

Let x and y be Cartesian co-ordinates in the plane of beam vibrations; the .x-axis 
coincides with the undeformed centerline of the beam. Denote the x- and >>-projections 
of the beam displacements by ux and uy\ ux = ux(t, x) and uy - u,{t, x). We assume that 
there is no extention-twist, twist-bending or bending-bending coupling for vibrations in 
the x-y and x-z planes. Therefore, the lateral beam vibrations in the x-y plane can be 
considered separately from the other vibrations. The Lagrangian L of beam theorv has the 
form [9] 

L=K-U,       K = [pS(ui, + u],),       U = i(ESy! + EIQ2). (6) 

Here, K and U are the kinetic and internal energy, respectively, commas in indices denotes 
derivatives («x, = dujdt, ux x = dujcx), p, S, E and / are the mass density, the cross-sec- 
tional area, Young's modulus and the inertia moment, and y and Q are measures of 
extension and bending: 

7 = «v., + 5("L + "?.,), ß = T.rT„, - T,.Tv..r. (7, 8) 

Here, xx and iy are x- and y-projections of the unit tangent vector to the deformed 
centerline: 

1+«,, u.... 
T>=-r=- (9) yiT2^' y    v/l+2y 

The larger the lateral displacements, the smaller the contribution of extension •/ should 
be. Therefore, for finite displacements Kirchhoff's theory of inextensional vibrations can 
be used. Since y = 0, in Kirchhoff's theory, internal energy takes the simple form 

U=\EIQ2. (10) 

The expressions of bending measure Q in terms of displacement is obtained by substituting 
equation (9), where one takes y = 0, into equation (8): 

Q =(\+ux,x)u>,xx-uyxux_xx. (11) 

where the displacements ux and ur are subjected to the inextensibility constraint 

7 = H,., + £(«L + H;,.,) = 0 (12) 

and the kinematical boundary conditions are 

t/t = 0,    H, = 0,    H„.t = 0       at.x=0. (13) 
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The dynamical equation of beam theory follows from equating to zero the variation of 
action: 

L dx dt = 
o 

[\pS(u{, + u],,) - \EIQ2] dx dt. (14) 

Since the bending measure is a quadratic function of displacement derivatives, the 
Lagrangian is a quartic function of derivatives. However, it is possible to reformulate 
Kirchhoff's theory in such a way that the Lagrangian is a quadratic function of 
displacement derivatives, as it is in the linear theory. This modification was suggested in 
reference [9]. The modification is based on the identity 

ß2 = [(1 + «t.,)«,..„ - K„,H,..„]
2
 = u2

xxx + «;,.„, (15) 

which is valid for functions ux and ux. obeying equation (12). To prove equation (15), let 
us differentiate equation (12) with respect to x. We have 

(1 + ",.,K.x, + "j..r"».xt = 0- (16) 

Squaring equation (16), we obtain the relation 

(1 + «,., ful xx + 2K,, (1+ K,,, K,, w, „ + u], x u), „ = 0. (17) 

Adding equation (17) to the left side of equation (15) and taking into account the relation 

(1+K,..t)
2 + K2,.,= l, (18) 

which comes from equation (12), we obtain the right side of equation (15). 
Substituting expression (15) for Q2, one obtains the Lagrangian 

L = \pS{ui, + u2,,) - \EI{uixx + u],xx). (19) 

The remarkable point is that the Lagrangian (19) is quadratic as in linear theory. 
Non-linearity comes into play only by means of the inextensibility constraint (12). The 
penalty for removing non-linear terms from the Lagrangian is an increase in the order of 
the derivatives. At a first glance, that leads to the possibility of satisfying two boundary 
conditions for both displacements ux and u,. at each end. However, conditions which are 
additional to the classical ones are contained, in fact, in the inextensibility condition (12): 
ux x can be calculated at both ends in terms of uyx. For example, for a cantilever beam, 
K, t = 0 at x =0. Therefore, in accordance with the inextensibility condition (12), 

K,..r = 0       atx=0. (20) 

The second root of equation (12), ux x — —2, is not considered here. We do not need a more 
detailed consideration of the boundary conditions because the beam motion will be 
presented by a simplified model of one degree of freedom. 

3. EXISTENCE OF DYNAMICAL POTENTIAL 

Let a cantilever beam be excited by a periodic force F = A + B sin vt, which is applied 
for definiteness at the undamped edge. The motion of the beam is governed by the 
equations 

ÖL        d  dL      d   8L      d1   dL 
7— = — -r- -r T- 1- -r-? ■: = dissipative terms, 
oux        otdux,    oxouxx    dx-duxxx 

ÖL        d  dL      3   dL      82   8L 
7—= — T"T T-r h-rr; = dissipative terms. (21) 
Sur        dtdu,,,    dx8urx    8x-8u,.xx 
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Here, L is the Lagrangian, defined by equations (6)-(9). The specific form of the dissipative 
terms is not important. The boundary conditions are 

ux = M, = uv x = 0   at x = 0, 

dL      d   dL 

dL d   dL 
duxx    dxduxx 

= 0   at x = /, 

du, dx du, 
= A + B sin vt    at x = I, 

dL 

dQ 
= 0   at x = /. (22) 

Motion occurs along an attractor. We assume that the attractor is a limit cycle with period 
9, which is a multiple of the period of the exciting force 2n/v: 6 = Innjv, where n is an 
integer. Displacements ux and ur are periodic functions of time with period 6. The limit 
cycle depends on parameters A and B. Therefore, we may write 

Consider the quantity 

ux-(p{t,x,A,B),       uy = \J/(t,x,A,B). 

L dx ) + (.(A + B sin vt)\ji(t, /, A, B)}. 

(23) 

(24) 

It is assume that functions (23) are substituted in the expression for L, equations (6)-(9), 
in order to perform the integration in equation (24). 

The quantity 0* is a function of the parameters A and B. We are going to show that 
3* is the dynamical potential of this problem, i.e., that in the limit of zero dissipation, 

<iA U,> = d&/dA,       <i/f |„;sin vt} = dP/dB. (25) 

To prove equation (25), let us find derivatives of ^ with respect to A and B. For derivative 
d&/dA, we have 

df_ 
dA 

dL   d2q>       dL   d2\j/       dL dlq>       dL   d2\li + 

+ ■ 

o \_dux ,dtdA     duy, ,dtdA     dux x dx dA     duv x dx dA 

d'cp dL     <3ty dL 

duy xxdx2 dA 
dx 

dux xxdx2 dA 

After integration by parts, expression (26) takes the form 

(26) 

df_ 
dA 

dL dxjj     ÖL dcp 

du. dA     6u,. dA 

dL 
duy.x 

dL 

dL 

dx) + 
dL 

dx du, 

du 

A — B sin vt 
dA 

d   d2L\d<p 
dxdux XXJ dA 

d2(p dL    d2ii 
dux xx dx dA     du, xx dx dA 

+ e 
dL d(p      dL d\j/ 

duXt, 8 A     du,.,, dA 
dx + (t(t,l,A,B)y. (27) 

The terms omitted in equation (27) are the zeros due to the boundary conditions at the 
clamped edge: <p = ip = d\j//dx = 0 at x = 0 (note that dcp/dA = dtj//dA = d2\j//dx dA = 0 
at x = 0 due to these conditions). 

The first term in the integral (27) is negligible in the limit of zero dissipation as a 
consequence of the equations of motion (21). The second and third terms in equations (27) 
are zero due to the boundary conditions (22). The fourth term is equal to zero because 
the integrand is proportional to dL/dQ, the bending moment at the undamped edge which 
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is zero in accordance with equation (22). The fifth integral is equal to zero due to 
periodicity of motion. Therefore, equation (27) is reduced to the first relation (25). The 
second relation (25) is proved similarly. The proof in the case of the inextensible beam is 
also analogous. 

Our goal is to investigate how large the contribution is of the neglected dissipative terms 
in equation (25). To this end, in the next section, we deveope a one-degree-of-freedom 
non-linear beam model and conduct numerical simulations in order to find the deviations 
from the potentiality of the constitutive relations. 

4. ONE-DEGREE-OF-FREEDOM BEAM MODEL 

We consider beam vibrations for which ux x is small compared to unity. In this case, the 
inextensibility constraint (12) takes the form 

«r..T + 2"L = 0. (28) 

Equation (28), along with the clamping condition, ux = 0 at x = 0, allows to find ux in terms 
of u,.: 

u;,xdx. (29) 

Note that the displacement ux(t,x) satisfies the boundary condition (20). 
We assume the simplest approximation (one degree of freedom) of displacement u,.(/, x): 

«,.(r, x) = cj>(x)q(t). (30) 

Here (f> = dcp/dx = 0 at x = 0, and <j> = 1 at x = / where / is the beam length. Substituting 
equation (30) into equation (29), we obtain the approximate expression for ux: 

ux = \l>(x)q2,       \j/(x)=-k_ <f>2xdx. (31) 

Trial functions (30) and (31) lead to the expression for the Lagrangian of a one-degree-of- 
freedom beam model: 

i=lf(i + cf)-W:-!V, 
where 

a — 
pS$'0<Pzdx ' 

b = 
pS $'0(j>2dx ' 

c = 4 
fi>A2d* 

\'A2dx- 

(32) 

(33) 

The final equation governing the non-linear vibrations of the one-degree-of-freedom 
cantilever beam is given by 

(1 + cq2)q + cqq1 + aq + Ibq3 = A + B sin vt - fiq. (34) 

Here we have added a small linear viscous damping term to the right side. This equation 
differs from the Duffing equation by two terms. cq2q and cqq2. 

4. RESULTS OF NUMERICAL SIMULATIONS 

Equation (34) was integrated using the sixth order Runge-Kutta method. In all 
simulations, coefficients a, b and c were set to unity (in accordance with equation (33). these 
coefficients are positive). Note that two of them can be always made equal to unity by 
suitable rescaling. In order to understand the behavior of the beam for the case of small 
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dissipation, it is very useful to consider first its motion for zero dissipation. We start from 
the case of free vibrations. 

4.1.   FREE VIBRATIONS (A = B = 0, \l = 0) 

Consider the trajectories of the beam tip in the phase space (t,p,q), p = (1 + cq2)q. The 
Hamiltonian of our model has the form 

ff(p,q) = \- + \aq2 + \bq\ (35) 
0+cq2) 

The trajectories are the curves defined by conservation of energy: 

H{p, q) = E- constant. (36) 

Equation (36) means that every trajectory, started from some point on an energy surface 
H(P> l) = constant, belongs to this surface for all time. These trajectories are shown in 
Figure 2. 

Let f(E) be the volume of the phase space bounded by the energy surface H(p, q) = E, 

r(E) dp dq. 

For a periodic trajectory, the volume f(£) during one period can be rewritten as 

r(E) = 2 \P \ dq, 

where 

p = ±J{\ + cq2){2E - aq2 - bq% 

1™ + y/[-a+^/ä2 + &bE]/2b,       <7m,„ = -sj[-a + Ja1 + SbE]/2b ■ 

The dependence of T(£) on E is shown in Figure 3. 
The period of vibration P can be expressed in terms of function f(£) [1]: 

'-£-' i±££l_H 
2E-aq2-bq4 

(37) 

(38) 

(39) 

(40) 

(41) 

I 

-12 

Figure 2. The energy surfaces H(p. q) = constant in [p. q) phase space; a =b =c = \, A = B =0, /* = 0. 
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Figure 3. The dependence of the phase volume /"(£) on energy E; a = b = c = I, A = B = 0, n =0. 

Limit values of the frequency of vibrations co = 2n/P for E ■ 
found from equations (40) and (41): 

> 0 and E -* oo can easily be 

a) = 2Jb    as E -* oo, a> 'a    as E -*0. 

We see that the frequency is in some finite range. In particular, for a = b = 1, the frequency 
has a value between co = 1 and co = 2. In contrast, the frequencies of many dynamical 
systems, such as the pendulum, tend to zero in the course of energy growth. The 
dependence of frequency co on energy £ is shown in Figure 4(a). This graph is useful in 
order to determine the most pronounced resonance which occurs if the frequency of the 
given harmonic force, v, coincides with the natural frequency co. 

4.2.   EXCITED VIBRATIONS 

Now, let the beam be excited. Let us set the frequency of excitation v equal to some 
natural frequency. If we take, for example, v = n/2, the corresponding value of energy of 
free vibration is E cz 8-384 for a = b = 1, as is seen from Figure 4(b). The trajectory-which 
has that energy level should show chaotic behavior. The larger B {or A) is, the larger the 
chaotic region will be. In Figures 5(a)-(e) is shown the onset of the chaotic region in the 
course of the increase of B. Note that Figure 5(a) is a typical Poincare map which shows 
successive positions of points for times t = 0, T, 2T, ..., where T = 2njv is the period of 
the exciting force. 

1-8 \r - 

1-6 
f 

- 

1-4 - 

1-2 - 

10 -i 
i                i                i 1 
0 200 400 600 800        1000        0 

E 

Figure 4. The dependence of the frequency a> on energy E:a=b=c = \.A =5=0. /i = 0. (a) 0 $ £ ^ 1000; 
(b) 0 ^ E ^ 10. 
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Figure 5. The onset of the chaotic region due to an increase in B: a =b =c = \. A =0. ß-0 
B = 0; (b) B = 1; (c) B = 2: (d) B = 4; (e) B = 10. 

