
AEROSPACE REPORT NO.
ATR-93(3778)-2

A Formal Description of the Incremental
Translation of Stage 3 VHDL into State Deltas
in SDVS

30 September 1993

Prepared by

I. V. FILIPPENKO
Trusted Computer Systems Department
Computer Science and Technology Subdivision
Computer Systems Division
Engineering and Technology Group

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

ÖTIG QUALITY INSPECTED 8

Engineering and Technology Group

THE AEROSPACE
CORPORATION

El Segundo, California

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

971001 03

AEROSPACE REPORT NO.
ATR-93(3778)-2

A FORMAL DESCRIPTION OF THE INCREMENTAL TRANSLATION OF
STAGE 3 VHDL INTO STATE DELTAS IN SDVS

Prepared by

I. V. FILIPPENKO
Trusted Computer Systems Department

Computer Science and Technology Subdivision
Computer Systems Division

Engineering and Technology Group

30 September 1993

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

Report No.
ATR-93(3778)-2

A FORMAL DESCRIPTION OF THE INCREMENTAL TRANSLATION
OF STAGE 3 VHDL INTO STATE DELTAS IN SDVS

Prepared

I,v/
I. V. Filippenko 777

B. H. Levy, Principal Investigator
Computer Assurance Section

Approved

■"^7 fe^ cxtX-^u^^M-^oL-
D. B. Baker, Director
Trusted Computer Systems Department

C. A. Sunshine, Principal Director
Computer Science and Technology Subdivision

in

Abstract

This report documents a formal semantic specification of Stage 3 VHDL, a subset of the
VHSIC Hardware Description Language (VHDL), via translation into the temporal logic
of the State Delta Verification System (SDVS). Stage 3 VHDL is the fourth of successively
more sophisticated VHDL subsets to be interfaced to SDVS.

The specification is a continuation-style denotational semantics of Stage 3 VHDL in terms
of state deltas, the distinguishing logical formulas used by SDVS to describe state transi-
tions. The semantics is basically specified in two phases. The first phase performs static
semantic analysis, including type checking and other static error checking, and collects an
environment for use by the second phase. The second phase performs the actual transla-
tion of the subject Stage 3 VHDL description into state deltas. An abstract syntax tree
transformation is interposed between the two translation phases.

The translator specification was, for the most part, written in DL, the semantic metalan-
guage of a denotational semantics specification system called DENOTE. DENOTE enables
the semantic equations of the specification to be realized both as a printable representation
(included in this report) and an executable Common Lisp program that constitutes the
translator's implementation. However, the second phase semantics of the VHDL simulation
cycle has a direct operational implementation in the VHDL translator code.

Acknowledgments

The author thanks his colleagues in the Computer Assurance Section for their support in the
adaptation of SDVS to VHDL, and particularly to Tim Aiken, Jeff Cook, Beth Levy, Leo
Marcus, and Dave Martin for their contributions to the formal semantic definition described
in this report.

VI

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

2 History of Our Semantic Approach to VHDL 5

3 Overview of Stage 3 VHDL 7

3.1 General Remarks 7

3.2 Stage 3 VHDL Language Summary 8

4 Preliminaries 11

4.1 Environments 11

4.2 Continuations 14

4.3 Other Notation and Functions 14

5 Syntax of Stage 3 VHDL 17

5.1 Syntactic Domains 18

5.2 Syntax Equations 18

5.2.1 Concrete Syntax 18

5.2.2 Abstract Syntax: Phase 1 31

5.2.3 Abstract Syntax: Phase 2 35

6 Phase 1: Static Semantic Analysis and Environment Collection 37

6.1 Overview 37

6.2 Descriptors, Types, and Type Modes 38

6.2.1 Type and type descriptor predicates 43

6.2.2 Additional primitive accessors and predicates 45

6.3 Special-Purpose Environment Components and Functions 47

6.4 Phase 1 Semantic Domains and Functions 48

6.4.1 Phase 1 Semantic Domains 49

vn

6.4.2 Phase 1 Semantic Functions 50

6.5 Phase 1 Semantic Equations 52

6.5.1 Stage 3 VHDL Design Files 52

6.5.2 Entity Declarations 53

6.5.3 Architecture Bodies 54

6.5.4 Port Declarations 54

6.5.5 Declarations 55

6.5.6 Concurrent Statements 72

6.5.7 Sensitivity Lists 75

6.5.8 Sequential Statements 75

6.5.9 Case Alternatives 83

6.5.10 Discrete Ranges 84

6.5.11 Waveforms and Transactions 85

6.5.12 Expressions 86

6.5.13 Primitive Semantic Equations 92

7 Interphase Abstract Syntax Tree Transformation 93

7.1 Interphase Semantic Functions 93

7.2 Transformed Abstract Syntax of Names . 94

7.3 Interphase Semantic Equations 95

7.3.1 Stage 3 VHDL Design Files 95

7.3.2 Entity Declarations 95

7.3.3 Architecture Bodies 95

7.3.4 Port Declarations 95

7.3.5 Declarations 96

7.3.6 Concurrent Statements 97

7.3.7 Sensitivity Lists 98

7.3.8 Sequential Statements 98

7.3.9 Case Alternatives 99

7.3.10 Discrete Ranges 99

7.3.11 Waveforms and Transactions 100

Vlll

7.3.12 Expressions 100

8 Phase 2: State Delta Generation 105

8.1 Phase 2 Semantic Domains and Functions 105

8.1.1 Phase 2 Semantic Domains 106

8.1.2 Phase 2 Semantic Functions 107

8.2 Phase 2 Execution State 109

8.2.1 Unique Name Qualification 109

8.2.2 Universe Structure for Unique Dynamic Naming 109

8.2.3 Execution Stack 112

8.3 Special Functions 114

8.3.1 Operational Semantic Functions 114

8.3.2 Constructing State Deltas 115

8.3.3 Error Reporting 116

8.4 Phase 2 Semantic Equations 117

8.4.1 Stage 3 VHDL Design Files 117

8.4.2 Entity Declarations 122

8.4.3 Architecture Bodies 122

8.4.4 Declarations 123

8.4.5 Concurrent Statements 141

8.4.6 Sequential Statements 142

8.4.7 Waveforms and Transactions 161

8.4.8 Expressions 162

8.4.9 Expression Types 166

8.4.10 Primitive Semantic Equations 168

9 Conclusion 169

References 171

IX

1 Introduction

The State Delta Verification System (SDVS), under development over the course of several
years at The Aerospace Corporation, is an automated verification system that aids in writing
and checking proofs that a computer program or (design of a) digital device satisfies a formal

specification.

The long-term goal of the SDVS project is to create a production-quality verification system
that is useful at all levels of the hierarchy of digital computer systems; our aim is to verify
hardware from gate-level designs to high-level architecture, and to verify software from the
microcode level to application programs written in high-level programming languages. We
are currently extending the applicability of SDVS to both lower levels of hardware design
and higher levels of computer programs. A technical overview of the system is provided by
[1] and [2], while detailed information on the system may be found in [3] and [4].

Several features distinguish SDVS from other verification systems (refer to [5] for a detailed

discussion). The underlying temporal logic of SDVS, called the state delta logic, has a
formal model-theoretic semantics. SDVS is equipped with a theorem prover that runs in
interactive or batch modes; the user supplies high-level proof commands, while many low-
level proof steps are executed automatically. One of the more distinctive features of SDVS
is its flexibility — there is a well-defined and relatively straightforward method of adapting
the system to arbitrary application languages (to date: ISPS, Ada, and VHDL). Further-
more, descriptions in the application languages potentially serve as either specifications or
implementations in the verification paradigm. Incorporation of a given application language
is accomplished by translation to the state delta logic via a Common Lisp translator pro-
gram, which is (generally) automatically derived from a formal denotational semantics for
the application language.

Prior to 1987 we adapted SDVS to handle a subset of the hardware description language
ISPS. However, ISPS has serious limitations regarding the specification of hardware at levels
other than the register transfer level. In fiscal year 1988 we documented a study of some
of the hardware verification research being conducted outside Aerospace and investigated
VHDL (VHSIC Hardware Description Language), an IEEE and DoD standard hardware
description language released in December 1987. We selected VHDL as a possible medium
for hardware description within SDVS.

The aim of the ongoing formal hardware verification effort in SDVS is to verify hardware
descriptions written in VHDL. This choice of hardware description language is particu-
larly well-suited to our overall aim of verifying hardware designs across the spectrum from
gate-level designs to high-level architectures. Indeed, the primary hardware abstraction in
VHDL, the design entity, represents any portion of a hardware design that has well-defined
inputs and outputs and performs a well-defined function. As such, "a design entity may
represent an entire system, a sub-system, a board, a chip, a macro-cell, a logic gate, or any
level of abstraction in between" [6].

Prerequisites for adapting SDVS to VHDL are (1) to define VHDL semantics formally in
terms of SDVS's underlying logic (the state delta logic) and (2) to implement a translator
from VHDL to the state delta logic. As with the incorporation of Ada into SDVS [7], the

approach taken with VHDL has been to implement increasingly complex language subsets;
this has enabled a graded, structured approach to hardware verification.

In fiscal year 1989 we defined an initial subset of VHDL, called Core VHDL, that cap-
tured the most essential behavioral features of VHDL, including: ENTITY declarations;
ARCHITECTURE bodies; CONSTANT, VARIABLE, SIGNAL, and PORT declarations; predefined
types BOOLEAN, BIT, BIT_VECTOR, and INTEGER; variable and signal assignment statements;
IF, CASE, WAIT, and NULL statements; and concurrent PROCESS statements. We defined both
the concrete syntax and the abstract syntax for Core VHDL, formally specified its seman-
tics and, on the basis of this semantic definition, implemented a Core-VHDL-to-state-delta
translator [8].

In fiscal year 1990, SDVS was enhanced to provide the capability of verifying hardware
descriptions written in Core VHDL [9, 10]. In fiscal year 1991, the translator underwent ex-

tensive revision to accommodate a second VHDL subset, Stage 1 VHDL [11], which included:
WAIT statements in arbitrary contexts; LOOP, WHILE, and EXIT statements; TRANSPORT delay;

aggregate signal assignments; and a revised translator structure.

Implemented in fiscal year 1992, Stage 2 VHDL provided a considerably more complex and
capable VHDL language subset. Stage 2 VHDL extended Stage 1 VHDL with the addition
of the following VHDL language features: (restricted) design files, declarative parts in
entity declarations, package STANDARD (containing predefined types BOOLEAN, BIT, INTEGER,
TIME, CHARACTER, REAL, STRING, and BIT_VECTOR), user-defined packages, USE clauses, array
type declarations, enumeration types, subprograms (procedures and functions, excluding
parameters of object class SIGNAL), concurrent signal assignment statements, FOR loops,
octal and hexadecimal representations of bitstrings, default object class SIGNAL for ports,
and general expressions of type TIME in AFTER clauses.

The VHDL language subset implemented in fiscal year 1993, Stage 3 VHDL, extends Stage
2 VHDL with the addition of subtypes of scalar types, integer type definitions, and type
conversions between integer types. Furthermore, the SDVS user can now set "statement
marks" (in the form of interpreted comments) for sequential statements. Finally, a facility
for specifying, proving, and invoking the behavior of a VHDL subprogram — VHDL offline
characterization — has been implemented [3]. The SDVS VHDL and Ada translators have
been reengineered to a uniform implementation reflecting language similarities where these
exist, and optimized for greater space- and time-efficiency.

As far as immediate plans are concerned, the scope of VHDL descriptions amenable to
SDVS, as well as the specifications that could be proved about them, will be significantly
broadened by (1) enhancing the SDVS Simplifier with support for reasoning about sym-
bolic representations of VHDL time, and (2) augmenting the SDVS proof language with
a command for induction over VHDL simulation cycles (or adapting the existing induct
command for that purpose).

The purpose of the present report is to provide a formal description of the translation of
Stage 3 VHDL hardware descriptions into state deltas. This amounts to a formal semantic
specification of Stage 3 VHDL, presented herein as a continuation-style denotational seman-
tics [12] for which the state delta language provides the semantic domain. The translation
basically consists of parsing followed by two semantic analysis phases.

The first phase receives the abstract syntax tree generated by the Stage 3 VHDL parser for
a given hardware description, and:

• performs static semantic analysis, including type checking;

• collects an environment that associates all names declared in the subject Stage 3
VHDL hardware description with their attributes;

• appropriately disambiguates identical names declared in different scopes, as required
by the static block structure of the hardware description; and

• for the convenience of the second phase, transforms the abstract syntax tree of the
subject hardware description.

Phase 2 receives the transformed abstract syntax tree and the environment constructed by
Phase 1, and uses these to translate the Stage 3 VHDL hardware description into state
deltas. This translation is incremental, in the sense that it is driven by symbolic execution
of the hardware description, producing further state deltas as symbolic execution proceeds.

The Stage 3 VHDL formal description is an extensive revision and expansion of the formal
specifications of the Core VHDL, Stage 1 VHDL, and Stage 2 VHDL translators [8, 11, 13].
The Stage 3 VHDL translator specification was written in DL, the semantic metalanguage of
a denotational semantics specification system called DENOTE [14]. DENOTE enables the
semantic equations of the specification to be automatically translated into both a printable
representation (included in this report) and an executable Common Lisp program that
constitutes the translator's implementation.

This report is organized as follows.

• Our approach to the semantics of Stage 3 VHDL is discussed in Section 2.

• Section 3 contains an overview of the Stage 3 VHDL subset.

• Section 4 provides preliminary information (background and notation) on the partic-
ular method of semantic description used.

• Section 5 lists both the concrete and abstract syntax of Stage 3 VHDL.

• Section 6 presents the Stage 3 VHDL static semantics.

• Section 7 presents the interphase abstract syntax tree transformation.

• Section 8 presents the Stage 3 VHDL dynamic semantics in terms of state deltas.

• Finally, some concluding remarks are made in Section 9.

2 History of Our Semantic Approach to VHDL

The VHDL translator essentially functions as a simulator kernel, maintaining a clock and
a list of future events that are defined as state deltas. For Core VHDL (fiscal years 1989
and 1990), the translator transformed possibly multiple Core VHDL statements: sequential
statements between WAIT statements within a process were all translated and then composed
into a single state delta. The translator updated the clock to the next time at which a signal
driver became active or a process resumed. As the clock advanced, the translator merged
the composite state deltas into a single state delta that specified the behavior of all processes
at that point in the execution.

For Stage 1 VHDL (fiscal year 1991), we re-evaluated the feasibility of using composition
in the translation of VHDL to state deltas, and concluded that although composition had
initially seemed viable in the case of Core VHDL, it is impossible in principle to apply
the technique to more complex VHDL subsets, as the attempt would require the ability to
compose over sections of VHDL code that would necessitate static proof in SDVS. More
generally, the ability to compose over arbitrary WAIT-bracketed code in PROCESS statements
would be tantamount to the automatic construction of correctness proofs without user
intervention — a theoretically undecidable problem.

Therefore, we abandoned composition for Stage 1 VHDL and subsequent SDVS VHDL
subsets. Instead, within a given execution (simulation) cycle, processes are translated se-
quentially, in the order in which they appear in the VHDL description, and the user has
control over stepping through the sequential statements within each process. Thus, rather
than trying to have the VHDL translator model the concurrency of the processes, we choose
to take for granted a certain "metatheorem" about VHDL: that any two sequentializations
of the processes are equivalent. A brief justification for this point of view is that the problem
of mutual exclusion is not a concern in VHDL, since

• all variables are local to the process in which they are declared, and

• distinct processes modify distinct drivers of a given signal (known as a resolved signal),
and the ultimate signal value is obtained by application of a user-defined resolution
function}

A gratifying benefit of the revised translation strategy is that the understandability of the
resulting proofs has been remarkably improved — the dynamic flow of process execution
precisely reflects the simulation semantics of VHDL (as defined in the VHDL Language
Reference Manual [6]), but with the crucial aspect of symbolic execution (use of abstract
values rather than concrete) thrown in. The current Stage 3 VHDL translator thus functions
as a "symbolic simulator," with the effect of being reasonably intuitive as a proof engine.

'As of Stage 3 VHDL, however, resolved signals are still disallowed.

3 Overview of Stage 3 VHDL

Stage 3 VHDL comprises a relatively powerful behavioral subset of VHDL. That is to
say, Stage 3 VHDL descriptions are confined to the specification of hardware behavior
or data flow, rather than structure. More comprehensive VHDL subsets for SDVS will
include constructs for the structural description of hardware in terms of its hierarchical
decomposition into connected subcomponents; this enhancement may be implemented in
Stage 4 VHDL.

3.1 General Remarks

The primary VHDL abstraction for modeling a digital device is the design entity. A design
entity consists of two parts: an entity declaration, providing an external view of the compo-
nent by declaring the input and output ports, and an architecture body, giving an internal
view in terms of component behavior or structure.

In Stage 3 VHDL, each architecture body is constrained to be behavioral, consisting of a
set of declarations and concurrent statements defining the functional interpretation of the
device being modeled. The allowable concurrent statements are of two kinds: PROCESS
statements and concurrent signal assignment statements, to be discussed below.

A PROCESS statement, the most fundamental kind of behavioral concurrent statement in
VHDL, is a block of sequential zero-time statements that execute sequentially but "in-
stantaneously" in zero time [15], and some (possibly none) distinguished sequential WAIT
statements whose purpose is to suspend process execution and allow time to elapse.

A process typically schedules future values to appear on data holders called signals, by
means of sequential signal assignment statements. The execution of a signal assignment
statement does not immediately update the value of the target signal (the signal assigned
to); rather, it updates the target signal's associated driver signal by placing (at least one)
new transaction, or time-value pair, on the waveform that is the list of such transactions
contained in the driver. Each transaction projects that the signal will assume the indicated
value at the indicated time; the time is computed as the sum of the current clock time of the
model and the delay specified (explicitly or implicitly) by the signal assignment statement.

Two types of time delay can be specified by a sequential signal assignment statement, and
Stage 3 VHDL encompasses both. Inertial delay, the default, models a target signal's inertia
that must be overcome in order for the signal to change value; that is, the scheduled new
value must persist for at least the time period specified by the delay in order actually to
be attained by the target signal. Transport delay, on the other hand, must be explicitly
indicated in the signal assignment statement with the reserved word TRANSPORT, and models
a "wire delay" wherein any pulse of whatever duration is propagated to the target signal
after the specified delay.

In lieu of explicit WAITs, a process may have a sensitivity list of signals that activate process
resumption upon receiving a distinct new value (an event). The sensitivity list implicitly
inserts a WAIT statement as the last statement of the process body.

The other class of concurrent statement in Stage 3 VHDL is that of concurrent signal

assignment statements. These always represent equivalent PROCESS statements, and come
in two varieties: conditional signal assignment and selected signal assignment. A conditional
signal assignment is equivalent to a process with an embedded IF statement whose branches
are sequential signal assignments; similarly, a selected signal assignment is equivalent to
a process with an embedded (possibly degenerate) CASE statement whose branches are
sequential signal assignments. The VHDL translator syntactically transforms concurrent
signal assignment statements to their corresponding PROCESS statements prior to translation
into state deltas.

Signals act as data pathways between processes. Each process applies operations to values
being passed through the design entity. We may regard a process as a program implementing
an algorithm, and a Stage 3 VHDL description as a collection of independent programs
running in parallel.

In full VHDL, a target signal can be assigned to in multiple processes, with a separate driver

for updating by each process; the value taken on by the signal at any particular time is
then computed by a user-defined resolution function of these drivers. As did previous SDVS
VHDL subsets, Stage 3 VHDL disallows such resolved signals: a signal is not permitted to
appear as the target of a sequential signal assignment statement in more than one process
body; equivalently, every signal has a unique driver. Resolved signals and their resolution
functions will be implemented in a future version of SDVS.

The Stage 3 VHDL data types are: BOOLEAN, BIT, UNIVERSAL-INTEGER, INTEGER, REAL (pre-
liminary version), TIME (a predefined physical type of INTEGER range), CHARACTER, STRING
(arrays of characters), BIT-VECTOR (arrays of bits), user-defined enumeration types, user-
defined array types, subtypes of scalar types, and integer type definitions. Furthermore,
explicit type conversions between integer types are allowed. The preliminary implemen-
tation allows VHDL descriptions involving type REAL to be parsed and translated, but
provides no support for reasoning about floating point numbers.

3.2 Stage 3 VHDL Language Summary

Concrete and abstract syntaxes for Stage 3 VHDL have been defined — see Section 5 — as
required, of course, for the implementation of the Stage 3 VHDL translator. The following
is a convenient synopsis of the Stage 3 VHDL language subset.

• VHDL design files

- entity declarations, architecture bodies

- restriction: unique entity and architecture per file

• package STANDARD

- predefined types:

BOOLEAN, BIT, UNIVERSAL-INTEGER, INTEGER, TIME, CHARACTER, REAL,
STRING,BIT-VECTOR

- various units of type TIME: FS, PS, NS, US, MS, SEC, MIN, HR

- restriction: the implementation of type REAL is preliminary

• user-defined packages

- package declarations

- package bodies

• USE clauses for accessing packages

- restriction: packages must be used in their entirety

• entity declarations

- entity header: port declarations

- entity declarative part: other declarations

• architecture bodies

• object declarations

- CONSTANT, VARIABLE, SIGNAL

- octal and hexadecimal representations of bitstrings

- default object class SIGNAL for entity ports

• array type declarations

- arrays of arbitrary element type

- bidirectional arrays, unconstrained arrays

• user-defined enumeration types

• subtypes of scalar types

• integer type definitions

• type conversion

• signals of arbitrary types

• subprograms

- procedures and functions: declarations and bodies

- restriction: excluding parameters of object class SIGNAL

• concurrent statements

- PROCESS statements

- conditional signal assignments

- selected signal assignments

• sequential statements

- null statement: NULL

- variable assignments (scalar & composite)

- signal assignments (scalar & composite, inertial or TRANSPORT delay)

- conditionals: IF, CASE

- loops: LOOP, WHILE, FOR

- loop exits: EXIT

- subprogram calls

- subprogram return: RETURN

- process suspension: WAIT

• operators

- numeric unary operators: ABS, +, -

- numeric binary operators: +, -, *, /, ** (exponentiation),
MOD (modulus), REM (remainder)

- boolean and bit operators: NOT, AND, NAND, OR, NOR, XOR

- relational operators: =, /=, <, <=, >, and >=

- array concatenation operator: &

- restriction: =, /=, and & are the only Stage 3 VHDL operators denned for com-
posite types (i.e., BIT-VECTOR and user-defined array types).

10

4 Preliminaries

The purpose of this section is to provide some of the background and notation necessary
for the research documented in this report. It is assumed that the reader is familiar with

• the descriptive aspects of the denotational technique for expressing the semantics
of programming languages (including concepts such as syntax, semantic functions,
lambda notation, curried function notation, environments, and continuations) as pre-
sented in [12]; and

• the theory and practice of state deltas [3, 16, 17].

Denotational semantic definitions of programming languages consist of two parts: syntax
and semantics. The syntax part consists of domain equations (equivalent to productions of
a context-free grammar) that define the syntactic variables (analogous to grammar nonter-
minals) and the (abstract) syntactic elements of the language. The semantic part defines a
semantic function for each syntactic variable and the definition (by syntactic cases) of these
functions; it also defines auxiliary functions that are used in the definition of the semantic
functions. The semantic functions constitute a syntax-directed mapping from the syntactic
constructs of the language to their corresponding semantics.

Certain principal notions, among which are environments and continuations, are central to
standard denotational semantic definitions of programming languages.

4.1 Environments

Environments are functions from identifiers to their "definitions"; these definitions are called
denotable values. Identifiers that have no corresponding definition are formally bound to
the special token *UNBOUND*. The identifiers are names for objects (e.g. constants,
variables, procedures, and exceptions) in a program written in the language being defined.
Environments are usually created and modified by the elaboration of declarations in the
language.

The domain of environments, Env, is typically

Env = Id -f (Dv + »UNBOUND*)

where Id and Dv are, respectively, the domains of identifiers and denotable values. If r is an
environment, then r(id) is the value (»UNBOUND* or a Dv-value) bound to the identi-
fier id. The empty environment rO is the environment in which rO(id) = »UNBOUND*
for every identifier id. In definitions of languages that have block-structured scoping, it
is necessary to combine two environments that may each associate a denotable value with
the same identifier. If rl and r2 are environments, then rl[r2] is a combined environment
defined by

rl[r2](id) = (r2(id) = »UNBOUND* -> rl(id), r2(id))

where (a -+ b,c) is an abbreviation for if a then b else c. That is, in rl[r2], the r2-value
of an identifier "overrides" the rl-value of that same identifier, except when its r2-value is

11

♦UNBOUND*. An environment can be changed by this means. If r is an environment,
d a value, and id an identifier, then r[d/id] denotes an environment that is the same as r
except that (r[d/id])(id) = d.

Tree-Structured Environments

When the use of the above combination of environments is inconvenient or inappropriate,
it is sometimes necessary to use a structured collection of environments. A tree-structured
environment (TSE) is a tree whose nodes are environments and whose edges are labeled by
identifiers or numerals, called edge labels, where no two edges emanating from a given node
can have the same label. A path is a list of zero or more edge labels. Such a path denotes
a sequence of connected edges from the root node to another node of a tree-structured
environment. A path p can be extended by an edge labeled elbl via %(p)(elbl), where

%(path)(id) = append(path,(id))

Formally, a TSE can be regarded as a partial function from paths to environments. Thus
the set of paths in a TSE t is precisely the set of paths p for which t(p) is defined. If t is
a TSE and p is a path in t, then t(p) denotes the unique environment in t located at the
end of p.

If t is a TSE and p is one of its paths, the pair (t,p) can be used to represent the set of
environments containing all of the identifier bindings visible at a given point in a Stage 3
VHDL hardware description, where the identifiers in p are the names of the lexical scopes
whose local environments are on the path p. At the program point whose identifier bindings
are represented by (t, (elblj, ..., elbln)), t^elblj, ..., elbln)) is the most local set of
bindings, ..., and t(e) is the most global set of bindings, where e denotes the empty path.
Thus t(p)(id) is the value bound to id in the most local environment of (t,p).

Qualified Names

The same identifier is bound in every component environment of a TSE, although many
(if not most) of those bindings may be to *UNBOUND*. It is convenient to be able to
distinguish uniquely an occurrence of an identifier by prefixing to the identifier a represen-
tation of the path that designates the location in the TSE of the environment associated
with that instance. Such a uniquely distinguished identifier will be called a fully qualified
name. Thus if t is a TSE, p one of its paths, and id an identifier, then $(p)(id) is id's fully
qualified name relative to t(p). If p = (elblj, ..., elbl„), then $(p)(id) is represented as
elbli.elbl2 elbln.id. When p = e (empty path), $(e)(id) is simply represented by
id. $ is defined by

$(path)(id) = (path = e — id, $(rest(path))(catenate(last(path),".",id)))

The function rest returns a list consisting of the first n - 1 elements of an n-element list,
and catenate is a curried function that concatenates its (variable number of) arguments
into an atom.

Identifiers qualified with the full TSE path that locates their associated component envi-
ronment are cumbersome and hard to read. If only those instances of identifiers not bound
to *UNBOUND* are of interest, then such full name qualification may be unnecessary.

12

Often a suffix of this path is sufficient to distinguish uniquely an instance of such an iden-
tifier. An identifier so qualified is said to be uniquely qualified. In the limit, if all identifiers
not bound to »UNBOUND* were distinct, then no qualification (an empty suffix) would

be necessary to distinguish them. Given a TSE, it is possible to determine the minimum
path suffix necessary to distinguish uniquely each identifier instance; this is done in our

implementation of Stage 3 VHDL.

Descriptors

The denotable values to which identifiers are bound in the component environments of a

TSE are called descriptors.

A descriptor contains several fields of information, each of which holds an attribute of the
identifier instance to which the descriptor is bound in a given TSE component environment.
The number of fields in a descriptor depends on the attributes of its associated identifier,

but each descriptor always has fields that contain the identifier to which it is bound, the
identifier instance's statically uniquely qualified name (see Section 8.2.1), and a tag that

identifies the kind of descriptor (and hence its remaining fields).

Descriptors for Stage 3 VHDL are discussed in detail in Section 6.2.

Tree-Structured Environment Access

Certain non-*UNBOUND* (i.e., denotable) values of an identifier id in (t,p) can be
accessed by the functions lookup and lookup-local. These functions are given later in the

context of semantic equations in which they are used.

Tree-Structured Environment Modification

A TSE's component environments can be modified (in particular, descriptors can be bound
to unbound identifiers or existing descriptors can be modified) via a function built into
DENOTE. This function, enter, is used extensively in the DENOTE description of the
Stage 3 VHDL translator. enter(t)(p)(id)(d), where t is a TSE, p a path in t, id an
identifier, and d a partial descriptor (containing all its fields except the identifier field),
yields a TSE that is the same as t except that its component environment t(p) is replaced

by the environment

t(p)[d'/id], where if d = (qid, tag, ...), then d' = (id, qid, tag, ...).

Tree-Structured Environment Extension

One can add additional component environments to a TSE by extending it. If t is a TSE,
p a path in t, and elbl an edge label, and if %(p)(elbl) is not a path in t, then

extend(t)(p)(elbl)

denotes the TSE that is the same as t except that

(extend(t)(p)(elbl))(%(p)(elbl)) = rO.

Thus one can extend t along one of its paths p by adding a legally labeled edge onto the
end of p and placing a node that is the empty environment rO at the end of that extended

path %(p)(elbl).

13

4.2 Continuations

Continuations are a technical device for capturing the semantics of transfers of control,
whether they be explicit (gotos, returns from procedures and functions) or implicit (normal
sequential flow of control to the next program element, abnormal termination of program
execution). Continuations are functions intended to map the "normal" result of a semantic
function to some ultimate "final answer" [some final value(s) or an error message]. If the
semantic function does not produce a normal result, its continuation can be ignored and
some "abnormal" final answer (such as an error message) can be produced instead.

For example, in the first phase of our formal description of the Stage 3 VHDL translator, a
continuation supplied to a semantic function that elaborates declarations normally maps a
new "translation state" to a final answer, but if a declaration illegally duplicates or conflicts
with an existing definition, then the continuation is ignored and an error message (such as
DUPLICATE-DECLARATION) is the resulting final answer.

The initiation of the second phase of our formal description of the Stage 3 VHDL translator
assumes that the program has first "passed" the first phase without error. In fact, the
second phase is used as the continuation for the first.

4.3 Other Notation and Functions

Fairly standard lambda notation (see [12]) is used in this report, except that structured
arguments are permitted in lambda-abstractions. Lambda-abstractions normally have the
form Ax.body, where body is a lambda-term and x may be free in body. The term
Ax.Ay.body is printed as Ax,y.body. If x is, for example, a pair, then the components of
x can be represented in body by the application of projection functions to x. Instead, the
individual components of x can be bound to variables y and z that appear free in body
(instead of projection functions applied to x) by using the abstraction A(y,z).body . This
is defined if and only if the value of x is indeed a pair. This notation will be used only when
its result is defined.

A list is represented in the usual way: (x,y,z). Standard Lisp functions are used, but they
are curried, as in cons(x)(y) and append(x)(y). If x is a nonempty sequence (list), then
hd(x) denotes its first element and tl(x) the sequence (list) of its remaining components;
x = cons(hd(x))(tl(x)).

Some general-purpose functions are second, third, fourth, fifth, sixth, and last, which
return the second, third, fourth, fifth, sixth, and last elements, respectively, of a list. Ad-
ditionally, we have rest, which returns a list consisting of the first n - 1 elements of an
n-element list, and length, which returns the integer length of a list.

second(x) = hd(tl(x))

third(x) = hd(tl(tl(x)))

fourth(x) = hd(tl(tl(tl(x))))

fifth(x) = hd(tl(tl(tl(tl(x)))))

14

sixth(x) = hd(tl(tl(tl(tl(tl(x))))))

last(id+) = (null(tl(id+))- hd(id+), last(tl(id+)))

rest(id+) = (null(tl(id+))— e, cons(hd(id+),rest(tl(id+))))

length(x) = (null(x)— 0, l+length(tl(x)))

15

5 Syntax of Stage 3 VHDL

Three Stage 3 VHDL syntaxes are used by the translator: a concrete syntax, which is
SLR(l) and is used for parsing Stage 3 VHDL hardware descriptions; and two abstract

syntaxes, which are used, respectively, in Phases 1 and 2 of the semantic definition. The
concrete syntax is intended to be the "reference" grammar for the Stage 3 VHDL language

subset.

In all three syntaxes the syntactic constructs are the members of syntactic domains, which
are of two kinds: primitive and compound. The primitive syntactic domains are given.
The compound syntactic domains are functions of the primitive domains; these functional
dependencies are expressed as a set of syntax equations represented as productions of a
context-free grammar. Terminals and nonterminals of this grammar range, respectively,
over the primitive and compound syntactic domains. Only those syntactic domains of the

abstract syntax that actually appear in a semantic equation will be given explicit names;
other syntactic domains will be unnamed, as these names are not used in the specification.

The terminal classes are: identifiers, unsigned decimal numerals, bit bterals, character
literals, bitstrings (binary, octal, and hexadecimal), and strings. The remaining terminal

symbols serve as reserved words.

The concrete syntax of Stage 3 VHDL, being SLR(l), is unambiguous. The abstract syn-
taxes are considerably smaller than the concrete syntax, because they are not concerned with
providing a parsable representation of Stage 3 VHDL, but rather simply provide the min-
imum syntactic information necessary for a syntax-directed semantic specification. Their

use yields a more compact formal definition.

The translation of a hardware description (from concrete syntax) to its abstract syntax
representation is accomplished by semantic action routines in the Stage 3 VHDL parser.
This process is straightforward, and a formal specification of how the Phase 1 abstract
syntax is derived from the concrete syntax is omitted from this report. It is felt that the
correspondence between the concrete and Phase 1 syntaxes is so close that no such formal
specification is needed. The derivation of Phase 2 syntactic objects from corresponding
Phase 1 syntactic objects is explicit in the specification of the interphase abstract syntax

tree transformation; see Section 7.

There are some minor variations between the concrete and abstract syntaxes of Stage 3
VHDL. For example, in the concrete syntax, labels for PROCESS statements and loops (LOOP,
WHILE, FOR statements) are optional. It was found, however, that the semantics of Stage
3 VHDL requires that every process and loop have a label. Thus in the abstract syntaxes
(which drive the semantics), process and loop labels are required. This is enforced by
having the parser and the constructor of the Phase 1 abstract syntax tree supply a distinct
system-generated label for each unnamed process and loop. These labels are taken from a
primitive syntactic domain Sysld of system-generated identifiers, disjoint from the primitive
syntactic domain Id of identifiers. Similarly, anonymous array types are given distinct

system-generated names.

The following subsections present the syntactic domains and equations for Stage 3 VHDL.

17

5.1 Syntactic Domains

Primitive Syntactic Domains

id : Id
Sysld
bit : BitLit
constant : NumLit
char : CharLit
bitstring, octstring, hexstring : BitStr
string : Str

identifiers
system-generated identifiers (disjoint from Id)
bit literals
numeric literals (unsigned decimal numerals)
character literals
bitstring literals
string literals

Compound Syntactic Domains

design-file : Design
ent-decl : Ent
arch-body : Arch
port-decl : PDec
decl, pkg-decl, pkg-body, use-clause : Dec
con-stat : CStat
seq-stat : SStat
case-alt : Alt
discrete-range : Drg
waveform : Wave
transaction : Trans
expr : Expr
ref : Ref
unary-op : Uop
binary-op : Bop
relational-op : Bop

design files
entity specifications
architecture body specifications
port declarations
declarations
concurrent statements
sequential statements
case alternatives
discrete ranges
waveforms
transactions
expressions
references
unary operators
binary operators
relational operators

5.2 Syntax Equations

In Sections 5.2.1, 5.2.2, and 5.2.3 we present, respectively, the concrete syntax for Stage
3 VHDL hardware descriptions admissible as input to the SDVS VHDL language parser,
the syntax of VHDL abstract parse trees generated by the parser for use by Phase 1 of the
VHDL translator, and the syntax of transformed parse trees produced during Phase 1 for
use by translator Phase 2.

5.2.1 Concrete Syntax

The concrete syntax for Stage 3 VHDL is shown below.

The productions are numbered for reference purposes. The first production and the nonter-
minal **start** are inserted by the SLR(l) grammar analyzer to facilitate SLR(l) parsing,

18

and the (terminal) symbol *E* denotes the beginning or end of a file. Terminal symbols
appear in uppercase letters, while nonterminal symbols and pseudo-terminals (terminals
denoting a set of values) are in lowercase; pseudo-terminals are prefixed by a "dot" (.).

STAGE 3 VHDL CONCRETE SYNTAX

1 **start**

::= *E* design-file *E*

2 design-file
::= DESIGN.FILE .id IS init pkg-decl-list pkg-body-list

use-clause-list entity-declaration architecture-body

3 init

4 pkg-decl-list

5 I pkg-decl-list pkg-decl

6 pkg-decl
::= PACKAGE .id IS pkg-decl-part END opt-id ;

7 pkg-decl-part

::= pkg-decl-item-list

8 pkg-decl-item-list

9 I pkg-decl-item-list pkg-decl-item

10 pkg-decl-item
: := const-decl

11 I sig-decl

12 I type-decl
13 I subtype-decl

14 I subprog-decl

15 I use-clause

16 opt-id

17 I .id

18 pkg-body-list

19 | pkg-body pkg-body-list

20 pkg-body
::= PACKAGE BODY .id IS pkg-body-decl-part END opt-id ;

21 pkg-body-decl-part

::= pkg-body-decl-item-list

22 pkg-body-decl-item-list

23 I pkg-body-decl-item-list pkg-body-decl-item

19

24 pkg-body-decl-item

::= const-decl
25 type-decl

26 subtype-decl

27 subprog-decl

28 subprog-body

29 use-clause

30 use-clause-list

31 | use-clause-list use-clause

32 use-clause

::s USE dotted-name-list ;

33 dotted-name-list

::= dotted-name

34 | dotted-name-list , dotted-name

35 dotted-name

::= .id

36 | dotted-name . . id

37 entity-declaration
::- ENTITY .id IS ent-header END opt-id ;

38 | ENTITY .id IS ent-header ent-decl-part END opt-id ;

39 ent-header

: := opt-port-clause

40 opt-port-clause

41 | port-clause

42 ent-decl-part

::= ent-decl-item-list

43 ent-decl-item-list

::= ent-decl-item

44 | ent-decl-item-list ent-decl-item

45 ent-decl-item

: := const-decl
46 1 sig-decl
47 1 type-decl

48 1 subtype-decl
49 1 subprog-decl

50 1 subprog-body
51 1 use-clause

52 architecture-body

::= ARCHITECTURE .id DF .id IS arch-decl-part BEGIN
arch-stat-part END opt-id ;

53 arch-decl-part

::- arch-decl-item-list

20

54 arch-decl-item-list

55 1 arch-decl-item-list arch-decl-item

56 arch-decl-item

::= const-decl

57 1 sig-decl

58 I type-decl

59 1 subtype-decl

60 1 subprog-decl

61 1 subprog-body

62 I use-clause

63 arch-stat-part

::= con-stats

64 port-clause

::= PORT (port-list) ;

65 port-list

::= interface-list

66 interface-list

::= interface-sig-decl

67 1 interface-list ; interface-sig-decl

68 interface-sig-decl

::= opt-signal id-list : opt-mode type-mark opt-init
69 1 opt-signal id-list : opt-mode slice-name opt-init

70 opt-signal

71 1 SIGNAL

72 id-list

::= .id

73 1 id-list , .id

74 opt-mode

75 1 mode

76 mode

::= IN

77 I OUT

78 1 INOUT

79 1 BUFFER

80 type-mark

: := dotted-name

81 slice-name

: := type-mark (discrete-range)

82 discrete-range

: := range

21

83 range

: := siiiple-expr direction simple-expr

84 direction

::= TO

85 I DDWNTO

86 opt-init

87 | := expr

88 const-decl

::« CONSTANT id-list : type-Mark := expr ;

89 | CONSTANT id-list : slice-name := expr ;

90 var-decl

::= VARIABLE id-list : type-mark opt-init ;

91 I VARIABLE id-list : slice-name opt-init ;

92 sig-decl

::= SIGNAL id-list : type-mark opt-init ;

93 | SIGNAL id-list : slice-name opt-init ;

94 type-decl

::- enum-type-decl
95 I array-type-decl

96 I integer-type-decl

97 enum-type-decl

::= TYPE .id IS enum-type-def ;

98 enun-type-def

::= (id-list)

99 | (char-list)

100 char-list

::= character-literal
101 I char-list , character-literal

102 array-type-decl

::= TYPE .id IS array-type-def ;

103 array-type-def

::= ARRAY (discrete-range) OF type-mark

104 integer-type-decl

::= TYPE .id IS RANGE discrete-range ;

105 subtype-decl

::= SUBTYPE .id IS type-mark opt-constraint ;

106 opt-constraint

107 | constraint

108 constraint

22

::= range-constraint

109 range-constraint

::= RANGE discrete-range

110 subprog-decl

::= subprog-spec ;

111 subprog-spec

::= PROCEDURE .id opt-procedure-formal-part

112 1 FUNCTION .id opt-function-formal-part RETURN type-mark

113 opt-procedure-formal-part

114 I (procedure-par-spec-list)

115 opt-function-formal-part

116 1 (function-par-spec-list)

117 procedure-par-spec-list

::= procedure-par-spec

118 I procedure-par-spec-list ; procedure-par-spec

119 function-par-spec-list

::= function-par-spec

120 1 function-par-spec-list ; function-par-spec

121 procedure-par-spec
::= proc-object-class id-list : procedure-par-mode

type-mark opt-eipr

122 1 id-list : IN type-mark opt-expr

123 1 id-list : OUT type-mark opt-expr

124 1 id-list : INOUT type-mark opt-expr

125 function-par-spec
::= fn-object-class id-list : function-par-mode type-mark

opt-expr

126 proc-object-class

::= CONSTANT

127 1 VARIABLE

128 fn-object-class

129 1 CONSTANT

130 procedure-par-mode

131 1 IN

132 I OUT

133 1 INOUT

134 function-par-mode

135 1 IN

23

136 subprog-body

::= subprog-spec IS subprog-decl-part BEGIN

subprog-stat-part END opt-id ;

137 subprog-decl-part

::« subprog-decl-item-list

138 subprog-decl-item-list

139 | subprog-decl-item-list subprog-decl-item

140 subprog-decl-item

::= const-decl

141 var-decl

142 type-decl

143 subtype-decl

144 subprog-decl

145 subprog-body

146 use-clause

147 subprog-stat-part

::= seq-stats

148 con-stats

149 I con-stats con-stat

150 con-stat

::= process-stat

151 | concurrent-sig-assn-stat

152 process-stat

::= opt-unit-label PROCESS process-decl-part BEGIN

process-stat-part END PROCESS opt-id ;

153 | opt-unit-label PROCESS (sensitivity-list)

process-decl-part BEGIN process-stat-part END PROCESS
opt-id ;

154 opt-unit-label

155 | .id :

156 process-decl-part

::■ process-decl-item-list

157 process-decl-item-list

158 | process-decl-item-list process-decl-item

159 process-decl-item

::= const-decl
160 var-decl
161 type-decl
162 subtype-decl
163 subprog-decl

164 subprog-body
165 use-clause

24

166 process-stat-part

::= seq-stats

167 concurrent-sig-assn-stat

::= selected-sig-assn-stat

168 I conditional-sig-assn-stat

169 selected-sig-assn-stat

::= opt-unit-label WITH expr SELECT

target <= opt-transport selected-waveforms ;

170 | . atmark
opt-unit-label WITH expr SELECT

target <= opt-transport selected-waveforms ;

171 opt-transport

172 1 TRANSPORT

173 selected-waveforms

::= selected-waveform

174 | selected-waveforms , selected-waveform

175 selected-waveform

::= waveform WHEN choices

176 conditional-sig-assn-stat
::= target <= opt-transport conditional-waveforms waveform ;

177 1 .atmark
target <= opt-transport conditional-waveforms waveform ;

178 1 .id : target <= opt-transport conditional-waveforms waveform ;

179 I .atmark
.id : target <= opt-transport conditional-waveforms waveform ;

180 conditional-wavef orms

181 I conditional-waveforms conditional-waveform

182 condit ional-wavef orm

::= waveform WHEN expr ELSE

183 waveform

::= waveform-elt-list

184 waveform-eIt-list

::= waveform-elt

185 1 waveform-elt-list , waveform-elt

186 waveform-elt

::= expr

187 1 expr AFTER expr

188 seq-stats

189 I seq-stats seq-stat

190 seq-stat

25

::» null-stat

191 I var-assn-stat

192 I sig-assn-stat

193 | if-stat

194 I case-stat
195 I loop-stat
196 I exit-stat
197 I return-stat
198 | proc-call-stat
199 | wait-stat

200 null-stat
::- MULL ;

201 | .atmark NULL

202 var-assn-stat

::= name :» expr ;

203 | .atmark name := expr ;

204 sig-assn-stat

::= target <= opt-transport waveform ;

205 | .atmark target <= opt-transport waveform ;

206 if-stat

::- if-head if-tail

207 I .atmark if-head if-tail

208 if-head

::= IF expr THEN seq-stats

209 I if-head ELSIF expr THEN seq-stats

210 if-tail

::= END IF ;

211 | ELSE seq-stats END IF ;

212 case-stat
::= CASE expr IS case-alt-list END CASE ;

213 | .atmark CASE expr IS case-alt-list END CASE

214 case-alt-list

::» case-alt

215 | case-other-alt

216 | case-alt case-alt-list

217 case-alt

::= WHEN choices => seq-stats

218 case-other-alt

::= WHEN OTHERS => seq-stats

219 choices

::= choice

220 | choices I choice

221 choice

::= simple-expr

222 I discrete-range

26

223 loop-stat
: := simple-loop

224 I while-loop

225 I for-loop

226 simple-loop

::= opt-unit-label LOOP seq-stats END LOOP opt-id ;

227 I .atmark opt-unit-label LOOP seq-stats END LOOP

opt-id ;

228 while-loop

::= opt-unit-label WHILE expr LOOP seq-stats END LOOP

opt-id ;
229 I .atmark opt-unit-label WHILE expr LOOP seq-stats END

LOOP opt-id ;

230 for-loop
::= opt-unit-label FOR name IN discrete-range LOOP

seq-stats END LOOP opt-id ;
231 I .atmark opt-unit-label FOR name IN discrete-range

LOOP seq-stats END LOOP opt-id ;

232 exit-stat
::= EXIT opt-dotted-name opt-when-cond ;

233 I .atmark EXIT opt-dotted-name opt-when-cond ;

234 opt-dotted-name

235 I dotted-name

236 opt-when-cond

237 I WHEN expr

238 proc-call-stat

::= name ;

239 I .atmark name ;

240 return-stat
::= RETURN ;

241 I .atmark RETURN ;

242 I RETURN expr ;

243 I .atmark RETURN expr ;

244 wait-stat
::= WAIT opt-sensitivity-clause opt-condition-clause

opt-timeout-clause ;

245 I .atmark WAIT opt-sensitivity-clause

opt-condition-clause opt-timeout-clause ;

246 opt-sensitivity-clause

247 I sensitivity-clause

248 sensitivity-clause
::= ON sensitivity-list

27

249 sensitivity-list
::= name-list

250 name-list
::= name

251 | name-list , name

252 opt-condition-clause

253 | condition-clause

254 condition-clause

::= UNTIL expr

255 opt-timeout-clause

256 | timeout-clause

257 timeout-clause

::= FDR expr

258 expr-list

::= expr

259 | expr-list , expr

260 opt-expr

261 | expr

262 expr

::» rel

263 | rel and-expr

264 | rel nand-expr

265 | rel or-expr

266 | rel nor-expr

267 | rel xor-expr

268 rel

::= simple-expr

269 I simple-expr relop simple-expr

270 and-expr

::= and-part

271 | and-part and-expr

272 and-part

::= AMD rel

273 nand-expr

: := nand-part
274 | nand-part nand-expr

275 nand-part
::= NAND rel

276 or-expr

28

: := or-part

277 I or-part or-expr

278 or-part

::= OR rel

279 nor-expr

: := nor-part

280 I nor-part nor-expr

281 nor-part

::= NDR rel

282 xor-expr
:: = xor-part

283 I xor-part xor-expr

284 xor-part

::= XDR rel

285 simple-expr

::= simple-exprl

286 I + simple-exprl

287 I - simple-exprl

288 simple-exprl

::= term

289 I simple-exprl addop term

290 term

::= factor

291 I term mulop factor

292 factor

::= primary

293 I primary ** primary

294 I ABS primary

295 I NOT primary

296 primary

::= primary1

297 I aggregate

298 I (expr)

299 primaryl

::= literal

300 I .atmark

301 I name

302 literal
::= boolean-literal

303 I bit-literal

304 I character-literal

305 I numeric-literal

306 I time-literal

307 I bitstring-literal

308 I string-literal

29

309 boolean-literal
::= FALSE

310 | TRUE

311 bit-literal
::= .bit

312 character-literal

::= .char

313 numeric-literal

: := .constant

314 time-literal

::= opt-time-constant time-unit

315 opt-time-constant

316 | .constant

317 time -unit

= FS
318 1 PS

319 1 NS

320 1 US

321 1 HS

322 1 SEC

323 1 MIH

324 1 HR

325 bitstring-literal

: := .bitstring

326 I .octstring

327 I .hexstring

328 string-literal

::= .string

329 aggregate

: := (2-expr-list)

330 2-expr-list

::* expr , expr

331 I 2-expr-list , expr

332 target

::= name

333 name

::= namel

334 namel

: := selector

335 I namel . selector

336 I namel (expr-list)

30

337 selector

::= .id

338 relop

339 I /=

340 I <

341 I <=

342 I >

343 I >=

344 addop

: := +

345 I -

346 I ft

347 mulop

: := *

348 I /

349 I MOD

350 I REH

5.2.2 Abstract Syntax: Phase 1

The abstract syntax of Stage 3 VHDL used during Phase 1 translation is shown below.

