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FLOWFIELD-DEPENDENT MIXED EXPLICIT-IMPLICIT(FDMEI) ALGORITHM 
TOWARD DIRECT NUMERICAL SIMULATION IN HIGH SPEED FLOWS 

T. J. Chung 
Department of Mechanical & Aerospace Engineering 

The University of Alabama in Huntsville 

SUMMARY 

This report covers the results of the research on new concepts and formulations aimed 
toward direct numerical simulation(DNS) dealing with high speed flows. The research 
was motivated by the fact that it is desirable to develop a CFD program which can be 
applied to all speed regimes, both compressible and incompressible, both viscous and 
inviscid, and both laminar and turbulent flows, ideal for shock wave turbulent boundary 
layer interactions in hypersonics. The popular notion that DNS will resolve all turbulent 
microscales can be applied to incompressible flows. For compressible flows with shock 
waves interacting with turbulent boundary layers, however, difficulties arise in dealing 
with complex physical phenomena such as transition from laminar to turbulent flows, 
relaminalization, interactions between viscous and inviscid flows, and high temperature 
gradients close to the wall, particularly in hypersonics. No currently available CFD 
techniques are capable of resolving these physical phenomena simultaneously even in 
DNS. 

The purpose of the FDMEI approach is to overcome these difficulties by introducing 
the flowfield-dependent implicitness parameters which are calculated from changes of 
Mach numbers, Reynolds numbers, Peclet numbers, and Damköhler numbers(if reacting) 
between adjacent nodal points and between time steps. These implicitness parameters 
imply current flowfields changing in space and time designed to alter the magnitudes of 
every term in the Navier-Stokes system of equations, reflecting the parabolic, hyperbolic, 
and elliptic nature of the actual flowfield. For example, far away from the wall, the initial 
form of the Navier-Stokes system of equations automatically changes into a hyperbolic 
form of the Euler equations as dictated by the flowfiel-dependent implicitness parameters. 
By the same token, the viscous terms become activated as boundary layers are approached 
and they become dominant close to the wall, again automatically dictated by the flowfield- 
dependent implicitness parameters. Such phenomena can be clearly observed when the 
contours of these flowfield-dependet implicitness parameters are plotted, which are shown 
to be representative of the flowfield themselves. 



The essence of the FDMEI scheme is to follow the physics and as a result the 
numerics are generated accordingly. This is contrary to all other existing computational 
schemes in which numerics are predetermined for the fixed physics under investigation. 
Unfortunately, howevser, physics change significantly as a function of space and time for 
which the predetermined numerics are no longer suitable. This occurs when the program 
desinged for incompressible flows is to cope with compressible flows in different regions 
of the domain and vise versa, or for laminar flows to handle turbulent flows and vise 
versa.. Such computational schemes will not be successful even in DNS mech 
refinements. The emphasis of FDMEI is upon not only the ability to deal with all situations 
of fluid dynamical physics but also the computational accuracy if and when the computer 
is available for DNS calculations. In the mean time, the FDMEI approach can be used for 
non-DNS problems with accuracy much superior to any other CFD methods available 
today. 

The results of the research on FDMEI are summarized in three journal publications 
attached herein. 

1. Yoon, K. T. and Chung, T. J., "Three Dimensional Mixed Explicit-Implicit Generalized 
Galerkin Spectral Element Methods for High-Speed Turbulent Compressible Flows", 
Computer Methods in Applied Mechanics and Engineering, Vol. 135, pp 343-367, 1996. 

2. Chung, T. J., "A New Computational Approach with Flowfield-Dependent Implicitness 
Algorithm for Applications to Supersonic Combustion", in Avanced Computational and 
Analysis of Combustion, Ed. G. D. Roy, S. M. Frolov, and P. Givi, Moscow: ENAS 
Publishers, pp. 466-489, 1997. 

3. Yoon, K. T., Moon, S. Y., Garcia, S. A, Heard, G. W., and Chung, T. J., "Flowfield- 
Dependent Mixed Explicit-Implicit(FDMEI) Methods for High and Low Speed and 
Compressible and Incompressible Flows", Computer Methods in Applied Mechanics and 
Engineering, Vol. 148, 1997. 

As a consequence of this research, the following important conslusions and 
recommendations are provided: (1) As shown in Appendix A of Reference 3 above, the 
FEMEI scheme leads to all existing computational methods if the flowfield-dependent 
implicitness parameters are fixed to certain arbitrary numbers between zero and one, 
indicating that all existing methods are the special cases of FDMEI, (2) The FDMEI 
scheme provides a single computer code which can be applied to all physical phenomena 
in fluid dynamics, (3) Due to limited computational resources and limited number of 
research personnel, benchmark validations included only small portions of CFD problems 
in this report. The future research should include higher Mach numbers and Reynolds 
numbers, detailed studies of transition to and from turbulent flows, high temperature 
gradients, compressibility effects, dilatational thermal dissipation, and finally the firm 
establishment of the FDMEI technology benefiting the CFD community in general. 
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Abstract 

In high speed flows the interactions of shock waves with turhi.i«.nr h„,.„H,... i 
of «he complex flownelds resulting ,n .„creased advZ ^ 
three-d.mens.onai flowfidd structure are aiso charactenstic olTJ^Z^lnT^J f^™"™- ^««dine» and 
phenomena require sophisticated numencai schemes in «he soiutu^of *ov^£ ^7    X" ,meract,ons- Such Phy«l 
is to introduce an accurate and efficient approach^hV^xetSoi£Mm„Tirif C™ 7T? ?T* °f ^ **"' lheKt°n' 
(MEI-GG-SEM) with Lcgendre polynomial spearai elL^^^^ EltmeM Mtthod 

automatically adequate computaHonalreamrements for romnr«,.w ! nowheld dependent imphatness parameters provide 
TOs is in- contrast to the tZä^JS^^^SS!^ TF™"* """ " "+ "** "d '°W **" floW- 
equauon for pressure correction if theta beUnTil^ ?"* "^rbo.ic-el.iptic pressure 
out adaptiveiy until shock waves are resolved follow^ th^hvih. w MEI"GG-SEM *»«=""•«nah refinements are carried 
turbulence m.croscales are resolved. ^^'tStS^^SL^7l^

mK °f Uge"dre P°,yn0mial «te««» until 

numencai s.mulation. in order to demonstni.the^vS.vcf h,^ 7      'mg * "° '°nger rcqU,rcd- aimed ,ow»rt dire« 
compression comer high speed üo"^J^lt^l Z and numencal P™*»««. twcwiimensional flat plate and 
wave turbulent bounJarv layer taSS^&SriSrf.? " thr«-d"nens'ona' **P '«ding edged fin for swept shock 
numencai stud.es show favoSSc axemen ' C°mpanS°nS °f the Prcsenl studV "«" expenmenta. measurements and other 

1. Introduction 

piS^^S^^^^r^1 "Chnoi°Sical -novations in computational fluid dynamics, 

SownLs ffSg v^«^ " NamdVhC 

teen the focus of intensive research in the past'fl-^ '"^ence and h.gh temperature have 

con^dT^ bOUnd^ ^ - «ternai or internal flows, special 
physical p^omL7^1m^VXZ^y     ^""f tUne 3nd ,ength SCales' corresponding to different 
are fBaS^^l^S'S^, *»«««»« and shock wave surface discontinuities. Here, we 

- POM :tt^£ZXSfiS^£3tt'2=rtZ 
•Corresponding author. UA System Distinguished Professor 

Graduate Research Assistant. 
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Modeling of turbulence has been the controversial subject. Closure models, probability density 
functions (PDF), large eddy simulation (LES). direct numerical simulation (DNS) and other methods 
have been reported. 

The purpose of the present study is to introduce an unstructured adaptive spectral element method in 
dealing with combined turbulence and shock waves for both internal and external flows of aerospace 
vehicles. This work is motivated by the fact that DNS can be achieved via adaptive h-p methods, 
combining the mesh refinement (/i-method) with spectral polynomial degrees of freedom (p-method)! 
It is well known that the most crucial aspect of turbulent flows is microscales involved in boundary 
layers (viscous sublayer, buffer zone and turbulent core).. This is where the spectral polynomial degrees 
of freedom can be increased as desired since the mesh refinement alone is incapable of resolving the 
microscale requirements.. In this way, turbulence modeling techniques can be avoided. Furthermore, 
the current practice in DNS to use extensive refinements in finite difference discretization may also be 
avoided. Babuska and his co-workers [10-13) and Oden and his co-workers [14-17] contributed to the 
advancement of FEM h-p adaptive methods. Their applications have not been extended to shock waves 
interacting with turbulent boundary layers. In what follows, the p-version of the finite element method 
is referred to as the spectral element method with Legendre polynomials. Although the term 'spectral 
element method' was used by other investigators, the basic approach in the present studv is sienificantlv 
different from the earlier work [25-27 j. 

Chung and his co-workers [18-24] have studied finite element strategies as applied to shock wave 
turbulent boundary layer interactions in non-reacting and reacting flows. The main emphasis in the 
present study is to establish the basic theory and computational strategies of MEI-GGM involved in the 
Legendre polynomial spectral element method and to present preliminary computational results. 
Development of theory and formulation include irregular node connectivity of Legendre polynomials of 
various orders. Comparisons with experimental results have demonstrated superiority of the dire« 
numerical simulation over the standard K-e model with compressibility effects [19, 20). One of the most 
important aspects of the proposed method is the mixed explicit-implicit (MEI) scheme in which 
flowneld dependent implicitness parameters as calculated from local Mach number and Reynolds 
number provide automatic adjustments of computational processes required for compressible and 
incompressible flows or high speed and low speed flows. This is in contrast to other computational 
schemes in which the hyperbolic-elliptic pressure equation must be solved separately to provide 
pressure corrections when the compressible flow becomes incompressible. 

In what follows we discuss the governing equations and solutions of Navier-Stokes system of 
equations via Mixed Explicit-Implicit Generalized Galerkin Methods (MEI-GGM) in Section 2 direct 
numerical simulation with spectral element methods in Section 3, calculations of DNS perturbation 
variables in Section 4, calculations of flowneid-dependent implicitness parameters in Section 5, 
numerical applications in Section 6, and conclusions in Section 7. 

2. Governing equations and solutions of Navier-Stokes system of equations 

A convenient form of governing equations for compressible viscous flows may be written in terms of 
conservation variables as follows: 

—    3F>    dG< 
dt + dx, "*" dx, ~ B 

(1) 

where 

U = 
p pv, 0       "] [01 

pv, -       F,~ ßViVJ                           +                   pSq ,       G,= -T., B = PF* ptj _{pE+p)V;_ _~V> + <7<_ IWi- 
with standard definitions given by 
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~i = V-U.y + v,j -y vk,k&tl)       E - s -h Yu,u,       E = cJ-plp 

T, + S0 ( T\3'2 

H = H^ T + S°[Y^) 50 = 110K       q, = -kT, 

p=pRT      k»-fr 

The solution of governing equations will be carried out using the generalized Galerkin approach with 
test and trial functions given by isoparametric and Legendre polynomials by means of mixed explicit- 
implicit schemes. In general, explicit schemes are inexpensive but less accurate in comparison with 
implicit schemes for regions of high pressure or velocity gradients. In case of rapid variations of 
gradients throughout the domain, it is often desirable to devise a scheme in which implicitness can be 
adjustable in accordance with gradients, more implicit for the region of high gradients and less implicit 
or fully explicit for the region of low gradients. It is our objective to obtain amounts of expiicitness and 
implicitness based on the flowfieid dependent parameters such as TVD limiters in FDM. 

To this end, we expand V*1 in Taylor series about U" by introducing the implicitness parameters j, 
and j, for the first and second derivatives of U with respect to time [18-20], respectively. 

with 

dU"""     dU"        dW*1 

~dT = ~dT + s^~~dT~   °**i*l (3a) 

Substituting (3) into (2) yields 

AFT-'   A,(dU\   aw*l\ . A:2 fa2u"      a2Acr*'\ 

It follows from (1) that 

dU__    3F,    dG, 
dt~    dx,~ dx,+B (5) 

Here, F, is a function of U and G, is a function of U and its gradient Uk so that we denote the 
convective Jacobian a„ dissipative Jacobian bt and dissipative gradient Jacobian cik as 

_BFt Bfy BG, 
a'     dU       b' = dU        c,k ~ dUk 

Note that if the source term B includes variables such as reaction rates then it would be necessary to 
consider the source term Jacobian. 

The second derivative of U with respect to time may now be written in terms of these Jacobians. 

d2U    , d   (BF,     dG       \ , 32     (bF,     dG,       \ 

Substituting (5) and (6) into (4) and neglecting the third-order spatial derivatives associated with clk 
yield 
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At/"*1 = M 

AT 

Ei_i£l + Dn     (terr   BAG^ 
«,   ax, B ~s\— rx—**"' 

(a. + b)~(—^^l-RA    - ,       t,  B   fdAF-1     BAG"*' 
Bxi\dXj ~  «,     Bj+^' + *.)te;ir + -ä7 ^"' 

+ 0(At3) ' ' 

In order to provide implicitness to diffusion behavior differemlv from ™„„»~ 
s2 associated with G„ respectively, as follows dl««ently from convection, we reassign ,, and 

stAG,   4>   s3AG,       s2AG,   =>   s,AG, 
,   , ' (8a,b) 

with the various implicitness parameters denned as 

5, = first-order convection implicitness parameter 

s2 = second-order convection implicitness parameter 
s} = first-order diffusion implicitness parameter (8c) 
st = second-order diffusion implicitness parameter 

dx< \'     Bx,     ^ca   dXidx. )-s2 — {a'a'+b^-^Tdx~ 

+ O(A/3) = 0 ' " 

!?^aSt^li
e^a,,^ t0 rema,n C~ SP-"y <*«" e-h time step Jto 

The Galerkin integral of (9) may now be carried out as follows [21]: 

f #„*(£/. F,.G,)dfl=0 
(10) 

«^SS lZg^\™^r*lCO™T "0de tCSt fUnCl,0nS" and the «"-*» variables 
"C, 0 = *.«*.(,)      F,(x,,) = <pa(x)FaXl)     C/(x, r). 0a(x)Ca(o 

Substituting (11) into (9) and (10) yields 

<*.»** + *.*,)*?;;•=//;, + #:, 
with (12) 

AT 
+  2  M«„»V + *^„) + ^K,^,, + MMf)]*o,0fli/} dß 

•_AT. 
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-—{airs + b^^p^r», + G;IS) - 0^0eB;r] - ^ <t>a<t>BBßr) <m 

Nl = -\r 0a [MF" - Gl) - ^ (a,, + bln)(r^ + G-jjn, dr 
* 

where <*>o indicates the Neumann boundary interpolation function with unitv if applied and zero 
otherwise. Note also that boundary terms in BaB„ are assembled onlv into boundary nodes of B For 
three dimensions. /,/,*- 1.2,3 associated with the Jacobian imply directional identification "of each 
Jacobian matrix (c„ a,, a„ 6„ b2, b3, c„, c,,, c13. c21, cK. c,3. c,„ c3„ c33) with r,s = 1.2,3,4,5 
denoting entnes of each of the 5 x 5 Jacobian matrices. It should be warned, however, that these 
Jacobian matrices must be multiplied precisely as dictated by summing through repeated indices, not 
through matrix multiplications as a whole. Indices can be reduced similarly for 2-D. 

It is interesting to note that all implicitness parameters can be shown to be functions of fiowneids 
between upstream and downstream, and that the covection implicitness parameters j, and s. associated 
with the first term in BaB„ are analogous to the total variation diminishing (TVD) limners i'n the FDM 
literature isee Appendix A). With an adequate choice of these implicitness parameters, acceptable 
resolutions of shock waves have been verified. 

On the other hand, the diffusion implicitness parameters s} and st~ are capable of alleviating and 
accommodating the stiffness involved in turbulent diffusion or finite rate chemistrv (if reacting) No 
analogy can be shown since they do not exist in other numerical schemes. It should also be noted that 
interactions between convection and diffusion are achieved by means of the terms associated with the 
products a,rqblqj and biriJajqs. These terms are particularly important for shock wave turbulent boundary 
layer interactions where the effect of convection upon diffusion and vice versa is crucial in order to 
resolve turbulence microscales as disturbed by shock wave interactions. We shall refer to these terms as 
convection-diffusion interaction terms. 

If the high speed compressible flow far from the wail becomes the low speed incompressible flow in 
the vicinity of the wall, we question how pressure can be calculated where the perfect gas law is no 
longer valid. To this end we integrate the steady state incompressible momentum equation 

j (p -r--j pvp,) ( dx; - J (Mü|_. + pellkVlwk) dx, 

or 

1 

where P„ is the constant of integration and 

Q=-\{ /">!.// + pCißV^) dr,.    (n = spatial dimension) 

where <u, is the component of vorticity vector. Eq. (13) as related to the perfect gas law leads to 

P0 = P\cpT-E + v,v,)-Q (14a) 

or 

P0=pRT+2 piw - Q ^ 14bj 

If the constant of integration or stagnation pressure as given by (14) indeed remains constant, then this 
implies that the compressible flow has turned into an incompressible flow. If P0 as calculated from (14) 
does not remain a constant, then the incompressible flow has been changed back to compressible flow. 
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This approach allows the use of the conservation form of the Navier-Stokes svstem of equations 
througnout the domain with compressible and incompressible elements being treated accordingly via 
nowneld dependent implicitness parameters without resortine to the separate hvperboiic-eilinac 
pressure equation for pressure correction when the flow becomes incompressible.      ' 

3. DNS via unstructured spectral element methods (h-p version) 

Our objective here is to resolve time and length scales involved in turbulence interacting with shock 
waves using adaptive unstructured h-p finite elements, refered to as spectral element methods One 
approach is to refine the mesh (A-methods) until further refinement is unproductive, at which time the 
spectral degrees of freedom (p-methods) are increased in order to reduce errors as desired such as in 
the region of turbulent viscous sublayer. However, the more desirable approach is to optimise between 
the mesh refinement and spectral orders. Thus, the most crucial aspect of the h-p methods is to 
determine the best possible change in the mesh structure to reduce the local error to a minimum 
Should A (mesh size) be decreased or should p (polynomial or spectral degrees of freedom) be 
increased? Although some work in optimization between the h- and p-processes has been reported 
14-161, the suDiect of optimization appears to be an open question. Thus, our approach in this studv is 

to refine the mesh until shock waves are adequately computed and then resort to the p-version with 
higher-order Legendre polynomials in order to resolve turbulence microscales. Toward this end the 
error indicator 6 may be defined in terms of density for shock waves and velocity for turbulence. Some 
or the options are given as follows: 

mil 

■0-Afl,|p|*i/|p|w. (15a) 

mas 

0 = Aß>,lW:/kl„. (15b) 

where h is the mesh parameter and various Sobolev space (Hm) semmorms are defined as 

(16a) 

(16b) 

The choice among these options depends on various physical aspects of the given problem, whether 

h^Ze ofeth.0Tale? by
H
drty,:Vdry comP°nen*' their gradients, orsecond derivatives Fo 

the purpose of the examples dealt with in Section 6, we utilize Eqs. (15a) and (15b) for the /.-adactivitv 
associated with shock waves and the p-adaptivity associated with turbulent boundary layers respeS 

Direct numerical simulations for turbulent flows are achieved by higher spectral orders usine 

^^S^^^^ sp;ctral e,ement '»-p^ULSSoia 
sho8wn ,n Rg T " * three-dimensional 8-node isoparametric element are 

8 corner node isoparametric functions: 

AC)      1 
*v=sU+£vO(l+™)(l + ^) (n) 

12 edge mode Legendre polynomial functions: 

*i.E,,4(l-,)(l-f)G.1(«       ♦Sf'-yd + Od-OGJ,)   etc. (18) 
with m = 2 q\ 12(^ — 1) edge modes; q =* 2 
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© @...*"©-Ä «* 

"©" 
F,g. 1. Spectra! cicment funcuonal represemat.on for Legendre poiynom.ais. 

