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FLOWFIELD-DEPENDENT MIXED EXPLICIT-IMPLICIT(FDMEI) ALGORITHM
TOWARD DIRECT NUMERICAL SIMULATION IN HIGH SPEED FLOWS

T.J. Chung
Department of Mechanical & Aerospace Engineering
The University of Alabama in Huntsville

SUMMARY

This report covers the results of the research on new concepts and formulations aimed
toward direct numerical simulation(DNS) dealing with high speed flows. The research
was motivated by the fact that it is desirable to develop a CFD program which can be
applied to all speed regimes, both compressible and incompressible, both viscous and
inviscid, and both laminar and turbulent flows, ideal for shock wave turbulent boundary
layer interactions in hypersonics. The popular notion that DNS will resolve all turbulent
microscales can be applied to incompressible flows. For compressible flows with shock
waves interacting with turbulent boundary layers, however, difficulties arise in dealing
with complex physical phenomena such as transition from laminar to turbulent flows,
relaminalization, interactions between viscous and inviscid flows, and high temperature
gradients close to the wall, particularly in hypersonics. No currently available CFD
techniques are capable of resolving these physical phenomena simultaneously even in
DNS. '

The purpose of the FDMEI approach is to overcome these difficulties by introducing
the flowfield-dependent implicitness parameters which are calculated from changes of
Mach numbers, Reynolds numbers, Peclet numbers, and Damk&hler numbers(if reacting)
between adjacent nodal points and between time steps. These implicitness parameters
imply current flowfields changing in space and time designed to alter the magnitudes of
every term in the Navier-Stokes system of equations, reflecting the parabolic, hyperbolic,
and elliptic nature of the actual flowfield. For example, far away from the wall, the initial
form of the Navier-Stokes system of equations automatically changes into a hyperbolic
form of the Euler equations as dictated by the flowfiel-dependent implicitness parameters.
By the same token, the viscous terms become activated as boundary layers are approached
and they become dominant close to the wall, again automatically dictated by the flowfield-
dependent implicitness parameters. Such phenomena can be clearly observed when the
contours of these flowfield-dependet implicitness parameters are plotted, which are shown
to be representative of the flowfield themselves. :



The essence of the FDMEI scheme is to follow the physics and as a result the
numerics are generated accordingly. This is contrary to all other existing computational
schemes in which numerics are predetermined for the fixed physics under investigation.
Unfortunately, howevser, physics change significantly as a function of space and time for
which the predetermined numerics are no longer suitable. This occurs when the program
desinged for incompressible flows is to cope with compressible flows in different regions
of the domain and vise versa, or for laminar flows to handle turbulent flows and vise
versa.. Such computational schemes will not be successful even in DNS mech
refinements. The emphasis of FDMEI is upon not only the ability to deal with all situations
of fluid dynamical physics but also the computational accuracy if and when the computer
is available for DNS calculations. In the mean time, the FDMEI approach can be used for
non-DNS problems with accuracy much superior to any other CFD methods available
today.

The results of the research on FDMEI are summarized in three journal publications
attached herein.

1. Yoon, K. T. and Chung, T. J., “Three Dimensional Mixed Explicit-Implicit Generalized
Galerkin Spectral Element Methods for High-Speed Turbulent Compressible Flows”,
Computer Methods in Applied Mechanics and Engineering, Vol. 135, pp 343-367, 1996.

2. Chung, T.J., “A New Computational Approach with Flowfield-Dependent Implicitness
Algorithm for Applications to Supersonic Combustion”, in Avanced Computational and
Analysis of Combustion, Ed. G. D. Roy, S. M. Frolov, and P. Givi, Moscow: ENAS
Publishers, pp. 466-489, 1997,

3. Yoon, K. T, Moon, S. Y., Garcia, S. A., Heard, G. W., and Chung, T. J,, “Flowfield- -
Dependent Mixed Explicit-Implicit(tFDMEI) Methods for High and Low Speed and
Compressible and Incompressible Flows”, Computer Methods in Applied Mechanics and
Engineering, Vol. 148, 1997.

As a consequence of this research, the following important conslusions and
recommendations are provided: (1) As shown in Appendix A of Reference 3 above, the
FEMEI scheme leads to all existing computational methods if the flowfield-dependent
implicitness parameters are fixed to certain arbitrary numbers between zero and one,
indicating that all existing methods are the special cases of FDMEI, (2) The FDMEI
scheme provides a single computer code which can be applied to all physical phenomena
in fluid dynamics, (3) Due to limited computational resources and limited number of
research personnel, benchmark validations included only small portions of CFD problems
in this report. The future research should include higher Mach numbers and Reynolds
numbers, detailed studies of transition to and from turbulent flows, high temperature
gradients, compressibility effects, dilatational thermal dissipation, and finally the firm
establishment of the FDMEI technology benefiting the CFD community in general.
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Three-dimensional mixed‘explicﬂit—irnplicit generalized Galerkin
spectral element methods for high-speed turbulent
' compressible flows

K.T. Yoon', T.J. Chung*

Department of Mechanical and Aerospace Engineering. The Universitv of Alabama in Hunesville. Hunusville. AL 35899, USA
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Abstract

In high speed flows the interactions of shock waves with turbulent boundary layers are important design considerations because
of the compiex flowfields resuiting in increased adverse pressure gradients. skin friction and temperatures. Unsteadiness and
three-dimensional flowfieid structure are aiso charactenstic of shock wave turbuient boundary layer interactions. Such physical
phenomena require sophisticated numencai schemes in the solution of governing equations. The purpose of this paper, therefore,
is to introduce an accurate and efficient approach—the Mixed Explicit-Implicit Generalized Galerkin Spectral Element Method
(MEI-GG-SEM) with Legendre polynomial spectral elements in which flowfield dependent implicitness parameters provide
automatically adequate computational requirements for compressible and incompressibie flows or high speed and low speed flows.
This is in contrast to the traditional approach in which all-speed-regime analysis requires a separate hyperbolic-eliiptic pressure
cquation for pressure correction if the fiow becomes incompressible. In the MEI-GG-SEM scheme. mesh refinements are carried
out adaptively until shock waves are resoived. followed then by the adaptive increase of Legendre polynomial degrees until

1. Introduction

The last decade has seen unprecedented technological innovations in computational fluid dynamics,
prompted particularly by the increase in technical requirements of acrospace research. Namely, the
flowfields due to high velocities, compressibility, shock waves, turbulence and high temperature have
been the focus of intensive research in the past [1-9].

When shock waves interact with turbulent boundary layers in external or internal flows, special
considerations are required due to widely disparate time and length scales, corresponding to different
physical phenomena—namely, turbulence microscales and shock wave surface discontinuities. Here, we
are faced with the smallest time and length scales which may severely affect the computational

* Corresponding author. UA System Distinguished Professor.
' Graduate Research Assistant.
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Modeling of turbulence has been the controversial subject. Closure models. probability density
functions (PDF). large eddy simulation (LES). direct numerical simulation (DNS) and other methods
have been reported.

The purpose of the present study is to introduce an unstructured adaptive spectral element method in
dealing with combined' turbulence and shock waves for both internal and external flows of aerospace
vehicles. This work is motivated by the fact that DNS can be achieved via adaptive h-p methods,
combinirig the mesh refinement (h-method) with spectral polynomial degrees of freedom ( p-method).
It is weil known that the most cruciai aspect of turbulent flows is microscales involved in boundary
layers (viscous sublayer, buffer zone and turbulent core). This is where the spectral polynomial degrees
of freedom can be increased as desired since the mesh refinement alone is incapable of resoiving the
microscale requirements.. In this way, turbulence modeling techniques can be avoided. Furthermore,
the current practice in DNS to use extensive refinements in finite difference discretization may aiso be
avoided. Babuska and his co-workers {10-13] and Oden and his co-workers [14-17] contributed to the
advancement of FEM A-p adaptive methods. Their appiications have not been extended to shock waves
interacting with turbulent boundary layers. In what foliows. the p-version of the finite element method
is referred to as the spectral element method with Legendre polynomials. Although the term ‘spectral
element method’ was used by other investigators. the basic approach in the present study is significantly
different from the earlier work {25-27].

Chung and his co-workers [18-24] have studied finite element strategies as applied to shock wave
turbulent boundary layer interactions in non-reacting and reacting flows. The main emphasis in the
present study is to establish the basic theory and computational strategies of MEI-GGM invoived in the
Legendre polynomial spectral element’ method and to present preliminary computational resuits.

- Development of theory and formulation include irregular node connectivity of Legendre polynomials of

various orders. Comparisons with experimental resuits have demonstrated superiority of the direct
numerical simuiation over the standard K- model with compressibility effects [19, 20]. One of the most
important aspects of the proposed method is the mixed explicit-implicit (MEI) scheme in which
flowfield dependent implicitness parameters as calculated from local Mach number and Reynolds
number provide automatic adjustments of computational processes required for compressible and
incompressible flows or high speed and low speed flows. This is in contrast to other computational
schemes in which the hyperbolic-elliptic pressure equation must be solved separately to provide
pressure corrections when the compressible flow becomes incompressible.

In what follows we discuss the governing equations and solutions of Navier-Stokes system of
equations via Mixed Explicit-Implicit Generalized Galerkin Methods (MEI-GGM) in Section 2, direct
numerical simuiation with spectral element methods in Section 3. calculations of DNS perturbation
vaniables in Section 4, calculations of flowfield-dependent implicitness parameters in Section 5,
numerical appiications in Section 6. and conclusions in Section 7.

2. Governing equations and solutions of Navier-Stokes system of equatiéns

A convenient form of governing equations for compressible viscous flows may be written in terms of
conservation variables as follows:

U oF, 4G,
o YR T, =B . 1)
where
P py; 0 0
U=|pyi, F, =|pvy, +pé; | Ci = T , B=| pF
pE (pE + p)y, —T,Y g, PEY,

with standard definitions given by
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2 1

7‘j=p(\u‘_/+uj_i—guk'k5ii> E=e+3uy, e=c,T—plp
T.+S, [ T\ _ N

bt (D) S=10K g =T,

Co b
p=pRT k!"f;;'

The solution of governing equations will be carried out using the generalized Galerkin approach with
test and trial functions given by isoparametric and Legendre polynomiais by means of mixed explicit-
implicit schemes. In general. explicit schemes are inexpensive but less accurate in comparison with
implicit schemes for regions of high pressure or velocity gradients. In case of rapid vanations of
gradients throughout the domain, it is often desirable to devise a scheme in which impiicitness can be
adjustable in accordance with gradients, more implicit for the region of high gradients and less implicit
or fully explicit for the region of low gradients. It is our objective to obtain amounts of explicitness and
implicitness based on the flowfield dependent parameters such as TVD limiters in FDM.

To this end, we expand U""" in Taylor series about " by introducing the implicitness parameters s,
and s, for the first and second derivatives of U with respect to time {18-20], respectively.

U Ar Ut
e —

U =U"+ At

T T owr) @
with
aUno:, aUu _awnol .
o e T o 0=sisl (3a)
azvnﬂ: aZUn azwn*l
ek ST g O=s,=1 : (3b)

Substituting (3) into (2) yields

ot (80" aw"') i’(a’ﬂ" a’AU"") o
AU = A‘( o T T3 2 e + 35, o +0(ar’) 4)
It follows from (1) that
U oF, 4G, | ’
o= Tm o B A - (5)

Here, F, is a function of U and G, is a function of U and its gradient U, so that we denote the
convective Jacobian g,, dissipative Jacobian b, and dissipative gradient Jacobian C, as

_oF, 3G, _ 3G,
“TSU T eTU,

Note that if the source term B includes variables such as reaction rates then it would be necessary to
consider the source term Jacobian.

The second derivative of U with respect to time may now be written in terms of these Jacobians.

U 3 (F, 3G 8 [oF, G, |
o —(a,+b,.)-a;7(-a;-+ x, -B}+ i Bz ax. o, <—a-;+a—xl—8) (6)

Substituting (5) and (6) into (4) and neglecting the third-order spatial derivatives associated with ¢,
yield
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T e G . (aAFT'" 3AG"™" m)
WM T wm s
AP 8 (OF &G7 \ o (9AFTT' aaGrT'
5| (@ + b')a-x,. ——&xj _éx,- ~B" | +5,(a, + b,-)'a—i 5%, + ox, AB
+0(At’) ™)
In order to provide implicitness to diffusion behavior differently from convection. we reassign 5, and
s, associated with G,, respectively, as follows
514G, > 5,4G, s, AG, = s5,AG, (8a,b)

with the various implicitness parameters defined as
s, = first-order convection implicitness parameter
§, = second-order convection implicitness parameter
53 = first-order diffusion implicitness parameter . (&)
s, = second-order diffusion implicitness parameter
The roles of these implicitness parameters are significant. closely related to the flowfield such Mach

numbers and Revnoids numbers. This subject will be elaborated upon in Section 3.
Substituting (8a.b) into (7) leads to the residual. neglecting the source term B,

et AU AU FaunT'\ T As 3*au™""
R=AU s, ta; ax, +s,411 8, ox, t+c, ax, ax,- =3, 2 (aiai + b,ﬂ/) ox, GX,»
AP AU F; 3GT\ ap 3 (oF} oG}
~eo g ah o) T i S %) T\t a (T
+0(ar%) =0 ®)

where all Jacobians g,, b, and ¢, are assumed to remain constant s
be updated at subsequent time steps.

The Galerkin integrai of (9) may now be carried out as follows [21]:

patially within each time step and to

fn ®RW.F.G,)d =0 (10)

where & refers 1o the global isoparametric ¢

omer node test functions. and the conservation variables
are interpolated by the trial functions D as

U(‘t" t) = ¢a(‘r)Ua(‘) Fi(x' :) = ‘pa(x)pal(’) Gl(x’ I) = ¢c(x)Gai(l) (11)

-Substituting (11) into (9) and (10) yields
(Aaﬂarz + BaBn) AU;:' = H:r + N:r (12)

with

Ay = fn ¢, 0, dn

Baﬂn = jﬂ {m[_slalr:(pc.t ‘DB _SB(bind)u.id)ﬂ + Ciirsd)mi(pﬂ-i)]

-

M-
+T{52(airqajq: + birqa]q:) + sd(aququ: + birqbiqs)]¢a.i¢ﬂ,i} dﬂ

+ fr {A[ ¢u [Sla,,,(pﬁ - s](bir:¢ﬂ + Cl[r-l‘¢5-i)]

v

‘_—2—¢n[32(airqa[q: + birqaiq:) + 34(airqu + birqu)]d,ﬁ-i}"i dr
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H:' = J”n {At[‘p"JQB(F;” + G;if) - ¢G¢BB;’]

Atz n n n At ”n
B (amv + blr:)[¢a.i¢[3.j(1.—l3i: +Gh) - D, P85, - 3 D, P, By, (dN2
: 2

o . At :
N:r = -J;_ ¢a [N(Frr + G:‘r) _T(ain + bir:)(F:\'.j + G;:.i)]ni dr

.
where &, indicates the Neumann boundary interpolation function with unity if applied and zero
otherwise. Note aiso that boundary terms in B4, are assembled only into boundary nodes of B_g,,. For
three dimensions, i, j, k = 1, 2,3 associated with the Jacobian imply directional identification of each
Jacobian matrix (a,, a,. a3, by, by, by, ¢y, €120 €3, €y, €22+ Cays C3yy C3ay Cy3) With r,5=1,2,3.4,5
denoting entries of each of the 5 x5 Jacobian matrices. It should be wamned, however, that these
Jacobian matrices must be muitiplied precisely as dictated by summing through repeated indices. not
through matrix multiplications as a whole. Indices can be reduced similarly for 2-D.

It is interesting to note that ail implicitness parameters can be shown to be functions of flowfieids
between upstream and downstream. and that the covection implicitness parameters s, and s. associated
with the first term in B,,,, are anaiogous to the total variation diminishing (TVD) limiters in the FDM
literature (see Appendix A). With an adequate choice of these implicitness parameters. acceptabie -
resotutions of shock waves have been verified.

On the other hand. the diffusion implicitness parameters 5, and s, are capable of alleviating and
accommodating the stiffness invoived in turbulent diffusion or finite rate chemistry (if reacting). No
analogy can be shown since they do not exist in other numerical schemes. It should also be noted that
interactions between convection and diffusion are achieved by means of the terms associated with the
products a,,.b,.. and b, a,... These terms are particularly important for shock wave turbulent boundary
layer interactions where the effect of convection upon diffusion and vice versa is crucial in order to

resolve turbulence microscales as disturbed by shock wave interactions. We shail refer to these terms as
convection—-diffusion interaction terms.

If the high speed compressible flow far from the wall becomes the low speed incompressible flow in
the vicinity of the wall. we question how pressure can be calculated where the perfect gas law is no
longer valid. To this end we integrate the steady state incompressible momentum equation

1
f (P T3 PU/U,') Ldx = f (mv; ;, + pejv,w,) dx,
or
1 : :
P+3PUlvi=Po+Q . (13)
where P, is the constant of integration and
| _
Q == J' (rv, j; + pevw ) dx;  (n = spatial dimension)
where w, is the component of vorticity vector. Eq. (13) as related to the perfect gas law ieads to

P(,=p(cPT—E+v,v-) -Q : (14a)

/

or

1
Py =pRT + 3 PUY; — Q . (14b)

If the constant of integration or stagnation pressure as given by (14) indeed remains constant, then this
implies that the compressible flow has turned into an incompressible flow. If P, as calculated from (14)
does not remain a constant. then the incompressible flow has been changed back to compressibie flow.
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This approach allows the use of the conservation form of the Navier-Stokes system of equations
throughout the domain with compressible and incompressible elements being treated accordingly via
flowfield dependent implicitness parameters without resorting to the separate hyperbolic-elliptic
pressure equation for pressure correction when the flow becomes incompressible.

