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1    Executive Summary 

This is the final technical report for the ARPA/AFOSR-sponsored project "A Wavelet- 
Unified Design Tool System for Signal Processing," contract F49620-92-C-0054. This 
project explored the theory of a broad new class of mathematical transforms (rank 
M wavelets), developed a production-quality software package for the design and im- 
plementation of these transforms, and applied them to concrete problems in signal 
processing and communications. Significant results of the three-year project include: 

• Complete theoretical treatment of rank M wavelets, including parametrization, 
design and implementation techniques. Original work on the smoothness (reg- 
ularity) of wavelet systems and its application to image compression. 

• Development of a broad and flexible software system, "WaveTool", for design- 
ing and implementing wavelet algorithms. After installation at a number of 
government, academic, and industrial beta sites, this software was successfully 
turned into a commercial product. 

• Application of rank M wavelets and design techniques to broadband communi- 
cations, particularly in multicarrier modulation. Wavelet transforms developed 
under this contract have been implemented in a chipset product for high-bitrate 
last-mile telecommunications. 

• Application of the wavelet transforms and design techniques to the compression 
of sonar, seismic, and multispectral image data, as well as improvements to 
wavelet-based still image compression. 

• First significant applications of emerging multiwavelet techniques to signal and 
image processing. 

The report that follows details both our vision for the project and its substantive 
achievements, in the hope that others may take the work even further. 
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2    Project Goals 

Wavelet transforms, discovered in the late 1980's, offer a variety of useful properties 
and important new applications. The current project sprung from the development, 
at Aware and elsewhere, of a broad new class of transforms called "rank M wave- 
lets." These new methods encompass traditional discrete block transforms such as the 
Discrete Fourier Transform (DFT), Discrete Cosine Transform and Walsh-Hadamard 
tranforms, as well as Daubechies wavelets and the Lapped Orthogonal Transform 
(LOT) and Modulated Lapped Transform (MLT) of subband coding. In addition, a 
wide range of entirely new data transforms are described by the rank M framework, 
with many potential applications. The goals of the project were threefold: 

To gain a deeper theoretical understanding of the space of rank M wavelets, in 

both the discrete and continuous domains; 

To build a wavelet software toolbox (known as WaveTool) that enables the 
engineer to prototype and test the new wavelet methods at his desktop; 

To develop rank M wavelet approaches to new application problems, such as 
seismic and sonar signal processing, and communications. 

• 

• 

We achieved significant results in each of these three areas. Initial work concen- 
trated on answering a number of theoretical questions regarding rank M wavelets, 
resulting in complete parametrizations, closed-form constructions, and an analysis of 
the regularity (smoothness) of these function systems. We completed development 
of the WaveTool wavelet software toolbox, a GUI-based system for UNIX and PC 
platforms. An engineer can use WaveTool to rapidly design a variety of wavelet filter 
banks and graphically assemble them into arbitrary tree structures. He or she can 
then apply the resulting transform to data in a variety of formats, and work with the 
results both visually and numerically. The WaveTool software package was released 
to a number of government, academic, and industrial "beta" sites, and, with further 
modifications, grew into a commercial product offered by Aware. In addition to the 
effort put into theory and software, we applied rank M wavelet methods to a number 
of application areas, including the compression of multispectral, seismic, and sonar 
data. A surprise development was the application of rank M wavelets to multicarrier 
modulation for broadband last-mile telecommunications. Wavelet filter designs from 
the WaveTool software proved to be a critical enabler for this "wavelet multitone" 
technology. Finally, we applied project resources to the development of new "multi- 
wavelet" methods for signal and image processing (denoising and data compression); 
this work represents the first significant application of multiwavelets, with promising 
results. 
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In the sections to follow we give a background on rank M wavelets and filter 
banks, followed by sections devoted to the results of the project in the three different 
directions of theory, software, and applications. 

3    Review of the Rank M Wavelet Framework 

In this section we review the general framework provided by rank M wavelets, es- 
tablishing connections with the theory of multirate filter banks and with mulitscale 
analysis and wavelets. This will help set the stage for the discussion of our theoretical 
and applied work to follow. 

Rank M wavelet theory provides a unified methodology for the design and analysis 
of discrete transforms; its instances share the following important properties: 

• 

• 

• 

• 

The transforms satisfy a perfect-reconstruction (invertibility) property while 
yielding a critically sampled data representation; 

It is possible to impose orthogonality on the transform basis functions so that 
the wavelet transform preserves signal energy; 

The transform basis functions have compact support and are represented by 
digital FIR filters; 

The class includes basis functions and associated filters that correspond to over- 
lapped windows; 

The class includes multirate (polyphase) digital filters; 

• The transforms describe a signal in time, frequency, and scale; 

• They have "fast" computational algorithms. 

This class of data transforms includes and generalizes orthogonal block transforms 
such as the FFT, DCT, and Hadamard transforms, filter banks such as the Lapped 
Orthogonal Transform, and the Daubechies wavelets. 

3.1    Rank M Wavelet Matrices and Filter Banks 

The basic building block of rank M wavelet theory is a wavelet matrix or filter bank, 
which partitions a signal into M frequency channels (M is an integer greater than or 
equal to 2). This partitioning, which is achieved by convolution with the matrix rows 
followed by downsampling, is shown in Figure 1. We insist on orthogonality of the 
transform, i.e. that the energy in the transform domain is equal to the signal energy, 
and that we are able to invert the transform using the same matrix. If the M x Mg 
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wavelet matrix A has entries ar>k, so that each row of the matrix is a filter impulse 
response, then the orthogonality condition can be stated as 

Yl ar,k0.r'MMl = M8rtr> 5lfl . (1) 
k 

In other words, the matrix of filter taps is orthogonal to itself when overlapped at 
shifts which are multiples of M. A key consideration here is that the genus g of the 
matrix may be greater than 1, that is, the transform may have nontrivial overlap 
(when g = 1, a wavelet matrix is simply an M x M orthogonal transform, such as 
the DFT). Each input "frame" of M samples contributes to more than one output 
frame, when g > 1. This extension from block transforms to overlapping transforms is 
important, for it enables the signal processor to optimize the filters in the transform for 
additional properties such as high stopband attenuation (better subchannelization), 
or regularity (smoothness) in a multiresolution tree structure. 

—IX M M 
IT 

Figure 1: Ideal frequency responses of an M-band filter bank (wavelet matrix). 

Table 1 indicates where various conventional digital signal processing transforms 
fit into the general rank M framework, as the wavelet matrix parameters M and g 
vary. Every box in the diagram describes a family of filters, some of which generalize 
classical filters, others of which are entirely new. The top row includes the rank 2 
Daubechies wavelets of compact support, while the first column encompasses classical 
block transforms. The interior of the table, where M > 2 and g > 1, includes 
early examples like the Lapped Orthogonal Transform and the Modulated Lapped 
Transform, but also much uncharted territory. One of the goals of this project has 
been to provide design tools for creating wavelet transforms of arbitrary rank M and 
genus g, and pushing them into new applications. 

Many transform application domains fit within the context of the arbitrary rank 
wavelet theory. For example, rank 2 overlap 3 wavelets have been found to be optimal 
for image and video compression [130], while the JPEG image compression algorithm 
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Table 1: Conventional digital signal processing transforms within the framework of 
the arbitrary rank wavelet theory. W(M,g) denotes the set of wavelet transforms 
of rank M and genus (overlap) g, while £>(jr=Daubechies' wavelet transform with 2g 
coefficients. 

9 = 1 2 3 9 
M = 2 Haar D2 DZ Dg 

8 

8-pt DCT rank 8 
LOT 
and 

MLT 
W(8,g) 

8-pt FFT 
8-pt Hadamard 
8-pt Chebyshev 

8-pt Slant 

W(8,l) 

M W(M,1) W(M,g) 

is based on a rank 8 overlap 1 DCT block transform [75]. The MPEG Layer II audio 
compression standard [5] employs a rank 32 genus 16 wavelet transform. In error 
control coding [13], Reed-Solomon codes are based on the overlap 1 (finite field) FFT 
and Hadamard block codes are based on the overlap 1 Hadamard matrices. One of the 
greatest successes of this project has been the application of wavelet matrix methods 
to multicarrier modulation for broadband communications. While the ANSI T1E1.4 
multicarrier standard for Asymmetric Digital Subscriber Line (ADSL) transmission 
[6] specifies the use of a rank 512 genus 1 Discrete Fourier Transform, Aware's sub- 
missions for the next-generation Very high bitrate Digital Subscriber Line (VDSL) 
standard are based on a rank 128 genus 6 wavelet transform [109], [89], [47]. 

Every rank M wavelet matrix can be realized as an M-band multirate filter bank 
[116], with each row of the matrix corresponding to a filter in the filter bank. A 
multirate filter bank works as shown in Figure 2: a signal is passed through a bank of 
M different filters (and these filters usually partition the frequency spectrum), and the 
M results are downsampled (or decimated) by a factor of M, so that while each output 
Vk (called a subband) has a sampling rate j^ that of the original signal, the totality 
of the outputs retains the critical sampling rate. This filtering-and-downsampling 
operation is the fundamental building block of a rank M wavelet transform. The 
transform or subband domain provides a new representation of the signal, in which 



processing such as quantization (for compression) or thresholding (for denoising) or 
peak-picking (for feature extraction) may take place. In order to invert the transform, 
the subbands are upsampled (interpolated) by a factor of M, passed through the 
(time-reversed) filters of the wavelet matrix, and summed to yield the reconstructed 
signal. If no processing was done in the transform domain, condition (1) ensures that 
the reconstructed signal is identical to the input, up to a delay. 

x\n\ 

a,M-i[n] |M 
vM-i[n] 

t Af  ► aM-i[n] 

Figure 2: An M-band multirate filter bank associated with a wavelet matrix 

We consider briefly one of the benefits of allowing arbitrary overlap or genus in 
a rank M wavelet transform. The frequency responses Ak(u) of the M filters in a 
wavelet matrix filter bank are designed to uniformly partition the frequency spectrum 
into M pieces, or subbands. If the filters were ideal "brickwall" filters, this frequency 
partitioning would look like Figure 1. In practice, each wavelet filter is an FIR filter 
and so it cannot offer such ideal subchannelization. Consider a widely used wavelet 
matrix of genus 1, the Discrete Cosine Transform (DCT). The DCT is widely used 
as a real-valued time-to-frequency transform, with the rank of the transform giving 
the number of frequency bins. Independent of the rank M, the DCT's frequency bins 
are non-ideal to the same extent, with sidelobes that are 13 dB below the main lobe 
of each component filter. This is shown in Figure 3. By moving to a higher genus 
or overlapped rank M wavelet transform, it is possible to trade duration in time for 
better subchannelization, while maintaining orthogonality of the transform. Figure 4 
shows the frequency responses of such an overlapped wavelet matrix; the example has 
rank 16 and genus 4, and was constructed with Aware's WaveTool software. Each 
tone now has sidelobes that lie 35 dB below the main lobe, providing a superior 

approximation to the ideal filter bank of Figure 1. 
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Figure 3: Frequency responses of the filters in a rank 16 Discrete Cosine Transform. 
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Figure 4:   Frequency responses of the filters in a rank 16 genus 4 wavelet matrix 
constructed using the WaveTool software. 



As we will see below, the possibility of using overlapped transforms also makes 
possible the construction of wavelets (multiresolution analyses) with both compact 
support and underlying smoothness. This was originally seen by Daubechies [23], and 
the extension to arbitrary values of M was one of the goals and accomplishments of 

this research project. 

3.2    Rank M Wavelets and Multiscale Decompositions 

The essence of the wavelet idea is to assemble such building blocks into a tree struc- 
ture, providing a decomposition of a signal into multiple resolutions, with nonuniform 
frequency partitioning. The original such wavelet decomposition was the Mallat tree 
[64], which iterates on the lowpass output of a rank two wavelet building block to 
create an octave-band decomposition (Figure 5). Such an octave-band decomposi- 
tion matches the human visual system, and so is well-suited for transform coding of 

images. 

LLL 

HLL 

HL 

H 

Figure 5: 3-level Mallat tree made up of rank 2 wavelets 

For this rank 2 tree, Mallat [64] and Daubechies [23] established a precise mathe- 
matical connection between the operation of the two-channel wavelet filter bank and 
an underlying continuous-time basis of L2(R). In particular, they found that the im- 
position of additional linear conditions on the filter bank or wavelet matrix enabled the 
Mallat iteration to converge to a basis function for continuous-time. Not only is this 
condition necessary for the infinite iteration to make sense; it even makes a difference 
for a wavelet tree decomposition of a finite size [87]. Figure 6 compares the overall 
impulse response that results from iterating a Smith-Barnwell 8-tap orthogonal non- 
wavelet filter eight times on the lowpass output with the impulse response of the same 
iteration using a Daubechies 8-tap wavelet filter. The iterated Smith-Barnwell filter 
displays a fractal behavior which makes it inappropriate for use in a tree-structured 
decomposition. Further "regularity" or "vanishing moment" constraints on the low- 
pass filters lead to smoother continuous-time bases, and smoother finite iterates (the 
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Daubechies 8-tap filter used in Figure 6 has regularity order 4). Whereas overlapping 
filter banks (genus g > 1 were originally used to obtain better frequency localization 
than block transforms, in the wavelet setting overlap can be used to obtain smooth- 
ness of the iterated filter bank. We have generalized the vanishing moment conditions 
to the rank M case [100], [39] and developed explicit formulae for the construction of 
rank M wavelets satisfying iV-th order regularity conditions. Furthermore we have 
discovered a set of results relating these discrete-time conditions to the smoothness 
(Sobolev exponent) of the corresponding continuous-time basis functions. In partic- 
ular, we have described the asymptotic regularity of several different constructions 
for rank M wavelet bases as the filter length (support) increases. These issues are 
discussed in detail in section 4.3. Given a means for measuring smoothness, it can be 
turned into a criterion for wavelet filter design, a technique we have exploited in the 
rank 2 and rank M cases (sections 4.4.3 - 4.4.6). 

0   500  1000 1500 2000 2500 3000 3500 4000 4500 

500  1000 1500 2000 2500 3000 3500 4000 4500 

Figure 6: Top: Impulse response of upsampling and convolution with the Smith- 
Barnwell 8-tap filter, iterated eight times. Bottom: Impulse response of upsampling 
and convolution with the Daubechies 8-tap wavelet filter, iterated eight times. 

The notion of assembling wavelet filter banks into arbitrary tree structures, not 
just Mallat trees which iterate on the lowpass alone, is an essential part of our ap- 
proach. Arbitrary trees assembled out of rank M wavelets enable a wide range of 
nonuniform frequency decompositions. Aware's CD-quality real-time audio compres- 
sion algorithm [98] relies on a two-level tree beginning with a rank 8 filter bank, and 
iterating on 5 of the 8 outputs with wavelets of varying rank; this tree is depicted in 
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Figure 7. This higher rank wavelet decomposition produces a frequency/scale par- 
titioning which matches the human ear - a distinctly different decomposition from 
what one would use for natural images, or seismic data. Each application will have 
its own best decomposition. Understanding and applying rank M multiresolution 
decompositions, as well as building a set of software tools to help propagate these 
techniques, have been the goals for the Higher Rank Wavelet project. 

* SF   P P P P P p p p j- j~   r-  .*■       >»>»>**» *-> 'ft,    o   -  IJ U i t« i 'j b »    U   U S-    to   b 

Figure 7: Tree used for decomposition of audio signals in Aware's real-time CD-quality 

compression algorithm. 

4    Theoretical Results 

In this first of three sections reviewing the technical results of the Higher Rank Wave- 
let Toolbox project, we examine the theoretical results on higher rank wavelets that 
were obtained. The structure and parametrization of rank M discrete wavelets are 
discussed, as well as means for measuring the regularity of the associated continuous- 
time bases. We then cover a number of different techniques that have been developed 
for rank M wavelet filter design, or in mathematical terms, the construction and 
optimization of finite rank M wavelet sequences with desirable properties such as 
subchannelization or smoothness of the associated continuous-time wavelet basis. 

12 



4.1    Structure of Rank M Wavelet Systems 

A discrete rank M wavelet system [35, 46, 125, 131] has one scaling sequence (lowpass 
filter) and M — 1 wavelet sequences (bandpass and highpass filters). A real rank M 
wavelet system is given by an M x K wavelet matrix A whose entries aS}k satisfy 

X as,kas',k+Mi = MSSJSIS0,I , (2) 
k 

and X a*,k = M5S>0 . (3) 
k 

The rows of A are orthogonal under shifts of M. In contrast to the rank 2 case, 
where the single wavelet sequence is determined by the scaling sequence, the rank 
M case has considerable freedom in the choice of the M — 1 wavelet sequences. The 
construction of rank M wavelets can be broken into two steps: the design of a lowpass 
filter (scaling sequence a0,k) and the construction of a full rank M wavelet matrix, 
given the scaling sequence and other information. We describe several methods for 
the design of wavelet lowpass filters in Section 4.4, and approaches to wavelet matrix 

construction in Section 4.5. 

4.1.1    Wavelet Bases 

As observed in [46], [96], the wavelet matrix describes a basis for the space of functions 
on Z. Specifically, a discrete function f(k) may be expanded 

M-l     oo 

f(k) =E   E  cS:iasMi+k (4) 
s=0 1--0O 

W here 

<W = J7 J2f(k)as,Mi+k ■ (5) 
k 

This discrete basis property is equivalent to the orthogonality condition (2) - the 
wavelet matrix provides a set of overlapping basis functions for P(Z). The additional 
"low-pass" condition (3) for wavelets confers the ability to develop orthonormal bases 
of L2(R). 

It is natural to take these rank M discrete wavelet systems and seek to construct 
compactly supported rank M wavelet orthonormal bases of L2(R); initial steps in this 
direction have been taken by Gopinath and Burrus [35]. One begins by considering 
the rank M scaling function <f> associated with the scaling sequence a0,ife, which is the 
solution to the dilation equation 

^{x) = YJdo,k<t>{Mx-k). (6) 
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Thus there is a one-one correspondence between the scaling sequences discussed here 
and scaling functions on R. The dilation equation (6) has a unique compactly sup- 
ported solution in L2 (R) f) L1 (R); its Fourier transform 4> satisfies 

CO 

The corresponding family of wavelets Vv,j,Jfc (1 < r < M - 1) is defined from <f> by 

k 

and il>rj,k = M-^r(M-3x - k) . 

