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A DISTURBANCE ATTENUATION APPROACH TO MISSILE GUIDANCE AND CONTROL 

1. Objective of the Research Effort 
Solutions to stochastic control problems currently do not produce mechanizable missile 
control laws. To fill the gap without making excessive structural assumptions, it is 
suggested that the disturbance attenuation problem be extended to nonlinear guidance and 
control problems. This deterministic approach, which does not include all the properties 
of the stochastic control solution, does have characteristics which are quite appealing. For 
example, certain classes of partial information disturbance attenuation problems can be 
solved numerically essentially because variation methods are available. Over the three 
year period of the grant, robust and adaptive guidance and control laws which are 
mechanizable with near-future computer technology are developed which can meet system 
objectives in the presence of large uncertainties, system structural changes, and 
nonlinearities. Of particular importance emerging from our focus on disturbance 
attenuation is a new structure for adaptive control, new detection filters for detection and 
identifying structural changes, and methodologies for including system nonlinearities. 
Finally, a new multiple-hypothesis adaptive estimator, using a single linear filter whose 
parameters are changing according to the on-line computation of the probability of each 
hypothesis conditioned of the residual history, is shown to have better or equivalent 
performance to the current bank of filters concept with dramatic decrease in computation 
and ease of implementation. 

2. Status of the Research Effort 

The general missile guidance problem can be formulated as the minimization of some 
statistical function of the terminal miss subject to a nonlinear stochastic system composed 
of missile and target dynamics, a noisy nonlinear measurement of the state space, and in- 
flight constraints on the system structure and aerodynamics. In the stochastic control 
context, the terminal miss distance is described by a probability density function. The 
object is to shape this density function to give the desired performance. For example, the 
expected value of the miss distance could be the performance index. However, it may be 
desirable to allow the mean miss to increase somewhat if the dispersion about the mean 
can be decreased. The addition of an intelligent target significantly increases the 
complexity of the problem. Solution to this stochastic control problem by dynamic 
programming is not currently feasible. Only for the simplest class of stochastic control 
problems are solutions available. This class includes the linear-quadratic-Gaussian (LOG) 
and linear-exponential-Gaussian (LEG) problems. In Section 2.1, for the discrete-time 
LEG problem, the solution of this problem for both the centralized and decentralized 
information structures are shown to reduce to that of a class of differential games 
equivalent to that used to solve the disturbance attenuation problem. 

Since the solution to the stochastic control problem is currently not feasible, our 
approach to robust and adaptive guidance and control is to consider a disturbance 
attenuation formulation which produces a coherent framework for developing and 
combining guidance laws and nonlinear estimators without excessive structural 
assumptions. This deterministic approach to uncertainty based on differential game theory 



allows certain classes of partial information problems to be solved by variational methods 
which are characterized by ordinary differential equations rather that by the partial 
differential equation of dynamic programming, thereby substantially reducing the 
numerical complexity. As significant amount of progress has been made in understanding 
and exploiting the relationship between minimax and saddle point strategies of these 
differential games for particular classes of nonlinear dynamic systems. For example, in 
Section 2.2, a synthesis technique for the design of robust flight control and missile 
autopilots in the presence of system parameter and initial conditions uncertainties was 
developed via a disturbance attenuation approach. Whereas the objective of robust 
controller design is to make the system insensitive to the parameter uncertainty, our efforts 
also focused on a new class of adaptive control techniques in which the value of the 
uncertain parameters are to be estimated. In Section 2.3, it is shown that the structure of 
this new adaptive control scheme is the result of formulating a disturbance attenuation 
problem for a particular class of nonlinear systems whose solution is obtained without any 
approximation. A global solution is obtained and must be contrasted with much of the 
nonlinear 9L results which assumes that the scheme operates locally about some 
equilibrium condition. The class of nonlinearities considered is that of a linear system 
where the coefficient matrix of the control is assumed to be a linear function of an 
unknown parameter. To bring these mathematical abstractions to engineering practice, a 
significant effort was made to apply this new adaptive control scheme to the development 
of an adaptive flight control system for a high angle-of-attach aircraft such as the F-18 
HARV (High Angle-of-attach Research Vehicle). 

Since target motion detection is important for miss distance reduction in missile 
guidance, two techniques were developed and discussed in Section 2.4. The first is based 
on a disturbance attenuation problem in order to achieve a degree of robustness. In the 
limit, when the transmission bound is brought to zero, the classical detection filter is 
recovered. In the second approach a multiple hypothesis adaptive estimator for tracking 
in the presence of target motion is developed. By replacing the old concept of using a 
bank of filters each tuned to a particular hypothesis, a single filter is used where the 
parameters are changed according to the on-line computation of the probability of each 
hypothesis conditioned on the residual history. 

In Section 2.5, robust missile guidance laws with bearing-only measurements based on 
the dissapative inequality are shown to satisfy a disturbance attenuation bound if certain 
modifications to the guidance law are made and certain conditions are satisfied. 
Furthermore, in a different approach, over a finite-time interval, for a class of linear time- 
varying dynamical systems, an approximate nonlinear optimal estimator and control 
scheme are derived based on an expansion technique for solving the disturbance 
attenuation problem. Finally, in Section 2.6 using an expansion technique, the midcourse 
guidance problem for tactical and ballistic missile intercepts is solved where velocity on 
target is maximized subject to miss distance and orientation constraints. 

In the following subsections the work on this grant are briefly described. The papers 
[2, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18] represent the work performed on this grant. Since 
[10] is in the early stages of the review process, and because of its importance, it is given 
in the Appendix. 



2.1 Some Relationships Between Stochastic Control and Disturbance Attenuation 

For the discrete time LEG problem, where the dynamics and measurements are linear with 
additive Gaussian uncertainty and the performance index is the expected value of the 
exponential of a quadratic function, the solution of this problem is equivalent to that of a 
differential game [1,2]. Note that in [2] the extension of the LEG problem to a class of 
decentralized information structures is presented. Similarly, for linear systems the 
disturbance attenuation problem reduces to a differential game [3]. The appealing aspect 
of disturbance attenuation problems is that they are a deterministic methodology to handle 
stochastic problems. Therefore, the disturbance attenuation approach is being extended to 
classes of nonlinear problems. It should be noted that the deterministic disturbance 
attenuation formulation can be obtained from a stochastic control formulation through 
large deviation theory [4]. Although many important properties such as dual control 
appear lost, the disturbance attenuation approach still allows a unified theory for the 
coherent development of guidance laws assuming partial information. The functions of 
guidance and estimation may be integrated together without gross assumptions such as the 
certainty equivalence principle, although aspects of this concept occur naturally. 

2.2 Robust Game Theoretic Synthesis in the Presence of Uncertain Initial States 

Many controller design problems are multicriteria problems, i.e., there is more than one 
performance criterion to be considered. For example, in the bench mark problem [5], the 
controller is required to satisfy certain design specifications on the settling time, peak 
value of the control effort, and the sensitivity of the output to the measurement noise. 
Despite a significant research effort into the reduction of the sensitivity of the output to 
the process and measurement disturbances, for example, in 9L or linear-quadratic- 
Gaussian (LOG) control theories, improvement of transient performance, measured as 
settling time and peak amplitude of output due to nonzero initial states, draws little 
attention in control theory for linear time-invariant (LTT) systems. The usual LTI control 
problem has been concerned with optimization problems with a performance criterion on 
the sensitivity of output to the input process and measurement disturbances, with the 
result that various weighting strategies have been introduced to improve transient 
performances of the closed-loop system. However, only experienced designers have a 
good feel for the relation of the weighting matrices to the transient behavior of the closed- 
loop system.- 

Strict performance requirements on the controller design often demand an exact model 
of the system to be controlled. However, uncertainties are usually involved in the 
mathematical description of physical systems. As a result, a closed-loop system in the 
presence of system uncertainty often has poor performance or even becomes unstable 
when the controllers are optimized with respect to a nominal model of the system. Hence, 
robustness of performance with respect to system uncertainty must also be considered in 
controller design. Many physical systems have real-valued structured uncertainty. For 
these systems, robust controller design based upon an unstructured uncertainty model, as 
in the ">L control, or on a complex-valued structured uncertainty model, as in |i -synthesis, 
may produce conservative results. These observations lead to the introduction of a 
constrained disturbance attenuation problem (CDAP).  The idea in this problem can be 



roughly stated as follows:- A controller is to be found that minimized the worst-cast 
transmission of initial state to the output out of a set of controllers that provide internal 
stability and achieve a prescribed level of disturbance attenuation for all real parameter 
uncertainties in a given set. The transmission of a nonzero initial state to the output is 
closely related to the transient response of the system. Hence, transient behavior of the 
control system as well as attenuation of disturbances are directly considered in CDAP, in 
contrast to the usual disturbance attenuation problem or 9L control problem in which only 
attenuation of disturbances is considered. A game theoretic approach is employed for the 
design of the optimal controller to solve the CDAP [6]. Initial state, process and 
measurement disturbances, and unknown system parameters are considered as the 
maximizing players, whereas the control is treated as the minimizing player in a minimax 
game problem. The game cost criterion consists of a positive term composed of a 
quadratic norm on the system output and negative terms composed of a quadratic norm on 
the disturbances. Instead of being penalized in the game cost criterion, initial state and 
uncertain system parameters are restricted to lie on or within the prescribed sets (here they 
are multidimensional ellipsoids). In contrast to the results in [3], the cost criterion is 
nonseparable and this formulation produces multiple worst initial states for a given linear 
controller. These differences make it difficult to use the simple method of [3] based upon 
two algebraic Riccati equations in solving the game problem. As a result, a linear fixed- 
order dynamic compensator based upon partial information is assumed. The controller is 
viewed as a function of a control parameter vector. 