6 face mode Legendre polynomial functions: 

<F." = 7<'-^.(f)G„(f)     •™.l(1+f)e.{,^(:)  eIc 

WW,m" = 2 <"2—< <;3(,-2)(,-3,fa„modes:,a4 

7 mrenor mode /«mawiu (bubble functions): 

*^ = Gm(f)Gn(,)G,(f) 

„     Wi*hm,"-'' = 2 •-*-+-+'-«' ^U-3)(,-4X,-5,/6in[en()rmodK:™ 

CJ£) = 
V2(2m-i)lL"(f)"L-2(«] 

(21) 
Similar results are obtained for the      and r ri-      • 
dimensional case of various mixed Legendre ZtTrZ] H" ^ P,Uip°Se °f illustra»°n the two- 
turbulent rmcroscale distributions nüJ^^f^^^^J^^ ^epictrng a possible 
as space 1 (SI) we may use another option oHhe snace^, T ^ P0^0™1 «P» (denned 
modes and (, - if interior modes (^2)° ™ izS?13

(faUed SPace 2 <S2» * which (, - 1)> face 

Ä^ÄV^ ESjffiJ^™* - edge, face and interior mode 

1/ = «Sfty, + <E></m + 4>£0_ + *»,_„ 
mn vm»i "imp Vmnp 

wh     0    * * (22) 

Tmesis maSdidon £('nT SPCCtra' C°effidentS " * detCnn,ned ^ s°'™g the followmg Galerkin 

jn<p%R(u;)dn = o 

/o*ÜU(Aü)dß-0 

(23a) 

(23b) 

(23c) 
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q-l 
q-5 q=7 

q=3 <p2 

q=i q=l 

Rg^2. 2-D Interpolation functions constructed by Legendre polynomial. <*>«V
CI (, 

modes) comer nodes). *£> (side modes). <P^\ (intenor 

.riabtr^18 T T ?:-«C) 'eadS t0 thC aSSCmbled s"™"~ algebratc equarions m terms of the variables Ua, Vm, 0mm and Ü 
map' 

AaBS„ + Bag„ Ai&   + B' 

<a&n ' "m&n 

-r rf* *an"rs        ° ann A:VB„ B* anprs 

A<5.. + B{ xmk8un mkßn A" 5.. + C a 

lA-mkuB^r, + BmkußN 

mknurs ^" *~ mknn 

1 mkuH°n ' mkumrt 

' WB,
n »♦I rWar i 

A//:. *:, 
w:„ W'tkr 
MJ 

.^mt.,. 

oi mknpqrs 

+ E. mkunpqrs 

(24) 

modest ß^conief^J^ of freed°m from edge, face and interior 
mtegrals afe shown^^St' ''' = C°nSerVat,°n YV™* ^™ °f freed°m- *■*«* *"■ of 

We may initially consider only the corner node equations, 

M-A + B..JAIC-1C (2J) 

io!1vedPTeKnet^^ttEL^PUtrtiO^S "" 7™ ^ ** ******* Untü a» sh°<* ™* are resolved. T^e next step „ to resolve m.croscales using the spectral ponton of the computations 
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Am„ors + Cmnrs 

■^-mkn^rs T u mknrs 

A„kun°rs + C> 

A™   (5 ™-mnp°rs 

A„knp"rs ' 

^ mnprz 

mknprs 

mnptj   rs mnpqrs 

mknpq   rs       *-* mknpqrx 

A"1) C l      Ol 
™mkunp°rs T ^mAimprj mJcunp^rj S  ■+£ 

At/: 

At/; 

m/kuKp^r; *■* w no^j 

"#L~ 
n 

'  Xlr' 
#L, - X( 

_ ™mkur_ _"*m*iir_ 

(26) 

where 

U5« + B'mkß») AUßs 
Xmkur ~ \AmkußÖrs + Bmkußn) AU3s 

which act as source terms or coupling effect of the corner nodes upon spectral behavior through edge, 
face and interior modes. The final step is to combine (25) and (26) by 

(V« + fl.,J^;;l=n-i'„ (27) 

with 

Y., = «fr. + Bamn )A£/; (*«•«„ B* ) AUnp, - (AaHpq8„ + BaH„„ )At/„ 

Thus, the convergence toward shock wave turbulent boundary layer interactions can be achieved 
through iterations between (26) and (27). Note that in this process, the convection implicitness 
parameters 5, and s2 are held constant whereas the diffusion implicitness parameters s3 and st are 
updated through Reynolds numbers. 

Our objective here is to satisfactorily simulate turbulent microscales within an element. All edge, face 
and interior mode interpolation functions vanish at the corner nodes but exhibit high frequency 
variations according to the order of Legendre polynomials along the edges, faces and interior domain. 
It is intended that such Legendre polynomial microscales be capable of simulating the physical 
microscales of turbulence which are involved in viscous sublayer, buffer zone and turbulent core. The 
/i-adaptivity alone is severely limited and naturally we seek a remedy of this situation in the h-p 
adaptivity utilizing the adequate spectral orders required for accuracy. Irregular nodes (hanging nodes) 
which arise in the process of A-adaptivity are treated similarly as in [14]. Furthermore, the advantage of 
Legendre polynomials is an ease in dealing with edge, face and interior modes which do not require 
specification of nodes physically located in the element. This is especially beneficial for edge and face 
modes in establishing boundary continuities. Continuity of variables and gradients along the inter- 
element boundaries is to be dictated by the higher-order polynomials between the two adjacent 
elements. 

For two-dimensional applications, edge and face modes are merged to side modes as shown in Fig. 2. 
Consequently, the matrix equation (24) can be reduced so that only side and interior modes are 
retained. 

4. DNS perturbation variables 

It is well known that DNS is expected to provide information in turbulence microscaie levels at the 
expense of excessive refinements of domain discretization [6]. The purpose of the present study is, 
instead, to avoid such refinements by means of implementing high spectral Legendre polynomial orders. 
The Navier-Stokes solver as introduced here allows unsteady time accurate solutions from which 
perturbation variables_(/') can be calculated as the difference between the Navier-Stokes solution (/) 
and its time average / [22, 23], 
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r-f-f <a> 
This computation can be conducted throughout the Navier-Stokes integration time steps or upon 
arrival at quasi-steady state. Strictly speaking, in shock wave turbulent boundary layer interactions a 
complete steady state is never realized as unsteady eddy motions persist indefinitely, although 
background flowneids may become steady. This is referred to as the quasi-steady state. The time 
average of Navier-Stokes solution is performed using the Gaussian quadrature. In this process 
complicated physical phenomena such as homogeneous and inhomogeneous. isotropic and anisotropic, 
and non-stationary nature of perturbation flowfields in shock wave turbulent boundary layer interac- 
tions can be resoived. 

Furthermore, all perturbation variables as calculated from (28) can be transformed via fast Fourier 
transform to eenerate power spectral density vs. frequency domain. Various perturbation variables as 
well as background flowfield data have been examined [24]. As a result of this study, more details of 
shock wave turbulent boundary layer interactions such as variations of turbulent kinetic energy vs. 
shock strength, laminar-turbulence transition instability, relaminarization. effects of dilatation, etc., can 
be rigorously examined in comparison with the previous investigations [6, 28, 29]. Some limited results 
and discussion of these subjects are presented in [24]. 

5. Calculations of flowfieid-dependent implicitness parameters 

The success of the spectral element method (h-p version) described above depends on accurate 
calculations of flowfieid-dependent implicitness parameters. The first-order convection and diffusion 
implicitness parameters are calculated from the local Mach number and Reynolds number as follows: 

i, = 

mimV. 1)   r»a 
0 r<a, Mm,B*0      s2 = max(l -5,,0.5) (29) 
1 Mmi  =0 

with 

AAf 
r = Af„ 

(30) 

where AM is the difference between the maximum and minimum Mach number (AM = Mm„ - Mmin) 
within a finite element, and a is a user-specified small number (a =0.01). 

s,- 

mim>. 1)   s 3= ß 
0 s<ß, Rerain*0      j4 = max(l-53,0.5) (31) 
1 Remin=0 

with 

ARe 
5 = Re 

(32) 
mm 

where ARe is the difference between the maximum and minimum Reynolds number (ARe = Rem„ - 
Remin) within a finite element and ß is a user-specified small number (0s 0.01). 

The flowfield dependent implicitness parameters as defined above are capable of allowing various 
numerical schemes to be automatically generated, as summarized below: 

(1) The first-order implicitness parameters s, and s3 control all high gradient phenomena such as 
shock waves and turbulence. These parameters as calculated from the changes of local Mach 
numbers and Reynolds numbers within each element are indicative of actual flowfields. The 
contours of these parameters closely resemble the flowfields themselves, with both J, and s3 

being large (close to unity) in which high gradients of variables exist, but small (close to zero) 
where such gradients are small. 
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(2) The second-order implicitness parameters s, and st are also flowfield dependent. However, their 
primary roie is to provide adequate computational stability (artificial viscosity) as they were 
originally introduced into the second-order time derivative term of the Taylor series expansion of 
the conservation flow variables U"~l. Thus, their flowfield dependency is limited by {s2,st) 2=0.5 
for adequate computational stability. 

(3) The J, terms represent convection. This implies that, if .s, =0 then the effect of convection is 
small. The computational scheme is automatically altered to take this effect into account, with 
the governing equations being predominantly parabolic. 

(4) The s} terms are associated with diffusion. Thus, with s2 = 0, the effect of viscosity is small and 
the computational scheme is automatically switched to that of Euler equations where the 
governing equations are predominantly hyperbolic. 

(5) If the first-order implicitness parameters J, and s3 are non-zero, this indicates a typical situation 
for hyperbolic, parabolic and elliptic nature of the Navier-Stokes system of equations with 
convection and diffusion being equally important. This is the case of incompressible flows in low 
speed. The unique property of the MEI-GGM is its capability to control pressure oscillations 
adequately without resorting to the separate hyperbolic-elliptic pressure equation for pressure 
corrections. The capability of MEI-GGM to handle incompressible flows is achieved by a delicate 
balance between J, and j, as determined by the local Mach numbers and Reynolds numbers. If 
the flow is completely incompressible (M = 0), the criteria given by (30) leads to J, = 1, whereas 
the implicitness parameter s3 is to be determined according to the criteria given in (32). 

6. Application 

As benchmark problems two-dimensional shock wave turbulent boundary layer interactions on a flat 
plate and compressible corner were solved in [31] and demonstrated an excellent comparison with 
experimental results and other numerical methods [32]. Other benchmark problems including: (1) the 
flat plate supersonic boundary layer flow, (2) shock wave turbulent boundary layer interactions on a 
compression corner, and (3) the three-dimensional sharp-leading edged fin for swept-shock wave 
turbulent boundary layer interactions have been investigated, which are presented below. 

6.1. Flat plaxe supersonic boundary layer flow 

Fig. 3 shows a spectral element mesh (gray elements) and the corresponding density contours for 
Carter's flat plate problem [33]. The spectral elements appear in the boundary layer. The computed 
wall pressure and skin friction distributions with and without spectral element meshes are compared 
with Garter's numerical data [33] in Fig. 4. Note that symbols SI and S2 imply space 1 and space 2 

■ ■■ 

Fig. 3. A spearai mesh (gray elements) and density contour* for Carter's flat plate problem with boundary conditions. M 
T. =■ 390 R. rWM = 2.87".. ReL - 1000. 
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(a) Will pressure profile for linear and specoal element mates 
comparing with Carter'i data (33). 

0.4 
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5     02 - 

-Uwartdof«35O0) 
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»S1q2(dof-573Z) 
■ S1fl4(dof"7332) 
*S2q2{dct=5100) 
»Saq3(do«"7668) 
»CKtarsdata<dof-i4484) 

(b) Skin fricuon profile for linear and spectral element meshes 
comparing with Oner's data. 

Fig. 4. Comparison of wall pressure and skin friction distribution for linear and spectral meshes with Carter's numerical data. 

functions of Legcndre polynomials, respectively, as denned in Section 4. It is seen that for the laminar 
flow the spectral element method does provide the results in agreement with other computational 
methods However, the spectral elements are more effective when the flowfield contains large gradients 
in which other computational methods are incapable of resolving large gradients such as in high 
Reynolds number and high Mach number turbulent flows. 

6.2. Two-dimensional shock wave boundary layer interaction on a compression comer 

In high speed vehicles, deflection of a control surface such as body flaps, elevons and rudders causes 
the interaction of shock wave with boundary layer, which may cause flow separation, resulting in a 
significant decrease in flight performance and excessive increase in heating rate. A two-dimensional 
compression corner experiment by Settles et al. [35] is modeled here as a benchmark problem in shock 
wave turbulent boundary layer interaction. 

Computational geometry and scales corresponding to the experiment are shown in Fig. 5. The 

f6^vm,COndU,0nS arC MaCh nUmbCr °f 2-85' staSnat'°n Pr«sure of 6.8 atm, stagnation temperature 
of 268 K. freestream unit Reynolds number of 7.3 x 107/m, deflection angle of 16°, and the incoming 
turbulent boundary layer thickness of 2.3 cm. 

Adaptive spectral element mesh configurations are plotted in Fig. 6. The mesh refinement is 
performed along shock waves while the spectral degree is increased in boundary layer. Convergence of 
wall pressure for different Legendre polynomial spaces and degrees at x/S -0.14 for a typical transient 
state is plotted m Fig. 7. It appears that the convergence rate of Legendre polynomial space 2 is much 
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tJSe 

an 

Fig. 5. Computational geometry and scales for 16° compression corner. The freestream conditions corresponding to the Settles' 
experiment are M = 2.85. P, = 6.8 atm. T, = 268 K. Re, = 7.3 x lO'/m. 60 = 2.3 cm. 

(a) Adaptive mesh configuration (nelem=2558. npoin=2748) 

(b) Focus on spectral mesh (gray color) in boundary layer. 

Fig. 6. Adaptive spectral element mesh configuration. The mesh is refined along shock waves while the spectral degree is 
increased in boundary laver. 

ULZ3 

0285 -ospace 2 
A-space 1 
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Legendre polynomial degree 

Fig. 7. Convergence of wall pressure for different Legendre polynomial spaces and degrees of x/S =0.14 for a typical transient 
state. It appears mat the convergence rate of polynomial space 2 (S2) is much more rapid than that of polynomial space 1 (SI). 
Also, the higher polynomial degrees are closer to the exact solution, independent of the polynomial spaces. 
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(a) Density contour* (mimOJOkg/m*. nux=3.12kg/m>) 

(a) a, contours 

. (b) Mach number contoun (mm*). maxs3J8) _. 
(b) a, contoun 

F,g. 8. Density and Mach number contours for shock wave boundary layer interaction on a compression corner 

f2»fieldFirS,'°rder C°nVer,,0n and diffUSi°n 'mPildtness Parameters (,, and ,,) contours. The ,, and,, contours show the trend of 

more rapid than that of polynomial space 1. Also, the higher polynomial degrees are closer to the exact 
solution, independent of the polynomial spaces. 

Density and Mach number contours are shown in Fig. 8. To show the effect of implicitness 
parameters upon the flowfield calculations the contours of the first-order implicitness parameters st and 
s, are plotted in Fig. 9. Note that 5, = 0 away from the shock waves and boundary layers, but becomes 
unity at locations of high gradients (shock waves and boundary layers). By the same token the 
implicitness parameter s3 representing diffusion behaves similarly, being zero and unity at locations of 
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Fig. 11. Comparison of wall pressure for present result and experimental data. 
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Fig. 12. Companonlof mean streamw.se velocity profiles for the present results and Settles' experimental data at several 
streamw.se■ ««^The plow ^'^'^he Ganges m boundary layer velocity profiles. The figure at x/60 = 1.6 is the incom.ng 

wave appears as a kink is some velocity profiles downstream of equilibrium turbulent boundary layer. The location of the shock 
the compression comer. The downstream profiles are seen 
pressure gradients. to recover rapidly from the retarding effects ot the imposed adverse 
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low gradients and high gradients, respectively. Note that the contours of first-order imoiicitness 
parameters s, and sy resemble the flowfieid itself. Here, the second-order implicitness parameters s 
ancis althougn flowfieid dependent to some extent, their pnmarv role is to assure computational 
stability with their criteria given in (30) and (32). The convergence historv of energy variable for MEI 
and explicit schemes is compared in Fig. 10. The convergence rate of the MEI scheme is much more 
rapid than the explicit scheme. Fig. 11 shows a comparison of wall pressure for the present study and 

Ixpenmentardata""16"1 * " ^ ^ ^ PrCSem rCSUltS "" fa g°°d agreement with ** 
In Fig. 12 mean streamwise velocity profiles are compared with the experimental data at several 

streamwise stations. The plots serve to illustrate the changes in boundary laver velocity profiles which 
occur along the length of interaction flowfieid. Fig. 12 at */5n = -l.6 is'the incormng equilibrium 
turbulent boundary layer. The location of the shock wave appears as a kink in some velocity profit 
downstream of the compression corner. The downstream profiles are seen to recover rapidly from the 
retarding effects of the imposed adverse pressure gradients. 

6.3.  Three-dimensional shock wave turbulent boundary layer interactions 

The next example is the study of fiownelds of a three-dimensional sharp-ieading-edeed fin for swept 
shock wave turbulent boundary layer interactions. Fig. 13(a) shows the physical domain for a 3D sS 
fin (a - 20 ) w,th a general flowfieid structure (Fig. 13(b)) [34]. The inlet boundary conditions and th! 

