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1. Summary of Achievements. 

Quantitative prediction of the structure, properties, and chemical reactivity of molecules 
by computer programs using first principles electronic structure methods is a valuable 
complement to experimental studies, because the latter are often difficult or impossible 
for transient reactive species. Unfortunately, the electronic structure methods which 
achieve quantitative chemical accuracy, such as those based on coupled cluster theory, are 
currently limited in applicability to small molecules of less than about ten first row 
atoms. This is because of the unphysical increase in computational cost with molecular 
size in standard implementations. In this Phase I SBIR research, Q-Chem Inc., in 
collaboration with researchers at the University of California, Berkeley, has developed a 
new-from-the-ground-up approach to reformulating these proven electron correlation 
methods in terms of atom-centered spatially localized quantities. The feasibility and 
formal advantages of the new formulation has been demonstrated in preliminary work 
based on the simplest electron correlation method, second order perturbation theory. 
Trial calculations on medium sized molecules indicated that recovery of both absolute 
electron correlation energy, and also recovery of relative energies across potential surfaces 
is excellent. The results have shown the potential of these new local correlation methods 
to allow the study of much larger molecules than can be treated conventionally, with 
roughly an order of magnitude improvement being possible. 



2. Introduction. 

The main achievement of researchers in quantum chemistry over the past three decades 
has been the development of a rational series of theories of molecular wavefunctions 
which form successively better approximations to formally exact quantum mechanics1. 
Each approximation may be viewed as a "theoretical model chemistry", in the sense that 
virtually any property of the isolated molecule which can be measured experimentally can 
be calculated within the chosen framework. The goal of quantum chemistry is the 
achievement of model chemistries which are sufficiently accurate to permit prediction of 
molecular structure, properties and reactivity in cases where experiments are ambiguous 
or unfeasible. This can now be considered virtually accomplished for small molecules11'"1. 

As a result of this systematic development, molecular orbital methods have been 
implemented into large program packages which have been eagerly adopted by researchers 
in industry and academia alike. There are now roughly ten major software packages 
which are competing for sales in this growing market. Applications of these methods 
range from investigating the thermochemical stability of chlorofluorocarbon replacements 
to calculations of the partial charges on small biological molecules as input to simulations 
for computer-aided drug design. Within the USA, molecular orbital calculations are used 
as a tool within most industrial molecular modeling groups. Part of maintaining their 
international competitiveness is to ensure that such groups have the earliest possible 
access to new technical advances, as has historically been the case in this area. 

Yet this success masks an absolutely fundamental problem, which must be addressed if 
these model chemistries are ever to be applied to molecules containing more than a dozen 
or so atoms. The problem is that the computational complexity of our best model 
chemistries (for example based on the Moller-Plesset and coupled cluster approaches) 
grows in an unphysical way with the number of atoms. While electrons interact in 
pairwise fashion, the complexity of the coupled cluster approach to electron correlation 
rises as the sixth power of the size of the moleculelv. This is so steep a dependence that 
to increase the size of molecule by a factor of 10 would require one million times more 
computing power with present algorithms! Even computer storage requirements 
currently rise as the fourth power of molecular size, so ten thousand times more disk 
space would also be required. 

One way around this barrier to the study of larger systems by molecular orbital methods 
is to seek entirely new theories. For this reason, much attention has been focused on 
density functional theory (DFT) over the past several years. Density functional methods 
scale far less severely with molecular size, and recover the proper asymptotic quadratic 
size dependence expected from pairwise interactions^ DFT is now widely employed for 
quantum mechanical calculations on large molecules. However, the accuracy of DFT is all 
too often insufficient for chemical purposes. For example, barriers to chemical reactions, 
which are critical in many molecular design applications, are predicted erratically by 



present versions of DFT. Hence DFT methods are not proving to be a replacement for 
accurate Moller-Plesset and coupled cluster theory calculations, which remain the 
methods of choice for quantitative calculations when they are computationally feasible. 

The other alternative, which is the one that we have pursued in this research, is to 
reformulate high level molecular orbital theories to make them computationally feasible 
for studying larger molecules. The correlations between electrons must simplify as the 
separation between them increases, so that asymptotically it should be possible to obtain 
computational complexity that increases only with the square of molecular size, 
corresponding to pairwise interactions. The length scale on which this simplification 
occurs can be estimated very roughly from the length scale over which the characteristic 
functional group properties of molecules emerge. This is on the order of only a few 
bondlengths, which suggests that for molecules containing more than a few functional 
groups there will be tremendous computational savings from exploiting the natural 
distance dependence of electron correlations. 

