
AEROSPACE REPORT NO.
ATR-93(3778)-5

Specification and Correctness Proofs of the MSX
Ada Software

30 September 1993

Prepared by

T. K. MENAS, J. M. BOULER, AND J. E. DONER
Trusted Computer Systems Department
Computer Science and Technology Subdivision
Computer Systems Division
Engineering and Technology Group

DT1C QUALITY INSPECTED Z

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

Engineering and Technology Group

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

THE AEROSPACE
CORPORATION

El Segundo, California
19971001 028

AEROSPACE REPORT NO.
ATR-93(3778)-5

SPECIFICATION AND CORRECTNESS PROOFS OF THE MSX ADA
SOFTWARE

Prepared by

T. K. MENAS, J. M. BOULER, AND J. E. DONER
Trusted Computer Systems Department

Computer Science and Technology Subdivision
Computer Systems Division

Engineering and Technology Group

30 September 1993

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

Report No.
ATR-93(3778)-5

SPECIFICATION AND CORRECTNESS PROOFS OF
THE MSX ADA SOFTWARE

Prepared

J. E. Doner B. H. Levy, Principal Investigator
Computer Assurance Section

Approved

D. B. Baker, Director
Trusted Computer Systems Department

C. A. Sunshine, Principal Director
Computer Science and Technology Subdivision

in

cc: R2 (less encl)
R2SP0, Darnauer (less encl)

M/R: I received the report "Specifications and Correctness Proofs for Portions of the MSX Ada
Software" from T. Menas, J. Bouler, and J. Doner, authors and SDVS researchers at The
Aerospace Corporation. This document is to be given open and public distribution as an
Aerospace Technical Report, ATR-93(3778)-5. I have examined this document and, in my
opinion as COR for this unclassified research, the report is also unclassified and will not be
detrimental to NSA's interest if released as requested. This report will also be reviewed and
approved/disapproved for publication release by the MSX Pentagon's point-of-contact, LCOL
Bruce Guilmain.

gt/ ^./y^^9^u^c^zy 3-~2<2- -^7
DOROTHY^TDARNAUER, R2SPO, 961-1264s, Mar 22,94, ccj

CONCUR:

C. Terrence Ireland, R2

Brian D. Snow, R2/TD &**~ ^ ^^ dtd ^ 'M W

Cathy Johnson, A/TCAO Putt QJ^Q^ dtd ^3>^>^/

Michael B. Saft, TTTRO }\'\j\ f^ dtd -^OM^|

Helen G. Cantor, Chief, II1 k^^^^L^^^ A^y dtd V^k^ü^

Bruce Guilmain, LCOL (USAF), BMDO/DTS^L^ P^r<%~^4>**^ dtd /^ /»fr^yy

Abstract

The Midcourse Space Experiment (MSX) is a Strategic Defense Initiative Organization pro-
gram whose primary purpose is to conduct tracking event experiments of targets/phenomena
in midcourse.

In this report we give a detailed account of the SDVS verification of a modified portion of
the MSX tracking processor software. We present a functional overview of this part of the
software, discuss and fully annotate our modifications to it, list the SDVS enhancements
implemented during the course of the project, and present a proof of correctness of a simple
but nontrivial specification.

Contents

Abstract v

Acknowledgments ix

1 Introduction 1

2 Chronology of the MSX Verification Experiment 5

3 Enhancements Made to SDVS for the MSX Verification Project 9

4 Modifications to the Code 13

5 Proofs for an Infinite Sequence of Data Structure Messages 17

5.1 Preliminaries to program input and output 17

5.2 The correctness assertion for MSX_PROGRAM_FINAL_VERSION 19

5.2.1 The input condition 21

5.2.2 The output condition 24

5.3 The proof of innnite_sequence_data_structure_messages.sd 25

6 Adalemmas for the BUILD task. 31

6.1 Why adalemmas? 31

6.2 A proof strategy for BUILD 33

6.2.1 The BUILD process 33

6.2.2 Proof strategy 35

6.3 The INITIATE_BUILD adalemma 37

6.4 The CONTINUE-BUILD adalemmas 42

6.4.1 Overview 42

6.4.2 The "not last" command case 44

6.4.3 The "last" command case 48

7 Conclusions 55

vii

8 Appendix A - The Annotated Program 57

9 Appendix B - The Proofs 135

9.1 Definitions, etc. used in the main proof 135

9.1.1 Macros 135

9.1.2 Timing proofs 136

9.1.3 Formulas used in the precondition . 136

9.1.4 Formulas used in the postcondition 146

9.1.5 The correctness assertion 147

9.1.6 Proofs used in the main proof 147

9.1.7 The versions of step_case.proof used in the main proof 168

9.2 The main proof 196

References 201

vni

Acknowledgments

We are especially indebted to Richard Waddell and Shane Hutton of the Johns Hopkins
University Applied Physics Laboratory for their help in discussions of issues raised in this
report. We are also grateful for the help given to us by Mark Bouler, Ivan Filippenko, Beth
Levy, David Martin, and Leo Marcus of The Aerospace Corporation.

IX

1 Introduction

The purpose of this report is to document a 1993 joint project between The Aerospace
Corporation (Aerospace) and the Johns Hopkins University Applied Physics Laboratory
(JHU/APL) to verify a portion of the Midcourse Space Experiment (MSX) spacecraft
tracking processor software (the target software) using SDVS. The project consisted of
three major parts: (1) enhancements to SDVS, primarily to the SDVS Ada translator and
to the SDVS proof language; (2) modifications to the target software required by the SDVS
Ada translator, and (3) proofs of and specifications for the modified target software.

Although we will give a very brief overview of the MSX software we are attempting to verify,
we assume that the reader is acquainted with [1]. Detailed accounts of the tracking proces-
sor design and software are given in [2] and [3]. The target software builds and processes
application-level messages from serial digital commands relayed from the command proces-
sor to the tracking processor. There are eleven types of application-level messages. One
of these, the data-structure memory-load application message (data-structure message, for
short), can modify up to 109 tracking parameters. At the present time only 61 of these 109
parameters are specified; the others are for future use. The number of commands that are
required to form a data-structure message is a function of the type of tracking parameter
that the data-structure message modifies. Once built, the data-structure message is stored
in EEPROM, RAM, or both. Our goal was to verify that the data-structure messages are
built according to their specification. The specifications for data-structure messages are
described in [4].

The MSX software is written in Ada and in 1750A assembly.1 The heart of the target soft-
ware consists of the three Ada tasks - BUILD, PROCESS.MSG, and MANAGEJVISG.RETRIEVAL
- in the package APP.MSGS, and the interrupt-driven Ada procedure CMDJN_HANDLER in
the package SERIAL-DIG.CMDS. When an interrupt occurs signaling that a command is
ready to be retrieved from a designated serial port, CMDJNJHANDLER services the interrupt
by retrieving the command and storing it in a command buffer. For an infinite num-
ber of times, if the command buffer is not empty, BUILD retrieves the command buffer,
constructs application-level messages from these commands, places them in a circular mes-
sage queue, and waits for a rendezvous with MANAGE.MSG.RETRIEVAL. Also for an infinite
number of times, if the message queue is not empty, PROCESS_MSG will rendezvous with
MANAGE_MSG_RETRIEVAL to retrieve and process a message from the message queue. It
stores data-structure messages in EEPROM, RAM, or both. As its name indicates, MAN-
AGE-MSG-RETRIEVAL synchronizes the other two tasks.

The three tasks and the interrupt-driven procedure are essentially four tasks. It is important
to note two facts: (1) the target software does not include a main program (or scheduler)
to execute the tasks and the interrupt-driven procedure, and (2) SDVS does not currently
handle Ada tasking. As a consequence, we translated the tasks into procedures and em-
bedded these procedures in a program specifying an order of their execution. However, the
translation of the tasks into procedures altered an important aspect of their executions;

1 We are focusing on the software written in Ada. SDVS has the capability to verify programs written in
a subset of 1750A assembly language as well, but this was not done in the current effort.

they could no longer be interleaved. Their execution as procedures, which is determined
by the program, is one of the many possible execution sequences for the tasks. But the
specification of the end result, namely that an infinite sequence of commands be processed
into a corresponding infinite sequence of messages, remained the same for both the original
and the modified MSX software.

Thus, Aerospace wrote the scheduler for the procedures that were tasks in the original
software. Furthermore, we had to alter these procedures in various ways; these changes are
explained in Section 4 and documented (statement by statement) in the actual modified
target software listed in Appendix A. Some of the changes are equivalent to the original MSX
code and some are not. We did not verify the correctness of the original code. However, we
verified certain properties of the modified code that should also describe the original code;
if the modified code did not satisfy the properties, then the original code would not have
satisfied the properties. As a pragmatic consideration, if the modified code had not satisfied
the properties, then, using the specifications, we could have constructed the appropriate test
cases to demonstrate that the original code is incorrect. There is a range of possibilities in
applying formal methods: e.g. formal specification and no proof, specification with hand-
proof, specification with automated proof, etc. The MSX application was intended to stress
our current SDVS capabilities by applying formal methods where possible, and it has been
very useful for this. We worked with about 1000 lines of Ada code and tried to keep the
modified version as close as possible to the original. The modified version of the code builds
and processes messages, but without concurrent processes and a few other Ada constructs.

Section 2 presents a chronology of the MSX verification project using SDVS. After selecting
the target software, we "walked through" the code to study it and itemize the Ada constructs
not handled by the SDVS Ada translator. We also analyzed the parts of the code that
interface with 1750A assembly language and the "intrinsic" functions supplied by the Tartan
compiler, which is used for the compilation of the MSX software. The walk-through and
the correspondence between Aerospace and JHU/APL were instrumental in the discovery of
two errors in the target software.2 After this initial phase of the project, we began the task
of verification. Our approach was to provide proofs of correctness for increasingly complex
situations. For our purposes, a correctness proof involves a program, a condition on its
input (the input condition), and a specification relating the input to the output (the output
condition). Complexity arose primarily from the generality of the scheduler and the type
of input allowed by the input condition.

Section 3 discusses the enhancements we made to SDVS for the verification project, and
Section 4 discusses modifications we made to the target software.

Section 5 presents some of the details of the proofs. The proofs appear in Appendix B. The
scheduler that we wrote for CMDJN-HANDLER, BUILD and PROCESSJMSG limits drastically
the executions it encompasses; that is, the situations that arise in these executions, although
possible, are really quite simple. For example, in every one of the allowed executions, the
message queue is either empty or contains exactly one message, and the command buffer
cannot be already full when another command is to be buffered. Thus, the message queue

2We note that at the time the errors were discovered, JHU/APL had not tested the code extensively.

can never overflow, and commands can never be lost. If there are any errors in the target
software, one would expect them to be in precisely these boundary situations. It is really
quite simple to write a scheduler that allows these boundary conditions to occur. We were
forced to write this simple scheduler, because a proof of correctness for a more general
scheduler would have been too difficult to construct in the time allotted for the one-year
verification project. However, we think it is possible in SDVS to prove correctness for more
general schedulers.

In Section 6 we discuss and present results from an approach involving the offline char-
acterization capability of SDVS, which we think would facilitate proofs of correctness for
more general schedulers. An approach to the verification effort using offline characterization
would also reduce the size of proofs and the storage required for them, probably allowing
the user to prove the correctness of the four large messages that we were unable to prove
because of storage and time considerations.3

Offline characterization allows one to prove in SDVS an adalemma for a subprogram of a
main program characterizing the results of the execution of the subprogram in a specific
environment. It is, in fact, a proof of correctness for the subprogram. Instead of symbolically
executing a subprogram when it is called in the SDVS execution of the main program, one
may apply the adalemma for the subprogram and bypass its execution. This approach saves
time and storage in a proof of correctness of a main program in which there are repeated
calls to the subprogram. It also has the advantage of modularizing long proofs.

Section 7 contains our conclusions on the 1993 MSX verification project using SDVS.

3This verification project ended in fiscal year 1993.

2 Chronology of the MSX Verification Experiment

In this section we highlight the chronology of the 1993 MSX verification project using SDVS.
We first note that many of the tasks constituting the project occurred throughout fiscal year
1993 and and some tasks were done concurrently. For example, the enhancements to SDVS
necessitated by the project continued throughout its duration, as was the fixing of SDVS
bugs not previously detected.

