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Abstract 

Sea ice can fail under lateral compression by buckling, a form of flexural motion, and this 
is thought to be a common phenomenon during pressure ridging. This type of motion is modeled 
as a stability problem for the vibration of a thin plate over water which is excited by ambient 
motions while the plate is under compression. The plate has an 'effective' bending modulus to 
account for actual depth varying modulus of elasticity of the ice. The dispersion relation for the 
flexural vibrations is evaluated, and explicit formulas are found for the critical value of 
compressive stress causing failure and for the most unstable wavelength. The critical compressive 
stress is about 106 N/m2 for 10 cm thick first-year ice and slightly less than 107 N/m2 for 3 m thick 
multi-year ice. An experimental technique for evaluating the effective bending modulus and the 
critical compressive stress is suggested, namely, by measurement of the dispersion curve for free 
flexural waves which are omnipresent in Arctic pack ice. Photographic evidence of pre-buckling 
flexure is provided for an example case on a refrozen lead. 
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BUCKLING OF ARCTIC SEA ICE IN LATERAL COMPRESSION 

J.P. Dugan 

Introduction 

Predictions for the bending and, ultimately, the failure of Arctic ice under load are 
important in a number of contexts, such as surface transportation, aircraft landings, and 
foundations for structures (Kerr 1976). Both vertical loads of objects placed on the ice and lateral 
loads from compression of the ice by forces from surrounding floes or engineering structures can 
cause the ice to bend and to fail, often spectacularly. The safety of personnel on the ice requires 
knowledge concerning its performance as a structural material, and there has been a great deal of 
theoretical and experimental work associated with static and dynamic loading of ice sheets to gain 
this knowledge. 

The understanding of the deformation of an ice sheet under vertical forces has been well 
developed for both static loads (cf. Kerr 1976, Nevel 1977) and moving loads (cf. Eyre 1977, 
Beltaos 1981, DiMarco et al 1991), and the flexural rigidity of the ice is an important material 
parameter. However, the deformation under lateral compression, such as pressure imposed on the 
ice sheet by neighboring floes, has not been so well studied. In this case, the lateral force causes 
rafting and pressure ridging when it exceeds some unknown, but presumably critical, value. 
Under large scale compression, the ice typically fails by flexure or buckling (Parmenter and Coon 
1972, Kerr 1978, 1980). This situation is directly related to bending of the ice plate, and the 
flexural rigidity parameter again is an important one. 

Visual observations of thinner ice on refrozen leads exhibit a common occurrence of two 
specific phenomena, namely, finger rafting and corrugations in the ice. If the surrounding multi- 
year (and therefore thicker) ice floes have converged on the lead with little shear, they compress 
the younger ice until it buckles. The buckling is often associated with the ice forming a series of 
sinusoidal vertical deflections whose wavenumber is parallel to the direction of the compressive 
force. Sometimes, a number of wavelengths may be observed, while other times there may be 
only one or two. In our experience, all but one example of this phenomenon have been stationary 
ones, as the events usually happened sometime prior to the actual observations. The corrugations 
are generated, presumably due to compression of the sheet, but the ice did not buckle before the 
compressive motion was stopped. This possibly happens because the surrounding floes came into 
contact somewhere along their edges and the thicker ice of the multi-year floes took up the load, 
thus stopping the compression of the thinner ice in the refrozen lead. Then, because the new ice 
was rather thin when this occurred, it was held in this position as it quickly grew thicker with 
ongoing freezing, thus stabilizing the corrugated feature. The buckling event literally has been 
'frozen in time'. Evidently, this is a reasonably common mechanism for generating these 
corrugations and buckling the ice. On the other hand, if the ice actually buckles, it then will raft 
or ridge as the convergence continues. The purpose of this paper is to present a simple theory for 
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the generation of these buckling corrugations prior to the occurrence of the failure of the ice, and 
to provide a visual example. 

The threshold, or critical, value of the lateral compression load above which the plate will 
fail has been predicted theoretically by Kerr (1978), and confirmed experimentally in the 
laboratory for urea ice by Sodhi et al (1983). It is of great interest to examine the critical 
conditions for Arctic sea ice floes, and to have a convenient field method for determining the ice 
structural parameters which determine the critical stress. 