Lawton [60] proved that the collection {if>r,j,k(x)} form a tight frame for L2(R). 

The explicit formulae for scaling sequences developed below enable one to con- 
struct rank M wavelet bases with arbitrary smoothness (as measured by Sobolev 

differentiability), as discussed in section 4.3. 

4.1.2     The Polyphase Matrix Representation 

Matrices satisfying the orthogonality condition (2) have been extensively studied in 
the signal processing literature [113, 116, 118] under the name "Af-band paraunitary 
perfect reconstruction filter banks." Engineers often restate (2) in the ^-transform 
domain, as follows: form the M x M polyphase matrix H(z) with polynomial entries 

hs,r{z) = Y2as,r+IMZ   . 
i 

Observe that H and A are related by 

H(z) = A0 + zAi + ... + ^-1A3_! . 

H(z) is said to be paraunitary if ^-=H(z) is unitary on the unit circle: 

H(z)Ht(z-1) = MI , for \z\ = 1 . (7) 

Comparison of coefficients of powers of z shows that the paraunitarity of H is equiva- 
lent to the orthogonality under shifts (2) of the wavelet system. Paraunitary matrices 
and polyphase factorizations have been investigated in great detail [116]. We impose 
the additional linear condition (3) to form a wavelet matrix - this amounts to the 
requirement that the matrix U(z)\z=1 = H0 be a Haar wavelet matrix. This proves 
essential for the development of orthonormal bases of L2(R) (cf. [23, 35]). 
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The orthogonality condition (2) can also be stated in the Fourier domain - for 
each of the sequences aa, consider its "symbol" or Fourier transform 

i   A--1 
A*(e") = li7 J2as,ketkuJ, 0<s<M . 

M k=o 

Then (2) is equivalent to 

M-i 

J2 As(e
i(ÜJ+27rm/M))As,(e

i("+2™/M)) = 5S,S, . (8) 
m=0 

The paraunitarity (7) of H(.z) implies that 

M-l 

£|A.(e**)|2 = l. (9) 
s=0 

4.2    Vanishing Moments and Polynomial Approximation for 
Rank M Wavelets 

The notion of vanishing moments of a wavelet systems was originally introduced by 
Daubechies in the rank 2 case [23] as a means of ensuring differentiability of the 
continuous-time basis functions. Since then, vanishing moments have come to be 
seen as important for discrete-time decompositions as well, and to offer important 
information on the power with which wavelet representations can approximate poly- 
nomials [101]. As in the rank 2 case, there are several equivalent definitions for a 
rank M wavelet matrix A = {aStk} to have N vanishing moments, which we have 
identified [100, 39] in the following theorem: 

Theorem 4.1 A rank M wavelet system is said to have approximation degree N if 
any of the following equivalent conditions hold: 

(i) (d/d{)n$r(0) = 0, forn = 0,l,...,N-l and r = 1, 2, ..., M - 1 . 
(ii) (d/duj)nAr(0) = 0, for n = 0, 1, ..., N - 1 and r = 1, 2, ..., M - 1 . 

(iii) (d/du)nA0 (^f) = 0, for n = 0, 1, ..., N - 1; k = 1, 2, ..., M - 1 . 

(iv) J2i(k + Ml)na0,k+Mi is independent of k for k = 0, 1, ..., M — 1 and 
n = 0, 1, ..., N-l. 
(v) A0(u) = (1 + eiw + ... + e^M~l^)NQ{ijj) for some trigonometric 
■polynomial Q{>JJ). 

Strang [101] gives additional formulations of "degree JV," relating it to approxi- 
mation of order N for functions on L2(R), i.e. in the continous-time domain. 

These vanishing moment conditions may be used in the design of wavelet lowpass 
filters; indeed, the definition and systematic exploitation of rank M vanishing moment 
constraints is described in Section 4.4 below. 
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4.3    Smoothness (Regularity) of Rank M Wavelets 

Once one has constructed a compactly supported continuous-time wavelet basis from 
a rank M wavelet matrix, it is natural to examine the regularity (differentiability) 
of the basis elements ipr(x)- We have developed mathematical tools for measuring 
regularity in the rank M setting, and explicit constructions of several families of 
arbitrarily differentiable rank M wavelet bases. We describe our theoretical results 
here; the constructions are described in section 4.4 below. 

An early theorem on wavelets ([24], p.153) states that if a wavelet 4>r(x) is N 

times continuously differentiable and has sufficient decay to be in Z^R), then ißr 

must vanish to order N at ( = 0. This led to the imposition of vanishing wavelet 
moments (one of the equivalent conditions of Theorem 4.1) for the construction of 
wavelet systems. Since the wavelets xßrtjtk are linear combinations of dilates of the 
scaling function <f>, the question of their differentiability reduces to "How differentiable 
can we make <f>(x)V One standard way to measure differentiability of a function in 
L2(R) is via Sobolev spaces, which measure the number of L2 derivatives a function 

has. 
Given a real number s, the Sobolev space W is defined by 

W:={f :   ||/||2„.=/Rl/(0l2(l + iei2)'^<00} • 

Recall that for / : R -»• C, / G W => f € Ca, for a < s - \. That is, if s > n + f, 
then / has n continuous derivatives. We define the Sobolev smoothness of a function 

cf> e L2(R) to be 
s{(f>) :=sup{5 :  cj>£W} . 

Daubechies and others [23], [31], [120], [122] developed theoretical tools for mea- 
suring the Sobolev exponent of a rank 2 scaling function, and found that the smooth- 
ness of a minimal length rank 2 wavelet system with approximation degree N (N 
vanishing moments) grows linearly with N. Specifically, if (f)N denotes the scaling 

function for such a system, 
s(cf)N) « .2075N . 

We set out to generalize this result to the rank M case, and have found surprising 

results [52]. 
As in the rank 2 case, the Sobolev regularity of the scaling function <j> is deter- 

mined by the maximum eigenvalue of a finite-dimensional operator associated with 
the scaling sequence a0,k- In particular, consider the modulus squared of the lowpass 

frequency response, denoted by P: 

P{u>) = \A0(u)f = 
1 + e- + ... + e<'(M-i)^ 

M 
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The trigonometric polynomial R(u>) is defined as the remainder after division of P(OJ) 

by N powers of the Haar polynomial squared; this remainder will play an important 
role in both our measure of smoothness and in later filter designs. Once given the 
functions P(UJ) and R(w), we define the associated transfer operators [21] that take 
functions on [0,7r) to functions on [0,7r): 

(U + 2TX{M -1)\     (U + 2TT(M-1)\ 

■■■ + P{ M )U{ M ) ' 

and 

Here we have extended the domain of definition of u by its natural periodization. 
While they are defined on the infinite-dimensional space C[0,7r], these trans- 

fer operators leave certain finite-dimensional subspaces invariant, and their finite- 
dimensional restrictions supply enough information to measure the Sobolev regularity 
of 4>. We now sketch how this is done. Let the trigonometric polynomials P and R 
be given as in (10), expressed in the form 

Pin = E Pjeiiu ,   R{en = E P^ > (11) 
j=-L j=-J 

Moreover define the 2L + 1-dimensional space of trigonometric polynomials 

EL:=L(u) =   E Wiiu\ > 

the analogous 2J + 1-dimensional subspace Sj, and the distinguished subspace 

TLJ* ■= {feSL: f(u) = (1 - cos ufg(u)} 

of Ei,. We have demonstrated the following theorem, generalizing the rank 2 work of 
[24], [31], [120]: 

Theorem 4.2 Suppose that the wavelet system associated with the scaling sequence 
{ak} has degree N (the first N wavelet moments vanish).  Then 
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(i) The subspace SL O/C[0,TT] is an invariant subspace for the operator Tp, i.e. 

TP:SL^SL. 

The operator Tp acting on SL has the matrix representation \Tp)^k = PMj-k, with 

respect to the basis {e~iLw',..., 1,..., e'Xu;}, where pt = 0 if I < -L or I > L. This 
matrix is pseudo-circulant, obtained from shifts of the sequence pi by M for each row. 
For example, if L = Mg — 1 for some g eZ, as is the case when {a^} has length Mg, 
the matrix has the form 

TP 

0 0 
PL-M+2 PL 0 
PL-2M+2 PL-M PL-M+I 

P-L 
0 

PM-2-L 
0 

PM-I-L 

0 

0 0 
0 0 

P-L 

OL 0 

0 
0 

0 
0 
0 

PL 
PL-M 

0 P-L 
0 

PM-2-L 

0 

(ii) Similarly, the subspace £j ofC[0,ir] is an invariant subspace for the operator TR, 

i.e. 
TR:£J^£J . 

We write TR for the restriction of TR to the subspace £j; it has the matrix 

representation Ti R 
j,k 

PMj-k, wüh respect to the basis je *Jw,..., 1,..., elJw\. 

Here pj = 0 if j < —J or j > J.  This matrix has a pseudocirculant form similar to 

that ofTp above. 

(iii) Tp\sL includes among its eigenvalues the numbers M~n, n = 0, 1, ..., 2N — 1. 

(iv) Suppose f G TL,N , /(w) = (1 - cos w)  y(w)/ ^en 

(12) 
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Hence TL,N is an invariant subspace for Tp, and moreover if f is an eigenvector for 
Tp in J~L,N with eigenvalue \, then 

TRg(u) = M2N\g(Lo), 

so that g is an eigenfunction for TR with eigenvalue M2N\. 
(v) // n(TP) is t 
exponent of <f> is 
(v) If fj,(Tp) is the largest eigenvalue ofTp\?LN and n(Tp) < \, then the Sobolev 

^-J&- ^ 

(vi) If IA(TR) is the largest eigenvalue ofTp\jrJN and /J,(TR) < M2 N 

2     > 

= AT_^%). (14) 
2 log M y    J 

Thus we have obtained an explicit formula for the Sobolev smoothness of the 
scaling function <j> in terms of the maximal eigenvalue of the associated multiresolution 
operator Tp acting on a distinguished subspace of the finite-dimensional space £/v-i, 
and a corresponding formula in terms of the maximal eigenvalue of TR. These formulae 
can be used both to measure the Sobolev smoothness of a scaling function, given the 
scaling sequence that defines it, and as a tool for use in filter design. We explore the 
first of these uses immediately, and leave the second to section 4.4. 

Not only is the smoothness determined by the eigenvalue H(TR) or fJ.(Tp), it has 
been shown [31], [52] that one may estimate fJ>(Tp,) just from the values of the fre- 
quency response R(u): 

Theorem 4.3   We have 

where 

and 

/J{TR) « R(uc), 

M7r      r u!c = —  for even M, 

uc — TT for odd M, 

with the approximation improving as N grows large. 

This provides a technique for investigating the asymptotic differentiability of rank 
M minimal length degree N wavelet bases as the degree iV approaches infinity. The 
difference between the even M and odd M cases is critical; we have proven [52]: 
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Theorem 4.4 Consider the minimal length trigonometric polynomials yielding N-th 
order approximation, with remainders RN defined in (16), (17) and (18) below. For 
M = 2 and A, the asymptotic value of RN(uc) as N grows large is 

/I Mir   \ N      i 

\M + lJ V 2 J    VN 

Thus, if (f>N is the associated scaling function, 

l°g IT   2 
cos 

M* cos M+l 

TTie growth in smoothness is approximately linear with N, with a slope of 1 - ^ 

.2075 when M = 2and\- Isfgg^ ~ 0.0362 when M = 4. 

for M = 3, i/ie asymptotic behavior of RN(uc) is given by 

and thus x       log iV 

4 log M ' 

T/ie ^rowt/i m smoothness with increasing filter length is only logarithmic for M = 3. 

The logarithmic growth when M = 3 is is due to the fact that we evaluate R(u) 
at the critical point TT rather than at ^. We conjecture that the Sobolev exponent 

of 4>N grows as 

for all odd M. In the case of even M, we conjecture that the Sobolev exponent of <f>N 

grows linearly, with slope 

log 1+5=^ 

21ogM 8(M + l)2logM 

This approaches zero quite rapidly as M increases. Numerical measurements of the 
Sobolev exponents confirm these conjectures for sequence lengths up to 100, and 
dilation factors M < 6. One implication of this result is that adding vanishing 
moments is not a very effective means of increasing the smoothness of rank M wavelet 
bases for odd M; improved approaches are explored in sections 4.4.1 and 4.4.6. 
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The asymptotic growth described in the theorem is shown in Figure 8, which 
compares the true Sobolev exponents of the minimal length scaling functions (as 
computed in [52]) with their predicted linear and logarithmic asymptotes. The dif- 
ference between the linear growth of the cases M — 2, M = 4 and the case M — 3 
is highlighted in Figure 9 which compares the graphs of scaling functions for these 
three dilation factors, with N = 2 and N = 12. 

0 10       20       30       40 
N = number of vanishing moments 

10       20       30       40 
; number of vanishing moments 

Figure 8: Asymptotic growth in Sobolev smoothness for minimal length degree N 
scaling functions, N = 1, 2, ... ,50. The left graph shows the actual Sobolev expo- 
nents and their linear asymptotes for even rank (M = 2, M = 4, M = 6), while the 
right graph shows the Sobolev exponents and their logarithmic asymptotes for odd 
rank (M = 3, M = 5). 
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M=2, N=2,s=1.0 
1.5 

1 ■ 

0.5 /   \ 

0 V 

1.5 
M=3, r \l=2, S=0.909 

A 

1 / I 
0.5 / \ 

0 V 

M=4, N=2, s=0.854 
1.5 

1 ■ 

0.5 '    I 
0 

V 
0 1 0        1 0        1 

M=2, N=12, s=3.874 M=3, N=12,s=1.574 M=4, N=12,s=1.774 

-0.5 -0.5 

Figure 9: Scaling functions for M = 2,3,4 and iV = 2 (top row) and M = 2, 3,4 and 

iV = 12 (bottom row). 
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4.4    Methods for Wavelet Filter Design 

In this section we describe a number of methods that we have developed and applied 
for the design of wavelet lowpass filters (scaling sequences), including the imposition 
of vanishing wavelet moments (polynomial approximation), smoothness of the wave- 
let scaling function (both maximally smooth and frequency-sampling-based "higher- 
smoothness" lowpass filters), and Nguyen's quadratic-constrained design approach. 
Additional results appear in [84] 

4.4.1    Approximation-based Criteria (Vanishing Moments) 

Our first constructions of rank M wavelet lowpass filters were a class that generalize 
Daubechies orthogonal constructions [23] from the rank 2 case. As in [23], these con- 
structions take off from the characterization of vanishing moments given in Theorem 
4.1. Recall from that theorem that the frequency response of an orthogonal wavelet 
lowpass filter with approximation of degree N (N vanishing wavelet moments) must 
have the form 

Ao(u) = (l + e^ + ... + e«M-V»)NQ(u>) . 

Note that 1 + eiUJ + ... + e^M~^w is the Fourier transform of the Haar scaling sequence 
{1,1,. ..,1} of length M.  In order to characterize minimal length rank M wavelet 
systems with N vanishing moments, we shall describe the autocorrelation |Ao(w)l 
and then perform a spectral factorization to obtain A0.  As in the previous section, 
for a wavelet system with N vanishing moments, we write 

1 + e«'w + ... + e.-(M-i)u, 2N 

P(u) = \Ao(u)\' = M 
R(u) (15) 

where we have factored the square modulus P(u) into two parts, N powers of the 
modulus squared Haar polynomial and a term R(ui) = \Q(w)\ designed to restore 
orthogonality to the overall symbol. 

We have obtained [39] a complete closed-form expression for the minimal length 
"remainder" term RN(^>) for arbitrary values of M and iV: 

N-l 

RN(W)= £>„(l-cosu,)n, (16) 

where 

(N+N-\~1 )(1-COSTT)-^ (17) 
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for M even, with Mx = f. For M odd, 

where Mi = Mjzl. This completely describes the deterministic autocorrelation Pjv(w) 
of the minimal length rank M wavelet lowpass filter with regularity order N. For low 
values of M, the spectral factor A0{Lü) may be explicitly computed. For example, the 
M = 4, N = 2 generalization of Daubechies 4-coefficient scaling sequence is 

M = (19) 
]l±VH   3±%/TI   5±yTI   7±yTl   TTVTI   5^^   3TVTI   üvH} 
\~~T-' "a-'       8     '      8     '       8     '       8     '       8     '       8     J   • 

The general (non-minimal length) autocorrelation with degree N approximation 

is of the form 
P(u) = PN{u) + P{u) (20) 

where 

and 

PN(U) 

1 + e- + ... + ei(W-iV 2N 

M 
RN(W) 

p(u) = |e
iMw - l\2N  Y, rncosnu , 

all subject to 
P(u) >0 forw G [0,?r] . 

Any rank M wavelet lowpass filter with iV vanishing moments can be obtained as a 
spectral factor of such a P(LO), and any such P(LJ) will have finitely many spectral 
factors. These general parametrizations [39] (see also [24], [126]) can be used to 
describe various families of orthogonal wavelets, including the smoother families of 
section 4.4.6, the "coifiets" of [24], and the smoother wavelets of [123]. 

4.4.2    Lagrange M-th band filters and M-band wavelets 

We have also found an independent explicit formula for the minimal length modulus- 
squared frequency response PN{u), based on M-th band filters and Lagrange inter- 
polation. This approach was introduced in the 2-band case [10, 101] to connect the 
maximally flat filters of Herrmann [53] with their spectral factors, the Daubechies 
wavelets [23]. Herrmann's construction can be generalized to the M-th band case, 
yielding the minimal length M-th band lowpass filter with 2iV-th order flatness at 
to = 0. The general arbitrary-length solution follows by the methods of the previous 
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section. Any lowpass filter satisfying the orthogonality condtion (2) or (8) will be a 
spectral factor of an M-th band filter; in fact (8) simply states that |A0(u;)|2 is an 
M-th band filter. In particular, rank M wavelet lowpass filters with N vanishing 
moments will be spectral factors of the M-th band filter H(u) we find below. 