The superscript "*" denotes Kleene closure (e.g. "decl*" denotes zero or more occurrences
of the syntactic object "decl"), and a superscript "+" denotes one or more occurrences. In
a syntactic clause, subscripts denote (possibly) different objects of the same class.

As in the concrete syntax, terminal symbols appear in upper case, while all other symbols
are either nonterminals or pseudo-terminals (id, bitlit, and constant).

STAGE 3 VHDL ABSTRACT SYNTAX: PHASE 1

design-file ::= DESIGN-FILE id pkg-decl* pkg-body* use-clause* ent-decl arch-body

pkg-decl ::= PACKAGE id decl* opt-id

pkg-body ::= PACKAGEBODY id decl* opt-id

use-clause ::= USE dotted-name+

dotted-name ::= id+

ent-decl ::= ENTITY id port-decl* decl* opt-id

arch-body ::= ARCHITECTURE idi id2 decl* con-stat* opt-id

port-decl ::= DEC PORT id+ mode type-mark opt-expr

I SLCDEC PORT id+ mode slice-name opt-expr

31

mode ::= IN | OUT | INOUT | BUFFER

type-mark ::= dotted-name

slice-name ::= type-mark discrete-range

discrete-range ::= direction expri expr2
direction ::= TO | DOWNTO

arch-body ::= ARCHITECTURE idj id2 decl* con-stat* opt-id

decl ::= object-decl

type-decl

subtype-decl

pkg-decl

pkg-body

subprog-decl

subprog-body

use-clause

object-decl : := DEC object-class id+ type-mark opt-expr

I SLCDEC object-class id+ slice-name opt-expr

object-class ::= CONST I VAR I SIG

type-decl ::= enum-type-decl

I array-type-decl

I integer-type-decl

enum-type-decl ::= ETDEC id id+

array-type-decl ::= ATDEC id discrete-range type-mark

integer-type-decl ::= ITDEC id discrete-range

subtype-decl ::= STDEC id type-mark opt-discrete-range

subprog-decl ::= subprog-spec

subprog-spec ::= PROCEDURE id proc-par-spec* type-mark

I FUNCTION id func-par-spec* type-mark

proc-par-spec ::= object-class id+ proc-par-mode type-mark opt-expr

func-par-spec ::= object-class id+ func-par-mode type-mark opt-expr

32

proc-par-mode ::= IN I OUT I INOUT

func-par-mode ::= IN

subprog-body ::= SUBPROGBODY subprog-spec decl* seq-stat* opt-id

con-stat ::= process-stat
I selected-sig-assn-stat
I conditional-sig-assn-stat

process-stat ::= PROCESS id ref* decl* seq-stat* opt-id

selected-sig-assn-stat ::= SEL-SIGASSN delay-type id expr ref selected-waveform+

selected-waveform ::= SEL-WAVE waveform discrete-range+

conditional-sig-assn-stat ::= COND-SIGASSN delay-type id ref cond-waveform* waveform

cond-waveform ::= COND-WAVE waveform expr

seq-stat ::= null-stat
var-assn-stat

sig-assn-stat

if-stat

case-stat

loop-stat

while-stat
for-stat

exit-stat

call-stat

return-stat

wait-stat

null-stat ::= NULL

var-assn-stat ::= VARASSN ref expr

sig-assn-stat ::= SIGASSN delay-type ref waveform

delay-type ::= INERTIAL I TRANSPORT

waveform ::= WAVE transaction4"

transaction ::= TRANS expr opt-expr

if-stat ::= IF cond-part+ else-part

cond-part ::= expr seq-stat*

else-part ::- seq-stat*

case-stat ::= CASE expr case-alt+

33

case-alt ::= CASECHOICE discrete-range+ seq-stat*
I CASEOTHERS seq-stat*

loop-stat ::= LOOP id seq-stat* opt-id

while-stat ::= WHILE id expr seq-stat* opt-id

for-stat ::= FOR id ref discrete-range seq-stat* opt-id

exit-stat ::= EXIT opt-dotted-name opt-expr

call-stat ::= CALL ref

return-stat ::= RETURN opt-expr

wait-stat ::= WAIT ref* opt-expri opt-expr2

expr ::= e

I bool-lit

I bit-lit

I num-lit

I time-lit

I char-lit

I bitstr-lit

I str-lit

I ref

I positional-aggregate
I unary-op expr

I binary-op expri expr2
I relational-op expri expr2

bool-lit ::= FALSE I TRUE

bit-lit ::= BIT bitlit

num-lit ::= NUM constant

time-lit ::= TIME constant time-unit

char-lit ::= CHAR constant

bitstr-lit ::= BITSTR bit-lit*

str-lit ::= STR char-lit*

ref ::= REF name

34

name ::= id

I name id

I name expr*

positional-aggregate ::= PAGGR expr*

unary-op ::= NOT | PLUS | NEG | ABS

binary-op ::= AND I NAND I OR I NOR I XOR

I ADD | SUB | MUL I DIV | MOD | REM | EXP

I CONCAT

relational-op ::= EQ I NE I LT I LE I GT I GE

time-unit ::= FS | PS | NS I US I MS I SEC | MIN | HR

opt-id ::= e I id

opt-discrete-range ::= e I discrete-range

opt-dotted-name ::= e I dotted-name

opt-expr ::= e I expr

5.2.3 Abstract Syntax: Phase 2

The abstract syntax of Stage 3 VHDL used during Phase 2 translation differs in certain
respects from that employed by Phase 1, at exactly those points indicated below.

The abstract syntax transformation occurs at the very end of Phase 1, and just prior to the
invocation of Phase 2, as described in Section 7.

The most significant transformations of Phase 1 syntax to that of Phase 2 are: (1) the
"desugaring" (i.e., reduction to more basic constructs) of concurrent signal assignment
statements (conditional signal assignment and selected signal assignment) into equivalent
PROCESS statements; and (2) the disambiguation of REFs into simple references, array refer-
ences, record field accesses (not fully supported by Stage 3 VHDL), and subprogram calls.

STAGE 3 VHDL ABSTRACT SYNTAX: PHASE 2

ent-decl ::= ENTITY id decl*i decl*2 opt-id phasel-hook

con-stat ::= process-stat

35

process-stat ::= PROCESS id decl* seq-stat* opt-id phasel-hook

expr := 6

I bool-lit
I bit-lit
I num-lit
I time-lit
I char-lit
I enum-lit
I bitstr-lit
I str-lit
I ref

I positional-aggregate
I type-conversion
I unary-op expr
I binary-op expri expr2
I relational-op expri expr2

time-lit ::= TIME constant FS

enum-lit ::= ENUMLIT id

ref ::= REF modifier*

modifier ::= SREF id+ id
I INDEX expr
I SELECTOR id
I PARLIST expr*

type-conversion ::= TYPECONV expr type-mark

unary-op ::= NOT | BNOT | PLUS | NEG | ABS | RNEG | RABS

binary-op ::= AND | NAND I OR | NOR | XOR

I BAND | BNAND | BOR | BNOR | BXOR
I ADD | SUB | MUL | DIV | MOD | REM | EXP
I RPLUS | RMINUS | RTIMES | RDIV | REXPT
I CONCAT

relational-op ::= EQ I NE I LT I LE I GT I GE
I RLT | RLE | RGT | RGE

The occurrences of phasel-hook in the Phase 2 abstract syntax for ent-decl and process-stat
point to the Phase 1 abstract syntax for the respective constructs, for the purposes of the
SDVS VHDL Symbolic Execution Trace Window.

36

6 Phase 1: Static Semantic Analysis and Environment Col-
lection

Now that the necessary background has been established, we are ready to examine the
formal description of the Stage 3 VHDL translator.

In this section, an overview of Phase 1 and its relation to Phase 2 will be presented, followed
by detailed discussions of the environment manipulated by the translator and the Phase 1
semantic domains and function types, and finally the Phase 1 semantic equations themselves.

6.1 Overview

A Stage 3 VHDL hardware description is first parsed according to the Stage 3 VHDL
concrete grammar, producing an abstract syntax tree that serves as the input to Phase 1
translation.

Phase 1 of the translation accomplishes the following.

• Performs static semantic checks to verify that certain conditions are met, including:

- Objects, subprograms, packages, and process and loop labels must be declared
prior to use.

- Identifiers with the same name cannot be declared in the same local context.

- References to objects and labels must be proper, e.g. scalar objects must not
be indexed, array references must have the correct number of indices, and EXIT
statements must reference a loop label.

- All components of statements and expressions must have the proper type, e.g.
expressions used as conditions must be boolean, array indices must be of the
proper type, operators must receive operands of the correct type, procedure and
function calls must receive actual parameters of the proper type, function calls
must return a result of a type appropriate for their use in an expression.

- Sensitivity lists in PROCESS and WAIT statements must contain signal identifiers.

- The collection of discrete ranges defining a CASE statement alternative must be
exhaustive and mutually exclusive.

- The time delays in the AFTER clause of a signal assignment statement must be
increasing.

• Creates a new abstract syntax tree — a transformed version of the original abstract
syntax tree (used by Phase 1) — that will be more conveniently utilized by Phase 2
of the translation.

• Creates and manipulates a tree-structured environment (TSE) that, in the absence of
errors, is provided to Phase 2 of the translation.

37

If the VHDL translator completes Phase 1 without error, then it can proceed with Phase
2, state delta generation. Phase 2 requires two inputs: the transformed abstract syntax
tree and the tree-structured environment for the hardware description, both constructed by
Phase 1.

The tree-structured environment contains a complete record of the name/attribute associ-
ations corresponding to the hardware description's declarations, and its structure reflects
that of the description. Referring to this TSE, Phase 2 incrementally generates and (per
user proof commands) applies state deltas via symbolic execution and the theories built
into the Simplifier.

6.2 Descriptors, Types, and Type Modes

When a declaration of an identifier is processed by Phase 1, that identifier is bound in
the TSE to a descriptor, a structured object that contains the attributes of the identifier
instance associated to it by that declaration.

At the time a descriptor is created and entered into the TSE, its qid field is set to e.
The value of the qid field is eventually set to the proper statically uniquely qualified name
(SUQN), when such a qualified name makes sense; see Section 8.2.1. These updates to the
qid fields become possible only once the TSE is fully constructed, i.e., at the very end of
Phase 1 — or in other words, at the very beginning of Phase 2, the phase in which these
uniquely qualified names are needed.

Eight kinds of descriptor are used in Phase 1: object, package, process name, loop name,
function, procedure, enumeration type element, and type. Their structures are as follows:

object :
< id, qid, tag, path, exported, type, value, process >

The id field contains the identifier to which this descriptor is bound, and the qid
field contains its statically uniquely qualified name (SUQN). The tag field contains
OBJECT. The path field contains the path in the tree-structured environment to
the component environment in which this instance of the identifier is bound. The ex-
ported field indicates whether the definition of this identifier instance can be exported
to other environments. A value true (represented by DENOTE symbol tt) indicates
exportation is permitted, and a value false (represented by DENOTE symbol ff)
indicates that it is not. This becomes an issue when the declaration whose elabora-
tion created this descriptor was contained in a package specification (exportable) or
package body (not exportable).

If the identifier id represents a constant initialized via a static expression, then the
value field contains the initial value; otherwise it contains *UNDEF* (undefined).
Array and record references never represent static values in VHDL, so the value field
of corresponding object descriptors contains *UNDEF*.

If the identifier id represents a signal, then the label of the first PROCESS statement
in which id is the target of a signal assignment is entered into the process field, to
enable the detection of assignments to the signal by multiple processes (disallowed in
Stage 3 VHDL).

38

Finally, the object descriptor's type field contains the type of the identifier, repre-
sented by a pair < tmode, tdesc >:

• tmode is the type mode, itself a pair;
normally,

tmode = <object-class, ref-mode>,
where object-class € {CONST, VAR, SIG}
and ref-mode e {VAL,REF,OUT).
The tmode indicates, first, whether the object is a constant (object-class =
CONST), variable (object-class = VAR), or signal (object-class = SIG),
and second, whether the object is read-only (ref-mode = VAL), read-write
(ref-mode = REF), or write-only (ref-mode = OUT).
For technical purposes, it is also occasionally convenient for Phase 1 transla-
tion to manipulate "dummy" type modes of the form < DUMMY, VAL >,
< DUMMY, OBJ >, < DUMMY, ACC >, < DUMMY, AGR >, and
< DUMMY, TYP >, as well as "path" type modes of the form < PATH,p >
where p is a path in the TSE.

• tdesc is the type descriptor (see below). It gives the object's basic type, irre-
spective of the type mode.

To introduce a bit more terminology, a type in which the ref-mode is REF or OUT
will be called a reference type, while one whose ref-mode is VAL will be called a
value type. A reference type indicates that the associated object can have its value
altered (by an assignment, say), as opposed to a value type.

Finally, the type descriptor d = tdesc is the basic type of the type < tmode, tdesc >
of which it is the second component.

package :
< id, qid, »PACKAGE*,path, exported, pbody >

The id, qid, path, and exported fields are as above. The tag field contains ♦PACK-
AGE*. If this package has a body, the pbody field contains the transformed abstract
syntax tree of the package body; otherwise it contains e.

process name :
< id,qid,*PROCESSNAME*,path >

The id and path fields are as above. The tag field contains *PROCESSNAME*
(the process label). The qid field has no relevance here, and contains e.

loop name :
< id, qid, +LOOPNAME*, path >

The id, qid, and path fields are as in a process name. The tag field contains
♦LOOPNAME* (the loop label).

function :

< id, qid, +FUNCTION*,path, exported, signatures, body, characterizations >

The id, qid, exported, and path fields are as above. The tag field contains
»FUNCTION*.

39

The signatures field contains a list of signatures, that is, < pars,rtype > pairs; this
list will be a singleton unless the function is overloaded. The pars field of a signature
is a list that indicates the names and types of the function's formal parameters. Each
list element is a pair, whose first component is the identifier that denotes the formal
parameter's name and whose second component is its type. The rtype (result type)
field of a signature contains the type of the function's result for these particular
parameter types; this type is always a value type.

The body field of a function descriptor contains the transformed abstract syntax
tree of the function's body (including its local declarations) if a body exists, and e
otherwise. The characterizations field of a function descriptor always contains e
(see procedure descriptors for a description of this field).

procedure :

< id, qid, »PROCEDURE*, path, exported, signatures, body, characterizations >

The id, qid, path, exported, signatures, body, and characterizations fields are
as in the function descriptor. The tag field contains *PROCEDURE* (procedure).
Since procedures return no result, all rtype fields in each signature contain the void
standard value type (see below).

The characterizations field of a procedure descriptor, unlike that of a function
descriptor, is potentially nonempty. One of either the body or the characterizations
must contain q either a procedure has a body that may be symbolically executed, or
it has been characterized by a set of state deltas.

A characterization is a 6-tuple containing the following information:

• the path to the procedure;

• the identifier that names the procedure;

• a list of the identifiers that name the arguments to the procedure;

• a (possibly empty) precondition that determines under which conditions this
characterization may be used;

• a modification list of the names of variables changed by this procedure; and

• a postcondition that states the effects of the procedure.

The last three items in the tuple must be given in SDVS internal state delta notation,
as they form the basis for a state delta that characterizes the actions of the procedure.

enumeration type element :

< id, qid, *ENUMELT*,path, exported, type >

The id field contains the name of an enumeration type element, the tag field is
ENUMELT, and the type field contains the descriptor of the enumeration type.

type :
There are six kinds of type descriptor: those for standard types, enumeration types,
array types, subtypes, integer definition types, and record types. Although record

40

types are not actually incorporated in the Stage 3 VHDL language subset, the Stage
3 VHDL translator contains support for their eventual implementation.

Each type descriptor has an id field (containing the name of that type), a correspond-
ing qid field, a tag field (indicating the kind of type descriptor), path and exported
fields (that serve the usual purpose), and additional fields that contain information
appropriate to the type represented by the descriptor. The detailed structures of the
type descriptors are as foDows:

standard type :
< id, qid, tag, path, exported >

Standard types are those considered to be predeclared; they are always ex-
portable. In Stage 3 VHDL, the standard types are boolean, bit, integer, real,
time, character, bit-vector, and string; they cannot be redeclared.
The id and tag fields denote the following Stage 3 VHDL standard types:

id = BOOLEAN, tag = *BOOL*

id = BIT, tag = *BIT*

id = UNIVERSALJNTEGER, tag = *INT*

id = INTEGER, tag = *INT*

id = REAL, tag = *REAL*

id = TIME, tag = *TIME*

id = BIT_VECTOR, tag = *ARRAYTYPE*

id = STRING, tag = *ARRAYTYPE*

For completeness, we also provide void and polymorphic standard types for Stage
3 VHDL:

id = VOID, tag = *VOID*

id = POLY, tag = *POLY*

Functions are available that look up the type descriptors for the standard types;
during translation Phase 1, these type descriptors are bound to the type identi-
fiers in the t((STANDARD)) component environment of the TSE t:

bool-type-desc(t) = t((STANDARD))(BOOLEAN)

bit-type-desc(t) = t((STANDARD))(BIT)

univint-type-desc(t) = t((STANDARD))(UNIVERSALJNTEGER)

int-type-desc(t) = t((STANDARD))(INTEGER)

41

real-type-desc(t) = t((STANDARD))(REAL)

time-type-desc(t) = t((STANDARD))(TIME)

void-type-desc(t) = t((STANDARD))(VOID)

poly-type-desc(t) = t((STANDARD))(POLY)

In each of the above cases, the type descriptor has the form:

< id, epsilon, tag, (STANDARD), tt, lb, ub >

char-type-desc(t) = t((STANDARD))(CHARACTER)

The type descriptor for the CHARACTER type has the form:

< CHARACTER, epsilon, *ENUMTYPE*, (STANDARD), tt, (CHAR 0),(CHAR 127), literals >

bitvector-type-desc(t) = t((STANDARD))(BIT_VECTOR)

The type descriptor for the BIT-VECTOR type has the form:

< BIT.VECTOR, epsilon, *ARRAYTYPE*, (STANDARD), tt, TO, (NUM 0), epsilon,bittypedesc >

string-type-desc(t) = t((STANDARD))(STRING)

The type descriptor for the STRING type has the form:

< STRING,epsilon, *ARRAYTYPE*, (STANDARD), tt, TO, (NUM 1), epsilon, chartypedeso

enumeration type :

< id, qid, «ENUMTYPE*, path, exported, literals >

The literals field is a nonempty list of identifiers giving the enumeration literals
(in order) for this type. Both characters and identifiers are admissible enumera-
tion literals in Stage 3 VHDL.

array type :

< id, qid, *ARRAYTYPE*, path, exported, direction, lb, ub,elty >

Every array type has a name; unique names are generated for anonymous ar-
ray types. Arrays in Stage 3 VHDL are one-dimensional, of index type UNI-
VERSALJNTEGER. Note that the standard types BIT.VECTOR and
STRING are array types.

The direction field contains either TO or DOWNTO, indicating whether the
indices of the array increase or decrease, respectively. The lb and ub fields
contain, respectively, abstract syntax trees for expressions that denote the array
type's lower and upper bounds. The elty (element type) field contains the de-
scriptor of the type of the array's elements. The values of the array's lower and
upper bounds are not necessarily static; therefore, array bounds-checking gen-
erally cannot be performed in Phase 1, but must be deferred to Phase 2 ("run
time"), when state deltas are applied ("executed").
The following function accepts arguments for the creation of an array type:

42

array-type-desc(array-name,qid,path,exported,direction,lower-bound,upper-bound,element-type)
= <array-name,qid,*ARRAYTYPE* ,path,exported,direction,lower-bound,upper-bound,element-type>

subtype :
< id, qid,*SUBTYPE*, path, exported, lb, üb, basetype >

The lb and ub fields contain, respectively, abstract syntax trees for expressions
that denote the subtype's lower and upper bounds. The basetype field contains
the descriptor of the subtype's base type.

integer definition type :

< id, qid, *INT_TYPE*, path, exported, lb, ub, parenttype >

The lb and ub fields contain, respectively, abstract syntax trees for expressions
that denote the integer definition type's lower and upper bounds. The parent-
type field contains the descriptor of the integer definition type's parent type,

which is always UNIVERSAL-INTEGER.

record type :
< id, qid, *RECORDTYPE*, path, exported, components >

The components field is a nonempty list of triplets; each triplet represents a
field of this record type. The first element of each triplet is an identifier that
is this field's name. The second element is a descriptor representing this field's
basic type. The third element either is empty or contains an abstract syntax
tree for Phase 2 initialization for components of objects declared to be of this
record type. As noted above, records are not implemented as part of Stage 3
VHDL, and record types are included simply in preparation for the anticipated
implementation of records.

6.2.1 Type and type descriptor predicates

Predicates are available for distinguishing specific types and type descriptors:

is-boolean?(type) = is-boolean-tdesc?(tdesc(type))

is-boolean-tdesc?(d) = idf(d)= BOOLEAN

is-bit?(type) = is-bit-tdesc?(tdesc(type))

is-bit-tdesc?(d) = idf(d)= BIT

is-integer?(type) = is-integer-tdesc?(tdesc(type))

is-integer-tdesc?(d) = tag(d)G (*INT* *INT_TYPE*)

is-real?(type) = is-real-tdesc?(tdesc(type))

43

is-real-tdesc?(d) = idf(d)= REAL

is-time?(type) = is-time-tdesc?(tdesc(type))

is-time-tdesc?(d) = idf(d)= TIME

is-void?(type) = is-void-tdesc?(tdesc(type))

is-void-tdesc?(d) = idf(d)= VOID

is-poly?(type) = is-poly-tdesc?(tdesc(type))

is-poly-tdesc?(d) = idf(d)= POLY

is-character?(type) = is-character-tdesc?(tdesc(type))

is-character-tdesc?(d) = idf(d)= CHARACTER

is-array?(type) = is-array-tdesc?(tdesc(type))

is-array-tdesc?(d) = tag(d)= *ARRAYTYPE*

is-record?(type) = is-record-tdesc?(tdesc(type))

is-record-tdesc?(d) = tag(d)= *RECORDTYPE*

is-bitvector?(type) = is-bitvector-tdesc?(tdesc(type))

is-bitvector-tdesc?(d)
= let idf = idf(d) in

idf = BIT_VECTOR V (consp(idf)A hd(idf)= BIT_VECTOR

is-string?(type) = is-string-tdesc?(tdesc(type))

is-string-tdesc?(d)
= let idf = idf(d) in

idf = STRING V (consp(idf)A hd(idf)= STRING)

is-const?(type) — object-class(tmode(type))= CONST

is-var?(type) = object-class(tmode(type))= VAR

is-sig?(type) = object-class(tmode(type))= SIG

44

6.2.2 Additional primitive accessors and predicates

Certain primitive functions can be applied to descriptors. For each kind of descriptor and
field there exists an access function, ordinarily with the same name as the field (the only
exception being idf instead of id). When applied to a descriptor of the proper kind, the
access function extracts the contents of that descriptor's corresponding field. For example,
if d is an object descriptor, then tag(d) = *OBJECT*.

If d is any descriptor, then the fully qualified name of the corresponding identifier instance
is returned by function namef:

namef(d) = $(path(d))(idf(d))

Defined below are the descriptor component access functions, a few related constructor and
access functions, and some convenient additional predicates.

idf(d) = hd(d)

qid(d) = hd(tl(d))

tag(d) = hd(tl(tl(d)))

path(d) = hd(tl(tl(tl(d))))

exported(d) = hd(tl(tl(tl(tl(d)))))

type-tick-low(d) = hd(tl(tl(tl(tl(tl(d))))))

type-tick-high(d) = hd(tl(tl(tl(tl(tl(tl(d)))))))

base-type(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

parent-type(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

literals(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

pbody(d) = hd(tl(tl(tl(tl(tl(d))))))

type(d) = hd(tl(tl(tl(tl(tl(d))))))

value(d) = hd(tl(tl(tl(tl(tl(tl(d)))))))

process(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

signatures(d) = hd(tl(tl(tl(tl(tl(d))))))

body(d) = hd(tl(tl(tl(tl(tl(tl(d)))))))

characterizations(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

direction(d) = hd(tl(tl(tl(tl(tl(d))))))

lb(d) = hd(tl(tl(tl(tl(tl(tl(d)))))))

ub(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

45

elty(d) = hd(tl(tl(tl(tl(tl(tl(tl(tl(d)))))))))

components(d) = hd(tl(tl(tl(tl(tl(d))))))

pars(signature) = hd(signature)

rtype(signature) = hd(tl(signature))

get-base-type(d) = (tag(d)= *SUBTYPE* -> base-type(d), d)

get-parent-type(d)
= (tag(d)e (*INT_TYPE* *DERIVED_TYPE*) - parent-type(d),

error(cat("Mot a derived type: ")(d)))

mk-type(tmode)(tdesc) = (tmode,tdesc)

tmode(type) = hd(type)

tdesc(type) = hd(tl(type))

mk-tmode(object-class)(ref-mode) = (object-class,ref-mode)

object-class(tmode) = hd(tmode)

ref-mode(tmode) = hd(tl(tmode))

is-const?(type) = object-class(tmode(type))= CONST

is-var?(type) = object-class(tmode(type))= VAR

is-sig?(type) = object-class(tmode(type))= SIG

is-readable?(type) = ref-mode(tmode(type))e (VAL REF)

is-writable?(type) = ref-mode(tmode(type))e (REF OUT)

is-ref?(expr) = hd(expr)= REF

is-paggr?(expr) = hd(expr)= PAGGR

is-unary-op?(op) = op e (NOT PLUS NEG ABS)

is-binary-op?(op)
= op 6 (AND NAND OR NOR XOR ADD SUB MUL DIV MOD REM EXP CONCAT)

is-relational-op?(op) = op e (EQ NE LT LE GT GE)

46

6.3 Special-Purpose Environment Components and Functions

Certain component environments r of the tree-structured environment (TSE) part of the
translation state have special identifier-like names that are bound to values specific to that
environment's associated program unit (design file, package, entity, architecture, process,
procedure, function, or loop):

UNIT :
r(*UNIT*) contains a tag that identifies what kind of program unit led to the cre-
ation of r. These tags are *DESIGN-FILE* (design file), »PACKAGE* (package),
ENTITY (entity), »ARCHITECTURE* (architecture), »PROCESS* (pro-
cess), »PROCEDURE* (procedure), *FUNCTION* (function), and *LOOP*
(loop). These tags are used to locate the innermost instance of a specific kind of
environment (such as one associated with a process) on the current lookup path in
the TSE.

LAB :
When the tag of r(*UNIT*) is »ARCHITECTURE*, the value bound to r(*LAB»)
contains an identifier list of all the process labels declared in the program unit. When
the tag of r(*UNIT») is »PROCESS», »PROCEDURE*, »FUNCTION*, or
LOOP, the value bound to r(*LAB») contains an identifier list of all the loop
labels declared in the program unit. These lists are used to ensure that the identifiers
serving as process and loop labels are distinct in (the top-level scope of) each program
unit.

♦USED* :
The environment corresponding to any program unit admitting USE clauses in its
declarative part has a *USED* component. In this case, r(*USED*) is a list repre-
senting the set of fully qualified names of packages named in USE clauses appearing in
that declarative part, omitting the qualified names of packages that textually enclose
those USE clauses. In order to ensure that the TSE used in Phase 2 of the Stage 3
VHDL translator can remain fixed as that generated by Phase 1, a slight restriction
is imposed on the concrete syntax of Stage 3 VHDL. This restriction requires that
all of the USE clauses in a declarative part appear only at the end of that declarative
part. This will be discussed more fully later.

IMPT :
Whenever a program unit has a *USED* component, it also has a *IMPT* com-
ponent. r(*IMPT*) is a list of the fully qualified names of those items that can be
imported into the program unit's environment by the elaboration of the USE clauses
in its declarative part. Consequently, no two of these fully qualified names can have
the same last identifier (unqualified name), nor can the last identifier of any of these
fully qualified names be the same as an identifier whose (local) declaration appears in
this program unit's declarative part.

SENS :
When the tag of r(*UNIT*) is *PROCESS*, the value bound to r(*SENS*) con-

47

tains a list of the transformed abstract syntax trees of the refs appearing in that pro-
cess' sensitivity list. Phase 1 translation of a WAIT statement occurring in a PROCESS
statement checks to make sure this *SENS* list is empty; otherwise, the WAIT occurs
illegally in a process with a sensitivity list.

Special Phase 1 Functions

Three special-purpose Phase 1 functions denned by SDVS are set-difference, new-array-
type-name, and delete-duplicates; these are provided by SDVS because of the difficulty
of writing their definitions in the DENOTE language (DL).

Function set-difference returns the set difference of two lists. Function new-array-
type-name returns a new unique name for an anonymous array type. Function delete-
duplicates destructively deletes duplicate items from a list.

Error Reporting

Phase 1 errors are reported by three SDVS functions: error, which takes a string-valued er-
ror message; error-pp, which takes a string-valued error message and an additional VHDL
abstract syntax subtree to be pretty-printed; and cat, which makes a string from its (vari-
able number of) arguments, each of which is made into a string.

6.4 Phase 1 Semantic Domains and Functions

The formal description of Phase 1 translation consists of semantic domains and semantic
functions, the latter being functions from syntactic to semantic domains. Compound se-
mantic domains are defined in terms of primitive semantic domains. Similarly, primitive
semantic functions are unspecified (their definitions being understood implicitly) and the
remaining semantic functions are defined (by syntactic cases) via semantic equations.

The principal Phase 1 semantic functions (and corresponding Stage 3 VHDL language
constructs for which they perform static analysis) are: DFT (design files), ENT (entity
declarations), ART (architecture bodies), PDT (port declarations), DT (declarations),
CST (concurrent statements), SLT (sensitivity lists), SST (sequential statements), AT
(case alternatives), DRT (discrete ranges), WT (waveforms), TRT (transactions), MET
(reference lists), ET and RT (expressions), OT1 (unary operators), OT2 (binary and
relational operators), B (bit literals), and N (numeric literals).

Each of the principal semantic functions requires an appropriate syntactic argument — an
abstract syntactic object (tree) generated by the Stage 3 VHDL language parser. Most of
the semantic functions take (at least) the following additional arguments:

• a path, indicating the currently visible portion of the (partially constructed) tree-
structured environment;

a continuation, specifying which Phase 1 semantic function to invoke next; and

48

• a (partially constructed) TSE, containing the information gathered from declarations

previously elaborated and checked.

In the absence of errors, the Phase 1 semantic functions update the TSE. Moreover, ET
and RT also construct a pair consisting of an expression's type and its static value. The
type is either a value type or a reference type; see Section 6.2. Only an expression with a

reference type may be the target of an assignment operation.

An expression's static value is *UNDEF* ("undefined") unless it is a static expression, in
which case its static value is determined as follows. A static expression is:

• a boolean, bit, numeric, or character literal: the static value is the value of the

corresponding constant;

• an identifier explicitly declared as a scalar constant and initialized by a static expres-
sion: the static value is the static value of the initialization expression;

an operator applied to operands that are static expressions: the static value is deter-
mined by the semantics of the operator and the static value of the operands;

a static expression enclosed in parentheses: the static value is the static value of the

enclosed static expression.

•

•

Note that a subscripted array reference, even if the subscript is a static expression and the
array was declared as a constant initialized with a list of static expressions, is not a static
expression. (The same is true for a selected record component.)

6.4.1 Phase 1 Semantic Domains

The semantic domains and function types for Phase 1 of the Stage 3 VHDL translator are

as follows.

Primitive Semantic Domains

Bool = {FALSE, TRUE} boolean constants
Bit = {0, 1} bit constants
Char = {(CHAR 0), ..., (CHAR 127)} character constants (ASCII-128 representations)

n : N = {0, 1, 2, ...} numeric constants (natural numbers)

identifiers
system-generated identifiers (disjoint from Id)

tree-structured environments (TSEs)
descriptors (see Section 6.2)

sd : SD state deltas

49

id : Id
Sysid

t :
d

TEnv
Desc

Assert

Error

Compound Semantic Domains

elbl : Elbl = Id + Sysld
p, q: Path = Elbl*
qname: Name = Elbl (. Elbl)*

d : Dv = Desc
r : Env = Id -»■ (Dv + {*UNBOUND*})

SDVS Simplifier assertions

error messages

TSE edge labels
TSE paths
qualified names

denotable values (descriptors)
environments

Tmode = {PATH} x Id* +

({CONST, VAR, SIG, DUMMY} x
{VAL, OUT, REF, OBJ, ACC, TYP})

type modes

w : Type = Tmode x Desc
e : Value

types
values

h : CSet = P(Bool) + P(Char) + P/(N) case selection sets [P(«) denotes "powerset of"
+ {INT} + {ENUM} and P;(») denotes "set of finite subsets of"]

u : TDc = TEnv -► Ans
c : TSc = TDc
k : TEc = (Type x Value) -► TSc
h : TMc = (Type* x Value*) -> TSc
y : TAc = CSet -► TSc
v : TTc = Type -► Ans
z : Desc -> TDc

Ans = (SD + Assert)* + Error

declaration & concurrent statement continuations
sequential statement continuations
expression continuations
reference list continuations
case alternative continuations
type continuations
descriptor continuations

final answers

6.4.2 Phase 1 Semantic Functions

The semantic functions for Phase 1 of the Stage 3 VHDL translator are as follows.

DFT : Design -f Ans

ENT : Ent -> Path -► TDc -»• TDc
ART : Arch -» Path -► TDc -♦ TDc

PDT : PDec* -» Path -► Bool -► TDc -+ TDc
DT : Dec* -> Path -+ Bool -> TDc — TDc

design file static semantics

entity declaration static semantics
architecture body static semantics

port declaration static semantics
declaration static semantics

50

CST : CStat* -► Path -► TDc -* TDc
SLT : Ref -♦ Path -»• TDc -♦ TDc

SST : SStat* Path — TSc -* TSc

AT : Alt* -► Type -► Path -> TAc -* TSc
DRT : Drg -> Type -> Path — TAc -♦ TSc

WT : Wave -► Path -> TEc -+ TSc
TRT : Trans* -» Path -► TEc -> TSc

concurrent statement static semantics
sensitivity list static semantics

sequential statement static semantics

case alternative static semantics
discrete range static semantics

waveform static semantics
transaction static semantics

MET : Ref* ■-> Path -► TMc -► TSc
ET : Expr -> Path -* TEc -♦ TSc
RT : Expr -> Path -> TEc -> TSc
OT1 : Uop -»• TEc -»• TEc
OT2 : Bop -> TEc -> (Type x Value)

B : BitLit -* Bit
N : NumLit -> N

TEc

reference list static semantics
expression static semantics
expression static semantics
unary operator static semantics
binary, relational operator static semantics

bit values of bit literals (primitive)
integer values of numeric literals (primitive)

51

6.5 Phase 1 Semantic Equations

6.5.1 Stage 3 VHDL Design Files

(DFT1) DFT [DESIGN-FILE id pkg-decl* pkg-body* use-clause* ent-decl arch-body]
= let t0 = mk-initial-tse()

and po = %(e)(id) in
let idi = hd(tl(ent-decl)) in
let ti = enter-standard(to)

and pi = %(p0)(idi) in
let t2 = enter(ti)(e)(id)(<e,*DESIGN-FILE*,e,tt>) in

let t3 = enter(extend(t2)(£)(id))(p0)(*UNIT*)(<£,*DESIGN-FILE* >) in
let t4 = enter(t3)(p0)(*LAB*)(<e,e>) in

let t5 = enter(t4)(p0)(*USED*)(<£,£>) in
let t6 = enter(t5)(p0)(*IMPT*)(<e,e,e>) in

enter-objects
((VHDLTIME ,VHDLTIME_PREVIOUS))
(<e *OBJECT* ,e,tt,

((DUMMY ,VAL),vhdltime-type-desc(t0)),*UNDEF* ,e>)(t6)(e)(u)
where
u = At.let use-clause = (USE ,((STANDARD ,ALL))) in

DT I use-clause 1 (e)(tt)(m)(t)
where m = At.DT [pkg-decl*] (p0)(tt)(u2)(t)
where u2 = At.DT [pkg-body* 1 (po)(tt)(u3)(t)
where u3 = At.DT [use-clause* J (p0)(tt)(u4)(t)
where u4 = At.ENT [ent-decl 1 (p0)(u5)(t)
where u5 = At.ART [arch-body] (pi)(n6)(t)
where
U6 = At.let unit = DFX [design-file J (t) in

phase2(unit)(t)

enter-standard(t)
= let ti = enter-package(t)(e)(STANDARD) in

let t2 = enter-package(t!)(e:)(TEXTIO) in
let t3 = enter(t2)(e)(*USED*)(<e,e>) in

let t4 = enter(t3)(e)(*IMPT*)(<e,e,£>) in
let t5 = enter-predefined(t4)((STANDARD)) in

t5

enter-package(t)(p)(id)
= let pi = %(p)(id) in

let package-desc = <e,*PACKAGE* ,p,tt,e> in
let ti = enter(t)(p)(id)(package-desc) in

let t2 = enter(extend(t1)(p)(id))(p1)(*UNIT*)(<e,*PACKAGE* >) in
let t3 = enter(t2)(pi)(*USED*)(<e,e>) in
let t4 =enter(t3)(Pl)(*IMPT*)(<e,£,e>) in

t4

enter-predefined(t)(p)
= let t, = enter(t)(p)(BOOLEAN)(<£,*BOOL* .(STANDARD) ,tt,FALSE ,TRUE >) in

let t2 = enter
(ti)(p)(BIT)
(<e,*BIT* .(STANDARD) ,tt,mk-bit-simp-symbol(0),

mk-bit-simp-symbol(l)>) in
let t3 = enter(t2)(p)(UNIVERSALJ:NTEGER)(<£,*INT* ,(STANDARD) ,tt,e,e>) ii

let t4 = enter(t3)(p)(INTEGER)(<£,*INT*,(STANDARD) ,tt,e,e>) in
let t5 = enter(t4)(p)(REAL)(<e,*REAL* .(STANDARD) ,tt,£,£>) in

52

let t6 = enter(ts)(p)(TIME)(<E,*TIME* ,(STANDARD) ,tt,e,e>) in
let t7 = enter(t6)(p)(VHDLTIME)(<e,*VHDLTIME* .(STANDARD) ,tt,e,e>) in

let t8 = enter(t7)(p)(VOID)(<£,*VOID* .(STANDARD) ,tt,e,e>) in
let t9 = enter(t8)(p)(POLY)(<£,*POLY* .(STANDARD) ,tt,£,£>) in

let tiO = enter
(t9)(p)(BIT_VECTOR)
(tl(array-type-desc

(BIT_VECTOR)(e)((STANDARD))(tt)(TO)((NUM 0))(e)
(bit-type-desc(t8)))) in

let til = enter-characters(tiO)(p) in
let ti2 = enter-string(til)(p) in

ti2

enter-char acters(t)(p)
= let id+ = gen-characters(0)(127) in

let field-values! = <e,*ENUMTYPE* ,p,tt,hd(id+),last(id+),id+> in
let char-type-desc = cons(CHARACTER .field-valuesi) in
let field-values2 = <e,*ENUMELT* ,p,tt,mk-type((CONST VAL))(char-type-desc)> in

enter-objects(id+) (field-values2) (t) (p) (u)
where u = Ati.enter(ti)(p)(CHARACTER)(field-valuesi)

enter-string(t)(p)
= let expr = (NUM 1) in

let string-type-desc = array-type-desc
(STRING)(e)(p)(tt)(TO)(second(EX [expr] (p)(t)))(e)
(char-type-desc(t)) in

enter(t)(p)(STRING)(tl(string-type-desc))

gen-characters(start)(finish)
= (start = finish -* ((CHAR .finish)),

cons((CHAR ,start),gen-characters(start+l)(finish)))

enter-objects(id*)(field-values)(t)(p)(u)
= (null(id*)-+u(t),

let id = hd(id*) in
(t(p)(id)^ »UNBOUND* -^ error(cat("Duplicate object declaration: ")($(p)

(id))),
let ti = enter(t)(p)(id)(field-values) in

enter-objects(tl(id*))(field-values)(ti)(p)(u)))

6.5.2 Entity Declarations

(ENT1) ENT [ENTITY id port-decl* decl* opt-id 1 (p)(u)(t)
= (-inull(opt-id)A opt-id ^ id

—♦ error
(cat("Entity declaration n)(id)
(" ended with incorrect identifier: ")(opt-id)),

let ti = enter(t)(p)(id)(<e,*ENTITY* ,e,ff>) in
let pi = %(p)(id) in

let t2 =enter(extend(t1)(p)(id))(pI)(*UNIT*)(<£,*ENTITY*>) in
let t3 = enter(t2)(pi)(*LAB*)(<£,£>) in

let t4 = enter(t3)(pi)(*USED*)(<e,e>) in
let t5 = enter(t4)(pi)(*IMPT*)(<£,£,£>) in
PPT I port-decl*] (pi)(tt)(ui)(t5)

where u, = At.DT I decl* 1 (pi)(tt)(u)(t))

53

6.5.3 Architecture Bodies

(ART1) ART I ARCHITECTURE idi id2 decl* con-stat* opt-id 1 (p)(u)(t)
= (-mull(opt-id)A opt-id ^ idi

—► error
(cat("Architecture body ")(idi)
(" ended with incorrect identifier ")(opt-id)),

let d = lookup(t)(p)(id2) in
(d = »UNBOUND* V tag(d)^ »ENTITY*
-+ error(cat("No entity ")(id2)(" for architecture body ")(idi)),
let pi = %(p)(idi) in
let tj = enter(t)(p)(id1)(<e,*ARCHITECTURE* ,p,ff>) in
let t2 =enter(extend(ti)(p)(id1))(pi)(*UNIT*)(<e,*ARCHITECTURE* >) in

let t3 = enter(t2)(Pl)(*LAB*)(<£,£>) in
let t4 = enter(t3)(Pl)(*USED*)(<£,e>) in
let t5 =enter(t4)(pi)(*IMPT*)(<£,£,£>) in
DTfdecPKpjHttHu,)^)
where m = At6.CST [con-stat*] (pi)(u)(t6)))

6.5.4 Port Declarations

(PDTO)PDTl£](P)(vis)(u)(t) = u(t)

(PDT1) PPT [port-decl port-decl*] (p)(vis)(u)(t)
= PPT I port-decl] (p)(vis)(ux)(t)

where m = At.PPT [port-decl*] (p)(vis)(u)(t)

The elaboration and checking of a sequence of port declarations proceeds from the first to
the last declaration in the sequence.

(PDT2) PPT I PEC PORT id+ mode type-mark opt-expr] (p)(vis)(u)(t)
= lookup-type(type-mark)(p)(z)(t)

where
z = Ad.let type = (case mode

IN - mk-type((SIG VAL))(d),
OUT — mk-type((SIG OUT))(d),
(INOUT ,BUFFER) — mk-type((SIG REF))(d),
OTHERWISE
—<■ error

(cat("Illegal mode in port declaration: ")

(port-decl))) in

process-dec(id+)(type)(opt-expr)(p)(vis)(u)(t)

Refer to the discussion following semantic equation DT5 in Section 6.5.5.

(PDT3) PPT [SLCPEC PORT id+ mode slice-name opt-expr] (p)(vis)(u)(t)
= let (type-mark,discrete-range) = slice-name in

lookup- type(type-mark)(p)(z)(t)
where
z = Ad.let type = (case mode

IN — mk-type((SIG VAL))(d),
OUT -* mk-type((SIG OUT))(d),
(INOUT ,BUFFER) — mk-type((SIG REF))(d),

54

OTHERWISE
—► error

(cat("Illegal mode in port declaration: ")
(port-decl))) in

process-slcdec
(id+)(type)(discrete-range)(opt-expr)(p)(vis)(u)(t)

Refer to the discussion following semantic equation DT6 in Section 6.5.5.