5-5 

7T/2. (a) 

If the dissipation \i is non-zero, every trajectory falls on to limit cycles or strange 
attractors, as we expect. Typical limit cycles and strange attractors are shown in Figures 
6 and 7. The evolution of the phase portrait in the course of the increase of damping for 
some fixed values of A and B is presented in Figures 6(a)-(c). For zero damping and A = 1, 
5 = 10, the Poincare map is shown in Figure 6(a). There are some characteristic regions 
numbered 1,4, 13 and 4a. Region 1 corresponds to conditionally periodic motions with 
the two most pronounced frequencies, the frequency of the exciting force (which is equal 
to 1) and the frequency of free vibrations. Region 4 corresponds to a subharmonic 
resonance with period 4. The centers of four islands are the tracks of the periodic trajectory 
with period 4. Analogously, 13 islands marked by number 13 correspond to the 
subharmonic resonance with period 13, while 4 other islands, numbered 4a. are another 
subharmonic resonance of period 4.  We show in this figure only the most visible 
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-11-5 

Figure 6. The influence of dissipation on the vibrations of a cantilever beam: a =b =c = \, A = \, B = \Q, 
v = 2TI. (a) ß =0, (b) ß =0-01; (c) p =01. 

resonances: there are many other resonances which occupy a small part of the phase space. 
In Figure 6(b) are shown the successive positions of a number of trajectories if one switches 
on a small dissipation, /i = 0-01. It is seen that three limit cycles appear, one of which was 
period 1 which the others have period 4. The subharmonic resonance of period 13 is killed 
off by the dissipation. This is a general rule: only resonances with small periods survive 
after the addition of dissipation. If the dissipation is large enough (fi =01 in Figure 6(c)) 
only one limit cycle survives. 

For large A and B, a strange attractor might appear. It is natural to assume that a 
strange attractor would emerge at the place occupied previously by a chaotic sea of 
Hamiltonian systems. This assumption is supported by the Poincare maps in Figure 
7(a)-(c), which show the evolution of the phase portrait due to dissipation. For zero 
dissipation (Figure 7(a)), we have some chaotic sea. The addition of a small amount of 
dissipation (/x =0-1) transforms it into a strange attractor, shown on Figure 7(b). This 
attractor looks close enough to the chaotic sea from which it was born. For a large value 
of dissipation (^ = 1), we obtain the usual worm-like form of attractor which has been 
observed in many studies. 

4.3.   CONSTITUTIVE EQUATIONS 

We can write the Lagrangian of the non-linear beam vibration model subjected to a 
harmonic force in the form 

where 
L — L0 + Aq + Bq sin vt, 

L0 = \_q2(\+cq2)-^aq2-\bq\ 

(42) 

(43) 
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Figure 7. The evolution of a chaotic sea into strange attractor; a = 6 = c = 1, /( =1, 5 = 100. v = 2JT. (a) 
fi=Q- (b) ^ =01; (c)n = \. 

To formulate constitutive equations for our model, we note that the time averaging 
operator <•> is reduced for a periodic trajectory by taking the average along the period 
T: 

ay=L=j L(p(t, A. B), q(t, A, B), A, B)dt. 

Taking the time average, equation (42) becomes 

L = L0 + Aq + Bq. (44) 

The time averaged value of the Lagrangian L depends on A, B and the attractor (if there 
are a number of attractors): 

L = L(A.B). (45) 

Now, we are going to check whether for the non-linear beam vibration, the dynamic 
potential 2P in equations (4) coincides with the averaged Lagrangian L(A, B): 

?(A, B) = L(A, B). (46) 

The simplest way to check the existence of a dynamical potential is to test the validity of 
the reciprocal relation following from equations (4): 

dqjdB = 8q/8A. (47) 

The range of dissipation \i for which the reciprocal relation has acceptable accuracy can 
be observed in Tables 1-5. It can be seen that errors grow with an increase in the friction 
coefficient and reach about 2-6% for \i = 1. For large values of A, for example A = 10, 
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TABLE 1 

The accuracy of the reciprocal relation for ^ = 001 (a = b = c = 1, v = 2K) 

B 

10 
1 

10 

dqlcB 

000253801 
001881381 
000020625 
000199761 

dq/dA 

000253800 
00I88I33I 
000020628 
000199766 

|egicB -egjcA | 
max (cg;cB) 

100 

0-000053 
0-002658 
0000159 
0000266 

TABLE 2 

The accuracy of the reciprocal relation for p. = 01 (a = b = c = I, v = 2n) 

B dg/dB dq/dA 
\cq~lcB - eg/cA | 

max (dg/dB) 
100 

10 
10 

1 
10 

1 
10 

0-00253761 
0-01881242 
000020624 
000199758 

000253682 
001880703 
0-00020624 
000199748 

0-004199 
0-028651 
0-000029 
0-000532 

TABLE 3 

The accuracy of the reciprocal relation for p = 1-0 (a = b = c = 1, v = 2n) 

cqjcB cg/cA 
\cg~icB -dqlcA | 

max (cqjcB) 
x 100 

10 
1 

10 

0-00249902 
0-01867401 
0-00020573 
0-00199293 

0-00242185 
001818796 
000020471 
0-00198311 

0-413248 
2-602815 
0-005462 
0-052586 

TABLE 4 

The accuracy of the reciprocal relation for \i = 2-0 (a = b = c = 1, v = 2n) 

cq/dB dq/cA 
\cqjcB —cqjcA \ 

max (cqjcB) 
100 

10 
10 

10 

10 

0-00238890 
0-01825796 
000020420 
0-00197897 

0-00210686 
0-01642023 
0-00020016 
0-00194023 

1-544751 
10-065363 
0-022127 
0-212181 

TABLE 5 

The accuracy of the reciprocal relation for \x = 5-0 (a = b = c = 1. v = 2z) 

B cgjcB dg/cA 
\5gjcB — cglcA j 

max (cq/cB) 
100 

10 
10 

1 
10 

1 
10 

0-00182529 
0-01557281 
000019410 
0-00188634 

0-00079677 
000764480 
0-00017123 
000166667 

6-604588 
50-909309 
0-146859 
1-410600 
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TABLE 6 
The error in the constitutive equations for ß = 0-01, a = b = c = 1, v = 2n 

A B cLjcA <7 
'^-»'xlOO 

max </ 

1 
2 
3 
5 

10 

1 
2 
3 
5 

10 

0-643936 
0-829226 
0-993152 
1-256914 
1 -542458 

0-591026 
0-837931 
1-004127 
1-241057 
1-622770 

3-2605 
0-5364 
0-6763 
0-9772 
4-9491 

TABLE 7 

The error in the constitutive equations for ß =0-01, a = b = c = I, v 

B dLicB 
\dLjcB -q\ 

max \q | 

7-5124 
01990 
4-1718 
6-8131 
1-2968 

100 

-0-01293267 
-001605406 
-0-01911899 
-0-02507945 
-0-03899240 

-0-00996493 
-0-01613266 
-0-02076706 
-0-02777094 
-0-03950468 

reciprocal relations remain valid until \i = 5, with errors less than 1-5%. The relations are 
virtually exact (with errors less than 0-03%) if// ^0-1. Note that we checked reciprocal 
relations for the limit cycle of period 1. 

Numerical data allow us to express an approximate formula for L by means of a 
three-dimensional curve fitting algorithm. For the case a = b = c = 1 and n = 0-01. we 
obtain 

L(A, B) = c9A
3 + c%B

l + c-iAzB + cbAB2 + c5A
2 + c4B

2 + c}AB +c2A +c{B + c0,     (48) 

where c0 = -0-184079, c, = -0-0097548, c: = 0-437283, c3 = 0-005255, c4 = -0-00423055, 
c5 = 0-10604, c6 = 0-00028865, c7 =-0-00047238, c8 =-0.0000255619 and 
c9= -0-00334188. This means that the response can be found from the equations 

q=oLjdA =2a)A
2 + 2c1AB + ctB

2 + 2csA +c3B + c2, 

q = dL/'dB = 3csB
2 + c7A

2 + 2c6AB + 2cAB + c}A + c,. (49) 

The error in the constitutive equations (49) can be found in Tables 6 and 7. The 
approximate formula for L, equation (48), satisfies th? constitutive equations (49) with 
errors of less than about 7.5%. 

5. CONCLUSIONS 

We have proved that the dynamical response of cantilever beams to periodic excitation 
can be described in terms of a dynamical potential. We have found this potential for the 
limit cycle of the same period as the exciting force, and established the corresponding 
constitutive relations. To conclude, we would like to note that in the course of our study 
we encountered many lovely "creatures", one of which is shown in Figure 8. This is the 
Poincare plot for a cantilever beam with parameter values of a = 10. b = 0. c = 1. A =0, 
B = 10, fi =0 and v = 2?r. 
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Figure 8. A Poincare map for a cantilever beam; a = 10, b = 0, c = I, A = 0, B = 10. n = 0, v = 2n. 
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Thermodynamics and Parametric Response of 
Slightly Dissipative Systems 

V. Berdichevsky 
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Detroit, MI 48202 

Abstract. A point of view on thermodynamics is presented which raises 
some natural questions on parametric response of various engineering 
devices. In this regard parametric response of a "black box" device is 
considered. The major information about the black box is that its inside is 
governed by Hamiltonian equations complicated by a small dissipation. It 
is established that such systems inherit a "thermodynamical property": 
parametric response is always potential. Nonlinear oscillator is considered 
as an illustrative example. Parametric response of slightly dissipative open 
systems has also some special structure. It is discussed for the case of 
internal flows, a representative example of which is a gas flow in 
compressors. 

1. Introduction. Thermodynamical description of a body assumes that its 
dynamics has two different time scales. Classical thermodynamics describes 
macromotion which is slow compared to fast micromotion of particles 
making up the body; micromotion is the subject of statistical mechanics. 
This point of view goes back to L. Boltzmann [7]. Why does macromotion 
obey to so specific laws as the first and the second laws of 
thermodynamics? The remarkable point is that the laws of thermodynamics 
take place, at least in equilibrium case, if microdynamics posesses two 
properties: it is Hamiltonian and ergodic [8]. It is not essential that the 
number of degrees of freedom is large [3, 4]. The laws of equilibrium 
thermodynamics are true even for one-degree-of-freedom systems, 
although they do not contain much information in this degenerated case. 
(Perhaps, the number of degrees of freedom should be large for validity of 
the laws of nonequilibrium thermodynamics). In this regard the question 
arises: Which "thermodynamics" do we get if fast motion is not 
Hamiltonian or ergodic? It seems that nothing like the first or the second 
law of thermodynamics is valid in general. However, it is very likely that 
the systems inherit some "thermodynamical properties" if they are "slightly 
non-Hamiltonian." An important case of "slightly non-Hamiltonian" 
systems is the case of Hamiltonian systems damped by small dissipation. 
There are many engineering situations of this type. It is enough to mention 



that all high Reynolds number turbulent flows fall in this category. Among 
other examples are piezoelectric transducers, compressors, electromotors, 
etc. This paper aims to outline the statement of the problem and present 
some results of its study. 

Generally speaking, any engineering device can be considered as a 
black box which is controlled by some inputs xvx2...,xn and have some 
outputs yvy2...,yn. 

inputs  : 

-i .'--„-.'.V    «.J- 
...;V •:  ,.vii-•..•••-«.:.':., rajKN'-: 

wffimlmm. 
if»%*SÖ^ä®S 

Fig. 1 

?i 
outputs 

yn 

Without loss of generality we may assume that the numbers of inputs and 
outputs coincide. The behavior of the device is characterized by the 
dependence      of      the      outputs       yi       on       the       inputs X: 

yx=yx{xv...,xn) ,...,    yn=yn(xl,...,xn) (1.1) 

Equations (1.1) form "the passport" of the device. They are analogous to 
constitutive equations of thermodynamics. Nothing specific can be said 
about these equations in general. However, "thermodynamical property" 
appears if we make additional assumptions: 1) internal dynamics is 
governed by classical mechanics, 2) dissipation is small, 3) parameters 
x],x2...,xri are changed slowly compared to the internal dynamics of the 
black box, 4) attractor of the internal motion is ergodic, 5) system is 
closed, i.e., consists of the same material particles. 

It is shown in this paper that the constitutive equations are potential 
in this case: there exists function P(xt,....,xn) such that 

Vi = 
dP_ 
dx. Vn = 

dP 
dx 

(1.2) 

The term "dynamical potential" introduced in [5] is used here for function 
P. 

If the set of variables x, xn contains a parameter determining the 
time scale then an analog of entropy appears among the arguments of 
function P. (It is discussed later in Section 2). 



Of course, as in classical thermodynamics, potentiality does not take 
place for an arbitrary choice of the output characteristics y„ but y, can be 
chosen in such a way that potentiality holds. 

Potentiality reduces the number n of experimentally determined 
functions (1.2) to just one function, dynamical potential P. The larger the 
number of parameters the more benefits one gets from the fact of the 
existence of dynamical potential. In a sense, dynamical potential is 
analogous to energy in classical thermodynamics. 

Potentiality of constitutive equations is an asymptotical property 
which appears if dissipation tends to zero, in the same way as potentiality 
of constitutive equations in classical thermodynamics. 

The assumption that the system is closed is essential for validity of 
(1.2). To consider the corrections of (1.2) caused by openness of the 
system the case of open turbulent flow is discussed in Section 5. An 
additional term appears in (1.2): 

*=fU/W^ (1.3) 

where 0 is the average time which particles spend inside the flow field, / is 
the product of averaged dynamical enthalpy, average velocity and cross- 
sectional area at the outlet. Constitutive equations (1.3) hold under some 
additional assumptions formulated in Section 5. 