3. DNS via unstructured spectral element methods (h-p version)

Our objective here is to resolve time and length scales involved in turbulence interacting with shock
waves using adaptive unstructured h-p finite elements, refered to as spectral element methods. One
approach is to refine the mesh (h-methods) untit further refinement is unproductive, at which time the
spectral degrees of freedom ( p-methods) are increased in order to reduce errors as desired, such as in
the region of turbulent viscous sublayer. However. the more desirable approach is to optimize between
the mesh refinement and spectral orders. Thus, the most crucial aspect of the A-p methods is to
determine the best possible change in the mesh structure to reduce the local error to a minimum.
Should h (mesh size) be decreased or should p (polynomial or spectral degrees of freedom) be
increased? Although some work in optimization between the A- and p-processes has been reported
[14-16], the subject of optimization appears to be an open question. Thus. our approach in this study is
to refine the mesh until shock waves are adequately computed and then resort to the p-version with
higher-order Legendre polynomials in order to resoive turbulence microscales. Toward this end. the

error indicator ¢ may be defined in terms of density for shock waves and velocity for turbuience. Some
of the options are given as follows: '

0=h0 |p|y:/lplp:

(15a)
0 =h0,Iv,| 2/ lv 1 (15b)
where 4 is the mesh parameter and various Sobolev space (H™) seminorms are defined as
. ([ 9 ap 12 ~ f azp azp 172 -
lplg: = < a, 0x; ax, dﬂ) lpluz = a, 0x; dx; dx, dx, dq (16a)
dv, dv, 13 v,  a%, 12 |
|Ui|H' = < o, a—x/a—xl' dﬂ) IU,'Hz = < a, ———ax/ axk *axi axk dﬂ) (lﬁb)

The choice among these options depends on various physical aspects of the given problem. whether
local errors are dominated by density, velocity components. their gradients, or second derivatives. For
the purpose of the examples dealt with in Section 6, we utilize Eqgs. (15a) and (15b) for the h-adaptivity
associated with shock waves and the p-adaptivity associated with turbulent boundary layers, respective-
ly.

Direct numerical simulations for turbulent flows are achieved by higher spectral orders using
Legendre poiynomials [10-13, 17]. The spectral element interpolation functions for the corner nodes,

edge modes. face modes. and interior modes in a three-dimensional 8-node isoparametric element are
shown in Fig. 1.

8 corner node isoparamerric functions:

1 |
DL =3 1+ E6)1 +mun)(1 + L) (17)

12 edge mode Legendre polynomial functions: .

1 1
Pl =TU=MA=0G(E) O =2 (1+£)1-0)G,(m) erc. (18)
withm=2.... 4; 12(qg-1) edge modes; g =2
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Fig. 1. Spectrai element ﬁmctional representation

for Legendre potynomials.

6 face mode Legendre polynomial functions:

1 1
P’ =3 (1=1)G,.(£)G,(¢) P’ =T+ G MG,(L) et

(19y
withm.n=2 . q=2im+n=4, . ' q; 3(q-—2)(q-3) face modes: qg=4
I interior mode functions (bubble funcrions):
P rmny = G(£)G,(1)G,({) (20)

withm,n,p=2,...,q—4;m+n tp=6,...,q; (q-3)(q—4)(q—5)/6 intcn’ormodes:qBG

Here, the highest polynomial order chosen is d

enoted by g and G, (£) represents the Legendre
interpolation functions defined in terms of the Le

gendre polynomiais L_(¢£),

1
Gn(¢) -m[lm(f) = Ln_a(£))

As a consequence of these Legendre poi
functions, any variable U/ may be modeled in the form,
U=oPUy + 080, + 0P+ )0, (2)
where 0,,,, I],,,,, and f/,,,,,, are spectral coefficients to be determined by solving the following Galerkin
integrals in addition to (11):

fn ®FRAU)dR =0 (23a)

fn S IRAU)dN =0 (23b)

fn D) RAU)dQ =0 (23¢)
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0N
A) '’
W Vel

Fig. 2. 2-D Interpotation functions constructed by Legendre polynomial. @'S’ (comer nodes), @ (side modes), @'" (im:nor
modes).

Combining (10) and (23a.b.c) leads to the assembled simultaneous algebraic equations in terms of the .
vaniables U,, U,, U, and Urnnp-

A48, + B, A5, +8B,, Al + B2, AanpaSss * Banpars
Ansdu*Brgn  Amb.+Crn,  ALLG,+CD,,  AL,5,+ Crnpars
Afnkﬂart +B fnkﬂn Af:n5n + Cf:kurr Af:knpsr: +D r‘:knpn Afntnpqsr: +D fnkupqr.v
Amkuﬂan + BmkuBn Afnkunﬁn + C:-k_unn :zkunpsrx +D Zkuupn Amkuupqan + Emkuupqn
AUD: LEX] pvn i n :
AU:, wr,
| aon, | =|we, 2
AU, Wi

with y,6 =112 £,7=1—6; m,k,u,n, p, g = degrees of freedom from edge, face and interior
modes: a, 8 = comer node variables: T, s = conservation variable degrees of freedom. Explicit forms of
integrals are shown in Appendix B.

We may initiallv consider only the comer node equations,

(Aaﬁan + BaBn) AU;:| = W:r ' (ﬁ)

In this process the MEI computations are carried out with h-adaptivity until all shock waves are
resolved. The next step is to resoive microscales using the spectral portion of the computations
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A8, +Chs Apnplrs + Crprs A npars  Crnpars av,, ™
,.k.a, + Clhnrs Af,."k..,ﬁ,, + D nprs Abrinpgds ¥ Dnpers || AUL,
Ameunrs + Crkunrs Arekamp®ss * Drnkamprs A micunpadrs ™ Evmiunpars || AU noas
w1t | X,
= me | Xrer (26)
kaw kaur ‘

where
Xy = (A rynﬁan + 37 Bn) AUBJ
mkr (Amkpa + Bmkﬁn) AUB:
X,

mkur = ( mku#sn + Bmkusn) AUB:

which act as source terms or coupling effect of the corner nodes upon spectral behavior through edge,
face and interior modes. The final step is to combine (25) and (26) by

(A085 + BaBn) AU;:I = W:r - Yar (27')
with

Y., =(A%8, + B2, ) AU, + (AL,8, + Bl AUY + (A5, + B

anprs anpq©rs anpqn) A npqs

Thus. the convergence toward shock wave turbulent boundary layer interactions can be achieved
through iterations between (26) and (27). Note that in this process. the convection implicitness
parameters 5, and s, are held constant whereas the diffusion implicitness parameters s, and s, are
updated through Reynolds numbers.

Our objective here is to satisfactorily simulate turbulent microscales within an element. All edge, face
and interior mode interpolation functions vanish at the corner nodes but exhibit high frequency
variations according to the order of Legendre polynomials along the edges, faces and interior domain.

| It is intended that such Legendre polynomial microscales be capable of simulating the physical
microscaies of turbulence which are involved in viscous sublayer, buffer zone and turbulent core. The
h-adaptivity alone is severely limited and naturaily we seek a remedy of this situation in the h-p
adaptivity utilizing the adequate spectral orders required for accuracy. Irregular nodes (hanging nodes)
| which anse in the process of h-adaptivity are treated similarly as in [14]. Furthermore, the advantage of
| Legendre polynomials is an ease in dealing with edge, face and interior modes which do not require
| " specification of nodes physically located in the element. This is especially beneficial for edge and face
| modes in cstabhshmg boundary continuities. Continuity of variables and gradients along the inter-
element boundaries is to be dictated by the higher-order polynomials between the two adjacent
elements.
For two-dimensional applications. edge and face modes are merged to side modes as shown in Fig. 2.

Consequently, the matrix equation (24) can be reduced so that only side and interior modes are
retained.

4. DNS perturbation variables

It is well known that DNS is expected to provide information in turbulence microscale levels at the
expense of excessive refinements of domain discretization [6]. The purpose of the present study is,
instead. to avoid such refinements by means of implementing high spectral Legendre polynomial orders.
The Navier-Stokes solver as introduced here allows unsteady time accurate solutions from which

perturbation variables (') can be caiculated as the difference between the Navier-Stokes solution ( f)
and its time average f [22, 23],
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fref-7 | (28)

This computation can be conducted throughout the Navier—Stokes integration time steps or upon
arrival at quasi-steady state. Strictly speaking. in shock wave turbulent boundary layer interactions a
complete steady state is never realized as unsteady eddy motions persist indefinitely, although
background flowfields may become steady. This is referred to as the gquasi-steady state. The time
average of Navier-Stokes solution is performed using the Gaussian quadrature. In this process
complicated physical phenomena such as homogeneous and inhomogeneous, isotropic and anisotropic,
and non-stationarv nature of perturbation flowfields in shock wave turbulent boundary layer interac-
tions can be resoived. . _

Furthermore. all perturbation variables as calculated from (28) can be transformed via fast Fourier
transform to generate power spectral density vs. frequency domain. Various perturbation variables as
well as background flowfield data have been examined [24]. As a result of this study, more details of
shock wave turbulent boundary layer interactions such as variations of turbulent Kinetic energy vs.
shock strength, laminar-turbulence transition instability, relaminarization. effects of dilatation. etc.. can

be rigorously examined in comparison with the previous investigaﬁons {6, 28. 29]. Some limited results
and discussion of these subjects are presented in [24].

U
Lnh
[ 3]

5. Calculations of flowfield-dependent implicitness parameters

The success of the spectral element method (h-p version) described above depends on accurate
calculations of flowfield-dependent implicitness parameters. The first-order convection and diffusion
implicitness parameters are caiculated from the local Mach number and Reynoids number as follows:

min(r.1) r=a

5, =40 r<a,M,.#0 s, =max(l-s,,0.5) (29)
1 Mmin=0
with
AM
r=A N (30)

where AM is the difference between the maximum and minimum Mach number (AM =M, — M)
within a finite element, and a is a user-specified smail number (a =0.01).

min(s.1) s=8

;=40 s<B,Rep, #0 5, =max(l-s,,0.5) (31)
1 Rcmin =0 '
with
ARe :
5= Re » (32)

where ARe is the difference between the maximum and minimum Reynoids number (ARe = Re,, —
Re_,,) within a finite element and B is a user-specified smail number (8 =0.01).

The flowfield dependent impiicitness parameters as defined above are capable of allowing various

numerical schemes to be automaticaily generated, as summarized below:

(1) The first-order implicitness parameters s, and s, control all high gradient phenomena such as
shock waves and turbulence. These parameters as calculated from the changes of local Mach
numbers and Reynolds numbers within each element are indicative of actual flowfields. The
contours of these parameters closely resemble the flowfields themseives, with both s, and s,

being large (close to unity) in which high gradients of variables exist, but small (close to zero)
where such gradients are smalil.
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(2) The second-order implicitness parameters s, and s, are also flowfield dependent. However. their
primary role is to provide adequate computationai stability (artificial viscosity) as they were
originaily introduced into the second-order time derivative term of the Taylor series expansion of
the conservation flow variables U"™"'. Thus. their flowfield dependency is limited by (s,,5,)=0.5
for adequate computational stability. '

- (3) The s, terms represent convection. This implies that if 5, =0 then the effect of convection is
small. The computationai scheme is automatically altered to take this effect into account. with
the governing equations being predominantly parabolic.

(4) The s, terms are associated with diffusion. Thus, ‘with s, =0, the effect of viscosity is small and
the computational scheme is automatically switched to that of Euler equations where the
governing equations are predominantly hyperbolic. :

(5) If the first-order implicitness parameters s, and s, are non-zero, this indicates a typical situation
for hyperbolic. parabolic and elliptic nature of the Navier-Stokes system of equations with
convection and diffusion being equally important. This is the case of incompressibie flows in low
speed. The unique praperty of the MEI-GGM is its capability to control pressure oscillations
adequately without resorting to the separate hyperbolic-elliptic pressure equation for pressure
correcuons. The capability of MEI-GGM to handle incompressible flows is achieved by a delicate
balance between s, and s, as determined by the local Mach numbers and Reynoids numbers. If
the flow is compietely incompressibie (M = 0), the criteria given by (30) leads to s, =1, whereas
the implicitness parameter s, is to be determined according to the criteria given in (32).

6. Application

As benchmark problems two-dimensional shock wave turbulent boundary layer interactions on a flat
plate and compressible comner were soived in [31] and demonstrated an excellent comparison with
experimental results and other numerical methods [32]. Other benchmark problems including: (1) the
flat plate supersonic boundary layer flow, (2) shock wave turbulent boundary layer interactions on a
compression corner, and (3) the three-dimensional sharp-leading edged fin for swept-shock wave
turbulent boundary layer interactions have been investigated. which are presented below.

6.1. Flat plate supersonic boundary layer flow

Fig. 3 shows a spectral element mesh (gray elements) and the corresponding density contours for
Carter's flat plate problem {33]. The spectral elements appear in the boundary layer. The computed
wall pressure and skin friction distributions with and without spectral element meshes are compared
with Carter’s numerical data [33] in Fig. 4. Note that symbols S1 and S2 imply space 1 and space 2

11

- -

Fig. 3. A specral mesh (gray elements) and density contours for Carter's flat plate problem with boundary conditions. M, = 3,
T.=3%R. T,,, =2.8T,, Re, = 1000. .
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Fig. 4. Companson of wali pressure and skin friction distribution for linear and spectral meshes with Carter's numerical data.

functions of Legendre polynomials. respectively, as defined in Section 4. It is seen that for the laminar
flow the spectral element method does provide the resuits in agreement with other computational
methods. However. the spectral elements are more effective when the flowfield contains large gradients

in which other computational methods are incapable of resolving large gradients such as in high
Reynolds number and high Mach number turbulent flows. '

6.2. Two-dimensional shock wave boundary layer interaction on a compression corner

In high speed vehicles. deflection of a control surface such as body flaps, elevons and rudders causes
the interaction of shock wave with boundary layer, which may cause fiow separation, resuiting in a
significant decrease in flight performance and excessive increase in heating rate. A two-dimensional
compression corner experiment by Settles et al. [35] is modeled here as a benchmark problem in shock
wave turbulent boundary layer interaction.

Computational geometry and scales corresponding to the experiment are shown in Fig. 5. The
freestream conditions are Mach number of 2.85, stagnation pressure of 6.8 atm, stagnation temperature
of 268 K. freestream unit Reynoids number of 7.3 x 10’ /m, deflection angle of 16°, and the incoming
‘turbulent boundary layer thickness of 2.3 cm.

Adaptive spectral element mesh configurations are plotted in Fig. 6. The mesh refinement is
performed along shock waves while the spectral degree is increased in boundary layer. Convergence of
wall pressure for different Legendre polynomial spaces and degrees at x/8 = 0.14 for a typical transient
state is plotted in Fig. 7. It appears that the convergence rate of Legendre polynomial space 2 is much
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Fig. 5. Computauonal geometry and scales for 16° compression corner. The freestream conditions corresponding to the Setties’
expenment arc M =285, P,=6.8atm. T, =268 K. Re, =7.3X 107/m. &, =2.3cm.

(b) Focus on spectral mesh (gray color) in boundary iayer.

Fig. 6. Adapuve spectral element mesh configuration. The mesh is refined along shock waves while the spectral degree is
increased in boundarv layer.

029

0285 <-space 2

(P-Pexp)/Pexp
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:

5

1 2 3
. Lagendre polynomial degree
Fig. 7. Convergence of wall pressure for different Legendre polynomial spaces and degrees of x/6 = 0.14 for a typical transient

state. It appears that the convergence rate of polynomial space 2 (S2) is much more rapid than that of polynomiai space 1 (S1).
Also. the higher polynomal degrees are closer to the exact solution. independent of the polynomial spaces.
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(a) Density contours (min=0.30kg/m’, maxa3. 12kg/m3)

- (b) Mach number contours (min=Q, max=3.58)

(®) s, contours
Fig. 8. Density and Mach number contours for shock wave boundary layer interaction on a compression corner.

Fig. 9. First-order convertion and diffusion impiicitness parameters (s, and s
flowfieid.

y) contours. The s, and s, contours show the trend of

more rapid than that of polynomial space 1. Also, the higher polynomial degrees are closer to the exact
solution, independent of the poiynomial spaces. _

Density and Mach number contours are shown in Fig. 8. To show the effect of implicitness
parameters upon the flowfield caiculations the contours of the first-order implicitness parameters s, and
5, are plotted in Fig. 9. Note that s, =0 away from the shock waves and boundary layers. but becomes
unity at locations of high gradients (shock waves and boundary layers). By the same token, the
implicitness parameter s, representing diffusion behaves similarly, being zero and unity at locations of

[+ 8]
E. .
- =Expilicit
oot
E c.001 s
| Teeeman,
Q0001
1E-00S
0 400 800 120
No. of iteration

Fig. 10. Convergence historv of energy vanable for the ME] and ex

plicit schemes. The convergence rate of the MEI scheme is
much more rapid than the expiicit scheme.
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Fig. 11. Companson of wall pressure for present resuit and expenmental data.
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Fig. 12. Companson of mean streamwise velocity profiles for the present resuits and Settles’ experimental data at several
streamwise stauons. The plots illustrate the changes in boundary layer vetocity profiles. The figure at x/8, = 1.6 is the incoming
equilibrium turbulent boundary layer. The location of the shock wave appears as a kink is some velocity profiles downstream of

the compression comer. The downstream profiles are seen to recover rapudly from the retarding effects ot the imposed adverse
pressure gradients.
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low gradients and high gradients. respectively. Note that the contours of first-order implicitness
parameters 5, and s, resemble the flowfieid itseif. Here. the second-order impiicitness parameters s,
and s, although flowfield dependent to some extent. their primary role is to assure computational
stability with their criteria given in (30) and (32). The convergence history of energy variable for MEI
and explicit schemes is compared in Fig. 10. The convergence rate of the MEI scheme is much more
rapid than the expiicit scheme. Fig. 11 shows a comparison of wall pressure for the present study and
the Settles’ experimental data. It is seen that the present results are in good agreement with the
experimental data.

