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ABSTRACT 

A novel approach to multiresolution analysis based on reproducing kernel particle methods 

(RKPM) and wavelets is presented. The concepts of reproducing conditions, discrete 

convolutions, and multiple scale analysis are described. By means of a newly proposed semi- 

' discrete Fourier analysis, RKPM is further elaborated in the frequency domain, and the 

interpolation estimate and the convergence of Galerkin solutions are given. The elimination of a 

mesh, combined with the properties of the dilation and translation of a window function, 

multiresolution analysis, wavelet-based error estimators, and edge detection brings about a new 

generation of hp adaptive methods. In addition, this class of multiple scale reproducing kernel 

particle methods is particularly suitable for problems with large deformations, high gradients, and 

high modal density. The current application areas of RKPM include structural acoustics, structural 

dynamics, elastic-plastic deformation, computational fluid dynamics and hyperelasticity. 

1. INTRODUCTION 

Our emphasis in this paper is on the development of meshless methods for the accurate 

prediction of the behavior of a complex engineering system that involves a wide spectrum of 

frequencies and wave numbers. In particular this paper addresses: how does one effectively deal 

with engineering systems characterized by multiple temporal and spatial scales? In addition, can 

accurate interpolation functions be constructed with the help of multiresolution analysis concepts 

so that the response can be separated into multiple frequency/wave number bands for a better 

representation of the computed physics? Our proposed approach is to employ signal processing 

theories to attack this difficult problem. 

Recently, several different meshless methods have been proposed, including Smooth 

Particle Hydrodynamics (SPH) method [Monaghan (1988), Gingold and Monaghan (1977), 

Attaway, Heinstein, Mello and Swegle (1993), Johnson, Peterson and Stryrk (1993), Libersky 

and Petschek(1990)], Diffuse Elements Method (DEM) by Nayroles, Touzot and Villon (1992), 

Element Free Galerkin (EFG) [Belytschko, Lu. and Gu (1994a,b, 1995a), Belytschko, Krongauz, 

Fleming, Organ, and Liu (1995b) and Lu, Belytschko and Gu (1994)], Panicle In Cell methods 

(PIC) [Sulsky, Chen, and Schreyer (1992)], Reproducing Kernel Particle methods (RKPM) [Liu, 

*dee and Jun (1993b), Liu, Jun, Li, Adee and Belytschko (1995a), Liu, Jun and Zhang (1995b), 

Liu Chen. Jun. Chen, Belytschko, Pan, Uras and Chang (1995c), Liu, Jun, Sihling, Chen and 

Hao (1995d), Liu, Li, and Belytschko (19950, Liu. Chen and Uras (19950, Liu (1995) and 



Shodja, Mura and Liu (1995) and Liu, Chen and Hao (1996)], wavelet particle methods [Liu and 

Oberste-Brandenburg (1993a), Liu and Chen (1995)], hp clouds [Duarte and Oden (1995)], 

partition of unity finite element method [Babuska and Melenk (1995)], finite points method 

[Ohate, Idelsohn and Zienkiewicz (1995)] and free mesh method [Yagawa, Yamada and Kawai 

(1995)]. These methods all have unique advantages and disadvantages of their own. On most of 

these methods, significant advances need to be made before robust treatments of general classes of 

problems will be possible. 

Although some of these methods are currently being used in the design and analysis of 

large scale engineering systems, it is still in infancy in answering the above raised questions. Even 

though beautiful computer graphics can be generated to illustrate the numerical results, Fourier type 

analysis is still required to study the physics of the computed response and to obtain the necessary 

physical insights. Moreover, since a Fourier spectrum does not provide a complete time or space 

localization information, it is desirable to have a short time (or space) Fourier spectrum available at 

any desirable time and/or spatial location. However, all the computations are performed in time 

or/and spatial domains. This motivates us to employ a flexible time-frequency and/or space-wave 

number window function to construct global shape functions that can separate the response into 

different scales (frequencies and wave numbers). With this construction, Fourier type analysis of 

the computed response is eliminated, since the frequency/wave number bands (or scales) are 

included in the shape functions. 

Our intention here is to introduce multiple scale methods which are based on discrete and 

continuous reproducing kernels, wavelets, and integral window transforms and to address some of 

the fundamental issues related to the development of multiple scale meshless methods. It is noted 

that because of the time/space-frequency/wave number localization via a flexible window function, 

the interpolation functions are constructed so that the response can be separated into multiple 

frequency/wave number bands for a better representation of the computed physics. 

This class of methods permits the response of a system to be separated into different scales, 

with wave numbers corresponding to spatial scales and/or frequencies corresponding to temporal 

scales; so that the response of each scale can be examined separately. Through this multiresolution 

analysis, the physical interpretation of the computed results can be immediately synthesized, as in 

classical Fourier analysis; however, without the restrictions of the classical Fourier analysis, which 

is mostly restricted to simple geometries and discrete frequencies/wave numbers. 



This development can be likened to constructing a microscope with a flexible space-wave 

number and a localized window function which translates and dilates in space and time to cover the 

entire domain of interest. This microscope can magnify, examine, and record the image at various 

scales and frequencies locally within the support of the window function. The degree of 

magnification will depend on the power of the microscope, a flexible space-scale and time- 

frequency window function. This characterization of the response is performed through the integral 

window transform. Localization can be achieved by contracting the flexible multiple-scale window 

function. The zoom in and zoom out capability of the window function is especially useful in 

examining complex flow phenomena, such as flow induced vibration, dynamic stability of flow- 

structure interaction, turbulent structures, structural acoustics, and high frequency structural 

dynamics response. 

Multiple scale methods 
Multiple scale analysis [Liu, Zhang and Ramirez (1991), Liu and Haeussermann (1992)] 

has its origin in signal analysis. Wavelet analysis [Beklkin, Coifman, Daubechies, Mallat, Meyer, 

Raphael and Ruskai (1992), Chiu (1992), Mallat (1989) and Strang (1989), Williams and 

Amaratunga (1994) and Daubechies (1992)] is a contemporary science in image processing that has 

promise in computational mechanics. However, one major drawback in its application to 

computational mechanics is its inability to handle large deformation and complex boundary 

conditions. One of the key successes of reproducing kernel particle methods (RKPM) [Liu, Juri, 

Li, Adee and Belytschko (1995a), Liu, Jun and Zhang (1995b), Liu, Chen, Jun, Chen, 

Belytschko, Pan, Uras and Chang (1995c), Liu, Jun, Sihling, Chen and Hao (1995d), Liu, Li, 

and Belytschko (1995e), Liu, Chen and Uras (19950 and Liu, Chen and Hao (1996)] is the 

formulation of the boundary correction function to scaling functions and wavelets. Hence, unlike 

the usual wavelet and smooth particle hydrodynamics (SPH) analysis, no artificial boundaries are 

needed in RKPM. 

For computational mechanics, a discretization of the system is inevitable. When a system is 

discretized, aliasing (commonly refers to as high-frequency replicas) is introduced into the 

response. For a complex system, aliasing may interact with the high frequency part of the response 

and it becomes impossible to separate them clearly [Liu and Chen (1995)]. In this case, reducing 

the effect of aliasing is a major step to improving the solution. Moreover, using this local aliasing 

information, local refinement or hp-like adaptive refinement without a mesh can be carried out 

without the help of the exact solution. 



Liu and Chen (1995) developed an error estimation technique based on multiresolution 

analysis, which is especially useful for local refinement and convergence studies. The flexible 

space-scale window function can be constructed to resemble the well-known unstructured multi- 

grid and hp-adaptive finite element methods. However, the multiple scale adaptive refinements are 

performed simply by inserting nodes into the highest wavelet scale solution region, and at the same 

time narrowing the window function. Hence, hp-like adaptive refinements can be performed 

without a mesh. An energy error ratio parameter is introduced as a measure of aliasing error, and 

critical dilation parameters are determined for a class of spline window functions to obtain optimal 

accuracy. With this parameter, we are able to separate the numerical noise from the high 

frequency/wave number component of the physical phenomena. In a traditional numerical analysis, 

both the numerical noise and the high frequency component of the physics are damped out by the 

addition of artificial viscosity. 

Motivation of multiresolution analysis 
A simple illustration of multiresolution analysis is given in Fig. 1.1. The left hand top 

corner photo presents the highest resolution (256 by 256 pixels). This photo image is digitally 

separated into a set of consecutive octave (power of 2) scales via a RKPM wavelet transform 

decomposition (see Sections 7 and 8). The low and high scale images of the original photo are 

presented below the original photo on the left hand side of Fig. 1.1. As can be seen, the low scale 

image does.not contain any high frequency components, whereas, the high scale image captures 

only the sharp edges of the original image. Via this multiresolution analysis, each scale of the 

image can be studied separately and enhancement or modification can be performed by simply 

changing the local wavelet coefficients at the desired scale and location. 
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Figure 1.1 Multiresolution RKPM 



In a classical Fourier analysis, in which the sine and cosine waves do not have a compact 

support, such modifications require the computation of a new set of Fourier coefficients which can 

be very costly. Presently, this is a common practice in the numerical study of the computed 

physical response. In wavelet analysis, unlike the classical Fourier analysis, only a few wavelet 

coefficients need to be computed because of the space-scale localization process. In three 

dimensions, this localization process will involve a space-wave number and time-frequency 

localized window. 

In our research, we borrow this powerful concept of multiresolution analysis to separate 

the numerical noise from the high scale components (frequencies and wave numbers) of the 

compressible flow-structure phenomena. Similar to the wavelet decomposition of the photo image 

presented earlier, the actual computed solution of problem with a discontinuity using the multi- 

scale RKPM hp-like adaptive refinement [Liu and Chen (1995)], the low scale (scaling function) 

and the high scale (wavelet) parts of the total solution are presented on the right hand side of Fig. 

1.1. As can be seen, the low scale solution consists of the low wave number solution, whereas, 

the high scale solution consists of a mixture of the high wave number approximation of the physics 

and the undesirable numerical noise, or the aliasing. Analogous to the low scale photo image, the 

low scale solution depicts only the smooth part of the solution and the edges of the discontinuity 

(represented by a high wave number wavelet solution) have been removed. However, the edges of 

the discontinuity can be located via this high scale component. This shows that not only the 

location of the discontinuity can be detected, numerical noise can also be minimized by aliasing 

control. 

Section 2 describes the scaling functions and wavelets associated with multiresolution 

analysis. Two different methods for constructing the Daubechies scaling function are reviewed 

[Daubechies (1992)]. In Section 3, the orthogonality conditions for the scaling functions and 

wavelets are studied in the Fourier domain. A systematic procedure of constructing orthogonal 

scaling functions and orthogonal wavelet functions based on the Fourier transform is also derived. 

The presentations in Sections 2 and 3 hopefully provide an easier exposition of the construction of 

the scaling functions and wavelets. 

The concepts of scaling functions and wavelets are then used to construct reproducing 

kernel methods (RKM). The discrete form of a reproducing kernel method is called a reproducing 

kernel particle method (RKPM) and forms the basis of applying these concepts in computational 

mechanics. In Section 4, the scaling function of RKM is constructed by relaxing the orthogonality 



condition. Consequenüy, a nonuniform discretization of the reproducing kernel can be achieved via 

.a particle method. The concepts involved in the development of RKM from Taylor series, using 

multi-index notation are introduced in Section 4. An orthogonal window function for RKM is also 

briefly proposed in the same section. The formulation of RKPM, the discrete form of RKM, is 

presented in Section 5. 

The study of RKM and RKPM formulation in the Fourier space is discussed in Section 6. 

Interpolant estimates and convergence, and their relationship with the wavelet solution are explored 

in Section 7. Multiresolution analysis for RKPM is reviewed, and the application of RKPM in 

edge detection and adaptivity in computational mechanics are outlined in Section 8. The 

applications of RKPM in large deformation, computational fluid dynamics and structural acoustics 

are presented in Section 9, followed by conclusions. 

2. SCALING FUNCTION AND WAVELETS 

2.1   Preliminaries 

Multiresolution Analysis and Scaling Function 
A multiresolution analysis makes use of a nested sequence of closed subspace {Vj}jeZ and 

a function 0 with the following properties 

(a),   •••c V.ic V0c VL c• ■ ■ c L2(i?) 

(b).   u Vj = L2(R) 
jeZ 

(c).     n Vj=[0} 
jeZ 

(d). Each subspace is related to its next finer level subspace by 

0(x)€ V;-«> 0(2x) e Vj+i,  jeZ 

(e). The translates of <p(x) span the same subspace so 

p(r) e v0 <=> 00* - n) e V0,   for all ne Z 



For an orthogonal wavelet basis, we have the additional condition: 
(f). The function (p(x - n) is a mother function for an orthonormal basis of V0, where 

(t>M = 2i/2<P(2Jx-n), (2-L1) 

for all /, neZ, Z = {• ■ -, -2, -1, 0, 1, 2, • • •}. Conditions (d) and (f) imply [<pj.„ ; n eZ) is an 

orthonormal basis of V) for all / e Z . 

Since <p e V0 c Vi, and {0i,„} forms an orthonormal basis in V!, any function in V0 can 

be expressed in terms of the basis functions of Vi. Thus, 

oo 

n = -oe 

where a„ are given values for each panicular function ftx), which is often referred to as the 

"scaling function" of the multiresolution analysis. 

Wavelet 
A new subspace WjA associated with the multiresolution analysis is defined as: 

Vj=VjA@Wj.l ' (2-L3) 

where © is a direct sum, such that WjA the orthonormal complement of VjA in V,-, for every 

/' €Z. It follows that for,;' > /, 

\ k = 0 / 

where all subspaces Wj are orthogonal and that 

0 Wj = L2(R) (2-L5) 

jeZ 



Basically, for multiresolution analysis, if a sequence of subspaces Vj satisfies the properties (a) - 

(0, there exists an orthonormal wavelet basis, 

¥j.n = 2J/2\lK2Jx-n), 

such that, for fixed j, {wj.n ;neZ) constitutes an orthonormal basis for Wj. By virtue of (b), (c) 

and Eq. (2.1.5), this also implies that the whole collection (Wj.n \j,ne Z) is an orthonormal basis 

for L2(R). Furthermore, from Eq. (2.1.3), the wavelet function ytx) can be expressed in terms of 

the scaling function <p(x) at the next finer scale, 

yKx)=  X   bn<P{2x-n) (2-L6) 

Illustration of Multiresolution Analysis by the Hoar Function 
As an example of a scaling function and associated wavelet, consider the Haar basis. The 

Haar function, also known as the box function, is given as: 

<Kx) = 
1,   0<x< 1 (2.1.7) 
0, otherwise 

From Figure 2.1a, it is noted that the box function satisfies Eq. (2.1.2) with'coefficients 

a0 = a\ = l thus 

<P(x) = <p(2x) + (K2x - I) (2-L8) 

Furthermore, as shown in Figure 2.1b, the Haar wavelet satisfies Eq. (2.1.6) with coefficients 

bo = 1 andfri =-1, so that: 

yKx) = 0(2x) - 0(2x - I) (2'L9) 
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0(X) <p(2x) <p(2x-\) 

(a) 

y(*) p(2x) 0(2x-l) 

(b) 

Figure 2.1 Haar Scaling Function and Wavelet 

2.2 Daubechies Scaling Function 

In order to determine <p(x) at a set of points, the filter coefficients an in Eq. (2.1.2) which 

satisfy conditions (a) through (e) are required. These conditions are derived from the properties of 

the scaling function which forms an orthogonal basis. 

