
"IDA INSTITUTE FOR DEFENSE ANALYSES

Predicting CORBA Performance
Through Prototyping

Clyde G. Roby, Task Leader

Edward A. Feustel

0

February 1997

Approved for public release;
i distribution unlimited.

V 'T
IDA Paper P-3327

Log: H 97-000587

19971002 074

0

This work was conducted under contract DASWO1 94 C 0054, Task
T-S5-1446, for the Defense Information Systems Agency. The
publication of this IDA document does not indicate endorsement by
the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency. 0

© 1997 Institute for Defense Analyses, 1801 N. Beauregard Street,
Alexandria, Virginia 22311-1772 9 (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant
to the copyright license under the clause at DFARS 252.227-7013
(10/88). 0

SII II I0

PREFACE

This document was prepared by the Institute for Defense Analyses (IDA) for the

Software Data Architecture Engineering Division, Center for Computer Systems Engineering,

Defense Information Systems Agency (DISA), under the task entitled "Common Operating

Environment Architecture". This document fulfills these task objectives:

0 To provide a first-order performance model and associated analysis of distributed

computing in a Client/Server application.

To provide guidance to technical designers and developers about how to analyze the

performance of new or legacy applications in order to engineer or re-engineer them

for implementation in a distributed environment.

The following IDA research staff members were reviewers of this document: Dr. Alfred

E. Brenner, Dr. Norman R. Howes and Dr. Richard J. Ivanetich. The contributions of Mr. David

Diskin, Ms. Sherrie Chubin, and Mr. Steve Stefanini, all of DISA, are gratefully acknowledged.

iii

Table of Contents

SU M M A R Y ... S-1

CHAPTER 1. INTRODUCTION .. 1

1.1 PU RPO SE ... I
1.2 A U D IEN C E ... 2
1.3 OUTLINE OF PAPER .. 2
1.4 OBJECTIVES OF THE EXPERIMENTS I 2
1.5 BENEFITS TO DII COE DEVELOPERS AND COMMUNITY 3

CHAPTER 2. METHODOLOGY .. 5

2.1 INTRODUCTION TO DISTRIBUTED COMPUTING 5
2.2 BUILDING THE TIMING AND DATA MODELS .. 11
2.3 CONFOUNDING FACTORS .. 14
2.4 MITIGATION OF CONFOUNDING FACTORS ... 16
2.5 EXPERIMENTS TO BE CONDUCTED .. 17

2.5.1 Methodology of Experiments ... 17
2.5.2 Equipment and Software Used .. 18
2.5.3 Variations to be Performed ... 20

2.6 DATA WHICH WAS CAPTURED ... 21

CHAPTER 3. RESULTS OF MEASUREMENT ... 23

3.1 EXTRA EXPERIMENTS ... 23
3.2 DOUBLE PRECISION TIME RETURNED (MAIN EXPERIMENT 1) 23

3.2.1 Client and Server on Same Platform ... 24
3.2.2 Client and Server on Different SPARC20s .. 24
3.2.3 Server on SPARC20 and Client on Pentium 90 25

3.3 938 BYTE STRING RETURNED (MAIN EXPERIMENT 2) 26
3.3.1 Client and Server on Same Platform ... 26
3.3.2 Client and Server on Different SPARC20s .. 27
3.3.3 Server on SPARC20 and Client on Pentium 90 27

3.4 VTPLATFORM TRACK RETURNED (MAIN EXPERIMENT 3) 27
3.4.1 Client and Server on Same Platform ... 28
3.4.2 Client and Server on Different SPARC20s .. 28
3.4.3 Server on SPARC20 and Client on Pentium 90 28

3.5 ADDITIONAL INFORMATION ... 29

CHAPTER 4. SUMMARY OF OBSERVATIONS .. 31

CHAPTER 5. RECOMMENDATIONS FOR DESIGN .. 33

0v

5.1 BUILD A PROTOTYPE TESTING CAPACITY .. 34
5.2 FIN AL COM M ENTS .. 37

LIST OF A CRON Y M S ... 39

A PPEND IX A . G lossary .. A -1

A PPEND IX B. A ttachm ents ... B-1

A PPEND IX C. Source Code for Tests ... C-1

C.1 D ouble Precision Tim er Source Routines ... C-1
C.1.1 Client .. C-1
C.1.2 Server ... C-2
C.1.3 Filters ... C-4
C. 1.4 OBJECT IN CLU D ES .. C-6
C.1.5 O bject M ethods .. C-6
C. 1.6 Interface D efinition .. C-6

C.2 Character Sequence Source Routines ... C-7
C.2.1 Client ... C-7
C.2.2 Server ... C-8
C.2.3 O bject Includes ... C-10
C.2.4 Object Methods C-11
C.2.5 Interface D efinitions ... C-11

C.3 VtPlatform Source Routines ... C-11
C.3.1 Client ... C-1I
C.3.2 Server ... C-13
C.3.3 Object Includes .. C-14
C.3.4 Object M ethods .. C-15
C.3.5 V tTrack Interface Definitions .. C-15

C.4 Procedure Call Tim ing .. C-38
C.5 N ull Procedure Tim ing ... C-39
C.6 N ull Loop Tim ing ... C-39

vi

List of Figures
Figure 1. O ne C lient ... S 4

Figure 2. Multiple Clients S5

Figure 3. Client/Server Communication Chart... 7

Figure 4. Local Procedure Call .. 8

0 Figure 5. Remote Procedure Call ... 9

Figure 6. Experimental Monitoring Points ... 12

Figure 7. Client and Server on Same Platform .. 24

Figure 8. Client and Server on Different Sparc20s .. 25

Figure 9. Client and Server on Different Platforms .. 25

Figure 10. Experimental Monitoring Points ... 35

vii

SUMMARY

Purpose

We performed a series of experiments to provide guidance to technical designers and

developers about how to analyze the performance of new or legacy applications in order to

engineer or re-engineer them for implementation in a distributed environment. We used IONA's

Orbix, a commercially available Object Request Broker (ORB) that is an implementation of the

Common Object Request Broker Architecture (CORBA), Version 2.0, developed by the Object
Management Group (OMG)1 . The main purpose of our experiments is threefold:

1. To understand resource expenditures associated with distributing objects

between clients and servers that communicate using remote procedure calls.

2. To understand performance characteristics of distributed object computing

using a simple example based on splitting the Global Command and Control

System (GCCS) Track Correlation Application (TCA) into a Track Correlation

Service (TCS) and a display client.

3. To provide a generic process for evaluating a potential design of a distributed

* application through the use of experimental measurements.

Background and Scope

The Defense Information Infrastructure (DII) Common Operating Environment (COE)

project office will add distributed object technology products to future releases of the DII COE.

This technology will implement the Object Management Group (OMG)'s Common Object

Request Broker Architecture (CORBA), Version 2.0, and Object Management Architecture

(OMA). This technology will lead to new design considerations which will have a large poten-

tial impact on the efficiency of applications.

Our set of experiments will enable designers and developers to:

Some timing properties will be similar to those faced when using other distribution products based on the Open

Software Foundation's Distributed Computing Environment (DCE) or Microsoft's Distributed Common Object
Model (DCOM).

S-1

* Understand the feasibility of using OMG's OMA and CORBA as the software infra-

structure for DII COE-based applications.

& Understand the effect of object distribution on the performance of DII COE based

applications and services due to changing from a local procedure call paradigm to

a remote procedure call paradigm.

By using a similar set of experiments based upon their own applications' requirements,

designers and developers will be able to:

"* Develop a notion of granularity using the ratio of computation time to communica-

tion time.

"* Develop a preliminary understanding of potential bottlenecks in the systems they

design.

"• Develop insight into timing latencies and dispersion2 inherent in distributed sys-

tems.

"• Establish a checklist of items which should be considered in the design and devel-

opment of applications.

Model and the Experiments

Distributed computing technology has been maturing over the past 15 years. In the dis-
tributed computing environment, Client/Server computing has become the dominant paradigm

of developing distributed applications. Developers are responsible for providing client applica-

tions with a method for locating appropriate services hosting objects acting as servers. Using a

CORBA Version 2.0 ORB, client objects specify the desired server object to the ORB and the
ORB determines the location of the platforms hosting the server object, ascertains that the serv-

er object exists and is running, and causes the parameters issued by the client to be presented

to the server hosting the service and then to the desired server object. Details of these conve-

niences are left to the implementors of the ORB instead of the developers of the application.

Thus, in the model of computing that we investigated, there are a client object, a server object,

and an ORB.

We defined a timing model of client to server communications for both a local proce-

dure call (LPC) paradigm and a remote procedure call (RPC) paradigm, the latter based upon

IONA's Orbix. Orbix offers eight points where we can measure time on a per-process basis

2 Variation in the latency of remote communication.

S-2

0

within Orbix library code in a convenient fashion; in addition there are other points where we

can measure time in the clients and the servers.

We performed three client to server communications experiments - communicating

simple integer values, communicating a 938-byte string (representing a token GCCS track),

and communicating a VtPlatform track (representing a "real" GCCS track) - on three sets of

Client/Server configurations: Client and Server objects on the same Sparc20, Client and Server

on different Sparc20s, and Client on Pentium 90 and Server on Sparc20. The set of experiments

assumes that stable results can be obtained. Several confounding factors that are explained in

this report can invalidate our experiments or invalidate their interpretation. These were mitigat-

ed to the extent possible.

Summary of Key Observations and Extrapolation

On a Sun Sparc20 hosting both client and server processes, a LPC which does no server

work3 costs about 1.5 microseconds (jis); an Orbix RPC which does no server work takes about

1.5 milliseconds (ms), or about 1000 times longer. Communication between client and server

objects uses about 1.3 ms of that Orbix RPC time.

Let efficiency be defined as the ratio:

(LPC Time + Server Work Time)/(RPC Time + Server Work Time).

In order to achieve 50% efficiency using RPC in this case, the work done by the server would

have to take more than the time taken by 1000 LPCs or 1.5 ms, i.e.,

Efficiency = (1+1000) / (1000+1000).

In order to achieve 90% efficiency, the server work would have to take more than 9000 LPCs

(9 RPCs) or 13.5 ms. This leads to the conclusion that procedures which are to be executed

remotely on a Sparc20 should have sufficiently large granularity (very much greater than 1

ms) in order to amortize the inefficiency of RPC. Even larger granularity may be required to

amortize other CORBA/Orbix inefficiencies.

Substantial time is used by communication between client and server objects: 1.3 ms

with very small messages in each direction on the Sparc20 when client and server processes are

3 This is the time required to ping the server. To avoid confusion, the term "server work" will be used to refer to
the work performed by the called entity whether that entity is called by LPC or RPC. Client work will refer to
the work that the client performs on the results provided by the server.

S-3

hosted on the same machine. More time is expended if the network is used. Substantial addi-

tional time is required for handling heterogeneity, e.g., for assembling and converting strings

or structures for transmission.

Based upon our experiments using Orbix 2.0.1 and Solaris 2.5 for casual browsing of a

database on a record by record basis, a Sparc20 used to host a server process may provide

enough capability, but for intensive updating of information by a number of clients, it is unlike-

ly that the Sparc20 will provide sufficient computing power to accomplish the job, as the fol-

lowing illustrative examples demonstrate.

Examples Derived from Measurements

Suppose we wished to divide the GCCS Track Correlation Application into a client and

a server where track updates occur at a rate of 1000 per second. We might naively divide such

an application into a display client and a track correlation service (TCS) which accesses a

record in a database. Assume that tracks are stored in a memory cache, and that information is

disseminated using RPC based on the API used to access the database of the current GCCS

Track Correlation Application.

The One Client Case

Display Client Correlation Server

Pentium 90 Sparc20

Communications

6.0 ms Roundtrip

Figure 1. One Client

Suppose that the Sparc20 Server process could retrieve a record of 1000 bytes in 0.5

ms4 from a database cached in memory for use in the same process. Obtaining that record using

a Pentium 90 as client by means of RPC would add an additional 6 ms5 for a total of 6.5 ms.

The maximum number of serial reads per second is (1 second / 0.065 seconds) or about 150 per

4 A hypothetical time for cached database access.
5 Drawn from the data of Pentium90-based Client and SPARC-based Server.

S-4

second for this client, assuming that the client obtains a record, displays it, then obtains another

record, displays it, and so forth. Using this simple design we cannot achieve the goal of 1000

updates per second.

The Multi-Client Case

1 1.5 ms total server side processing

Display Client Correlation Server

Pentium 90 lSparc20

Communications

Display Client

? entium 90 [

Figure 2. Multiple Clients

A second example: Suppose the total time used by the server's host Sparc20 for each

client's request for a record was 1.5 ms including the read. 6 Five ms7 is spent on the client plat-

form, resulting in a total roundtrip time of 6.5ms. Then the maximum number of records per

second which might be obtained in a simple request-response pattern from this server using a

cached database would be on the order of (1 second/ 0.0015 second) or approximately 666

requests per second -- thus it could only support four Pentium 90 display clients at approxi-

mately 166 requests per second each.

We conclude, based upon our observations, that a naive division of the GCCS Track

Correlation Application into a client and database service on Pentium 90s and Sparc20s using

Orbix 2.0.1 is unlikely to be successful because of the computing and communication overhead

required for distribution of the client and server. It remains to be seen whether a different strat-

egy such as simultaneous transmission of multiple tracks would better utilize the processor so

that the server work could be done in the time required. Design strategies must also be recon-

6 Assuming that none of the time is spent waiting and based on timing of the SPARC20-based Server.

7 Based on a roundtrip time of 6.5 ms including the data access minus 1.5 ms server time.

S-5

sidered if you use a higher performance processor, a different or improved ORB/IDL/Library

combination featuring a better implementation of communications.

Recommendations

Based upon our experiments, we recommend that designers or developers should care-

fully consider the timing properties of the delivery platform(s) and of the software infrastruc-

ture during the design of any distributed application:

"Developers should create a simple prototype from which they will gain the informa-

tion required for their design. For the targeted client and server platforms, designers

should employ the hardware and software which will support the delivered applica-

tion. Designers should determine the time to marshal8 and unmarshal the data struc-

tures to be used. In addition they should measure the amount of communications

time taken by each different kind of remote procedure call and the amount of time

required to service each request. This should lead to a mathematical model of the

amount of resources required to perform each kind of request. These times can also

be used in simulations of the applications to be designed.

"* Designers or developers should give special attention to the following factors:

- Carefully consider the amount of computation to be done on the server for each

request. Too little computation on the server reduces the overall efficiency of

computation because of the communications overhead. If the overhead of a

remote request is too high, implement the service as a library or collection of

classes using LPC instead. 0

- Carefully consider the type of argument(s) to be passed to the server or

returned to the client. Try to make the argument as simple and as aligned as

possible. Attempt to find an implementation of IDL that can perform marshal-

ling, unmarshalling, and service in parallel, using threads. This is particularly 0

valuable if the service performs I/O operations.

- For computationally intensive services that can be parallelized, consider using

multiple servers and distributing the computation (servers) on multiple plat-

forms. Also try to hide communications latencies by using multi-threaded serv-

ers to handle multiple requests in a pipelined fashion. Find the sum of times on

the paths which must be performed serially. This is the optimum time which

8 See the body of the paper or glossary for definition of technical terms such as marshalling and unmarshalling. 0

S-6

0

can be achieved [one of Amdahl's laws]. One may think that using many

machines executing a task in parallel pieces will reduce the total computation

time, but the overhead introduced by the communication must be taken into

account. Verify that the time for using multiple servers is shorter than running

the calculation on a single machine using LPC.

- Carefully consider the factors which could render the experimental results

invalid such as requests causing communications to other servers on the same

host. Determine if they will contribute to your client-server workload. Espe-

cially consider the number of requests per second to database servers and the

amount of 1/0 operations these servers are expected to perform.

- Carefully consider the confounding factors. Try to characterize them in order

to determine if they will contribute to your client/server workload. If they will,

identify mitigation strategies. Especially consider the number of requests per

second to database servers and the amount of 1/0 these servers are expected to

do.

As has been suggested in the illustrative examples, results vary depending on many fac-

tors. What is important is to experiment and model during design to determine what factors are

most significant and what can be done to improve performance.

S-7

CHAPTER 1. INTRODUCTION

0 1.1 PURPOSE

This paper gives guidance to technical designers and developers about how they can

analyze the performance of legacy or new applications in order to re-engineer them for imple-

mentation in a distributed object environment using the Object Management Group (OMG)'s

Common Object Request Broker Architecture (CORBA)1 . New distributed object- or proce-

dure-oriented applications may also benefit from this methodology which is based upon con-

ducting and utilizing the results of a series of experiments. Our experiments were made using

IONA's Orbix, a commercial Object Request Broker (ORB) compliant with CORBA, Version

2.0. The main purpose of our experiments is threefold:

1. To understand resource expenditure required to support distributed computing

for the purpose of distributing objects optimally between clients and servers that

0 communicate using remote procedure call.

2. To understand performance characteristics of distributed object computing

using a simple example based on splitting the Global Command and Control

System (GCCS) Track Correlation Application (TCA) into a Track Correlation
0 Service (TCS) and a display client.

3. To provide a generic process for evaluating a potential design of a distributed

application through the use of experimental measurements.

* A simple example will be used to show the kind of analyses which must be done before

dividing an application into clients and servers and before attempting to decide on which plat-

forms to place client and server. The example: dividing the GCCS Track Correlation Applica-

tion into display client and track correlation server using the current track correlation database

0 interface, while naive, is typical of the so-called "two-tier" approach where a client directly

uses a data base by calling its interface API. It is not the intent of the paper to suggest that this

1 Some of these considerations will be similar to those faced when using other distribution products based on the

Open Software Foundations' Distributed Computing Environment (DCE) or Microsoft's Distributed Common
* Object Model (DCOM).

is the appropriate division of the TCA. It is the intent of the paper to use this example to moti-

vate the experiments which were performed and to sketch the difficulties that such a design

would face.

1.2 AUDIENCE

This paper is intended for technical designers and developers who must design distrib-

uted object applications using CORBA and OMA or for others who would like to understand

the feasibility of applications in a distributed object environment.

1.3 OUTLINE OF PAPER

The paper is divided into four major sections, exclusive of the introduction:

1. Introduction - describes the objectives of the study and the benefits to be

derived from it.

2. Methodology - describes the framework for experimentation.

3. Results of Measurement - provides the results of the experiments in detail.

4. Summary of Observations - summarizes what was discovered and attempts to

generalize the results.

5. Recommendations for Design - provides a process for developers of distribut-

ed applications and a checklist of considerations for designers.

1.4 OBJECTIVES OF THE EXPERIMENTS

The Defense Information Infrastructure (DII) Common Operating Environment (COE)

project office intends to add distributed object technology to future releases of the COE which

will support an object-oriented distributed computing paradigm. This technology will employ

software based on the consortium specifications known as the Object Management Group

(OMG)'s Common Object Request Broker Architecture (CORBA), Version 2.02 and the

OMG's Object Management Architecture3 (OMA). The technology will lead to new consider-

ations for design which will have a large potential impact on the efficiency of systems devel-

oped using this technology.