6.5.5 Declarations

(DTO)DT[e](p)(vis)(u)(t)=u(t)

(DTI) DT [decl decl*] (p)(vis)(u)(t)
= BT[decl](p)(vis)(ui)(t)

where m = At.DT I decl*] (p)(vis)(u)(t)

(DT2) DT [pkg-decl pkg-decl*] (p)(vis)(u)(t)
= DT|[pkg-decl](p)(vis)(ui)(t)

where m = At.DT I pkg-decl*] (p)(vis)(u)(t)

(DT3) DT [pkg-body pkg-body*] (p)(vis)(u)(t)
= DT [pkg-body 1 (p)(vis)(uO(t)

where ui = At.DT [pkg-body* J (p)(vis)(u)(t)

(DT4) DT [use-clause use-clause* 1 (p)(vis)(u)(t)
= DT I use-clause J (p)(vis)(u1)(t)

where ui = At.DT [[use-clause* J (p)(vis)(u)(t)

The elaboration and checking of a sequence of declarations proceeds from the first to the
last declaration in the sequence.

(DT5) DT [DEC object-class id+ type-mark opt-expr] (p)(vis)(u)(t)
= let q = find-progunit-env(t)(p) in

let d = t(q)(*UNIT*) in
let tg = tag(d) in

(case object-class
(CONST ,SYSGEN) — lookup-type(type-mark)(p)(z)(t),
VAR
—<• (case tg

(♦PACKAGE* »ENTITY* »ARCHITECTURE*)
—► error

(cat("Illegal VARIABLE declaration in ")(tg)(" context: ")
(decl)),

OTHERWISE — lookup-type(type-mark)(p)(z)(t)),
SIG
—♦ (case tg

(»PROCESS* ,*PROCEDURE* .»FUNCTION*)
—+ error

(cat("Illegal SIGNAL declaration in ")(tg)(" context: ")
(decl)),

OTHERWISE — lookup-type(type-mark)(p)(z)(t)),
OTHERWISE — error

(cat("Illegal object class in declaration: ")(decl)))

where
z = Ad.let type = (object-class = CONST - mk-type((CONST VAL))(d),

mk-type(mk-tmode(object-class)(REF))(d)) in
process-dec(id+)(type)(opt-expr)(p)(vis)(u)(t)

55

find-progunit-env(t)(p)
= (t(p)(*UNIT*)^ »UNBOUND* — p,

(null(p)-* error("Mo program unit ??! "),
find-progunit-env(t)(rest(p))))

lookup-type(id*)(p)(z)(t)
= (null(id*)—► z(void-type-desc(t)),

name-type(id*)(e)(p)(t)(v)
where
v = Aw.(second(tmode(w))= TYP —*■ z(tdesc(w)),

error(cat("Not a type: ")(namef(tdesc(w))))))

name-type(name)(w)(p)(t)(v)
= (null(w)

—► let wi = lookup2(t)(p)(e)(hd(name)) in
(wi = »UNBOUND* — error (cat ("Unbound identifier: ")($(p)(hd(name)))),
let tm = tmode(wi)

and d = tdesc(wi) in
(second(tm)e (OBJ TYP) — name-type(tl(name))(w1)(p)(t)(v),
hd(tm)= PATH
—* (->validate-access(name)(wi)(second(tm))

-> error(cat("Illegal access via: ")(namef(d))),
name-type(tl(name))(((PATH ,tl(second(tm))),d))(p)(t)(v)),

error
(cat("Shouldn't happen in auxiliary semantic function NAME-TYPE: ")
(wi)))),

let d = tdesc(w) in
let tg = tag(d) in

(null(name)
— (tg € (»PROCEDURE* *FUNCTION*)

—► (null(pars(hd(signatures(d))))—► v(extract-rtype(d)),
error(cat("Missing subprogram arguments: ")(namef(d)))),

v(w)),
let x = hd(name)

and tm = tmode(w) in
(consp(x)
— (second(tm)= TYP

- (null(tl(x))
-v name-type(tl(name))(((DUMMY ,VAL),d))(p)(t)(v),
error

(cat("Explicit conversion of multiple expressions to type: ")
(namef(d)))),

list-type(x)(p)(t)(vv)
where
vv = Aw?.((second(tm)= OBJ A is-array?(type(d)))

V (second(tm)e (REF VAL) A is-array-tdesc?(d))
— (length(x)> 1

—+ error
(cat("Too many array indices for: ")(namef

(is-integer-tdesc?(get-base-type(tdesc(hd(wj))))
— name-type

(tl(name))
((second(tm)= OBJ

—► mk-type
(tmode(type(d)))(elty(tdesc(type(d)))),

mk-type(tm)(elty(d))))(p)(t)(v),

56

error
(cat("Non-integer array index for: ")(namef

(d))))),
tg £ (*PROCEDURE* »FUNCTION*)
—► let rtype = compatible-signatures(wJ)(signatures(d)) in

(null(rtype)
—* error

(cat("Incompatible parameter types for: ")
(namef(d))),

name-type(tl(name))(rtype)(p)(t)(v)),
error(cat("Cannot have an argument list: ")(namef

(d))))),
((second(tm)= OBJ A is-record?(type(d)))

V (second(tm)G (REF VAL) A is-record-tdesc?(d))
— let di = (second(tm)= OBJ — tdesc(type(d)), d) in

let d2 = lookup-record-neld(components(di))(x) in
(d2 = »UNBOUND* — error(cat("Unknown record field: ")(x)),
let tmm = (second(tm)= OBJ -> tmode(type(d)), tm) in

name-type(tl(name))(mk-type(tmm)(d2))(p)(t)(v)),
second(tm)^ OBJ V second(tm)^ TYP
— let w, = lookup-local(x)(%(path(d))(idf(d)))(p)(t) in

(Wl = »UNBOUND*
— error(cat("Unknown identifier: ")($(%(path(d))(idf(d)))(x))),
second(tmode(wi))/ ACC — name-type(tl(name))(w1)(p)(t)(v),
hd(tm)= PATH
—» (-mull(tl(name))A -■validate-access(name)(wi)(second(tm))

— error(cat("Illegal access via: ")(namef(tdesc(wi)))),
name-type

(tl(name))(((PATH ,tl(second(tm))),tdesc(w1)))(p)(t)

(v)),
error

(cat("Shouldn't happen in auxiliary semantic function NAME-TYPE:

(w0))>
error(cat("Illegal access via: ")(namef(d)))))))

lookup2(t)(p)(q)(id)
= let d = t(p)(id) in

(d = »UNBOUND*
— (-innU(p)— lookup2(t)(rest(p))(cons(last(p),q))(id), »UNBOUND*),
(case tag(d)

(♦OBJECT* »ENUMELT*) — ((DUMMY ,OBJ),d),
(♦PACKAGE* ,*PROCESS* ,*PROCEDURE* ,*FUNCTION* ,
LOOPNAME ,*PROCESSNAME*)
- ((PATH ,q),d),
OTHERWISE - ((DUMMY ,TYP),d)))

validate-access(name)(w)(q)
= let tg = tag(tdesc(w)) in

(tg G (*PROCEDURE* »FUNCTION»)
A (-mull(tl(name))A -iconsp(hd(tl(name))))

—<■ -mull(q)A hd(name)= hd(q),
tt)

list-type(expr*)(p)(t)(vv)
= (null(expr*)-+ vv(e),

let expr = hd(expr*) in
ET I expr] (p)(k)(t)

57

where
k = A(w,e),t.

(second(tmode(w))= ACC
—► error(cat("Non-value (an access): ")(namef(tdesc(w)))(expr)),
list-type(tl(expr*))(p)(t)(Aw*.vv(cons(w,w*)))))

lookup-local(id) (definition-path) (occurrence-path) (t)
= let d = t(definition-path)(id) in

(d = »UNBOUND* — »UNBOUND* ,
let tg = tag(d) in

(tg G (»LOOPNAME* *PROCESSNAME*) - ((DUMMY ,ACC),d),
(prefix-path(dennition-path) (occurrence-path) V exported(d)

—+ (case tg
(♦OBJECT* »ENUMELT*) — ((DUMMY ,OBJ),d),
(»PACKAGE* ,*PROCESS* ,»PROCEDURE* »FUNCTION*) - ((DUMMY ,ACC),d),
OTHERWISE ->• ((DUMMY ,TYP),d)),

»UNBOUND*)))

compatible-signatures(types) (signatures)
= (null(signatures)—► e,

let signature = hd(signatures) in
(compatible-par-types(types)(extract-par-types(pars(signature)))

—♦ rtype(signature),
compatible-signatures(types)(tl(signatures))))

compatible-par-types(actuals)(formals)
= (length(actuals)/ length(formals)—► ff,

length(actuals)= 0 —► tt,
let wi = hd(actuals)

and w2 = hd(formals) in
(match-types(tdesc(wi),tdesc(w2))

—► let mi = ref-mode(tmode(wi))
and m2 = ref-mode(tmode(w2)) in

(mi = REF V mi = m2 — compatible-par-types(tl(actuals))(tl(ibrmals)), ff),
ff))

extract-par-types(pars)
= (null(pajs)—► c, cons(second(hd(pars)),extract-par-types(tl(pars))))

extract-rtype(d)
= let signature = hd(signatures(d)) in

rtype(signature)

lookup-record-field(comp*)(id)
= (nullfcomp*)— »UNBOUND* ,

let (x,d) = hd(comp*) in
(x = id —► d, lookup-record-field(tl(comp*))(id)))

process-dec(id+)(w)(opt-expr)(p)(vis)(u)(t)
= (null(opt-expr)

-> (is-const?(w)-+ error(cat("Uninitialized constant: ")($(p)(hd(id+)))),
enter-objects(id+)(<e,*OBJECT* ,p,vis,w,*UNDEF* ,e>)(t)(p)(u)),

let expr = opt-expr in
RTIexpr|(p)(k)(t)
where
k = A(wi ,e),t.

let d = tdesc(w)

58

and di = tdesc(wi) in
(match-types(d,d,)

—■ let init-vaJ = ((is-sysgen?(w)V is-const?(w))
A ->(is-array?(w)V is-record?(w))

•— e,
UNDEF) in

enter-objects(id+)(<e,*OBJECT* ,p,vis,w,init-val,e>)(t)(p)(tt),
error(cat("Initialization type mismatch: ")(d)(di))))

match-types(di ,d2)
= (case tag(di)

(*BOOL* ,*BIT* ,*REAL* ,*TIME* ,*ENUMTYPE*) — di = get-base-type(d2),
(*INT* ,*INT_TYPE*)
—► is-integer-tdesc?(get-base-type(d2))

A match-integer-types(d,)(get-base-type(d2)),
♦SUBTYPE* -► match-types(get-base-type(di),get-base-type(d2)),
ARRAYTYPE
-► tag(d2)= *ARRAYTYPE* A match-array-type-names(di,d2),
RECORDTYPE
—. tag(d2)= *RECORDTYPE*

A null(set-difference(nlter-components(type(di)))(filter-components(type(d2)))),
OTHERWISE — match-type-names(idf(di),idf(d2)))

match-integer-types(di ,d2)
= idf(di)= UNIVERSAL JNTEGER V idf(d2)= UNIVERSAL JNTEGER

get-base-type(d) = (tag(d)= »SUBTYPE* — base-type(d), d)

match-array-type-names(di ,d2)
= let idfi = hd(di)

and idf2 = hd(d2) in
(consp(idfi)A consp(idf2)^ match-type-names(hd(idfi),hd(idf2)),
consp(idf,)—► match-type-names(hd(idfi),idf2),
consp(idf2)—* match-type-names(idfi,hd(idf2)),
match-type-names(idfi ,idf2))

match-type-names(idi ,id2)
= id, = »ANONYMOUS* V id2 = »ANONYMOUS*

array-size(d)
= (ub(d)A lb(d)

— let lbound = hd(tl(lb(d)))
and ubound = hd(tl(ub(d))) in

(ubound—lbound)+l,

-1)

filter-components(components)
= (null(components)—► e,

let component = hd(components) in
cons((hd(component),second(component)),
filter-components(tl(components))))

An object declaration declares a list of identifiers to be of the type given by the type-mark,
which must be the name of a type that has already been entered in the visible part of the
TSE. The identifiers must be distinct. The first of these identifiers is used in error messages.

59

If the identifiers are being declared as constants but no initialization expression is present,
then an UNINITIALIZED-CONSTANT error is reported. If constants are being declared,
then their type is a value type; variables and signals have reference types. If variables
or signals are being declared without an initialization expression, then the identifiers are
entered into the TSE with an undefined initial value *UNDEF* by the function enter-
objects, whose operation is explained below. If present, the initialization expression is
checked and its type compared to the value type of the declared identifiers. If these types
are not equal, then an initialization type mismatch is reported. If the identifiers are being
declared as constants, they are entered into the TSE with an initial value equal to the
(static) value of the initialization expression.

The function enter-objects enters into the TSE a scalar descriptor for each of a list of
identifiers. Duplicate declarations are detected. The descriptors are created from (1) the
identifiers and (2) a list of remaining field values input to enter-objects.

The function name-type returns the type (consisting of a type mode and a type descriptor)
of a reference (ref). In Phase 1, refs are essentially sequences of identifiers and expression
lists; refs must begin with an identifier. As name-type processes a ref, it carries along
(in parameters name and w, respectively) the remainder of the ref to be processed and
the type to be computed for that portion of the original ref processed thus far. During
this processing, special type modes that are identifier lists may be used to validate accesses
to items declared inside packages or subprograms; validate-access checks these accesses.
The function list-type returns the list of the types of its components; when a list is used
as an actual parameter list in a subprogram call, compatible-par-types checks whether
the types of this list's components are compatible with (not necessarily equal to) the types
of the corresponding formal parameters of the subprogram.

(DT6) DT | SLCDEC object-class id+ slice-name opt-expr] (p)(vis)(u)(t)
= let (type-mark,discrete-range) = slice-name in

let q = find-progunit-env(t)(p) in
let d = t(q)(*UNIT*) in
let tg = tag(d) in

(case object-class
(CONST ,SYSGEN) — lookup-type(type-mark)(p)(z)(t),
VAR
—► (case tg

(♦PACKAGE* ,*ENTITY* ^ARCHITECTURE*)
—<• error

(cat("Illegal VARIABLE declaration in ")(tg)
(" context: ")(decl)),

OTHERWISE — .lookup-type(type-mark)(p)(z)(t)),
SIG
—► (case tg

(♦PROCESS* ,*PROCEDURE* .»FUNCTION*)
—► error

(cat("Illegal SIGNAL declaration in ")(tg)(" context: ")
(decl)),

OTHERWISE — lookup-type(type-mark)(p)(z)(t)),
OTHERWISE
—»■ error(cat("Illegal object class in declaration: ")(decl)))

where
z = Ad.let type = (object-class = CONST — mk-type((CONST VAL))(d),

60

mk-type(mk-tmode(object-class)(REF))(d)) in
process-slcdec(id+)(type)(discrete-range)(opt-expr)(p)(vis)(u)(t)

process-slcdec(id+)(w)(discrete-range)(opt-expr)(p)(vis)(u)(t)
= let d = tdesc(w) in

(-iis-array?(w)—► error(cat("Can't form slice of non-array type: ")(d)),
let (direction,expri,expr2) = discrete-range in

KTHexpriKpKkiXt)
where
ki = A(wi,ei),t.

RT [expr2] (p)(k2)(t)
where
k2 = A(w2,e2),t.

(-i(is-integer-tdesc?(get-base-type(tdesc(wi)))
A is-integer-tdesc?(get-base-type(tdesc(w2))))

—* error
(cat("Non-integer array bound for: ")($(p)

(hd(id+)))),
let field-values = tl(array-type-desc

(TEMP_NAME)(e)(p)(vis)
(direction)
((direction = TO

— (ei = *UNDEF*
— second(EX I expn] (p)(t)),
(NUM ,ei)),

(e2 = *UNDEF*
— secondfEX I expr2] (p)(t)),
(NUM ,ea))))

((direction = TO
-. (e2 = *UNDEF*

— second(EX [expr2] (p)(t)),
(NUM ,e2)),

(ei = *UNDEF*
— second (EX [expn 1 (p)(t)),
(NUM ,ei))))(dty(d))) in

(null(opt-expr)
—* enter-array-objects

(id+)(idf(d))(tmode(w))(field-values)(t)(p)(vis)

check-array-aggregate(opt-expr)(p)(v)(t)
where
v = Aw3.(match-types(elty(d),tdesc(w3))

—► enter-array-objects
(id+)(idf(d))(tmode(w))
(field-values)(t)(p)(vis)(u),

error
(cat("Initialization type mismatch for: ")

($(p)(hd(id+))))))))

enter-array-objects(id*)(array-type-name)(tmode)(field-values)(t)(p)(vis)(u)

= (null(id*)— u(t),
let idi = hd(id*) in

let id2 = new-array-type-name(array-type-name) in
let di = cons(id2,field-values) in

let ti = enter(t)(p)(id2)(field-values) in
let new-type = mk-type(tmode)(di) in

(t(p)(idi)# »UNBOUND*

61

—<■ error(cat("Duplicate array declaration: ")($(p)(idi))),
let d2 = <£,*OBJECT* ,p,vis,new-type,*UNDEF* ,e> in

let t2 = enter(ti)(p)(idi)(d2) in
enter-array-objects

(tl(id*))(array-type-name)(tmode)(field-values)(t2)(p)(vis)(u)))

check-array-aggregate(expr)(p)(v)(t)
= let (tg,expr+) = expr in

(tg ? BITSTR A tg ^ STR
—► error(cat("Improper array initialization aggregate: ")(expr)),
let expn = hd(expr+) in
RTIexpr,](P)(k)(t)
where k = A(wi,ei),t.check-exprs(wi)(tl(expr+))(p)(v)(t))

check-exprs(w)(expr*)(p)(v)(t)
= (null(expr*)—+ v(w),

let expr = hd(expr*) in
RT[exPrJ(p)(k)(t)
where
k = A(wi,ei),t.

(wi ^ w —> "Nonuniiorm array aggregate ",
check-exprs(w)(tl(expr*))(p)(v)(t)))

A declaration of a slice of a (previously defined) array type is a special form of object
declaration for arrays of anonymous type. Because a declaration of a list of identifiers is
considered to be an abbreviated representation of the sequence of corresponding declarations
of each of the individual identifiers in the list, the (anonymous) type of each of the declared
identifiers is distinct. Each of these distinct anonymous array types is given a distinct,
new, system-generated name in Phase 1 of the Stage 3 VHDL translator (via the function
new-array-type-name), and corresponding distinct type descriptors are entered into the
TSE. If present, the initialization part of the declaration is a list of scalar expressions.

The elaboration and checking of a slice declaration begins in the same way as for a scalar
declaration. The slice bound expressions are then evaluated and checked to ensure that
both are integers. If the initialization part is absent, then descriptors for the declared array
identifiers, together with the descriptors for the corresponding anonymous array types, are
entered into the environment by enter-array-objects.

If the initialization part is present, then it is first processed by check-array-aggregate,
which invokes check-exprs to ensure that each element of the initialization part has the
same (value) type; check-aggregate returns this type, which is then compared to the ar-
ray's declared value type. Finally, enter-array-objects is invoked to enter the descriptors
for the declared arrays into the environment.

Refer also semantic equation DT8, shown below.

(DT7) DT I ETDEC id id+] (p)(vis)(u)(t)
= let field-valuesi = <e,*ENUMTYPE* ,p,vis,mk-enumlit(hd(id+)),

mk-enumlit(last(id+)),id+> in
(check-enum-lits(t)(p)(id)(id+)

—► enter-objects((id))(field-valuesi)(t)(p)(ui),
nil)
where

62

ui = Ati .let d = cons(id,field-valuesi) in
let field-values2 = <e,*ENUMELT* ,p,vis,

mk-type((CONST VAL))(d)> in
enter-objects(id+)(field-values2)(ti)(p)(u)

check-enum-lits(t)(p)(id)(id*)
= (null(id*) — tt,

let idi = hd(id*) in
(lookup(t)(p)(idi)= »UNBOUND* — check-enum-lits(t)(p)(id)(tl(id*)),

error
(cat("Illegal overloading for enumeration literal: ")(idi)

(" in enumeration type: ")($(p)(id)))))

An enumeration type declaration causes corresponding enumeration type descriptors to be
entered into the TSE. At the same time, descriptors for the individual elements of the
enumeration type are entered into the TSE; these elements are treated as constants.

(DT8) DT I ATDEC id discrete-range type-mark 1 (p)(vis)(u)(t)
= lookup-type(type-mark)(p)(z)(t)

where
z = Ad.let (direction,expn ,expr2) = discrete-range in

let array-type-desc = array-type-desc
(id) (e) (p) (vis) (direction)
((direction = TO
- second(EX J expn] (p)(t)),
second(EX [expr2] (p)(t))))

((direction = TO
— second(EX I expr2 1 (p)(t)),
second(EX [expr,] (p)(t))))(d) in

attributes-low-high
((id.expn ,expr2,array-type-desc,(UNIVERSAL JNTEGER)))(p)
(vis)(u)(t)

attributes-low-high(id,expri,expr2,type-desc,attribute-type-mark)(p)(vis)(u)(t)
= let decli = (DEC ,SYSGEN ,(mk-tick-low(id)),attribute-type-mark,expri)

and decl2 = (DEC ,SYSGEN ,(mk-tick-high(id)),attribute-type-mark,expr2) in
enter-objects((id))(tl(type-desc))(t)(p)(ui)

where m = Ati.DT [dech] (p)(vis)(u2)(ti)
where u2 = At2.DT I decl2]] (p)(vis)(u)(t2)

mk-tick-low(id) = catenate(id,"'LOW")

mk-tick-high(id) = catenate(id,"'HIGH")

An array type declaration causes corresponding array type descriptors to be entered into the
TSE. The array type attributes 'low and 'high, representing the lower and upper bounds,
respectively, are declared as system-generated identifiers.

(DT9) DT I PACKAGE id decl* opt-id 1 (p)(vis)(u)(t)
= (t(p)(id)# »UNBOUND*

—► error(cat("Duplicate package declaration: ")($(p)(id))),
(-mull(opt-id)A opt-id ^ id

—* error
(cat("Package ")($(p)(id))(" ended with incorrect identifier: ")

63

(opt-id)),
let d = <£,»PACKAGE* ,p,vis,£> in
let ti = enter(t)(p)(id)(d) in
let t2 = enter(extend(t1)(p)(id))(%(p)(id))(*UNIT*)(<£ »PACKAGE* >) in

let t3 = enter(t2)(%(p)(id))(*USED*)(<£,£>) in
let t4 = enter(t3)(%(p)(id))(*IMPT*)(<£,£,£>) in

ui(t4)

where u, = At.DT I decl* J (%(p)(id))(tt)(u)(t)))

(DT10) DT [PACKAGEBODY id decl* opt-id J (p)(vis)(u)(t)
= let d = t(p)(id) in

(d = ""UNBOUND* — error(cat("Missing package declaration: ")($(p)

(id))),
tag(d)^ »PACKAGE* -* error(cat("Not a package declaration: ")($(p)

(W))).
-mull(pbody(d)) — error(cat("Duplicate package body: ")($(p)(id))),
-•null(opt-id)A opt-id ^ id
—* error

(cat("Package body ")($(p)(id))(" ended with incorrect identifier: ")
(opt-id)),

let q = %(path(d))(id) in
let ti = enter(t)(q)(*LAB*)(<£,£>) in
let t2 = enter(ti)(p)(id)(<£,*PACKAGE* ,path(d),exported(d),*BODY* >) in
DT[decr](q)(ff)(u)(t2))

A package is an encapsulated collection of declarations (including other packages) of logi-
cally related entities identified by the package's name. A package is generally provided in
two parts: the package declaration and the package body. The package declaration provides
declarations of those items that are exported (i.e., made visible) by the package. The package
body provides the bodies of items whose declarations appear in the package declaration, to-
gether with the declarations and bodies of additional items that support the items exported
by the package. These latter items are not exported by the package, i.e., they cannot be
made visible outside the package. In our implementation, the descriptors of exported and
nonexported items alike are entered into the same local environment. The exported field of
these descriptors distinguishes between the two kinds of items. If an item can be exported
by a USE clause, then the exported field of its descriptor contains tt (denoting true; if not,
then this field contains ff (false).

The items declared in a package declaration are not directly visible outside the package, but
they can be accessed by using a dotted name beginning with the package name, provided
that the package name is visible at the point of access. A descriptor for the package
declaration is entered into the current environment. In order to encapsulate the items
within a package, the resulting TSE is then extended along the current path by an edge
labeled with the package name; the new environment is marked (in its *UNIT* cell) as a
package environment. Then the constituent declarations of the package are elaborated and
checked in the new environment.

The items declared in a package body are not exported from the package and thus must
not be accessible by an extended name. Therefore the exported field of the descriptors for
the inaccessible entities must be set to ff, thus marking them as not exportable.

(DT11) DT J PROCEDURE id proc-par-spec*] (p)(vis)(u)(t)

64

= (t(p)(id)^ »UNBOUND*
—<■ error(cat("Duplicate procedure declaration for: ")($(p)(id))),
let p, = %(p)(id) in

let ti = enter(extend(t)(p)(id))(pi)(*UNIT*)(<e,*PROCEDURE* >) in
enter-formal-pars(*PROCEDURE*)(proc-par-spec*)(t1)(pi)(ui)

where
ui = At2.let formals = let id+ = collect-fids(proc-par-spec*) in

collect-formal-pars(id+)(t2)(pi) in
let d = <e,»PROCEDURE* ,p,vis,

((formals,
mk-type((CONST VAL))(void-type-desc(t)))),e,e> in

u(enter(t2)(p)(id)(d)))

(DT12) DT [FUNCTION id func-par-spec* type-mark] (p)(vis)(u)(t)
= (t(p)(id)^ »UNBOUND*

—► error(cat("Duplicate function declaration for: ")($(p)(id))),
let pi = %(p)(id) in

lookup-type(type-mark)(p)(z)(t)
where
z = Adi .let ti = enter

(extend(t)(p)(id))(pi)(*UNIT*)(<e,*FUNCTION* >) in
enter-formal-pars(*FUNCTION*)(func-par-spec*)(t1)(p1)(ui)

where
ui = At2.1et formals == let id+ = collect-fids

(func-par-spec*) in
collect-formal-pars

(id+)(t2)(Pl) in
let d = <e,*FUNCTION* ,p,vis,

((formals,mk-type((VAR VAL))(di))),e,e> in
u(enter(t2)(p)(id)(d)))

enter-formal-pars(tg)(par-spec*)(t)(p)(u)
= (null(par-spec*)—► u(t),

let par-spec = hd(par-spec*) in
let (object-class,id+,mode,type-mark,opt-expr) = par-spec in

(case tg
♦PROCEDURE*
—<■ (case object-class

(CONST ,VAR)
—+ (case mode

(IN ,OUT ,INOUT) -» lookup-type(type-mark)(p)(z)(t),
OTHERWISE
—► error

(cat("Illegal mode for procedure parameters: ")($(p)
(hd(id+))))),

OTHERWISE
—► error

(cat("Unimplemented object class ")(object-class)
(" for procedure parameters: ")($(p)(hd(id+))))),

»FUNCTION*
—► (case object-class

CONST
—► (case mode

IN —► lookup-type(type-mark)(p)(z)(t),
OTHERWISE
—► error

(cat("Illegal mode for function parameters: ")($(p)

65

(hd(id+))))),
OTHERWISE
—+ error

(cat("Unimplemented object class ")(object-class)
(" for function parameters: ")($(p)(hd(id+))))),

OTHERWISE^ error(cat("Illegal subprogram tag: ")(tg)))
where
z = Ad.let type = (case mode

IN —► mk-type(mk-tmode(object-class)(VAL))(d),
OUT — mk-type(mk-tmode(object-class)(OUT))(d),
OTHERWISE — mk-type(mk-tmode(object-class)(REF))(d)) in

let fv = <e,*OBJECT* ,p,tt,type,*UNDEF* ,e> in
enter-objects(id+)(fv)(t)(p)(ui)

where ui = At.enter-formal-pars(tg)(tl(par-spec*))(t)(p)(u))

collect-fids(par-spec*)
= (null(par-spec*)—► e,

let par-spec = hd(par-spec*) in
let (object-class,id+,mode,type-mark,opt-expr) = par-spec in

append(id+ ,collect-fids(tl(par-spec*))))

collect-formal-pars(id*)(t)(p)
= (null(id*)-- s,

let d = t(p)(hd(id*)) in
cons((hd(id*),type(d)),collect-formal-pars(tl(id*))(t)(p)))

Checking a subprogram (procedure or function) declaration first extends the TSE and iden-
tifies the new environment at the end of the extended path (in its *UNIT* cell) as a
procedure or function environment. Then descriptors for the subprogram's formal parame-
ters are entered (by enter-formal-pars) into this new environment. Finally, a descriptor
for the subprogram (with a body field of ff, indicating that no body for this subprogram
has been encountered) is entered into the environment in which the subprogram is declared
locally. Procedures are always given a void return type. The function enter-formal-pars
accepts a tag *PROCEDURE* or *FUNCTION* (procedure or function) to enable
it to check that the formal parameters are appropriate to the subprogram. For example,
functions can have only IN parameters.

(DT13) DT I SUBPROGBODY subprog-spec decl* seq-stat* opt-id] (p)(vis)(u)(t)
= let (tg,id,par-spec*,type-mark) = subprog-spec in

let qname = $(p)(id)
and d = t(p)(id) in

(d = »UNBOUND*
—♦ let decl = subprog-spec in

DTI decl](p)(vis)(u1)(t)
where
ui = At.let d = t(p)(id) in

process-subprog-body
(t)(p)(id)(d)(decl*)(seq-stat*)(u),

->(tag(d)e (»PROCEDURE* *FUNCTION*))
—► error(cat(qname)(" is not a subprogram specification")),
(tg = PROCEDURE A tag(d)= *FUNCTION*)

V (tg = FUNCTION A tag(d)= *PROCEDURE*)
—► error(cat("Wrong kind of subprogram body: ")(qname)),
-mull(body(d))—► error(cat("Duplicate subprogram body: ")(qname)),

66

-inull(opt-id)A opt-id ^ id
—+ error

(cat("Subprogram body ")(qname)
(" ended with incorrect identifier ")(opt-id)),

let formals = let id+ = collect-fids(par-spec*) in
collect-formal-pars(id+)(t)(%(p)(id)) in

(formals / pars(hd(signatures(d)))

—► error
(cat("Nonconforming formal parameters for subprogram: ")(qname)),

lookup-type(type-mark)(p)(z)(t)

where
z = Adi.(di ^ tdesc(extract-rtype(d))

—► error
(cat("Unequal result types for subprogram: ")

(qname)),
process-subprog-body(t)(p)(id)(d)(decl*)(seq-stat*)(u))))

process-subprog-body(t)(p)(id)(d)(decl*)(seq-stat*)(u)

= let Pl = %(p)(id) in
let U =enter(t)(p,)(*LAB*)((e,e)) in

let t5 =enter(ti)(pi)(*USED*)(<£,£>) in
let t6 =enter(t5)(pi)(*IMPT*)(<£,£,£>) in

let t7 = enter
(t6)(p)(id)(<e,tag(d),path(d),exported(d),signatures(d),£,e>) in

DTI deer](pi)(tt)(u0(t7)
where m = At2.SST [seq-stat* J (pi)(u2)(t2)
where
U2 = At3.1et t4 = enter

(t3)(p)(id)
(<e,tag(d),path(d),exported(d),signatures(d),

(DXIdecl*](Pl)(t3),SSX[seq-staf] (Pl)(t3)),£>) in

u(t4)

Checking the declaration of a subprogram body first checks whether a declaration for the
subprogram has already been encountered. If not, then descriptors for the subprogram
and its formal parameters must be entered into the TSE as above. Otherwise, the declara-
tion part of the subprogram body must be checked for conformity with the corresponding
information previously entered in the TSE. In Stage 3 VHDL conformity is very strict:
subprogram types and formal parameter names and types must agree exactly, except that
formal parameters with no explicit mode are regarded as having been specified with mode
IN. The subprogram's body (which consists of local declarations followed by statements) is
checked by process-subprog-body, where initial entries are made into its environment's
LAB, *USED*, and *IMPT* cells, and its transformed abstract syntax tree is entered
into the body field of the subprogram's descriptor. Note that a dummy value *BODY* is
temporarily entered in the descriptor's body field, so that recursive calls of this subprogram
will not incorrectly indicate that a call is being made to a subprogram for which a body
has not been supplied (see the Phase 1 semantics of subprogram calls).

(DT14) DT I USE dotted-name+ J (p)(vis)(u)(t)
= let pkgs-used-here = tl(dotted-name+)U {hd(dotted-name+)} in

process- use-clause(pkgs-used-here)(p)(vis)(u)(t)

process-use-clause(dotted-name+)(p)(vis)(u)(t)

67

= check-pkg-names(dotted-name+)(e)(p)(vis)(j)(t)
where
j = Apkg-qualified-names.

let pkg-qnames = remove-enclosing-pkgs(p)(t)(pkg-qualified-names) in
let local-pkgs-used = third(t(p)(*USED*)) in
let ti = enter

(t)(p)(*USED*)
((e,pkg-qnames U local-pkgs-used)) in

let t2 = let d = t(p)(*IMPT*) in
let qname-list = third(d)

and id-list = fourth(d) in
import-qualified-names

(pkg-qnames)(qname-list)(id-list)(p)(ti) in
u(t2)

check-pkg-names(dotted-name*)(pkg-qualified-names)(p)(vis)(j)(t)
= (null(dotted-name*)—♦ j(pkg-qualified-names),

let dn = hd(dotted-name*) in
let suffix = last(dn) in

(suffix ^ ALL
-* error(cat("Selected name in USE clause must end with suffix ALL: ")(dn)),
name-type(rest(dn))(e)(p)(t)(v)

where
v = Aw.let d = tdesc(w) in

(tag(d)^ »PACKAGE*
—► error(cat("Non-package name in USE clause: ")(namef

(d))),
check-pkg-names

(tl(dotted-name*))(cons(%(path(d))(idf(d)),pkg-qualified-names))
(p)(vis)(j)(t))))

remove-enclosing-pkgs(p)(t)(pkg-set)
= (null(p)—► pkg-set,

let d = t(p)(*UNIT*) in
(d = »UNBOUND* —► remove-enclosing-pkgs(rest(p))(t)(pkg-set),
(third(d)= »PACKAGE*
-+ remove-enclosing- pkgs(rest(p))(t)(set-difference(pkg-set)((p))),
remove-enclosing-pkgs(rest(p))(t)(pkg-set))))

import-qualified-names(pkg-qualified-names)(item-qualified-names)(ids-used)(p)(t)
= (pkg-qualified-names = e

—► enter(t)(p)(*IMPT*)((e,item-qualified-names,ids-used)),
let pkg-qn = hd(pkg-qualified-names) in

let pkg-env = t(pkg-qn) in
let exported-qnames = export-qualified-names(pkg-env)(£) in
let local-env = t(p) in

let (qname*,id*) = import-legal
(exported-qnames) (item-qualified-names)(ids-used)
(local-env) in

import-qualified-names(tl(pkg-qualified-names))(qname*)(id*)(p)(t))

import-legal(exported-qnames) (qname-list)(id-list) (env)
= (null(exported-qnames)—+ (qname-list,id-list),

let qname = hd(exported-qnames) in
let id = last(qname) in
let remaining-exported-qnames = tl(exported-qnames) in

(id 6 id-list

—> let qn = simple-name-match(id)(qname-list) in
(null(qn)

—> import-legal(remaining-exported-qnames)(qname-list)(id-list)(env),
import-legal

(remaining-exported-qnames)(set-difference(qname-list)((qn)))
(id-list)(env)),

let d = env(id) in
(d = »UNBOUND*

—► import-legal
(remaining-exported-qnames)(cons(qname,qname-list))
(cons(id,id-list)) (en v),

import-legal
(remaining-exported-qnames)(qname-list)(cons(id,id-list))(env))))

simple-name-match(id)(qname*)
= (null(qname*)—► e,

(id = last(hd(qname*))—<■ hd(qname*), simple-name-match(id)(tl(qname*))))

export-qualified-names(env) (qualified-names)
= (null(env)—♦ qualified-names,

let d = hd(en'v) in
let id = idf(d) in

(case id
(*UNIT* ,*LAB* *USED* ,*IMPT*)
—* export-qualified-names(tl(env))(qualified-names),
OTHERWISE
—► (exported(d)

—► export-qualified-names(tl(env))(cons(%(path(d))(id),qualified-names)),
export-qualified-names(tl(env))(qualified-names))))

A USE clause is a declaration that makes items declared in a package specification visible
at the location of the USE clause. Each of the dotted names in a USE clause, neglecting
the (obligatory) suffix ALL, must denote the name of a package. In essence, a USE clause
combines the exported environments associated with its named packages both with each
other and with the local environment (among whose declarations the USE clause appears).
Such a combination of environments may introduce conflicts, since there may be several
different declarations of an object of the same name in the packages (as well as one locally).
Therefore, certain constraints must govern how environments are combined:

1. If an object x is declared locally, then no declarations of x may be imported to the
local environment by the USE clause.

2. If an object x is declared in more than one of the packages named in the USE clause,
then none of these declarations of x may be imported to the local environment by the
USE clause, even if x is not declared locally.

These constraints ensure that (1) no local declaration is masked by an imported one, and

(2) no duplicate or conflicting declarations are imported.

USE clauses are treated by process-use-clause, which assumes that all the USE clauses in
a program unit's declarative part are located together at the end of that declarative part.

69

This restriction on the location and grouping of USE clauses enables a determination of
those items imported into a local environment to be made once and for all by the time the
unit's declarative part has been processed. This ensures that the list of items imported into
an environment (stored in its *IMPT* cell) need not vary in Phase 2, thereby ensuring
that the entire TSE is fixed throughout Phase 2. If declarations other than USE clauses were
allowed to appear between USE clauses, then the set of importable items may change before
and after such interposed declarations, requiring a dynamic evaluation of the import list
during Phase 2. We feel that such generality is unnecessary, because the names of items
can always be changed so that their interposed declarations can be moved in front of the
group of USE clauses.

First, the list of names appearing in this USE clause (with duplicates removed) is given to
process-use-clause. Then these names are checked by check-pkg-names to ensure that
they denote packages; a list of fully qualified package names is returned. The names of
packages that enclose packages in this list are removed by remove-enclosing-packages.
The (set-theoretic) union of the resulting set of package names (called pkg-qnames) and
the set of names of packages already appearing in USE clauses in this declarative part (stored
in the *USED* cell of this environment) is computed (in order to avoid duplication); the
resulting set of package names is entered back into the *USED* cell. Next, the current set
of fully qualified names of items imported into this environment (qname-list) is retrieved
from its *IMPT* cell. A separate list of simple identifiers (id-list) is also maintained in
the *IMPT* cell; this list is used to prevent illegal importations into the current envi-
ronment. Then pkg-qnames, qname-list, and id-list are passed to im port-qualified-
names, which adds the fully qualified names of those items that can be legally imported
into the local environment by the USE clause being processed. The auxiliary functions
export-qualified-names and import-legal are used by import-qualified-names.

(DT15) DT [STDEC id type-mark opt-discrete-range } (p)(vis)(u)(t)
= lookup-type(type-mark)(p)(z)(t)

where
z = Ad.let base-type-desc = get-base-type(d) in

(null(opt-discrete-range)
— let field-values = <e,*SUBTYPE* ,p,vis,type-tick-low(d),

type-tick-high(d),base-type-desc> in
attributes((id,£,e,d, field- values))(p)(vis)(u)(t),

let (direction,expri ,expr2) = opt-discrete-range in
RT[eXpri](p)(ki)(t)

where
ki = A(wi,ei),t.

RTIexpr2](p)(k2)(t)
where
k2 = A(w2,e2),t.

(match-types(tdesc(wi), base-type-desc)
A match-types(tdesc(w2),base-type-desc)

— let field-values = <e,*SUBTYPE* ,p,vis,
(direction = TO
- (e, = *UNDEF*

—► second

(EX [expn 1
(P)(t)),

(NUM ,ei)),
(e2 = *UNDEF*

70

—> second
(EX [expr2]

(P)(t)),
(NUM ,e2))),

(direction = TO
— (e2 = *UNDEF*

—► second
(EX[expr2]

(P)(t)),
(NUM ,e2)),

(ei = *UNDEF*
-* second

(EX I expn]
(P)(t)),

(NUM ,ei))),bcise-type-desc> in
attributes

((id,
(direction = TO —* expri,
expr2),

(direction = TO —► expr2,
expri),d,field-values))(p)

(vis)(u)(t),
error

(cat("Range constraint for subtype incompatible with base type:
(base-type-desc)(tdesc(wi))
(tdesc(w2))(decl))))

attributes(id,lower-bound,upper-bound,d,field-values) (p)(vis) (u)(t)
= let dech = (DEC ,SYSGEN ,(mk-tick-low(id)),(idf(d)),lower-bound)

and decl2 = (DEC ,SYSGEN ,(mk-tick-high(id)),(idf(d)),upper-bound) in
enter-objects((id))(field-values)(t)(p)(ui)
where ui = Ati.DT H dech J (p)(vis)(u2)(ti)
where u2 = At2.DT [decl2 J (p)(vis)(u)(t2)

Static semantic analysis of a subtype declaration involves making certain that the lower
and upper bounds of the range constraint are compatible with the subtype's base type;
declaring the 'low and 'high attributes (representing these bounds) as system-generated
identifiers; and entering a subtype descriptor in the TSE.

(DT16) DT IITDEC id discrete-range J (p)(vis)(u)(t)
= let parent-type-desc = univint-type-desc(t) in

let (direction,expri ,expr2) = discrete-range in
RTlexpr,](p)(k,)(t)
where
ki = A(wi,ei),t.

RT I expr2] (p)(k2)(t)
where
k2 = A(w2,e2),t.

(ei = *UNDEF* V e2 = *UNDEF*
—► error

(cat("Non-static bound in range constraint: ")
(decl)),

(match-types(tdesc(wi),parent-type-desc)
A match-types(tdesc(w2),parent-type-desc)

— let field-values = <e *INT_TYPE* ,p,vis,

71

(direction = TO
-> (NUM ,ei),
(NUM ,e2)),

(direction = TO
— (NUM ,e2),
(NUM ,ei)),parent-type-desc> in

attributes
((id,(direction = TO —► expri, expr2),

(direction = TO —<• expr2, expri),parent-type-desc,field-values))
(p)(vis)(u)(t),

error
(cat("Incompatible range constraint for integer type: ")
(tdesc(wi))(tdesc(w2))(decl))))

Static semantic analysis of an integer definition type involves making certain that the lower
and upper bounds of the range constraint are static expressions compatible with the integer
type's parent type (UNIVERSAL-INTEGER); declaring the 'low and 'high attributes (rep-
resenting these bounds) as system-generated identifiers; and entering an integer definition
type descriptor in the TSE.

6.5.6 Concurrent Statements

(CSTO) CST [e] (p)(u)(t) = u(t)

(CST1) CST [con-stat con-stat*] (p)(u)(t)
= CST I con-stat] (p)(Ul)(t)

where ui = At.CST [con-stat*] (p)(u)(t)

Concurrent statements are statically checked in the textual order of their appearance in the
hardware description.