(•) 3-D 20* fin 

Uli kaUkl Shock 

<""»»»*,, J,»»///)', 
Ftatrhte 

(b) 20* fin interaction flowfieid structures 

(c) Computational domain 

film T"" '" ■ 3D 2°" fi" «"■ *»«« «™»B m* M.-2.93. P  -20 57 IP,   T -92 39K 
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corresponding fiowneid structure are the same as in [351   Here   the free stream M*,U 
temperature are M   =1 9"? and r  -QIIQV stream Mach number and 

of bWa and Si Ä S *.^S'^r„?7^0'^Ter TT™ 
<**» 4 a. the apex o, the fl„ ,s u. yielding a Re3ds „Lber Re ^x STK 
match the boundary conditions as used for the «pertinents [351 the flowfield behind ih,« ' T? °, 
as a flat plate boundary layer such that the computed boundary avertsä   s set eonalt^ 

aoDnTo'n'flf* °f '1 '*"■ ?" 'he S0'id S"rfaCeS "° Sli,> a"d adiaba'ic -» boutdi, „Sona * 
IT™    P 71*,' la'"a'- an" aI d0»"s"«n> «it boundaries, the flow variables are »,fre? 
Adapttvely spaced jrrtd pomts are 33. 41 and 31 in the streamwise. spanw.se and vertL, Hi l.ri„s' 
respecnvely. Spectral elements of Legendre polynomial degree 2 in spae'e 2 are ÄtS 

Fig.  14 shows the background nowfield based on the eeometric mnfinm,in-r     A U      _, 
condiflons described in Fig. 13. as observed from the from /-Tand    ™5T^ ^*Z 
of me htdden pomon are shown. 1. is nottced tha, the trend is in reasonable agreement wuh the rSs 
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(b)     Pressure   (Pa). (d>     Mach number. 

F,g. 14. Background flowfield as observed from ,he front (x - z plane and y - z plane). 
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the shock waves »ward the Bat-plate boundary "Umber Sha,ply dOTMS">S '"rough 

in ÄSÄ^ÄrdJT"Figs-i5-17- ^ «»» - ™» component 
vortex stretching occurs toward downstream whhL     ?, ," *e n8h'-»a"d ^=- Clearly, the 
vortex centers dose to the wall. Th«e pnwicl1 „hen„ ? "' ^P"3"0" ShoCks' sBP »"« ««I 
"ream ■„ agreement „,,h the *JZ J&£"5~ beC°m,: m°rc <■*« »«ard down- 

Hg. 16 shows the contours of v„„,cy component hV the'spanwtse venical planes <x cos. - , ^ 
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Fig. 15. (Contd) 

in the ycosa-direction. with each plane identified as a   h   r-   *   TU 
toward dnum«rMm »„A  7 «ucminea as a. b, c, d. The vortex stretching occurs again 

SE£ZZ££?22 STUTfron the shock- ^ •"-*°f ™"'c"y,! <°™d 

b- 6 Fc 0 a)XrsSlh,0
h
riTa'j'a"? VOniCi'y COn,OUrS m PresenKd " »«to» location, (a: 2a», 

-S^ JÄrSÄS^-JS^S"thal ™nm" ■"■— «-* •"' 
in y2TdSd°i„t^rU'ent """"^l"ehaVi0r'" ""= bomd^ la^ « «<*"*«< i» Section 4 and 
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concentrated within the boundary layer close to the wall. Y Shodc- The growth of von"*y is 

7. Conclusions 

Based on the preliminary results obtained for the ri.Wr n..m- ■   i    •     .   • 
generalized Galerkm Ugentte poiynonrid S,mUlat

u
,0n UBn8 the MEI 

for the initial attempt has beensucces™ Iv2eved   P,aL       , '     3PPearS that °Ur 0riginal g0ai 

been developed are the maior factoTfnr«!I       Elaborate data structure schemes which have 

three-d.mens.onai compuSs o?S£ £Z£Z£i^ ?*^ ** "*»*»" r«UltS f°r 

2-D benchmark problems are satisfactory bOUmtary layer interactio^ » well as the 

B-SSor^S^Ä^S8 Txplore.d- ^,nciude: (1) venfication of 3"D 

Prandt. number. £?Z^X^Z^2?^ " T ^ "^ ^^ 
relam.nanzat.on. (3) energy speiST^T^? chancle"anon of compressibility effects and 

v ; energy spectrum data versus frequency domain and complete 3-D turbulent 
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r •,__ 
fin 

Max -6.86 
Mia a -0.66 

Max = 7.3 
Min a -0.76 

Max a 7.36 
Min a -0.81 

Fig. 17. Spanw« honzomai p.ane u-, plane) vomcity comours ,, vanous ^^ „^^ 

sfSÄ1^^   srrrabUity; i5) reiiab,e °pt,mai — °f **in— 
others, T*ev coLLu^^^^^TtT\ * ^^ ^^ —°" 
direct numerical simulation for turbulent ™? y ■?, « ^ In summary- " « concluded that the 
element method appears to be promlsmg. C°mpreSS'b,e flows wilh the Legendre polynormai speara. 
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Appendix A 

A.L Analogy between MEI-GGM and FDM-T\'D 

For simplicity let us write (12) in terms of one-dimensional linear functions and one-dimensional 
Jacobians a. b and c with all Neumann boundary terms neglected. Integrating (12) by parts we obtain 

Ax   ,     , 
+TÄ~r ^:<r-2j3C + Ats*-ba + 2sMa + b)](w;;! -iw*1 + AUI:1) 

+ 2äT
(F
-'~F->+G"*>-G

"-.)
+
7^T(O + *)(F;.1-2F- + F;_,+G;+1-2G; + G;_,) 

Neglecting ail diffusion terms and adjusting nodal points arbitrarily, we have 

5,fl2 A 

2 Ax1 

(A.l) 

\ FT*1 "*" I *» 
■"'•• *•<»        „_, ,       s.a'At 

(A.4) 

^F" -F;.,) ^(F; - IF;., +,;_,) (A>2) 

The FDM-TVD for the 1-D Euler equation is written as 

dU,        a~ [ l i -i 
^=-^[(^-^-J + 2^'^-^-.)-2^^W-1-C/,-2)J 

-fr^-.-^O + i^,^.,-^-^^^,^-^-,)] (A.3) 
with 

a* = max(0.a)=-2-(a + |a|)       a" = max(0,a) =y(a - |a|) 

Introducing an implicitness parameter s for the time derivative on RHS of (A.3) in the form 

£/, = {/;+i d^r' 

Substituting (A.4) into (A.3) and assuming that 

a-=0       a*=a        Vf_U2 = ^_Jn = * 

we obtain 

+
^CF:-F;.1)-^(F;-2F;_1+F;_2) (A.5) 

2^riS (t:} 3nd (A'5) rlVealS.that' WUh *' = _S/2' s>=sAx *><« *>• and -1 ** the coefficient 
? IV F'-')Jerm' Te "°te that the MEI-GGM formulation and FDM-TVD scheme are analogous; in 
MPT r^ I      CS       uer thf ■"f^P*"» made abov=- The implicitness parameters ,, and ,, in the 
US" H?H 

S mC P?itm "? °f TVD limiterS' * H°WeVer- the imPhcimess parameters s, and ,„ 
beyond the concept of TVD scheme, together with ,, and ,;. are expected to govern complex physical 
phenomena such as turbulent boundary layer interactions with shock waves, finite rate chemistry, 
widely disparate length and time scales, compressibility effects in high Mach number flows, etc. Note 
that most of other FDM schemes (such as McCormack or Beam-Warming schemes) arise with proper 
choices of implicitness parameters in (A.l). 
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Appendix B 

B.l. Integrals of spectral element interpolation functions 

Al « I *.*: <m     ALP = I *„*;„ dn     Aanpq = 10a<i>npq dn     AI6 = I *>. & 

AIL = I *LK*n AIL,=I *LK dß ALHM - Jn *^ dß Amtufi =.|n ^ ^ 

**■- 'L r^a>»^s>bM.rt+sic^ dß 
with 

4/„ = a„"„. + 6„,fl„,        *„„ = a,>,„ - feiMfrm 

ß:- 'L r^a- + s>b^^ + ^,^^ an 
B..„„ = I {-*((*,«,„ -',*,„)*.>,.„ + *,<:,„*,,,«.„J +^(1,^ +54^)*.>w|} dfl 

ci_=/n {-MM,„ ^A>.)<^.>: ^^A*...*:.,]+^M„„^<„,.A*.>:.,} ^ 
D—-=L {-MM*, -^„.A.A;+^,,A,.>;.,]+^A„ ^WA*.A;.,} «m 
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+ *.KA. + b,„b„)\ Ai/;;'}«, dr - Jr *: [A^, - G;J - f- <«,„ - jj^., - G;,.,)]«, dr 

= /„ {* *L..*.(f"s„ - G;„) -^a,„ + b.jtpl^jF;,, - G;„)} dn mkr 
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A NEW COMPUTATIONAL APPROACH WITH 
FLOWFIELD-DEPENDENT IMPLICIT!™« 4TrntlTm 

APPLICATIONS TO SI^EH^c^OMB^ON^^ "* 

T J. Chung 

Department of Mechanical and Aera™*,- v    • ™ 
in Huntsviüe, Huntsviüe, ATLBM'™ Englneen^ ^ <Wsity of Alabama 

« ^S^^^^l^^ for supersonic combustion 
combustion. This is due to S22v T^ nonreacting flows or low-speed 
species associated with fiSe r«e

7Ä^ "TT ratea f°' «iÄS 
bounaary layer interactions CWef^7 S* shock wav* <urbS£t 
sudi as Mach, Reynolds, P^^SKj^g^10^00^ flow tables 
nodal points and between time stons e^T? *numberf between adjacent 
stable computational schemes 2^ «"K?** fa<*ors « selecting 
flow- It is toward this idea that the rSLSLmdlcatIve of physics of thl 
Dependent Mixed Exnlidt-fcanlid! ? FSM™^?"5^ caUrf "Howneld 
tta paper. Here, every £3*12?}?*) Metto<*n is developed in 
unique numerical scmemlaccorSn^l ° eiement is Provided with a 
^tcten^ by a total oSS^™ fl°«*eld situation^ 
fromthe changes of Mach, Reyno°£^&W^ ««»"keh are calculated 
deS^^5"?11. nodai PQi"^SU&JS thn?dt Dami°^ numbers 
«^Qentimpüdtnesspakmeteraren^^r Ji^l"^8- Theae nowfield- 
compressible, incompressibleri2J?^,lt.Ybftller or not the fiowfieid is 
«tiestatusofchemiJreactioS StS?*"*'!^^^*^?^ 
tuitions of all variables be^n^^r

pro^^^continmties«fl^ 

A\7aTA in the Ä ÄS t
p

Qr
ts -*between ^ »that the fluctuation components eiTl?^syslemofequations 

^een the Navier-Stokes solution. a^u      obta»ned as the difference 
ALS? ?" "f11^ ^e ^rSe^oVthe?^^ comP°^tsScu Javier-Stokes solutions. If aU inmisE. fast Founer transform of the 
numbers instead of bet «ÄnffiS??"" P.3*3?«*« are n^ed to certain 
pn«icaUy aU oam^S^^^^J09^^ information ?£J 
The proposed approach is beüevid^r021 «*«?« arise as special cases 
simulation of the^upersou^nb?J* ""T *?&<*&* to direct numeriS 
extremeiy high and ih^S^S^^Ktn^nt?n **Ää 
ff.Sf^^t. Due to computeiKSST?Jb°UIldary iay« interactions 
n this paper are only for coarse 2Sf-llTer' numerical examples 

turbulent microscales. Flmhe?stu^L?lSmpie Cases ^»t «SS2 
applications to supersonic combuÄ S^33t™P »«^ 
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1    INTRODUCTION 

487 

&mm 

*iptf /• s«P«wonic combustion geomet- 

rÄkbr^s^r-S^ rearcniauon; a — bow shock; 6 - M*£ 
disk. 7 - expansion waves; 8 - S 
layer; 9 - «attachment shock.) (4) Ran,;* 
combusHon. I - difiuser obliquYlnock 
ware: 2 — normal shock system-'3 —fiSi 
injectors; 4 - fuel; 5 -landholders^ 
r ea«me Mw.i; 7 - vehicle boundary. (c) 
fESZSt0*?^ ■ -foreb°dy oblique anoac wave, 2 — fuel injectors: 3 — fu-T. 4 
-engine cowl; 5 — vehicle boundary 

Nearly half a century has elapsed since 

the digital compnter revolutionized com- 
putational techniques in engineering and 
mathematical physics. During this time 
finite difference methods (FDM) have 
dominated the field of computational 
fluid dynamics (CFD) [1-4], whereas the 
opposite is true for finite element me- 
thods (FEM) in solid mechanics. la re- 
cent years, however, the trend toward 
finite element methods in CFD appears 
to be increasingly favorable [5-9]. Nu- 
merical methods for supersonic combus- 
tion mainly with FDM have been active- 
ly pursued since the late 1980's [10-13]. 

One of the most important questions 
in CFD is how to deal with large gra- 
dients of the variable (density, veloci- 
ty, pressure, temperature, and source 
terms).   Rapid changes of Mach num- 
bers, Reynolds numbers, Pedet num- 
bers, and Damköhler numbers (if re- 
acting) between adjacent nodal points 
or elements can be a crucial factor in 
determining whether the chosen com- 
putational scheme will succeed or faiL 
Furthermore, proper treatments for in- 
compressibility and compressibility, vis- 
cous and inviscid flows, subsonic and 
supersonic flows, laminar and turbulent 
flows,  nonreacting and reacting flows 
are extremely important. These various 
flow properties may be depicted in ty- 
pical reacting flow problems for ramjet 
and scramjet combustion as shown in 
Figs. la,6,c. 

Can there be a general approach to 
satisfy all the requirements mentioned 
above? Can a single mathematical for- 
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mulation leadL to most of the currently available computational schemes both in 
FDM ana FEM as special cases? Most importantly, will such an approach guarantee 
accuracy and efficiency? In this paper, our goal is to respond to these questions 
positively To this end, our approach, known as the Flowneld-Dependent Mixed 
Expliat-Impiicit (FDMEI) method, is based .on the following procedure [7-9]: 

(a) Write the Navier-Stokes system of equations in a conservation form. 

(b) Expand the conservation variable U«« fc Taylor series up to and including 
the second-order time derivatives of the conservation variables. 

(c) Introduce in step (b) six different flowfield-dependent implicitness parameters 
which are calculated from the changes in Mach, Reynolds, Pedet, and Dam- 
kofaler numbers (if reacting) between nodal points or local elements. 

(d) Substitute step (a) and (c) into step (b) to obtain the increments of the 
conservation variables *U»+'. As a result, the final form resembles the implicit 
factored scheme of Beam and Warming [1], but much more rigorous. 

(e) Step (d) may be used either in FDM or FEM. 

The computational procedure as described above is capable of resolving complex 

££££?* fl0WS " "*"* ** ShOCk ™* *"«—• «* ~Ä£ 
(1) Shlt r68 In fTPnaSihlB flOWS « depeadent on changes in Mach nu- 

mber between nodal points in FDM and within local elements in FEM. Shoe* 
wave discontinuities are characterized by these changes in Mach number. 

(2) ^^„"V^1** flOW8 ^^P»^ on changes in Reynolds num- 
£LS?T n°^ P°mtS m FDM aad ™tUn iocai deme*ts * FEM. Incom- pressibility conditions are characterized by these changes in Reynolds nunZ. 

(3) C£P^aihle t,!TbUie? flOW8 "■ dependent on <*»*«» « both Mach num- 
SLents^S Dn^   f hT7™ n0dal P°intS in FDM -d ^ ** 

(4> ^hh^Peratüri gradient flOW8 "■ depKldent °* «*»W» » P«d-t num- 
1^17 n*£ POmtS iU FDM and **"* iocai dem^s * FEM. The 
P^eTnulb; m ^ traMfer " *«««*-* ^ these changes in 

(5) Reacting flows are dependent on changes in Damköhler number between 
nodal points in FDM and within looüeSmen« in FPAT %% <-«n««.f^« — _r elements m iEM. The mass source vs 
convective transfer, mass source vs diffusive transfer, heat source vs convective 
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(8) Direct numerical simulation fDNS"> 5n „u- .        ,     „   . 
out „til turbulence length nTcroscal^e if J^***»«» w «** 
can not be reliable particuhxb??•? ""i** W,th0nt twb^ce models 

variables as described in (3)Tb0ve £ £ *»*?** gradients of 

Legendre Poly.o^alSpectrLLde7mavIe ST I ^ ^^ 
not the spectral mode'approach U Ä^J^^W' ™"*« « 
efficiency remains to be seen.    Due toT i     ♦ ?^ computational 

is*-— - -~-asr^srsa 
m Secuon 4, aad co-eluding remark iu S^Sa ä 

S°m" e*a'I"'ie Pr0blems 

2    MATHEMATICAL FORMULATIONS 

*    a* +"^ = B' (i) 
where U. F,   G-   and B d 
variables.dirusion flux ^^H^^T^ ^ ^^ Convec»^ *« 

'        source terms, respectively, 

G,= 

P,= PE 
pYk\ 
0 

-pDkmY^i 

pviVj+pSij 
pEvi+pvi 

pnv, 

B = 
0 

Pfi 
-■fffcW* + pfjVj 

(2) 

where /, = £j* t yfc j   is the fa 

pomt entnaipy, ^ is tne reaction ^ J^d n   ^T"1 SPed6S' ** is täe Zer°- 
equations for vibrationai and electron*/ ■ " maty «"«»ivity. Additional 
uypersonics. electronic energies may be included in Eq. (1) for 
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Expanding the conservation variables U in Taylor series including the first and 
second derivatives, we have 

where 3i and s2 are the implicitness parameters denned such that 

flu**'1 _ dU"       öAUn+l 

at   ~"äT + ai   dt    '    o***1. (4) 
aaüw+^  _ daU* 52AUn+l 

dl2     ""ätä"^32—dt» '    °**2<1, (5) 

1rhT ATT =T+1 ",Un- II iS ""»^ that the c°™«i°* *« F, is a function 
of U and the diffusion flux G, is a function of both U and its gradient U Thus 
we have: •'" ' 

££_    dFi     dGi     _ 
ft ~~äi7~äx7 + B' (6) 

£E = __1 /„*£> _ _L (. au\   _&(   av\     /au\ 
*»    dxA^dt) gxAb'irJ-d^-(^-ärj+d(är)'   (7) 

where the convection Jacobian a,-, the diffusion Jacobian bt-, the diffusion gradient 
Jacobian c,-if and the source Jacobian d are defined as 

■•"W    b,"dU'   ^ätj"'   d=äü W 

Assuming the product of the diffusion gradient Jacobian with third order spatial 
derivatives to be negligible, it follows from Eqs. (1) through (7) that 

AIT*1 = Ai 

+ 

** [ to,  *,+ B -1 (--äj sr+ABn j 

2 [la«,        ^aXi    ax;   a)   dUx,+lx7   BJJ 
fa,       , . /0AF?+l     ÖAG^1 \ 

k(a-+bi)(,~^-+-ä^— ^"'l 
-d(-ix^+^r-B"-)]}+o(A^ (9) 