2 Object Management Group. 1996. Common Object Request Broker Architecture, Revision 2. Object Manage-

ment Group, Framingham, MA. 01701. July 1996
3 Object Management Group. 1990. Object Management Architecture Guide, Revision 1.0. Object Management

Group, Framingham, MA. 01701. November 1, 1990.

2

The set of experiments which were conducted are designed to help designers:

"* Understand the effect of object distribution on the design of DII COE based appli-

cations and services.

"* Understand the effect of changing from local procedure call (LPC) to remote pro-

cedure call (RPC) on design of applications.

* Understand the feasibility of using OMG's OMA for specific applications of impor-

tant subdomains such as the Global Command and Control System (GCCS) includ-

ing TCS.

1.5 BENEFITS TO DII COE DEVELOPERS AND COMMUNITY

By using a similar set of experiments based upon their own application's requirements

and concept of operations, designers and developers of distributed object systems based on

CORBA will be able to:

* Develop a notion of granularity using the ratio of computation time to communica-

tion time.

* Develop a preliminary understanding of potential bottlenecks in the systems they

design.

* Develop insight into timing latencies and dispersion inherent in distributed systems.

* Establish a checklist of items which should be considered in the design and devel-

opment of distributed applications.

3

CHAPTER 2. METHODOLOGY

2.1 INTRODUCTION TO DISTRIBUTED COMPUTING

Distributed computing technology has been maturing over the last 15 years. Originally,

each solution was handcrafted, using whatever communication mechanisms were available.

Later, low level communication services were standardized. The Berkeley community chose

sockets and the Bell Labs community chose the Transport Layer Interface(TLI). Next, RPC

was used to hide the complexity of socket programming and to make distributed programming

obey the well-known procedure call semantics. RPC had higher overhead than socket program-

ming but was much easier to use. Application-oriented languages/systems such as Linda4 per-

mitted programmers to develop applications that were of large granularity and computationally

intensive with few data dependencies which could be executed in parallel on multiple machines

using RPC.

In the late 1980s, the Open Software Foundation (OSF), now part of the Open Group

(OG), developed a framework for distributed computing called the Distributed Computing

Environment (DCE) which utilized RPC to access a set of standardized services. These services

included security, time, and directory services among others. A complex application program-

ming interface (API) was delivered in the early 1990s which permitted the development of dis-

tributed applications of high complexity and which facilitated optimization of those

applications. An example of one of those applications is the Distributed File System (DFS)

which features replication, access control lists, and distributed management tools. Another is

Transarc's Encina®, a transaction manager. DCE utilizes procedural access to services.

In 1990 the Object Management Group was formed to promote distributed computing

based upon the premise that all computing would be utilizing an object paradigm. Goals of this

new mode were: location transparency; heterogeneity of platform, operating system, and pro-

gramming language; and access via standardized interface. Where DCE programming was at

an inherently lower level of detail, OMG's object programming 5 was at a level much closer to

the application: the object request broker (ORB) was to hide many of the small details typical

4 See http://www.sca.com/ilinda.html.

5

of DCE programming. Object services were to be specified that would provide a rich set of

reusable components

In the DCE world of Client/Server computing, programmers are responsible for deter-

mining where Servers for their Clients reside, either using end-point mappings, a local direc-

tory service, or a remote directory service. In the ORB world, one specifies the desired service

to the ORB using an object reference, and the ORB determines the location of the service,

ascertains that it exists and is running, and causes the parameters issued by the Client object to

be presented to the desired object within the service that instantiates the object. Details of these

conveniences are left to the implementors of the ORB, instead of the developers of the appli-

cation.

Thus in the model of computing to be investigated, there is an object with role of Client,

an object with role of Server, and an ORB. The application we will investigate is a repetitive

query in which the Client repeatedly interrogates the Server for the latest data values, waiting

for a set of values to be delivered before asking for the next set. In the implementation to be

tested: Orbix 2.0.1 for Solaris and Orbix 2.02 for Microsoft NT, the ORB is only involved in a

few of the communications. The Orbix ORB determines the location of the Server for the Cli-

ent, and initializes the service if necessary; then it mediates the selection of connection-orient-

ed communication paths (transmission control protocol on internet protocol (TCP/IP) sockets)

from Client to Server (and vice-versa) in communications 1-8 (See Figure 3). Until the Client

decides to close the connection to the service, the connection between Client and service is

maintained by the communications software. In the event that the Server fails, a Client request

will return an exception. In this case the Client must request that the ORB reinitialize the failed

server or locate another server and initialize communication with it. Our experiments will

assume a failure free situation for simplicity. In our use almost all the traffic, generated by Cli-

ent method invocations, proceeds from Client to Server to Client over the mediated socket con-

nection provided by the ORB. Since the Server can support multiple objects, a dispatcher

provided by the Orbix Library code on the Server platform uses the object reference to deter-

mine which object hosted by the server is being queried and which method of the interface to

that object is being called and dispatches to it.

5 OMG's object paradigm is interface based, utilizing RPC to invoke methods of objects which "hide behind"
their interface.

6

Client 9,11,13,15,17... Server

i - the ith communicatiod ORB

Figure 3. Client/Server Communication Chart

Assuming that there is a long-lived connection between Client and Server, we might

wish to focus our attention on the communication between the Client and the Server in com-

munications 9, 10, 11, 12, ... (unless the ORB is exceptionally slow) in the analysis of distrib-

uted object computing6. If only a few requests are issued for a service, we would focus attention

on the time required for mediation by the ORB and on the cost of opening and closing connec-

tions. Such would be the case if we were designing a collaborative planning or network brows-

ing application. In that case the nature of the experimental investigation would be different.

Since our example primarily demonstrates the communication between Client and

Server, we note that the difference between the distributed and the non-distributed case is the

use of Remote Procedure Call (RPC) in the former case and Local Procedure Call (LPC) in the

latter case. We can define relative efficiency to be the ratio of the time taken for the RPC + Serv-

er Work 7 to that of LPC + Server Work. Figure 4 and Figure 5 illustrate a model of the two

cases.

6 Under some circumstances, the Client might bind itself to an object in the Server, request a few invocations,

and then disconnect, possibly reconnecting later. In our examples, the Client would connect once and remain
connected for a very substantial period.

7 To avoid confusion, the term "server work" will be used to refer to the work performed by the called entity
whether that entity is called by LPC or RPC. Client work will refer to the work that the client performs on the
results provided by the server.

7

r - - - - - - - - - - ---

Same Address Space

CALL(N)

Client C Server

RETURN(M)

Figure 4. Local Procedure Call

Eqn. 1: "ILPC - "tICALL(N) + "ISERVICE + tIRETURN(M)

Let "tlx be the amount of time taken for the part of the local procedure call labeled x,

then the time for a local procedure call is given by Equation 1 above, where N represents the

number of bytes transferred by the caller and M represents the number of bytes returned by the

service. Figure 4 is incorrect for system calls because the typical operating system call involves

the use of different address spaces: the system address space and the application address space.

The reason this is important is that "call by reference" can be employed within the same address

space, but that "call by value" must be used between two different address spaces. The latter

requires the allocation of space and copying of values which may involve significant overhead. 8

It also may require two process exchanges to give the hardware access to the new address space

and to return and may result in multiplexing the use of resources. The use of local procedure

call within a single address space is the least expensive of all service use in terms of time

expended.

8 A typical local procedure call on a Sun SPARC20 (75Mhz) requires 1 microsecond whereas a typical instruc-

tion may require but 2 nanoseconds and a process exchange 100 nanoseconds.

8

Remote Procedure Call is the most expensive use of time. It is illustrated in Figure 5.

r"--------------------- - r -- - ----------

1 Address Space A I I Address Space B
Processor 1 I I Processor 2

CALL(N) CALL(N')CAL (N)NCAL+(N

0 LPC L iiLPCI oms

SETURN(M) /RQTURN(M'

Client Server i Client Server
Proxy Proxy

L- - ------- - --- -- L- - - ------ - - - - ----- -

(X)-bytes transferred:]

Figure 5. Remote Procedure Call

In this case there are two address spaces involved, potentially on two different machines. The

Client and software which acts as proxy for the Server are in one address space and software

which acts as a proxy for the Client and the Server are in a second address space, potentially

on a different machine. The following is the conceptual sequence by which remote procedure

call is accomplished:

"• The Client calls the proxy for the Server and provides arguments to it, either by val-

ue or by reference because it is in the same address space.

"* The proxy for the Server marshals the arguments, i.e., it obtains the values for the

N bytes of arguments, converts them to a standard representation, following stan-

dard alignment rules which may require padding with null bytes. Then it passes this

set of N bytes (which probably will be larger than N) to the circuit based commu-

nication protocol (in this case TCP/IP sockets) which reliably forwards the message

along with P protocol bytes to the socket on the other platform.

a The N bytes are received by the proxy for the Client which unmarshalls the argu-

ments: i.e., it converts the bytes from standard form and alignment to N' bytes of

the proper form and alignment for the second platform.

"* The proxy for the Client then calls the object that the Server has made available to

the Client, selects the method specified by the Client, and calls this method using

9

0

the N' bytes of arguments supplied by the Client using a local procedure call which

may be either by value or by reference.

* The service performs its computation, returning its result of M' bytes to the proxy

for the Client.

* The proxy for the Client marshals the returned values into a data structure of M

bytes which it passes through the communications protocol with Q protocol bytes

to the socket on the Client's platform.

• There the proxy for the service unmarshalls the returned value and returns these M

bytes to the Client.

The timing equation for RPC is as follows: 0

Eqn. 2:

"tIRPC = tIcALL(N) + "lMarshal(N) + lSend(N +P) +" IlUnmarshal(N) + "ICALL(N') + 'SERVICE

+ "IRETURN(M') + "IMarshal(M) + tISend(M+Q)+ IUnmarshai() + TIRETURN(M)

It conveniently omits the detail of additional overhead which may be added utilizing the level

of security which may be desired. For example, if we desire confidentiality, time for encryp-

tion and decryption must be added. If we want to guarantee integrity of messages, integrity

bits must be generated and added to the message and must be checked at the receiver. If the

Client and/or Server do not trust one another, additional time must be added for the purpose of

authentication. These additional times are shown in Equation 3.

Eqn. 3:

tIRPC "tICALL(N) + IMarshal(N) + •[Send(N+P)+ tIUnmarshal(TV)

"+ "ICALL(N') + ISERVICE + "IRETURN(M') + IC[Marshal(M) + tISend(M + Q) + tjUnmarshal(M) 0

"+TIRETURN(M) + lIntegrityGenerate(N)+ IntegrityCheck(N)+T IntegrityGenerate(M)

" tjlntegrityCheck(M) +TiEncrypt(N) + Decrypt(N) + TjEncrypt(M,) + 'IDecrypt(M)

"+ t AuthenticateClient + ' [AuthenticateServer 0

We note that in the simple case of RPC (Equation 2) we have two calls and two returns.

There are also fixed overheads of two marshals and two unmarshals plus a fixed time compo-

nent associated with send and a variable component associated with send but actually related

to latencies due to scheduling processes on the platforms which host the Client and Server -

10

0

objects. The time for send is inclusive of both the fixed and the variable times. The figure in

Appendix B, Attachment 3 shows the ratio between LPC + Server Work and RPC + Server
0 Work as a function of the time required for the work on the Server. As can be seen, the more

time taken in the service, the higher the relative efficiency.

In order to get a better idea of the actual efficiency, it will be necessary to measure actual

overheads in several styles of implementations. Ideally, we would determine the actual times

for a specific service and there would be no variation. In practice we will not be able to do this,

but we will be able to determine "general orders of magnitude" which will help us design appli-

cations for which our experiments are relevant.

* 2.2 BUILDING THE TIMING AND DATA MODELS

In building a timing model, we need to understand where we can measure and the accu-

racy to which time may be measured. A CORBA compliant ORB, Iona Orbix 2.x has been

specified for use in the DII COE. Orbix offers eight places (Points 1-8 in Figure 6) where time

can be measured on a per-process basis in a convenient fashion9 ; in addition there are other

points (e.g., Points 0 and 9 in Figure 6) where we can measure time in the Client or in the Serv-

er. Points 0-9 in Figure 6 are used in our experiments. In addition points 10 and 11 mark places

where the number of bytes used in communication are measured. The times at which events are

measured and the number of bytes transmitted are denoted as indicated by the following list.

0. In the Client object, ro.

1. Prior to the point that the proxy for the Server marshals the arguments, tl.

2. After the proxy for the Server has marshalled the arguments, r2 .

3. Prior to the point that the proxy for the Client unmarshals the arguments, r3.

4. After the proxy for the Client has marshalled the arguments, T4.

5. Prior to the point that the proxy for the Client marshals the arguments, 'r5.

6. After the proxy for the Client has marshalled the arguments, 'T6.

7. Prior to the point that the proxy for the Server unmarshals the arguments, T.7-

8. After the proxy for the Server has unmarshalled the arguments, T8.

9 Orbix allows interception on a per object or per process basis. Since our service has only one "object" we will
use the per process interception. Using it we also see all requests of the Client process to the ORB and the ORB
process to the Server process. These requests result in the initialization and destruction of the communication
paths between Client and Server.

11

9. In the Server object, '19 .

10. Total number of bytes transmitted by the Server proxy, B 1

11. Total number of bytes transmitted by the Client proxy, B2

r- - -'---------------------- - "-- ----- - - - ---
Address Space A I I Address Space B

Processor 1 I I Processor 2

0 Comiuni~ations LPC 9

8 76 5

Client Server Client Server
Proxy Proxy

L - - --------------------- -L L-------- - - - - ---

Figure 6. Experimental Monitoring Points

Note that the time for marshalling can be determined using points 1 and 2 as well as 5

and 6. Unmarshalling time can be determined using points 3 and 4 as well as 7 and 8. Service

time can be determined by using the difference of the times at points 4 and 5. If the Client pro-

cess and the Server process are both on the same machine, then points 3 and 4 can be used to

measure the transmission of N + P bytes and 6 and 7 to measure the transmission of M + Q

bytes.

This system permits two kinds of time measurements. One is a high resolution measure-

ment in multiples of 500 nanoseconds; the other is in hundredths of a second. The latter time

can be used to measure wall clock time or time spent in the (UNIX) User's address space or

time spent in the operating system. In order to get the best timing possible, we used the high

resolution measurement in the Client and the Server in addition to the points 1-8 per Figure 6,

when that was possible. We were not always able to measure individual events, but instead mea- 0
sured the time required for repeated occurrence of the same event and worked in terms of aver-

ages.

12

The introduction of timing measurement can perturb activity in the Client address space

or the Server address space. It is important to assure that the timing is reasonably stable and as

free of noise due to asynchronous events as possible. Assuming this is done, one should mea-

sure the following:

1. Typical cost of local procedure call in same address space and to system address

space (See Appendix C.5)

2. Typical cost of loop overhead (See Appendix C.6)

3. Typical cost of measurement activity, i.e. the cost of an interceptor. In our case, we

did this by timing the 9-point example and the 5-point example. We subtracted the

minimum time for each and assumed that this time resulted from the addition of the

interceptor code for four interceptions.

4. Ratio of best-case LPC to best-case RPC, i.e., an LPC which does no server work

and an RPC which does no server work. The minimal times expended are best case,

because they are the shortest times we can obtain.

5. Typical best-case time for marshalling and unmarshalling of arguments, in our

example a string of 938 bytes. See Appendix C.2.

6. Typical best-case time for transmission of arguments, in our case, 938 bytes of pay-

load + protocol and tagging data. See Appendix C.2.

The reason we have selected 938 bytes is that this is the length of the information taken from

the data base of the TCS of GCCS. We have selected this service because it seems to present

the most difficult challenges to a successful implementation.

Assuming that these times can be obtained, we will be able to determine the effect of

RPC on allocation of function in Clients and services utilizing information obtained. Of course

these values are guaranteed only for the experiments made in the environments provided. By

making slight variations in environment, we can determine how sensitive the results are as a

function of the environment. Using the results of the experiment is more likely to produce better

factoring of our applications into pieces which can be distributed than using our judgment

alone.

13

2.3 CONFOUNDING FACTORS

The set of experiments assumes that stable results can be obtained. The following fac-

tors can invalidate the results of these experiments or invalidate their interpretation in a more

general setting; our experiments attempted to mitigate these factors as described in Section 2.4.

1. Lack of high precision timer on Pentium 90. A preferred Client for the DII COE is

likely to be an Intel based computer running the Microsoft NT 4.0 operating system.

Regrettably, there appears to be no way to access a high resolution clock on NT4.0

clients. A 60 Hertz clock is available, but this produces minimum increments of

16.66 ms which are only useful for measurement of averages and give us less infor-

mation about the distribution of times required for satisfaction of a request.

2. Lack of high accuracy coordination of times between Client and Server. The high

resolution clocks on two different SPARC machines are not correlated, each mea-

sures its own time, presumably from when the system was booted. Because we do

not have an accurate global clock, there are a number of measurements which we

cannot make with accuracy. If measurements were totally stable, it might be possi-

ble to estimate an offset for one of the clocks from the other. Unfortunately, the mea-

surements are not stable enough for this purpose.

3. The work required for reading a system clock may distort measurements. This can

be due to activities involving process exchange which may cause each machine's

scheduler to introduce latencies into the desired calculation.

4. In addition to 3, the subroutines required for measuring time at various points in the

Client-Server-Client loop may distort measurements in a non-linear manner.

Because of the variance in iteration time, it is difficult to subtract out these times

precisely. However we can gain an understanding of the magnitude of the time

required to take the measurements and verify that this time is a small percentage of

the total Client-Server-Client loop.

5. Degree of burstiness and simultaneous applications. The experiments involve run-

ning a single application at a time. In the usual case, multiple applications will be

running simultaneously. Use of an ethernet as a communications medium produces

a latency vs. bandwidth requirement which is very non-linear after 50% of the band-

width is used. There may be substantial dispersion in times for throughput, especial-

ly under heavy load. The results obtained in this experiment are for lightly loaded

systems and will not necessarily apply under heavy loading.

14

|0

6. Security processing overhead. These experiments have ignored all effects of provid-

ing security as per Equation 3. In cases where these functions must be applied, the

developer must attempt to understand the magnitude of their contribution.

7. Non-linearities in number of IP packets/second processed. Typical work stations

reach a point at which they can no longer process packets. On older work stations

such as the Sun IPX, this point is around 200 packets per second. On newer ones,

this limit is higher, but still may be less than 1500 packets per second (of any size).

8. Non-linearities in bandwidth of IP packets/second required for transmission. Each

medium and access method has different characteristics. This set of experiments

assumes an ethernet packet whose maximum size is slightly more than 1500 bytes

including protocol information. When more than 1500 bytes are to be transmitted,

the original messages are segmented and sent as multiple packets, producing a non-

linear requirement for bandwidth as a function of message size. This effect will be

even more noticeable with Internet Protocol Version 6 with large addresses enabled,

since many more bytes of overhead are introduced. If Asynchronous Transfer Mode

(ATM) transmission is used, similar non-linearities may be observed. This is

because the TCP/IP and ATM error determination and recovery mechanisms are not

designed to work with one another and ATM error rate is permitted to be high, often

resulting in multiple re-transmissions of ATM packets or error in the IP transmis-

sion which can require complete re-transmission of the TCP/IP packet.