(CST2) CST I PROCESS id ref decl* seq-stat* opt-id] (p)(u)(t)
= let q = find-architecture-env(t)(p) in

let labels = third(t(q)(*LAB*)) in
(id S labels —► error(cat("Duplicate process label: ")($(q)(id))),
let ti = enter(t)(q)(*LAB*)((e,cons(id,labels))) in

(-inull(opt-id)A opt-id ^ id
—► error

(cat("PROCESS statement ")(id)
(" ended with incorrect identifier: ")(opt-id)),

let t2 = enter(t1)(q)(id)(<e,*PROCESSNAME* ,p,ff,ref*>) in
let Pl = %(p)(id) in

let t3 = enter(extend(t2)(p)(id))(pi)(*UNIT*)(<e »PROCESS* >) in
let t4 = enter(t3)(pi)(*LAB*)(<£,£>) in

let t5 = enter(t4)(pi)(*USED*)(<e,e>) in
let t6 = enter(t6)(pi)(*IMPT*)(<£,£,£>) in
let t7 = enter(t6)(pi)(*SENS*)(<£,e>) in
SLT[refi(pi)(u2)(t7)
where u2 = At.DT [decl* J (Pl)(tt)(ui)(t)
where Ui = At.SST [seq-stat*] (pi)(u)(t)))

find-architecture-env(t)(p)
= (null(p)V tag(t(p)(*UNIT*))= »ARCHITECTURE* — p,

find-architecture-en v(t)(rest(p)))

72

(CST3) CST [SEL-SIGASSN atmark delay-type id expr ref selected-waveform"1"] (p)(u)(t)
= let expr* = cons(expr,

collect-expressions-from-selected-waveforms
(selected-waveform"1")) in

let ref* = delete-duplicates
(collect-signals-from-expr-list(expr*)(t)(p)(e)) in

let case-alt+ = construct-case-alternatives
(ref)(delay-type)(selected-waveform+) in

let case-stat = (CASE ,atmark,expr,case-alt+) in
let process-stat = (PROCESS ,id,ref*,e,(case-stat),id) in

CST I process-stat J (p)(u)(t)

collect-expressions-from-selected-waveforms(selected-waveform*)
= (null(selected-waveform*)—► e,

let selected-waveform = hd(selected-waveform') in
let waveform = second(selected-waveform)

and discrete-range"1" = third(selected-waveform) in
let transaction-exprs = collect-transaction-expressions(second(waveform)) in

nconc
(transaction-exprs,
cons(second(discrete-range+),
cons(third(discrete-range+),
collect-expressions-from-selected-waveforms

(tl(selected-waveform*))))))

collect-transaction-expressions(trans*)
= (null(trans*)—♦ e,

let transaction = hd(trans*) in
cons(second(transaction),collect-transaction-expressions(tl(trans*))))

collect-signals-from-expr-list(expr*)(t)(p)(signal-refs)
= (null(expr*)—» signal-refs,

let expr = hd(expr') in
collect-signals-from-expr

(expr)(t)(p)(collect-signals-from-expr-list(tl(expr*))(t)(p)(signal-refs)))

collect-signals-from-expr(expr)(t)(p)(signal-refs)
= (-iconsp(expr)—♦ signal-refs,

is-ref?(expr)
—► let d = lookup-desc-for-ref(expr)(p)(t) in

(tag(d)= *OBJECT* A is-sig?(type(d))
—► cons(expr,

(consp(second(expr))
—♦ collect-signals-from-expr-list(second(expr))(t)(p)(signal-refs),
collect-signal s-from-expr(second(expr)) (t) (p) (signal-refs))),

(consp(second(expr))
—<• collect-signals-from-expr-list(second(expr))(t)(p) (signal-refs),
collect-sign als-from-expr(second(expr))(t)(p)(signal-refs))),

is-paggr?(expr)
—► collect-signals- f rom-expr-lis t(second (expr)) (t) (p) (signal-refs),
is-unary-op?(hd(expr))
—► collect-signals-from-expr(second(expr))(t)(p)(signal-refs),
is-binary-op?(hd(expr))V is-relational-op?(hd(expr))
—► collect-signals-from-expr

(second(expr))(t)(p)
(collect-signal s-from-expr(third (expr)) (t) (p) (signal-refs)),

collect-signal s-from-expr-list(expr)(t)(p)(signal-refs))

73

lookup-desc-for-ref(ref)(p)(t)
= let name = second(ref) in

let id+ = (consp(last(name))—► rest(name), name) in
let q = access(rest(id+))(t)(p) in

lookup-desc-on-path(t)(q)(last(id+))

lookup-desc-on-path(t)(p)(id)
= let d = t(p)(id) in

(d = ""UNBOUND* — lookup-desc-on-path(t)(rest(p))(id), d)

accessed*)(t)(p)
= (null(id*)— p,

let id = hd(id*) in
let d = lookup(t)(p)(id) in

(d = »UNBOUND* — error(cat("Unbound identifier: M)(id)),
access(tl(id*))(t)(%(path(d))(idf(d)))))

construct-case-alternatives(ref)(delay-type)(selected-waveform*)
= (null(selected-waveform*)—► e,

let selected-waveform = hd(selected-waveform*) in
let waveform = second(selected-waveform)

and discrete-range"1" = third(selected-waveform) in
let sig-assn-stat = (SIGASSN ,(AT ,mk-atmark()),delay-type,ref,waveform) in

let case-alt = (CASECHOICE ,discrete-range4",(sig-assn-stat)) in
cons(case-alt,
construct-case-alternatives(ref) (delay-type) (tl(selected-waveform*))))

(CST4) CST [COND-SIGASSN atmark delay-type id ref cond-waveform* waveform 1 (p)(u)(t)
= let expr* = nconc

(collect-expressions-from-conditional-waveforms
(cond-waveform *),

collect-transaction-expressions(second(waveform))) in
let ref* = delete-duplicates

(collect-signals-from-expr-list(expr*)(t)(p)(e)) in
(riull(cond-waveform*)

—► let sig-assn-stat = (SIGASSN ,(AT ,mk-atmark()),delay-type,ref,waveform) in
let process-stat = (PROCESS ,id,ref*,e,(sig-assn-stat),id) in

CST I process-stat] (p)(u)(t),
let cond-part+ = construct-cond-parts

(ref)(delay-type)(cond-waveform*)
and else-part = ((SIGASSN ,(AT ,mk-atmark()),delay-type,ref,waveform)) in

let if-stat = (IF ,atmark,cond-part+,else-part) in
let process-stat = (PROCESS ,id,ref*,e,(if-stat),id) in

CST [process-stat] (p)(u)(t))

collect-expressions-from-conditional-waveforms(cond-waveform*)
= (null(cond-waveform*)—► e,

let cond-waveform = hd(cond-waveform*) in
let waveform = second(cond-waveform)

and condition = third(cond-waveform) in
let transaction-exprs = collect-transaction-expressions(second(waveform)) in

nconc
(transaction-exprs,
cons(condition,
collect-expressions-from-conditional-waveforms(tl(cond-waveform*)))))

74

construct-cond-parts(ref)(delay-type)(cond-waveform*)
= (null(cond-waveform*)—» e,

let cond-waveform = hd(cond-waveform*) in
let waveform = second(cond-waveform)

and condition = third(cond-waveform) in
let sig-assn-stat = (SIGASSN ,(AT ,mk-atmark()),delay-type,ref.waveform) in

let cond-part = (condition,(sig-assn-stat)) in
cons(cond-part,construct-cond-parts(ref)(delay-type)(tl(cond-waveform*))))

6.5.7 Sensitivity Lists

(SLTO) SLT [e] (p)(u)(t) = u(t)

(SLT1) SLT I ref ref*] (p)(u)(t)
= SLT[refJ(p)(u1)(t)

where ui = At.SLT I ref* 1 (p)(u)(t)

The refs in the sensitivity list of a PROCESS statement are checked in sequential order.

(SLT2) SLT [REF name] (p)(u)(t)
= let expr = ref in

ET [expr] (p)(k)(t)
where
k = A(w,e),t.

let d = tdesc(w) in
(->is-sig?(w)

—► error
(cat("Non-signal in process sensitivity list: ")(ref)),

let di = lookup(t)(p)(*SENS*) in
let ti = enter

(t)(p)(*SENS*)
(<£,(cons(SLX [ref] (p)(t),sensitivity(di)))>) in

"(ti))

6.5.8 Sequential Statements

(SSTO) SST I e I (p)(c)(t) = c(t)

(SST1) SST I seq-stat seq-stat*] (p)(c)(t)
= SST I seq-stat | (p)(ci)(t)

where ci = At.SST j seq-stat*] (p)(c)(t)

Sequential statements are statically checked in the textual order of their appearance in the
hardware description.

(SST2) SST 1 NULL atmark] (p)(c)(t) = c(t)

NULL statements require no checking.

75

(SST3) SST I VARASSN atmark ref expr] (p)(c)(t)
= let expro = ref in

ETJexpro J(p)(k)(t)
where

k = A(w,e),t.
let d = tdesc(w) in

(-iis-var?(w)

—■► error

(cat("Illegal target in variable assignment statement: ")
(seq-stat)),

->is-writable?(w)

—► error(cat("Read-only variable: ")(namef(d))),

RT[expr](p)(ki)(t)
where

ki = A(wi,ei),t.

let di = tdesc(wi) in

(match-types(d,di)—► c(t),

error(cat("Assignment type mismatch: ")(d)(di))))

find-process-env(t)(p)

= (null(p)V tag(t(p)(*UNIT*))= *PROCESS* - p, find-process-env(t)(rest(p)))

First the left part of a variable assignment statement is checked, and then the right part.
The left part must be a variable of reference type (checked by is-var? and is-writable?),
and the basic types of the left and right parts must be the same, as verified by match-types
(refer to the definitions following semantic function DT5).

(SST4) SST [SIGASSN atmark delay-type ref waveform] (p)(c)(t)
= let expr = ref in

ET[expr](p)(k)(t)
where
k = A(w,e),t.

let d = tdesc(w)

and q = find-process-env(t)(p) in
(-iis-sig?(w)

—+ error

(cat("Illegal target of signal assignment statement: ")
(namef(d))),

->is-writable?(w)—► error

(cat("Read-only signal: ")(namef

(d))),
null(q)
—► error

(cat("Sequential signal assignment statement not in a process: ")
(seq-stat)),

let di = lookup-desc-for-ref(ref)(p)(t) in
(null(process(di))

—♦ let ti = enter

(t)(path(d1))(idf(di))

(<e,*OBJECT* ,path(di),exported(d,),type(di),
value(di),last(q)>) in

ci(ti),
process(di)= last(q)—► ci(t),
error

(cat("Target of signal assignments in multiple processes: ")

76

(namef(di))))
where
Cl = Ati WT I waveform 1 (p)(ki)(t)

where
ki = A(wi,ei),t.

let di = tdesc(wi) in
(match-types(d,di)—► c(t),
error

(cat("Assignment type mismatch: ")
(d)(di))))

(SST5) SST I IF atmark cond-part+ else-part] (p)(c)(t)
= let seq-stat* = else-part in

check-if(cond-part+)(p)(ci)(t)
where ci = At.(null(seq-stat*)-t c(t), SST [seq-stat*] (p)(c)(t))

check-if(cond-part*)(p)(c)(t)
= (null(cond-part*)—► c(t),

let (expr,seq-stat*) = hd(cond-part') in
RT|[expr](p)(k)(t)

where
k = A(w,e),t.

(is-boolean?(w)
— SST [seq-stat* 1 (p)(ci)(t)

where ci = At.check-if(tl(cond-part*))(p)(c)(t),
error(cat("Non-boolean condition in IF statement: ")(tdesc

(w)))))

A Stage 3 VHDL IF statement consists of one or more conditional parts (cond-parts)
followed by a (possibly empty) else-part. Each cond-part consists of a test expression
followed by sequential statements that are to be executed when the test expression is the
first to evaluate to true; the sequential statements constituting the else-part are to be
executed when none of the test expressions is true.

The cond-parts are first checked, in order, by auxiliary semantic function check-if, after
which the else-part, if nonempty, is checked by SST. Checking each cond-part involves
first ascertaining that the basic type of its test expression is boolean, and then invoking
SST to check its sequential statements.

(SST6) SST I CASE atmark expr case-alt+] (p)(c)(t)
= RT I expr 1 (p)(k)(t)

where
k = A(w,e),ti.

let d = get-base-type(tdesc(w)) in
ATIcaSe-alt+l(d)(p)(y)(t1)

where
y = Ah,t2.

(-icase-type-ok(d)
—► error

(cat("Illegal CASE selector type: ")(namef(d))
(seq-stat)),

->case-coverage(d)(h)
—<• error

(cat("Incomplete CASE coverage for type: ")
(namef(d))(seq-stat)),

c(t2))

77

case-type-ok(d)
= is-boolean-tdesc?(d)V is-bit-tdesc?(d)

case-coverage(d)(h)
= (is-boolean-tdesc?(d)A set-card(h)= 2)

V (is-bit-tdesc?(d)A set-card(h)= 2)

set-card(x) = length(x)

A Stage 3 VHDL CASE statement consists of a selector expression followed by one or more
case alternatives, each consisting of sequential statements preceded either by a nonempty
sequence of discrete ranges or by the reserved word OTHERS. This discrete range sequence
defines a case selection set for the particular case alternative.

The Stage 3 VHDL concrete syntax allows the statements in a case alternative to be preceded
by a list of discrete ranges and expressions; for uniformity, in the Phase 1 abstract syntax
(generated by the Stage 3 VHDL parser) these expressions are converted into equivalent
one-element discrete ranges.

A CASE statement must be checked for the following:

• The basic type of all the case selection sets (and thus of the expressions that define
the discrete ranges) must be the same, and must match that of the selector expression.
In Stage 3 VHDL, the only such basic types are BOOLEAN, BIT, INTEGER, and
enumeration types (including CHARACTER).

•

•

Every expression of every discrete range in a CASE statement must be static, i.e., must
have a value defined by Phase 1. This enables the contents of each case selection set
to be determined during Phase 1. The OTHERS alternative, if present, defines a case
selection set that is the complement of the union of the other case selection sets with
respect to the set of values associated with the basic type. The BOOLEAN basic
type is associated with the set of truth values {FALSE, TRUE}, the BIT basic type
with the set of bit values {0, 1}, the INTEGER basic type with the set of integers
{..., -2, -1, 0, 1, 2, ...}, the CHARACTER basic type with the set {(CHAR
0), ..., (CHAR 127)} of ASCII-128 character representations, and an arbitrary
enumeration type with the set of its enumeration literals.

The selection sets for each case alternative must be mutually disjoint, and their union
must be the set associated with the basic type of the selector expression. The case
selection subsets defined by the discrete ranges within each case alternative need
not be disjoint. Note that a CASE statement with a selection expression of basic
type INTEGER must have an OTHERS alternative, as the set of integers cannot be
covered by a finite number of case alternatives, each with only a finite number of
(finite) discrete ranges.

The basic type of the selector expression is first determined. Then semantic function AT is
invoked with this basic type to check the case alternatives. Refer to the discussion of AT,
which returns the union of the case selection sets associated with all of the case alternatives,
a union that must cover the set associated with the selector expression's basic type.

78

(SST7) SST [LOOP atmark id seq-stat* opt-id] (p)(c)(t)
= let q = find-looplabel-env(t)(p) in

let labels = third(t(q)(*LAB*)) in
(id 6 labels —► error(cat("Duplicate loop label: ")($(q)(id))),
let ti = enter(t)(q)(*LAB*)((e,cons(id,labels))) in

(-mull(opt-id)A opt-id ^ id
—<■ error

(cat("Loop ")(id)(" ended with incorrect identifier: ")(opt-id)),
let t2 = enter(t1)(q)(id)(<e,*LOOPNAME* ,p>) in

let pi = %(p)(id) in
let t3 =enter(extend(t2)(p)(id))(Pl)(*UNIT*)(<e,*LOOP* >) in

let t4 = enter(t3)(pi)(*LAB*)(<£,£>) in
let t6 = enter(t4)(p)(id)(<£,*LOOPNAME* ,p>) in

let ci = At.SST IT seq-stat* 1 (pi)(c)(t) in

Cl(ts)))

(SST8) SST I WHILE atmark id expr seq-stat* opt-id 1 (p)(c)(t)
= let q = find-looplabel-env(t)(p) in

let labels = third(t(q)(*LAB*)) in
(id € labels — error(cat("Duplicate loop label: M)($(q)(id))),
let ti = enter(t)(q)(*LAB*)((e,cons(id,labels))) in

(opt-id ^ e A opt-id ^ id
—► error

(cat("Loop ")(id)(" ended with incorrect identifier: ")(opt-id)),
let t2 = enter(ti)(q)(id)(<e,*LOOPNAME* ,p>) in

let pi = %(p)(id) in
let t3=enter(extend(t2)(p)(id))(Pl)(*UNIT*)(<£l*LOOP* >) in

let t4 = enter(t3)(pi)(*LAB*)(<e,e>) in
let t5 = enter(t4)(p)(id)(<e ,*LOOPNAME* ,p>) in

let ci = At.SST IT seq-stat* J (pi)(c)(t) in
RT[[expr]l(p1)(k)(t5)
where
k = A(w,e),t.

(is-boolean?(w)—» ci(t),
error

(cat("Non-boolean condition in WHILE statement: ")
(tdesc(w))))))

(SST9) SST I FOR atmark id ref discrete-range seq-stat* opt-id] (p)(c)(t)
= let q = find-looplabel-env(t)(p) in

let labels = third(t(q)(*LAB*)) in
(id € labels — error(cat("Duplicate loop label: ")($(q)(id))),
let ti = enter(t)(q)(*LAB*)((e,cons(id,labels))) in

(-inull(opt-id)A opt-id / id
—► error

(cat("Loop ")(id)(" ended with incorrect identifier: ")(opt-id)),
let t2 = enter(t1)(q)(id)(<e>*LOOPNAME* ,p>) in

let pi = %(p)(id) in
let t3 =enter(extend(t2)(p)(id))(Pl)(*UNIT*)(<£l*LOOP* >) in

let t4 = enter(t3)(pi)(*LAB*)(<e,e>) in
let t& = enter(t4)(p)(id)(<£,*LOOPNAME* ,p>) in
let (direction,expri ,expr2) = discrete-range in
RT[exPr1](p)(k1)(t)
where
ki = A(wi,ei),t.

let di = tdesc(wi) in
RT([expr2](p)(k2)(t)

79

where
k2 = A(w2,e2),t.

let d2 = tdesc(w2) in
(match-types(di,d2)
— let decl = (DEC ,CONST ,

(hd(hd(tl(ref)))),
(hd(dO),
hd(tl(discrete-range))) in

DTI decl](p,)(tt)(n)(t5),
error

(cat("Bounds type mismatch in FOR statement: ")
(seq-stat)))

where
u = At6.ci(t6)

where ci = At7.SST [seq-stat* | (pi)(c)(t7)))

find-looplabel-env(t)(p)
= let tg = tag(t(p)(*UMIT*)) in

(nuU(p)V tg £ (»PROCESS* »PROCEDURE* »FUNCTION* *LOOP*) - p,
find-looplabel-env(t)(rest(p)))

In Stage 3 VHDL, entering a loop (i.e., a LOOP, WHILE or FOR statement) creates a new com-
ponent environment of the TSE, just as in the case of entering a subprogram (see below).
The identifier that is the loop's label must be checked for uniqueness among the identifiers
used thus far as labels in the innermost enclosing program unit (process, procedure, func-
tion, or loop). If unique, the identifier is appended to the innermost enclosing unit's label
identifier list (bound to the special identifier *LAB* of the corresponding environment).

A *LOOPNAME* descriptor is then entered into the current environment. The resulting
TSE is extended to reflect loop entry; the *UNIT* entry in the extended TSE is set
to *LOOP* to associate the extended TSE with the loop, and the *LOOPNAME*
descriptor is also entered into the extended TSE. This latter descriptor is used by EXIT
statements contained in this loop to validate the visibility of their loop names.

In the case of a WHILE loop, the basic type of the iteration control expression is checked to
be BOOLEAN, and the loop body is also checked by SST.

In the case of a FOR loop, the basic types of the iteration bounds expressions are checked to
match, the implicit declaration of the iteration parameter is processed by semantic function
DT, and the loop body is checked with SST.

(SST10) SST I EXIT atmark opt-dotted-name opt-expr J (p)(c)(t)
= (null(find-loop-env(t)(p))

—► error(cat("EXIT statement not in a loop: ")(seq-stat)),
(null(opt-dotted-name)—► ci(t),
name-type(opt-dotted-name)(e)(p)(t)(v)
where
v = Aw.(tag(tdesc(w))/ »LOOPNAME*

—>■ error(cat("Not a loop name: ")(namef(tdesc(w)))),
ci(t)))

where
ci = At.(null(opt-expr)—> c(t),

let expr = opt-expr in

80

m l expr 1 (p)(k)(t)
where
k = A(w,e),t.

(is-boolean?(w)—► c(t),
error

(cat("Non-boolean condition in EXIT statement: ")
(tdesc(w))))))

An EXIT statement must be contained within a loop; otherwise, an error is raised. If an
exit control expression is present, its basic type is checked; if not BOOLEAN, an error is
raised.

(SST11) SST I CALL atmark ref I (p)(c)(t)
= let expr = ref in

ET [expr] (p)(k)(t)
where
k = A(w,e),t.

(tag(tdesc(w))= *VOID* — c(t),
error(cat("Invalid procedure call: ")(seq-stat)))

A procedure call statement boils down to an expression that is a Stage 3 VHDL name. This
expression is checked by ET, and must have a VOID basic type.

(SST12) SST [RETURN atmark opt-expr J (p)(c)(t)
= let d = context(t)(p) in

let tg = tag(d)
and cname = namef(d) in

(null(opt-expr)
- (tg ^ *PROCEDURE*

—► error
(cat("RETURN without expression in context of non-procedure: ")
(cname)(seq-stat)),

c(t)),
(tg / »FUNCTION*

—► error
(cat("RETURN with expression in context of non-function: ")
(cname)(seq-stat)),

let expr = opt-expr in
RT[expr](p)(k)(t)
where
k = A(w,e),t.

(map-match-types(tdesc(w))(extract-rtypes(signatures(d)))
-» c(t),
error

(cat("Incorrect return expression type in function: ")
(cname)(seq-stat)))))

context(t)(path)
= let d = t(path)(*UNIT*) in

(d = »UNBOUND* — context(t)(rest(path)),
(case tag(d)

(»PROCEDURE* ,*FUNCTION* ,*PACKAGE*) — t(rest(path))(last(path)),
OTHERWISE — context(t)(rest(path))))

81

extract-rtypes(signatures)
= (null(signatures)—► e,

cons(tdesc(rtype(hd(signatures))),extract-rtypes(tl(signatures))))

RETURN statements have two forms, depending on the PROCEDURE or FUNCTION context in
which they can appear. Auxiliary semantic function context returns the descriptor of the
smallest subprogram or package enclosing the program text whose local environment is at
the end of the current path. It is first determined whether the RETURN statement is in the
proper context. If so, then if the RETURN statement has an expression, its basic type must
be equal to the basic type of the result type of the function in which it appears.

(SST13) SST I WAIT atmark ref opt-expn opt-expr2 J (p)(c)(t)
= let ci = At.let d = lookup(t)(p)(*SENS*) in

(-inull(sensitivity(d))
—<■ error

(cat("WAIT statement ")(seq-stat)
(" illegal in process with sensitivity list: ")
(last(p))),

let c2 = At.(null(opt-expr2)—> c(t),
let expr2 = opt-expr2 in
RT|expr2](p)(k2)(t)

where
k2 = A(w2,e2),t2.

(is-time?(w2)—► c(t2),
error

(cat("Ill-typed timeout clause in WAIT statement: "]
(seq-stat)))) in

(null(opt-expri)—► c2(t),
let expri = opt-expri in
RT|[expri](p)(k,)(t)
where
ki = A(w1,ei),t1.

(is-boolean?(wi)—► c2(ti),
error

(cat("Non-boolean condition clause in WAIT statement: ")
(seq-stat))))) in

check-wait-refs(seq-stat)(ref*)(p)(ci)(t)

check-wait-refs(seq-stat)(ref*)(p)(c)(t)
= (null([ref*])- c(t),

let ref = hd(ref)
and ci = At.check-wait-refs(seq-stat)(tl(ref*))(p)(c)(t) in

check-wait-ref(seq-stat) (ref)(p)(ci)(t))

check-wait-ref (seq-stat) (ref)(p)(c)(t)
= let expr = ref in

ET[exPr](p)(k)(t)
where
k = A(w,e),t.

let d = tdesc(w) in
(d = »UNBOUND* — error(cat("Unbound identifier: ")(namef

(d))),
(is-sig?(w)—« c(t),
error

(cat("Non-signal ")(ref)
(" in sensitivity clause of WAIT statement: ")
(seq-stat))))

82

Semantic equation SST13 specifies the static semantics of the WAIT statement, which con-
sists of a sensitivity list ref% an optional condition opt-exprj, and an optional timeout
expression opt-expr2. First, auxiliary semantic function check-wait-refs recursively tra-
verses the sensitivity list, checking that each ref denotes a declared signal. Next, a descriptor
for the special identifier *SENS* is looked up, and if its sensitivity field is nonempty, then
the WAIT statement illegally appears inside a PROCESS statement with a sensitivity list. If
present, the condition is checked to have basic type BOOLEAN. Finally, if present, the
timeout expression is checked to have basic type TIME.

6.5.9 Case Alternatives

(ATO) AT I e] (d)(p)(y)(t) = y(emptyset)(t)

(ATI) AT I case-alt* case-alt 1 (d)(p)(y)(t)
= AT I case-alt* l(d)(p)(yi)(t)

where
yi = Ahi.ti.

AT I case-alt](d)(p)(y2)(t1)

where
y2 = Ah2,t2.

(case-overlap(d)((hi ,h2))
—► error

(cat("Overlapping case alternatives for type: ")
(namef(d))),

y(case-union(d)((hi ,h2)))(t2))

(AT2) AT I CASECHOICE discrete-range+ seq-stat* 1 (d)(p)(y)(t)

= DRT [discrete-range+ J (d)(p)(yi)(t)
where
yi = Ah,ti.

SST If seq-stat" 1 (p)(c)(ti)
where c = At2.y(h)(t2)

(AT3) AT [CASEOTHERS seq-stat* 1 (d)(p)(y)(t)
= SST I seq-stat*] (p)(c)(t)

where
c = Ati.y((is-boolean-tdesc?(d)^ {FALSE ,TRUE },

is-bit-tdesc?(d)— {0,1},
is-integer-tdesc?(d)—■ INT ,
is-enumeration-tdesc?(d)—► ENUM ,
error

(cat("Illegal CASE selector type: ")(namef(d))(case-alt))))

(ti)

case-overlap(d)(x,y)
= ((is-integer-tdesc?(d)A (x = INT V y = INT))

V (is-enumeration-tdesc?(d)A (x = ENUM V y = ENUM))

x n y ^ emptyset)

case-union (d)(x,y)
= (is-integer-tdesc?(d)A (x = INT V y = INT) — INT ,

is-enumeration-tdesc?(d)A (x = ENUM V y = ENUM) -► ENUM ,

xUy)

83

Semantic function AT processes each case alternative in turn, beginning with the last one.
As the case selection set of each alternative is computed, it is checked for disjointness with
the union of the selection sets of the preceding alternatives. If disjoint, then the union of
these two case selection sets is returned; otherwise an error is raised.

Note that the case selection set of an OTHERS alternative (represented by CASEOTHERS in
the abstract syntax) is always disjoint from the union of the selection sets of the preceding
alternatives, because (1) a CASE statement can contain at most one such alternative; (2) if
such an alternative is present, it must be the last alternative; and (3) the case selection set
of an OTHERS alternative is the relative complement of the union of the case selection sets
of the preceding alternatives.

AT invokes the semantic function DRT to compute the case selection set defined by the
sequence of discrete ranges of a particular case alternative.

6.5.10 Discrete Ranges

(DRTO) DRT [e] (d)(p)(y)(t) = y(emptyset)(t)

(DRT1) DRT I discrete-range discrete-range* J (d)(p)(y)(t)
= DRT [discrete-range] (d)(p)(y,)(t)

where
yi = Ahi.ti.

DRT I discrete-range*] (d)(p)(y2)(t1)
where y2 = Ah2,t2.y(hi U h2)(t2)

A sequence of discrete ranges is processed in order, from left to right.

(DRT2) DRT I discrete-range] (d)(p)(y)(t)
= let (direction,expri,expr2) = discrete-range in

RT[expn](p)(ki)(t)
where
ki = A(wi,ei),ti.

(-•match-types(d,tdesc(W!))
—► error(cat("CASE type mismatch: ")(d)(tdesc(wi))),
d = *UNDEF*
—» error(cat("Non-static CASE expression: ") [expn J),
RT|expr2] (p)(k2)(t,)
where
k2 = A(w2,e2),t2.

(-imatch-types(d,tdesc(w2))
—+ error

(cat("CASE type mismatch: ")(d)(tdesc
(w2))),

e2 = *UNDEF*
—•■ error

(cat("Non-static CASE expression: ")
[expr2]),

y(mk-set(d)((direction,ei,e2)))(t2)))

mk-set(d)(direction,ei ,e2)
= (case tag(d)

BOOL

84

-+ (ei = e2 -+ {ei},
(direction = TO — (ej = FALSE A e2 = TRUE -+ {FALSE ,TRUE }, emptyset),
(ei = TRUE A e2 = FALSE — {TRUE ,FALSE }, emptyset))),

BIT
-► (ei = e2 -* {ei},

(direction = TO — (d = 0 A e2 = 1 — {0,1}, emptyset), (ei = 1 A e2 = 0 -► {1,0}, emptyset))),
(*INT* ,*INT_TYPE*)
-► (direction = TO

—► (ei < e2 —► {ei} U mk-set(d)((direction,(e1+l),e2)), emptyset),
(d > e2 —► {ei} U mk-set(d)((direction,(ei —l),e2)), emptyset)),

♦ENUMTYPE*
—♦ (direction = TO —♦ mk-enum-set(literals(d))(ei)(e2),

mk-enum-set(reverse(literals(d)))(ei)(e2)),
OTHERWISE —error(cat("Illegal CASE expression type tag: ")(tag(d))))

mk-enum-set(id+)(idi)(id2)
= let ni = position(idi)(id+)

and n2 = position (id2)(id+) in
(n2 < ni ->■ e,
nth-tl(ni)(reverse(nth-tl(length(id+)-(n2 + l))(reverse(id+)))))

nth-tl(n)(x) = (n = 0 — x, nth-tl(n-l)(tl(x)))

position(a)(x) = position-aux(a)(x)(0)

position-aux(a)(x)(n)
= (null(x)—► fF, (a = hd(x)—► n, position-aux(a)(tl(x))(l+n)))

reverse(x) = reverse-aux(x)(e)

reverse-aux(x)(y) = (null(x)—► y, reverse-aux(tl(x))(cons(hd(x),y)))

Semantic function DRT receives a case selector expression's basic type from AT. DRT
detects a mismatch between the basic type of a discrete range and that of the selector
expression; it also detects the presence of nonstatic expressions in a discrete range. Case
selection sets are constructed by the function mk-set ("make set"), which takes a type
descriptor and a pair of translated static expressions that represent a discrete range (that
the expressions are static is checked in Phase 1) and returns the corresponding set of values.

6.5.11 Waveforms and Transactions

(WT1) WT I WAVE transaction+] (p)(k)(t) = TRT [[transaction4] (p)(k)(t)

(TRTl) TRT |f transaction transaction*] (p)(k)(t)
= TRT [transaction] (p)(ki)(t)

where
ki = A(wi,ei),ti.

let di = tdesc(wi) in
(null(transaction*)—> k((wi,ei))(ti),
let transaction^" = transaction* in

TRT |f transaction4 J (p)(k2)(ti)
where
k2 = A(w2,e2),t2.

let d2 = tdesc(w2) in

85

(-imatch-types(di A)
—+ error

(cat("Type mismatch for waveform transactions: ")
(transaction) (hd(transaction]1"))),

ei ^ *UNDEF* A e2 ? *UNDEF*

—<■ (ei > e2

—+ error

(cat("Nonascending times for waveform transactions: ")
(transaction)(hd(transactionj"))),

k((w2)e2))(t2)),

k((w2le,))(t2)))

(TRT2) TRT [TRANS expr opt-expr] (p)(k)(t)

= RT[eXprl(P)(k1)(t)
where

ki = A(wi,ei),ti.

(null(opt-expr)^ k((wi,0))(ti),

let expr2 = opt-expr in

RTIexpr2l(p)(k2)(t1)
where

k2 = A(w2,e2),t2.

(-iis-time?(w2)

—► error

(cat("Transaction has ill-typed time expression: ")
(tdesc(w2))),

e2 jt *UNDEF*
— (e2 < 0

—► error

(cat("Transaction has negative time expression: ")

(*)),
k((Wl,e2))(t2)),

k((w,,e2))(t2)))

6.5.12 Expressions

(ETO)ET[e](p)(k)(t) = k((e,e))(t)

(ET1) ET [FALSE J (p)(k)(t) = k((mk-type((CONST VAL))(bool-type-desc(t)),FALSE))(t)

(ET2) ET [TRUE] (p)(k)(t) = k((mk-type((CONST VAL))(bool-type-desc(t)),TRUE))(t)

(ET3) ET [BIT bitlit | (p)(k)(t)

= k((mk-type((CONST VAL))(bit-type-desc(t)),B [bitlit]))(t)

(ET4) ET I NUM constant J (p)(k)(t)

= k((mk-type((CONST VAL))(int-type-desc(t)),N [constant 1))(t)

(ET5) ET I TIME constant time-unit] (p)(k)(t)
= let normalized-constant = (case time-unit

FS — N I constant J ,

PS — lOOOxN [constant 1 ,
NS -+ lOOOOOOxN I constant J ,
US -+ lOOOOOOOOOxN I constant] ,
MS — lOOOOOOOOOOOOxN I constant] ,

SEC — lOOOOOOOOOOOOOOOxN [constant] ,

86

MIN — 60x(1000000000000000xN f constant]),
HR. ->■ 3600x(1000000000000000xN [constant 1),
OTHERWISE
—► error

(cat("Illegal unit name for physical type TIME: ")
(time-unit))) in

k((mk-type((CONST VAL))(time-type-desc(t)),normalized-constant))(t)

(ET6) ET I CHAR constant] (p)(k)(t)
= let expr = (CHAR ,constant) in

let d = lookup(t)((STANDARD))(expr) in
k((type(d),idf(d)))(t)

(ET7) ET [BITSTR bit-lit*] (p)(k)(t)
= let expr* = bit-lit* in

(null(expr*)
- k((mk-type((CONST VAL))(lookup(t)(e)(BIT_VECTOR)),*UNDEF*))(t),
list-type(expr*)(p)(t)(vv)

where vv = Aw*.array-type(BIT_VECTOR)(expr*)(w*)(t)(p)(k))

(ET8) ET [STR char-lit*] (p)(k)(t)
= let expr* = char-lit* in

(null(expr*)- k((mk-type((CONST VAL))(lookup(t)(e)(STRING)) *UNDEF*))(t),
list-type(expr*)(p)(t)(vv)

where vv = Aw*.array-type(STRING)(expr*)(w*)(t)(p)(k))

array-type(array-type-name)(expr*)(w*)(t)(p)(k)
= let d = tdesc(hd(w*)) in

(chk-array-type(d)(tl(w*))
—* let array-type-desc = array-type-desc

(new-array-type-name(array- type-name))(e)(p)(tt)
(TO)((NUM 1))((NUM ,length(w*)))(d) in

k((mk-type(tmode(hd(w*)))(array-type-desc),*UNDEF*))(t),
error(cat("Array aggregate of inhomogeneous type: ")(expr*)))

chk-array-type(d)(w*)
= (null(w*)-> tt,

match-types(d)(tdesc(hd(w*)))—► chk-array-type(d)(tl(w*)),
ff)

(ET9) ET I REF name] (p)(k)(t)
= name-type(name)(e)(p)(t)(v)

where
v = Aw.let d = tdesc(w) in

(second(tmode(w))= TYP
—► error(cat("Wrong context for a type: ")(namef(d))(expr)),
tag(d)= *OBJECT* — k((type(d),value(d)))(t),
tag(d)= *ENUMELT* — k((type(d),idf(d)))(t),
k((w,*UNDEF*))(t))

(ET10) ET I PAGGR expr* 1 (p)(k)(t)
= (length(expr*)= 1

—* let expr = hd(expr*) in
ET [expr] (p)(k)(t),

list-type(expr*)(p)(t)(vv)
where vv = Aw*.array-type(*ANONYMOUS*)(expr*)(w*)(t)(p)(k))

87

(ET11) ET [unary-op expr 1 (p)(k)(t)
= RTJexprJ(p)(k1)(t)

where ki = A(w,e),t.OTl [unary-op | (k)((w,e))(t)

(ET12) ET I binary-op expn expr2] (p)(k)(t)
= RTIexpn](p)(kj)(t)

where
ki = A(wi,ei),t.

RTIexpr2](p)(k2)(t)
where k2 = A(w2,e2),t.

OT2 I binary-op 1 (k)((w, ,e,))((w2,e2))(t)

(ET13) ET [relational-op expn expr2] (p)(k)(t)
= RT[expn](p)(k,)(t)

where
ki = A(wi,ei),t.

RT[expr2](p)(k2)(t)
where
k2 = A(w2,e2),t.

OT2 [relational-op] (k)((w1,e1))((w2,e2))(t)

(RTl)RTIexprl(P)(k)(t)
= ET[expr](p)(k1)(t)

where
ki = A(w,e),t.

let tm = tmode(w)
and d = tdesc(w) in

(second(tm)= ACC —► error
(cat("Non-value (an access): ")(expr)),

second(tm)= OUT
—► error

(cat("Cannot dereference formal OUT parameter: ")(expr)),
second(tm)= VAL A is-void-tdesc?(d)
—► error(cat("Void value: ")(expr)),
let Wl = ((second(tm)= AGR - (DUMMY AGR) , (DUMMY VAL)),tdesc(w)) in

k((w1>e))(t))

(0T1.1) OT1 [unary-op] (k)(w,e)(t)
= let d = tdesc(w) in

(match-types(d,argtypesl(unary-op)(d))
—► k((restypel(unary-op)(d),resvall(unary-op)(e)(d)))(t),
error

(cat("Argument type mismatch for unary operator: ")(unary-op)(d)))

argtypesl(unary-op)(d)
= (case unary-op

NOT
—► (is-boolean-tdesc?(d)V is-bit-tdesc?(d)— d,

argtypesl-error(unary-op)(d)),
(PLUS ,NEG ,ABS)
—>■ (is-integer-tdesc?(d)V is-time-tdesc?(d)^ d,

argtypesl-error(unary-op)(d)),
OTHERWISE - error

(cat("Unrecognized Stage 3 VHDL unary operator: ")(unary-op)))

argtypesl-error(unary-op)(d)
= error(cat("Unary operator ")(unary-op)(" not implemented for type: ")(d))

restypel(unary-op)(d) = mk-type((DUMMY VAL))(d)

resvall(unary-op)(e)(d)
= (e = *UNDEF* — *UNDEF* ,

(case unary-op
NOT
—► (is-boolean-tdesc?(d)—» -ie,

is-bit-tdesc?(d)—► invert-bit(e),
UNDEF),

PLUS - e,
NEG — -e,
ABS — abs(e),
OTHERWISE — *UNDEF*))

invert-bit(bitlit) = mk-bit-simp-symbol((—bitlit)+l)

mk-bit-simp-symbol(bitlit)
= (case bitlit

0 — (BS 0 1) ,
1 — (BS 1 1) ,
OTHERWISE -»• error(cat("Can't construct simp symbol for bit: ")(bitlit)))

(OT2.1) OT2 I binary-op J (k)(wi,ei)(w2,e2)(t)
= let di = tdesc(wi)

and d2 = tdesc(w2) in
(argtypes2(binary-op)((di ,d2))
-<■ k((restype2(binary-op)((di ,d2))(t),

resval2((di ,d2))(binary-op)((ei ,e2))))(t),
error

(cat("Argument type mismatch for binary operator: ") (binary-op) (di]
(d2)))

(OT2.2) OT2 [relational-op J (k)(w,,ei)(w2,e2)(t)
= let di = tdesc(wi)

and d2 = tdesc(w2) in
(argtypes2(relational-op)((di ,d2))
— k((mk-type((DUMMY VAL))(bool-type-desc(t)),

resval2((di ,d2))(relational-op)((ei ,e2))))(t),
error

(cat("Argument type mismatch for relational operator: ")
(relational-op)(di)(d2)))

argtypes2(op)(di,d2)
= (case op

(AND ,NAND ,OR ,NOR ,XOR)
—► (case hd(di)

BOOLEAN — is-boolean-tdesc?(d2)V argtypes2-error(op)(di)(d2),
BIT -* is-bit-tdesc?(d2)V argtypes2-error(op)(di)(d2),
OTHERWISE — argtypes2-error(op)(dI)(d2)),

(ADD ,SUB)
—♦ (case hd(di)

(UNIVERSAL JNTEGER JNTEGER)
-> match-types(di)(d2)V argtypes2-error(op)(di)(d2),

89

(TIME .REAL) — di = d2 V argtypes2-error(op)(di)(d2),
OTHERWISE — argtypes2-error(op)(d1)(d2)),

MUL
—<• (case hd(di)

(UNIVERSAL-INTEGER .INTEGER ,REAL)
—► match-types(dj)(d2)V is-time-tdesc?(d2),
TIME
—> is-integer-tdesc?(d2)V is-real-tdesc?(d2),
OTHERWISE — argtypes2-error(op)(d,)(d2)),

DIV
—* (case hd(di)

(UNIVERSALJNTEGER .INTEGER .REAL)
—» match-types(di)(d2)V argtypes2-error(op)(di)(d2),
TIME
—► is-integer-tdesc?(d2)V is-real-tdesc?(d2),
OTHERWISE — argtypes2-error(op)(di)(d2)),

(MOD ,REM)
—► (case hd(di)

(UNIVERSAL JNTEGER .INTEGER)
—<■ is-integer-tdesc?(d2)V argtypes2-error(op)(di)(d2),
OTHERWISE — argtypes2-error(op)(di)(d2)),

EXP
—► (case hd(di)

(UNIVERSAL JNTEGER .INTEGER .REAL)
—► is-integer-tdesc?(d2)V argtypes2-error(op)(di)(d2),
OTHERWISE — argtypes2-error(op)(di)(d2)),

CONCAT
—► (is-bit-tdesc?(di)

—♦ is-bit-tdesc?(d2)V is-bitvector-tdesc?(d2),
(is-bit-tdesc?(d2)

—+ is-bit-tdesc?(di)V is-bitvector-tdesc?(di),
(is-array-tdesc?(di)A is-array-tdesc?(d2)

—♦ match-array-type-names(idf(di),idf(d2))
A match-types(elty(di),elty(d2)),

argtypes2-error(op)(di)(d2)))),
(EQ ,NE) -► match-types(di,d2)V argtypes2-error(op)(di)(d2),
(LT ,LE ,GT ,GE)
—► (is-scalar-tdesc?(di)A is-scalar-tdesc?(d2)

—► match-types(di)(d2)V argtypes2-error(op)(di)(d2),
is-bitvector-tdesc?(di)A is-bitvector-tdesc?(d2)—► tt,
argtypes2-error(op)(di)(d2)),

OTHERWISE — error(cat("Unrecognized Stage 3 VHDL operator: ")(°p)))

argtypes2-error(op)(di)(d2)
= error(cat("Operator ")(op)(" not impleMented for pair of types: ")(di)(d2))

restype2(binary-op)(di ,d2)(t)
= (case binary-op

(AND ,NAND ,OR ,NOR ,XOR .ADD ,SUB .MOD ,REM ,EXP)
— mk-type((DUMMY VAL))(d,),
MUL
—► (case hd(di)

(UNIVERSALJNTEGER .INTEGER .REAL) — mk-type((DUMMY VAL))(d2),
TIME — mk-type((DUMMY VAL))(di),
OTHERWISE — error("Shouldn't happen!")),

DIV
—<■ (case hd(di)

90

(UNIVERSALJNTEGER .INTEGER ,REAL) -+ mk-type((DUMMY VAL))(d2),
TIME
—+ (case hd(d2)

(UNIVERSALJNTEGER ,INTEGER ,REAL) — mk-type((DUMMY VAL))(di)
TIME — mk-type((DUMMY VAL))(univint-type-desc(t)),
OTHERWISE-+ error("Shouldn't happen!")),

OTHERWISE — error(«Shouldn't happen!")),
CONCAT — mk-type((DUMMY VAL))(mk-concat-tdesc(di)(d2)(t)),
OTHERWISE
—» error(cat("Unrecognized Stage 3 VHDL binary operator: ")(binary-op)))

mk-concat-tdesc(di)(d2)(t)
= (is-bit-tdesc?(di)V is-bitvector-tdesc?(di)

—► array-type-desc
(new-array-type-name(BIT_VECTOR))(e)(e)(tt)(direction(di))(lb(di))(e)
(bit-type-desc(t)),

let idfi = idf(di) in
array-type-desc

(new-array-type-name((consp(idfi)—► hd(idfi), idfi)))(e)(e)(tt)
(direction(d1))(lb(d1))(e)(elty(d1)))

resval2(di,d2)(op)(el,e2)
= (el = *UNDEF* V e2 = *UNDEF* — *UNDEF* ,

let tg = tag(di) in
(case tg

BOOL
—► (case op

AND -+ el A e2,
NAND -► -.(el A e2),
OR -»elV e2,
NOR — -.(el V e2),
XOR — (el = e2 — ff, tt),
EQ — el = e2,
NE ■— el ^ e2,
LT -»• -iel A e2,
LE -* -.el V e2,
GT -+el A -.e2,
GE — el V -.e2,
OTHERWISE
—► error

(cat("Unrecognized Stage 3 VHDL 'boolean' binary operator: ")(op))),

BIT
—► (case op

AND
—► (el = 1 A e2 = 1 —► mk-bit-simp-symbol(l), mk-bit-simp-symbol(O)),
NAND
—► (el = 0 V e2 = 0 —► mk-bit-simp-symbol(l), mk-bit-simp-symbol(O)),
OR
—► (el = 1 V e2 = 1 —> mk-bit-simp-symbol(l), mk-bit-simp-symbol(O)),
NOR
—♦ (el = 0 A e2 = 0 —•■ mk-bit-simp-symbol(l), mk-bit-simp-symbol(O)),
XOR —* (el = e2 —► mk-bit-simp-symbol(O), mk-bit-simp-symbol(l)),
EQ -> el = e2,
NE — el ^ e2,
LT -»• el = 0 A e2 = 1,
LE -+ el = 0 V e2 = 1,
GT — el = 1 A e2 = 0,

91

GE -+ el = 1 V e2 = 0,
OTHERWISE
—► error

(cat("Unrecognized Stage 3 VHDL 'bit' binary operator: ")(op))),
(*INT* ,*TIME*)
—► (case op

ADD- el+e2,
SUB — el-e2,
MUL — elxe2,
DIV —► (e2 = 0 —* error("Illegal division by zero!"),

el/e2),
MOD — mod(el,e2),
REM — rem(el,e2),
EXP — el"e2,
EQ — el = e2,
NE — el / e2,
LT — el < e2,
LE — el < e2,
GT — el > e2,
GE — el > e2,
OTHERWISE
—► error

(cat("Unrecognized Stage 3 VHDL 'integer' binary operator: ")(op))),
REAL —► error(cat("Floating point operator not yet implemented: ")(op)),
♦ENUMTYPE*
—* (case op

EQ — el = e2,
NE — el / e2,
LT — enum-lt(el)(e2)(literals(di)),
LE -► enum-le(el)(e2)(literals(di)),
GT — enum-lt(e2)(el)(Uterals(di)),
GE — enum-le^KelXliterals^d!)),
OTHERWISE
—► error

(cat("Unrecognized Stage 3 VHDL 'enumeration type' binary operator: ")
(op))),

ARRAYTYPE - *UNDEF* ,
OTHERWISE
—♦ error(cat("Unrecognized Stage 3 VHDL binary operator type: ")(tg))))

enum-lt(el)(e2)(enum-lits)
= let elpos = position(el)(enum-lits)

and e2pos = position(e2)(enum-lits) in
elpos < e2pos

enum-le(el) (e2) (enum-lits)
= let elpos = position(el)(enum-lits)

and e2pos = position(e2)(enum-lits) in
elpos < e2pos

6.5.13 Primitive Semantic Equations

(Nl) N [constant J = constant

(Bl) B[bitlit] = bitlit

92

7 Interphase Abstract Syntax Tree Transformation

Owing to the relative simplicity of the Stage 1 VHDL language subset, Phases 1 and 2 of
the Stage 1 VHDL translator were able to use the same abstract syntax.

Stage 2 VHDL was a considerably more sophisticated language subset. Consequently, it
became convenient to allow Phase 2 of the VHDL translator for Stage 2 VHDL and subse-
quent stages — viz. Stage 3 VHDL — to employ a different abstract syntax for the language
than does Phase 1, for reasons discussed below.

Accordingly, as the final act of Phase 1 translation of a given Stage 3 VHDL hardware
description, an "interphase" abstract syntax tree transformation is performed that yields a
new abstract syntax tree (AST) for use by Phase 2. This transformation does not modify
the original AST. Although the resulting transformed AST may resemble the original in
many respects, there will also be substantial differences.

We should recall that in Phase 1, when abstract syntax trees are occasionally injected
into the TSE, it is their transformed versions that are used; this occurs with array type
descriptors created by functions process-slcdec and DT8, subprogram descriptors created
by function process-subprog-body, and *SENS* (sensitivity list) descriptors updated

with new refs by function SLT2.