In order to provide different implicitness (different numerical treatments or schemes) 
to different physical quantities, we reassign sx and ,2 associated with the diffusion 
ana source terms, respectively, 

3iAG, ^ 33AG,,      3iAB => 35AB, 

A^      " (10) 

j^AG, => 34AG,,      j,AB => sflAB, 
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with the various implicitness parameters defined as 
si s first order convection implicitness parameter, 
s7 = second order convection implicitness parameter, 
33 ae first order diffusion implicitness parameter, 
34 = second order diffusion implicitness parameter, 
35 = first order source term implicitness parameter*, 
Je «second order source term implicitness parameter. 

dJmTJJr' °;^implfd*aeSS paramete» *i. «s. and 35 wiU be shown to be fiowfield 

AU"+l-hAi 

öxvöij 

r,d(a,-|-bt)U
n+1 11 

V ox,   ■   fc, J " — [^(a, + b,) ^ + _£ . a. j 
./OP?   aQT»      M "dvä^+"^r-BnJJ+ö(A^)=0, (11) 

with 

AHB+1 =   AB"*1 = I^Atr-« = dAir+* 
Rearranging Eq. (11), we obtain 

+ dxt-l
E'Air   ]+5^(M^)+Q-+0(A»),    (12) 

or 

(A + ÄEi+'^T^)AU"+1 = -q", (13) 
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with 
At2 

A = I + Ats5d + -— s6d, 

At2 

Ei = Ai^a,- + sjbi) + ~36d(a,- + b,-) + a2da,- + j4db<], 

At2 

E,-,- = A**3cy - — [a2(a,a:- + b,-aj) + s4(at-bi + btbj - dc,-,-)] 

(14) 

(15) 

(16) 

q--2- 
dx{ 

fAt + *£d\ (I- + G?) + ^l(a,- + b,-)B»l 

a2 

dxidxj 
dt2 

(a,- + b,-)(F? -r G7) -(*-¥-)- (17) 

An alternative scheme is to allow the source term in the left hand side (LHS) of 
Eq. (13) to lag from n + ltonso that Eq. (13) may be written as 

with 

(18) 

a* 
dxidxj 

At2 

(' 
- ( Atss + ~-9e\ dAlT - (At + £pl] Bn . (19) 

^n^" -^ ?e*m;WarmillS sch^ [1] can be written in the form identical to 
bq. (18) with the following definitions of E,-t E,-,- and Qn: 

& E,- = mAf(a,- + hi),    withm =    , 

E,j = mAtCij, 

(20) 

(21) 

(22) 

where the cross derivative terms appearing in Q» for the Beam-Warming scheme are 
included in the second derivative terms on the LHS. The Beam-Warming scheme is 
seen to be a special case of the FDMEI equations if we set sx = a3 = m, s2 = s< = 
ss-ss- 0, in Eq. (18), with adjustments of Qn on the right hand side (RHS) as 



A N«. Comp„ta.icJa. Appro,*, „,„ Flo^d-Depe.^, InttBda«, Almi,^^ 

capable of producing practically aü 
existing FDM and FEM schemes. Some 
examples are shown in [9], 

Contrary to the Bem-Waxmine 
scheme, the FDMEI approach is toob. 
tain the implicitness parameters from 
the current flowfield variables at each 
and every nodal point rather than fixing 
the implicitness parameters to certain 
predetermined numbers and using them 
for the entire flow domain irrespective of 
the local flowfield variation from one po- 
int to another, in FDMEI scheme,these 
implicitness parameters may be deter- 
mined for spatial and temporal bases 

025 
°J0.63^75 

First order impiiatness parameters 
• *r •*) 

- «- -*- —* oe aeter- 
«J!!Ln«i5äationsi?pa between ** first T? for »P»0«1 ** temporal bases 
-s^l-^/Ä^L"^«- A - ducted in Fig. 2. The final vam^ 
-> = m«a-3l, 0.5)i 54 i ^\:q; J5T    * neatness parameters at any po- 

: =Ti 7n' °J1; 9>-V*>«~ 4:     '? *"* at "V time caa b* obtained as 
3£&°     " < I; D ~ Be«n-Wanmn3g     the average of both spatial and temporal 

contributions: 

Convection fmviidtnus Pamm^t  

*\ = 
r > a 
r<a,Mmm 

Minm = 0 
■ 0 -»2 = S* , 0 < n < 1 (23) 

with 

. . -«mm ' (24) 
where tne maximum and minimum Marh «««», ,    , 
nodal points in FDM or wShinT^^. T "* ^"^ batw« adjacent 
parsers and between^^^^te™te-P^^t-- 

paramerers and a is a user-specified smj numTerV* nonT^ impHdtaesS 

3i is directly related to the flowfield wh«L! ? ( ^ )# Here " 1S seen thdX 

ITiepnmaryroieof ai is to ensure the so^ * ^ ^ * >** that * = * 
the convection gradients, whereas th««/^ ^ by Pr°Periy acc°nxmodating 
stability. '   Qereast*at<rf '7 «to act as artificial viscosity, for solution 



474 
NUMERICAL SIMULATION or^^^ 

33 = 
nun(s, 1)   5 > ß 

-oe^tn-U, OTPemin=0 

with 

or 
A as _ y/*4*. - Rel mm 

temi 

(25) 

(26a) 

S SB 

whArorh •PCwi'» ' (26*) 

*= :trr^™s: 's-.? r- - -— 
parameters, and /?is a user-specified,™ n * f°T^Usd **d temporal implicitness 
gradients are large, it is poSbTeTi^Ve^ nTb ^ * J^" * t"£«£ 
wüi cüctate the diffusion implicit pS^^T* °f Reyn°lds numfaers 

5?™* Term fmpiicitness Pflmw>,,_. 

35 = 

with 

min(*,l)   f>7 

1 lb™n = 0 
•s« = >ss,0< n < 1 (27) 

(28) 
where the maximum and minimum DaafcTl u 
a» m *i and 4, for spatiaI ^ t^™*^. numbe« «■ calculated simüarily 
specined small number (7 » ^S^SSS^ ^"^ "* ^ a — 
those tor convection and diffusion imp^^ ^ *5 aad * is simü~ " 
38 "d ^»«rolling the solution ££^Z P^""* ««* that « = 5» ^ 
average of both spatial and teapo^SüdEl°* "**"*• «P«W The 

" ISn? " "* P°int ^-entTatd SS'   "^ ^ be ■*** for °se 
Hdationships between all physical nh7 , 

treatments are characterized by ^Z^T^ ^ COrTesP°^S numerical 

~-C«. *. .) and Jsecon^ S^pS* ^ 
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£** * «« » PreJe the £Ät^i^~« 
for the second order imDlicime« nar,TO«.     •-      r   UA<"0'- ^oie mat the definitions 
in [7, 8] in order to ^TSZ^SS ^,7^ ^ *~ ~ 
second order implicitness ?*JZ"^Tet^  2 * ^ th0Ugilt th" the 
the first order impiicitness par Je£w°   - , .^ *"* ?PP0She "Ranees of 
such that the second order implicitness oara^L/»' tl=    " *' * = l ' ««) P] 
respectively, for the minimum ^I££H?       ^VT*111111 "* ^^ 
parameters, unfortunately, such defiSSn ^H     f   r* ?* ^ imP^tness 
for the high values of the firsT ord«   °       f      * t0° Ü"le nUmerical vis^ties 
^^^«(o^rf^^0^^?1?« P^ameters.   Subsequently, the 
that „ = max(i _ sllQ.5)Tj^^T^7^Telm Werc Provided such 
both first and second ordp^ame^sToSa6!111 W" ?"^ h WM QOted tb* 
extremes at zero and unity^^ s LndcX^ ' >" ?"" ^ " the botb 

reasonably large for aü values of the fir«     7      fatness parameters being 
the second order implicit pJamt^v^fb """T ^"^   ^ 
fractions of the first order im?l^n^^Z^   ' ™ ^ MIlihlear sinuous 
Xfc. range of the constant n is 0<„<^ £^??$°**~ -dements, 
optimum, exhibiting the best MWJL'TTT        1/4 haS been fou** to be the 
the example problems pm^S^T      "^^ "* CFL nUmbe" ia 

ä ^-^^    abo-«-** - a« follows: *° 0e a«omatically generated, as summarized 

(1) The first order implicitness naraTT,«»— J 

nomena such as sLck £££ Itfanll 'T^*01 ^ "* **«« Pb* 
from the changes of local Z^L^^'^*" paiam«ers » calculated 
within each elLent Jt££££St E* ^f (°f Ped"> nambe« 
The contours of these pattenT22Zl "S*** **"»" flowfi^- 
with both Jt and s3 W«w7 i y """"■ the flowfieids themselves, 
b« small (dose to^^ n "gTois X S***"*"» °f "* «Ä 
»Ü of 3X and ,3 is to provide S^EL^JS^ "" ^ *" ^ 

(2) 2! ^tlÄ ? - - - fl°^ •*-■ 
(artificial viscosity) as they we« ori* nd8.ad^tt*Ä «Rationalstability 
time derivative ten* of the SorT^ """"^ ^ the 6econd «** 
variables U-.. ^ pnmLytie ^fT T"?* °f the co*"*vation *°* 
stability. ^ TOle of J' and j4 « to provide computational 

(3) S^s "S'src^irrtto if <■s °*- <>° — «u. ii. eompnaoo«! scheme i5 „tomatically altered to 



476 
 . NUMERICAL SIMULATION OF COMBCSTTfW 

take this effect into account, with the governing equations being predominant 
P-aodic-eUiptic. Note that these effects are confined at U-'   n0t aTuT 

(4) The S3 terms are associated with diffusion.  Thus, with s3 a 0, the effect of 
mcosny or diffusion is small and the computational scheme is automatTclllv 

(5) a^ilrr>rder imfdt™* ?*™«vs *i and ,3 are nonzero, this indicates 
a typical situation for the mixed hyperbolic, parabolic and elHptic natu^Tf 

JÄ S™m °f h
eqUati0nS' ** COnVe«i0n -d ^ion bdng 

«c«n,»- J , UA1^ scheme is its caoabihty to control Dressnrn 
«dfcuon, adequacy witbou. resorting ,o the separate hyperbola 
pmsure eouafon tor pressure corrections. The capability ofFDMH s2L 
«handle mcompressible Sows is achieved by a dSicate b Jalce b«w«aT 

such «'SiKsrÄ"mher tha* by the ^^ ™b- the wall. * temPerat"= compressible flows close to 

(7' ÄtS^i^^-- ^«on ta.es 

term implicitness o^Z^T      • Damiohler »™bers, the first order source 
the 3Sr^ll" .netramental in dealing with the stifihess of 

to tie stabüity of^utiorTl T mpilatI1!!ss P**=™e"r X contribnte 

wiU adjns, ^L^Z termsTJ   Vhe "^ «"- "y =* <23'' <24> 
time to the reaction SS »£2?? "" "^ """ ^^^ 
solutions with computationally ' *° " '" USMe ""' *""»» 
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(8) Various definitions of Peciet number and Damköhler numbers (Table 1) bet- 
ween the energy and species equations should be checked. Whichever definition 
provides larger values of 53 and s5 must.be used. 

(9) The transition to turbulence is a natural low process as the Reynolds number 
increases, causing the gradients of any or all flow variables to increase. This 
phenomenon is the physical instability and is detected by the increase of 3, if 
the flow is incompressible, but by both s3 and sx if the flow is compressible 
Such physical instability is likely to trigger the numerical instability but 
will be countered by the second order implicitness parameters s2 and/or s4 

to ensure numerical stability automatically. In this process, these fiowfield 
dependent implicitness parameters are capable of capturing relaminarization 
compressimlity effect or dilatationai turbulent energy dissipation, and turbu- 
lent unsteady fluctuations. 

(10) An important contribution of the first order implicitness parameters is the fact 
that they can be used as error indicators for adaptive mesh generations. That 
is, the larger the implicitness parameters the higher the gradients of any flow 
variables. Whichever governs (largest first order implicitness parameters) will 
indicate the need for mesh refinements. In this case, all variables (density 
velocity, pressure, temperature, species mass fraction) participate in resolving 
the adaptive mesh, contrary to the conventional definitions of the error 
indicators. 

(11) Physically, the implicitness parameters will influence the magnitudes of Jacobi- 
ans. Thus, Item 8 above may be modified so that the diffusion implicitness pa- 
rameters 33 and s< as calculated from Reynolds number and Peciet number can 
be applied to the Jacobians (a,-, b,, ctJ), corresponding to the momentum equa- 
tions and energy equation, respectively. Furthermore, two different definitions 
of Peciet number (PeT, Pen) would require the a3 and sA as calculated from 
he energy and species equations to be applied to the corresponding terms of 

the Jacobians. Similar^applications for the source term implicitness parameters 
3s and s6 should be followed for the source term Jacobian d. In this way, high 
emperature gradients arising from the momentum and energy equations and 

the finite rate chemistry governed by the energy and species equations can be 
resolved accordingly. 

FFT^T^^f ^ ~ fVen in Eq* (12) may be soived fay *ther ™i or 
FEM. The standard linear Galerkin approximations of FEM lead to the results of 
central differences of FDM. However, the main difference between FDM and FEM 
arises wnen integration by parts is performed in FEM and the explicit terms of 
Neumann ooundary conditions ^naturally» appear as boundary integral forms. Thus, 
all Neumann boundary conditions can be directly specified at boundaries in FEM. 
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Table 1.    Definitions of nondimentionai flow variables 

P(vV)v=-Vp + n[V2i > + \V(V • v)] 

T 
V-pv J cpk dT - y^kVT - 

c 

V             To            )          fa« To                        F 

E 

y-(pYkv)~ 
a                         N 

■V1(pDVYk)= wk 

i j K 

Mach number M u 
a 

A      inertial force 
B     pressure force 

Reynolds number Re puL 

P 
A     inertial force 
C     viscous force 

Peelet number, I Ptj fntLc^k 
k 

£ _ convective heat transfer 
F     conductive heat transfer 

Pedet number, II Pen 
uL 
D 

!_ _ convective- mass transfer 
J       difiusive mass transfer 

Damköhler number, I Daj 
P*Yk 

K          mass source 
I      convective transfer 

Damköhler number, II Dari 
L2wk 

pDYk 

K         mass source 
J      difiusive transfer 

Damköhler number, HI D*m 
Hu 

N_               heat source 
E     convective heat transfer 

Damköhler number, IV Darv 
kT 

N               heat source 
F     conductive heat transfer 

Damköhler number, V Day 
HD 

N             heat source 
G     difiusive heat transfer 
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This is uot the case for FDM Oft or, *i_ 
for Neumann boundarv ccndiUof ™'FDM       C™Dmome P™« ■>»" be taken 

«id iaviscid flows, and laminar and SSL   fl       T*»«M« «ows, viscous 
«he flowfleld florin, a ^J^ ^-Vf*.«—b*d throughout 
Pl.jr.ics and that do« not account for „Sr   ""1 f" "* ^ ^ °( S°» 
For «ample, the flow close to tie wail ?JL?    °f """L Pim««'* «iU fail. 
interactions is incompressible (M' <fX    „tL™* "f""6'" bomid^ ■•»■ 
.. compressible (supersonic or nypersonic)  TZ ,Ty ^ "^ "* a°" 
mvurcid flow..  In between these two £L£X?£2£T' **" «""W to 
«taUating bade and forth across the bXd^ )tl !?"? "?T «»öimmdy, 
leading edge and bow shocks. At any riv»^L Y ?'°C'ty *""' mtKW. "d 
gradients of each variable (densto ?~       "f?1"00»»1 °°dal point or element. 
»-1 O' *T large, so ^TS2' prSSJ aT* »",«-»««■) m^ b= T 
m«hods may faiL la order to mJSt^f^^ ?"* —Phonal 
everywhere be identifled and so «^"^TZ "f "" C°Imt S°W "»*» 
»ocorded to each and every computatio^Lll      Pe°Sf c,™P»«'ionai schemes 
such accommodations JLJ^m^^ "" "—»■ * «• «*» «tat 

«    IMPLEMENTATION AND COMPUTATIONAL PROCESS 
Aa stated eariier   th« «„„_: 
Stokes system of '£&^) ^1^ Tf °' "--dined Xavier- 
finite volume method (FVM1For FDM     ?       t0 *th" FDM or FEM, or to the 
spatiai derivatives «i^^TcS^ *> *? °^er and second order 
may write for any variable u as dlfferH1Ce sdlemea-  F<* «ample, we 

** 2A* (29) 

with analogous formnias for the v deriv* • **■* ^ 
extensions to three-dimensional problem?        " tW°-dimeilsio^ « corresponding 

For applications to FEM we beein 'h 
variables and source terms as a LineaTr«^°y, eXpressmS tte conservation and flux 
nodal values of these variables co^^tion of trial functions *a with the 

Appiymg the generaliaed Gaukln aPpradmnrions to E, (^L 
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or 

where 

'A*' = Ja*°*Bda,    77r5.= (l + Afc5 + ~lS6)*„, (34) 

+ jM|A*(«la»rj-}.j34il 

rtidT, 

*2r A*2 

Ar2, 

At2. , . 
- —{a*, r 6,v.) (*£. + Gr0j,) *aA*pj + 

At2 

+ —dr,B"0, 

A:^r 

«I = /r {[-" (* + fifc) - ^„ (q. + es,,) 
At3 1 -   - 

Ar», 
+ -jneifr. + 6tV.) (f*# + ö»^) |o$fli. I n.drf 

(35) 

(36) 

(37) 
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where ail Jacobians must be undated at «„i. •* 
Neumann boundary trial and tit wf ""V?*111011 steP' *• "PWmts the 
number and r, ,%SS^lTB^rf *' ? ^^ ^ ^ >°d* 
For three dimeksioL 7i-        w  °f\<*™™** variables at each node. 

identification of ^ iLli^l^^ ^ '?T* ** *"""« 
C22, c23l c31> c32, C33) with r, 3 = 1 2 3 4 ^lÜ;1' • 3\Cl1' Cl2' c"' c21, 
Jacobian matrices. Note also hat theJdalion ^ T" ? *"* °f the 5 * * 
source terms to the RHS of Eq 33)in^ o f ^ .* ^ t0 m°Ve the deit* 
step behind. These indices c£ h»ll 7^ aggmg the SOurce terms «» time 
Siven by Ec, (££.^ed^ ^ FDMTI-FEÄ ** "" ^ FEM *~ 
on FDM schemes of Eq, (29) ana (S^J^Sl JSSSj^ W ^ 

integrals. It is particularly ad^t 'Ls fh J^™" * NeUmaim bottnd^ 
througu re-evaluation of JacobianTncSaT t1 FT ^^ "^ 
be added to the boundary nodes for tT. «r 1 ^^ SUrfaces caa **& 
the other hand, all H«^^^ W =* (35)' °* 
source terms. These features are ab^S 'nFDM h ^ ,*" a Eq' <37> « » 
boundary conditions can be handled^ £i' ™Piemmtatio^ * Neumann 
boundary nodes. y deV1S1Ilg 'P60^ fora* of finite differences at 

Similar results are obtained either by FDM or nv ^ 
turns derived primarily from the FDMEI Eos  n2f ^ T^ °^mputa- 
Ifeynoids number (say around Äe » wX ,? (12)* ?°WeVer' ^ tlle ^crease of 
with applications of special functions such as7/*", ^ ^^ may increase 

modes characterizing extremely sma^otlett ^ ?*?"** of ^ ^gree 
high frequency modes can be achieved btZ?63" ^P^^ation of such 

. nodes of isoparametric finite elemeTs   Lit?*? ^l T^ betWeen tile c°™* 
a» needed for the resolution oTtSbulelt ^ 7* ^ ""^ CM be chosm 

implicuness parameter „ will p£v~ J^T ?"" ^ the diSasio« 
degrees of Legendre polynomial   The uT°f r Ä dftermilünS the required 
superimposed onto isoparametric dem™« I LeS«we polynomial spectral modes 

One oi the most s gnificant asDeet«: nf «■»,   PTM,T,T 

numbers (incompressible fio^ t£s*le Sfl     t        ^T" " that f°r iow Mact 

pressure oscillations. This Wustm^!Ta^0 automatxcally adjust itself to prevent 
employed for 1«««^^^^«»--«*-. 
shock wave resolutions at hieh M Jh „     u UU Scheme is ^P*01«5 of 
dealing with interactions between sW k^ ', ^ P3"1^^ weU suited for 
regions of high and low uTn^Z * It*" *""**> iayerS where 

case, the inviscid and viscous ^ Reyn°ids numbers coadst.   In this 
end the second oZi^Z^^^^T * ^ *~    To tids 

pnatness parameters play the role of artificial viscosity 
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needed for shock wave resolutions in the presence of flow diffusion due to physical 
viscosity. 