Conditions for the Determination of Filter Coefficients 
(i) The area under the scaling function is normalized to unity to ensure that each scaling 

function of a given shape is uniquely defined. Thus, 

£ 0(x) dx = 1 (2.2.1) 

For an TV-filter scaling function, Eqs. (2.1.2) and (2.2.1) require that 

A:-l 

n=0 

2x- n)dx = i Z a"\ 
n =0       /_ 

dX\) dx = 1 (2.2.2) 
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Thus, the first condition on these TV-filter coefficients is given as: 

(2.2.3) 

(ii) The scaling function has to be orthogonal to its integer translates, that is: 

1" </>(*) (jKx + k)dx= 8ok,   k = 0, 1 Nil-1 (2.2.4) 

where 80k is the Kronecker Delta; in the orthogonality condition, N is restricted to be an even 

integer. Substituting Eq. (2.1.2) into Eq. (2.2.4): 

( 

N-\ N-\ 

X a"<K2x- ■n) X 
n = 0 n=0 

£ an4>(2x-n) X arf>{2x + 2* -*) dx = 80k,   k = 0,\ N/2-l       (2.2.5) 

and rearranging the indices for n=m + 2k yield: 

[     X an<P(2x - n) N~Z    am+2,0(2x - m) dx = <50*,    k = 0, 1 M2-1   (2.2.6) 
/.     n = 0 m = -2k 

From Eq. (2.2.4), Eq. (2.2.6) results in: 

AM N-\-2k 
I an   £    am+2k 8nm = 2Sok<   * = 0, 1 M2-1 

n = 0       m = -2k 

Therefore, the orthogonality condition in Eq. (2.2.7) provides Nil equations: 

(2.2.7) 
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N-l 
X anan+2k-=2Sok,   k = 0, 1,..., A/72-1 

n = 0 
(2.2.8) 

Up to this point, we have N/2 + 1 equations to define N coefficients, so another Nil - 1 

equations are necessary to determine a unique set of filter coefficients. The approach used is to 

require the scaling function to be able to represent polynomials of order up to N/2 - 1 exactly. This 

constraint leads to the compactly supported wavelets [Daubechies (1992)]. 

(iii) Consider a given polynomial function with order N/2: 

fix) = «o + a\x + a2x
2 + ... + aN/2-ix N/2-1 (2.2.9) 

This function can also be represented by the following expansion: 

N-l 

fix) =X c„^-«) 
n = 0 

(2.2.10) 

The wavelet can be used to obtain conditions on the filter coefficients by taking the inner product 

of Eq. (2.2/10) with y/(jc), thus: 

N-l 

1 
n = 0 

/ \ 
(f(x), yKx)) = X c" \^x - n^ Vfa)) = 0 (2.2.11) 

This is because #jt - n) is required to be orthogonal to the wavelet function, yKx). Hence, using 

Eq. (2.2.9) in the left hand side of Eq. (2.2.11) gives: 

a01    yA,x)dx + ct\ t yKx)dx+aA   xyKx)dx + ... + aNI2-x\   xNf2-lyKx)dx = 0 (2.2.12) 

Eq.(2.2.12) holds for arbitrary aa so that the additional N/2 conditions are: 

[ xky/{x)dx = 0,   k = 0, 1, 2 N/2 - 1 (2.2.13) 
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To relate Eq. (2.2.13) with the filter coefficients a„, the Fourier domain is used. The Fourier 

transform of (j)(x), gives: 

y[W,)] = *(ffl) = iXa«'"°"2*(f, = p(f,*(T) (2.2.14) 

Eq. (2.2.14) can be expressed as: 

N 

7=1 

*      CO T~T r,,® ^ 
^>£IIP(i7) (2.2.15) 

where- P{co) = -Yfl/ffl. For an N-filter, a wavelet function can be expressed as [Strang 

(1989)]: 

¥(X)=   ^{-\)nax_n<$>{2x-n) 

n=2-N 

Then the Fourier transform of Eq. (2.2.16) gives: 

(2.2.16) 

1    V"1,   nn inco/2 2fCÜ\ 

n=2-N 

(2.2.17) 

Recall the zero moment in Eq. (2.2.13), 

I \l/(x)dx = yr(0) = 0 (2.2.18) 

When CO = 0. by using Eq. (2.2.18), Eq. (2.2.17) yields: 

i 1     
i 

V(0) = 7 ^(-l)"a1-^(0) = - £(-l)Vn=<> 
n = 2-N n=2-N 

(2.2.19) 
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Note that 0(0) = 1, which can be easily verified from the Fourier transform of Eq. (2.2.1). From 

the definition of P(co), we observe that P{co = n) = ^(-l)"«« ■ Substituting this relation into 

Eq. (2.2.19) leads to P(7t) = 0 since y>(0) = 0. For the *th moment in Eq. (2.2.13), it yields: 

I" xky/(x)dx = (i)kY{k\0) = 0 
J — oo 

The Jkth derivative of Eq. (2.2.17) at co = 0 gives: 

(2.2.20) 

212 w»,fc)4i  £(-D>V=O (2.2.21) 

n=2-N 

From Eq. (2.2.21) and the *th derivative of P(o», P(o»ik) = l-^nkaneinm, it shows that: 

Thus, the third condition in terms of the an can be obtained from Eq. (2.2.22): 

(2.2.22) 

(2.2.23) 

It is noted that the equation with * = 0 in Eq. (2.2.23) is redundant because it can also be 

found from the combination of Eqs. (2.2.3) and (2.2.8). Thus, by excluding this redundant 

equation, Eq. (2.2.23) provides only Nil - 1 new equations. The scaling function and wavelet are 

quely defined by the coefficients a„ which are obtained by solving the system of N equations. unii 

An example of filter coefficient for N = 4, the Daubechies D4 scaling function 

(from Eq. (2.2.3)) 

al + a} + al + a\ = 2. (from Eq. (2.2.8) k = 0) 

a0 + ajH- a2 + «3 = 2 
(2.2.24a) 

(2.2.24b) 



0002 + 0103 = 0 

aö - ax + a2 - a3 = 0 

-ax + 2a2 - 3a3 = 0 

(from Eq. (2.2.8) Jfc = 1) 

(from Eq. (2.2.23) k = 0) 

(from Eq. (2.2.23) * = 1) 
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(2.2.24c) 

(2.2.24d) 

(2.2.24e) 

In this example, the redundant equation Eq. (2.2.24d) can be obtained by: 

^2* Eq.{2.2.24b) + 4* Eq.{2.2.24c)~ Eq.(2.2.24ay (2.2.25) 

The filter coefficients, can easily be obtained by replacing the nonlinear equation a^ßi + a\<*b - 0 
with the linear equation OQ -ax +a2 -a3 =0, which is the redundant equation. The filter 

coefficients obtained from Eq. (2.2.24a-e) are also known as the coefficients for the Daubechies 

D4 scaling function. Table 2.1 lists the filter coefficients for the Daubechies D4 

n an 

0 0.68301270189222 

1 1.18301270189222 

2 0.31698729810778 

3 -0.188301270189222 

Table 2.1 Filter coefficients for the Daubechies scaling function D4 

2.3 Construction of Scaling Function 
Given a set of filter coefficients as defined in Section 2.2, the corresponding scaling 

function can be constructed by the iteration method or by the recursion method. 

2.3.1 The Iteration method 
The iteration method starts from Eq. (2.1.2): 

0iW =  X   an <Pi-\(2x - n) (2.3.1) 
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ri, o<x<i 
with the box function as <po(x), where <p0(x) = j ^   Qtherwise 

Example 1: a0 - 2 
For fl0 = 2, the iteration equation obtained from Eq. (2.1.2) yields: 

ft(jc) = 2 0M(2x ) for   i>l 

The Delta function constructed by iteration method with a0 = 2 is depicted in Fig2.2. It is 

obtained when / -»°°. 

0.5 

0 

00 1 = 2 

2        0 

Figure 2.2 The Delta function constructed by iteration with a0 - 2 

_1 _1 Example 2 i üQ = j, a\ - 1, a2 - — 

For ao = Kai = l,a2 = k the iteration equation is given as: 

tn(x) = i- <Pi-i(2x ) + 0M(2x-l ) + \ <Pi-i(2x-2 )    for   / > 1 4>i(X) = y Vi-W^-*- ) ■>"   Vi-iv-"-  * '   '  2 

The hat function constructed by iteration method with a§-- 

It is obtained when /'—■>«>. 

= 1 fll = l, ai = -^ is shown in Fig. 2.3. 

0.5 

<Po 

.-. 

2        0 
1 -1 Figure 2.3 The Hat function constructed by iteration with a0 = j, ax = 1, a2 - j 
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Example 3: D4 filter coefficients 
The coefficients in Eq. (2.2.21), lead to the D4 scaling function. The plot of the D4 scaling 

function as constructed by iteration is shown in Fig. 2.4b. 

Remark: The iteration method is simple and straight forward, although, it is not computationally 

efficient. 

2.3.2 The Recursion Method 
The crux of the recursion method hinges on the fact that the scaling function 0(x) is known 

at integer points, x = j. Thus, recursion gives the values of 0(x) at the half integer points and at the 

quarter integer points for the next recursion. Repeating this process will yield all dyadic points 
(2JJ > 0). This leads to a fast algorithm for wavelet calculations. To compute 0(x) at the integer 

points, consider the expansion of Eq. (2.1.2): 

0U) = ao0(2jc) + ai0(2x- D + - + aN- i<ft2x-N+ 1) 

For N point values of 0(x), Eq. (2.3.2) can be written in matrix form: 

(2.3.2) 

a0 0 

a2 / ax 

aA    a3 

0 

*2 

a6    a5    a4 

0     0     0 

0     0     0 

0 

0 

oo 

0 

0 

0 

0 

0 

0 

aN_x   aN-2   
aN-3 

0 0      aN_x 

r </>(0) '   0(0) 

0(D 0(1) 

0(2) 0(2) • 

0(3) — 0(3) 

0(iV-2) 0(iV-2) 

l<t>(N-l)_ J(N-l)_ 

(2.3.3) 

or 
(M-I)O = 0 (2.3.4) 

The vector values of <D at the integer points is the eigenvector of M corresponding to the 

eigenvalue 1. As in all eigenvalue problems, this vector is not uniquely defined. An additional 

normalizing condition obtained from Eq. (2.2.1) is used to determine a unique eigenvector. Thus, 

Xw=i-    «eZ (2.3.5) 
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Once we know the values of #JC) at the integer points, then the values of <p(x) at the half integer 

points can be computed by Eq. (2.1.2): 

#f)=  X   an<tte-n) (2.3.6) 

Example 4: D4 scaling function 
As an example the recursion method, the values of D4 at four integer points are calculated 

by Eq (2.3.3): 

fl0 o 0 0' 
flj flt do 0 

0 «3 a2 a\ 

0 0 0 a3 

l>(0)" >(0)" 

W <KD 
<t>(2) 0(2) 

U(3). _0(3)J 

The results are: 

J<0) = 0, 0(1)=^^,   0(2) = 1^£   #3) = 0 

Then, from Eq. (2.3.6), the values of 0(x) at the half integer points are given: 

fll)=l±il   fli) = 0.   K|) = ^£       . 

A comparison of the D4 scaling functions obtained by iteration and recursion are shown in Figure 

2.4. Apparently, the construction from recursion is more efficient and accurate than from iteration. 

(a) 
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3   ""o 1 

(b) 

Figure 2.4 The D4 scaling function constructed by recursion (a) and by iteration (b) 

Derivative of Scaling Functions 
The derivative of the scaling function can be computed by differentiating Eq.(2.1.2) with 

respect to x, thus, 

Q'(X)= ^2aJ'(2x-n) 
(2.3.7) 

This leads to the same eigenvalue problem as for the scaling function, only now we are looking for 

the eigenvector corresponding to the eigenvalue 1/2 (c.f. Eq. (2.3.3)) 

(2.3.8) 

aQ    0     0     0" >'(0)" >'(0) 

a2    d\    CLQ    0 0'(D 0'(D 
0    d3    a2    ax 0'(2) f(2) 
0     0     0    a3_ _0'(3)_ yo) 

The normalizing condition for the derivative arises from the reproducing property of the scaling 

function. That is: 

( 
y 0(.x - y) dy = x (2.3.9) 

Differentiating Eq. (2.3.9) with respect to x, yields: 
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i y <p (x - y) dy - 1 (2.3.10) 

Thus, 

y xj 0'{x-xj)=i (2.3.11) 

Eq. (2.3.11) gives the normalizing condition for the derivative. The derivative of D4 is shown in 

Figure 2.5. 

o 1 

Figure 2.5 The derivative of D4 scaling function 

Remark: 
Scaling functions which are constructed by iterative or recursion methods are defined 

only at dyadic points {iKj > 0). Therefore, these scaling functions and their derivatives are only 
weakly continuous and they are often known as fractal interpolation functions. When j -» °°, they 

converge to a continuous function. 

3. FOURIER ANALYSIS OF ORTHOGONAL SCALING FUNCTIONS 

3.1  Orthogonal  Scaling Function 

An orthogonal scaling function can also be constructed by the Fourier transform. Rewriting 

Eq. (2.1.2) as: 
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00c) = £cB ft.„(Jt) = 2 c VI #2x-n)   neZ (3.1.1) 
n n 

where c are given for each particular scaling function. The Fourier transform of 0(x) is defined as: 

0(G)) = I   000 e-ixco dx (3-L2) 

By changing variables, y = 2x-n and x = (y+n)/2, the Fourier transform of 0(2* - n) denoted by 

F[ ] is: 

F[<K2x-n)]= [ ty(y)e-»*y+"V*dy=l tyty) e^e-^dy = \r™«»* 0(f)     (3.1.3) 

Equation (3.1.3) depicts the property of the Fourier transform of a Shifted function" <p(2x - n). 

Thus, the Fourier transform of Eq. (3.1.1) is:" 

m=^lcn if)e-<"^ = mc(f) 0(f) (3-L4) 

12    n 
t 

where 

mc(ö) = P^^,M (3-L5) 

Note that the function mc(co) represents the connection between two different scales of the scaling 

function in the Fourier space. 