2.3 An Adaptive Controller Based on Disturbance Attenuation 

To understand the underlying issue of generalizing the disturbance attenuation problem to 
nonlinear dynamical systems, we have examined the problem of linear systems with 
uncertain parameters in the control coefficient matrix [7]. First, the minimax problem is 
reduced to a one sided control problem whose numerical solution for real-time control is 
challenging. To simplify the numerical difficulties of finding a nonlinear feedback 
controller, a dynamic programming approach is used. In the dynamic programming 
approach, the control problem decomposes into a sum of an optimal return function 
representing a full information game problem and an optimal accumulation function 
representing an associated estimation problem. The worst case state, found by maximizing 
the sum with respect to the current state, is then used in the full information controller. 
Previous results required that the worst case state to be a singleton [8]. We show [7] that 
the existence of a solution to the minimax problem guarantees a unique saddle control and 
the validity of the dynamic programming approach, even when the worst case state is not a 
singleton. Note that interesting adaptive control problems now can be explicitly solved 
producing implemetable controllers, whereas solutions to their stochastic counterpart are 
still not available. 

An alternate and more direct approach is given in [9] where the minimax problem is 
reduced to an equivalent full information control problem. The full information state 
space dynamics are composed of an estimator equation and its associated Riccati equation. 
The equivalence between the minimax adaptive controller and a saddle point certainty 
equivalence adaptive controller is shown via Hamilton-Jacobi-Bellman theory where the 



optimal return function is differentiable. Points of discontinuity in the partial derivatives of 
the optimal return function are shown to form a manifold of Darboux points, from which 
multiple global optimal trajectories emanate. Therefore, the Dynamic Programming 
approach can be extended to be valid over the entire phase space, and the uniqueness of 
the value of the optimal return function is guaranteed. We finally show that with 
additional assumptions the finite-time problem can be extended to infinite time. 

To begin to understand the implementation issues of this new adaptive controller, the 
longitudinal mode of the F-18 was controlled. Since a global maximum of the sum of the 
optimal return function and the optimal accumulation function is required, only the most 
important parameter, the moment coefficient due to elevator deflection, is used as the 
adversary. The coefficient of the other control variable, thrust vectoring, is assumed 
known. As shown [10], for initial conditions, remarkable performance is obtained over 
current adaptive controllers. In regimes where the scalar parameter is quite unknown the 
control emphasizes thrust vectoring and reduces the elevator deflection to be almost zero. 
As more information is obtained the controller begins to use more elevator deflection and 
less thrust vectoring which is eventually faded to zero. This is to be contrasted with 
standard adaptive controllers in which substantial elevator deflection is used early even 
though the parameter is the wrong sign. Therefore, the initial response is in the wrong 
direction. The inherent conservative, but intelligent, performance of the new controller is 
associated with the two worst cast states in which usually only one is a global maximum. 
In the beginning the global worst case state dictates a conservative policy where the 
elevator deflection is made small and the thrust vectoring dominates the response. At 
some time, say tc, both worst case states produce identical cost. Here, there is a switch 
from the conservative policy to one similar to that of the standard adaptive controller. 

2.4 Detection and Identification of Structural Changes 

Accurate target motion defection and identification are important in reducing terminal 
miss of homing missiles. In [11] a detection filter approach to detecting and identifying 
target acceleration was used when the relative position can be measured using angle and 
range measurements. In [12] a detection filter approach to fault detection is developed 
from an eigensystem assignment approach. The detection filter is an observer whose gains 
are constructed such that the presence of a fault induces in the measurement residuals an 
invariant (fixed) direction. Therefore, during a sudden maneuver of the target, although 
the detection filter's estimate of the state of the target is inaccurate, the target's 
acceleration direction can be determined by examining the detection filter residuals of the 
position measurement. These fault detectors are made robust to variations in the system 
parameters as well as exogenous inputs by modification of the detection filter structure or 
by reformulating as a disturbance attenuation problem. During this grant period an 
alternative approach, called the multiple-hypothesis adaptive filter, was also developed 
which allows a dramatic reduction in computation over that of the bank of filter concept 

Detection filters form a class of linear observers that produce residuals with known 
and fixed directional characteristics in response to a set of design fault directions. In 
practical applications, reliable fault isolation takes place only when the detection space 
structure is insensitive to system parameter variations.   A left-eigenvector assignment 



approach is developed [13] that allows for the application of existing results relating 
supremal controllability subspaces and ill-conditioned eigenvectors. Modifications to the 
detection filter structure that yield improved eigenvector conditioning and sensitivity to 
system parameter variations are applied to an aircraft accelerometer fault detection filter. 

An alternate approach to detection filter design is given in [14] where the fault 
detection process is approximated with a disturbance attenuation problem. The solution 
to this problem leads to an 9L filter which bound the transmission of all exogenous signals 
save the fault to be detected. In the limit, when the transmission bound is brought to zero, 
a complete transmission block is achieve by embedding the nuisance inputs into an 
unobservable, invariant subspace. As this is the same subspace structure seen in some 
types of detection filters, one can then make the claim that the game theoretic filter 
asymptotically becomes a detection filter. One can also make use of this subspace 
structure to reduce the order of the limiting game theoretic filter by factoring this invariant 
subspace. The resulting lower dimensional signal will then be sensitive only to the failure 
to be detected. This approach also extends detection filter design to time-varying 
problems. 

In [15, Appendix], a new algorithm for adaptive estimation of time-varying parameters 
in certain classes of linear stochastic dynamic systems has been developed. The algorithm 
is based on an adaptive Kaiman filter whose hypothesized parameters are modified at each 
stage by generating the probability of each hypothesis, conditioned on the residual history 
and a given probability of transition. It is then shown that when a particular hypothesis is 
true, the expected value of the corresponding posterior probability conditioned on the 
residual history converges to unity. Moreover, the expected value of the norm of the 
difference between the constructed error covariance and the true posteriori error 
covariance is shown to converge to a lower bound close to zero. By invoking an 
information function, the filter is also shown to be robust with respect to modeling errors. 
A few numerical simulations have been performed to evaluate this algorithm against the 
backdrop of the multiple model adaptive estimation scheme. 

2.5 Approaches to Disturbance Attenuation for Nonlinear System 

Robust nonlinear filters and guidance laws are investigated using the deterministic 
methodology of disturbance attenuation. In our first approach we show that using the 
dissapative inequality, the disturbance attenuation bound is satisfied if certain 
modifications are made to the guidance law and certain conditions are satisfied. In a 
different approach where the nonlinearities are assumed small in the dynamic system, an 
approximate nonlinear optimal estimator and control scheme are derived based on an 
expansion technique for solving the disturbance attenuation problem. 

In [16], for a class of nonlinear time-varying system, a stable nonlinear game-theoretic 
filter (GTF), which solves the disturbance attenuation problem, is obtained with a 
dissipative approach. For this special class of nonlinear functions, called modifiable 
nonlinearities, the estimation error propagates almost linearly. A sufficient condition to 
render the dissipative inequality satisfied for the GTF with respect to the worst strategy 
for the process and sensor disturbances is derived. The filter gain is obtained from a 
Riccati differential equation (RDE) which results from bounding the dissipative inequality. 



In bounding the dissipative inequality, the design parameters are scaling coefficients 
multiplying the weighting matrices in the RDE. Then, a sufficient condition for the GTF 
to be asymptotically stable is derived which is also shown as the sufficient condition of the 
GTF to be dissipative. Furthermore, the disturbance attenuation property is implied by the 
dissipativity of the GTF. Next, for a class of dynamical system with modifiable nonlinear 
measurement functions but linear dynamics, an implementable stabilizing time-varying, 
nonlinear game-theoretic controller (GTC) is derived by bounding the dissipative 
inequality of the feedback control system. This class includes the terminal phase of the 
missile guidance problem. The structure of this GTC is assumed from a natural 
modification of the corresponding linear quadratic game problem to accommodate the 
above mentioned modifiable nonlinearity. Sufficient conditions for both the dissipativity 
and the internal stability of the overall measurement feedback control system are obtained 
provided two coupled RDE are satisfied. These RDEs are somewhat modified from those 
obtained from the corresponding linear quadratic problem. 

In [17], over a finite-time interval, for a class of linear time-varying dynamical systems 
with a small nonlinearity, an approximate nonlinear optimal estimation scheme is derived 
based on a deterministic game-theoretic criterion. Using the calculus of variation 
approach, this game-theoretic criterion is first maximized by the process disturbance and 
initial state vectors. The resulting optimality condition is expanded with respect to a small 
parameter e and the expression of the worst case state and the Lagrange Multiplier 
vectors are determined. Subsequently, the approximate game-theoretic estimator is 
derived by mmimizing each term in the series of cost criterion over the corresponding 
element of state estimate vector expansion. The estimator Riccati differential equations 
(RDE) necessary for the first and higher order correction terms are the same as in the 
zeroth-order case. The first-order and higher-order correction terms are computed on-line 
based on nonlinear functions evaluated along the minimax trajectory of the zeroth-order 
state estimate which has to be updated, through a backward integration, as each new 
measurement becomes available. The infinite-order approximate rmnimax estimator is 
shown to be a priori disturbance attenuating. The Nth-order approximate minimax 
estimator achieves disturbance attenuation with an incremental increase in the bound 
proportional to eN+1. 