Recall that an M-th band filter [67, 115] is a symmetric FIR filter whose impulse 
response h[n] satisfies 

^ 1   0,   otherwise. ^    ' 

When used in an M-fold interpolator, these filters have the useful property of preserv- 
ing the existing signal samples, while inserting new values in between. Conversely, 
M-fold decimation of h results in the unit impulse response. When designing FIR 
M-th band filters, it is desirable to approximate the ideal lowpass filter. When the 
M-th band filter is used in the construction of an M-band wavelet lowpass filter, it is 
also desirable to have some regularity - flatness of the frequency response at u> = 0. 
These are not conflicting requirements, for flatness at ui = 0 together with H(0) = 1 
forces lowpass characteristics on H(u>). 

The M-th band condition (21) can be restated in the frequency domain: 

*H + ff(u + £)+... + ff(u + ?^r!))si. (22) 

We find a minimal-length lowpass filter H{u) which satisfies this condition, and van- 
ishes to order 2N at u = 0: 

H{u) = 1 + ö(\u\2N) . (23) 

We do so by requiring flatness of order 2iV at the "test frequencies" 2-rrm/M: 

H{u + 2irm/M) = 0(\u>\2N) , 1 < m < M - 1 . (24) 

One solves for these conditions by constructing each of the polyphase components of 
H(u>) as a Lagrange interpolate to e^XUJ on the coset 

{xn = Mn + k, n = -N, 1 - N, ..., N - 1} . 

Our result, proven in detail in [38], is 

Theorem 4.5 The minimal length M-th band lowpass filter with 2N-th order flatness 

is given by 

i o    M-1N-1   N-l   Ml + k 
H^ = S + W £ 2   n T^ ■«(«» + *)« • (M) 

m m     jfc=i   n=0   l=-N 

In fact, H(ui) is just the filter P/v(o;) of the previous section. 
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Example (N = 2)  : 

M-l 

^H = ^ + ^E(M-Ä;)cos^ M     M2 
(26) 

fc=i 

The stopband attenuation of these filters increases with N (for fixed M), as can be 
seen in the 4-th band examples shown in Figure 10. The M-th band filters given by 
formula (25) will not approximate the ideal lowpass filter as well as those designed in 
[67] using numerical optimization. However, the filters given here offer the advantages 
of explicit formulae and rational coefficients, as well as the flatness at u> = 0 which is 

essential for the construction of wavelets. 

Figure 10:   Frequency responses in dB of minimal length 4-th band maxflat filters, 

N = 1, 2,4,8. 

4.4.3    Maximal Smoothness Filter Design Criteria 

The results of section 4.3 lead to a new filter design criterion - we can design FIR 
lowpass filters which lead to maximally smooth scaling functions (infinitely iterated 
lowpass filters), as opposed to traditional criteria such as f or £°° (Chebyshev) error. 
Since the smoothness of finite iterates of the lowpass filter qualitatively corresponds 
to the smoothness of the scaling function [87], we can use the mathematical tools de- 
veloped for the continuous-time setting to help us design wavelet filters with smooth 
finite iterates. This is important for applications of wavelets to image coding because 
the artifacts resulting from lossy quantization reflect the shape of the underlying basis 
function. If we can optimize the smoothness of the discrete wavelet basis functions re- 
sulting from iteration of the lowpass filter, then we should achieve superior perceptual 
quality for images compressed using these maximally smooth wavelets. 

The algorithm for measuring the smoothness of a given lowpass filter is the fol- 

lowing: 
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• 

• 

Form the deterministic autocorrelation sequence p[j] (time-domain form of P(u))) 
and the matrix Tp of Theorem 4.2. 

Find the maximal eigenvalue ft(Tp) of this matrix, other than the known eigen- 
values M~n, n = 0, 1, ..., 2N - 1. 

• The Sobolev smoothness (number of I? derivatives) of the scaling function 
associated to the lowpass filter is 

sW = Jogge*» . KV1 21ogM 

An alternative algorithm may be employed, based on the remainder R{OJ) and the re- 
duced transfer operator Tp. Given either method for measuring the wavelet smooth- 
ness associated with a lowpass filter, several design approaches may be employed. 
First, the smoothness measure s may be used as the objective function in an opti- 
mization to yield filters that are maximally smooth for a given sequence length; this 
technique is used in sections 4.4.4 and 4.4.1 below. Secondly, an understanding of 
the mathematics of Sobolev regularity may be employed to intelligently impose addi- 
tional zeros on the frequency response of the wavelet lowpass filter, in such a way as 
to increase the smoothness of the associated scaling function. 

4.4.4    Sobolev-optimal Quadrature Mirror Filters 

We first applied our Sobolev-optimality criterion to the design of symmetric near- 
orthogonal Quadrature Mirror Filters (QMF's) [48]. Recall that QMF's are two- 
channel filter banks (rank 2 wavelets) in which the highpass filter is obtained by an 
"alternating flip" of the lowpass filter. If the lowpass filter of the pair is ao[n], a 
sequence of length N, then the highpass filter is given by 

a1[n] = (-l)na0[N-l-n]. (27) 

This can be represented in the frequency domain as 

A1{u;) = eiujA0(ir-u;); 

Ai is a "mirror" of AQ. One often combines this construction with orthogonality of 
the filter bank, 

]T>o[n]ao[n + 2/] = (Jo,j (28) 
n 

the rank 2 form of equation (2). It was shown rather early in the theory of multirate 
filter banks [94], [116] that the only symmetric two-channel orthogonal QMF pair is 

the Haar filter, for which a0 = ||, || . This filter is too crude for most image cod- 

ing applications. However, symmetry (linear-phase) for filter banks is an important 
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property in wavelet and subband image coders; it enables the use of nonexpansive 
symmetric extension methods at signal boundaries [95]. One solution to this problem 
is to give up the QMF condition and seek filter banks which are perfect-reconstruction 
(biorthogonal), rather than paraunitary (orthogonal) [11], [73], [117]. This approach 
led to the well-known (7,9)-tap biorthogonal wavelet pair used in the FBI's fingerprint 

compression standard. 
A different solution to the problem of symmetry and orthogonality was developed 

by Adelson and Simoncelli [8]; they mildly relaxed the orthogonality condition (28) and 
by doing so were able to obtain symmetric filters! The odd-length filters they designed 
satisfied the orthogonality conditions (28) within 1.0e-3, and led to near-perfect- 
reconstruction of wavelet-transformed images. The use of odd-length filters is also 
noteworthy, for the whole-sample symmetry of an odd-length filter preserves centers 
of mass, leading to better retention of edge details in a lossy subband compression 
scheme. Even-length filters will smear single-pixel detail across two filter outputs, 

leading to smoothed, blurry artifacts. 
Several constraints are imposed on the filters: we constrain the length: 

71 

and we impose one (and therefore two) vanishing wavelet moments: 

X>n = V2, (30) 
n 

£(-i)Bfl" = ° • (31) 
n 

Observe that if the filters were truly orthogonal (i.e. fully satisfied the conditions 
(28)) then one of the equations (30)-(31) would be superfluous. However, m the 
near-orthogonal case of symmetric QMF's, both equations are necessary. This leaves 
two free parameters for a nine-tap QMF (one parameter for the seven-tap case). We 
optimized to find the filter with the greatest Sobolev smoothness while satisfying the 
orthogonality constraints (28) to within a reasonable epsilon (less than le-03). This 
amounts to the nonlinearly constrained optimization problem of finding the solution 
which minimizes the deviation from orthogonality while maximizing the Sobolev ex- 

ponent. 
This approach led to a new family of QMFs; the 7- and 9-tap examples are given in 

Table 2 below. The 9-tap Sobolev-optimal QMF is quite distinct from the 9-tap QMF 
of Adelson-Simoncelli[8]; its frequency response is plotted in Figure 11, while pictures 
comparing the corresponding scaling and wavelet functions are shown m Figure 12. 
Observe that our Sobolev-optimal design yielded a flatter frequency response than 
the previous frequency-sampling approach [8]. The scaling function associated with 
the Sobolev-optimal QMF has Sobolev exponent s = 1.795, and is visibly smoother 
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than the scaling function associated with the Adelson-Simoncelli QMF, which has 
s = 1.567. Both of these scaling functions are smoother than the analysis scaling 
function of the Daubechies (7,9)-tap pair, which has s = 1.410. The Sobolev-optimal 
9-tap QMF has a maximum deviation from orthogonality of 6.6e - 04, superior to 
the 7.9e — 04 max deviation for the Adelson-Simoncelli 9-tap QMF. The new 7-tap 
Sobolev-optimal QMF proved to.be quite similar to Adelson and Simoncelli's 7-tap 

design. 

n ao[n] n ao[n] 
0 -7.8125000e-03 0 1.9531250e-02 
1 -7.3069675e-02 1 -4.6875000e-02 
2 3.6136589e-01 2 -7.3234012e-02 
3 8.5324613e-01 3 4.0042839e-01 

4 8.1451231e-01 

Table 2: 7 and 9-tap Sobolev-optimal QMF lowpass filters. 

Adelson-Simoncelli 9-tap QMF 

0.05       0.1 0.15       0.2       0.25       0.3       0.35 

Optimally smooth 9-tap QMF 

0.4       0.45 0.5 

Figure 11: Frequency responses of Adelson-Simoncelli and optimally smooth lowpass 
filters. 

We applied the new QMF banks to lossy wavelet-based image compression of 
natural and fingerprint images, and found the 9-tap QMF to be competitive with 
the Adelson-Simoncelli QMF in both numerical and qualitative senses; both of these 
wavelet filters were superior to the Daubechies (7,9)-tap pair at compressing a finger- 
print image with the FBI's WSQ tree. Further details are given in [48]. 
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Scaling function for Adelson-Simoncelli 9-tap QMF, s = 1.567 

-3-2-10123 

Scaling function for optimally smooth 9-tap QMF, s = 1.795 

-4-3-2-1 0 1 2 3 4 

Figure 12: Comparison of Adelson-Simoncelli and optimally smooth scaling functions. 

4.4.5    Maximally Holder-smooth Wavelet Filters 

The maximal-smoothness approach was also applied to the design of 2-channel 
orthogonal wavelets, but this time using the time-domain notion of Holder regularity, 
as opposed to the L2-frequency domain notion of Sobolev regularity. We now briefly 
summarize our approach and the results; further details appear in [58]. 

Our method utilized the autocorrelation sequence domain where 1) the dimension 
of the parameter space can be considerably reduced and 2) an unconstrained opti- 
mization problem results (as opposed to a constrained problem if one were to work in 
the impulse response domain). We maximized the Holder smoothness over the class 
of wavelet autocorrelation sequences of a given length. 

Holder smoothness is a direct generalization of the notion of differentiability from 
the natural to the real numbers. A function / has Holder smoothness of order a G 

[0, 1) if, for any t, h, 
\f(t + h)-f(t)\<c\h\°, (32) 

where c < oo is a constant independent of t and h.   For a higher order of Holder 
smoothness sH(f) = L + a, L G N, a € [0, 1), the definition above is applied to 
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the L-th derivative of /. It can be shown that a function / possesses L continuous 
derivatives if and only if it has Holder smoothness of order Sfj(f) > L. Rioul has 
given an algorithm for determining the Holder smoothness [86] that can be easily 
implemented and yields a very accurate estimate for SH- Given the definition of 
Holder smoothness, the optimization problem to be solved can be stated as follows: 

Maximize Sff(ip) over the coefficients p = \px, PK-2, • ■ •, Pi]T of P(u>) 
according to equations (2)-(3), and subject to 

P(u) > 0. (33) 

In order to compute the scaling filter (and not its autocorrelation sequence), one must 
find the spectral factor [24] of the solution p. 

The solution employs a general purpose optimization algorithm requiring only a 
function that computes the order of smoothness s# for any valid set of parameters. 
The approach outlined here works as well for any other method of measuring smooth- 
ness, such as Sobolev differentiability ([31], [48], [120]); and further explorations are 
described in [59]. 

It is obviously desirable to reduce the number of free parameters to reduce the 
complexity of the problem. One can do so by means of the previously quoted theorem 
relating wavelet differentiability to vanishing moments [24]. For a wavelet scaling 
function to have N continuous derivatives, the z-transform P(z) must have 2(iV + 1) 
zeros at z = — 1. Thus the dimension of the parameter space can be reduced to 
^yi — N. Although we do not know the achievable order of smoothness for a given 
filter length K + 1, we have a lower bound by measuring the Holder smoothness of 
the corresponding Daubechies filter. For example, the D6 filter has 3 free parameters 
but SH ~ 1.08, so that there is just 3 — iV — 1 = 1 parameter left for optimization. 

The remaining free parameters are further constrained by the nonnegativity con- 
dition (33). It effectively constrains the possible root locations of P(z). Single roots 
on the unit circle are not admissible; complex roots off the unit circle have to occur 
in quadruples, real roots must occur in mirror pairs, and roots on the unit circle must 
come in complex conjugate pairs with multiplicity two, thus fixing two, one, and two 
parameters, respectively. It is important to note that each of the three possible cases 
can be expressed by equations that are linear in the autocorrelation coefficients. 

However, it is not clear a priori which of the different combinations of roots (e.g., 
in the case of two free parameters either one complex quadruple or a pair of double 
roots on the unit circle can be chosen) leads to the maximum smoothness. Thus one 
has to try all possible constellations. Our algorithm may be summarized as follows: 

• Choose the length K + 1 of the scaling filter. 

• Determine the number of degrees of freedom, i.e., find how many vanishing 
moments can be relaxed. 
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Figure 13:   Holder smoothness for Daubechies (x) and optimized (o) filters as a 

function of filter length. 

• Determine all possible constellations that could give rise to a nonnegative power 

spectrum. 

• For each possible constellation, numerically maximize the desired smoothness 
over the parameter space, i.e., the %=± - N radii and angles. A general purpose 
optimization routine is used. It only requires a function that computes the order 

of smoothness, given the parameter values. 

We carried out the above method for filter lengths ranging from 4 to 30. When the 
filter length was 10 or larger, we obtained filters with greater Holder smoothness than 
the Daubechies orthogonal wavelets. For lengths 4, 6, and 8, the optimization proce- 
dure did not yield higher smoothness than the Daubechies' filters. Figure 13 shows the 
the Holder exponent sH as a function of K +1 for the scaling functions corresponding 
to Daubechies filters and to the new filters. Beyond length 8 the new method clearly 
improves the smoothness, with increasing success for larger filter lengths. A linear 
least-squares fit to each of the smoothness plots found the Daubechies filters with 
order less than 30 to have a Holder exponent growing as .1418(^ + 1), while the max- 
imally smooth filters have a Holder exponent growth of .202A(K + 1). We know [122] 
that asymptotically the Daubechies filters' Holder exponents grow as A037(K + 1). 
The asymptotic behavior of the maximal possible Holder exponent for a given filter 
length, as the length increases, remains an open question. 

In Figure 14 we have plotted the number of zeros at TT for the Daubechies and 
maximally smooth scaling filters; this is equal to the number of vanishing moments 
of the corresponding wavelet system. Notice that while Daubechies filters of length 
K + 1 have a zero of order ^ at TT, the maximally smooth filters have a zero of 
roughly half that order. In other words, we have given up half the vanishing moments 
of the Daubechies filter to obtain free parameters for optimizing the Holder regularity. 
Notice that this behavior is not monotonic, probably because several different root 
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Figure 14:   Order of zero at pi (number of vanishing moments) for Daubechies (x' 
and maximally smooth (o) filters as a function of filter length. 

Daubechies 26 scaling function Max smooth 26 scaling function 
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40r 
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Figure 15: Scaling functions (top) and their 4-th derivatives (bottom) corresponding 
to 26-coefficient Daubechies and Holder-optimized filters. 

constellations lead to near-optimal filters. 
Consider the case of a length 26 (K = 25) scaling filter that is optimized for sH- 

The Daubechies filter corresponds to smoothness sH = 4.005. After optimization 
of three distinct complex quadruples (off the unit circle) one gets a scaling function 
with smoothness s# = 5.06, one more continuous derivative. Figure 15 depicts the 
scaling functions and their 4-th derivatives for each of these filters. While the scaling 
functions have a similar appearance, the higher degree of smoothness of the derivative 
is quite apparent. The filter frequency responses are shown in Figure 16. 
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Figure 16:   Frequency responses in dB of the 26-coef-ficient Daubechies (left) and 
Holder-optimized (right) filters. 

4.4.6    A Frequency-sampling Approach to Smooth Wavelet Filters 

In addition to simply optimizing for maximally smooth filters, one may use the un- 
derlying mathematics of wavelet regularity to inform the design of wavelet lowpass 
filters, while using the traditional technique of frequency sampling. Frequency sam- 
pling simply means specifying the value of a filter response at particular points in the 
frequency domain; in this case the value specified will be zero. 

Recall that the asymptotic regularity estimates of section 4.3 were expressed in 
terms of the values of the remainder trigonometric polynomial R(u) at the periodic 
point uc of the ergodic map r : UJ ->■ Mw mod 2TT and its preimages. Notice as well 
that the Daubechies and generalized Daubechies scaling filters are specified by zeros 
at the preperiodic points u = 2irk/M, 1 < k < M - 1 (when M = 2, this reduces 
to an iV-th order zero at n). Given these examples, we have been led to define a 
new class of scaling functions and corresponding wavelet systems that includes the 
maximal vanishing moments family as a special case. The new class consists of those 
wavelet scaling filters (i.e. sequences satisfying (2) and (3)) whose Fourier transform 
has specified zeros of specified orders at preperiodic points of the map r. The lowpass 
filters are specified by a frequency sampling condition. We call these PPZ wavelet 
matrices (for PrePeriodic Zero) and they are determined by the choice of preperiodic 
zeros at specified locations a;,- of order A^; this collection of constraints is designated 
generically by (wi; Nu LO2, N2; ...; uL, NL). Note that the sum condition (3) simply 
amounts to requiring a zero of order 1 at 2irk/M, 1 < k < M - 1 for each PPZ 
wavelet matrix. We have investigated several PPZ wavelet matrix families for the 
cases M = 2, 3, 4 and will show how they can be used to improve the Sobolev 
regularity of a filter with a given length. 