Relations (1.3) are based on a variational principle for open flows 
of ideal fluid which is formulated in Section 4. Formula (1.3) might be of 
interest in theory of compressors since it captures the influence of design 
on performance characteristics. It would be very interesting to check this 
formula experimentally. The specifics of fluid flow seem not to be 
important for validity of (1.3), and similar relations should be true for 
other open systems. 

We start from the discussion of the simplest system: nonlinear 
oscillator. Thermodynamics of nonlinear oscillator has been considered in 
[5, 6]. Here the relations from [5] are extended by including the frequency 
of excitation in the set of control parameters; this is an important extension 
because the parameter reciprocal frequency turns out to be the temperature 
of vibrations. 
Further contents of the paper is completely covered in Sections 4.6, 4.7, 
4.8 of the Attachment 1 and is ommitted here. 
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Summary 

It was shown recently that the averaged characteristics of nonlinear vibrations are 

potential functions of load parameters, if the dissipation is small. In this paper the 

existence of a dynamical potential is verified in experiment with a nonlinear oscillator 

with one degree of freedom. However, near the resonance the effect of dissipation cannot 

be neglected, and no dynamical potential exists. The limits of applicability of the 

description of vibrations in terms of dynamical potential are outlined. 



Introduction 

It is known that the dynamics of nonlinear structures can be extremely complex (see, e.g., 

[1-3]). For engineering purposes, however, some averaged characteristics and estimates 

can be more useful. In this sense, a tool for prediction the averaged characteristics as 

functions of the load parameters without modeling of the system's dynamics is extremely 

welcome. 

For the systems without dissipation, the variational principle can be employed to describe 

the motion, and Lagrange's function (or elastic energy only for static problems) is a tool 

to examine the system's response under the action of external loads. Recently, it has been 

shown in [4-7] that in some cases the averaged characteristics of motion can be easily 

derived from a single function, a dynamical potential, which plays for a dynamical system 

the role similar to potential energy for static load-deflection problems. The existence of 

the dynamical potential was demonstrated theoretically for various non-linear oscillators 

without friction, including an important case of vibrations of cantilevered beams [6]. 

However, physical systems possess dissipation which may be significant; the variational 

principle for the dissipative system is yet to be strictly formulated, and the applicability of 

description in terms of the dynamical potential needs to be verified. Nevertheless, it 

seems reasonable that, small dissipation should not make substantial changes in average 

properties of motion, and some kind of variational consideration can still be employed. 

The estimates of the errors due to the small friction were made in [7] for the case of a 



simplest one-degree-of-freedom non-linear oscillator. This validity of the concept of 

dynamical potential was also examined in numerical experiments [6] for vibrations of a 

cantilevered beam. 

Let us consider the behavior of a single-degree-of-freedom nonlinear mechanical 

oscillator (Fig. 1) under the action of periodic external force F(t)=a sin vt: 

m'q +f(q,'q) + ^BSl = F{t) (1) 
dq 

The friction force f(q,q) is assumed small. In such a system the friction causes the 

oscillator's motion to approach the attractor in phase space, so that the averaged 

characteristics of the motion will not depend on initial conditions. 

The equation (1) can also be represented in the variational form 

dL_d_ 

dq    dt 

(      \ 
dL 

= fiq,q), (2) 

where the Lagrange's function is 

1 -2 

L(q,q,t) = -q -U(q) + F(t)q . (3) 

The control parameters are the amplitude a and frequency v of the external force. 



It was shown [4] that, the average value of Lagrange's function  L = (L)
2
 over the 

attractor plays  the  role  of the  dynamic  potential,   P.     Two  important  averaged 

characteristics of vibrations, the response 

q={qsinvt) (4a) 

and temperature 

T = (q) (4b) 

are linked to the control parameters a and v by the potential relations 

_    dP „       dP 
4=T->       T = -• (5) da ain^- 

v0 

where v0 is the eigenfrequency of the linear vibrations. Note that the temperature and 

response are bound by the reciprocal relations 

dq d2P        dT 
(6) 

d lnv     dad Inv     da 

2 Here and below angular brackets denote the time averaging along the trajectory: for any 

1    T 

function O, <0> indicates the quantity (O) = lim— f <5(7) dt. 
1   0 



The validity of (4)-(6) was proven theoretically for the linear vibrations (U(q) = — q2) 

with small dissipation in [7], and an analytical expression for the dynamical potential has 

been derived. However, no experimental evidences of the existence of the dynamical 

potential for nonlinear vibrations is known yet. To fill this gap, the experiment with a 

single-degree-of-freedom oscillator was conducted. 

Experiment 

The experimental verification of the concept of the dynamical potential for the nonlinear 

vibrations of an oscillator with one degree of freedom is in general very simple. For this 

purpose, one needs to excite an oscillator with external force in a domain of the force 

amplitudes and frequencies, and to measure the response and temperature. If two latter 

quantities fulfilled the reciprocal relations (6) (which is also an indicator of consistency of 

measurements), the dynamical potential P could be reconstructed. 

To conduct these measurements, one needs some tools for excitation and recording of the 

vibrations. In reality, most instrumentation from the vibrations measurements toolbox 

(e.g., vibro-exciters and accelerometers) are by the construction and principle of operation 

harmonic oscillators, and are tightly linked with a system under consideration. The vast 

majority of the experiments is conducted with the linear systems, and frequency ranges 

are chosen to usually far from the resonant frequencies of the instruments, and the 



dynamical features of instrumentation do not interfere with measurements. In some more 

sophisticated systems a deep negative feedback is used to suppress the dynamical 

properties of the exciter of vibrations. However, it was found in the preliminary 

experiments, the feedback may even lead to the self-oscillations if quality factor of the 

studied oscillator is high enough. A different device and technique were thus explored. 

Experimental set-up and sensors. A simple device was employed, providing the 

oscillator itself, an excitation engine, and measuring device in a single unit (see Fig.2). 

Two small low-frequency electro-dynamical speakers were attached to the heavy steel 

frame coaxially, and an aluminum cylinder glued between their voice coils. Such a 

suspension allows the cylinder to move in the axial direction within the limits ± 6 mm 

from the equilibrium position; the speaker's cone suspension geometry ensures the 

absence of lateral vibrations, and provides restriction on the amplitude of the axial 

vibrations. A lateral elastic link was provided to enhance the non-linearity in the 

suspension: a 0.05 mm-thick, 4mm-wide, and 10 mm-long steel strip attached to the 

frame and the cylinder with a very small initial stress. 

Two remarkable features of electromagnetic devices were employed: (a) a certain 

amount of current fed to the coil results in the force which is directly proportional to the 

current, and (b) if a coil is moved across the region with magnetic field with a certain 

velocity, the induction voltage produced at the coil terminals is directly proportional to 

the velocity. In both cases, the proportionality coefficient is equal to the product of the 

wire length in the coil and magnetic induction, which is the same for both excitation and 

measurement coils, since the identical speakers are used. It makes the calibration 



essentially simple. Moreover, the speakers are designed in such a way that a certain 

portion of coils remains at all times within the region of strong magnetic field even at 

very large coil displacements, ensuring linearity of the coils as the force and velocity 

transducers. 

The friction in the considered mechanical model is contributed mostly by visco-elastic 

losses in the speaker diaphragm's suspension, losses resulting from air flow around the 

moving body and diaphragms of the speakers, and electrical losses due to finite 

impedance of excitation and measurement devices. The losses due to sound radiation are 

negligible in the range of frequencies in which the experiments were carried out. Thus, all 

losses may be incorporated as viscous friction, and evaluated by a single parameter C: 

f{q,q) = Cq. (7) 

The non-dimensionalized form of dissipation coefficient, ^ = C I v, will be employed 

below, characterizing the relative energy loss during one period of oscillations. 

A special power amplifier (current source) was designed to provide a certain current in 

the force-exerting coil independent on the motion of the coil and its impedance, 

controlled by the voltage applied to the amplifier's input. The force output of the coil was 

measured in Newtons/Volt by the method of counterbalance: a voltage applied to the 

input of current source resulted in some force exerted by the coil, displacing the 

aluminum cylinder (suspended mass) from the equilibrium position. The displacement 

was then compensated by the controlled counterforce and its value was measured. Such a 



procedure was performed for various equilibrium positions within the limits of the 

expected vibration amplitudes, ensuring the linearity of the force transducer. 

The receiver coil, as a velocity transducer, was also calibrated by means of an 

accelerometer. The acceleration magnitude of 10 m/s2 has been maintained within the 

frequency range from 32 to 78 Hz, and the dependence of the voltage output of the coil on 

actual velocity magnitude was measured (Fig.3). The velocity transducer showed 

acceptable accuracy of ± 1.5% . 

Spring. Fig.4 illustrates the static load-deflection dependence of the spring used. The 

measurements were made within the acceptable range of current through the force- 

exerting coil. It can be seen that the spring is quite linear within the displacement range 

0.4 cm, and it takes much higher force to displace the system out of these limits. Such a 

behavior can be expected from the geometry of used suspension. At the linear interval of 

load characteristics, the spring has a compliance of 0.28 cm/N with accuracy 3%. The 

solid curve at the figure illustrates the polynomial fit of experimental data, expressed by 

the formula 

dU 
0 = —= 3.8756 ? + 0.37827 q2 - 7.122 q3 + 0.83379 qA + 35.44 q5 , 

dq 

where force is measured in Newtons and displacement in centimeters. 

Data acquisition and processing. The input signal for the force transducer was provided 

and the velocity sensor output measured by a PC-based Data Translation data acquisition 

system. A DT-Vee code was derived to provide measurements within a certain force 



amplitude - frequency domain, and calculate the response and temperature of the 

vibrations according to the expressions (4a) and (4b). The raw response and temperature 

data were later processed to calculate the reciprocal relations and reconstruct the 

dynamical potential. 

Temperature and response. Figures 5 and 6 represent the temperature and response of the 

oscillator in the same force amplitude - frequency domain: 0<F <0.5N, 20<v/27t<40Hz. 

The analysis of data belonging in the low-force region of the parameters domain (quasi- 

linear motion) allow to estimate the dissipation coefficient £ = 0.02 . The frequency shift 

of the maximum of temperature up by 2 Hz from the linear resonance frequency of 26 Hz 

indicates the strongly nonlinear regime of oscillations at higher force magnitudes. The 

further increasing of force amplitude could result in the physical damage of suspension 

near the resonance and thus was not exercised. It can also be seen that the typical large 

values of the response are of an order of 0.5 cm. Note that the absolute value of 

displacement can be significantly larger than the response value, because of the presence 

of cosinusoidal component of amplitude  q = (q cosv t), which reaches its maximum 

value close to the resonance. Our measurements indicate thus that the vibrations in our 

system substantially exceed the limits of linear displacements (Fig.4). 

Another observation can be made: within the chosen domain of parameters the shift of the 

resonant frequency due to the non-linearity is of the same order as the breadth of linear 

frequency response curve (of an order of 1 Hz), and thus non-linearity and dissipation 

play comparable roles in governing the oscillator's motion near the resonance. 

10 



Reciprocal relations. For the dynamical potential to exist, the reciprocal relations (6) are 

to be satisfied (with some acceptable accuracy). The cross-derivatives of the response and 

temperature have been calculated, and the ratio 

dq    IdT 
' (8) d lnv/ d a 

has been examined. The exact equality (6) corresponds to the unity value of the ratio (8). 

The ratio (8) is plotted in Fig.7 as a function of the force amplitude and frequency in a 

topographic way, where the white area corresponds to the value of (8) being within the 

limits [0.9... 1.1]. It can be seen that the reciprocal relations are fulfilled fairly well far 

from the resonance, and are inconsistent within an approximately 4 Hz-wide region near 

it for all force amplitudes. It means that, in the very vicinity of the resonance the 

dissipation plays a key role in the system's dynamics and cannot be neglected, and no 

dynamical potential exists. Nevertheless, the consistency of reciprocal relations in the 

most part of force-frequency domain ensures the possibility of reconstruction of the 

dynamical potential. 

Reconstruction of the dynamical potential. To build the dynamical potential, a force- 

frequency domain left of 28Hz was selected. The reconstruction was conducted by means 

of numerical integration of response and temperature data within this domain. Since the 

dynamical potential is determined up to an additive constant, the procedure of integration 

has been conducted in the following way. First, for each frequency in the range 28...40 Hz 

the response q   was integrated with respect to force amplitude a, resulting in some 

function of both force amplitude and frequency: 

11 



u=a„„=0.5N 

Pl(a,v)=       jq(a,v)da. 
a=0 

Another function of these parameters, P2(a,v ), was obtained by the integration of the response 

q with respect to logarithm of frequency up to vraax = 80Tü S
1
, with the function 

Pl (a,V =V min = 5Ö7T. S   ) used as a starting curve for integration: 

' max 

P2(a,v) = P](a,vmin)+ JT(a,v)d\n 
v 

Should the reciprocal relations be fulfilled exactly, these two functions would be the same 

- the dynamical potential. In our computations, however, the inaccuracies in the 

experimental data resulted in discrepancy of these two functions, with relative error 

averaging near 7% and reaching the maximum at vmax of approximately 20%. Figure 8 

represents the mean value of these two functions P(a,v)=(P1+P2)/2, which may be 

considered as the dynamical potential. The dynamical potential is measured in Joules. 