In this paper, the theory of propagation of free flexural waves on the ice (treated as a thin, 
laterally homogeneous, elastic plate) is used to analyze the effect of lateral compressive forces. 
The dispersion relation for flexural waves predicts solutions having growing amplitudes when the 
compressive stress exceeds a critical value, and experimental techniques are used to determine the 
important ice parameters in a convenient manner. A theoretical model for this phenomenon is 
constructed in the next section, data for specific ice parameters and an example observation are 
exhibited in the following one, and we conclude with recommendations for future research. 

Theory 

The ice sheet is assumed to be homogeneous in both horizontal dimensions and to 
experience an external horizontal load which is uniform along one dimension. Thus, the response 
can be considered in a plane and, with depth-dependent modulus of elasticity, the governing 
equation is 

where 

pjhdt + hPCxx + DCxxxx = -Pw[<t>t+gC], (1) 

D = Eh3/(12[l-v2]), (2) 

(f) is the velocity potential of motions in the water, E is an effective Young's modulus; D is the 
effective flexural rigidity, v is the shear modulus, h is ice thickness, C is vertical deflection, P is the 
compressive force, g is gravity, and ps and pw are ice and water density, respectively. The first 
term on the left in Eqn 1 is the acceleration, and the remaining two terms on the left are the forces 
due to compression and elasticity of the sheet. The terms on the right are forces due to the 
presence of water supporting the sheet, with the first one being the dynamic pressure and the 
second one the hydrostatic force exerted by the water upon deflection from the equilibrium level. 
Ewing and Crary (1934) analyzed the case of a uniform ice plate on water and Mansfield (1989), 
for example, includes the effect of compression. The effect of Young's modulus varying with 
depth has been analyzed separately by Newman and Forray (1962) and Kerr and Palmer (1972). 
The effective value of the flexural rigidity is defined by the relation 
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D= jEeff(z)(z-z0)
2(l-v2)-2dz (3) 

where z0, the depth of the neutral plane, is given by 

z0 = h - fEeff(z)(h-z)dz [/Eeff(z)dz]-1. (4) 

and all the integrals are evaluated over the depth h. Typical depth profiles of both first year and 
multi-year ice are given by DiMarco et al (1993), and a sample profile for multi-year ice is 
provided in Fig 1. The local values of Young's modulus were calculated from measurements of 
temperature, salinity, and brine volume, and using the empirical formula of Tucker et al (1989). 
As is clear from the plot, the top of the ice typically is much stronger because it is fresher and 
colder, so the neutral axis is above the middle of the sheet. 

Periodic solutions of Eqn (1) of the form 

C(x,t) = e[i(kx-Mt)1 (5) 

are assumed, and the eqn may be reduced to the algebraic form 

CD
2
 = k2[pwg/k-Phk+Dk3]/[pw+Pihk] (6) 

which relates the frequencies and wavenumbers of the allowable solutions of the unforced 
equations of motion. This equation is the dispersion relation for the waves and, for zero 
compressive stress, the free wave solutions have previously been considered in detail. These 
wave solutions are referred to as flexural-gravity waves, and they have been measured on both 
multi-year and first-year ice in the Arctic (cf. Dugan et al 1992 for a recent example and for 
references to earlier work). Fig 2 is a typical example of measurements for both the gravity and 
flexural limbs of the dispersion curve for naturally occurring waves on sea ice in the central 
Arctic. The curves representing the data have been obtained by calculation of the phase of the 
cross spectrum between the vertical motions as measured by accelerometers or geophones at two 
points separated by a fixed distance on the ice. Then, the wavenumber is reassembled from the 
known distance between the sensors and the phase lag. Finally, the calculated phase speed is the 
frequency divided by the measured wavenumber. The smooth curves in the plot are the theory for 
nominal multi-year ice parameters (as shown in Fig 1), and plotted in this figure as a function of 
the ice thickness. 