2.6 Near-Optimal Missile Guidance For Tactical and Theater Defense 

In [18], a perturbation procedure is applied to the problem of finding an optimal 
control for a ballistic missile interceptor. Certain forces, such as thrust and gravity, are 
assumed to dominate the equations of motion. The optimal control problem is integrable 
if the remaining forces are neglected; the approximate effects of the neglected forces can 
be calculated noniteratively and added to the solution. For certain trajectories, however, 
the aerodynamic forces are not negligible. Including the aerodynamics directly in the 
dominant dynamics destroys the analytical solution upon which the procedure depends. 
Instead, approximations of the aerodynamic forces are included through narrow pulse 
functions. This technique produces a good approximation to the optimal control and is 
computationally more efficient than previous methods. Extensions to previous work are 
also made to account for the interceptor's coast phase and terminal constraints. The near- 
optimal guidance law is used to produce intercept trajectories against a number of target 



trajectories. The approximate trajectories compare well with numerically-generate optimal 
trajectories. 
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Abstract 

A new algorithm for adaptive estimation of time-varying parameters in certain classes 
of linear stochastic dynamic systems has been developed. The algorithm is based on an 
adaptive Kaiman filter ( AKF ) whose hypothesized parameters are modified at each stage 
by generating the probability of each hypothesis, conditioned on the residual history and a 
given probability of transition. It is then shown that when a particular hypothesis is true, 
the expected value of the corresponding posterior probability conditioned on the residual 
history coverges to unity. Moreover, the expected value of the norm of the difference 
between the constructed error covariance and the true posteriori error covariance is shown 
to converge to a lower bound close to zero. By invoking an information function, the filter 
is also shown to be robust with respect to modeling errors. A few numerical simulations 
have been performed to evaluate this algorithm against the backdrop of the multiple model 
adaptive estimation ( MMAE ) scheme. 

1    Introduction 

We consider a class of adaptive estimation problems wherein the unknown system model may correspond 

to one of the specified models and the model uncertainty is summarized as a time-varying parametric 

uncertainty. In particular, we concern ourselves with estimation in linear stochastic systems with time- 

varying parameters. Earlier attempts to tackle this problem resulted in the development of the Multiple 

Model Adaptive Estimation ( MMAE ) algorithm, first proposed by [1] and later generalized by [2] to form 

the framework of partitioned algorithms . This algorithm addresses the most basic adaptive estimation 

problem, viz, estimation in a linear stochastic system with time-invariant parametric uncertainty. It 

is a joint estimation and system identification algorithm consisting of a bank of Kaiman filters, each 

"matched" to one hypothesis and an identification subsystem, which maybe construed as the dynamics of 

"Graduate Student Researcher. University of California, Los Angeles 
^Professor, School of Engineering and Applied Science, University of California, Los Angeles 



a sub-optimal multiple hypothesis Wald's Sequential Probability Ratio Test ( WSPRT ). We denote the 

underlying dynamics of the WSPRT by F£ , which is defined as the posterior probability of hypothesis "Hi 

conditioned on the residual history upto tk. The use of F$ is motivated by the implicit assumption that 

we are dealing with a time-invariant parametric uncertainty. However, as stated in [3], there is no rigorous 

proof that the posterior probability associated with the true model will converge to unity. Moreover, apart 

from being computationally intensive, this algorithm suffers from beta dominance [4], which arises out of 

incorrect system modeling and leads to irregular residuals. 

Recently, there have been efforts to improve the performance of the MMAE algorithm [5]. Recall 

that the recursive relation for the generation of Fg does not allow for transitions from one hypothesis to 

another : It can be shown that if the conditional probability of a particular hypothesis becomes unity/zero, 

it stays at unity/zero irrespective of what the correct hypothesis is. To avoid this, the recursive relation was 

modified by upper and lower bounding the conditional probabilities of all hypotheses. Secondly, in an affort 

to remove beta dominance, the conditional density functions were altered by removing the covariance term 

from the denominator. The probabilities still sum to one, though the "density" functions are no longer 

scaled. However, there appears to be no rigorous theoretical justification for both these procedures. 

We develop a new algorithm based on a single adaptive Kaiman filter wherein the time-varying param- 

eters are updated by feeding back the posterior probability of each hypothesis conditioned on the residual 

process. It is then shown that the expected value of the true posterior probability coverges to unity and, 

under certain assumptions, the expected value of the norm of the difference between the constructed error 

covariance and the true posteriori error covariance converges to a lower bound. It is also shown that in the 

presence of modeling errors, the filter converges to the hypothesis which maximizes a certain information 

function. We also make a comment about the extension of the MMAE algorithm by using the dynamics 

F£ of a multiple hypothesis Shiryayev sequential probability ratio test ( MHSSPRT ). which explicitly 

allows for transitions to occur. This paper is organized as follows. In section 2, we form the framework 

of the time-varying parameter estimation problem. In section 3, we highlight the salient features of the 

MMAE scheme. In section 4, we develop the AKF algorithm and in section 5, we derive the properties 

of this scheme. In section 6, we compare the two algorithms in various numerical simulations. Finally, in 

section 7, we conclude by summarizing the AKF algorithm and its theoretical properties. 

2    Problem Statement 

Consider a linear time-varying stochastic system : 

arjfc+1    =   Ak -xk + h + wk t1) 



Vk    —   Ck-xk + dk + vk (2) 

wherein xk € 3?" is the state, yk 6 3?4 is the measurement, bk G 9?" and dk € Re" are bias vectors, while Ak 

and Cjt are given matrices of appropriate dimensions. Under each hypothesis "Hi, the process noise {wk} 

and measurement noise {vk} sequences are white, with the following statistics : 

vk   ~   tf(0, Vt) Ak   =   AH bk   =   bi (3) 

life   ~   tf{0,Wi) Ck   =   Cki dk   =   di (4) 

Note that instead of parameterizing the noise statistics and other matrices, we have hypothesized them. 

Clearly they are equivalent. 

Now, as a particular application, we can reduce the problem of detection and isolation of the occurence 

of a change in a correlated measurement sequence, by assuming an ARMA model for the measurement 

process. Assuming the AR-coefficients to be time-varying, we can formulate a state-space equivalent of the 

ARMA process as : 

xfc+i    =   Ak ■ xk + bk + wk (5) 

Vk   =   Ck ■ xk 4- dk + vk (6) 

wherein yk 6 3?* is the measurement, Ck = [ yk-\\... \yk-n ] 1S the measurement matrix, xk € 3?" are the 

AR-coefficients, Ak is a given matrix and bk and dk are appropriate bias vectors. Again, from (3)-(4), the 

process and sensor noise sequences are white with different statistics under different hypotheses. 

In any case, the problem maybe stated as follows : Identify the current system model in minimum time, 

by detecting and isolating a change in the measurement process. As stated earlier, all existing algorithms 

have an identification subsystem imbedded in them : this subsystem maybe construed as the recursive 

relation for Fj^ , which assumes that no change occurs in the measurement process when the test is in 

progress. However, in our AKF algorithm, we explicitly model the probability of a transition from one 

hypothesis to another, thereby allowing for time-varying hypotheses and using the recursive relation for 

Fgi [6]. We also extend the MMAE algorithm to time-varying hypotheses by using this F£ instead of the 

bounded FJ^. Finally, we develop sufficient conditions for the convergence of this adaptive filter structure. 

3    MMAE Algorithm 

The Multiple Model Adaptive Estimation algorithm and its variations are widely used for parameter 

estimation in linear stochastic systems [3][4]. Let there be L + 1 linear, discrete-time stochastic dynamic 

systems, each generating measurements corrupted by white noise : therefore, the available measurement 
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sequence maybe assumed to correspond to one of the m different hypotheses. The sensor and process 

noise statistics vary with each hypothesis. One can then construct a bank of L + 1 discrete-time Kaiman 

filters, each "matched" to one hypothesis, generating a white residual process, provided the corresponding 

hypothesis is the true one. The residual process becomes the input to the recursive relation for F%, which 

generates the posterior probability of each hypothesis, conditioned on the measurement sequence. This 

leads to a neat parallel structure, shown in figure 1. 

Kaiman Filter - 0 

Kaiman Filter -1 

Kaiman Filter - L 

'kO 

'kl 

'LL 

Posteriori 

Probability 

Update 

♦      Fv 

kL 

Figure 1: Multiple Model Adaptive Estimation - Lainiotis Filters 

The update equations for a generic Kaiman Filter for hypothesis Ui become : 

Ski = Cki-Mki-Cki
T + Vt 

Kki = Mki ■ Cki
T ■ Sjtr1 

xki = xki + Kki -[yk-Cki- iki - dki ] 

Pki = [I-Kki-Cki}-Mki 

Tki     =     Vk - Cki ■ Xki - dki 

Hki   =   [fit...rki] 

nk = [nkl...nkM] 

wherein Mki is the apriori error covariance matrix. Pki is the posteriori covariance matrix, xki is the apriori 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 



State estimate and xki is the posteriori state estimate at time tk. The propagation equations become : 

xk+i,i   =   Mi ■ iki + hi (14) 

Mk+lti   =   Aki-Pki-Aki
T + Wi (15) 

In the cited literature and in the figure shown, JF^ is generated. However, allowing transitions from one 

hypothesis to another, we generate Fki : 

F*ki   =   PCHj/Kk) 

The overall posteriori state estimate and error covariance become : 

j 

P'k    =   £{ftj< + (xt-xkj)-(xl-xhj)
T}-F^ (17) 

3 

We note the following : 

• The noise characteristics of each filter are time-invariant. 

• As the number of hypotheses increases, the algorithm becomes computationally intensive, as one 

needs to compute all the time-varying filter gains. To alleviate this problem, sometimes the steady- 

state gains of each Kaiman filter are used, instead of the time-varying gains [3]. But this can lead to 

convergence to the wrong hypothesis. 

• There is no rigorous proof that in the posterior probability associated with the correct hypothesis 

will converge to unity. 

• The recursive relation for Fk\ or Fg assumes that the residual sequence is conditionally independent, 

but when Hi is true, Hkj is not conditionally independent V j ^ i. Hence the generated Fg or F£ 

is always wrong no matter what the correct hypothesis is. 

• Under certain circumstances [3], the algorithm leads to the convergence to the wrong hypothesis. 

This phenomenon has been termed as beta dominance   in [4]. 