We have developed a new-from-the ground-up tensor-based formulation of electron 
correlation during the Phase I period which opens the way to new and very powerful 
"atoms-in-molecules" (AIM) methods that indeed make high level correlation methods 
applicable to larger molecules. In Sec. 3, we describe the underlying basis of the tensor 
formulation, and summarize some of the key new results that have been obtained. 
Perhaps the most significant one is the fact that the tensor approach permits use of 
nonorthogonal atom-centered functions in theories of electron correlation. In Sec. 4, we 
describe two procedures we have developed for obtaining appropriate sets of atom- 
centered functions, together with preliminary results. As described in Sec. 5, we have 
combined these two developments to obtain computationally efficient AIM treatments of 
electron correlation. Any standard correlation method can be evaluated by our AIM 
models. We have demonstrated their accuracy and feasibility via a pilot implementation 
for the simplest electron correlation method, second order Moller-Plesset theory. 

3. A Tensor Approach to Electron Correlation Theory. 

In the Phase I period, we have developed a straightforward formalism that allows theories 
of electron correlation to be formulated in nonorthogonal basis setsvl. Our treatment 
makes full use of the tensor properties of the operators of quantum mechanics, which 
permits all defining equations to be cast in a manner which is manifestly invariant to 
whether or not the basis is orthogonalized. The only assumption required is strong 
orthogonality between functions spanning the occupied subspace and functions spanning 
the virtual subspace of the one-particle Hubert space. Even this can be lifted by the 
introduction of projectors into the equations. The tensor approach is readily employed 
using algebraic methods in either first or second quantization. When applied to standard 
correlation methods, such as coupled cluster theory truncated at single and double 



substitutions, and second order Moller-Plesset perturbation theory we obtain equations 
which are invariant to larger classes of transformations than existing expressions. 

What is the point of permitting the generalization to nonorthogonal functions? In the first 
instance it is desirable to obtain expressions for many-electron theories that are as general 
as possible. One might imagine that given such equations, new and useful practical 
approximations may subsequently arise. For example, the atomic orbital (AO) single 
particle basis sets ubiquitous in molecular electronic structure theory are themselves 
nonorthogonal. To obtain equations that are directly in terms of this given basis set, there 
is no alternative but to properly build nonorthogonality into the formalism from the 
outset. Since these functions are spatially localized, they provide a natural representation 
in which the description of electron correlation via many-body theories can be cast in 
local terms. A spatially localized treatment of electron correlation™'™1 is essential for 
eliminating the unphysical scaling of computational cost with molecular size that afflicts 
orthogonal basis formulations of many-body theories. 

Why was a formulation of this kind not already available? All standard many body 
methods in electronic structure theory, be they first quantization-based, second 
quantization-based or diagrammatic, implicitly depend upon an underlying orthonormal 
single particle basis'". The main reason for employing orthogonal representations is that 
they are widely believed to be simpler. In particular, the usual approach to obtaining 
equations that are directly in a nonorthogonal basis is to explicitly carry the metric 
(overlap) matrices along in the equations". This leads to equations that are substantially 
more cumbersome in the nonorthogonal basis than in the usual orthogonal representation. 
However, with the full use of tensor algebra, we have shown it is possible to obtain 
expressions that are general to nonorthogonal basis sets with relatively little additional 
complication. 

Space considerations prevent us from giving a full description of the tensor formalism 
here. Instead, we shall summarize the essential concepts, and then illustrate the form of 
the equations that arise for second order Moller-Plesset theory. The equations that arise 
for coupled cluster theory are also straightforwardly obtained, and will be explored and 
implemented as part of our Phase II research. 

Descriptions of tensor analysis are available in many textbooks"1'"11. For our purposes the 
essential concepts are: 

1) Let us be given a set of nonorthogonal functions, 4^»„ \ J The way in which these 

functions transform on a change of basis is termed covariant, and covariant indices are 
denoted with subscripts. The overlap matrix of these functions is termed the metric: 



2) By inverting the metric matrix (or employing a generalized inverse if necessary) and 

acting with this inverse, g^v = (S~l )   , on the given functions, we define a dual basis, 

(^|=I^V<0v| (1) 
V 

which is biorthogonal to the original functions: l(j)^ wv \ = S^v . Functions in the dual 

basis transform in an inverse way to functions in the given, covariant basis, and indices 
with this property are termed contravariant, and are indexed with superscripts. The 
action of the metric matrix converts indices from contravariant to covariant, and the 
inverse metric matrix converts from covariant to contravariant. 