The experimentally derived dynamical potential can be approximated by some simple 

analytical function of the force amplitude and frequency, allowing rapid estimates of the 

averaged characteristics of motion under given load parameters. 

12 



Concluding remarks. 

1. It is shown in a laboratory vibration experiment with a single degree of freedom 

nonlinear oscillator that the concept of dynamical potential can be employed for 

description of averaged characteristics of motion under given load parameters. As an 

example, the dynamical potential is reconstructed for the considered oscillator. 

2. In the same time, it was found that even relatively small dissipation (of order 0.01) can 

qualitatively change the system's dynamics near the resonance, and apparently no 

dynamical potential can be constructed. This situation occurs when the response of the 

system is approximately equally governed by both non-linearity and dissipation, which in 

terms of measurable quantities mean that the nonlinear frequency shift of the resonance is 

of the same order as the breadth of the resonant curve (in given domain of loads and 

deformations). Some systems, however, may exhibit the resonance at the frequencies far 

from the linear eigenfrequency ("strong" non-linearity), and the estimates of the response 

and temperature can be successfully derived from the dynamical potential. 

3. Should the dynamical potential be deemed useful in the research in non-linear 

vibrations, the data of multiple experiments with various mechanical or electrical systems 

can be used to create a library of such functions, greatly reducing the need in numerical 

simulations or experiments with physical systems. 
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Figure Captions 

Figure 1. Mechanical Model. 

Figure 1. Experimental setup. 1-steel baseplate, 2-excitation speaker, 3-voice coil, 4- 

diaphragm suspension, 5-aluminum cylinder, 6-lateral link, 7-steel frame stud, 8-receiver 

speaker. 

Figure 3. Velocity calibration: the receiver coil output as function of the velocity 

magnitude. 

Figure 4. Static load-deflection curve for the spring used in the experiment. 

Figure 5. Temperature of the oscillator as function of the force amplitude and frequency. 

Figure 6. Response of the oscillator as function of the force amplitude and frequency. 

Figure 7. Checking the validity of reciprocal relations. 

Figure 2. Dynamical potential as function of force amplitude and frequency. 
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Figure 1. 

Figure 2. 

16 



V 
m 

P u 
P u 
f 

i fid 1                    I                    1                    .                    i                    ,                    1 

120  — 

80 — 

40  — 

A 

/ 
— 

A \ \ \ 
i     1     i     1     i     1     i     j     i 

0.00 0.02 0.04 0.06 
Velocity magnitude, m/s 

0.08 o.io 

Figure 3. 

17 



J I I I 1    I    I J I L 

20 

10 

0) o 

-10 

-20 

-1.0 

~i     i     i     i i     i     i     i i—i—i—r 

-0.5 0.0 
Displacement, cm 

0.5 1.0 

Figure 4. 



e 

Figure 5. 

19 



Figure 6. 
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Figure 8. 
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MICROMECHANICS OF DIFFUSIONAL CREEP 
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Abstract—In polycrystalline materials at high temperatures and low stresses, creep occurs mostly by 
the diffusion of vacancies through the grain bodies and over the grain boundaries. A continuum theory 
of vacancy motion is considered to analyze diffusional creep on a microscopical level. A linear version 
of such a theory' was formulated by Nabarro. Herring, Coble and Lifshitz. We revise this theory from 
the perspectives of continuum mechanics and present it in a thermodynamically consistent nonlinear 
form. A certain difficulty, which one has to overcome in this endeavor, is the absence of Lagrangian 
coordinates in diffusional creep, the major building block of any theory in continuum mechanics. A 
linearized version of the theory is studied for the case of bulk diffusion. We consider the derivation of 
macro constitutive equations using the homogenization technique. It is shown that macroequations are 
nonlocal in time and nonlocality is essential in primary creep. For secondary creep polycrystals behave 
as a viscoelastic body. For secondary creep, a vanational principle is found which determines 
microfields and macromoduli in stress-strain rate constitutive equations. A two-dimensional 
honeycomb microstructure and single crystal deformation are studied numerically by a finite element 
method. © Elsevier Science Ltd. All rights reserved. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Predictions of the mechanical behavior of solids can be roughly classified as short-term and 
long-term predictions. In short-term prediction, the behavior can be elastic or plastic, depending 
on the level of stress. For sufficiently low stresses, solids behave elastically. However, over long 
time periods, even under very low stresses, solids develop irreversible deformations. This 
phenomenon is called creep. 

There are three points worth stressing in a discussion of creep. First, everything creeps. 
Actually, solids creep even at zero external load, due to the fact that practically no 
polycrystalline body is in thermodynamic equilibrium. Second, creep is an energy driven 
phenomenon. Materials creep in order to decrease their energy (or other thermodynamical 
potential, depending on the external conditions). The energy of a polycrystal, for example, can 
be decreased by moving grain boundaries. This occurs in reality, but very slowly, by means of 
thermodynamic fluctuations. The rate of change is magnified significantly by elevating the 
temperature and/or applying an external load. Third, the mechanisms of creep are stress and 
temperature dependent. 

Two major creep mechanisms are movement of dislocations and diffusion of vacancies. A 
typical deformation mechanism map is shown in the stress-temperature plane in Fig. 1. Above 
the curve (high stresses) the dominating mechanism is dislocation motion. Below the curve (low 
stresses) deformations occur by the diffusion of vacancies. It" is believed that at low 
temperatures, vacancies move mostly over the grain boundaries (Coble creep), while for high 
temperatures, motion of vacancies through the lattice dominates (Herring-Nabarro creep or 
bulk diffusional creep). Diffusional creep is the leading phenomenon in many technological 
processes at high temperatures. Superplasticity, sintering and void formation occur mostly by 
diffusional creep. In this paper we focus on a thermodynamically consistent theory of diffusional 
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Fig. 1. Deformation mechanism map. 

creep. The foundations of this theory were laid down by Nabarro [1], Herring [2], Coble [3] and 
Lifshitz [4]. Extensive reviews of various aspects of creep theory can be found in [5-24], 

The mechanism of plastic deformation caused by bulk diffusional creep can be viewed as 
follows. Let a monocrystal be loaded by an external force (Eg. 2). Consider the right-hand side 
of the monocrystal. A surface external force might be thought of as a set of forces applied to 
each atom of the very right column of atoms (Fig. 2(a)). Because of thermal fluctuations some 
of the atoms of this column can jump to a new equilibrium position (Fig. 2(b)). Then the next 
atoms may jump into the vacant places and we see that vacancies enter the crystal body. Then 
vacancies can migrate inside the body and leave the body at the free surface (Fig. 2(d)). 

The motion of vacancies is accompanied by the corresponding motion of material in the 
opposite direction. The moved material is shaded in Fig. 2(e). Since the motion of vacancies is 
dispersed over the material, one observes an effective elongation of the specimen (Fig. 2(f)). 

3 
-<— —>- 
-*—I 1—>- 

Fig. 2. Mechanism of plastic deformation caused by bulk diffusional creep. 
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Fig. 3. Boundary diffusion. 

In the case of boundary diffusion, material flows over the boundaries from unloaded to 
loaded pieces of the boundary and that yields some macroscopic plastic deformation. This 
process is shown schematically in Eg. 3, the moving material is shadowed. 

A typical strain-time dependence for constant stresses is shown in Eg. 4. There are two 
different regimes of the plastic flow. Initially, strains grow fast, then the strain rate decays until 
it approaches some limiting value. These two regimes are referred to as primary and secondary 
creep. 

The aim of this paper is to construct the microequations of diffusional creep in the framework 
of continuum mechanics and develop a homogenization procedure to derive macroequations of 
creep. There are a number of reasons for pursuing these goals Erst, a phenomenological 
approach to the derivation of macroequations for creep provides too many options. Realization 
of our program may help to choose the right one. 

Second, the problem seems challenging from the perspective of continuum mechanics. 
Looking at the sketch of boundary diffusional creep shown in Eg. 5, one may observe that the 
basic notion of continuum mechanic, Lagrangian coordinates, cannot be used in this case. 
Really, material points which were on the grain boundary moves into the grain body, which is in 
clear contradiction to the main postulate of continuum mechanics [25, 26] on the existence of a 
diffeomorphism between the deformed and undeformed states and, as a consequence, to the 
existence of Lagrangian coordinates. If a continuum deformation were a diffeomorphism, the 
material points, which are on the boundary, stay on the boundary forever. Lagrangian 
coordinates are used in continuum mechanics, for example, in the definition of velocity: one has 
to ask "velocity of what?". We suggest a way to overcome this difficulty. 

Primary Secondary 
Creep Creep 

Fig. 4. Typical creep strain-time dependence. 

Fig. 5. Mixing by boundary diffusion. 
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Third, a theory of diffusional creep must be a building block for the theory of dislocational 
climb which is, at the moment, in a primitive stage. 

The contents of the paper are as follows. Section 2 describes the main feature of the model 
for bulk diffusional creep, which is the existence of a plastic displacement field. This is an 
unusual situation in plasticity. The general kinematic relations for the bulk diffusion and surface 
diffusion are given in Section 3. In Section 4 the closed system of equations of diffusional creep 
is developed from thermodynamic considerations. The linear version of the general theory is 
presented in Section 5. In the rest of the paper a linear theory of bulk diffusional creep is 
studied, which aims to derive macroscopic laws for grain structure starting from a micromodel. 
This is referred to as a homogenization problem. In Section 6 the formulation of the 
homogenization problem is given for a particular case of periodic grain structure. The theorem 
of uniqueness of the solution is proved, which is evidence for the correctness of the basic 
equations. In Section 7 the general type of macroscopic constitutive relations is established. 
Secondary creep is considered in Section 8. It is proved that, under constant loads, the transient 
solution tends to a steady-state solution and the closed system of equations is found, which 
allows one to find the macrocharacteristics of the secondary creep without "tracing" the 
transient solution. A numerical example of the solution of this system is presented in Section 9. 
A dimensional analysis of the equations and numerical modeling of the transient process are 
discussed in Section 10. 

2. MICROMECHANICS OF BULK DIFFUSIONAL CREEP: A LOGICAL 
SKELETON OF THE THEORY 

The logical structure of the theory is especially simple in the case of bulk diffusional creep 
and before going into detailed discussion, we outline it briefly. The key point of the bulk 
diffusional creep is that plastic strains eff' are compatible. There exists plastic displacement wf 
such that (in the linear case) 

*''-T(-sr + _*r)- (1) 

Here, and in the following, small Latin indices run through values 1, 2 and 3, and correspond to 
projections on the Cartesian axis of the observer frame; *,■ are the observer coordinates. 

The compatibility of plastic deformation is a pure kinematical hypothesis. It aims to model 
the process of deformation shown schematically in Fig. 2(e). In contrast to a general creep 
theory where six additional equations are to be given for six unknown functions ef\ in bulk 
diffusional creep one has to give only three additional equations for wp). 

It is clear that the plastic rate w^ should be related to vacancy motion. Some kinematical 
and thermodynamical consideration shows that the corresponding relation (in its simplest 
version) is 

*(W = £> (2) 

where c is vacancy concentration, dot denotes time derivative and D is the diffusion coefficient. 
Equation (2) reduces the number of closing equations to one: an equation for vacancy 

concentration c. This last equation is the diffusion equation for c 

dc 
  =DAc. (3) 

dx v ' 

Equations (l)-(3) should be complemented by the usual equations of elasticity and provided 
with the boundary conditions. Now we proceed to detailed considerations. 
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3. CONTINUUM KINEMATICS 

We are going to model, in terms of continuum mechanics, the following physical 
phenomenon. If an external load is applied to an atomic lattice containing a cloud of vacancies, 
vacancies migrate in some preferred direction. The motion of vacancies causes the motion of 
atoms in the opposite direction. The motion of atoms is perceived by an observer as an 
irreversible plastic deformation of the material. Our first step is to establish a kinematical 
relation which relates the motion of vacancies to the motion of the material. 

We model the motion of vacancies and material by two continua with velocities u, and v, 
correspondingly. We assume that vacancies are not created inside the material and can only 
come from the boundary. Then, as we shall argue: 

v\e) = (1 - c)v, + cu, (4) 

where u,(f) is an "elastic" velocity. If the elastic velocity v\e) is zero, the relation equation (4) 
expresses velocity of material (atoms) v, in terms of velocity of vacancies ut and vacancy 
concentration c. 

Usually, vacancy concentration is negligible in comparison to unity. Nevertheless, we keep the 
factor (1 - c) until the final calculations in order to underline the physical origin of various 
terms. Equation (4) is a postulate which is motivated by the following reasons 

Consider a piece of crystal lattice, a "representative volume of material," and think of v, as 
the average velocity of all the atoms of this piece 

Vi-jf^r (5) 

where Na is the number of atoms, v° is the velocity of the orth atom and the sum is taken over 
all of atoms of the piece. Similarly, velocity of vacancies is the average value of the velocities of 
all vacancies: 

".= jrZ»r. (6) 
v      a 

Here Nv is the number of vacancies and u° is the velocity of the ath vacancy. The volume 
average velocity vt is, by definition: 

\    a a / 
(7) 

where N is the total number of lattice sites 

N = Na + N„ (8) 

It follows from equations (5)-(8) that 

ü; = (1 - c)v, + cu, (9) 

where the volume fraction of vacancies c is, by definition, 

Relation equation (9) holds for a mixture of any two substances. Now we must express in some 
way the fact that we are dealing with diffusion of vacancies. We may assume that in the process 
of position exchange between an atom and a vacancy the velocities of the atom and the vacancy 
are equal in magnitude and opposite in sign. Therefore, in accordance with equation (7), ü, = 0. 
Then equation (9) links the velocities of atoms and vacancies. It is clear that atoms and 
vacancies might have another common additional velocity. Then ü, is not zero, but equal to this 
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additional velocity. The additional velocity is not related to the process of vacancy diffusion or 
irreversible deformation. We identify this velocity with "elastic" velocity and denote it by vl'K 
Then equation (9) takes the form equation (4). 