3.1    Beta Dominance 

Let "Hi be true : Then, one would expect the residual process rki to be small while the residuals of the 

"mismatched" Kaiman filters to be large. If for some unknown reason ( choice of wrong noise statistics, 

for example ) this doesn't happen, it can be shown that the posterior probability of "H, might actually 

decrease, depending upon Skj V j. Refer appendix A for the proof. 
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Figure 2: Adaptive Kaiman Filter Algorithm 

4    Adaptive Kaiman Filter Algorithm 

We formulate an algorithm based on a structure which uses a single adaptive Kaiman filter in conjunction 

with the recursive relation for F£. Consider figure 2 : An approximate posterior probability Fki of each 

hypothesis conditioned on the residual history is generated and fed back to the filter. All the bias vectors 

and system matrices, including the process and sensor noise statistics, are updated in the following way : 

vk   ~   Af(0,Vk) 

A Fkj   =   approximate   Fkj 

Cjt = E, Fk-i-j' cj 

wk   ~   AT ( 0 , Wk ) 

A 

Kk = [r0ri...rk (18) 

(19) 

(20) 

(21) 

Fk = [F,0 Fkl...FkLY 

dk    =   Ej  Fk-\j-di 

We derive sufficient conditions for the convergence of Fkj to Ff.j in the next section. As mentioned earlier, 

the structure of the MMAE algorithm never permits the exact calculation of Fk\ or Fg . Note that Ak , bk 

and Wk are updated using Fkj, as it is already available. That is not the case for Ck , dk and Vk. However, 

this does not produce any difference in the theoretical results presented later on in Section 5. The filter 

equations remain the same except that we remove the subscript i from equations (7)-(15). Therefore : 

Sk   =   Ck ■ A4 ■ Ck
T + Vk 

Kk = Mk-Ck
T-Sk-

x 

xk = xk + Kk '[yk-Ck-Xk-dk] 

Pk = [I-KfCk]-Mk 

nt = Vk- Ck -xk-dk 

(22) 

(23) 

(24) 

(25) 

(26) 



Xk+\   =   Ak-xk + bk (27) 

Mk+l    =   Ak ■ Pk ■ AT
k  + Wk (28) 

The true error covariance, Mk , of this sub-optimal state estimate is not computed in this algorithm as it 

requires the knowledge of the correct hypothesis : instead, as shown later on, it is approximated by Mk. 

Of course, if "Hi is true, we can compute Mk in the following way : 

„       A _      A _ 
ek    =   xk- xk ek   =   xk — xk 

rnk   =   E{xk/Hk} ml   =   E{ek/1Zk} fh%   =   E { ek / Uk} 

Xk   =   E{xk-xl/Tlk} Ek   =   E{xk-e
T

k/nk} Ek   =   E { xk ■ l\ / Kk} 

Pk   £   E{ek-e
T

k/nk} Ek   =   E { xk ■ eTk / Tlk} (29) 

Clearly : 

ek   =   (I-Kk- Ck) ■ ek - Kk ■ (Cki - Ck) ■ xk - Kk ■ [dH - dk) - Kk ■ vk (30) 

ek+i   =   Ak-ek + {Aki-Ak)-xk + {bki - bk) + wk (31) 

The difference equations become : 

Pk   =   (I-Kk- Ck) -Mk-{I-Kk- Ck)
T + Kk ■ (Cki - Ck) ■ Xk ■ (Ckl - Ckf ■ Kf 

+ Kk ■ (dki - dk) ■ (dk, - dkf ■ Kl + Kk ■ V, • Kl 

-2-{I-Kk-Ck)El-{Cki-Ck)
T-Kl - 2-(I-Kk-Ck)m

e
k-(dkl-dk)

T-Kj 

+ 2Kk- (Ckl - Ck) ■ mk ■ (dki - dk)
T ■ Kl (32) 

A4+i    =   Ak ■ Pk ■ Al + (Aki - Ak) ■ Xk ■ (Aki - Akf + (bki - bk) ■ (bk, - bk)
T + Wt 

+ 2-Ak-El- (Akl - Akf + 2 • Ak ■ m% ■ (bkl - bk)
T 

+ 2-(Aki-Ak)-mk-(bki-bk)
T (33) 

^*+i    =    Aki ■ Xk ■ Al + bkl -bli + Wi + 2- Aki ■ mk ■ b^ (34) 

Ek    =   Ek-(I-Kk- Ck)
T - Xk ■ (Cki - Ckf ■ Kl - rrik ■ Kk ■ (dkl - dk) (35) 

Ek+i    =    Aki -Ek-Al + Aki ■ Xk ■ (Aki - Ak)T + Ak ■ me
k ■ 6^ 

+ Aki ■ mk ■ (bki - bkf + (Aki - Ak:) ■ rnk ■ bli + bki ■ (bki - bkf + Wi (36) 

m/t+i    =   Aki ■ mk + 6fci (37) 

ml    =    (I-Kk- Ck) ■ ml - Kk ■ (Cki - Ck) ■ mk - Kk ■ (dki - dk) (38) 

me
k+l   =   Ak ■ ml + (Aki - Ak) ■ mk + (bki - bk) (39) 



The initial conditions become : 

X0   =   P0 + XQ ■ 3% Eo   =   P0 

mo   =   ^o ^o   =   0 * 

These equations are computationally intensive, but can be computed off-line to assess the performance 

of the AKF algorithm for each specific application. In certain cases, the off-line computation becomes 

necessary to analyze the steady state behavior of the AKF algorithm, in particular, its convergence to the 

correct hypothesis. Given Hi, the true distribution of rk is : 

hi(rk)   =   /jb(rfc/%,ft*-i) (40) 

E[rk/-Hi,Kk-i]   =   (Cki - Ck) ■ xk + {dki - dk)   =   bki (41) 

Eirk-rl/n^n^}   =   Cki-Mk-C^ + Vi   ^   Ski (42) 

Therefore : 

(rfc/%,■&*_!)    ~   AT {hi, Ski) ■■    ■ (43) 

However, since the correct hypothesis is unknown, the AKF algorithm is designed to approximate the 

true error covariance Mk with the error "covariance" Mk , computed on-line from (25) and (28). In section 

5, this assumption is justified by showing that under certain conditions, E { Mk / Hi} -> Mki , wherein 

Mki is the apriori error covariance corresponding to the ith filter in the MMAE algorithm. It is also shown 

that E { Mk I Hi } -> M£ , wherein Mf. is the exact apriori error covariance derived from (17) and 

E { Mk I Hi } -> Mk ■ At. each tk, we assume   : 

E[rk/Hi,Hk-i]    =    0 

Eirk-rlfHi^k-x]   =   C« • Mk- Cki
T + Vt   =   Aki (44) 

Under the gaussian assumption, we explicitly construct  the density function fki (■) as : 

fki(rk)   =   Approx. fki(rk) 

{rk/HitKk-i)   ~   Af(0,Aki) (45) 

We make a crucial observation that {rk} is no longer an independent residual process. Now, F£ requires 

the knowledge of the density functions fki (•) : since we approximate these functions with fki (•) , F£ has 

been approximated by Fk{. 

Note that, by removing the parallel structure of the MMAE approach while retaining the time-varying 

filter gain, the AKF algorithm is computationally less intensive, especially if the number of hypotheses is 



large. Further, following the argument used in appendix A, it can be shown that beta dominance cannot 

exist in this structure as there is only one residual process here. In the next section, we address issues 

concerning the convergence and robustness of this algorithm. 

5    Performance of AKF Algorithm 

We now consider the convergence properties of this algorithm. We propose to prove the following : 

• If hypothesis Hi is true, then the generated posterior probability of "Hj ( called Fkj ) decreases 

monotonically V j ^ i. 

• If hypothesis Hi is true, then the posterior error covariance P* of the AKF algorithm converges to 

Pki of the "correct" filter from the MMAE algorithm. 

• If hypothesis Hi is true, but is not included in the set of prol>able hypotheses 0 = { Hj }, then, the 

generated posterior probability converges to that hypothesis Hm € 0 which maximizes a particular 

information function. 

5.1    Underlying Assumptions of MHSSPRT 

We briefly rederive the MHSSPRT [6] by defining the following notation : 

TTi      =     P(Hi) 

pi = Apriori probability of change from Ho to H\ from tk to tk+i,   Vk 

fki(-) = Approximate probability density function of r^ conditioned on H\  and 7^k-i 

/jto() = Approximate probability density function of rk conditioned on Ho and 7£k-i 

L 4-1 = Number of hypotheses 

9i = Time of occurence of H\ 

At Stage t\ : 

P{ßi<t\lr\)    =     pj—-  (46) 

L 
P(n)    =   £P(ri/0i<<i)-P(0i<ii) + P(r1/0i>t1)-.P(0i>*1) 

i=l 

P{0l<h)    =    P(0,<to) + P(0i = h/ei>to) (47) 

=    Wi+Pi-il-iCi) (48) 

P(ri/0i<h)    =   fu(ri)-dn (49) 



Strictly, (49) denotes the probability that the measurement lies between ri and n +dn given the occurrence 

of Hi at or before t\. 
L L 

Y,p{6i>h) = \-Y,p(ßi<ti) 
t=i *=i 

(50) 

From (46), we get : 

 fr«+Pi •(!-•"•«)]-/liM  (51) 

~ £,iifa +Ä • (1 - T<)] • /i.-(n) + [1 " Efei »i + ft ■ (1 - Ti)] • Ao(ri) 

At Stage 2 : 

P(r2ßi<i2,r1)   =   hi{r2)-dr2 (53) 

pf    /«***    -    P(g^Wn)P(n) (54) 

P(ft2)   =  Pfa/n) • P(n) (55) 

Since from (45), we know the density function fk (rfe / "Hi, ft*-i ) V k, from (52) : 

P(n/0i<t2,rl)-Pin/9i<t2)-P{Oi<t2) ■ (56) 
P(0» < t2/^2) = - P(fta) 

Now, from (53),(54),(55), we have : 

P(a  <f ,n)    -    /2i(r2)-P(g,<Wn)-dr2 (57) 
P(0t<t2/K2)    - p(r2/ri) 

P(6i < t2/ri)   =   P{Bi < *i/n) + P(0i = t-ijBi > to,ri) 

=   PM+ft-a-Pi,:) (58) 
L 

P(r2/ri)    =    £ P(r2 / ft < *2 , n) ■ P{&i < hin) + Pfa/O* , n > *2) • Pißi > fcM) 

i=l 

+[1 - E *M + W • (1 - Pu)\ ■ f-Mr-i) ■ dr-2 (59) 
i=l 

Clearly, by induction, we can now write the reclusive relation for Fk+i,i >" terms of Fkti : 

 [Fk,i+Pi-(l-Fk,i)]-h+u(rk+i) . 
Fk+i,i   -    2£=i[Fk i+Pi.(i- Fk>i)] ■ fk+14rk+l) + [1 - £,L=i Fkti + Pi ■ (1 - Fk,i)} ■ A+i.ofo+i) 

Fo„    =   *i~       ' (60) 

Nowhere have we made any assumptions about the independence of the residual process. From (45), we 

explicitly construct /*<(•) V t at each tk. This approximates Ffc by Fki as mentioned in the earlier section. 