In addition, solutions of Eqn (1) have been examined for vertical forces on the ice. 
Weights on the ice moving at constant speed (cf. Eyre 1977, Beltaos 1981) and also atmospheric 
pressure fluctuations moving along with the wind (DiMarco et al 1991) cause quasi-static 
deflections as long as the speed is slower than the minimum phase speed of the free flexural- 
gravity waves on the dispersion curve. This minimum speed is called the critical speed, and it can 
be calculated directly from Eqn (6). However, if the speed of the forcing function exceeds the 
critical speed, and the frequency-wavenumber bandwidth of the forcing function overlaps the 
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dispersion curve, inhomogeneous solutions of Eqn (1) exist as resonances which grow with time, 
and these solutions are not entirely represented by the form in Eqn (6). Thus, from previous 
research on forced motions, there is an expectation that a critical speed, that is the minimum 
speed of free waves, is central to understanding the motions of the ice. 

As shown in Eqn 3 and 4 and Figs 1 and 2, this critical speed is a function of the flexural 
strength of the ice, i.e., both its thickness and effective Young's modulus. In addition, as shown in 
Eqn (6), the critical speed also is a function of the ambient compressive stress in the ice. The 
relative importance of the compression term is determined by the numerator in Eqn (6). As the 
compressive force increases, the frequency in Eqn (6) (and the corresponding wave speed) is 
reduced toward zero for wavenumbers near the critical value. For forces larger than the critical 
one, the right hand side of Eqn (6) becomes negative, and the frequencies in Eqn (5) are complex, 
and the instability grows with time (Timoshenko 1936). The equivalent critical force in the 
classical mechanics problem of buckling of an elastic column is commonly called the 'Timoshenko 
load'. 

The value of the force at this critical threshold is obtained by setting the term in brackets 
in Eqn (6) to zero and solving for P, that is, 

hP = Dk2+pwg/k2. (7) 

The minimum value as a function of the wavenumber is 

hP = 2[pwgD]1/2, (8) 

or 

P = [Ehpwg/(3(l-v2))]1/2. (9) 

Note that the critical force is proportional to the square root of both the ice thickness and the 
Young's modulus. The value of the wavenumber at this minimum point is 

k = [Pwg/D]1/4, (10) 

so the length of the most unstable wave is equal to 2TI times the characteristic length of the ice 
sheet, which is such an important parameter for any bending problem. This result for the 
wavelength is not unexpected, as when the ice is compressed, the point which is most likely to 
flex is distant by a characteristic length. The plate cannot flex as easily on a smaller scale because 
of the stronger elastic forces, and not on longer scales because of the gravitational support of the 
water. Note that Eqn (9) predicts that the critical load is only dependent upon the square root of 
the ice thickness. Since the modulus also is weakly dependent upon the thickness, with thicker 
(and older) ice being stronger, the critical load actually increases at a rate that is closer to being 
linear in the ice thickness. 
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Liu and Mollo-Christensen (1988) have considered the effect of lateral compression on an 
ice sheet from a different point of view. They modeled the speed dependence of ocean swell 
traveling into the ice pack from the open ocean, in an attempt to understand an observation which 
was interpreted as focusing of wave energy. Lateral compression in the ice sheet was identified as 
a mechanism possibly explaining the observation of local accumulation of wave energy. The 
present theoretical formulation is similar to theirs, but the interpretation and use of the results are 
quite different. Because of energy losses in the ice sheet at frequencies for which the ice flexes, 
typical ocean swell does not propagate freely in pack ice except at frequencies below that of the 
minimum phase speed (cf. Wadhams 1973 or Dugan et al 1992). Thus, in realistic conditions, the 
compression effect is not expected to be as important for swell at extended distances into the pack 
ice as it is for the buckling problem through its effect on amplifying instabilities. 

Now, for any specific ice plate, the Eqns (3) and (4) can be evaluated to estimate the 
effective rigidity, or Young's modulus. This can be accomplished by a number of means. 
Techniques have been crafted to estimate this by in situ bending of cantilever beams (Schwarz et 
al 1981, Tatinclaux and Hirayama 1982), and also by analyzing ice cores and comparing the 
measured temperature, salinity, and brine volume values with empirical correlations (cf. Cox and 
Weeks 1983, Mellor 1986, Tucker et al 1989). In addition, various geophysical techniques have 
been used in which the elastic properties have been obtained from measurement of the speed of 
propagating waves in ice samples in the laboratory (Boyle and Sproule 1931, Northwood 1947) 
and in the field (Hunkins 1960). The latter used flexural waves, and we elect this particular mode 
of propagation because these waves are solutions of the equations of motion discussed in the 
foregoing. DiMarco et al (1993) have used this particular method to compare results for the 
flexural rigidity between the geophysical method and the empirical method using ice cores. 