In order to understand how the FDMEI scheme handles computations involving 
both compressible and incompressible flows fundamental definitions of pressure must 
be recognized, Consider in the following that the fluid is a perfect gas and that the 
total energy is given by 

£ = Cpr"p+2V,*V''' (M) 
The momentum equation for steady state incompressible rotational flow may be 
integrated to give 

J(P + 2^viv;)..' ds<- = / [M (v.ji + |vij$) + pcjiv^vj dxi, 

1 
p + -pv;-vi = Po + W, (39) 

with 

where uk is the component of a vorticity vector, p0 is the constant of integration, 
and m denotes the spatial dimension. Combining Eqs. (40) and (41) leads to the 
following relationship: 

p„ = P(cj,T + vt-vt- - E) - W. (40) 

If pe as given by Eq. (40) remains a constant, equivalent to a stagnation pressure, 
then the compressible flow as assumed in the conservation form of the Navier- 
Stokes system of equations has now been turned into an incompressible flow, which 
is expected to occur when the flow velocity is sufficiently reduced (approximately 
0.1 < M < 0.3 for air). Thus, Eq. (40) may serve as an equivalent equation of state 
for an incompressible flow. This can be identified element by element for the entire 
domain. Note that conservation of mass is achieved for incompressible flows with p0 

in Eq. (40) being constant, thus keeping the pressure from oscillating. 
Once the Navier-Stokes solution via FDMEI is carried out and all flow variables 

determined, then we compute fluctuations /' of any variable /, 

/-/-7. (4i) 
where / and J denote the Navier-Stokes solution and its time average, respectively. 
This process may be replaced by the fast Fourier transform of the Navier-Stokes 
solution. Unsteady turbulence statistics (turbulent kinetic energy, Reynolds stresses, 
and various energy spectra) can be calculated once the fluctuation quantities of all 
variables are determined. 

Before we demonstrate numerical examples, let us summarize why the FDMEI 
scheme is capable of handling low speed and high speed and' compressible and 
incompressible flows, including shock waves and turbulent flows: 



A New Computational Approach with FIowneld-Dependent Implicitness Algorithm     483 

(1) How is the transition from incompressible Sow to compressible now naturally 
and automatically accommodated without using two separate equations or 
two separate codes? This process is dictated by the first order convection 
implicitness parameter ai as reflected by the Mach number changes and the 
expression of the stagnation pressure. 

(2) How is the shock wave captured? As the Mach number increases and its 
discontinuity is abrupt, the a, terms associated with second order derivatives 
together with squares of the convection Jacobian provide adequate numerical 
viscosities through second order derivatives, similarly as the Lax-Wendroff 
scheme. 

(3) How is the transition from laminar to turbulent flows naturally and auto- 
matically accommodated? This process is governed by the first and second 
order diffusion implicitness parameters (sz and *4) as calculated from the 
changes of the Reynolds number. The terms associated with s3 and sA are 
responsible for fluctuations of velocities, with the values of these implicitness 
parameters increasing with intensities of turbulence in conduction with the 
oifiusion gradient Jacobian and the squares of the diffusion Jacobian This 
process allows the Navier-Stokes solutions to contain fluctuations which can 
be extracted by subtracting the time averages of the Navier-Stokes solutions. 

(4) How^do the interactions between convection and diffusion take place? Changes 
of Mach numbers and Reynolds numbers as reflected by both convection 
and diffusion implicitness parameters close to the wail contribute to the 
unsteadiness Away from the wail, they contribute to the transition between 
incompressible to compressible flows. 

4    APPLICATIONS 

We examine first a nonreacting flow problem with shock wave turbulent boundary 

»Z ^T""^a COmpressio11 comer' foUow«i ^ the reacting flow with a flat 

ÄSSTJÄ"combustor' *theae —*- 2"D isoparametric 

4.1    Supersonic Nonreacting Flow on a Compression Corner 

Ulf ^'f W! demonStme caIcuiations °f supersonic flow on a compression 
r",.    D boundary conditions (nondimensionalized) are p = 1, M = 2.25, 

p = 0.14, Re: = 105, Pr = 0.72, and v = 0, with adiabatic wall condition. The 
steady state background mean flowfields.for the comopression corner are shown in 
Fig. 3a. In these calculations, all perturbation(fluctuation) variables are determined 
from time averages of the Navier-Stokes solutions according to Eq (41) 
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0.10256 m 

Temperature 
Mach number 

\2      1.4      1.6 
time   

I = 0.102 m, i, = 0.004 m     m":"la"0■, v«'°="=, 1 - * - 0.102 m, y = 0.001 m; 2 - 
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Tie horizontal and vertical perturbation velocities |V and VI .» i 
to the wail (i = 0 10256 m » - n nnr„      ™aaes C» , and •) at locations close 

f = 0.04 m> are sh™ fn rig 36  Not, that t^ *" f *"* (* = 0M™ =• 
signincaatlyless unsteady d*  to T^JL^^^TS. "^ ' " 

fönendes „s    p^HL^ E^T Stl"S"CS e,k"ta,ta» <"- »dmbers or 
■nicrosca^ are SZSE& tS^L"""^ " ,te — - "»W— 

max=!.6xl0 
m.n=0.0 

«V 

nux-15xl0 
IT.HK5.2XIO"6 

Figure i. Supersonic nonreactinz flow nr. » 
compreaion corner. Reynolds"«««        a 

It should be noted that the above re- 
sults obtained without turbulence mo- 
dels or without the standard DNS solu- 
tions (neither spectral nor DNS mesh re- 
finements) are regarded as the consequ- 
ence of the time-averaging.of the FDMEI 
INavier-Stokes solutions.   This implies 
that the fluctuation of variables between 
nodal points and between time steps as 
reflected in terms of the implicitness pa- 
rameters (s^ have contributed to these 
physical phenomena, with compressibi- 
lity and shock waves dictated by the 
Mach number-dependent su and with 
incompressibility and turbulent fluctua- 
tions dictated by the Reynolds number 
or Peclet number-dependent s3. The si- 
multaneous participation of Sl and s3 

are also responsible for shock wave tur- 
bulent boundary layer interactions. 

r.nw^mpariS0n of the resuits °f the 
FDMEI scheme with the k-e turbulent 
model and experimantal data is shown 
m Fig. 6. It is seen that the FDMEI 
results compare more favorably with 
those of measurements [14]. 
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0.02 0.04    0.06 
Y  

0.08    0.1 

Figure 5. Supersonic nonreacting now on a 
compression corner. Turbulent kinetic ener- 
gy, i — r = 0.051 m,     2— x- 0.1333 m 

4.2    Supersonic    Reacting    Flow 
with Transverse Fuel Injector 

We consider an example of transverse 
hydrogen fuel injector with 9 species and 
18 reaction equations and a rectangiar 
geometry of 3615 isoparametric finite 
elements studied in [8]. The primary 
air flow is set at M^ = 1, p = 

0.1 MPa, and T«, = 1000 K. The secon- 
dary hydrogen jet transversely injected 
through a slot of 2 mm is provided at 
M = i. P = 0.2 MPa, and T = 300 K. 
Initially, the frozen flow with the mass 
fractions of 0.095 02 and 0.905 N2 is 
analyzed, which is then used for reacting 
flows. 

Figures 7a,b show density contours for the frozen and reacting cases. Notice that 
the density changes steadily toward vertical directions downstream of the slot for the 
case of frozen flow. However, for the reacting flow, there is a considerable undulation 
due to the formation of production species and the effect of dilation and dissipation. 

In Figs. 7c,d, the pressure and temperature variations for the reacting flow with 
an isothermal wall (300 K) are shown. It is evident that the upstream boundary layer 
separation and bow shocks, Mach disk and barrel shock, downstream boundary layer' 
and reattachment shocks appear to be smeared due to chemical reactions. Expansion 
waves appear downstream of the injection slot as the boundary layer is reattached 
(rig. 7c). The static temperature increases to the maximum below the upstream 
boonaary layer sughtlytoward upstream of the injection slot as a result of of the 
exothermic reactions (Fig. Id). Downstream of the injector, cold unburned gases 
flowmg out of the injector reduce the static temperature drastically. There is an 
ev,dence of sudden increase of temperature downstream of the reattachment shock 

Z^main"or1" °f fUei t0Sether Wlth » inCTeaSed «*■« —ration 

n^TlTn0f mT fraCti°?. f0r the reaCtitmS H* "* °* «* tte ™* Precis 
OH ana H20 are shown m Figs. le-h.  The large scale «circulation upstream of 
the injection transports the injected hydrogen within the upstream boundary layer 
stagnation region, resulting in a significant amount of OH and H20 species therein. 
These main species together with intermediate species are carried downstream of 
he rearculation region. The exothermic energy thus created within the mixing 

layer contributes to the thrust force. 
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-02 o 0.2   0.4 0.6   0.8     1 

SSuLnlTF^MrTTn"^"115 fl°Vn
L 
a <°mPre331°n c°n»er. Comparison of velocity 

a^0 06^mJ)D0 1Ei(i) ^ ^ ^ (2) "^ «* «P—* data [14] (# 

5    CONCLUDING REMARKS 

L\edtrC™Fni0nalS^te^ Caüed the n°^«i-DeP^ent Mixed Explicit- 
tophat(FDMEI) method has been introduced for both nonreacting and reacting 
flows. This method is believed to be particularly useful for supersonic combustion 
Tb, reason or this is that the source term implicitness parameters and Jou 
defmnions of Damkohler number as related to the source term Jacobians play a 
significant role m the finite rate chemistry, especially with shock wave turbulent 
,nTr yCT 1^eraCt!0nS: Caemical reactions are either enhanced or dimisnished 
m the presence of complex flow physics including transition from laminar to turbul- 
ence, from incompressible to compressible, and from inviscid to viscous flows, and 
resulting m the various degree of efficiency in combustion. 

n»^1 F^T^r1^/686"^ WiU be reqnired before tne fuü assessment of the 
proposed FDMEI scheme for applications to supersonic combustion can be made. 

^e rXedTr      /' T^T "'" °f the ****** results, expected certaily to be renned and «enforced in the future research. 
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a) b) 

'max 

c) d) 

max 

9) h) 

Figure 7. Various flowfield contours for transverse hydrogen fuel injection, (a) Density 
contours (frozen): max = 0.6, min = 0.058, A = 0.021 kg/m3. (6) Density contours 
(reacting): max = 1.813, min = 0.0842, A = 0.049 kg/m3. (c) Pressure contours (reacting): 
max = 0.4053, min = 0.0017, A = 0.025 MPa. (d) Temperature contours (reacting): 
max = 2982, min = 545, A = 195 K. (e) Hj mass fraction: max = 1.0, min = 0.0, 
A = 0.024. (/) 07 mass fraction: max = 0.095, min = 0.0, A = 0.002. (g) OH mass 
fraction: max = 0.0602, min = 0.0, A = 0.0024. (A) H20 mass fraction: max = 0.0081, 
min =0.0, A = 0.0003 
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Abstract 

Despite significant achievements in computational fluid dvnam.cs. there still remain manv fluid flow phenomena not well understood. For 
example, the prediction of temperature distributions ,s inaccurate when temperature erad.ents are n.eh. particularly in shock wave turbulent 
boundary layer interactions close to the wall. Comp.ex.nes ot fluid flow phenomena include transition to turbulence, reiam.nanzation. 
separated Hows, transition between v.scous and inviscid. incompressible and compressible flows, amone others, in ail speed regimes. The 
purpose ot this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-lmphcit (FDMEI) metnod in an 
attempt to resolve these difficult issues m CFD. In this process, a total of six implicitness parameters characteristic of the current flowlield 
are tntroduced. They are calculated from the current flowfield or changes of Mach numbers. Reynolds numbers. Peclet numbers and 
Damkohler numbers (if reacting, at each nodal point and time step. This impl.es that every nodal point or element is provided with different 
or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid. laminar, 
turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of all variables between adjacent nodal points arc 
determined accurately. If these implicitness parameters are fixed to certain numbers instead of beine calculated from the flowfield 
informat.on. then pract.cally all currently available schemes of finite differences or finite elements arise as'spec.al cases. Some benchmark 
problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodoloay 

1. Introduction 

Nearly half a century has elapsed since the digital computer revolutionized computational technoioeies in 
engineering and mathematical physics. During this time finite difference methods (FDM) have dominated the 
held ot computational fluid dynamics (CFD) [1-7], whereas the opposite .s true for finite element methods 
(FEM) m solid mechanics. In recent years, however, the trend toward finite element methods in CFD appears to 
be increasingly favorable [8-14]. 

In general, the analyst preoccupied with the methods of his choice based on his educational background or 
research experience is seldom motivated to investigate other options. Thus, today the sap between these two 
disciplines is widely apart, despite the fact that the thorough understands of the relations between FDM and 
FEM is beneficial. The purpose of this paper is an attempt to call for a new approach in which both FEM and 
FDM can be united toward the common goal of achieving the highest level of accuracy and efficiency in CFD. 
Similarities and dissimilarities must be identified in order to recognize merits and dements of each method and 
to enable the analysts to choose the most desirable approach suitable for the particular task at hand. 

* Corresponding author. 

' Postdoctoral Research Associate, currently w„h Hyundai Aerospace Research Laboratory. Korea.- 
Graduate Research Accictam Graduate Research Assistant 

' Dtstineuished Professor. 

0O45-7825/97/SI7.0O © 1997 Elsevier Science S.A. All rights reserved i 
Pit  S0045-782V97Wni U.Y I 



.VT. Yo 'imniii  Mnnnas  Arm. \lecn. h.üri OOO-fXH) 

One ot the most important questions in CFD is now to aeai w,tn iaree sradients or the variable idensitv 
\e«ocity. pressure, temperature, and source termsi. Rao.d chanees or Mach numoers. Reynolds numoers Peclet 
numbers, and Damkohler numbers ur reacting, between ad,acent nodal points or elements can be a'crucial 
tactor m determining whether the chosen computat.onal scheme will succeed or fail. Funhermore proper 
treatments tor mcompress.biiity and compressibility, viscous and inviscid flows, subsonic and supersonic flows 
laminar and tumulent flows, nonreacting and reacting flows are extremely important. The most general case or 
flu.d dynamics where these various flow properties may be depicted in external and internal hypersonic flows ,< 
shown in Fig. l(a.b). A typical reacting flow .hydrogen-a.r reaction, can also be seen in Fig 1(c) 

ah^rSingle ZT"'3".0" and COmPuter code be ™te bailable to satisfy all the requirements mentioned 
Z, m*I ^i™»*1*™1™1 formulation lead to most of the currently available computational schemes 
both in FDM and FEM as special cases? Most importantly, will such an approach euarantee accuracy and 

Ixarnple^probiems5 "^ ^ reSP°nd " ***** qUSSÜmS P°sitivelv- based on the results °bt™ed through 

Toward this goal, our approach is based on the following procedure [15.161. known as the Flowrieid- 
Dependent Mixed Explicit-Implicit (FDMEI) scheme: . 

(a) Write the Navier-Stokes system of equations in a conservation form. 

(») 

^^f77777777777m7777777p7777777777777. 

Fig. 1. Supersonic and hypersonic flows: (a) External fl 
combustion). 

(c) 

ow over a blunt body: (b) internal How through tins: (c) reactine flow (air-breathtne 
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l avlor series up to and  lr.^iuainc tne seeona-oraer time ib) Expana the conservation vanaole I 
derivatives ot the conservation variables. 

(c) Introduce in step (b) six different tiowrieid-depenaent implicitness parameters which are calculated from 
the changes in Mach numbers. Reynolds numoers. Peclet nurrmers. and Damköhler numbers (if reacuno 
between nodal points or local elements. 

(d) Substitute step iai and <c) into step yb) to obtain the increments oi the conservation variables AL""' As a 
result, the final form resembles the implicit factored scheme of Beam and Warming [1], but much more 
rigorous. 

(e) Step (d) may be used either in FDM or FEM. 
The computational procedure as described above is capable of resolving complex properties of fluid flows in 

general with shock waves, turbulence, and recting flows in particular. 
(1) Shock waves in compressible flows are dependent on changes in Mach number between nodal points in 

FDM and within local elements in FEM. Shock wave discontinuities are characterized by these changes 
in Mach number. 

(2) Incompressible turbulent flows are dependent on changes in Reynolds number between nodal points in 
FDM and within local elements in FEM. Incompressibility conditions are characterized by these changes 
in Reynolds number. 

(3) Compressible turbulent flows are dependent on changes in both Mach number and Reynolds number 
between nodal points in FDM and within local elements in FEM. Dilatauonal dissipation is characterized 
by these changes in Mach number and Reynolds number. 

(4) High temperature gradient flows are dependent on changes in Peclet number between nodal points in 
FDM and within local elements in FEM. The convection vs. diffusion in heat transfer is characterized by 
these changes in Peclet number. 