The Parseval identity and the orthogonality condition for the scaling function <p{x) give the 

Kronecker-delta property: 

000 o(x-k) dx = xM   0(co) FI0U-A')] dm =8 ok ■     ke Z (3.1.6) 



"■)•) 

where 0 denotes the complex conjugate of 0. Using the property of the Fourier transform of a 

shifted function, the left hand side of Eq. (3.1.6) becomes: 

( 

4 
l7Z ] 

00c) 0(;c-*) dx = ^\.   #fl>) #o>) eia>k dco 

2*+n 

= X-M       <ttco)<p(oj)eicok<i<o = ^ I    (Xl*(fl»2*q J*'«*^      (3-L7> 

In deriving Eq. (3.1.7), the integral is subdivided into intervals [2nl,2n(l+l)] for /e Z. In 

obtaining Eq. (3.1.7), the periodicity condition e*™ = 1 has been employed. To satisfy the 

condition in Eq. (3.1.6), we need 

£ |0(üW-2ä/) = 1 (3.1.8) 

which is the orthogonality condition for a general scaling function <p(x). Since X |0(ß»2;rf)| * 1 

for arbitrary 0, the orthogonal scaling function 0 (fi)) is defined by: 

0  (G)) = 
0(0» (3.1.9) 

V^ |0(<2>f2;r/) 

Note that the normahzation factor in Eq. (3.1.9) can be expressed in terms of a Fourier series such 

that: 

-1/2 

V|0((u + 2/r/) 

-1/2 

-X«.«--. °.-£f ? \<j>(CO + 27tl) emadco (3.1.10a,b) 

Thus the orthogonal scaling function Eq. (3.1.9) becomes: 
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Mfi))3!^"^) (3.1.11) 

and since the right hand side of the above is a Fourier transform of a shifted function, Eq. (3.1.11) 

yields: 

0V) = X «„ <#*-«) (3-L12) 

3.2 Orthogonal Wavelet 

In order for y/*(x) to be an orthogonal wavelet for an orthogonal scaling function 0 (x), the 

inner product of y/*(x) and <p\x-k) must vanish. That is 

(v*,0*) = JV00 0V*) <*x = 0 (3.2.1) 

Similar to Eq. (3.1.1), W*(x) can be expressed as: 

V\X) = I fn <t>ln(x) = I fn ^ 0{2x - It) O-") 

/ 

where the f„ coefficients are to be determined. The Fourier transform of Eq. (3.2.2) is: 

where 

Using Parseval's identify and the property of the Fourier transform of a shifted function Eq. 

(3.1.8). the Fourier transform of Eq. (3.2.1) is given as: 

-L       y*(co)(p {(D)eikcodü) = 0 (3.2.5) 
2K I 
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The domain of the above integral is subdivided into intervals \2nl 2n(l+\)} and the integrals over 

these intervals summed. The left hand side of Eq. (3.2.5) becomes: 

£ A. y*(CD) (t> (co) e ikcoda) (3.2.6) 
In 

By substituting co = co- lid, Eq. (3.2.6) yields: 

-L^ I    J*(Q)"+2ff/)^ ((0+270) eik^a'+2^dco (3.2.7) 

Finally, using the periodicity of eia, i.e. eik™ = 1 and setting 0)= fl>', orthogonality gives: 

?<fi* £ yjr*(co+2nl) $ (co+2nl)dco = 0 (3.2.8) 

Hence 

£ \pr*(co+2nl) (p (co+2nl) = 0 (3.2.9) 

Substituting Eq. (3.2.3) and Eq. (3.1.4) into Eq. (3.2.9) yields: 

I mj(®+7d) mc(f+Kl) <p (f+7tty = 0 (3.2.10) 

From Eqs. (3.1.5) and (3.2.4), both m^co) and mc(co) are periodical over In. That is: 

= mc(f - 2K) = mc(f) = mM + 2/r) = • • •, etc. (3.2.11) 



Regrouping the sums for odd and even /, and using the orthogonality condition Eq. (3.1.10), and 

Eq. (3.2.11), Eq. (3.2.10) leads to: 

m/(G)')mc(<y) + mfico +7t)mc(co+7:)= 0 . where co' = ® (3.2.12) 

To solve Eq. (3.2.12), let Q)= (0 and assume m^co) = X(co) mc{o>+n). Eq. (3.2.12) becomes: 

X(co) mJM mc{o>¥K) + HaH-n)mc{GH-K) mc{(i»2n) = 0 (3.2.13) 

From the definition of mc{co), Eq. (3.1.5), we have mc{co) = mc(o»2n) and mc(co) mc{c^2n) * 0, 

so that Eq. (3.2.13) can be simplified as: 

A(o>) + A(öM- n) = 0 (3.2.14) 

The solution to Eq. (3.2.14) is: 

therefore 

m((CD) = ei<0mc(Q»n) (3.2.16) 

Employing Eq. (3.2.16) in Eq. (3.2.3), the Fourier transform of an orthogonal wavelet is: 

¥\co) = <) <P (f) = e"»12 mcmn) * {f) <3-2.17) 
"2'T x2 

Expanding mc{&+7t) via Eq. (3.1.5) yields: 

¥ \a) = J_ £ c; ei««n+* e'en J*(ffl) = ^ I c* **•* ^«-»-U* 0 (Ä) 

=iy.,: (-ir e-«*-»-^ 7(f)=^l C_x (-D-
1
 ,-»•« T(f)      c3.2-.1s) 
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With Eq. (3.1.3), the inverse Fourier transform of Eq. (3.2.18) gives: 

y(x) = fIy£c:nA(-ir
li(2x-n) (3.2.19) 

Once the coefficients c*n are determined, the orthogonal wavelet ¥*(x) can also be found by Eq. 

(3.2.19). Equating Eq. (3.2.2) to (3.2.19) gives: 

f; = d(-ir,   neZ (3.2.20) 

3.3 Derivation of Orthogonal Wavelets from a Scaling Function 

In order to derive an orthogonal wavelet from a scaling function, Eq. (3.1.9) is rewritten as: 

<p (0)) = 
<Ka>) 

V X |0(öM-2Äd 

= mcq) 
4% *(f+2»0| «f> 
Vxk0»2^ -yX ${®+2nl) 

2 2 2 
(3.3.1) 

In deriving Eq. (3.3.1), the expansion Eq. (3.1.4) is used to represent free) and the last term in 

Eq. (3.3.1) can be expressed as J*(f) by using Eq. (3.1.9). Hence a new m* for the orthogonal 

scaling function <p (co) can be defined as: 

m*(%-) = mcm 
v? *(f+2*/)| 

(3.3.2) 

Vl (f)(tm-2Kl) 

Substituting Eq. (3.1.5) into Eq. (3.3.2) yield the computational formula for mc*(^): 



m 
^ 

«H*?****)-)' 
<p{frlrtl) 

(3.3.3) 

J |0(fi>f2/rf) 

It is noted that for each scaling function fcx), the coefficients cn are given. To represent mc*(-|) via 

an expression similar to Eq. (3.1.5), a new set of coefficient dn is defined through: 

mc(f)=^ldne-^i2 (3-3.4) 

Once m*c{®) is given by Eq. (3.3.3), the Fourier coefficients dn appearing in Eq. (3.3.4) can be 

computed as: 

dn=±\    ftm?(co)e">Co'dco=±l  j^m* 
,fi> q>em1da> (3.3.5) 

With<f„ determined and using the expansion Eq. (3.1.1), for a given scaling function <P(x\ its 

orthogonal Scaling function is: 

f{x) = iJ ^ dn 0* (2x-n) (3.3.6) 

the corresponding orthogonal wavelet is (c.f. Eq. 3.2.19): 

¥ *(x) = i2jä{-ir
ld.n.i<!)*(2x-n) (3.3.7) 

Substituting Eq. (3.1.16) into Eq. (3.3.7), the relation between an orthogonal wavelet and a 

scaling function that satisfies Eq. (3.1.1) can be expressed as: 

¥ \x) = fl X ("IT1 d.„.x X a« 0Qx-m-n) (3.3.8) 

3.4 Construction Procedure 
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The following procedures are used to derive an orthogonal scaling function <p   and an 

orthogonal wavelet y/* from a scaling function 0. 

STEP 1: Choose 0 so that: 

1. <p(x) and (pico) to have a reasonable decay and a finite support. 

2. Eq. (3.1.1) is satisfied, that is c„ are given. 

<p(x) dx*0 
\ 

(3.4.1a) 

(3.4.1b) 

(3.4.1c) 

STEP 2:       Compute X \<P(G»2KI) 
i 

The coefficient, X |J(G»2ad , can be expressed in terms of a Fourier series such that: 

X \ka»2*f = X bne-^ ; ■ fc. = i |     X |*a»2*)Te<« </<» (3 A2a,b) 
2;r 

Note that the expression in Eq. (3.4.2a,b) is essentially the same as the last expression in Eq. 

(3.1.7). Therefore, Eq. (3.4.2a,b) is simplified: 

4 bn =      0{x) <p(x-k) dx 
(3.4.3) 

In general, at least (m+l)/2 Gauss points are needed for the numerical integration of Eq. (3.4.3), 

here m is the highest order of the product Q(x) <p(x-k) in Eq. (3.4.3). 

STEP 3:       Compute 1 : and coefficients an 

Vx WOH-IKI) 

Recall from Eq. (3.1.10a,b) r 

AJ X |</>(&H-27T/) 

'= = Jä ane-in{0; Un   In 
1 emCOdco    (3.4.4a,b) 

. 

Jl 0(0*2711) 
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It is noted that - V £ |0(öW-2ä/)   has been expressed in terms of bn via Eq. (3.4.2a,b). 

STEP 4: Construction of the orthogonal scaling function <p (x) 

From Eq. (3.1.12): 

</>*(*) = X a" #*"") (3.4.5) 

The a„ coefficients are in general nonzero in Eq. (3.1.10b). In order to keep only a few terms an, 

we choose rapidly decaying scaling functions so that only a finite number of terms is necessary. In 

other words a„ decays rapidly away from n = 0. Thus, we can neglect the high order coefficients 

a„. 

STEP 5: Compute mc{®) 

We employ the scaling function frx) that satisfies Eq. (3.1.1) with c„ given. From Eq. 

(3.1.5): 

r6>) = xy mc(®-)=iz2*Cne'"2 
(3.4.6) 

STEP 6: Compute m*(^) and the wavelet coefficients dn 

From Eq. (3.3.2) 

m*c{f) = mcq) 4% <Kf*-270) 

Jl J0(OM-2ä/) 

=iX<^" (3.4.7) 
T   VII; 

where d„ are the Fourier coefficients. They can be obtained via a Fourier series expansion: 

dn=^-\    -±=m?(f)e>™<2dü) 
2n I    V2.-,      -i 

(3.4.8) 

STEP 7: Construct the orthogonal wavelet y/*(x) 
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From Eq. (3.3.8) 

V\x) = VI X (-1)"1^-iX a- (pi^-m-n) (3-4-9) 
-n - 1 m 

Remark: Recall from Eq. (3.3.6): 

m-V   J   /n       N (3.4.10) 
0 w = vi X ^ 0 (2x""} 

n 

Substituting Eq. (3.1.12) into Eq. (3.4.10) yields an alternative way to construct the orthogonal 

scaling function: 

0*oo = vi X d«[X a« <K2*-m-") 
(3.4.11) 

It is noted that the construction of an orthogonal scaling function <p (x) by using Eq. (3.4.11) 

should be identical to that of using Eq. (3.4.5): 

* * 
STEP 8: Fourier Transform of <p (x) and if/ (x) 

From Eq. (3.1.9), the Fourier transform of the orthogonal scaling function is given by: 

Mo» — ,      **> = (X «eMm (3A12) 
2       V n i 

Jl !0(ß>f2Ä/) 
/ 

with a„ defmed in Eq. (3.1.10b), Similarly for Eq. (3.2.18), the Fourier transform of the 

orthogonal wavelet is: 

VMO» =iX *n-l (-1)-"'1 '-,'"B/2 ^(f} (3A13) 

Example 1. The Piece-wise Linear Spline Function 
To provMe a simple example, we choose (t> to be the piecewise linear spline function, 
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(l+jc     -1<JC<0 

0(x) = \l-x      0<x<\ 
\0       otherwise 

as plotted in Figure 3.1a. 

STEP 1: This function <PW satisfies [see Fig. 3.1a; Eq.(3.1.1)] 

0(x) = ^<2x-l) + 0(2*) + i#2x+l); c.i = ^, c0 = ^ ci = ^ 

Sr£P 2: From Eq. (3.4.3), b„ are computed as (two-point Gaussian integration is used): 

»-■=£■*• 4 »'-6 

Thus the normalization coefficient, Eq. (3.4.2a), is given as: 

X ftü»2;r/J2 = I *„«-««" = Jk'"* + f*° + ^i£a = f + 6 cos CD 

STEP 3: The orthogonal expansion coefficients an as defined in Eqs. (3.4.4a,b) are tabulated 

Table 3.1. ) _^____ 

in 

Ö] &_ 
1.29167549215928 

-0.174663234444464 

3.521011525921824E-02 

-7.874425129503932E-03 

Table 3.1 Orthogonal expansion coefficients 

Note that an = a.„. and the high order coefficients an are neglected. 

STEP 4: The orthogonal scaling function can be computed via Eq.(3.4.5). It is shown in Figure 

3.1b. 

STEPS: The computation of mc(y)- From Eq. (3.4.6) 
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^-xa_^+x+_W'f)=ki + cosffi>) (?) = ^S-,-7 = ^(^,'T + - + ^^) = j 

STEP 6: The computation of m*(f). From Eq. (3.4.7) 

V? 
m^) = m,(|)     j— 

^2nl\ 

\<t>(<m-27il) 

"2(i    c    2\rT7i 
V 3    6 COS CO 

The 

3.2. 

wavelet coefficients </„ can be computed according to Eq. (3.4.8) and they are given in Table 

0 0.8176464057010934 

0.3972970881341911 

-6.910098674164672E-02 

■5.194534808183847E-02 

1.697104789387069E-02 

9990595444183770E-03 

10 

-3.883262250905551E-03 

-2.201951238397208E-03 

9.233710054871564E-04 

5.116360226930585E-04 

-2.242963267262629E-04 

Table 3.2 Wavelet coefficients, dn for linear spline function 

Note that dn = d.n. The coefficients dn are nonzero for all n and the higher order coefficients are 

neglected. 

STEP 7: Using expression Eqs. (3.4.11), the orthogonal wavelet is shown in Figures 3.1c. 

STEP 8: The Founer transform of f(x) and yr\x). For the linear spline function 0(.x), the Fourier 

transform is given by (see Figure 3.1d): 



33 

<t>(co) = 
<s,„f 

(0 
\   2   / 

Thus the Fourier transforms of 0 (x) and y\x) are given by (see Fig.3.1e and 3.1f, respectively): 

'sin^2 

<p (co) = 

\   2 
yi + i-COSCD 7Z   " 

/sina\2 

 4 
0) i 4 rvFFf V 
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(e) 

(f) 

Figure 3.1 (a) The piecewise linear spline function, (b) the corresponding orthogonal scaling 

function , (c) the wavelet, (d) the Fourier transform of the linear spline function , (e) orthogonal 

scalins function, (f) orthogonal wavelet. 
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Example 2. High Order Spline Functions 
In this example, we present the various coefficients generated for the cubic spline and 5th 

order spline function (Tables 3.3 - 3.7). The spatial and Fourier transform space for the scaling 

function and wavelet are depicted in Figures 3.2 and 3.3. 
Comparing the frequency spectrum of the linear, cubic and 5th order orthogonal scaling 

functions and wavelets (Figs. 3.1e and 3.1f, Figs. 3.1e and 3.1f and Figs. 3.1e and 3.1f, 

respectively), it can be seen that the higher order scaling function approximates a rectangular low- 

pass filter, whereas the higher order wavelets have better high-pass filter properties. It is noted 

that, the "side-lobes" are decreased when the order of the spline increases. 