3) By defining addition and contraction of tensors appropriately, tensor algebra yields 
results which are by construction invariant to transformations of the underlying basis. 
Thus contraction of a pair of indices (as in a dot product of vectors to yield a scalar) is 
permitted only if one index is contravariant and the other is covariant, which defines the 
Einstein summation convention (a repeated index, one covariant the other contravariant, 
implies summation). Addition of tensors is only possible if the properties of their indices 
match. 

4) To treat the electron correlation problem, we introduce separate sets of 
nonorthogonal functions spanning the occupied and virtual subspaces. How they are 
obtained is discussed in Sec. 3.3. Use of what we term the "natural representation" in 
which many-electron ket quantities contain functions in the covariant basis, and many- 
electron bra vectors contain only dual basis functions leads to equations for electron 
correlation methods that are isomorphic to traditional orthogonal basis derivations, but 
substantially more general. 

5) While the discussion above appears to involve explicit inversion of metric matrices, 
which appears to rule out the use of linearly dependent representations, this is not in fact 
the case. With appropriate use of the theory of generalized inversesxl", and the singular 
value decomposition, it is quite straightforward to employ overcomplete representations 
(as we in fact do in practice, as discussed in Sees. 4 and 5). 

We give an example of the tensor formalism applied to perhaps the simplest useful 
treatment of electron correlation. This is the many-body perturbation approach first 
proposed by Meiler and Plessetxlv. Revived in the mid-1970's, this approach, carried to 
second order, has become a standard tool of computational quantum chemistry1. The 
usual formulation of MP2 theory involves the assumption of the canonical molecular 
Orbitals (so that the zero Hamiltonian is diagonal in the many-electron basis). However, 
more general "noncanonical" forms of MP2 theory which are invariant to unitary 
transformations within the occupied and virtual spaces were introduced in the context of 
gradient theory, and open shell problems'™. With Pulay and Saebo's local MP2 methodvn, 
a yet more general form was presented, in which nonorthogonal functions were employed 
to span the virtual function space. Our tensor formalism yields the most general MP2 



equations yet presented, as they are invariant to nonunitary transformations within the 
occupied and virtual spaces individually. 

There is a delightful isomorphism between our new and more general treatment and the 
conventional orthogonal basis formulations. The first order equation for the perturbed 
wavefunction may be resolved by projection with singly and doubly substituted bra 
determinants (in the dual basis of course) to yield equations for the first order single and 
double substitution amplitudes: 

ty |F(°) T^<p)+ lp?fV>)f>)= 0 (2a) 

lffjb \F^ 7f<2>)+ fyfw |^ = o (2b) 

These equations may be written out in explicit spin-orbital notation quite easily, using 
either first quantization tensor-based techniques or the corresponding second quantization 
version. Adopting the natural representation defined above for all tensor quantities we 
obtain: 

Fgtf-Ftf+F^O (3a) 
j 

Fctff + Fc
atijb ~ Fftfk ~ Fhtj + I?/ = 0 (3b) 

where F is the Fock operator, t are the amplitudes to solve for, and indices i,j,k... are 
occupied, a,b,c... are virtual, and of course subscripts and superscripts have their tensorial 
meanings. The antisymmetrized two electron integrals are explicitly defined in the natural 
representation as: 

2%*=(*V|M,)-(W|0A) (4) 
Finally, the second order expansion of the energy is obtained from the second order 
expansion of the eigenvalue equation followed by projection with the bra determinant: 

EV> = (<S>\V^\(T}» +7?)>)= Fitf + ^f (5) 

These equations constitute the most general form of the MP2 equations yet presented: 
they are invariant to general nonunitary linear transformations within the occupied and 
virtual subspaces respectively. Within the framework for treating linear dependencies 
mentioned above, these equations can even be solved within redundant representations if 
this is convenient. These equations, despite their perturbational nature, must be solved 
iteratively because of the off-diagonal Fock terms in Eqs. (3). Finally, Eqs. (3) can be 
specialized to the textbook canonical case by assuming an orthogonal basis (in which case 
the covariant-contravariant distinction vanishes), satisfying the Brillouin theorem (such 
that first order singles are zero), and diagonalizing the occupied-occupied and virtual- 
virtual blocks of the Fock matrix (so that the doubles equations uncouple). 