9. LAN/WAN interfaces and queuing. This experiment has assumed that both Client

and Server are either on the same platform or that alternatively they are on platforms

which are on the same Local Area Network (LAN). There is a possibility that they

are on different networks with a Wide Area Network (WAN) connecting the LANs.

In this case attention must be given to the queueing that takes place at the interface

where there is customarily a large bandwidth differential, e.g., 10 mb/s and 9600

bps.

10. The ORBIX IDL Compiler. The interface definition language (IDL) compiler which

IONA uses to produce C++ implementations of ORB-usable interfaces is in a state

of flux, improving at each new version as does their library of supporting proce-

15

dures. As noted by Schmidt 10 this translation has a very strong effect on the effi-

ciency of marshalling and unmarshalling, particularly in the case of large records.

11. Possibility of caching. The possibility of caching means that we must ascertain that

an appropriate amount of data is transmitted - that the mechanism is not only

transmitting changed data. In a production case we would attempt to engineer smart

proxies to take advantage of repetitive, unchanged data.

12. Lack of time to try detailed optimizations. Even though the experiments were envi-

sioned as exhaustive, there was not enough time or resources to try all possible opti-

mizations which a developer might perform in order to meet required performance

goals or to use proprietary extensions of Orbix other than filters for time measure-

ment or smart proxies.

2.4 MITIGATION OF CONFOUNDING FACTORS

The experiments were conducted in a manner which attempt to mitigate the confound-

ing factors as much as possible.

"* Factors 3 and 4. The experiments attempt to account for extraneous times and

remove them.

" Factors 7 and 8. The experiments used an isolated subnetwork with minimum extra-

neous traffic and linear duty cycle; records were made of the network statistics in

an effort to substantiate operation in this regime.

" Factor 9. A WAN was not employed; all communications were performed on a sin-

gle segment of a LAN. To gain an understanding of the interprocess communica-

tion, an experiment using loopback TCP/IP was used to establish basic timing for

communications and for both Client and Server processing times on the same

SPARC20.

" Factor 12. At least one change in returned value was made at each iteration and the

number of bytes and messages transmitted and received were checked to ascertain

that an intelligent caching scheme was not being used.

In addition the following practices were followed:

10 Gokhale, Aniruddha and Douglas C. Schmidt. 1996. Measuring the Performance of Communication Middle-

ware on High-Speed Networks. ACM SIGCOMM Conference Proceedings. Association for Computing
Machinery, New York, N.Y. August 1996.

16

" Only the standard Basic Object Adapter defined for all implementations of CORBA

Version 2.0 was employed. The interface definitions and Client and Server code in

C++ are provided so that an interested party can produce similar results.

" Complete records of each experiment were retained for further examination.

2.5 EXPERIMENTS TO BE CONDUCTED

The goal of the measurements which were made were to try to determine the parameters

of Equation 2 using a variety of host platforms for the Client and obtaining the most informa-

tion possible with the fewest experiments: one returning a double precision value, another

returning a 938 byte string, and a third returning a VtPlatform track (see glossary) using the

API of the Track Correlation Application Database Manager.

2.5.1 Methodology of Experiments

Each experiment was conducted to:

1. Determine the amount of time required and number of bytes of data transmitted for

a Client/Server interaction. This was accomplished by using a loop iterator to repeat

the RPC over and over again. This showed us the maximum rate that a Client-Serv-

er-Client interaction can proceed.

2. Break down the time required per interaction into the time required on the Client

platform, the time required on the Server platform, and the communications time

(as accurately as possible).

3. Break down the time required on the Client platform into the time required for Cli-

ent marshalling, Client unmarshalling, and Client processing.

4. Break down the time required on the Server platform into the time required for

Server unmarshalling, Server processing, and Server marshalling.

5. If possible, decompose the communication time into time spent on Client platform,

time spent on Server platform, and time on the "wire" as a function of the amount

of data and kind of data.

Each experiment was performed in two basic varieties. In the first we simply noted the

value of the real time clock when the processes reached each measurement point. Of greater

interest is an experiment related to the TCS data base. The TCS data base contains a variety of

data records from all sorts of data sensors, e.g., radar, sonar, acoustic, etc., which report posi-

tions of "elements" at a given instant of time. The purpose of track correlation is to attempt to

17

fuse the data from various sources such as electronic intelligence, heat sensing, signal intelli-

gence, and human intelligence, deconflicting multiple instances of the same track from multi-

ple sensors. As a result, the TCS data base contains 12 different kinds of records. A simple kind

of display Client might request the return of track data so that it could present the information

on a display. Instead of determining the type of record and requesting it specifically, we would

prefer to use a generic request to return a record which has been appropriately marshalled and

unmarshalled so that it is usable on both Intel and Sun Platforms with their different represen-

tations of the same data. The marshalling routines must determine which data record format is

actually being returned and marshal and unmarshal it correctly. This problem is representative

of all generic data base requests. Our experiments were expected to produce different results

for the timing of each kind of record and they did. Two kinds of records were actually

employed, a record of 938 bytes, and a record containing a VtPlatform record - see Appendix

A.2.3.

We performed the above for a Client/Server interaction returning a very small amount

of data, a string of data approximating a track from the TCS, and a structure of data which is

one of the 12 types of tracks sent by the correlation Server.

2.5.2 Equipment and Software Used

We used equipment available to us at the time, including two Sparc20s, a Sparc IPX,

and a Pentium 90. We are fairly certain that the platforms had sufficient memory and processing

power to participate in the experiment. While the Server platforms and Client platforms of the

DII COE used in a production environment will have substantially larger configurations and

use more capable networks, the results are still representative and scale with processor speed

since only afew microseconds are used for transmission of the values on network media. (One

would have to test to assure that most of the time is lost due to processing and that this time is

inversely proportional to the speed of the processor.).

The Sparc20 was equipped with a 75Mhz clock and 96 Mb of memory. It was always

used to host the Server process and as the host for the Orbix 2.0.1 ORB which is CORBA 2.0

compliant. This Sparc20 was also used to host the Client so that loopback TCP/IP11 could be

timed precisely and so that all 9 points could be measured with the same clock, giving the effect

1 In loopback TCP/IP, the packets which would have been transmitted over the network are simply reflected by

the media control and processed as input without having been transmitted over the network. The timings for
this are slightly less than if the data had actually been sent over the network.

18

of a global clock. It should be noted that both Client and Server were single threaded which

means that the Client waits for the Server to respond and vice versa.

A second Sparc20 was equipped with a 75 Mhz clock and 64 Mb of memory. It was

used exclusively as a second Client. Although its 4 measurement points did not use the same
clock as the platform hosting the Server, its clock was as accurate. Since the cycle of Client-

Server-Client was still employed, the two different experiments could be compared for the sake

of consistency.

A Sun Sparc IPX with 24 Mb of memory was used as a Client to verify the effects of a

slower processor with similar data representation. The results of these experiments are present-
ed in spreadsheet in Appendix B, Attachment 1 for completeness, but are not otherwise dis-

cussed.

A Pentium 90 with 16 Mb of memory running Microsoft NT4.0 was used as a Client
because it was available equipment. It is not likely that a Pentium with such low clock rate or
limited amount of memory will be used as deployed equipment in DII 3.2. More likely, a 200

Mhz Pentium would be employed; it is about twice as fast. The ethernet controller on the Pen-

tium 90 was a 3Com 3C509, an unoptimized controller.

The ethernet used consisted of a central hub, a router, and optical cable to the equip-
ment. Equipment on the ethernet was limited to the 2 Sparc20s, an IPX, and the Pentium 90. In

order to use files from the author's machine, a file system from that machine was mounted on
the Sparc20 using the Network File System of Sun Computer. The use of this convenience may

have introduced additional variance in the results since this use results in the Sparc20 pinging
the host on an infrequent basis to ascertain whether it is alive. Based on the results presented in
Appendix B, Attachment 1, this use did not greatly add variance to the results.

The operating system on all the Sun machines was Sun Solaris Version 2.5. It is expect-
ed that DII COE will support this at Revision 3.1. (It supports 2.4 at DII-COE Release 3.0). The
version of Orbix on the Sparc was Orbix 2.0.1 which is not a multi-tasking version. A multi-

tasking version would have made more sense if the ORB had been heavily loaded or if the Serv-
er had managed multiple objects. The Sparc C++ Compiler was version 4.0.1 (SC3.0.1) as

required by IONA for operation with Orbix Version 2.0.1. The Sun version of time and netstat
were used to accumulate centisecond time and network statistics.

The operating system on the Pentium 90 was Microsoft NT Version 4.0 with no patches.
Orbix 2.0.2 for NT was used as the Client ORB. The compiler/library suite used was Microsoft
Visual C++ Compiler, Professional Version 4.2. Minimal changes were made in the source

19

0

code of the Clients previously compiled and run on the Sun. These changes, documented in the

Orbix documentation, accommodated the compiler's use of macros to handle declarations of

nested classes.

2.5.3 Variations to be Performed

Sets of trials were run for each experiment, using four different platforms for Clients to

gain a sense of robustness.

First, each basic experiment was run using nine time monitoring points - the eight as

mentioned above and an explicit request in the Server for high resolution time. These were run

on the Sparc20 platform which hosted both the Client and the Server as well as the pair of

Sparc20s. This permitted us to gain a view of the effect of marshalling and unmarshalling ser-

vices of greater and greater data complexity. While performing these experiments, we also col-

lected netstat statistics and Unix centisecond timing as described previously in Section 2.2.

This gave us confidence in the facts that

1. Our network was lightly loaded.

2. The number of bytes and the number of messages transmitted were as expected.

3. Our high resolution timing measurements were consistent with the low resolution

measurements made over the entire experiment.

Second, we disabled the four collection points in the Client, and ran each experiment

again with Client and Server on the same platform. This left five collection points in the Server.

We did this because we ran this experiment across the four different Client options and we

knew that the Pentium 90 does not have a high resolution clock equivalent. Third we ran the

Client compiled for the Sparc20 on the second Sparc20 to see the effect of using loopback ver-

sus using the network. Fourth, that same Client was run on the IPX to see the effect of perfor-

mance of a slower Client. Finally, the source of the Client was transported to the Pentium,

modified as required for Microsoft C++, and run as a Client on the Pentium 90 under Microsoft

NT4.0. In this last case the Microsoft NT version of netstat was used to collect network statis-

tics. This set of results in profile showed consistency across the Sparcs and showed diversity in

the Sparc vs. Pentium with respect to marshalling, transmission times, number of messages,

etc.

The first experiment involved sending an integer value from Client to Server. See the

code in Appendix C. 1. The Server returns a double scalar which is the high resolution time.

This experiment provides basic performance loop time against which all other results can be 0

20

compared. It must be performed enough times so that the experimenter can have relative con-

fidence in the results - in all cases 10,000 times. The number 10,000 was chosen because this

number of observations could be collected in random access memory for each of the collection

points and sent to disk after the test was complete, minimizing the effect of the printing on the

experiment. Capturing each value allowed display of the distribution of round-trip timing val-

ues as a histogram. Its results help us to understand the ratio of overheads for LPC versus RPC

in the simplest case.

By comparing the nine point experiment running on the pair of Sparc20s to the five

point experiment running on the Sparc20s we may determine how much time is used in four

calls to the time monitoring routines using the Orbix framework.

The second experiment requires sending an integer value from Client to Server. See the

code in Appendix C.2. The Server returns a double scalar which is high resolution time and a

938 byte string to determine marshalling/unmarshalling time and communications time for

sending strings. This experiment helps us to understand the overhead of using a fixed length

string of bytes as the answer to a request. The time for this should be lower than for returning

any structured value of the same length.

The third experiment requires sending an integer value from Client to Server. The Serv-

er returns a double scalar which is high resolution time and a 938 byte structure to determine

marshalling/unmarshalling time and communications time for sending structures. This struc-

ture is our representation of the VtPlatform Track, a 938 byte complex structure described in

Appendix C.3. This experiment tells us the overhead of returning a typical structured value

from the data base.

Additional experiments were also conducted to determine the time for:

1. A do loop containing no server work. See Appendix C.6.

2. A loop of subroutine calls to a null routine returning a void result. See Appendix

C.5.

3. A loop of subroutine calls to the high resolution clock. See Appendix C.4.

2.6 DATA WHICH WAS CAPTURED

In the three experiments, the following data was captured for each Client/Server pair:

1. High Resolution time for each Call-Service-Return-Process Loop (10,000 values).

2. Real, User, and System Time (Unix System).

21

3. High-resolution times at each collection point.

4. Network statistics: before and after Client and Server runs.

In the additional experiments, the following data was captured:

1. High-resolution time to perform 1 billion null iterations of a for-loop.

2. High-resolution time to perform 1 billion subroutine calls returning a double scalar

type. 0

37. High-resolution time to perform 1 billion subroutine calls to the high-resolution

clock.

The following information was derived from the values collected (See Attachment 1 in

Appendix B):

1. High-resolution times for: Server Proxy Pre & Post Marshal, Client Proxy Pre &

Post Unmarshal, Client Proxy Pre & Post Marshal, Server Proxy Pre & Post Unmar-

shal.

2. Roundtrip average times, maximum times, minimum times, standard deviation, his-

togram.

3. Times for: Server Proxy Marshal, Client->Server or Client +Transport (When dif-

ferent clocks are used), Client Proxy Unmarshal, Server Execution, Client Proxy

Marshal, Server->Client or Server +Transport (when different clocks are used),

Server Proxy Unmarshal, and Client Execution.

4. Input Packets, Bytes, iplnDelivers, "msgs" (transmitted): to see the effect of dynam- 0

ic tagging and alignment of byte strings and structures, and to see how many mes-

sages are transmitted, and to verify that the network is relatively inactive.

22

CHAPTER 3. RESULTS OF MEASUREMENT

A spreadsheet detailing results in capsule form is included in Appendix B as Attach-

ment 1. This chapter will summarize the extra experiments and comment on each of the three

main experiments in sections below.

3.1 EXTRA EXPERIMENTS

The extra experiments are required to help us deal with the confounding factors 3 and

4. They also provide a good idea of the capability of the platform.

The execution of an add instruction on a Sparc architecture takes about one instruction

cycle and a load instruction takes between 3 and 6 cycles. A cycle on a 75 Mhz Sparc20 is 1/

75,000,000 or 13 nanoseconds (ns).

One billion executions of a for-loop with no executable part required an average of 80.6

ns or about 6 cycles.

One billion calls in a for-loop to a time routine with a null body yielded an average of

1237.8 ns per loop iteration or 1157.2 ns. per subroutine call or about 89 cycles.

One billion calls in a loop to the high resolution clock (presumably through the operat-

ing system) yielded an average of 1551.2 ns per loop iteration or 1470.6 ns per call. Note that

this was about 313 ns more than the null subroutine or an extra 24 cycles.

3.2 DOUBLE PRECISION TIME RETURNED (MAIN EXPERIMENT 1)

The following is the interface specification for the first experiment.

// a simple IDL interface: time. Objects of this interface provide an
// operation 'hrtime' which takes an unsigned long value which may signal
// termination of the Server and returns the double real-time in nanoseconds
// (if vin does not signal termination of the Server).

interface time {double hrtime (in unsigned long vin););

Only the results obtained from the five point experiments are discussed below. They are quite

similar to the results of the nine point experiments.

23

3.2.1 Client and Server on Same Platform

Display Client Correlation Server

Sparc20

TCP-IP Loopback
Communications

Figure 7. Client and Server on Same Platform

A histogram of the times required for the complete execution of the iteration of a call

from the Client to the Server and return was obtained for the 10,000 invocations of the time

interface. The histogram portrays the variability of the time for an iteration and gives an idea
of the distribution of the values (for this experiment). In all cases the "tail" of the distribution
is very long. A sense of how long can be obtained from the ratio of minimum time to maximum
time for an iteration or by alternatively noting that the standard deviation is typically on the

order of 1/4 the mean.

A complete invocation of the loop is denoted a roundtrip. The shortest 12 roundtrip on

same platform for the interface above is - 1.618 ms or 1043 times the per-loop high-resolution-

time local procedure call time. The longest roundtrip in the same trial was -25.3 ms or 16,318
times this basic time. The average time was 1.692 ms and the standard deviation was 0.369 ms

about 22% of the mean value. The time from Client to Server was 0.939 ms and from Server to

Client was 0.364 ms, yielding a total of 1.303 ms for transmission.

3.2.2 Client and Server on Different SPARC20s

A histogram of the times required for the complete execution of the iteration of a call
from the Client to the Server and return was obtained for the 10,000 invocations of the inter-

face. The minimum round-trip time was 1.589 ms, less than the minimum time for the co-host-

ed Client and Server. The maximum time for a round trip was 134.7 ms, exhibiting much larger
dispersion. The average time for round trip was 1.649 ms and the standard deviation was 1.437

12 For this variety of this experiment; minimum times are subject to the variable time in send. A repetition of the

experiment might discover a smaller or a larger minimum time.

24

0

ms. Since the long event biased the standard deviation so much, this standard deviation is not

unusual.

Display Client Correlation Server

Sparc20 t Sparc20

Communications

Figure 8. Client and Server on Different Sparc20s

In the case where the real time clock was noted at all nine points, the average time

required for the Server + Transport was 1.44 ms which could be determined by the timings on

the Client; the average time required for the Client + Transport was 1.60 ms which could be

determined by the timings on the Server. In this case the total roundtrip time was an average

1.721 ms. Thus the Client can be inferred to have taken 0.281 ms and the Server 0.121 ms, so

Transport must have taken approximately 1.319 ms for the sum of the transfer from Client to

Server and that from the Server to the Client. Unix time revealed that the Server was busy 1.6

ms per invocation, but this time included amortization of the 50,000 line printout at the end of

the experiment. A more detailed experiment might have measured this timing, with the printout

function nulled out.

3.2.3 Server on SPARC20 and Client on Pentium 90

Display Client Correlation Server

Pentium 90 Communications Sparc20

Figure 9. Client and Server on Different Platforms

25

A histogram of the times required for the complete execution of the iteration of a call

from the Client to the Server and return was obtained for the 10,000 invocations of the inter-

face. The minimum roundtrip was 3.63 ms, about 2.2 times that of a Sparc20. (This is likely

due to the lower performance of the Pentium 90, but without a high resolution clock, we cannot

categorize the reduction in performance precisely.) The maximum roundtrip, 43.56 ms, was
substantially better than the pair of Sparc20s. The average roundtrip was 4.06 ms, about 2.46

times that of a Sparc20. The standard deviation was 0.554 ms. Client + Transport took an aver-

age time 3.93 ms, leaving the Server at 0.13 ms, very close to what we might expect. The Server

was busy about 1.557 ms including writing the output file, which is close to the time required

when two SPARC20s interworked.