In Fig. 12 mean streamwise velocity profiles are compared with the experimental data at several
streamwise stations. The piots serve to illustrate the changes in boundary layer velocity profiles which
occur along the length of interaction flowfield. Fig. 12 at x/8,=—1.6 is the incoming equilibrium
turbulent boundary layer. The location of the shock wave appears as a kink in some velocity profiles
downstream of the compression corner. The downstream profiles are seen to recover rapidly from the
retarding effects of the imposed adverse pressure gradients,

6.3. Three-dimensional shock wave turbulent boundary laver interactions
The next exampie is the study of flowfields of a three-dimensional sharp-leading-edged fin for swept

shock wave turbulent boundary laver interactions. Fig. 13(a) shows the physicai domain for a 3-D sharp
fin (@ = 20°) with a general flowfield structure (Fig. 13(b)) [34]. The iniet boundary conditions and the

L

r,
Invisedd Shock
Sl Line
- >~
a = = e
Vm@
///////////////////////7
Fat Pate ’
() 3-D 20* fin (®) 20° fin interaction flowfield structures
Tz
»Y
-*x
(¢) Computational domain

Fig. 13. Computauonal domain for a 3-D 20° fin a
Re, =7 x 10/m. The inlet boundary conditions are
adiabatic wall boundarv conditions are applied.

nd flowfield structure with M_= 2.93, P, =20.57kPa, T_=92.39K,
obtained from the boundary layer anaiysis. On the solid surface no slip and
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corresponding flowfield structure are the same as in [35]. Here. the free stream Mach number and
temperature are M, =2.93 and T, =92.39 K. corresponding to the chamber pressure and temperature
of 680kPa and 251 K. respectively. with the Reynoids number of 7 X 10°/m. The boundary laver
thickness 8, at the apex of the fin is 1.4 cm. yielding a Reynolds number Re; =9.8x 10°. In order to
match the boundary conditions as used for the experiments [35] the flowfield behind the fin is calculated
as a flat plate boundary layer such that the computed boundary layer thickness 8, is set equal to the
experimental vaiue of 1.4 cm. On the solid surfaces no slip and adiabatic walil boundary conditions are
applied. On the upper. lateral. and at downstream exit boundaries. the flow variables are set free.
Adaptively spaced grid points are 33. 41 and 31 in the streamwise. spanwise and vertical directions.
respectively. Spectral elements of Legendre polynomial degree 2 in space 2 are applied in the boundary
layer.

Fig. 14 shows the background flowfield based on the geometric configurations and boundary
conditions described in Fig. 13. as observed from the front (x—zand y - faces). As such. no details
of the hidden portion are shown. It is noticed that the trend is in reasonable agreement with the resuits
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Fig. 14. Background flowfieid as observed from the froﬁt (x = z plane and y - z piane).
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of Naravanswami er al. [36], with density and pressure increasing drastically along the shock waves. the
. lemperature nse being distributed along the flat plate. and Mach number sharply decreasing througn
the shock waves toward the flat-plate boundary. ’

Vorticity vanations at different planes are shown in Figs. 15-17. The contours of vorticity component
in the streamwise planes (y - z planes) in the x-direction with each plane identified as a, b, ¢, d, e are
shown in Fig. 15. The corresponding velocity vectors are plotted on the right-hand side. Clearly, the
vortex stretching occurs toward downstream with the evidence of separation shocks. slip lines

stream in agreement with the skematics shown in Fig. 13(b). .
Fig. 16 shows the contours of vorticity component in the spanwise vertical planes (x cos ¢ — - planes)
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VERRELLLOI 0000 § P
FIE008200000800 roum—
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ity contours and the corresponding veiocity vectors (¢ = 0.3965 ms). The vortex stretching occurs toward
downstream with the evidence of separation shocks, slip lines and vortex centers close to the wall,
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in the v cos a-direction. with each plane identified as a. b. ¢, d. The vortex stretching occurs again
toward downstream and moving upward away from the shock. The growth of vorticity is concentrated
within the boundary layer close to the wall.

In Fig. 17 the spanwise horizontai plane vorticity contours are presented at various locations (a: 25,,
b: §,, c: 0.55,) where 8, is the boundary layer thickness. It is seen that vorticity increases towards the
wall with its intensity increasing toward downstream as expected.

Unsteadiness of the turbulent microscale behavior in the boundary layer as discussed in Section 4 and

in 24], detailed spectral convergence behavior, and other aspects of DNS are not included in this
paper. but will be reported eisewhere.
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Fig. 16. Spanwise verucai plane (xcosa -z plane) vorticity contours at various locations (1 = 0.3965 ms. U < 2/8,<2.5). The

vorex stretching occurs again toward downstream and moving upward away from the shock. The growth of vorticity is
concentrated within the boundary layer ciose to the wall.

7. Conclusions

Based on the preliminary resuits obtained for the direct numerical simulation using the MEI
generalized Galerkin Legendre polynomial spectral element method, it appears that our original goal

fluctuations. unsteadiness, and turbuient micro-scales as related to turbujent Mach number, turbuient
Prandtl number. and turbuient Reynoids number, (2) characterization of compressibility effects and
relaminarization. (3) energy spectrum data versus frequency domain and compiete 3-D turbuient
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F

Max = 6.86
Min = -0.66

Max =73
Min = .76

Max =736
Min = -0.81

Fi

element method appears to be promising.
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Appendix A
A.l. Analogy verween MEI-GGM and FDM-TVD

For simplicity let us write (12) in terms of one-dimensional linear functions and one-dimensional
Jacobians a. b-and ¢ with all Neumann boundary terms negiected. Integrating (12) by parts we obtain

1 + ne+ 1 n+ . av
Tar (AU s 4aUT! + AU =Taz (e +5,6) AU - AUt
+ Zi‘x: {s:0° = 253¢ + At s,ba + 25 bla + b))(AUTS) - 24U + AU
1 L] ll L] a At - L] n L] n n
+E(F"' -F_, +G,, -Gi.)) +m(a+b)(Fn-l —2F+F_, +Gi,, —2G] +Gily)
' (A.1)
Negiecting all diffusion terms and adjusting nodal points arbitrarily, we have
AU:’"‘l ;S'a Un" A[j'n-l . S:aZA[ AU:;Ol 5 nvl . a+i
Al —.lx(A i i—l)' 2Axl\ i "-Aui-l"AUi-z)
1 ” . n aA‘ ”n n ”
+3(F, —F'-')+2Ax: (F; = F_ +F,) (A.2)
The FDM-TVD for the 1-D Euler equation is written as
du, a” 1 . 1 .
Ef'= " [(Ui =U._) +Elpi-llz(Ui -U.) —i‘pi—SIZ(Ul—l - Ui—z)]
a 1 _ 1 _ '
T Ar [(Ui+l -U) +5lp,+|/z(vf+| -U) "'2_'{'.43/2(””2 - Ui—l)] (A3)
with
. 1 _ 1
a” =max(0.a) =3 (a + a]) = max(0, a) =3 (a—la])
Introducing an implicitness parameter s for the time derivative on RHS of (A.3) in the form
U=U"+sAU7"" (A.4)
Substituting (A.4) into (A.3) and assuming that
a”=0 a =a Vo=V =¥
we obtain
AU sa o nery  SWaldx . .
A T Tar WUTT AU TSR Ut - 2407 + A
L WAL e |
+E(Fi _Fi—l)_TAxZ(Fi — P +F,) (A.S)

Comparing (A.2) and (A.S) reveals that, with $y==5/2,5,=5Ax ¥/(a Ar), and —1 for the coefficient
of (F] - F]_,) term. we note that the MEI-GGM formuiation and FDM-TVD scheme are analogous: in
fact. they are identical under the assumptions made above. The implicitness parameters 5, and s. in the

MEI-GGM scheme play the role of TVD limiters, ¥. However, the implicitness parameters sy and s,,

beyond the concept of TVD scheme. together with 5, and s,, are expected to govern complex physical

phenomena such as turbulent boundary layer interactions with shock waves, finite rate chemistry,
widely disparate length and time scales. compressibility effects in high Mach number flows, etc. Note

that most of other FDM schemes (such as McCormack or Beam-Warming schemes) arise with proper
choices of impiicitness parameters in (A.1).
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Appendix B

B.1. Integrais of spectral element interpoiation Tuncrions

46 a : A ) -~
= L ®d,d0 4], = fn 0,40 A4, = fn 2,8,,,d2 Al = f ¢ b, dn2
A*":f T R f & b dn AY f &b d0 f é! &, d0
mn m*n mnp m* np mnpq 0 m “npq mkﬂ mk
a E - -
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A NEwW COMPUTATIONAL APPROACH WITH

FLOWFIELD-DEPENDEN T IMP

LICITNESS ALGORITHM FOR

APPLICATIONS TO SUPERSONIC COMBUSTION

TJ. Chung

Department of Mechanical agg Aerospace
in Huntsviile, Huntsviile, AL 33899, USA

Com;j utations in reacting flows articularly for s

are considerably more compiicated t

Engineering, The University of Alabams

upersonic combustion

an in nonreacting flows or low-speed

bustion. This is due to widely disparate reaction rates for different

species associated with finite rage ch

aary layer interactions.

emusiry and shock wave turbulent

such as Mach, Reymnoids, Peclet, and 5a.mk6hler numbers between adjacent
points and between time Steps can be important factors in selectin
suitable computationa] schemes a5 they are indicative of physics of the
- It is toward this jdea that the proposed approach called “Flowfield-
Dependent Mixed Explicit-Implicit (FDMEI) Method” is developed in
this paper. _Here, every nodal paint or element is provided with a

wheld situations, as

from the changes of Mach, Reynoids, Peclet, and Damkéhler numbers
betwegn adjacent nodal points and between time steps. These flowfield-
dependent implicitness barameters represent whethgr or not the flowfield is

compressible, incompressible, viscous,

as the status of chemica} reactions. In this procedure, disc
tuations of all variabes between adjacent nodal points
steps are reflected in the solution of the N avier-Stokes g

50 that the fluctuation components

between the Navier-Stokes solutions and the mean flow ¢

inviseid, laminar turbulent, as weil
continuities or fiyc-

and between time

can be obtained ag the difference
omponents calcu-

lated from the standard time averages or the fast Fourier transform of the

Navier-Stokes solutions. If all impiicitness parameters

extremely high and where shock wave turbulent bound
are significant. Dye to computer limitations, however

in this paper are only for coarse mesh and simpie cases without resolving
turbulent microscales, Further studies on the proposed FDMEI method ip
applications to Supersonic combustion are very much in need.
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1 INTRODUCTION

Figure 1. Supersonic combustion geomet-
riee. (a) Reacting fiow (airbreathing com-
bastion). I b— injector; 2 — separation
shock: 3 — boun layer; 4 — upstream
recireniation: 5 -‘ia?aw );hock; 6 — Mach
disk: 7 — expansion waves; § — mixing
layer; 9 — reattachment shoek. ) (6) Ramjer
combustion. | — diffuger oblique shoeck
wave: 2 — normai shock system;
injectors; 4 — fuel; 5 —
— engine cowl; 7 — vehicle boundary. (c)
Scramjet combustion.

wave; 2 — fyel injectors: 3 — fuel; 4
—eagine cowl; 5 — vehicle boundary

— forebody. oblique -

Nearly half a century has elapsed since

 the digital computer revolutionizeg com-

putational techniques in engineering and
mathematical physics. During this time
finite difference methods (FDM) have
dominated the field of computational
fuid dynamics (CFD) {14}, whereas the
apposite is true for finite element me-

.thods (FEM) in solid mechanics. In re-

cent years, however, the treng toward
finite element methods in CFD appears

“to be increasingly favorable (5-9]. Nu-

merical methods for supersonic combus-
tion mainiy with FDM have been active-
ly pursued since the late 1980’ (10-13].

One of the most important questions
in CFD is how to deal with large gra-
dients of the variable (demsity, veloci-
ty, pressure, temperature, and source
terms). Rapid changes of Mach num-
bers, Reynoids numbers, Peclet num-
bers, and Damkghler numbers (if re-
acting) between adjacent nodal points
or elements can be a cruciaj factor in

.determining whether the chosen com-

putational scheme will succeed or fail.
Furthermore, proper treatments for in-
compressibility and compressibility, vis-
cous and inviscid flows, subsonic and
supersonic flows, laminar and turbujent
flows, nonreacting and reacting flows
are extremely important. These various
flow properties may be depicted in ty-
pical reacting fiow problems for ramjet
and scramjet combustion as shown in
Figs. 1a,b,c.

Can there be a general approach to
satisfy all the requirements mentioned
above? Can a singie mathematical for-
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mulation lead to most of the currently available computational schemes both in
FDM and FEM as speciai cases? Most importantly, will such an approach guarantee
accuracy and efficiency? In this paper, our goal is to respond to these questions
positively. To this end, our approach, known as the Flowfield-Dependent Mixeqd
Explicit-Implicit (FDMEI) method, is based .on the following procedure [7-9):

(a) Write the Navier-Stokes system of equations in a conservation form.

(b) Expand the conservation variable Jn+1 in Taylor series up to and including
the second-order time derivatives of the conservation variables.

(¢) Introduce in step (b) six different flowfield-dependent implicitness paramerers
which are calculated from the changes in Mach, Reynoids, Peclet, and Dam.
kohler numbers (if reacting) berween nodal points or locai elements.

(d) Substitute step (a) and (c) into step (b) to obtain the increments of the
conservation variables AU™™!. As a resuit, the final form resembles the impiicit
factored scheme of Beam and Warming [1], but much more rigorous.

(e) Step (d) may be used either in FDM or FEM.

The computational procedure as described
properties of fluid flows in general with sho
in particular:

above is capable of resoiving complex
ck waves, turbulence, and reacting flows .

(1) Shock waves in compressible flows are dependent on changes in Mach nu-

mber between nodal points in FDM and withig local elements in FEM. Shock

wave discontinuities are characterized by these changes in Mach number.

(2) Incompressible turbulent flows are dependent on changes in Reynoids num-
ber between nodal points in FDM and within local elements in FEM. Incom-
preszibility conditions are characterized by these changes in Reynoids number.

(3) Compressible turbulent flows are dependent on changes in both Mach num-
ber and Reynoids number betw

een nodal points in FDM and within local
elements in FEM. Dilatational dissipation is characterized by these changes in
Mach number and Reynolds number,

(4) High temperature gradient flows are dependent on changes in Peclet num-
ber between nodal points in FDM and within local elements in FEM. The

convection vs diffusion in heat transfer is characterized by these. changes in
Peclet number.

(5) Reacting flows are dependent on changes in Damkéhler number between
nodal points in FDM and within local elements in FEM. The mass source vs

convective transfer, mass source vs diffusive transfer, heat source vs convective



A New Computationai Approach with F lowfieid-Dependent Impiicitness Algorithm 489

heat transfer, heat source Vs conductive heat transfer, and heat source vs
diffusive heat transfer are characterized by these changes in Damkéshler Rumber.

(8) Direct numerical simulation (DNS) .in which mesh refinements are carried
out until turbulence length microscales are resoived without turbulence models

uniess the computationai scheme is capable of treating high gradients of
variables as described in (3) above. To improve turbulence calculations,
Legendre polynomial spectral modes may be added as shown in (7]. Whether or

i tageous for an overall computational
eficency remains to be seen. Due to the limitation of computer time,

the example problems in this paper are not intended for DNS microscaie
resoiutions. . ' '

2 MATHEMATICAL FORMULATIONS

For the genera} purpose program considering the com

pressible viscous reacting flows,
we write the conservation form of the N avier-Stokes

system of equations as

80U  HF; 0G; o
?+T::;+—8;:—B’ (1)

where U, F;, Gy, and B denote the ¢

onservation flow variables, convection flux
 variables. diffusion flux variables, and s

ource terms, respectively,

P : [ v
U= Vi F; = | PViV;i + pé;;
PE |~ ' PEVi+pv; |
pYi | AN, .
0 1 0 2)
TTijVi = &T; - ¥ peok T Dy, Yei | —Hwy + pfjv;
~PDiem Y i ] Wy




In order to provide different im
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Expanding the conservation variables U in Taylor series i

ncluding the first and
second derivatives, we have :

U™ A2 g2 n+n ' '
T3 em o), (3)
where sy and s; are the implicitness parameters defined such that
aU'H'" _ aUn 8AUﬂ+l

U"+1=U“+At

at at + 8 3! y 0 S S S 1 [} (4)
Furn  Pur gAyn+
atz = ata + 32 ata ' 0 S 82 S 1 , (5)

with AU™™! = Ul _ U™, It is assumed that the convection flux F; is a function
of U and the diffusion flux G, is a function of both U and its gradient U,. Thus,

we have: . v
au oF; 0G;
| " A T B ©®)
i 8] 0 au a ou 83 ou U
7 =2 (%) 3 () e (50) +4(Z) .

where the convection Jacobian a;, the diffusion Jacobian b;, the diffusion gradient
Jacobian c;;, and the source Jacobian d are defined as

oF; 0G; 9G; oB
a%=on b"??f]'-’ Q,—WJ_, d—ﬁ (8)

Assuming the product of the diffusion gradient Jacobian with third order spatial
derivatives to be negiigible, it follows from Egs. (1) through (7} that

dFF  IGT [ _8AFT*'  jAGr+ \
-l _ —— n - : - ! - n+li
AU™ = Al [ az; 32" +B T 9N ( az‘- az" - AB /]
A2 ([ g 9F"* aG" 8F* 5Gn
——dle—{ams+b) [ =2+ —L_gnl_g4q(9 il S “)
+ 2 {[az,-“‘* )(83,- + dz; B ) d(az; * d0z; B ]
8 8AF;‘*" 8AG’,-""‘ nel
+ 87 [5;:_-(8« + b;) ( az; + 9z; - AB
1 n+1
-d (8Aa§‘ + aAaG; - Bn-l-l)]} + O(Ats) . (9)
A 2

plicitness (different numerical treatments or schemes)

to different physical quantities, we reassign s, and s, associated with the diffusion

and source terms, respectively,
JIAG.' = 33AG,‘ N 31AB = 85AB o

(10
JQAGq' = 84AG,‘ ’ $2AB = sgAB ’
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with the various implicitness parameters defined as

$1 = first order convection implicitness parameter,

$2 = second order convection implicitness parameter,

33 = first order diffusion implicitness parameter,

84 = second order diffusion implicitness parameter,

85 = first order source term implicitness parameter,

3¢ = second order source term implicitness parameter.