Via the use of metric matrices, it is straightforward to alter the tensor character of the 
integrals and amplitudes that enter the above equations. For example, let us make contact 
with the expressions previously presented for the MP2 equations in a representation 
where the virtual subspace was treated in a redundant nonorthogonal representation while 



the occupied subspace was described in a noncanonical but orthogonal basisv". We must 
make essentially only one change, which is to convert to the fully covariant virtual 
representation via metric matrices. The result is then directly comparable with the 
equations that form the starting point for Pulay and Saebo's local MP2 method™: 

SactCij Fbd + FaJ°ij Sbd ~ Fj Sactik Sbd ~ Fi  Sac4j Sbd + ^abij ~ ° (6a) 

E(2)=^bt (6b) 
In their local MP2 method, the occupied indices are restricted to an orthogonal basis, so 
that the metric matrices for the occupied space are simply identity matrices, and the 
distinction between covariant and contravariant occupied indices vanishes. They also 
truncate the range of virtual indices associated with a given pair of occupied indices using 
a spatial proximity condition™'™. 

To summarize, we have equations for second order Moller-Plesset theory (MP2) and 
coupled cluster theory which are more general than any previously reported. These 
equations permit the use of local nonorthogonal functions to represent both occupied and 
virtual subspaces, by contrast with all previous formulations which have required 
orthogonality in at least the occupied subspace. Two principal issues must be addressed 
in order to begin to leverage the very exciting potential of this new formulation for 
reducing the computational complexity of electron correlation methods. They are: 

(1) We must define effective techniques for obtaining spatially localized sets of 
functions that span the occupied and virtual subspaces. Our solutions to this problem are 
discussed in Sec. 4. This bypasses the need for sets of localized molecular orbitals, and 
the problems that are sometimes associated with them. 

(2) We must design a rational hierarchy of local correlation models that can be 
implemented and tested with the functions developed above. This leads to our "atoms- 
in-molecules" (AIM) methods for treating electron correlation, described in Sec. 5, which 
turns out to have unique formal and practical advantages relative to previous proposals 
for local MP2 methods. 

4. The Nonorthogonal Orbitals. 

We have decided to focus on atom-centered functions, so that our new models for local 
correlation can be based on atom-centered selection of the significant pair correlation 
amplitudes. The use of atom-based functions is very common within single electron 
theories of electronic structure such as Hartree-Fock theory and density functional 
theory. In the context of the tensor-based electron correlation formalism developed in 
Sec. 3, we require sets of functions spanning the occupied and virtual subspaces. The 
most simple approach is to use projected atomic orbitals: projected into the occupied 
space and the virtual space respectively: 

l^MK^HMw (7a) 

\K) = Q\^Ya={!-P}^ya=\^)^a-P.^Va) (7b) 



This leads to functions which for insulators are exponentially localized, provided the 
system under study has a band gap. This condition is universally satisfied for molecules. 
The use of functions of this type is satisfactory for the virtual space and has been used 
successfully in the earlier local correlation models of Pulay and Saebov". However 
projected atomic orbitals are several-fold redundant (and hence potentially inefficient) for 
the occupied space. 

We have hence developed alternative treatments of the occupied space which reduce its 
dimension per atom to that of a minimum basis only (instead of the dimension of the full 
basis for correlation which will typically be 3 to 10 times larger). It has been long 
suspected that such a reduction is possiblexv"'xvm with little loss in accuracy, but the idea 
has never been pursued for computational advantage. We have accomplished the 
reduction to a minimum basis in two alternative ways, which each have different special 
advantages. We shall discuss them in turn. 

Projected Natural Atomic Orbitals (PNAO's). This is an exact reduction, based on 
defining natural atomic orbitals from atom-centered blocks of the one-particle density 
matrix, in the spirit of Weinhold' s natural atomic orbitalsxlx. Selecting a minimum basis 
set according to occupation number and projecting into the occupied space (via the analog 
of Eq. (7a)) yields functions that exactly span that space,   for all molecules tested (an 
extensive series of compounds comprised of first row atoms and hydrogen atoms). This 
set of localized atom-centered functions gives a starting point for correlation treatments 
that is exactly equivalent to the conventional choice of a set of occupied molecular 
orbitals. The extent of localization is directly related to the bandwidth of the density 
matrix. 

Projected Polarized atomic orbitals. We have developed an alternative reduction in which 
the Hartree-Fock calculation that defines the occupied space is performed in a molecule- 
optimized atom-centered minimum basis set. We term these functions polarized atomic 
orbitals (PAO's) and we have developed a pilot program that determines them as linear 
combinations of the functions included in a much larger secondary basis set. For example, 
the triple zeta 6-311G** basis is employed to define the molecule-optimized minimal 
basis of PAO's in the preliminary results discussed below. Thus given a (large) 

secondary basis \^>^) \, the (small) basis of PAO's -|J0a)]- are defined via an atom- 

blocked (let PAO index a belong to atom A) rectangular transformation, B: 

\4>a)= I k)V (8) 

where the transformation coefficients are determined as part of the variational Hartree- 
Fock calculation. 