We first studied the documentation for the tracking processor software (reports [2], [3] and
[4]) and then looked at the actual code. In our walkthrough we examined 18 library units
that fell either in the area or on the periphery of our target software and noted the following:

(i) the library units and, specifically, the parts (targets) thereof needed in the building
or processing of data-structure messages;

(ii) the Ada constructs in the targets not handled by the SDVS Ada translator;

(iii) the targets whose bodies were written in 1750A assembly code; and

(iv) the nonstandard Ada function targets provided by the Tartan compiler (some of the
"intrinsic" functions).

The part of the MSX code we selected for verification was chosen partially because of its
importance to the MSX experiment as a whole. In the process of selecting the targets, we
had to select, for our purposes, two demarcation points in the software: the point at which
the input stream of commands begins and the point at which the writing of data-structure
messages to EEPROM ends. The first selection was easy: the input stream of commands
begins at the servicing of an interrupt by CMDJNJEANDLER.

The second selection was only slightly more difficult. PROCESS.MSG processes all application-
level messages. If the message is a data-structure message and is to be written in EEPROM,
it calls EEPROMJ}ATA.STORE_DATAJ5TRUCJN_EEPROM.
Although STORE_DATAJ3TRUCJN_EEPROM has an Ada body, this body repeatedly calls sub-
programs written in 1750A assembly. For this reason, we decided to consider that the mes-
sages have been written to EEPROM at the call to EEPROM_DATA.STOREJ)ATA-STRUCJNJEEPROM.

The walkthrough determined our real target software: the targets within the two points of
demarcation and any other part of the Ada code they required.

We partitioned the Ada constructs of item (ii) above into two groups: (1) those we would add
to the SDVS Ada translator, and (2) those we would replace by equivalent Ada constructs
(for example, hexadecimal literals by decimal literals) or simply replace by nonequivalent
constructs (for example, tasks by procedures). We then started to implement the constructs
in the first group into the SDVS Ada translator and made the appropriate modifications to
the code for the constructs in the second group.4

iThese are described in Sections 3 and 4 of this report.

In Section 4 we discuss the targets written in 1750A assembly and our handling of them.
In a few cases, we wrote simple Ada code for their bodies that altered their functionality.
For example, our version of the CHECK-PARITY function simply returns the boolean value
true, whereas the original function returns either true or false, depending on the parity of
the object to which it is applied. This change in the function alters the behavior of the
main program. However it does not alter the behavior of the main program under the
assumptions that all inputs have good parity, which is, in fact, one of our assumptions.

Common instances of calls to routines written in 1750A assembly language were calls to
MEMORY_MANAGER.CONV.TYPE to convert from one type to another. We substituted these
calls by explicit Ada type conversions: JHU/APL did not use these type conversions, be-
cause they were not handled properly by the Tartan compiler.

The actual MSX software is compiled at JHU/APL by the Tartan compiler. To test the
target code using the Verdix Ada compiler available at Aerospace, we wrote Ada programs
for the target "intrinsic" functions provided by the Tartan compiler: ANDJ, AND_WORD,
AND.BYTE, and ORJ. In the final SDVS correctness proofs, we characterized these func-
tions by adalemmas. We used the Verdix compiler to test our modifications for syntactic
correctness at every step of the modification process. In fact, we also tested several versions
of the original code by executing it with various inputs. These versions were not identical
to the original code because we replaced the routines that were written in 1750A assembly
language, and we provided bodies for the Tartan-supplied "intrinsic" functions. But, we
were able to test versions that were close to the original; for example, we were able to test
a version with the original tasks.

Once we made the modifications and added the capability to translate subtypes to the
SDVS Ada translator, we made our first attempt to translate and execute the target code
in SDVS. We were immediately beset by a great number of heretofore undetected bugs in
SDVS. SDVS had never been stressed with such a large Ada program before. We estimate
that more than half of our time on this project was spent in fixing bugs or in attempting
to deal with time and storage problems. As yet, the latter are not totally resolved.

After the bugs were corrected, we were able to complete a proof of correctness in SDVS
of a program processing exactly three commands. The scheduler first made three calls
to CMDJNJHANDLER, then a call to BUILD, and finally a call to PROCESS.MSG. The input
condition asserted that the input consisted of three commands encoding an "AP propagation
time" data-structure message to be written in EEPROM. The output condition asserted
that the message stored in EEPROM corresponded, in a manner stipulated by the MSX
documentation, to the input commands. Even for such a minor proof, the SDVS proof trace
was over 350 pages long.

We next completed the infseq-of-2-msg-types proof. Its input condition specified an input
consisting of an infinite sequence of blocks of commands, each block encoding one of two
types of data-structure messages: an "AP propagation time" message (message ID 10) or
a "filter loss of track rules" message (message ID 22). In an infinite cycle, the scheduler
called CMDJNJIANDLER precisely the number of times needed to retrieve the next block
from the input, then BUILD, and finally PROCESS_MSG. The output condition asserted that

for each block of commands in the input, there is a message in the output corresponding
to the input block in the manner stipulated by the MSX documentation. Furthermore, the
correspondence of blocks of commands to messages is one-to-one, onto, and order-preserving.

It would seem that infseq.of-2-msg-types could be trivially generalized to a proof whose
input condition specifies an input consisting of an infinite sequence of blocks of commands,
each block encoding any one of the 61 data-structure messages and whose output con-
dition is amended in the obvious way. (For future reference, we refer to this proof as the
uinf-.seq-of-61-msgJ,ypes''' proof.) However, our attempts to complete inf-seq-of-61-msg-types
were thwarted by the amount of time required for its completion: the system on which we
ran it never stayed up long enough to complete it. We estimated it would take at least
seven days for the proof to terminate.

The major problem is that in proving that the nth block of commands is processed correctly,
each of the 61 possible cases for this block must be considered separately (at least in our
approach). Each case adds to the execution time of the proof. One of our solutions was to
run many separate but similar proofs. In each proof we considered only a few of the cases
for the nth block of commands, proved that one case, and deferred the proof for the other
cases. But we ran into a problem. Because four of the messages were unusually long, the
correctness proof for each one of these messages required more storage than that allowed
by the SDVS image (about 70 megabytes) and even more storage than that allowed by the
SDVS image we created specifically for the MSX verification project (300 megabytes). We
were thus unable to verify the correctness for these four messages.

In our attempt to execute the infseq-of„61-msg-types proof, we had to implement three new
proof rules in SDVS: repeat, loop, and if. These were necessitated by the sheer size of the
proof and are discussed in the next section. As we said in the previous page, we were never
able to complete infseq-of-61-msg-types, because the system never stayed up long enough
for us to complete it. But we were able to complete 57 of the cases in separate proofs.

Towards the latter part of the project, we realized that many of our time and storage
problems would be solved if we proved adalemmas for some of the key subprograms in
BUILD and in CMDJNJEANDLER. We were able to complete adalemmas for two of the main
procedures in BUILD, and these are described in Section 6.

3 Enhancements Made to SDVS for the MSX Verification
Project

There are two main types of enhancements we made to SDVS for the MSX verification
project: enhancements to the SDVS Ada environment and the addition of three proof
commands not specific to that environment.

We first list and comment on the SDVS Ada environment enhancements. The first five in
the list are standard Ada constructs (see [5]), whereas the others are improvements to the
SDVS Ada proof environment.

(i) Integer subtypes:
One of the important aspects of the addition of integer subtypes to the Ada translator
is that an assignment to an integer subtype object is allowed by SDVS only if the value
assigned to the object is within the range of the subtype.

(ii) Integer definition types:
The restrictions on assignment are similar to those for integer subtypes: an assignment
to an integer definition type object is allowed by SDVS only if the value assigned to
the object is within the range stipulated by its type definition.

(iii) Type conversions:
These conversions are allowed only for integer numeric types (integer types and integer
definition types).

(iv) UNCHECKED-CONVERSION:
We have added UNCHECKED-CONVERSION only for integer numeric types.

(v) Length representation clauses:
These have been implemented only for integer numeric types. The length stipulated
for these types must be great enough to represent the type's stipulated range.

(vi) Markpoints:
These are used to mark Ada statements. We have added this marking capability to
SDVS to allow the user to go (execute symbolically) to a specific marked point in the
program. The user sets a mark in an Ada comment line just before the statement
being marked, using the notation "—@" (no spaces):

—© foo
x := 1;

During symbolic execution, this yields ".pc = at(foo)" (where "pc" is the program
counter) at the point where the state delta(s) representing the marked statement be-
come usable. Despite this fact, the user will not see "#pc = at(foo)" appear explicitly
in the postcondition of the previously appbed state delta. Any Ada statement can
be marked. Note that the marked program remains acceptable to an Ada compiler;
the marked points are treated as comments by Ada compilers. A mark can be turned

into a regular (uninterpreted in SDVS) comment simply by inserting a space between
the "—" and the "@", or by beginning the whole line with an extra pair of hyphens
(even a single hyphen will do, so long as it's not followed by a space).

(vii) adasubprogenv:
This query command is quite useful in connection with the Ada offline characterization
facility. It displays the mapping of fully qualified program names to uniquely qualified
place names for all places constituting the environment for the proof of an adalemma
about a subprogram.

(viii) Improved handling of Ada array constants:
The initialization of constant arrays in SDVS requires inordinately large storage and
is extremely time-consuming. We had to add special Lisp code to handle these initial-
izations. This addition is experimental and is not incorporated into SDVS 12. In our
proof, we load the file "array.constant.lisp" to perform the initialization of constant
arrays. These enhancements will be added to a future version of SDVS when the
implementation is more robust.

(ix) Bugs:
Some of the things we have been calling "bugs" were in fact restrictions on the SDVS
Ada translator of which we were not aware. For example, the translator did not allow
the following declaration in the package SERIAL_DIG_CMDS:

procedure RET_CMD_BUF_AND_STATUS
(Cmd.Buf : out CMD.BUF.TYPE;
Cmd_Status_Buf : out CMD_STATUS_BUF_TYPE;
Cmd_Count : out INTEGER;
FIFO_Not_Empty_Count : out INTEGER;
IO_Status_Word : out GLOBAL_TYPES.WORD;
Lost_Cmd : out BOOLEAN);

The reason was that the package also contained the object declaration
CmdJBuf : CMD_BUF_TYPE;
We removed limitations such as this as they arose in the course of the project.

In the course of our proofs, we realized that the addition of three new proof commands to
SDVS would obviate a lot of repetitive work. These three commands are loop, repeat, and
if. Since we have not tested them extensively, we have not added them to SDVS 12. These
commands enabled us to write a "meta-level" proof; instead of writing 57 subproofs for the
57 cases in the MSX proof, we wrote one meta-level proof for all these cases.

The loop command has the syntax "UNTIL <condition> WITH <proof-name>." It is effec-
tively a generalization of the go command, except that instead of simply executing apply
commands until <condition> is true, it repeatedly interprets (executes) the proof <proof-
name> until the condition is true.

10

The repeat command has the syntax "<proof-name> ITERATING ON <iteration-variable>
FROM <lower_bound> TO <upper_bound>." It allows the user to write a parameter-
ized proof (that is, a proof which involves the iteration-variable>) and then to execute
the proof <proof-name> successively with each value in the range from <lower_bound>
to <upper_bound> substituted for iteration-variable>. The formulas <lower_bound> and
<upper_bound> must simplify to integer values.

The if command has the syntax "IF <condition> THEN <proof-name>." This command
interprets the proof <proof-name> if <condition> is true, and does nothing otherwise.

11

4 Modifications to the Code

In this section we list the extensive modifications we made to the taTget software. The great
majority of these modifications were necessary either because the SDVS Ada translator
does not handle Ada tasking or because parts of the target software were written in 1750A
assembly. The entire program appears in Appendix A. We have marked every statement
that we deleted or replaced in the SERIAL.DIG.CMDS and APP.MSGS packages.

1. Ada with clause:
Our original intent was to implement the with clause into the SDVS Ada translator.
During our work on the design of the implementation, we realized the implementation
would take a great deal of time that would be better spent on the other Ada constructs,
since we could achieve part of the effect of the with clause by simply ordering the
packages in the main program in the "right" order. In many cases, if the with clause
were not used when needed in the original software, it would not be possible to compile
the packages. We do not claim that the way we dealt with this clause is not prone
to error. However, we don't think our solution allowed us to prove the correctness
of code (under the circumstances stipulated by our input condition) that was in fact
incorrect.