Predictions and Observations 

As a numerical example, the multi-year ice represented by the data in Figs 1 and 2 had 3.5 
m thickness, and application of the geophysical method gave a result of 1.2 GN/m2 for the 
effective Young's modulus and 3 GNm for the flexural rigidity. The predicted value of the 
buckling stress for this case is 3.7 MN/m2 and the critical wavelength is 145 m. 

In actuality, though, refrozen lead ice is of special interest because it is thinner than the 
multi-year ice and, by Eqn (9), is more likely to buckle in a given situation where a specific floe is 
compressed by neighboring multi-year floes. The temperature profile of first year ice is nearly 
linear from the freezing temperature at the base to air temperature at the surface. The Young's 
modulus profile therefore also is relatively linear with depth. In the following, we take values of 
parameters evaluated from field measurements provided by AARI scientists. Fig 3 is the effective 
modulus for several values of the surface temperature. 

 awaiting Smirnov's data for this plot  

Using eqn (..) to calculate the effective E results in Fig 3. This can be entered into eqn (..) to get 
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an approximate eqn for the critical stress as a function of only the ice thickness and surface 
temperature, and the result is shown in Fig 4, with the accompanying wavelength in Fig 5. 

An example of this phenomenon is provided in Fig 6 which contains photographs of a 
refrozen lead taken during the Soviet North Pole camp #???. Apparently, the thin ice in the lead 
between multi-year floes was compressed enough to cause the growth of the unstable waves, but 
the compressive stress was relieved before the ice actually buckled. The ice thickness was 
measured by drilling holes.... 

The air temperature was ...., so the effective rigidity was about... 

The measured wavelength of the corrugations was , and this compares with a value of.... 
calculated from the above theory. 

As often occurs, the event which generated these waves was not observed, so the association with 
this instability is circumstantial. It is possible that it occurred a number of days earlier, so the ice 
actually would have been considerably thinner than the value that was measured at the time of the 
observations. If so, the value of the rigidity when the event occurred would have been 
considerably smaller, and the most unstable wavelength much shorter. In this sense, this example 
is only a one-sided bound on what happened during the event, and the observation only provides a 
(rather weak) consistency check on the theory. 

Discussion and Conclusions 

A model has been derived to estimate the critical lateral load that an ice sheet will sustain 
before it fails in a buckling mode. A crucial material parameter is the flexural rigidity, or the 
effective modulus of elasticity, and this may be estimated by using measurements of flexural 
waves which naturally occur in the pack ice (particularly during ridge-building events). This 
methodology represents a consistent estimate of the appropriate material parameter. The theory 
assumes that the ice sheet is homogeneous in the horizontal, but it may have vertical stratification 
of the elastic modulus. The sheet is compressed uniformly along the horizontal axis, and wavelike 
solutions are sought that satisfy the flexural-gravity wave equations. The theory predicts the 
critical value of compressive stress and force from measurements of the flexural wave speed at 
frequencies removed from the minimum speed. Using this technique, values of the critical stress 
and length of the most unstable wave are predicted for both first and multi-year ice. An example 
of corrugations observed on refrozen lead ice is shown to be consistent with the theory??? 

Finally, a future experiment is indicated, wherein the minimum in the dispersion curve 
would be measured by more detailed observations of the vibrations of the ice sheet. In the present 
model, the shape of the dispersion curve near this minimum provides a direct estimate of the state 
of compression of the ice, but no attempts at measuring this directly have been made to date. In 
addition, a controlled experiment using man-made vibrations would contribute to observations of 
naturally occurring ones on pack ice and nearby refrozen lead ice would provide data which is 
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much more appropriate for comparison with the model. 
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Figure 1. Typical vertical profiles of temperature, salinity and derived Yong's modulus from 
measurements on multi-year ice floe 
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Figure 2. Dispersion relation for flexural-gravity waves on multi-year ice floe. Smooth curves 
are theory for non-resonent waves on ice of several indicated thicknesses with Young's modulus 
as given in Figure 1. Data are from accelerometer measurements on low frequency and 
geophones on high frequency for naturally occurring waves. 
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