Note that the term "elastic" velocity is not quite exact. If one defines elasticity as, that part of 
deformation which disappears after unloading, then velocity v\e) might have a contribution form 
a plastic rigid motion, a motion of the monocrystal after unloading as a rigid body. However, we 
take some liberties in the terminology to simplify the notations and use the term elastic velocity 
for the sum of the "real" elastic velocity and plastic velocity of rigid motion. 

The flux of vacancies relative to material /, is given by 

/,- = c(u, - i/J»>). (11) 

In accordance with equations (4) and (11) material velocity v, can be expressed in terms of 
elastic velocity and vacancy flux as 

v. = ww __!_/,. (12) 

This is a key kinematical relation. 
Since vacancies can be generated only on the boundary, vacancy concentration obeys the 

conservation law 

dc dCU: 
- + — =0. (13) 

Equations (4), (11)—(13) form the basic kinematical relations of bulk diffusional creep. Now we 
are going to incorporate into this picture the surface diffusion. 

Consider a grain in a polycrystal. It occupies a region V. Region V depends on time. Imagine 
that at an initial instance, r0, we cut the grain out of the polycrystal and unload it. The grain 
occupies some region, V0, in an unloaded state. We refer both regions to some Cartesian 
coordinates, x'. Besides, we introduce in the region V0 some coordinates curvilinear in general, 
f, .which, in a "usual" situation, play the role of Lagrangian coordinates. Indices a, b and c run 
through values 1, 2 and 3, and correspond to projections on the axis f. 

There is one-to-one correspondence between the observer's coordinates x, and coordinates f ° 

x'=nn- (i4) 
Without loss of generality mapping equation (14) may be identical, however, it is convenient to 
leave it without specifications because coordinates x' and f obey to different groups of 
transformations [27]. This is why we use another group of Latin indices, a, b and c, in the 
notation for Lagrangian coordinates. 

At each moment of time, t, there is mapping of the region, V0, to region V 

x' = x'(r,t). (15) 
If this mapping is a diffeomorphism, then £" are Lagrangian coordinates. In this case, if a point, 
f", lies on the boundary, <?V„, of the region, V0, its image is on the boundary, <?V, of the region, V, 
for all instants, t. Velocity is defined as the velocity of the particle £": vi=dxi(£",i)ldt. This is a 
classical kinematical scheme of continuum mechanics (see, for example, [25-27]). As one sees 
from Fig. 5, this is not the case for boundary diffusion creep and we have to change the 
kinematical scheme. We introduce, as a "primary" kinematical object, the region V which is 
changed in time. In this region two velocity fields, material velocity v' and vacancy velocity u' 
are defined. If mapping equation (15) were a diffeomorphism and v'= dx\£",i)ldt, then the 
normal velocity of the boundary surface dV is equal to v/i,. In the case of boundary diffusion 
these velocities are different. We denote the difference by u: 

«boundary = «'«. + "- (16) 

Velocity, u, is caused by the material flow over the boundary. It appears as an additional 
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independent kinematical characteristic. However, a "more fundamental" characteristic might be 
introduced as primary characteristics of boundary diffusion: boundary mass flux /". Boundary 
mass flux is defined in the following way. The mass of the material is conserved in the boundary 
flow, therefore, a law of conservation of mass should exist. Denote by J" the vector of mass flow 
on the surface. Greek indices run through values 1 and 2, and correspond to projections on the 
boundary surface. If y is a curve on the boundary and va is the unit normal vector to y at a 
point P, then the scalar J"vaAs means the mass flow through the arc of y of the length AJ at the 
point P. Let p be the mass density of material. Then the law of conservation of mass has the 
form 

pu = Va7° (17) 

where Va is the covariant derivative on the surface SV. 
Mass density obeys also the law of conservation of mass inside the region V 

dp dpv' 

■7i + ^r'°- <18> 
Equations (16)—(18) provide the conservation of mass in volume V 

dP J3   ,   f AI f    dPv' pa-x= | -- 
'V(') 

—-    j pd3X= -?-AiX+ pVboundaryd2* =   " ~~ &* + P^boundarydlc 

=   I    p(vbou„«u.y- v'n,)d2x=   f    pud2x=  [    VJ°d2x = 0. 

It is natural to consider J" as the primary characteristics of boundary diffusion, then velocity u 
is determined by equation (17). 

Now we come to the point where we have to introduce displacements. It is natural to define a 
field of elastic displacements w('\t,x) which has the domain V(f). Vector w{'\tjc) means the 
displacement of a crystal from the imaginary unloaded state to the actual state V(r). If there are 
no plastic strains, the displacement w^itjc) relates to velocity by the formula 

+ l,J>»_J-=v{'>. (19) 

Equation (19) can be rewritten as 

dt dxk 

..    «"»"Vc... ■"*■!" s*-^rJ"'--7T- <20> 
The latter relation can be considered as a system of linear equations with respect to velocity 
v['\ if the displacement field is known. We keep formulas equations (19) and (20) as the 
definition of the vector of elastic displacements if velocity v(

k
e) is considered as a primary 

quantity. Remember that, by our convention, plastic (and, hence, elastic) deformations are 
consistent for diffusional creep and a vector of elastic displacements exists. 

4. THERMODYNAMICS OF DIFFUSIONAL CREEP 

We derive the basic equations of diffusional creep following the usual thermodynamical 
approach: we assume an expression for free energy of the material and construct the equations 
in a way to warrant the negativity of the time derivatives of free energy. 

The free energy F of a polycrystal has, by our assumption, an energy density per unit volume 
F: 

g = f     Fd'x. (21) 
Jv(i) 
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We  accept  that  energy density  F is  a  function  of the  gradient of elastic displacement 
w\j\ = dw^'Vdx'), vacancy concentration c and temperature T: 

F = F«>,cJ). (22) 

Temperature T is maintained constant. 
Note that the assumption equation (22) taken together with the definition of elastic 

displacements equation (19) extracts a special class of models. For example, if elastic 
displacement is defined, instead of equation (19), by the formula 

dw) 

dt 

M 

+ vk- 
dw (') 

dxk 
= "!->, (23) 

which may have some virtue, we would arrive at a class of models which differs from the one 
under consideration in the nonlinear case. 

Let us find the time derivative of free energy. We assume first that region V(t) is occupied by 
a crystal and all fields are smooth inside V. We have 

_djy 
d 

v       f /   dF      d     , ,      dF   dc \  .       f 

f - [ Ur *? •*+-A- * >'+i (v'">+u)i x      (24) 

After substituting in equation (24) the expression for (dc/dt) from equation (13) and integration 
by parts we obtain 

dg 
dr 1  dxk     dw\'k ) dx      dc 

d3X 

+ 
dF dF 

dwM->^-        — - dc 
nj(S,k - *#)„«>* - — (cv™ + /')«; + F{v'ni + u) d2x. (25) 

Here we expressed also 
dw\ (') 

dt 
in terms of elastic velocity from equation (20). 

For further transformations we need an identity [27] 

9       SF-)(S.   -w«')=     > (<?)    I \"im ni,m) 
dXk    <?*% dxk \ dw[ 

dF    (8,m-^ + F8l)-4-    dC 
(e) dc    dx" 

(26) 

This identity can be checked by direct inspection. Using equations (26) and (12) we can rewrite 
equation (25) in the form 

d& 

dr 

d<rkr".v«+r*£Lyx+ \ (aSv«JlL + TI_]rni + Fu )d2x. 
dxk dx'    dc av dc 1 - c 

(27) 

Here we introduced a notation 

dF ( dF \   . 
cr\ = —— (Smi - *£) + \F-c— )8', (28) 

dWmj \ dc   J 

It is seen from this expression that cr{ have the sense of components of a stress tensor. 



Micromechanics of fiffusional creep 

Assume that ]' do not depend on v(^K Since <r\ do not depend on v(^ as well and v{£ can be 
chosen arbitrarily, equation (27) can comply with negativity of dF/dt if, and only if, the 
equilibrium equations hold 

17=a W 

The simplest expression for the vacancy flux which does not contradict the negativity of dF/dt is 

d    dF 
J'= - D" - 

ax'   ac (30) 

where D'' is a positive tensor. 
Consider now the boundary terms. Let V be a polycrystal. Denote by 2 the grain boundary 

surface. Then the surface terms in dF/dt take the form 

1( ac     l - c 
rij + lFu) )d2x (31) 

where for any quantity A the symbol [^4] means the difference of A at two sides of the surface 
I. 

Let us present the surface force o-^n, as a sum of normal force crnrsi'(crnn = u^nfl^) and 
tangent traction. Similarly, v^ is the sum of the normal velocity vlfn^v^ = vj'V) and the 
tangent velocity. Then 

aiiv<f)nj=<Taiv(:\+ornA
c). 

Greek indices a, ß, y run through values 1 and 2, and correspond to projection on the tangent 
plane to 2. Using also equation (12) we rewrite equation (31) in the form 

({aa'vl')]ni+[ann(vn + u)} + 
1 - c 

dF 

dc 
r nj-[(ann-F)u]d2x).     (32) 

It is natural to require continuity of the total normal velocity of the adjacent grains 

[v„ + u} = 0. (33) 

Since cr„n (as well as other "generalized forces" in equation (32)) does not depend on velocity, it 
is necessary that a„„ be continuous: 

k»„] = o. (34) 

The normal vacancy flux J'nt can be arbitrary and vacancies on two sides of the grain 
boundary seem to be produced at independent rates. Therefore, it is natural to accept that the 
corresponding coefficient at /'n, in equation (32) are zeros: at both sides of the boundary 
surface 

O-nn-  F 

1 - C 

dF 

~dc 
= 0. (35) 

In accordance with equation (17), the last term in equation (32) can be written as 

F)u]d2x = 
o-„„- F 

VJ° ä^-j rv„ 0-„„- F 
d2x. (36) 
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Here we integrated by part and dropped the term on the polycrystal boundary. Finally, 

df _ f d    dF 
V 

v      '*    dc 

d3* + [    ([a"'vi'%- cr    - F 
J°V„    "" d2x. (37) 

There are different models which obey the negativity of equation (37). The most plausible 
version is based on the assumptions that cra'nj are continuous and surface fluxes of material J" 
are independent on both sides of 2. Then, neglecting reciprocal effects, one can put 

0->-=-/i-"[v^]on2 (38) 

Ja = daßvJ-^^—Jon each side of 2. (39) 

Note that, in contrast to crnn, the energy density is not continuous on I, therefore, material 
fluxes J" are different on the two sides of 2. However, this is a nonlinear effect. The equations 
derived in this section close the system of equations of diffusional creep. 

5. LINEARIZED THEORY 

In the linear case the system of equations is simplified greatly. First, in this case one can 
neglect the changes of region V in the process of deformation. Second, kinematical relations 
take a simple form 

v) ' = —— =vi + cu, (40) 

V; = V{^-J; (41) 

dc dJi 

pu=VaJ". (43) 

Third, energy density is a quadratic function of elastic strains 

#-m[-7r + -i!r) <44> 
and the deviation s = c - c0 of vacancy concentration from its equilibrium value c0 (for brevity 
from now on the function s will be referred to as vacancy concentration) 

F= —A*'*'4f)e*? + —As2+ function of 7. (45) 

Here A''ke are Young moduli, while A is an additional material constant. From some statistical 
reasoning [5] 

A = ■£— (46) 
mc0 

where m is the mass of one atom, p0 is the mass density of an ideal lattice. In equation (45) we 
neglect an interaction term A''e\'\c - c0). 
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In accordance with equation (28), the stress tensor a'' in the linear theory has the form 

(47) 

(48) 

(49) 

cx'i = Aiik'£['l 

It obeys the equilibrium equations 

»'.  -0. 
dx' 

Vacancy flux /' is given by equation (30) 

/'' 
.. ds 

= - AD"  
dx' 

Therefore, equation (42) transforms to the usual diffusion equation 

ds d   (       ..  ds   , 

We assume that diffusion constants obey the positive definiteness condition 

£>*££. 2: Z) &£• for V£,.£>0. (51) 

On the grain boundary we have from equations (33)—(35), (38) and (39) 

k] = 0 (52) 

[0 = 0 (53) 

a„n - As at each side of grain boundary (54) 

<j°>n = -^ß 
dw (O 

dt (55) 

daß 

J" =  V'ßcr„„ at each side of the grain boundary. (56) 
P 

It follows from equations (43) and (56) that the law of growth of grain boundaries due to 
boundary diffusion 

pu=Vß Vacrnn. (57) 

Equations (40)-(57) form a closed system of equations of diffusional creep. 

6. HOMOGENIZATION PROBLEM 

From now on we shall consider a special case of the linearized theory, formulated in Section 
5, when there is no boundary diffusion and, hence, the only irreversible deformation is due to 
the bulk vacancy diffusion. Formally this means that coefficients daß in equation (39) are 
supposed to be zero, which eliminates equations (56), (43) and (57) from the system equations 
(40)-(57). 