7.1 Interphase Semantic Functions

The abstract syntax tree transformation is carried out by principal semantic functions
DFX (design files), ENX (entity declarations), ARX (architecture bodies), PDX (port
declarations), DX (declarations), CSX (concurrent statements), SLX (sensitivity lists),
SSX (sequential statements), AX (case alternatives), DRX (discrete ranges), WX (wave-
forms), TRX (transactions), MEX (reference lists), and EX and RX (expressions). These
are assisted by several important auxiliary semantic functions, most notably the function
transform-name.

Following Phase 1 construction of the tree-structured environment (TSE), semantic func-
tion DFX is applied to the original AST to initiate the transformation, which uses (but
does not modify) the TSE. Once the AST transformation is complete, Phase 1 auxiliary
semantic function phase2 is invoked with the transformed AST and the TSE as syntactic
and semantic arguments, respectively, to initiate Phase 2 translation (see Section 8).

Generally speaking, the AST-transforming semantic functions straightforwardly reconstruct
their syntactic arguments from their transformed immediate syntactic constituents, with the

following exceptions:

• transformation of PORT declarations into SIGNAL declarations

• "desugaring" of sensitivity lists in PROCESS statements:
converting them into explicit final WAIT statements

• "desugaring" of concurrent signal assignment statements:

93

converting them into equivalent PROCESS statements

• "desugaring" of secondary units of physical type TIME:
converting them into the base unit FS (femtoseconds)

• disambiguation of refs as either array references or subprogram calls

• overload resolution between BOOLEAN and BIT operators

• overload resolution between INTEGER and REAL operators

7.2 Transformed Abstract Syntax of Names

An important case in point is the translation of names, e.g. refs, which are heavily over-
loaded: the Phase 1 semantic function name-type, which checks them and determines
their type, is necessarily complex. Given the identical abstract syntax, a Phase 2 semantic
function for refs would exhibit analogous complexity; instead, it was deemed preferable to
transform the abstract syntax of refs into a form more suitable for Phase 2.

Thus, the abstract syntax of refs used in Phase 1 is:

ref ::= REF name

name ::= id | name id | name expr*

while the abstract syntax of refs used in Phase 2 is:

ref ::= REF basic-ref

basic-ref ::= modifier"1"

modifier ::= SREF id+ id

I INDEX expr

I SELECTOR id

I PARLIST expr*

Although not reflected in the syntax shown above, a basic-ref (basic reference) must begin
with a simple reference SREF id+ id, which has for convenience been classified with the
modifiers. The id is the root identifier, and id+ is the TSE access path for this ref. The
structures following this root basic reference are called modifiers. An INDEX modifier
denotes an array reference, a SELECTOR modifier denotes a record field access (not used
in Stage 3 VHDL), and a PARLIST modifier denotes a subprogram call. This linear
arrangement of a simple reference followed by zero or more modifiers makes the translation
of refs in Phase 2 relatively straightforward, as the components of a ref are grouped from
the left and thus a ref can be translated from left to right.

94

7.3 Interphase Semantic Equations

Most of the semantic equations for the interphase abstract syntax tree transformation, bein
straightforward, will be displayed without comment.

7.3.1 Stage 3 VHDL Design Files

(DFX1) DFX If DESIGN-FILE id pke-decl* pkg-body* use-clause* ent-decl arch-body H (t)
= let po = %(e)(id) in

(DESIGN-FILE ,id,DX [pkg-decl* 1 (Po)(t),DX [pkg-body*] (Po)(t),
DX I use-clause*] (p0)(t),ENX I ent-decl 1 (p0)(t),
ARX I arch-body] (p0)(t))

7.3.2 Entity Declarations

(ENX1) ENX [ENTITY id port-decl* decl* opt-id] (p)(t)
= insert-phasel-hook

((ENTITY ,id,PDX [port-decl* 1 (%(p)(id))(t),DX [decl*] (%(p)(id))(t),opt-id))
(ent-decl)

7.3.3 Architecture Bodies

(ARX1) ARX If ARCHITECTURE idi id2 decl* con-stat* opt-id 1 (p)(t)
= let Pl =%(%(p)(id2))(idi) in

(ARCHITECTURE ,id!,id2,DX [f decl*] (pi)(t),CSX I con-stat* J (Pl)(t),opt-id)

7.3.4 Port Declarations

(PDXO) PDX[«](p)(t) = s

(PDX1) PDX |f port-decl port-decl* H (p)(t)
= cons(PDX H port-decl | (p)(t),PDX II port-decl* D (p)(t))

(PDX2) PDX If DEC PORT id+ mode type-mark opt-expr | (p)(t)
= (DEC ,SIG ,id+,type-mark,

let expr = opt-expr in
second(EX jf expr J (p)(t)))

(PDX3) PDX | SLCDEC PORT id+ mode slice-name opt-expr H (p)(t)
= (SLCDEC ,SIG ,id+,

let (type-mark,discrete-range) = slice-name in
(tvpe-mark.DRX (f discrete-ranee H (p)(t)),

let expr = opt-expr in
second(EX [expr] (p)(t)))

95

7.3.5 Declarations

(DX0)DX|[e](p)(t) = e

(DX1) DX I decl decl*] (p)(t) = cons(DX [decl J (p)(t),DX J decl*] (p)(t))

(DX2) DX I pkg-decl pkg-decl* J (p)(t)
= cons(DX I pkg-decl 1 (p)(t),DX [pkg-decl' 1 (p)(t))

(DX3) DX I pkg-body pkg-body*] (p)(t)
= cons(DX I pkg-body 1 (p)(t),DX I pkg-body*] (p)(t))

(DX4) DX | use-clause use-clause*] (p)(t)
= consfDX I use-clause] (p)(t),DX [use-clause*] (p)(t))

(DX5) DX I DEC object-class id+ type-mark opt-expr 1 (p)(t)
= (DEC ,object-class,id+,type-mark,

let expr = opt-expr in
secondfEX [expr 1 (p)(t)))

(DX6) DX | SLCDEC object-class id+ slice-name opt-expr] (p)(t)
= (SLCDEC ,object-class,id+ ,

let (type-mark,discrete-range) = slice-name in
(type-mark,DRX f discrete-range] (p)(t)),

let expr = opt-expr in
second (EX I expr] (p)(t)))

(DX7) DX [ETDEC id id+ J (p)(t) = (ETDEC ,id,id+)

(DX8) DX J ATDEC id discrete-range type-mark] (p)(t)
= (ATDEC ,id,DRX I discrete-range] (p)(t),type-mark)

(DX9) DX I PACKAGE id decl* opt-id 1 (p)(t)
= (PACKAGE ,id,DX I decl*] (%(p)(id))(t),opt-id)

(DX10) DX | PACKAGEBODY id decl* opt-id 1 (p)(t)
= let d = t(p)(id) in

let q = %(path(d))(id) in
(PACKAGEBODY ,id,DX I decl*] (q)(t),opt-id)

(DX11) DX I PROCEDURE id proc-par-spec*] (p)(t)
= let d = t(p)(id) in

(null(body(d))—► error(cat("Missing subprogram body: ")(namef

(d))),
(PROCEDURE ,id,proc-par-spec*))

(DX12) DX I FUNCTION id func-par-spec* type-mark] (p)(t)
= let d = t(p)(id) in

(null(body(d))—► error(cat("Hissing subprogram body: ")(namef

(d))),
(FUNCTION ,id,func-par-spec*,type-mark))

(DX13) DX [SUBPROGBODY subprog-spec decl* seq-stat* opt-id] (p)(t)
= let (tg,id,par-spec*,type-mark) = subprog-spec in

let Pl = %(p)(id) in
(SUBPROGBODY ,
let decl = subprog-spec in

DX [decl] (p)(t),DX [decl* J (Pl)(t),SSX [seq-stat* J (Pl)(t),opt-id)

96

(DX14) DX I USE dotted-name+] (p)(t) = (USE ,dotted-name4

(DX15) DX I STDEC id type-mark opt-discrete-range] (p)(t)
= (STDEC ,id,type-mark,

(null(opt-discrete-range)—» £,
let (direction,expri ,expr2) = opt-discrete-range in

(direction,second(EX [expn J (p)(t)),second(EX [expn 1 (p)(t)))))

(DX16) DX IITDEC id discrete-range] (p)(t)
= (ITDEC ,id,

let (direction,expri,expr2) = discrete-range in
(direction,second(EX [expn] (p)(t)),second(EX [expr2 1 (p)(t))))

7.3.6 Concurrent Statements

(CSXO) CSX If el (p)(t) = e

(CSX1) CSX [con-stat con-stat*] (p)(t)
= cons(CSX [con-stat J (p)(t),CSX I con-stat* 1 (p)(t))

(CSX2) CSX I PROCESS id ref* decl* seq-stat* opt-id J (p)(t)
= let pi = %(p)(id) in

(PROCESS ,id,DX fdecl* 1 (pi)(t),
let seq-stat* = (null(seq-stat*)

— ((WAIT ,(AT ,mk-atmark()),ref*,£,e)),
(null(ref*)—► seq-stat*,
append

(seq-stat*,
((WAIT ,(AT ,mk-atmark()),ref*,£,£))))) in

SSX I seq-stat*] (pi)(t),opt-id)

(CSX3) CSX [SEL-SIGASSN atmark delay-type id expr ref selected-waveform"1"] (p)(t)
= let expr* = cons(expr,

collect-expressions-from-selected-waveforms
(selected-waveform"1")) in

let ref* = delete-duplicates
(collect-signals-from-expr-list(expr*)(t)(p)(e)) in

let case-alt+ = construct-case-alternatives
(ref)(delay-type)(selected-waveform+) in

let case-stat — (CASE ,atmark,expr,case-alt+) in
let process-stat = (PROCESS ,id,ref*,e,(case-stat),id) in

insert-phasel-hook(CSX [[process-stat | (p)(t))(con-stat)

(CSX4) CSX I COND-SIGASSN atmark delay-type id ref cond-waveform* waveform] (p)(t)
= let expr* = nconc

(collect-expressions-from-conditional-waveforms
(cond-waveform*),

collect-transaction-expressions(second(waveform))) in
let ref* = delete-duplicates

(collect-signals-from-expr-list(expr*)(t)(p)(e)) in
(null(cond-waveform*)

—► let sig-assn-stat = (SIGASSN ,atmark,delay-type,ref,waveform) in
let process-stat = (PROCESS ,id,ref*,e,(sig-assn-stat),id) in

97

insert-phasel-hook(CSX [process-stat J (p)(t))(con-stat),
let cond-part+ = construct-cond-parts

(ref) (delay- type)(cond-waveform*)
and else-part = ((SIGASSN ,(AT ,mk-atmark()),delay-type,ref,waveform)) in

let if-stat = (IF ,atmark,cond-part+,else-part) in
let process-stat = (PROCESS ,id,ref,e,(if-stat),id) in

insert-phasel-hook(CSX [process-stat | (p)(t))(con-stat))

7.3.7 Sensitivity Lists

(SLXO) SLX [e J(p)(t) =e

(SLX1) SLX I ref ref* 1 (p)(t) = cons(SLX [ref] (p)ft),SLX [ref*] (p)(t))

(SLX2) SLX I REF name } (p)(t)
= let expr = ref in

second(EX f expr] (p)(t))

7.3.8 Sequential Statements

(SSX1) SSX [seq-stat seq-stat* J (p)(t)
= cons(SSX I seq-stat J (p)(t),SSX [seq-stat*] (p)(t))

(SSX2) SSX I NULL atmark J (p)(t) = (NULL ,atmark)

(SSX3) SSX I VARASSN atmark ref expr 1 (p)(t)
= (VARASSN ,atmark,

let expr0 = ref in
secondQEX | expr0] (p)(t)),second(EX [expr] (p)(t)))

(SSX4) SSX I SIGASSN atmark delay-type ref waveform 1 (p)(t)
= (SIGASSN ,atmark,delay-type,

let expr = ref in
second(EX [expr 1 (p)(t)),WX I waveform] (p)(t))

(SSX5) SSX [IF atmark cond-part+ else-part | (p)(t)
= let seq-stat* = else-part in

(IF ,atmark,transform-if(cond-part+)(p)(t),SSX [[seq-stat* J (p)(t))

transform-if(cond-part*)(p)(t)
= (null(cond-part')—► e,

let (expr,seq-stat*) = hd(cond-part*) in
cons((second(EX [expr] (p)(t)),SSX [seq-stat* 1 (p)(t)),
transform-if(tl(cond-part*))(p)(t)))

(SSX6) SSX [CASE atmark expr case-alt+] (p)(t)
= (CASE ,atmark,second(EX [expr] (p)(t)),AX [case-alt+] (p)(t))

(SSX7) SSX I LOOP atmark id seq-stat* opt-id J (p)(t)
= (LOOP ,atmark,id,SSX 1 seq-stat*] (%(p)(id))(t),opt-id)

98

(SSX8) SSX [WHILE atmark id expr seq-stat* opt-id] (p)(t)
= (WHILE ,atmark,id,second(EX [expr 1 (%(p)(id))(t)),

SSX I seq-stat* J (%(p)(id))(t),opt-id)

(SSX9) SSX [FOR atmark id ref discrete-range seq-stat* opt-id 1 (p)(t)
= (FOR ,atmark,id,second(EX I ref] (%(p)(id))(t)),

DRX IT discrete-range] (%(p)(id))(t),SSX [seq-stat*] (%(p)(id))(t),opt-id)

(SSX10) SSX I EXIT atmark opt-dotted-name opt-expr] (p)(t)
= (EXIT ,atmark,opt-dotted-name,

let expr = opt-expr in
second (EX [expr] (p)(t)))

(SSX11) SSX ff CALL atmark ref] (p)(t)
= (CALL ,atmark,

let expr = ref in
second(EX [expr] (p)(t)))

(SSX12) SSX [RETURN atmark opt-expr] (p)(t)
= (RETURN ,atmark,

let expr = opt-expr in
second(EX I expr] (p)(t)))

(SSX13) SSX H WAIT atmark ref* opt-expn opt-expr2] (p)(t)
= let expri = opt-expri

and expr2 = opt-expr2 in
(WAIT ,atmark,MEX [ref*] (p)(t),second(EX [expn] (p)(t)),
second(EX I expr2] (p)(t)))

7.3.9 Case Alternatives

(AXO) AX I e] (p)(t) = e

(AX1) AX l case-alt case-alt*] (p)(t)
= cons(AX H case-alt J (p)(t),AX [case-alt*] (p)(t))

(AX2) AX [CASECHOICE discrete-range+ seq-stat*] (p)(t)
= (CASECHOICE ,DRX [discrete-range4] (p)(t),SSX [seq-stat*] (p)(t))

(AX3) AX [CASEOTHERS seq-stat* J (p)(t) = (CASEOTHERS ,SSX [seq-stat*] (p)(t))

7.3.10 Discrete Ranges

(DRXO) DRX |e| (p)(t) = e

(DRX1) DRX [discrete-range discrete-range*] (p)(t)
= cons(DRX I discrete-range] (p)(t),DRX tt discrete-range*] (p)(t))

(DRX2) DRX [discrete-range] (p)(t)
= let (direction,expri ,expr2) = discrete-range in

(direction.secondfEX [expn] (p)(t)),second(EX [expr2] (p)(t)))

99

7.3.11 Waveforms and Transactions

(WX1) WX I WAVE transaction] (p)(t) = (WAVE ,TRX [transaction+] (p)(t))

(TRX1) TRX [transaction transaction* J (p)(t)

= (null(transaction*)-+ (TRX [transaction] (p)(t)),
let transaction]1" = transaction* in

cons(TRX [transaction 1 (p)(t),TRX [transaction]*" 1 (p)(t)))

(TRX2) TRX [TRANS expr opt-expr] (p)(t)
= (TRANS ,second(EX [expr 1 (p)(t)),

let expri = opt-expr in
second(EX [[expn] (p)(t)))

7.3.12 Expressions

(MEXO) MEX |f e] (p)(t) = e

(MEX1) MEX [ref ref*] (p)(t) = cons(second(EX [ref] (p)(t)),MEX I ref*] (p)(t))

(EXO) EX [e] (p)(t) = (void-type-desc(t),£)

(EX1) EX [FALSE] (p)(t) = (bool-type-desc(t),(FALSE))

(EX2) EX [TRUE 1 (p)(t) = (bool-type-desc(t),(TRUE))

(EX3) EX [BIT bitlit] (p)(t) = (bit-type-desc(t),(BIT ,bitlit))

(EX4) EX [NUM constant] (p)(t) = (int-type-desc(t),(NUM .constant))

(EX5) EX [TIME constant time-unit J (p)(t)
= let normalized-constant = (case time-unit

FS -> N [constant | ,
PS — lOOOxN [constant] ,
NS — lOOOOOOxN [constant] ,
US — 1000000000xN [constant] ,
MS — lOOOOOOOOOOOOxN [constant J ,
SEC — lOOOOOOOOOOOOOOOxN [constant J ,
MIN — 60x(1000000000000000xN [constant]),
HR — 3600x(1000000000000000xN [constant]),
OTHERWISE
—► error

(cat("Illegal unit name for physical type TIME:
(time-unit))) in

(time-type-desc(t).(TIME ,normalized-constant,FS))

(EX6) EX [CHAR constant 1 (p)(t)

= let d = lookup(t)((STANDARD))(expr) in
(type(d),(CHAR .constant))

(EX7) EX [BITSTR bit-lit*] (p)(t) = (£,(BITSTR ,bit-Ut*))

(EX8) EX [STR char-lit*] (p)(t) = (e,(STR ,char-lit*))

(EX9) EX I REF name] (p)(t) = transform-name(name)(£)(e)(p)(t)

100

transform-name(name)(w)(ast£)(p)(t)
= (nuU(w)

—► let wi = lookup2(t)(p)(e)(hd(name)) in
(wi = »UNBOUND* — error(cat("Unbound identifier: ")($(p)(hd(name)))),
(second(tmode(wi))= TYP —► transform-name(tl(name))(wi)(e)(p)(t),
transform-name

(tl(name))(w1)(((SREF ,path(tdesc(w1)),idf(tdesc(w1)))))(p)(t))),
let d = tdesc(w)

and tm = tmode(w) in
let tg = tag(d) in

(null(name)
— (second(tm)= TYP — transform-name-aux(*CONVERSION*)(d)(astj),

transform-name-aux(tg)(d)(astJ)),
let x = hd(name) in

(consp(x)
—► let ast* = transform-list(x)(p)(t) in

(second(tm)= TYP
—► transform-name

(tl(name))(w)((TYPECONV ,hd(astj),%(path(d))(idf(d))))(p)(t),
second(tm)= OBJ A is-array-tdesc?(d)
—♦ transform-name

(tl(name))((tm,elty(d)))
(nconc(astS,((INDEX ,hd(astt)))))(p)(t),

(second(tm)= OBJ A is-array?(type(d)))
V (second(tm)e (REF VAL) A is-array-tdesc?(d))

—* transform-name
(tl(name))
((second(tm)= OBJ

—► mk-type(tmode(type(d)))(elty(tdesc(type(d)))),
mk-type(tm)(elty(d))))

(nconc(astS .((INDEX ,hd(astj)))))(p)(t),
transform-name

(tl(name))(extract-rtype(d))
(nconc(ast;,((PARLIST ,ast?))))(p)(t)),

((second(tm)= OBJ A is-record?(type(d)))
V (second(tm)6 (REF VAL) A is-record-tdesc?(d))

—► let d! = (second(tm)= OBJ — tdesc(type(d)), d) in
let d2 = lookup-record-field(components(di))(x) in

transform-name
(tl(name))(mk-type(tm)(d2))(nconc(ast;,((SELECTOR ,x))))

(P)(t).
second(tm)= OBJ A is-record-tdesc?(d)
—+ let d2 = lookup-record-field(components(d))(x) in

transform-name
(tl(name))(mk-type(tm)(d2))(nconc(ast;,((SELECTOR ,x))))

(P)(t).
let w, = lookup-local(x)(%(path(d))(idf(d)))(p)(t) in

(Wl = »UNBOUND*
— error(cat("Unkno¥n identifier: ")($(%(path(d))(idf(d)))(x))),
transform-name

(tl(name))(w1)(((SREF ,path(tdesc(w1)),idf(tdesc(w1)))))(p)

(t))))))

transform-name-aux(tg)(d)(ast)
= (case tg

♦OBJECT* — (second(type(d)),(REF ,ast)),
ENUMELT — (second(type(d)),(ENUMLIT ,idf(d))),

101

(♦PROCEDURE* ,*FUNCTION*)
—► (second(rtype(hd(signatures(d)))),

(REF ,nconc(ast,((PARLIST ,e))))),
»CONVERSION* - (d.ast),
»PACKAGE* -> (d,(REF ,ast)),
OTHERWISE — (d,(REF ,ast)))

transform-list(x)(p)(t)
= (null(x)—► e,

let expr = hd(x) in
cons(second(EX I expr] (p)(t)),transform-list(tl(x))(p)(t)))

The functions transform-name, transform-name-aux, and transform-list produce the
linear form of the basic references discussed above.

(EX10) EX I PAGGR expr*] (p)(t)
= (length(expr*)= 1

—» let expr = hd(expr') in
EX [expr 1 (p)(t),

(e,(PAGGR,ex-paggr(expr*)(p)(t))))

(EX11) EX I unary-op expr J (p)(t)
= let (d,e) = EX [expr 1 (p)(t) in

(case unary-op
PLUS — (d,e),
NOT —► (d,(scalar-op(unary-op)(d),e)),
NEG —► (d,(scalar-op(unary-op)(d),e)),
ABS —► (d,(scalar-op(unary-op)(d),e)),
OTHERWISE
—► error

(cat("Unrecognized Stage 3 VHDL unary operator: ")(unary-op)))

(EX12) EX [binary-op expn expr2 J (p)(t)
= let (di.ei) = EX [[expn] (p)(t) in

let (d2,e2) = EX I expr2 J (p)(t) in
(di,(scalar-op(binary-op)(di),ei,e2))

(EX13) EX | relational-op expri expr2] (p)(t)
= let (di.ei) = EX [expn l(p)(t) in

let (d2,e2) = EX[expr2] (p)(t) in
(bool-type-desc(t),(scalar-op(relational-op)(di),ei,e2))

scalar-op(op)(d)
= (is-bit-tdesc?(d)V is-bitvector-tdesc?(d)—► bits-op(op),

is-real-tdesc?(d)—► real-op(op),
op)

bits-op(op)
= (case op

EQ — EQ ,
NE — NE ,
LT — LT ,
LE - LE ,
GT — GT ,
GE — GE ,

102

NOT -f BNOT ,
AND — BAND ,
NAND — BNAND,
OR - BOR,
NOR -, BNOR ,
XOR - BXOR,
OTHERWISE -+ error(cat(Undefined bitwise operator:)(op)))

real-op(op)
= (case op

EQ — EQ ,
NE — NE ,
LT — RLT ,
LE — RLE ,
GT — RGT,
GE — RGE,
NEG — RNEG ,
ABS — RABS ,
ADD — RPLUS ,
SUB - RMINUS ,
MUL — RTIMES ,
DIV — RDIV ,
EXP — REXPT,
OTHERWISE — error(cat(Undefined 'real' operator:)(op)))

The functions scalar-op, bits-op, and real-op do overload resolution between INTEGER,
BIT, and REAL operators.

(RX1) RX I expr 1 (p)(t) = EX [expr 1 (p)(t)

103

8 Phase 2: State Delta Generation

If Phase 1 of the Stage 3 VHDL translator completes without error, then after the interphase

abstract syntax tree transformation has been accomplished (see Section 7), Phase 2, state
delta generation, can proceed. Several kinds of checks have already been performed on the
hardware description in Phase 1, the most significant being the detection of missing prior
declarations of items such as variables and labels, the improper use of names, and static
type checking. Thus, these checks do not have to be duplicated in Phase 2.

Phase 2 receives from Phase 1 the transformed abstract syntax tree (AST) for the hardware
description, together with the tree-structured environment (TSE) — a complete record of
the name/attribute associations corresponding to the hardware description's declarations
and whose structure reflects that of the description. The TSE remains fixed throughout
Phase 2. It contains aU definitions needed to execute its corresponding Stage 3 VHDL
hardware description, and Phase 1 has ensured that only that portion of the TSE visible at
any given textual point of the description can be accessed during Phase 2. With the aid of
the TSE, Phase 2 incrementally generates SDVS Simplifier assertions and state deltas.

8.1 Phase 2 Semantic Domains and Functions

The formal description of Phase 2 translation consists of semantic domains and semantic
functions, the latter being functions from syntactic to semantic domains. Compound se-
mantic domains are defined in terms of primitive semantic domains. Similarly, primitive
semantic functions are unspecified (their definitions being understood implicitly) and the
remaining semantic functions are defined (by syntactic cases) via semantic equations.

The principal Phase 2 semantic functions (and corresponding Stage 3 VHDL language
constructs to which they assign meanings) are: DF (design files), EN (entity declarations),
AR (architecture bodies), D (declarations), CS (concurrent statements), SS (sequential
statements), W (waveforms), TRM and TR (transactions), ME and MR (expression
lists), E and R (expressions), T (expression types), B (bit literals), and N (numeric literals).

Each of the principal semantic functions requires an appropriate syntactic argument — an
abstract syntactic object (tree) produced by the interphase abstract syntax tree transforma-
tion (see Section 7). Most of the semantic functions take (at least) the following additional

arguments:

• the tree-structured environment (TSE) generated in Phase 1;

• a path, indicating the currently "visible" portion of the TSE;

• a continuation, specifying which Phase 2 semantic function to invoke next;

• a universe structure; and

• an execution stack.

105

In the absence of errors, the Phase 2 semantic functions return a list of Simplifier assertions
and state deltas. Moreover, E and R also return a translated expression and list of guard
formulas. Guard formulas are inserted in the precondition of generated state deltas to
ensure that certain conditions are met in the proof in which the state deltas appear. For
example, if an array name is indexed by an expression, then Phase 2 generates a guard
formula asserting that the index value is not out of range.

The execution state manipulated by Phase 2 translation involves two components: a universe
structure (see Section 8.2.2) and an execution stack (see Section 8.2.3). An analogy with

conventional denotational semantics can be applied: the execution state corresponds to the
store, translated expressions and guard formulas correspond to expression values, and state
delta/assertion lists correspond to non-error final answers.

When state deltas are generated by a semantic function, the continuation that is input to

that function plays a slightly unconventional role: the result of applying to an execution
state the continuation, or other continuations derived from the continuation, is appended to

the postconditions of the generated state deltas. In the absence of errors, the item appended
represents a list of state deltas. Such a continuation is evaluated and applied only when the
state delta in whose postcondition it appears is applied.

For example, an IF statement having no ELSE part generates two state deltas: one for the
case in which its condition evaluates to true, the other for the false case. The continuation
for the true case represents the execution of the body of the IF statement succeeded by
the execution of the statement following the IF statement. The continuation for the false
case skips the body, and proceeds directly to the statement following the IF statement.
Whichever of these two state deltas is applied determines which continuation is evaluated
and applied to an execution state, and therefore which additional state deltas are subse-
quently generated.

8.1.1 Phase 2 Semantic Domains

The semantic domains and function types for Phase 2 of the Stage 3 VHDL translator are
as follows.

Primitive Semantic Domains

Bool = {FALSE, TRUE} Simplifier propositional (boolean) constants
Bit = {(BS 0 1), (BS 1 1)} Simplifier bit constants (length 1 bitstrings)
Char = {(CHAR 0), ..., (CHAR 127)} SimpUfier character constants
n : N = {0, 1, 2, ...} Simplifier natural number constants

identifiers

system-generated identifiers (disjoint from Id)

tree-structured environments (TSEs)
descriptors (see Section 6.2)
universe structures (see Section 8.2.2)

106

id : Id
Sysld

t : TEnv
d Desc
v : UStruct

stk : Stk execution stacks (see Section 8.2.3)

e : TExpr
trans : TTrans
f, guard : GForm

sd : SD
Assert

translated expressions
translated transactions
lists of guard formulas

state deltas
SDVS Simplifier assertions

Error error messages

Compound Semantic Domains

elbl : Elbl = Id + Sysld
p, q: Path = Elbl*
qname: Name = Elbl (. Elbl)*

d : Dv — Desc
r : Env = Id - (Dv + {*UNBOUND*})

TSE edge labels
TSE paths
qualified names

denotable values (descriptors)
environments

Tmode = {PATH} x Id* +
({CONST, VAR, SIG, DUMMY) x

{VAL, OUT, REF, OBJ, ACC, TYP})

type modes

w : Type = Tmode x Desc types

u : Dc = UStruct —* Stk —> Ans
c : Sc = Dc
k : Ec = (TExpr x GForm) -► Sc
h : Mc = (TExpr* x GForm*) -> Sc
wave-cont : Wc = (TTrans* X GForm*)

declaration fc concurrent statement continuations
sequential statement continuations
expression continuations
expression list continuations

Sc waveform continuations

trans-cont : Tc = (TTrans x GForm) —► Sc transaction continuations

Ans = (SD + Assert)* + Error final answers

8.1.2 Phase 2 Semantic Functions

The semantic functions for Phase 2 of the Stage 3 VHDL translator are as follows.

DF : Design -► TEnv -* Ans

EN : Ent -► TEnv -» Path -> Dc -> Dc
AR . Arch -» TEnv -+ Path -> Dc -»• Dc

D : Dec* -> TEnv -> Path -»■ Dc -> Dc

design file dynamic semantics

entity declaration dynamic semantics
architecture body dynamic semantics

declaration dynamic semantics

107

es CStat* -> TEnv -* Path -+ De -► De

SS : SStat* -» TEnv -» Path — Sc -> Sc

W : Wave -► TEnv -> Path -»• Wc -► Sc
TRM : Trans* -» TEnv -► Path -* Wc -* Sc
TR : Trans -»■ TEnv -► Path -»• Tc -> Sc

ME : Expr* -» TEnv -» Path -»■ Mc -» Sc
MR : Expr* -> TEnv -» Path -► Mc -» Sc
E : Expr -► TEnv ->• Path -► Ec -> Sc
R : Expr -» TEnv -+ Path -» Ec -> Sc

T : Expr -»■ TEnv -»• Path -» Desc

B : Bitl.it -► Bit
N : NumLit -* N

concurrent statement dynamic semantics

sequential statement dynamic semantics

waveform dynamic semantics

transaction list dynamic semantics
transaction dynamic semantics

expression list dynamic semantics (l-values)

expression list dynamic semantics (r-values)
expression dynamic semantics (l-values)

expression dynamic semantics (r-values)

expression types

bit values of bit literals (primitive)
integer values of numeric literals (primitive)

108

8.2 Phase 2 Execution State

As mentioned in Section 8.1, the execution state manipulated by Phase 2 translation consists
of a universe structure and an execution stack. The purpose of this section is to elucidate
the nature and role of these aspects of the execution state.

8.2.1 Unique Name Qualification

Except for quantification, the language of state deltas has no scoping, i.e., it is "flat." Even
with quantification, the state deltas generated by the Stage 3 VHDL translator certainly
do not have a scoping structure that naturally parallels the scopes of their corresponding
Stage 3 VHDL hardware description. Furthermore, even if there were such a correspondence
between source (Stage 3 VHDL) and target (state deltas) scopes, it would still be convenient
to generate unique names for the SDVS user to use in proofs.

For example, a PROCESS statement may contain a declaration of a variable x of the same
name as a signal in the enclosing architecture body. The inner instance of x can be distin-
guished from the outer instance by prefixing or qualifying it with the name (user-supplied
or system-generated) of the process in which the inner instance is declared. We shall call
such a qualified name, derived from the static structure of the Stage 3 VHDL hardware
description, a statically uniquely qualified name or SUQN. At the beginning of Phase 2
translation (after the interphase AST transformation — see Section 7), the SUQN of any
object (for which such a name makes sense) is recorded in the qid field associated with the
object in the TSE.

Another important kind of unique name qualification is based on the dynamic execution
of a Stage 3 VHDL description. A program unit can be reentered, either by repetition or
recursion, and local declarations in the reentered program will be re-elaborated, creating
new dynamic instances of entities that cannot be distinguished on the basis of static program
structure. In this case new names that are distinct dynamic instances of the same statically
uniquely qualified name are sufficient to enable the SDVS user to distinguish all instances
of names for use in proofs. The separate dynamic instances of a name are indicated by
appending !n to it, where n is a dynamic instance index for that name (e.g. a.x, a.x!2,
a.x!3, ..., where a.x!l is simply denoted a.x). These names are called dynamically uniquely

qualified names (DUQNs).

Only statically and dynamically uniquely qualified names appear in the state deltas gener-

ated by Phase 2 translation.

8.2.2 Universe Structure for Unique Dynamic Naming

Given that there may be several dynamic instances of the same SUQN in a Stage 3 VHDL
hardware description, Phase 2 translation employs a mechanism called a universe structure
(together with functions that access and manipulate it) to manage the creation of new
dynamic instances of each distinct SUQN, as well as to ensure that the correct dynamic
instance of each SUQN is available at any given time.

109

A universe structure consists of four components:

universe name :
The name of the current universe. A universe name has the form z\u\n, where z is
the name of the main program and n is the current universe's ordinal number (n =
1,2,...).

universe counter :
The current universe's ordinal number.

universe stack :
A stack of universe names used to save and restore prior universes in accordance with
the changes of environment in a Stage 3 VHDL hardware description.

universe variables :
The current universe's environment of statically and dynamically uniquely qualified
names. This is a list of entries of the form (SUQN, ordinal-number, ordinal-
stack), one for each distinct SUQN. The ordinal number denotes the most recently
created dynamic instance ofthat SUQN. The ordinal stack is a stack of this SUQN's
ordinal numbers, whose top element denotes the current dynamic instance of this
SUQN. This stack is used to save and restore prior dynamic instances of this SUQN in
accordance with the changes of environment in a Stage 3 VHDL hardware description.

mk-initial-universe(z)
= let uname = catenate(z,"\u",l) in

make-universe-data(uname,l,(uname),((z, 1,(1))))

make-universe-data(uname,ucounter,ustack,uvars)
= (uname,ucounter,ustack,uvars)

universe-name(v) = hd(v)

universe-counter(v) = second(v)

universe-stack(v) = third(v)

universe-vars(v) = fourth(v)

push-universe(v,z,suqn*)
= let ucounter = l+universe-counter(v) in

let uname = catenate(z,"\u",ucounter) in
let ustack = cons(uname,universe-stack(v)) in

make-universe-data
(uname,ucounter,ustack,push-universe-vars(suqn*, universe-vars(v)))

push-universe-vars(suqn* ,vars)
= (null(suqn*)—► vars,

let suqn = hd(suqn') in
let v = assoc(suqn,vars) in

(null(v)—► push-universe-vars(tl(suqn*),cons(init-var(suqn),vars)),
push-universe-vars(tI(suqn*),cons(push-var(v), vars))))

110

push-var(v)
= let n = next-var(second(v)) in

(hd(v),n,cons(n,third(v)))

next-var(n)
= (numberp(n)—► n+1,

(symbolp(n)—► mk-exp2(ADD ,n,l),
let m = third(n) in

(numberp(m)—► mk-exp2(ADD ,second(n),m+l),
mk-exp2(ADD ,second(n),mk-exp2(ADD ,m,l)))))

init-var(suqn) = (suqn,l,(l))

pop-universe(v)(suqn*)
= let ustack = tl(universe-stack(v)) in

let uname = hd(ustack) in
make-universe-data

(uname,universe-counter(v),ustack,
pop-universe- vars(suqn*)(universe-vars(v)))

pop-universe-vars(suqn* ,vars)
= (null(suqn*)—► vars,

let suqn = hd(suqn*) in
let v = assoc(suqn,vars) in

pop-universe-vars(tl(suqn*),cons(pop-var(v),vars)))

pop-var(v) = (hd(v),second(v),tl(third(v)))

get-qualified-ids(suqn*)(v)
— (null(suqn*)—► e,

cons(qualined-id(hd(suqn*))(v),get-qualified-ids(tl(suqn*))(v)))

qualified-id(suqn)(v)
= let vars = universe-vars(v) in

let suqn-triple = assoc(suqn,vars) in
(suqn-triple
— let n = hd(third(suqn-triple)) in

name-qualified-id(suqn)(n),
name-qualified-id(suqn)(l))

name-qualified-id (suqn)(n)
= (new-declarations()^ (PLACELEMENT ,suqn,n),

(n = 1 —* suqn, catenate(suqn,"!",n)))

Currently, the only part of the universe structure that is actually used for dynamic name
qualification is the universe variables component. Each time a program unit that may
have a declarative part (packages, entities, architectures, processes, subprogram bodies) is
entered, the current universe is saved and an updated universe structure is created by push-
universe. The universe structure's counter (ordinal) is incremented by one, a corresponding
new universe name is created, and the old universe name is pushed onto the universe stack.
In the universe variables component of the universe structure, the triple for each SUQN
corresponding to each name declared in the unit's declarative part (except types) is updated:
the value of its ordinal is incremented by one and this new ordinal value is pushed onto the
ordinal stack of the SUQN's triple. Whenever any SUQN needs to be dynamically uniquely

111

qualified, the top element of its ordinal stack is used to find the index of the current dynamic
instance of that SUQN.

When such a program unit is exited, pop-universe restores the universe name by popping
it from the universe stack. The ordinal stack of the triple of the SUQN of each (non-type)
name declared in this unit is popped, restoring the current dynamic qualification of that
SUQN to a former value.

The functions get-qualified-ids, qualified-id, and name-qualified-id accomplish the
dynamic qualification of SUQNs relative to a universe structure.

8.2.3 Execution Stack

The elements of the execution stack are descriptors that contain information to control nor-

mal returns and exits from program units, as well as the undeclaration of objects, packages,
subprograms, and formal parameters.

There are several kinds of execution stack descriptors, and more detailed explanations of
their roles will be provided at the points in the semantics where they are used. For now, we
note that each descriptor has four components: an identifying tag; an identifier, identifier
sequence, or fully qualified name that associates the descriptor with some program unit; a
path that may replace the current path to effect a change of environment; and a function,
which may be a continuation or continuation transformer, that will effect a change of control
and environment corresponding to the descriptor's purpose.

stack bottom :

< *STKBOTTOM*, id, e, o

This descriptor is the execution stack "bottom marker," used to terminate model

execution and to prevent execution stack underflow. The identifier id is the name of
the Stage 3 VHDL design file.

package body exit :

< *PACKAGE-BODY-EXIT*, id, p, u >

This descriptor is pushed onto the execution stack just prior to the elaboration of
a package body. The identifier id is the package name, and u: Dc is a declaration
continuation that will continue execution (most likely elaboration) at the package
body's successor in the environment denoted by p.

subprogram return :

< *SUBPROGRAM-RETURN*, id, p, c >

This descriptor is pushed onto the execution stack after a subprogram (procedure
or function) is entered, but just before the elaboration of the subprogram's local
declarations. The identifier id is the subprogram name, and c: Sc is a continuation
that will continue execution at the successor of the subprogram call in the environment
denoted by p.

112

loop exit :
< *LOOP-EXIT*, id, p, c >

This descriptor is pushed onto the execution stack when a loop statement (LOOP,
WHILE, or FOR) is entered. The identifier id is the loop label, and c: Sc is a continuation
that will continue execution at the loop's successor in the environment denoted by p.

block exit :
< *BLOCK-EXIT*, id, p, c >

This descriptor is pushed onto the execution stack just before the elaboration of a FOR
loop's iteration parameter, which implicitly establishes a block scope. The identifier
id is the FOR loop label, and c: Sc is a continuation that will continue execution at
the FOR loop's successor statement in the environment denoted by p.

begin marker :
< *BEGIN*, id, p, c >

This descriptor is pushed onto the execution stack immediately after the local declara-
tions of a subprogram, or the iteration parameter of a FOR loop, have been elaborated.

undeclaration :
< *UNDECLARE*, id+, p, g >

This descriptor, pushed onto the execution stack when a subprogram is called, enables
the eventual explicit undeclaration (upon subprogram exit) of the subprogram's for-
mal parameters and other locally declared objects. The identifier list id+ names the
objects to be undeclared, and g: Sc —► Sc is a continuation transformer which, after
carrying out the explicit undeclaration specified in g (thereby popping this *UNDE-
CLARE* descriptor from the execution stack), continues execution by means of its
continuation argument.

113

8.3 Special Functions

Certain functions appearing in the semantic specification of Phase 2 translation are not
defined denotationally, for either of two reasons: (1) their denotational description is too
cumbersome or not well understood, or (2) they are used to construct SDVS-dependent
representations of expressions or formulas.

These functions, implemented directly in Common Lisp, are described below.

8.3.1 Operational Semantic Functions

To understand Phase 2 translation, it is important to recognize that in defining the seman-

tics of the VHDL simulation cycle, the VHDL translator involves a significant operational

component. This is to be distinguished from the semantics of sequential statements within
processes, which the translator defines in a primarily denotational manner.

We are referring here to our strategy, explained in Section 2, of designing aspects of a
simulator kernel into the Stage 3 VHDL translator. After application of the state deltas
specifying the behavior of one execution cycle for the active processes, the translator is
responsible for:

• determining the next VHDL clock time at which a driver becomes active or a process
resumes;

• advancing the SDVS state to this new time; and

• generating the state delta that specifies the next sequential statement in the first
resuming process for the new execution cycle.

After a given resuming process suspends, its continuation is the textually next resuming
process.

It is the internal translator machinery to perform these tasks that is operationally defined
— much of it embodied in a portion of the translator that is directly coded in Common Lisp,
rather than described by semantic equations. The names of the Common Lisp functions
serving this purpose are listed below.

make-vhdl-process-elaborate

make-vhdl-begin-model-execution

make- vhdl-try-resume- next-process

make-vhdl-process-suspend

find-signal-structure

name-driver

init-scalar-signal

114

init-array-signal-to

init-array-signal-downto

mk-element-waves-aux

get-loop-enum-param-vals

eval-expr

8.3.2 Constructing State Deltas

The construction of state deltas is specified via functions mk-sd(z)(pre, comod, mod,
post) and mk-sd-decl(z)(pre, comod, mod, post), which take five arguments: the
design file name z (if p is the current path, this is always hd(p)) and representations of
the precondition, comodification list, modification list, and postcondition of the state delta
to be constructed.

These functions are used to represent the construction of state deltas without specifying
their exact representation, which is SDVS-dependent and not given here. The pre- and
postconditions of a state delta are lists of formulas, each of which represents a formula
that is the logical conjunction of the formulas in this list. If the precondition and comod
list arguments of mk-sd and mk-sd-decl are €, then the precondition and comod list of
the constructed state delta are (TRUE) and (ALL), respectively. Otherwise, the given
arguments are used directly in the state delta. The postcondition may contain a state delta,
which is usually represented as a statement continuation applied to an execution stack.

mk-sd and mk-sd-decl are almost the same, the only difference being that a state delta
created by mk-sd-decl is given a special tag that identifies its association with declaration
elaboration rather than statement execution.

For technical reasons, the comod list of every state delta is (ALL) and the mod list of every
state delta must be nonempty. To ensure that a state delta's mod list is never empty, mk-
sd(z)(...) will always prefix z\pc to its mod list argument, where z\pc is a unique place
(represented by a system identifier) in which z is the name of the Stage 3 VHDL hardware
description being translated. This unique place is the name of a program counter whose
value implicitly changes when any state delta is applied. This program counter place does
not make any other kind of appearance in a translated Stage 3 VHDL hardware description.

The notation of state deltas requires that certain symbols sometimes be prefixed to uniquely
qualified names: the dot (.) and pound (#) symbols. The functions dot and pound,
applied to uniquely qualified names, accomplish this.

dot(placename) = (DOT ,placename)

pound(placename) = (POUND ,placename)

Finally, the two functions fixed-characterized-sds and subst-vars are employed by the
Phase 2 semantics of procedure calls to implement the SDVS offline characterization mech-
anism [18, 19], which will be incorporated in Stage 3 VHDL.

115

8.3.3 Error Reporting

The few kinds of errors that can occur in Phase 2 are reported by the functions impl-error
and execution-error.

The function impl-error is used, for example, to report invalid arguments passed to the
low-level utility functions mk-scalar-rel, mk-expl, and mk-exp2, although this should
never occur.

The function execution-error is used to report execution errors such as an empty execution
stack, although again, such errors should never occur if Phase 1 has done its job.

116

8.4 Phase 2 Semantic Equations

This section constitutes the heart of the present report. It documents the semantic equations
and auxiliary semantic functions in terms of which Phase 2 of the Stage 3 VHDL translator
— state delta generation — is specified denotationaDy.