0{x) (cubic spline function) 

l(x + 2)3, -2<x<-l 

^-xHl+f, -1<*<0 
|-x2(l-|), 0<X<1 

zl (x - 2)3, 1 < x < 2 

<p(x) (5th order spline function) 

-i-(51 -15x- 210x2 -I50x3-45x4-5x5),   -2<x<-l 
120 

-L(33-30x2+15x4 + 5x5),  -l<x<0 
60 
J^(33-30x2+15x4-5x5),  0<x<l 
60 

-1—(51 +75JC- 210x2 + 150x3 - 45x4 + 5x5),   \<x<2 
120 v 

Table 3.3 The cubic and 5th order spline functions 

The coefficients c„ : 

0 

c„ (cubic spline function) 

0 

_8Ü_ 

2&_ 

4V7 

20. 

cn (5th order spline function) 
1 

32Ü- 
J_ 

16VT 
U5_ 

ML- 

_&2_ 

11. 

AtfL. 

Mfl 
Table 3.4 Coefficients c„ 
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The coefficients bn : 

-4 

-1 

0 

b„ (cubic spline function) 

0 

1.984126820776084E-04 

2.380952406175427E-02 

0.2363095229476177 

0.4793650806171007 

0.2363095229476177 

2.380952406175427E-02 

1.984126820776084E-04 

0 

b„ (5th order spline function) 

0.393925565271235 

0.243960287323605 

5.520202023558386E-02 

3.823878659712875E-03 

5.100609337337319E-05 

3.823878659712875E-03 

5.520202023558386E-02 

0.243960287323605 

0.393925565271235 

Table 3.5 Coefficients bn 

The orthogonal expansion coefficients a„ : 

0 

10 

gn (cubic spline function) 

1.96976165984483 

-.672430465527351 

.2687042287778821 

-.118519934970734 

5.519145833683330E-02 

-2.652033542024175E-02 

1.299816380236143E-02 

-6.457490594044601E-03 

3.239862395307044E-03 

-1.637775639515686E-03 

8.328359233600000E-04 

gn (5th order spline function) 

3.21252767040872 

-1.67129203556098 

.8693729316036274 

-.476253034889491 

.2724049771107151 

-.160669074515415 

9.681114156185701E-02 

-5.921982820667219E-02 

3.662439553866464E-02 

-2.283772914274113E-02 

1.433219729959393E-02 

Table 3.6 Orthogonal expansion coefficients 



The wavelet coefficients d„: 

37 

10 

dn (cubic spline function) 

0.7661300483768689 

0.4339226328986687 

-5.020171992889517E-02 

.11003701684689 

3.208089410823325E-02 

4.206834992601178E-02 

-1.717631339398893E-02 

-1.798231987132275E-02 

8.685293562579883E-03 

8.201476481521336E-03 • 

-4.353838725200284E-03 

dn (5th order spline function) 

.747233646354982T  

.442463060087634 

-3.701993636800858E-02 

.129268688614172 

2.947409035770669E-02 

6.131245571925825E-02 

-2.100611348868239E-02 

-3.2520O3030074334E-02 

1.400951847251998E-02 

1.820860315855871E-02 

-9.049154645280076E-03 

Table 3.7 Wavelet coefficients 



38 

0.75 

-0.25 
-2 -1 

«2x) 

0 

(a) (d) 

8 10 

Figure 3.2 (a) The cubic spline function, (b) the orthogonal scaling function, (c) the wavelet, (d) 

the Fourier transform of cubic spline function, (e) orthogonal scaling function, (f) orthogonal 

wavelet (e) 
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(a) (d) 

-6        -4        -2 

(C) 

Figure 3.3 (a) The 5th order spline function, (b) the orthogonal scaling function, (c) the wavelet, 

(d) the Fourier transform of 5th order spline function, (e) orthogonal scaling function, (f) 

orthogonal wavelet. 
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4. REPRODUCING KERNEL METHODS (RKM) 

4.1 Relations between Convolution and Reproducing Kernel Methods 

Given a sufficiently smooth function u(x), we wish to construct a window function 

<p{x) € Cn+\ which is also called a reproducing kernel, such that 

UR(X)=     (Kx-y)u(y)dy (4-L1) 

For computational efficiency, flx) is chosen so that it is non-zero only in a compact support, i.e. 

for every B(y), 

| > 0 x e B(y) 
<P(x-y) = [ 

\0     xeB(y) 

Equation (4.1.1) is can also be expressed as ä convolution integral, ie, ftx) * u(x) = u*(x). From 

the convolution theorem, the spatial convolution u*(x) is equivalent to a multiplication in the 

Fourier domain. 

a*(4) = «(0 5(D (4'L2) 

The physical meaning of the convolution Eq. (4.1.1) can not be explained clearly either verbally or 

pictorially. However, it becomes more transparent when we study its Fourier transform 

counterpart. 

In order to control the frequency/wave number content or the 'scale', we introduce a 

scaling parameter (dilation parameter or refinement parameter are other names) a > 0 so that Eq. 

(4.1.1) becomes 

uR'(x) = Pau{x)s [~<j)a(x-y)u(y)dy ^-L3) 

«■ J — ©o 

where the projection operator, Pa, is defined as: 
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— oo 

and a(y) = r*h(y) with r = 2j  (j = -oo,--,-2,-1,0,1,2,-•-,=<>) and fcfy) is the nodal spacing 
function. Based on the resolution of the projection operator, P^., a hierarchical representation ol 

the function u(x) is defined as 

u(x) =  lim Pvau(x) 3 ... Pau(x) z> P2au(x) ■=> PAauix) z>... => Bm Pyauix) = {0} (4.1.5) 

Now, we introduce a wavelet projection given by 

Q2au(x)= J Vi.u-y)«^)^   . (4-L6) 

where y2a{x - >') is the 2a scale wavelet. It is defined by 

, Viaix - y) = Ux - v) - <ha{x - y) {4AJ) 

f 

Rewriting Eq. (4.1.4) together with Eq. (4.1.7) yields 

PaU(x) =        [<t>a(x - y) - <Pla(x - v) + faa(x - y)]u(y) dy 

02a(x - y)u(y) dy + I   y2a(x - y)u(y) dy <Pia(x - y)u(y) dy + 

= P2au(x) + Qiauix) = PAOU{X) + Qtouix) + Q2au(x) = ... etc. (4.1.8) 

Equation (4.1.8) illustrates the framework of multiresolution analysis, which can be described by 

sequences of nested closed subspaces defined in Eq. (4.1.5). If a complementary projection 
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operator, Q2a, is defined as in Eq. (4.1.6), then the higher scale projected solution, Pau . can be 

represented by the sum of the next lower-level scaling projection and wavelet projection. The Qla 

projection can be viewed as a "peeled off scale or the "rate of variation" of Pau The wavelet 

projection Eq. (4.1.6) together with the recursive two-level decomposition Eq. (4.1.8) constitute 

the backbone of the wavelet RKM. 

4.2 Reproducing Kernel Method In One Dimension 

Reproducing Condition 

Consider the reproducing equation as: 

uR'(x) = \u(y)0a(x-y)d:. 
J — oo 

(4.2.1) 

The Taylor series expansion for u(y) about x is: 

1 7-  " u(y) = u(x)-(x-y)u(x) + — (x-y) u {x)+... 

+t}L{x.yru(^x) + t^ix-yr
lu^(x) (4-2.2) 

where x = x + 9(y - x) and 0 < 6 < 1. Substitute Eq. (4.2.2) into Eq. (4.2.1), which yields 

uR'(x) = u(x)mQ(a,x)-u (x)ml(a,x) + ^(x)m2(a,x) + .... 

+ (zlllu(")U)mn(fl^) + ^^M<"+1)(x)mn+1(a,x) (4-2.3) 
n! n\ 

where the kih moment of the window function is defined as: 

mk(a.x)= j{x-y)kJ>a(x-y)dy     k = 0, 1  n (4-2-4) 
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Apparently, if we want to reproduce uR° (x) correctly up to nth order, the following reproducing 

conditions need to be satisfied 

ma(a,x) = 80a a = 0, 1, 2,..., n (4.2.5) 

An arbitrary choice of a window function, however, can not guarantee the satisfaction of all the 

reproducing conditions Eq. (4.2.5). Therefore, we define a modified window function so that all 
the reproducing conditions can be satisfied. In general, this modified window function can be 

expressed as: 

n 

0a{x;x-y) = ^bk(a,x){x-yf<t>a{x-y) = PT{x-y)b(a,x)<l)a{x-y) 

k=0 

= Ca(x;x-y)<Pa(x-y) (4-2-6) 

where 

PT(x-y) = \l(x-y) (x-y)n (4.2.6a) 

and 

bT(a,x) = [b0(a,x)M^x\-A(^)} (4-16b) 

Note that a polynomial type vector is adopted to the basis function PT in Eq. (4.2.6a). However, 
it is not the only option for the basis function in RKM. In general, the basis function can be 
extended to any independent functions. The product of PT{x-y) and b{a,x), Ca{x;x-y), is 
called the correction function. The coefficients bk{a,x) are solved from the reproducing 

conditions. By this definition, the moments of the modified window function are written as 

mk (a,.x) =  Ux - yf(j)a(x;x - y)dy k = 0, 1, 2..., n 
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-foe 

= \(x-yf ^bj(a,x)(x-y)J$a(x-y) dv 

= b0(a,x)mk{a,x) + bl{a,x)mk+l{a,x)+...+bn{a,x)mk+n{a,x) (4.2.7) 

or in matrix form 

m{a,x) = M(a,x)b{a,x) 
(4.2.8) 

where M(a, x) is the moment matrix: 

M{a,x) 

rn^{a,x)     mx{a,x)     ■•■     mn(a,x) 

mx{a,x)     m2(a,x)     ■••    mn+l(a,x) 

mn{a,x)   mn+l(a,x)   ■■•    m2„(a,x)_ 

(4.2.9) 

To solve the coefficients bk(a.x), we apply the reproducing conditions Eq. (4.2.5) to the modified 

window function. That is, 

[m^{a,x)MM^\-Mn{a,x)]T = [l,0,-,0]r = PT(0) (4.2.10) 

Equations (4.2.8) and (4.2.10) give: 

M(a,x)Ha,x) = P(0) 
(4.2.11) 

Then, the coefficient vector b{a,x) can be obtained by: 

b(a.x) = M'\a.x)P(0) 
(4.2.12) 

Reproducing Conditions for the First Derivative 
The first derivative of the reproducing equation Eq. (4.2.1) is defined as: 

— uR>{x)= r "(v)—0a(x-y)dy= \u(y)Dl<t>a(x-y)dy 
d.x J-~        dx J-<~ 

(4.2.13) 
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Substituting Eq. (4.2.2) into Eq. (4.2.13) yields 

—-uR"(x) = u(x)m0A{a,x)-u (x)mu{a,x) 
dx 

+±^lm2l^x)+...+ {-^u^(x)mnA(a,x) 

+ 

where maA{a,x) is defined as: 

m„.i(fl,x)= \~x-y)aDxQa(x-y)dy a = 0, 1, 2,..., n (4.2.15) 

By examining Eq. (4.2.14), the reproducing conditions up to nth order for the first derivative are: 

maA(a,x) = -5al « = 0,1,2,...,« (4-2-16) 

In general, if we define the 7th derivative of the reproducing equation as: 

D7uR-(x) = \"u{y)D^a{x-y)dy (4-2-17) 
J — oo 

where 'ZT denotes a differential operator, then, the reproducing conditions for the 7th derivative 

can also be obtained: 

ma>,*) = (-l)aa!<5a7 <4.2.18) 

where 

mar/(a,x)='\lx-y)aD^a{x-y)dy (4-2-19) 
J—oo 
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Example 1: From Eq. (4.2.6), to reproduce the first derivative with up to second order accuracy, 

the modified window function is obtained in the form of: 

#a(x-x-y) = \b0(a,x) + bi(a,x){x-y) + b2(a,x){x-y)2]<pa{x-y) (4.2.20) 

Applying the modified window function to the reproducing condition for the derivative and 

by introducing the reproduction condition ma(a,x) = 80a yields: 

ir^ mx m2 m^ mx m2 

ml m2 w3 mj m2 m3 

m2    m3    m4    m2    m3    m4 

pol 
h 

"°1 b. 
= 0 

bo 0 
bi 

L.     —1 

L&2. 

(4.2.21) 

Combining Eq. (4.2.11) and Eq. (4.2.21) gives 

' M{a,x) 0 

M\a,x)    M{a,x) 

b{a,x) 

b (a,x) 

P(0) 

0 
(4.2.22) 

Taking the first derivative on both sides of Eq. (4.2.11), yields: 

M(a,x)b(a,x) + M{a,x)b(a,x) = 0 (4.2.23) 

This shows that the reproducing conditions for the first derivative can also be achieved by taking 

the derivative of the reproducing conditions directly. That is: 

m aA(a,x) = -Sl a\ 
Dl[M(a,x)b{a,x)] = DlP(0) (4.2.24) 

Recalling the reproducing conditions for the 7th derivative is given as: 

maJa,x) = {-\)aa\5ay 
(4.2.25) 

It can be shown that these conditions simply imply: 
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Drm(a,x) = Dr[M(a,x)b(a,x)] = 0 (4.2.26) 

4.3 Orthogonal Conditions for RKM 

We define a new correction function associated with the reproducing and orthogonality 

conditions for a discrete system with uniform spacing, as: 

Ca(x,xj) = ■ßo+ßl(^L) + ß2{lZlLf+...+ßN(^lLf (4.3.1) 

thus 

N=n+m 

<t> 
x - XJ ^ J.,X~XJ )"0(- (4.3.2) 

where V is the order of accuracy of the reproducing conditions and 'm' is the number of nodes 

covered by the support of the window function 4> A. Hence, a new set of coefficients ßa. need 

to be determined from both the reproducing and orthogonality conditions. 

Reproducing Conditions 

From Eq. (4.2.5), for ^(^Z^-) to reproduce the solution up to nth order requires: 

Oj 
j = 0, 1, .... n (4.3.3) 

;=o 

There are n+1 equations with n + m + l unknowns. In order to obtain a complete set of ßa (a - 

0, i n, n+1, .... n+m ), another m   equations can be acquired from the orthogonality 

conditions. 