Further we assume that constants ßaß in boundary conditions equation (55) are zero, which 
neglects the tangent stresses at the grain boundary: 

aa'nj = 0 at each side of grain boundary. (58) 

This is equivalent to an additional assumption that the process of shear stress relaxation at the 
grain boundaries is much faster than the bulk diffusion process and is completed immediately 
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after the load is applied, so that the adjacent grains can slide without resistance along their 
common boundary. 

In the absence of the boundary diffusion the deformation of the region V is described by the 
displacement field w, (x',r), defined in V and related to the velocity v, by the formula 

vi(x,t)= vv,(x,f)xe V. (59) 

We introduce also the plastic displacements, which are determined by the flux 7, by means of the 

relation 

vv^(x,f)= -y,(x,f)xe V. (60) 

Then the displacements w, are the sum of the elastic and plastic displacements 

w. = WM + WY\ (61) 

Similarly for the strains: 

•.-»{% + %)«-*&**£■}>■*+*■      (62> 
Instead of equation (52), the continuity condition of normal displacement will be employed: 

K,] = 0. (63) 

Condition equation (52) follows from equation (63), but not vice versa. The difference is that 
equation (63) excludes the possibility that the normal displacements are discontinuous at the 
moment r = 0 when the load is applied. 

It is also necessary to complement the equations above with initial conditions for vacancy 
concentration and plastic displacements: 

s(x,0 = 0,xe V,f = 0 (64) 

ww(x/) = 0,ieV,/ = 0. (65) 

The closed system of equations in the case considered in the absence of boundary diffusion and 
with zero boundary shear stresses, consists of the equations (44), (47)-(50), (53), (54), (58) and 

(60)-(65). 
Consider a polycrystalline body containing a huge number of grains. We are going to derive a 

theory for predicting the mechanical behavior of the body. The experience gained in the 
averaging of random structures shows that most results for bodies with random and periodic 
structures are qualitatively similar. (See, for example, [27].) Therefore, we consider a body with 
a periodic microstructure (Fig. 6) loaded with some constant or variable traction. The problem 
is to find microfields, of elastic and plastic deformations and macroscopic constitutive equations. 

For simplicity and consistency with the performed numerical modeling, only the 2-D plane 
strain case of regular hexagonal periodical microstructure (Fig. 6(b)) will be considered. The 
reason is that with boundary condition equation (58) not all microstructures can withstand the 

(a) (b) 
Fig. 6. Microstructures. 
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instantaneous application of the external traction. For example, the rectangular microstructure 
(Fig. 6(a)) cannot be loaded by shear stresses, applied parallel to the grain boundaries. In other 
words, any macrodeformation of the structure should be the result of the application of 
macrostresses. Here we decided to use one structure which possesses the necessary properties 
rather than to formulate general restrictions on the grain geometry, which can be solved in 2-D, 
as well as in the 3-D case. An accurate formulation of that property will be done at the end of 
this section after the formulation of the homogenization problem. 

We consider the asymptotical statement of the homogenization problem when the period of 
the microstructure L tends to zero and averaged equations are the corresponding limit 
equations (see, for example, [27]). Before presenting the results, some description of the 
periodic structure is to be done. 

We assume that the grains coincide with the cells of the periodic structure. Let u* be an 
arbitrary cell and e be half the distance between the opposite hexagon edges, which will be 
taken for the characteristic size of the grain. The boundary dw* of the cell cu* is comprised of 
three pairs of lines 5,, 5',, 52, 5'2, S3> S'3 such that for every line Sa, there exists a translation 
la e C, mapping SQ onto S'a. This notation is explained in Fig. 7. 

The periodical regular hexagonal grain structure M is obtained by translation of that cell by 
all elements of translation symmetry group, generated by vectors /' and I2: 

G = [\mk\\mk = m\l+kl2,m,k = 0, ± 1, ±2,...). (66) 

For / e C we denote by a>(I) the image of the cell w* under the translation /. Different cells (o(J) 
may have in common the boundary points only, and the union of the cells covers the whole 
plane. Obviously, the translation - /Q maps S'a onto Sa. Thus, the periodic structure induces the 
certain mapping of the cell boundary du>~<-*&d*, which will be used for the formulation of the 
boundary conditions. For every point x e du* we denote by l(x) the corresponding translation 
vector. The points x and x'=x + l(x) will be referred to as the corresponding points. Note that 
l(x) is constant within each line Sa, S'a. 

The unit normal n to the cell boundary is assumed to be directed outward from the cell, 
therefore at the corresponding points x and x' we have 

/i(x) + n(x') = 0,/(x) = - 2en(x). (67) 

Fig. 7. Hexagonal structure. The translation vectors mapping the corresponding parts of the cell 
boundaries, shown by arrows. 
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Let f[x) be an arbitrary function, which is continuous within each grain, but may be 
discontinuous at the grain boundaries. Function/(x) is called periodic if 

/(x + 1) = /(x) for any x e w* and for any 1 e G. (68) 

Here w+ is the interior of a cell w*. 
If function f(x) is known within any cell, it can be extended to the whole space by the formula 

equation (68). From now on the term "periodic function" will be used in the sense of the above 
definition, unless otherwise is explicitly indicated. 

Denote by w" the cell, such that ^ = w*Dw". It follows from equation (68) and the 
definition of the corresponding points that 

[/] - /+ - /- - f{x\t) - /(x-,r) = f{x,t) - f(x' ,r) for x E S, (69) 

Thus, for periodic functions the discontinuity conditions can be expressed in terms of function 
values within one cell, which allows us to formulate the cell problem. Instead of applying the 
formal procedure of homogenization (see, for example, [27]) we use here an "intuitive" 
approach, which is easier to implement. Of course, it gives the some results as the general 

approach. 
Averaged constitutive equations by their physical sense relate a macroscopically 

homogeneous deformation of a "large" (compared with grain size e) specimen to averaged 
stresses. Instead of "large" specimen we consider the whole plane loaded by stress ä''{t) at 
infinity. One has to find microstresses in periodic structure and macrostrains e,y(f). One may 
prescribe at infinity macrostrains eiy(r) as functions of time; then macrostresses ä''(t) and 
microdeformations in periodic structure should be found. For definiteness, we consider the case 
of given macrostresses. 

If there were no grain boundaries, the homogeneous plane deformation history would be 
generated by the displacement field 

*1.(x,r)=eiy(r)*''. (70) 

The grain structure results in additional periodic displacements Wt(x,t), so that total 
displacements are given by the sum 

■Wl.(x,0=eiy(r)x''+W1.(x,r). (71) 

Since the first term in equation (71) is obviously continuous over space coordinates, it follows 
from equations (63) and (69) that the field W,(x,0 satisfies the condition 

W„(x,r) + W„(x',r) = 0forx s <?w + => Wn(x,t) + W„(x',r) = 0. (72) 

The vacancy concentration s is a periodic function. With equation (69) taken into account, 
equations (53) and (54) link the normal stress values and vacancy concentration at the 
corresponding points of the boundary: 

cr„„(x,f)= cr„„(x',r)for.r £<fe+ (73) 

j(x,t) = j(x',r)forxeÄ<) + . (74) 

The macrostresses, or averaged stresses, are defined by formula 

<r/y(0=T^T  f   <^(x'')d2*. (75) \a>   |    Jo.* 

The full set of equations is as follows: equations (44), (47)-(50), (53), (54), (58), (60)-(62), 
(71)—(75). For further references that system of equations is referred to system P. Initial 
conditions for the system P are equation (64) and (65). It is implied that all equations included 
in system P and initial conditions should be satisfied in the cell w*. 

Now  we  are  going  to  show,  that  the  chosen  microstructure  cannot  be  subjected  to 
instantaneous macrodeformation, if stresses are zero. With zero stresses and zero vacancy 
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concentration s, the elastic strain coincides with the total strain and is equal to zero, hence the 
displacement field w, within cell aT is rigid body motion: 

w, = iijX1' + W, = ke^x' + anx e w+,A,a, = const, eu = e^ = 0, en = - e2i = 1. (76) 

Relation equation (76) allows us to express the displacement W, in terms of macrostrains and 
rigid body motion: 

Wi=-iiix
i+Aeux

i + al. (77) 

Inserting equation (77) into the continuity condition equation (72) yields 

0 = W„(x) + W„(x') = ( - e„y + ke^ + fl>''(x) + ( - e,yx" + Ae;yx
,;' + <i>'(x') 

= ( - eiyx' + Ae^ + a>*'(x) - ( - e^x" + ke^x'1 + a>'(x) 

= ( - e;/ + Ae,y)(x'' - *">'(*) =-(-«*■+ A<-)/'(xK(x) 

= e/'(x)n'(x) - e/(x)«'(x) = e/'(x)/i*'(x) - An(x) 01(x) = e/(x)n'(x),x E dw\   (78) 

The vector product n 01 in equation (78) vanishes because these vectors are collinear at each 
boundary point (see equation (67)). Since normal is constant along each edge of the hexagon, 
equation (78) provides three homogeneous linear equations with respect to three macrostrain 
components e;/. A direct check shows that its determinant is not zero, which implies that all 
macrostrains have to be zero. 

Let R be the set of periodic displacement fields V,, defined at the cell w* by formula for rigid 
body motion 

V, = XetjX' + a,-. A,a,- = const (79) 

and extended to the whole plane by the periodicity condition equation (68). Under the 
displacement V, each cell shifts by the constant vector a, and rotates around its center by the 
angle A. It follows from equations (76)-(78) that any such a field satisfies the continuity 
condition equation (72) and does not produce macrodeformation. Figure 9 illustrates the 
movement of the cells. The holes that one can see at the corners of the hexagons, are a second- 
order effect and are ignored by the small deflection theory used here. 

THEOREM 1. Consider the solution of the system P with initial conditions equations (64) and 
(65). Macrostresses ä''(t) are given functions of time. The total and elastic displacements of this 
solution are defined with the accuracy of the arbitrary displacement field from set R. All the 
other components of the solution, such as vacancy concentration, plastic displacements and 
strains, elastic strains, macrostrains and stresses are uniquely defined. 

PROOF. Introduce the notations 

1 
/to. 2 As2d2x+ -[ew,E("],[e,"1e")] 

(80) 

Since the system P is linear, it is sufficient to prove, that if macrostresses are zero, then the 
system P with initial conditions equation (64) and (65) has only zero solution for all components 
with the exception of displacements, which belong to the set R. At the initial moment r = 0 the 
plastic displacement is zero because of equation (65), the displacements coincide with the elastic 
displacements and since the macrostresses are zero, the macrostrains are also zero at the 
moment r = 0. Hence 

7(0) = 0. (81) 
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Using inequality equation (C.6) for t* = 0 from Appendix C, we know that functional /(r) is zero 
for t s 0. Hence 

s(t) = 0, e<" = 0,(>0^(T-0, e,<f > = 0. (82) 

Hence, the displacement of the cell is rigid body motion, given by the formula equation (76). It 
was proved above, that in order to satisfy the continuity condition equation (72), the 
macrostrains have to be zero. The uniqueness theorem is proved. 

REMARK 1. Let us consider the loading case when the non-zero macrostresses are applied only 
at some time interval [0,/*], and were removed afterwards. Then from inequality equation (C.6) 
we conclude that vacancy concentration s and elastic strains ej/' exponentially tend to zero, 
hence the stresses also tend to zero. In other words, after unloading the residual stresses are 
relaxing to zero exponentially with respect to time. 

We conclude this section with the presentation of averaged stresses in terms of values of 
normal microstresses at the grain boundary (see Appendix B): 

(83) 

Relation equation (83) is valid for an arbitrary stress field satisfying equilibrium equation (48) 
and boundary conditions equations (58) and (73). With equation (54) taken into account, the 
averaged stresses can be expressed in terms of the values of vacancy concentration at the grain 
boundary: 

Ae     . 
sn n'dx. (84) 

It can be checked (see Appendix B) that for arbitrary constant C, the following identity holds: 

e 
C8''= —— CnWdx. (85) 

dio * 

It follows from equations (84) and (85), that if vacancy concentration is constant over the grain 
boundary then the corresponding macrostress tensor is spherical and the plane is under 
hydrostatic compression or tension. 

7. BOLTZMAN SUPERPOSITION PRINCIPLE AND MACROEQUATIONS. 

As has already been stated above, the macromodel should provide the relations between 
macrostresses and macrostrains ä''{t) and e;,(r). It seems almost obvious, that any parabolic 
type linear system such as P satisfies the Boltzman superposition principle and, hence, the 
stress-strain relation would involve an integral operator. 

Let us first assume that at r = 0 the unit tension along axis x1 is instantaneously applied to the 
polycrystal and remains unchanged for f>0. Then the only non-zero stress component is 
d-"(r) = 1. Denote by N(r), the solution of system P with initial conditions equations (64) and 
(65), corresponding to load case under consideration: 

K(r) = (e^X0^'y(^0,ev(^0,e!;)(^0^f(■■0^(^0■WX^r),vvi(^f),^v<'>(•,/)1v^(•,r)}.     (86) 

Solution X(f) is defined only for r a 0. Let us formally define it for t < 0: 

N (r) = 0 for r < 0. (87) 



Micromechanics of fiffusional creep 17 

If the same tension än(t) = 1 is applied at some time fj >0, then the solution is obviously equal 
to K(r — Ti) for i>0. Let us stress that K(t-tl) = 0 for t<tl because of the definition equation 
(87). 