3.3 938 BYTE STRING RETURNED (MAIN EXPERIMENT 2)

The second experiment involved the return of a string of 938 bytes from the Server, a

token track. Conveyance of an actual track as a stream of bytes could be expected to work cor-

rectly only if the Client and the Server were on the same type of machine since an actual track

is a combination of integers, floating point numbers, structures, and strings. Use of a string to
represent a structure of elements might not convey a track record correctly, if one machine was

a Sparc with a 64 bit Operating System (OS) and the other had a 32 bit OS, because of align-
ment and representation differences. It would certainly not work correctly if the actual data rep-

resented a VtPlatform track 13 and the Client was a Pentium machine since Sun and Pentium

use different alignments and byte orders. If IDL is used for the actual track, the code generated

by the IDL compiler correctly deals with alignment and data representation issues.

typedef string<938> VtTrack;
interface Trax {
void print (in long signal);
void get (in long index, out VtTrack track, out double time);
1;

3.3.1 Client and Server on Same Platform

The minimum roundtrip time was 1.77 ms and the maximum was 19.4 ms. This is about

the same amount of dispersion as encountered in the previous experiment. The average

roundtrip time was 1.86 ms and the standard deviation was 0.321 ms. From Client to Server (in

Attachment 1) took 0.979 ms and from Server to Client was 0.384 ms, resulting in a total com-

munication time of 1.363 ms or 0.03 ms more than the transmission time for a transmission of

8 bytes.

13 See Appendix A.3.5, typedef for A27 - a VtPlatform track.

26

The time for the Client Proxy to unmarshal its arguments was 0.0 17 ms and for the Cli-

ent Proxy to marshal the results was 0.05365 ms. This does not represent a serious difficulty

when compared to the communication time above.

3.3.2 Client and Server on Different SPARC20s

When two Sparc20s are used, the minimum roundtrip time increased to 2.629 ms and

the maximum to 23.83 ms. The average also increased to 2.684 ms and the standard deviation

increased to 0.405 ms. This is likely do to the difficulty of coordinating the two operating sys-

tems.

The time for Client + Transport was 2.5 ms and for Server + Transport: 2.391 ms. The

latter was measured with a nine-point experiment.

The time for the Client Proxy to unmarshal arguments was 0.015 ms and for the Client

Proxy to marshal was 0.053 ms (3.6 • basic), which was as expected.

3.3.3 Server on SPARC20 and Client on Pentium 90

When the Pentium 90 was used as the Client, the minimum roundtrip time increased

again to 4.7 ms as did the maximum to 48.59 ms. The average was 5.11 ms and the standard

deviation was 0.618 ms.

The Client + Transport time was 4.917 ms average. This is almost twice the time for the

two Sparc20s.

Again the Client Proxy unmarshal time was about the same: 0.0 18 ms as was the Client

Proxy marshal time of 0.060 ms.

3.4 VTPLATFORM TRACK RETURNED (MAIN EXPERIMENT 3)

The third experiment was closest to reality: the contents of a VtPlatform track was

returned from the Server in addition to the high resolution time. The expected variation in this

instance is the marshalling, unmarshalling, and transmission times because the data is highly

structured.

interface Trax
void print (in long signal);
void get (in long index, out VtPlatformTrack track,
out double time);

27

3.4.1 Client and Server on Same Platform

When the Client and Server processes are hosted on the same platform, the minimum

roundtrip time increased about 50% over the string results to 2.50 ms, whereas the maximum

time remains about the same at 19.6 ms. The average was 2.57 ms; the standard Deviation was

0.322 ms, about the same as before.

The time for transmission from Client to Server was 0.994 ms; from Server to Client it

was 0.415 ms, an increase of 14%.

The Client Proxy unmarshal time increased sharply to 0.339 ms (20 times the case of

the string) and the Client Proxy marshal time increased to 0.248 ms (almost 5 times the time

for the string). It was not clear why the unmarshalling time increased greatly. A hypothesis is

that the unmarshalling stage allocates storage for the returned result. In the case of the VtPlat-

form track, this is a very expensive operation because so many parts of the result must be allo-

cated.

The total time used by the Server process is 2.22 ms including writing all Server timings

to the file.

3.4.2 Client and Server on Different SPARC20s

In the case when two different Sparc20s are used, the minimum roundtrip time is 3.6

ms and the maximum time is 19.03 ms. The average time was 3.67 ms and the standard devia-

tion was 0.405 ms.

The Client + Transport time was 2.979 ms; the Server + Transport time was 3.187 ms

(measured with 9 measuring points).

Client Proxy unmarshal time required 0.334 ms (about 22 times the time required for

the string); Client Proxy marshal time required 0.273 ms (about 5 times the time for the string).

0
3.4.3 Server on SPARC20 and Client on Pentium 90

When the Client was transported to the Pentium, the minimum roundtrip time was 6.20

ms, about 1/3 higher than with the string. The maximum roundtrip time was 45.21 ms. The

average was 6.65 ms and the standard deviation was 0.585 ms. The distribution of values is very 0
high in the general region of the mean and drops off quite sharply; however, a number of the

10,000 values are quite disperse from the mean, yielding the large standard deviation. The dis-

tribution of results looks more like a Raleigh distribution than a Gaussian distribution. See the

graph of distribution, Appendix B, Attachment 2. 0

28

0

The time for Client + Transport was 5.851 ms.

The time for Client Proxy unmarshal was 0.419 ms and for Client Proxy Marshal was

0.273 ms.

3.5 ADDITIONAL INFORMATION

Additional information can be found in the detailed spreadsheet of Appendix B, Attach-

ment 1.

29

CHAPTER 4. SUMMARY OF OBSERVATIONS

The set of experiments have led to some summary observations. In the following we

will simplify those results in order to aid in "back-of-the-envelope" analyses by developers.

(Caution: your results may vary widely from ours because of equipment, software, applica-

tions, or use.) On a Sparc20, a local procedure call to the timer with a minimal returned result

costs about 1.5 microseconds (ps). A minimal Orbix RPC to the timer with a minimal returned

result costs about 1.5 milliseconds (after removing timing and looping) or 1000 times longer' 4.

Communications costs about 1.3 ms of that RPC time. In order to have 50% efficiency using

RPC, the work done by the Server would have to be > 1000 LPCs or 1.5 ms; for a 90% efficien-

cy, more than 9000 LPCs or 13.5 ms would be required. Thus for high efficiency the work per-

formed on the Server should be very much greater than 1 ms.

Substantial time is used by communications: 1.3 ms with very small messages in each

direction on the Sparc20 in loopback mode. More time is used if a physical network is used. If

a 9600 baud network were used, and the associated 186 bytes of protocol and message were

transmitted in the case of the high resolution timing call, assuming 10 bits per character, an

additional time of nearly 200 ms would be required for transmission time15 . Use of an ethernet

on the other hand would only require an additional 149 jis for transmission.

Substantial additional time is required for handling heterogeneity, e.g., using Orbix

2.0.1 for marshaling strings (0.13 ms) or structures (0.95 ms). Time required is a strong func-

tion of the complexity of the returned quantity, due to allocation and copying. It is likely that

different IDL compilers will handle marshalling and unmarshalling differently; hand-opti-

mized code for marshalling and unmarshalling may be required in order to achieve usable

results, particularly in the case of very long or very complex arguments.

Even a Sparc20 cannot handle very many object requests per second. Suppose we

assume that half of the time of Client-to-Server and Server-to-Client is used by the Server. This

14 Even if a different RPC mechanism were found which offered little overhead in its RPC, it is unlikely to be

faster than 250 times a LPC. See Attachment 2 in Appendix B.
* 15 There might be an additional latency proportional to the distance travelled.

31

would yield a total of 0.65 ms in the case of returning high precision time. Client Proxy unmar-

shal requires 0.02 ms. The Server uses 0.08 ms. Client Proxy marshalling uses another 0.03 ms.

This totals 0.78 ms. Thus an upper bound on the number of requests that the Sparc20 could han-

dle is approximately 1280 per second without performing any other activity. The actual maxi-

mum will be substantially lower.

Returning a 938 byte payload, we know that the Server + Transport requires 2.391 ms

(from measurements on the Client side of two Sparc20 platforms). Subtracting out the Server

times by using measurements on the Server, of 0.689 ms, we get 1.7 ms. If we attribute half to

the Client Platform and half to the Server Platform, we find the transmission time attributable

to the Server is 0.85 ms. Combined with the Server usage, this results in 1.54 ms. Thus only

649 requests per second could be serviced by a single Sparc20. Further, no additional opera-

tions could be handled by the Sparc20.

Use of the information acquired

Suppose we wished to divide the GCCS Track Correlation Application into a display

client and a correlation server which accesses a track database using the current track database

API. Assume that track updates occur at a rate of 1000 per second, that tracks are stored in a

memory cache, and that information is disseminated using RPC based on the API above using

a single request to return a single record.

Based on the current experiments are the following tentative conclusions: The simple

division of the track correlation application into display client and track correlation database

with our simple use of request-reply semantics 16 could not meet the requirement of 1000 que-

ries per second on the measured equipment with the version of software used. It remains to be

seen whether a different processor or a different strategy such as sequential transmission of

multiple tracks 17 would better utilize the processor so that the server work could be done in the

time required. Design strategies must also be reconsidered if a higher performance processor,

a different or improved ORB/IDL/Library combination, or a better implementation of TCP/IP

is used.

16 The semantics of local and remote procedure call.
17 In a push mode where the service sends all relevant data at once instead of one track at a time.

32

CHAPTER 5. RECOMMENDATIONS FOR DESIGN

Based upon our experiments, we recommend that designers or developers should care-

fully consider the timing properties of the delivery platform(s) and of the software during the

design of any distributed application:

Developers should create a simple prototype from which they will gain the informa-

tion required for their design. For the targeted client and server platform, designers

should employ the hardware and software which will support the delivered applica-

tion. Designers should determine the time to marshal1 8 and unmarshal the data

structures to be used. In addition they should measure the amount of communica-

tions time taken by each different kind of remote procedure call and the amount of

time required to service each request. This should lead to a mathematical model of
the amount of resources required to perform each kind of request. These times can

also be used in simulations of the applications to be designed.

Designers or developers should give special attention to the following factors:

- Carefully consider the amount of computation to be done on the server for each

RPC. Too little computation on the server reduces the overall efficiency of

computation because of the communications overhead. Perhaps, move ineffi-

cient computations to clients.

- Carefully consider the type of argument(s) to be passed to the server or

returned to the client. Try to make the argument as simple and as aligned as

possible. Attempt to find an implementation of IDL that can perform marshal-

ling, unmarshalling, and service in parallel, using threads. This is particularly

valuable if the service performs I/O operations.

- If the task can be parallelized, use multiple servers and distribute the computa-

tion (servers) on multiple platforms. Also try to hide communications latencies

by using multi-threaded servers to handle multiple requests in a pipelined fash-

18 See the body of the paper or glossary for definition of technical terms such as marshalling and unmarshalling.

33

ion. Find the sum of times on the paths which must be performed serially. This

is the optimum time which can be achieved [one of Amdahl's laws]. You may

think that using many machines executing a task in parallel pieces will reduce

the total computation time. But you must account for the overhead introduced

by the communication. Verify that the time for using multiple servers is shorter

than running the calculation on a single machine using LPC.

Carefully consider the factors which could render your experimental results

invalid such as communications to other servers on the same host. Try to deter-

mine if they will contribute to your client-server workload. Especially consider

the number of requests per second to database servers and the amount of 1/0

operations these servers are expected to perform.

Carefully consider the confounding factors. Try to characterize them in order

to determine if they will contribute to your client/server workload. If they will,

identify mitigation strategies. Especially consider the number of requests per

second to database servers and the amount of I/O these servers are expected to

do.

As has been suggested in the illustrative examples, results vary depending on many fac-

tors. What is important is to experiment and model during design to determine what factors are 0
most significant and what can be done to improve performance.

5.1 BUILD A PROTOTYPE TESTING CAPACITY

In the same way that this task developed a prototype which could perform a check on 0

the capacity of the system, the developer should build and measure a "simple prototype" which

will gain the information required for his/her design. For the Client and Server platform

involved, the designers should employ the hardware and software which will support the deliv-

ered application in their prototype. 0

As mentioned in bullet 1 of section 5.1 above, for each Client request, determine the

following (based on Figure 10):

a. Time for Server Proxy Marshal, Tl='t2-'Ul1

b. Time for Transmission of Client packets and number of packets and bytes transmit-

ted by Server Proxy, T2=t 3-'t2

c. Time for Client Proxy Unmarshal, T3=T4-'r3

34

d. Time for Service Action, T4='t5-'t4

e. Time for Client Proxy Marshal, T5=r 6-'t5

f. Time for transmission of the Server packets and number of packets and bytes trans-

mitted by the Client Proxy, T6---t7-'16

g. Time for Server Proxy Unmarshal, T7=U8-'t7

h. Time for Client Action, T8---r1-'t8 (when looping)

r - - - ------------- -- 1 - I ---- - -- -------- - ---
Address Space A I I Address Space B

Processor 1 I I Processor 2

1 2 1101 3 4I "
LPC Comhunikations

0i LPC 9

8 7 5

Client Server Client Server
Proxy Proxy

L -_- -------------------- - L _------ - - - - - ---

Figure 10. Experimental Monitoring Points

Actual values for the "T"s for our experiments are calculated in Attachment 1. Your values

will likely differ from these values, depending on your hardware, network, and software.

Inserting the timing probes can be difficult on a PC running Microsoft NT or using a different

ORB 19 . If the platform is the problem, use the same ORB on a platform supporting a high res-

olution clock and attempt to scale the result to account for platform speed and data transport.

Most ORBs support interceptors; if yours does not, you may have to try to instrument the

operating system in order to get the information you wish or use binary debugging tools to

insert a call to the measurement apparatus.

By determining how many bytes B 1 and packets, by using netstat or equivalent, are

transmitted by the Server Proxy at 10, estimate how many packets are required to convey the

19 For example, PowerBroker by Expersoft only provides a per-process interceptor at points 1,3,5, and 7, making
the profiling performed in Orbix extremely difficult to perform.

35

Client's request to the Server (See attachment 1 for our values). By determining how many

bytes B2 are transmitted by the Client Proxy, at 11, estimate how many packets are required to

convey the Server's reply to the Client. Determine how much real-time is used by the transmis-

sion of the packets assuming optimum transmission (B 1 +B2)/(BandWidth) (50% of bandwidth

on WAN and LAN-ethernet; 80% of bandwidth on FDDI or token ring can be used). Determine

how much real-time is used by the transmission of the packets, (T2+T6). Sum the real-time

required of the communications device by the Client request and the Server response and deter-

mine how many request/response pairs could be sent per second. Sum the number of packets

required for each request/response pair and divide this into the maximum number of packets

that the Client/Server can handle (whichever is smaller). The number of actual request response

pairs determined for communication is the lesser of that determined by the packet method or

the bandwidth method.

Attempt to estimate the time which is required by the Server for handling communica-

tion to and from the Server: (T2+T6)/2. Add this to T3, T4, and T5 to determine the amount of

the time used by the Server's platform in order to perform the request. Estimate the platform's
capacity by determining the maximum number of requests that the Server could handle if it

only performed this request repeatedly.20

Attempt to estimate the time which is required by the Client for handling communica-
tion to and from the Client. Add this to times TI, T6, and T7 to determine the amount of the

time used by the Client's platform in order to send the request and process its results. Estimate

the platform's capacity by determining how many requests the platform can issue per second if

it performs no client work on the results it obtains.

The maximum number of requests per second is the least of the number obtained by the

communications method, the Server method, and the Client method as described above. This

number is likely an optimistic number because it does not take into account the "confounding

factors" in Section 2.3.

After having determined these numbers for each kind of request to be issued, estimate

the number of each kind of request to be issued per second. Using the Server, Client, and com-
munications times for each kind of request, calculate the total real-time to be used per second

for the series of requests. If this number exceeds the maximum computational power/commu-

nication bandwidth allocated to this type of request response pair per second, another solution

20 Caution, this is only valid if the server does not idle during the performance of this activity; if it does, another

activity might be able to utilize this time.

36

must be devised. If it does not, determine whether there is a great deal of slack in your numbers,

in case your estimates were not accurate. If there is not a great deal of slack, analyze or simulate

* the application in greater detail. If so, continue implementation remaining aware that the con-

founding factors may render your analysis invalid.

5.2 FINAL COMMENTS

0 To determine the best design for a distributed application, you must have or obtain an

understanding of the parameters that affect your choices of how to divide your application for

execution on distributed platforms. It may be necessary to iterate prototyping and calculation

in order to achieve confidence that you understand the characteristics of your suite of applica-

0 tions, your production Servers, and your production Clients. The more types of requests, the

more varied your applications, and the more diverse your collection of platforms, the greater

the work will be to understand the interactions of all the components.

0

0

0

0

0

0

37

0

LIST OF ACRONYMS.

API Application Programming Interface

ATM Asynchronous Transfer Mode

COE Common Operating Environment

CORBA Common Object Request Broker Architecture

C-S Client Server

DARPA Defense Advamced Research Projects Agency

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DCWG Distributed Computing Working Group

DII Defense Information Infrastructure

DISA Defense Information Systems Agency

GCCS Global Command and Control System

IDL Interface Definition Language

LAN Local Area Network

LPC Local Procedure Call

ms Milliseconds

ns Nanoseconds

OG Open Group

OMG Object Management Group

00 Object-Oriented

ORB Object Request Broker

OSF Open Software Foundation

RPC Remote Procedure Call

TCA Track Correlation

TCP/IP Transmission Control Protocol/Internet Protocol

TCS Track Correlation Service

WAN Wide Area Network

gts Microseconds

39

APPENDIX A. GLOSSARY

Interface. A specification of the external properties of an object including attributes and meth-
ods of the object.Attributes and parameters of methods indicate their type and whether they are
input, output, or inout attributes/parameters. Methods provide a "signature" which specifies
returned type, object name, method name, and a list of parameter types.

Marshalling. The process of assembling arguments to a remote procedure call into a canoni-
cal data structure which can be transmitted to a remote machine for use.

Method. A procedure provided by an object for the manipulation of that object's internal state,
which may invoke other methods internal to or external to the object.

Microsecond. One one-millionth (1/1,000,000) of a second.

Millisecond. One one-thousandth (1/1,000) of a second.

Nanosecond. One one-billionth (1/1,000,000,000) of a second.

Track. A description of location as a function of time; may result from data obtained from

optical, electrical, acoustic, thermal, or visual sensing as correlated by the track correlation pro-
cess and as stored in a track record in a Track Data Base (See Section C.3.5 for an interface

definition).

Unmarshalling. The process of converting a data structure provided by a remote machine into
a list of arguments to be used by a procedure call on the local machine.