(5) Reaction flows are dependent on changes in Damköhler number between nodal points in FDM and within 
local elements in FEM. The mass source vs. convective transfer, mass source vs. diffusive transfer, heat 
source vs. convective heat transfer, heat source vs. conductive heat transfer, and heat source vs. diffusive 
heat transfer are characterized by these changes in Damköhler number. 

(6) Direct numerical simulation (DNS) in which mesh refinements are carried out until turbulence length 
microscales are resolved without turbulence models can not be reliable particularly for high speed 
compressible turbulent flows unless the computational scheme is capable of treating high gradients of 
variables as described in (3) above. To improve turbulence calculations. Legendre polynomial spectral 
modes may be added as shown in [15]. Whether or not the spectral mode approach is advantageous for an 
overall computational efficiency remains to be seen. Due to the limitation of computer time, the example 
problems in this paper are not intended for DNS microscale resolutions. 

Details of the mathematical formulations as described above are presented in Section 2. implementation and 
computational process in Section 3. some example problems in Section 4. and concludinc remarks in Section 5. 

2. Mathematical formulations 

For the general  purpose  program considering  the compressible  viscous  reacting  flows,  we  write  the 
conservation form of the Navier-Stokes system of equations as 

dU     !)F-     dG- 
at        dx,       r)X: (1) 

where U. F„ G, and B denote the conservation flow variables, convection flux variables, diffusion flux variables, 
and source terms, respectively. 

U = 

p f>v, 

pE 
F, = 

pvivl + pS/j 

pEv: + pvt 

U*J _     PYtvt 

G = 

0 
— T,, 

-rilvi-kTJ-'ZpcpJDkmYkj 

-pDkmYL., 

B = 

0     ' 
0 

w, 



•.'7". Yuan ri m.      •' •ntnui. Memoas Annt. Mech. Er.:*r?.  ..•>>/ i /ot>7) (XM)-<X><> 

wnere r, - _. =l i,jki is tne cnemicai species, tt. is tne zero-point entnaipy. u . is tne reaction rate, ana D. :> 
the binary diffusivity. Additional equations for vibrationai and electronic energies may be included in i 1 ) for 
hypersonics. 

Expanding the conservation variables V in Taylor series including the first and second derivatives, we have 

U      =U   + A/—- : 0(AfJ) (2) 01 -       m" 

where s, and 5, are the implicitness parameters defined such that 

at/""'1    air      dAir" 
~to~ = ~dT*s>~ir~  0^5,^1 (3) 

with At/"* = £/""" - {/". It is assumed that the convection flux F, is a function of U and the diffusion flux G 
is a function of both U and its gradient U . Thus, we have 

au      ciF,    ;>G; 
dt r).V hx ■B (5) 

<ri/ _     rt  /   ;,t/\      r»  /    fit/\       ,-,-    /     ay\        au\ 
ar - ~^~ Va' —J-J7; Kb. ITJ ~ J^dTj (?« IT) + 4ir; ^6) 

where the convection Jacobian a,, the diffusion Jacobian b,. the diffusion gradient Jacobian ctJ, and the source 
Jacobian d are defined as 

*Fi .      dG, dG,- dB 
a'+dU'       b'=W<       C-'=W/       d = W (7) 

Substituting (3)-(6) into (2) and assuming the product of the diffusion gradient Jacobian with third-order spatial 
derivatives to be negligible, we obtain 

Ar fr a /aF"    ,ic;       \      /flF"    ,<G" 

JiiFr'     «ÄO"' All 
-<-5—-sr-**"')]} O(Af') (8) 

where all Jacobians are considered to be constant within an incremental numerical time step, but allowed to be 
updated at consecutive time steps. 

In order to provide different implicitness (different numerical treatments or schemes) to different physical 
quantities, we reassign s, and s, associated with the diffusion and source term, respectively, 

s, AG,=>.?3 AG,.       j,Afi=>.s5Aß (9a) 

s2 AG;=s.r4 AG,..        s, AJB => v, Afi (9b) 

with the various implicitness parameters defined as 
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i. = nrst-oraer convection implicitness parameter 
.1, = second-order convection implicitness parameter 
5, = first-order diffusion impiicitness parameter 
Sj = second-order diffusion implicitness parameter 
55 = rirst-order source term implicitness parameter 
sb = second-order source term implicitness parameter 
The first order implicitness parameters s,. s} and s< will be shown to be fiowrield dependent with the solution 

accuracy assured by taking into account the flowfield gradients, whereas the second order implicitness 
parameters j,, j4 and s^, which are also flowtield dependent, mainiy act as artificial viscosity, contributing to the 
solution stability. 

Substituting these implicitness parameters as defined in (9) into (8), we obtain 

At/"" -A/ 
U"'1     d2c ,,. At/ 

"^     >ti (AIT" r,                 dx,. dx )     W 

Ar( Vfo^-t-ia^At/"" Aa, At/""" 
-d—^-  

C*X; 
+ s, 

~(d2ia!bi + bbi)W'f> 

2   p dx,. dx, \             dx; dx, 

/ db; A t/""      d:c,;A£/""\~ 
-   \, 

Ma. +b ) At/ lirl 

 rfAt/"" M X-                       r)x; dx,         ) 

Ar 
~   2 

( dF"     :>G" 

r,                V dx,        „x, -B" M£ ;,G"        \" 
- 0(A/' )=0 

dF"    ;G" 

fix "i.V 

with 

AÄ" 
dB 
at/ At; ""   = dAt/"" 

Rearranging (10), we obtain 

R =A At/"" --£-(£,. At/"") + -±—{Ej. At/"") + ß" + 0(Ar3) 
dX;   dX, 

or 

with 

A- — £.. - 
dx. dx. E„   At/"" = -fi" 

(10) 

(11) 

(12) 

(13) 

Ar 
A =/ +Arjjd4- —j6d 

Ar 
£, = A/(j,a, + s,Zr) + — [std{a. + *,) + j, da, + .v4dfc,] 

£,-,■ = Ar i3c(/ - — [jj(a,a; + Z>,a.) + j4(a,Ay + &.fcy - dc..)] 

a2   TA/2 ]   /       Ar  \ 
-lx^X~{a'+b'){F"'+G':)\~\^ + ~d)B" 

(14) 

(15) 

(16) 

(17) 

An alternative scheme is to allow the source term in the LHS of (13) to lag from n + I to n so that (13) may be 
written as 
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■'x ,,x ax        I ~ 
i 18) 

with 

Q" = — 
(IX ±,^-j-d)(F"-G:)-^r[a;~b,lB" 

lr 
ox- dx 4««,-*.MF;-c;)J-(Ar,,.^:jJrfA£/--(A/ + ^)B. 

< 1.9) 

de^o^o/t^r1"' SCh£me ni "" bC Wmten m th£ f0mi idenUCal t0 ™ wi* the lowing 
E, = m At(a, +b,),    with m = e/(l+£) 

(20) 
E,j = m At c.j 

o" = -^- (El   aG" 
(21) 

+ TT7Af/" (22) 

" Zl ^^l^^^^ZL '" "* Be—W™»" »««« « -iuded ,n the second 
-f we set ,, = ,, = ,„ ,, = r =7 = T-0 7m T ,S See" t0 bE a SpeClal CaS£ 0t'the FDMEI ^"at.ons 
analysis of the BeamlWar^ ^me^ ® ^t^Z^L^ ^ n « ^ "^ ^^ 
parameter m to be 0.639 «in« 0 75  It nn hi «h «"»«and 0 - , + f This will  fix the .mplicttness 

capable of productng practtcai^, e L" FDM H PPM ^ eqUaU°nS M denVed '" (13) or ™ « 
A. P y    ' eXIStmg FDM and FEM schemes. Some examples are shown in Appendix 

Contrary to the Beam-Warmine scheme rh* cnuci 
the current rlowfield vanables a each a^d eve ' ^f ^   " '° °btam ^ ^«citness parameters from 

certatn predetermtned numbers and usTng them Ä"™'*?    T ***"* ** ,mP'iC,tneSS P™™™ t0 

vanatton from one point to another S       v ü™ d°main ,rresPectIve °f 'he local flowneld 
bases as depicted i„T. 2 S aLeT^"1^5 ^^ ^ * determmed f°r SPa»al and <emP°-< 
obtained as the averag/of bo^^^^ " "* '"*" "« " "* *" »■ be 

Convection implicitness parameters 

s, =i 

mini/-, 1) 
0 r<a-M,mn=0 

Mmin=0 
0 < 17 <   | 

(23) 

with 

r=VM;L, -M2   /M 

w^ ^^^zz:1^ sjtsts-'?calcu,ated between adjacem nodai points - ™2- 
« and n - , for tempora, impiid^^i^XS ZT""* <** ^ ""^ "" time ^ at 

Here, it is seen that 5, is directly relatedTrhVfl B' l^' * " a user-sPecified S™11 number a =0.01). 
primary role of ,, is |0 ens^the   0 Son   , ^ ^"^ ** ^^ °" *< SUch that <*=>'■ The 
whereas that of „ is to a« as artificial viaisl!^ the'convection gradients. 

Diffusion implicitness parameters 

'minis, 1)   j>)8 

0 ^<ARemin5=0.    orPeimn.O       ,4=5<;.    0<n<| *i =i 

Remin=0. or pemi„ = 0 
(25) 
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(a) 

Fig. 2. Spatial and temporal flowfieid dependent implicitness parameters: (a) Idealized turbulence length scales assumed to be wuhin each 
element-spatially evolving turbulence. The maximum and minimum value of M. Re. Pe and Daare those among the comer nodes within an 
element: lb) idealized turbulence time scales assumed to be within each time step-temporallv evolvins turbulence. The maximum and 
minimum value of M. Re. Pe and Da are identified at time steps n and n-l. 

with 

=VRe;„-ReL/Re or =VPeL - Pe /Pe„ (26a.b) 

where the maximum and minimum Reynolds numbers or maximum and minimum Peclet numbers are calculated 
similanly as in s, for spatial and temporal implicitness parameters, and ß is a user-specified small number 
(ß = 0.01). If temperature gradients are large, it is possible that Peclet numbers instead of Reynolds numbers 
will dictate the diffusion implicitness parameters. The larger value of s, is to be chosen, as obtained either from 
(26a) or (26b). Note also that s, = s" with s, ensuring the solution accuracy by taking into account the diffusion 
gradients, and here again. s4 plays the role of artificial viscosity, for solution stability. 

Source term implicitness parameters 
For the case of chemically reacting flows the DQ  (Damköhler number) must be used 

s, = 

'min(/, 1)   Oy 

0 '<r.Dami 
1 Damjn = 0 

,5*0 0<n< 1 

with 

t =VDaz    -Da2   / Da » ma       ^™min' LJan 

(27) 

(28) 

where the maximum and minimum Damköhler numbers are calculated similarly as in s, and sz for spatial and 
temporal implicitness parameters, and y is a user-specified small number (y = 0.01). The relationship between 
55 and j„ is similar to those for convection and diffusion implicitness parameters such that s6 = 5', with s5 and st 

controlling the solution accuracy and solution stability, respectively. The average of both spatial and temporal 
implicitness parameters will be adopted for use in computations at any point (element) and time. 
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bv ,hI r°S °C'W"n a" Ph"'Cal Phcnom="a ™° *= corpora,™ numenca, lramB are ca™.™ 

modified from ™rLSd , sTfil t''rS '" *ea,n<1-"d" "">»<«"** P«» have been 
.hpurtt to ,h= secondortV , 'if    ' "" '" """' 'he ab0ve re^™»™ 'Fig. 3). [pidallv. „ was 

[15]. However, it was noted that hnrh fir« p™v,aea SU£* tnat *: ~ max(l - 5..0.5), etc. as expenmented in 

both extremes at ze" and uS w h teTonZT 7™™™ *"** "*"* **m ™l™ * the 

values of the first-order u^S^^n^^ '^'T^ **?»?? *** KaSOnMy ^ for a11 

the nonlinear conünuou^Toll of7TüTc2 ^. Second-°rder ««npücun« parameters given above are 
range of the constant " ■   0<n < ,   ti*Z7n" ^T^T^K f^ ^ r^U'rements- ^e 

c-=^:=eh,gh " ^ «-^-^:e=- sthe best 

(1)
 IavefSatndtLirliCilnTlS'S ^^ *' ** *> C°mT°l a" hl-ch gradient Ph"°™na such as shock 
^TtT^^ZTT"a: cfulated from the changes of local Mach numb^ 
flowfieldJ L   omlrs of the J        "'" ' ^ "* "* mdiCat,Ve °f the actual locai «™™ 
and/bein, lar

C ? ? parameters closely resemble the fiowneids themselves, with both , 

role ,s to prov.de adequate computat.onal stability (an.ficial vtscostty) as'they ^TZ^TJ^Z 

r* 

•••«•) 

B.  ,3-aaxi - v o.5).,4-na^! _ Jr 0J)i^.„^^rj „ j, 

°£™™T"TZ*"Z^ Para—- Stable *»'«««» occur ,n ,he ran«. 0 < „ < I. wuh an 
parameter,. "" ,mP,,c,tn«s P3""'«^ «, preserve ,he solut.on accuracy as dicuted by .he hm-order .mpi.cuness 
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into the secona-oraer time aenvative term ot me Taylor series expansion ot the conservation now 
variables U"      The primary roie or' .v; and j. :.-, to provide comDutationai stability. 

'3) The s, terms represent convection. This impiies mat it s. = 0 then me effect ot convection is small. The 
computational scheme is automatically altered to take this effect into account, with the governing 
equations being predominantly parabolic-elliptic. Note that these effects are confined at L""'. not at U". 

(4) The J,. terms are associated with diffusion. Thus, with j, = 0. the effect of viscosity or diffusion is small 
and the computational scheme is automatically switched to that of Euler equations where the governing 
equations are predominantly hyperbolic. 

(5) If the first-order implicitness parameters 5, and s-, are nonzero, this indicates a typical situation for the 
mixed hyperbolic, parabolic and elliptic nature of the Navier-Stokes system of equations, with 
convection and diffusion being equally important. This is the case for incompressible flows at low 
speeds. The unique property of the FDMEI scheme is its capability to control pressure oscillations 
adequately without resorting to the separate hyperbolic elliptic pressure equation for pressure 
corrections. The capability of FDMEI scheme to handle incompressible flows is achieved by a delicate 
balance between s] and s, as determined by the local Mach numbers and Reynolds (or Peclet) numbers. 
If the flow is completely incompressible (M = 0), the criteria given by (23) leads to 5, = 1. whereas the 
implicitness parameter sy is to be determined according to the criteria given in (25). Make a note of the 
presence of the convection-diffusion interaction terms given by the product of A a. in the J, terms and 
apt in the s4 terms. These terms allow interactions between convection and diffusion in the viscous 
incompressible and/or viscous compressible flows. 

(6) If temperature gradients rather than velocity gradients dominate the flowrield: then ,s, is governed by the 
. Peclet number rather than by the Reynolds number. Such cases arise in high speed, high temperature 

compressible flows close to the wail. 
(7) In the case of reacting flows the source terms B contain the reaction rates which are functions of the 

flowfield variables. With widely disparate time and length scales involved in the fast and slow chemical 
reaction rates of various chemical species as characterized by Damköhler numbers, the first-order source 
term implicitness parameter s5 is instrumental in dealing with the stiffness of the resulting equations to 
obtain convergence to accurate solutions. On the other hand, the second-order source term implicitness 
parameter sb contribute to the stability of solutions. It is seen that the criteria given by (27) will adjust 
the reaction rate terms in accordance with the ratio of the diffusion time to the reaction time in finite rate 
chemistry so as to assure the accurate solutions with computational stability. 

(8) Various definitions of Peclet number and Damköhler numbers (Table 1) between the energy and species 
equations should be checked. Whichever definition provides larger values of 5, and s< must be used. The 
summary of the above definitions for implicitness parameters is shown in Table 2. 

(9) The transition to turbulence is a natural flow process as the Reynolds number increases, causing the 
gradients of any or all flow variables to increase. This phenomenon is the physical instability and is 
detected by the increase of j, if the flow is incompressible, but by both sy and s, if the flow is 
compressible. Such physical instability is likely to trigger the numerical instability, but will be countered 
by the second-order implicitness parameters s2 and/or J4 to ensure numerical stability automatically. In 
this process, these flowfield dependent implicitness parameters are capable of capturing relaminarization. 
compressibility effect or dilatational turbulent energy dissipation, and turbulent unsteady fluctuations. 

(10) An important contribution of the first-order implicitness parameters is the fact that they can be used as 
error indicators for adaptive mesh generations. That is, the larger the implicitness parameters the higher 
the gradients of any flow variables. Whichever governs (largest first-order implicitness parameters) will 
indicate the need for mesh refinements. In this case, all variables (density, velocity, pressure, 
temperature, species mass fraction) participate in resolving the adaptive mesh, contrary to the 
conventional definitions of the error indicators. 

(11) Physically, the implicitness parameters will influence the magnitudes of Jacobians. Thus. Item 8 above 
may be modified so that the diffusion implicitness parameters 5, and s> as calculated from Reynolds 
number and Peclet number can be applied to the Jacobians (a,,Z>,,c,7), corresponding to the momentum 
equations and energy equation, respectively. Furthermore, two different definitions of Peclet number 
(Pe,, Pe„) would require the s, and st as calculated from the energy and species equations to be applied 
to the corresponding terms of the Jacobians. Similar applications for the source term implicitness 
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Tjble I 

Definitions or nonaimensionai rinwneld uuanmies 

p(t) • Vic = -\n - ß[a u - — ~ V- v\\ 

A B       ^ £ 

V-puj    (    jr-T-,,0 VK j    u-   d7"-V-i VT= -v 
Jr~ 'Jr.,   ' ~~ 

Mach number 

Reynolds number 

Peclet number. I 

Peclet number. !1 

Damkohler number. I 

Damkohler number. II 

Damköhler number. Ill 

Damköhler number. IV 

Damköhler number. V 

F G 

V(pr',in -T-( pD VY.) = u- 

M 

Re 

Pe, 

Pe„ 

Da, 

Da„ 

Da„ 

Da„ 

Dav 

I J 

puL 

ß 

puLc.L 

k 

uL 
D 

U\ 

~pDYt 

Hu 

kT 

HD 

A menial force 

B pressure force 

A initial force 

C viscous force 

^ _ convecuve heat transfer 

G     conductive heat transfer 

I _ convecuve mass transfer 

i       diffusive mass transier 

K mass source 

I      convectiveltranster 

JC mass source 

J      diffusive itransfer 

N_ heat source  

E     convecuve heat transfer 

N_ heat source 

C     conductive heat transfer 

N^ heat source 

F     diffusive heat transfer 

parameters j, and sb should be followed for the source term Jacobian d. In this way, high temperature 
gradients arising from the momentum and energy equations and the finite rate chemistrv governed by the 
energy and species equations can be resolved accordinelv 

lhe FDMEI equations as given in dismay be solved by either FDM or FEM. The standard linear Galerkin 
approx.mations ot FEM lead to the results of central differences of FDM. However, the main difference between 
FDM and FEM arises when integration by pans is performed in FEM and the explicit terms of Neumann 
boundary conditions  naturally' appear as boundary integral forms. Thus, all Neumann boundary conditions can 
be directly specified at boundaries in FEM. This is not the case for FDM. Often, a rather cumbersome process 
must be taken for Neumann boundary conditions in FDM. 