8.4.1 Stage 3 VHDL Design Files

(DF1) DF [DESIGN-FILE id pkg-decl* pkg-body* use-clause* ent-decl arch-body] (t)
= let po = %(e)(id) in

let idi = hd(tl(ent-decl)) in
let p! = %(p0)(idi) in
let v = mk-initial-universe(id)

and stk = (<*STKBOTTOM* ,id,e,e>) in
(mk-disjoint(id,(dot(id))),
mk-cover

(dot(id),(catenate(id,"\pc"),VHDLTIME ,VHDLTIME_PREVIOUS)),
mk-sca]ar-decl(VHDLTIME ,(TYPE VHDLTIME)),
mk-scalar-decl(VHDLTIME_PREVIOUS ,(TYPE VHDLTIME)),
mk-rel(vhdltime-type-desc(t))((EQ ,dot(VHDLTIME),mk-vhdltime(0)(0))),
mk-rel

(vhdltime-type-desc(t))
((EQ ,dot(VHDLTIME_PREVIOUS),mk-vhdltime(0)(0))),

mk-decl-sd(id)(e)(e)(e)(ui(v)(stk)))
where m = Av.stk.D [pkg-decl*] (t)(p0)(u2)(v)(stk)
where u2 = Av,stk.D [pkg-body* J (t)(p0)(u3)(v)(stk)
where u3 = Av,stk.D fuse-clause* | (t)(po)(u4)(v)(stk)
where u4 = Av.stk.EN [ent-decl] (t)(p0)(u5)(v)(stk)
where u5 = Av.stk.AR [arch-body] (t)(pi)(u6)(v)(stk)
where U6 = Av,stk.block-exit(v)(stk)

mk-disjoint(id,lst) = cons(ALLDISJOINT ,cons(id,lst))

mk-cover(id,lst) = cons(COVERING ,cons(id,lst))

mk-scalar-decl(placename,place-type) = (DECLARE .placename,place-type)

vhdltime-type-desc(t) = t((STANDARD))(VHDLTIME)

mk-rel(d)(op,ei ,e2)
= let tg = tag(d) in

(case tg
(*BOOL* ,*BIT* *INT* ,*REAL* ,*TIME* ,*VHDLTIME* ,*ENUMTYPE* ,*VOID* *POLY*
—► mk-scalar-rel(tg)((op,ei ,e2)),
♦SUBTYPE* — mk-scalar-rel(tag(base-type(d)))((op,ei ,e2)),
INT_TYPE -+ mk-scalar-rel(tag(parent-type(d)))((op>e1,e2)),
WAVE— (EQ ,ei,e2),
ARRAYTYPE
—» (is-bitvector-tdesc?(d)

—* (case op
EQ
—► (is-constant-bitvector?(ei)A is-constant-bitvector?(e2)

— (EQ ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)-> (EQ ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(ei)— (EQ ,cons(USCONC ,ei),e2),

117

(EQ ,e,,e2)),
NE
—► (is-constant-bitvector?(ei)A is-constant-bitvector?(e2)

— (NEQ ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)—► (NEQ ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(ei)--+ (NEQ ,cons(USCONC ,ei),e2),
(NEQ ,ei,e2)),

LT
- (EQ ,(BS ,1,1),

(is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
— (USLSS ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)-+ (USLSS ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(ei)-+ (USLSS ,cons(USCONC ,ei),e2),
(USLSS ,ei,e2))),

LE

- (EQ ,(BS ,1,1),
(is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
-+ (USLEQ ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)-+ (USLEQ ,e1,cons(USCONC ,e2)),
is-constant-bitvector?(ei)-> (USLEQ ,cons(USCONC ,ei),e2),
(USLEQ ,ei,e2))),

GT
-(EQ,(BS,1,1),

(is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
— (USGTR ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)-+ (USGTR ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(ei)— (USGTR ,cons(USCONC ,ei),e2),
(USGTR ,ei,ea))),

GE
- (EQ ,(BS ,1,1),

(is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
— (USGEQ ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)^ (USGEQ ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(ei)— (USGEQ ,cons(USCONC ,ei),e2),
(USGEQ ,ei,e2))),

OTHERWISE^ impl-error("Shouldn't happen!")),
is-string-tdesc?(d)
—> (case op

EQ
—► (is-constant-string?(ei)A is-constant-string?(e2)

-+ (EQ ,cons(ACONC ,ei),cons(ACONC ,e2)),
is-constant-string?(e2)—* (EQ ,ei,cons(ACONC ,e2)),
is-constant-string?(ei)—> (EQ ,cons(ACONC ,ei),e2),
(EQ ,e,,e,)),

NE
—► (is-constant-string?(ei)A is-constant-string?(e2)

— (NEQ ,cons(ACONC ,ei),cons(ACONC ,e2)),
is-constant-string?(e2)^ (NEQ ,ei,cons(ACONC ,e2)),
is-constant-string?(ei)— (NEQ ,cons(ACONC ,ei),e2),
(NEQ ,ei,e2)),

OTHERWISE -v impl-error("Shouldn't happen!")),
(case op

EQ
—► (dotted-expr-p(e2)—► (EQ ,ei,e2), impl-error("Shouldn't happen!")),
NE
— (dotted-expr-p(e2)-^ (NEQ ,ei,e2),

impl-error("Shouldn' t happen!")),

118

OTHERWISE — impl-error("Shouldn't happen!"))),
RECORDTYPE
—* (dotted-expr-p(e2)—► (EQ ,ei,e2), impl-error("Shouldn't happen!")),
OTHERWISE — impl-error("Shouldn't happen!"))

is-constant-bitvector?(expr*)
= null(expr*)

V (consp(expr')
A let expn = hd(expr*) in

consp(expri)A hd(expri)= BS)

is-constant-string?(expr*)
= null(expr*)

V (consp(expr*)
A let expri = hd(expr*) in

consp(expri)A hd(expri)= CHAR)

dotted-expr-p(expr) = consp(expr)A hd(expr) = DOT

mk-scalar-rel(type- tag) (relational-op, el, e2)
= (case type-tag

BOOL
—► (case relational-op

EQ —► mk-bool-eq(type-tag,el,e2),
NE — mk-bool-neq(type-tag,el,e2),
LT — (AND ,(EQ ,el,FALSE),(EQ ,e2,TRUE)),
LE — (IMPLIES ,el,e2),
GT — (AND ,(EQ ,el,TRUE),(EQ ,e2,FALSE)),
GE — (IMPLIES ,e2,el),
OTHERWISE
— impl-error

("Unrecognized Stage 3 VHDL BOOLEAN relational operator: "a"
relational-op)),

BIT
—► (case relational-op

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
LT — (EQ ,(USLSS ,el,e2),(BS ,1,1)),
LE — (EQ ,(USLEQ ,el,e2),(BS ,1,1)),
GT — (EQ ,(USGTR ,el,e2),(BS ,1,1)),
GE — (EQ ,(USGEQ ,el,e2),(BS ,1,1)),
OTHERWISE
—► impl-error

("Unrecognized Stage 3 VHDL BIT relational operator: ~a",
relational-op)),

(*INT* ,*TIME*)
— (case relational-op

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
LT— (LT ,el,e2),
LE— (LE ,el,e2),
GT— (GT ,el,e2),
GE— (GE ,el,e2),
OTHERWISE
— impl-error

("Unrecognized Stage 3 VHDL INTEGER relational operator: "a"

relational-op)),

119

VHDLTIME
—► (case relational-op

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
LT — (TIMELT ,el,e2),
LE — (TIMELE,el,e2),
GT — (TIMEGT ,el,e2),
GE— (TIMEGE,el,e2),
OTHERWISE
—♦ impl-error

("Unrecognized Stage 3 VHDL VHDLTIME relational operator: "a",
relational-op)),

♦REAL*
—<■ (case relational-op

EQ - (EQ ,el,e2),
NE - (NEQ ,el,e2),
(RLT ,RLE ,RGT ,RGE) — (relational-op,el,e2),
OTHERWISE
—► impl-error

("Unrecognized Stage 3 VHDL REAL relational operator: "a",
relational-op)),

♦ENUMTYPE*
—► (case relational-op

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
LT — (ELT ,el,e2),
LE — (ELE ,el,e2),
GT — (EGT ,el,e2),
GE — (EGE ,el,e2),
PRED — (EPRED ,el,e2),
SUCC — (ESUCC ,el,e2),
OTHERWISE
—► impl-error

("Unrecognized Stage 3 VHDL ENUMERATION relational operator: "a",
relational-op)),

VOID
—* (case relational-op

EQ - (EQ ,el,e2),
NE — (NEQ ,el,e2),
OTHERWISE
—► impl-error

("Unrecognized Stage 3 VHDL VOID relational operator: "a",
relational-op)),

POLY
—► (case relational-op

EQ — (EQ ,el,e2),
NE - (NEQ ,el,e2),
OTHERWISE
—► impl-error

("Unrecognized Stage 3 VHDL POLYMORPHIC relational operator: "a",
relational-op)),

OTHERWISE -► impl-error("Unsupported Stage 3 VHDL basic type "a.",type-tag))

mk-bool-eq(type-tag,el,e2)
= (type-tag = *BOOL*

—► (simple-term(el)
— (simple-term(e2)— (EQ ,el,e2), (EQ ,el,(COND ,e2,TRUE ,FALSE))),

120

simple-term(e2)-* (EQ ,e2,(COND ,el,TRUE ,FALSE)),
(COND ,el,e2,(NOT ,e2))),

(EQ ,el,e2))

mk-bool-neq(type-tag,el ,e2)
= (type-tag = *BOOL*

—► (simple-term(el)
— (simple-term(e2)-* (NEQ ,el,e2), (NEQ ,el,(COND ,e2,TRUE .FALSE))),
simple-term(e2)-> (NEQ ,e2,(COND .el.TRUE .FALSE)),
(COND ,el,e2,(NOT ,e2))),

(NEQ ,el,e2))

simple-term (term)
= let operators = (DOT POUND) in

-iconsp(term)V hd(term)£ operators

mk-vhdltime(global)(delta) = (VHDLTIME .global.delta)

block-exit(v)(stk)
= let <tg,qname,p,g> = hd(stk) in

(case tg
STKBOTTOM ->• model-execution-complete(qname),
UNDECLARE — g(Avv,s.block-exit(.w)(s))(v)(stk),
(*BLOCK-EXIT* ,*SUBPROGRAM-RETURN*) — g(v)(stk-pop(stk)),
(*BEGIN* ,*LOOP-EXIT* ,*PACKAGE-BODY-EXIT*) — block-exit(v)(stk-pop(stk)),
OTHERWISE
—► impl-error("Unknown execution stack descriptor with tag: ~a",tg))

model-execution-complete(id)
= (mk-sd(id)(£)(e)(e)(((VHDL_MODEL_EXECUTION_COMPLETE ,id))))

A Stage 3 VHDL design file has a name, and consists of some (possibly none) package
declarations, package bodies, and USE clauses, followed by an entity declaration and an
architecture body.

The semantics of the design file has as its sole semantic argument the TSE t constructed by
Phase 1. The design file name id denotes a special place, whose value .id is itself a place
that will represent, at any given point during the translation, the current universe of visible
places. This name is available to most of the Phase 2 semantic functions as the first edge
label in the current path.

Translation of a design file commences by generating some top-level assertions and decla-
rations for the SDVS Simplifier:

• A disjointness assertion, required for technical reasons.

The function mk-disjoint(place-list) generates an SDVS assertion stating that the
places in place-list are mutually disjoint.

• A covering assertion that the initial universe of visible places .id consists of certain
predefined places: the program counter place id\pc as well as the places vhdltime
and vhdltime_previous.

121

The function mk-cover(place, place-list)2 generates an SDVS covering assertion
that place covers all the places in place-list and that all of the places in place-list
are mutually disjoint.

• Declarations of the places vhdltime and vhdltime_previous. The function mk-
scalar-decl(placename,place-type) (make scalar declaration) generates an SDVS
declaration of a scalar-value place of the indicated type.

• Assertions that the places vhdltime and vhdltime_previous have as their initial
value the time object vhdltime(0,0) of the Simplifier VHDL Time domain.

The function mk-rel(type-desc)(relation,accessed-place,expression) (make re-
lation) constructs an SDVS typed relation that asserts that the value of a place at
pre- or postcondition time stands in a certain relation to the value of an expression.

Then a state delta that defines the execution of the hardware description is generated. The
application of this state delta leads to further usable state deltas, whose generation in the
absence of errors is accomplished by continuations. With respect to the TSE t, an initial

path consisting of the design file's name, an initial universe, and an initial execution stack
containing a *STKBOTTOM* descriptor to terminate model execution (see Section 8.2),
these state deltas symbolically elaborate the design file's package declarations, package
bodies, USE clauses, entity declaration, and architecture body.

8.4.2 Entity Declarations

(ENl) EN I ENTITY id decl* decl* opt-id phasel-hook] (t)(p)(u)(v)(stk)
= let pi = %(p)(id) in

D[declJ](t)(pi)(ui)(v)(stk)
where ui = Av1)Stkj.D [decl*] (t)(pi)(u)(v)(stk)

Phase 2 translation of an entity declaration effects the elaboration, via semantic function
D, first of its port declarations, and then of any other declarations local to the entity. The
interphase abstract syntax tree transformation has arranged for the Phase 2 abstract syntax
of port declarations to be identical to that for other objects of class SIGNAL.

8.4.3 Architecture Bodies

(AR1) AR I ARCHITECTURE idi id2 decl* con-stat* opt-id | (t)(p)(u)(v)(stk)
= let pi = %(p)(idi) in

D[decr](t)(p,)(ui)(v)(stk)
where
U] = Avi,stki.

CS I con-stat*] (t)(pi)(ua)(v,)(stk,)
where
U2 = Av2,stk2.

The function mk-cover has in some instances been superseded by mk-cover-already; it implements
an experimental new naming scheme for VHDL variables. The scheme is available only when the SDVS
function new-declarations is defined to return non-NIL. In SDVS Version 12, this new scheme is not
available, so we will not discuss the actions of this function here.

122

cons((VHDL_MODEL_ELABORATION_COMPLETE,hd(p)),
(mk-sd

(hd(p))(£)(s)(e)
((make-vhdl-begin-model-execution

(hd(p))(u)(t)(v2)(stk2)))))

Phase 2 translation of an architecture body first effects the elaboration, via semantic func-
tion D, of the architecture's local declarations, and then initiates the translation, via se-
mantic function CS, of its concurrent statements (which have been uniformly converted to
PROCESS statements by the interphase abstract syntax tree transformation at the end of
Phase 1; see Section 7). The continuation of concurrent statement elaboration returns a
Simplifier assertion to the effect that the VHDL model's elaboration is complete, as well
as a state delta, constructed by special function make-vhdl-begin-model-execution, that
initiates symbolic execution of the model.

8.4.4 Declarations

(DO) D |[e J (t)(p)(u)(v)(stk) - u(v)(stk)

(Dl) D I decl decl* 1 (t)(p)(u)(v)(stk)
= D[decl](t)(p)(u1)(v)(stk)

where m = AvljStki.D ffdecl* 1 (t)(p)(u)(vi)(stki)

(D2) D I pkg-decl pkg-decl*] (t)(p)(u)(v)(stk)
= D [pkg-decl](t)(p)(u,)(v)(stk)

where u, = Av^stki.D [[pkg-decl*] (t)(p)(u)(v,)(stki)

(D3) D I pkg-body pkg-body*] (t)(p)(n)(v)(stk)
= D [pkg-body](t)(p)(iu)(v)(stk)

where ui = Avi.stki.D [[pkg-body*] (t)(p)(u)(vi)(stki)

(D4) D [use-clause use-clause*] (t)(p)(u)(v)(stk)
= DI use-clause] (t)(p)(m)(v)(stk)

where m = Avi.stki.D fuse-clause*] (t)(p)(u)(vi)(stk1)

The Phase 2 processing of declarations proceeds sequentially, from first to last.

(D5) D [DEC object-class id+ type-mark opt-expr 1 (t)(p)(u)(v)(stk)
= let d = lookup-desc(type-mark)(t)(p) in

(case tag(d)
(*BOOL* ,*BIT* ,*INT* ,*REAL* ,*TIME* ,*ENUMTYPE* ,*SUBTYPE* ,*INT_TYPE*)
-+ gen-scalar-decl

(decl)(object-class)(id+)(d)(opt-expr)(t)(p)(u)(v)(stk),
ARRAYTYPE
—► gen-array-decl

(decl)(object-class)(id+)(d)(direction(d))(real-lb(d))
(real-ub(d))(elty(d))(opt-expr)(t)(p)(u)(v)(stk),

RECORDTYPE
—► gen-record-decl

(decl)(object-class)(id+)(d)(opt-expr)(t)(p)(u)(v)(stk),
OTHERWISE - u(v)(stk))

123

(D6) D [SLCDEC object-class id+ slice-name opt-expr] (t)(p)(u)(v)(stk)
= let d = lookup(t)(p)(hd(id+)) in

let anon-array-type-desc = second(type(d)) in
gen-array-decl

(decl)(object-class)(id+)(anon-array-type-desc)
(direction(anon-array-type-desc))(lb(anon-array-type-desc))
(ub(anon-array-type-desc))(elty(anon-array-type-desc))(opt-expr)(t)(p)
(u)(v)(stk)

lookup-desc(id*)(t)(p)
= (null(id*)-+ void-type-desc(t),

let q = access(rest(id*))(t)(p) in
lookup-desc-on-path(t)(q)(last(id*)))

lookup-desc-on-path(t)(p)(id)
= let d = t(p)(id) in

(d = »UNBOUND* — lookup-desc-on-path(t)(rest(p))(id), d)

access(id*)(t)(p)
= (null(id*)— p,

let d = lookup(t)(p)(hd(id*)) in
access(tl(id*))(t)(%(path(d))(idf(d))))

gen-scalar-decl(decl)(object-class)(id+)(d)(expr)(t)(p)(u)(v)(stk)
= (null(expr)

—► gen-scalar-decl-id+(decl)(object-class)(id+)(d)(expr)(t)(p)(u)(v)(stk),
gen-scalar-decl-id*(decl)(object-class)(id+)(d)(expr)(t)(p)(u)(v)(stk))

gen-scalar-decl-id+(decl)(object-class)(id+)(d)(expr)(t)(p)(u)(v)(stk)
= (object-class = SIG

—> gen-scalar-signal-decl-id+(decl)(id+)(d)(expr)(t)(p)(u)(v)(stk),
gen-scalar-nonsignal-decl-id+(decl)(id+)(d)(expr)(t)(p)(u)(v)(stk))

gen-scalar-decl-id*(decl)(object-class)(id*)(d)(expr)(t)(p)(u)(v)(stk)
= (null(id*) — u(v,stk),

let id+ = (hd(id*)) in
gen-scalar-decl-id+(decl)(object-class)(id+)(d)(expr)(t)(p)(ui)(v)(stk)

where
ui = Avi ,stki.

gen-scalar-decl-id *
(decl)(object-class)(tl(id*))(d)(expr)(t)(p)(u)(v1)(stki))

gen-scalar-nonsignal-decl-id-(-(decl)(id+)(d)(expr)(t)(p)(u)(v)(stk)
= RIexpr](t)(p)(k)(v)(stk)

where
k = A(e,f),vi,stki.

let z = hd(p)
and suqn+ = get-qids(id+)(t)(p) in

let v2 = push-universe(vi)(z)(suqn+) in
let duqn+ = get-qualified-ids(suqn+)(v2) in

(mk-decl-sd
(z)(f)(*)((z))
(nconc

(mk-qual-id-coverings(suqn+)(duqn+)(z)(v)(t)
mk-scalar-nonsignal-dec-post

(decl)((duqn+,e,d))(t)(p)(u)(v2)(stk))))

124

get-qids(id*)(t)(p)
= (nnU(id*)— £, cons(qid(t(p)(hd(id*))),get-qids(tl(id*))(t)(p)))

get-qualified-ids(suqn*)(v)
= (null(suqn*)—► e,

cons(qualified-id(hd(suqn*))(v),get-qualified-ids(tl(suqn*))(v)))

qualified-id(suqn)(v)
= let vars = universe-vars(v) in

let suqn-triple = assoc(suqn,vars) in

(suqn-triple
—* let n = hd(third(suqn-triple)) in

name-qualified-id(suqn)(n),

name-qualified-id(suqn)(l))

name-qualified-id (suqn)(n)
= (new-declarations()-^ (PLACELEMENT ,suqn,n),

(n = 1 —«■ suqn, catenate(suqn,"!",n)))

already-qualified-id(suqn)(v) = ->null(assoc(suqn,universe-vars(v)))

qualified-id-decls(suqn*)

= (null(suqn*)—► e,
let suqn = hd(suqn') in

cons((DECLARE ,suqn,(TYPE ,PLACEARRAY)),qualified-id-decls(tl(suqn*))))

mk-qual-id-coverings(suqn+)(duqn+)(z)(v)(t)

= (new-declarations()
—► (already-qualified-id(hd(suqn+))(v)

—> (mk-rel(univint-type-desc(t))((EQ ,pound(z),dot(z)))),

nconc
((mk-disjoint(z,cons(dot(z),suqn+)),

mk-cover(pound(z),cons(dot(z),suqn+))),qualified-id-decls(suqn+))),
(mk-disjoint(z,cons(dot(z),duqn+)),mk-cover(pound(z),cons(dot(z),duqn+))))

mk-scalar-nonsignal-dec-post(decl)(duqn*,e,d)(t)(p)(u)(v)(stk)

= let type-spec = mk-type-spec(d)(t)(p) in

(null(e)
—<• nconc

(mk-scalar-nonsignal-dec-post-declare(duqn*)(type-spec),

u(v)(stk)),
nconc

(mk-scalar-nonsignal-dec-post-declare(duqn*)(type-spec),

ui(v)(stk))
where
ui = Avi,stki.

(mk-decl-sd
(hd(p))(£)(£)(duqn*)

(nconc
(mk-scalar-nonsignal-dec-post-init(duqn*)(e)(d),

u(vi)(stk,)))))

mk-type-spec(d)(t)(p)

= (case tag(d)
BOOL — (TYPE BOOLEAN) ,
BIT — (TYPE BIT) ,
(*INT* ,*INT_TYPE* ,*TIME*) — (TYPE INTEGER) ,

125

♦REAL* -* (TYPE FLOAT) ,
VHDLTIME - (TYPE VHDLTIME) ,
♦ENUMTYPE*
-+ (idf(d)= CHARACTER - (TYPE CHARACTER) ,

cons(TYPE ,cons(ENUMERATION ,literals(d)))),
»SUBTYPE* — mk-type-spec(base-type(d))(t)(p),
VOID — (TYPE VOID) ,
POLY — (TYPE POLYMORPHIC) ,
RECORDTYPE — cons(TYPE ,cons(RECORD ,record-to-type(components(d))(t)(p))),
ARRAYTYPE
—+ let expri = lb(d) in

R[expr,](t)(p)(k,)(e)(e)
where
ki = A(ei,fi),vj,stki.

let expr2 = ub(d) in
RIexpr2l(t)(p)(k2)(v1)(stk1)
where
k2 = A(e2,f2),V2,stk2.

cons(TYPE ,
(ARRAY ,ei,e2,mk-type-spec(elty(d))(t)(p))),

WAVE — (TYPE .WAVEFORM ,mk-type-spec(hd(type(d)))(t)(p)),
OTHERWISE-> impl-error("Unrecognized Stage 3 VHDL type: ~a",tag(d)))

record-to-type(record-components)(t)(p)
= (null(record-components)—* e,

let (id,d) = hd(record-components) in
cons((id,mk-type-spec(d)(t)(p)),
record- to- type(tl(record-components))(t)(p)))

mk-scalar-nonsignal-dec-post-declare(duqn*) (type-spec)
= (null(duqn*)—► e,

let duqn = hd(duqn') in
cons(mk-scalar-decl(duqn, type-spec),
mk-scalar-nonsignal-dec-post-declare(tl(duqn*))(type-spec)))

mk-scalar-decl(placename,place-type) = (DECLARE ,placename,place-type)

mk-scalar-nonsignal-dec-post-init(duqn*)(e)(d)
= (null(duqn*)—► e,

let duqn = hd(duqn') in
nconc

(assign(d)((duqn,e)),mk-scalar-nonsignal-dec-post-init(tl(duqn*))(e)(d)))

assign(d)(target, value)
= (case tag(d)

(*BOOL* ,*BIT* ,*INT* ,*REAL* ,*TIME* ,*VHDLTIME* ,*ENUMTYPE* ,*WAVE* ,
VOID ,*POLY*)

—» (mk-rel(d)((EQ ,pound(target),value))),
»SUBTYPE* — assign(base-type(d))((target,value)),
INT_TYPE — assign(parent-type(d))((target,value)),
ARRAYTYPE
—► (is-bitvector-tdesc?(d)

—► (is-constant-bitvector?(value)
—► (case direction(d)

TO
—► assign-array-to

(target)(value)(elty(d))((ORIGIN ,target))(0),

126

DOWNTO
—► assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,
mk-exP2(ADD ,(ORIGIN .target),(RANGE ,target)),l))(0),

OTHERWISE— impl-error("Illegal direction: "a".direction
(d))),

(mk-rel(d)((EQ ,pound(target),value)))),
is-string-tdesc?(d)
—► (is-constant-string?(value)

—* (case direction(d)
TO
—► assign-array-to

(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—► assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,
mk-exp2(ADD .(ORIGIN .target),(RANGE ,target)).l))(0),

OTHERWISE-» impl-error("Illegal direction: "a".direction
(d))),

(mk-rel(d)((EQ .pound(target),value)))),
(dotted-expr-p(value)—► (mk-rel(d)((EQ .pound(target),value))),
(case direction(d)

TO — assign-array-to(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—► assign-array-downto

(target)(value) (elty(d))
(mk-exp2

(SUB ,mk-exp2(ADD .(ORIGIN .target),(RANGE .target)),

1))(0),
OTHERWISE — impl-error("Illegal direction: ~a",direction(d))))),

RECORDTYPE
—» (dotted-expr-p(value)—<• assign-record(d)((target,value)),

assign-record-fields(components(d))((target, value))),
OTHERWISE —impl-error("Unrecognized Stage 3 VHDL type tag: ~a",tag(d)))

is-constant-bitvector?(expr*)
= null(expr*)

V (consp(expr*)
A let expri = hd(expr*) in

consp(expri)A hd(expri)= BS)

is-constant-string?(expr*)
= null(expr*)

V (consp(expr')
A let. expri =hd(expr*) in

consp(expri)A hd(expri)= CHAR)

dotted-expr-p(expr) = consp(expr)A hd(expr)= DOT

assign-array-to(target)(aggregate)(element-type-desc)(start-index)(m)
= (null(aggregate)— e,

nconc
(assign

127

(element-type-desc)
(((ELEMENT ,target,mk-exp2(ADD ,start-index,m)),hd(aggregate))),

assign-array-to
(target) (tl(aggregate))(element-type-desc)(start-index)(m+l)))

assign-array-downto(target)(aggregate)(element-type-desc)(start-index)(m)
= (null(aggregate)^ e,

nconc
(assign

(element-type-desc)
(((ELEMENT ,target,mk-exp2(SUB ,start-index,m)),hd(aggregate))),

assign-array-downto

(target) (tl(aggregate))(element-type-desc)(start-index)(m+l)))

mk-exp2(binary-op,el,e2)
= (case binary-op

AND — (AND ,el,e2),
NAND — (NAND ,el,e2),
OR — (OR ,el,e2),
NOR — (NOR ,el,e2),
XOR— (XOR,el,e2),
BAND — (USAND ,el,e2),
BNAND — (USNAND ,el,e2),
BOR — (USOR ,el,e2),
BNOR — (USNOR ,el,e2),
BXOR — (USXOR ,el,e2),
ADD — (PLUS ,el,e2),
SUB — (MINUS ,el,e2),
MUL — (MULT ,el,e2),
DIV - (DIV ,el,e2),
MOD — (MOD ,el,e2),
REM — (REM ,el,e2),
EXP - (EXPT ,el,e2),
(RPLUS ,RMINUS ,RTIMES ,RDIV ,REXPT) — (binary-op,el,e2),
CONCAT — (ACONC ,el,e2),
OTHERWISE
— impl-error("Unrecognized Stage 3 VHDL binary operator: "a",binary-op))

assign-record (d)(target-record,dotted-source-record)
= cons(mk-rel(d)((EQ ,pound(target-record),dotted-source-record)),

assign-record-aux
(components(d)) ((target-record,second (dotted-source-record))))

assign-record-aux(comp*)(target-record,source-record-name)
= (null(comp*)—► £,

let (id,d) — hd(comp*) in
nconc

(assign

(d)
((mk-recelt(target-record,id),dot(mk-recelt(source-record-name,id)))),

assign-record-aux(tl(comp*))((target-record,source-record-name))))

assign-record-fields(comp*)(target-record,source-fields)
= (null(comp*)—► e,

let (id,d) = hd(comp') in
nconc

(assign(d)((mk-recelt(target-record,id),second(assoc(id,source-fields)))),
assign-record-fields(tl(comp*))((target-record,source-fields))))

128

mk-recelt(e)(id) = (RECORD ,e,id)

gen-scalar-signal-decl-id+(decl)(id+)(d)(expr)(t)(p)(u)(v)(stk)
= R[[expr](t)(p)(k)(v)(stk)

where
k = A(e,f),vi,stki.

let z = hd(p)
and signal-suqn+ = get-qids(id+)(t)(p) in

let driver-suqn+ = name-drivers(signal-suqn+) in
let suqn+ = append(signal-suqn+ ,driver-suqn+) in

let V2 = push-universe(vi)(z)(suqn+) in
let signal-duqn+ = get-qualified-ids(signal-suqn+)(v2)

and driver-duqn+ = get-qualified-ids(driver-suqn+)(v2) in
let duqn+ = append(signal-duqn+,driver-duqn+) in

(mk-decl-sd
(z)(f)(e)((z))
(nconc

(mk-qual-id-coverings(suqn+)(duqn+)(z)(v)(t),
mk-scalar-signal-dec-post

(decl)((duqn+ ,signal-duqn+ ,driver-duqn+ ,e,d))(t)(p)(u)
(v2)(stk))))

name-drivers(signal-names)
= (null(signal-names)—♦ e,

cons(name-driver(hd(signal-names)),name-drivers(tl(signal-names))))

mk-scalar-signal-dec-post(decl)(duqn*,signal-duqn*,driver-duqn*,e,d)(t)(p)(u)(v)(stk)
= let sigtype-spec = mk-sigtype-spec(d)(t)(p)

and waveform-type-spec = (TYPE .WAVEFORM ,mk-type-spec(d)(t)(p)) in
nconc

(mk-scalar-signal-dec-post-declare
(signal-duqn*)(driver-duqn*)(sigtype-spec)(waveform-type-spec),

ui(v)(stk))
where
uj = Avi,stki.

(mk-decl-sd
(hd(p))(e)(£)(duqn*)
(nconc

(mk-scalar-signal-dec-post-init
(signal-duqn*)(driver-duqn*)(e)(d)(waveform-type-desc(d)),

u(Vl)(stkO)))

mk-scalar-signal-dec-post-declare(signal-duqn*)(driver-duqn*)(sigtype-spec) (waveform-type-spec)
= (null(signal-duqn*)—► e,

let signal-duqn = hd(signal-duqn*)
and driver-duqn = hd(driver-duqn') in

nconc
(mk-scalar-signal-decl

((signal-duqn,driver-duqn))((sigtype-spec, waveform-type-spec)),
mk-scalar-signal-dec-post-declare

(tl(signal-duqn*))(tl(driver-duqn*))(sigtype-spec)(waveform-type-spec)))

mk-scalar-signal-decl(signal-name,driver-name)(sigtype-spec, waveform-type-spec)
= (mk-scalar-decl(signal-name,sigtype-spec),

mk-scalar-decl(driver-name, waveform-type-spec))

129

mk-scalar-signal-fn-decl (signal-name, driver-name)
= (DECLARE ,signal-name,(TYPE ,FN ,(VAL ,dot(driver-name),dot(VHDLTIME))))

waveform-type-desc(type-desc) = <WAVEFORM ,e *WAVE* .(STANDARD) ,tt,type-desc>

mk-scalar-signal-dec-post-init(signal-duqn*)(driver-duqn*)(e)(type-desc)(waveform-type-desc)
= (null(signal-duqn*)—♦ e,

let signal-duqn = hd(signal-duqn*)
and driver-duqn = hd(driver-duqn*) in

let initial-signal-val = (null(e)—» eval-expr(dot(signal-duqn)), e) in
let initial-waveform = init-scalar-signal

(signal-duqn) (driver-duqn) (type-desc)
(initial-signal-val) in

nconc
(assign(waveform-type-desc) ((driver-duqn,initial-waveform)),
mk-scalar-signal-dec-post-init

(tl(signal-duqn*))(tl(driver-duqn*))(e)(type-desc)(waveform-type-desc)))

gen-array-decl(decl)

(object-class) (id+)(type-desc) (direction) (lower-bound)(upper-bound)(element-type-desc)(expr)
(t)(p)(u)(v)(stk)

= (null(expr)
—► gen-array-decl-id+

(decl)(object-class)(id+)(type-desc)(direction)(lower-bound)(upper-bound)
(element-type-desc)(expr)(t)(p)(u)(v)(stk),

gen-array-decl-id*
(decl)(object-class)(id+)(type-desc)(direction)(lower-bound)(upper-bound)
(element-type-desc)(expr)(t)(p)(u)(v)(stk))

real-lb(d)
= let bound = lb(d) in

(is-num-lit?(bound)—► bound,
(REF ,((SREF ,path(d),mk-tick-low(idf(d))))))

real-ub(d)
= (path(d)= (STANDARD) A idf(d)e (STRING BIT_VECTOR) — e,

let bound = ub(d) in
(is-num-lit?(bound)—► bound,
(REF ,((SREF ,path(d),mk-tick-high(idf(d)))))))

mk-tick-low(id) = catenate(id,"'LOW")

mk-tick-high(id) = catenate(id,"'HIGH")

gen-array-decl-id-)-(decl)
(object-class)(id+)(type-desc)(direction)(lower-bound)(upper-bound)(element-type-desc)(expr)
(t)(p)(u)(v)(stk)

= (object-class = SIG
—► gen-array-signal-decl-id-f

(decl)(id+)(type-desc)(direction)(lower-bound)(upper-bound)
(element-type-desc)(expr)(t)(p)(u)(v)(stk),

gen-array-nonsignal-decl-id-l-
(decl)(id+) (direction) (lower-bound)(upper-bound)(element-type-desc)(expr)
(t)(p)(u)(v)(stk))

130

gen-array-decl-id*(decl)
(object-class) (id*)(type-desc)(direction)(lower-bound)(upper-bound)(element-type-desc)(expr)

(t)(p)(n)(v)(stk)
= (null(id*)^ u(v,stk),

let id+ = (hd(id*)) in
gen- array-decl-id+

(decl) (object-class) (id+)(type-desc)(direction)(lower-bound)(upper-bound)

(element-type-desc)(expr)(t)(p)(ui)(v)(stk)

where
ui = Avi ,stki.

gen-array-decl-id*
(decl)(object-class)(tl(id*))(type-desc)(direction)(lower-bound)

(upper-bound)(element-type-desc)(expr)(t)(p)(u)(vi)(stki))

gen-array-nonsignal-decl-id-f (decl)
(id+) (direction) (expn) (expr2) (element- ty pe-desc) (expr)

(t)(p)(u)(v)(8tk)
= R[expr](t)(p)(k)(v)(stk)

where

k = A(e,f),vi,stki.
R|[expr1l(t)(p)(k1)(v1)(stk1)

where

ki = A(e1,fi),v2,stk2.
Rjexpr2J(t)(p)(k2)(v2)(stk2)

where

k2 = A(e2,f2),V3,stk3.
let z = hd(p)

and len = length-expr(expr)
and suqn+ = get-qids(id+)(t)(p) in

let v4 = push-universe(v3)(z)(suqn+) in
let duqn+ = get-qualified-ids(suqn+)(v4) in

let g! = (ei A e2

—► mk-rel
(univint-type-desc(t))
((LE ,e1)e2)),

TRUE)

and g2 = (ei A e2

—► mk-rel
(univint-type-desc(t))

((GE,
mk-exp2

(ADD ,mk-exp2(SUB ,e2)ei),

l),len)),
TRUE) in

(mk-decl-sd

to
(nconc

(fi,Mgi).
(len = 0-f, nconc((g2),f))))(e)((z))

(nconc
(mk-qual-id-coverings

(suqn+)(duqn+)(z)(v)(t),
mk-array-nonsignal-dec-post

(decl)
((duqn+,e,direction,ei,e2,element-type-desc))

(t)(p)(u)(v4)(stk3))))

131

length-expr(expr)

= (null(expr)—» 0,

hd(expr)e (BITSTR STR PAGGR) — length(second(expr)),

1)

mk-array-nonsignal-dec-post(decl)

(duqn*,e, direction, lower-bound, upper-bound, element-type-desc)
(t)(p)(u)(v)(stk)

= let element-type-spec = mk-type-spec(element-type-desc)(t)(p) in
(null(e)

—► nconc

(mk-array-nonsignal-dec-post-declare

(duqn*)(direction)(lower-bound)(upper-bound) (element-type-spec),
u(v)(stk)),

nconc

(mk-array-nonsignal-dec-post-declare

(duqn*)(direction)(lower-bound)(upper-bound)(element-type-spec),
ui(v)(stk))

where

ui = Avi,stki.

(mk-decl-sd

(hd(p))(e)(e)(duqn*)
(nconc

((direction = TO

—♦ mk-array-nonsignal-dec-post-init-to
(duqn*)(e)(element-type-desc)(lower-bound),

mk-array-nonsignal-dec-post-init-downto
(duqn*)(e) (element-type-desc)(upper-bound)),

u(v1)(stk1)))))

mk-array-nonsignal-dec-post-declare(duqn*)(direction)(lower-bound)(upper-bound) (element-type-spec)
= (null(duqn')—<• e,

let duqn = hd(duqn') in

nconc
(mk-vhdl-array-decl

(duqn)(direction)(lower-bound)
((null(upper-bound)

— (lower-bound = 1 —► (RANGE ,duqn),

mk-exp2(SUB ,mk-exp2(ADD ,(RANGE ,duqn),lower-bound),l)),
upper-bound)) (element-type-spec),

mk-array-nonsignal-dec-post-declare

(tl(duqn*))(direction)(lower-bound)(upper-bound)(element-type-spec)))

mk-vhdl-array-decl(id)(direction)(lower-bound) (upper-bound) (element-type-spec)
= (case second(element-type-spec)

BIT

—♦ (mk-array-decl(id)(lower-bound)(upper-bound)(element-type-spec),
mk-bitvec-fn-decl(id)(direction)(lower-bound)(upper-bound)),

CHARACTER

—► (mk-array-decl(id)(lower-bound)(upper-bound)(element-type-spec),
mk-string-fn-decl(id)(direction)(lower-bound)(upper-bound)),

OTHERWISE

— (mk-array-decl(id)(lower-bound)(upper-bound)(element-type-spec)))

mk-array-decl(id)(lower-bound)(upper-bound)(element-type-spec)
= (DECLARE ,id,(TYPE ,ARRAY ,lower-bound,upper-bound,element-type-spec))

132

mk-bitvec-fn-decl(bitvec-name)(direction)(lower-bound)(upper-bound)
= let bitvec-elt-names = (direction = TO

—* mk-slice-elt-names-to
(bitvec-name)(lower-bound) (upper-bound),

mk-slice-elt-names-downto
(bitvec-name)(lower-bound)(upper-bound)) in

(DECLARE ,bitvec-name,(TYPE ,FN ,concatenate-bits(bitvec-elt-names)))

mk-string-fn-decl(string-name)(direction)(lower-bound)(upper-bound)
= let string-elt-names = (direction = TO

—► mk-slice-elt-names-to
(string-name) (lower-bound) (upper-bound),

mk-slice-elt-names-downto
(string-name)(lower-bound)(upper-bound)) in

(DECLARE ,string-name,(TYPE ,FN ,concatenate-characters(string-elt-names)))

mk-slice-elt-names-to(slice-name) (lower-bound) (upper-bound)
= (lower-bound > upper-bound —► e,

cons(mk-array-elt(slice-name)(lower-bound),
mk-slice-elt-names-to(slice-name)(lower-bound+l)(upper-bound)))

mk-slice-elt-names-downto(slice-name) (lower-bound) (upper-bound)
= (upper-bound < lower-bound —* e,

cons(mk-array-elt(slice-name)(upper-bound), .
mk-slice-elt-names-downto(slice-name) (lower-bound) (upper-bound—1)))

mk-array-elt(id)(e) = (ELEMENT ,id,e)

concatenate-bits(bit-names) = cons(USCONC ,mk-dotted-names(bit-names))

concatenate-characters(char-names) = cons(ACONC ,mk-dotted-names(char-names))

mk-dotted-names(names)
= (null(names)—* e, cons(dot(hd(names)),mk-dotted-names(tl(names))))

mk-array-nonsignal-dec-post-init-to(duqn*)(e)(element-type-desc)(lower-bound)
= (null(duqn*)—► e,

nconc
(assign-array-to(hd(duqn*))(e)(element-type-desc)(lower-bound)(0),
mk-array-nonsignal-dec-post-init-to

(tl(duqn*)) (e) (element- type-desc) (lower-bound)))

mk-array-nonsignal-dec-post-init-downto(duqn*)(e)(element-type-desc)(upper-bound)
= (null(duqn*)—► e,

nconc
(assign-array-downto(hd(duqn*))(e)(element-type-desc) (upper-bound) (0),
mk-array-nonsignal-dec-post-init-downto

(tl(duqn*))(e)(element-type-desc)(upper-bound)))

gen-array-signal-decl-id-l-(decl)
(id+) (type-desc) (direction) (expn) (expr2) (element-ty pe-desc) (expr)
(t)(p)(u)(v)(stk)

= R I expr 1 (t)(p)(k)(v)(stk)
where
k = A(e,f),vi,stki.

RIexpr1l(t)(p)(k1)(vi)(stk1)

133

where

ki = A(ei,fi),V2,stk2.
RIexpr2](t)(p)(k2)(v2)(stk2)
where

k2 = A(e2,f2),v3,stk3.
let z = hd(p)

and len = length-expr(expr)

and signal-suqn+ = get-qids(id+)(t)(p) in
let driver-suqn+ = name-drivers(signal-suqn+) in
let suqn+ = append(signal-suqn+ ,driver-suqn+) in

let v4 = push-universe(v3)(z)(suqn+) in
let signal-duqn+ = get-qualified-ids

(signal-suqn+)(v4)
and driver-duqn+ = get-qualified-ids

(driver-suqn+)(v4) in
let duqn+ = append

(signal-duqn+ ,driver-duqn+) in
let gi = (ei A e2

—> mk-rel

(univint-type-desc(t))
((LE,ei,e2)),

TRUE)

and g2 = (ei A e2

—► mk-rel

(univint-type-desc(t))
((GE,

mk-exp2

(ADD ,

mk-exp2(SUB ,e2,ei),l),len)),
TRUE) in

(mk-decl-sd

to
(nconc

(fl,f2,(gl),
(len = 0 ^ f, nconc(f,(g2)))))(£)((z))

(nconc

(mk-qual-id-coverings
(suqn+)(duqn+)(z)(v)(t),

mk-array-signal-dec-post
(decl)

((duqn+ ,signal-duqn+ ,driver-duqn+ ,e,type-desc,direction,
ei,e2,element-type-desc))(t)(p)(u)

(V4)(stk3))))

mk-array-signal-dec-post(decl)

(duqn*,signal-duqn*,driver-duqn*,e,type-desc,

direction,lower-bound,upper-bound,element-type-desc)
(t)(p)(u)(v)(stk)

= let element-sigtype-spec = mk-sigtype-spec(element-type-desc)(t)(p)

and element-waveform-type-spec = mk-waveform-type-spec

(mk-type-spec(element-type-desc)(t)(p)) in
nconc

(mk-array-signal-dec-post-declare

(signal-duqn*)(driver-duqn*)(direction)(lower-bound)(upper-bound)
(element-sigtype-spec)(element-waveform-type-spec)(tt)(t)(p)(v)(stk),

ui(v)(stk))
where

134

ui = Avi.stki.
(mk-decl-sd

(hd(p))(e)(e)(duqn')
(nconc

(mk-array-signal-dec-post-init
(signal-duqn*)(driver-duqn*)(e)(type-desc)(direction)
(lower-bound)(upper-bound)(element-type-desc)
(waveform-type-desc(element-type-desc))(t)(p)(v)(stk),

u(vO(stki))))

mk-waveform-type-spec(type-spec)
= (case second(type-spec)

ARRAY -* append(rest(type-spec),(mk-waveform-type-spec(last(type-spec)))),
OTHERWISE -> (TYPE ,WAVEFORM ,type-spec))

mk-array-signal-dec-post-declare(signal-duqn*)(driver-duqn*)(direction)(lower-bound)(upper-bound)
(element-sigtype-spec)(element-waveform-type-spec)(fn-decls?)