The first order implicitness parameters s,, s3, and s will be shown to be flowfield
dependent with the solution accuracy assured by taking into account the flowfield
gradients, whereas the second order implicitness parameters sz, 34, and sg, which
are aiso flowfield dependent, mainly act as artificial viscosity, contributing to the

solution stability. Substituting these implicitness parameters as defined in Eq. (9)
into Eq. (8), we obtain '

AU™ 4 At s, da;AU™! a3 Gb; AU+ +6’¢;,'AU"‘"“ — s d AT
i az; 0z;0z; i }

_asg {32 [8’(&4&,- + b;a; AU daa.-AU"“"J

2 88.'8:: 3 6..-..-

o [(83(a,-b,- + b;b;)AU""") _4 ,(m:,-z.\.uMl + Peauns )]

0z;0z; oz; 9z;9z;
. . N1
e [da(a, +b))U _dAU,,*,]}
Oz;
aF"*  HGt A [ 5 8F*  HGn
At —_—d b B 2 —— o . — . TN
. * (8:.- dz; ) 2 [Bz,'<a' +bi) (8:,' + oz; B )
oF™ n
-4 (5 + 2 2)] voa -, Cw
with

ne1 3

R.emz:;ging Eq. (11), we obtain -

- +1 i ) +1 - .. 1 n 3
R=AAU™ | o (EaU )+ o (Bsar™) 1@~ +0(a%), (2)

or

9 . 82 +1 n
(A+ 5l o 5 E.-,) AU = g, (13)
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with
A3
A=14+ Atsgd + ‘—2—35d , (14)
, A3,
E; = At(s1a; + s3b;) + -2—133d(8-i + b;) + s2da; + s4dby], (15)

At?
E;; = Atsacy; - —~ ls2(aa; + biay) + s(asb; + bib; — deyj)] (16)

n a Atz 1 " ) Atz . . n
8 |at? . At? n
- prry [—2 {ai + by )(F7 + GT )] - (AH— —d2 )B . (17)

An alternative scheme is to allow the source term in the left band side (LHS) of
Eq. (13) to lag from n + 1 to n so that Eq.(13) may be written as '

a . 82 +-1 __ n
(I-i' EEE. + mE.,) AU =Q", (18)

with

3 2
Q"= a—a;‘- [(At + %‘—d) (FT+G}) + AtT-(a,- + b;)B"]

# [ar
~ z:0z; {‘5‘(‘“ )T + G?')]

3 2
- (Atss + ATtSQ) dAU™ - (At + %t—d> B". (19)

Note that the Beam-Warming scheme [1] can be written in the form identical to
Eq. (18) with the following definitions of E;, E;; and Q™:

.8 ,

E; = mAt(a; + by), mthm-m, (20)
E; = mAtc;;, (21)

n_ At (3F* 5GP £

Q"= l+£<6ze * 3za>+1+€Am' @)

where the cross derivative terms appearing in Q" for the Beam- Warming scheme are
included in the second derivative terms on the LHS. The Beam-Warming scheme is
seen to be a special case of the FDME] equations if we set s; =33 =m, 35 = 34 =

35 = 55 = 0, in Eq. (18), with adjustments of Q" on the right hand side (RHS) as
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| AR ~C _existing FDM and FEM schemes. Some
examples are shown in [9).

Contrary to the Beam-Warming
scheme, the FDMEI approach is to ob-
tain the implicitness Parameters from
the current flowfield variabies at each
and every nodal point rather than fixing
the implicitness parameters to certain
l predetermined numbers ang using them

5

implicliness parameters s, S, s,

Second order

0 . < J for the entire fiow domain irrespective of
0 025 0.5, 639075 | thelocal flowifield variation from one po-
» D .

Fi or ; i aremeters s, 5. s int to another. in FDME] scheme,these
= {mpticiness p S 5 implicitness parameters may be deter-
ined f atial and temporal bases

Figure 2, Relationships between the firse Jumed for sp P

and second order impiicitness Parameters. 4 28 depicted in Fig. 2. The final values
TN =19, 8= 1-33, 86 = l-ss; B— of implicitness parameters at any po-
87 =max(l-s,, 0.3), 54 = max(l—s,, 0.5),

= e 08) o e 4' iot and at any time can be obtained as
. ey Sl <t D——”B:u;’-wmé the average of both spatial and temporal

Critenon contributions:
Convection Implicitness Parameters:
min(r,1) r>q
n = 0 r<a,Mmin #0 $2=s8,0<ncl (23)
1 Mvm‘n =0

with
r= \/ M%cs B Mgu’n ' (24)
Mvm'n ’ .

stability. -
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" Diffusion Imoiicitness Paramerers:

min(s,1) s> g

3= 0 s<ﬂ,Re,,,,~n-;-‘0,.orPe,,,,-n;.‘0 ss=s53,0<nc] (25)
1 Repmin =0, or Pein =0 _ '
with '
Re3 .. - Rel. .
. . = \/ mez min , (25&)
Revm'n
or

Parameters, and g js a A
gradients are large, it is possible that Peclet :
will dictate the diffusion implicitness Parameters. The larger vaiue of 33 is to be

chosen, as obtained either from Egq. (26a) or (265). Note also that S4 = 53 with 5
ensuring the solutjon accuracy by taking into account the diffusion gradients, and
here again, S+ plays the roie of artificial viscosity, for solution stability,

Source Term Implicitness Parameters:

For the case of chemically reacting flows the /g (Damkghler number) must be ysed
min(t,1) ¢34 B |
Sg = 0 t<‘7,1}1m.‘,.;-‘0 ss=s5,0<nc] (27)
I in =0

with .




‘ensuring the compurational accuracy and computational stability,

-optimum, exhibiting the best convergence rate for re
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respectiveiy. The
idea is to provide adequate (no more and o less than required) amount of Rumericaj

viscosity in order to preserve the computationai accuracy. Note that the definitiong
for the second order implicitness parameters have been modified
in {7, 8] in order to meet the above requirements. Initially,
second order implicitness Parameters should be the direct Opposite compliances of
the first order implicitness parameters (s2 =1-g, S¢ =1—-983,8=1- ss) (8]
such that the second order implicitness parameters are the maximum ang minimum,
respectively, for the minimum and maximum values of the first org

from those reported
it was thought that the

limiting vaiues (0.5) of the second order implicitness parameters were provided such
that s, = max(1 - 31,0.5), etc. as experimented in [7]. However, it wag noted that
both first and second order parameters should assume the same values at the both
extremes at zero and unity with the second order implicitness parameters being
reasonably large for all values of the first order implicitness parameters, Thus,
the second order implicitness parameters given above are the noalinear continuons

functions of the first order implicitness parameters satisfying these requirements.
The range of the constant nisl<nc]

the example problems Presented in Section 4.
The flowfield dependent impljc;

allowing various numerica] sch
as follows:

'The contours of these Parameters closely resembie the flowfields themselves,

with both s, and s, being large (cloge to unity) in regions of high gradients,

but small (close to'zero) in regions where the gradients are small. The basic

utational accuracy.

(2) Tke second order implicitness parameters S2 and s
ent. However, their primary role is to
(artificial viscosity) as they were originally

variables U™*1, Tpe Primary role of 87
stability.

(3) The s, terms Tepresent convection. Thig implies that if s,

2 0 then the effect
of convection is

smail. The computational scheme is automatically altered to
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‘take this effect into account, with the governing equations being Predominantiy
parabolic-elliptic. Note that these effects are confined at Un*+! por at U,

(4) The s3 terms are associated with diffusion. Thus, with s3 = 0, the effect of
viscosity or diffusion is smail and the computational scheme is automatically

switched ‘to that of Euler equations where the governing equations are predo.
minantly hyperbolic. '

(5) If the first order implicitness parameters s, and s3 are nonzero, this indicates
a typical situation for the mixed hyperbolic, parabolic and elliptic nature of
the Navier-Stokes system of equations, with convection and diffusion being
equally important. This is the case for incompressible flows at low speeds.
The unique property of the FDMEI scheme is its capability to control pressure
oscillations adequately without resorting to the separate hyperbolic elliptic
pressure equation for pressure corrections. The capability of FDMEI scheme
to handle incompressible flows is achieved by a delicate balance between s,
and s3 as determined by the Jocal Mach numbers and Reynolds (or Peclet)
numbers. If the flow is completely incompressible (M = 0), the criteria given
by Eq. (19) leads to $1 = 1, whereas the implicitness parameter s is to be
determined according to the criteria given in Eq. (21). Make a note of the
presence of the convection—diffusion interaction terms given by the product of

b;a; in the s, terms and a;b; in the 34 terms. These terms allow interactions

between convection and diffusion in the viscous incompressible and /or viscous
compressible flows.

(6) If temperature gradients rather thag
then s is governed by the Peclet n
Such cases arise in high speed, hj
the wail. '

velocity gradients dominate the flowfield.
umber rather than by the Reynoids number.
gh temperature compressible flows close to

(7) In the case of reacting flows the source terms B contains the reaction rates
which are functions of the flowfield variables. With widely disparate time and

length scales invoived in the fast and slow chemical reaction rates of various

chemical species as characterized by Damkghler numbers, the first order source
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(8)

(9)

(10)

(11)

The FDMEI equations as given in Eq. (12)
FEM. Tte standard linear Galerkin approximati
central differences of FDM. However, the main
arises when integration b
Neumann boundary condi
all Neumann boundary ¢

Various definitions of Peclet number and Damkdhler numbers (Table 1) bet-

ween the energy and species equations should be checked. Whichever definition
provides larger values of s3 and sg must.be used.

The transition to turbulence is a natural fow process as the Reynoids number
increases, causing the gradients of any or all flow variables to increase. This
phenomenon is the physical instability and is detected by the increase of sy if
the flow is incompressible, but by both s3 and s, if the flow is compressible.
Such physical instability is likely to trigger the numerical instability, but
will be countered by the second order implicitness parameters s; and/or s,
to ensure numerical stability automatically. In this process, these dowfield
dependent implicitness parameters are capable of caprturing relaminarization,

comoressibility effect or dilatational turbulent energy dissipation, and turby-
lent unsteady fluctuations.

An important contribution of the first order implicitness parameters is the fact
that they can be used as error indicators for adaptive mesh generations. That
is, the larger the implicitness parameters the higher the gradients of any flow
variables. Whichever governs (largest first order implicitness parameters) will
indicate the need for mesh refinements. In this case, all variables (density,
velocity, pressure, temperature, species mass fraction) participate in resojving

the adaptive mesh, contrary to the conventionai definitions of the error
indicators.

Physically, the implicitness parameters will influence the magnitudes of Jacobi-
ans. Thus, Item 8 above may be modified so that the diffusion implicitness pa-
rameters sy and s4 as calculated from Reynolds number and Peclet number can
be appiied to the Jacobians (a;, b;, €ij ), corresponding to the momentum equa-
tions and energy equation, respectively. Furthermore, two different definitions
of Peciet number (Per, Perr) would require the s; and s4 as calculated from
the energy and species equations to be applied to the corresponding terms of
the Jacobians. Similar applications for the source term implicitness parameters
35 and sg should be followed for the source term Jacobian d. In this way, high
temperature gradients arising from the momentum and energy equations and

the finite rate chemistry governed by the energy and species equations can be
resoived accordingly.

may be solved by either FDM or
ons of FEM lead to the resuits of
difference between FDM and FEM
y parts is performed in FEM and the explicit terms of
tions “naturally” appear as boundary integrai forms. Thus,
onditions can be directiy specified at boundaries in FEM.
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Table 1. Definitions of nondimentionai fiow variables

1,
. —E 2 - .
p(v-Vv= —Vp4 ufV3y + V(V - v)]

A B e
C
T _ T N
v-pu/c,,,dr-v VT -V . pnw,./c,,,dr =-Y Hu,
1, ——F f, k=1
N —— — —o— ., N—— p——
E P N
V. (pYev) =V - (pDVY,) = ws
— ~ - —~
1 J K
Mach number M b ﬁ =41 al force
, a B pressure force
Reynolds number Re & A =1 » al force
I C  viscous jorce
Peciet number, I Pe; pulc,, £ - convectx.ve heat tra.nsi:er
k F  conductive heat transier
Peclet number. I Pe & £ _ convective mass transfer
’ I D J ~ diffusive mass tragsier
Damkéhler number, I Day _{._w_;, £ = mm Source
puY; I  convective transfer
- Lw, | K mass source
Damkdohi ber, I | Da —_— e =
oier number Ir pDY; J  diffusive transfer
Damkéhler number, IIT Dayrr aL N = hf"t Source .
Hu E  convective heat transier
i L3 N heat source
Damkéhi ber, IV | Da LI A
oller number v kT F  conductive heat transfer
- : L3 N heat source
Damkshl ,V & | N
er number Dw HD G  diffusive heat transfer
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and inviscid flows, and laminar and turbulent flows are intermingled throughout
the flowfield domain, a computational scheme intended for

physics and that does not account for other types of flow

gradients of each variabje (density, Pressure, velocity,
small or very large, so large that Practically ail currently available computational

3 IMPLEMENTATION AND COMPUTATIONAL PROCESS

As stated earlier, the governing equations for the Taylor series-modifieq Navier-
Stokes system of equations, (12) may be applied to either FDM or FEM, or 10 the
finite voiume methog (FVM). For FDM applications the first order ang

spatial derivatives may be written in centraj difference schem
may write for any variable y a5

du Bidr5 = %iay j -
Bz = =L iotd (29)
gz ™ 2Az

&y i+l —2 it Uioy

pa3 la= =L iy (30)

For applications g FEM we begin by
variables and source terms as
nodal values of these variabies.

U(x,?) = 'ba(x)Ua(‘) ’ Fi(x,2) = Qa(x)Fm'(t) (31)
Gi(x,1) = &4(x)Gai(t) | Bi(x,2) = &4(x)B,4(2)
Applying the generajized Galerkin approximations to Eq. (13) we obtain:

/ﬂ $R(U,F,,G;, B)dQ = o (32)

expressing the conservation and flux
a linear combination of trial functions ®, with the
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ar |
(Aagtrs + Bcara)AU“'H = Hgp + Naps (33)
where
_ At?
Aaﬂ = /‘; $,9;dQ, 27,.,-=‘(1 + Atss + TSG)&-, ’ (34)

' AB,
Bogrs = /n [-—{At(smm + 83birs) + T;Squ—:am + 36dre(irs + bigs)

At?
- .ud,,b"g,]}@a_(@a - {A233c,',',-, - ‘2—{32(airzajta T b:’rtajta)

+ 34(41'"53‘:: T Birebjes — d-tcijn )]}Qa.x@ﬁd} dQ

, A3,
+ -/l: [{At(slam T 93bir,) + T{Szdnmu T 96@re(Qies + bigy)

- - " Atz
+ s.d,,b.-,.]} .55 +{Ausq,‘n - T{-’:(as‘rt“ju + birt@jes)

+ 84(Girtjes + bivedjes — dncv'ju_)]} 6,,65.,-] n;dl, (35) .

/ { [ (BB + GB) + 5, (4 G3)

At
+ ) \asn'l'bwa)Bg,} ai‘pﬁ

At?
= (o + biea) (Fy, + GB;,) ®ain + [AtES.r

Atz .
+ Td,,B?,,] @a%} s, (36)

N:r = -/l' {[-At (ngr + Gzir) - -A-;—zd (I?u + Gsit)

At? = .
- —(a"n T bira)BE,] ®.P5

At . -
+ (it bira) (785 + G340) @a@a.s} n;dl, (37)
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For three dimensions, i, J = 1,2,3 associated Wwith the Jacobians imply directionaj
identification of each Jacobian matrix (ay, a,, ag, by, ba, bs, ¢y, €12, €13, Cyy,
€22, €23, Ca1, €33, c33) With 7, s = 1,2,3,4,5 denoting entries of each of the 5 x 5
Jacobian matrices. Note also that the relation (18) may be used

on FDM schemes of Egs. (29) and (30) is to be called FDMELFDM.