When dealing with all speed flow regimes such as in shock wave turbulent boundary layer interactions where 
compressible and incompressible flows, viscous and inviscid flows, and laminar'and turbulent flows are 
intermingled throughout the flowfield domain, a computational scheme intended for only one type of flow 
physics and that does not account for other types of flow phenomena will fail. For example, the flow close to the 
wa in shock wave turbulent boundary layer interactions is incompressible (M*0.1), whereas away from the 
wall the flow is compressible (supersonic or hypersonic). In this case, viscous flows chanee to inviscid flows. In 
between these two extremes the flowfield changes continuously, oscillatins back and forth across the boundary 
layers of velocity and entropy, and leading edge and bow shocks. At any given computational nodal point or 
element, gradients of each variable (density, pressure, velocity and temperature) mav be very small or very 
large, so large that practically all currently available computational methods mav fail. In order to succeed, it is 
necessary that the current flow physics everywhere be identified and so recognized, with specific computational 
schemes accorded to each and every computational nodal point and element. It is clear that such accommoda- 
tions are available in (13.) or (if). 
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Table 2 

Rowtield dependent implicitness parameters 

Convection gradient behavior 

>'■—First-order convection implicitness parameter 

mini/-. I i    r > a 

r<a.M„„n =■=() 
M.„.  =0 

'"=VM-.„ - Vl:„n/M„„„ 

Ensures solution accuracy 

Strongly fiowrield depenaent. witn hign gradients char- 
acterized by large Mach numper cnanges petween nodal 
points or within element and between time steps 

s.—Second-order convection implicitness parameter 

i.=i,'.   0<»<l 

Diffusion gradient behavior. 

» —First-order diffusion implicitness parameter 

{mini*. II     v > ß 

0 s < ß. Re,,,,. - 0 .    orPe,„,„*0 
1 Re^.. = " or Pe„„. = 0 

= VReiJ, - Re;„,./Re,n,„    or    T =\/Pe;„ - Pe;„,n/Pe„, 

*,—Second-order diffusion implicitness parameter 

Ensures solution stability 

Flowfield   dependent  artificial   viscosity   for  convection 
process 

Ensures solution accuracy 

Strongly flowfield dependent, with high gradients char- 

acterized by large changes in Reynolds number or Peclet 
number between nodal points or within element and 
between time steps. Diffusion gradient behavior may be 

dictated by Peclet number when temperature gradients are 

high. Choose whichever (Reynolds or Peclet number) 
provides the larger value for s, 

s, = J'; ,  o<« < i 
Ensures solution stability 

Flowfield dependent artificial viscosity for diffusion pro- 

Source term gradient behavior 

^—First-oraer source term implicitness parameter 

iminlr. 11   t s a 

0 ; < or. Da * 0 

• Da,... = 0 

'=VDa;,% - Da "„./Da,, 

Ensures solution accuracy 

Strongly flowfield dependent, with high reaction rate 

gradients characterized by large Damköhler number 
changes between nodal points or within element and 
between time steps 

sk—Second-order source term implicitness parameter 

sk = j;r.  o<(i< i Ensures solution stability 

Flowfield dependent artificial viscosity for reaction process 

3. Implementation and computational process 

*.s«^ted ^rlier the governing equations for the Taylor series-modified Navier-Stokes system of equations. 
(I3),may be apphed to either FDM or FEM. or to the finite volume method (FVM). For FDM applications the 
nrst-order and second-order spatial derivatives may be written in central difference schemes. For example, we 
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may write tor any variable it js 
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rt.rl :\x 

:u-  -u 

Ax- 

:29) 

(30) 

with analogous formulas for the y denvatives in two dimensions or correspondine extensions to three- 
dimensional problems. Any other difference schemes of higher-order accuracy mav also be chosen as deemed 
necessary. 

For applications to FEMwe begin by expressing the conservation and flux variables and 
linear combination of trial functions <Pa with the nodal values of these variables. 

U(x, t) = 4t(r)l/„(/),       F,(x, t) = <Pa(x)Fol(t) 

G,-Cr, t) = 0 (x)G„,(r),       B(x, t) = <Pa{x)Ba{t) 

Applying the generalized Galerkin approximations to (11) we obtain 

(P„R(U.F.G,.B)dn = 0 

source terms as a 

(31) 

or 

w./tfr.+ Bußn) At/;;' = H-ar + N-ar 

where 

B°*" = J„ L"l^.fl.™ + s&r.) + -J- M„aIM + Sbdn(flin + h,„) + MA,]}*a.,*e 

tr„ = Jfl {[AKF;, + G;v) +^1^I(F;( + G;fa) + £„,„ + *..,)*;.] *„.,. 

"T-K. + »iBn• + <?■„.)*..,*„ +[A/ä;, + ^</rifl-J#(1*/,} 

AT„ « Jr { [-AKF;ir + c;„, - *1 „^ + G,fa) _ A£l (fli   + , Jß,, J *^ 

0 

d/2 

(32) 

(33) 

(34) 

n, df (35) 

(36) 

(37) 

where 0u represents the Neumann boundary tr«l and test functions, with a, ß denoting the global node number 

ZvT'r rV1i lS , unUmber °f conservation vari^les at each node. For three dimensions. ij = 1.2.3 
associated with the Jacob.ans imply directional identification of each Jacobian matrix (at,a2, «,. *„ ft,. 4„ c, „ 
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<.',,, cn, c. c,,. c. c,,. f,,. c„i with r. j- = 1.2.2.4.5 denoting entries or eacn of the 5 ■ 5 Jacooian 
matnces. These indices can be reduced .similarly tor 2-D. Note also that the relation i 18) may De usea to move 
the delta source terms to the RHS of 133) by lagging tne source terms one time step behind. The FEM equations 
given by (33) are referred to as FDMEI-FEM. The counterpart of (331 based on FDM schemes of (29) and (30) 
is to be called FDMEI-FDM. 

It is important to realize that the integration by parts as applied to the generalized Galerkin approximations in 
FEM produces all Neumann boundary integrals. It is particularly advantageous that Neumann boundary 
conditions through re-evaluation of Jacobians normal to the boundary surfaces can simpiy be added to the 
boundary nodes for the stiffness matrix Baä„ in (351. On the other hand, all Neumann boundary conditions 
which appear in (37) act as source terms. These features are absent in FDM. but implementations of Neumann 
boundary conditions can be handled by devising special forms of finite differences at boundary nodes. 

Similar results are obtained either by FDM or FEM with accuracy of computations derived primarily from the 
FDMEI equations of (12). However, with the increase of Reynolds number (say around Re.» 10 ), it is 
possible that accuracy may increase with applications of special functions such as Legendre polynomials of high 
degree modes characterizing extremely small turbulent microscales. Implementation of such high frequency 
modes can be achieved by placing these modes between the corner nodes of isoparametric finite elements. 
Adaptively, such high modes can be chosen as needed for the resolution of turbulent microscales. Once again, 
the diffusion implicitness parameter 5, will play a crucial factor in determining the required degrees of Legendre 
polynomial. The use of Legendre polynomial spectral modes superimposed onto isoparametric elements has 
been discussed in [15]. Its merit, however, has not yet been fully established for general applications. 

For turbulent flows with an extremely high Reynolds number, the phase error of the short wavelengths can be 
very large. In this case, it is necessary to add numerical dissipation terms to damp out the short wavelengths. 
Such numerical viscosities are conceptually different from the second-order implicitness parameters whose role 
is to ensure stable solutions while preserving the solution accuracy dictated by the first-order implicitness 
parameters. Toward this end. it is desirable to revise (18) in the form 

I+E'jrrE^)AU'^ = -Q"-Q" (38) 

where Q" is the numerical dissipation vector in terms of the second-order tensor of numerical dissipation. S,r 

associated with the second-order derivatives of U". 

d2U"     _ d2U" 
e^i^T^^i^- (39) 

with fj. being the numerical dissipation constant chosen as 0 =sjll =£/ü„, where /I» is set approximately equal to 2. 
but adjusted from numerical experiments. Note that the Galerkin integral of (39) (integration by pans once) 
leads to the first derivative of the trial and test functions combined wi 11 the nodal values of U"p. In addition, note 
that the damping provided by the second-order derivatives with not disrupt the formal accuracy of the FDMEI 
scheme. This process may be applied to (13) as well. 

One of the most significant aspects of the FDMEI scheme is that for low Mach numbers (incompressible 
flow) the scheme will automatically adjust itself to prevent pressure oscillations. This adjustment is analogous to 
the pressure correction scheme employed for incompressible flows. Otherwise, the FDMEI scheme is capable of 
shock wave resolutions at high Mach numbers, and particularly well suited for dealing with interactions between 
shock waves and turbulent boundary layers where regions of high and low Mach numbers and Reynolds 
numbers coexist. In this case, the inviscid and viscous interactions are allowed to take place. To this end the 
second-order implicitness parameters play the role of artificial viscosity needed for shock wave resolutions in 
the presence of flow diffusion due to physical viscosity. 

In order to understand how the FDMEI scheme handles computations involving both compressible and 
incompressible flows, fundamental definitions of pressure must be recognized. Consider in the following that the 
fluid is a perfect gas and that the total energy is given by 

E-cJ-Z + l-vn (40) 
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The momentum equation tor steady state lncompressmie rotational rlow may oe integratea to .jive 

J ( p ■- y pu,u,)   dv = j [/iiu     - - -   . i - pF. ,u a>, j dv 

1 
p + y pü.^ = /,„ -r W (41 

with 

W= — 
in 

IT   ( ' ■ penkuiw. dx 

where a>t is the component of a vomcity vector. Pu is the constant of integration, and m denotes the spatial 
dimension. 

Combining (40) and (41) leads to the following relationship: 

P0 = p(cJ + vvi-E)-W 42) 

If pn as given by (42) remains a constant, equivalent to a stacnation pressure, then the compressible flow as 
assumed in the conservation form of the Navier-Stokes svstem of equations has now been turned into an 
incompressible flow, which is expected to occur when the flow velocity is sufficiently reduced (approximately 
0.1 =s M < 0.3 for air). Thus, (42) may serve as an equivalent equation of state for an incompressible flow This 
can be identified element by element for the entire domain. Note that conservation of mass is achieved for 
incompressible flows with Pn in (42) being constant, thus keeping the pressure from oscillating 

Once the Navier-Stokes solution via FDMEI is carried out and all flow variables determined, then we 
compute fluctuations /' of any variable /, 

f'=f-f (43) 

where / and / denote the Navier-Stokes solution and its time average, respectively. This process may be 
replaced by the fast founer transform of the Navier-Stokes solution. Unsteady turbulence statistics (turbulent 
kinetic energy, Reynolds stresses, and various energy spectra) can be calculated once the fluctuation quantities 
of all variables are determined. 

Let us summarize why the FDMEI scheme is capable of handling low speed and hich speed and nonreact.ne 
and reacting compressible and incompressible flows, includine shock waves and turbulent flows- 11) How is the 
transition from incompressible flow to compressible flow naturally and automatically accommodated without 
using two separate equations or two separate codes? This process is dictated by the first-order convection 
implicitness parameter ,1 as reflected by the Mach number changes and the expression of the stagnation 
pressure. (2) How is the shock wave captured? As the Mach number increases and its discontinuity is abrupt, the 
52 terms associated with second order derivatives together with squares of the convection Jacobian provide 
adequate numerical viscosities through second order derivatives, similarly as the Lax-Wendroff scheme. (3) 
How is the transition from laminar to turbulent flows naturally and automatically accommodated? This process 
is governed by the first- and second-order diffusion implicitness parameters (,3 and ,4) as calculated from the 
changes of the Reynolds number. The terms associated with *3 and s4 are responsible for fluctuations of 
velocities with the values of these implicitness parameters increasing with intensities of turbulence in conduction 
with the diffusion gradient Jacobian and the squares of the diffusion Jacobian. This process allows the 
Navier-Stokes solutions to contain fluctuations which can be extracted by subtracting the time averages of the 
Navier-Stakes solutions. (4) How do the interactions between convection and diffusion take place? Changes of 
Mach numbers and Reynolds numbers as reflected by both convection and diffusion implicitness parameters 
close to the wall contribute to the unsteadiness. Away from the wail, they contribute to the transition between 
incompressible to compressible flows. (5) How are the stiff equations arising from w.dely disparate reaction 
rates of all chemical species treated? The most crucial aspect of the FDMEI scheme is its capability to identify 
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the ratio 01 the resident time to the rection time as calculated r'rom five different definitions o: the DamKohier 
numbers between tne adjacent nodal points and time steps as reriected in the calculated rirst-oraer implicitness 
parameter. s<, and the second-order implicitness parameter, .sv These parameters provide precise decree 01 
computational implicitness at every nodal point and even.' time step, contributing to the determination or 
accurate chemical reactions. 

4. Applications 

We examine here various example problems: la) flow over a flat plate, (b) shock wave turbulent boundary 
layer interactions on a compression corner, (c) 3D duct flows, and (d) lid-driven cavity flow. Linear 
isoparameteric finite elements are used for the example problems. 

(a) Behavior of flowfield dependent implicitness parameters on flat plate 
First of all. our concern is to test the behaviour of FDMEI and FDMEI-FEM. Toward this objective we 

examine the flow over a flat plate investigated earlier by Carter (17] as shown in Fig. 4(a). The initial setting for 
the implicitness parameters are determined from the initial conditions of the flowfieid and subsequently updated 
after each time step until the steady state solution is reached. 

Corresponding to the mesh refinements and the fiowhelds at steady state shown in Fig. 4(b-d). the contours 
ot implicitness parameters s, and $., are given in Fig. 5. It is seen that the implicitness parameters themselves 
closely resemble the flowfield. There are little or no changes in Mach numbers and Reynolds numbers between 
adjacent nodes or elements far away from the surface of the plate as indicated by s{ = J3 = 0. Along the leading 
edge shock and boundary layers, both J, and j, move toward unity indicating that gradients of all variables 
increase. The final flowfields, as shown in Fig. 4(b-d), are the consequence of these implicitness parameters. 
The implicitness parameters sz and s., are the compliances of J, and i3, respectively, with their primary roles 
being the artificial viscosity. Thus, the first-order implicitness parameters (s,,s3) help to resolve the high 
gradients ensuring the accuracy of the solution. While on the other hand, the second-order implicitness 
parameters (s,,sj ensure computational stability. 

Computations of wall pressure, wall skin friction, «-velocity, u-velocity, density and temperature distribution 
are shown in Fig. 6(a-f). The comparison with the Carter's data indicates reasonable agreements. 

(b) Supersonic flow on a compression corner 
In this example we demonstrate calculations of supersonic flow on a compression corner. The inlet boundary 

conditions inon-dimensionaiized) are p = I, M = 2.25. p = 0.14. Re = 10s, Pr = 0.72, and v = 0. with adiabatic 
wall condition. The steady state background mean flowfields for the compression corner are shown in Fig. 7(a). 
In these calculations, all perturbation (fluctuation) variables are determined from time averages of the 
Navier-Stokes solutions according to (43). The horizontal and vertical perturbation velocities (u',v') at 
locations close to the wall (x = 0.10256 fn. y = 0.001 m) and away from the wall (x = 0.10256 m, y = 0.04 m) 
are shown in Fig. 7(b). Note that u is extremely unsteady whereas v' is significantly less unsteady close to the 
wall. Away from the wall, both u and v' are almost steady. These trends are reflected in the turbulence 
(Reynolds) stresses as shown in Fig. 7(c). Turbulent kinetic energy distributions at the locations upstream of the 
corner (x = 0.0513 m) and downstream of the corner (x = 0.1333 m) are shown in Fig. 7(d). We observe that the 
turbulent kinetic energy downstream of the corner is significantly larger than the upstream. No turbulent 
statistics calculations (wave numbers or frequencies vs. power spectral density) are attempted at this time as 
turbulence microscales are not resolved in this example. 

It should be noted that the above results obtained without turbulence models or without the standard DNS 
solutions (neither spectral nor DNS-mesh refinements) are regarded as the consequence of the time-averaging of 
the FDMEI Navier-Stokes solutions. This implies that the fluctuation of variables between nodal points (Fig. 
2(a)) and between time steps (Fig. 2(b)) as reflected in terms of the implicitness parameters (*,.) have contributed 
to these physical phenomena, with compressibility and shock waves dictated by the Mach number-dependent s,, 
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Fig. 4. Flat Plate problem—mitial and adaptive meshes and their correspondine density contours: (a) Geometry and boundary conditions of 
Carter s [17] fla plate problem. M. = 3. Ret = 1000. 7\ = 3OTR: (b) initial mesh (816 elements. 875 nodes) and the correspond.ng density 
contours, (max-2.21 Kg/m , mm =0.5 Kg/m'): (c) one-level adaptive mesh (1755 elements. 1889 nodes) and the correspondine density 
contours (max - 2.1 Kg/m mm = 0.5 Kg/m ); (d) two-level adaptive mesh (4257 elements. 4547 nodes) and the correspond.ng dens.tv 
contours, (max = 2.0 Kg/m , mm = 0.5 Kg/m"). 
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(a) 

(b) 

Fig. 5. Flowrield-dependent rirst-order convection and diffusion implicitness parameters: (a) s, contours: lb) .5, contours. 

and with incompressibility and turbulent fluctuation dictated by the Reynolds number or Peclet number- 
dependent (j-,). An equal participation of s, and J3 will be responsible for shock wave turbulent boundary layer 
interactions. A comparison of the results of the FDMEI scheme with the K-E turbulent model and experimental 
data is shown in Fig. 7(e). it is seen that the FDMEI results compare more favorablv with those of measurements 
[18]. 

(c) FDMEI analysis of three-dimensional flows 
To demonstrate the effectiveness of the flowrield-dependent implicitness parameters in 3-D flows at the steady 

state, we examine the spatially evolving boundary layer (Fig. 8(a-e). Note that the contours of s{ and s, (Fig. 
8(c)) show the boundary layer effects in which both j, and s, are indicative of rapid changes of Mach numbers 
and Reynolds numbers; respectively, larger (close to unity) on the wall, but small (closer to zero) away from the 
wail. The velocity vectors and RMS error distributions versus interactions are shown in Fig. 8(d) and (e), 
respectively. 