A-1

0

0

APPENDIX B. ATTACHMENTS

0

0

0

0

0

0

0

0

B-I
0

(aa ODi oS nO 400

00

H H 5n c q 0 - D a M N W % o riL

41 w

Ul N N 14 %Dr- ý i 0 -0

tD q@ W0r r 1 04fM' O H N m(
0 M LO 4~ N ~ O MH Ch W M0 -C'

o 0 0 00 0 00C 0 0 00 00 00C
$4 00 0 0 0 0 0

0 ~~ HW CaOHD m0 - wnr i r ir % oooc
i4SII 44% L D 0% m r-'4- % t0 t kOODa H

0E -Ll~ W ~ ~ ~ C4D f~~
4Ja .ý -ý Hý L .

HH4H3 C'4' ~ ~ l

4J~r H w Lo o aD t-cnr- aaau r-o -

H

H-
0. O WLn O t0 ON OGI HH LA o iLAO H% S

E- w 4 0 4O) Ln tfcn1 o , (, L qN r l -lo . Id1~'C tfýL

0)" w % 1 HHn ODM HC 4Ln -% 41

0- 0 D% ,r S o% V H L o 0%

4-)

0 0 oN

P. of M

43 000 00Q 0 NC'4I i)%
N N 04 NC4 C1c Qo 0 cao

m H 04 0 D000D
-A "I-~- C'4eqNqC'a

a~ 0 10 mi i
04 -A -H -1 -4 -1 `

() OU0 54$ 1 u

QQ E'EEQE 00 0 00$0$
'4. 4.1 4 J 4J 4 4.) $4 4H H $

0 00 0 00 4)0 0004441
d04 4d ofo 43J4.) 4.4J

mu41 >1 >1 >
in2~20 Ln n % WW i l n

m C4 c ' r -IOmHmH r , ~m I-AmflN

0. c4-u 00 4'0 Lfltn LA -crAoc
En4~ C-O r- 10 - W -4OD1C\n

00

01

4J 0 to

14Lnr- c'4 H co

$)54J T O0 0 1L04 o N r- H
ed to ~ ~ *-4

0
* 0

A H 4)

4J 4)

0 4

Ur4 UnC4 Cqc %O

0 4'

+n IV ~ OD (nt 0

* ' 4 N4 -* "H1 1
E4 OW HO; r-m

e4. HnC14 N E-l

4- 0 '-0 0 0 4 s(
C40 qC 4'ý> ý I 3

ulu u a aca CA fm N

W E- 4 E-oe PN E- P E- J .4

U 0 $40000

rd 4 tOo to EIS- E -

a ~ ~ 0 0 0E-Ir.E- E-E&4&4E-
4 Eý-4-E 0000- 4 - r4r-

00 00 0 00 0 f a
0100 N 10101 4) 4) 4) 4)

>1> 1 '

0nL n 0%C nv

00

$4 "4 D -4 w -

w oCh C1C4 r-

$ 4 ,

o 0 no
0 An 10

$4 %D H- " L L 4 0

0 0lei

$4 m

1.4 %D OD H

Pw rI t04' r.-i0N 0 v

+ z

4. 0 or e m . H a t- 1 140 Ch %D C14

r- HHH 0H "H l4 r- tnor-

4J* E-4 '4 S

$4 H co a a~ v* -nr 00a O0 Dý

o3 o~'U enr LflG

M -4 HlH HA fL L (*4 14* r-4 Clr D W D

0

0- - -S ODL ni O -(

-A N

04~i~ gdn ~ NM4I 04

4J 40~~ JJCDI C3 4$4$o4$4

000 00 000 0

04 -4-44H

E-1 4 E- E-1E4 E

-94

0 n L HC wC wl fla l-
co 14 MM; 000 C~14 % 1

0
n

0 l l MM %D C14 f "0

L w r m -O~Ln H w N m 0 r- w
wO ~ci un OclqH cl vH N c'4 nLn %D

4J-4

-H Kn H HH 14H4H 4H H H Nq NCN4N

.43

14 -H. .

00

.$4 mO WO OW 0 000 M0

1440 w'a~ ('4 14 q l m U 0 OD CDowor

to HHH ` H 14 -H H

4Jc W -c -C - om
0 ~ c ',i -a-4' M !F- co OD V m r 4.

4)

c%4 a c4U Ln LAw , oc1

0W H'CJf amr 3CO CD -"1
u 0v 0 m ý e m.4 N lm

In C14 Nr- C'1c4 Nr" N
4-)

C4 a% N

N C1 N. N. N. N 0 a H a

-H I N.N.N 0~4 NC
W4 000 ul to~

E-4E-0E-4 EAEP E-0 W

* ~ ~ U CJU $4$4$
e4 Id 4 r E-4 E-4E-4

4.) v 4 J4JJ V k4 $4 k
0 EriPE-E4 E-4 0

-4-4-4 -r4 -H4-H 440 00 0 00 0000 Q. 04g0004 0 040 41 43J41 41U
N N 4-4-4N

0nu)L C n(

0 %Dq Nq ULn ~ r'4W 0no v

-Ncor, H co w -Nc -

>4 co 10 %D N n m r 4' l

0 ~ ~ -4- HHHHm H0

Hot
14 N C'4 N N-C' N*~Wf N~~' N0 NNN

0

ed4 J

o -*OW C14 N(-O mO~ c,4l WnC4m% H mmr

H 00 HHý HH H

0 rn
r-Its.4 m

4- - r- ~ c N - m v. (Y)- m

4J 414 r-4 V144 H (I O mc o

0S

4J~ U 41 m m m~ m m m

4- 2) W HDmm'

a, -4

$4 -4

U 4 m mrto mmm wm m m m

0 -1 ~ iC' - o

L r N r- OH -

4-.)

4)

0 0 CD

000m C 0 00 Cl 0

NC4 N NC4 C C4 0 Eae UH
ua iWW toW N atI.

C44 000 WI C4

0 00 00 C14 cq N

Er, E-4 E- E-4 E-4E-0 M w .'

to0to 0 E-4 E4 E-4E-4
43 4J 4. 4JJ4.)J $4 $4 14$

*, .4 .,-H ý4 HH

mmunLn cn0 (n~o M cil W Wri

0m

0

.41

14

* ~0 '

$4 CD 0 0D

0 C14 C'4 CN w

4-) 0
CD CD m
01 Mi Oi C

* CD mDC
5 Ei E

W

43 ((hC14 M M 10 1-4 Mcn O , t Ifa%44 c
JJ0 kD %D r-Lfl(n co ~Ln c ~c4 -oo 4

Cý ; lý 0 4 ' 1 C C'-If C'IC' c C'-O M- C

*) 62 -4$4$4 r-4
0 F

i M CD r (0C14 CD00M f ,-1cm m V
44((1-1 OIO O O ~ 0 10

o00 O;OC C'I-4 O;ý;C;C;
4

O1ý
2 N C(1 N N C14 C'q4 C'44'NCN4N'N

m H

4-)I* '-4

4.10 Cl Cd
'a C44 OM

00 000 Cl 4

0A CDH 0000
000 000 QC lmW En

Er E-E4EH E-4E-4E- i ''

a UU 14 $4 $4 $4
'4J 4J 43 .)J.J 14 $4 $4 14

V.V .V E-o -0E-4E E-' 00
.4.-H -4 -A -A -4 -4-4 -4 -4

0 00 0 00 0 0 00 134 of
4004 of004 of 4.) 4J' 4J4

0nL n I c nWr

6-9L

Et~

Z991

9WLL

LLO'L

ZOO'L

LL6S9

cr M6'9

LL9,90
M999

.1.10.L09,9

06,L9 0

4.)E LSL*9
4J 0

ZL.9
V

L LL'9
0

969*9
0 Mg*9

.0r

- LS99*

W9,9

909,9

99S*9

L6 V9

00

01-9

000

'- ,-

0 l6b,

000

E 00caa

a.

-0

0 0
N 0 0 (D I- 0

a) & h.JI

APPENDIX C. SOURCE CODE FOR TESTS

C.1 DOUBLE PRECISION TIMER SOURCE ROUTINES

C.1.1 CLIENT

// Client.C

/1 allow the defintion of the _individual_ system exceptions to be visible.
#define EXCEPTIONS

#include "filter.hh'
#include <stream.h>

// for extern "exit-
#include <stdlib.h>

// for timing
#include <sys/time.h>

#include "ProcFilt.h"

ProcessFilter PFilter;// create one instance of the per-process filter.
I/ This will monitor calls to and from this

If address space.

int main (int argc, char **argv)

unsigned long value = 0;
double temp;
inc_var bVar;
hrtimet start-hires, end-hires, diff-hires, junk, Svrtime[15000];
int maxS;

// need a hostname argument:

if (argc < 2)
cerr << "usage:" << argv[0] << " <hostname>" << endl;
exit(l);

// now try to bind to the target object.

//see how long a bind takes
try (

cout << "TTTD: Attempting Bind..." << endl;
start-hires = gethrtime(;
bVar = time::_bind (":xfilter",argv[l]);

end-hires = gethrtime();
diff hires = endhires - starthires;

C-I

cout << "TTTR: Bind time: " << diffhires << " ns" < endl;

cout << "Start value: " << value " "\n";

catch (CORBA::SystemException &sysEx) {

cerr << "Unexpected system exception" << endl;

cerr << &sysEx;

cerr << "Bind failed" << endl;

exit(l);

catch (...) [

// the bind failed
cerr << "Unexpected exception : bind failed" << endl;

exit(l);

for (int i = 0; i < 10000; i++) {

try {
temp = bVar->hr-time (value);

Svrtime[i] = temp;

catch (...)

// should get no exceptions:

cout << "Exception\n";

cout << "call to get time failed" << endl;

exit(l);

for(i=0; i<orqprmI-I ; i++)
{ cout << orqprmA[i] << "->Cl << endl; I;

orqprmI = 0;

for(i=0; i<orqpomI-1 ; i++)
{ cout << orqpomA[i] << "->C2" << endl; I;

orqpomI = 0;

for(i=0; i<irpprmI-i ; i++)
{ cout << irpprmA[i] << "->C7" << endl; 1;

irpprml = 0;

for(i=0; i<irppomI-i ; i++)
{ cout << irppomA[i] << "->C8" << endl; 1;
irppoml = 0;

for(i=0; i<10000; i++)
{ cout << Svrtime[i] << "->S9" << endl; 1;

value = 16000001;

value = bVar->increment(value); //Print out table
value = 1;

return 0;

C.1.2 SERVER

// make the defintions of the -individual_ system exceptions to be visiable.

#define EXCEPTIONS
#include <stream.h>

#include "filter-i.hh"

C-2

#include <sys/time.h> II for timing

#include "ProcFilt.h"

I/ for extern "exit"

#include <stdlib.h>

ProcessFilter Filter-instance; // install per-process filters.

void printtimes(void)

int i;

for(i=0; i<irqprmI; i++)
cout << irqprmA[i] << "->S3" << endl;

ircprmI = 0;

for(i=0; i<irqpoml; i++)

cout << irqpomA[i << "->S4" << endl;

irgpomI =0;

for(i=0; i<orpprmI; i÷+)

cout << orpprmA[i] << ->S5" << endl;

orpprmI = 0;

for(i=0; i<orppomI; i÷+)

cout << orppomA[i] << "->S6" << endl;

orppomI =0;

int main(int , char *argv[])(

hrtime-t start-hires, end-hires, diff hires, junk; // TTTTT

// create the target object

time-i mytime;

// Export the server to the network

II tell Orbix that the server has completed its initialisation:
cout << "TTTD: Attempting impl-is-ready..." << endl;

start_hires = gethrtimeo;
CORBA::Orbix.implisready("xfilter");

endhires = gethrtimeo;

diff hires = endhires - start hires;

cout << "TTTR: impl-is-ready time: " << diff-hires/1000000 << m is" << endl;

catch (CORBA::SystemException &sysEx)

cerr << "Unexpected system exception" << endl;

cerr << &sysEx;
cerr << "Unexpected exception : impl-is ready" << endl;

exit(l);
} catch (...)

// got an exception from impl-is ready()

err << "Unexpected exception : impl-is-ready" << endl;

exit(0);

cout << "\n\nFilter Server shutdown." << endl;

return 0;

0

C-3

C.1.3 FILTERS

#define EXCEPTIONS

include <CORBA h>

#include <streain.h>

#include <sys/time.h>

static hrtirne t orqprmA[l5OOO];

static ira orqprmI=C;

static hrtime-t orqpornA[l5000];

static int orqpomI=O;
static hrtime_t irqprmnA[15000];

static int ircprmI=O;
static hrtime t irqpomA[l5000];

static mnt irgpomI=O;
static hrtime_t orpprmA[15000];

static mnt orpprmi=O;
static hrtirne_t orppomA[15000];

static mnt orppomI=O;
static hrtime_t irpprmA[15000];

static mnt irpprmI=O;
static hrtime_t irppomA[15000];

static mnt irppomI=O;

IIclass ProcessFilter is a per-process filter which just outputs messages as0
IIit sees requests.

class ProcessFilter : public CORBA::Filter

public:

IIREQUESTS

IIan out going call, before it has been sent out of the addr space:

CORBA: :Boolean outRequestPreMarshal (CORBA: :Request& r,

CORBA: :Environment&)

hrtine-t orqprm;

orqprrn = gethrtimefl;

orqprnA[orqprnl] = orqprm;

orqprmI += 1;

return 1;

IIan out going call, before it has been sent out of the addr space:
CORBA: :Boolean outRequestPostMarshal (CORBA: :Request& r,

CORBA: :Environment&)

hrtine-t orqpon;

orqpom = gethrtime();

orqpomA[orqpomI] = orqpom;

orqponl += 1;

return 1;

IIan incoming call, before it is sent to the target object

int inReg-uestPreMarshal (CORBA: :Request& r,

CORBA: :Environxent&)

hrtine-t irqprm;

irqprm = gethrtime((;

C-4

irqprmA[irqprmI] = irgprm;

irqprmI += 1;

return 1;

IIan incoming call, before it is sent to the target object

CORBA: :Boolean inRequestPostMarshal (CORBA: :Request& r,

CORBA: :Environment&)
hrtine~t irqpom;

irqpom = gethrtimeo;

*iraponA[irqpomI] = rpm

irclonI += 1;

return 1;

* II REPLIES

IIan out going call, before it has been sent out of the addr space:

CORBA: :Boolean outReplyPreMarshal (CORBA: :Request& r,

CORBA: :Environiment&)

hrtime-t orpprn;
*orpprm = ehtmo

orpprmA[orpprmlj = orpprm;
orpprnl += 1;

return 1;

//an out going call, before it has been sent out of the addr space:

* ~CORBA: :Boolean outReplyPostMarshal (CORBA: :Request& r,

CORBA: :Environxnent&)
hrtime-t orpPom;

orppom = gethrtimefl;

orppomA~orppomI] = orppon;

orppomI += 1;

return 1;

IIan incoming call, before it is sent to the target object

CORBA: :Boolean inReplyPreMarshal (CORBA: :Request& r,

CORBA: :Environinent&)

*hrtime-t rpm

irpprm = gethrtineo;

irpprnA[irpprml] = irpprm;

irpprml += 1;

return 1;

//an incoming call, before it has been sent to the target object

CORBA: :Boolean inReplyPostMarshal (CORBA: :Request& r,

CORBA: :Environment&)
hrtine_t irppon;

*irppom = ehtmo

C-5

irppomA[irppomI] = irppom;

irppomI += 1;

return 1;

C.1.4 OBJECT INCLUDES

#ifndef filterih

#define filter_ih

#include "filter.hh'

class timeji: public virtual incBOAImpl

public:

time i(; II ctor
virtual -timei(o; I dtor

virtual CORBA::Double hrtime (CORBA::ULong vin, CORBA::Environment &IT_env=COR-
BA::defaultenvironment)

#endif

C.1.5 OBJECT METHODS

#include "filteri.hh"

#include <stream.h>
#include <sys/types.h>
#include <sys/time.h>
void printtimes(void);

timei::time_i() {}
time_i::-time_i(){}

CORBA::Double timei:: hr_time (CORBA::ULong vin, CORBA::Environment &ITenv)
if (vin != 16000001)
return gethrtimeo;
else printtimes(); 0

C.1.6 INTERFACE DEFINITION

// a simple IDL interface: time. Objects of this interface provide an 0
II operation "hr-time, which takes an unsigned long value which may signal
// termination of the server and returns the double real-time in nanoseconds
II (if vin does not signal termination of the server).

interface time {double hrtime (in unsigned long vin);J;

0

C-6

0

C.2 CHARACTER SEQUENCE SOURCE ROUTINES

C.2.1 CLIENT

// Client.C

// This demonstrate the use of both per-process and per-object filtering.

I/ Classes ProcessFilter and preProces demonstrate per-object filtering.

// Classes fiterPre and filterPost demonstrate per-object filtering.

// allow the defintion of the _individual_ system exceptions to be visible.

#define EXCEPTIONS

#include "Trax2.hh"

#include <stream.h>

// for extern "exit"

#include <stdlib.h>

// for timing
#include <sys/time.h>

#include "ProcFilt.h"

ProcessFilter PFilter;// create one instance of the per-process filter.

// This will monitor calls to and from this

II address space.

int main (int argc, char **argv)
long value = 0;

hrtime-t starthires, end hires, diffhires, Svrtime[15000];
double time;

Traxvar bVar;
int maxS;

// need a hostname argument:
if (argc < 2) {

cerr << "usage:" << argv[0] << " <hostname>" << endl;

exit(l);

// now try to bind to the target object.
//see how long a bind takes
try (

cout << "TTTD: Attempting Bind..." << endl;
starthires = gethrtime();

bVar = Trax::_bind (":sttracks",argv[l]);
endhires = gethrtimeo;

diffhires endhires - start hires;

cout << "TTTR: Bind time: " << diff hires << ns" << endl;
cout << "Start value: " << value << «\n";

catch (CORBA::SystemException &sysEx)
cerr << "Unexpected system exception" << endl;

cerr << &sysEx;

C-7

cerr << "Bind failed" << endl;

exit(l);

catch (...) {
// the bind failed
cerr << "Unexpected exception : bind failed" « endl;
exit(l);

time = 0;

char* str;
for (int i 0; i < 10000; i++) {

try {
str=bVar->get (value, time);

Svr_time[i] = time;
CORBA::string_free(str);

catch (CORBA::SystemException &sysEx) {

cerr << "Unexpected system exception" << endl;

cerr << &sysEx;

cerr << " Why? " << endl;

exit(l);

catch (...)

// should get no exceptions:
cout << "Exception\n";
cout << "call to Trax failed" << endl;
exit(l);

for(i=0; i<orqprmI-I ; i++)
{ cout << orqprmA[i] << "->Cl" << endl; I;

orqprmI = 0;

for(i=0; i<orqpomI-i ; i++)
{ cout << orqpomA[i] << '->C2" << endl; I;

orapomI = 0;

for(i=0; i<irpprmI-i ; i++)
{ cout << irpprmA[i] << "->C7" << endl; 1;

irpprmI = 0;
for(i=0; i<irppomlI- ; i++)

{ cout << irppomA[i] << "->C8" << endl;);

irppomI = 0;

for(i=0; i<10000; i++)
{ cout << Svrtime[i] << "->S9" << endl;);

value = 16000001;

bVar->print(value); //Print out table

value = 1;

return 0;

C.2.2 SERVER

// make the defintions of the _individual_ system exceptions to be visiable.