It is important to realize that the integration by parts as applied to the
generaiized Galerkin approximations in FEM produces all Neumanp boundary
integrais. [t is particuiarly advantageous that Neumann boundary conditjons

' : boundary surfaces cag simply
be added to the boundary nodes for the stiffness matrix Bg,,in Eq. (35). On
which appear in Eq. (37) act as
» but implementations of Neumann

Similar resuits are obtained either by FDMor F
tions derived primarily from the FDME] Egs. (12). However, with the increase of
Reynoids number (say around Re 3 10%), it is possible that accuracy may increase
with appiications of special functions such as Legendre polynomials of high degree
modes cha:a.cterizing extremely small turbujent microscales. Implementation of such
high frequency modes can be achieved by Placing these modes between the corner
. Dodes of isoparametric finite elements. Adaptively, such high modes can be chosen

as needed for the resolution of turbulent microscales. Once again the diffusion
implicitness parameter s3 will play a crucial factor in determining the required
degrees of Legendre poiynomial. The use of Legendre polynomial spectral modes
superimposed onto isoparametric elements has been discussed in [7]. Its merit,
however, has not yet been fully established fo

T general applications.
Oae of the most significant aspects of th

e FDMEI scheme is that for low Mach
numbers (incompressible flow) the scheme wii] automatically adjust itself to prevent

pressure oscillations. This adjustment is analogous to the pressure correction scheme
employed for incompressible fiows. Otherwise, the FDMEI scheme is capable of

EM with accuracy of computa-
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. needed for shock wave resolutions in the presen

viscosity. '
In order to understand how the FDMEI scheme handles computations invoiving

both compressible and incompressible flows fundamental definitions of pressure must

be recognized. Consider in the following that the fluid is a perfect gas and that the
total energy is given by s ’

ce of flow diffusion due to physicai

' 1
E=cT- %-i- Ev,-v.-. (38)

The momentum equation for steady state incompressible rotational flow may be
integrated to give :

1 1
/(P+ '2'PV,7'VJ').£ dz; = / [Il (Vi,jj + Z-i'v"""‘) + PEijijwk] dz'. ,

1
PH3rvivi=po+ W, (39)
with

1 1
W=— / (viis + 3vig) + peijivwn] dz:,

where w, is the component of a vorticity vector, Po is the constant of integration,
and m denotes the spatial dimension. Combining Eqs. (40) and (41) leads to the
following relationship:
Po=p(cT +vivi — E) =W, : (40)

If p, as given by Eq. (40) remains a constant, equivalent to a stagnation pressure,
then the compressible flow as assumed in the conservation form of the Navier-
Stokes system of equations has now been turned into an incompressible flow, which
is expected to occur when the flow velodity is sufficiently reduced (approximately
0.1 < M < 0.3 for air). Thus, Eq. (40) may serve as an equivalent equation of state
for an incompressible flow. This can be identified element by element for the entire
domain. Note that conservation of mass is achieved for incompressible flows with p,
in Eq. (40) being constant, thus keeping the pressure from oscillating.

Once the Navier-Stokes solution via FDMEI is carried out and all flow variables
determined, then we compute fluctuations f’ of any variable fs

fl=f—7) (41)

where f and 7 denote the NavierStokes solution and its time average, respectively.
This process may be replaced by the fast Fourier transform of the Navier-Stokes
solution. Unsteady turbulence statistics (turbulent kinetic energy, Reynoids stresses,
and various energy spectra) can be calculated once the fluctuation quantities of all
variables are determined.

Before we demonstrate numerical examples, let us summarize why the FDMEI

scheme is capable of handling low speed and high speed and’ compressible and
incompressible flows, including shock waves and turbulent fows:
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(1) How is the transition from incompressible fiow to compressible fiow naturaily
and automatically accommodated without using two separate equations or
two separate codes? This process is dictated by the first order convection

implicitness parameter s; as reflected by the Mach number changes and the
expression of the stagnation pressure.

(2) How is the shock wave captured? As the Mach number increases and its
discontinuity is abrupt, the s, terms associated with second order derivatives
together with squares of the convection Jacobian provide adequate numerical

viscosities through second order derivatives, similarly as the Lax-Wendroff
scheme.

(3) How is the transition from iaminar to turbuient flows

naturailly and auto-
matically accommodated?

This process is governed by the first and second
order diffusion implicitness parameters (s3 and s4) as calculated from the
changes of the Reynoids number. The terms associated with 33 and s, are
responsible for fluctuations of velocities, with the vaiues of these implicitness
parameters increasing with intensities of turbulence in conjuction with the
diffusion gradient Jacobian and the squares of the diffusion Jacobian. This
process allows the Navier-Stokes solutions to contain fluctuations which can
be extracted by subtracting the time averages of the Navier-Stokes solutions.

(4) How do the interactions between convectio

of Mach numbers and Reynoids numbers as reflected by both convection
and diffusion implicitness Parameters close to the wall contribute to the

unsteadiness. Away from the wall, they contribute to the transition between
incompressible to compressible fiows.

n and diffusion take piace? Changes

4 APPLICATIONS

We examine first a nonreacting flow problem with shock wave turbulent boundary
layer interactions on a compression corner, followed by the reacting fiow with a flat

plate transverse fuel injection combustor, In these examples, 2-D isoparametric
finite elements are used [8].

4.1 Supersonic Nonreacting Flow on a Compression Corner

In this example we demonstrate calculations of supersonic
corner. The iniet boundary conditions (nondimensionalized) are p = 1, M = 2.25,
p =014, Re = 105, Pr = 0.72, and v = 0, with adiabatic wall condition. The
steady state background mean flowfields.for the comopression corner are shown in
Fig. 3a. In these calculations, all perturbation(fluctuation) variables are determined
from time averages of the Navier-Stokes solutions according to Eq. (41).

flow on a compression
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02m

0.8 1 12 1.4 1.6
time

5)

compression corner. (a) Compression corner
. ‘ ities, | — z = 0.102 m,y=0001m;2—
z=0.102m, y=0.004 m '



A New Computational Approach with Flowfieid- Dependent Impiicitness Algorithm 485

The horizontal and vertical perturbation veiocities (v, and v’) at locations close
to the wail (z = 0.10256 m. y = 0.001'm; and away from the wall (z = 0.10256 m,
¥ =0.04 m) are shown in Fig. 3b. Note that u’ is extremely unsteady whereas v’ ig
significantly less unsteady ciose to the wail. Away from the wail, both g/ and v’ are

almost steady. These trends are reflected in the turbulence (Reynoids)

stresses as
shown in Fig. 4.

Turbulent kinetic energy distributions at the locations upstream of the corner
(z =0.0513 m) and downstream of the corner (z = 0.1333 m) are shown in Fig. 5. We
observe that the turbulent kinetic energy downstream of the corner js considerably
larger than the upstream. Yo turbulent statistics calculations (wave numbers or

frequencies vs. power spectral density) are attempted at this time as turbulence
microscaies are not resoivied in this exampie. '

It should be noted that the above re-
sults obtained without turbulence mo-
dels or without the standard DNS soju-
tions (neither spectral nor DNS mesh re-
finements) are regarded as the consequ-
ence of the time-averaging of the F DMEI
Navier-Stokes solutions, This implies
that the fluctuation of variables between
ve 5 .4'— -":..\.2 nodal poi.nts and betwee.n tix.m.a steps as
max=4.5x10 reflected in terms of the implicitness pa-
min=0.0 , * -,38.’ rameters (s;) have contributed to these

(o - physical Phenomena, with compressibi-
lity and shock waves dictated by the
Mach number-dependent $1, and with
incompressibility and turbulent fiuctua-
tions dictated by the Reynoids number
or Peclet number-dependent $3. The si-
muitaneous participation of 8; and s;
. are also responsible for shock wave tur-
! bulent boundary layer interactions.
__g A comparison of the resuits of the
FDMEI scheme with the k-¢ turbulent
model and experimantal data is shown
in Fig. 6. It is seen that the FDMEI

Figure 4. Supersonic nonreacting flow.on a resuits compare more favorably with
compression corner. Reynoids stresses those of measurements (14].

w'v <

max=2.5x10"

min=3.2x107%
'




© gl —z=0.05lm, 2—2=0.1333m

486 NUMERICAL SIMULATION OF COMBUSTION

o 7 4;2 Supersonic Reacting Flow
m 2 with Transverse Fuel Injector

s ~ We consider an example of transverse
.hydrogen fuel injector with 9 species and
18 reaction equations and a rectangiar
geometry of 3615 isoparametric finite
elements studied in {8]. The primary
_air flow is set at M = 1, P, =
b 0.1 MPa, and To, = 1000 K. The secon-
0 . &ﬂ\ Na— J dary hydrogen jet transversely injected
0 002004 006 008 O.1 through a slot of 2 mm is provided at

¥V — M=1.P=02MPa, and T = 300 K.

. . : . Initially, the frozen flow with the mass
compresion Corper. Torbuiont boosn o fractions of 0.096 O aad 0,908 1o

analyzed, which is then used for reacting
flows.

0
(=]
T

.
“

Turbulent kinetic energy -
k=

Figures 7a,b show density contours for the frozen and reacting cases.

the density changes steadily toward vertical directions downstream of the
case of frozen flow. However,

Notice that

slot for the
for the reacting flow. there is a considerable undulation
due to the formation of production species and the effect of dilation and dissipation.

In Figs. 7c,d, the pressure and temperature variations for the reacting flow with
an isothermal wall (300 K) are shown. It is evident that the upstream boundary layer,
separation and bow shocks, Mach disk and barrei shock, downstream boundary layer,
and reattachment shocks appear to be smeared due to chemical reactions. Expansion
waves appear downstream of the injection siot as the boundary layer is reattached
(Fig. 7c). The static temperature increases to the maximum below the upstream
boundary layer slightly toward upstream of the injection slot as a result of of the
exothermic reactions (Fig. 7d). ‘Downstream of the injector, cold unburned gases
flowing out of the injector reduce the static temperature drastically. There is an
evidence of sudden increase of temperature downstream of the reattachment shock

wave due to the reignition of fuel together with an increased oxygen concentration
from the main flow.

Contours of mass fractions for the reactions H,; and O, and the main prddncts
OH and H,0 are shown in Figs. Te-h. Th

e large scale recirculation upstream of
the injection transports the injected hydrogen within the upstream boundary layer

stagnation region, resuiting in a significant amount of OH and H,0 species therein.
These main species together with intermediate species are carried downstream of

the recirculation region. The exothermic energy thus created within the mixing
layer contributes to the thrust force. '
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Figure 6. Supersonic nonreacung flow on a compression corner. Comparison of velocity

distribution of FDMEI (1) scheme with k-¢ (2) model and experimentai data (14] (3).
¢) 2=10.064m, 6) 0.1 m :

5 CONCLUDING REMARKS

A new computational strategy, called the Flowfield-Dependent Mixed Explicit-
Implicit(FDMEI) method has been intraduced for both nonreacting and reacting
flows. This method is believed to be particularly useful for supersonic combustion.
The reason for this is that the source term implicitness parameters and various
definitions of Damkéhler number as related to the source term Jacobians play a
significant role in the finite rate chemistry, especially with shock wave turbulent
boundary layer interactions. Chemical reactions are either enhanced or dimisnished
in the presence of compiex fiow physics including transition from laminar to turbul-
ence, from incompressible to compressible, and from inviscid to viscous flows, and
resuiting in the various degree of efficiency in combustion. '

Clearly, more extensive research will be required before the full assessment of the
proposed FDMEI scheme for applications to supersonic combustion can be made.

This paper, nevertheless, Tepresents some of the preliminary resuits, expected certaily
to be refined and reenforced in the future research.
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g) | h)

rFiyirc 7. Various flowfield contours for transverse hydrogen fuel injection. (a) Density

contours (frozen): max = 0.6, min = 0.058, A = 0.021 kg/m?. (b) Density contours
(reacting): max = 1.813, min = 0.0842, A = 0.049 kg/m®. (c) Pressure contours (reacting):
max = 0.4053, min = 0.0017, A = 0.025 MPa. (d) Temperature contours (reacting):
max = 2982, min = 345, A = 195 K. (¢) H, mass fraction: max = 1.0, min = 0.0,
A = 0.024. (f) O mass fraction: max = 0.095, min = 0.0, A = 0.002. (g) OH mass

fraction: max = 0.0602, min = 0.0, A = 0.0024. (k) H,O mass fraction: max = 0.0081,
min = 0.0, A = 0.0003
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Abstract

Despite significant achievements in computational fluid dvnamics. there suill reman many fuid flow phenomena not well understood. For
example. the prediction of temperature distributions 15 inaccurate when temperature gradients are nigh. parucularly in shock wuve turbulent
boundary layer interactions close to the wail. Comptextues ot fluid flow phenomena nciude transition to turbulence. reiaminanzaton.
separated Hows. transiuon between viscous and 1nviscid. incompressible and compressible flows. among others. 1n ail speed rezimes. The
purpose of this paper 15 to introduce a new approacn. called the Flowfield-Dependent Mixed Explicit—-implicit tFDMEID) metnod. in an
attempt to resoive these difficult 1ssues in CFD. In this process. a total of six implicitness parameters charactenstic of the current Howfield
are introduced. They are caiculated from the current flowtield or changes of Mach numbers. Reynoids numbers. Peclet numbers. and
Damkéhler numbers (if reacting) at each nodal point and ume step. This implies that every nodal point or element is provided with different
or unique numerical scheme according to their current flowfield situations. whether compressible. incompressible. viscous, inviscid. laminar.
turbulent. reacting, or nonreacting. In this procedure. discontinuities or fluctuations of all variables between adjacent nodal points are
determtned accurately. If these implicitness parameters are fixed to certain numbers instead of being caiculated from the flowfield
informauon. then pracucally all currently avaitable schemes of finite differences or finite elements arise as special cases. Some benchmark
problems to be presented in this paper will show the validity. accuracy, and efficiency of the proposed methodology.

1. Introduction

Nearly half a century has elapsed since the digital computer revolutionized computational technologies in
engineering and mathematical physics. During this time finite difference methods (FDM) have dominated the
field of computational fluid dynamics (CFD) {1-7], whereas the opposite is true for finite element methods
ever, the trend toward finite element methods in CFD appears to

In general, the analyst preoccupied with the methods of his choice based on his educational background or
‘research experience is seldom motivated to investigate other options. Thus. today the gap between these two
disciplines is widely apart. despite the fact that the thorough understanding of the relations between FDM and
FEM is beneficial. The purpose of this paper is an attempt to call for a new approach in which both FEM and
FDM can be united toward the common goal of achieving the highest level of accuracy and efficiency in CFD.
Similarities and dissimilarities must be identified in order to recognize merits and demerits of each method and
to enable the analysts to choose the most desirable approach suitable for the particular task at hand.
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One or the most important questions 1n CFD is now to deai witn iarge gradients of the variapie tdensity,
velocity. pressure. temperature. 4nd source terms.. Rapid changes or Mach numoers. Revnoids numpers. Peclet
numbers. and Damkohler numbers (if reacting) between adjacent nodal points or elements can be 1 cruciai
factor in determiming whether the chosen computational scheme wiil succeed or fail. Furthermore. proper
treatments tor incompressibility and compressibility. viscous and inviscid flows. subsonic and supersonic tiows.
laminar and turbulent flows. nonreacung and reacung tows are extremely important. The most general case or
fluid dynamics where these various flow properties may be depicted in external and internal hypersonic flows s
shown n Fig. i(a.b). A typical reacting flow (hydrogen-air reaction) can also be seen in Fig. 1(c.

Can a single formuiation and computer code be made available to satisfv all the requirements mentioned
above? Can a single mathematical formuiation iead to most of the currently available computational schemes
both in FDM and FEM as special cases? Most imponantly, will such an approach guarantee accuracy and
efficiency? In this paper, we respond to these questions positively. based on the resuits obtained through
example probiems.

Toward this goal. our approach is based on the following procedure [15.16], known as the Flowtfieid-
Dependent Mixed Explicit-Impticit (FDMEI) scheme: -

(a) Write the Navier-Stokes system of equations in a conservation form.

©

Fig. . Supersonic and hypersonic flows: (a) External flow over a biunt body: (b) internal low through fins: (c) reacting flow tair-breathing
combustion).
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tb) Expana the conservauon varaole """ 2 Tavior seres up to and including the second-oraer ume
derivauves of the conservation variables.
(¢) Introduce in step (b) six different Howneid-depenaent impucitness parameters which are calculated from

the changes in Mach numbers. Reyvnoids numoers. Peclet numpers. and Damkohler numbers (it reacting )
between nodal points or local elements.

(d) Substitute step ta) and (c) into step tb) to obtain the increments of the conservation variables AL"™' As a
result. the final form resembles the impiicit factored scheme of Beam and Warming {1]. but much more
rigorous.

(e) Step (d) may be used either in FDM or FEM.

The computational procedure as described above is capable of resoiving compiex properties ot fluid flows in

general with shock waves. turbulence. and recting flows in particular.

(1) Shock waves in compressible flows are dependent on changes in Mach number between nodal points in .
FDM and within local elements in FEM. Shock wave discontinuities are characterized by these changes
in Mach number.

(2) Incompressible turbulent flows are dependent on changes in Reynolds number between nodal points in
FDM and within local elements in FEM. Incompressibility conditions are characterized by these changes
in Reynolds number. '

(3) Compressible turbulent flows are dependent on changes in both Mach number and Reynoids number
between nodal points in FDM and within local elements in FEM. Dilatational dissipation is characterized
by these changes in Mach number and Reynoids number.

(4) High temperature gradient flows are dependent on changes in Peclet number between nodai points in
FDM and within local elements in FEM. The convection vs. diffusion in heat transfer is characterized by
these changes in Peclet number. . '

" (5) Reaction flows are dependent on changes in Damkohler number between nodal points in FDM and within
local elements in FEM. The mass source vs. convective transfer. mass source vs. diffusive transfer, heat
source vs. convective heat transfer., heat source vs. conductive heat transfer, and heat source vs. diffusive
heat transfer are characterized by these changes in Damkéhier number.

(6) Direct numerical simulation (DNS) in which mesh refinements are carried out until turbulence length
microscales are resolved without turbulence models can not be reliable particularly for high speed
compressible turbulent flows uniess the computational scheme is capable of treating high gradients of
variables as described in (3) above. To improve turbulence calculations. Legendre polynomial spectral
modes may be added as shown in {15]. Whether or not the spectral mode approach is advantageous for an
overall computational efficiency remains to be seen. Due to the limitation of computer time, the example
problems in this paper are not intended for DNS microscale resolutions.

Detaiis of the mathematical formulations as described above are presented in Section 2. impiementation and

computauonal process in Section 3. some exampie problems in Section 4. and concluding remarks in Section 3.