2. Ada tasks:
We have probably belabored this point: SDVS does not currently handle tasking.
We declared the tasks as procedures and deleted any Ada construct that is specific to
tasking. Thus, we deleted the simple loops in the three procedures that were originally
tasks as well as the pertaining exits. A simple loop requires an infinite execution of
its body, unless an exit in the loop intervenes. Thus, the purpose of a simple loop in a
task is to ensure that the task executes infinitely often. Once we changed a task to a
procedure and deleted the simple loop in its body, the procedure's infinite execution
could be ensured only by the scheduler we developed. We had to delete the simple
loops in these procedures, because otherwise, once one of these procedures was called
by the scheduler, it would never relinquish control of the execution to the others.
The scheduler now performs the function of the simple loops, that is, to execute the
procedures repeatedly.

We also deleted the exception handlers: they were used only for tests involving the
tasks.

We deleted calls to the Tartan-supplied ARTCLIENT that is used in the code to enter
and leave critical sections of the tasks and the interrupt-driven procedure.

3. Ada pragma:
We deleted all pragmas. As we noted in [1], pragmas are instructions to the compiler
and are generally not meant to change the semantics of an Ada program. In almost
all instances, the pragmas in the target software involved either tasking or interfacing
with the 1750A assembly code. (The pragmas we deleted are elaborate, priority, pack,
Foreign-Body, and Linkage-Name.)

13

4. INTRINSICS and INTRINSIC-FUNCTIONS:
We deleted all references to the Tartan-supplied INTRINSICS package. The INTRIN-
SIC-FUNCTIONS package consists of generic instantiations of generic functions appear-
ing in the INTRINSICS package. We characterized the instantiations we needed in the
target code (ANDJ, AND-WORD, AND.BYTE, and ORJ) by adalemmas.

5. Embedded calls to 1750A code:
We enumerate and comment upon the instances of calls to 1750A assembly subpro-
grams in target code.

• In CMDJN-HANDLER, a call is made to the ASM-UTILITY. CHECK-PARITY function
to obtain the parity of a command. We provided a trivial Ada body for the parity
function that always returns good parity (true). This solution is not entirely
satisfactory because it does not allow the possibility of checking the code to
determine what happens if a command does not have good parity. Our original
intent was to give an offline characterization of CHECK-PARITY, allowing the
possibility of returning false in certain cases. We did not have the time to do
this.

•

•

CMDJN-HANDLER services an interrupt indicating that there is a command to be
retrieved from the FIFO buffer. It obtains the command by the following call:

MEMORY_MANAGER.READ_FIFO(Cmd_In_FIFO_Addr,
Cmd_Unpacked'address,
Cmd_Size);

(MEMORY-MANAGER is written in 1750A assembly.) We chose this to be the
point at which the target code obtains input, and substituted the above call
to MEMORY_MANAGER.READ.FIFO by a "for" loop that gets four bytes for the
command from the standard input.

In PROCESS-MSG, a call is made to MEMORY_MANAGER.CONV_TYPE to assign
the value of New_App_Msg(2) (an integer) to Temp_Word_l (a word). The body
of CONV-TYPE is written in 1750A. We replaced this call by a type conversion:
Temp_Word_l := GL0BAL_TYPES.W0RD(New_App_Msg(2));

In MANAGE_MSG_RETRIEVAL, another call is made to MEMORY_MANAGER.CONV.TYPE
to convert each word stored by an array of words to an integer. We replaced this
call by the following Ada type conversion:

for index in 1 .. Num_Words_Curr_App_Msg Loop
App_Msg_Out(index) := INTEGER(App_Msg_Q(Q_Head)(index));

end loop;

Again, in CONTINUE.BUILD, a call is made to MEMORY_MANAGER.CONV.TYPE
to convert an integer to a word. We replaced this call by an Ada type conversion.

6. Hexadecimal Notation:
We have replaced all hexadecimal literals by equivalent decimal literals.

14

7. Two-dimensional arrays:
We have replaced all two-dimensional arrays with one-dimensional arrays of one-
dimensional arrays.

8. Ada others initialization construct:
Originally, we intended to add the others initialization construct to the SDVS Ada
translator, but we did not have time to do it. However, in every case it is used in the
target code, it is used to initialize arrays or records with values that are never actually
used within this code. We simply deleted these initializations. In SDVS, these objects
would simply have unknown symbolic values initially. Since nothing is known about
these values, nothing could be proved from the assumption that they are unknown.

9. Ada WRITELN and WRITESTRING:
We deleted all WRITELN and WRITESTRING constructs, which are not part of the
standard Ada definition but are accepted by the Tartan compiler. These constructs
appear in the target software for testing purposes only.

10. Ada POSITIVE type:
This predefined subtype is used in the package CMDS.TYPES. We replaced these oc-
curences by equivalent code. For example, we replaced the declaration

subtype INDEX.SUBTYPE is POSITIVE range 1..App_Msg_Max;

by the declaration

subtype INDEX.SUBTYPE is INTEGER range 1..App_Msg_Max;

11. Unconstrained array types:
There is one unconstrained array type, APP.MSG_OUT.TYPE, defined in CMDS.TYPES.
We redefined this type to be a constrained array type with the maximum range pos-
sible:

App_Msg_Max : constant INTEGER := 80;
—SDVS comment: The predefined type POSITIVE is not implemented in SDVS.
—SDVS delete: subtype INDEX.SUBTYPE is POSITIVE range 1..App_Msg_Max;

subtype INDEX_SUBTYPE is INTEGER range i..App_Msg_Max;—SDVS replace
—SDVS comment: SDVS does not currently handle unconstrained array types.
—SDVS delete (unconstrained array): type APP_MSG_OUT_TYPE is
—SDVS cont: array (INDEX.SUBTYPE rangeO) of INTEGER;

type APP_MSG_OUT_TYPE is array (1 .. App_Msg_Max) of INTEGER; —SDVS replace
Load_Msg_Max : constant INTEGER := 127;
type LOAD.MSG.TYPE is array (1..Load_Msg_Max) of INTEGER;

12. Array slices
In PROCESSJvISG, a slice of the array New_App_Msg is written to EEPROM by the
call

15

— Strip off New_App_Msg(l) which contains opcode,
— the contents of data structure (including checksum)is
— stored in New_App_Msg(2) thru (Data_Struc_Length+l).
—New_App_Msg(l..Data_Struc_Length) :=

New_App_Msg(2..Data_Struc_Length+l);
EEPROM.DATA.STORE_DATA_STRUC_IN_EEPROM

(New_App_Msg(2..Data_Struc_Length+l),
Data.Struc.ID,
Data_Struc_Length);

The slice is, in fact, the entire message. Since the SDVS Ada translator does not
handle array slices, we have replaced the above call by

EEPROM.DATA.STORE_DATA_STRUC_IN_EEPROM

(New_App_Msgs

Data.Struc.ID,
Data_Struc_Length);

The procedure STORE_DATA_STRUCJN_EEPROM, whose body we wrote, simply out-
puts the array slice from 2 to Data_Struc_Length + 1.

16

5 Proofs for an Infinite Sequence of Data Structure Mes-
sages

We have finished a proof that MSX_PROGRAM_FINAL_VERSION, a suitably modified version
of the original program, correctly processes infinite sequences of 57 of the 61 data-structure
messages. This section contains a discussion of the proof and Appendix B contains the
complete proof.

Before we discuss the proof itself, we must first note a few facts about input and output in
SDVS for Ada programs in general, and input and output in the
MSX_PROGRAM_FINAL_VERSION program in particular. We also describe the scheduler for
this program, i.e., its body, in the following section.

5.1 Preliminaries to program input and output

For each program translated by the SDVS Ada translator, SDVS declares two objects, stdin
and stdout, to be one-dimensional unbounded arrays of polymorphic type. Stdin is the
standard input array: every value input via a call to the function get is obtained from the
standard input array. The position in the array of the item obtained is determined by the
order of the calls. For example, if get(x) is the first call to get in a program, then object x
is assigned the value stored in stdin[l]. The standard input array is constant throughout
the execution of the program. The standard output array, stdout, has a similar function,
although unlike stdin it changes during the execution of a program when the function put
is called. In SDVS, assertions about the input or the output of a program are assertions
about the current values of the standard input array and the future values of the standard
output array.

In the design of the target software, a byte is eight bits long; a word is sixteen bits long; and
a command consists of two words. In the actual Ada code, bytes and words are represented
by integers constrained to specific ranges. Commands are represented either as arrays of
four bytes or as records with four fields, each field corresponding to one byte. Although
bytes (words) have an integer parent type, they encode sequences of zeros and ones that
are eight (sixteen) bits long. For example, if the integer value of the byte B is seven, then
B encodes (i.e., contains) the bit sequence < 00000111 >.

In the target software, CMDJN_HANDLER obtains a command by the call

MEM0RY_MANAGER.READ_FIF0(Cmd_In_FIF0_Addr,
Cmd_Unpacked5 address,
Cmd.Size);

CmdJJnpacked is an array of four bytes, and MEMORY_MANAGER.READJFIFO is a procedure
with a body written in 1750A assembly code. We have substituted this call by the following:

17

for i in 1 .. 4 loop

get(cmd_unpacked(i));

end loop;

Thus, every call to CMDJNJSANDLER gets four elements (bytes) from the standard input
array.

In the target software, PROCESS.MSG "writes" a message to EEPROM by the call

EEPROM.DATA.STORE_DATA_STRUC_IN_EEPROM

(New_App_Msg(2..Data_Struc_Length+l),

Data_Struc_ID,

Data_Struc_Length);

New_App_Msg, an array of words, is the processed message.

In our modified code, we have changed this call to

EEPROM.DATA.STORE_DATA_STRUC_IN_EEPROM

(New_App_Msg,
Data_Struc_ID,
Data_Struc_Length);

and decided to stop the message processing at this step.5 At this point, the message has
been built; we have changed the body of STORE_DATAJ3TRUCJN_EEPROM so that it simply
outputs the message as follows:

procedure STORE_DATA_STRUC_IN_EEPROH

in CMDS_TYPES.APP_MSG_OUT_TYPE;

in INTEGER;

in INTEGER) is

(Array_Of_Words

Data_Struc_ID

Data_Struc_Length

begin

for i in 2 .. Data_Struc_Length + 1 loop

put(Array_0f.Words(i));

end loop;

end STORE_DATA_STRUC_IN_EEPROM;

5 We decided to verify the load to EEPROM up to this point only, since the message has been built at
this point, and the machinery for the "write" to EEPROM has been initiated. The execution that follows
in the original MSX software shortly leads to the invocation of procedures written in 1750A code.

18

Thus every call to STORE_DATA_STRUCJN_EEPROM puts a message in the standard output
array, word by word.

Having discussed the points at which calls to get and put occur in the modified software,
we may now present the order of execution of the modified interrupt-driven procedure and
the modified tasks. The execution order is determined by the body of
MSXJPROGRAM_FINAL_VERSION:

begin
—0 loop_begin

loop
SERIAL.DIG.CMDS.CMD_IN_HANDLER;

for i in 2 .. APP_MSGS.RET_MSG_LENGTH(SERIAL.DIG.CMDS.RET_MSG_ID) loop
SERIAL.DIG.CMDS.CMD.IN.HANDLER;

end loop;
APP.MSGS.BUILD;
APP.MSGS.PROCESS.MSG;

end loop;

end MSX.PROGRAM.FINAL.VERSION;

Each iteration of this loop accomplishes four things. In order, they are as follows:

• The first command of the next message is read (call to
SERIALJDIG.CMDS.CMDJNJBANDLER).

• The remaining commands of the next message are read (for loop).

• The data for the newly read message are extracted and put into a new format con-
sisting of words (call to APPJVtSGS.BUILD).

• These words are output (call to APP_MSGS.PROCESS_MSG).

A property of this loop crucial to the proof is that it processes exactly one message block
on each iteration.

5.2 The correctness assertion for MSX.PROGRAM_FINAL.VERSION

The correctness assertion for MSX-PROGRAM-FINAL.VERSION is the state delta
infinite-sequencejdatastructure-messages.sd. It is the formal equivalent of the informal
correctness assertion "the Ada program MSX_PROGRAM_FINAL_VERSION correctly partitions
and reformats an infinite input stream of bytes into its constituent messages".