#define EXCEPTIONS

#include <stream.h>

C-8

i i II I I II I0

#include <string.h>

#include "Trax2-i .h'

#include <sysltime.h> IIfor timing

#include "ProCFilt.hl

// for extern "exit,

#include <stdlib.h>

ProcessFilter Filter_instance; IIinstall per-process filters.

void printtimes (void)

mnt i;
for(i=O; i<irqprtnl; i-++)

cout << irqprmA[i3 << "->S3' << endl;

irqprnI = 0;

for(i=O; i<irqpoml; i++)

0cout << irqpomA~i] << "->S4, << endl;

irqpomI =0;

for(i=0; i<orpprml; i++)
cout << orpprmA[i] << "->S5 << endl;

orpprrnI = 0;

for(i=O; i<orppomI; i++)

* cout << orppomA[iJ << "->S6, << endli;

orppoml =0;

mnt xnain(int , char *argv[]){

hrtime_t start_hires, end-hires, diff~hires ; ITTTTT

* // create the string

char *trk = CORBA::stringalloc(938);

strcpy (trk, "ABCDEFGHIJKLMNOPQRSTt3VWXYZabcde fghij klnmopqrs tuvwx"

-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klmnopqrstuvwxI

"ABCDEFGHIJKLM'NOPQRSTtJVWXYZabcde fghi jklmnopqrs tuvwxI

"-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klrnnopqrstuvwx"

"-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klmnopgrstuvwx'

"-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxI
"ABCDEFGHIJKLMNOPQRSTtJVWXYZabcde fghi jklmnopgrs tuvwx"

-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klrnnopqrstuvwxI

"-ABCDEFGHIJKLiONOPQRSTt3VWXYZabcde fghi jklmnopqrs tuvwx"

"-ABCDEFGHIJKLMNOPQRSTtJVtWXYZabcde fghi jklmnopqrs tuvwx"

"AflCDEFGHIJKLMNOPQRSTt3VWXYZabcde fghi jklmnopqrs tuvwx"

* ABCDEFGHIJKLMNOPQRSTt3VWXYZabcdefghijklnprtvx

"-ABCDEFGHIJKLMNOPQRSTtJVWXYZabcdefghij klmnopqrstuvwxff

"-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klmnopqrstuvwx"

"-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klmnopqrstuvwx"

"-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klmnopqrstuvwx"

"-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klmnopqrstuvwx"

"-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij klrnnopqrstuvwx"

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijk");

IIcreate the target object

Traxji mytrax(trk);

C-9

// Export the server to the network
//

try

II tell Orbix that the server has completed its initialisation:
cout << "TTTD: Attempting impl_is_ready..." << endl;
starthires = gethrtime();

CORBA::Orbix.implis-ready("sttracks");
end~hires = gethrtime(;
diffhires = endhires - start-hires;
cout << "TTTR: impl-is-ready time: " << diff-hires/1000000 << ms" << endl;

catch (CORBA::SystemException &sysEx) (

cerr << "Unexpected system exception" << endl;

cerr << &sysEx;
cerr << "Unexpected exception : impl-is ready" << endl;

exit(l);

catch (...) {

// got an exception from impl-is-ready()
cerr << "Unexpected exception : impl_is ready" << endl;

exit(0);

cout << "\n\nFilter Server shutdown." << endl;

CORBA::string-free(trk);
return 0;

C.2.3 OBJECT INCLUDES

#ifndef Trax2_ih

#define Trax2_ih

#include "Trax2.hh"
#include <string.h>

class Trax-i: public virtual TraxBOAImpl
char *mtrack;

public:
Trax-i(char *str);
-Trax-i ;

virtual void print (CORBA::Long signal, CORBA::Environment &IT_env=COR-
BA::default-environment);

virtual char* get (CORBA: :Long index, CORBA::Double& time, CORBA::Environment
&ITenv=CORBA::defaultenvironment) ;

#endif

C-10

C.2.4 OBJECT METHODS

#define EXCEPTIONS
#include <CORBA.h>
#include "Trax2_i.h"

#include <sys/times.h>
#include <stdlib.h>

#include <stream.h>

void printtimes(void);

Traxi::Traxi(char *str){
mtrack = CORBA::stringalloc(938);
strcpy(rmtrack,str);

cout - strlen(rmtrack) << "= track length, << endl;
1;

Trax_i::-Traxji{

CORBA::string-free(rtrack);
1;

void Traxi:: print (CORBA::Long signal, CORBA::Environment &ITenv)

printtimes();

exit(l);

char* Traxi:: get (CORBA::Long index, CORBA::Double& time, CORBA::Environment &IT-env)

int i;
char* temp = CORBA::string-alloc(938);
strcpy(temp,m_track);

time = gethrtimef);
return temp;

1;

C.2.5 INTERFACE DEFINITIONS

typedef string<938> VtTrack;
interface Trax {
void print (in long signal);

void get (in long index, out VtTrack track, out double time);

C.3 VTPLATFORM SOURCE ROUTINES

C.3.1 CLIENT

II Client.C

// This demonstrate the use of both per-process and per-object filtering.

// Classes ProcessFilter and preProces demonstrate per-object filtering.

// Classes fiterPre and filterPost demonstrate per-object filtering.

// allow the defintion of the _individual_ system exceptions to be visible.

#define EXCEPTIONS

#include "Trax2.hh"

#include <stream.h>

C-11

II for extern "exit"
#include <stdlib.h>

// for timing
#include <sys/time.h>

#include "ProcFilt.h"

ProcessFilter PFilter;// create one instance of the per-process filter.

II This will monitor calls to and from this
// address space.

int main (int argc, char **argv)

long value = 0;
Traxvar bVar;

VtPlatformTrack VtX;
hrtime-t start-hires, end-hires, diff hires, Svrtime[15000];
double time;

int maxS;

// need a hostname argument:

if (argc < 2) (

cerr << "usage:" << argv[0] << " <hostname>" << endl;

exit(l);

I/ now try to bind to the target object.
//see how long a bind takes

try cout << "TTTD: Attempting Bind..." << endl;

start hires = gethrtime();
bVar = Trax::_bind (":xtracks",argv[l]);

end-hires = gethrtime);
diff-hires = endhires - start hires;
cout << "TTTR: Bind time: " << diff hires << " ns" << endl;
cout << "Start value: I << value << "\n";

catch (CORBA::SystemException &sysEx)
cerr << "Unexpected system exception" << endl;
cerr << &sysEx;
cerr << "Bind failed" << endl;
exit(l);

I catch (...)

I/ the bind failed
cerr << "Unexpected exception : bind failed" << endl;
exit(l);

time = 0;

for (int i = 0; i < 10000; i++)
try {

bVar->get (value, VtX, time);
Svr-time[i] = time;

I catch (...)

C-12

// should get no exceptions:

cout << "Exception\n";

cout << "call to Trax failed" << endl;

exit(l);

for(i=0; i<orqprmI-i ; i++)

{ cout << orqprmA[i] << "->Cl" << endl;);

orcprmI = 0;

for(i=0; i<orqpomI-I ; i++)

{ cout << orqpomA[i] << ->C2" << endl;);

orqpomI = 0;

for(i=0; i<irpprmI-I ; i++)

{ cout << irpprmA[i] << "->C7" << endl; };
irpprmI = 0;

for(i=0; i<irppomI-I ; i÷+)

{ cout < irppomA[i] << "->C8" << endl; };

irppomI = 0;

for(i=0; i<10000; i++)

(cout << Svr-time[i] << "->S9* << endl; };
value = 16000001;
bVar->print(value); //Print out table

value = 1;

return 0;

C.3.2 SERVER

// make the defintions of the _individual_ system exceptions to be visiable.

#define EXCEPTIONS
#include <stream.h>
#include "Trax2_i.h"

#include <sys/time.h> // for timing

#include "ProcFilt.h"

II for extern "exit"
#include <stdlib.h>

ProcessFilter Filterinstance; II install per-process filters.
void printtimes(void)

int i;

for(i=0; i<irqprmI; i++)
cout << irqprmA[i] << ->S3" << endl;

irqprmI = 0;

for(i=0; i<irqpomI; i++)

cout << irqpomA[i] << "->S4" << endl;
irqpomI =0;

C-13

for(i=0; i<orpprmI; i++)

cout << orpprmA[i] << "->S5" << endl;

orpprmI = 0;

for(i=0; i<orppoml; i++)
cout << orppomA[i] << ->S6" << endl;

orppomI =0;
1;

int main(int , char *argy[l){
hrtime-t start-hires, end-hires, diff-hires ; TTTTT

// create the target object

Trax_i mytrax;

//

// Export the server to the network
//

try (

// tell Orbix that the server has completed its initialisation:

cout << 'TTTD: Attempting impl is-ready..." << endl;

start-hires = gethrtime(;
CORBA::Orbix.implisready("xtracks");
endhires = gethrtime(;

diff-hires = endhires - start-hires;

cout << "TTTR: impl is-ready time: " << diffhires/1000000 << m is" << endl;

catch (CORBA::SystemException &sysEx) {
cerr << "Unexpected system exception" << endl;

cerr << &sysEx;
cerr << "Unexpected exception : impljis ready" << endl;

exit(l);

I catch (...) {

// got an exception from implisready()
cerr << "Unexpected exception : implis ready" << endl;

exit(0);

cout << "\n\nFilter Server shutdown." << endl;

return 0;

C.3.3 OBJECT INCLUDES 0

#ifndef Trax2_ih

#define Trax2_ih

#include "Trax2.hh"

class Trax-i: public virtual TraxBOAImpl
public:

VtPlatformTrack VtP;

Traxi);
-Traxi();

virtual void print (CORBA::Long signal, CORBA::Environment &IT-env=COR- 0
BA::defaultenvironment)

C-14

virtual void get (CORBA: :Loflg index, VtPlatformTrack& track, CORBA: :Double& time, COR-

BA: :Environment &IT-env=CORBA: :default-environinent)

#endif

C.3.4 OBJECT METHODS

#define EXCEPTIONS

* #include Ta2ih

#include <stdlib.h>

#include <sys/times .h>

#include <stream.h>

void printtimes (void);

0 Traxi: :Trax-io() ;

5 Traxji::-Trax-io{);

void Trax_i:: print (CORBA::Long signal, CORBA::Environmfeflt &IT~env)

printtirnes ()

exit (1)

0 void Trax-:: get (CORBA::Long index, VtPlatformTrack& track, CORBA::Double& time, CORBA::En-
vironment &IT-env)

VtP.data.quantity =1;

time=gethrtime o;

C.3.5 VTTRACK INTERFACE DEFINITIONS

// NEW TRACK STRUCTURES

//SYSID

0 II VtSysid
IIVtTrackStatus

IIVtAou

//VtReport

IIVtShortReport

* Vtrake

IIVtElintStats

IIVtRadReport

//VtIIIData

//VtIIlReport

IIVtRadAndReport

IIVtSignaReport

5 II VtTechData

C-15

S

// VtRemarks

II VtCandidate

// VtCandidateList

// VtTrknum

// VtTrackHeader

// VtTrackSearch

// VtPlatformData

// VtLinkData

II VtSpa25Data

I/ VtLateralTellData

// VtEmitterData

II VtAcousticData

If VtLandData

II VtUnitData

II VtPlatformTrack

II VtLinkTrack

II VtSpa25Track

II VtLateralTellTrack

// VtEmitterTrack

// VtAcousticTrack

II VtLandTrack

II VtUnitTrack

#define VT_MAXRTN 12 0
#define VT_MAXTRACKER_RPTS 10

#define VTMAXTRACKSIZE 912

#define VTMAXLRAW 50

II LINK11 data types (0-15)

#define EMPTYTYPE 0

#define ACDSTYPE 1

#define LINKil1TYPE 2

#define LINK14_TYPE 3

#define LINK16-TYPE 4

#define LN2_TYPE 5

#define CECTYPE 6

#define LATTLTYPE 7

II Platform data types (0-15)

#define TBMDTYPE 1

#define SITE-TYPE 2 •

// Track amplification - other database numbers (0-15)

#define DBNUMNTYPEEMPTY 0

#define DB_NUM_TYPE_PIN1// PIN number (PN:)

#define DBNUMTYPEDEV2// Developmental Site/Equipment number (DV:)

#define DBNUMNTYPEBE 3// Basic Encyclopedia number (BE:)

C-16

#define DB_NUN_TYPE_GENERIC4// Generic number (GN:)

#define DB_HUMTYPEAID5// AID number (MIIDS/IDS derived) (ID:)

#define DB-NUMTYPE_VEHICLEE!! Vehicle ID

0 // Raw data types
#define RAWEMPTYEMPTY_TYPE

#define RAW__ACDSACDSTYPE

*define RAW LINKilLINKIlfTYPE

*define RAW_LINK14LINK14_-TYPE

*define RAW_LINK16LINK16_-TYPE

define RAW_LN2LN2_TYPE

#define RAW_CECCECTYPE

#define RAW_LATTLLATTLTYPE

*define RAWP0520

*#define VT ALERT LEN 3

*define VT_ALERT-_WORD-LEN 20

#define VTBENUMBERLEN 12

#define VTCALLSIGN_-LEN 20

#define VTCNI LEN 15

#define VT-CATEGORY-LEN 3

*#define VT CDLEN 8

*define VT-CLJJEN 11

#define VTCHXREFLEN 3

#define VT-CLASS-LEN 24

#define VT-CQLEN 6

#define VTDI-LEN 4

*define VTFCODE-LEN 2

define VTFDI_LEN 4

#define VT-FLAGLEN 2

#define VTHOME-BASE-LEN 20

#define VT-HULL-LEN 6

#define VT-IFF-LEN 3

*define VTMThLEN 3

*#define VTMSGTYPELEN 6

#define VT_.NTDS-LEN 5

*define VTPDDG_LEN 2

#define VTPIP CODELEN 4

*define VT-RAID -LEN 5

#define VT_SCONUMLEN 8

#define VTSHORTNAMELEN 10

*#define VT_SNLEN 8

#define VT SOURCELEN 6

#define VT-SUBJID_-LEN 24

#define VTSERIAL LEN 5

#define VTSUBJTYPELEN 6

#define VTSUBORD_-LEN 24

*#define VT-SUFFIXLEN 5

#define VTTHREATLEN 3

#define VT-TYPE-LEN 6

#define VTNTYPE-LEN 6

#define VT_UIC-LEN 6

#define VTUNIT_IDENTLEN 26

#define VTEM_-LEN 1

*#define VTXCLEN 8

C- 17

#define VTXREF_LEN 4
#define VTPLOTIDLEN 8

typedef struct Al

long timestamp;
long record;
long machine;
long database;

long spare;

} SYSID ;

typedef struct A2

char serial[20];

I VtSysid;

typedef struct A3

long dtg; II DTG from contributing report
long ctcno; // Contact serial number from contributing report
char serial[20]; I! UID from track owner

} VtTagInformation;

typedef struct A4 {

long groupmask; // group membership bit-mask
long lastchange; I/ time last updated in any way by Tdbm

long rpts; // Current number of reports
long maxrpts; // Max reports stored on this tracks

short plotid(VT_PLOTIDLEN];// symbol plot id
unsigned short correlation;// Status from Correlator

char toistate; // TOI status flag
char ownship; // flag for own ship

long mask; // Status mask see below
unsigned short ftn-cs;// Checksum on FTN (less FTN Command)

unsigned short ctccs;// Checksum on CTC data
unsigned short rmkscs[4J;// Checksum on RMKS data
unsigned short rigcs;// Checksum on RIG data
unsigned short depcs;// Checksum on DEP data

unsigned short des-cs;// Checksum on DES data
unsigned short arrcs;// Checksum on ARR data
unsigned short rtn_cs;// Checksum on PAIR data

unsigned short signacs;// Checksum on SIGNA data

short force-code
short force-type-id ;// Unique id for each force type

I VtTrackStatus;

// Values for status mask field

C-18

i i Ii I II I0

#define VtTrackArchivedMask(iL << 0)

#define VtTrackProtectedMask(lL << 1)

#define VtTrackTargetFiieMask(lL - 2)

#define VtTrackResponsiblemaskOxOoO000030

#define VtOTHResponsibieOxOOOOOOOO// 0TH track
#define VtOTHMResponsibleOxOOOOO0lO// 0TH track held by organic

#define VtCDSResponsibleOxOOOOOO2O// Organic track held by 0TH

#define VtLllResponsibleOxOOOOOO3O// Lii received from 0TH
* #define VtRTDReceivedl~askOxOOOOOO4O// Protection and responsibility

// received in a RTD line
#define VtNUTrackmask OxOOOO0iOO/I NUTrack of non-Platform

#define VtFCSXmitMask 0x00000200 // Transmit updates to FCS

#define VtFCSAncestorMaskOxOOOOO400// Track is from FCS database

#define Vt2LllXmitMask 0x00000800 I 2-way Link-li track
#define Vt2LllTrkMask OxOOO0lOOO / 2-way Link-li track

*#define Vt2LllEmergMask 0x00002000 I 2-way Link-li Emergency track

#define Vt2LllForceMask 0x00004000 I 2-way Link-li Force Tell track

// Sample form for following is: isArchived(VtTrackStatusMask(trk))

#define isArchived(X) ((X) & VtTrackArchivedMask)
* #define isProtected(x) ((x) & VtTrackProtectedl~ask)

#define isTargetFile(X) ((X) & VtTrackTargetFiieMask)

#define isOTHResponsible(X) ((CX) & VtTrackResponsibleMask) ==VtOTHResponsible)

#define isOTHMResponsible(X) (((X) & VtTrackResponsibleMask) VtOTHMResponsible)
#define isCDSResponsible CX) (((X) & VtTrackResponsibleMask) ==VtCDSResponsible)
#define isLliResponsible(X) (((X) & VtTrackResponsibieMask) ==VtLllResponsible)

*#define isRTDReceived(X)((X) & VRDeevdak

#define isNUTrack(X)((X) & VtNUTrackmask)

#define isFCSXmnitTrack(X) ((X) & VtFCSXmitMask)
#define isFCSAncestor(X) ((X) & VtFCSAncestorMask)

define is2LllXznitTrack(X) ((X) & Vt2LllXnitMask)

#define is2LllTrack(x) ((X) & Vt2LllTrkMask)
#define is2LilEmergTrack(X) ((X) & Vt2LllEmergMask)

#define is2LllForceTrack(X) ((X) & Vt2LllForceMask)

//Sample form for following is: mask = VtTrackStatusMask(trk);

// VtSetArchived (mask);

* II VtSetTrackArchiveMask (trk, mask);

#define VtSetArchived(X) (CX) 1= VtTrackArchivedMask)

#define VtSetProtected(X) (CX) VtTrackProtectedmask)
#define VtSetTargetFile CX) (CX) =VtTrackTargetFileMask)