The PAO's appear very promising as a method for performing HF (or even DFT) 
calculations on very large molecules as well as providing atom-centered functions that 



span the occupied space (after projection with the density operator). While the Hartree- 
Fock energy obtained in this way is slightly higher than that in the full (extended) basis, 
this difference is small compared to normal basis set incompleteness effects. More 
importantly, the quality of chemical results obtained with the PAO basis is vastly higher 
than that of a conventional minimal basis, and approaches that of the full secondary basis. 

An example of the Phase I tests of PAO's are shown in Tables 1 and 2, which contains 
PAO Hartree-Fock and PAO second order Moller-Plesset theory calculations on a small 
series of substituted ethylenes, probing both the absolute energy of the most stable 
conformer (table 1), and the relative energies of the stable conformers and the transition 
state for internal rotation (table 2). As these molecules are all conjugated, they represent a 
stringent test for the performance of the PAO model. In particular, the PAO model of 
bonding approaches exactness in the limit where all bonds are strictly localized. This is 
clearly not the case in these conjugated molecules, where the size of the rotational barrier 
follows directly from the strength of the conjugative interactions between the two 
unsaturated groups. 

conformation HF/ HF/ MP2/ MP2/ 

PAO[6- 6-31 IG** PAO[6- 6-311G** 
311G**] 311G**] 

Vi-CHO (trans) -190.775497 -190.812472 -191.497914 -191.504270 

Vi-OH (trans) -152.904239 -152.937832 -153.473099 -153.477798 

Vi-Vi (trans) -154.929678 -154.960122 -155.592566 -155.595937 

Vi-CFO (trans) -289.656809 -289.718733 -290.600770 -290.612309 

Table 1. Hartree-Fock and second order Moller-Plesset calculations of the 
absolute energies of the most stable conformer of a series of conjugated 
ethylenes: acrolein (Vi-CHO), vinyl alcohol (Vi-OH), butadiene (Vi-Vi), and 
propenoyl fluoride (Vi-CFO). All calculations are at HF/6-31G* optimized 
geometries and the absolute energies are given in atomic units (Hartrees). 
Differences between using the polarized atomic orbitals, and full use of the 6- 
31 IG** basis are smaller than the basis set truncation errors. Furthermore, this 
difference is greatly reduced, by a factor of 4 to 10, at the MP2 level. 

conformation HF/ HF/ MP2/ MP2/ 

PAO [6- 6-311G** PAO [6- 6-311G** 
311G**] 311G**] 

Vi-CHO (trans) 0.0 0.0 0.0 0.0 

10 



Vi-CHO (eis) 2.162 1.688 1.610 1.450 

Vi-CHO (is.) 6.649 7.954 7.691 7.874 

Vi-OH (syn) 0.0 0.0 0.0 0.0 

Vi-OH (anti) 2.777 1.992 2.131 2.051 

Vi-OH (t.s.) 4.352 4.574 5.978 5.573 

Vi-Vi (trans) 0.0 0.0 0.0 0.0 

Vi-Vi (gauche) 3.199 3.178 2.730 2.652 

Vi-Vi (eis t.s.) 4.038 4.098 3.731 3.699 

Vi-Vi (perp. t.s.) 5.755 6.058 5.978 5.770 

Vi-CFO (trans) 0.0 0.0 0.0 0.0 

Vi-CFO (eis) 0.440 0.198 0.217 0.093 

Vi-CFO (t.s.) 6.244 7.604 6.591 6.674 

Table 2. Hartree-Fock and second order Moller-Plesset calculations of the 
relative energies of the stable conformations, and transition states for internal 
rotation, of the same series of substituted ethylenes given in table 1. All 
calculations are at HF/6-31G* optimized geometries. Relative energies are given 
in kcal/mol. Differences between the use of PAO's and full use of the secondary 
basis leads to changes in barrier heights which are generally less than the 
estimated uncertainty of+/- 1 kcal/mol at the full MP2/6-31 IG** leveP. 

First let us consider the results in table 1 briefly. It is evident that the difference between 
PAO and full energies using 6-31 IG** as the secondary basis is only the order of several 
tens of milliHartrees. By comparison the total energy obtained in a true minimum basis 
(STO-3G) is over 2.5 Hartrees higher, for acrolein as a typical example! The PAO 
calculation allows us to quite closely approach the exact energy at this level of theory. 
Turning to the HF values of relative energies shown in table 2, we see that the difference 
between PAO relative energies at the HF level, and results obtained with the full 6- 
31 IG** basis are in general less than 1 kcal/mol. This is a difference which is 
significantly smaller than the estimated errors in the calculation! It is also far smaller than 
the energy differences between the PAO calculations and the full 6-31 IG** calculations, 
which is on the order of 20 kcal/mol. Almost entirely all of this difference is evidently 
common to the various isomers. 