For M = 2, the dyadic wavelet case, we consider three PPZ wavelet matrix families 
with filter length 2N and zeros of the specified locations and orders: 

ijv :     (7T, N) (Daubechies), 
IIN:     (TT, iV - 2; 2TT/3, 1; 4TT/3, 1) 
IIIN :     (TT, N - 4; 2TT/3, 1; 4rr/3, 1; 5TT/6, 1; 7TT/6, 1) 

The definitions of families IIN and IIIN were motivated by the role of R(^-) and 
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R(^f) in the asymptotic estimates of section 4.3. These two families can be con- 
structed explicitly; instead of using the minimal length remainder RN{U) for N van- 
ishing moments, use the more general expression 

R(u>) = RN{U) + (1 — cos u)N  ^T  rn cos nu , (34) 
n^Mk 

and choose the free parameters rn to assert additional zeros at the points OJ,-. For 
example, the representative for family IIN with filter length 2N will be determined 

by 
R(u) = RN-I (<^) + (1 — cos u)N 1 (fi cos u + f3 cos 3a;) , 

where rx and r3 are determined by the conditions 

«(!)-; *(f)->- 
R(u) must have a double zero at u>c = ^- because it is associated with the magnitude 
squared of the Fourier transform. The coefficients of RN(OJ) are predetermined by 
formulae (16)-(18), and can be explicitly solved for. 

Both families IIN and 11 IN have Sobolev regularity growing faster with N than 
the .2075./V growth of the Daubechies orthogonal wavelets, and the Sobolev regularity 
of the family 11 IN grows faster than that of I IN, as shown in Figure 17. Notice that 
family I IN does not yield a smoother scaling function until the sequence length reaches 
20, and family IIIN does not do so until the sequence length reaches 18. Figure 18 
shows the scaling functions and their fourth derivatives for representatives of each of 
these families corresponding to length-30 scaling sequences. The Sobolev exponents 
of the three scaling functions are 4.565, 5.410, and 6.291, respectively. While the 
scaling functions appear quite similar, the difference shows up in the graph of the 
fourth derivative. 

Similarly, when M — 4 we examined two PPZ wavelet families, the maximal 
vanishing moment family with filter length AN 

IN '■     (TT, N; TT/2, N; 3TT/2, N) (generalized Daubechies), 
and a new family with filter length 4./V — 1 

IIN :     (n,N- 1; TT/2, N - 1; 3TT/2, N - 1; 4TT/5, 1; 6TT/5, 1) . 
The new PPZ family has one vanishing moment relaxed, with the resulting degrees 

of freedom used to assert a zero at the periodic point 47r/5. The scaling functions 
from this family proved to have Sobolev regularity that grew significantly faster than 
for the maximal vanishing moment family IN, as shown in Figure 19. 

For M = 3 we define the families: 
IN '■     (27T/3, N] 47r/3, N) (generalized Daubechies, sequence length 3./V) 
IIN :     (2TT/3, N - 1; 4TT/3, N - 1; n, 1) (sequence length 3iV - 1) 

and find that the asymptotic smoothness of family IN is logarithmic in iV (as men- 
tioned above), and algebraic in N (of order iV'55) for family I IN- Figure 20 shows the 
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Three PPZ families of M=2 orthonormal wavelets 
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Figure 17: Sobolev exponents for the PPZ families IN, IIN, and IIIN of M - 2 

orthonormal wavelets. 

Sobolev exponents for scaling functions from the new family and the minimal-length 
family. Scaling functions from the two M = 3 families with similar support lengths 

(17 and 17.5) are compared in Figure 21. 
These examples illustrate the relation between smoothness and the specification 

of the Fourier transform of the filters at specified preperiodic points, as pointed out 
by previous authors [20], [24]. The patterns described indicate that a family of PPZ 
wavelets with vanishing specified at preperiodic points other than just the preimages 
of 2vr under r may, in general, lead to greater smoothness than the maximal vanishing 

moment family. 

36 



Minimal length 30-coeff s.f. Fourth derivative of minlength s.f. 

10 20 

Single addl. zero 30-coeff s.f. 

10 20 

Two addl. zeros 30-coeff s.f. 
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Fourth derivative of addl. zero s.f. 

Fourth derivative of two addl. zero s.f. 

Figure 18: Dyadic (M = 2) scaling functions and their fourth derivatives for 30- 
coefficient representatives of the families IN, I IN, and II IN- From top to bottom: 
Daubechies minimum length, single additional zero at 27r/3, and two additional zeros 
at 27T/3 and 5TT/Q. 
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Two PPZ families of M=4 orthonormal wavelets 
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Figure 19: Sobolev exponents for the families IN and IIN of M = 4 wavelets. 
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Figure 20:   Sobolev exponents for the two families IN and IIN of M 

functions, N — 1, 2, ..., 15. 
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M=3 N=12 minimal length scaling function; L=36, s = 1.5741 

M=3 N=11 addl. zero at pi scaling function; L=35, s = 3.9383 

Figure 21: Two M = 3 scaling functions, one with support 18 and maximal approx- 
imation degree (12), and the other with support 17|, approximation degree 11, and 
an additional zero at 7r for the symbol. 
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4.4.7    Quadratic-Constrained Optimization for Wavelet Filter Design 

In addition to developing the approaches to wavelet filter design described above, 
we have implemented a high-performance design approach due to Professor Truong 
Q. Nguyen of the University of Wisconsin, a consultant to Aware on this contract. 
Nguyen's QCLS (quadratic-constrained least-squares) method [69], [70] is applicable 
to a broad class of filter design problems, including a wide variety of wavelet fil- 
ter banks. This approach formulates the orthogonality condition (2) as a quadratic 
constraint on the wavelet filter coefficients, and optimizes a functional such as out-of- 
band energy over the coefficient space (i.e. using the time-domain representation of 
the filter). It is possible to include vanishing wavelet moments as additional quadratic 
constraints. QCLS has produced the highest-performance (best stopband attenuation 
or subchannelization) design examples known for cosine-modulated filter banks (co- 

sine packets). We describe this method briefly now. 
The QCLS algorithm begins with the vector h of unknown lowpass filter coef- 

ficients, and formulates the perfect-reconstruction or orthogonality conditions as a 
quadratic form in h. Depending on the structure of the rank M wavelet matrix (arbi- 
trary paraunitary matrix, linear-phase, or cosine-modulation, as described in section 
4.5 below), the number Nc of constraints and their particular form will vary. In all 
cases, the Nc independent PR constraints in (2) can be expressed as 

h*Q,h = Q, ^ = l,2,...,iVc. 

The objective function $ for the optimization (taken to be the L2 stopband error of 
H{z)) can also be expressed as a quadratic form in h via the eigenfilter formulation 

[114]: 
$(h)=  f Itf^ni^^h'Ph. 

Both the objective function and constraints admit closed-form expressions for the gra- 
dient and Hessian, enabling efficient solution of the constrained minimization problem 

minh $(h)   subject to  hf Q* h = ce , 1 < I < Nt . (35) 

A nonlinear constrained-optimization algorithm such as that of Schittkowski [91] 
is used to solve (35). The solution h is the time-domain impulse response of a low- 
pass filter with minimal stopband energy, satisfying the appropriate rank M wavelet 

orthogonality conditions. 
We have implemented the QCLS approach for the design of cosine-modulated 

rank M wavelet matrices in our WaveTool software, as well as the earlier attice- 
parametrization method which uses an unconstrained optimization over a highly non- 
linear parameter space. The QCLS method systematically yields higher-performance 

filters, as shown in the two WaveTool plots below (Figures 22 and 23). 
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Figure 22: Frequency response of an M = 8 length 64 lowpass filter for cosine mod- 
ulation, designed with QCLS using WaveTool software. 
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Figure 23: Frequency response of an M = 8 length 64 lowpass filter for cosine mod- 
ulation, designed with lattice parametrization using WaveTool software. 
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4.5    Construction of Full Rank M Wavelet Matrices 

In the previous section we saw a number of methods for constructing rank M scaling 
sequences of degree N and arbitrary length. We now turn to the design of the 
corresponding wavelet sequences, i.e. to the problem of constructing a complete 
rank M wavelet matrix given its first row. In the rank M case, there is considerable 
freedom in such a construction. We describe here three distinct methods. The first 
is completely general, and is based on the prior choice of a wavelet lowpass filter 
(scaling sequence) and a Haar wavelet matrix [46]. The second and third methods 
involve more specialized structures - linear phase rank M wavelet matrices and rank 
M cosine-modulated wavelets, respectively. All three approaches have associated fast 

algorithms for computation. 

4.5.1    General Haar-based constructions 

First, we present a method [39] for constructing a full wavelet matrix given its first 
row (the scaling sequence) and an M x M matrix which we call the characteristic 

Haar matrix [46]. 
A Haar wavelet matrix is an orthogonal matrix (up to scalar multiplication) whose 

first row is all ones; that is, its entries hStk satisfy 

^2hs,khs>tk = M5StS> , 
k 

and /io,fc = 1 VA; . 

Observe that every such Haar wavelet matrix is a rank M wavelet matrix (with 
K - M) and that every M x M wavelet matrix is a Haar matrix. Useful examples of 
Haar wavelet matrices include the M-point FFT, type II Discrete Cosine Transform, 
and Hadamard matrix. The collection of rank M Haar matrices is isomorphic to the 

group of orthogonal matrices of rank M — 1. 
It will serve us to think of our wavelet matrices as being M x Mg for some integer 

g; we can always pad each row with zeros to bring the wavelet matrix into this form. 
g is called the genus of the wavelet matrix. If we break up the M x Mg wavelet 
matrix A into its constituent M x M blocks 

A = (A0A! ... Afl_0 (36) 

then the characteristic Haar matrix associated with A is given by 

H0 = A0 + Ax + ... + A3_i . 

It can be checked that H0 is in fact a Haar wavelet matrix. 
In [46] we solved the following problem: given a Haar wavelet matrix H0 and 

a scaling sequence a0, construct a full wavelet matrix A whose first row is a0 and 
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whose characteristic Haar matrix is Ho- That explicit construction can be clarified 
and refined using Vaidyanathan's paraunitary factorization technique. In particular, 
a parametrization of the choice of the M — 1 wavelets is given by the choice of the 
characteristic Haar matrix. 

Working in the ^--transform domain, Vaidyanathan [116] has proven that every 
paraunitary polyphase matrix H(z) of McMillan degree1 K can be factored into the 
form 

H(*) = fff(I - v*vl + zvkvt)) Ho , (37) 
\k=Q / 

where each v^ is a unit M-vector. H(z) will be the polyphase matrix of a wavelet 
matrix if and only if H0 is a Haar wavelet matrix, so (37) provides a factorization of 
all wavelet matrices with polyphase matrix of McMillan degree K. We refer to the 
term 

I - Vfcv£ + zvkv\ 

as a prime factor of the polyphase matrix. 

Theorem 4.6 Given a scaling sequence ao of overlap g and a characteristic Haar 
matrixHo, there exists a unique wavelet matrix of McMillan degree g — 1 {i.e. with g— 
1 prime factors) whose first row is ao and with characteristic Haar Ho- Furthermore, 
we can explicitly construct the prime factors I — v^vj + zvkvk {and thus the wavelet 
matrix) from ao and HQ. 

The proof of this theorem (including explicit construction of the prime factors) 
appears in [39]. 

As an example, we use this method to construct a wavelet matrix with M = 4 
and g = 2, with approximation degree N = g = 2. The minimal length lowpass filter 
(scaling sequence) for this case was given previously (equation (20)). The full wavelet 
matrix constructed using Theorem 4.6, with the sequence (20)for its first row and the 
rank-4 DCT-II for its characteristic Haar matrix H0 is 

/ 0.5396 0.7896 1.0396 
-0.1962 -0.1456 -0.4120 
1.0 -1.0 -1.0 

V 0.4344 -1.3554 1.3157 

1.2896  0.4604 0.2104 -0.0396 -0.2896 \ 
-0.3614 1.5028 0.6868 -0.1292 -0.9451 

1.0    0.0 0.0 0.0 0.0 
-0.4740 0.1068 0.0488 -0.0092 -0.0672 / 

1A polyphase matrix of McMillan degree K will correspond to a wavelet matrix of overlap K + l, 
while a wavelet matrix of overlap K + l has a polyphase matrix with McMillan degree at least K. 
However, there exist wavelet matrices of overlap K + l and McMillan degree strictly greater than K; 
for examples see [50]. The construction summarized here and presented in detail in [39] describes a 
unique wavelet matrix with first row ao and characteristic Haar Ho and having a polyphase matrix 
of McMillan degree K. 
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The frequency responses of the lowpass filter (scaling sequence) and the three wavelet 

filters (i.e., the four rows of the matrix) appear in Figure 24. 

Figure 24: Magnitude frequency responses of filters in a minimal length M - 4 , N - 
2 wavelet matrix based on a DCT-II characteristic Haar matrix. 

When the rank M > 2, the construction of Theorem 4.6 gives considerable free- 
dom in the choice of the M - 1 wavelet sequences. We have exploited the range of 
possibilities in this parametrization for image compression applications, as reported 

in [45]. 

4.5.2    Linear-Phase Rank M Wavelets, or GenLOT constructions 

A more restrictive subclass of the rank M wavelets are those with linear-phase, i.e. 
such that each of the M filters have linear-phase symmetry. Such symmetry is of great 
utility in applications to image compression, where symmetric extension of data is 
the preferred method for handling image boundaries [95]. Linear-phase filters are also 
of value in a wavelet transform because they preserve centers of mass in an iterated 
signal decomposition. In the rank 2 case, wavelet matrices cannot simultaneously 
satisfy orthogonality (2) and symmetry, other than the nearly trivial Haar example. 
This has been overcome by designing biorthogonal rank 2 wavelet matrices [73], [11], 
[117]. However, when M > 2, linear-phase and orthogonality can be simultaneously 
satisfied. Such orthogonal linear-phase filter banks have recently been parametrized 
[97], [79], at least when M is even. We have used these parametrizations to deter- 
mine the M-band orthogonal linear-phase wavelets, and successfully applied the new 
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wavelet matrices to problems in image compression. 
Let us briefly summarize the parametrizations of Soman and deQueiroz. One of 

these works [79] identifies M-band orthonormal filter banks in which each filter has 
linear-phase symmetry as generalizations of the lapped orthogonal transform (LOT) 
[66], and confers the name GenLOT. As described previously, a rank M wavelet 
matrix can be described in the ^-transform domain by its polyphase matrix E(z): 

H„(*) 
HiOO 

. HM-I(Z) _ 

= E(z) 

1 

r~(M-l) 

When the rank M is even, and the filters hk[n] (with z-transforms Hfc(z)) have length 
MN, the polyphase matrix has the form 

E(z) = KN^(z)KN-2(z) ■ ■ • K!(z)E0 (38) 

where each 

Kdz) 
" u,-   0 

0    Vi 
I   I 
I -I 

I      0 
0   z-1! 

II 
I   -I 

I is the rank M/2 identity matrix, while U,- and V,- are arbitrary rank M/2 orthogonal 
matrices. E0 is a rank M unitary matrix with M/2 symmetric and M/2 antisymmetric 
rows (such as the DCT-IV); it can be factored as 

EQ 
_1_ 

71 
Do 
0 

0 
Dx 

I   0 
0   J 

J is the familiar reverse identity matrix (of rank M/2), while D0 and Di are arbitrary 
orthogonal matrices of rank M/2. 

This GenLOT formulation can be used to construct of M-band linear-phase or- 
thonormal wavelets. First, all possible GenLOTs with one vanishing moment may 
be described in terms of certain rotation matrices. As described in Theorem 4.1, an 
orthogonal filter bank has one vanishing moment if it satisfies 

Ho(*) 
Hi(*) 

H M-l (*)J 

(39) 

for z = 1. This is equivalent to the linear equation (3) in the definition of a wavelet 
matrix. We find that a GenLOT with N - 1 factors K,-(z) will have one vanishing 
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moment if and only if the rotation matrices U,- satisfy 

UiV-iUJV_2...U1Dc 

4m 
0 

0 

Clearly, the number of free parameters available for filter design (to optimize such 
properties as stopband attenuation or coding gain) increases with both the number 
of channels M and the filter length, which is determined by the number of factors 
N. With even the simplest N = 1 LOTs, it is possible to create a filter bank based 
on the DCT-IV having one vanishing moment for use in a wavelet decomposition. A 
4-band GenLOT with N = 2 (filter length 12) and one vanishing moment is shown 

in Figure 25. 
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Figure 25:   Magnitude responses (in dB) of a rank 4 genus 3 linear-phase wavelet 
matrix (GenLOT) with one vanishing moment. 

It is of interest to create wavelet filters with more than one vanishing moment; 
indeed, the interpolation/approximation properties of such filters lead to their supe- 
riority for wavelet-based image coding systems [63]. An rank M wavelet matrix will 

46 



have two vanishing moments if it satisfies (39) as well as the second-order condition 

d_ 
dz 

Ho(z) 
HiOO 

HM-I{Z) 

* 

0 

0 

(40) 

at z = 1. In the GenLOT case, this leads to a set of linear constraint equations on 
the rotation matrices U;, V;, and D; that parametrize the wavelet matrix. These 
constraints can be solved to reduce the parameter space, enabling one to optimize over 
the remaining parameters to design a rank M linear-phase wavelet matrix with two 
vanishing moments and other desirable properties such as high stopband attenuation 
or maximal smoothness. The frequency responses of such a wavelet matrix with 
M — 4 are shown in Figure 26. 
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Figure 26:   Magnitude responses (in dB) of a rank 4 genus 4 linear-phase wavelet 
matrix (GenLOT) with two vanishing moments and maximal Sobolev smoothness. 

We applied these new higher rank, linear-phase wavelets to image compression [44], 
with results superior to those obtained using rank 2 wavelets. Particular advantages 
were found in the compression of fingerprints and seismic data. Rank 4 wavelet 
matrices appear naturally in the special wavelet-packet tree (Figure 27) specified by 
the FBI for their Wavelet Scalar Quantization fingerprint compression algorithm [7]; 
this transform tree can be obtained as the cascade of two rank 4 wavelet matrices, 
followed by a rank 2 wavelet in the lowest-frequency subband. When we substituted 
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the GenLOT examples given above into the transform structure, lower maximum 
(Chebyshev) errors resulted across all compression ratios; the effect was particularly 
pronounced at high compression ratios (low bitrates). 