Onhozonalin- Conditions for Scaling Function 
^ Instead of solving for the filter coefficients an, the same orthogonality conditions can be 

applied to solve the correction coefficients ßa. Furthermore, with the property of compact support 

for the window function, only the nodes covered by the support need to be considered in the 

oithoaonalitv condition. That is: 
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J <p*(x)<p*(x - k) = 80k 
(m-1) 

,.-    (m-1)       -10 1 
2 2 

(4.3.4) 

Substituting Eq. (4.3.2) into Eq. (4.3.4), yields: 

Vfl/    V    a    ) 
(4.3.5) 

where k 
(m-l)       _i o 1       ^m   ^   Note that Eq. (4.3.5) implies m equations. With a 

total of n+m+1 equations, an orthogonal window function can easily be obtained by solvin 

n+m+1 coefficients ßa. 

Next, we will introduce a new set of correction coefficients, ya, which enforce the original 

window function to satisfy the wavelet orthogonality conditions. An orthogonal wavelet function 

with correction coefficients  ya is defined as: 

*i*Z2LL\- V (r ) = 7o + 7i (£Z£l)+y2(±_^)2
+... + Ym( 

X       Xj NW 0( 
X-Xj 

) (4.3.6) 

where k 

support 

(m-l)       _! o 1       (m    ^ and *m' is the number of nodes covered by the 
2           2 

of the window function 0(-). Again, these coefficients  ya can be solved from 

orthogonality conditions for the wavelet. 

Orthogonality Condition for Wavelets 
The requirement for an orthogonality between wavelet functions and scaling functions is: 

7              *               ~           ,        (m-l)          , n , 
y/ U)0 U-*) = 0 * = — -1.0-1  

(m-l) (4.3.7) 

Substituting the definitions of y/*U) and 0*(x-k) into Eq. (4.3.7), yields: 
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i=0    j=0 
«fM^) dx = 0 (4.3.8) 

Where fc = -(m~1)       -1,0,1,...,(m   ^- Note that Eq. (4.3.8) also implies m   equations. 
2 2 

Finally, to accomplish the orthogonality of the window function and wavelet function, the 
determination of the coefficients ya and ßa is necessary. Although the coefficients ya are 

entangled with ßa in Eq. (4.3.8), they can be treated as a set of linear equations once./?« is 

obtained. However, it is still difficult to obtain closed-form solutions for ßa with a set of non- 

linear equations, Eq. (4.3.5). A numerical solution will be the possible choice for obtaining these 

coefficients. 

4.4 Two Dimensional (2D) RKM 

By a direct extension from one dimension, a general 2D window function is defined as: 

<M*)s<*Wo(*i'*2) (4.4.1) 

A special 2D window function can be represented by the product of ID window functions. Thus, 

<M*) = *(aB.a„ )(*!• *2> = K ^K (*2> (4A2) 

The basis function for 2D is given in the form of: 

Pr(x) = [l,P1
r(x),P2

r(x),...,Ft
7'(*)] (4.4.3) 

where 

P (x) = xx,xl    x2. .,XxX
k

2 -..!] lab. order polynomials (4.4.4) 

Reproducing Conditions in 2D 
The reproducing equation for 2D is now defined as: 
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uR°(x)=\u{y)&a(x-y)dy 
J — oo 

Substituting a 2D Taylor series expansion into Eq. (4.4.5) yields: 

u
R.(x) = mw(a,x)u(x)-[ml0(a,x)uxl(x) + mQl(a,x)uX2(x)] 

(4.4.5) 

+ ^(a'*)$+2mil(0'I,Ä+m°2<a'x)4 
(-1)" + -——mu{a,x) 

d       d 
• + ■ 

(-1)"+1 

«(*) +        „,mij{a,x) 
dxx    dx2\ (« + D! 

u(x) + 

JL + JL 
dx{     dx2 

n+\ 

u(x) (4.4.6) 

where a 2D moment equation is defined as: 

00 

mu(a,xl,x2)= J (xl-yl)
I(x2-y2)

J&a(x-y)dy 0<I,J<k (4.4.7) 

From Eq. (44.6), it can be seen that to reproduce the solution correctly up to «th order in 2D, the 

reproducing conditions require that: 

(4.4.8) 
u (a,x) - 5QI80j 0 < /, J < n 

To satisfy the reproducing conditions, the modified window function for 2D is assumed to be: 

&a(x) = [PT(x-y)Ha,x)]<Pa(x) (4A9) 

where 

b{a,x)T =[b00(a)x\blo(a,x\bol(a,x),...,bno(a,x) b0n{a,xj] (4AA0) 

Then, the moments of the modified window function in 2D.are denoted as: 
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mjj{a,x)= f (xl-y1)
I(x2-y2)

J[PT(x-y)b(a,x)]0a(x-y)dy 

\ (xl-y1)
I(x2-y2)

J ^ {xl-yl)
r{x2-y2)

sbrs{a,^ *B(x-j)rfy 

n 

x)brs(a,x) p = r + Iandq = s + J 

r,s=0 

or in matrix notation: 

(4.4.11) 

m(a,x) = M(a,x)b(a,x) (4.4.12) 

where M{a,x) is the moment matrix in 2D, thus: 

M(a,x) = 

rriQQ m10 >"oi 

m10 m20 mu 

moi    mn   . m^2 

■■■   mnQ 

m. nO 

"»On     mln     ^0 n+1 

«0« 

™0 2n 

(4.4.13) 

Enforcing the reproducing conditions Eq. (4.4.8) on Eq. (4.4.11) yields: 

M(a,x)b(a,x) = P(0) (4.4.14) 

Then, the coefficient vector b{a,x) can be computed by matrix inversion 

b(a,x) = M-Ha,x)P(0) 
(4.4.15) 
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4.5 Multi-Dimensional RKM 

To present RKM in multiple dimensions, multi-index notation is adopted. 

Multi-index Notation 
We will use mulü-index notation in the following, a (a = [ax,a2,- ■ aN]) is a multi-index 

if a, (/ = 1,2,- • -N) are non-negative integers with the following properties for this multi-index a: 

N 
(4.5.1a) 

l«l = Xa< 
i=i 

Ü a^ax\a2\-aN\ ^4.5.1b) 

We then define two symbols 

ffi x" * x? x? - xfr (4-5-lc) 

iv D»u(x) = d«i%-d%u{x) (4"5-ld) 

With this multi-index notation, the Taylor series expansion in terms of degree n followed by a 

remainder can be written as: 

"00= Y  {-=^D%(x)(x-y)a
+  X ^D^ixXx-yf 

l^o    a- N-+i (4-5.2) 

To understand how this multi-index notation works for the Taylor series expansion, a 3D example 

is shown next. 

Example 1. 3D Taylor's formula using the multi-index notation. 

In 3D. the properties for multi-index notation are ( Eq.(4.5.1)): 

(4.5.3a) 
|a| = -et, + CC2 + CC3 

a! = a,! a,! a?! ,     l/¥ . (4.5.3b) 



in 

iv Dau(x) = dy^;d^u(x) 
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(4.5.3c) 

(4.5.3d) 

Table 5.1 lists all the parameter values for the multi-index and shows how this multi-index notation 

works for 3D Taylor's formula. 

M "i a2 «3 a\ (x-y)a Dau(x) 
k 

/ ■»   a! 
|a|-0 

o 0 n 0 1 1 u(x-) u(x) 

l 1 

0 

0 

0 

l 

0 

0 

0 

1 

1 

1 

1 

(*i-yi) 

(x2 -y2) 

U3-.V3) 

dx u(x) 

dx^u(x)   . 

-(Xi-y^d^Mx) 

-(x2-y2)dX2Mx) 

-(x3-yi)dx>u{x) 

2 2 0 0 2 (*i-y,)2 dlu(x) 
"*1 

{[(*i-.vi)2^ 

0 2 0 2 (x2-y2f d^u(x) +( x; - V; )" <?;, 

0 0 2 2 U3-.V3)2 dxMx) +(^3-.v3)2<?2, 

1 1 0 1 Ui->'i)(*2->':> d^uix) +2(j:1->'1)(A:2-y;)(?Ii<?X: 

0 1 1 1 (*2-:y2X*3->'3> 
d^d^uix) +2(A:;-y:)(A:3-V3)ö';t:<?Xj 

1 0 1 1 (JCj - Vj)(X3 - >>3 ) dXid^u(x) +2(x, -y, )(.t3 -y3 )<?,,<?*, ]«(*) 

3 3 0 6 6 (*i-yi)3 d\u(x) -^-yo'dl 

0 3 0 6 (*2-.v2)3 .d\u(x) +(x2-y2)
3dl 

0 0 3 6 (*3-y3>3 d\u(x) +(*3-v3)
3<?3

j 

2 1 0 2 (xl-ylf(x2-y2) d;tdx,u{x) +3(xl-y1)
2(x2-y2)d;tdX2 

.2 0 1 2 (.r1-y1)
2(.t3-y3) dldxu{x) +3(-r1-yi)2(-t3-v3)52^. 

1 2 0 2 (*i-.vi)(*2-:y2): dxdiu(x) +3(jc,-yi)(.v:-y:)
:^i^

2
: 

0 2 1 2 (^2-y2)2(-r3_>'3) dl d, Mx) +3(.T;-y:)
2(*3-y3)<?2

;A! 

0 1 2 2 (x2-y2)(x3-y^)2 dx dl u{x) +3(x2 - y2 )(*3 - y3 )" dXzd^ 

1 0 2 2 (.vj — y, )(.v3 - v3 )2 dxfiu(x) +3(.T,-y1)(*3 -V3)2 dxd^ 

1 1 1 1 (xi-yO(x2-y2)(x3-yi) d^d^Mx) +6(xl -y, ){x2 -y2 )U3 -y3 )dxdx,dXi j" Jf) 

Table 5.1 Terms in 3D Taylors Formula in multi-index notation 

Multi-Dimensional RKM 

The eeneral window function for N dimensions is defined as: 



<M*)S<V^-----^)UI,*2'''',XN) 

Assume an iV-dimensional, «-order, /-components basis function is given as: 

PT(X) = [I,PI(X),PUX),...,PZ(X)] 

where 

PT
n{x) = [x^x^xi,.-, xN_xx

n
N-\xs 

Reproducing Conditions in N-Dimensions 

The reproducing equation for multiple dimensions are: 
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(4.5.4) 

(4.5.5) 

(4.5.6) 

uK{x)= \u(y)<Pa(x-y)dy 
(4.5.7) 

Substitution of Eq. (4.5.2) into Eq. (4.5.7) by using the modified window function &a(*;* - y) 

gives: 

uR'(x)=Y  dau(x)ma(a,x)+   ^ dau{x)ma{a,x) 
(4.5.8) 

l«l=o \a\=n+\ 

(-1)" 
where a is a multi-index, dau(x) = —-Dau{x) and 

ma{a,x) = f   (x -yf&a(x -y)dy 

The a moment of the modified window function ®a (x;x - v) satisfies: 

ma(a,x) = 80a 

From previous analysis, the reproducing conditions in Eq. (4.5.10) imply 

(4.5.9) 

(4.5.10) 
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M{a, x)b(a, x) = P(0) (4.5.11) 

wherj M{a,x) consists of moments of the window function of &a(x;x - v), that is: 

M(a,x) = 

Mw Ml0 
M20    • •   Mn0 

Mox M„ Mnl 

M02 

MQn   Mln         Mn 

(4.5.12) 

and the components of the moment matrix are: 

Maß(a,x)= f"\x-yf^a{x;x-y){x-yfdy        0 < \a\, \ß\ < k (4.5.13) 

where both a and ß are multi-indices. 

Reproducing Conditions of Derivatives in N-Dimensions 
Extending the ID analysis, the reproducing conditions of the yth derivative for N 

dimensions are given by: 

ma.y(a, x) = (-If a\Sya 
(4.5.14) 

These conditions imply: 

Dr[M(a,x)b(a,x)] = D7[P(0)] (4.5.15a) 

or in the matrix form: 

"     M 0 0 0 ' b ' 'P(O) 

DM M 0 Db 0 

D2M 2 DM M 0 D2b = 0 

C°fD
7M C\D7~XM ■   C]M Drb_ 0 

(4.5.15b) 



56 

where    C?= —^—       lm-O.U.-.r> <4'5J6) 

'      (y-m)!m! 

5. REPRODUCING KERNEL PARTICLE METHODS (RKPM) 

The reproducing kernel particle method (RKPM) is the discrete form of RKM. For the 

discrete system, the reproducing conditions can be obtained following an extension of the 

procedure developed in the continuous case. 

5.1 Reproducing Kernel Particle Method In One Dimension 

Reproducing Condition 
The reproducing equation in the discrete system is given as: 

np 

(5.1.1) 
UR° (X) = V u(Xj)0a(x " XJ)AXJ 

;=i 

where np is the number of the particles in the discrete system. We, then, define the numerical 

moments of the window function as: 

np 

ffik(a,x)^(x-Xj)k0a(x-Xj)Axj k = 0,h...,n (5.1.2) 

Recall from Eq. (4.2.3), to reproduce uR' (x) exactly up to «th order, we require: 

ma{a,x) = 80a « = 0,1,2  n (5-L3) 

To saüsfy the reproducing conditions Eq. (5.1.3), a modified window function in the discrete 

system is assumed to be in the form of: 

k=0 
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= Ca(x;x-Xj)<l)a(x-Xj) (5.1.4) 

The basis function PT in Eq. (5.1.4) is chosen as a polynomial type vector. The coefficients 
bk(a,x) can be solved by applying the modified window function to the reproducing condition. 