Let us now consider the similarities and differences between PAO results at the Hartree- 
Fock level of theory, and PAO results at the correlated MP2 level. Inspection of the 
results in tables 1 and 2 suggests the following main points: 

11 



1) From table 1, the difference between the total MP2 energy in the secondary basis, 
and the PAO-MP2 energy is lower by a large factor (between 4 and 10) than the 
corresponding Hartree-Fock differences. We have found this to be a general result, which 
is a consequence of the singles contribution to the MP2 energy corresponding to an 
energy-weighted steepest descent relaxation of the density matrix obtained in the PAO 
basis towards its true values. 

2) As a result of this, the PAO-MP2 rotational energy barriers approach the full MP2 
rotational barriers somewhat more closely than the PAO Hartree-Fock barriers 
approached the full Hartree-Fock barriers, as shown in table 2. The differences between 
PAO MP2 relative energies and relative energies calculated directly in the secondary basis 
is less than the estimated uncertainty of about +/- 1 kcal/mol in the full MP2 
calculations'™. 

3) The corresponding differences between a PAO-HF reference and a full HF reference 
in an even better correlation treatment, such as coupled cluster theory, will be smaller by 
at least another equal factor, as such methods can easily compensate for the relatively 
small difference between the PAO HF reference, and the full HF reference in the basis 
used for the correlation treatment. 

The use of PAO's offers enormous efficiency advantages for the treatment of electron 
correlation at the second order Moller-Plesset theory level. This advantage derives from 
the fact that occupied MO's can be directly represented in terms of unprojected PAO's, 
which constitute only a minimal basis. Having illustrated that the PAO model is 
chemically effective, we shall develop the sophisticated numerical methods necessary to 
exploit these advantages in Phase II. The availability of the alternative projected atomic 
orbital approach ensures that we can also offer the exact solution in the secondary basis. 

5. Atoms-in-MoIecules (AIM) Methods for Electron Correlation. 

The developments described in the previous two sections constitute a formally exact re- 
expression of standard theories of electron correlation. In the traditional formulation, the 
nonredundant canonical molecular orbitals are employed to express many-electron 
theories. The canonical MO's are in general fully delocalized throughout the system. In 
our re-expression of electron correlation theories, redundant sets of atom-centered 
functions are used to develop the working equations. The question addressed in this 
section is how we exploit the spatial localization of these atom-centered functions to 
develop new local correlation models that involve drastically reduced computational 
complexity. The validity of strong local truncations was first demonstrated by Pulay™. 
Our tensor-based formalism will permit comparable models to be formulated directly in 
terms of atom-centered truncations, with significant formal and practical advantages. 
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First we discuss a completely general procedure for solving the MP2 equations in a 
subspace of the full four-index set of pair correlations. Let us initially make the two- 

electron integrals in the fully covariant representation, Hijab. 

(1) Definition of the truncated four-index ket space. We discard a large number of the 
fully covariant integrals based on the models described below, leaving us with a reduced 
set in which the indices a,b,i,j are no longer independent. Instead we can view the 
retained abij as defining a single linear index, (abij). In tensor terms, this truncation has 
reduced the rank of the four index space from 4 to 1. Effectively we have selected a 
subset of the |<I>(zyaZ>)\ within which we shall satisfy the equations. We will surround 

the compound index with brackets to indicate that the individual indices are no longer 
independent. 

(2) The definition of the metric of the truncated four-index space. Have admitted that in 
the truncated space, we can no longer permit the indices a, b, ij to be independent, we can 
no longer define the dual 4 index space in terms of simple products of the inverses of the 
single index metrics. For example, simply defining the dual space of truncated bra 
functions in that manner will lead to local correlation models in which the correlation 
equations are not solved in a well-defined subspace. Instead we first properly define the 
metric associated with our truncated ket space. This takes the general form: 

G(ijab)(klcd) = SikSjlgacSbd (9) 

If we need to transform a truncated tensor of character t(i-aH) into character r c<^ then 

the metric, (9), must be inverted either implicitly or explicitly: 
r{klcd){ijab) _ Aided) nm 
U (ijab)~l UU; 

(3) Solution of the truncated equations. We wish to solve the tensor MP2 equations 
within the subspace selected in Step (1) above, with metric characterized in Step (2). 
This leads us to the following explicit form of the truncated equations, in terms of the 
corresponding set of truncated amplitudes: 