19

(defsd infinite_sequence_data_structure_messages.sd
"[sd pre: (formula(finale.sd),

formula(input_places_disjoint.sd),
formula(output_places_disjoint.sd),
ada(msx_program_final_version.a),
formula(checksum_first_k_bytes_message_n_definition),
formula(checksum_definition),
formula(msg_in_lh_definition),
formula(msg_out_lh_definition),
formula(msg_input_begins_at_definition),
formula(msg_output_begins_at_definition),
formula(allowed_message_ids),
formula(input_condition))

comod: (all)
mod: (all)

post: (formula(output_condition))]")

The first three formulas in the precondition of this state delta (finale.sd,
input-places-disjoint.sd, and output-places-disjoint.sd) are state deltas that are used in the
proof of infinitejsequence-datastructurejmessages.sd. Each of these three state deltas has
been proved in SDVS, and their proofs are included in Appendix B. Usually such state
deltas are written as lemmas and do not appear in the precondition, but these formulas
contain quantifiers and the current SDVS implementation cannot handle lemmas that con-
tain quantifiers. In normal circumstances, we would have simply proven these facts in the
same SDVS session with the main proof, but the way we conducted the final proof (ex-
plained in more detail later) meant that we would have had to run the proofs of these
state deltas (which take a significant amount of time) many times. Since we were already
concerned about the amount of time the main proof was going to take, we decided to prove
these once and include them in the precondition of the correctness assertion rather than
reprove them many times.

The next part of the precondition (ada(msx-program-finaLversion.a)) is a predicate that
corresponds to the program MSX_PROGRAM_FINAL_VERSION. The formula input-condition
in the precondition specifies the input condition for this program: it depends on the formu-
las checksum-first-k-bytes-message-Ti-definition, checksum-definition, msg-inJh-definition,
msg-outJh-definition, msgJnput-begins-at-definition, and allowed-messageJds. The formula
output-condition in the postcondition specifies the output condition: it depends on the for-
mulas msg-outJh-definition and msgJnput-begins-at-definition.

The formula allowed-message-ids and those formulas whose names end in -definition are used
in the correctness assertion only to help define the input condition and output condition, and
are strictly speaking unnecessary: that is, we could have written the correctness assertion
without them. We feel, however, that they aid greatly in simplifying the proof and in
making it understandable. In the next two subsections, we will discuss first the formulas
used in the input condition, and then the formulas used in the output condition.

20

5.2.1 The input condition

In this subsection we will discuss in detail the input condition for the program. As mentioned
earlier, the main formula used to specify the input condition is the formula input-condition
below (this formula is taken directly from page 146 in Appendix B).

(defformula input.condition
"forall x (forall z (x ge 1 —>

; The first byte is always 1
((z = 1 —> .stdin[msg_input_begins_at(x) + (z-1)] = 1) &

; The second byte is always 2

(z = 2 —> .stdin[msg_input_begins_at(x) + (z-1)] = 2) &

; The third byte is the message identifier

(z = 3 —> .stdin[msg_input_begins_at(x) + (z-1)] = msg_id(x))

; As for the remaining bytes...

((4 le z k z le msg_in_lh(x)) —>

; If it's the first byte of a command, it's an eight

((z mod 4=1 —>

.stdin[msg_input_begins_at(x) + (z-1)] = 8) &

; Otherwise, we only know it's a byte

(z mod 4 "= 1 —>

is.byte(.stdin[msg_input_begins_at(x) + (z-1)])))) &

; First checksum byte is the high bits of the checksum word

; for message x

((z = ((8 * msg_out_lh(x) - 2) / 3)) —>

.stdin[msg_input_begins_at(x) + (z-1)] =

high.bits(checksum(x))) k

; Second checksum byte is the low bits of the checksum word

; for message x

((z = ((8 * msg_out_lh(x) +2) / 3)) -->

.stdin[msg_input_begins_at(x) + (z-1)] =

low.bits(checksum(x))))))")

This formula (in conjunction with other formulas) specifies an infinite sequence of data
structure messages: the embedded comments show how it corresponds to the informal
specification of a data-structure message given in [1]. Examination of this formula reveals
that it depends on the macros is.byte(x), high.bits(x), and low.bits(x), and on the functions

21

msgJnput-begins-at, msgJnJh,msgJd, and checksum. We will first explain the macros,
then the functions msg-input-begins-at, msg-inJh, and msg.id, and finally the function
checksum. In the course of explaining these functions (and other functions used to define
them), we will explain all of the functions in the precondition.

First the macros. The macro is.byte(x) is true when x is between 0 and 255, inclusive, false
otherwise. The macros high.bits(x) and low.bits(x) are used to represent the most and least
significant eight bits of a word, respectively.

We will now discuss those functions used in the input condition. To clarify the following
discussion, we have provided Table 1, which illustrates the values of the functions for a
message sequence whose first three messages in order have identifiers 22, 10, and 1. All of
the constituent bytes of the first two messages, and the first six of the third, are shown in
Table 1. This table also includes a condensed display of the nth message to illustrate the
values of these functions for input value n.

The function msg-input-beginsjat plays an important role in specifying the input. As the
name suggests, the value of this function at x is the location of the byte where the xth mes-
sage begins. Thus the first byte of the zth message is .stdin[msg-input JbeginsMt(x)], the
second is .stdin[msgJnput-beginsjat(x) + 1], etc. This function is defined in the following
way:

(defformula msg_input_begins_at_definition
"forall x (msg_input_begins_at(l) = 1 &

((x gt 1) —>
(msg_input_begins_at(x) =

msg_input_begins_at(x-l) + msg_in_lh(x-l))))")

This definition is based on the observation that the first byte of the 2th message is one
plus the sum of the lengths of the preceding messages. We can see this by expanding the
definition above at x:

msg-input-beginsjat(x) —

msg-input-beginsjat(x — 1) + msgJnJh(x — 1) =

[msgJ,nput-begins-at{x — 2) + msgJnJh(x — 2)) + msgJnJh(x — 1) =

(. • -((1 + msgJnJh(l)) + msgJnJh{2)) + ... + msgJnJh(x — 2)) + msgJnJh(x — 1)

The function msg-inJh used above is defined in the formula msg-inJh-definitionoii. page 142
in Appendix B. This definition is based on the specification of the message input lengths
as determined by the message identifier. The formula msg-inJh-definition employs the
function msgJd(x), which as we can see from the formula input-condition above, returns
the same value at x as the message identifier for message x (i.e., the third byte of message
x). An important part of the input condition is the formula allowed-messageJds (given on

22

Table 1: Example Input Sequence

Byte Value
Block 1 1 (= msgJ,nputJ)egins-at{l)) 1

2 2
3 22 (= nw0_td(l))
4 di,i
5 8
6 d\,2
7 high.bits(checksum(l))
8 low.bits(checksum(l))

Block 2 9 (= msg-input Jbegins.at(2)) 1
10 2
11 10 (= msg-id{2))
12 «fe,i
13 8
14 ^2,2
15 ^2,3

16 ^2,4
17 8
18 high.bits(checksum(2))
19 low.bits{checksum{2))
20 spare

Block 3 21 (= msg-input Jbegins-at(d)) 1
21 2
22 1 (= m-s#_id(3))
23 ^3,1
24 8
25 ^3,2

; :

Block n msgJnputJbegins-.at(n) 1
msg-input-begins jxt{n) + 1 2
msg-input-beginsjxt{n) + 2 ms(7_zd(7i)
msg-input-beginsjxt{n) + 3 dn,i
msgJ,nputJoegins-at(n) + 4 8
msg-input-begins jxt{n) + 5 ^n,2

|
msg-input-beginsjat{n) + msgJnJh(n) — 1 low.bits(checksum(n)) or spare

Block n + 1 msg-input-begins-at{n + 1) 1

23

page 141 of Appendix B), which constrains the value of msgJd(x) (and hence the third
byte of message x) to be a legitimate message identifier.

Finally, the function checksum (defined on page 146 in the Appendix) represents the
result of the program's calculation of a message's checksum. This function is defined
with the help of two other functions: sdvsjxorjword(x, y), which corresponds to the Ada
XOR_WORD(X,Y) function; and checksum-first-kJ>ytes-message-n(n,k), which uses the
sdvs-xorjword function and represents the result of the checksum calculation on the first
k words of the nth message.

The position of the checksum bytes is given in the formula input-condition in terms of the
function msg-OutJh. This function and the function msg-output-beginsjat are defined for
output in the same way that are msg-inJh and msg-input-beginsjat are defined for input.
We will discuss msg-outJh and msg-output-beginsjat in the next section.

5.2.2 The output condition

The output condition for the correctness assertion is given by the formula output-condition
below:

(defformula output _cond.it ion
"x ge 1 —> (forall z ((llez&zle msg_out_lh(x))

—> #stdout[msg_output_begins_at(x) +(z-l)3
= mk.word(.stdin[msg_input_begins_at(x)

+ ((8 * z - 5) / 3)],
.stdin[msg_input_begins_at(x)

+ ((8 * z - 1) / 3)])))")

This formally expresses the relationship between the input and output given informally
in [1], which in brief may be stated "the output for a message is obtained by extracting
the actual data bytes from the input for that message and forming them into words".
This formula depends on the macro mk.word and the functions msg-outputJbeginsjat and
msg-out-lh. The macro mk.word(x,y) is a function that gives the integer value of a word
whose high bits are the byte x and whose low bits are the byte y. This macro is used to
capture succinctly the operation of "...forming them into words", given in the quotation
earlier in this paragraph.

As indicated earlier, the functions msg-output-beginsuat and msg-outdh (denned on pages
145 and 144, respectively) are the analogues of msg-input-begins-at and msg-inJh for
output. As with the input condition, for clarification we include a table (Table 2) of the
output for the input given in Table 1. Comparing Table 1 and Table 2 shows that the
input and output for the example sequence do in fact have the relationship stated in the
quotation in the preceding paragraph, with the last word of the output for message n being
the checksum for that message [i.e., checksum(n)].

24

Table 2: Example Output Sequence

Word Value
Block 1 1 (= msg-Output-begins-at(l)) mk.word(2,22)

2 mk.word(di^i, 0^1,2)
3 checksum(\)

Block 2 4 (= msg.outputJ>eginsjit(2)) mk.word(2,10)
5 mk.word(d2,i,d2,2)
6 mk.word(d2ß, ^2,4)
7 c/iecA;3«Tn(2)

Block 3 8 (= msg.output-beginsjat(3)) mk.word(2,1)
9 mk.word{dz,\i ^3,2)
; ;

Block n msg-outputJbegins-at(n) mk.word{2, msgJd(n))
msg.outputJbegins->at(n) + 1 mk.word(dn>i, dn^)

msgjinputJbeginsjat(n) + msg.outJh{n) — 1 checksum{n)
Block n + 1 msg-input J}egins.at{n + 1) mk.word(2, msgJ,d{n +1))

; ;

5.3 The proof of infinite_sequence_data_structure_messages.sd

In this subsection we will talk about the proof of the state delta
infinitesequence-datastructure-messages.sd. We will present here the proof given in Ap-
pendix B (which is there presented in a "bottom-up" fashion) in a "top-down" style, pro-
ceeding from a high-level view of the proof through increasing levels of detail.

As we have mentioned before, MSXJPROGRAM_FINAL_VERSION has an infinite loop as its
main body. Our proof strategy in the proof of infinitesequence-datastructure-messages.sd
(main.proof on page 197 of Appendix B) is to execute symbolically to the beginning of
this loop and to then use loop induction. As is typical with loop induction, we chose a
loop invariant weak enough to be proved after symbolically executing through the loop, but
strong enough to imply the goal when the induction was finished. In our case, the invariant
of the loop induction is the following:

comment "Starting induction.

induct on:
from:

n
1

25

to: x + 1

invariants:

(

;Needed for covering information

pcovering(.msx_program_final_version,old_universe),

;Variable values

.build_in_progress = false,

.cmd_count = 0,

.lost_cmd = false,

.app_msg_counter = 0,

;Queue variables and bounds

.q_head

= 1 + .q_tail mod .app_msg_q_size,

.q_head ge origin(app_msg_q),

.q_head

le (origin(app_msg_q) +

range(app_msg_q)) - 1,

.q_tail mod .app_msg_q_size + 1

ge origin(app_msg_q),

.q_tail mod .app_msg_q_size + 1

le (origin(app_msg_q) +

range(app_msg_q)) - 1,

;State delta at beginning of loop

formula(loopsd),

;Input/output counters are where they should be

msg_input_begins_at(n) = .stdin\ctr,

msg_output_begins_at(n) = .stdout\ctr,

;Output condition is true after execution of loop when

;n = x. This is stated in this way due to efficiency

;considerations (i.e., the more straightforward way

;introduces many new places - see report for more details)

n = x + 1 —> formula(output_condition))

26

The crucial formula in the invariant above is the last one. When the loop induction is
completed, the upper bound of the loop x + 1 is substituted for n in this formula, and thus
x + l = x + l-+ formula(output-condition) is true after the induction is finished.lt is
then easy to proceed to the proof of formula(output-condition). Instead of this formula,
we originally tried f or rnula{putput-condition) with n substituted for x, but we found that
using this in the invariant caused the prover to slow down significantly and we aborted the
proof before it finished.