In the next section, we derive sufficient conditions for the convergence of Fki and the associated error 

covanance. 
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5.2    Convergence of the Posterior Probability 

We seek to prove that when Hi is true, the posterior probabilities of all hypotheses H.j V;'^t decrease. 

We define the following : 

T =   {f(r/n)  : nee} (61) 

Jji(k)   =   E[\n{fkj(rk)}/-Hi,nk^} (62) 

pjmi   =   max£[ [7*4% / ^ > **-i 1        for ^^ * e (°- X) 
* fkm \rk) 

=   max pjmi {Tlk-i) (63) 

Assumption 1  TAe family of density functions T is identifiable, i.e : 

f(rfHi)   =   fir/Kj)    iff 0t = Bj   V r (64) 

This assumption is invoked to prove Assertion 1. 

Assertion 1 In view of assumption 1, beta dominance cannot exist in the AKF algorithm. 

Proof : Refer Appendix Bl. 

In an effort to illustrate the classes of problems for which Jji is an information function, we consider 

a time-varying ARMA process of order n, wherein the measurement noise is different for each hypothesis. 

Therefore under each hypothesis Hi , the process noise {wk} and measurement noise {vk} sequences are 

white, with the following statistics : 

vk   ~   N (0, V,; ) Ak   =   Ak bk   =   bk 

wk   ~   H (0, Wk ) Ck   =   Ck dk   =   dk (65) 

wherein Ck = [ yk-\\ ■ ■ ■ !?/«--- ■ i-s the measurement, matrix. We now prove the following lemma. 

Lemma 1 Let "Hi be true.  Then, for the ARMA process shown in (65) : 

• IfVi > Vk  and Mk  > Mk , then Mk+1  > Mk+1       V k. 

• IfVi  < Vk  and Mk  < Mk , then Mk+l  < Mk+1        V k. 

Proof: Prom (32), (33), (25) and (28) 

Pk = (I-Kk-Ck)Mk-(I-Kk-Ckf + Kk-Vx-Kl 

Pk = (I-KkCk)Mk-(I-Kk-Ck)
T + Kk-VkKl 

Mfc+1 = Ak ■ Pk ■ Aj. + Wk 

Mk+l = Ak ■ Pk ■ AT
k  + Wk 

11 



Therefore : 

Pk-Pk   =   (I-Kk-Ck)-(Mk-Mk)(I-KkCk)
T + Kk-(Vi-Vk)-Kj 

Mk+i - Af*+i   =   Ak • (Pit - Pk) ■ Ak 

Clearly : 

Vi > Vk , Mk > Mk     =>   Mfc+i  > Mk+i       V fc 

Vi < Vk , Mk  < Mk     =>   Mjt+i  < Affc+i       V k 4 

As a consequence, from (22),(42) and (44) : 

Vi > Vj    =>   hkj  < A/ti < Ski       VA; 

Vi  < Vj     =>   \kj > Aki > Ski       Vfc (66) 

We could consider another class of problems similar to (65) wherein the hypotheses differ only in the 

process noise statistics, i.e , under Hi : 

wk    ~   /f{0,Wi) (67) 

We now prove the follwing lemma. 

Lemma 2 Let Hi be true.  Then, for the process shown in (67) : 

• IfWi >Wk  and Mk  > Mk , then Mk+i  > Mk+i       V k. 

• IfWi  < Wk   and Mk  < Mk , then Mk+i  < Mk+X        V k. 

Proof : The proof is very similar to the one of Lemma 1. Prom (32), (33), (25) and (28) 

Pk = (I-Kk- Ck) -Mk-(I-Kk- Ck)
T + Kk ■ Vk ■ k[ 

Pk = (I-Kk- Ck) -Mk(I-Kk- Ckf + Kk ■ Vk ■ Kj. 

Mk+i = M ■ Pk ■ Al + Wi 

Mfc+i = Ak ■ Pk ■ Al + Wk 

Therefore : 

Pk-Pk   =   {I-Kk-Ck)-{Mk-Mk)-{I-Kk-Ck)
T 

Mk+1 - Mk+l   =   Ak ■ {Pk - Pk) ■ Ak + ( Wi - Wk ) 
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Clearly : 

Wi > Wk , Mk  > Mk     =»   Mfc+1  > Mk+1       V k 

Wi < Wk ,Mk<Mk     =*   Mk+1  < Mk+i       V k * 

So, from (22),(42) and (44) : 

Wi > Wj    =>   Akj < Aki  < Ski       Vfc 

Wi < IV)    =»   Afci > Afci > 5fci       Vfc 

These results are used in proving the following assertion. 

Assertion 2 If the state estimate bias is sufficiently small and 

Akj < A** < Ski        or       Akj > Aki > Ski       Vfc 

then Jji is an information function.  Therefore, when Hi is true, : 

Jii(k)  > Jji(k)        V j jt i ,   V k (68) 

Proof : Refer Appendix B2. 

Remarks Assertion 2 assumes that convergence to the wrong hypothesis has occurred and proves that 

under certain conditions, the filter cannot remain in the wrong hypothesis. The conditions spelt out are 

sufficient but not necessary. Moreover for the processes shown in (65) and (67), the state estimate is 

unbiased and from Lemmas 1 and 2, Assertion 2 is always valid. 

Lemma 3  Let Hi be true and Wm 6 0 be such that : 

Jmi{k)    =    max Jji (k)        V Hj€e        Vfc (69) 
j 

Then        pjmi    <    1        V j? m (70) 

Proof : Refer Appendix B3. 

For the classes of problems that we consider, in view of Assertion 2 and Lemma 3 : 

If Ht(=e   =►    Hi = Um 

=►   Pju  <  1 (71) 

From now on, we only consider the classes of problems for which Assertion 2 is valid. We now proceed 

to prove the following theorem. 
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Theorem 1 Let the family T be identifiable and 7-^ € 0 be true. Then : 

E[FkJfHi]   <   EW-u/Hi]       Vj#i (72) 

Proof : Let hypothesis "Hi G 6 be true. Since Fkj < 1, we have : 

Fkj < Ftj       for some t G (0,1) (73) 

This is a crucial observation and is invoked to use Pjii < 1 from (71). All the terms in the denominator 

of the recursive relation (60) are postive : therefore we get 

r.      /    { *fc-U +Pj • ( 1 - Fk-i,j )}-fkj jrk) (74) 
tki   S    {Fk-U+Pi-{l-Fk-ij)}- hi{rk) 

A    {Fk-Ui+Pj-(l-Fk-hj)} (75) 
^   "    {Ft-v+Pi-il-Fk-u)} 

We note that the density functions /*_,(•) are the approximate conditional density functions as defined in 

(45). Assume that pj = p  Vj. Let. 

Fk-ij    >   Fk-lyi       V j^i.V k < N 

Then : 

_. p+(l-p)'Fk-ij 
*»   ~   p+(l-p)-Fk-ld 

=    F^j   (1-P) + Tfc 

Fk-iJ (76) 
Fk-u 

< 

From (73),(75).(76) : 

r       ^    r Fk-lj it   r fkj (rk) .t 

Fk-2j lt    r /fc-ljfa-lht    r  AjfrOit 

fkj s 

-   l**_2)i
J 'lA-M(^-i)J "l/«(r*) 

/  r *J T r iliiuli*    r IhillhLv (77) 
"    l^J 'l/ii(n)J ■-■[hi(rk)

i 

We note that /w ( rk ) are the constructed density functions fk ( rk / Ui , ftfc_i ) in (42).   Taking the 

expectation conditioned on "Hi : 

- ^'7'iff1'-lö'-A..*/*)-*. 
S   [Ii]'.74 P8) 
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wherein Ik is the integral. Now : 

SkiCHklHi)   =   fki{rk/1lk-u'Hi)-fk-i,i(Tk-i/'R>k-2,'Hi)---fii(ri/'Hi) 

h   =    / [ ffifo • • • [ ff
k-hj /r*-\} ]' ■ fk-14 ( *fc-i / % ) • ^-i 

./      /ii (ri) A-i.» (rfc-i) 

/ 

hi irk) 1t 

A«(r*) 
ZU 
/li 

<   4-1 • Pj 

/li; (ri) /jfc-i,i (nt-i) 

Therefore, from (78) : 

E[FkJ/Mt]   <   \^-)-pk
jü (79) 

From Assertion 2 and Lemma 3, PJU < 1. Hence, the posterior probability rapidly decreases as k -> oo and 

the assumption of F*-^ > Ffc_x.,- V j ^ i, V fc is no longer valid. Let Ffc-jj < Ffc_lri V j # f, V fc > JV. 