-r 

Figure 27: Wavelet transform tree specified by FBI for fingerprint compression. 

4.5.3    Cosine-modulation 

One of the most effective methods for the design and implementation of rank M wave- 
let filter bank transforms is via cosine modulation. In this approach, a single lowpass 
"prototype filter" is modulated to create a complete rank M wavelet matrix, using 
a DCT-based modulation matrix. This method yields both the highest-performance 
wavelet filters, and the fastest known algorithms for rank M wavelet transform compu- 
tation. We summarize the cosine modulation construction here; such wavelet matrices 
also go by the name of cosine packets and discrete local cosine transforms. 

In the most general biorthogonal case with DCT-IV modulation, the impulse 
responses of the analysis filters hk[n] are cosine-modulated versions of a prototype 
filter h[n] of length Nh, and the synthesis filters can also be obtained via cosine- 
modulation of a length Nf prototype filter f[n}. The overall reconstruction delay D 
of the filter bank can be fixed arbitrarily in the range D <G [0, Nf + Nh - 1]. For a 
given delay D = 2sM + d (where 0 < d < 2M), the relation between the analysis 
filters, the synthesis filters, and their prototypes can be stated as follows: 

7T §> + * hk[n)    =   2h[n]cos\(2k + l) — {n 

fk[n]    =   2/[n]cos[(2fc + l)^:(rc-y)-0fc 

(41) 

(42) 

with 0k = (-l)fcf • Note that the modulation does not depend on the filter length 
but only on the delay of the system. However, if we restrict ourselves to the case 
where h[n] = f[n] and both are length N linear-phase prototype filters, the delay is 
constrained to be D = N - 1 and this is the same modulation as in [57]. 
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As an example, the lowpass prototype filter shown in Figure 22 can be modulated 
to yield the rank 8 wavelet matrix (filter bank) shown in Figure 28 below. Notice that 
the superior stopband attenuation of the prototype filter is preserved in the modulated 
wavelet matrix. The superior sub channelization properties of cosine-modulation is 
due to a combination of the relatively clean parametrization of the class of possible 
prototype filters and the high-performance QCLS algorithm. 

Figure 28:   Frequency responses of an M = 8 length 64 cosine-modulated wavelet 
matrix, designed using WaveTool software. 

Further details on cosine-modulated filter banks and wavelets appear in a number 
of references, including [66], [57], [81], [102], [36] [42] among others. 
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5    WaveTool Software 

Foremost among our accomplishments under this contract was the development and 
release of the WaveTool software. This is a UNIX-based software tool for rapidly 
prototyping and evaluating general higher-rank wavelet decompositions, with a so- 
phisticated graphical user interface. The WaveTool grew out of our early experience 
of applying wavelet methods here at Aware. We used to laboriously hand-code rou- 
tines to perform wavelet/multirate decompositions for each new application as it 
arose. We had one set of software which did rank 2 wavelet decompositions for image 
compression, another which performed a rank 32 modulated lapped transform for 
CD-quality audio compression, and a third for transient detection. While each new 
application might require a new basis (new filters or new tree), the underlying me- 
chanics of the decomposition was always the same. Furthermore, a significant step in 
the development of wavelet algorithms proved to be the hunt for the right basis. Out 
of this experience grew our specification for the WaveTool - a piece of software which 
would enable the user to rapidly prototype wavelet algorithms with a wide range of 
filter and tree choices, and underlying fast computer programs for implementing the 
wavelet decompositions, once chosen. 

The WaveTool software provides the capability to design a variety of wavelet and 
multirate filter banks, assemble them into arbitrary tree structures, and process data 
through the system in either subband (one-signal-into-many-subbands) or transmul- 
tiplexer (many-signals-into-one) modes. The WaveTool also offers extensive graphical 
display capabilities for both filter bank components and input and output data. Per- 
haps the easiest way to describe the software is to take the reader on a tour of its 

functionality. 
The heart of the WaveTool is its Tree Window, in which the user interactively 

defines a tree structure of paraunitary filter banks. He or she does so by picking 
off a menu; the user may pick from a library of predesigned filter banks, may read 
in a filter bank of his own design, or may interactively design a filter bank with the 
software. There are choices for either wavelet or Modulated Lapped Transform (MLT) 
designs. In the case of a wavelet filter bank, the user specifies two parameters: the 
rank or number of channels M and the filter length L. The resulting orthonormal 
(paraunitary) wavelet filter has the maximal number of vanishing wavelet moments 
for the given filter length; these filter banks generalize Daubechies construction to 
the M-channel case, as described in section 4.4.1. For M > 2, the wavelet filters are 
determined by the characteristic Haar matrix (polyphase matrix evaluated at z = 1); 
this is set to the discrete cosine transform (DCT), because this choice has proven 
effective in applications. The other possibility for designing a paraunitary filter bank 
is the cosine-modulated or MLT case, in which one designs a prototype lowpass filter 
which is modulated via a DCT to uniformly partition the full frequency spectrum 
(section 4.5.3).   Again, the user prescribes the rank M and the overall filter length 
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Figure 29: Two MLT prototype filter designs in WaveTool, with M = 8, L = 32. 

L. When the filter length is greater than 2M, there are free parameters which may 
be used to optimize the filter for superior stopband attenuation, narrow transition 
bandwidth, etc. Figure 29 shows two MLT prototype filter designs from the WaveTool 
for rank M = 8 and filter length L = 32 which trade off between height of the first 
sidelobe and transition bandwidth. 

Once the user has designed a filter, he may then "accept" it into the nascent tree 
structure in the Tree Window. The filter bank coefficients (time domain impulse 
responses) are also saved to an ASCII file. The impulse and frequency responses of 
any filter bank in the tree may be displayed with a mouse click. 

A salient feature of the WaveTool is the ability to create arbitrary tree structures 
of paraunitary filter banks. The classical wavelet/multiresolution decomposition [23], 
[64] is obtained by cascading rank 2 filter banks on their lowpass outputs only. Given 
any rank M filter bank in the Tree Window, the user may create such a Mallat tree 
with a single menu pick. However, non-Mallat trees have also proved quite useful in 
signal analysis (e.g. wavelet packet decompositions [22], the FBI's WSQ fingerprint 
compression standard [7], and audio compression using a psychoacoustic model [98]). 
Any such tree may be created with the WaveTool. 

Once the user has constructed a tree-structured filter bank, he or she can use it 
to operate on data. One loads in an input data file (in ASCII, binary, or MATLAB 
format); the input signal may be displayed in a graphics window. For example, we 
have loaded in the piecewise quadratic signal "nuquad" and displayed it, as shown in 
Figure 30. Plots such as this may be zoomed and relabeled at will, and dumped to 
PostScript output for inclusion in reports. 
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Figure 30: Piecewise quadratic input signal. 

We then pick an "M2L6" wavelet filter from the Pick Filter menu (i.e. Daube-chies' 
rank 2, 6-tap orthonormal wavelet filter bank), and cascade it into a three-level Mallat 
tree, as shown in Figure 31. Notice that the Tree Window uses the convention that 
lowpass outputs are toward the top of the window. When we hit the Analyze button, 
we perform a decomposition of the input into the octave-based wavelet/subband 
decomposition. We can display the subband outputs as streaming from the output 
leaves of the tree-structured filter bank by hitting the Show Subbands button; this is 
also shown in Figure 31. The polynomial interpolation properties of the Daubechies 
6-tap filter are shown clearly here - the only nonzero bandpass/highpass subband 

outputs occur at the knots of the piecewise quadratic input. 
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Figure 31: "D6" wavelet decomposition of the piecewise quadratic signal. 
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Figure 32: Piecewise quadratic input signal, and its coarse reconstruction. 

Having applied the wavelet transform, one can then output the transform coeffi- 
cients to ASCII or MATLAB data files. The MATLAB output option is particularly 
useful, for one can load the transform coefficients in as matrix variables and perform 
quantization, peak-picking, and other operations on the coefficients before saving back 
to file, and reloading into the WaveTool for the synthesis (reconstruction) operation. 
For example, let us take the wavelet subbands from our D6-Mallat tree decomposi- 
tion of the piecewise quadratic signal, load them into MATLAB, and zero out the 
bandpass and highpass subbands. We then load the remaining coarse-scale transform 
coefficients back into the WaveTool and reconstruct into a signal. Figure 32 shows the 
original signal, followed by the reconstruction from the coarse-scale approximation at 
a delay of 28 samples. The coarse reconstruction hardly differs from the original piece- 
wise quadratic input, again because of the interpolation properties of the Daubechies 
filters. Furthermore, one may measure signal reconstruction error in the WaveTool, 
using a variety of norms (f.fj00). For example, the coarse reconstruction of Figure 
32 has an £°° error of 0.1264093. These data input/output features are not the only 
means by which the WaveTool interacts with other software; once a wavelet/subband 
decomposition has been designed in the WaveTool, the algorithm may be incorpo- 
rated into a larger MATLAB simulation (of, say, a compression or communications 
system) via MEX-file implementations of the filtering algorithms. Further details on 
the operation of the WaveTool may be found in the software's User's Guide [4] and 

Reference Manual [3]. 
In addition to its use in-house at Aware for tasks such as waveform design for 

Discrete Wavelet MultiTone modulation (section 6.1), the WaveTool software has 
been installed at a number of academic, government, and industrial beta sites, and 
ultimately released as a commercial software product. This is discussed in section 

10.1 below. 
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6    Applications 

We now turn our discussion to the third leg of this project - application of higher-rank 
wavelet techniques to telecommunications and signal processing. A surprise winner 
has been the use of rank M wavelet filter banks to multicarrier modulation, a leading 
technique for high-bitrate last-mile telecommunications, which we discuss first. We 
then examine the application of the wavelet transforms and design techniques to the 
compression of image data, including new data regimes such as seismic, multispec- 
tral, and sonar data. Finally, we review our application of emerging multiwavelet 
techniques to signal and image processing. 

6.1    DWMT - Multicarrier Modulation via Rank M Wavelets 

Multicarrier modulation has recently emerged as a superior method for achieving high- 
bitrate transmission over the "last mile" of the installed wire plant. This application 
is of particular importance, given the dramatic increase in use of the Internet and the 
attendant need for high-bandwidth connections to the home. The last mile usually 
takes the form of either twisted-pair copper wire or a hybrid fiber-coax cable. ANSI's 
T1E1.4 committee has chosen a multicarrier scheme as the standard for Asymmetric 
Digital Subscriber Line (ADSL) transmission. ADSL is an emerging technology that 
promises upwards of 6 Mbits/sec into the home or business, using the existing copper 
plant, while simultaneously allowing conventional telephone service over the same 
line. Multicarrier can also be used for hybrid fiber-coax networks, to provide two-way 
communications services (data delivery or telephony) over the existing cable television 
(CATV) network. 

Bitrates in the Megabit/sec range employ frequency bandwidths of 1 MHz or more; 
both twisted-pair and HFC have particular impairments across these wide frequency 
bands. In the case of twisted-pair copper, the available signal-to-noise ratio (SNR) 
for information throughput varies strongly as a function of frequency, particularly 
over long (10,000 feet or more) loops and those with "bridge taps" (unterminated, 
unused stubs of wire). Both twisted pair and HFC, but particularly the HFC up- 
stream channel (5-40 MHz) are also susceptible to powerful narrowband interference, 
such as that caused by AM radio transmissions. As we discuss below, each of these 
impairments can be bypassed or overcome by a multicarrier modulation scheme. 

In multicarrier modulation, the transmission channel is partitioned into a number 
M of subchannels (usually 128 < M < 512), each with its own associated carrier 
[78]. This is usually accomplished digitally, using an orthogonal transformation. At 
the receiver, the inverse transform is performed to demodulate the data. This can 
be interpreted as transmultiplexer taking time-division-multiplexed (TDM) data into 
frequency-division-multiplexed (FDM) data. Thus multicarrier modulation provides 
an efficient means to access, transmit, and distribute multiple data streams.   Each 
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subchannel has its own characteristic SNR that can be measured and is then used 
to determine the constellation size (number of bits supported) for that subchannel. 
In contrast to a single-carrier scheme, multicarrier gives a fine-grained (M grains, to 
be exact) decomposition of the transmission channel for the purpose of assigning bit 
levels. This allows for more nearly optimal use of the available bandwidth in the case 
of SNR that varies strongly with frequency, as in twisted-pair transmission. Multi- 
carrier also provides superior immunity to impulse noise (compared to single-carrier 
systems), and is also particularly effective at combatting narrowband interference. A 
subchannel that is affected by a narrowband interferer can be easily identified, and 

the data rate in that subchannel reduced. 
Early multicarrier schemes [124], [54] used a Fourier transform (DFT) as the 

orthogonal modulating transform. This has the advantage of fast computational 
algorithms, but also the weakness of large spectral overlap among the frequency 
responses Ak{u) of the distinct signalling waveforms. This can lead to substantial 
intersymbol interference, and a lack of robustness to narrowband interference. 

Aware, Inc. has pioneered the use of wavelets and multirate filter banks for multi- 
carrier modulation [111], [90] [88]. This approach, called Discrete Wavelet MultiTone 
(DWMT) or overlapped multitone modulation, yields superior bandwidth utiliza- 
tion and robustness in the face of impulsive and narrowband noise [127]. The block 
Fourier transform is replaced by an orthogonal overlapped transform (a rank M wave- 
let matrix with genus g > 1). The wavelet orthogonality conditions (2) prove to be 
equivalent to zero intersymbol and inter-channel interference (ISI and ICI) among 
the signalling waveforms. The use of an overlapped transform enables a tradeoff be- 
tween time duration of the transform and spectral isolation of the subchannels; even a 
low degree of overlap yields significant improvements over the block (nonoverlapping) 
Fourier case. The superior subchannelization offered by the filter bank leads to dra- 
matically superior performance in the presence of narrowband (e.g. radio-frequency) 

interference. 

6.1.1    Optimization of wavelet algorithms for DWMT 

The various techniques discussed in section 4 for wavelet filter design and computation 
have a direct application to DWMT modulation. In particular, we have found the 
cosine-modulated filter banks (Section 4.5.3) most useful as an overlapped orthogonal 
transform for multitone modulation. Cosine-modulated filter banks are determined 
by a single lowpass "prototype" filter. This simplifies the filter bank design problem, 
enabling rapid optimization of the wavelet filter bank for properties such as sub- 
channel isolation. The notion of genus or overlap provides a handy parameter for the 
tradeoff between filter bank latency (and computational complexity) and narrowband 
interference rejection, for a given number of subchannels M. This is illustrated in 
Figure 33, which compares two different wavelet filter bank responses (sets of tones) 
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Figure 33: Subchannel frequency responses for a multitone system with M — 8. Top: 
nonoverlapped system based on the DFT. Middle: overlapped multitone system with 
genus g = 4. Bottom: overlapped multitone system with genus g = 8. 

with those of a Fourier transform. 
The top plot in Figure 33 shows the frequency responses of the DFT (used in 

conventional discrete multitone modulation) with M = 8. The peak sidelobe is at 
-13 dB, with 1/f decay. The second plot shows the subchannel frequency responses 
of an M = 8 genus g = 4 cosine-modulated wavelet filter bank, as used in DWMT. 
This transform has sidelobes below -35 dB. The third plot, of an M = 8 genus 
g = 8 transform shows sidelobes below -50 dB, clearly demonstrating the superior 
sub channelization offered by the overlapping wavelet transform. The wavelet filter 
banks displayed in this example were designed using the QCLS algorithm (section 
4.4.7) as implemented in the WaveTool software. 

The structures of section 4 also lead directly to fast algorithms for wavelet-based 
modulation. In particular, the cosine-modulated filter banks can be realized as a 
combination of a Discrete Cosine Transform (DCT) and a "polyphase windowing" 
step. Making use of previous work on fast algorithms for the DCT, the entire cosine- 
modulated filter bank computation may be done at a cost not much greater than that 
of the DFT with the same number of subchannels. Details appear in [110], [65], [66]. 
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6.1.2    Hardware demonstration of a DWMT modem 

We have developed a prototype DWMT modem and made laboratory measurements 
that demonstrate the superior performance of the system in the presence of narrow- 
band interference. Figure 34 shows a block diagram of the prototype system. The 
input data consists of a serial TDM data stream that is divided into frames of length 
B bits. Given an input data rate of Rb and a multicarrier frame duration T, the 
number of bits per frame is B = RbT. For the prototype system, the parameters are 
Rb = 2.048 Mbits/sec, T = 125/zsec, and B = 256 bits/frame. Nominal data rates 
on the order of 5 Mbits/sec are achievable and a maximum rate of approximately 8 

Mbits/sec can be obtained in a 2 MHz band. 
The data bits are encoded into multilevel PAM symbols and the PAM symbols 

are then orthogonally mapped to individual frequency subchannels via the inverse 
wavelet transform modulator. Note that the subchannels are grouped into pairs and 
modulated with the equivalent of a QAM constellation. The wavelet transform is 
based on a single rank M wavelet matrix (corresponding to M subchannels) of genus 
g. The properties of the transform are such that the subchannels overlap spectrally 
and the pulses transmitted in a subchannel overlap in time, while orthogonality among 
all symbols is maintained. The frequency overlap of adjacent subchannels results in 
spectrally efficient transmission and the time overlap of the pulses provides spectral 
shaping of the individual subchannel filters. The transform modulator produces a 
time domain sequence that is output to the D/A converter. In the downstream 
direction, the signal is broadcast to all modems and in the upstream direction, the 
analog signals from the subscriber modems are power combined and then transmitted 
to the head end. The experimental setup consisted of an head end transceiver (as 
would be found at an Optical Network Unit) and 3 remote transceivers (Figure 35). 

At the receiver, the baseband analog signal is filtered and digitized. The digital 
time domain signal is transformed back into the PAM symbols via the wavelet trans- 
form. The demodulating transform is the "analysis" filter bank based on the same 
rank M genus g wavelet matrix as the modulating transform. At the receiver, this 
provides a set of matched filters with respect to the modulating transform. An equal- 
izer is used to correct for channel distortion and timing errors. After equalization, 
the PAM symbols are decoded into bits and the original data stream is reproduced 
by the parallel-to-serial multiplexer. The receiver can be constructed to demodulate 
all of the subchannels to recover the complete data stream or a specific subset of 
the subchannels for information addressed to individual users. Dynamic allocation of 
subchannels and transmission capacity can be implemented based on user demand. 