Whenever SDVS encounters a new place, it must add information to its database about
whether changes to that place cause changes to any of the places already in the database.
Both the operation of adding a new place to the database and the operation of checking
to see what other places are affected when a given place is changed can be time-consuming
when there are many places and some of the places are not known to be disjoint, i.e., changes
to these variables may cause changes to other variables. Using f or mula{output-condition)
with n substituted for x in the invariant of the induct command introduced elements of
stdin and stdout that are not necessarily disjoint from elements of these arrays introduced
earlier in the proof (specifically, via the postcondition of the correctness assertion, which
is simply formula(output-condition)) and thus was responsible for the proof proceeding
slowly. The formula we actually used avoids this problem, as it contains exactly the same
elements of stdin and stdout as formula(outputucondition).

As with any loop induction, there is a base case and a step case: these are handled in the
main proof above by base-case.proofa.nd step-case.proof, respectively. The base case proof
is short and straightforward, as most of the goals are automatically proved by SDVS. The
step case is proved by doing a case split on all possible values of msgJ,d(n), and then using
the same meta-level proof every-case.proof'in each case . Aided by the new proof commands
loop, repeat, if (described in an earlier section) and letq (which allows quantified formulas
to be given more meaningful names), we were able to write such a meta-level proof because
of the similarity of the proof for each case.

After system crashes thwarted our attempts to complete the week-long proof, we decided
that the full proof would be done in a number of separate SDVS runs rather than a single
run. This was by done using different versions of step-case.proof (these begin on page 168 of
Appendix B) when running the main proof. Each of these versions carries the proof through
only for certain message identifiers and defers the cases for other message identifiers. For
example, the first version of step-case.proofproves correctness for the case msg-id{n) = 1
and defers all the other cases. These versions cover all possible cases except for message
identifiers 53, 54, 55, and 56. The messages with these identifiers are all substantially longer
than any of the other messages, and because of the structure of the meta-level proof, the
time and space requirements for each case vary directly with the length of the message
treated in that case. SDVS ran out of storage when we tried to run proofs of these cases,
in spite of efforts such as increasing the amount of space in the SDVS image and modifying
the way in which garbage was collected.

In the proof every-case.proof, each case is further split into two cases, one in which n is less

27

than x and one in which n is equal to x. Although this split entails symbolically executing
through the loop twice, this proof was much faster than any that did not involve the case
split. The reason for the slowness of the proofs without a case split is essentially the same
as the reason (mentioned a few paragraphs ago) for the slowness of the proof with the
original invariant: namely, in those proofs without the case split, the prover was not able
to recognize the disjointness of various elements of stdin and stdout.

Both of these cases in every.case, proof have a common part:

interpret produce_input_information,
interpret go_to_return_from_call_to_ret_cmd_buf_and_status,
interpret fix_array.values_after_call_to_ret_cmd_buf_and_status,
interpret handle_intrinsics_until_end_of.program,
interpret finish_off_non_output_goals,

The above proof commands accomplish the following:

• Instantiate the formula input-condition for the appropriate range of values to provide
information about the current message's input needed to execute symbolically through
the loop, e.g. instantiate input-condition with 3 to inform SDVS that the third byte
equals the message identifier (produce-input-information);

• Symbolically execute until the end of the procedure RET_CMD_BUF-AND_STATUS and
then execute notice and consider commands to "remind" the prover of values that
occurred in an array assignment (go-to-return-from-calLto-ret-cmd-buf-andstatus and
fix-array-values-after-calLto-ret-cmd-buf-and-Status);

• Symbolically execute until the beginning of the loop is reached
(handk-intrinsics-untiLend-of-program);

• Prove all of those goals generated by the induct command that do not have to do with
the output condition (finish-off-non-output-goals)

In the case where n is less than x, we also interpret the proofs separateJnput-places and sep-
arate-output-places before the common part of the proof given above. These proofs provide
SDVS with enough information to deduce that the problematic places that necessitated the
case split are disjoint. In the other case (where n is less than x), we interpret the proof
finish-off-output-goal to prove the goal generated by the induct command that involves the
output condition.

The central part of every-case.proof is the subproof handleJntrinsics-untiLend-of-program.
Stripped of comments and timing commands, this proof is simply the proof command

28

loop until formula(loopsd) with loop_body

Thus this subproof interprets the subproof loopJbody until formula(loopsd) is true, i.e.,
execution reaches the beginning of the loop. The proof loopJbody symbolically executes
until (1) the call of an intrinsic function, (2) after the call to MANAGE_MSG_RETRIEVAL, (3)
at the program label after-checksurn-calculation, or (4) at the beginning of the loop. When
(1) occurs, we apply an adalemma for that Ada function. At (2), we again need to "remind"
SDVS of lost array values. For (3), we have to prove that the checksum calculation yields
the same value as the word formed from the checksum bytes. When (4) is true, the symbolic
execution of the loop is finished, the interpretation of handle-intrinsics-untiLend-of.program
is finished, and we proceed to proving the goals.

This concludes the discussion of the proof of the correctness assertion. More detail about the
proof is contained in Appendix B. It should be noted that in some sense, this proof proceeds
by "brute force." By this we mean that rather than symbolically execute through the loop
once and have a proof that takes into account the multiple computation paths through the
loop for the different messages, we simply split it up into cases such that there is exactly
one computation path (and hence a simpler, in fact a meta-level proof) for each case.
Thus the way we have chosen to prove the correctness assertion involves many relatively
simple proofs, each of which involves symbolically executing through the loop (and is thus
time-consuming), rather than a single, more complicated proof that symbolically executes
through the loop once.

One way to improve upon the approach in this section is to use adalemmas for the various
procedures in the program. This approach is explored in the next section.

29

6 Adalemmas for the BUILD task.

6.1 Why adalemmas?

Adalemmas are in essence a special type of state delta that can replace a subprogram call
during symbolic execution of the main program. Normally symbolic execution proceeds
through the point of a call to a subprogram into the code of the subprogram itself. If,
however, an adalemma for the subprogram has been proved, it can be invoked, and, in one
step, symbolic execution moves ahead to the return from the call. The adalemma should
express all the significant changes to the program state that might result from execution
of the subprogram, so that it is irrelevant to the larger proof in progress whether the
subprogram code was executed or the adalemma was invoked. Further, the postcondition of
the adalemma would normally provide descriptive information about what the subprogram
has accomplished that would otherwise have to be proved during symbolic execution of the
subprogram code. For example, an adalemma for a sorting procedure might include in its
postcondition a quantified statement asserting that the output array is sorted. Finally, if a
subprogram is called at several places in a program, invocation of the adalemma replaces
several possibly lengthy symbolic executions of the subprogram code. Thus, adalemmas
offer significant efficiencies in symbolic execution.

However, efficiency is neither the only nor the most important consideration. The main
purposes of adalemmas are as follows:

(1) To provide a vehicle for expressing and proving abstract properties of a subprogram.

(2) To permit modular construction of proofs for programs.

(3) To enable specifications to be stated within the scope of program declarations.

We shall briefly discuss each of these points.

(1) Program specifications are often stated for sections of programs, rather than for an entire
main program. This is true for reasons of manageability, conciseness, intelligibility, the fact
that program specifications are usually better stated for subprograms, and sundry other
considerations. In the case of the portions of the MSX code under consideration in this
project, a high-level specification might involve the behavior of interacting asynchronous
tasks; it is unclear whether or how formal verification can address the timing considerations
involved, so we are led to specifications for individual tasks. The typical situation is that
one has a specification either for a subprogram or for some programming unit that can be
recast as a subprogram for the purposes of formal verification. Adalemmas in SDVS are
expressly designed to meet the needs of this situation.

Further, specifications for programs are usually set up with a considerable degree of ab-
straction. A program with a completely concrete specification and set of inputs can be
verified merely by testing; there is no need for formal methods. But in the usual situa-
tion of infinitely many possible inputs, the specifications are necessarily either abstract or
incomplete. Adalemmas facilitate the abstract statement of specifications for subprograms.

31

(2) Just as good mathematical proofs are usually developed through a series of lemmas and
subsidiary arguments, and good programming style calls for structured and modularized
code, so program verification requires modularization. Without this, proofs of any but the
simplest programs become mired in a mass of detail, overwhelming the user and defying
comprehension. Adalemmas make it possible to avoid such situations, and to build up
proofs for complex programs in a step-wise fashion.

(3) Adalemmas enable specifications to be stated within the scope of program declarations.
Without adalemmas, the claim of correctness of a program with respect to its specifications
(which as always with SDVS is formulated as a state delta to be proved) must be formulated
outside the scope of the program declarations. This is not without its merits, because
then the program is treated as a "black box," and the verification covers the declarations
in the code as well as the program structure. However, this makes it difficult to state
things abstractly, since all parameters involved in the specification, possibly including large
collections of constants, have to be asserted in a setting-up phase of the proof preceding the
symbolic execution of the program. On the other hand, an adalemma can be formulated in
a context in which reference to the program declarations is possible, because all declarations
and initializations are automatically generated by the translator; this facilitates abstract
treatment and usually increases the generality of the resulting proof.

This point is perhaps easier to see if we examine some of the earlier verification efforts
with SDVS, prior to the availability of adalemmas. One of the first examples was a sorting
procedure. Since the specification could not be stated for the procedure alone, it had to
be stated for an enclosing main program that would actually test the procedure. This
program would read in an array, call the procedure, and write out the result. The proof
had to contain an induction for the input loop, and a second induction for the output
loop, as well as quantified statements expressing the connection between the internal SDVS
data structures and the stdin and stdout arrays. All of this really had nothing to do with
verification of the target procedure, and obfuscated the proof. None of this was necessary
once the adalemma facility was introduced.

As mentioned above, there are some conceptual advantages to treating the whole program
from the outside—the proof isn't dependent upon the declarations—but it is arguable that
declarations are neutral from the point of view of verification. There might be a mistake in
program declarations that a "from the outside" proof would detect. But there could just
as easily be a mistake in the part of that proof containing the assertions that correspond to
the internal declarations. In the end, the (human) verifier must compare the printed speci-
fications with the encodings, whether in the proof or the program text. Unlike declarations,
the links between the detailed program structure and the specifications of functionality are
relatively obscure, so formal verification has something to offer.

32

6.2 A proof strategy for BUILD

6.2.1 The BUILD process

In this section we give a reprise of the BUILD task. We assume general familiarity with
the code, and our purpose here is merely to give an overview of BUILD to facilitate our
description of a verification strategy. Tables 1 and 5 in [1] should illuminate parts of the
discussion.

The BUILD task consists mainly of a nonterminating loop. At the beginning of the loop, some
(0 or more) commands which have been received are placed in APP_MSGS. CMD_BUF by a call
to SERIAL_DIG_CMDS.RET_CMD_BUF_AND_STATUS. The loop simply repeats if there are no new
commands. Eventually, there will be some new commands, so the effect is essentially the
same as if we regard each call to SERIAL_DIG_CMDS.RET_CMD_BUF_AND_STATUS as retrieving
at least one command. BUILD processes one command at a time, i.e., per iteration, and
for practical purposes we can view the incoming commands as an infinite stream. Each
command has four bytes, the first byte indicating the type of command, and the remaining
three containing the data. The commands supply raw data; the stream of commands must
be parsed and the data repackaged into application messages meaningful to other modules
of the tracking processor. This parsing and repackaging process is the function of the BUILD
task. BUILD assembles incoming data in an internal buffer (the App_Msg array), and when
a complete message has been constructed, it copies this into a FIFO queue of messages,
the App_Msg_Q. Messages are removed from the App_Msg_Q by the task MANAGE_MSG_RETRIEVAL
and passed to the task PROCESS_MESSAGE.