2. Mathematical formuiations

For the general purpose program considering the compressible viscous reacting flows. we write the
conservation form of the Navier-Stokes system of equations as

aU aF, 4G, _ |
ar Tox, Tox, B ()

where U. F;, G, and B denote the conservation flow variables. convection flux variables. diffusion flux variables.
and source terms. respectively.

P pu; 0 0

PY; pVY, +ps; T 0
U= ., F.= . G = . B= ‘

PE PEv, + pv, | =y, 4T, = 2 pe, DY, ~Hw,

pyl le'vi —pka YL.I W‘
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where 1 = SLI i\ f, 1s the chemicai species. 4 is the zero-point entnaipy. w. 1s the reacuon rate. ana D. Lo
the binary diffusivity. Additiona: equauons tor vibrauonal and electronic energies may be inciuded in (1) for
hypersonics.

Expanding the conservation variables U in Tavior sertes including the first and second derivatives. we have

’;,Ul"“ Af: a:bvu"\:

.U"*I=U"‘l'-\1 - ._-———_—:———-O(AIJ) . (2)

at 2 ot
where s, and s. are the implicitness parameters defined such that

aUnv.\', aUn‘ aAUu-v-l

YR 3 TS 3 Oss, =<1 ‘ : (3
aZUn-v-\: 82U" ‘ aZAUn-vl . . 4)
e TR T 0ss,=<1 (

with AU"™" =U""" = U". It is assumed that the convection flux F is a function of U and the diffusion flux G
is a function of both U and its gradient U . Thus. we have

W aF. G, .

e A it . : (5)
ot ax,  ax, ~8

3*U a ( ;,u> i au> i ( au> aU)

— =g =) -—{(p Y _2L__(, =X = 6)
st e\ ) Ta b)) T ax, \“ 3¢ +d( at ) (

where the convection Jacobian a,, the diffusion Jacobian b,. the diffusion gradient Jacobian ¢, ,» and the source
Jacobian d are defined as

oF, 3G, 3G, 3B
a, +—7

= —— = — _— 7
e hTeUe T 4T @

Substituting (3)-(6) into (2) and assuming the product of the diffusion gradient Jacobian with third-order spatial
derivatives to be negligible, we obtain

n+t 0F:’ (-)G:" 1 aAF:'*' aAG:".’-‘ nri
AU = At T TS+ B s | - - + AB

ox, dax,

ar ([ 4 aF' aGT (aF" iG" B“)
M) ax, ta, +b,) ox; ‘—'(?_rl. ~8')-d ax, ax,

9 JAF!™'  3AG!"! .
+3, ';_'(a,.ﬁ-bi) 3 + - AB"

X; ax,

3AF!™'  aAG""' : :
-d( — ' —AB"")]}+O(A:") (8)
ax, ax;

)

where all Jacobians are considered to be constant within an incremental numerical time step, but allowed to be
updated at consecutive time steps.

In order to provide different implicitness (different numerical treatments or schemes) to different physical
quantities, we reassign s, and s, associated with the diffusion and source term. respectively,

5\AG,=5,AG,. 5,AB=s, AB (92)
5;4G,=5,AG,. s,AB=s5, AB (9b)

with the various implicitness parameters defined as
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3. = first-order convecuon impiicitness parameter

- = second-order convection implicitness parameter

s, = first-order diffusion implicitness parameter

s, = second-order diffusion implicitness parameter

s = nrst-order source term implicitness parameter

5, = second-order source term implicitness parameter

The first order implicitness parameters s,. 5, and s. will be shown to be flowrield dependent with the sofution
accuracy assured by taking into account the flowfieid gradients. whereas the second order implicitness

parameters s,. s, and s,, which are aiso flowtield dependent. mainly act as aruricial viscosity. contributing to the

solution stability.
Substituting these implicitness parameters as defined in (9) into (8), we obtain

v da, AU [ab AU e, AU vt
AU + Al s, T)-‘:-s, - —s5.d AU

; ax; ox; ox,
Al [ [d@aa +ba)aU"' g aut'  [[8%@b, +bb) AU
T2 | ¢ ax; dx, ~d dx; T8 dx; dx;
J b, AU e, AU ia. +b)yAU"™ ( aF" G >
- ox; ox, ox, ) " @ ax, ~dav +AI\ ax, T -8B
A | g aF" G aF"  uG" ) .
-=5 —ta +b)<7x—*-‘—r-—8) d(a—x* P —B) -0l =0 (1
with
AB/:?I=9_B_AUHO~I =dAUn’I (ll)
aUu
Rearranging (10), we obtain
— nei _f’_ n+i : et " 3
R=AAU i (E, AU )+ax,.ax, (E, AU Y+ Q" + 0(Ar) (12)
or
A _'Z-E a: i _ " ' »
axi i axi axl E” AU = —'Q . (13)
with
A 2
A=I+Atssd+'2—:,,d ' (14)
AI:
E =Alsa, +5.b,) + 5 Isedl@; +b,) + 5, da, + 5,db,] (15)
Ar?
E,.I.=Atsjc,/.—7(sz(a,. +ba)+s,ab, +bb ~de, ) (16)
w_ 9 A Ar’
0 =;[(Al+—d>(l’" +G)+——wa, +b )B"]
S o] (a £ :
ox, ox, L 2 @ +b)F'+G)) |~ AH——Z—d B" . (17

An alternative scheme is to allow the source term in the LHS of (13) to lag from n + | to n so that (13) may be
written as
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0" 18)

with

; AN LA .
Q”=T A+ —5=dJ(F' -Gy~ = @, ~b)B
. . - -

 [ar . Ar L AN
- o, ax/ [—Z—(a,. '?'bl)(F/ “Gl )J “(ll.&} - Tjﬁ)dAU —(_\1 +—-:—d>B (19)

Note that the Beam-Warmihg scheme {1]

can be written in the form identical to (18) with the following
definitions or E,, E, and Q"

E =mAda, +b), withm =6/(1+¢) -

(20)

E,.j =m Atcij 2n

A (9F aGM\ ¢ i

" _ ] i ¥ " . _-)
1+§(ax,.+ax,.)+l+§'w | (

where the cross derivative terms appearing in Q" for the Beam-Warming scheme are inciuded in the second
derivauve terms on the LHS. The Beam-Warming scheme 15 seen 1o be a special case of the FDMEI equations

if wesets, =5, =, S2 =5, =5,=5,=0,in(18). with adjustments of Q" on the RHS as in (22). The stabdity
analysis of the Beam-Warming scheme requires £ =0.385 and 4 = 4

A,

Contrary to the Beam-Warming scheme, the FDMEI a
the current flowfield variables at each and every nodal poi

. The final values of implicitness parameters at any point and at any time can be
obtained as the average of both spatial and temporal contributions:

Convection implicitness parameters

minir, 1) r>aq

5, =40 r<a.M,_ =0 s.=57. 0<n< | (23)
l M_..=0
with
r=V'M:‘“al - Mzmﬂl/Mmln (24)

M for spatial implicitness parameters (Fig. 2(a)) and between the time step at
n and n - | for temporai implicitness parameters (Fig. 2(b)), and « is a user-specified small number o =0.01).
Here, it is seen that s, is directly related to the flowfield. whereas s, depends on s, such that s, =s). The

primary role of 5y 1s to ensure the solution accuracy by properiy accommodating the' convection gradients.
whereas that of s, is to act as antificial viscosity, for solution stability.

Diffusion implicitness parameters
mins, 1) s>

5s,=40 s<pB,Re,, =0. orPe..=0 s,=51., O<n<] (25)
1 ‘Re_..=0. orPe =0
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(a)

\
D /NN // ‘%‘ T /+

~l a avy
‘(b

Fig. 2. Spaual and temporal flowfield dependent implicitness parameters: (a) Idealized turbulence length scales assumed to be within each
element-spaually evolving turbuience. The maximum and mintmum value of M. Re. Pe und Daare those among the comer nodes within an

element: (b) idealized turbulence time scales assumed to be within each time step-temporally evolving wrbulence. The maximum and
minimum value of M. Re. Pe and Da are identified at time steps n and n-1.

with

s=VRe,, —Rel./Re_. or s= \VPel., —Pel. /Pe.. (26a,b)

where the maximum and minimum Reynolds numbers or maximum and minimum Peclet numbers are calculated
similarily as in s, for spatial and temporal implicitness parameters. and S is a user-specified smail number
(B =0.01). If temperature gradients are large, it is possible that Peclet numbers instead of Reynolds numbers
will dictate the diffusion implicitness parameters. The larger value of s, is to be chosen. as obtained either from
(26a) or (26b). Note also that s, = 5’ with s, ensuring the solution accuracy by taking into account the diffusion
gradients. and here again. s, plays the role of antificiai viscosity. for solution stability.

Source term implicitness parameters
For the case of chemicaily reacting flows the Da (Damkéhler number) must be used
min(t, 1) r=y
s¢=40 t<y,Da,, =0 s,=s5;, 0<n<| h (27)
1 Da_., =0

with
t= v Da:mu - Darznin/Damm (28)

where the maximum and minimum Damkéhler numbers are calculated similarly as in s, and s, for spatial and
temporal implicitness parameters, and v is a user-specified small number (y = 0.01). The relationship between
55 and s, is similar to those for convection and diffusion mplicitness parameters such that s, = 55 with s, and s,
controlling the solution accuracy and solution stability, respectively.' The average of both spatial and temporal
implicitness parameters will be adopted for use in computations at any point (element) and time.



N AT Yoon er wi . omput. Metnods Appi, Mecn. Enere. 1307 (1997) 000-000

Relauonsnips between ail physical phenomena and the corresponding numencai treatments are cnaractenzea
by the baiance between the first-orger impiicitness parameters I5y.5:,9¢) and the second-orger impiicitness
PAramelers (s.. s, 5, ), ensuring the computationai accuracy and computationai stability. respecuveiy. The idea 1s
to provide adequate tno more and no less than required) amount of numencal viscosity in order to preserve the
computational accuracy. Note that the definitions for the second-order implicitness parameters have been
modified from those reported in [15.16] in order to meet the above requirements (Fig. 3). Initially, it was
thought that the second-order implicitness parameters should be the direct opposite compiiances of the
first-order impiicitness parameters (s, =1]—5,,5,=1]— $3.5¢ =1 =s5) [16] such that the second-order
implicitness parameters are the maximum and minimum, respectively, for the minimum and maximum vaiues of
the first-order implicitness parameters. Unfortunately, such definition resulted in too little numerical viscosities
for the high values of the first-order implicitness parameters. Subsequently. the limiting values (0.5) of the
second-order implicitness parameters w ere provided such that s, = max(l — s 1»0.5), etc. as experimented in
[15). However, it was noted that both first- and second-order parameters should assume the same values at the
both extremes at zero and unity with the second-order implicitness parameters being reasonably large for all
values of the first-order implicitness parameters. Thus, the second-order implicitness parameters given above are
the nonlinear continuous functions of the first-order implicitness parameters satisfying these requirements. The
range of the constant n is 0<n < |, although n'= ! has been found to be the optimum, exhibiting the best
convergence rate for reasonably high CFL numbers in the example problems presented in Section 4.

The flowtield dependent implicitness parameters as defined above are capable of allowing various numenical -
schemes to be automatically generated. as summarized bejow:

(1) The first-order implicitness parameters $, and s, conrtrol all high gradient phenomena such as shock

(2) The second-order implicitness parameters 5, and s, are also flowfield dependent. However. their primary
role is to provide adequate computational stability (artificial viscosity) as they were originaily introduced

&

Second Order implicitness Parameters (s, 84, 5,)
4

A nL=l-s,5= =8, 3=l -3
B. :,-Ml—:,,O.S).:,-mn(l-:,.o.n.:,-mndl'-'s,.0.5)
C 5 =55, =57, 5 =57,0<n< |

Fig. 3. Relationships between the first- and secon

optimum at s = % for the second-order implicitnes
parameters.

d-order implicitness parameters. Stable solutions occur in the range, 0 <n < |, with an
S parameters to preserve the solution accuracy as dictated by the first-order implicitness




(3)

(5)

(6)
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N0 the secong-order time derivauve term of e Tayvior series 2xpansion of the conservatuon fow
variables U"™' The primarv roie or 5. and 5, !5 10 provide computatonai stability.

The s, terms represent convecuon. This impiies tnat if s, =0 then tne effect of convection 1s smail. The
computational scheme 1s automatically altered to take this effect into account. with the governing
equations being predominantly parabolic-elliptic. Note that these effects are confined at L' ™' notat U".
The s, terms are associated with diffusion. Thus. with s, = 0. the erfect of viscosity or diffusion 1s smail
and the computational scheme is automatically switched to that of Euler equations where the governing
equations are predominantiy hyperbolic. . '

If the first-order implicitness parameters s, and $, are nonzero. this indicates a typical situation for the
mixed hyperbolic. parabolic and elliptic nature of the Navier-Stokes system of equatons. with
convection and diffusion being equally important. This is the case for incompressible flows at low
speeds. The unique property of the FDMEI scheme is its capability to control pressure oscillations
adequately without resorting to the separate hyperbolic elliptic pressure equation for pressure
corrections. The capability of FDMEI scheme to handle incompressible flows is achieved by a delicate
balance between s, and s, as determined by the local Mach numbers and Reynolds (or Peclet) numbers.
If the flow is completely incompressible (M = 0), the criteria given by (23) leads to s, = 1. whereas the
implicitness parameter s, is to be determined according to the criteria given in (25). Make a note of the
presence of the convection~diffusion interaction terms given by the product of ba, in the 5, terms and
ab; in the s, terms. These terms allow interactions between convection and diffusion in the viscous
incompressible and/or viscous compressible flows. '

If temperature gradients rather than velocity gradients dominate the flowrieid: then s, 1s governed by the

. Peclet number rather than by the Reynoids number. Such cases arise in high speed. high temperature

o)

(8)

9)

(10)

(1n

compressibie flows close to the wail.

In the case of reacting flows the source terms B -contain the reaction rates which are functions of the
flowfield variables. With widely disparate time and length scales involved in the fast and slow chemical
reaction rates of various chemical species as characterized by Damkéhler numbers. the first-order source
term impiicitness parameter s, is instrumental in dealing with the stiffness of the resulting equations to
obtain convergence to accurate solutions. On the other hand. the second-order source term implicitness
parameter s, contribute to the stability of solutions. It is seen that the criteria given by (27) will adjust
the reaction rate terms in accordance with the ratio of the diffusion time to the reaction time in finite rate
chemistry so as to assure the accurate solutions with computational stability. )
Various definitions of Peclet number and Damkéhler numbers (Table 1) between the energy and species
equations should be checked. Whichever definition provides larger values of 5, and 5. must be used. The
summary of the above definitions for implicitness parameters is shown in Table 2.

The transition to turbulence is a natural flow process as the Revnolds number increases. causing the
gradients of any or all flow variables to increase. This phenomenon is the physical instability and is
detected by the increase of s, if the flow is incompressible. but by both s, and s, if the flow is
compressible. Such physical instability is likely to trigger the numerical instability. but wiil be countered
by the second-order implicitness parameters s, and/or s 4+ to ensure numerical stability automatically. In
this process. these flowfield dependent implicitness parameters are capable of capturing relaminarization.
compressibility effect or dilatational turbulent energy dissipation. and turbulent unsteady fluctuations.
An important contribution of the first-order implicitness parameters is the fact that they can’'be used as
error indicators for adaptive mesh generations. That is, the larger the implicitness parameters the higher
the gradients of any flow variables. Whichever governs (largest first-order implicitness parameters) will
indicate the need for mesh refinements. In this case, all variables (density. velocity, pressure.
temperature, species mass fraction) participate in resolving the adaptive mesh. contrary to the
conventional definitions of the error indicators.

Physicaily, the implicitness parameters will influence the magnitudes of Jacobians. Thus. [tem 8 above
may be modified so that the diffusion implicitness parameters s, and s, as calculated from Reynolds
number and Peclet number can be applied to the Jacobians @, b, c;) corresponding to the momentum
equations and energy equation. respectively. Furthermore. two different definitions of Peciet number
(Pe,, Pe,;) would require the s, and s, as calculated from the energy and species equations to be applied
to the corresponding terms of the Jacobians. Similar applications for the source term implicitness



N.T. Yoon er ui. Tmput. Metnodas Appt Meen. Enore in] g je=T (00<ixk)

Table |

Defintions o1 nonaimensionat downeld auantues

]

sV = —Th - wlo'v ==V
_—
A B C .
i of <
V'pvJ (“‘JT—'\-‘/)D\-YAJ CudT =V-iNT = -2 Hw,
N L‘ » T wan
E F G N
V(pY,u)=V-(pD VY) =,
. " J  Sm—
I ] K
. u A inerual force
Mach numoer M 2 B pressure force
pul A _ 1mniual force
Reynolds number : Re a C ~ viscous torce
pulc E  convecuive hear transter
Peclet number, 1 Pe, & G conductive heat transter
ul I convective mass transter
Peciet number. {1 . Pe,, D J 7 diffusive mass transter
(Y K _ mass source
Damkohler numoer. | Da, pul, I~ convectveitranster
mass
b h L w, K mass source
amkohler numoer. i Da, pDY, J 7 diffusive itranster
mass
Damkéhi m gL N _ heat source
amkohler number, Da,, Hu E ~ convective heat ranster
Damkéhi v qf.“ N heat source
amkohier number. Da,, kT G conductive heat transrer
D Shi v ql’ N heat source
amkohler number. Da, HD F ~ diffusive heat transier

parameters 55 and s, should be followed for the source term Jacobian 4. [n this way, high temperature
gradients arising from the momentum and energy equations and the finite rate chemistry governed by the
energy and species equations canwtg’ewresolved accordingly.