*#define VtSet0THResponsible CX) (CX) = CCCX) & -VtTrackResponsibleMask) IVtOTHResponsible))
#define VtSetOTHMResponsible CX) CCX) CCC(X) & -VtTrackResponsibleMask) VtOTHMResponsible))
#define VtSetCDSResponsible(X) CCX) = CCCX) & -VtTrackResponsibie~ask) VtCDSResponsible))
#ldefine VtSetLllResponsible(X) CX.) = CCCX) & -VtTrackR 'esponsibl e~ask) IVtLllResponsible))
#define VtSetRTDReceived(X) CCX) 1= VtRTDReceivedMask)

#define VtSetNUTrack(X) CCX) 1= VtNUTrackMask)

C-19

#define VtSetFCSXmit(X) ((X) 1= VtFCSXmitmask)

#define VtSetFCSAncestor(X) ((X) 1= VtFCSAncestorMask)

#define VtSet2LllXmit(X) ((X) 1= Vt2LllXmitMask)

#define VtSet2LllTrk(X) (WX) Vt2LllTrkMask)

#define VtSet2LllEmerg(X) (WX) Vt2LllEmergMask)

#define VtSet2LllForce(X) ((X) Vt2LllForceMask)

#define VtClearArchived(X) (WX) &= -VtTrackArchivedMask)

#define VtClearProtected(X) ((X) &= -VtTrackProtectedMask)
#define VtClearTargetFile(X) (WX) &= -VtTrackTargetFileMask)
#define VtClearRTDReceived(X) ((X) &= -VtRTDReceivedMask)

#define VtClearTrackResponsibleMask(X)((X) &= -VtTrackResponsibleMask)

#define VtClearNUTrack(X) (WX) &= -VtNtJTrackMask)

#define VtClearFCSXmit(X) ((X) &= -VtFCSXmitMask)

#define VtClearFCSAncestor(X) ((X) &= -VtFCSAncestorMask)

#define VtClear2LllXmit(X) ((X) &= -Vt2LllXmitMask)

#define VtClear2LllTrk(X) ((X) &= -Vt2LllTrkMask)

#define VtClear2LllEmerg(X) (X) &= -Vt2LllEmergMask)

#define VtClear2LllForce(X) ((X) &= -Vt2LllForceMask)

typedef struct A5

long typ; I/ 1-ell, 2-bbox, 3-lob
float brg; I/ bearing
float al; // meaning of al & a2 depend on typ

float a2; //
I VtAou

typedef struct A6 {

double lat; II latitude in degrees

double lng; // longitude in degrees

float cse; II course (DEGT)

float spd; If speed (KTS)

float alt; II altitude (+FT/-FT)

float anglelv; II angle of elevation/depression
long dtg; // Julian seconds since 1 Jan 1970

long rawdata; II raw data file record (ilog)

long ctcno; II contact serial number
long datano; II associated data (serial number)

long trkrec; II trkrec that owns report
VtAou aou; // area of uncertainty

char sensor[7]; // sensor
char source[7]; II screen field
char rdf-rf[ll]; II freq assoc with ew report

char callsign[9]; // international radio callsign
char xref[5]; II cross-ref flag for origin of report
char chxref[4]; II input channel cross-reference

char classification;// classification of the contact

char releasibility; // releasibilty of the contact

char archived; // Marks report as having been archived

unsigned short mask;// mask (see below)

C-20

long key; IIunique relational DB key

unsigned short checksum;// checksum identification

unsigned short checkkey;/! checksum key

char error; IIreport received with cs error
char ci[3]; IICorrelation Index

alignment) Ifspare bytes (pad for 4 byte

}VtReport;

* II VtReport.mask defined as character with following bit masks

#define RPT-CHAM1NEL~xOOO0O00l // 0 - internal, 1 - external

#define RPTEXISTS~xOO0OOOO2I/ 0 - doesn't exist, 1 - exists

#define RPTPERMANENTOxO0000004// for NIPS provided information to prevent

#define RPTPRECISIONOxOOO000038I! 3 bits coordinate precision MTypes.h:

// {PosLatLong, PosLatLongDMS, PosLatLongDMST, PosMGR, PosUTM, PosGeoRef)

#define RPT_TYPE~x00000lcO// 3 bits TBMD identification (see below)

#define VtReportTBMDMask RPT_TYPE
*#define VtReportTBMDLaunch (IL - 6)

#define VtReportTBMDObserv(2L << 6)

#define VtReportTBMDObservBQ(3L - 6)
#define VtReportTBMDlmpact(4L << 6)
#define VtIsReportTBMD(X) (((X->mask) & VtReportTBMDMask))

#define VtlsReportTBMDLaunch CX) (((X->mask) & VtReportTBMDMask) ==VtReportTBMDLaunch)

define VtlsReportTBMflObserv (X) (((X->mask) & VtReportTBMDMask) VteorTM=bev
#define VtlsReportTBMDObservBO (X) (((X->mask) & VtReportTBMDMask) == VtReportTBMDObservBO)
#define VtlsReportTBMDlmpact(X) (((X->mask) & VtReportTBMDMask) == VtReportTBMDlmpact)

IIMask values for datamo field

*#define V~pr~t~p~s~fO00

#define VtReportRadDataMask(lL << 28)
#define VtReportSignaDataMask(lL << 29)

#define VtReportSIDataMask(lL << 30)
#define VtReport~therDataMask(lL << 31)

*#define RpthasData(X)(((X) & V~pr~t~p~s)
#define ReporthasData(X) (((X->datano) & VtReportDataTypeMask))

#define RpthasDataNumber CX) (((X) & -VtReportDataTypeMask))
#define ReporthasDataNumber CX) (((X->datamo) & -VtReportDataTypeMask))
#define RpthasRadflata(X) (((X) & VtReportDataTypeMask) == VtReportRadflataMask)
#define ReporthasRadData CX) (((X->datano) & VtReportDataTypeMask) == VtReportRadData~ask)
#define RpthasSignaData(X) (((X) & VtReportDataTypeMask) == VtReportSignaDataMask)

0 #define ReporthasSignaData(X) (((X->datano) & VtReportDataTypeMask) == VtReportSignaDataMask)
#define RpthasSIData(X) (((X) & VtReportDataTypeMask) == VtReportSIDataMask)
#define ReporthasSlData CX) (()X->datano) & VtReportDataTypeMask) == VtReportSIDataMask)
#define RpthasOtherData CX) CCCXC & VtReportDataTypeMask) == VtReport~therDataMask)
#define ReporthasOtherData)X)((C X->datano) & VtReportDataTypeMask) == VtReport~therDataMask)

*#define VtSetReportRadflata(X) CCX) 1=VtReportRadDataMask)

C-21

#define VtSetReportSignaData(X) ((X) 1= VtReportSignaDataMask)

#define VtSetReportSIData(X) ((X) = VtReportSIDataMask)
#define VtSetReporttherData(X) ((X) I= VtReportOtherDataMask)

#define VtReportDataNumber(X)((X) & -VtReportDataTypeMask)
#define VtSetReportDataNumber(X,Y)((X) I= ((Y) & -VtReportDataTypeMask))

#define VtClearReportDataType(X)((X) &) -VtReportDataTypeMask)

#define VtClearReportRadData(X) ((X) &= -VtReportRadDataMask)
#define VtClearReportSignaData(X)((X) &= -VtReportSignaDataMask)

#define VtClearReportSIData(X) ((X) &= -VtReportSIDataMask)
#define VtClearReportltherData(X)((X) &= -VtReportOtherDataMask)

typedef struct A7 (

double lat; // latitude in degrees

double ing; // longitude in degrees

float cse; II course (DEGT)

float spd; // speed (KTS)

long dtg; II Julian seconds since 1 Jan 1970

VtAou aou; // area of uncertainty

) VtShortReport;

typedef struct A8 {

long dtg; // Time of tracker solution
long nrpts; // Number of reports for solution

float lat; // Lat of tracker solution

float 1ng; II Lng of tracker solution
float lat-spd; // Speed (lat) of tracker solution
float lng-spd; // Speed (1ng) of tracker solution

float cov[10]; II Covariance Matrix of tracker solution

float alpha; II Alpha parameter of tracker solution

float sigma; // Sigma parameter of tracker solution

float cse; II Computed course

float spd; // Computed speed
float tol; // time on leg in hours
float ave-spd; II average speed on leg

} VtTracker

typedef struct A9

double prirmean; // Mean value of associated pri's
double prisigma; I/ sigma value of associated pri's

double prisumsquares;// sum-of-squares value of associated pri's
long priitems;

double pri_sumwobs; // sum weighted observations
double prisumw; // sum inverse reported observation deviations

double prisumwsqobssq;// sum squared observations weighed inversely by

C-22

|0

// reported observation vari-
ance

double pri-sumwsqobs; // sum observations weighed inversely by
// reported observation variance

double pri-sumwsq; II sum inverse reported observation variance

double scan-mean; // mean of scan
double scansigma; II standard deviation of scan
double scansumsquares;// sum of squares of scan
long scan_items; II number of scan items

double scansumwobs; // sum weighted observations
double scan-sumw; // sum inverse reported observation deviations
double scansumwsqobssq;// sum squared observations weighed inversely by

// reported observation vari-
ance
double scansumwsqobs;// sum observations weighed inversely by

reported observation vari-
ance

double scan_sumwsq; II sum inverse reported observation variance

double rf_mean; II mean of rf
double rfsigma; II standard deviation of rf
double rf-sumsquares; sum of squares of rf
long rf-items; // number of rf'items

double rfsumwobs; // sum weighted observations
double rf_sumw; II sum inverse reported observation deviations
double rf-sumwsqobssq;/I sum squared observations weighed inversely by

// reported observation vari-
ance
double rf-sumwsqobs; sum observations weighed inversely by

// reported observation vari-
ance
double rfsumwsq; // sum inverse reported observation variance

double rfbcmean; // mean of RFBCs

VtElintStats

typedef struct AIO

long datano; // number of this rad line report
long ctcno; / Number of the report associated with elint

double freq; / frequency of the emitter(MHZ)
double pri; / pulse repetition interval (micro-sec)
double prf; / pule repetition frequency (pulses per sec)
double pw; // pulse width (micro-sec)
double scan-rate; II scan rate forradar (SPC) (1/HZ)

double bbpri; // Basebanded pri
double bbscan-rate; // Basebanded scan rate
char bbpri-mode; II Reported, Crystal, Range, Adaptive

C-23

char bb-scan-rate-mode;// Reported or Range
char elnotlconf; II Primary elnot confidence (NN < 10)

char elnot2conf; II Secondary elnot confidence (NN < 10)

float freo stability;// reported sigma for RF
float pristability; // reported sigma for PRI
float scanstability;// reported sigma for scan rate

long dtg; // date-time-group of report
long scn; // sequential contact number

char elnotl[6]; I/ ELINT notation or name

char elnot2[6]; II Secondary elnot [ANNNA,ANNNN,NNNAA]

char ci[3]; II Correlation Index
char emitter[16); // emitter name (DON KEY)
char scan-type[5]; II scan type (four letters, mapped to 1 ?)

char stagger_legs; // stagger legs N
char pri-type; // type of PRI interval
char spare[2]; // spare bytes (pad for 4 byte alignment)

VtRadReport, VtRadData;

typedef struct All {

char indicator[2]; I/ warning indication A
char msgtype[31; // Message type
char fcode[3]; // Force Code as described in OTG spec

char flag[3]; II flag of long BE (CCNNNNANNNNN)
CC = country code

char db-type; // database number type: DBNUM_TYPE_PIN,
char db-num[14];

// BE number NNNNANNNNN

// NNNN = world area code
// A = BE Type (C)omplex,

(E) site

// DNNNNN = world area code
PIN

char sconum[7]; // tgtid [NNNNNN,NANNNNN,ENNNNN,DANNNN,DNNNNN]

// PARAGON uses this field to store
PIN

char category[4]; II category
char threat[4]; // threat class

char freqoagility; // agility of RFs

char spare[6]; II spare bytes (pad for 4 byte alignment)

} VtIIIData;

typedef struct A12 {

C-24

VtReport rpt;

VtRadReport rad;

VtIIIData iii;

IVtlllReport;

typedef struct A13

VtReport rpt;

VtRadReport rad;

IVtRadAndReport;

typedef struct A14

float f rag;

float bw;

char cn[VTCNLEN+l];

char sn[VTSN-LEN+l];

*char mt[VT -MT LEN+l];

char xn[VT-XM-LEN+l];

char cg[VTCG LEN+l1;

char clEVTCLkLEN+l1;

char xcEVT-XC-LEN+l];

char cd[VTSCD LEN+l];

char spare[4]; IIbyte alignment

VtSlRptAttribData;

typedef struct A15

long datano; IIindex to SI contact data

long ctcno; Ifindex to VtReport.ctcno

0long quantity; IInumber of items

VtSlRptAttribData attr; IIreport attribute data

char source[VIT-SOtJRCE-LEN+l];I/ reported source

char fdi[V1'_FDI_LEN-i-l; IIFile Distrib Indicator

char pddg[VTPDDG-LEN+l]; IIreported pddg

char serial[VT SERIALLEN+lJ; IIserial number

char msg-type [VTMSQ.TYPE&LEN+l]; // Recvd msg type
char iff[VTIFFLEN+l];/f Id Friend or Foe

char sanitizable; IIIs contact sanitizable
IVtSlReport;

typedef struct Al6

*VtReport rt

VtSlReport si;

IVtSiAndReport;

*typedef structA1

long datano; IIindex to Acoutsic data

long ctcno; IIindex to VtReport.ctcno

long dtg; IIdate-time-group of report

double f rag; // (ninimum) fundamental frequency in HZ

double fregLgnax; II(maxinumn) fundamental frequency in HZ

Sfloat rpm; //revolutions per ninute

C-25

float tpk; IIturns per knot
char harm[24); I Harmonics
char source[161; //source of information

IVtSignaReport;

typedef struct A18{

VtReport rpt;

VtSignaReport sigma;
IVtSignaAndReport;

#define VT TLEVEL-CASE 1

#define VTTLEVELDSUB 1

#define VTTLEVEL-DESIG 2

#define VT-TLEVELTOT 3

#define VTTLEVEL_CONT 4

#define VTTLEVEL-POD 40
#define VTTLEVELUNKNOWN 4

typedef struct A19

long etd;0

long eta;

long arrdtg;

char appgrp[7];

char hullprof [13];

char stern[9];

char uprights[13];

char prop[6];
char tonnage[7];

char length[5);

char beam[5];

char draft[31;

char blades[3];

char shafts[3];

char depport[l9];

char depflag[3];

char desport[19];

char desflag[3];
char arrport[19];

char arrflag[3];

char dep-cargo[4] [4];0
char des-cargo[4] [4];
char arr-cargo[4] [4];

VtTechData;

typedef struct A20
char cmd[15] ; IIcommand from which remarks came
char line[4] [65];!! four remarks lines
char spare[5]; //byte alignment

IVtRemarks;

typedef struct A21{

C-26

long num; // current number in rmks[] array

long size; // current size of rmks array

VtRemarks rmks;// array of pointers to remarks WAS **rmks

Y VtRcvdRemarks;

typedef struct A22
long trkrec; II candidate track number

long tm-dif; I/ calculated time difference

short distdif; II calculated dist difference

short spdreqd; // speed required to position

short cse-reqd; // cse required to position

short ascr; // attribute score -100 to 100

short pscr; II position score -100 to 100

short pri-scr; // PRI score -100 to 100

short scan_scr; // Scan rate score -100 to 100

short rf-scr; I/ RF score -100 to 100

)VtCandidate;

typedef struct A23 {
VtCandidate track[7];

I VtCandidateList;

typedef struct A24 {
long dtg; II dtg of associated POS

short state; II RTN state (spare)

char trknum[7]; // Track Number string

char cmd[15]; I! Source command of trknum
} VtTrknum;

// VtTrknum state values for RTN priority order: Fotc, Copy then Local

#define VtTrknumFotcRTN2

#define VtTrknumCopyRTNl
#define VtTrknumLocalRTNO

typedef struct A25
long type; // Type of track

long trkrec; I/ Record of track
long source; // Source bit mask

long assoc; II Associated trkrec

long child; II child trkrec (conditionally)

long machine; // Machine mask for Local tracks bits 0-31

char serial[20]; // Unique identifier

char ltn[8]; II Local Track Number

II Software Version (future)
} VtTrackHeader;

typedef struct A26

VtTrknum ftn; // FOTC Track Number

VtTrknum rtn[VTMAXRTN];// Array of Rcvd Track Numbers

char ltn[7]; // Local Track Number

C-27

char shipclass[12]; II class of ship
char name[27]; // name of the track
char trademark[21]; II trademark
char type[7]; II type of ship (i.e. DDG, CVN)
char hull[7]; // hull number of ship
char flag[31; II flag of fft
char sconum[7]; II NOSIC ID
char pif[5]; // pif as reported by intel
char ntds[6]; II ntds track number if associated
char di[5]; // discrete identifier
char callsign[9]; II call sign of last entered call sign
char uic[7]; II Unit Identification Code
char elnot[6]; I/ elnot
char emitter[16]; II Emitter name

char alert[4]; // alert class of track (HIT,TGT)
char category[4]; If Category (NAV,AIR, etc.)
char threat[4]; II Threat class
char xref[51;
char chxref[4]; II input channel cross-reference
char shortname[ll]; II Symbol Annotation

I VtTrackSearch;

typedef struct A27 {

VtTrknum ftn; // FOTC Track Number
VtTrknum rtn[VT_MAXRTN];// Array with up to 12 Rcvd Track Number

char shipclass[12]; // class of ship
char name[27]; // name of the track
char trademark[21]; II trademark
char type[7]; // type of ship (i.e. DDG, CVN)
char hull[7]; // hull number of ship
char flag[3]; II flag of fft
char sconum[7]; // NOSIC ID
char pif[5]; // pif as reported by intel
char ntds[6]; II ntds track number if associated
char di[5]; // discrete identifier
char callsign[9]; // call sign of last entered call sign
char uic[7]; II Unit Identification Code

long quantity; II number in track
char homebasel21]; II home base/port

char dbtype; // database number type: DBNUI4_TYPEPIN, ...

char dbnum[14];
// BE number NNNNANNNNN
II NNNN = world area code

(E/site A = BE Type (C)omplex,

II NNNNN = world area code
PIN

char alert[4]; II alert class of track (HIT,TGT)
char fcode[3]; II Force Code as described in BGDBM spec
char category[4); // Category (NAV,AIR, etc.)