In this section we focus on the message-building process, independently of the interrupt-
driven command reception process or the subsequent message retrieval and processing. That
is, we are concerned solely with the BUILD task. The central aspect of this is to show that if
the input stream of commands provides a correctly constituted message, then that message
is eventually assembled by BUILD and placed in the App_Msg_Q. There are numerous other
points that would merit verification, e.g. the handling of erroneous input, but in this report
we restrict ourselves to verifying the basic functionality (assuming error-free input).

A command has four bytes. The first byte is a code indicating the type of command.
Many op codes signify the type of message being initiated, and a few are used to identify
the command as a continuation command for a previously initiated message. In the case
of Data_Struc_Load messages, the op code of the initiating command is 1, while code 8
(Data_Load_Cmd) is used for the succeeding commands in this message type. Some types
of messages are completed by only one command, i.e, they have at most two actual data
bytes besides the op_code, and others require several commands to convey enough data for
a complete message. We are here primarily interested in the latter type, and in particular,
the Data_Struc_Load messages. These have op_code 1 and continuation code 8, and come in
many sizes. The second byte of a Data_Struc_Load message contains information relating
to the ultimate disposition of the message, but is not used in the build process. The third
byte of a Data_Struc_Load message contains a messageJd; associated with each message .id
is a specific length for the message.

33

Let us consider the bytes of a message as being numbered sequentially. The first command
for a message contains bytes 1 through 4, and each succeeding command supplies three more
message bytes (the high-order byte of these four-byte commands contains the continuation
code). The message bytes from the commands are copied and repackaged into an array of
words, which is considered the message itself.

The code has two tables of constants:

TRKING_DATA_STRUC .Words_For_Data_Stmc, providing the actual number of words needed
for a message, and

Cmds_For_Data_Struc, providing the number of commands required to convey the mes-
sage.

The messageJd is the look-up index for both tables. Note that each command provides
three bytes for a message, each word of a message holds two bytes, and the first message
byte (the op.code) goes in the second byte of the first word. An n-byte message requires
(n — l)/3 commands and (n + l)/2 words.

Most of the work of the BUILD task is accomplished by two procedures, INITIATE_BUILD and
COHTINUE_BUILD. INITIATE_BUILD is called when a message-initiating command is received.
It determines what type of message is to be built. In some cases, the entire message is avail-
able from the first command, so INITIATE_BUILD sends it directly to the App_Msg_q. Other
types of messages (Data_Struc_Load, RAM_Mem_Load, EEPROM_Mem_Load, Mem_Dtimp_X_Frames,
and Chg_Monitor_Loc) require more than the four bytes available in the first command,
so INITIATE_BUILD sets the Build_In_Progress flag to true, and puts the bytes of the first
command into the App_Msg intermediate buffer. Each of the message types involves its own
unique processing steps at some point, but we have decided to focus on the Data_Struc_Load
messages (data-structure application messages) because they are critical to the mission and
their length generally requires "building," so they provide a good example of the functioning
of most parts of the BUILD task.

CONTIHUE_BUILD is called when Build_In_Progress is true, and appends three more bytes to
the message being built in the App_Msg buffer. In addition, if this is the last command with
data for the current message, CONTINUE_BUILD copies the App_Msg to the App_Msg_Q, and then
sets BUILD task global variables as required to reset the build process in preparation for the
next message.

The following is a summary of the control flow for BUILD:

Start at loop beginning with some commands in Cmd_Buf

Call Initiate_Build to process the first command:

Assume a DataJ>truc_Load message.

Cont_Cmd < Data_Load_Cmd

Determine Num_Cmds_For_App_Msg, and Num_Words_For_App_Msg

via table look-up.

34

Copy bytes 1 through 4 of the command into App_Msg(2. .4).
Cmds_Rcvd < 1
Build_In_Progress < True

While Cmds_Rcvd < Num_Cmds_For_App_Msg - 1:

Call CONTINUE_BUILD to add the last three bytes of a
continuation command to the message being built in the
App_Msg buffer.

Call CONTINUE_BUILD for the last command for this message, to

Add the last three bytes to App_Msg,
copy the completed application message from App_Msg to
the App_Msg_Q,
reinitialize task globals.

Many details have been omitted from this summary, but this is the general idea of the control
flow. Our summary is intended to convey only the actual order of execution, not the precise
syntactic structure of the program. In particular, there is no while-loop as shown in the
summary; instead, almost the entire task consists of a single loop that extracts a command
from the Cmd_Buf, then calls either INITIATE_BUILD or CONTINUE_BUILD depending on the
value of the Build_In_Progress flag. CONTINUE_BUILD may be called even for a command
that is not a continuation command; for example, a No_op_Cmd may be interspersed at any
point during the stream of commands for some application message, and CONTINUE_BUILD
will write it directly into the App_Msg_q, but not abort the build in progress.

6.2.2 Proof strategy

As noted, SDVS does not currently support tasks. Indeed, problems of interaction between
asynchronous concurrent tasks are generally intractible, and one should probably not expect
any formal program-verification system within the current state of the art to deal with all
aspects of such problems. However, it is certainly possible to formulate and prove meaningful
statements about tasks. We shall outline a verification approach to the BUILD task.

BUILD is supposed to copy bytes from the Cmd_Buf, which are packaged as three bytes per
command, and reassemble them into messages, with the completed message placed in the
App_Msg_Q. This process is complicated by the facts that the Cmd_Buf need not contain
at any one time a sufficient number of commands to complete a particular message, and
that No_op commands may be interspersed with commands continuing some other mes-
sage. We will deal with the latter complication by assuming that there are no No_op
commands, and with the former by assuming that as a result of the call by BUILD to
SERIAL jnG_CMDS.RET_CMD_BUF_AND_STATUS, the Cmd.Buf contains enough messages to com-
plete a message. The more general situations are probably not intractable for SDVS, but
they are more than is appropriate for this first attempt at verification of BUILD.

Consider the beginning of the "for" loop in the BUILD task. A state delta expressing the
essence of what this part of BUILD does should express the following:

35

Assume that control is at the beginning of the "for" loop, that the first command
in the Cmd_Buf, namely Cmd_Buf (1), is the first command of a Data_Struc_Load
message, and that Cmd_Count is large enough that the complete message is con-
tained within the commands in the buffer, i.e.,

.cmd_count ge .cmds_for_data_stmc[.record(cnid_buf[i],third_byte)]

Then at a future time, control will again be at this point and the message will
have been built and copied into the App_Msg_Q.

The state delta would include other information, such as the new values of variables, and
the "future time" would be precisely specified.6

Some changes in the program syntax are necessary to accomodate SDVS and what we want
to do. In the first place, SDVS does not handle tasks, so the BUILD task must be converted to
a procedure. Secondly, we are interested in proving something about an internal fragment
of BUILD, the "for" loop, so we must find a way to facilitate this within the requirements
of SDVS. Enhancements of SDVS to permit proving lemmas about fragments of code are
under consideration, but not yet in place. However, SDVS does have the ability to prove
adalemmas about procedures. Any fragment of code which is a sequence of executable
statements can be converted to a procedure call by the following artifice: Given a fragment
of code

—Start of code fragment

—End of code fragment

replace it by

DECLARE
PROCEDURE Fragment IS

BEGIN

—Start of code fragment

6 A more elaborate treatment could drop the assumption that all the necessary commands were in the
Cmd_Buf, and would consider conditions at the beginning of the outer main loop, instead of the inner "for"
loop. In the actual implementation, commands are obtained asynchronously using hardware interrupts. Our
test programs replace this by a simple call to "get," so the pending commands can be referred to as in the
stdin array. Then the action of the routine SERIALJ)IG_CMDS. RET_CMD_BUF_AND_STATUS would be described
as simply returning one or more commands from the input stream. Although all this seems feasible and not
inordinately complicated, we believe the simpler form chosen above to be satisfactory for a first step.

36

—End of code fragment

END Fragment;
BEGIN

Fragment;

END;

The result is essentially equivalent to the original code.7 Whatever one may have wanted
to prove about the original code fragment may now be formulated as an adalemma about
the procedure Fragment. This adalemma can then be used in proofs about larger, enclosing
procedures.

In the present case, we propose to prove a suitable adalemma for the "for" loop that is part
of the BUILD procedure. Such an adalemma could then be used as an aid in proving other
adalemmas about larger parts of BUILD.8

The main elements of the "for" loop are calls to INITIATE.BUILD and C0NTINUE_BUILD. Our
first steps are therefore to develop and prove adalemmas for these two procedures.

At the time of this writing, the proofs for the two procedures are complete, but the
adalemma and proof for the for-loop are still under development. Also, we have constructed
proofs only for a version of the MSX code in which the checksum loop in the Continue_Build
procedure has been excised; the code is modified so that the test for the correct checksum
is always passed. This has been done only because of lack of time to complete the work.

6.3 The INITIATE_BUILD adalemma

The INITIATE_BUILD procedure implements the first step in message processing. It examines
the type of incoming messages, which (after elimination of a parity bit by the calling program
BUILD) is contained in the first byte of the first command for a message. In several cases, all
of the message is communicated by the first command, so INITIATE_BUILD places the message
into the App_Msg_Q directly. Various error conditions are also handled by INITIATE_BUILD.
Here, we concern ourselves only with the Data_Struc_Load messages, which do require more
than one command and thus at least one call of CONTINUE.BUILD. The part of INITIATE_BUILD
of interest is

procedure INITIATE_BUILD (Start_Op_Code : in GLOBAL_TYPES.BYTE;

7 we would like to say "semantically equivalent," but Ada itself lacks the formal semantics that would be
needed to formally establish semantic equivalence.

8 However, the adalemma could only be used in the context of the modified version of BUILD, in which the
"for" loop has been transformed to a procedure call. Eventually, enhancements to SDVS allowing adalemmas
about arbitrary code fragments will obviate the need for this roundabout procedure.

37

Ciid_Buf _Index : in INTEGER) is
GLOBALJTYPES.WORD;
GLOBALJTYPES.WORD;
GLOBALJTYPES.WORD;

BOOLEAN;
BOOLEAN

INTEGER

INTEGER

INTEGER

False:

Temp_word

High_Byt e_Vord

Low_Byte_Word

Data_Struc_ID_Found

Start_Build

Struc_ID_Index

X

Y

begin

Start_Build := False;

case Start_Op_Code is

when Data_Struc_Load »>

Data_Struc_ID_Found :=

Struc_ID_Index :=

CONV_BYTE_TO_INTEGER(Cmd_Buf (Cind_Buf .Index) .ThirdJByte) ;

if (Struc_ID_Index <= TRKING_DATA_STRUC.Num_Data_Struc) and

(Struc_ID_Index > 0) then

Cont_Cmd := Data_Load_Cmd;

Nu*_Cmds_For_App_Msg := Cmds_For_Data_Struc(Struc_ID_Index);

Nu»_Words_For_App_Msg := TRKING_DATA_STRUC.Words_For_Data_Stnic(

Struc_ID_Index) +

if (Num_Cmds_For_App_Msg /= 0) then

Data_Struc_ID_Fotmd := True;

Start_Build := True;

end if;

end if;

if (Data_Struc_ID_Found = False) then

1;

end if;

when RAM_Mem_Load I EEPROM_Mem_Load

end case;

if Start_Build then

App_Msg(l) := 0;

App_Msg(2) := CONV_BYTE_TO_WORD(Start_Op_Code);

Temp_word
HighJByteJJord
Temp_Word
App_Hsg(3)
Temp_word
App_Msg(4)
Start ing_Cmd_Vith_Par
Cmds_Rcvd :- 1;
Word_Cntr
Build_In_Progress
Start_Build

end if;
end INITIATE_BUILD;

= CONV_BYTE_TO_WaRD(C«d_Buf(Cmd_bnf_iDdex).Second_Byte);
= SHIFT_LOGICAL_WORD(Temp_word, 8);
= CONV_BYTE_TO_WDRD(C»d_Buf(CMd_buf_indei).Third_Byte);
= OR_WORD(High_Byte_Word, Tenp_Word) ;
= CONV_BYTE_TO_WDRD(C»d_Buf(Cmd_buf.index).Fourth.Byte);
= SHIFT_LOGICAL_WORD(Temp_iirord, 8);

Cnd_Buf(Cmd_buf.index).First J3yte;

- 4;
= True;
= False;

38

What this code does is straightforward: After determining that the message is a Data_struc_Load,
it sets Cont_Cmd to Data_Load_Cmd, and determines the numbers of commands and words re-
quired for the incoming message, using look-up tables based on the message id—this is kept
in Stmc_ID_Index and is obtained from the third byte of the first command. After some va-
lidity checking, control passes to the if statement at the end of the procedure. Start_Build
has been set to True by any part of the case statement processing a message that will in-
volve additional commands, and thus must be "built." Through a sequence of conversions,
bit-wise logical shifts, and logical-OR operations, the original four bytes of the command end
up repackaged in words 2 through 4 of the App_Msg array. Word 1 of App_Msg is left zero;
it is not involved in the processing of a Data_Stnic_Load message and will ultimately be
ignored by CONTJ.NUE_BUJ.LD.