The FDMEI equations-as given in (13),may be soived by either FDM or FEM. The standard linear Galerkin
approximations of FEM lead to the resuits of central differences of FDM. However. the main difference between
FDM and FEM arnses when integration by parts is performed in FEM and the explicit terms of Neumann
boundary conditions ‘naturally' appear as boundary integral forms. Thus, all Neumann boundary conditions can
be directly specified at boundaries in FEM. This is not the case for FDM. Often.
must be taken for Neumann boundary conditions in FDM.

When dealing with all speed flow regimes such as in shock wave turbulent boundary layer interactions where
compressible and incompressible flows, viscous and inviscid flows, and laminar and turbulent flows are
intermingled throughout the flowfield domain, a computational scheme intended for only one type of flow
physics and that does not account for other types of flow phenomena will fail. For exampie, the flow ciose to the
wall in shock wave turbulent boundary layer interactions is incompressible (M < 0.1), whereas away from the
wall the flow is compressible (supersonic or hypersonic). In this case, viscous flows change to inviscid flows. In
between these two extremes the flowfield changes continuously, oscillating back and forth across the boundary
layers of velocity and entropy, and leading edge and bow shocks. At any given computational nodal point or
element, gradients of each variable (density, pressure, velocity and temperature) may be very small or very
large, so large that practically all currently available computational methods may fail. In order to succeed, it is
necessary that the current flow physics everywhere be identified and so recognized. with specific computational

schemes accorded to each and every computational nodal point and element. It is clear that such accommoda-
tions are available in (13)or (/).

a rather cumbersome process
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Table 2

Flowfield depenaent impiicitness parameters

Convection graaient behavior

s.—First-order convection unpliicitness parameter

min 1 roa

5,=¢0 r<aM,, =0
| M, .=0

rEVYMIL - MM,

s,~Second-order convection implicitness parameter
5. =5

1. 0<n<|

Diffusion gradient behavior .

v —First-order diffusion implicitness paramerer

mints. l) >4
i, =<0 s<B.Re,,=0. orPe, =0
I Re,, =10 orPe, =0

e

§ =\/Refm - Re’,./Re or s=\/Pel -Pe /Pe

nwn mav oun an

s ,==Second-order diffusion umplicitness paramerer

Cs,=s5,, O<n<

Source term gradient behavior

s—First-oraer source term tmplicimess paramerer

mintr. 1) 2 a
5.=¢0 t<a.Da, =0
| Da, =0

e

r=VDa,,, - Da,/Da,,

s,—Second-order source term implicitness parameter

5,=5,. 0<n<|

Ensures soiution accuracy

Strongly flowrield depengent. witn hign graatents cnar-
actenzed by large Mach number changes petween noaal
potnts or within eiement and between ume steps

Ensures solution stabilitv
Flowfield dependent anificial viscosity for convection
process

Ensures solution accuracy

Strongly flowfield dependent. with high gradients char-
acterized by large changes in Reynolds number or Peclet
number between nodal points or within element and
between time steps. Diffusion gradient behavior may be
dictated by Peclet number when temperature gradients are
high. Choose which:cver (Reynolds or Peclet number)
provides the larger value for s,

Ensures solution stabilitv
Flowfieid dependent artificial viscosity for diffusion pro-
cess

Ensures solution accuracy

Strongly flowfield dependent. with high reaction rate
gradients characterized by large Damkohler number
changes between nodal points or within element and
between ume steps :

Ensures solution stabilitv
Flowfield dependent aruficial viscosity for reacuon process

3. Impiementation and computational process

As ‘s;t,e}ted carlier. the governing equations for the Taylor series-modified Navier-Stokes system of equations.
(13),may be appiied to either FDM or FEM. or to the finite volume method (FVM). For FDM applications the

first-order and second

-order spatial derivatives may be written in central difference schemes. For example. we’
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may write 1or anv variable u u»

| Mo, —u

aul _ , -1 :29)
(3.(',_, 2Ax

9 u T

S A = ' (30)
aX-- [N} - .

with anaiogous formulas for the v derivatives in two dimensions or corresponding extensions 1o three-

dimensional probiems. Any other difference schemes of higher-order accuracy may also be chosen as deemed
necessary.

For appiications to FEM we begin by expressing the conservation and flux variables and source terms as a
linear combination of trial functions &, with the nodal values of these variables.

U, 0)=d,x)U, (1), F(x,1)= ® (x)F () 31
G.n=®,xG, 1), B =dxB,() '

Applying the generalized Galerkin approximations to (12) we obtain

f ®RU.F.G.B)d) =0
{

(32)
or
(AagT. + B g, ) AU = H" +N" (33)
where
Ac 34
A=), ®P%d.  m =8 ~\Mrsy+=-5,)d, (34)
_ Ar? . } &
BaBrx - 0 - A!(S'a‘” + Slbir.r) + T [Szdrlam + xbdrr(am + bm) + s4dﬂbln] (pa.l 8
Ar? } » ] 0
- A[ s’c'l"' - —2— {sz(airlall.\ + b;rlajl\) + Sl(ainb,n + bu Ib[l\ - drlcijl.\)] ¢G.l (DB./ d

. . AIZ ) ®x %
+ At(.\-,[f”‘ - 'T‘bi") J. 7 [s"dllall\ + Sﬁdrl(a//\ - ‘/’ .) - Sidrlbu\] ¢a (pﬂ
I - -

Ar? *
+{At S-‘CII" - T [SZ(airIajl.v + birlajl,\‘) + sJ(ainb}n + burb;n - drrcnju)]}d)rad)ﬂ ']”i dr (35)

-

"o j [ " . " Atz " " At n ] ¢
B, = 0 AuFy, + Gy, +Tdn(}'—m.‘ +Gpi) t 7 @i+ b OB, [P B
Atz " n " AIZ " } 36
- -2— (a,." + bu—v)(Fﬂj.\ + GBjJ)¢a.4(pﬂ.] + A‘ BBr + T dnBﬂx ¢ﬂ (Dﬁ dn ( )
" . n n Atz ;l n Atl " % &
Nar = fl {[_AI(FB" + Gﬂir) - 2 drx(F iy + Gﬂi:) - -2_ (air\ + but)Bﬂx] (pa B
Atz ”n " * *
5@, b, )Fy + Gl )P, B, [ 0, dT (3D

*
where &, represents the Neumann bound
and r.s providing the: number of cons
associated with the Jacobians imply dire

ary trial and test functions. with a. B denoting the global node number
ervation variables at each node. For three dimensions. Lj=123
ctional identitication of each Jacobian matrix (a,a, ay,b, b,b,c,.
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Ciae Cpae Caye Came Cane Cry. Caae Caqd with o5 = 1,203,435 denoung entries of 2ach ot the 3 3 Jacobian
matrices. These indices can be reduced simiiarly for 2-D. Note aiso that the relatuon  18) may pe used to move
the delta source terms to the RHS of 133) by iagging the source terms one ume step behind. The FEM equauons
given by (33) are referred to as FDMEI-FEM. The counterpart of (33) based on FDM schemes of (29) and (30)
is to be called FDMEI-FDM.

[t is important to realize that the integration by parts as appiied to the oenerahzcd Galerkin approximations in
FEM produces all Neumann boundary integrais. [t is particularly advantageous that Neumann boundary
conditions through re-evaiuation of Jacobians normal to ‘the boundary surtaces can simply be added to the
boundary nodes for the stiffness matrix B,4,, in (35). On the other hand. all Neumann boundary conditions
which appear in (37) act as source terms. These reatures are absent in FDM. but implementations of Neumann
boundary conditions can be handled by devising special forms of finite differences at boundary nodes.

Similar resuits are obtained either by FDM or FEM with accuracy of computations derived primarily from the
FDMEI equations of (12). However. with the increase of Reynolds number (say around Re >> 10%), it is
possible that accuracy may increase with applications of special functions such as Legendre polynomials of high
degree modes characterizing extremely small turbulent microscales. Implementation of such high frequency
modes can be achieved by placing these modes between the comer nodes of isoparametric finite elements.
Adaptively, such high modes can be chosen as needed for the resolution of turbulent microscales. Once again.
the diffusion implicitness parameter s, will play a crucial factor in determining the required degrees of Legendre
polynomial. The use of Legendre polynomial spectral modes superimposed onto isoparametric elements has
been discussed in [15]. Its mert. however. has not vet been fully established for general applications.

For wurbulent flows with an extremely high Revnoids number. the phase error of the short waveiengths can be
very large. In this case. it is necessary to add numerical dissipation terms to damp out the short wavelengths.
Such numerical viscosities are conceptually different from the second-order implicitness parameters whose role
is to ensure stabie solutions while preserving the solution accuracy dictated by the first-order implicitness
parameters. Toward this end. it is desirable to revise (18) in the form

2

a ; a nrl __ " A
(1+E,m}f£ﬁan&ﬁ>Au =-0" -0 (38)

where Q" is the numerical dissipation vector in terms of the second-order tensor of numerical dissipation. S, )
associated with the second-order derivatives of U",
_ aZun

. _ F}ZU"
Q" =5, ax, ax, M Ax; &x, ax, dx; : (39)

with & being the numerical dissipation constant chosen as 0 <u <,, where 1, is set approximately equal to 2.
but adjusted from numerical experniments. Note that the Galerkin integral of (39) (integration by parts once)
leads to the first denvative of the trial and test functions combined will the nodal values of U’;. In addition. note

-that the damping provided by the second-order derivatives with not disrupt the formal accuracy of the FDMEI

scheme. This process may be appiied to (13) as well.

One of the most significant aspects of the FDMEI scheme is that for low Mach numbers (incompressible
flow) the scheme will automatically adjust itself to prevent pressure oscillations. This adjustment is analogous to
the pressure correction scheme employed for incompressible flows. Otherwise, the FDMEI scheme is capable of
shock wave resolutions at high Mach numbers, and particularly well suited for dealing with interactions between
shock waves and turbulent boundary layers where regions of high and low Mach numbers and Reynolds
numbers coexist. In this case. the inviscid and viscous interactions are allowed to take place. To this end the
second-order implicitness parameters play the role of artificial viscosity needed for shock wave resolutions in
the presence of flow diffusion due to physical viscosity. '

In order to understand how the FDMEI scheme handles computations involving both compressible and

incompressibie flows. fundamental definitions of pressure must be recognized. Consider in the followmg that the
fluid is a perfect gas and that the total energy is given by

P ivi

E=c7-2+1 | 0
=c PRl : (40)
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The momentum equauon ror steady state incomoressiple rotauonal How may De integrated to give

G-

I (_p"'%PU,U,),dx =J'[#‘U _

U T pE U wejdy

1
p+3puivl,=p(,~.-w 41

with

1 1
W=; [:u'(vi.// - ?U/./I) + pg:ilu/wi] d‘x:

where w, is the component of a vorticity vector. Py 15 the constant of integration. and m denotes the spaual
dimension. <

Combining (40) and (41) leads to the following relationship:

po=plc,T+vv, —Ey=W (42)
If p, as given by (42) remains a constant. cquivalent to a stagnation pressure. then the compressible flow as
assumed in the conservation form of the Navier—Stokes system of equations has now been turned into an
incompressible flow, which is expected to occur when the flow velocity is sufficiently reduced (approximateiy
0.1 =M <0.3 for air). Thus, (42) may serve as an equivalent-equation of state for an incompressible flow. This
can be identified element by element for the entire domain. Note that conservation of mass is achieved for
incompressible flows with p, in (42) being constant. thus keeping the pressure from oscillating.

Once the Navier-Stokes solution via FDMEI is carried out and all flow variables determined. then we
compute fluctuations f* of any variable f,

fr=f-s “43)

where f and f denote the Navier—
replaced by the fast fourier transto
kinetic energy, Reynolds stresses.
of all variables are determined.

Let us summarize why the FDMEI scheme is capable of handling low speed and high speed and nonreacting
and reacting compressible and incompressible flows. including shock waves and turbulent lows: { 1) How is the
transition from incompressible flow to compressible fiow naturally and automatically accommodated without

Stokes solution and its time average, respectively. This process may be
rm of the Navier-Stokes solution. Unsteady turbulence statistics (turbulent
and various energy spectra) can be calculated once the fluctuation quantities

. using two separate. equations or two separate codes? This process is dictated by the first-order convection

implicitness parameter sl as reflected by the Mach number changes and the expression of the stagnation

pressure. (2) How is the shock wave captured? As the Mach number increases and its discontinuity is abrupt, the

s2 terms associated with second order derivatives together with squares of the convection Jacobian provide
adequate numerical viscosities through second order derivatives, similarly as the Lax~Wendroff scheme. (3)
How is the transition from laminar to wrbulent flows naturally and automatically accommodated? This process
is governed by the first- and second-order diffusion implicitness parameters (s3 and s4) as calculated from the
changes of the Reynoids number. The terms associated with 53 and s4 are responsible for fluctuations of
velocities, with the values of these implicitness parameters increasing with intensities of turbulence in conjuction
with the diffusion gradient Jacobian and the squares of the diffusion Jacobian. This process allows the
Navier-Stokes solutions to contain fluctuations which can be extracted by subtracting the time averages of the
Navier—Stakes solutions. (4) How do the interactions between convection and diffusion take place? Changes of
Mach numbers and Reynolds numbers as reflected by both convection and diffusion implicitness parameters
close to the wall contribute to the unsteadiness. Away from the walil. they contribute to the transition between
incompressible to compressible flows. (5) How are the stiff equations arising from widely disparate reaction
rates of all chemical species treated? The most crucial aspect of the FDMEI scheme is its capability to identify
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the rauo or the resident time to the recuon ume as calcuiatea from nve different aefinitions of the Damkohier
numpers berween the adiacent nodal points and time steps as refiected in the caiculated first-oraer impiicitness
parameter. s., and the second-order impiicitness parameter. s.. These parameters provide precise degree ot

computational implicitness at everv nodal point and everv ume siep. contributing to the determinauon of
accurate chemical reactions.

4. Applications

We examine here various example problems: (a) flow over a flat plate. (b) shock wave turbulent boundarv
layer interactions on a compression corner. (c) 3D duct flows. and (d) lid-driven cavity flow. Linear
isoparameteric finite elements are used for the example problems.

(@) Behavior of flowfield dependent implicitness parameters on flar plate

First of all, our concern is to test the behaviour of FDMEI and FDMEI-FEM. Toward this objective we
examine the flow over a flat plate investigated earlier by Carter {17] as shown in Fig. 4(a). The initial setting for
the implicitness parameters are determined from the initial conditions of the flowfield and subsequently updated
after each time step until the steady state solution is reached.

Corresponding to the mesh refinements and the flowtields at steady state shown in Fig. 4(b—d). the contours
of implicitness parameters s, and s, are given in Fig. 5. It is seen that the implicitness parameters themselves
closely resemble the flowfield. There are little or no changes in Mach numbers and Reynoids numbers between
adjacent nodes or elements far away from the surface of the plate as indicated by s, =5, =0. Along the leading
edge shock and boundary layers, both s, and s, move toward unity indicating that gradients of all variabies
increase. The final flowfields, as shown in Fig. 4(b-d), are the consequence of these implicitness parameters.
The implicitness parameters s, and s, are the compliances of s, and s,, respectively, with their primary roles
being the artificial viscosity. Thus, the first-order implicitness parameters {s,,5,) help to resoive the high
gradients ensuring the accuracy of the solution. While on the other hand. the second-order implicitness
parameters (s,, 5,) ensure computational stability.

Computations of wall pressure, wall skin friction. u-velocity, v-velocity, density and temperature distribution
are shown in Fig. 6(a—f). The comparison with the Carter's data indicates reasonable agreements.

(b) Supersonic flow on a compression corner

In this example we demonstrate calculations of supersonic flow on a compression corner. The inlet boundary
conditions (non-dimensionalized) are p = 1. M = 2.25, p = 0.14. Re = 10°, Pr =0.72. and v = 0. with adiabatic
wall condition. The steady state background mean dowfields for the compression corner are shown in Fig. 7(a).
In these calculations, all perurbation (fluctuaton) variables are determined from time averages of the
Navier-Stokes solutions according to (¥3). The horizontal and verical perturbation velocities (u',v") at
locations close to the wall (x =0.10256 m. y = 0.001 m) and away from the wall (x =0.10256 m, y =0.04 m)
are shown in Fig. 7(b). Note that u’ is extremely unsteady whereas v’ is significantly less unsteady close to the
wall. Away from the wall. both 4" and v’ are almost steady. These trends are reflected in the turbulence
(Reynolds) stresses as shown in Fig. 7(c). Turbulent kinetic energy distributions at the locations upstream of the
corner (x =0.0513 m) and downstream of the corner (x = 0.1333 m) are shown in Fig. 7(d). We observe that the
turbulent kinetic energy downstream of the comer is significantly larger than the upstream. No turbulent
statistics calculations (wave numbers or frequencies vs. power spectral density) are attempted at this time as
turbulence microscales are not resolved in this example.

It should be noted that the above results obtained without turbulence models or without the standard DNS
solutions (neither spectral nor DNS-mesh refinements) are regarded as the consequence of the time-averaging of
the FDMEI Navier-Stokes solutions. This implies that the fluctuation of variables between nodal points (Fig.
2(a)) and between time steps (Fig. 2(b)) as reflected in terms of the implicitness parameters (s;) have contributed
to these physical phenomena, with compressibility and shock waves dictated by the Mach number-dependent s,
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Fig. 4. Flat plate problem—initial and adaptive meshes and their corresponding density contours: (a) Geometry and boundary conditions of

Carter’s (17] flat plate problem. M, = 3, Re, = 1000. T, = 390°R: (b) nitial mesh (816 elements, 875 nodes) and the corresponding density
v . ) 2 o

contours, (max = 2.21 Kg/m ', min = 0.5 Kg/m ). (c) one-ievel adaptive mesh (1755 elements, 1889 nodes) and the corresponding density

contours (max = 2.1 Kg/m', min = 0.5 Kg/m'): (d) two-level adaptive mesh (4257 clements. 4547 nodes) and the corresponding density
contours. (max = 2.0Kg/m', min = 0.5 Kg/m".
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Fig. 5. Flowtield-dependent first-order convection and diffusion implicitness parameters: (1) s, contours: {b) s, contours.

and with incompressibility and turbulent fluctuation dictated by the Reynolds number or Peclet number-
dependent (s,). An equal participation of s, and s, will be responsible for shock wave turbulent boundary iayer
interactions. A comparison of the results of the FDMEI scheme with the «-¢ turbulent model and experimental
data is shown in Fig. 7(e). It is seen that the FDMEI resuits compare more favorably with those of measurements

(18].