(d) Demonstration of compressibility vs. incompressibilitx 
We ask the question: Can a single formulation or computer program originally designed for high speed 

compressible flows be applied to analyze the low speed incompressible flows? The advantage of FDMEI is to 
respond positively to this question. To prove the point, let us examine the lid-driven cavity flow at the steady 
state (Fig. 9(a-f)). Notice that, for M = 0.1, density changes occur closer to the lid, whereas, for M = 0.01. 
density is constant throughout the domain (Fig. 9(e)), corresponding to /^^bemg variable and constant, 
respectively (see Eq. (42)). The equation of state for compressible flows is automatically switched over to 
accommodate the incompressible flows. This advantage is contrary to the previous practice such as the Table 



.\ / .  :t>on vi til. nmut. MmuHis .\nm    \U'cu   ti::-:r-j 

1.00 

ET. 
(0 («0 

1.00 

— •• — LmttMaaft 
LawtllM—a 

8.11 8Ji 

(e) (0 
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,V.7\ Yoim et at.        '•mnut. Mdlmat  Inn;. Mscn. £;::.•/-?    :.:ol r/90~) IXX)-IX)0 

(*) 

 X-O.102,y=0.001 
— x=0.102,y=0.004 

U   03     1 W    1i   1.3   1.4   1J    u 

time 

am 
as ■ 
an 

o 

•an»  x-0.102,y=O.001 
— x=O.102,y=O.004 

as as    1    i.i   i2 u  1.« u i.s 
time 

(b) 

?^ilrfS.UTn0n,C T 1" ! COrrPreSS'0n COmCr- M* = 225: <a) ComP*"'°n com« geometry and flowficld.s: (b) fluctuate velocity (c) 
Reynolds .stresses: (d) turbulent kinetic energy; <e, companson velocity d.s.nbut.on of FDMEI w.ih k-e model and expenmemal data (18]. 



vT.  I'm« « (;..   .   C.nnnul. Mamas Anm   M.rn   I:I::TV    ;."■/    /<W7i l)l)()-lk)i) 

I.UWT+ 
0.3 

.2* 

j^*   '-' 

(e) 

ZSH 

USB 

■«-0.1333} 

Ü-—*ft      , l,j 
US       UM       CLOB 

Y 
am      au 

(<0 

a.1 

2 

1 
3 ■ 04 

am 

X vnmuuuay 
O AfdmnrniMitl 
A k-t 

6 

9 

o»     a 

j 

•aa     a     u    u    m    u     i 

WJ-        X« 0.064 

ai 

O Aflfeaacaa(M] 
A Jet 

(e) 
Fig. 7 (continued) 
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Fig. 8. Three-dimensional spatially evolving boundary layer flow: (a) Schematics of spatiallv evolvine boundary layer flow: (b) 
computational geometry and boundary conditions: ic) flowrield-dependent tirst-order convection and diffusion implicitness parameter 
contours: (d) velocity vectors: (e) convereence historv. 

look-up for the equation of state for incompressible flow handled separately through hyperbolic elliptic equation 
as derived from the continuity equation combined with the momentum and energy equations. Comparison of the 
results of FDMEI with those of the independent incompressible flow code of Ghia et al. [19] are very favorable 
as shown in Fig. 9(    f). 
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Fig. 9. Test of FDMEI scheme to solve incompressible flows-lid-driven cavity problem: (a) Geometry and boundary conditions: (b) mesh 
configuration: (c) streamline contours: (d) voracity contours: (e) density distribution: (f) u- and u-velocity comparisons with Ghia et al. [19]: 
(g) stagnation pressure at M =0.01 and M =0.1. 
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5. Concluding remarks 

The validity of the proposed new approach to computational fluid dynamics has been demonstrated through 
some example problems. Excluded from these examples are reacting flows which are reported elsewhere [16]. 
Also excluded is the effect of additional spectral modes of Legendre polynomials which are described in [15]. 
None of the example problems have been carried out with mesh refinements required for resolvine turbulent 
microscales due to the limitation of computer time. The following concluding remarks are provided: 

(a) The flowneld-dependent implicitness parameters as calculated from the current flowneld information are 
indicative of the magnitude of gradients of all variables and adjust the computational schemes accordingly 
for every nodal point or element, rather than dictated by arbitrarily selected constant parameters 
throughout the domain. 

(b) The first-order implicitness parameters j,, *,, and ss as calculated from Mach numbers. Revnoids or 
Peclet numbers, and Damköhler numbers, respectively, ensure the solution accuracy, whereas the 
second-order implicitness parameters sv s4 and sb which are determined as compliances of s.. j, and s,, 
respectively, assist in the solution stability. 

(c) The FDMEI method is capable of resolving mutual interactions and transition between viscous and 
inviscid flows, compressible and incompressible flows, and laminar and turbulent flows, in all speed 
regimes. Further research on FDMEI is required in order to investigate many other physical phenomena 
including hypersonic and high temperature flows in 3D. 

Appendix A. Analogies of FDMEI to currently available FDM and FEM schemes 

Analogies of FDMEI to currently available computational schemes of FDM and FEM are summarized below. 

A. I. Analogies of FDMEI to FDM 

Some of the FDM schemes are compared with FDMEI in Table A.l. 
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Table A.I 

v. *. £ £ Cr Truncation error 

Beam-Warmins H 

1   T,f 

1 li 
 la  - b i 

1 -£ 
A'    U"          '      T" O[(*-T-;)A/: 

■*] Ml 1 - £                - t 

Euier explicit 0 0 
0 A; At                 t 

OiAri 

Euier implicit 1 1 
»tu 8 At 

■Thr-Th»- 0(A/:) 

Three-point 
implicit 

2 

T 
2 
3 

9 A» OAt 
TT7C- TTi-*7T7"- 0(A(A/') 

Trapezoidal 
implicit 

l 

2 
I 
2 

BAI e At A/                ( 
O(Az') 

Leap frog 
explicit 0 0 

e A/ e At 
TT7C- 

At           e 
O(Ar') 

Other schemes of FDM are compared with. FDMEI as follows: 

(a) Lax-Wendroff scheme 

^U"" =-^F^u2-F,.u2)-T73\ai^nFl + x~(a.,^n-a,^n)F,+a,^lzF,. 

The Lax-Wendroff scheme without artificial viscosity takes the form 

A/   _ _Ar 

2 Ax 

This scheme arises if we set in FDMEI 
an-\n~ai-ui~a •       -J|=0.        .s:=0,        f3=0,        st=0 

(b) Lax-Wendroff scheme with viscosity 
The Lax-Wendroff scheme with viscosity is given by 

Ar 
A£/r' = -T7^;;,,:-/C,/2; 

with 

* Fi+t+F,      At 

F*      = r 1-1/2 

2Ax 

Ft + Fi-i       A/ 

(A.1) 

(A.2) 

/2~        2 2Ax'a'-"2(F'"F'-|)+D'-"2(t/'"f/'-l) 

This scheme arises if we set 

0, + l/2=D,-,/2 =<"■ . *2=0. 53=0. 54=0 

This implies that aj,  in FDMEI plays a role of artificial viscosity which is manually implemented in the 
Lax-Wendroff scheme. 

(c) Explicit McCormack scheme 

Combining the predictor corrector steps of McCormack scheme we write 
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,., Ar .     A/ 
AL'"     = -—iF.'_, -F'">- — fF" -F' , , -ü 

Ax Ax "' 
Ar      , Ar 

= -~r\F ., -F")-— (F      . -F   ,.,, 
AJC AX     '"   - ''- 
Ar 

--—rla^i^F _, -ia -a ., ..^F. ~a -,,-.^,-.1 ~D <A.3) 
Ax" " " "" "      ' 

The FDMEI becomes identical to this scheme with the following adjustments: 

ai*,n. =a,-ui =a 

f"-C" - f" _   C-"   4. f _   F 

S,=0. 5,=0. .7, =0, J4=0 

and the s2 term in the FDMEI method is equivalent to 

D, = j(U",.ul -w%, + 61/;.' -4t/;.'_f -{/;.,) 

This again is a manifestation that shows the equivalent of the J, terms is manually supplied in the McCormack 
method. 

id)  First-order upwind scheme 

This scheme is written as 

A/_ 
AJC 

AUr'=-%-(FlU2-F*_ll2) 

= -jz{[ilF" + F"+*)-iW(u:.l -{/;)]-[\(F: + F';_,)-\\a\(u:-to]} <A.4> 

The FDMEI analogy is obtained by setting 

f" = -f F»    -Lp» 

j^cw -2Ai/;:; + AiO = lakt/;'., -co 
where C is the Courant number. 

(e) Implicit McCormack scheme 

With all second-order derivatives removed from (11) we obtain the implicit McCormack Scheme by setting 
s\ = '• s2 =0. s, = 0, st =0. However, it is necessary to divide the process into the predictor and corrector 
steps. Once again, the flowfield-dependent implicitness parameters for FDMEI will allow the computation to be 
performed in a single step. 

(0 PISO and SIMPLE 

The basic idea of PISO and SIMPLE is analogous to FDMEI-FEM in that the pressure correction process is a 
separate step in PISO or SIMPLE, whereas the concept of pressure correction is implicitly embedded in 
FDMEI-FEM by updating the implicitness parameters based on the upstream and downstream Mach numbers 
and Reynolds numbers within an element. 

The elliptic nature of the pressure Poisson equation in the pressure correction process resembles the terms 
embedded in the Bußrj terms in (3£.). Specifically, examine the s, terms involving ajr<,«AW and birqalsq and J4 

term involving airilb/tll. All of these terms are multiplied by <&„,%, which provide dissipation against any 
pressure oscillations. Question: Exactly when is such dissipation action needed? This is where the importance of 
implicitness parameters based on rlowfield parameters comes in. As the Mach number becomes very small 
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(incompressibility errects dominate) the implicitness parameters 5, „no s. jaiculated from tne current riowneia 
will be indicative ot pressure correction required. Notice tnat a delicate Daiance oetween Mach numDer u, <> 
Mach number dependent) and Reynolds numoer or Peclet number IA. U Reynolds number or Peclet number 
dependent) is a crucial factor in achieving convergent and stable solutions. Of course, on the other hand, high 
Mach number flows are also dependent on these implicitness parameters. In this case all implicitness parameters. 
5,. s2, 5,, 5j will play important roles. 

A.2. Analogies of FDMEI to FEM 

(a) Generalized Taylor Galerkin (GTG) with convection and diffusion Jacobians 

Earlier developments for the solution of Navier-Stokes system of equations were based on GTG without 
using the implicitness parameters. They can be shown to be special cases of FDMEI-FEM. 

In terms of both diffusion Jacobian and diffusion gradient Jacobian. we write 

St 

W 3V. 

dt dt 

with 

aG,. 
aU ■ 

c    = 
d_G_ 

v =■ 
dU 
Ox. 

Thus, it follows from (10) 

At/ 
1    ;>F    <iG- 

"*'=A/  --^--^ + ß f*.r,       dx: 

with 5, = 5, = si = j, = sh = 0 and s: = I that 

-O(Ar) 
Ar_a_/    dF,    nG, 

+ 2 Yt\~l)7~17 + B (A.5) 

Using the definitions of convection, diffusion, and diffusion rate Jacobians discussed in Section 2. the temporal 
rates of change of convection and diffusion variables may be written as follows: 

dF" 
dt 

dF 
dt 

dG 

(    fli/y    r   /    dF,    ÖG,      \1" 

= a 
d dF"    AGp 

■   dx, Ar. dx. 
+ B' (A.6) 

dt •  ot J 
_    dU_ 

" dt \ f)x. 

or 

dGT I dc.\ At/" 
At dXj 

(     At/V" 

Substituting (A.6) and (A.7) into (A.5) yields 

\       d.V, <).r. / 2 

ac,.\ 

AT 
fl At/" dF" dG"; 

-o,   —a 
d*,. ax,. dX; 

B" 

+   e 
At/"" 

A/ 

Assuming that 

Ac,.,. 

'        '      dx. 

(A.7) 

(A.8) 

and neglecting the spatial and temporal derivatives of B, we rewrite (A.8) in the form 
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AT     n     , C     .       .     | 

= H" 

//   =A;   - — -— B     -— a — 
(A.9) 

Here, the second derivat.ves of G. are neglected and all Jacoo.ans are assumea to rema.n constant wuh.n an 
incremental time step but updated at subsequent time steps. 

Applying the Galerkin finite element formulation, we have an implicit scheme. 

w„A + BitSrj u/;:1 = H"r - .v;;;1 - ,v;r (A.10) 
where 

d/2 

Ar 
fl....a    - 

A/ 

N" 

0, AL'"
TI

/, dr 

A/' 
A; <£MF;; -G")-—a    </> F" /i. d/' 

Here^we note that the algorithm g.ven by (A. 10) results from (J3) bv settine st =sx=s  =0  s  = 1 

?eÄd7y'H^t aT [LU"5 ^ '^ ^ '" ^ **"*"" °f C''Md ^ *"» " » *«" 

(b) CTC with convection Jucobians 

e.ement'Sä0nal0rmbavnSbe
mday * 7*^ '1 *** "^"^ is neg"gible- In this CaSe the Taylor-Galerkin finite element analog may be derived using only the convective Jacobian from the Taylor series expansion 

U      _u   +A,—- + _____+ Q(ArJ) 
(A. in 

where 

at/ 
at 

*   /       r'Jt/        r/G. 

*lfl'-är + -ÄT "ß 
(A.12) 

or 

Substituting (A.12) and (A. 13) into (A. 11), we obtain 

AtT"=A,|-^-^ 
fl.r       ('/.r 

Expanding dF;/dr at (n + 1) time step 

*   (       W\     o-(a;G)      a 
,    i an ——   H— 

L *xj \    ' *x.)     ;>x; dx,     ,ix + -(a,.Ä) + - 

(A.13) 

(A. 14a) 

dF" 

dt 
BFi     «Gj 

a I ~ — - -~ + B 
<3X. OX- =a:,+l 3A£/"~'      dF"     ÖG"*[ 

•      Ac,. dx; dXj    
+B 
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ana substituting tne aDove into iA.11 i—A.i3i. we arrive at AL'""  'n a torm different trom iA.14ai 

/     dF       -G 
AL'"" = A/   —. : B 

\        'IX i IX I 

if \ ii   j        hlU" 
2 [  dX,     \ 

;,F" 
 a —— 
ax, ax. 

ca.G..')"" 

i)x dx 
■laßV" 

ÜB"". 

dt 

H" 
Ar  d 
~-d7\au^\tJ dx 1U" 

„„        v   ,        &.        <<G; \"       if    d    (       *F\" 
H"=lt{-- — + B\   +^r-r-   a. 

ax,       dx. 2   dx, dx- 

(A.14b) 

(A. 14c) 

where second derivatives of G, is assumed to be negligible and B is constant in space and time, arriving at an 
implicit finite element scheme. 

w„A + B„ßn) At/;;1 = HI + .v;;1 - ^;;r (A.15) 

where 

A
..B=   .. ^.*fld/2 

*C = * /„ [*„..<W„ - G'mr) - <P,cPBB"ßi - ^a,,,*..,*^,, drt 

It should be noted that the form (A.15) arises from (23) with s, = s, = s^ = b/ = 0 and .s, = 1. an algorithm 
similar to Hassan et al. [13]. 

(c) Generalized Petrov-Golerkin (GPG) 

The Generalized  Petrov-Gulerkin  (GPG)  method can be  identified by  setting st=s:=\. sx=s^=Q. 
b, = c,, •= d = 0. ß" = 0. E, = a, and £„ = 4 Arc a , so that (10) takes the form 

At/        dAU     It nzMJ 
It + a. 

OX; 
aaill—IT = 0 '   '   dt. rir 

For the steady state non-incremental form in 1-D we write (A. 16) in the form 

du a' d'u 
a — -\t- r = 0 

*x 2   dx- 

Taking the Galerkin integral of (A. 17) leads to 

f ^ir,f   ""      .   a~ f>2"\ 

(A. 16) 

(A.17) 

or 

f    „I   du 
(A.18) 
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ror vanishing Neumann nounuanes   H—e   •>    ' :   .n„ □„„.„,.   , ■  •    ■ n-'e- ,l      ■■■" 'ne reirov-oaierKin test runcnon. 

^v' = '/>'." - an  

"x 'A. 19) 

with a = C/2 and C = „ A//A.V be.ne the Courant number 

For isoparametric coordinates ,n two u.mens.ons. the Petrov-Galerk.n test runct.on assumes tne form 

(A.20) 
with 

*"'± *V + ßg. 

ß-J^h^a^h^ 

5f = coth(^)-i- 5-=C0*(T)-F 

^^oi^lz^T;:\ir::^:m the
h 

diron °f ™ c°°rd— < * *>■ Note 
scheme as a special casf1 ,A-,6,-'A»<» leads <° the Streamline Upwinding Petrov-Galerk.n ,SUPG) 

/ 

(d)  Characteristic-based Zienkiewcz-Codiiw scheme 

^^^^^^^^^ Navier-Stokes system of equat.ons into three pans 

all diffusion terms negiected can be wX m L fo™ § eqUat'°nS '" FDMEI *™ ** ^ ( 8) W"h 

W" = -At jjv_ i      ta,At/"~'      &t(02a;F" d'ap. AU 
fix. 

r"-< \ 

■ + .9, 
A*,- 2   \dxidxl     --       dx.dx 

Continuity 

The continuity equation can be extracted from ,A.2I) by setune as follows 

F" ->(jv" —>(J" 

.v,a, A£/"" —v, Apv" ~,i, \w 

l/2a;F"-,HlP"8, 

M2s2afl jW'-xfe^j-is 

These substitutions to (A.21) lead to 

(A.21) 

A/o 
"•'<»' = -A; d2Ap"- 

dx: dx, (A.22) 

which is identical to Eq. (33) in 1141 with (An,, V*' k • 
correction process ,n case «he How ,s mcornpressible.       '        'mermediate Ste?- This rePrese™ *e pressure 

Momentum 

A similar procedure can be applied to (A 211 far A. 
•WMCU to tA.zi) tor the momentum equations. 

(Apt;,)" -At 
-d -A) .Tü'ä^('w'-,,;+^>" (A.23) 
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which is equivalent to Eq. (30) in (14] with a = vr 1 - & = s,, and all terms of s,. b, and c , being negiectea in 
FDMEI. 

Energy 
Again, from (A.21), neglecting all n -t- 1 terms of the FDMEI equation, we obtain 

fd(pEv; + up)" 
-—\K- -TV;    I —~^'Vi- —\PCU;   T   Up) 

dx, \   ax, V  J       2    > dXjOx, 

(A.24) 

{Ap Er> , _^r-,^.r.   _ _L ^ |I . r/üyy 

which corresponds to Eq. (40) of [14]. The solution steps begin with (A.23). followed by (A.21) and (A.24). and 
continue iteratively until convergence. Note that the pressure corrections for incompressibility are internally 
carried out in FDMEI as the pressure second derivatives arise in Eq. (10). Note also that in FDMEI all implicit 
terms may be retained for computational accuracy and efficiency for any physical situation. 
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