(t)(p)(v)(stk)
= (null(signal-duqn*)—► e,

let signal-duqn = hd(signal-duqn*)
and driver-duqn = hd(driver-duqn*) in

nconc
(mk-array-sign al-decl

(signal-duqn)(driver-duqn)(direction)(lower-bound)(upper-bound)
(element-sigtype-spec)(element-waveform-type-spec)(fn-decls?)(t)(p)(v)
(stk),

mk-array-signal-dec-post-declare
(tl(signal-duqn*))(tl(driver-duqn*))(direction)(lower-bound)
(upper-bound)(element-sigtype-spec)(element-waveform-type-spec)
(fn-decls?)(t)(p)(v)(stk)))

mk-array-signal-decl(signal-name)(driver-name)(direction)(lower-bound)(upper-bound)
(element-sigtype-spec)(element-waveform-type-spec) (fn-decls?)
(t)(p)(v)(stk)

= nconc
(mk-vhdl-sigarray-decl

(signal-name)(direction)(lower-bound)
((null(upper-bound)

—► (lower-bound = 1 —► (RANGE .signal-name),
mk-exp2(SUB ,mk-exp2(ADD ,(RANGE ,signal-name),lower-bound),l)),

upper-bound))(element-sigtype-spec) (fn-decls?),
(mk-array-decl

(driver-name)(lower-bound)
((null(upper-bound)

—> (lower-bound = 1 —> (RANGE ,driver-name),
mk-exp2(SUB ,mk-exp2(ADD ,(RANGE ,driver-name),lower-bound),l)),

upper-bound))(element-waveform-type-spec)))

mk-array-signal-elt-fn-decls(signal-duqn)(driver-duqn)(element-type-desc)(lower-bound)(upper-bound)

(t)(p)(v)(stk)
= (is-array-tdesc?(element-type-desc)

—► let signal-elts = mk-slice-elt-names-to
(signal-duqn)(lower-bound)(upper-bound)

and driver-elts = mk-slice-elt-names-to
(driver-duqn)(lower-bound)(upper-bound) in

let expri = real-lb(element-type-desc) in
RIexpr,] (t)(p)(kO(v)(stk)

135

where
ki = A(ei ,fi),vi,stki.

let expr2 = real-ub(element-type-desc) in
RIexpr2](t)(p)(k2)(vi)(stk,)
where
k2 = A(e2,f2),V2,stk2.

mk-array-signal-elt-fn-decls-aux
(signal-el ts)(driver-elts)(elty(element-type-desc))
(e1)(e2)(t)(p)(v2)(stk2),

let scalar-signal-elts = mk-slice-elt-names-to
(signal-duqn) (lower-bound) (upper-bound)

and scalar-driver-elts = mk-slice-elt-names-to
(driver-duqn)(lower-bound)(upper-bound) in

mk-scalar-signal-fn-decls(scalar-signal-elts,scalar-driver-elts))

mk-array-signal-elt-fn-decls-aux(signal-duqn*)(driver-duqn*)
(element-type-desc)(lower-bound) (upper-bound)
(t)(p)(v)(stk)

= (null(signal-duqn')—► e,
let signal-duqn = hd(signal-duqn')

and driver-duqn = hd(driver-duqn') in
nconc

(mk-array-signal-elt-fn-decls
(signal-duqn)(driver-duqn)(element-type-desc)(lower-bound)(upper-bound)
(t)(p)(v)(stk),

mk-array-signal-elt-fn-decls-aux
(tl(signal-duqn*))(tl(driver-duqn*))(element-type-desc)(lower-bound)
(upper-bound)(t)(p)(v)(stk)))

mk-scalar-signal-fn-decls(signal-names,driver-names)
= (null(signal-names)—<■ e,

cons(mk-scalar-signal-fn-decl(hd(signal-names),hd(driver-names)),
mk-scalar-signal-fn-decls(tl(signal-names),tl(driver-names))))

mk-array-signal-dec-post-init(signal-duqn*)(driver-duqn*)(e)
(type-desc)(direction)(lower-bound)(upper-bound)
(element-type-desc) (element-waveform-type-desc)
(t)(p)(v)(stk)

= (direction = TO
—>■ mk-array-signal-dec-post-init-to

(signal-duqn*)(driver-duqn*)(e)(type-desc)(lower-bound)(upper-bound)
(element-type-desc) (element-waveform-type-desc)(t)(p)(v)(stk),

mk-array-signal-dec-post-init-downto
(signal-duqn*) (driver-duqn*)(e) (type-desc) (lower-bound)(upper-bound)
(element- type-desc)(element- waveform- type-desc) (t)(p)(v)(stk))

mk-array-signal-dec-post-init-to(signal-duqn')(driver-duqn*)(e)
(type-desc)(lower-bound)(upper-bound)
(element-type-desc)(element-waveform-type-desc)
(t)(p)(v)(stk)

= (is-array-tdesc? (element-type-desc)
—> let expri = real-lb(element-type-desc) in

R[expr1](t)(p)(ki)(v)(stk)
where
ki = A(ei,f1),vi,stki.

let expr2 = real-ub(element-type-desc) in
R[expr2l(t)(p)(k2)(v1)(stk1)

136

where
k2 = A(e2,f2),v2,stk2.

mk-array-signal-dec-post-init-elt-arrays-to
(signal-duqn*)(driver-duqn*)(e)(type-desc)
(lower-bound) (upper-bound)(element-type-desc)
(direction(element-type-desc))(ei)(e2)(t)(p)(v2)(stk2),

mk-array-signal-dec-post-init-elt-scalars-to
(signal-duqn*)(driver-duqn*)(e)(type-desc)(lower-bound)(upper-bound)
(element-type-desc) (element-waveform-type-desc)(t)(p)(v)(stk))

mk-array-signal-dec-post-init-downto(signal-duqn*)(driver-duqn*)(e)
(type-desc) (lower-bound) (upper-bound)
(element-type-desc)(element-waveform-type-desc)
(t)(p)(v)(stk)

= (is-array-tdesc?(element-type-desc)
—> let expri = real-lb(element-type-desc) in

R[expri](t)(p)(ki)(v)(Btk)
where
ki = A(e1,fi),vi,stki.

let expT2 = real-ub(element-type-desc) in
R[expr2](t)(p)(k2)(vi)(8tk,)
where
k2 = A(e2,f2),v2,stk2.

mk-array-signal-dec-post-init-elt-arrays-downto
(signal-duqn*)(driver-duqn*)(e)(type-desc)
(lower-bound) (upper-bound) (element-type-desc)
(direction(element-type-desc))(ei)(e2)(t)(p)(v2)(stk2),

mk-array-signal-dec-post-init-elt-scalars-downto
(signal-duqn*)(driver-duqn*)(e)(type-desc)(lower-bound)(upper-bound)
(element-type-desc) (element-waveform-type-desc)(t)(p)(v)(stk))

mk-array-signal-dec-post-init-elt-arrays-to(signal-duqn*)(driver-duqn*)(e)
(type-desc) (lower-bound) (upper-bound)
(elt-type-desc)(elt-direction)(elt-lower-bound)(elt-upper-bound)
(t)(p)(v)(stk)

= (null(signal-duqn*)—<■ e,
let signal-duqn = hd(signal-duqn')

and driver-duqn = hd(driver-duqn*) in
nconc

(let signal-elts = mk-slice-elt-names-to
(signal-duqn)(lower-bound)(upper-bound)

and driver-elts = mk-slice-elt-names-to
(driver-duqn)(lower-bound)(upper-bound) in

mk-array-signal-dec-post-init-aux
(signal-elts)(driver-elts)(e)(elt-type-desc)(elt-direction)
(elt-lower-bound)(elt-upper-bound)(elty(elt-type-desc))
(waveibrm-type-desc(elty(elt-type-desc)))(t)(p)(v)(stk),

mk-array-signal-dec-post-init-elt-arrays-to
(tl(signal-duqn*))(tl(driver-duqn*))(tl(e))(type-desc)(lower-bound)
(upper-bound)(elt-type-desc)(elt-direction)(elt-lower-bound)
(elt-upper-bound)(t)(p)(v)(stk)))

mk-array-signal-dec-post-init-elt-arrays-downto(signal-duqn*)(driver-duqn*)(e)
(type-desc)(lower-bound)(upper-bound)
(elt-type-desc) (elt-direction) (elt-lower-bound) (elt-upper-bound)
(t)(p)(v)(stk)

= (null(signal-duqn*)—' e,

137

let signal-duqn = hd(signal-duqn")
and driver-duqn = hd(driver-duqn*) in

nconc
(let signal-elts = mk-slice-elt-names-downto

(signal-duqn)(lower-bound)(upper-bound)
and driver-elts = mk-slice-elt-names-downto

(driver-duqn)(lower-bound)(upper-bound) in
mk-array-signal-dec-post-init-aux

(signal-elts) (driver-elts) (e) (elt-type-desc) (elt-direction)
(elt-lower-bound)(elt-upper-bound)(elty (elt-type-desc))
(waveform-type-desc(elty(elt-type-desc)))(t)(p)(v)(stk),

mk-array-signal-dec-post-init-elt-arrays-downto
(tl(signal-duqn*))(tl(driver-duqn*))(tl(e))(type-desc)(lower-bound)
(upper-bound) (elt-type-desc) (elt-direction) (elt-lower-bound)
(elt-upper-bound)(t)(p)(v)(stk)))

mk-array-signal-dec-post-init-aux(signal-duqn*)(driver-duqn*)(e)
(type-desc)(direction)(lower-bound) (upper-bound)
(element-type-desc)(element-waveform-type-desc)
(t)(p)(v)(stk)

= (null(signal-duqn*)—<■ e,
let signal-duqn = hd(signal-duqn')

and driver-duqn = hd(driver-duqn') in
nconc

(mk-array-signal-dec-post-init
((signal-duqn)) ((driver-duqn)) (hd(e))(type-desc) (direction)
(lower-bound) (upper-bound)(element-type-desc)(element-waveform-type-desc)
(t)(p)(v)(stk),

mk-array-signal-dec-post-init-aux
(tl(signal-duqn*))(tl(driver-duqn*))(tl(e))(type-desc)(direction)
(lower-bound)(upper-bound)(element-type-desc)(element-waveform-type-desc)
(t)(p)(v)(stk)))

mk-array-signal-dec-post-init-elt-scalars-to(signal-duqn*)(driver-duqn*)(e)
(type-desc) (lower-bound) (upper-bound)
(element-type-desc) (element- waveform- type-desc)
(t)(p)(v)(stk)

= (null(signal-duqn')—► e,
let signal-duqn = hd(signal-duqn*)

and driver-duqn = hd(driver-duqn') in
let initial-waveforms = init-array-signal-to

(signal-duqn)(driver-duqn)(e)(type-desc)
(element-type-desc)(lower-bound)(upper-bound) in

nconc
(assign-array-to

(driver-duqn) (initial- waveforms)(element- waveform- type-desc)
(lower-bound)(0),

mk-array-signal-dec-post-init-elt-scalars-to
(tl(signal-duqn*))(tl(driver-duqn*))(e)(type-desc)(lower-bound)
(upper-bound)(element-type-desc)(element-waveform-type-desc)(t)(p)(v)
(stk)))

mk-array-signal-dec-post-init-elt-scalars-downto(signal-duqn*)(driver-duqn*)(e)
(type-desc)(lower-bound)(upper-bound)
(element-type-desc) (element-waveform-type-desc)
(t)(p)(v)(stk)

= (null(signal-duqn*)—► e,

138

let signal-duqn = hd(signaJ-duqn*)
and driver-duqn = hd(driver-duqn*) in

let initial-waveforms = init-array-signal-downto
(signal-duqn)(driver-duqn)(e)(type-desc)
(element-type-desc)(lower-bound)(upper-bound) in

nconc
(assign-array-downto

(driver-duqn)(initial-waveforms)(element-waveform-type-desc)
(upper-bound)(0),

mk-array-signal-dec-post-init-elt-scalars-downto
(U(signal-duqn*))(tl(driver-duqn*))(e)(type-desc)(lower-bound)
(upper-bound)(element-type-desc)(element-waveform-type-desc)(t)(p)(v)

(stk)))

(D7) D I ETDEC id id+] (t)(p)(u)(v)(stk)
= (mk-decl-sd

(hd(p))(e)(£)(e)
(nconc(mk-etdec-post((id))(t)(p),u(v)(stk))))

mk-etdec-post(type-mark)(t)(p)
= let d = lookup-desc(type-mark)(t)(p) in

mk-enumlit-rels(d)(literals(d))

mk-enumlit-rels(d)(id*)
= (nuU(tl(id*))—e,

let idi =hd(id*)
andid2 = hd(tl(id*)) in

cons(mk-rel(d)((PRED ,id1,id2)),mk-enumlit-rels(d)(tl(id*))))

The translation of an enumeration type declaration emits an SDVS declaration of the enu-
meration type.

(D8) D [ATDEC id discrete-range type-mark] (t)(p)(u)(v)(stk)
= let (direction,expn ,expr2) = discrete-range in

let lower-bound = (direction = TO —► expn, expr2)
and upper-bound = (direction = TO —► expr2, expri) in

attributes-low-high
((id,lower-bound,upper-bound,(UNIVERSAL_INTEGER)))(t)(p)(u)(v)(stk)

attributes-low-high(id,lower-bound,upper-bound,attribute-type-mark)(t)(p)(u)(v)(stk)
= let dech = (DEC ,SYSGEN ,(mk-tick-low(id)),attribute-type-mark,lower-bound)

and decl2 = (DEC .SYSGEN ,(mk-tick-high(id)),attribute-type-mark,upper-bound) in
let decl+ = (decli ,decl2) in

D [decl+] (t)(p)(u)(v)(stk)

mk-tick-low(id) = catenate(id,"'LOW")

mk-tick-high(id) = catenate(id,"'HIGH")

An array type declaration declares and initializes the 'low and 'high array type attributes.

(D9) D [PACKAGE id decl* opt-id J (t)(p)(u)(v)(stk)
= Dldecl*](t)(%(p)(id))(u)(v)(stk)

139

The declarations contained within a package are translated as usual, but in the package's
context in the TSE, via the extended path %(p)(id).

(D10) D [PACKAGEBODY id decl* opt-id] (t)(p)(u)(v)(stk)
= let pb-exit-desc = <*PACKAGE-BODY-EXIT* ,id,p,Av,s.u(v)(s)> in

D [decl*] (t)(%(p)(id))(ui)(v)(stk-push(pb-exit-desc)(stk))
where ui = Avi,stk].pkg-body-exit(vi)(stki)

pkg-body-exit(v)(stk)
= let <tg,qname,p,g> = hd(stk) in

(case tg
STKBOTTOM —> model-execution-complete(qname),
UNDECLARE — g(Avv,s.pkg-body-exit(vv)(s))(v)(stk),
(*BEGIN*) — pkg-body-exit(v)(stk-pop(stk)),
(*PACKAGE-BODY-EXIT* ,*LOOP-EXIT* ,*SUBPROGRAM-RETURN*) — g(v)(stk-pop(stk)),
OTHERWISE
—> impl-error("Unknown execution stack descriptor with tag: ~a",tg))

The declarations contained in a package body are translated in the package's context in
the TSE, via the extended path %(p)(id). A *PACKAGE-BODY-EXIT* descriptor
is first pushed onto the execution stack to prevent the package's declarations from being
unelaborated when the package body is exited.

(Dll) D [PROCEDURE id proc-par-spec*] (t)(p)(u)(v)(stk) = u(v)(stk)

(D12) D [FUNCTION id func-par-spec* type-mark 1 (t)(p)(u)(v)(stk) = u(v)(stk)

(D13) D [SUBPROGBODY subprog-spec decl* seq-stat* opt-id 1 (t)(p)(u)(v)(stk)
= u(v)(stk)

Subprogram declarations need no Phase 2 translation, nor do subprogram bodies.

(D14) D I USE dotted-name+ 1 (t)(p)(u)(v)(stk) = u(v)(stk)

The effect of USE clauses has already been recorded in the TSE during Phase 1; no further
Phase 2 translation is necessary.

(D15) D I STDEC id type-mark opt-discrete-range J (t)(p)(u)(v)(stk)
= let z = hd(p)

and subtype-desc = lookup-desc-on-path(t)(p)(id) in
let basetype-desc = base-type(subtype-desc) in

let expri = type-tick-low(basetype-desc)
and expr2 = type-tick-low(subtype-desc)
and expr3 = type-tick-high(subtype-desc)
and expr4 = type-tick-high(basetype-desc) in

R[expri J(t)(p)(kO(v)(stk)
where
ki = A(ei,f1),vi,stki.

RIexpr2l(t)(p)(k2)(v1)(stk1)
where
k2 = A(e2,f2),V2,stk2.

RIexpr3l(t)(p)(k3)(v2)(stk2)
where

140

k3 = A(e3,f3),V3,stk3.
R[expr4l(t)(p)(k4)(v3)(stk3)

where
k4 = A(e4,f4),v4,stk4.

(mk-decl-sd

to
(nconc

((ei
—i- (mk-rel

(basetype-desc)
((LE ,e1)e2))),

*).
(e4

—► (mk-rel
(basetype-desc)
((LE ,e3,e4))),

)))(«)()
(Ul(v4)(stk4)))

where
ui = Av5,stk5.

attributes-low-high
((id,expr2,expr3,

(idf(basetype-desc))))(t)(p)(u)
(v5)(stks)

The Phase 2 semantics of subtype declarations generates a state delta with guards in the
precondition to ensure that the subtype range falls within the range of allowable values
for the subtype's base type. Assuming this holds, the continuation in the state delta's
postcondition performs the Phase 2 processing of declarations and initializations for the
'low and 'high attributes representing the subtype bounds.

(D16) D IITDEC id discrete-range] (t)(p)(n)(v)(stk)
= let z = hd(p)

and integer-type-desc = lookup-desc-on-path(t)(p)(id) in
let expri = type-tick-low(integer-type-desc)

and expr2 = type-tick-high(integer-type-desc) in
attributes-low-high

((id,expn ,expr2,(UNIVERSAL-INTEGER)))(t)(p)(u)(v)(stk)

The Phase 2 semantics of integer type declarations simply processes declarations and ini-
tializations for the 'low and 'high attributes representing the integer type bounds.

8.4.5 Concurrent Statements

(CSO) CS[e] (t)(p)(u)(v)(stk) = u(v)(stk)

(CSl) CS | con-stat con-stat* 1 (t)(p)(u)(v)(stk)
= CS I con-stat 1 (t)(p)(ui)(v)(stk)

where m = Av,stk.CS I con-stat* 1 (t)(p)(u)(v)(stk)

A list of concurrent statements is translated in order, from first to last.

141

(CS2) CS [PROCESS id deel* seq-stat* opt-id phasel-hook] (t)(p)(u)(v)(stk)
= let pi = %(p)(id) in

(mk-decl-sd

(hd(p))(e)(e)(«)
((make-vhdl-process-elaborate(id)(t)(pi)(seq-stat*)(m)(v)(stk))))

where m = Av,stk.D [deel*] (t)(Pl)(u)(v)(stk)

8.4.6 Sequential Statements

(SSO) SS [e] (t)(p)(c)(v)(stk) = c(v)(stk)

(551) SS I seq-stat seq-stat*] (t)(p)(c)(v)(stk)
= SS I seq-stat] (t)(p)(Cl)(v)(stk)

where ci = Av,stk.SS (seq-stat*] (t)(p)(c)(v)(stk)

A list of sequential statements is translated in order, from first to last.

(552) SS I NULL atmark] (t)(p)(c)(v)(stk)
= ((EQ ,pound(catenate(hd(p),"\pc")),atmark),

mk-sd(hd(p))(£)(e)(e)(c(v)(stk)))

NULL statements have no effect.

(553) SS [VARASSN atmark ref expr] (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let d = T I ref J (t)(p) in
E[refJ(t)(p)(ki)(v)(stk)
where
ki = A(ei,fi),v,stk.

RIexpr](t)(p)(k2)(v)(stk)
where
k2 = A(e2,f2),v,stk.

let precondition = nconc(fi,f2) in
(mk-sd

(hd(p))(precondition)(e)((ei))
(nconc

(assign(d)((ei,e2)),
c(v)(stk)))))

assign(d)(target, value)
= (case tag(d)

(*BOOL* ,*BIT* ,*INT* ,*REAL* ,*TIME* ,*VHDLTIME* ,*ENUMTYPE* ,*WAVE*
♦VOID* ,*POLY*)

—► (mk-rel(d)((EQ ,pound(target),value))),
♦SUBTYPE* — assign(base-type(d))((target,value)),
INT_TYPE -> assign(parent-type(d))((target,value)),
ARRAYTYPE
—* (is-bitvector-tdesc?(d)

—<■ (is-constant-bitvector?(value)
—» (case direction(d)

TO
—>• assign-array-to

142

(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—► assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,
mk-exp2(ADD .(ORIGIN .target),(RANGE ,target)), 1))(0),

OTHERWISE — impl-error("Illegal direction: "a",direction
(d))),

(mk-rel(d)((EQ ,pound(target),value)))),
is-string-tdesc?(d)
—► (is-constant-string?(value)

—+ (case direction(d)
TO
—► assign-array-to

(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—* assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,
mk-exp2(ADD .(ORIGIN .target),(RANGE .target)),1))(0),

OTHERWISE—impl-error("Illegal direction: ~a",direction
(d))),

(mk-rel(d)((EQ ,pound(target),value)))),
(dotted-expr-p(value)-»- (mk-rel(d)((EQ .pound(target),value))),
(case direction(d)

TO — assign-array-to(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—► assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,mk-exp2(ADD .(ORIGIN .target),(RANGE .target)),

1))(0),
OTHERWISE — impl-error("Illegal direction: ~a",direction(d))))),

RECORDTYPE
—► (dotted-expr-p(value)— assign-record(d)((target,value)),

assign-record-fields(components(d))((target,value))),
OTHERWISE —impl-error("Unrecognized Stage 3 VHDL type tag: ~a",tag(d)))

The translation of a variable assignment statement first translates its left and right parts,
obtaining translated expressions and guard formulas. Note that the left part is translated
by E and is therefore not dereferenced (by application of the dot function), as it would be if
R were used instead. The precondition of the generated state delta consists of the combined
lists of guard formulas, and its mod list is the translated left part. Its postcondition asserts
the new value of the left part place, and then asserts succeeding state deltas by appropriately
using the continuation c. Assignments in Stage 3 VHDL can be scalar or can assign entire
arrays. Entire array assignments are asserted element by element via auxiliary semantic
function array-signal-assignment.

(SS4) SS I SIGASSN atmark delay-type ref waveform 1 (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let d = TJref]](t)(p) in
(case tag(d)

143

(*BOOL* *BIT* ,*INT* ,*REAL* ,*TIME* ,*ENUMTYPE* ,*SUBTYPE*
INT_TYPE)

—► scalar-signal-assignment
(seq-stat)(delay-type)(ref)(waveform)(d)(t)(p)(c)(v)(stk),

♦ARRAYTYPE*
—► array-signal-assignment

(atmark)(delay-type)(ref)(waveform)(t)(p)(c)(v)(stk),
OTHERWISE
—► impl-error

("Signal assignment not implemented for object ",ref,
" of type ",d)))

scalar-signal-assignment(seq-stat)(delay-type)(ref)(waveform)(d)(t)(p)(c)(v)(stk)
= E|[refl(t)(p)(k)(v)(stk)

where

k = A(signal-name, guard), v,stk.

let driver-name = name-driver(signal-name) in
W | waveform J (t)(p)(wave-cont)(v)(stk)
where
wave-cont = A(trans*,guard*),v,stk.

let all-guards = nconc(guard,guard*) in
(delay-type = TRANSPORT

—► (mk-sd
(hd(p))(all-guards)(e) ((driver-name))
(nconc

(assign
(waveform-type-desc(d))
((driver-name,

mk-transport-update
(dot(driver-name))(trans*))),

c(v)(stk)))),
let earliest-new-transaction = hd(trans') in

(mk-sd
(hd(p))
(cons(mk-preemption

(dot(driver-name))
(earliest-new-transaction),all-guards)) (e) ((driver-name))

(nconc
(assign

(waveform-type-desc(d))
((driver-name,

mk-inertial-update
(dot(driver-name))(trans*))),

c(v)(stk))),
mk-sd

(hd(p))
(cons(mk-not

(mk-preemption
(dot(driver-name))
(earliest-new-transaction)),

all-guards))(e)((driver-name))
(nconc

(assign
(waveform-type-desc(d))
((driver-name,

mk-inertial-update
(dot(driver-name))(trans*))),

c(v)(stk)))))

144

waveform-type-desc(type-desc) = <WAVEFORM ,£,*WAVE* ,(STANDARD) ,tt,type-desc>

mk-transport-update(dot-driver)(trans*)
= cons(TRANSPORT_UPDATE ,cons(dot-driver,trans*))

mk-preemption(dot-driver)(transaction)
= (PREEMPTION ,dot-driver,transaction)

mk-inertial-update(dot-driver)(trans*)
= cons(INERTIAL_UPDATE ,cons(dot-driver,trans*))

mk-not(e) = (NOT ,e)

array-signal-assignment(atmark)(delay-type)(ref)(waveform)(t)(p)(c)(v)(stk)
= let seq-stat+ = cascade-array-signal-assignment

(atmark)(delay-type)(ref)(waveform)(t)(p)(c)(v)(stk) in
SS [seq-stat+] (t)(p)(c)(v)(stk)

cascade-array-signal-assignment(atmark)(delay-type)(ref)(agg-wave)(t)(p)(c)(v)(stk)
= let array-refs = mk-array-refs(ref)(t)(p)(c)(v)(stk)

and element-waves = mk-element-waves(agg-wave)(t)(p)(c)(v)(stk) in
mk-scalar-signal-assignments(atmark)(delay-type)(array-refs)(element-waves)

mk-scalar-signal-assignments(atmark)(delay-type)(array-refs)(element-waves)

= (null(array-refs)—► e,
cons((SIGASSN ,atmark,delay-type,hd(array-refs),hd(element-waves)),
mk-scalar-signal-assignments

(atmark)(delay-type)(tl(array-refs))(tl(element-waves))))

mk-array-refs(ref)(t)(p)(c)(v)(stk)
= let d = T I[ref]](t)(p) in

let direction = direction(d)
and expri = lb(d)
and expr2 = ub(d) in

Rjexpr,] (t)(p)(ki)(v)(stk)
where
ki = A(ei,fi),vi,stki.

R[expr2](t)(P)(k2)(v1)(stk1)
where
k2 = A(e2,f2),V2,stk2.

let sref = hd(second(ref))
and indices = (direction = TO

—► gen-ascending-indices(ei)(e2),
gen-descending-indices(ei)(e2)) in

mk-array-refs-aux(sref) (indices)

gen-ascending-indices(min)(max)
= (min > max —► e, cons(min,gen-ascending-indices(min+l)(max)))

gen-descending-indices(min)(max)
= (max < min —«■ e, cons(max,gen-descending-indices(min)(max—1)))

mk-array-refs-aux(sref)(indices)
= (null(indices)—> e,

cons((REF ,(sref,(INDEX ,(NUM ,hd(indices))))),
mk-array-refs-aux(sref) (tl(indices))))

145

mk-element-waves(agg-wave)(t)(p)(c)(v)(stk)
= let aggregate-transactions = second (agg-wave) in

let element-transaction-lists = mk-element-transaction-lists
(aggregate-transactions)(t)(p)(c)(v)(stk) in

mk-element-waves-aux(element-transaction-lists)

mk-element-transaction-lists(aggregate-transactions)(t)(p)(c)(v)(stk)
= (null(aggregate-transactions)—► e,

cons(mk-transaction-list(hd(aggregate-transactions))(t)(p)(c)(v)(stk),
mk-element-transaction-lists(tl(aggregate-transactions))(t)(p)(c)(v)(stk)))

mk-transaction-list(agg-trans)(t)(p)(c)(v)(stk)
= let agg-value-expr = second(agg-trans)

and time-expr = third(agg-trans) in
let element-value-exprs = (case hd(agg-value-expr)

REF

-► mk-array-refs(agg-value-expr)(t)(p)(c)(v)(stk),
(BITSTR ,STR ,PAGGR) - hd(tl(agg-value-expr)),
OTHERWISE
—► impl-error

("Illegal aggregate in transaction: ",
agg-value-expr)) in

mk-simultaneous-transactions(element-value-exprs)(time-expr)

mk-simultaneous-transactions(expr*)(time-expr)
= (null(expr*)—► e,

cons((TRANS ,hd(expr*),time-expr),
mk-simultaneous-transactions(tl(expr*))(time-expr)))

(SS5) SS I IF atmark cond-part+ else-part J (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let seq-stat* = else-part in
gen-if(cond-part+)(seq-stat*)(seq-stat)(t)(p)(c)(v)(stk))

gen-if(cond-part*)(seq-stat*)(ifclause)(t)(p)(c)(v)(stk)
= (null(cond-part*)^ SS [seq-stat*] (t)(p)(c)(v)(stk),

let (expr,seq-stat*) = hd(cond-part*) in
RIexpr](t)(p)(k)(v)(stk)
where
k = A(e,f),vi,stki.

(mk-sd
(hd(p))(cons(e,f))(e)(e)
(let c, = Av2,stk2.SS [[seq-stat*] (t)(p)(c)(v2)(stk2) in

ci(vi)(stki)),
mk-sd

(hd(p))(cons(mk-not(e),f))(e)(e)
(let C2 = Av3,stk3.

gen-if

(tl(cond-part*))(seq-stat*)(e)(t)(p)(c)(v3)(stk3) in
c2(vi)(stk,))))

The abstract syntax of a Stage 3 VHDL IF statement consists of a finite, nonempty list of
cond-parts followed by a (possibly empty) else-part. Each cond-part corresponds to an
IF expr THEN seq-stats or an ELSIF expr THEN seq-stats construct in the concrete

146

syntax. Thus each cond-part must be translated into two state deltas: one for the case
where expr evaluates to true and the other where it evaluates to false. The translation is
performed by auxiliary semantic function gen-if, which takes as arguments (among others):
the cond-part list and the seq-stats comprising the else-part. Successive recursive calls
of gen-if process the first element of their cond-part list, reducing it to empty. When the
cond-part list is empty, gen-if produces the translation of the else-part. The function
mk-not constructs the logical negation of its argument.

(SS6) SS [CASE atmark expr case-alt+ J (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

Rjexprfl(t)(p)(k)(v)(stk)
where
k = A(e,f),v,stk.

let d = T I expr J (t)(p) in
gen-case(£)(d)((e,f))(case-alt+)(t)(p)(c)(v)(stk))

gen-case(g)(d)(e,f)(case-alt*)(t)(p)(c)(v)(stk)
= (null(case-alt*)—► e,

let (h,sd) = gen-alt(g)(d)((e,f))(hd(case-alt*))(t)(p)(c)(v)(stk) in
cons(sd,gen-case(append(g,h))(d)((e,f))(tl(case-alt*))(t)(p)(c)(v)(stk)))

gen-alt(g)(d)(e,f)(case-alt)(t)(p)(c)(v)(stk)
= let case-alt-tag = hd(case-alt) in

(case-alt-tag = CASEOTHERS
—► let seq-stat* = hd(tl(case-alt)) in

let ci = Avi,stki.SS [seq-stat*] (t)(p)(c)(vi)(stki) in

(«.
mk-sd

(hd(p))(append(f,(mk-not(mk-ors(g)))))(e)(e)
(ci(v)(stk))),

let (case-set,seq-stat*) = tl(case-alt) in
let ci = Avi.stki.SS [seq-stat*] (t)(p)(c)(vi)(stki) in

let h = append(f,gen-guard(case-set)(d)(e)(t)(p)) in
(h,mk-sd(hd(p))(h)(£)(£)(c1(v)(stk))))

mk-ors(disjs)
= (case length(disjs)

1 —► hd(disjs),
2 — mk-or(hd(disjs))(hd(tl(disjs))),
OTHERWISE — mk-or(hd(disjs))(mk-ors(tl(disjs))))

mk-or(el,e2)
= (null(el)— e2,

null(e2)-» el,
consp(el)A consp(e2)
— (hd(el)= OR

— (hd(e2)= OR -+ cons(OR ,append(tl(el),tl(e2))), append(el,(e2))),
hd(e2)= OR — nconc((OR ,el),tl(e2)),
(OR ,el,e2)),

(OR ,el,e2))

gen-guard(discrete-range*)(d)(e)(t)(p)
= (null(discrete-range*)—► e,

let (direction,expri ,expr2) = hd(discrete-range') in
Rlexpr,](t)(p)(ki)(6)(e)

147

where
ki = A(ei,fi),vi,stki.

(expri = expr2
— let h = nconc(fi,(mk-rel(d)((EQ ,e,ei)))) in

(null(tl(discrete-range*))—> h,
(cons(OR ,
cons(hd(h),gen-guard(tl(discrete-range*))(d)(e)(t)(p))))),

RIexpr2l(t)(p)(k2)(v1)(stk1)
where
k2 = A(e2,f2),V2,stk2.

let h = nconc
(h,h,
(direction = TO
— ((AND ,mk-rel(d)((GE ,e,ei)),

mk-rel(d)((LE ,e,e2)))),
((AND ,mk-rel(d)((LE .e.e,)),

mk-rel(d)((GE ,e,e2)))))) in
(cons(OR ,
cons(hd(h),
gen-guard(tl(discrete-range*))(d)(e)(t)(p))))))

The abstract syntax of a CASE statement consists of a selector expression followed by a
finite, nonempty list of case alternatives. Each case alternative consists of a list of sequential
statements, preceded either by a nonempty list of discrete ranges (indicated by CASECHOICE)
or (for the last alternative only) by CASEOTHERS. Each of these discrete range lists represents
a set of values, called a case selection set. If the selector expression evaluates to one of these
values, then the corresponding sequential statement list is executed, after which control
passes to the successor of the CASE statement. CASEOTHERS represents a case selection set
that is the complement of the union of all of the other case selection sets relative to the set
of values in the selector expression's type. Phase 1 has ensured that no case selection sets
intersect.

The Phase 2 translation of a CASE statement first processes its selector expression, obtaining
a translated expression and a guard formula. The translation is completed by the function
gen-case, which takes the following arguments:

• a formula, initially empty, that is the disjunction of formulas representing the case
selection sets of case alternatives translated so far in this CASE statement — this for-

mula's negation represents the case selection set indicated by CASEOTHERS (if present)
in the CASE statement;

• the basic type of the selector expression (and the case selection set elements);

• the selector expression's translation and guard formula; and

• a list of case alternatives.

Each successive recursive call to gen-case processes the first element of its case alternative
list, reducing the list to empty, at which time processing terminates normally. Each case
alternative is processed by auxiliary semantic function gen-alt, which returns a formula

148

representing the case selection set for that alternative and a state delta representing the
execution of the corresponding sequential statement list. This formula and state delta are
collected by gen-case; the final result returned by gen-case is a list of state deltas. The
function gen-guard converts discrete range lists into formulas representing case selection
sets. The function mk-or(formula!, formula2) constructs the logical disjunction of two
formulas; if one of the formulas is empty, then mk-or ignores it and returns the nonempty
one.

(SS7) SS [LOOP atmark id seq-stat* opt-id J (t)(p)(c)(v)(stk)
= let lp-desc = <*LOOP-EXIT* ,id,p,Av,s.c(v)(s)> in

let stki = stk-push(lp-desc)(stk) in
cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),
loop-infinite(seq-stat)(id)(seq-stat*)(t)(%(p)(id))(c)(v)(stki))

loop-infinite(seq-stat)(id)(seq-stat*)(t)(p)(c)(v)(stk)
= let ci = Av,stk.

SS I seq-stat* 1 (t)(p)(c2)(v)(stk)
where
C2 = Av,stk.

loop-infinite(seq-stat)(id)(seq-stat*)(t)(p)(c)(v)(stk) in
(mk-sd(hd(p))(e)(0(0(ci(v)(stk)))

(SS8) SS I WHILE atmark id expr seq-stat* opt-id 1 (t)(p)(c)(v)(stk)
= let lp-desc = <*LOOP-EXIT* ,id,p,Av,s.c(v)(s)> in

let stki = stk-push(lp-desc)(stk) in
cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),
loop-while(seq-stat)(id)(expr)(seq-stat*)(t)(%(p)(id))(c)(v)(stki))

loop-while(seq-stat)(id)(expr)(seq-stat*)(t)(p)(c)(v)(stk)
= R[exprJ(t)(p)(k)(v)(stk)

where
k = A(e,f),v,stk.

let ci = Av,stk.
SS I seq-stat* 1 (t)(p)(c2)(v)(stk)

where
c2 = Av,stk.

loop-while
(seq-stat)(id)(expr)(seq-stat*)(t)(p)(c)(v)
(stk) in

(mk-sd
(hd(p))(cons(e,f))(£)(e)(c1(v)(stk)),

mk-sd
(hd(p))(cons(mk-not(e),f))(e)(e)
(c(v)(stk-pop(stk))))

(SS9) SS [FOR atmark id ref discrete-range seq-stat* opt-id] (t)(p)(c)(v)(stk)
= let d = T [ref] (t)(p) in

let lp-desc = <*LOOP-EXIT* ,id,p,
Av,s.c(v)(s)> in

let stko = stk-push(lp-desc)(stk) in
let (direction,expri ,expr2) = discrete-range in

cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),
R[expr,](t)(p)(ki)(v)(stk)

149

where
ki = A(ei,fi),vi,stki.

R[expr2](t)(p)(k2)(v1)(stk1)
where
k2 = A(e2,f2),v2,stk2.

let bk-desc = <*BLOCK-EXIT* ,id,p,Av,s.c(v)(s)> in
let decl = (DEC ,CONST ,

(last(hd(hd(tl(ref))))),
(hd(d)),hd(tl(discrete-range))) in

DIdecl](t)(%(p)(id))(u)(v)
(stk-push(bk-desc)(stk0))

where
u = Av3,stk3.

let bg-desc = <*BEGIN* ,id,%(p)(id),
Av,s.ci(v)(s)> in

(mk-sd
(hd(p))(nconc(f1,f2))(£)(e)
((case tag(d)

INT
—► let final-iter-val = eval-expr

(e2) in
loop-for-int

(seq-stat)(ref)(d)
(direction)
(final-iter-val)
(seq-stat*)(t)(%(p)(id))(Cl)
(V3)
(stk-push(bg-desc)(stk3)),

ENUMTYPE
—♦ let initial-iter-val = eval-expr

and final-iter-val = eval-expr
M

and enum-lits = literals
(d) in

let parameter-updates = tl(get-loop-enum-param-vals
(initial-iter-val)
(final-iter-val)
(direction)
(enum-lits)) in

loop-for-enum
(seq-stat)(ref)(d)
(direction)
(parameter-updates)
(final-iter-val)
(seq-stat*)(t)(%(p)(id))
(ci)(v3)
(stk-push

(bg-desc)(stk3)),
OTHERWISE
—► impl-error

("Illegal FOR loop parameter type: "a",

d))))
where
Cl = Av4,stk4.

block-exit(v4)(stk4))

150

loop-for-int(seq-stat)(ref)(d) (direction) (final-iter-val)(seq-stat*)(t)(p)(c)(v)(stk)
= E[ref](t)(p)(k)(v)(stk)

where
k = A(e,f),v,stk.

RIref](t)(p)(k1)(v)(stk)
where
ki = A(ei,fi),vi,stki.

let c0 = Av0,stk0.
SS [seq-stat*] (t)(p)(ci)(v0)(stk0)

where
Cl = Av2,Stk2.

(mk-sd
(hd(p))(e)(£)((e))
(cons(mk-rel

(d)
((EQ ,pound(e),

(direction = TO
->■ mk-exp2(ADD ,ei,l),
mk-exp2(SUB ,ei,l)))),

loop-for-int
(seq-stat) (ref)(d)(direction)
(final-iter-val) (seq-stat*)(t)
(p)(c)(v2)(stka)))) in

(mk-sd
(hd(p))
(cons(mk-rel

(d)
(((direction = TO — LE , GE),ei,final-iter-val)),fi))(e)(e)(co(v)(stk)),

mk-sd
(hd(p))
(cons(mk-rel

(d)
(((direction = TO -► GT , LT),ei,final-iter-val)),fj))(e)(e)

(c(v)(stk-pop(stk))))

loop-for-enum(seq-stat)(ref)(d)(direction)(parameter-updates)(final-iter-val)(seq-stat*)(t)(p)(c)(v)(stk)
= E[refl(t)(p)(k)(v)(stk)

where
k = A(e,f),v,stk.

R[ref](t)(p)(ki)(v)(stk)
where
ki = A(ei,fi),vi,stki.

let Co = Avo,stko.
SS [seq-stat*] (t)(p)(ci)(v0)(stko)
where
Cl = Av2,Stk2-

(parameter-updates
—► (mk-sd

(hd(p))(£)(e)((e))
(cons(mk-rel

(d)
((EQ ,Pound(e),

hd(parameter-updates))),
loop-for-enum

(seq-stat)(ref)(d)
(direction)
(tl(parameter-updates))

151

(final-iter-val)(seq-stat*)
(t)(p)(c)(va)(stka)))),

(mk-sd
(hd(p))(e)(e)(£)
(c(v)(stk-pop(stk))))) in

(mk-sd
(hd(p))
(cons(mk-rel

(d)
(((direction = TO - LE, GE),e1,final-iter-val)),f1))(£)(£)(c0(v)(stk)),

mk-sd
(hd(p))
(cons(mk-rel

(d)
(((direction = TO - GT , LT),ei,final-iter-val)),f1))(£)(£)

(c(v)(stk-pop(stk))))

A loop — i.e., a LOOP, WHILE, or FOR statement — has a label (used for leaving that loop
by means of an EXIT statement) and a body consisting of sequential statements. When a
loop is entered, a new local environment is created (signified by an extended path in the
TSE), and a *LOOP-EXIT* descriptor is pushed onto the execution stack, to be used by
EXIT statements to leave the loop properly. The continuation in the descriptor is that of
the loop statement itself.

In the case of a simple LOOP statement, the loop is nonterminating, and a recursive state
delta is generated by auxiliary semantic function loop-infinite.

In the case of a WHILE statement, auxiliary semantic function loop-while first processes the
control expression, yielding its translation and a guard formula, and then uses these items
to generate two state deltas, one of which is recursive. The recursive state delta represents
the situation where the control expression is true and the loop's body is executed; recursion
stems from the appearance of loop-while in the continuation of the loop body's translation.
The execution stack remains unchanged in this case. The other state delta represents the
case where the loop is exited "naturally" by virtue of its control expression having the value
false. The postcondition of this state delta is the loop statement's continuation applied to
the result of popping the loop statement's descriptor from the execution stack.

The case of a FOR statement is analogous to that of the WHILE statement, only more complex
technically.

(SS10) SS I EXIT atmark opt-dotted-name opt-expr 1 (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let expr = opt-expr in
R[[expr](t)(p)(k)(v)(stk)
where
k = A(e,f),vi,stki.

let loop-name = (null(opt-dotted-name)—+ e,
last(opt-dotted-name)) in

(null(e)^ exit(loop-name)(vi)(stk),
(mk-sd

(hd(p))(cons(e,f))(e)(e)
(ci(vj)(stki)

where ci = Av2,stk2.exit(loop-name)(v2)(stk2)),

152

mk-sd
(hd(p))(cons(mk-not(e),f))(e)(e)
(cCvOCstk,)))))

exit(loop-name)(v)(stk)
= let <tg,id,p,g> = hd(stk) in

(case tg
LOOP-EXIT
—► (-mull(loop-name)A id ^ loop-name —► exit(loop-name)(v)(stk-pop(stk)),

g(v)(stk-pop(stk))),
♦UNDECLARE* — g(Avv,s.exit(loop-name)(vv)(s))(v)(stk),
(*BEGIN* ,*BLOCK-EXIT*) — exit(loop-name)(v)(stk-pop(stk)),
OTHERWISE-* execution-error("*** EXECUTION ERROR — ILLEGAL EXIT ***"))

An EXIT statement:

• transfers control from the interior of a loop to the immediate successor of that loop,
provided that the EXIT statement's condition (if any) is satisfied; and

• adjusts the state of SDVS to reflect that transfer of control.

The loop being exited can be named in the EXIT statement; Phase 1 has ensured that an
appropriate label is used. If a loop is named, then that loop is exited. If no name appears,
then the smallest loop enclosing the EXIT statement is exited. The EXIT statement may be
enclosed within a system of nested loops. When the loop statement is exited, these other
loops must first be exited in the order opposite that in which they were entered. When a
FOR loop is exited, the effect of its implict local declaration of the iteration parameter is
reversed by encountering an *UNDECLARE* descriptor on the execution stack.

The translation of an EXIT statement first processes its control expression (which may be
empty), resulting in a translated expression and a guard formula. If the control expression
is nonempty, two state deltas are generated. The first represents the case where the control
expression has the value true; in this case the exit process proceeds by invoking the semantic
function exit, which appears in the state delta's postcondition. The other state delta
represents the case where the control expression has the value false, whereupon the exit
does not occur and control passes to the immediate successor of the EXIT statement. If the
control expression is empty, the exit is unconditional; the second state delta is not even
generated.

(SS11) SS [CALL atmark ref] (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let basic-ref = second(ref) in
let (tg,q,id) = hd(basic-ref) in
let d = t(q)(id) in

let expr* = second(second(basic-ref)) in
gen-call(ref)(d)(expr*)(tt)(ff)(t)(p)(c)(v)(stk))

gen-call(ref)(d)(expr*)(gen-guards?)(no-unbind?)(t)(p)(c)(v)(stk)
= let z = hd(p)

and q = %(path(d))(idf(d)) in
let (decl*,seq-stat*) = body(d) in

153

bind-parameters(ref)(d)(expr*)(gen-guards?)(t)(p)(u)(v)(stk)
where
u = AvijStki.

let sp-desc = <*SUBPROGRAM-RETURN* ,idf(d),p,Av,s.c(v)(s)>
and par-desc = <*UNDECLARE* ,coIlect-allpars(extract-pars(d)(t)),p,

Aci ,v4,stk4.
(mk-sd

(z)(e)(£)(£)
(cons((EQ ,pound(catenate(z,"\pc")),

(EXITED ,$(path(d))(idf(d)))),
unbind-parameters

(ref)(d)(expr,)(no-unbind?)(t)(p)(ci)
(v4)(stk4))),

mk-sd

W
(((EQ ,dot(catenate(z,"\pc")),

(EXITED ,$(path(d))(idf(d))))))(£)(e)
(unbind-parameters

(ref)(d)(expr*)(no-Unbind?)(t)(p)(c1)(v4)
(stk4)))> in

let stk5 = stk-push(par-desc)(stk-push(sp-desc)(stki)) in
(mk-sd

(z)(s)(e)(e)

(cons((EQ ,pound(catenate(z,"\pc")),
(AT ,$(path(d))(idf(d)))),

u2(vi)(stk5))))
where
u2 = Av6,stk6.