The measured results are presented in Figures 36 through 41. In Figure 36, the 
spectrum of the transmitted signal with 64 QAM modulation on the payload tones 
is given. In addition to the group of tones used for payload (P), a set of tones at the 
upper and lower band edges are designated for timing and ranging (TR) along with 
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a group for control signaling (C). The data rate is 2.048 Mbits/sec and the entire 
payload signal is confined to a bandwidth of approximately 425 kHz (see markers 
on the spectral plot). The bit error rate (BER) was measured as a function of the 
signal-to-noise ratio (SNR) for both 16-QAM and 64-QAM constellations (Figure 37). 
The measured results closely track the calculated (solid line) values. The calculations 
are based on standard QAM performance modeling in the presence of Gaussian noise 
[78] and the SNR is measured digitally at the decision statistic after equalization. 

Figure 38 shows the spectrum of the signal (which appears white over the se- 
lected frequency band) and inserted radio frequency interference (RFI). The SNR for 
each tone was measured over the band for different power levels of RFI (Pingress = 
-47, —35, —22 dBm) with the signal power per tone held constant (Pione = —41 dBm). 
Figure 39 graphs the measured results, demonstrating how the DWMT waveform pro- 
vides excellent isolation of the ingress noise. Even under the worst case RFI level, 
only 5 tones (approximately 20 kHz of the spectrum) were degraded by the noise. 
The remaining tones outside of this band attain the same SNR whether or not the 
RFI is present. 

After injecting the RFI directly in-band as shown in Figure 38, a group of tones 
were reallocated to a clean portion of the channel and measurements were made as a 
function of the frequency difference from the center of the closest DWMT tone to the 
center of the RFI. The spectrum of the corresponding signal with 64 QAM modulation 
levels and ingress noise (RFI) spectra are depicted in Figure 40. With no RFI, the 
SNR for each DWMT tone is about 35 dB. Note that the BER was measured with the 
system subject to the noise levels in Figure 40 (signal/ingress frequency difference is 
14 kHz). No errors were recorded over a 24 hour period, indicating a BER less than 
1 x 10~u. As the ingress noise was moved closer to the signal, the BER degrades as 
shown in Figure 41. The measured results again clearly demonstrate the ability of 
the DWMT system to isolate the ingress noise.  Changing the ingress frequency by 
2 kHz reduces the BER from 10~9 to 10-3. As the power level of the ingress noise 
is increased, the corresponding frequency separation between the DWMT signal and 
the ingress must also increase. This is a direct result of the ingress spectrum that 
consists of a main lobe and a series of side lobes. 

In conclusion, wavelet filter banks have been shown both theoretically and exper- 
imentally to add a new dimension to multicarrier modulation. The use of overlap (as 
measured by the genus parameter g) provides a means for tradeoff between subchannel 
isolation and system latency and computational requirements. The subchannel isola- 
tion provided by wavelet modulation yields increased robustness and flexibility with 
regard to narrowband noise. Fast algorithms for wavelet computation map directly to 
the multicarrier modulation application, minimizing the additional cost due to the use 
of an overlapped transform. DWMT is a very promising technique for high-bandwidth 
transmission over both twisted-pair copper wire and hybrid fiber-coax wirelines in the 
"last mile" of network connections to home, school, and business. 
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Figure 34: Schematic diagram of a Discrete Wavelet Multitone (DWMT) system. 
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Figure 36: Measured spectrum of a downstream DWMT signal using 64 QAM mod- 
ulation for the payload tones. In addition to the tones designated for payload (P), 
additional tones are used for ranging (R) and control (C). 
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Figure 37: Measured bit error rate (BER) vs. SNR for 16-QAM and 64-QAM trans- 
mission with DWMT. Solid lines are the theoretical predictions. 
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Figure 39: Measured SNR for each tone with RFI at power levels of -47 dBm, -35 
dBm, and -22dBm. Even with very high RFI levels, only 5 tones are degraded by the 

noise. 
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Figure 40: Spectral plot of a DWMT signal with tones reallocated to avoid the RFI. 
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Figure 41: Measured BER for the noise conditions shown in Figure 40 for three 
different levels of RFI and 64 QAM signalling. As center frequency of the RFI is 
varied to bring the RFI within the band of a tone, the BER degrades. 
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6.2    Image Compression 

Image data compression has been one of the first and foremost applications of wavelet 
methods. We continued A ware's efforts in wavelet-based image compression as part 
of the higher rank wavelet project. Our work involved applying the new rank M 
wavelet transforms to image compression, fine-tuning the quantization algorithms, 
and applying wavelet techniques to the compression of new types of data, including 
seismic data and multispectral LANDSAT data. 

6.2.1 Review of wavelet-based image compression 

We begin with a review of wavelet-based image compression. A typical lossy com- 
pression algorithm consists of three basic steps: a reversible lossless transform, a 
lossy quantizer and a standard lossless encoder. The transform step may consist of a 
Discrete Cosine Transform (DCT) as in the ANSI standard JPEG compression algo- 
rithm [75], or a wavelet transform as in Aware's AccuPress production software, and 
in the research reported here. The energy compaction properties of the transform 
domain representation is crucial to the overall success of a compression algorithm. 
While the DCT provides a compact data representation composed of stationary har- 
monics, wavelet transforms provide a superior representation for data composed of 
sharp edges and other transient characteristics as well as broad smooth areas. The 
quantization step, which accounts for all of the "loss" in the compression, seeks to 
represent the more significant components of the transform representation with pro- 
portionally more accuracy or bits than the less significant components. The ability of 
the wavelet transform to compactly segregate the important parts of seismic signals 
allows the quantizer, for a given bitrate, to cause significantly less "loss" than would 
be the case for other representations such as a Fourier transform [64]. Because the 
quantizer output is put through a lossless entropy coder to create the final compressed 
bitstream, we employ an entropy-constrained quantization technique. The quantized 
data is then passed through a combined Huffman and zero-run-length encoding to 
approach the true entropy of the quantized bitstream. 

6.2.2 New wavelet transforms 

A significant piece of the work carried out in this project was the development of 
new families of wavelet transforms (the rank M wavelets). We applied several of 
the new wavelet constructions to image compression using Aware's standard wavelet 
compression algorithm; results were briefly quoted in sections 4.4.4 and 4.5.2. Further 
details can be found in references [45], [48], and [44]. 
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6.2.3    Improved quantization techniques 

Our efforts on improving (lossy) quantization were twofold: an examination of so- 
called "dead zones" for wavelet scalar quantizers, and the development of an opera- 
tional rate-distortion-optimal uniform quantization scheme. 

Empirical evidence [33] has suggested that the subjective and objective performace 
of a uniform quantizer may be improved in transform coding applications by allowing 
the center decision region in a uniform quantizer (also known as the zero bin) to be 
wider than the other decision regions by a constant factor. In our notation, the zero 
bin width is given by 

where A is the uniform quantizer bin width. 
The expanded zero quantization bin is sometimes called the dead zone. It is 

thought that the perceptual improvement afforded by an expanded zero bin is due to 
the fact that the contribution of basis functions with small coefficients is underem- 
phasized rather than exaggerated. While this does not minimize the mean squared 
error, it improves perceptual quality because small coefficients increased by amplitude 
quantization manifest themselves perceptually as noise. With an expanded dead zone 
quantizer, more of the extremely small coefficients are quantized to zero, yielding a 
more visually pleasing reconstruction and aiding subsequent zero-run-length coding. 

We conducted experiments with varying dead zone widths on a variety of image 
data, ranging from natural images to overhead satellite images to seismic datasets. 
We found that using an expanded center bin yielded an increase in peak signal-to- 
noise ratio (PSNR) between 0.2 to 0.5 dB. For natural and satellite imagery, the 
maximally effective dead zone width (around ß = 1.8) yielded a PSNR improvement 
of about 0.3 dB. Both the location of the peak and the amount of improvement seem 
to be typical for natural images such as the NITF series at this compression ratio. 
As the compression ratio increase, the peak PSNR improvement occurred for larger 
values of ß. The most significant difference between the seismic data and the natural 
images was that the peak SNR improvement seemed to occur at a much lower ß for 
the seismic data. In order to compress both types of image data effectively, we chose 
a fixed ß of 1.4, which gave reasonable performance improvement for both data types. 
Further details appear in [17]. 

In addition to this examination of dead-zone quantizers, we developed an op- 
erational rate-distortion-optimized quantizer based on the methods of Shoham and 
Gersho [93], applied to the wavelet transform domain. It has been observed [108], [64] 
that histograms of the subband outputs of the wavelet transform applied to image 
data obey a generalized Gaussian distribution. Beginning with this assumption, we 
employed an entropy-constrained uniform quantizer with a mid-rise transfer curve. 

The bit-allocation algorithms employed [93], [80] require knowledge of the rate- 
distortion characteristics of the quantized data. Since our quantizer is followed by an 
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entropy encoder, we make the assumption that the source will be compressed down 
to its entropy level. For this reason, we examine the entropy of various quantized 
sources versus the distortion rather than rate versus distortion. We also chose uniform 
quantizers as opposed to the pdf-optimized Lloyd-Max quantizers ([108], [55]). 

First, we compute the entropy of the quantized source as a function of the bin 
width A and the generalized Gaussian exponent a. The entropy is defined to be 
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decision region.   Using these expressions, we can easily compute the value of the 
entropy as a function of the stepsize A and the subband variance a. 

The distortion is defined to be the mean squared error introduced by the quanti- 
zation process. It is clear that as the step size becomes finer and finer, the approx- 
imation is increasingly better, thus yielding smaller distortion. On the other hand, 
the more finely quantized the data is, the more bits are needed to represent it. This 
is the fundamental tradeoff involved in the lossy transmission of information — the 

rate/distortion tradeoff. 
The distortion due to quantization in a given subband is 

D = E 
coo 

dx (X - Q(X)f] = /     (x- Q(x)f fx(x; a) 
J J —oo 

Since the quantization bins form a partition of the real line, we may write the integral 
as a summation of integrals over each quantization bin separately plus the integral 

over the tails of the distribution. 

dx 
/""t+i 

D=   £  J .     {x-nf fx{x-a) 
»'= —oo      * 

where n is the i-th reconstruction level. Using the component parts of this equa- 
tion, we can compute the overall distortion introduced by the quantizer. Having 
now parameterized both the entropy H and the distortion D by the binwidth, sub- 
band variance, and Gaussian exponent, we can now compute parameterized tables of 
entropy versus distortion for use in quantization and bit allocation. 

Given such precomputed rate-distortion tables for a fixed set of generalized Gaus- 
sian exponents, at runtime we measure the subband variance and kurtosis to de- 
termine the best-fit Gaussian exponent to each subband.   This determines which 
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rate-distortion tables are used to determine the optimal bit allocation among the 
subbands, using the operational rate-distortion methodology of [93], which follows 
the convex hull of the rate-distortion curve. 

The resulting quantizer yields significantly superior performance for wavelet com- 
pression, when compared with simple scalar quantizers such as that of the FBI's 
Wavelet Scalar Quantization specification [7]. Further details are given in [18]. 

6.2.4    Seismic data compression 

In addition to improvement of our basic wavelet transform compression algorithm, we 
applied wavelet compression to several new types of data. One of the most promising 
developments has been the application to seismic data compression. In the seismic 
regime we tested a variety of wavelet bases and tree structures on a variety of seismic 
data types. After a brief review of the specific areas of experimentation, we explore 
our prospects and successes in commercialization of wavelet-based seismic data com- 
pression. 

One of our first areas of experimentation was to try different rank 2 basis func- 
tions (filters) and different multiresolution trees on sample seismic datasets. The 
Daubechies biorthogonal 7/9-tap filters [11] were compared to Daubechies 6,8,10, and 
12 tap orthogonal filters. The biorthogonal 7-9 tap filters provided up to a several dB 
increase in pSNR (peak signal-to-noise ratio) over any of the Daubechies orthogonal 
filters at compression ratios of between 20:1 and 80:1. This is consistent with the 
results of Macq and Mertes on natural images [63]. 

We also explored the use of new families of rank M wavelets; in particular, the 
rank M linear-phase orthogonal wavelets discussed in section 4.5.2. Compression 
results (based on the size of the entropy-coded bitstream) are shown in Table 3. We 
compared a 5-level Mallat tree based on the rank 2 Daubechies (7,9)-tap biorthogonal 
filter pair [11] with a 3-level Mallat tree [64] based on the rank 4 12-tap GenLOT 
shown in Figure 25. The rank 4 wavelet offered superior or comparable performance 
across all compression ratios; peak SNR's were approximately 1 dB greater for the 
rank 4 linear-phase wavelet. 

8:1 16:1 32:1 
pSNR Max pSNR Max pSNR Max 

M = 2 51.6 1101 40.7 4262 32.7 12544 
M = 4 52.6 1025 41.3 4298 33.7 12260 

Table 3: Peak SNR and maximum errors for compression of 2-d seismic data example 
(Mallat tree, M = 2 (7,9)-tap pair and M = 4 GenLOT). 

We also tested a number of non-Mallat transform trees to evaluate the merit of us- 
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ing hardcoded trees for a seismic-specific wavelet compression algorithm. The recently 
released Federal Bureau of Investigation specification for fingerprint compression has 
such a hardcoded tree which was found to be optimal for fingerprints (Figure 27). 
We evaluated several non-Mallat trees on four very different types of seismic data. 
Our initial conclusion is that the wide variation in seismic data types makes the use 
of a single fixed non-Mallat tree impractical. However, a fast adaptive tree could be 
successful for seismic applications. 

The efficiency of a standard two-dimensional wavelet transform for data which is 
moderately rectangular was found to be generally adequate. Seismic data tends to 
be grouped into logical frames with approximate dimensions of 240 columns by 2000 
rows. We compared a standard Mallat tree with an inital rowwise transform followed 
by a Mallat tree on the low pass output and found the results to be comparable. 

Seismic data can be grouped into two broad categories, stacked and pre-stack. 
Stacked data contains a large percentage of horizontally aligned energy caused by 
the generally flat structure of the earth's sedimentary rock layers. Pre-stack data is 
composed largely of hyperbolically aligned energy due to the geometry of the seismic 
data acquisition process. In theory the horizontally aligned arrivals should be easier 
to compress, but in practice the hyperbolically aligned seismic arrivals were preserved 
as well as the horizontally aligned arrivals after passing through the same wavelet- 
transform based compression algorithm. This was the opinion of the seismic experts 

who examined the data. 
Another area of algorithm development lay in the use of companding. Condition- 

ing or companding the histogram of data prior to compression is a known method for 
improving compression performance [55]. This is due to improved quantizer perfor- 
mance because the companding operation has in some way caused the quantizer to 
preferentially preserve amplitudes which are important to the application at hand. 
The largest amplitudes in a seismic data set are usually the least important compo- 
nents of the data and therefore should not be preserved at the expense of other more 
important components. While it is not possible to simply compress the reciprocal 
of the seismic data, it does help to condition the data prior to compression to help 
boost small but important features. We experimented with standard logarithm based 
companding curves and found moderate improvement at low compression ratios but 
unacceptable results for compression ratio greater than 15:1. Much better results 
have been achieved by allowing the seismic data processing specialist to do this con- 
ditioning based on some physical model of the earth prior to compression. Specific 
characteristics of the exploration regime can be used in the conditioning of the data, 
rather than a simplistic blind companding curve. Initial results indicate that con- 
ditioning of seismic data is an important step prior to compression, particularly for 

pre-stack data. 
We see considerable commercial potential for wavelet-based seismic data com- 

pression.  A typical seismic acquisition boat collects between one and ten gigabytes 
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of seismic data per day. Historically, the seismic industry has been the initial con- 
sumer very large mass storage and data transmission products and continues to do 
so. Aware has worked with a number of companies involved in actual oil and gas ex- 
ploration as well as in data acquisition and data processing. Lossy data compression 
is a novel concept to the entire seismic industry and has been quite well received. We 
have had experts in seismic data processing state that the compression results at 10:1 
are virtually "lossless" and 20:1 is sufficient for the vast majority of processing. We 
have successfully integrated compression into data transfer systems which use the In- 
marsat communications satellites. These systems allow technicians on seismic boats 
to send samples of seismic data via Inmarsat back to a home office where experts 
can examine the data and determine whether changes need to be made to the boat's 
acquisition plans. While the file transfer systems previously existed, it was virtually 
impossible to send seismic data due to the cost of the satellite link. Data compression 
has had an enormous impact on costs, enabling the practical economic transmission of 
seismic data from acquisition vessels in near real time. We are also working on using 
compression to reduce seismic mass storage costs in on-shore processing centers. Our 
close contact with the seismic industry has allowed the algorthimic efforts detailed 
above to be reviewed by a demanding and knowledgeable audience. Further details 
appear in the publications [14], [83]. 

6.2.5     Compression of Multispectral (LANDSAT) Data 

As part of the contract work effort, we also extended lossy wavelet image compression 
methods to 12-band multispectral LANDSAT satellite imagery. Multispectral and 
hyperspectral images, usually gathered by satellite, consist of many two-dimensional 
images. Each two-dimensional image corresponds to a narrow spectral band. The 
LANDSAT data we worked with had 12 such spectral planes or bands; next-generation 
satellites capture hyperspectral images with 60 to 100 planes. Each band is usually 
about 1000 x 1000 pixels, with 8 bits per pixel. There is significant correlation among 
the spectral bands; exploiting this correlation is key to successful multispectral data 
compression. 