Then : 

A    =   Fk~^   [i-p-(V^-i-j-i) 
^' F^/l-p-a/Ft-u-l)] 

< §=^-[1-p-(1/^-1 J-l)] 

Fi—Li Fk-i,i 

<    ^i+P (80) 

Following the argument used above, we get : 

pt     <    rFk-:.j   ,   -it   r Ajfa)w 
Fkj    ~    [F,_,,+P]     l/w(r4)

] 

<    [^^.[^M]. 

r^-iJit   <   r tlZzM* J. ™«i. r Azliilizlii* 
lF*_lit

J     "    UF,_2,t
J      P J   l/w^(rt-i)

] 

Therefore : 

Ft      <    f Ffc_2.j ,'    r hjj-rk)- A-ljfa-l)^      -t    r Aj fa) ' A-lj fa-l) ,t 

**>'    -    [Ft-2,J'lAiW-/t-i,i(rM)J      ^    lAifa)-A-i,tfa-i)J 

+ j?.iteMy (81) 
' At fa) 

Again, taking an expectation conditioned on "Hi and from (G3) : 

Fv, £[Ffci/%] < F{[-^r/^}-^A'+p'-[/>,«+^l+---+/^;v] 



£   ek (82) 

e*+x - €fc   =   p£*' ■ £ {[f^]< / % }■(««- 1) + f$l-N ■ Pl (83) 

<   0       V k > Nk 

Hence : 

c<...< ek+l < ek < efc_! <•-.        V k > Nk (84) 

Clearly, for the WSPRT, p = 0. and hence, the lower bound c = 0. X 

Corollary 1 Let the family T be identifiable, Hi & 0 be true. Then : 

E[FkJ/Hi]   <   ElFt-ufHi]       Vj#m (85) 

wherein rim maximizes the information function defined in (69). 

Proof: The proof remains essentially the same as at appropriate places we replace the subscript t by m, 

except that now pjm, < 1. The corollary is relevant to the robustness issues associated with any mulitple 

model adaptive estimation scheme. 

5.3    Convergence of the Posterior Error Covariance 

Let Hi be true. We now compare the posteriori error covariance matrices of the adaptive filter and the 

"true" filter matched to Hi in :he MMAE algorithm. From (7)-(15) and (22)-(28) : 

Pki   =    [I-KklCkl]-Mhl (86) 

Pk   =   [I-KhCk]-Mk (87) 

Mk - Mki   =   Ak.x ■ Pk.-, ■ AT
k_x - Ak-U ■ Pk-x,i ■ Al_lti + [ Wk.x - Wi ] (88) 

Therefore : 

Pk-Pki   =   [I-Kk-Ck}-[Mk-Mkl]-[I- Kki ■ Cki )T 

+ [I-KkCk]-Mk-Cl-Kl - Kk-Ck-Mki-[I-Kki-Cki]
T 

=   [I-Kk-Ck}-[Mk-Mki)-[I-Kki-Cki)
T + Gki (89) 

Now from the definitions of Kk and Kki in (8),(23) : 

Gki   =   Kki ■ Cki ■ Mk - Kk ■ Ck ■ Mk ■ Öl ■ Kl - Kk ■ Ck ■ Mkl 

+ Kki ■ Cki ■ Mk-. -Ck ■ Kk 

IG 



=   Mki ■ Cl ■ S*-1 • Cki -Mk - Mk-C
T

k- S^1 ■ Ck ■ Mk ■ CT
ki ■ Sfc1 ■ Cki ■ Mki 

-Mk-Cl-S;lCk-Mki + MH-Cl- S£ -Cki- Mkl- Cf ■ S;1 -Ck- Mk 

=   Mki-[Cl-S^-Cki - CkSZxCk - Cli-SZil-Cki-(Mk-Mki)-Cl-S^-Ck]-Mk 

Now : 

cl-s^-cki- ck-s;'-ck = cl-{S^-s;l)-ck- {Cl-s^^cl-s^)-[ck-cki) 

Therefore : 

Gki   =   Mki-Cl-[S£-Sk-1-Sk-*-Cki-(Mk-Mki)-Ck
r-Sk-1]-Ck-Mk 

- Mki- [Cl ■ s;1 +cl- s,-1 )-[Ck- Cki)- Mk 

=   Mki ■ Cl ■ Sj? -{St-Ski- Cki -{Mk- Mki )Cl\- SZl -Ck-Mk 

-Mki-(Cj-Sk-l + Cl-S^)-[Ck-Cki}-Mk 

=   Kki -\Ck-Mk-Cl + Vk- Cki ■ Mki ■ Cl -Vi- Cki ■ Mk ■ CT
k + Cki ■ Mki ■ CT

k ] ■ Kk 

- Mk i -(Of- S; * + Cl -S^)-[ Ck -Cki]- Mk 

=   Kki.[Vk-Vi]- Kk + Kki-[Ck-Cki}-( Mk ■ Cl + Cki ■ Mki) ■ KT
k 

-Mkl-{Cl-S;l + Cl-S^)-[Ck-Cki)-Mk (90) 

Simlarly from (88) : 

Mk - Mkl   =   j4jt_i ■ [ Pk-i - Pk-i,i} ■ 4"-u + ( Ak-U ■ Pk-i,,. + Ak-i ■ Pk-i ) ■ [ Ak-i - Ak-h, f 

+ [ Wk_x - Wi} 

From (88)-(90) : 

Pk-Pki   =   [T-Kk-Ck}-Ak-i-[Pk-i-Pk-i,i)-Al_u-[I-Kki-Cki]
T 

+ [I-Kk-Ck)-( Ak-i,i ■ Pk-u + Ak-i ■ Pk-i ) • [ Ak-i - Ak-i,i ]T-[I-Kki- Ck> }T 

+ {I-Kk-Ck]-[Wk_l-Wi]-[I-Kki-Cki}
T + Kki-{Vk-Vi)-Kk 

+ Kki-[Ck-Cki}-(Mk- Cl + Cki ■ MH ) • Kl 

-Mki-(Cl-S^+ Cl -S^)-[ Ck - Cti) ■ Mk (91) 

The filter equations are : 

£ki   =    [ I - Kki -Cki]- Ak-i,i • £fc-i,t + Kki ■ (iJk- Cki ■ bk-i,i - dki ) 

ik   =    [T-Kk-Ckl-Ak^-Xk-i + Kk{yk-Ck-bk-X-dk) 
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Denote the state transition matrices as : 

*i(M-l)   =   [I-Kki-Cki\-Ak.lyi 

*(*,*-l)   =   \I-Kk-Ck\-M-\ 

Vki   =   [I-KkCk}-( Ak-hi ■ Pk-u + Ak-X • Pk-i ) ■ [ Ak-i - Ak-m )T-[I-Kki- Cki }T 

+ [I-Kk-Ck]-[ Wk_x - Wi) • [ / - Kki ■ Cki f + Kki -[Vk-Vi]-Kk 

+ Kki-[Ck-Cki]-(Mk- C
r

k + Cki ■ Mki) ■ Kl 

-Mkl.{CT
k-S^ + CT

ki-S^)-[Ck-Cki)-Mk (92) 

Therefore : 

SPki   =   Pk-Pki 

=   $ (fc, k - 1) • 6Pk.hi • $f {k, k - 1) + Vki (93) 

We now prove the following theorem : 

Theorem 2 If the system in (l)-(4) is uniformly completely controllable and uniformly completely observ- 

able, and if {<f/ki} is uniformly bounded and decreasing, then : 

E {\\6PkiW / Hi}    <   Cki 

wherein : 

£,<...< Ck+U < Cki < Ck-i,r < V k > Nk (94) 

Proof: From (93) 
A- 

6Pkl   =   $ (jfc, 0) ■ SPQi ■ $J (k, 0) + Y, * (fc' 0 ' *« • *?" (fc>Z) 

=>    £ {SPki /Hi}   =   * (*, 0) • <5P0. • *f (fc, 0) + 5] * (fc, l)-E{*u/ Hi} ■ *T (k, I) (95) 

Since the system is uniformly completely controllable and observable : 

||*(M)II    <   Cx ■ e-c^k-l) 

||$, (fc.OII    <   <?3 • e~Cl{k~l)       V Ci , C2 , c, , C4  > 0 (96) 

Further : 

Iiw*_i - will  =  llEn-u-MO- - Wi\\ 

< ||( 1 - F/t-i,,- ) • W"0 - ( 1 - Fk-hl ) • Will        wlierein Wa = max Wj 

< Fi-i,a-||W«-W*iil (9?) 
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Similarly : 

P/t_i - i4j||    <   Fk„.itb ■ \\Ab - Ai\\       wherein Ab = max Aj 

IIVi - Vill    <   Ffc_lfC • ||VC - V;||        wherein Vc =  max Vj 

||Cjk-Ci||    <   Fk_hd-\\Cd-Ci\\        wherein C(1 =  max Cj (98) 

From (92),(97),(98) : 

25{ll*«ll/«0    <    ||*HMI (99) 

wherein from Theorem 1 and (84), {eki} is monotonically decreasing V A; > Nk and bounded from below, 

and % is some matrix defined from (92). Clearly, from (95)-(99) : 

£{||«U/%}    <    ||C1||-pPol||-||C3||-e-(c^)fc + ||d||. ||*ll ■[ E--e"(e"+C4W*"l) ' INI Ml^l 
/=i 

=   C-ki 

Ck+1,i-Cki    =    ||C1||.||d-Pot||-i|C3||-e-(C2+c^-[e-(c'+c^-l] 

+ l|Ci||-||*|| •|M|-||C3||-e-^+c«)-* 

+ lid II • ||*|| • [ £ e-l°>+<*Hk-» - {||€/+M|| - llq.ll} ] ■ ||C3|| 

=»   Ck+lii - Cki   <   0       V k > Nk 

Hence : 