That is: 

M(a,x)b(a,x) = P(0) (5.1.5) 

where M(a,x) is the numerical moment matrix: 

M(a,x) = 

m^{a,x)     mx{a,x) 

rhi{a,x)     rrv2.(a,x) 

mn(a,x) 

mn+l(a,x) 

m„(a,x)   mn+l(a,x)   •••    m2n(a,x)_ 

np 

= ^P[x-xj)<l>a(x-Xj)PT(x-Xj)tej 

7=1 

Then, the coefficient vector b(a,x) can be obtained: 

(5.1.6) 

b(a,x) = M~\a,x)P{0) (5.1.7) 

This RKPM can be viewed as a modified convolution formula for a finite domain and 

nonuniformly sampled system. The modified window function, Qa(x;x-Xj), is the low-pass 

filter for this finite domain, which can be viewed as a nonuniformly sampled system. In 

computational mechanics, we use this to define the shape function, such that 

Nj{x) = Ca(x,Xj)0a(x - XJ)AX shape function (5.1.8) 

np 

and       uR(x) = ^u(Xj)Nj(x) reconstruction (5.1.9) 
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Reproducing Conditions for the Derivative 
The 7th derivative of the discrete reproducing equation is defined as: 

np 

DruR" (x) = V u(xj )Dy(pa (x - xj )&xj (5.1.10) 

;=i 

where '£>' denotes a differential operator, then, the reproducing conditions for the 7th derivative 

can also be obtained: 

m aJa,x) = (-lfa\8l ay 
(5.1.11) 

where 

np 

ma.7(a,x) = ^ (x-Xj^D^aix-x^Axj (5.1.12) 

;=i 

£;tamp/e 7: From Eq. (5.1.4), to reproduce the first derivative up to the first order accuracy, the 

modified window function is assumed to be in the form of: 

<Pa(x;x-xj) = [b0(a,x) + bl(a,x)(x-Xj)]<pa(x-xJ) (5.1.13) 

Enforcing the reproducing conditions fha{a,x) = 80a and the reproducing condition for the 

derivative maA(a,x) = -8al on the modified window function yields: 

V 
mo /??! m0 '»l h _ "0 

/??! m2 mx m2 bo 

,b\_ 

L° 
(5.1.14) 

or in the matrix form 

M {a.x)b{a,x) + M{a,x)b (a,x) = 0 (5.1.15) 
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From Eq. (5.1.15), it can be seen that the reproducing conditions for the first derivative can also be 

obtained directly by taking the derivative of the reproducing conditions. That is: 

Dl[M(a,x)b(a,x)} = DlP(0) <5-L16) 

5.4 Two Dimensional (2D) RKPM 

The RKPM can be easily extended to multiple dimensions. A general 2D window function 

is assumed of the form: 

^  ,   s     ^ ,       ^ (5.2.1) 
<M*)s4>(flj.fl) )(*,>') 

The basis function for 2D is given in the form of: 

PT(x) = [l, Pl(x), PT
2{X) Pjf (*)] (5-12) 

where 

"(X) _ \x
k,xk~xy xyk~\ yk] kth order polynomials pT,^_\j „*-i„       „,*-! v*l jfcthorderDolvnomials (5.2.3) 

Reproducing Conditions in 2D 
The reproducing equation for 2D is now defined as: 

np 

uR°(x) = ^S\u(Xj)&a(x-Xj)AxJ 

where Ax; denotes thejth nodal area. The moment in 2D is defined as: 

np 

mu(a,x. y) = ^ (* - Xj)'(v - y/ *a{x-Xj)&Xj 0<LJ<k 

j=i 

(5.2.4) 

(5.2.5) 

where k = 0,1..... «.From Eq. (4.4.6), it can be shown that to reproduce the solution correctly 

up to /?th order in 2D, the reproducing conditions are in the form: 



m/y(fl,x) = t5o/<50y 0 </,/<« 

The modified window function for 2D is assumed to be: 

O^x-x^^ix-XjMa^O^x-Xj) 
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(5.2.6) 

(5.2.7) 

where 

b{a,x)T = [boo(a,x), k0(a,x), bQl{a,x) bn0{a,x) b0n(a,x)] 

Enforcing the reproducing conditions Eq. (5.2.6) on the modified window function yields: 

M(a,x)b(a,x) = P(0) 

where M{a,x), the numerical moment matrix in 2D, is given as: 

(5.2.8) 

(5.2.9) 

M(d,x) = 

% ™io '"oi 

m10 m20 mn 

r%\ mn mo2 

m„0       : : 

"hn ™\n ™0n+l 

ihln 

™02* 

(5.2.10) 

Then, the coefficient vector b(a,x) can be computed by matrix inversion 

b{a,x) = M-l(a,x)P(0) 
(5.2.11) 

Reproducing Conditions for Derivative in 2D 

Extending the ID analysis, the reproducing conditions of 7th derivative for 2D are: 

"P 

V    (.v_.ty.)«.(_v-yp0^r>^*a(X-*;-)AX;-=(-l)0l+tt:ai! «2:00,7, 5«27: 
(5.2.12) 

l=\ 
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Following the same procedures in Examples 5.1, it can be shown that the reproducing conditions 

in Eq. (5.2.12) simply imply: 

Dym{a, x) = Dr[M(a, x)b(a, x)] <5-2-13) 

5.5 Three-Dimensional (3D) RKPM 

The general window function for three dimensions is defined as: 

<Pa(x) = <P{ai,ay,a:)(x,y,z) 

A basis function is given in the form: 

(5.3.1) 

PT(x) = lPlix\PJ(x),...,PT
n(x)} <5-3-2) 

Pi 

here   P[(x)  are  complete  polynomials  of order  k. For   example,   Px{x)-[x,y,z], 

(x) = [x2,y2,z2,xy,xz,yz\, ..., etc. 

/ 

Reproducing Conditions for 3D 
Recall from 2D case, the reproducing equation for 3D is given as: 

uR°(x) = \u(xJ)<Pa(x-Xj)AxJ 
(5.3.3) 

where Ax; denotes the;th nodal volume. The moment in 3D is defined as: 

np 

m1JK(a,x, y. z) = ^ (x-xjiy-yj)
J(z-Zjf*a{x -Xj)Axj 

Recall Eq. (4.5.10), the reproducing conditions are in the form: 

m1JK(a.x) = 80IöQjö0K 

(5.3.4) 

(5.3.5) 
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From previous analysis, the reproducing conditions in Eq. (5.3.5) imply 

M{a, x)b(a, x) = P(0) 
(5.3.6) 

where the moment matrix M(a,x) for 3D is given by: 

M(a,x) = 

^00 MIO M2o   ■ ■■   MnQ 

Moi Mn MnX 

M02 

M0n    Mln ■■■   M„ 

(5.3.7) 

and the components of the numerical moment matrix are: 

np 

Maß(a,x) = ]T  (x -Xjf0a(x-x -Xj)(x-x/Axj       0 < \a\, \ß\ < k 

7=1 

(5.3.8) 

where both a and ß are multi-indices. 

Reproducing Conditions of Derivative for 3 D 
From 2D analysis and with the help of multi-index notation, the reproducing conditions of 

the yih derivative for 3D are given by: 

fna 7(a,x) = (-l)aa\8ya 
(5.3.9) 

These conditions imply: 

D1 M(a,x)b(a,x)] = D7[P(0)] (5.3.10) 

or in the matrix form: 



M 

DM 

D2M 

0 0 

M 

2 DM       M 

C?,D7M    C\D'-XM 

0 ' b ~P(0)~ 

0 Db 0 

0 D2b - 0 

1{M D''b_ 0 

w here    C" = r- 
ui {y-m)\m 

(m = 0.1,2,---,y) 

The 3D computational aspect are given in Appendix A. 

6. REPRODUCING KERNEL PARTICLE METHODS 

IN FOURIER SPACE 

6.1  Preliminary 
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(5.3.11 

(5.3.12) 

From the Fourier analysis, the convolutions of polynomials of order zero (1), one (.x) and 

two (x2) with a window function can be expressed as 

jÜa{x-y)dy = m (6.1.1) 

L.<t>a{x-y)dy = xQ(0)-ia4>'{0) = x4>a(0)-ifc(Q) 
(6.1.2) 

f v2 (l>a{x - y)dy = *2<H0) - ilaxp(0) - a2f (0) 

= x20a(O)-/24;(O)-C(O) 

where  <j)(n)(0) is the nth derivative of ${£) evaluated at x=0 

(6.1.3) 

By induction, the convolution of a polynomial of order n with a window function is given as 
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7v" -0(x - y)dy = f(-i)kC^-ka^k)(0) = ^Hf ^0^(0) 

and 

C = 
(6.1.5) 

(n-k)\k\ 

6.2 Reproducing Conditions 

In order to reproduce the polynomials correctly, several requirements of the window 

function need to be established in the Fourier transform domain (£): 

1. To reproduce [1], we need 0(0) = 1. 
2 To reproduce [1,*], we need  0(0) = land 0'(O) = O. (6.2.6b) 

3. To reproduce [1, *, **], we need 0(0) = 1, #'(0) = 0 and 0"(O) = 0. (6.2.6c) 

Generalizing these reproducing conditions to nth order polynomials yields : 

To reproduce [1, x , *»], we need 0(0) = 1 and 0(fc)(O) = 0 for k e [In]. (6.2.7) 

These reproducing conditions set a constraint on the selection of a window function. The higher 
the order of polynomial requested, the flatter the window function must be at £=0 in the Fourier 

transform domain. Accordingly, an ideal low-pass-filter window function (a window function 

with all the derivatives equal to zero at £=0) would reproduce a polynomial of arbitrary order. 

6.3 Reproducing Conditions in Terms of Window Function Moments 

In our research, we are not interested in selecting a window which reproduces a given 

function, but in designing the window to have certain filtering properties. Therefore, an equivalent 

expression of the reproducing conditions is needed in the function domain (x). First of all, let us 

define the moments of the window function as 



mk 
<a^x} -  f (x _ yf(pa(x - y)d\      kth moment of window function 

The convolutions defined by moments of a window function are given as 

+00 
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(6.3.1) 

(6.3.2) 

(6.3.3) 

+00 

\l-Qa{x-y)dy = mQ(a,x) 

—00 

+ 00 +c» 

f v -<t>a{x - y)dy = \[x - {x - y)] ■&(* ~ y)äy = xmo(a,x) - mx{a,x) 

—00 °° 

f y2 -</>a(x - y)dy = \[x2 - 2x{x - y) + {x - yf\ -0fl(x - y)dy 

= x2m<i(a,x)-2xml(a,x) + m2{a,x) (6-3.4) 

To summarize, the convolution of an nth order polynomial is of the form 

\yn-<Pa{x-y)dy^{-VkCn
kx

n-krnkM <6-3-5) 

From Eq.(6.3.5), reproducing conditions similar to Eqs. (6.2.7) can be derived 

1. To reproduce [1] we need mo(a,x) = 1. (6.3.6a) 

2. To reproduce [1, JC] we need mo (a,*) = 1 and mx(a,x) = 0. (6.3.6b) 

3. To reproduce [1, x, x2] we need mo(a,x) = 1, mx{a,x) = 0 and rn^a,*) = 0 (6.3.6c) 

In general, the reproducing conditions for the nth order polynomial in the form of moments are 

given as 

To reproduce [1, x , xn] we need mo(a,*) = 1 and mk{a,x) = 0 for * e [l,/i] (6.3.7) 
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Eq.(6.2.7) and Eq.(6.3.7) can be related by the moment equations 

w 

mk 

here / = v-1 • 

Ax) = l*ak0{k)(O) = ik0(
a
k)(O) for ke[0,n] (6'3"8) 

For most problems, we may obtain a better physical interpretation of the results in the 

Fourier transform domain (|) than in the function domain (*). But to avoid time consuming 

computations which may involve transforms and inverse transforms, the real computation should 

be carried out in the function domain (x) only. For the reproducing conditions, Eq.(6.3.8) is the 

link between the function domain (x) and the Founer transform domain ($. The question of how 

to design a window function in the Fourier transform domain ($ and perform the computation in 

the function domain (x) is the topic of the next section. 

6.4 Design of a Reproducing Kernel Window 

Modified Window Function in the Fourier Transform Domain 
A given window function may not satisfy the reproducing conditions and we have few 

clues to find a cure in the function domain (*). However, if we turn our attention to the^Founer 

transform domain (0, we can realize that we can define a modified window function, 4>a{$) or 

^(a^), as a linear combination of the original window function, *B(£) or 0(a|), and its first and 

second derivatives, etc. That is; 

fc(«)-i%*.«)+».«;«)*--«^J"K)-X^?'(*) (6Ala) 
k=0 

or 

M) = «o* W)+<WKH- • ■+«X^")K)=5>fl**(*} W) (6A lb) 

k=0 

Now the process to satisfy the reproducing conditions for the modified window function is 

reduced to determining the proper coefficients a*, i.e. 
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0(0) 

0'(O) 

0{n)(O) 

0(0) 
0'(O) 

a0'(O) 

fl0"(O) fln0("+1,(O) 

^«>(0)   a0("+1)(O)   •••    fl',0l2",(O)J 

r«o" ~1~ 

«i 0 

0 

L«n. _0_ 

(6.4.: 

Therefore 

a0 0(0)        af(0) 

0'(O)       flf'(O) 

aniw{0) ' 

a>("+1)(0) 

-l 

^W(O)   a^(n+1)(0)   •••    fl^(2n)(0). 

(6.4.3) 

Modified Window in the Function Domain 
The modified window function can be derived in the function domain without applying the inverse 
Fourier transform. Since the reproducing conditions apply at §=0. an equivalent expression can be 

derived in the function domain (x) by applying the moment equation defined in Eq.(6.3.8). such 

that 

t(0) = ^aka
kfrk)(0)=£akr

k 
-t-oo 

j{x-y)k0a(x-y)dy 

r ~1      +co 

= f  Ydakr
k{x-y)k0a{x-y)dy = fa(x-y)dy 

where ${•) is the modified window function defined in the function domain (x) 

n 

^(*-y) = £a*r*(*-y)*0a(*-y) 
k=0 

In general, this modified window function can be expanded in the form of 

(6.4.4) 

(6.4.5) 

^a{x;x-y) = ßo{a,x)(t>a{x-y) + ßl{a,x){x-y)0a{x-y)+-- 
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+ßn(a,x){x-y)n0a(x-y) 

n 

= ^k(^x)(x-y)kd)a(x-y) (6.4.6) 

k=0 

where the coefficients/^,*) are associated with the coefficients ak in the Fourier transform 

domain (|). 

List of Modified Window Functions 
The proper choice of a window function, which satisfies the reproducing conditions up to 

the order of polynomial we desire, will make the correction function equal to one. A list ol 
modified wmdow functions, labeled as tf{x), with the capability to reproduce the [/, x, x ] basis 

without a correction function, i.e. Ca(x^-y)=l, follow: 

(6.4.7a) 

(6.4.7b) 

(6.4.7c) 

(6.4.7d) 

(6.4.7e) 

The list of modified functions for the [l,x, x^,x*\ basis, fä(x), is also given: 

Gaussian H¥)2] <Pai x-y) 

Box function: j-'M} >ai*-y) 

Hat function: 
"l2    30fx-yf 

7      7 V   a   ) 
<pa(

x~y) 

Quadratic spline: 
\n_5(x-y^ 

8     2\   a   ) _ 
Qa(x-y) 

Cubic spline: 
"27    30 (JC- 

17    171   a 

\1 
<t>aix-y) 

Gaussian 

Box function: 

8     l{   a   )     2\   a   ) 

225    525 (x-yf    945(x-y 

<t>aix-y) 

64       8 V   a   J 41   fl 
<Paix-y) 

(6.4.8a) 

(6.4.8b) 
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Hat function: 

Quadratic spline: 

Cubic spline: 

1635    10500 f.v-yf    l}™(±Zl)* 
683  I   a 683       683 I   a 

144785    66675 f x-y 
2    20685fx-vx4 

+ ■ 
65216  8152 V a   J      4076 I a 

170010 _ 429450 (*zlf  , 178290 ^.r-y^4 

80347  80347 I a   )      80347 V a 

<t>a{x-y) 

0a{x-y) 

(6.4.8c) 

(6.4.8d) 

(6.4.8e) 

Based on the Fourier analysis, an example comparing a RKPM window function with its 

corresponding wavelet function and an orthogonal scaling function with its orthogonal wavelet 

function obtained from section 3 are shown in Figure 6.1. A cubic spline function is. used in this 

example. 