The next step is to consider the load history, when at discrete moments t, = i&, i = 1,2,..., k 
tension increments däu(tl),dän(t2),...,däutk are applied. Then at any particular time r, 
tm < t < rm<.,, the total tension äu{t) is given by the formula 

*"(*)= £d *"(/,-) (88) 

and the solution is given by the sum 

2d«7n(r,)N(r-r,.). (89) 

Extension of the formula equation (89) to a continuous loading process provides the following 
formula for the solution: 

[V"(f)N(r-f)df. (90) 

Let us denote by Rij-kt(t) the macrostrain e,y(f) corresponding to the application of the 
macrostress ö-*'(0 = 1 ,r > 0. The values /?„.*,(') at r = 0 are components of the tensor of elastic 
compliances of a polycrystal. Because of that it is convenient to decompose R,jfk,{t) into the sum 

/WO = RiijcfO) + KiiJf), KiJJSI(0) = 0. (91) 

By its mechanical sense the function KijJa(t) is the e;/ creep strain component caused by 
constant load &k'{t) = 1, while the other macrostress components are equal to zero. Then for an 
arbitrary loading process the following holds: 

e,(r) = ['RiiJa{t - £)&k,U)&t = /WO)**'« + l' dKliJa{'~4) fr*'(fldg. (92) 
■IQ •'O 

Equations of the type equation (92) are widely used for creep modeling of polymers and 
concrete. 

So we arrive at the conclusion. In order to find macrostrains, caused by an arbitrary loading 
process, it is necessary and sufficient to know instantaneous elastic moduli tensor Rjj,k,(0) and 
creep tensor Kijkt(t), which components are creep strains caused by the corresponding constant 
macrostresses. Thus, in numerical modeling or experiment one may consider only loading cases 
when constant load is instantaneously applied to the body and remains unchanged. This is 
nothing else, but the classical experiment to find the creep property of a material. 

Inversion of equation (92) renders 

f'                                                               f' dZ'iJ"{t - £) 
*"(0=      Q,v-*'(r-f)Mf)df = ß'M'(0)gto(')+      ±—±Likj(e)d€        (93) 

Jo "'0 

QVJa(t) = Q'iJ"(0) + Zh'*'(t), ZiiJ"(0) = 0. (94) 

Here Q'i,k'(t) is the macrostress component crj^(r) caused by the instantaneous application of a 
macrostrain ekl(t) = 1, while all the other macrostrain components are equal to zero. The tensor 
Q/y,*'(0) is the elastic moduli tensor of the polycrystal. 
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It is worth mentioning that creep curves Kijk,{t) for small values of t have an asymptotic 
behavior 

JWO-^.^^-r» (95) 

and, hence, the creep rate tends to infinity as Cm when r tends to zero: 

e,j(t)~rm,t-+0. (96) 

An important feature of the constitutive equations (92) and (93) is that these relations are not 
local: there is a memory of the history of the process. This means that local theories of primary 
creep are not adequate at least in the case of bulk diffusional creep. 

8. SECONDARY CREEP 

Generally speaking, the macroscopic constitutive equations are given by the integral 
operators equations (92) and (93). However, for "slow" loading processes and a developed 
creep it is possible to use as an approximation the creep law 

Eij = EiJk/cr    ,<r    - a   - 5   a 12 (97) 

or 
' = e'iklekl. (98) 

Also the incompressibility condition is imposed: 

£** = 0 (99) 

which reflects the physically obvious fact that there is no volume change from bulk vacancy 
diffusion. A tensor e''kl is the inverse tensor to Eijkl. 

The macrocharacteristics of the secondary creep Eijk, are the limits of the creep rates Kijk,(t) 
when ?-*•=. The fact that under constant applied macrostresses the creep rates lend to some 
constants when t—►* will be formulated and justified below and constitutes the basis of the 
approximation equations (98) and (99). 

We start from formal description of how to compute the constants involved in the secondary 
creep law equation (98). It turns out that they may be found from the following variational 
principle. Let e,,- be an arbitrary constant macroscopic creep rates, satisfying the 
incompressibility condition equation (99). Denote by J (s) the following functional of function 
s(x). 

7(i-)= — [Vs,V5] - ^ j     e^n'n'sdx. (100) 

Here the notation equation (80) is used. Consider the minimization problem 

J(s) -> min,. (101) 

Minimum is sought on the set of all functions 5 obeying the constraints equation (74). It follows 
from equations (85) and (99) that the term linear with respect to s in equation (100) is zero for 
5 = const, hence the solution s* of the problem is determined up to an arbitrary constant. We fix 
this constant by the condition 

- 
s*(x)nknkdx = 0. (102) 
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The necessary and sufficient condition of the minimum is the following identity, which should 
hold for every function satisfying the condition equation (74) 

[Vi*,Vi] = e       eijn
in'sdxiorVs-j(x)=s(x'),x <=&>+. (103) 

The differential form of the problem equation (101) is derived from equation (103): 

d . ds 
-AD"—- = 0,xea» + (104) 

dx' dx 

[Jn)(x) = - 2e£^'UK(x), x e da>\[Jn]{x) - J„(x) + /„(«'), x e dw V„(x) 

= - AD"—^-n^x), xedoj*. (105) 

After the solution s* of the variational problem equations (100), (74), (101) and (102) are 
found, the deviator of macrostresses is defined by the formula equation (84) which takes the 
form 

Ae    C 
ä'iJ= —^-        s*n'nidx. (106) 

Macrostresses &"' are deviatoric because of condition equation (102) since 

&'kk=-TTr\      s*nkn"dx = 0. (107) 

The solution s* depends linearly on the parameters e,y. Hence, by putting this solution into 
equation (106) one obtains macrostresses in terms of creep velocities e,y, i.e. the relation 
equation (98). In more detail, consider two solutions, corresponding to two linear independent 
loading cases: 

s12 = 521 corresponds to e12 = e2i = 1/2, !,, =0, e22 = 0, 

5n = - s22 corresponds to l12 = e21 = 0, e,, = - e22 = 1/2. (108) 

Then the solution s* is the linear combination 

5* = l;/5
;>. (109) 

Substitution of equation (109) into equation (106) provides the formulas for the 
macrocharacteristics e''kl: 

e'y*'= -£ir  I   (s^n'^dx. (HO) 

It is obvious that only two constants among ei,kl are independent. 
So far it was shown how to find the deviator of macrostresses if macroscopic constant 

incompressible creep rates are given. Let us prove that the secondary creep law is reversible. 
Multiplying equation (106) by e,y we obtain after summation over repeated indices and using 
equation (103): 

Ae     f A 
s*e,Jn

in'dx= —— [V.s*,Vs*]. (HI) 

The left-hand side of the relation equation (111) is zero if and only if all creep rates e /; = 0, 
which means that the matrix of the quadric form e,, = e';*'eiyet, is positive definite, hence the law 
equation (98) may be inverted. 
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Now we can describe how to find creep rates and vacancy concentration for secondary creep. 
Let macrostresses ä0'' be given constants. First the deviator of tensor a01' should be 
calculated 

ä0iJ=ä0i'-Si'p,p=ä0kk/2. (in) 

Then the creep rates e0l; are found satisfying the creep law equations (97)-{99). The vacancy 
concentration s° is the sum of the constant p and the solution of the variational problem 
equation (101), corresponding to creep rates e°: 

s°(x)=p + e^'(x). (113) 

The last step to define the microcharacteristics of the secondary creep is to determine the 
elastic strains and stresses within the cell a>*. The normal stresses at the cell boundary are 
determined from equation (51), since the vacancy concentration s° is found: 

a„n(x) = As°(x),xedü,+. (114) 

Formulas equations (58) and (114) define surface tractions at the grain boundary. Thus, the 
elastic displacements, elastic strains and stresses inside the cell may be found from the solution 
of the elasticity problem equations (44), (47), (48), (58) and (114), if the principal vector and 
moment produced by surface tractions are zero, which they are as is shown in Appendix B. 
Denote this solution as w°{'\e°-f),a0''. At this point all the characteristics of secondary creep are 
determined. 

THEOREM 2. Under constant applied macrostresses ä0iJ the solution of the system P with initial 
conditions equations (64) and (65) reveals the following asymptotic behavior: 

s(x,t)^s\x)£li(t)^e?re<;\xj)^e%'\x),<r\xj)^<r
0i'(x). (115) 

PROOF. It is shown in Lemma 2, <appr id = "C", that the difference between two arbitrary 
solutions of the system P, corresponding to the same loading process &''(t), tends to zero in the 
following sense: 

sl(x,t) - s2(x,t) -+ 04(r) - e?-(r) - 0,e]}e)(x,t) - ef >(x,f) -» 0,aUi(x,t) - <7^(x,r) - 0. 

(116) 

Let us stress that solutions need not satisfy initial conditions equations (64) and (65) and need 
not have the same initial conditions. This means that if some particular solution of the system P 
is found, then any other solution tends to it, regardless of the initial conditions. Thus, to find the 
asymptotics of the solution of the problem it is sufficient to find some particular solution of the 
system P. We shall use upper case index "0" for all quantities related to this solution. This 
implies that the functions introduced above with the same index are part of this particular 
solution. 

Let us first define macrostrains as a constant strain rate process: 

e%t) = fy- (117) 
Second, define the plastic displacement. Since the plastic displacement velocity is expressed in 
terms of the vacancy concentration from equations (60) and (49), the only freedom left is to 
define the plastic displacements at f = 0. We pose 

w°w(x,0) = - w?'\x)x ew+. (118) 

Then 

w°<J')(x,t)= - w°('\x) - ü%x)J°l=-ADii -,xew+xea>+. (119) 

Third, since the elastic and plastic displacements are defined over the cell, the additional 
displacement in the equation (71) ought to be as follows: 

W?(x,f)= -ts°xi-tJ°(x),xzw+. (120) 

To conclude the construction of the particular solution, it is necessary to check the continuity 
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condition equation (72). It obviously holds at r = 0 and, hence, it is enough to check a second 
condition in equation (72) for f>0. It follows from equations (105) and (119) that 

[W2]=-e^V-[/2] = 0. (121) 

The theorem is proved. 

REMARK 2. let us normalize the diffusivity tensor: 

D'^DD" (122) 

where D is some characteristic value of tensor D'' and introduce dimensionless coordinates 

y=y (123) 

which maps the cell aT onto unit cell Q. The functional equation (100) is transformed to 

1    f ...   dsds     , e2     f  .    . . ^H^w^^Jj^'-        (i24) 

Then secondary creep macrocharacteristics can be represented as follows: 

etf*'=fy« £,£„„ = £<,„.£. (125) 

where dimensionless constants t'ki and Eijk! depend on the constants D'' and the unit cell shape 
only. An important consequence is that secondary creep rales do not depend on the elastic 
properties and even on the value of the constant A. Elastic properties influence only stress 
microfields. 

14. NUMERICAL RESULTS FOR SECONDARY CREEP 

For definiteness, it was assumed that grains are isotropic, and hence only four physical 
constants are needed: Young modulus £, Poison ratio v, the constant A in equation (54), 
diffusivity constant D in equation (122) (with D'1 = 8'') and the grain size e. 

14.1    Secondary creep rates. 

In creep, the periodic hexagonal structure behaves isotropically. Thus, the creep law equation 
(97) contains just one macrocharacteristic—the viscosity /A: 

ä"j=M-£iJ (126) 
The dimensional analysis of the cell problem shows that /x depends on the grain size e and 

the diffusivity coefficient D only 

e2 

ß = a— (127) 

where a is some constant. Numerical simulations give the following value of the constant a for 
the hexagonal structure 

a = 0.26. (128) 

Formulas equations (127) and (128) inspire an assumption that a similar relation between 
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macro- and micro-characteristics exists for the random structure as well, where e is the averaged 
grain size and D is the characteristic diffusion coefficient of monocrystals, while the coefficient a 
is of the order of unity. 

14.2    Microdeformation. 

The distribution of creep velocity over the cell in the regime of secondary creep is shown in 
Fig. 8. The orientation of shear stress applied is given at the right top of Hg. 8. It is seen that 
there are three pairs of opposite cell sides with different properties. Material departs from one 
pair of sides and arrives at the other pair of sides. The remaining two sides consist of two pieces: 
material leaves one piece and arrives at the other one. 

15. DIMENSIONAL ANALYSIS AND TRANSITION TIME TO SECONDARY CREEP 

Let E be some characteristic value of tensor A''1". Similar to equation (122), normalize the 
tensor A''k! using the value £: 

AiJla 

A,jk'^ (129) 

Let us assume that dimensionless parameters Ä',kl and D',k' remain unchanged in our analysis. 
Then a solution of the system P depends on four constants: E, D, A (see equation (54)) and e- 
characteristic grain size. 