() FDMEI anaiysis of three-dimensional flows

To demonstrate the effectiveness of the flowtield-dependent implicitness parameters in 3-D flows at the steady
state, we examine the spatially evolving boundary layer (Fig. 8(a—e). Note that the contours of s, and s, (Fig.
8(c)) show the boundary layer effects in which both s, and s, are indicative of rapid changes of Mach numbers
and Reynolds numbers, respectively, larger (close to umty) on the walil. but smail (closer to zero) away from the

wall. The velocity vectors and RMS error distributions versus interactions are shown in Fig. 8(d) and (e),
respectively.

(d) Demonstration of compressibility vs. incompressibility

We ask the question: Can a single formulation or computer program originally designed for high speed
compressible flows be applied to analyze the low speed incompressible flows? The advantage of FDMEI is to
respond positively to this question. To prove the point, let us examine the lid-driven cavity flow at the steady
state (Fig. 9(a-f)). Notice that, for M =0. |, density changes occur closer to the lid, whereas. for M =0.01,
density is constant throughout the domain (Fig. 9(e)), corresponding to P(, ’be%r)m variable and constant.
respectively (see Eq. (42)). The equation of state for compressible flows is automatically switched over to
accommodate the incompressible flows. This advantage is contrary to the previous practice such as the Table
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computauonal geometry and boundary conditions: (c) flowfield-dependent first-order convection and diffusion implicitness parameter
contours; (d) velocity vectors: (e) convergence history.

look-up for the equation of state for incompressible flow handled separately through hyperbolic elliptic equation
as derived from the continuity equation combined with the momentum and energy equations. Comparison of the

results of FDMEI with those of the independent incompressible flow code of Ghia et al. [19] are very favorable
as shown in Fig. 9( f). : ’
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5. Concluding remarks

The validity of the proposed new approach to computational fluid dynamics has been demonstrated through
some example probiems. Excluded from these examples are reacting flows which are reported eisewhere [16].
Also excluded is the effect of additional spectral modes of Legendre polynomials which are described in [15].
None of the example problems have been carried out with mesh refinements required for resolving turbulent
microscales due to the limitation of computer time. The following concluding remarks are provided:

(a) The flowfield-dependent implicitness parameters as calculated from the current flowfield information are
indicative of the magnitude of gradients of all variables and adjust the computational schemes accordingly
for every nodal point or element. rather than dictated by arbitrarily selected constant parameters
throughout the domain. A .

(b) The first-order implicitness parameters Syv 5y, and s, as calculated from Mach numbers. Revnolds or
Peclet numbers. and Damkohler numbers. respectively, ensure the soiution accuracy, whereas the
second-order impticitness parameters 52, 54 and s, which are determined as compliances of s5,, s, and s,
respectively, assist in the solution stability.

(©) The FDMEI method is capable of resolving mutual interactions and transition between viscous and
inviscid flows. compressible and incompressible flows, and laminar and turbulent flows, in all speed
regimes. Further research on FDMEI is required in order to investigate many other physical phenomena

including hypersonic and high temperature flows in 3D.
Appendix A. Analogies of FDMEI to currently available FDM and FEM schemes
Analogies of FDMEI to currently available computational schemes of FDM and FEM are summarized below.
A.l. Analogies of FDMEI 10 FDM

Some of the FDM schemes are compared with FDMEI in Table A.l.
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Other schemes of FDM are compared with. FDMEI as tollows:

A(a) Lax—Wendroff scheme

The Lax-Wendroff scheme without artificial viscosity takes the form

n+t At At
AU = —E(qu: -F_ - 2 Ax (@i F . —Ma .,
This scheme arises if we set in FDMEI
a,.,,,=a,_,,=a, 5, =0, 5,=0, 5,=0, 5,=0
(b) Lax-Wendroff scheme with viscosiry :
The Lax-Wendrotf scheme with viscosity is given by
n+i At l * !
AU =—-A_x(F""3—F“”2)
with
* Fi+l +F, Ar
Flo,n= 7 _zAxa,u/z(Fiﬂ—F.)+Di+|/z(ui+l_Uf)
* F.+F, _, At
Fl = 2 —zAxai—ll'.‘(Fi—F:—l)+Di—IIZ(Ui—UI-I)

This scheme arises if we set

D;.\,=D,_,,, =as,,

5,=0, 5;,=0, 5,=0

—a,_)F +a._ . .F_|]

(A1)

(A.2)

This implies that as, in FDMEI plays a role of artificial viscosity which is manually implemented in the

Lax-Wendroff scheme.

(c) Explicit McCormack scheme

Combining the predictor corrector steps of McCormack scheme we write
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. - At PRV,
AU Z—EIF . —F \—E'F ~-F ., =D
Ar ” At
=—'§(F ,—F)—I{(F_ -F
At
——_\?[a"ll‘r,q-(a.#uz—a oF ~a L F_1-D (A.3)

The FDMEI becomes identical to this scheme with the following adjustments:
ai+IIZ =al-|/2 =a
F'-F' =F!  -F"+F,, ,~F

5, =0. 5.=0, 5,=0, 5,=0

=2

and the s, term in the FDMEI method is equivalent to

i1

w
D, ='§(U:‘~|/z -4U7,, +6UT - U - U:'—z)_

This again is a manifestation that shows the equivalent of the s, terms is manually supplied in the McCormack
method.

td) First-order upwind scheme

This scheme is written as

He+ At *
AU, = —'A—X'(Fn-uz-pl*—l/z}

Ar (T1 1 | 1 w gy
-z - tawn, ~un] (3@ -l -v ]} e
The FDMEI analogy is obtained by setting

" ] " H l "
Fi=EF:+I‘ Fi—|=5Fi-l

5.aCAU.™" =240 + AUy =lalWU" ., - U"_,)

T |

where C is the Courant number.

{e) Implicit McCormack scheme

With all second-order derivatives removed from (11) we obtain the implicit McCormack Scheme by setting
sy =1 5,=0.5,=0, 5, =0. However, it is necessary to divide the process into the predictor and corrector
steps. Once again, the flowfield-dependent implicitness parameters for FDMEI will allow the computation to be

" performed in a single step.

(f) PISO and SIMPLE

The basic idea of PISO and SIMPLE is analogous to FDMEI-FEM in that the pressure correction process is'a
separate step in PISO or SIMPLE, whereas the concept of pressure correction is implicitly embedded in
FDMEI-FEM by updating the implicitness parameters based on the upstream and downstream Mach numbers
and Reynoids numbers within an element.

The elliptic nature of the pressure Poisson equation in the pressure correction process resembles the terms
embedded in the B, terms in (36). Specifically. examine the s, terms involving a and b, a, and s,

L .
: A A
term involving a,, b . All of these terms are multiplied by &, , P, , which provide dissipation against any

pressure oscillations. Question: Exactly when is such dissipation action needed? This is where the importance of
implicitness parameters based on flowfield parameters comes in. As the Mach number becomes very small
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(incompressibility errects dominate) the unpiicitness parameters s. ond s. caiculated trom the current fowneid
will be indicative ot pressure correction required. Notice tnat a ueiicate paiance between Mach numbper s, is
Mach number dependent) and Revnoids numoer or Peclet numoer s, 1> Revnoids number or Peciet number
dependent) is a crucial factor in achieving convergent and stable soiuuons. Of course. on the other hand. high
Mach number flows are aiso dependent on these implicitness parameters. In this case all implicitness parameters.
5+ S» 5y, 5, will play important roles.

A.2. Analogies of FDMEI 10 FEM
(@) Generalized Tayvlor Galerkin (GTG) with convection and diffusion Jacobians

Earlier developments for the solution of Navier—Stokes system of equations were based on GTG without
using the implicitness parameters. They can be shown to be special cases of FDMEI-FEM.
In terms of both diffusion Jacobian and diffusion gradient Jacobian. we write

G, aUu v,

a0 e TS
with
4G, aG. al
=—- ¢ ==, V=
al ' OVI ' 0x,
Thus, 1t follows from (10) with s, =5, =5, =5,=5,=0 and s = | that

aF G, " AP aF. G, nel \
AU'”'=;\{<—‘T—*(_+B> +—I—'—< ?——u—*—B) - 0(Ar) (A.5)
X, @ ox;

Using the definitions of convection, diffusion, and diffusion rate Jacobians discussed in Section 2. the temporal
rates of change of convection and diffusion variables may be written as follows:

AF! au>' oF, iG, "
=l ) <ol -F - B

aF;u--q _ . a . ) F)F" (.’G}M-I | . A6
ar L\ 7% ax, w-unh - ax,  ax, ~8 ~ (A.0)
G ("U>"" a AU\
=0 5) e 5 ()]
or ) .
aG:’,' l:’c" AU"" n-i
P =<b‘—T\'I.> ( i AI (A7)

Substituting (A.6) and (A.7) into (A.5) yields

ot a2 3G g\ LA PAUTT! OF) GIT .
av —A’( A Ox,.+8 * 2 6 TeN\T4 T, T ax, | ox +B

j J J
aci’_ AU’H’I aBu+I .
+{e +— - (A.8)
'oax; Ar
Assuming that
c'l -~
e,=b, — ax, =0

and neglecting the spatial and temporal derivatives of B, we rewrite (A.8) in the form
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' . ' (A.9)
" ! aF e ! AV aF \"
H = -—-"1_p] -5 | ——)

Coax y

Here. the second derivatives of G. are neglected and all Jacobians are assumed to remain constant within an
incremental time step but updated at subsequent time steps.
Applying the Galerkin finite eiement formulation. we have an implicit scheme.

ar

(Anﬂét\ + BuBr\') Al”‘.”}‘\‘-l = H“;r - ‘,V""'I - Iv:':r » (A‘IO)

where

_ = . cr’jr.\'
BnBrx - 2 f” [(ail‘(/a/\q + ?)(pcu(l)ﬂ./:] d'{z
Hn _— A [(b I) " " " At: "
ar =S n i Q(F w GBU‘) - ([)n(l)ﬁBﬁ" - Ta“‘(l)“'(pmpu;\ df2
wel - t: < ' €\ = et
N = = o\ai.a,, - T)(!’” AU ' dr

; A L :
N = _I/' [AI PF ~G)- ——a,, (I)UFI\',:IH, d/

Here, we note that the algorithm given by (A.10) resuits from (33) by setting 5, =5, =5, =0. s, =1,

b.,a,, =c,. /At and neglecting the terms with b, and derivatives of G, and B. the form identical to that
reported by Hassan et al. [13].

(b) GTG with convection Jucobians

Diffusion Jacobians may be neglected if their influences is negiigible. In this case the Taylor-Galerkin finite
element analog may be derived using only the convective Jucobian from the Taylor series expansion

au"  Ar a*u

0 " K - — 3
vt =vu +Az——(." F=3 .Tr: + O(Ar) (A.1D)
where
aU _ aF oG- aU oG,
ar - ax ax, - ax e, ~B
(A.12)
U A ( AU oG
== l|a—+—-
ar” arN"’ax, T ax )
or
3’V 4 ( y , 2 4G, 3 B
ot~ ax \"% ) T \% Ty ) T @B o (A.13)
Substituting (A.12) and (A.13) into (A.1 1). we obtain
‘ aF, G, Ar[ 4 W\ @G) B |]"
AU = - — - — S| {ea — )+ ——L 2 —
{ ax,  dx, +B+ 2 |:8xj (ala, ax,.) M ax; 8x, * ax, @B) + at (A-142)

Expanding oF /dr at (n + 1) time step

8F::v-| _ a'<_—ai—(—'—G/+B\ n+ =a"*| —, aAUn*I B GF;' _ (_’G;m-l +B”¢l
at f ox;  dx : i a; ox; ox; ox;

/
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dnd substituting tne apove into (A.11,— A3 we armve 2t AL ‘a1 a torm dirferent trom (AL i<
G
AU _\1\-—.—-————3'
U_t’ [Re
- - g N - ~pn-l
ac [ BAUTTaF"\ CiaG 0. B
~=—\T—laa — -a - - -——waB) - : (A.14b)
2 Idx, ©oax ax, 4x; 09X, ax ar |
Ar 4 €\ o -
H'=\l-———\aa ~— |— AU :
2 oox, \"T 0 Ar/ ax
' ’ (A.140)
oF 4G, " A B aF \"
voag - S - e —
H" =2 ax,  ax; «B) 2 oax, \"7ax; )

where second derivatives of G, is assumed to be negligible and B is constant in space and time. arriving at an
implicit finite element scheme.

(A,g6, +B ) AU =H" +N""' +N" (A.15)

orr ar

where

Ag =j b, b, de2
1

. 3 Ar’ o\ .
BaBrx - —2- ) (anqalw + T) {put(pﬂ.l d'(z

ar |
H' = At f [rq,_,(l)u(r;,,, +Gy) - b BB, ——a, b (bu.,F'L',/\] 40
1 -

iry Taua

a+rl A’: ( cii’-‘ * n+l
N, = -5 . a,a,, *+ A D, AU n, dIf

. ey A
N = -—J ,[AI b (F' +G) - 4, (P“F“_Jn, dar
.
It shouid be noted that the form (A.15 ) arises from (23) with s, =s5,=s5,=b =0and s, = |, an algorithm
similar to Hassan et al. [13].
(c) Generalized Petrov-Gulerkin (GPG)

The Generalized Petrov-Galerkin (GPG) method can be identified by setting s, =s5.=1 s,=5,=0,
b,=c,=d=0. Q" =0.E =a,and E =1 At:a,a/, so that (10) takes the form
AU AAU A AU
—_ —— —-—aa. = A.16)
ar T ox, 2 44 ax; x, 0 (

For the steady state non-incremental form in 1-D we write (A.16) in the form

ou a’ 3u
—— A ———— A.17
45 M0 (A.17)

Taking the Galerkin integral of (A.17) leads to

Au a’ a'u
((’ — & — —— 3
f¢~<a x .ktz ax2>dx 0

or

du
(e) = A.ls
fw,va ——dr=0 | (A.18)
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for vamisning Neumann noundaries. Here. st " {s tne Petrov—Guierkin test runcton.

"r(b(ll’)
N

- | (A.19)

with @ =C/2 and € = Ar/Ay being the Courant number.
For isoparametric coordinates in two dimensions. the

a¢‘:) 4
P (A.20)

Petrov-Galerkin test tuncuon assumes the form

vy oy s g

with

N _
B=:(aflz£+anh,,) .

— <R5> 2 - (Rn> 2
a, = coth 5 —Rf‘ a, = coth 2) %

<

VU,
where R, is the Revnolds number ot Pe

that the GPG process given by
i),
scheme as a special case;
!

gl=

clet number in the direction of isoparametric coordinates (& 7). Note
(A.16)-(A.20) leads to the Streamline Upwinding Petrov-Galerkin (SUPG)

(d) Characteristic-based Zienkiewicz-Codina scheme

‘This scheme arises from Eq. ( §) by splitting the FDMEI Navier—
for continuity. momentum and energy,

all diffusion terms neglected can be w

Stokes system of equations into three parts

separately. The governing equations for FDME] given by Eq. ( 8) with
ritten in the form.,

ot aF" aa, AU Ap c'i:a,.F:' aza,a,..‘.\U""\
AU :—Af T""\' -

X, ' ax. 2 ax; ax, MR ax; ox, &.2D
Continuiry
The continuity equation can be extracted from (A.21) by setting as follows:
AU S ap"!
F'lspv' =y
5,@, QU™ — Ap ‘uf' —d AU
[/2a.F; —4p"s,
[/2s,aa, AU 6,6, 3p" " 5,
These substitutions 10 (A.21) lead to0
e z aJ 2 32 Ap" !
2" =<GL ,_\p) ' -m[f(:%’) +6, "(A+'i’ — A 9'<ai,.,;x, - 0:(%?»] (A22)

which is identical to Eq. (33) in [14] with (Apv,)" ™!

being the intermediate step. This represents the pressure
correction process in case the flow is incompressible.

Momentum

A similar procedure can be applied to (A.21) for the momentum equations.

apuv,)"  ar! dAp" ™" Ar? A’
nel _ ) iy if P ! n
(APUI-) = -AI,:T_-:?;.—+ s axj —(1-6,) TL“W(PU;U/*‘P‘SJ)

(A.23)

i



’ . - ,

30 K.T. Yoon et at. . Compur. Methods Anpt. Mech. Energ. 1361 (1997) 000-000

which is equivalent to Eq. (30) in {14] witha =v. | —#, =5, and all terms of s.. b, and ¢, being negiectea 1n
FDMEL

Energy
Again, from (A.21), neglectmz all n + 1 terms of the FDMEI equaton. we obtain

' dpEv, +v.p) 5 oT Y 3*
nel — e — - - +p
(Ap E) A:[ ox, P (k o .,_,vj) =Y 3x, oz, ———(pEv, + v p)’

(A.24)

which corresponds to Eq. (40) of {14]. The solution steps begin with (A.23), followed by (A.21) and (A.24), and
continue iteratively until convergence. Note that the pressure corrections for incompressibility are internaily
carried out in FDMEI as the pressure second derivatives arise in Eq. (10). Note aiso that in FDMEI all implicit
terms may be retained for computational accuracy and efficiency for any physical situation.
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