Q < ... < Ck+U < Cki < Ck-Xii <..        V k > Nk * 

Remarks : We note that the lower bound is governed by the factor p of the MHSSPRT as it controls the 

lower bound of the sequence {eki}, as shown in Theorem 1. This theorem, based upon our adaptive filter 

structure, shows that the apriori "covariance" assumed for the conditional density function of the residual 

hi (rk ) approaches the true apriori error covariance, i.e, E { Mk / Hi} —> Mk{. As a special case, we 

consider the WSPRT, wherein p = 0. From Theorem 1, it can be seen : 

ek    ~   £ • p wherein p <  1 

=►   E {\\5Pki\\ / Hi}   <   ||d|| -pPo.il- ||d1|- «.-<«*+«*>•* 

+ lldl! • 11*11 • £ ().erM_l 1 • H^ll 
=>   E {\\SPki\\ /-Hi }   =   0   ask->x (100) 

So, for the WSPRT, d = 0. The adaptive filter converges exactly to the "true" filter of the MMAE 

scheme. 
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The assumptions in the AKF algorithm may be justified in yet another way, by looking at the exact 

expressions for the overall state estimate and posteriori error covariance, as developed in the MMAE 

algorithm. Recall from (16) and (17) : 

x'k     =     YsXk3'FkJ 
3 

p;   =   Y,{pkj + «-xkj)-(x*k-xkj)
T}-Fkj 

j 

Let : 

6Pk    ±   P£ - Pk <101> 

We now show that the expected value of SP^ conditioned on any hypothesis decreases as k -> oo. 

Theorem 3 If the system in (l)-(4) is uniformly completely controllable and uniformly completely observ- 

able, then : 

EWPZWfHi}   <   c*ki v % 

wherein : 

£•<•••< n+u < cu < a_i.i <•■•    v * * N« 
Proof : From the above equations 

SP;    =   ^{{Pkj-Pk} + {xt-xkj)-{xt-xkj)
T}-Fkj 

j 

= E (spn + (** -Xk*) ■(** ~Xk*)T}' Fk> 

=   E { *p*i + (4 -**;)•( 4 - x*i )T > • F*-i 

+ { 6Pki -f ( xl - xkl) ■ ( xl - xki )T } ■ Fkl (102) 

Taking the norm and using an analysis similar to (98) : 

sPk   <  E {ll^i» + IK ** " xv) ■(** ~J;^)T|1} ' Fkj 

+ { \\6Pki\\ + IK xt-xki)-(xl- xki )r'j } • Fki 

\\SPkj\\   =   \\Pkj-Pk\\ 

=   \\Pkj-Pki + Pki-Pk\\ 

<   \\SPkji\\ + \\SPki\\    <    \\SPji\\ + \m-iW j±i (103) 
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\\5Xkj\\   =    \\(xi-xkj).(x*k-xkjf\\ 

< (l-Fkj)
2-\\xkm-xkj\\

2 rnjLj 

< (l-Ffci)
2-||^|| (104) 

=>    SP: < E (11*^11 + II^-II + (l - Fn )2 • II^-II > •F*; 

+ { \\8Pki\\ + (1 - Fki )2 • H^ll } • Fki (105) 

Prom Theorem 1 and Theorem 2, V k > Nk : 

E{Fk+ijlUi}    <   E{FkjIHi) 

E{\\5Pk+lA\IHi}   <   E{\\SPki\\/ni} 

E{Fk+1>i/Hi}   >   E{Fkl/Hi} (106) 

Therefore : 

E {6P; I Ui)    <   E { [J2 ( WSPkiW + WSPjiW + (1 - Fkj f ■ WXjW ) ■ Fkj] / Ui } 

+ E{[( \\SPki\\ + (1 - Fki )2 - p*|| ) • Fki) I Ui } 

=   E { E ( \\SPjiW + (1 - Fki )2 - ll^ll ) • Fkj) I Ui } 

+ E{[(l-Fki)
2- WSXiW -F^/Hi} + E{ WSPkiW I Ux } 

-   Lki 

Now : 

£*+i,. - ^i    =    E llJPi'H ■ E < (F*+^ - F^ / «i } + S { ( PP*+i,,|| - PPc.ll )IUi) 

+ 53 ll^-H -E{((1- F,+1J)
2 • Ffc+lj-) - ((1 - Fkj)

2 ■ Fkj) I Ui } (107) 
3 

Consider the function : 

E{{(\-Fkj)
l-Fkj)lUx}   = E{Fkj/Ui) + E{F^/Ut} - 2-EiF^/Ui} 

< 2E{Fkj/Ui} - 2E{ Flj I Ui } 

Now       E{FljIUi^   > (E{Fkj/Ui})2 

=►        ^{((l-Fy)2-^)/«,-}   < 2.[E{Fkj/Ui} - (E{Fkj/Ui})2} 

£ ip(E{Fkjl-Hi}) 
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Since y (•)   is an increasing function in the interval [ 0 . 1/2 ) and a decreasing function in the interval 

(1/2 , 1 ] , from (106) and (107), we have : 

E{({l-Fk+1J)
2-Fk+lJ)/Hi}   <   E{{(l-Fkj)*-Fkj)/Hi} V j ft i 

£?{((l-Ft+iIi)
2-Fjk+1,0/Wi}   <   E{{{\-Fklf-Fki)IUi) 

=>     cUu ~ *« ^ ° k*N* (108) 

Hence : 

£*<••< Qt+iA < C* < G-i* < V * * Nk * 

Clearly the posteriori "covariance" of the AKF algorithm approaches the exact posteriori error covariance 

as computed in the MMAE algorithm. 

Finally, we analyze the difference between the assumed error "covariance" Pk and the exact error 

covariance Pk . Let Hi be true. From (25),(32) and (33) : 

shi = pk - h <109) 

=   (I-KkCk)-Ak-(Pk.l-Pk-i)-Aj-(I-KkCk)
T + ** 

=   $ (it, k - 1) • SPk-i ■ * (k, k - l)r + */k (110> 

wherein : 

yk   =   Kk-{ (Vk - Vi) - (Cfc - Cki) ■ Xk ■ (Ck - Ckif + (dk - dki) ■ (dk - dki)
T 

+ 2 • (Cfc - Cki) ■ mk ■ (dki - dkf } • Kl 

-{I-Kk-Ck)-{2-El-{Ck- Ckif - 2 • ml ■ (dk - dkif } ■ KT
k 

-(T-Kk-Ck)-{ (W*_i - Wi) - (4t_! - ^A-i,,) • Xk_! ■ (y4fc_! - Ak-u)T 

+ 2 • Afc_i • Thfc.j • (6jt-i - h-i,i) 

- 2 ■ (Ak-! - Ak-!,i) ■ mfc_! • (6fc_i - h.uf } ■ (I - Kk ■ Ckf 

We now prove that the expected value of SPki conditioned on "Hi decreases as fc -»■ oo. 

Theorem 4 // the system in (l)-(4) is uniformly completely controllable and uniformly completely observ- 

able, then : 

E{\\6Pkl\\/Hi}   <   Ckl V W, 

wherein : 

£,<...< Ck+i,i < Cki < Ck.hi < ...        V k  > Nk 
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Proof: From (110) 

k 

8Pkl  = $ (*, o) • sPoi ■ *T (fc, o) + Y, * (fc> 0 • *« •*T (*' 0 

k 

=>    £ {SPki I-Hi)   =   $ (*, 0) • SPoi ■ $T (k, 0) + £ $ (fc, 0 • E {#,, / %} • $r (Ar, 0 

The rest of the proof follows that of Theorem 2. & 

This concludes our analysis to justify the structure of the AKF algorithm. Under Hi, we derived 

sufficient conditions for the convergence of Fki to Fk\ and Pk to Pk , Pki, and Pk*. In the next section, we 

test the AKF algorithm in a few numerical simulations 

6    Simulations 

6.1    Example 1 

Consider a scalar dynamic system : 

xk+i    =   Ak ■ xk + h + wk 

yk    =    Ck- xk + dk + vk 

wherein under each hypothesis : 

■Ho    :    Ak = -0.5 bk  = 0.00 Ck  =  1.00 dk  = 0.00 

vk ~ A" (0.1.0) wk ~   AM 0,0.001) 

Hi    :   Ak = -0.6 bk = 0.25 Ck  =  1.25 dk  = 0.25 

vk ~ A' ( 0 . 2.0 ) wk ~   Af ( 0 , 0.001 ) 

Hi   :   Ak = -0.7 bk  = 0.50 Ck =  1.50 dA.  = 0.50 

vk ~ A" ( 0 , 3.0 ) wk ~   A^ ( 0 , 0.001 ) 

We compared the Adaptive Kaiman Filter to the MMAE algorithm. In the MMAE approach, Fg was 

replaced by Fki to allow for transitions from one hypothesis to another. Of course, from our earlier 

discussion, it is clear that the recursive relation is not strictly Fk\ but an approximation to it. In order to 

design the AKF algorithm, it is essential to consider scenarios when a particular hypothesis is true and the 

filter is "matched" to the wrong hypothesis. An off-line computation of the true residual error covariance 

was conducted for all scenarios. It is seen from figure 3 that when Hi is true and the filter is matched to 

Hj , either Akj   <   Aki   <  Ski or \kj   >   Aki   >   Ski . Moreover the matrix Bki in the exponential term 
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Figure 3:  Off-line computation of Akj , Aki   and   Ski :  Hi vs Hj denotes Hi is true while the filter is 
matched to Hj : Aki »s shown by the dotted line 

is always positive definite and so, from Appendix B2, the system satisfies Assertion 2. This would imply 

that the filter cannot remain matched to Hj. 