^///'''V:::;ii.i,i.i 

•Vv ■■«'»». *' d fl r / / //''' v v \ \ \ ^ * \ % ;ii« \ .-^, ■ 

^ 

Fig. 8. Creep velocity distribution during the secondary creep. 
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Our intent is to transform the system P to dimensionless form. In addition to dimensionless 
space coordinates y' (see equation (122)) introduce intrinsic time T and normalized 
displacements and flux: 

AD    -      df 1 1 

e <fr e e 

ww = — ww, w^ = — W<", /, = — — Jhä
li = — a''. (130) 

c e e   /4D /I 

Vacancy concentration and strains need not to be normalized. Then system P is reduced to 
the system P: 

(132) 

(133) 

(134) 

(135) 

(136) 

(137) 

(138) 

(139) 

/ dw,     aw,\   ,,       / aw^     awY) \ :-' = mW + ^)^ i~m[-ir + -lSr)'<m'V + 'V> (140) 

^(y,T) = e1>(r)y + vv,.(y,T) (i4i) 

W„(y,T) + W„(y',r) = 0 for y e <?Q^> W n(y,T) + W'n(y',T) = 0 (142) 

ö-„„(y,T)=ä„n(y',r)forye^Q (143) 

s(y ,T) = s(y',T) for y e dCl (144) 

U     In 

<7,y = e/i 

= 0 

J'= -D 
<?y 

as      a f ** *) ar     ay' \    w) 
Ö-„n = S, y e an 

ä°Jnj = 0 ye c?Q 

»V ■w(y.r)=- •/,(y,7)ye Q 

VV, = H>{' + W<f> 

Initial conditions: 

j(y, r) = 0, w^y.T) = 0, y e Q, r = 0. (146) 

We see that the only dimensionless parameter, e = E/A, remains in the equations. To get a 
feeling what may be the actual value of parameter e, let us consider copper at 1000 K 
temperature. It is known that equilibrium value of vacancy concentration varies in broad range 
is C0 ~ 10"8-10~4. Then it follows from equation (46) that e ~ 0.01-100. 

Let   us  study  numerically  how  the  solution   depends  on  parameter  e.  For  simplicity 
computations were done for the problem of compression of a single crystal by absolutely rigid 
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Rg. 9. 

frictionless pistons (see [4]). Region Q. is a square, the characteristic size is the distance from its 
center to the edges (see Fig. 10). Vertical crystal edges are free. For simplicity let us assume that 
the crystal is isotropic. Under this assumption the compression of the crystal will not result in 
piston rotation and from symmetry considerations we may assume that the displacement of the 
cell center is zero. Let C(T) be the vertical displacement of the upper piston, which is the 
unknown function and which is analogous to the macrostrain in system P. The normal average 
stress a at the contact between the pistons and the crystal surfaces serve as an analog to the 
macrostresses. The piston is loaded by a constant force, such that the average stress is equal to 
-1. 

*- \   f *«(y*XrW=\ J"    *n(y\- l,r)dy'= - 1. (147) 

The system of equations of the problem of compression of a single crystal is the set equations 
(131)-(139) and (147), initial conditions equation (146) plus boundary conditions: 

<7n/,(±l,y2,r) = 0, -l<y2<l (148) 

w„(y\± 1,T)= ± e(r), - 1 < y1 < 1. (149) 

The Theorems 1 and 2 can be proven for this problem as well. 
The steady-state solution for secondary creep can be obtained in closed form and the value of 

the steady-state creep rate is 1 = 1.7. Hence, the analog of the formulas equations (126) and 
(127) in this case is 

2 

(7 = 0.588 e 
D 

(150) 

One may notice that the numerical coefficients in equations (126) and (128) and in equation 
(150) are of the same order of magnitude. 

1 1J >■>    I     1 

e = / 

t t t t 
Rg. 10. 



Micromechanics of fiffusional creep 25 
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T 

Fig. 11. 

2. 

3. 

Let us discuss numerical results for the transient solution. Parameter e values were chosen to 
be 0.1, 1, 10, which is in the middle of the expected range. 

1. As was expected, for small values of dimensionless time r creep rates fit very well the 
asymptotic ~ r~m (See Eg. 11-13). 
When T is large, a steady-state creep rate of 1.7 is achieved (see Table 1). A practically 
steady-state is reached at T ~ 1 (see Table 1). 
Parameter e somewhat affects the transition time necessary to reach the steady-state 
creep rate. The smaller the e the larger the transition time. However, the modeling 
results do not allow us to conclude what kind of dependency is it. As one can see from 
Table 1, the transition time for <? = 0.1 is much larger, than for e = l, but there is no 
noticeable difference between cases with e = l and 10. 
At the first moment of load application, the only non-zero stress component is ä22 and 
it is equal to - 1 over Q. With creep developed, stresses tend to limit, which do not 
depend on the parameter e, which is as it should be because of Theorem 2. Figure 14 
shows the stress distribution at the piston-crystal contact for e = 10, T = 0.5. Stars mark 

4. 

0.10   0.19   0.28 0.37 0.46  0.55  0.64   0.73 0.82   0.91   1.00 
X 

Fig. 12. 
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asymptotical the steady-state stress distribution. The transition time to steady-state 
stresses is of the same magnitude, as the transition time needed for the creep rate to 
become constant. 

Table 1. Stabilization of the creep rate for various values of parameter <r 

0.1 10 

2.5 0.8 0.65 0.3 0.5 0.25 
1.74 2 1.72 2 1.73 2 

Asymptotic value of i 

Fig. 14. 
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16. CONCLUSIONS. 

Three interesting results of this study seem worth noting. First, the constitutive 
macroequations of diffusional creep turn out to be nonlocal. It is not obvious how to eliminate 
the nonlocality by introducing additional internal variables. Probably, the elimination of the 
nonlocality on the macroscale is impossible in principle. Since this seems to be the case, a search 
for adequate local constitutive equations for creep is doomed to failure. Second, there is an 
intrinsic material time r = tDA/e2. Strain-time dependence (for constant stresses) is universal for 
intrinsic time in the sense that it does not depend on the material and on the temperature (the 
temperature dependence comes from the material constants D and A). Third, as the variational 
principle shows, creep rates do not depend on the elastic properties in secondary creep: only 
diffusion constants, the grain size and the grain geometry are important. Formula equation (87) 
is an example of such a dependency. 
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APPENDIX 

A. THE EFFECT OF GRAIN BOUNDARY STRESS RELAXATION ON APPARENT 
ELASTIC MODULUS 

The assumption equation (58) that shear stresses at the grain boundaries can be neglected in creep problem is 
believed to be correct by many authors It would be interesting to find an experimental evidence that such an effect is 
real. It may not be an easy task, because the numerical modeling revealed surprisingly low influence of grain shear 
stress relaxation on apparent elastic modulus In more detail, the averaged elastic properties were computed for the 
periodic structure described in Section 6. Boundary conditions equation (58), (72) and (73) were applied and averaged 
elastic moduli were calculated from the solution of the periodic elasticity problem. For definiteness it was assumed that 
grains are isotropic and. hence, only two elastic constants need to be calculated. In addition, it is obvious that if the 
hydrostatic pressure tensor is applied to the plane, the structure does not "feel" the cuts made and, hence, the bulk 
modulus of the polycrystal is the same as the bulk modulus of the grain itself: 

2(1 - V)        2(1 - v) (A.l) 

where £, v and £*, v* are Young's modulus and Poisson's ratio of the grain and the polycrystal correspondingly. 
Because of that the ratios £*/£ and C'lG depend only on Poisson's ratio. Results are listed in Table 2 and as one can 
conclude the Young and shear moduli drop no more than 20% as a result of shear stress relaxation. 

B. PROPERTIES OF PERIODIC STRESS FIELDS, SATISFYING THE 
EQUILIBRIUM CONDITIONS 

Let us prove formulas equations (83) and (85), which hold for an arbitrary stress field satisfying equilibrium equation 
(48) and boundary conditions equations (73) and (58). Multiplying equation (48) by xk and integrating over cell in' we 

Table 2. Apparenl elastic moduli of polycrystal with fully relaxed shear gTain boundary stresses 

V 0.3 0.34 0.45 

E'lE 
CIC 

V* 

0.830 
0.806 
0.339 

0.829 
0.811 
0.370 

0.828 
0.823 
0.459 
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8« 

0=f   -^x*d2x=- f  «r^d'x+J    «rVdi* f  <7-"d2x = J    «r'n/di 

= |    cr„/i'xtdx =  ifLji^ixVdx+f  o-,„(x'j)n'(xV)j:'*dx'j 

=  2 (J ^(x.f)n'(x)x*dx - J ^(i;)«'(x)(zt + /'(x))dx) 

= -  t  | or„(x^)n'(x)/*(x)dx= - 1 J    <7„//I7*dx = -ij    «r^i'nMx (B.1) 

Formula equation (83) follows from equation (B.l) and definition equation (75). In order to prove equation (85) let 
us note that spherical tensor cr'' = CS'' may be substituted in equation (83), which is reduced in this case to equation 
(85). Let s be an arbitrary function, satisfying periodicity condition equation (74). Let us define surface tractions on the 
cell boundary An' by formulas equations (58) and (54). Then the principal vector F and principal moment M applied to 
the grain from these tractions, are zeros. 

F= f    <7-„(x)n(x)dx = 0 (B.2) 

W= I   <7„(x)n©xdx=  2 il o-„(x)(n(x)®x + n(x')®x')dx j 

=  2 (J<^(x)n(x)®(x-x')dx) = -  2 (J«r«(x)n(*)®l(x)dxj-0 (B.3) 

The last term in equation (B.3) is zero because of equation (67). 

C. ASYMPTOTIC BEHAVIOR OF THE SOLUTION AT LARGE TIME. 

LEMMA 1. For every solution of the system P the following identity holds: 

— +A[*sSs]=\a,-\ä^i,. (C.1) 
at 

PROOF. It follows from equations (50) and (54) that 

Q= — +A[VsSs]=A[Vs,Vs}+ f As — d2x +  f a'^'t^e^x 
d/ J„-       dl J„- 

2) = A[VsSs] -A[Vs,Vs]+ \    <r^Dij—S—nAx+ \  <Tk,e$d2x= [    a„w<fdx+ f  cr^Wx. (C 
JA.- a* J~- JA.- J_- 

With equations (62) and (71) the elastic strains are expressed in terms of averaged strains, plastic strains and strains 
<i/(W) generated by field W: 

*!;>=«»+ ^,/w) - cjr'.^w) = 1 (-^ + -^f) .*<<> = *v+ ./w) - *«r>. (C3) 

Substitution of equation (CJ) into equation (C.2) yields 

2= f    »„wWdxH- f  o-»(l,+ e/W)-e^)d2x 

= f    o-„>ifdx+ [ <r
i/l,;d

2J+ [    CT„n(W,,-.v<f>)dx= |GT|<7%+ —  [    <7'„[Wn]dx=|a)-|äi'£iy.       (C.4) 
JA-

- J«" JA-' ■'*-' 
Boundary conditions equations (73) and (72) were used in the derivation equation (C4). Lemma 1 is proved. 
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LEMMA 2. Let us assume that for r z. t° macrostresses are equal to zero: 
ö-"(0 = 0, t 2: f. (C5) 

Then for an arbitrary solution of the system P the following estimations hold: 
/(;) £ e'ß("nI(t')j a t*.ß = const >0 (C6) 

and the following components of the solution tend to zero: 

s — 0, 4'*-* 0, o-''— 0, lv— 0. r — 0. (C7) 

PROOF. For t 2: r* the identity equation (Cl) is reduced to the following: 

d/(0 
di 

It follows from equations (C5) and (84) that 

+ A[Vs,Vs] = 0. (C8) 

I"   sntnidx= [   jdx = 0,ra:f*. (C9) 

Then the following inequalities hold [28]: 

f AsWx £ C2[Vi,Vj] (C10) 

[   /lVdjr£C3[Vj,Vj]. (Cll) 
JA»- 

Adding, if necessary, to the solution some field VeR we may modify the elastic solution so that at each moment l 
averaged over the cell w~ elastic displacements and rotation are zero: 

f w(,')d2x = 0 (CM) 

U^'—)d* = a (C13) 

Then [29] 

[    (w^fdx £ C4[e
w,«(*'], C4 = const. (C14) 

Let us prove that 
[«<•>. «">]SC5[VJ,V*]. (C.15) 

With equations (48), (58) and (54) taken into account, the left-hand side of equation (C15) is reduced to 

[*w.«">] = f  (TiU't)d2x= [    <7-'V;"dx= f    o-^^^dj: 

[   AsnjwPdxs  Jf   AVdxJj   (1v<")IsC6V[fl'Uw]V[Vj,Tf]. (C.16) 

The inequalities in equation (G16) follow from equations (C14) and (Cll). Estimation equation (C.15) follows from 
equation (C.16). 

Combining equations (C.15) and (C.10) we obtain 
A[VsSs]>ßl(t),ß = consL (C17) 

It follows from equations (C.8) and (C.17) that 

d/(f) ,      d/(() 
0=_li.+/iVs,Vi2-f!. + ß/(i) (C18) 

dt di 

which results in the basic relation 
/(() £ e-«'-r>/(f*) => I(t) -* 0, f - x. (C.19) 

The first three statements in equation (C7) follow immediately from equation (C18). Since elastic strains and vacancy 
concentration tend to zero, the same is true for elastic and plastic strain rates, if the solution of the system P is 
sufficiently smooth. Hence 

A1/«Jv+«i/(W) = ei;' + £^^,r-x. (C20) 

Using Levi-Civita formulas, we obtain the following equalities: 
W,= -e,;x'+Ae^' + a,+ r(A,y),A,a,= const,r(Al/)-*0. (C21) 

The second and third terms in equation (C21) represent the rigid body displacement, the last term stands for Levi- 
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Civita integrals. Substitution of equation (C21) into continuity condition equation (72) is made similarly to evaluation 
equation (78) and yields 

i/(x)",(*) + 7"-(A»).7,.(Av)-0.f — . (C22) 

Since the normal vector is constant over S„ r = 1,2,3, the relation equation (C.22) provides three different conditions, 
which may be considered as a system of linean equations with respect to three components et The determinant of this 
system is not zero, and then it follows from equation (C22) that £—»0/-*«. Lemma 2 is proved. 
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