-A) 

Figure 6.1 Cubic spline function and different modifications in space and Fourier domains 
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In the frequency domain, the orthogonal scaling function 0{q) serves as a better low-pass 

filter than the modified window functions, $2($) and 04(;). However, the orthogonal scaling 

function contains more sidelobes in the frequency domain. On the other hand, the orthogonal 

wavelet function **($) is shown as a band-pass filter in the high frequency region with a 

sidelobe With the same frequency range as the orthogonal wavelet function, the modified wavelet 

functions, f2(£) and ?4(§). also serve as band-pass filters but are shifted back trom the high 

frequency range without any sidelobe. 

6.5 Boundary Effects from Finite Domain 

When applying the convolution formula in a finite domain, a boundary correction technique 

is needed. Since the convolution formula uses the values of the neighboring points under the 

support of window function to reproduce the function at a given point, neglecting the values of the 

function outside the finite domain will cause error. This end-effect can be fixed by enforcing the 

reproducing conditions in the finite domain. The correction functions change shape when the 

window function approaches the boundary, compensating for the boundary in the reproducing 

procedure: Combining the correction function and the window function as the kernel function, 

RKM is given as a form of a finite domain convolution 

uR(x) = ju(y)Ca(x;x,y)<pa{x - y)dy = ju(y)$a{x;x - y)dy (6-5.1) 

n 

where $a{x-x - y) = Ca(x;x - y)<l>a{x - y) is the kernel function. 

6.6 Consequence of Discretization 

Fourier Analysis 
The reproducing kernel particle method (RKPM) is the discrete form of RKM. The 

reproducing conditions and the criterion to derive the correction function are different from the 

forms in the continuous system. As in the continuous case, we will first investigate these 

conditions in the Fourier transform domain. We start our investigation with uniform sampling. For 

uniform sampling, choose 

Axj = Ax and Xj =nAx je Z = [•••,-1,0,1,-••] (6.6.1) 
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The discrete convolution and its equivalent expression is given as 

/ 2m/rx" 

£i-*.(*-*>-X*.(i-fra* J^(o)+(AP£r)o 
(6.6.2) 

HIT/*"   -™v'^™"'0 
meZ 

where APET stands for the amplitude and phase error terms and it is in the form of 

(2mnx> 

<"«% = I ♦•fir)'1      ZM---.-2.-U2H--/U/       <6-63> 

meZ' 

Note that, the leading term of Eq. (6.6.2) is identical to that of the continuous form. The (APET)0 

is the additional error introduced by the discretization procedure. 

The reproducing condition for linear function gives 

]TXj ■ <pa(x - Xj)te = x0a(O)- ifc(O) + x(APET)0 - i{APET\ (6.6.5) 

j=- 

where 
'2ntJtx\ 

meZ± 

Similarly, the discrete convolution of a quadratic function {x2) is given as 

Y^x) ■ <t>a(x- XJYX = x2iM-ixiW) + a^'M 
j = -r~ 

+x2(APET)0 -ix(APET\ + (APET)2 (6-6-6) 

where 



(APETh = X «Kf} 
mJCf. \ 

2m7z\ l\~CT) (6.6.'        V   Ax   i 

meZ' 

By induction, the reproducing formula for an nth order polynomial yields 

^^ ;• —n 
y=-° 

(6.6.8) 

*=0 k=0 

where 
' Imicx 

{APET)k =Y,^ a  \ Ax J 
meZ~ 

Xk)(2mJt\\-£r) (6.6.9) 

Comparing the continuous and the discrete forms, we find that the differences are in the APETs. 

From the discrete Fourier analysis, we know that the APETs are the outcome of the system 
discretization. For the general case, the APETs- decrease as the dilation parameter increases, but the 
APETs can not be eliminated from the reproducing process. Therefore, we recommend a quickly 

decaying window function to reduce the APETs and to hopefully reduce the error. 

7. INTERPOLANT ESTIMATION AND CONVERGENCE OF 
REPRODUCING KERNEL PARTICLE GALERKIN METHODS 

7.1 Error Estimation of Reproducing Kernel Methods 

The Taylor's expansion of u{y) with respect to a given position x in the RKM formula gives 

uR'(x)= \u{y)^a{x-y)dy 

= u(x) j+fa{x - y)dy - u'(x)j{x - y)$a{x - y)dy+- ■ ■ 

.t}Lu(n\x)\+~(x-y)nja(x-y)dy +- 

+t^u(^){x)r(x-yr%(x-y)dy + h.o.t. (7.1.D 
(n + l)\ J-~ 
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where h.o.t. denotes the higher order terms of the Taylor's expansion. The equivalent expression 

of Eq. (7.1.1) by the definition of window moments is given as 

(—] )n 

u*'(x) = u(x)m0(x)-u\x)mi(x)+--+^uW(x)mn(x) 

sn+l 
+t±L-u(n+l\x)mn+l(x) +h.o.t. (7.1.2) 

From the Fourier analysis of RKM and the reproducing requirement of RKM, the moments of the 

window function can also be defined as 

and 

mk(x)=r(x-y)kpa(x-y)dy = iki{
a
k} 

mk(x) = f    {x - yf 0a{x - y)dy = 50k 

(0) 

for k = h---,n 

(7.1.3) 

(7.1.4) 

The equivalent expression of Eq.(7.1.2) is in the form of 

uR°(x) = u(x)+
{-^u(n+l)(x)mn+l(x) + h.o.t. (7.1.5) 

Therefore, the error of RKM can be defined as 

error(x) = uR" (x) - u{x) 
.n+1 

= t^—u^+l)(x)rnn+l(x) + h.o.t. 
(n + 1)! 

= (~l)n+1 u
{n+l)(x)\in+lPa

n+l)(0)\ + h.o.t. 
(n + 1)! L J 

= ("1)W+1 u{n+l)(x)\in+1an+lpn+l\0)] + h.o. 
(n + 1)! L J 

(7.1.6) 

Correspondingly, the interpolation estimate can be given by the following theorem. 



/:> 

Theorem 7.1.1    Assume u(x), <P(x) e C"+l(Q)n Hn+\ü), where Q is the domain of micrcsi. 

then 

W-M 
ff* 

<C,a n+\-k 
<P H * ."L-r1 C(a) (7.1.7) 

ff* 

where a is the dilation parameter,  *(*) is the window function, C(a) is the Ath derivative of the 

associated correction function, Cx is a constant which is independent of the dilation parameter. For 

RKM, C(a) 
HK 

is independent of a; whereas for RKPM, C(a)      approaches a constant when 
H 

the düation parameter a is large enough. Note that 0' is defined as *' = £(«)*, in which £(fl) is 

a normaüzation factor and    <p'dQ, = 1. 
Jn 

In particular for k = 1 and 0, we have 

(7.1.8) 
u-u H^C{a

n 0\\HMw:, C(a)\\Hl 

and 

\\u-u ^C^VIKTMO ,7-L9) 

Proo/:  From Eq.(4.2.17-19), the derivative error obtained from the Taylor expansion can be 

rewritten as 

DkuRa(x)-Dku(x) = - X<9V3c)Jn(x-y)a^{0a(x;x-y)C(^-v)}^      (7.1. 10) 

a=n+l 

Taking the Hk norm on both sides and bounding each term with the maximum value yields 

lu-^l^^a^VI^K^Ic^ (7-1.11) 

For instance, u{n+l)(x) can be bounded by M^. from definition. The details for this bounding 

procedure can be found in Liu et al. (1995e). 

7.2   Convergence of Reproducing Kernel Galerkin Method 

Applying the above interpolation estimate Eq. (7.1.7), we examine the convergence property of 

the reproducing kernel Galerkin method. To clarify the concepts, we study a simple example of 

membrane on a elastic foundation. The strong form of the problem is 
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-V2« + u = f       xeQ. 

The weak or variational form ofEq. (7.2.1) is: find « e 5, such that for all veV 

a(v,«) = (v,/) 

(7.2.1 

(7.2.2) 

where u is the trial function, v is the test function,/' is the force term, S and V is the collection 

of trial functions and test functions, respectively. The assembly operators a(v,«) and (v,/) are 

defined as   f(VvV« + v«>iQ and   \yfdQ, respectively. Similarly, the reproducing kernel 

Galerkin approximation can be stated as: find ua eS\ such that for all va e Va 

■a(v°,ufl) = (vfl,/) (7'2-3) 

ua, va are Galerkin approximations which belong to Sa and Va, here Sa and Va are subsets of 

S and 0). The superscript a denotes the dilation parameter which dictates the convergence of the 

reproducing kernel Galerkin approximation. 

Remark: There are distinct differences between ua   and   uR-.  Recall  from  Eq.  (5.1.9), 
uR- = ^Mjuj,   which is the reconstruction of function u. It can be viewed as the interpolation 

of sampling values of u(Xj) denoted by uy, while ua is the reproducing kernel Galerkin 

approximation, which can be defined by ua = ^Njdj and dj are the nodal coefficients derived 
7=1 

from Eq.(7.2.3). 

Theorem 7.2.1   Assume u. * e Cn+l n Hn+\ the Hl convergence rate of \ua - u\ is governed 

by 

ua -u Hl<C2a
n\<t> H>lHIC(a)L- (7.2.4) 

where C» is a constant which is independent of dilation parameter a. 



Proof: Let e = ua - u denote the error in the reproducing kernel particle Galerkin approximation, 

since \)fl C -Ü, we may take v = va in the variational form Eq. (7.2.2) which gives 

(7.2.5) 
a(va,«) = (va,/) 

Subtracting this equation from Eq. (7.2.3) and using the bilineanty of a(v), yield the well-known 

orthogonality of the error, 

a(vV) = 0 ■ (7-16) 

To acquire the desired convergence equation, we may expand a(v* + e, va + e) as follows 

a(v °+ey+e) = a(va,va) + 2SL(va,e)+a(e,e) (~I-2J) 

>o ">0 =0 20 

By virtue of Eq.(7.2.6) and the positive definiteness property of a(v), Eq. (7.2.7) implies 

a(e,e)<a(va + e,va+e) 

Now   let :v
a=uR°-ua  according  to  the definition of the  variation space  0).   Thus 

va + e _ UK _ „a + u
a - u = U

R* - u, which immediately results in 

a(e,e)<a(uR°-u,uR«-u) (7"2'9) 

By definition, a(e,e) = \\ua -u|^ and a(u-//*,*<-"**) = |«-^|//1, then 

(7.2.11) 

Thus we complete the proof of theorem 7.2.1, 

\ua-u\Hl<c3a"\\<i>\\HMw:4^^ 

by combing Eq.(7.2,10) with theorem 7.1.1. 
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Remarks'. . 
1. The energy norm of the error is now bounded and the error estimation and convergence can be 

evaluated based on this theorem. , 
2. The convergence study for problems involving essential boundary conditions needs turther 

investigation. 

7.3 Relationship between Interpolant Estimation and Wavelet Solution 

From Eq. (7.1.5), the projected solutions of RKM in the a- scale and the 2a-scale are given as 

/"(x)-(-)+^"("+1)(4'"+lfln+1^+l)(0) 
(rc + lj! L 

+ h.o.ta (7-3.1) 

\n+l 

(n + ly. L 

The RKM wavelet solution in 2a-scale is in the form of 

Neglect the h.o.t/s, the wavelet solution is proportional to the error term given in Eq. (7.1.6) 

W
R>°(x) = (2"+l-l)error(x) {13A) 

Eq (7 3 4) reveals a possibility that the wavelet solution can be an index for the error estimation of 
the'computed solution. We apply this error estimate in adaptmty which is described next. 

8 MULTIRESOLUTION FOR 

REPRODUCING KERNEL METHODS AND h-ADAPTIVITY 

8.1 Multiple Scale RKM 

The RKM is a modified convolution formulation through a modified window function, such as 
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R i   \     f   i   \1 (v-    ,-\w,- (8.1.1) = \u{y)0a{x-y)dy 

where 

0a(x-y) = [ßQ(xy+ßl(x)(x-y)+-+ßn(x)(x-yT]0a(x-y) (8.1.2) 

and n is the order of polynomial which the RKM can reproduce exactly. The Fourier 

transformation of the RKM formula yields 

i^(S) = *(«Ä(l) 

-a^)U^iocmk{^-^n^mi{:]^) <8-L3) 

where the derivatives of window function, tf0^), can be treated as different filters which 

represent different scales of resolution in the RKM formulation. If we consider the resolution limit 

of every individual filter, an equivalent expression of the filtered response can be rewritten as 

Ä(«>?)(fl = Äi(«*?)«). (8-L4) 

where uk(%) is the scale of the response which matches the resolution limit of the given filter 

^(l). Applying the relation of Eq. (8.1.4) to the RKM formulation, the given response can be 

separated as 

li^(^) = ao^(|)0a(|) + /a1u1(^)^(^)+---+/'I«^(^)^',)(^) (8-L5> 

The inverse Fourier transformation of Eq. (8.1.5) is given in the form of 

uR'{x) = ßo(x)\ u0{y)<pa{x-y)dy + ßl{x)\ ul{y){x-y)(l>a{x-y)dy 
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+---^wQv)(x-v)>aU-vKv I*-1-6» 
J — oo 

where .,(-<) is the inverse Fourier transformation of «*(§) and represents the fc-scale of the given 

response u(x). 

From the Fourier transform analysis, we note that this kernel function can be treated as a 

low-pass filter in the reconstruction procedure. The multiple scale RKPM is defined by a family ot 

kernel functions. The wavelets corresponding to these kernel functions are defined by: 

y/m+l(x) = <pm(x)-<t>m+l(x) 

Therefore, a multiple scale decomposition of a given response is given as: 

M*(jc) = Ilo(jc) finest scale 

= w (x) + u (x) two-level decomposition 

= w, (x) + w2(x) + u2(x) three-level decomposition 

= Y wt (x) + um (x) m-level decomposition (8.1.8) 

1=1 

where 

um{x) = \vC{2ma0,x,y)<t>m(x-y)u(y)dy (8-L9) 

»m(x) = lysm(x-y)u(y)dy (8-L1°) 

with Wm{x-y) = C{2m-la(j,x,y)(t>m.l{x-y)-C{2ma0,x,y)(Pm{x-y) (8.1.11) 

The multiple scale RKPM starts from the finest scale. The subsequent levels of the response are 
obtained by the decomposition algorithm in Eq.(8.1.8). Because of the multiple scale 
characteristics of the time-frequency and space-wave number basis for representing functions, the 

physical interpretation of the computed results is apparent. 



8.2 Multiresolution Analysis and Edge Detection 

Edge 
(shock front) 

Smoothed plot 
(scaling function solution) 

Edge Location 
(wavelet solution) 

Figure 8.1 Multiresolution Analysis of Shock Front Structure 

Digital edge detection is an important technique in data compression and image special 

effects. For most images, edges define the distinctive features of the picture. With the proper 

technique, an image can be recovered from its edges without losing significant qualities. Therefore, 

in data compression, the edges of images are used to optimize the storage space of the system and 

to reduce the translation cost for network data exchange. Edges can also create special effects in 

images. A blurred image can be sharpened by adding distinct edges. On the other hand, a picture 

can be smeared by deleting corresponding edges. While the applications of edge detection keep 

growing, the mathematical definition of edges remains rather primitive, with most researchers still 

favoring ad hoc theories In recent years, wavelet theory has become the theory of choice in edge 

detection, and research in this area has been quite extensive. 
In this section, we combine multiresolution analysis from RKPM wavelet theory with the 

zero-crossing technique to define the edges in images. The procedure is illustrated by a simple 1-D 

edge structure depicted in Fig.8.1. Based on the multiresolution analysis, the edge structure is 

decomposed into two different scales: the low scale (the scaling function solution) and the high 

scale (the wavelet solution). The low scale (scaling function) solution contains the smooth part of 

the structure, while the high scale (wavelet) solution provides the information for edge detection. 