In practice, the multispectral data will be gathered and compressed on board a 
satellite, then transmitted to a ground station for storage, decompression, and re- 
trieval. The satellite will have strict limitations on power consumption and hence the 
possible complexity/memory requirements of the compression algorithm, and must 
operate in real time. In contrast, the ground station will have practically nonexistent 
power limitations, and the received or stored data will often be browsed in a non-real- 
time setting. In view of this asymmetrical system, several requirements appear. The 
compression algorithm must not have too high a complexity. It must also be of high 
quality, for the satellite cannot go back and recapture data that has been found to be 
of low fidelity. Furthermore, a scheme which lends itself to searching and browsing is 
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preferable. 
A wavelet approach wins on several of these counts. Wavelet compression has 

consistently proven itself to be of higher quality than comparable DCT-based algo- 
rithms [16], while of only slightly greater complexity. Because the wavelet transform 
is a multiresolution representation, it offers several advantages for LANDSAT appli- 
cations. A few coarse-scale coefficients can efficiently describe broad subregions of a 
large satellite image while yielding high compression ratios. This is in sharp distinc- 
tion to the blocking artifacts and limited effective compression ratios of block-DCT 
algorithms such as the JPEG standard [75]. Wavelet data structures also naturally 
lend themselves to multiresolution image browsing, allowing the user to call up a 
coarse-scale representation of an image and only request finer detail when he actually 

needs it. 
Our experiments involved the exploration of several alternatives in the design of 

a compression algorithm for multispectral data, within the constraint of employing a 
wavelet transform in each of the two-dimensional bands of the multispectral dataset. 
The LANDSAT test imagery was of varying sizes, roughly 900 x 1100 pixels of 12 
bands by 8 bits. We applied a wavelet transform in the spatial dimension, consisting 
of a six level Mallat tree of Daubechies' rank 2 linear-phase (7,9)-tap biorthogonal 
wavelets [11], yielding a nonexpansive transform of the data. We then considered the 

following alternatives: 

• Independent wavelet compression processing of each spectral band. 

Independent wavelet transforms of each band, followed by global bit allocation 
(quantizing all subbands of all spectral bands at once). 

The use of a Discrete Cosine Transform (DCT) in the 12-band spectral dimen- 
sion as well as wavelet transforms spatially, followed by global bit allocation. 

• The use of the Karhunen-Loeve Transform (KLT) in the 12-band spectral di- 
mension as well as wavelet transforms spatially, followed by global bit allocation. 

The first two alternatives were considered as a baseline, against which to measure 
the effectiveness of the spectral DCT and KLT transforms in exploiting cross-band 
redundancy. The only difference between the first two approaches is in the bit alloca- 
tion, where the first employed distinct bit allocations for each band, while the second 
approach allocated bits across all the subbands. Not surprisingly, the two approaches 

displayedd very similar performance. 
We then considered the latter pair of alternatives, performing either a Discrete 

Cosine Transform or a Karhunen-Loeve Transform across the 12 spectral bands. The 
KLT, which is the transform that diagonalizes the cross-correlation matrix of the 
data, is precisely that block transform that yields optimal energy compaction of the 
data.  Because of this data-dependent optimality, the KLT will do the best possible 
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job of transforming the cross-band data for subsequent quantization and compres- 
sion. However, we considered the DCT as well because system requirements may 
dictate the use of a fixed (non-data-dependent) transform with fast algorithms for 
on-board compression processing. The DCT is widely used, because it both posesses 
fast computational algorithms and serves as an approximation to the KLT for AR(1) 
processes [82]. 

Rate-distortion curves for the various approaches across a range of bitrates from 
.25 bits/pixel to 2 bits/pixel (compression ratios ranging from 32:1 to 4:1) are shown 
in Figure 42, while compressed/decompressed images are shown as Figure 43. Observe 
the significant decrease in distortion when one moves from compression based on a 
spatial-only transform to the addition of a cross-band transform such as the DCT or 
KLT. Interestingly, the DCT yielded 75% of the performance gain achieved by going 
from no spectral transform to the full-blown KLT. 
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Figure 42: Rate-distortion curves for the four multispectral compression algorithms. 

In conclusion, these experiments (reported in [41]) confirm the utility of wavelet 
transforms for multispectral image compression, and the importance of exploiting 
cross-band correlation. We also validated the use of a DCT as a stand-in for the KLT 
in exploiting cross-band correlations in a computationally efficient manner. Areas for 
future work include trying simple (e.g. Haar) wavelet transforms across the bands, 
employing zerotree structures [92] in the quantization and coding, and trying out ideas 
from video compression like motion estimation and compensation for the cross-band 
processing. 
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Figure 43: See attached page. 

6.3    Sonar Data Compression in Real Time 

During 1993 Aware took part in an AntiSubmarine Warfare simulation/exercise using 
the Internet that was sponsored by ARPA's Maritime Systems and Technology Office 
[25]. Our role was to provide high performance data compression to reduce inter-site 
communications bandwidth requirements in a distributed simulation environment. 
Aware has already developed robust CD-quality real-time audio compression software 
[98, 99] which is based on rank M wavelets and multirate filtering. A critical part of 
sonar compression project was to tailor the basis choice to sonar signals, rather than 
CD audio. The WaveTool software proved invaluable in this task. 

Given sample sonar data, the aim was to find a wavelet/subband decomposition 
which provided maximum energy compaction, i.e. localized the signal energy in as 
few subbands as possible. We used a well-known bit allocation formula that optimizes 

coding gain ([116]) 
1. 

6fc = 6+ilog2 "     /M (43) 2     (n^öX) 
to achieve an overall bitrate 6. We decided to restrict ourselves to the use of cosine- 
modulated perfect reconstruction filter banks, because of the available DCT-based 
fast algorithms for their computation, as well as the superiority of off-the-shelf filter 
design methods. We ran several sonar test signals through the Wavetool, testing filter 
banks of rank 4, 8, and 16. In each case, we analyzed the input signal, wrote the 
subband data out to file, quantized using the scheme (43), and then read the quantized 
data back in to the Wavetool and synthesized a reconstructed signal. Using the error 
measurement features of the Wavetool, we were able to evaluate mean-squared error 
and maximum error, and found the rank 8 filter banks to be optimal for the signals 
in question. We then varied the overlap of the M = 8 filter bank and decided on 
an overlap N = 4 design. Longer overlaps led to diminishing returns at a nonzero 
computational cost. The sonar data to be compressed was classified as active and 
passive. The passive data was principally lowpass, and using the Wavetool, we found 
that we could attain further compaction of the passive signals by iterating on the 
lowest channel of the M = 8 split with a rank 2 split. For this filter we used a 64-tap 
high stopband attenuation perfect-reconstruction bank. The facilities provided by 
the WaveTool led to a significant reduction in algorithm design time for the sonar 

data compression demonstration. 
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6.4    Multiwavelet Signal Processing 

A very recent development in wavelet theory is the class of multiwavelets - wave- 
let decompositions based on matrix dilation equations. While these structures have 
been developed by mathematicians, significant gaps in application of multiwavelets 
presented themselves to us. We have addressed the computational issues of pre- 
filtering and symmetric extension for multiwavelet signal and image processing, and 
applied multiwavelet filters to image compression and denoising [49], [105], [106]. We 
summarize these results here. 

Multiwavelets are also based on a multiresolution analysis, however one that is 
based on several scaling functions. A basis for the coarse approxmiation space V0 is 
generated by translates of N scaling functions cf>i(t — k), 4>2(t — k), ..., <£/v(£ — k). The 
vector $(£) = [4>\(t)i • • • ■> 0N(O]

T
> 

w^ satisfy a matrix dilation equation (analogous 
to the scalar case) 

$(<) = £C[fc]$(2t-fc). (44) 
k 

The coefficients C[k] are N by N matrices instead of scalars. 
Associated with these scaling functions are N wavelets wi(t),..., iü/v(£), satisfying 

the matrix wavelet equation 

W(t) = 52D[k]$(2t-k). (45) 
k 

Again, W(t) = [toi(t), ..., wN(t)]T is a vector and the D[k] are N by N matrices. 
As in the scalar case, one can find the conditions of orthogonality and approxi- 

mation for multiwavelets [103, 104, 37, 76]. 

0.25 0.5 0.75     1     1.25 1.5 1.75    2 

Figure 44: Geronimo-Hardin-Massopust pair of scaling functions. 

A very important multiwavelet system was constructed by J. Geronimo, D. Hardin, 
and P. Massopust [32] (see [9] for another early multiwavelet construction). Their 
system contains the two scaling functions <f>i(t), <£2(i) shown in Figure 44 and the two 
wavelets w1(t),w2(t) shown in Figure 45. The dilation and wavelet equations for this 
system have four coefficients: 

MO 
*(*) = 

*(*) 
= C[0]$(2<) + C[l]$(2t - 1) + C[2]$(2t - 2) + C[3]$(2f - 3) 
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Figure 45: Geronimo-Hardin-Massopust multiwavelets. 

W(t) = 
wi{t) 
w2{t) 

= £[0]$(2i) + £[1]$(2* - 1) + D[2]$(2i - 2) + D[3]$(2t - 3), 

Actual values for the coefficient matrices C[i] and D[i] can be found in [105]. There 
are four remarkable properties of the Geronimo-Hardin-Massopust scaling functions: 

• They each have short support (the intervals [0, 1] and [0, 2]). 

• Both scaling functions are symmetric, and the wavelets form a symmetric/anti- 

symmetric pair. 

• All integer translates of the scaling functions are orthogonal. 

• The system has second order of approximation (locally constant and locally 

linear functions are in Vo). 

Let us stress that a scalar system with one scaling function cannot combine sym- 
metry, orthogonality, and second order approximation. Moreover, a solution of a 
scalar dilation equation with four coefficients is supported on the interval [0, 3]! 

Other useful constructions of multiwavelets are given in [9, 30, 107, 112, 77, 61]. 

6.4.1     Multiwavelets and multirate filter banks 

Corresponding to each multiwavelet system is a matrix-valued multirate filter bank or 
multifilter. A multiwavelet filter bank [103] has "taps" that are N x N matrices (we 
work primarily with N = 2). The principal example is the 4-coefficient symmetric 
multiwavelet filter bank whose lowpass filter was reported in [32]. This filter is given 
by the four 2x2 matrices C[k]. The corresponding 2-channel, 2x2 matrix filter 
bank operates on two input data streams, filtering them into four output streams, 
each of which is downsampled by a factor of 2. This is shown in Figure 46. Each row 
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of the multifilter is a combination of two ordinary filters, one operating on the first 
data stream and the other operating on the second. For example, the first lowpass 
multiwavelet filter C[0] operates as c0,o[&] on the first input stream and c0:i[k] on the 
second. It is a combination of the Haar filter {1,1} on the first stream and the unit 
impulse response on the second stream. 

c ..y, 

D ..y, 

/THT2 

Figure 46: A multiwavelet filter bank, iterated once. 

The matrix filter coefficients must satisfy the orthogonality ("block-paraunitarity") 
condition 

N-l 

J2 C[k] C[k - 2l]T = 2S0t, I . (46) 
k=0 

The lowpass filter C and highpass filter D consist of coefficients corresponding to 
the dilation equation (44) and wavelet equation (45). But in the multiwavelet setting 
these coefficients are n by n matrices, and during the convolution step they must mul- 
tiply vectors (instead of scalars). This means that multifilter banks need n input rows. 
We developed several ways to produce those rows. The first method, an oversampled 
scheme, consisted of simply repeating each row of data twice to produce the two in- 
put rows required. This method yielded good results at denoising one-dimensional 
signals, but performed poorly for compression, not a surprising outcome. Our second 
method, which was successful at both compression and denoising, exploited the ap- 
proximation properties of the multiwavelet scaling functions to prefilter each row of 
input data, resulting in two new rows with half the number of data points for input to 
the multifilter. This later method had the advantage of preserving critical sampling, 
so that an input dataset with N points remained of size N after prefiltering. Another 
advantage of this approximation-based preprocessing method is that it fits naturally 
with symmetric extension for multiwavelets (discussed below). In other words, if we 
symmetrically extend a finite length signal f[n] at its boundaries and implement the 
approximation formulas, then the two rows output by the preprocessor will have the 
appropriate symmetry. 

In the setting of purely two-dimensional signal processing, we described an addi- 
tional algorithm for multiwavelet filtering (two rows at a time), and developed a new 
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family of multiwavelets (the constrained pairs) that is well-suited to this two-row-at- 
a-time filtering. Further details appear in [105]. 

In practice all signals have finite length, so we must devise techniques for filtering 
such signals at their boundaries. There are two common methods for filtering at the 
boundary that preserve critical sampling. The first is circular periodization (periodic 
wrap) of the data. This method introduces discontinuities at the boundaries; how- 
ever, it can be used with almost any filter bank. The second approach is symmetric 
extension of the data. Symmetric extension preserves signal continuity, but can be 
implemented only with linear-phase (symmetric and/or antisymmetric) filter banks 
[95, 12, 56, 15]. We have developed symmetric extension for linear-phase multiwavelet 
filters, such as the Geronimo-Hardin-Massopust multifilters. This has proven useful 

for image compression applications. 
Recall the basic problem: given an input signal f[n] with N samples and a linear- 

phase (symmetric or antisymmetric) filter, how can we symmetrically extend / before 
filtering and downsampling in a way that preserves the critically sampled nature of 
the system? The possibilities for such an extension have been enumerated in [15]. 
Depending on the parity of the input signal (even- or odd-length) and the parity 
and symmetry of the filter, there is a specific non-expansive symmetric extension of 
both the input signal and the subband outputs. For example, an even-length input 
signal passed through an even-length symmetric lowpass filter should be extended by 
repeating the first and last samples, i.e., a half-sample symmetric signal is matched 
to a half-sample-symmetric filter. Similarly, when the lowpass filter is of odd length 
(whole-sample-symmetry), the input signal should be extended without repeating the 

first or last samples. 
Each row of the GHM multifilter is a linear combination of two filters, one for 

each input stream. One filter (applied to the first stream) is of even length; the sec- 
ond is of odd length. Thus we extend the first stream using half-sample-symmetry 
(repeating the first and last samples) and extend the second stream using whole- 
sample-symmetry (nonrepeating samples). Then, when synthesizing the input signal 
from the subband outputs, we must symmetrize the subband data differently depend- 
ing on whether it is going into an even- or odd-length filter. This approach has been 
extended to multifilters lacking linear-phase symmetry as well. Details appear in 
[105]; the upshot is that we have obtained a non-expansive transform of finite-length 
input data which behaves well at the boundaries under lossy quantization. 

6.4.2    Denoising by soft thresholding 

We have compared the numerical performance of GHM and constrained multiwavelets 
with Daubechies D4 scalar wavelets. D4 wavelets were chosen because they have two 
vanishing moments, are orthogonal and have four coefficients in the dilation equation 
— exactly like the GHM and constrained pairs.   We perform these comparisons in 
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two standard wavelet applications: signal denoising and data compression. First we 
discuss the denoising. 

Suppose that a signal of interest / has been corrupted by noise, so that we observe 

a signal g: 

g[n] = f[n] + az[n], 

where z[n] is unit-variance, zero-mean Gaussian white noise. What is a robust method 
for recovering / from the samples g[n] as best as possible? Donoho and Johnstone 
[28, 29] have proposed a solution via wavelet shrinkage or soft thresholding in the 
wavelet domain. Wavelet shrinkage works as follows: 

1. Apply the cascade algorithm to get the wavelet coefficients corresponding 
to g[n\. 

2. Choose a threshold tn = y^log(n)7cr/'y/n and apply (soft) thresholding to 
the wavelet coefficients. 

3. Invert the cascade algorithm to get the denoised signal f[n]. 

Donoho and Johnstone's algorithm offers the advantages of smoothness and adap- 
tation. Wavelet shrinkage is smooth in the sense that the denoised estimate / has 
a very high probability of being as smooth as the original signal /, in a variety of 
smoothness spaces (Sobolev, Holder, etc.). Wavelet shrinkage also achieves near- 
minimax mean-square-error among possible denoisings of /, measured over a wide 
range of smoothness classes. In these numerical senses, wavelet shrinkage is superior 
to other smoothing and denoising algorithms. Heuristically, wavelet shrinkage has 
the advantage of not adding "bumps" or false oscillations in the process of removing 
noise, because of the local and smoothness-preserving nature of the wavelet trans- 
form. Wavelet shrinkage has been successfully applied to SAR imagery as a method 
for clutter removal [74]. It is natural to attempt to use multiwavelets as the transform 
for a wavelet shrinkage approach to denoising, and compare the results with scalar 
wavelet shrinkage. 

We implemented Donoho's wavelet shrinkage algorithm using several additional 
remarks from [74]. We compared the performance of the D4 scalar wavelet transform 
with oversampled and critically sampled multiwavelet schemes. In the oversampled 
scheme, the first row is multiplied by A/2, to better match the first eigenvector of 
the GHM system. The critically sampled scheme obtains two input rows v1<n, v2,n 

from a single row of data. After reconstruction the two output rows vljn, v2,n are 

deapproximated to yield the output signal f[n]. Boundaries are handled by symmet- 
ric data extension for the critically sampled (approximation/deapproximation) and 
oversampled schemes, and by circular periodization for D4. 
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Combining these various techniques, we were able to apply multiwavelet denoising 
to imagery. We added white Gaussian noise to the Lenna image, and applied three 
wavelet transforms for denoising by wavelet shrinkage: the GHM multiwavelet with 
approximation, GHM with repeated row, and the Daubechies 4-tap scalar wavelet. 
The experimental results are shown in Table 4 and the resulting images in Figure 47. 
The GHM multiwavelet with approximation was superior to D4 both numerically and 
subjectively; the approximation-based preprocessing seemed to reduce the Cartesian 
artifacts present in the scalar wavelet shrinkage. This can be seen, for example, in 
the facial features (eyes, nose) of the Lenna images shown in Figure 47. The GHM- 
repeated row scheme suffered because we had to repeat rows in first the x dimension 
and then in the y dimension, altering the correlations of the data. This produces the 
broad stripes in the image denoised with the repeated row scheme. 

Figure 47: See attached page 

Noise 
GHM with 

approximation 
GHM with 

repeated row D4 

i} error 19.93 6.87 9.70 8.09 

I2 error 24.98 9.75 12.6 11.4 

Table 4: Denoising of Lenna image via wavelet-shrinkage. 