We now test the AKF algorithm. At t = 40 sec, the hypothesis was changed from H0 to U\. The 

posterior probabilities of the three hypotheses are shown in figure 4. The bold line denotes the AKF 

approach while the dotted line denotes the MMAE approach. However, the computational time taken by 

the MMAE approach is much larger than the AKF approach.  These plots have been averaged over ten 

different realizations. 

Figure 5 shows the normed differences between the posteriori error covariance matrix of the AKF and 

each of the Lainiotis filters. For t < 40 seconds, H0 is true : As proved in Theorem 2, E { ||<$Pfco||/^o } -> 0 

while E { \\5Pkl\\ I Ho } and E { \\SPk2\\ / H0 } are high. For t > 40 seconds, Ux is true : Therefore 

E { \\8Pk\\\ / «l } -* 0 while E { H^oll / Hi } and E { ||*PW|| / H\ } are high. 

6.2    Example 2 

Consider another dynamic system wherein under each hypothesis : 

Ho    :    Ak = 0.5 h = 0.00 Ck  =  1.00 rfjt  = 0.00 

vk   ~   Af{0, 1.0) wfc   ~   JV(0, 0.001) 

Hi    :   Ak = 0.6 h = 0.25 Ck  = 1.25 dk  = 0.25 
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Adaptive Kaiman Filer vs Lainiotis fillers 
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Adaptive Kaiman Filter vs Lainiotis filters 
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Figure 6: Adaptive Kaiman Filter Performance - Change from Ho to H2 

vk   ~   M ( 0 , 1.5 ) wk   ~   N ( 0 , 0.001 ) 

H2    :   Ak = 0.7 bk = 0.50 Ck = 1.50 dk = 0.50 

vk   ~   tf ( 0 , 2.0 ) tu*   ~   M ( 0 , 0.001 ) 

Again, we compared the Adaptive Kaiman Filter to the MMAE algorithm. At t = 3 sec, the hypothesis 

was changed from Ho to Hi. The posterior probabilities of the three hypotheses are shown in figure 6. 

The plots have been averaged over ten different realizations. 

Figure 7 shows the nonned differences between the posteriori error covariance matrix of the AKF and 

each of the Lainiotis filters. 

6.3    Example 3 

Consider 3 hypotheses wherein : 

Ho    :    vk   ~   tf(0, 1.0) 

Hi    :   vk   ~   X ( 0 , 1.5 ) 

H2    :   vk   ~   M ( 0 , 2.0 ) 

A fourth order ARMA measurement process was simulated thus : 

yk    =    0.1 • [ yk-\ ~ Vk-2 + Vk-i - Vk-i ] + «* 

2G 
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Since the order of the ARMA process is typically unknown, a fifth order ARMA model was assumed for 

the measurement process. The assumed system model is the same as (l)-(4) and V Hj : 

A   =   I Wj   =   0.001*7 d   =   0 

Ck   =    [yfc_i|...|yfc-5] b   =   [00000f 

Recall from Lemma 1 and Appendix B2 that for ARMA processes, Assertion 2 is always valid thereby 

obviating any off-line computation. At t = 40 sec, the hypothesis was changed from T-LQ to "Hi. The 

posterior probabilities of the three hypotheses are shown in figure 8. The plots have been averaged over 

ten different realizations. 

Figure 9 shows the normed differences between the posteriori error covariance matrix of the AKF and 

each of the Lainiotis filters. 

6.4    Example 4 

For the same system, the hypothesis was changed from "Ho to H-> at t = 40 seconds. The posterior 

probabilities of the three hypotheses are shown in figme 10. Again the plots have been averaged over ten 

different realizations. 

Figure 11 shows the normed differences between the posteriori error covariance matrix of the AKF and 

each of the Lainiotis filters. 
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Adaptive Kaiman Fitter vs Lainiotis filters 
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7 Conclusions 

An AKF algorithm and sufficient conditions for its convergence have been developed for adaptive estimation 

in linear time-varying stochastic dynamic systems. In the simulated examples, it is seen to perform on par 

with the modified MMAE algorithm, while significantly reducing the computational intensity. It has also 

been shown that for a class of problems, the expected value of the true posterior probability conditioned 

on the residual history coverges to unity. In its most general form, an off-line computation is necessary 

to investigate the convergence of the true posterior probability. Under assumptions of uniform complete 

controllability and observability, the expected value of the norm of the difference between the constructed 

error covariance and the true posteriori error covariance converges to a lower bound. This lower bound 

is determined by the apriori probability of change from one hypothesis to another in the MHSSPRT. In 

the presence of modeling errors, the AKF algorithm has been shown to coverge to the hypothesis which 

maximizes a particular information function, while the MMAE algorithm might show beta dominance. 
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Appendix A 

Froni (60). for the MMAE scheme : 

<Pki   =   Fkj+pi-{l-FkJ 

A+i,i(r*+i,i)    =    J0     W2   „- ffTp ■ exP {-V2 • n+u ■ S£u ■ rk+u) 

Fk+l,i    — 

=   ßk+i,i ■ ajfc+ij 

4>ki • fk+lA7'k+l,i) 
EjLo 4>kj ■ fk+ij(rk+i,j) 

<t>ki ■ ßk+l,i • <*k+l,i 

EjLo <t>kj ■ ßk+ij ■ ak+ij 
(f)ki ■ (1 - Fki )ßk+i,i ■ ttfc+i,. - Hjjti 4>kj ■ ßk+i,j • ttfc+ij • Fkj 

Ej=0  4>kj ■ ßk+\,j ■ «A-+1.J 
Fk+i,i - Fki   — 

If W. is true, then we would expect : 

«fc+ij    «   0       V j # i 

=>   Fk+lj-Fki   >   0 
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However, if for some unknown reason, akj «a   V j for a prolonged sequence of measurements : 

„       _„ (1 ~ P) • Z&i Fkj ■ {ßk+i,i - ßt+ij} ■ Fki + y ■ YL&J {ßk+hi - ßk+ij} • Fki 

If ßki    <   ßkj     Vj    7^    t, then the posterior probability corresponding to the dominant ß increases 

irrespective of the true hypothesis. 

Appendix Bl 

For the AKF algorithm, there is only one  residual process. Hence, if for some reason, akj  ~ a   V j for 

a prolonged sequence of measurements : 

=*■ rl+\ ■ [ sk+\,i - sk+i,j ] ■ n+i  =  o 

=>   Sk+i,i   =   Sfc+iJ       V k 

This violates the identifiability assumption of the family Jr. Moreover, since now ßki   =  ßkj  V j, one ß 

cannot dominate over the other. 

Appendix B2 

From (62) : 

Jjiik)    =   E [ ln{/*,-( r* ) } / % , ft/b-i ] 

Let Hi be true. Then : 

■ fkj (rk Jji(k)-Ju(k)    =     / Wfkiyk)}-fki{rk) drk 
J fki ( rk ) 

Since   lnx    <    x■ — 1 

r fkj ( rk ) 
Jjl(k)-Ju(k)    <    f {f.ki,l   ~ l}-fki(rk) dr-k 

J     fki { rk ) 

< {r {lMli>d}.f-ki{rk) drk} _ !    Vj^ 
J   fki (n.) 

±  4-1 

From (41), (42) and (44) : 

h    =     — r—I« -expi — - aki ) 
l|Afci||

1/2 ■ \\Sk\\
l/2 2 

wherein       aki    = ■&£•[ 5« + (A*/ - A^1)"1 j"1 • 6W 

Kl    =   §? + A# - A- 

>    0   for the integral to exist 
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Now : 

Either       A*; < Aki < Ski       or       Akj  > Aki > Ski       Vfc 

Clearly, the integral always exists and A* > 0. Since the bias terms are small, we neglect the exponential 

term ak{ ■ however, we do note that if 

Akj < Aki   =>   Bki > 0 

=»   aki  > 0       V bki 

r  "I ! =>   exp {-r--aki > < 1 

Hence in certain cases, the bias terms need not be small. Anyway, removing the exponential term from 

Ik , we can show that : 

/*   =    II Kl ■ Afci + A«1 • Sk - A^.1 ■ Akj ■ A^1 • Sk |f
1/2 

<   1 

with the equality sign if and only if Aki = Akj or Aki = Sk V fc. The former situation violates the 

identifiability assumption while the latter assumes that Mk = Mk V k , in which case the algorithm has 

already converged. Therefore : 

Jji{k)-Ju{k)    <   0 

Now, the equality sign in holds good if and only if fki{-) = /*,-(•) almost everywhere. Since we assumed 

the family T to be identifiable, the Jj{ ( k) is strictly less than Ji: (fc) Vj'^i and V k. 

Appendix B3 

The proof follows the analysis in [7]. Let Hi & © be true. We first prove that whenever 

Jji(k)  < Jmi(k)   V k: 

E r iltilply I m , ft*_i ]   =   Pjmi ( ft*-i)   <   1        for some t G (0,1)        V k 
Jkm (rk ) 

By definition : 

Jji(k)-Jmi(k)   =   E[MJP^}/'Hi>K'<-i] 

=   E [ lim ( { [ki \Tk }. }' - 1 ) • r * / "K,, K*-i ] 
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Using the Lebesgue dominated convergence theorem, the limit and expectation may be interchanged. 

Therefore, for any S G   0,1), there exists a t € (0,1) stich that : —»    -o o 
o      <y cr> 

Hm r1 • (E[{fk](r*\yin,,nk.x]-1)  <  [^(*)-Jmi(fc)]-(i-*) £   zZ. 
*-*° Jkm (rk) *-*       > 'ir 

g[{fr(,rfc)j'/fti,ftfc-l]     <     l + <-(l-Ä)-[^i(Ä)-Jmi(A:)]     I?        :■ 

<      1 

The same analysis can be carried out V k. In other words, for any  realization of 72* : 

Pjmi (ftjfe-l )     <     1 V  fc 

=►   pjmi    =   max pj-mi (Ttk-\ ) 
k 

<     1 
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