In our research, the edges of the image are defined as the zero-crossing locations in the wavelet 

solution. In this 1-D case, the zero-crossing position is located between the crest and trough of the 

wavelet like structure in the high scale (wavelet) solution. The multiresolution analysis of a 2-D 

circle image is shown in Fig.8.2. The low scale (scaling function) solution provides an out-of- 
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focus or blurred image of the original while the high scale wavelet solution depicts the outline 

.(edge) of the circle (image). 

Original = Smoothed Plot + Edge Location 

Figure 8.2 Multiresolution Analysis of RKPM in Edge Detection 

A two dimensional edge detection example is shown in Fig.8.3. In the first decomposition, 

the image of a house is separated into low and high (wavelet) scales. Applying the information ot 

the wavelet scale and giving 0% and 10% thresholds, different outcomes are observed. 



s> 

low scale solution high scale solution 

without threshold with 10% threshold 

Figure 8.3 Edge detection in image processing 
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9. APPLICATIONS OF RKPM 

9.1 Large Deformation Problems 

Ring contact 
A nonlinear elastic ring contact problem was studied to illustrate the capability of RKPM 

for large deformation analysis. The material of the rubber ring is Mooney-Rivlin rubber with 

density p = 1.4089E-4 (slug/in3). Other material properties are C\ =2000.59/wz. 

C2 = 200.367p« and X = 4E6 psi. The rubber ring impacts the wall with initial velocity of 1000 

(in/sec). The problem statement and the numerical results obtained at selected time instants are 

shown in Fig. 9.1. 

Bar Impact 
The impact of a two-dimensional nonlinear elastic bar was analyzed by RKPM. The 

material for the bar is Mooney-Rivlin rubber with density p=1.4089E-4 (slug). Other material 

properties are Q = 180.59/wi, C2 = 14.61 psi and A = 1.47E5 psi. A particle distribution of 33 

by 9 and timestep of 5E-7 sec are used for computation. Figure 9.2 shows the numerical results of 

selected time instants when the bar moves toward the wall with initial velocity of 3000 in/sec. 

9.2 Computational Fluid Dynamics (CFD) 

Under Water Bubble Explosion 
Using only a set of particles and Lagrangian RKPM, an underwater explosion problem was 

solved. Numerical results describing the evolution of the expanding bubble are shown in Figure 

9.3. In the computational implementation, the cutoff pressure for water was set to zero and the 

initial internal pressure 8.72E9 (Pa) is used. The evolution of the expanding bubble is also 

indicated for selected times. For larger initial internal pressure case, the expansion of the bubble 

evolved more rapidly so that smaller timestep should be used to capture the whole process. 

Thin Biconvex Airfoil Approximation 
Two-dimensional, inviscid, compressible flows over a thin biconvex airfoil are examined. 

Three different Mach numbers 0.5, 0.84 and 1.4 are used to simulate subsonic, transonic and 

supersonic flows, respectively. Due to the symmetry, only the upper half of the airfoil is 

considered for computation. Uniform free stream is imposed as inflow boundary conditions and no 

values are prescribed for the outflow boundary conditions. For a certain region on the surface of 
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the-airfoil N < 0.5, v = -Abxujs specified considering perturbation, where b is the relative 

thickness Press contours for each Mach number are shown in Figure 9.4. Aliasing control was 

conducted for comparison and it can be seen that solutions are improved greatly tor transonic and 

supersonic flows. Also, 2*2 multiple scale decomposition for subsonic and supersonic flows and 

3*3 multiple scale decomposition for transonic flow was performed to separate the wavelet 

solution, which can locate the high gradient region more clearly. 

Multiresolution Analysis and Adaptivity 
An application of the multiresolution analysis for edge detection and adaptivity retinement 

in computational fluid dynamics is illustrated in Figure 9.5. In this multiresolution analysis, the 

numerical solution is examined through error estimation and convergence studies. In the multilevel 

refinements only a set of nodes are required for adaptivity with no apprehension ot compatibility 

problems. In addition, the physical interpretation of the numerical solutions can be synthesized by 

multiple scale representation. 

9.3 Structural Acoustics 

Plane Wave Scattering Problems 

An incident wave *»> travels from left to right along the x-axis (6=0) with a rigid circle 

cylinder appearing on its path. The geometry and problem setup are shown in Fig.9.6a. 

The solution domain is the shaded area between the inner boundary, representing the cylinder, and 

the outer artificial boundary, simulating the infinite domain. The first order DtN boundary 

condition, 

.lK+     + 
dr    2r 

<p = 0 
) 

is used in the computation. And the rigid surface reflection has the form: 

<p n + 0*0 =0 on Th 

The series solution is given as: 
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0 
n=0 n 

JAKü) 

(KB) 

H(V(Kr)cos(nd) 

0 (i) 

DtN Boundary 

Figure 9.6a Rigid infinite circular cylinder 

The numerical results are shown in Fig.9.6b. Note that the edge detection technique is also 

used to conduct hp-adaptivity in this example. 

Multiple Scale Analysis 

The flowchart of multiple scale analysis for structural acoustics is outlined in Fig.9.7. By 

introducing an adequate filter, original solutions can be separated into low scale and high scale 

solutions (also known as wavelet solutions), which will provide better physical interpretation of 

the results. Applying the zero-crossing technique described in Section 8.2 on the wavelet solution, 

the edges of the response can be determined. Since the edges represent the high gradient region of 

the solution, they automatically provide the locations for local refinement. To enhance the 

resolution in high gradient region, extra particles are inserted on the edges. The corresponding 

window functions are adjusted to match the new distribution of the particles. This procedure is 

similar to the classical hp-adaptive refinement and the behavior of the solutions is also similar. This 
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kind of refinement can continue without encountering any difficulties until the resolution limit is 

reached, i.e. desired solution is obtained. A numerical example was studied using this procedure 

and the results are given in Fig.9.7. For the starting level, 684 nodal points were used. Four levels 

of refinements were performed to acquire the satisfactory results using 2407 nodal points. 

Greens Function for a Rectangular Domain 
Consider the problem of finding the Green's function with homogeneous Dmchlet 

boundary condition within a rectangular domain (see figure 9.8a). 

V2u+v2« = / 

where K2=(co/cf and f = S(x - x0)8(y -y0) (x0 = y0 = 0.5)with boundary conditions 

u(0,y) = u{L,y) = u(x,0) = u(x,L) = 0 

The series solution to this problem is given as: 

, , ffsm(—H~rJ-f"»y.f«g 

Note that there exist natural frequencies whenever 

,2=r^f+'nit 
K
     '   L)     VL 
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///////// 

(0.5,0.5) 

7777777 777777?7   Z_ 
1       L=l 

Figure 9.8a Rectangular Domain 

. A uniform 25x25 particles with mesh size Ax=Ay=l/24 is used for RKPM solution. It is 

equivalent a 24x24 linear FEM mesh, a 12x12 quadratic FEM mesh, or a 8x8 cubic FEM mesh. 
The cubic spline function is used as the window function in the RKPM with dE/E=0.1% as the 
aliasing control parameter [Liu and Chen (1995)]. The resolution limit is *(wave number)=75.40 
or Kl (1 / 24). The L2-norm of the series and numerical solutions with the wave numbers swept 

from 0 to 80 are shown in Fig. 9.8b. When the wave number is approached to the natural 
frequency of the system, we can observe a peak in the L2-norm plot. If the discrete system is a 
good approximation of the continuous system, the peaks from two systems will match point to 

point in the frequency (wave number) domain. In the low wave number region, those peaks match 

quiet well for the most of the cases, but begin to fail to match with the continuous system in higher 
wave number region. The position where the peaks begin to separate will determine the resolvable 
scale of the given system (the combination effect of discretization and interpolation). As depicted in 

the plots, the linear finite element fails quite early, and then follows the quadratic FE. The cubic FE 
does not survive long enough either. The RKPM can extend its resolvable wave number up to 60, 
almost 80% (60/75.4) of the resolution limit In other words, we can use only 3.5 points to catch a 

cos-sin wave exactly by RKPM (the resolution limit is 3.14 points!). 
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Figure 9.1 Ring contact for large deformation problem 
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v0 = -3000 in/sec i 
lin 

0 sec 

5.0E-5 sec 

l.OE-4 sec 

\.SE-4sec 

2.0E-4 sec 

2.5E-4 sec 

Figure 9.2 Bar impact for large deformation problem 
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t=0.00(ms) t=0.12(ms) t=0.24(ms) 

2E9 
1.8571E9 
1.7142E9 
1.5714E9 
1 4285E9 
12857E9 
1.1428E9 
1E9 
8.5714EB 
7.1428E8 
5.7142EB 
4.2857E8 
2.8571 E8 
1 4285E8 
0 

Po=8.72E9(Pa)=1.26E6(psi) 

Figure 9.3 Under water bubble explosion 
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Particle Distribution 

v\\\\ ////• 

Real Part (Hard Boundary) Wavelet Solution 

Original Particles 684=19(r)*36(0) 

oxWlh'///// 

m 
££*»•«■ 

'tf/!l\\\VX 

1st Adaptivity 1652 particles 

2nd Adaptivity 2407 particles 

Figure 9.6b Plane wave scattering problems 



95 

V! 

■A 
3 

r3 

3 
3 

e/j _>, 
"3 c 

•a 
Ü 

3 

as 
2 
3 

E 



96 

Linear FEM (17 nodes/waves) 

- 10 - 

-10 

20 ■ 

Series Solution Quadratic FEM (11/nodes/wave) 

J'-JJiAUUil 

-10 

20 

Series Solution 

*-JUUÜUUWl 

 Cubic FEM (8 nodes/wave) 

i   .    ! 

10 - 

Series Solution     RKPM (3.5/nodes/wave) 
rc/dx 

40 
K (wave number) 

80 

Figure 9.8b Comparison of computed resluts using finite element methods and 

RKPM win series solution 
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CONCLUSIONS 

The reproducing kernel particle method (RKPM) was reformulated in the framework of 

wavelet theories which include such concepts as reproducing conditions, discrete convolutions, 

and multiresolution analysis. It is shown that for a sufficiently smooth function, the interpolant 

expansion in terms of sampled values will converge to the original function in Sobolev norm. With 

this construction of interpolation error, the convergence rate can be measured in terms a new 

control variable, the dilation parameter of the window function. 

By studying the convolution of spline family with polynomials, we are able to construct a 

new family of compactly supported scaling functions which can reconstruct polynomials of 

arbitrary order exactly. It was first shown that the interpolant error estimate is proportional to the 

wavelet solution. We have also implemented the first application of wavelet solution and edge 

detection in designing hp adaptive algorithm. 

RKPM has been applied to such areas as structural acoustics, elastic-plastic deformation, 

computational fluid dynamics. RKPM is shown to provide an accurate mesh free algorithm and 

possess superior convergence. RKPM is envisioned as a new meshless method with completely 

different mentality, which will build a bridge between the traditional interpolation method and the 

spectral method. This is very desirable for the next generation of meshless methods. 
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APPENDIX   A    3D SHAPE FUNCTION AND DERIVATIVE 

Al. Shape Function 
For a linear basis in 3D, the reproducing equation is (c.f. Eq. 5.3.3): 

NP 
u*. (x) = J^u(Xj)Ca(x;x-Xj)0a(x-Xj)&Vj 

7=1 

(Al.l) 

N    J.   / \A   u,   v \th   (?-?■)   6     <b   ,0„ are cubic spline functions, 
where &a(x -Xj) = <t>üiU-*j)<t>ay(y-yj)<PazU   V' ^' ^' ^ 
and AVj is the nodal volume. The correction function Ca(x;x - Xj) is defined as: 

Ca(x;x-xj) = b0(x) + bl(x)(x-xJ) + b2(x)(y-yj) + b3(x)(z-zj) (A1.2) 

The correction function coefficients b(x) are computed by Eq. (5.3.6): 

b(x) = M~\a,x)P{0) 
(A1.3) 

where 

p(0)=[1,0,0, or 

M(a,x) = 

mooo(a,*) rhl0O(a,x) mo10(fl,*) ™ooi(fl>*) 
m100(a,x) m2oo(fl,*) mu0(a,*) m101(a,x) 

wo10(a,x) m110(fl,x) mo2o(fl>*) «on(a»x) 

mooi(a,x) m101(fl,x) IWOH(«,X) «002 («»*). 

and 

NP 

(A 1.4a) 

(Al.4b) 

(A 1.4c) 

;=i 

The shape function is then given as: 

Nj(x;x-Xj) = Ca(x;x-Xj)<Pa(x-Xj)AVj 

= [b0{x) + bl{x)(x-xj) + b1(x)(y-yj) + b3(x)(z-Zj)]^a(x-Xj)AVj 

(A1.5) 



A2. First Derivative of Shape Function 
The first derivative of shape function is given as: 

Nr (x:x-x:) = Cax(x;x-x ■j)0.ix-Xj) + Ca{x;x-Xj)<l>ajl{x-Xj)]AVj        (A2.D 

or in matrix form: 

Nt 

Nj 

N 
>.y 

J.z 

'cax(x;x-Xj)<Pa(x-Xj) + Ca(x;x-Xj)4>tt,x(x-Xj) 

Cay(x;x-Xj)Oa(x-Xj) + Ca(x;x-Xj)0ay(x-Xj) 

CaAx;x-Xj)<Pa(x-Xj) + Ca(x;x-Xj)<PaJx-Xj)_ 

AVj (A2.2) 

0) 
w 

-4 

p. 

I- 
r- 
p. 

where 

QJx-x-x^^bo^ + kJxXx-xß + hJx^y-y^ + h^Xz-z^ + hix) 

The first derivative of the correction function coefficients are obtained as follows: 

bx(x) = -M~\a,x)MtX(a,x)b(x)- 

O.J 
fu 

J 3- 

U- C • 

,  'where 
, a-. 

MJa,x) = 

■»ioooiX(a,x) m100;e(a,x) i»ioioiJe(a,*) mooU(a,x) 

^100,x(fl^) W200^(«»*) ™110,*(a>*) *101,x(a»*) 

mo10fJt(a,x) röno,*(fl>*) '«020^(a»*) ™on,x(a>x) 

mooliX(fl,x) mioi,*(fl»*) Wblljt^»*) ^2^(0^) 

(A2.3a) 

(A2.3b) 

(A2.3c) 

(A2.4) 

(A2.5a) 

and 

NP 
rhjjK^xy^lix-Xjyiy-yjYiz-Zjf^aix-x^^Vj 

7=1 

(A2.5b) 