{Facgbd+gacFbdhkgjl SacSbd^ikgjl + gik^jl^'^ =~]I(Uab) C11) 

This set of equations explicitly defines the form of the coefficient matrix in the truncated 
4-index space. The equations can be solved by standard conjugate gradient or DIISXX" 
techniques, although we note that as written here, the form of the residual on each 
iteration is not tensorially consistent with the form of the amplitudes that we must 
update. Conversion is accomplished via solution of Eqs. (10) (which need not be exact 
for this purpose). Finally, given the converged amplitudes in the truncated space, we 
obtain the MP2 energy in the form: 

E<to=±fiJa»I{m (12) 

When the correlation equations are solved in a truncated 4-index space in the above 
manner, we achieve solution of the equations within a well-defined subspace of the full 
set of double excitations. By contrast, if we did not employ the proper metric associated 
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with the truncated rank 1, 4 index space, then the solution lacks this important model 
property. Hence our new methods are rigorously invariant to linear transformations that 
mix the retained excitations. 

Within the Phase I project, we have formulated a series of truncations that are 
increasingly accurate. Since the truncations are based on our atom-centered functions 
spanning occupied and virtual spaces, we refer to these as "Atoms in Molecules" (AIM) 
models of localized electron correlation effects. We restrict the admissible correlation 

amplitudes, t^aB), via the following models. We note that models such as these are 
entirely new, because they could not be constructed without the new developments 
described in Sees. 3 and 4. 

(1) Covalent two-center truncation**'". Compound indices (abij) are retained if: 
• indices i and a belong to the same center, andj and b belong to the same center. These 
interactions correspond to direct dispersion interactions at long range, and decay as 
inverse cube of length with the separation of the sites (assuming local neutrality). 
• indices / and b belong to the same center, andy and a belong to the same center. These 
are the exchange interactions that complement the direct correlation effects above, 
ensuring a balanced approximation. These interactions (in insulators) decay exponentially 
with the separation of the separation of the sites, and thus for large molecules (in the 
range of tens of atoms) it becomes profitable to apply cutoffs to these terms. This model 
is in a sense the AIM analog of the original Pulay and Saebo proposal for a local ansatzvn. 

(2) Full two-center model. The most sophisticated two-center model is to retain 
all compound indices where no more than two centers are involved in all four indices. 
Only the dispersion-like interactions (identified in model (1)) are truly long-range, and 
thus cutoffs can be profitably applied to the model approximation. This model is exact 
for correlation of bond orbitals that are strongly localized. 

The covalent two-center model can be shown to have several very beautiful formal 
properties which make it particularly attractive as a target theory. In particular, we have 
shown that: 

(1) The metric is a separable product (because of its diatomic nature). This means that 
iterating to invert the full metric is not necessary. Instead we have explicitly inverted the 
mono-atomic metric via a singular value decomposition, and then formed the inverse of 
the diatomic metric as a tensor product. This entirely eliminates the necessity to solve 
Eq. (10), which is the first iterative step in the general local scheme described above. 

(2) It is possible to recanonicalize the MP2 equations, (11), by exploiting the product 
nature of the metric. In particular the coefficient matrix that defines Eq. (11) separates 
into the sum of two products of lower rank matrices, one of which is the fundamental 
mono-atomic metric matrix, and the other of which is a mono-atomic excitation-like 
matrix. The former we have already diagonalized in the first step above. The latter can be 
diagonalized in the basis of eigenvectors of the metric, which makes the full MP2 
coefficient matrix diagonal. As a result, the AIM-MP2 method is entirely noniterative, just 
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like conventional MP2, and entirely unlike previous local MP2 methods. The 
computational requirements for these two diagonalization steps are strictly cubic with the 
size of the molecule. 

As is evident from the description above, there are tremendous practical advantages to 
employing the first AIM-MP2 model, as it can be made entirely noniterative. Therefore 
we have carefully investigated its behavior with respect to recovery of the exact MP2 
correlation energy to see if it is a suitable model for practical chemical calculations. For 
the preliminary investigations completed in this Phase I work, we employed projected 
atomic orbitals for both occupied and virtual subspaces to permit direct comparison with 
conventional canonical MP2 calculations. A pilot code was developed which was not in 
any way optimized, hence we cannot report elapsed times at this stage. Rather the 
purpose of these calculations is to assess the quality of the chemical information that the 
new AIM models are capable of yielding. We know from straightforward numerical 
analysis of the new models that they are capable of being applied to very large systems, 
but achieving that goal is only worthwhile once it has been established that the results are 
of sufficient quality to be useful. 