We shall now discuss the corresponding adalemma for the Data_Stmc_Load-message pro-
cessing parts of INITIATE.BUILD. This adalemma and its proof, as saved by SDVS are:

(defadalemma initiate_build.data_struc_load.adalemma
"msx_program_iinal_version_sans_checksum.a" initiate_build
msx_program_i inal_version_sans_checks,um. app_msgs. initiate.build
(".start_op_code = .data_struc_load"
"".build_in_progress"
"-app_msgs.cmd_status_buf[.initiate_build.cmd_buf_index] = .cmd_ok"
"is.byte(.start_op_code)"
"is.cmd_bytes_type(.app_msgs.cmd_buf[.initiate_build.cmd_buf_index])"
"origin(app_msgs.cmd_bui) le .initiate_build.cmd_buf_index"
".initiate_build.cmd_buf_index

le (origin(app_msgs.cmd_buf) + range(app_msgs.cmd_buf)) - 1"
"0 It .record(app_msgs.cmd_buf [.initiate_build.cmd_bui_index] ,tb.ird_byte)"
" .record(app_msgs.cmd_buf[.initiate_build.cmd_buf_index],third_byte)

le .mim_data_struc"
".cmds_ior_data_struc
[.record(app_msgs.cmd_bui[.initiate_biiild.cmd_buf_index] ,third_byte)] "= 0")

(cont_cmd
num_cmds_ior_app_msg
num_words_for_app_msg
(element app_msgs.cmd_status_bui (dot initiate_build.cmd_buf_index))
(slice app_msg 1 4)
st art ing_cmd_witb._par
cmds_rcvd
word_cntr
build_ in_progress)

("forall q (origin(app_msg) le q & q le #word_cntr —> is.word(.app_msg[q]))"
"#cont_cmd = .data_load_cmd"
"#num_cmdsJEor_app_msg

= .cmds_for_data_struc[.record(app_msgs.cmd_buf[.initiate_build.cmd_buf_index],
third_byte)]"

"#num_¥ords_for_app_msg
= .words_for_data_struc[.record(app_msgs.cmd_bui[.initiate_build.cmd_buf_index],

third.byte)] + 1"
"#build_in_progress = true"
"#app_msg[l] = 0"
"#app_msg[2] = .start_op_code"

39

"high.byte(#app_msg[3] ,
.record(app_msgs.cMd3uf [.initiate_build.cmd_buf_index] , second_byte))"

"low.byte(#app_msg[3] ,
.record(app_msgs.cmd_buf[.initiate_build.cmd_buf_index],third_byte))"

"high.byte(#app_msg[4] ,
.record(app_msgs.cmd_buf[.initiate_build.cmd_buf_index], fourth_byte))"

"low.byte(#app_msg[4] ,0)"
"#st art ing_cmd_with_par

s .record(app_msgs.cmd_bui[.initiate_build.cmd_buf.index],iirst_byte)"
"#cjiids_rcvd = 1"
"#word_cntr = 4")

:proof
"(proveadalemma initiate_build.data_struc_load.adaleama

proof:
(readaxioms \"/u/versys/sdvs/axioms/arraycoverings. axioins\",
provebyaxiom pcovering(app_msg[l:4],app_msg[l])

using: pcovering\slice\element,
provebyaxiom pcovering(app_msg[l:4],app_msg[2])

using: pcovering\slice\element,
provebyaxiom pcovering(app_iasg[l:4],app_msg[3])

using: pcovering\slice\element,
provebyaxiom pcovering(app_msg[l:4] ,app_msg[4])

using: pcovering\slice\element,
applydecls,

g°
#msx_program_final_version_sans_checksum\pc

= at(msx_program_final_version_sans_checksum.intrinsic_functions.shift_logical_word),
invokeadalemma shift_logical_word.adalemma,

g°
#msx_progran_final_version_sans_checksum\pc

= at (iiisx_program_f inal_version_sans_checksum. intrinsic_f unctions.or_word) ,
invokeadalemma or_word.adalemma,
go
#msx_program_final_version_sans_checksum\pc

= at (msx_progra«_final_version_sans_checksum.intrinsic_functions.shift_logical_word),
invokeadalemma shift_logical_word.adalemma,

g°
#msx_program_final_version_sans_checksum\pc

= exited(msx_programJEinal_version_sans_checksum.app_msgs.initiate_build),
notice forall q (q le 4 —> q = 4 or q le 3),
notice forall q (q le 3 —> q = 3 or q le 2),
notice forall q (q le 2 —> q = 2 or q le 1),
notice forall q is.word(.app_msg[l]),
notice forall q is.word(.app_msg[2]),
notice forall q is.word(.app_msg[3]),
notice forall q is.word(.app_msg[4]) ,
provebygeneralization g(l)

using: (q(l),q(2),q(3),q(4),q(5),q(6),q(7)),
close))")

We shall discuss the various parts of the adalemma and its proof. The first group of quoted
lines are the precondition, those facts which must be true in order that the adalemma may
be applied. In general, these assertions reconstruct the environment within which the target

40

procedure is called. For example, INITIATE_BUILD is called only when Build_In_Progress
is False, so the precondition asserts that fact. When SDVS sets up the environment for
proving the adalemma, the preconditions are asserted (as in the proof of any state delta).

The Precondition:

".start_op_code = .data_struc_load"
"~.build,in_progress"
". app_msgs. cmd_status_buf [. initiate_build. cmd_buf _index] = . cntd_ok"
"is.byte(.start_op_code)"
"is.cmd_bytes_type(.app_msgs.cmd_buf[. initiate_build.cmd_bu:f_ index])"
"origin(app_msgs.cmd_buf) le . initiate_biiild.cmd_bui_indexM

".initiate_build.cmd_buf_index ie

(origin(app_msgs.cmd_buf) + range(app_msgs.cmd_buf)) - 1"
"0 It .record(app_msgs.cmd_bu±[.initiate_build.cmd_buf_index],third_byte)"
".record(app_msgs.cmd_buf[.initiate_build.cmd_buf_index],third_byte) le

.num_data_struc"
".cmds_for_data_struc[

.record(app_msgs.cmd_buf[.initiate jDuild.cmd_buf_index],third_byte)] ~= 0")

All of the assertions are either facts which are true in the environment in which INITIATE_BUILD
is called, or which restrict applicability to the case of interest (i.e., the Data_Struc_Load mes-
sages), and which are actually necessary for the proof. The last three of the preconditions,
referring to the third byte of the command for which INITIATE_BUILD is called, assert the
legitimacy of this value as a message id, and that the corresponding message length is not
0.

The following mod list is a list of places which are altered by INITIATE_BUILD.

The Mod List:

cont_cmd,
num_cmds_ior_app_msg,

num_words_ior_app_msg,

app_msgs.cmd_status_buf[.initiate_build.cmd_buf_index],
app_msg[l:4] ,
st art ing_cmd_with_par,
cmds_rcvd,
word_cntr,
build_in_progress

The proof for the INITIATE_BUILD adalemma is short enough that we can discuss it at this
point.

The Proof:

proveadalemma initiate_build.data_struc_load.adalemma

proof:

(readaxioms \"/u/versys/sdvs/axioms/arraycoverings•axiomsV,

provebyaxiom pcovering(app_msg[l:4],app_msg[l])

41

using: pcovering\slice\element,
provebyaxiom pcovering(app_msg[l:4],app_«sg[2])

using: pcovering\slice\element,
provebyaxiom pcovering(app_msg[l:4],app_nsg[3])

using: pcovering\slice\element,
provebyaxiom pcovering(app_msg[1:4],app_msg[4])

using: pcovering\slice\element,
applydecls,
go
#msx_program_xinal_version_sans_checksum\pc

= at (msx_prograia_i inal_version_sans_cliecksum. intrinsic_functions. shif t_logical_word) ,
invokeadalemma shiit_logical_word.adalemna,

go
#msx_prograni_iinal_version_sans_checksum\pc

= at(msx_program_:f inal_version_sans_checksum.intrinsic_functions.or_word),
invokeadalenma or_nord.adalemna,

go
#msx_prograBi_f inal_version_sans_checksum\pc

- at(nsx_program_final_version_sans_checksum.intrinsic_functions.shift_logical_word),
invokeadalemma shift_logical_word. adalemma,

g°
#msx_program_final_version_sans_checksuia\pc

- exited(msx_program_f inal_version_sans_checksum.app_msgs.initiate_build),
notice forall q (q le 4 —> q = 4 or q le 3),
notice forall q (q le 3 —> q = 3 or q le 2),
notice forall q (q le 2 —> q = 2 or q le 1),
notice forall q is.word(.app_msg[l]),
notice forall q is.word(.app_msg[2]),
notice forall q is.word(.app_«sg[3]),
notice forall q is.word(.app_msg[4]) ,
provebygeneralization g(l)

using: (q(l),q(2),q(3),q(4),q(5),q(6),q(7)),
close)

The provebyaxiom commands at the beginning establish that array places actually changed
during symbolic execution are covered by the mod list of the adalemma. Each call to
an intrinsic function is handled by an adalemma. The series of notices at the end are
connected with a familiar problem: the simplifier automatically has available that n <
m —>■ n = mVn<m—1, but must be guided to extend this further to such facts as
n < m -+ n = m\/ n = m — lVti = m- 2 V n < m - 3.

6.4 The CONTINUE_BUILD adalemmas

6.4.1 Overview

The CONTINUE_BUILD procedure is called to handle continuation commands, i.e., commands
containing parts of a message for which a build is in progress. Since we are considering
only Data_Struc_Load messages, we will consider only the handling of Data_Load_Cmds by
CONTINUE_BUILD; Data_Load_Cmd is the value set in Cont.Cmdby INITIATE_BUILD when it starts
the build of a Data_Struc_Load message. The parts of CONTIHUE_BUTLD of interest to us are

42

the following:

procedure CONTINUE_BUILD(Cont_Op_Code : in GLOBAL_TYPES.BYTE;

Cmd_Buf_Index : in INTEGER) is

App_Hsg_Checksum

App_Hsg_ St art _Word

Msg_Word_Index

Q_Word_Index

Temp_Word

High_Byte_Word

Low_Byte_Word

begin

if Cont_0p_Code = Cont_Cmd then

if (Cmds_Rcvd mod 2) = 0 then

Word_Cntr := Word.Cntr + 1;

GLOBALJTYPES.WORD;

INTEGER

INTEGER

INTEGER

GLOBAL.TYFES.WORD

GLOBAL_TYPES.WORD

GLOBAL_TYPES.WORD

Temp_Word

High_Byte_Word

Low_Byte_Word

:= CONV_BYTE_TO_WORD(Cmd.Buf(Cmd.Buf.Index).Second.Byte);

:= SHTFT_LOGICAL_WORD(Temp_Word, 8);

:= C0NV_BYTE_T0_W0RD(Cmd.Buf(Cmd.Buf.Index).Third_Byte);

App_Msg(Word_Cntr) := OR_WORD(High_Byte_Word, Low.Byte.Word);
Word_Cntr := Word_Cntr + 1;

Temp.Word := C0NV_BYTE.T0.W0RD(Cmd.Buf(Cmd.Buf.Index).Fourth_Byte);

App_Msg(Word_Cntr) := SHIFT_LOGICAL_WORD(Temp_Word, 8);

else

Low.Byte.Word := CONV_BYTE_TO_WORD(Cmd.Buf(Cmd.Buf.Index).Second.Byte);

App_Msg(Word_Cntr) := OR_WORD(App_Msg(Word_Cntr), Low_Byte_Word);

Word_Cntr := Word_Cntr + 1;

CONV.BYTE_T0.WORD(Cmd.Buf(Cmd.Buf.Index).Third_Byte);

SHIFT_LOGICAL_WORD(Temp_Word, 8);