C-28

char threat[4]; // Threat class
char shortname[ll]; II Symbol Annotation
char xref[5];
char orig-xref(5];
char chxref[4); // input channel cross-reference

double latfixed;
double lngfixed;

} VtPlatformData;

typedef struct A28
double lat; II latitude in degrees
double lng; // longitude in degrees
float cse; I/ course (DEGT)

float spd; // speed (KTS)
float alt; II altitude (+FT/-FT)
float anglelv; II angle of elevation/depression
long dtg; // Julian seconds since 1 Jan 1970
unsigned short mask;// mask (see VtReport)
char db-type; // database number type: DB_NUM_TYPEPIN, ...

char db num[14];
VtTBMData;

typedef struct A29 {

long type; II LINK11 data types (0-15)
long nbytes; II number of linkdata
bytes
unsigned long linkdata[VT_MAX_LRAW];// Link data msg buffer

) VtRawData, LRAWDATA;

typedef struct A30 {

long updates; // number of times track has been updated
long tkno; II last received track number

short link; // Link block LINKA, ... LINK_D
short quality; // track quality
short ru; II reporting unit
short di; I/ pif as reported by link

short ctsx;
short local-quality;

short engagement;
short spare; // spare element

short modeliff; Mode 1 as reported by link
short mode2iff; Mode 2 as reported by link
short mode3iff; Mode 3 as reported by link
short mode4iff; Mode 4 as reported by link

char threat[4]; threat class F, H, AF, AE,

C-29

0

char category[4]; // category NAV, SUB, ...

char alert[4]; // Alert

char shortname[ll]; SI symbol Annotation

char xref[5]; // Source xref

VtRawData irawdata; // ACDS, Linkll or Linkl6 specific data

I VtLinkData;

typedef struct A31

long fcsno; // FCS track number

char fcspfx; // FCS track prefix S, R, V, C, ...

char status-mask; // target status mask:

// bit 0 engage

// bit 1 avoid

// bit 2 CST

// bit 3 spare

// bit 4-5 weapon selection [0-3]

// bit 6-7 spare

char tktype; // FCS NTDS-like track type

char weather; // weather in vicinity of target UNKNOWN, CLEAR, RAIN

char threat[4]; II threat class F, H, AF, AE,

char category[4]; II category NAV, SUB, ...

char alert[4]; // Alert

char shortnane[ll]; 11 Symbol Annotation

char xref[5]; // Source xref

) VtFCSData;

#define VtFCSWthrUnk(0)

#define VtFCSWthrClr(1)

#define VtFCSWthrRain(2)

#define VtFCSEngageMask (1)

#define VtFCSAvoidMask(l << 1)

#define VtFCSCstMask(l << 2)

#define VtFCSWeaponMask(3 << 4)

#define VtSetFCSEngage(X) ((X) I VtFCSEngageMask)

#define VtSetFCSAvoid(X) ((X) VtFCSAvoidMask)

#define VtSetFCSCst(X) ((X) 1= VtFCSCstMask)

#define VtSetFCSWeapon(X,Y) ((X) = ((X) & -VtFCSWeaponMask) ((Y) << 4))

#define VtClearFCSEngage(X) ((X) &= -VtFCSEngageMask)

#define VtClearFCSAvoid(X) ((X) &= -VtFCSAvoidMask)

#define VtClearFCSCst(X) ((X) &= -VtFCSCstMask)

#define VtClearFCSWeapon(X) ((X) &= -VtFCSWeaponMask)

#define isFCSEngage(X) (X) & VtFCSEngageMask)

#define isFCSAvoid(X) (X) & VtFCSAvoidMask)

#define isFCSCst(X) ((X) & VtFCSCstMask)

#define VtFCSWeapon(X) (oX) & VtFCSWeaponMask) >> 4)

C-30

• • • I I II • I I I II I I II 0

typedef struct A32 {

char local-tn[61;

char systemrtn[6]

char name[27];

char threat[4]; // threat class F, H, AF, AE,

char category[4]; II category NAV, SUB,

char alert[4]; // Alert
char shortname[ll]; II Symbol Annotation

char xref[5]; II Source xref

} VtSpa25Data;

typedef struct A33

char local-tn[6];

char name[27];

char threat[4]; II threat class F, H, AF, AE,
char category[4]; II category NAV, SUB,

char alert[4]; // Alert
char shortname[ll]; II Symbol Annotation

char xref[5]; // Source xref

float cpa-dist;
long cpa dtg;

} VtRaycasVData;

typedef struct A34

long updates; II number of times track has been updated
short link; // Link block LINKA, ... LINK_D
short tkno; // last received track number
short quality; II track quality

short ru; // reporting unit
short di; // pif as reported by link
short modeliff; // pif as reported by link
short mode2iff; I/ pif as reported by link
short mode3iff; pif as reported by link
short mode4iff; pif as reported by link

char threat[4]; threat class F, H, AF, AE,
char category[4]; II category NAV, SUB,

char alert[4]; // Alert
char shortname[ll]; // Symbol Annotation

char xref[5]; II Source xref

I VtLateralTellData;

C-31

typedef struct A35 {

VtElintStats stats; // Ellong statistics

char emitter[16); // Emitter name (DON KAY)

char elnotl[6]; // Primary elnot [ANNNA,ANNNN,NNNAA]
char elnotlconf; II Primary elnot confidence (NN < 10)
char elnot2[6]; // Secondary elnot [ANNNA,ANNNN,NNNAA]
char elnot2conf; II Secondary elnot confidence (NN < 10)

char flag[3]; II flag of long BE (CCNNNNANNNNN)

// CC = country code

char dbtype; // database number type: DBNUM_TYPEPIN, ...

char dbnum[14];

// BE number NNNNANNNNN

// •NNNN = world area code
// A = BE Type (C)omplex,(E)_site

// NNNNN = world area code
PIN

char sconum[7]; // tgtid [NNNNNN,NANNNNN,ENNNNN,DANNNN,DNNNNN]
// PARAGON uses this field to store

PIN

char alert[4]; II alert class of track (HIT,TGT)
char fcode[3]; // Force Code as described in BGDBM spec
char category[4]; // Category (NAVAIR, etc.)
char threat[4]; // Threat class
char shortname[ll]; II Symbol Annotation
char xref[5];
char origxref[5];
char chxref[4]; II input channel cross-reference

) VtEmitterData, VtElintData;

typedef struct A36 {

char trademark[21]; II Trademark of sub
char shipclass[12]; // Class of sub

char prop[6]; // propulsion NUC, UNK, DES
char sconum[7]; // tgtid [(NNNNN,NANNNNN,ENNNNN,DANNNNDNNNNN]

II PARAGON uses this field to store
PIN

char flag[3]; // flag of fft
char type[7];

char alert[4]; II alert class of track (HIT,TGT)
char fcode[3]; I/ Force Code as described in BGDBM spec
char category[4]; // Category (NAV,AIR, etc.)
char threat[4]; // Threat class
char shortname[ll]; II Symbol Annotation
char xref[5];

char orig xref[5];

C-32

char chxref[4]; I/ input channel cross-reference

I VtAcousticData;

typedef struct A37 {

char name[39]; II Name from NIPS displayed as 26 char string

// Include ???: subject[41] - BUN-
KER, APRON,

char flag[3]; I/ flag of long BE (CCNNNNANNNNN)

char dbtype; II database number type: DBNTM_TYPE_PIN,

char db-num[14];

II BE number NNNNANNNNN
// NNNN = world area code

// A = BE Type (C)omplex,

I/ NNNNN = world area code
PIN

char funcl[6]; II Funcl code for site NNNNN (aka NIPS CATEGORY)
// from the AIF (Automated Intel-

ligence File)
char status[4]; II Site Status

char function[3]; // Site function (AA: RadarFuncDefaults.h)
char radius[5]; // Site Radius NNNN
char source-data[8];// Source data

char alert[4]; II alert class of track (HIT,TGT)

char fcode[3]; // Force Code as described in BGDBM spec

char category[4]; II Category (NAV,AIR, etc.)
char threat[4]; // Threat class
char shortname[ll]; sI symbol Annotation
char xref[5];
char origxref[5];
char chxref(4]; II input channel cross-reference

VtLandData;

typedef struct A38 {

VtTrknum rtn[VTMAXRTN];// Array of Rcvd Track Numbers

char name[31];

char uic[7]; II Unit Ident Code

char echelon[8]; II Echelon ??? chars
char service[4]; Service ??? chars

char platform[7]; Platform ??? chars
char strength[4]; Force strength ??? chars
char orgtype[9]; Organization Type ??? chars

char embarked[31];

char flag[3]; flag of fft
char type[7]; II type as in MAU etc

C-33

char shortname[ll]; // Symbol Annotation
char category[4J;
char threat[4];
char alert[4]; // alert class of track (HIT,TGT)
char fcode[3]; II Force Code as described in BGDBM spec
char track-type;
char xref[5];
char orig xref[5];
char chxref[4]; II input channel cross-reference

I VtUnitData;

typedef struct A39 (

char local-tn[6]; // Optional, but likely to be useful
char name[27]; /O optional, but likely to be useful
char alert[4]; // Alert
char fcode[3]; I/ Force Code as described in BGDBM spec
char category[4]; II Category (NAV,AIR, etc.)
char threat[4]; // Threat class
char shortname[ll]; /1 Symbol Annotation
char xref[5];
char chxref[4]; II input channel cross-reference

I VtMinExtData;

typedef struct A40 {
long si-id; // Unique SI identifier
long quantity; // number in track
char flag[VTFLAGLEN+1]; // flag
char threat[VTTHREATLEN+I]; II threat class
char category[VT_CATEGORY LEN+lI; // category (AIR, NAV)
char native-type[VT_NTYPELEN+l]; I/ native type xlation
char class[VTCLASSLEN+I]; // shipclass or

// aircraft type
char hull[VT HULLLEN+I]; I/ hull number of ship
char fcode[VTFCODE_LEN+I]; // force code
char homebase[VT_HOMEBASELEN+I]; II home base/port
char opsubord[VTSUBORDLEN+I]; // operational subord
char admin-subord[VTSUBORDLEN+1]; I/ admin subord
char callsign[VTCALLSIGNLEN+I]; // track's callsign

// or callword I
char subj_type[VT_SUBJTYPELEN+I]; // Subject type
char raid[VTRAID LEN+I];// raid number
char pddg[VTPDDGLEN+I]; // pddg
char suffix[VTSUFFIXLEN-U]; // suffix
char alert word[VTALERTWORDLEN+I]; I/ alert word

char xref[VTXREFLEN+I];
char chxref[VTCHXREFLEN+I];// channel xref
char shortname[VTSHORTNAME_LEN+I];// Symbol Annotation
char spare[3]; // byte alignement

I VtSIData;

C-34

i i

typedef struct A41

VtTrackHeader hdr; II Track Header
VtTrackStatus trkstat;// Track status
VtTracker state; // Tracker state at time of last report
VtReport rpt; // Last Associated report
VtPlatformData data;// Data associated with platform tracks

I VtPlatformTrack, VtPTrack;

typedef struct A42 {

VtTrackHeader hdr; I/ Track Header
VtTrackStatus trkstat;// Track status

VtTracker state; // Tracker state at time of last report
VtReport rpt; // Last Associated report
VtLinkData data; // Data Associated with Link Track

I VtLinkTrack, VtLTrack;

typedef struct A43

VtTrackHeader hdr; I/ Track Header
VtTrackStatus trkstat;// Track status
VtTracker state; // Tracker state at time of last report
VtReport rpt; II Last Associated report
VtFCSData data; // Data Associated with FCS Track

* VtFCSTrack, VtFTrack;

typedef struct A44 {

VtTrackHeader hdr; II Track Header
VtTrackStatus trkstat;// Track status
VtTracker state; // Tracker state at time of last report
VtReport rpt; // Last Associated report
VtSpa25Data data; II Data Associated with Link Track

I VtSpa25Track, VtSTrack;

typedef struct A45 {

VtTrackHeader hdr; II Track Header
VtTrackStatus trkstat;// Track status
VtTracker state; II Tracker state at time of last report
VtReport rpt; // Last Associated report
VtRaycasVData data; // Data Associated with Link Track

} VtRaycasVTrack, VtRTrack;

typedef struct A46

C-35

VtTrackHeader hdr; // Track Header
VtTrackStatus trkstat;// Track status

VtTracker state; // Tracker state at time of last report

VtReport rpt; // Last Associated report

VtLateralTellData data;// Data Associated with Link Track

VtLateralTellTrack, VtTTrack;

typedef struct A47

VtTrackHeader hdr; I/ Track Header
VtTrackStatus trkstat;// Track status
VtTracker state; // Tracker state at time of last report

VtReport rpt; // Last Associated report

VtRadReport rad; II Last Associated Rad data
VtEmitterData data; // Emitter attributes

} VtEmitterTrack, VtETrack;

typedef struct A48 (

VtTrackHeader hdr; II Track Header

VtTrackStatus trkstat;// Track status
VtTracker state; // Tracker state at time of last report
VtReport rpt; // Last Associated report
VtSignaReportsigna; // Last reported Signa data
VtAcousticData data;// Acoustic attributes

I VtAcousticTrack, VtATrack;

typedef struct A49 {

VtTrackHeader hdr; !! Track Header
VtTrackStatus trkstat;// Track status
VtTracker state; // Tracker state at time of last report

VtReport rpt; // Last Land report
VtLandData data; !! Land attributes

} VtLandTrack, VtGroundTrack,VtGTrack;

typedef struct A50

VtTrackHeader hdr; !! Track Header

VtTrackStatus trkstat;// Track status
VtTracker state; // Tracker state at time of last report
VtReport rpt; // Last Land report
VtUnitData data; !/ Land attributes

VtUnitTrack, VtUTrack;

//3

C-36

typedef struct A51

VtTrackHeader hdr; IITrack Header

VtTrackStatus trks tat;!! Track status

S VtTracker state; I!Tracker state at time of last report

VtReport rpt; // Last Associated report

VtSlReport sirpt; //SI Data from last report

VtSIData data; IIsingle source track

)VtSITrack, VtCTrack;

typedef struct A52{

VtTrackHeader hdr; IICommon Track Header
VtTrackStatus trkstat;// Common Track status

S VtTracker state; IICommon Tracker state at time of last rpt

VtReport rpt; // Common Last report

VtMinExtData data; IIMostly Common data
char pad[554]; IVTMAX_TRACKSIZE -

//sizeof(VtTrackHeader) -

IIsizeof(VtTrackStatus) -

* II sizeof(VtTracker)-

IIsizeof(VtReport)-

IIsizeof(VtMinExtData)];// Remaining space to be defined separately

)VtExtTdbmTrack, VtXTrack;

* typedef struct A53(

char pad[VTMAX TRACKSIZE];

3VtGenericTrack;

union VtTrack switch (long)

case 1: VtGenericTrackntrk;
case 2: VtTrackHeaderhdr;

case 3: VtPlatformTrackptrk;

case 4: VtEmitterTracketrk;

case 5: VtAcousticTrackatrk;

case 6: VtSpa25Trackstrk;

*case 7: VtLateralTellTrackttrk;

case 8: VtRaycasVTrackrtrk;

case 9: VtUnitTrack utrk;

case 10: VtLandTrack gtrk;

case 11: VtSITrack ctrk;

case 12: VtLinkTrack ltrk;

*case 13: VtFCSTrack ftrk;

case 14: VtExtTdbmTrackxtrk;

/1VtTrack union types

C-37

#define VtNoTrackTypeO

#define VtPlatformTrackTypel

#define VtErnitterTrackType2

#define VtAcousticTrackType3

#de fine VtSpa2 5TrackType4

#define VtLateralTellTrackType5

#define VtRaycasVTrackType6

#define Vtt~nitTrackType7

#define VtLandTrackType8

#define VtFCSTrackType 80

#define VtSITrackType 9

#define VtLinkTrackTypelO

#define VtExternalTrackTypell

#define VtNTrkVtNoTrackType

#define VtPTrkVtPlatformTrackType

#define VtETrkvtEinitterTrackType

#define VtATrkvtAcousticTrackType

#define VtSTrkvtSpa2 5TrackType

#define VtTTrkvtLateralTellTrackType

#define VtRTrkvtRaycasVTrackType

#define VtUTrkvtUnitTrackType

#define VtGTrkvtLandTrackType

#define VtFTrkVtFCSTrackType

#define VtCTrkVtSITrackType

#define VtLTrkVtLinkTrackType

#define VtXTrkVtExternalTrackType

#define MAX_TYPEINDICATORS 12

interface Trax2

void print (in long signal)
void get (in long index, out VtPlatformTrack track, out double time)

C.4 PROCEDURE CALL TIMING

// Client.C

#include <stream.h>

IIfor extern "exit"

#include <stdlib.h>

// for timing

#include <sys/time.h>
double xtime=l;

double gtime()

return xtime;

int main (mnt argc, char **argvJ){

C-38

long value = 0;

hrtime-t starthires, end-hires, diff-hires, Svrtime[15000];

double time;

start-hires = gethrtime);
for(value=0;value<1000000000;value++)

diff-hires = gtime();
1;

end_hires = gethrtime(;

cout << setprecision(16) << start-hires << to << endhires
<< endl;

C.5 NULL PROCEDURE TIMING

// Client.C

#include <stream.h>

// for extern "exit"

#include <stdlib.h>

// for timing

#include <sys/time.h>
double xtime=l;
double gtime()

return xtime;

void gx()

int main (int argc, char **argv)
long value = 0;

hrtime-t start-hires, end-hires, diffhires, Svrtime[15000];

double time;

start-hires = gethrtime();

for(value=0;value<1000000000;value++) (

gx();

endhires = gethrtimeo;
cout << setprecision(16) << starthires << to << endhires

<< endl;

C.6 NULL LOOP TIMING

// Client.C

#include <stream.h>

// for extern "exit"

* #include <stdlib.h>

C-39

0

I/ for timing
#include <sys/time.h>

double xtime=l;
double gtime()

return xtime;

int main (int argc, char **argv)

long value = 0;
hrtime-t start-hires, end_hires, diff_hires, Svr-time[15000]; 0
double time;

start-hires = gethrtime(;

for(value=O;value<l000000000;value++)

end-hires = gethrtime);

cout << setprecision(16) << start-hires << to << end-hires

<< endl;

C -40

0

S..... • • l i | I I I0

REPORT DOCUMENTATION PAGE O No. Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1997 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Predicting CORBA Performance Through Prototyping DASWO 1 -94-C-0054

Task Order T-S5-1446

6. AUTHOR(S)

Edward A. Feustel, Clyde G. Roby

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Institute for Defense Analyses (IDA) IDA Paper P-3327

1801 N. Beauregard St.

Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Defense Information Systems Agency REPORT NUMBER

Center for Computer Systems Engineering
5600 Columbia Pike
Falls Church, VA 22041-2717

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; unlimited distribution: 18 September 1997. 2A

13. ABSTRACT (Maximum 200 words)

This paper describes experiments that show how the results of simple measurements can be used to
design complex distributed applications. The experiments used IONA Orbix, an Object Request
Broker (ORB) that is Common Object Re quest Broker Architecture (CORBA) compliant. The
experiments were conducted on Sun Sparc 20s and Intel Pentium 90s using the Microsoft NT 4.0
operating system. The purpose of the experiments was to obtain information about resource
expenditures needed to support distributec[computing and to use that information to support
development methodologies for distributed applications. The paper shows why a simple division of
a replacement for the Global Command and Control System's Track Correlation application into a
specific Client and Server has little chance of success. A worked-out example experiment, using C++,
and outlines of similar experiments which should be performed prior to the development of any
distributed applications are also provided.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Distributed Applications; Design; Timing Models; CORBA; Object Request 114
Broker; DCE, ORBIX, GCCS, Track Correlation. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