(null(characterizations(d))
-D[decl'](t)(q)(ui)(v«)(stke),
null(seq-stat*)
—► gen-characterizations

(e)(p)(characterizations(d))(c2)(v6)(stk6)
where
C2 = Av7,stk7.

unbind-parameters
(ref)(d)(expr*)(no-unbind?)(t)(p)(c3)
(v7)(stk7)

where c3 = Avs,stk8.block-exit(v8)(stkg),
impl-error

("Dffline Characterization not yet implemented
for procedures with nonempty bodies !"))

where
ui = Av2,stk2.

let bg-desc = <*BEGIN* ,idf(d),q,Avv,s.ci(vv)(s)> in
SS [seq-stat* } (t)(q)(c1)(v2)(stk-push(bg-desc)(stk2))
where ci = Av3,stk3.block-exit(v3)(stk3)

gen-characterizations(sds)(p)(characterizations)(c)(v)(stk)
= (null(characterizations)—> fix-characterized-sds(sds)(c(v)(stk)),

let (q,id,parnames,pre,mod) = hd(characterizations) in
let post = sixth(hd(characterizations)) in

gen-characterizations
(cons(gen-characterization(hd(p))($(q)(id))(parnames)(pre)(mod)(post)(v),sds))
(p)(tl(characterizations))(c)(v)(stk))

gen-characterization(z)(qid)(parnames)(pre)(mod)(post)(v)

154

= let sd = mk-sd
(z)(((EQ ,dot(catenate(z,"\pc")),(AT ,qid))))(£)(mod)

(append
(post,((EQ ,pound(catenate(z,"\pc")),(EXITED ,qid))))) in

subst-vars(parnames)(v)(sd)

bind-parameters(ref)(d)(actuals)(gen-guards?)(t)(p)(u)(v)(stk)
= let z = hd(p)

and q = %(path(d))(idf(d))

and par-assoc-list = extract-pars(d)(t) in
(null(par-assoc-list)—► u(v)(stk),
let all-formals = get-qids(collect-allpars(par-assoc-list))(t)(q)

and to-formals = get-qids(collect-topars(par-assoc-list))(t)(q)
and type-descriptors = collect-topars-types(par-assoc-list)

and from-actuals = coOect-fromargs(actuals)(par-assoc-list) in

let v0 = push-universe(v)(z)(all-formals) in

let qual-all-formals = get-qualified-ids(all-formals)(v0)
and qual-to-formals = get-qualified-ids(to-formals)(v0) in

(mk-decl-sd

(z)(e)(e)((z))
(nconc

(mk-qu al-id-coverings(all-formals) (qual-all-formals) (z)(v)(t),

mk-par-decls(q)(par-assoc-list)(p)(t)(vo),
(null(qual-to-formals)—► u(v0)(stk),
let expr* = from-actuals in

MR|[expr'](t)(p)(h)(vo)(stk)
where
h = A(e*,f*),vi,stki.

ui(vi)(stki)
where
ui = Av2,stk2.

let precondition = (gen-guards?
—► nconc

(mk-constraint-guards
(e*)(type-descriptors)
(t)(p)(v2)(stk2),f),

f) in
(mk-decl-sd

(z)(precondition)(e) (qual-to-formals)
(nconc

(assign-multiple
(qual-to-formals) (type-descriptors)(e*),

u(v2)(stk2)))))))))

extract-pars(d)(t)
= let signatures = signatures(d) in

let signature = hd(signatures) in

(null(tl(signatures))—► pars(signature),
extract-poly-pars(pars(signature))(t))

extract-poly-pars(par-assoc-list) (t)

= (null(par-assoc-list)—► e,
let par = hd(par-assoc-list) in

cons((hd(par),(hd(second(par)),poly-type-desc(t))),
extract-poly-pars(tl(par-assoc-list))(t)))

collect-allpars(par-assoc-list)
= (null(par-assoc-list)—► e,

let (id,w) = hd(par-assoc-list) in
cons(id,collect-allpars(tl(par-assoc-list))))

155

collect-topars(par-assoc-list)
= (null(par-assoc-list)—* c,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))g (REF VAL)

—+ cons(id,collect-topars(tl(par-assoc-list))),
collect-topars(tl(par-assoc-list))))

collect-fromargs(actuals)(par-assoc-list)
= (null(par-assoc-list)—> e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))e (REF VAL)

—> cons(hd(actuals),collect-fromargs(tl(actuals))(tl(par-assoc-list))),
collect-fromargs(tl(actuals))(tl(par-assoc-list))))

collect-frompars(par-assoc-list)(p)
= (null(par-assoc-list)—► e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))€ (REF OUT)
- cons((REF ,((SREF ,p,id))),

collect-frompars(tl(par-assoc-list))(p)),
collect-frompars(tl(par-assoc-list))(p)))

collect-toargs (actuals-ids) (par-assoc-list)
= (null(actuals-ids)—► e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))e (REF OUT)

—► cons(hd(actuals-ids), collect- toargs(tl(actuals-ids))(tl(par-assoc-list))),
collect-toargs(tl(actuals-ids))(tl(par-assoc-list))))

collect-topars-types(par-assoc-list)
= (null(par-assoc-list)—► e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))6 (REF VAL)

—► cons(tdesc(w),collect-topars-types(tl(par-assoc-list))),
collect-topars-types(tl(par-assoc-list))))

collect-toargs-types(actuals)(par-assoc-list)(t)(p)
= (null(actuals)—> e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))g (REF OUT)

—► let expr = hd(actuals) in
cons(T [expr 1 (t)(p),
collect- toargs-types(tl(actuals))(tl(par-assoc-list))(t)(p)),

collect-toargs-types(tl(actuals))(tl(par-assoc-list))(t)(p)))

collect-guards-for-exprs(expr*)(d*)(t)(p)(v)(stk)
= MR[expr*](t)(p)(h)(v)(stk)

where h = A(e*,f*),v,stk.mk-constraint-guards(e*)(d*)(t)(p)(v)(stk)

mk-constraint-guards(e*)(d*)(t)(p)(v)(stk)
= (null(e*)—<■ e,

let e = hd(e*)
and d = hd(d") in

(-.(tag(d)e (*INT* »SUBTYPE* *INT_TYPE*))
— mk-constraint-guards(tl(e*))(tl(d*))(t)(p)(v)(stk),
(tag(d)= *INT* — mk-constraint-guards(tl(e*))(tl(d*))(t)(p)(v)(stk),
let dd = (tag(d)= »SUBTYPE* — base-type(d), parent-type(d))

156

and expri = type-tick-low(d)
and expr2 = type-tick-high(d) in

RIexpn](t)(p)(ki)(v)(stk)
where

ki = A(ei,f1),vi,stki.
R[expr2](t)(p)(k2)(vI)(stk1)

where

k2 = A(e2,f2),v2,stk2.
nconc

((ei - (mk-rel(dd)((LE ,ei,e))), e),
(e2 — (mk-rel(dd)((LE ,e,e2))), e),
mk-constraint-guards(tl(e*))(tl(d*))(t)(p)(v)(stk)))))

mk-par-decls(q)(par-assoc-list)(p)(t)(v)

= (null(par-assoc-list)—<• e,
let (id,w) = hd(par-assoc-list) in

cons((DECLARE ,qualified-id(qid(t(q)(id)))(v),mk-type-spec(tdesc(w))(t)(p)),
mk-par-decls(q)(tl(par-assoc-list))(p)(t)(v)))

assign-multiple(duqn*)(type-descriptors)(e*)

= (null(duqn*)^ e,
let target = hd(duqn')

and d = hd(type-descriptors)

and source = hd(e*) in

nconc
(assign(d)((target,source)),
assign-multiple(tl(duqn*))(tl(type-descriptors))(tl(e*))))

unbind-parameters(ref)(d)(actuals)(no-unbind?)(t)(p)(c)(v)(stk)

= let z = hd(p)
and q = %(path(d))(idf(d))
and par-assoc-list = extract-pars(d)(t) in

let all-formals = get-qids(collect-allpars(par-assoc-list))(t)(q) in
let qual-all-formals = get-qualified-ids(all-formals)(v) in

(null(qual-all-formals)

—► (mk-sd
(z)(e)(e)(e)
(c(pop-universe(v)(all-formals))(stk-pop(stk)))),

(no-unbind?
—► (mk-sd

(z)(e)(e)(cons(z, qual-all-formals))
(cons(mk-cover-already((dot(z),cons(pound(z),qual-all-formals)))(t),

cons(mk-undeclare(qual-all-formals),
c(pop-universe(v)(all-formals))(stk-pop(stk)))))),

let exprj = actuals in
ME[exprI](t)(p)(h,)(v)(stk)

where
hj = A(er,ff),vi,stki.

let to-actuals = collect-toargs(underef(ej))(par-assoc-list) in
let qual-to-actuals = get-qualified-ids(to-actuals)(vi) in

(null(qual-to-actuals)
—► (mk-sd

(z)(e)(e)(cons(z,qual-all-formals))

(cons(mk-cover-already
((dot(z),cons(pound(z),qual-all-formals)))(t),

cons(mk-undeclare(qual-all-formals),

c(pop-universe(vi)(all-formals))(stk-pop(stki)))))),

157

let from-formals = collect-frompars(par-assoc-list)(q)
and type-descriptors = collect-toargs-types

(actuals)(par-assoc-list)(t)(p) in
let expr* = from-formals in
MR[expr2*l(t)(q)(h2)(v1)(stk1)
where
h2 = A(e*,f*),v2,stk2.

ui(v2)(stk2)
where
Ul = Av3,stk3.

let guard* = nconc
(collect-guards-for-exprs

(from-formals)
(type-descriptors) (t)
(q)(v3)(stk3),f*,

f2*) in
(mk-sd

(z) (guard*)(e)(qual-to-actuals)
(nconc

(assign-multiple
(qual-to-actuals)
(type-descriptors)(e*),

u2(v3)(stk3))))
where
u2 = Av4,stk4.

(mk-sd
(z)(e)(e)
(cons(z,qual-all-formals))
(cons(mk-cover-already

((dot(z),
cons(pound(z),
qual-all-formals)))(t),

cons(mk-undeclare
(qual-all-formals),

c(pop-universe
(V4)

(all-formals))
(stk-pop(stk4)))))))))

underef(actuals)
= (null(actuals)—► e,

let actual = hd(actuals) in
(dotted-expr-p(actual)—<• cons(second(actual),underef(tl(actuals))),
cons(actual,underef(tl(actuals)))))

mk-cover-already(id,lst)(t)
= (new-declarations()—► mk-rel(univint-type-desc(t))((EQ ,hd(lst),id)),

mk-cover(id,lst))

mk-undeclare(lst) = cons(UNDECLARE ,1st)

Procedure calls in Stage 3 VHDL use call by value-result semantics. The translation of a
procedure call consists of the following steps:

• The actual parameters are translated and then gen-call pushes a subprogram return
descriptor and then a (single) undeclaration descriptor for all of the formal parameters
onto the execution stack.

158

SDVS declarations of all of the formal parameters are emitted (in bind-parameters).

The IN and INOUT formal parameters are bound to their corresponding actual param-
eters by first translating the actual parameters and then in effect assigning them to
their corresponding formals by emitting appropriate equality relations (as in the trans-
lation of assignment). This is done by auxiliary semantic function bind-parameters.
In these equality relations, the qualified names of the formal parameters must refer to
the procedure's declaration TSE, whereas the qualified names in the actual parame-
ters refer to the procedure's calling environment. This implements the semantics of

static binding required by VHDL.

The subprogram may have either a specific body or a set of state delta characteriza-

tions, but not both. Different actions are performed in each case.

1. If the procedure has a body, the procedure's local declarations and statements
are translated in the procedure's declaration environment after first pushing a
♦SUBPROGRAM-RETURN* descriptor on the execution stack. This de-
scriptor will be used to perform a return from the procedure, whether that return
is explicit via a RETURN statement or implicit via encountering the end of the pro-

cedure's body.

2. If the procedure has one or more characterizations, state deltas representing the
actions of the procedure are produced by the functions gen-characterizations
and gen-characterization. These two functions use the SDVS functions fixed-
characterized-sds and subst-vars, part of the implementation of an offline

characterization mechanism for SDVS [3].

i Auxiliary semantic function unbind-parameters is invoked to assign the (final) val-
ues of the INOUT and OUT formal parameters to their corresponding actual parameters

(which must, of course, have reference types).

(SS12) SS I RETURN atmark opt-expr] (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let expr = opt-expr in
R[expr](t)(p)(k)(v)(stk)
where
k = A(e,f),v,stk.

(null(e)— (mk-sd(hd(p))(e)(e)(e)(return(v)(stk))),
let d = context(t)(p) in
let result-d = tdesc(extract-rtype(d)) in

let precondition = nconc
(mk-constraint-guards

((e))((result-d))(t)(p)
(v)(stk),f) in

(mk-sd
(hd(p))(precondition)(e)
((qualified-id(qid(d))(v)))
(nconc

(assign(result-d)((qualmed-id(qid(d))(v),e)),

ci(v)(stk)
where ci = Av,stk.return(v)(stk))))))

159

return(v)(stk)
= let <tg,qname,p,g> = hd(stk) in

(case tg
UNDECLARE — g(Avv,s.return(vv)(s))(v)(stk),
(»BLOCK-EXIT* ,*SUBPROGRAM-RETURN*) - g(v)(stk-pop(stk)),
(*BEGIN* ,*LOOP-EXIT* ,*PACKAGE-BODY-EXIT*) - return(v)(stk-pop(stk)),
OTHERWISE
—► impl-error("Bad execution stack descriptor tag in context: "a",tg))

context(t)(path)
= let d = t(path)(*UNIT*) in

(d = »UNBOUND* — context(t)(rest(path)),
(case tag(d)

(♦PROCEDURE* ,*FUNCTION* ,*PACKAGE*) -+ t(rest(path))(last(path)),
OTHERWISE — context(t)(rest(path))))

extract-rtype(d)
= let signature = hd(signatures(d)) in

rtype(signature)

RETURN statements come in two varieties: with an expression, to effect a return from a
function, and without an expression, to effect a return from a procedure. If the RETURN is
from a function, then the expression must first be translated and an assignment of its value
to the function's (statically and dynamically uniquely qualified) name must be asserted via
an equality relation. Then (no matter whether the RETURN is from a procedure or a function),
the function return (similar to exit) is invoked to use the topmost ♦SUBPROGRAM-
RETURN* descriptor on the execution stack to return from the subprogram, after first
effecting exits from intervening loops and effecting necessary undeclarations. The function
context determines the qualified name of the subprogram from which the return is being
made.

(SS13) SS I WAIT atmark ref* opt-expn opt-expr2 1 (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let ci = Av,stk.
(mk-sd

(hd(p))(e)(£)(£)
((make-vhdl-try-resume-next-process(hd(p))(v)(stk)))) in

MMref*](t)(p)(h)(v)(stk)

where
h = A(e*,f*),vi,stki.

let expri = opt-expri in
RJexpr,](t)(p)(k,)(v)(stk)
where
ki =.A(ei,fi),v,stk.

let expr2 = opt-expr2 in
R[expr2l(t)(p)(k2)(v)(stk)
where
k2 = A(e2,f2),v,stk.

let process-id = last(fmd-process-env
(t)(p)) in

(mk-sd
(hd(p))(nconc(fi,f2,f*))(e)(e)
((make-vhdl-process-suspend

(process-id)(get-signals(e*))
(ei)(ea)(c)(c,(v)(stk))))))

160

find-process-env(t)(p)
= (null(p)V tag(t(p)(*UNIT*))= *PROCESS* - p, find-process-env(t)(rest(p)))

get-signals(signal-names)
= (null(signal-names)—► e,

cons(find-signal-structure(hd(signal-names)),get-signals(tl(signal-names))))

8.4.7 Waveforms and Transactions

(Wl) W I WAVE transaction4] (t)(p)(wave-cont)(v)(stk)
- TRM I transaction"1-] (t)(p)(wave-cont)(v)(stk)

(TRMO) TRM [e] (t)(p)(wave-cont)(v)(stk) = wave-cont((<-,e))(v)(stk)

(TRM1) TRM I transaction transaction* J (t)(p)(wave-cont)(v)(stk)
— TR I transaction | (t)(p)(trans-cont)(v)(stk)

where
trans-cont = A(trans,guard),v,stk.

TRM I transaction*] (t)(p)(wave-conti)(v)(stk)
where
wave-conti = A(trans*,guard*),v,stk.

wave-cont
((cons(trans,trans*),

nconc(guard, guard*)))(v)(stk)

The transactions in a waveform are translated in order, from left to right.

(TR1) TR [TRANS expr opt-expr] (t)(p)(trans-cont)(v)(stk)
= R[expr](t)(P)(k)(v)(stk)

where
k = A(ei,fi),v,stk.

let expr2 = opt-expr in
Rl[expr2](t)(p)(k1)(v)(stk)
where
ki = A(e2,f2),v,stk.

trans-cont
((mk-transaction-for-update(ei)(e2),nconc(fi ,h)))
(v)(stk)

mk-transaction-for-update(transaction-value)(delay-time)
= let transaction-time = (null(delay-time)—► mk-add-delay-time(0)(l),

mk-add-delay-time(delay-time)(0)) in
mk-transaction(transaction-time)(transaction-value)

mk-add-delay-time(global)(delta)
= (TIMEPLUS ,dot(VHDLTIME),mk-vhdltime(global)(delta))

mk-vhdltime(global)(delta) = (VHDLTIME ,global,delta)

161

8.4.8 Expressions

Two semantic functions, E and R, translate expressions. E obtains the (qualified) place
name corresponding to a scalar or array. R yields an expression that represents a value
rather than a reference.

(MEO) ME I e 1 (t)(p)(h)(v)(stk) = h((e,e))(v)(stk)

(ME1) MJE I ref ref*] (t)(p)(h)(v)(stk)
= E[ref](t)(p)(k)(v)(stk)

where
k = A(e,f),vi,stki.

MEIrefl(t)(p)(h1)(vi)(stk1)
where h, = A(e%f*),V2,stk2.h((cons(e,e'),nconc(f,f)))(v2)(stk2)

(MRO) MR [e] (t)(p)(h)(v)(stk) = h((e,e))(v)(stk)

(MR1) MR [expr expr* 1 (t)(p)(h)(v)(stk)
= RJexpr](t)(p)(k)(v)(stk)

where
k = A(e,f),vi,stki.

MR[expr*](t)(p)(h1)(v1)(stkI)
where hi = A(e*,r),v2,stk2.h((cons(e,e*),nconc(f,f*)))(v2)(stk2)

The translation of a (possibly empty) multiple expression list yields a list of translated
expressions and a corresponding list of guard formulas.

(El) E [REF modified 1 (t)(p)(k)(v)(stk)
= let basic-ref = modifier4" in

let (basic-name,d) = gen-basic-rtame(basic-ref)(t)(v) in
gen-name(ref)(basic-name)(£)(d)(tl(basic-ref))(t)(p)(k)(v)(stk)

gen-basic-name(basic-ref)(t)(v)
= let (tg,q,id) = hd(basic-ref) in

let d = t(q)(id) in
(case tag(d)

(♦PROCEDURE* .^FUNCTION*) - (qualified-id(qid(d))(v),d),
OTHERWISE — (qualified-id(qid(d))(v),tdesc(type(d))))

gen-name(ref)(e)(f)(d)(ref-tail)(t)(p)(k)(v)(stk)
= (null(ref-tail)— k((e,f))(v)(stk),

let modifier = hd(ref-tail) in
let (tg,isp) = modifier in

(case tg
INDEX - gen-array-ref(isp)(e)(f)(d)(t)(p)(c)(v)(stk),
SELECTOR — gen-record-ref(isp)(e)(f)(d)(c)(v)(stk),
PARLIST — gen-function-call(ref)(isp)(d)(t)(p)(c)(v)(stk),
OTHERWISE
-► impl-error("Unrecognized Stage 3 VHDL reference modifier tag: ~a",tg))

where
c = A(ei,fi,di),v,stk.

gen-name(ref)(e1)(f1)(d1)(tl(ref-tail))(t)(p)(k)(v)(stk))

162

gen-array-ref(expr)(e)(f)(d)(t)(p)(c)(v)(stk)
= R[exprl(t)(p)(k)(v)(stk)

where
k = A(e0,fo),v,stk.

c(((ELEMENT ,e,e0),
nconc

(Wo,
(null(ub(d))
— (mk-rel(univint-type-desc(t))((GE ,e0,(ORIGIN ,e)))),
(mk-rel(univint-type-desc(t))((GE ,e0,(ORIGIN ,e))),
mk-rel

(univint-type-desc(t))
«LE ,e0,

mk-exp2(SUB ,mk-exp2(ADD .(ORIGIN ,e),(RANGE ,e)),l)))))),
elty'(d)))(v)(stk)

gen-record-ref(id)(e)(f)(d)(c)(v)(stk)
= c((mk-recelt(e,id),f,lookup-record-desc(components(d))(id)))(v)(stk)

mk-recelt(e)(id) = (RECORD ,e,id)

lookup-record-desc(comp*)(id)
= (null(comp*)— ^UNBOUND* ,

let (x,d) = hd(comp*) in
(x = id —► d, lookup-record-desc(tl(comp*))(id)))

gen-function-call(ref)(expr*)(d)(t)(p)(c)(v)(stk)
= declare-function-name(d)(t)(p)(u)(v)(stk)

where
u = Av,stk.

gen-call(ref)(d)(expr*)(tt)(tt)(t)(p)(Cl)(v)(stk)
where
ci = Av,stk.

c((qualified-id(qid(d))(v),e,tdesc(extract-rtype(d))))(v)(stk)

declare-function-name(d)(t)(p)(u)(v)(stk)
= let q = path(d)

and dd = tdesc(extract-rtype(d)) in
let z = hd(q) in

let suqn+ = get-qids((idf(d)))(t)(q) in
let vi = push-universe(v)(z)(suqn+) in

let duqn+ = get-qualified-ids(suqn+)(vi) in
let dc-desc = <*UNDECLARE* ,idf(d),q,

Aui,V2,stk2.
undeclare-function-name

(suqn+)(duqn+)(z)(t)(ui)(v2)(stk2)> in
(mk-decl-sd

(z)(e)(0((z))
(nconc

(mk-qual-id-coverings(suqn+)(duqn+)(z)(v)(t),
mk-scalar-nonsignal-dec-post

(e)((duqn+ ,e,dd))(t)(q)(u)(v1)(stk-push(dc-desc)(stk)))))

undeclare-function-name(suqn+)(duqn+)(z)(t)(u)(v)(stk)
= (mk-sd

(z)(£)(e)(cons(z,duqn+))
(cons(mk-cover-already((dot(z),cons(pound(z),duqn+)))(t),
cons(mk-undeclare(duqn+),
u(pop-universe(v)(suqn+))(stk-pop(stk))))))

163

A reference must begin with at least a basic reference, which contains its root identifier
and access path. Following its basic reference, a reference has zero or more array index,
record field selection, or actual parameter list modifiers. The reference itself is translated
by gen-name; the basic reference is translated by gen-basic-name. The array index and
record field selection modifiers are translated by gen-array-ref and gen-record-ref. The
translation of a reference is complicated by the appearance of a parameter list modifier,
which represents a function call; these are translated by gen-function-call.

Whenever a function is called (as part of an expression), the name of that function is used
in the expression to name the value returned by that particular invocation. Because the
same function can be invoked more than once in the same expression, each corresponding
instance of the function's name must be uniquely dynamically qualified, and each of those

DUQNs must be declared (and later undeclared when they should no longer exist) to SDVS.
The declaration is performed by function declare-function-name and the undeclaration

by undeclare-function-name; the invocation of the latter function is encapsulated in an

undeclaration (*UNDECLARE*) descriptor pushed onto the execution stack. After a
new dynamic instance of the function's name is declared, gen-function-call evaluates the
actual parameters and then invokes gen-call to finish the translation of this function call.

(RO) R I e] (t)(p)(k)(v)(stk) = k((e,e))(v)(stk)

For technical convenience, expressions can be empty; the translation of an empty expression
yields empty results.

(Rl) R [FALSE 1 (t)(p)(k)(v)(stk) = k((FALSE ,e))(v)(stk)

(R2) R I TRUE 1 (t)(p)(k)(v)(stk) = k((TRUE ,e))(v)(stk)

(R3) R I BIT bitlit 1 (t)(p)(k)(v)(stk) = k((B [bitlit J ,e))(v)(stk)

(R4) R [NUM constant 1 (t)(p)(k)(v)(stk) = k((N [constant] ,e))(v)(stk)

(R5) R [TIME constant FS] (t)(p)(k)(v)(stk) = k((N | constant 1 ,e))(v)(stk)

(R6) R I CHAR constant] (t)(p)(k)(v)(stk) = k((expr,e))(v)(stk)

(R7) R I ENUMLIT id] (t)(p)(k)(v)(stk) = k((id,e))(v)(stk)

(R8) R [BITSTR bit-lit*] (t)(p)(k)(v)(stk)
= let expr* = bit-lit* in

ME I expr* 1 (t)(p)(k)(v)(stk)

164

(R9) R I STR char-lit* 1 (t)(p)(k)(v)(stk)
= let expr* = char-lit* in

MR[expr*l(t)(p)(k)(v)(stk)

(RIO) R [REF modifier+ 1 (t)(p)(k)(v)(stk)
= let ref = expr in

MrefKtXpXkOlvXstk)
where ki = A(e,f),vi,stki.k((dot(e),f))(v1)(stki)

Scalar and array references are first E-translated, yielding an expression and a guard for-
mula. The corresponding R-translation is obtained by applying the dot operation to the
translated expression.

(Rll) R I PAGGR expr*] (t)(p)(k)(v)(stk) = MR I expr*] (t)(p)(k)(v)(stk)

(R12) R I TYPECONV expr type-mark 1 (t)(p)(k)(v)(stk)
= let d = lookup-desc(type-mark)(t)(p) in

R[exprl(t)(p)(k1)(v)(stk)
where
ki = A(e,f),v,stk.

let constraint-guard* = mk-constraint-guards
((e))((d))(t)(p)(v)(stk) in

(null(constraint-guard*)—► k((e,f))(v)(stk),
(mk-sd(hd(p))(constraint-guard*)(e)(e)(k((e,f))(v)(stk))))

(R13) R I unary-op expr I (t)(p)(k)(v)(stk)
= R[«pr](t)(p)(k,)(v)(stk)

where ki = A(e,f),vi,stk].k((mk-expl(unary-op,e),f))(vi)(stki)

mk-expl (unary-op,e)
= (case unary-op

NOT — (NOT ,e),
BNOT — (USNOT ,e),
PLUS — e,
NEG — (MINUS ,e),
ABS -f (ABS ,e),
(RNEG ,RABS) — (unary-op,e),
OTHERWISE
—<■ impl-error("Unrecognized Stage 3 VHDL unary operator: "a",unary-op))

(R14) R I binary-op expn expr2] (t)(p)(k)(v)(stk)
= R[expr1](t)(p)(k,)(v)(stk)

where
ki = A(ei,fj,vi,stki).

RIexpr2](t)(p)(k2)(v1)(stk1)
where
k2 = A(e2,f2),v2,stk2.

k((mk-exp2(binary-op,ei ,e2),nconc(fi,f2)))(v2)(stk2)

165

(R15) R I relational-op expri expr2] (t)(p)(k)(v)(stk)
= RJexpr, l(t)(p)(k1)(v)(stk)

where
ki = A(ei jfj^ijStki).

R[[expr2](t)(p)(k2)(v1)(stk1)
where
k2 = A(e2,f2),V2,stk2.

let d = T I expn 1 (t)(p) in
k((mk-rel(d)((relational-op,ei ,e2)),nconc(fi,f2)))
(v2)(stk2)

8.4.9 Expression Types

The function mk-rel (described earlier) requires a type descriptor as its first argument;
application of the semantic function T determines the type descriptor of an expression as
follows:

• if the expression is a constant, its type descriptor is the basic type of that constant;

• if the expression is a reference, its type descriptor is the basic type of that reference,
obtained by the function get-type-desc; and

• if the expression contains operators, its type descriptor is the basic result type of its
top-level operator (if there is one);

(TO) T[e] (t)(p) = void-type-desc(t)

(Tl) T I FALSE 1 (t)(p) = bool-type-desc(t)

(T2) T I TRUE 1 (t)(p) = bool-type-desc(t)

(T3) T [[BIT bitlit 1 (t)(p) = bit-type-desc(t)

(T4) T I NUM constant J (t)(p) = univint-type-desc(t)

(T5) T [TIME constant FS J (t)(p) = time-type-desc(t)

(T6) T I CHAR constant I (t)(p) = char-type-desc(t)

(T7) T J ENUMLIT id J (t)(p)
= let d = lookup-desc-on-path(t)(p)(id) in

tdesc(type(d))

(T8) T [BITSTR bit-lit*] (t)(p) = bitvector-type-desc(t)

(T9) T [STR char-lit*] (t)(p) = string-type-desc(t)

(T10) T I REF modiner+] (t)(p)
= let basic-ref = modifier"1" in

get-type-desc(basic-ref)(t)(p)

166

get-type-desc(basic-ref)(t)(p)
= let (tg,q,id) = hd(basic-ref) in

let d = t(q)(id) in
(case tag(d)

(♦PROCEDURE* ,*FUNCTION* ,*PROCESS*)
—+ process- ref-tail(d)(tl(basic-ref))(t)(p),
OTHERWISE— process-ref-tail(tdesc(type(d)))(tl(basic-ref))(t)(p))

process-ref-tail(d)(ref-tail)(t)(p)
= (null(ref-tail)— d,

let modifier = hd(ref-taü) in
(case hd(modifier)

INDEX — process-ref-tail(elty(d))(tl(ref-tail))(t)(p),
SELECTOR
—► process-ref-tail

(lookup-record-desc(components(d))(second(modifier)))(tl(ref-tail))

(t)(p),
PARLIST -+ process-ref-tail(tdesc(extract-rtype(d)))(tl(ref-tail))(t)(p),
OTHERWISE
—<• impl-error

("Unrecognized Stage 3 VHDL reference modifier tag: "a",
hd(modifier))))

(Til) T [PAGGR expr*] (t)(p) = void-type-desc(t)

(T12) T [TYPECONV expr type-mark] (t)(p) = lookup-desc(type-mark)(t)(p)

(T13) T [unary-op expr] (t)(p) = tdesc(restypel(unary-op)(t))

restypel (unary-op)(t)
= (case unary-op

NOT — (VAL ,bool-type-desc(t)),
BNOT — (VAL ,bit-type-desc(t)),
(PLUS ,NEG ,ABS) -+ (VAL ,univint-type-desc(t)),
(RNEG ,RABS) — (VAL ,real-type-desc(t)),
OTHERWISE
—► impl-error("Unrecognized Stage 3 VHDL unary operator: "a",unary-op))

(T14) T I binary-op expn expr2 1 (t)(p)
= tdesc(restype2(binary-op)((expri ,expr2))(t)(p))

restype2(binary-op)(expri ,expr2)(t)(p)
= (case binary-op

(AND ,NAND ,OR ,NOR ,XOR) -+ mk-type((DUMMY VAL))(bool-type-desc(t)),
(BAND ,BNAND ,BOR ,BNOR ,BXOR) — mk-type((DUMMY VAL))(bit-type-desc(t)),
(ADD ,SUB ,MUL ,DIV ,MOD ,REM ,EXP) — mk-type((DUMMY VAL))(univint-type-desc(t)),
(RPLUS ,RMINUS ,RTIMES ,RDIV ,REXPT) — mk-type((DUMMY VAL))(real-type-desc(t)),
CONCAT
-let d, = T[expr,](t)(p)

and d2 = T [expr2] (t)(p) in
mk-type((DUMMY VAL))(mk-concat-tdesc(di)(d2)(t)),

OTHERWISE
—<• impl-error("Unrecognized Stage 3 VHDL binary operator: ~a",binary-op))

167

mk-concat-tdesc(di)(d2)(t)
= (is-bit-tdesc?(di)V is-bitvector-tdesc?(di)

—► array-type-desc
(new-array-type-name(BIT_VECTOR))(e)(e)(tt)(direction(di))(lb(di))(e)
(bit-type-desc(t)),

let idfi = idf(di) in
array-type-desc

(new-array-type-name((consp(idfi)-+ hd(idfi), idfi)))(e)(e)(tt)
(direction(di))(lb(di))(e)(elty(di)))

(T15) T [relational-op expn expr2 J (t)(p) = bool-type-desc(t)

8.4.10 Primitive Semantic Equations

The following semantic functions are primitive.

(Nl) N [constant | = constant

(Bl) B |bitlit] = mk-bit-simp-symbol(bitlit)

mk-bit-simp-symbol(bitlit)
= (case bitlit

0 — (BS 0 1) ,
1 -> (BS 1 1) ,
OTHERWISE^ impl-error("Can't construct simp symbol for bit: ~a ",bitlit))

168

9 Conclusion

A precise and well-documented formal specification of the Stage 3 VHDL translator has been
presented in this report. We have completed and exercised a Common Lisp implementation
of both translation phases described herein.

Stage 3 VHDL represents a robust behavioral subset of the VHSIC Hardware Description
Language, encompassing the foDowing VHDL language features: (restricted) design files, en-
tity declarations, architecture bodies, ports, declarative parts in entity declarations, package
STANDARD (containing predefined types BOOLEAN, BIT, UNIVERSAL-INTEGER, INTEGER, TIME,
CHARACTER, REAL, STRING, and BIT-VECTOR), user-defined packages, USE clauses, array type
declarations, certain predefined attributes, enumeration types, subtypes of scalar types, in-
teger type definitions, type conversions, PROCESS statements, concurrent signal assignment
statements, subprograms (procedures and functions), IF and CASE statements, WHILE and
FOR loops, octal and hexadecimal representations of bitstrings, and general expressions of
type TIME in AFTER clauses.

As the SDVS interface to VHDL continues to expand and mature, our confidence grows in
our language translator semantic specification and implementation paradigm. In 1994, we
will be applying this paradigm to implement a translator for the Stage 4 VHDL language
subset. Stage 4 VHDL is expected to include constructs that are needed to verify a VHDL
application planned for fiscal year 1994, including structural descriptions (e.g. component
declarations, component instantiation statements, and configuration declarations), as well
as an implementation of a symbolic VHDL hardware clock.

169

References

[1] J. V. Cook, I. V. Filippenko, B. H. Levy, L. G. Marcus, and T. K. Menas, "Formal
Computer Verification in the State Delta Verification System (SDVS)," in Proceedings
of the AIAA Computing in Aerospace Conference, (Baltimore, Maryland), pp. 77-87,
American Institute of Aeronautics and Astronautics, October 1991.

[2] B. Levy, I. Filippenko, L. Marcus, and T. Menas, "Using the State Delta Verification
System (SDVS) for Hardware Verification," in Proceedings of the IFIP TC10/WG 10.2
International Conference on Theorem Provers in Circuit Design: Theory, Practice and

Experience: Nijmegen, The Netherlands (ed. V. Stavridou, T. F. Melham, and R. T.
Boute), pp. 337-360, North-Holland, June 1992.

[3] L. G. Marcus, "SDVS 12 Users' Manual," Technical Report ATR-93(3778)-4, The
Aerospace Corporation, September 1993.

[4] T. K. Menas, "SDVS 11 Tutorial," Technical Report ATR-92(2778)-12, The Aerospace
Corporation, September 1992.

[5] B. H. Levy, "Feasibility of Hardware Verification Using SDVS," Technical Report ATR-
88(3778)-9, The Aerospace Corporation, September 1988.

[6] IEEE, Standard VHDL Language Reference Manual, 1988. IEEE Std. 1076-1987.

[7] D. F. Martin and J. V. Cook, "Adding Ada Program Verification Capability to the
State Delta Verification System (SDVS)," in Proceedings of the 11th National Com-
puter Security Conference, National Bureau of Standards/National Computer Security
Center, October 1988.

[8] T. Aiken, I. Filippenko, B. Levy, and D. Martin, "A Formal Description of the In-
cremental Translation of Core VHDL into State Deltas in the State Delta Verifica-
tion System (SDVS)," Technical Report ATR-89(4778)-9, The Aerospace Corporation,
September 1989.

[9] I. V. Filippenko, "Example Proof of a Core VHDL Description in the State Delta
Verification System (SDVS)," Technical Report ATR-90(5778)-6, The Aerospace Cor-
poration, September 1990.

[10] I. V. Filippenko, "Some Examples of Verifying Core VHDL Hardware Descriptions
Using the State Delta Verification System (SDVS)," Technical Report ATR-91(6778>
6, The Aerospace Corporation, September 1991.

[11] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 1
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-91(6778)-7, The Aerospace Corporation, September 1991.

[12] M. J. C. Gordon, The Denotational Description of Programming Languages: An In-

troduction, (New York: Springer-Verlag, 1979).

171

[13] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 2
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-92(2778)-4, The Aerospace Corporation, September 1992.

[14] J. V. Cook, "The Language for DENOTE (Denotational Semantics Translation
Environment)," Technical Report TR-0090(5920-07)-2, The Aerospace Corporation,
September 1990.

[15] L. Marcus and B. H. Levy, "Specifying and Proving Core VHDL Descriptions in
the State Delta Verification System (SDVS)," Technical Report ATR-89(4778)-5, The
Aerospace Corporation, September 1989.

[16] L. Marcus, T. Redmond, and S. Shelah, "Completeness of State Deltas," Technical

Report ATR-86(8454)-2, The Aerospace Corporation, September 1986.

[17] T. K. Menas, "The Relation of the Temporal Logic of the State Delta Verification

System (SDVS) to Classical First-Order Temporal Logic," Technical Report ATR-
90(5778)-10, The Aerospace Corporation, September 1990.

[18] J. E. Doner and J. V. Cook, "Offline Characterization of Procedures in the State
Delta Verification System (SDVS)," Technical Report ATR-90(8590)-5, The Aerospace
Corporation, September 1990.

[19] J. V. Cook and J. E. Doner, "Example Proofs Using Offline Characterization of Proce-
dures in the State Delta Verification System (SDVS)," Technical Report TR-0090(5920-
07)-3, The Aerospace Corporation, September 1990.

172

Index
access 74, 124 case-type-ok 78

already-qualified-id 125 case-union 84

arl 123 char-type-desc 42
argtypesl 88 characterizations 45

argtypesl -error 89 check-array-aggregate 62

argtypes2 90 check-enum-lits 63
argtypes2-error 90 check-exprs 62
array-signal-assignment 145 check-if 77
array-size 59 check-pkg-names 68
array-type 87 check-wait-ref 83
array-type-desc 43 check-wait-refs 82
artl 54 chk-array-type 87
arxl 95 collect-allpars 155
assign 127, 143 collect-expressions-from-conditional-waveforms
assign-array-downto 128 74
assign-array-to 128 collect-expressions-from-selected-waveforms
assign-multiple 157 73
assign-record 128 collect-fids 66
assign-record-aux 128 collect-formal-pars 66
assign-record-fields 128 collect-fromargs 156

atO 83 collect-frompars 156

atl 83 collect-guards-for-exprs 156

at2 83 collect-signals-from-expr 73

at3 83 collect-signals-from-expr-list 73
attributes 71 collect-toargs 156
attributes-low-high 63, 139 coDect-toargs-types 156

axO 99 collect-topars 156
axl 99 collect-topars-types 156

ax2 99 collect-transaction-expressions 73

ax3 99 compatible-par-types 58

bl 168 compatible-signatures 58

bl 92 components 46

base-type 45 concatenate-bits 133
bind-parameters 155 concatenate-characters 133

bit-type-desc 41 construct-case-alternatives 74

bits-op 103 construct-cond-parts 75

bitvector-type-desc 42 context 82, 160

block-exit 121 csO 141
body 45 csl 141
bool-type-desc 41 cs2 142
cascade-array-signal-assignment 145 cstO 72
case-coverage 78 cstl 72

case-overlap 83 cst2 72

173

cst3 73
cst4 74
csxO 97
csxl 97
csx2 97
csx3 97
csx4 98
dO 123
dl 123
dlO 140
dll 140
dl2 140
dl3 140
dl4 140
dl5 141
dl6 141
d2 123
d3 123
d4 123
d5 124
d6 124
d7 139
d8 139
d9 140
declare-function-name 163
dfl 117
dftl 52
dfxl 95
direction 45
dot 115
dotted-expr-p 119, 127
drtO 84
drtl 84
drt2 84
drxO 99
drxl 99
drx2 99
dtO 55
dtl 55
dtlO 64
dtll 65
dtl2 65
dtl3 67
dtl4 67
dtl5 71
dtl6 72

dt2 55
dt3 55
dt4 55
dt5 55
dt6 61
dt7 63
dt8 63
dt9 64
dxO 96
dxl 96
dxlO 96
dxll 96
dxl2 96
dxl3 96
dxl4 97
dxl5 97
dxl6 97
dx2 96
dx3 96
dx4 96
dx5 96
dx6 96
dx7 96
dx8 96
dx9 96
el 162
elty 45
enl 122
entl 53
enter-array-objects 62
enter-characters 53
enter-formal-pars 66
enter-objects 53
enter-package 52
enter-predefined 53
enter-standard 52
enter-string 53
enum-le 92
enum-lt 92
enxl 95
etO 86
etl 86
etlO 88
etll 88
et 12 88
etl3 88

174

et2 86 gen-array-signal-decl-id-f 134
et3 86 gen-ascending-indices 145
et4 86 gen-basic-name 162
et5 87 gen-call 154
et6 87 gen-case 147
et7 87 gen-characterization 155
et8 87 gen-characterizations 154
et9 87 gen-characters 53
eval-expr 115 gen-descending-indices 145
exO 100 gen-function-call 163
exl 100 gen-guard 148
exlO 102 gen-if 146
exll 102 gen-name 162
exl2 102 gen-record-ref 163
exl3 102 gen-scalar-decl 124
ex2 100 gen-scalar-decl-id* 124
ex3 100 gen-scalar-decl-id-|- 124
ex4 100 gen-scalar-nonsignal-decl-id-|- 124
ex5 100 gen-scalar-signal-decl-id+ 129
ex6 100 get-base-type 46, 59
ex7 100 get-loop-enum-param-vals 115
ex8 100 get-parent-type 46
ex9 100 get-qids 125
exit 153 get-qualified-ids 111, 125
export-qualified-names 69 get-signals 161
exported 45 get-type-desc 167
extract-par-types 58 idf 45
extract-pars 155 import-legal 69
extract-poly-pars 155 import-qualified-names 68
extract-rtype 58, 160 init-array-signal-downto 115
extract-rtypes 82 init-array-signal-to 115
fifth 14 init-scalar-signal 114
filter-components 59 init-var 111
find-architecture-env 73 int-type-desc 41
find-looplabel-env 80 invert-bit 89
find-process-env 76, 161 is-array-tdesc? 44
find-progunit-env 56 is-array? 44
find-signal-structure 114 is-binary-op? 46
fixed-characterized-sds 115 is-bit-tdesc? 43
fourth 14 is-bit? 43
gen-alt 147 is-bitvector-tdesc? 44
gen-array-decl 130 is-bitvector? 44
gen-array-decl-id* 131 is-boolean-tdesc? 43
gen-array-decl-id+ 130 is-boolean? 43
gen-array-nonsignal-decl-id-f 132 is-character-tdesc? 44
gen-array-ref 163 is-character? 44

175

is-const? 44, 46

is-constant-bitvector? 119, 127
is-constant-string? 119, 127
is-integer-tdesc? 43
is-integer? 43

is-paggr? 46
is-poly-tdesc? 44
is-poly? 44

is-readable? 46
is-real-tdesc? 43
is-real? 43

is-record-tdesc? 44
is-record? 44

is-ref? 46

is-relational-op? 46

is-sig? 45, 46

is-string-tdesc? 44
is-string? 44

is-time-tdesc? 44
is-time? 44
is-unary-op? 46
is-var? 44, 46
is-void-tdesc? 44
is-void? 44
is-writable? 46
last 15
lb 45

length 15
length-expr 132
list-type 58
literals 45

lookup-desc 124
lookup-desc-for-ref 74
lookup-desc-on-path 74, 124
lookup-local 58
lookup-record-desc 163
lookup-record-field 58
lookup-type 56
lookup2 57
loop-for-enum 152
loop-for-int 151
loop-infinite 149
loop-while 149
make-universe-data 110

make-vhdl-begin-model-execution 114
make-vhdl-process-elaborate 114

make-vhdl-process-suspend 114

make-vhdl-try-resume-next-process 114
match-array-type-names 59
match-integer-types 59
match-type-names 59
match-types 59
meO 162
mel 162
mexO 100
mexl 100

mk-add-delay-time 161
mk-array-decl 133
mk-array-elt 133

mk-array-nonsignal-dec-post 132

mk-array-nonsignal-dec-post-declare 132

mk-array-nonsignal-dec-post-init-downto 133
mk-array-nonsignal-dec-post-init-to 133
mk-array-refs 145
mk-array-refs-aux 145
mk-array-signal-dec-post 135
mk-array-signal-dec-post-declare 135
mk-array-signal-dec-post-init 136
mk-array-signal-dec-post-init-aux 138
mk-array-signal-dec-post-init-downto 137
mk-array-signal-dec-post-init-elt-arrays-downto

138

mk-array-signal-dec-post-init-elt-arrays-to
137

mk-array-signal-dec-post-init-elt-scalars-downto
139

mk-array-signal-dec-post-init-elt-scalars-to
138

mk-array-signal-dec-post-init-to 137
mk-array-signal-decl 135
mk-array-signal-elt-fn-decls 136
mk-array-signal-elt-fn-decls-aux 136
mk-bit-simp-symbol 89, 168
mk-bitvec-fn-decl 133
mk-bool-eq 121
mk-bool-neq 121

mk-concat-tdesc 91, 168
mk-constraint-guards 157
mk-cover 117
mk-cover-already 158
mk-disjoint 117

mk-dotted-names 133

176

mk-element-transaction-lists 146 mk-waveform-type-spec 135

mk-element-waves 146 model-execution-complete 121
mk-element-waves-aux 115 mrO 162
mk-enum-set 85 mrl 162

mk-enumlit-rels 139 nl 168

mk-etdec-post 139 nl 92
mk-expl 165 name-driver 114

mk-exp2 128 name-drivers 129

mk-inertial-update 145 name-qualified-id 111, 125
mk-initial-universe 110 name-type 57

mk-not 145 namef 45

mk-or 147 next-var 111
mk-ors 147 nth-tl 85
mk-par-decls 157 object-class 46

mk-preemption 145 otl.l 88

mk-qual-id-coverings 125 ot2.1 89

mk-recelt 129, 163 ot2.2 89
mk-rel 119 parent-type 45

mk-scalar-decl 117, 126 pars 46
mk-scalar-nonsignal-dec-post 125 path 45
mk-scalar-nonsignal-dec-post-declare 126 pbody 45

mk-scalar-nonsignal-dec-post-init 126 pdtO 54
mk-scalar-rel 120 pdtl 54

mk-scalar-signal-assignments 145 pdt2 54
mk-scalar-signal-dec-post 129 pdt3 55
mk-scalar-signal-dec-post-declare 129 pdxO 95
mk-scalar-signal-dec-post-init 130 pdxl 95
mk-scalar-signal-decl 129 pdx2 95
mk-scalar-signal-fn-decl 130 pdx3 95
mk-scalar-signal-fn-decls 136 pkg-body-exit 140

mk-set 85 poly-type-desc 42

mk-simultaneous-transactions 146 pop-universe 111
mk-slice-elt-names-downto 133 pop-universe-vars 111

mk-slice-elt-names-to 133 pop-var 111

mk-string-fn-decl 133 position 85

mk-tick-high 63, 130, 139 position-aux 85

mk-tick-low 63, 130, 139 pound 115

mk-tmode 46 process 45

mk-transaction-for-update 161 process-dec 59

mk-transaction-list 146 process-ref-tail 167

mk-transport-update 145 process-slcdec 61

mk-type 46 process-subprog-body 67

mk-type-spec 126 process-use-clause 68

mk-undeclare 158 push-universe 110

mk-vhdl-array-decl 132 push-universe-vars 110

mk-vhdltime 121, 161 push-var 111

177

qid 45 slt2 75
qualified-id 111, 125 slxO 98
qualified-id-decls 125 slxl 98
rO 164 slx2 98

rl 164 ssO 142

rlO 165 ssl 142

rll 165 sslO 153
rl2 165 ssll 153
rl3 165 ssl2 159
rl4 165 ssl3 160
rl5 166 ss2 142
r2 164 ss3 142
r3 164 ss4 144

r4 164 ss5 146

r5 164 ss6 147

r6 164 ss7 149
r7 164 ss8 149
r8 164 ss9 150

r9 165 sstO 75
real-lb 130 sstl 75
real-op 103 sstlO 81
real-type-desc 42 sstll 81
real-ub 130 sstl2 81
record-to-type 126 sstl3 82
ref-mode 46 sst2 75
remove-enclosing-pkgs 68 sst3 76
rest 15 sst4 77
restypel 89, 167 sst5 77
restype2 91, 167 sst6 77
resvall 89, 92 sst7 79
return 160 sst8 79
reverse 85 sst9 80
reverse-aux 85 ssxl 98

rtl 88 ssxlO 99
rtype 46 ssxll 99
rxl 103 ssxl2 99
scalar-op 102 ssxl3 99
scalar-signal-assignment 145 ssx2 98
second 14 ssx3 98
set-card 78 ssx4 98
signatures 45 ssx5 98
simple-name-match 69 ssx6 98
simple-term 121 ssx7 98
sixth 15 ssx8 99

sltO 75 ssx9 99
sltl 75 string-type-desc 42

178

subst-vars 115 value 45

tO 166 vhdltime-type-desc 117

tl 166 void-type-desc 42

tlO 166 wl 161

til 167 waveform-type-desc 130, 145

tl2 167 wtl 85

tl3 167 wxl 100

tl4 167
tl5 168

t2 166
t3 166
t4 166

t5 166
t6 166
t7 166
t8 166
t9 166
tag 45
tdesc 46
third 14
time-type-desc 42
tmode 46

trl 161
transform-if 98
transform-list 102
transform-name 101
transform-name-aux 102

trmO 161
trail 161
trtl 86
trt2 86

trxl 100
trx2 100
type 45
type-tick-high 45
type-tick-low 45

ub 45
unbind-parameters 158
undeclare-function-name 164

underef 158
universe-counter 110
universe-name 110
universe-stack 110
universe-vars 110
univint-type-desc 41

validate-access 57

179