Tables 3 and 4 below summarize the results of a series of test calculations we have 
performed on conjugated molecules similar to those used to test the polarized atomic 
orbital model in Sec. 4. Table 3 reports the recovery of the absolute MP2 correlation 
energy, and it is evident that AIM-MP2 is capable of yielding roughly 99.9% of the 
correlation energy for these systems. This is a very high fractional recovery of the 
electron correlation energy, which is sufficiently good that we should expect the recovery 
of relative correlation energies to be excellent also. We note parenthetically that the 
problem of relative correlation energies is much tougher than absolute correlation energies 
because we are concerned with small energy differences (perhaps on the order of kcal/mol) 
between quite large correlation energies (on the order of Hartrees, or between 100 and 
1000 kcal/mol). To obtain less than 10% error in a relative energy ofthat magnitude 
requires a differential error of less than about 0.03% between the points of interest on the 
potential surface, which is challenging indeed. 

molecule E(HF)/a.u. dE(MP2)/a.u. dE(AIM-MP2) % correlation 

Vi-C2H3 -154.960121 -0.560776 -0.560541 99.96 

Vi-CFO -289.718733 -0.799584 -0.799553 99.99 

Vi-CHO -190.812152 -0.604500 -0.604461 99.99 

Vi-NH2 -133.103964 -0.466910 -0.466784 99.97 

Vi-N02 -281.578165 -0.853139 -0.853124 99.99 

Vi-OH -152.937831 -0.483513 -0.483439 99.98 
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Ph-CHO -343.511145 -1.140552 -1.138509 99.82 

Ph_NH2 -85.800480 -1.002452 -1.000878 99.84 

Ph-OH -305.634634 -1.017709 -1.016479 99.88 

Table 3. Recovery of the canonical MP2 correlation energy by the local AIM- 
MP2 method. Calculations are using the 6-31 IG** basis set, at the lowest 
energy conformation of each molecule, which was optimized at the HF/6-31G* 
level. The final column is the percentage of exact correlation energy recovered 
by the AIM-MP2 model, which is typically in the vicinity of 99.9%. 

molecule A(HF)/kcal mol'1 A(MP2)/kcal mol"1 A(AIM-MP2) 

Vi-C2H3 6.058061 0.313 0.270 

Vi-CFO 7.604045 0.955 0.960 

Vi-CHO 8.006900 0.106 0.109 

Vi-NH2 6.477682 0.745 0.789 

Vi-N02 6.955837 1.834 1.787 

Vi-OH 4.573220 0.975 0.958 

Ph-CHO 8.809472 0.527 0.722 

Ph-NH2 3.746802 0.510 0.665 

Ph-OH 2.570867 0.788 0.723 

Table 4. Differential recovery of the canonical MP2 correlation energy 
contribution to rotational energy barriers by the local AIM-MP2 method. 
Calculations are performed using the 6-31 IG** basis set, at geometries which 
were optimized at the HF/6-31G* level. All energies are reported in units of 
kcal/mol. It is evident that the AIM-MP2 method recovers these very small 
energy differences with errors of less than 10%. As discussed in the text, it is 
not clear that these errors are to be regarded as deficiencies relative to 
experiment. 

Table 4 contains the results of relative correlation energy calculations for the rotational 
barriers in the conjugated molecules. It is clear that AIM-MP2 recovers the exact results 
to quite acceptable accuracy. On formal grounds, we expect these deviations to generally 
decrease as the basis set is further improved. Furthermore, on formal grounds it is not 
obvious that the "exact" results are to be preferred. As has been illustrated previously by 
Pulay and co-workers for the water dimer, and Friesner and co-workers for 
conformational energy differences in their local method, basis set superposition error 
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(BSSE) affects the exact results far more. The principal conclusion we draw from tables 3 
and 4 is that the quality of our simplest AIM model is sufficiently high that we are able 
to exploit its desirable properties, and we are not forced at present to pursue the most 
general 4 center local model. This is pleasing both on physical grounds (for the model is 
simpler), and on practical grounds (the model is much faster and more efficient). 

6. Epilog. 

With the new Atoms-in-Molecules (AIM) approach for reducing the complexity of 
electron correlation methods in hand, the stage is set for the Phase II effort. This is the 
extension and efficient implementation of AIM methods for the highest level electron 
correlation treatments in routine use for small molecules: coupled cluster theory. The 
result will be a unique computational tool that permits routine, highly accurate treatment 
of problems that are in the range of an order of magnitude larger than is possible at 
present, using methods whose accuracy is already accepted and established beyond 
doubt! 
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