6.4.3    Transform-based image coding 

One of the most successful applications of the wavelet transform is image compression. 
A transform-based coder operates by transforming the data to remove redundancy, 
then quantizing the transform coefficients (a lossy step), and finally entropy coding 
the quantizer output. Because of their energy compaction properties and correspon- 
dence with the human visual system, wavelet representations have produced superior 
objective and subjective results in image compression [64], [130], [11], [16]. Since a 
wavelet basis consists of functions with short support (for high frequencies) and long 
support (for low frequencies), large smooth areas of an image may be represented 
with very few bits, and detail added where it is needed. Multiwavelet decompositions 
offer all of these traditional advantages of wavelets, as well as the combination of or- 
thogonality, short support, and symmetry. The short support of multiwavelet filters 
limits ringing artifacts due to subsequent quantization. Symmetry of the filter bank 
both leads to efficient boundary handling and preserves centers of mass, lessening the 
blurring of fine-scale features. Orthogonality is useful because it means that rate- 
distortion optimal quantization strategies may be employed in the transform domain 
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Lenna image with Gaussian noise 
MSE 24.98 

GHM-with-approximation 
multiwavelet denoising, MSE 9.75 

Daubechies 4 scalar 
wavelet denoising, MSE 11.4 

GHM-repeated-row 
multiwavelet denoising, MSE 12.6 

Figure 47: Denoising comparison. 



and still lead to optimal time-domain quantization (at least when error is measured 
in a mean-square sense). Thus it is natural to consider the use of multiwavelets in a 
transform-based image coder. 

We compared the new two-dimensional multiwavelet algorithms with a D4 scalar 
wavelet in a production image coding system. Five types of wavelet transform were 

used: 

• D4 scalar wavelet 

• Approximation/deapproximation preprocessing with GHM multiwavelets 

• Adjacent rows input with GHM multiwavelets 

• Adjacent rows input with symmetric pair 

• Adjacent rows input with two different constrained pairs 

Each of these wavelet transforms was followed by entropy-constrained scalar quanti- 
zation and entropy coding. We made the assumption that the histograms of subband 
(or wavelet transform subblock) coefficient values obeyed a Laplacian distribution 
[64], and designed a uniform scalar quantizer. The quantizer optimized the bit allo- 
cation among the different subbands by using an operational rate-distortion approach 
(minimizing the functional D + XR) [93]. We then entropy-coded the resulting coef- 
ficient streams using a combination of zero-run-length coding and adaptive Huffman 
coding, as in the FBI's Wavelet Scalar Quantization standard [7]. 

Compression Ratio 8:1 16:1 32:1 64:1 
pSNR pSNR pSNR pSNR 

Daubechies 4 35.6 32.3 29.3 26.8 

GHM with appr./deappr. 35.3 31.8 29.4 27.1 

Adjacent Row Processing: 
GHM 24.1 21.3 19.7 18.4 

symmetric pair 31.1 27.3 24.0 21.8 

constrained pair #1 32.4 28.5 25.1 23.0 

constrained pair #2 31.9 28.2 25.0 22.8 

Table 5: Peak SNRs for compression of Lenna. 

We applied these different wavelet image coders to the Lenna (NITF6) image, as 
well as a geometric test pattern, at a variety of compression ratios. The results are 
shown in Tables 5 and 6, and in Figures 48 and 49. On Lenna, the GHM multiwavelet 
with approximation mildly outperformed the DA scalar wavelet at compression ratios 
of 32:1 and 64:1. The images in Figure 48 show that the GHM-approximation scheme 
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preserves more texture in the hat and, as in the denoising application, produce fewer 
Cartesian artifacts than the scalar wavelet scheme. The repeated-row method did 
not work well on Leuna. However, the repeated-row method produced the best com- 
pressions of the test pattern image (49) at intermediate compression ratios (16:1 
and 32:1), with the constrained pair #1 "CP-1" outperforming both £>4 and GHM 
with approximation. When using the repeated row algorithm, the constrained pairs 
significantly outperformed the GHM symmetric multiwavelet, demonstrating the im- 
portance of the eigenvector constraints used in definition of the constrained pairs. A 
close look at the details of the compressed/decompressed test patterns shows that 
the CP-1 compression did a better job of preserving the checkerboard and "rang" 
over a shorter distance than the D4 compression. The alteration of the checkerboard 
pattern in the D4 compression may be due to the lack of linear-phase symmetry in 

the wavelet filters. 
These preliminary results suggest that multiwavelets are worthy of further inves- 

tigation as a technique for image compression. Issues to address include the design 
of multiwavelets with symmetry and higher order of approximation than the GHM 
system, the role of eigenvector constraints, and also further exploration of regular- 
ity for multiwavelets [119]. One might also apply zerotree-coding methods [92] in a 
multiwavelet context. 

Compression Ratio 8:1 16:1 32:1 64:1 

pSNR pSNR pSNR pSNR 

Daubechies 4 48.5 31.4 23.0 19.8 

GHM with appr./deappr. 52.4 34.0 18.3 16.8 

Adjacent Row Processing: 
GHM 29.8 25.4 20.1 15.8 

symmetric pair 33.3 28.3 20.9 16.5 

constrained pair 1 42.2 32.3 23.9 19.0 

constrained pair 2 33.3 30.2 21.6 17.6 

Table 6: Peak SNRs for compression of geometric test pattern. 

Figure 48: See attached page 

Figure 49: See attached page 
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Lenna original GHM approximation-based 
multiwavelet compression 

64:1, pSNR27.1 

Daubechies 4 
scalar wavelet compression 

64:1, pSNR 26.8 

Constrained-Pair #1 
multiwavelet compression 

64:1, pSNR 23.0 

Figure 48: Lenna compression comparison. 



Original geometric pattern Detail of original pattern 
(corner of lower left checkerboard) 
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Detail of CP-1 multiwavelet 
compression (32:1, pSNR 23.9) 

Detail of D4 scalar wavelet 
compression (32:1, pSNR 23.0) 

Figure 49: Pattern compression comparison. 



In summary, we have applied the new mathematical constructions of multiwavelets. 
Multiwavelets offer the advantages of combining symmetry, orthogonality, and short 
support, properties not mutually achievable with scalar 2-band wavelet systems. How- 
ever, multiwavelets differ from scalar wavelet systems in requiring two or more input 
streams to the multiwavelet filter bank. We described two methods (repeated row 
and approximation/deapproximation) for obtaining such a vector input stream from 
a one-dimensional signal. We developed the theory of symmetric extension for multi- 
wavelet filter banks, which matches nicely with approximation-based preprocessing. 
We then applied this arsenal of techniques to two basic signal processing problems, 
denoising via thresholding (wavelet shrinkage), and data compression. After devel- 
oping the approach via model problems in one dimension, we applied the various 
new multiwavelet approaches to the processing of images, frequently obtaining per- 
formance superior to the comparable scalar wavelet transform. These results suggest 
that further work in the design and application of multiwavelets to signal and image 
processing is well warranted. 

7    Technical Conclusions 

In conclusion, this project explored and delineated the theory of a broad new class of 
mathematical transforms, the rank M wavelets. We developed a production-quality 
software package (WaveTool) for the design and implementation of these transforms, 
and applied them to concrete problems in signal processing and communications. In 
the theoretical realm, we discovered complete parametrizations of the family of rank 
M wavelets, and developed and applied mathematical tools for measuring the Sobolev 
smoothness of rank M wavelet systems, leading to surprising asymptotic regularity 
results. We also developed numerous techniques for rank M wavelet filter design, 
including those based on approximation (vanishing moments) and on smoothness of 
the iterated filter (regularity). Methods for the construction of full rank M wavelet 
matrices led directly to fast algorithms for computation, particularly in the case of 
the cosine-modulated filter banks. 

This project also saw the design and completion of a broad and flexible software 
system, "WaveTool", for prototyping wavelet algorithms. After installation at a num- 
ber of government, academic, and industrial beta sites, this software was successfully 
turned into a commercial product. Finally, new applications of rank M wavelets and 
design techniques were explored, particularly to multicarrier modulation for broad- 
band communications. This latter application has led directly to a chipset product 
for high-bitrate communications across twisted-pair copper wire and hybrid fiber-coax 
networks. We also improved our leading-edge wavelet image compression algorithms, 
and applied wavelet-based compression to sonar, seismic, and multispectral image 
data. Finally, we produced the first significant applications of the new multiwavelet 
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techniques to signal and image processing, yielding promising results in denoising and 

compression. 
Directions for further research that were suggested by this work include: 

The systematic application of wavelet-based smoothness measures in image 
quantization and compression. Initial steps have been taken in [19]. 

Deeper exploration of cosine-modulated filter bank and wavelet structures, in- 
cluding filter design and fast algorithms for computation [71], [42]. 

Thorough development of wavelet-based systems for multicarrier modulation, 
addressing issues such as equalization and system latency [47]. 

Deeper exploration of multiwavelet techniques for signal processing, incuding 
advances in multiwavelet filter design and preprocessing algorithms [129]. 

Of course this is only a partial list; many other topics can be named. 

8 Participants 
Employees at Aware who participated in work on this contract included: Dr. Peter 
Niels Heller, Dr. Howard L. Resnikoff, Dr. Michael Tzannes, Dr. John Weiss, 
Dr. Edmund Reiter, Hemant Singh, Lev Weisfeiler, Vasily Strela, W. Knox Carey, 
Dr. Richard Gross, Dr. Stephen DelMarco, Karl Jagler, L. Scott Hills, and Anna 

Rounbehler. 
A number of consultants, each of them experts in their respective fields, were em- 

ployed as well. They included: Professor R. 0. Wells, Jr. of Rice University (wavelet 
mathematics and computation), Professor P. P. Vaidyanathan of Cal Tech (multi- 
rate signal processing), Professor Truong Q. Nguyen of the University of Wisconsin 
(design of wavelet and filter bank structures), Dr. Ramesh Gopinath of Rice Univer- 
sity (wavelets and signal processing), and Dr. Sundar Narasimhan of MIT (graphics 

software for WaveTool). 

9 Publications 
Publications arising from the work completed under this contract include five refereed 
journal articles, 14 conference papers, and two book chapters. Specifically, they 

include: 
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Journal Articles: 

1. P. Steffen, P. N. Heller, R. A. Gopinath, C. S. Burrus, "Theory of Regular 
M-band Wavelets," IEEE Trans, on SP, 41 (1993), pp. 3497-3511. 

2. P. N. Heller, "Rank M Wavelets With N Vanishing Moments," SI AM J. Matrix 
Analysis, 16 (1995), pp. 502-519. 

3. H. L. Resnikoff, "Analytic Representation of Compactly Supported Wavelets," 
in Festschrift for Hans Bremermann, BioSystems, 34 (1995), pp. 259-272. 

4. V. Strela, P. N. Heller, G. Strang, P. Topiwala, and C. Heil, "The Application 
of Multiwavelet Filter Banks to Image Processing," to appear, IEEE Trans, on 
Image Processing. 

5. P. N. Heller and R. 0. Wells, Jr., "Sobolev Regularity for Rank M Wavelets," 
submitted to SIAM J. Math. Analysis, 1996. 

Conference Papers: 

1. P. N. Heller and H. L. Resnikoff, "Regular M-band wavelets and applications," 
Proc. IEEE ICASSP, Minneapolis, 1993. 

2. C. Bosman and E. C. Reiter, "Seismic data compression using wavelet trans- 
forms," SEG Annual Meeting Extended Abstracts, pp. 1261-1264, 1993. 

3. P. N. Heller and K. Jagler, "Wavelet compression of multispectral imagery," 
in Proc. Industry Workshop - Data Compression Conference, Snowbird, Utah, 
1994. 

4. H. L. Resnikoff, "Perfect reconstruction and wavelet matrix windows for har- 
monic analysis," in Proc. SPIE, San Diego, CA, 1994. 

5. P. N. Heller, "Lagrange M-th band filters and the construction of smooth M- 
band wavelets," in Proc. IEEE-SP Intl. Symp. on Time-Frequency and Time- 
Scale Analysis, Philadelphia, PA, 1994, pp. 108-111. 

6. E. C. Reiter and P. N. Heller, "Wavelet transform based compression of NMO- 
corrected CDP gathers," Society of Exploration Geophysicists 64th Annual 
Mtg., Los Angeles, 1994., pp. 731-734. 

7. M. A. Tzannes, M. C. Tzannes, J. Proakis, P. N. Heller, "DMT Systems, 
DWMT systems, and digital filter banks," in Proc. IEEE ICC, New Orleans, 
LA, 1994. 
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8. P. N. Heller, J. M. Shapiro, and R. 0. Wells, Jr., "Optimally smooth symmet- 
ric quadrature mirror filters for image coding," in Proc. SPIE 2491, Wavelet 
applications for dual use, Orlando, FL, April, 1995. 

9. P. N. Heller, V. Strela, G. Strang, P. Topiwala, C. Heil, L. S. Hills, "Multi- 
wavelet filter banks for data compression," in Proc. IEEE ISCAS '95, Seattle, 
Washington. 

10. P. N. Heller, T. Q. Nguyen, H. Singh, W. K. Carey, "Linear-Phase M-band 
wavelets with application to image coding," in Proc. IEEE ICASSP, Detroit, 

MI, 1995. 

11. S. DelMarco, P. N. Heller, and J. Weiss, "An M-band, 2-dimensional translation- 
invariant wavelet transform and applications," in Proc. IEEE ICASSP, Detroit, 

MI, 1995. 

12. H. Singh and P. N. Heller, "WaveTool: an integrated software for wavelet and 
multirate signal processing," IEEE Intl. Conf. on Image Proc, Washington, 

D.C., 1995. 

13. V. Strela, P. N. Heller, G.Strang, P.Topiwala and C.Heil, "Application of mul- 
tiwavelets to signal and image processing," in UK Symposium on Applications 
of Time-Frequency and Time-Scale Methods, Warwick, UK, 1995. 

14. M. Lang and P. N. Heller, "The Design of maximally smooth wavelets," IEEE 
ICASSP, Atlanta, GA, 1996. 

Book Chapters: 

1. P. N. Heller and R. 0. Wells, Jr., "The Spectral Theory of Multiresolution Op- 
erators and Applications," in Wavelets: Theory, Algorithms, and Applications, 
C. K. Chui, L. Montefusco, L. Puccio, eds., Academic Press, San Diego, 1994, 
pp. 13-32. 

2. P. N. Heller, "Tutorial 2.5: Subband and Wavelet Transforms: Theory, De- 
sign, and Applications: Educational Software," in Microsystems Technology for 
Multimedia Applications, IEEE ISCAS Tutorial volume, 1995. 

In addition a number of invited talks were given, including: 

• Nordic Postgraduate course on Wavelets and Filter Banks, Helsinki, Finland, 

1994 - P. N. Heller 

• Sherman Memorial Lecture at Indiana University, Bloomington, IN, 1994 - H. 
L. ResnikofF 
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• Presentation at the 1993 Taormina, Italy conference on Wavelets and Applica- 
tions - R. 0. Wells, Jr. 

• Hour talk at Argonne Workshop on Wavelets and Large-Scale Image Processing, 

Argonne, IL, 1994 - P. N. Heller 

10    Transition of Technology to Government and 
Commercial Uses 

10.1 WaveTool 

The WaveTool wavelet and multirate design and algorithm prototyping software was 
installed at the following government, industrial, and academic "beta sites": 

• National Security Agency (R5): Adolf Cusmariu and Mark Marson 

• National Agency: Laszlo Fulop 

• Analog Devices, Norwood, MA 

• General Instrument, Hatboro, PA 

• Massachusetts Institute of Technology (Math Dept.    and Civil Engineering 
Dept.) 

• California Institute of Technology (Electrical Engineering Dept.) 

• Rice University (Electrical and Computer Engineering Dept. and Math Dept.) 

• University of California at Davis (Electrical Engineering Dept.) 

• Helsinki University of Technology (Electrical Engineering Dept.) 

Feedback from these users proved very useful for later improvements to WaveTool, 
preceding its release as a commercial product in April 1995. Since then, a number of 
copies of this specialized signal processing software have been delivered to industry 
and academic customers around the world. 

10.2 Other commercial products 

Work done on this contract has contributed to numerous other Aware products in 
both last-mile telecommunications and in image compression. In telecommunications, 
the wavelet filter designs and computational algorithms of section 4.4 as applied to 
multicarrier modulation (section 6.1) have been designed into an application-specific 
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integrated circuit (ASIC) with our partner, Analog Devices. This chip, the AD6434, 
implements a 384-tone DWMT algorithm using a cosine-modulated wavelet filter bank 
with rank M - 384 and genus g = 6. It is intended for use in both hybrid fiber-coax 
and twisted-pair systems. As part of a joint project with DSC Communications Corp., 
the AD6434 has been incorporated into DSC's MediaSpan architecture to provide 
the cable telephony subsystem. Just recently, the first successful phone call over this 
DWMT-based telephony system was made. Similar DWMT algorithms are being 
designed into an Aware/ADI chipset for a VDSL system (high-bitrate communications 
over twisted-pair copper lines of length 1000 to 3000 feet) that will be released during 

1997. 
This project's advances in wavelet filter design and image compression algorithms 

have contributed to Aware's numerous successful products for wavelet-based still im- 
age compression. The extension of wavelet methods to seismic data compression has 
led directly to a software product, SeisPact, that is seeing wide use. SeisPact has 
been widely deployed for ship-to-shore communication of seismic exploration results 
via Inmarsat (satellite) links, as discussed in section 6.2.4. SeisPact is also being 
used in on-shore seismic data processing applications to minimize data storage re- 
quirements. Aware's AccuPress software for compression of 8-bit and 24-bit images 
derived a number of improvements from the project being reported, and is being used 
for a variety of applications from medical image compression to multimedia. In addi- 
tion, Aware has become the leading vendor of compliance-certified implementations 
of the FBI's Wavelet Scalar Quantization [7] wavelet-based fingerprint compression 

algorithm. 

10.3    Other government work 

Some of the ideas explored during this contract have led to further government work 
as well. Aware has successfully investigated compression of one-dimensioal acoustic 
data via a Phase I SBIR with the Navy [26], and is currently working on Phase II 
of the same project, intended to lead to a compression product for one-dimensional 

data. 
We also successfully pursued and completed a Phase I SBIR for the National In- 

stitute of Standards and Technology, the "Wavelet Image Compression Workbench," 
[40] that took many of the ideas from this contract involving choice of wavelet basis 
and multiresolution tree and incorporated them into a software plug-in module for 
Adobe Photoshop. This led directly to a software workbench for comparing and pro- 
totyping wavelet image compression algorithms, and to a compression product that 

we are selling today. 
Finally, new applications of wavelet techniques to communications were the sub- 

ject of a follow-on government agency contract with Howard L. Resnikoff [85]. 
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