CONV_BYTE_T0_WORD(Cmd_Buf(Cmd.Buf.Index).Fourth.Byte);

0R_W0RD(High_Byte_Word, Low.Byte.Word);

then

Temp.Word

High_Byte_Word

Low.Byte.Word

App_Msg(Word_Cntr)

end if;

Cmds_Rcvd := Cmds_Rcvd + 1;

if Cmds_Rcvd = Num_Cmds_For_App_Hsg then

App.Msg.Checksum := 0;

App.Msg.Checksum := App_Msg(Num_Words_For_App_Msg + 1);

if App_Msg_Checksum = App.Msg(Num_Words_For_App_Msg +1)

if App_Msg_Counter < App_Msg_Q_Size then

App_Msg_Start_Word := 2;

if (C0NV_W0RD_T0_BYTE(App_Msg(2)) = RAM_Hem_Load) or

(C0NV_W0RD_T0_BYTE(App_Msg(2)) = EEFROM_Mem_Load) or

(C0NV_W0RD_T0_BYTE(App_Msg(2)) = Mem_Dump_X_Frames) then

end if;

Q_Tail := (Q_Tail mod App.Msg.Q.Size) + 1;

Num_Words_For_App_Msg := Num.Words.For.App.Msg + 1;

Q_Word_Index := 0;

for Msg_Word_Index in App_Msg_Start_Word..Num_Words_For_App_Msg loop

Q.Word.Index := Q_Word_Index + 1;

App_Msg_Q(Q_Tail)(Q_Word_Index) := App_Msg(Msg_Word_Index);

end loop;

App_Msg_Q(Q_Tail)(CMDS_TYPES.App_Msg_Max) := Q_Word_Index;

App_Msg_Counter := App_Msg_Counter + 1;

43

if App_Msg_Start_Word ■ 1 then

null;

else

Temp.Word := SHIFT_L0GICAL_W0RD(App_Msg(3), -8);

end if;

Temp_Word := SHIFT_L0GICAL_WDRD(App_Msg(4), -8);

else

end if;

else

end if;

Build_In_Progress := False;

end if;

else

end if;
end COJnTNUE_BUXLD;

There are two adalemmas for CONTINUE_BUILD; one handles the case where the command
to be processed is not the last command for the message being built, and the other is for
the case where the current command is the last one. When the last command is processed,
CDNTINUE_BUILD copies the completed message into the App_Msg_Q. It is true that the two
adalemmas could be combined, because all the functions performed in the "not last" case are
also performed in the "last" case; one would add the additional facts to the postcondition in
the form of conditional assertions based on whether #Cmds_Rcvd = .Niun_Cmds_For_App_Msg.
However, this complicates the exposition somewhat, and we prefer to use separate adalem-
mas. We will first discuss the adalemma for the "not last" case.

6.4.2 The "not last" command case

(defadalemma cont inue_build.data_load_cmd.not.last.adalemma

"msx_program_final_version_sans_checksum.a"

cont inue _build

msx_program_final_version_sans_checksum.app_msgs.contimie_build

(.build_in_progress"
• app_msgs. ciid_status_buf [.continue_build.c«d_buf _index] = .cmd_ok"
is.byte(.starting_cmd_with_par)"
is.byt e(.cont _cmd)"
is.byte(.cont_op_code)"
.cont_cmd = .data_load_cmd"
.cont_op_code = .cont_cmd"

44

"1 le .cmds_rcvd"

". cmds_rcvd It .num_cmds_ior_app_msg - 1"

".cmds_rcvd mod 2 = .cmds.rcvd - (.cmds_rcvd / 2) * 2"

".cmds_rcvd mod 2 = 0 or .cmds_rcvd mod 2 = 1"

".cmds_rcvd mod 2=1 —> low.byte(.app_msg[.word_cntr],0)"

"4 le .word_cntr"

".word.cntr le 78"

"is. cmd_bytes_type (. app_msgs. cmd.buf [. continue _build. cmd_buf_ index]) "

"origin(app_msgs.cmd_buf) le .continue_build.cmd_bui_indexM

".continue_build.cmd_buf_index

le (origin(app_msgs.cmd_bui) + range(app_msgs.cmd_bui)) - 1"

"lorall q (origin(app_msg) le q & q le .word_cntr —> is.word(.app_msg[q]))"

)

(word_cntr

(element app_msg (minus (plus (dot word_cntr) 1) (mod (dot cmds_rcvd) 2)))

(element app_msg (minus (plus (dot word_cntr) 2) (mod (dot cmds_rcvd) 2)))

cmds_rcvd)

("forall q (origin(app_msg) le q & q le #word_cntr —> is.word(.app_msg[q]))"

"#«ord_cntr = (.word_cntr + 2) - .cmds_rcvd mod 2"

"#cmds_rcvd = .cmds_rcvd +1"

".cmds_rcvd mod 2=0 —> #word_cntr = .word_cntr + 2"
".cmds_rcvd mod 2=0

—> high.byte(#app_msg[.word_cntr + 1],

.record(app_msgs.cmd_bui[.continue_build.cmd_buf_indei],

second_byte))"

".cmds.rcvd mod 2=0

—> low.byte(#app_msg[.word_cntr + 1],

. record(app_msgs.cmd_buf[.cont inue_build.cmd_bui_inder],

third_byte))M

".cmds.rcvd mod 2=0

—> high.byte(#app_msg[.word_cntr + 2],

. record(app_msgs.cmd_buf C.continue_build.cmd_buf_index],

fourth.byte))"

".cmds_rcvd mod 2=0 —> low.byte(#app_msg[.word_cntr + 2],0)"

".cmds_rcvd mod 2=1 —> #word_cntr = .word_cntr + 1"

".cmds_rcvd mod 2=1

—> high.byte(#app_msg[.word_cntr],.app_msg[.word_cntr] / 256)"

".cmds_rcvd mod 2=1

—> low.byte(#app_msg[.word_cntr],

.record(app_msgs.cmd_buf[.continue_build.cmd_buf_index],

second_byte))"

".cmds_rcvd mod 2=1

—> high.byte(#app_msg[.word_cntr + 1],

.record(app_msgs.cmd_buf[.continue_build.cmd_buf_index],

third.byte))"

".cmds_rcvd mod 2=1

—> low.byte(#app_msg[.word_cntr + 1],

.record(app_msgs.cmd_buf[.continue_build.cmd_buf_index],

fourth_byte))"))

45

We shall discuss the various parts of this adalemma.

First consider the following precondition:

".build_in_progress"

" . app_msgs.cmd_status_bui [. continue_build. cmd_bui_ index] = . cad_ok"

"is.byte(.starting_cnd_with_par)"

" is. byt e (. cont_and) "

"is.byte(.cont_op_code)"

".cont_cmd - .data_load_c»d"
".cont_op_code = .cont_cmd"

"1 le .cmds_rcvd"

".cmds_rcvd It .num_cmds_for_app_msg - 1"

".cmds_rcvd mod 2 = .cmds_rcvd - (.cmds_rcvd / 2) * 2"

".cmds_rc¥d mod 2 - 0 or .cmds_rcvd mod 2=1"

".cnds_rcvd mod 2=1 —> low.byte(.app_nsg[.word_cntr],0)"

"4 le .word_cntr"

".word.cntr le 78"

"is.c»d_bytes_type(.app_msgs.cmd_birf [.continue_build.cnd_bui_index])"
"origin(app_msgs.cmd_bui) le .continue_build.cmd_bui_index"
".continue_build.cmd_bui_index

le (origin(app_msgs.c»d_bui) + range(app_msgs.cnd_bui)) - 1"

"forall q (origin(app_msg) le q & q le .word_cntr —> is.word(.app_msg[q]))"

The first group of assertions set the environment within which CONTINUE_BUILD might be
called, and the circumstances under which this adalemma is to be applied. There are
two assertions giving properties of the mod function—of course, these are mathematically
provable facts, but they are not automatically known to the simplifier, so we have put them
into the precondition of the adalemma. The user will be responsible for proving these before
the adalemma is applied. This is important, because the expression .cmds_rcvd mod 2 is
used in the mod list of this adalemma, and the correct covering properties will not be
known to the covering solver unless the possible values of this expression are known. The
assertion about .app_msg[.word_cntr] is that if an odd number of commands have been
received, then the low byte of the last word in the current message is 0. The next group of
assertions guarantee that various array indices are in range. The last assertion states that
everything in the .app_msg array is a "word," i.e., is an integer in the range 0 ... 65535.
SDVS has the built-in type integer but the simplifier does not handle subtypes; to deal
with this situation, the SDVS Ada translator places guard conditions on its translations of
assignment statements for variables declared of a given subtype, to insure that the value
assigned is actually in the subtype. If a variable V is declared as a word, then the translator
output requires that any quantities to be assigned to V must be in the range 0 ... 65535.
Since members of the App_Msg array are later used in assignments to other words, the
information that App_Msg consists of words must be available. Indeed, there is such a step
even within the code for CONTINUE_BUILD. Hence, the quantified statement must be part
of the precondition to CONTINTJE_BUILD, not merely proved after its invocation. A similar

46

Statement, with an appropriately enlarged range of subscripts for .app_msg, is part of the
postcondition.

Next consider the following mod list (in input notation):

word_cntr,
app_msg[.word_cntr+l-(.cmds_rcvd mod 2)],
app_msg[.word_cntr+2-(.cmds_rcvd mod 2)],
cmds.rcvd

These are simply a list of the places which are modified by CONTINUE_BUILD when called on a
command which is not a "last" command. As it happens, we were able to write expressions
for the array subscripts which work out correctly whether or not .cmds_rcvd is odd or
even—were this not so, we should have been obliged to prove two separate adalemmas, one
for each of these cases.

The postcondition is examined in several parts:

"lorall q (origin(app_msg) le q & q le #word_cntr —> is.word(.app_msg[q]))"
"#oord_cntr = (.word_cntr + 2) - .cmds_rcvd mod 2"
"#cmds_rcvd = .cmds_rcvd +1"
".cmds_rcvd mod 2=0 —> #word_cntr = .word_cntr + 2"

The quantified statement above asserts, as promised, that app_msg is an array of words.
Then the new values of word_cntr and cmds_rcvd are asserted.

".cmds_rcvd mod 2=0
—> high.byte(#app_msg[.word_cntr + 1],

.record(app_msgs. cmd_buf [.continue_build. cmd_bui_index] f

second_byte))"
".cmds_rcvd mod 2=0

—> low.byte(#app_msg[.word_cntr + 1],
.record(app_msgs.cmd_bui[.cont inue_build. cmd_buf_index],

third_byte))"
".cmds_rcvd mod 2=0

—> high.byte(#app_msg[.¥ord_cntr + 2] ,
.record(app_msgs.cmd_bui[.continuejbuild.cmd_buf_index] ,

fourth_byte))"
".cmds_rcvd mod 2=0 —> loff.byte(#app_msg[.word_cntr + 2],0)"

This group of assertions applies when . cmds_rcvd is initially even. In that case, the three
bytes of the current command are stored into the two bytes of the next available word in
app_msg and the high byte of the word after that.

It is appropriate at this point to look at the definitions of the macros high.byte and
low.byte. They are

(defmacroo high.byte ;extra facts here because this is used in postconditions
"0 le x & x le 65535 ft y = x / 256 & 0 le y & y le 255 &

47

x = y * 256 + x «od 256"
(x y) nil)

(defmacroo low.byte ;extra facts here because this is used in postconditions
"0 le x & x le 65535 & y ~ x mod 256 k 0 le y & y le 255 k

x = ((x / 256) * 256) + y"
(x y) nil)

The reader will note that these seem redundant; some of what is given is a mathematical
consequence of the rest. However, if we left it at that, we should have to prove those
consequences at some point; putting them instead in these macros provides the simplifier
more information to work with, and eliminates (we hope) the need for the user to reprove
these things.

The last group of assertions is for the case that the initial value of . cmds_rcvd is an odd
integer:

".cmds_rcvd mod 2=1 —> #word_cntr = .word_cntr +1"
".cmds_rcvd mod 2-1

—> high.byte(#app_msg[.word_cntr],.app_msg[.word_cntr] / 256)"
".cmds_rcvd mod 2=1

—> low.byte(#app_msg[.word_cntr],
.record(app_msgs.cmd_buf[.continue_build.cmd.buf_index],

second_byte))"
".c«ds_rcvd mod 2-1

—> high.byte(#app_msg[.word_cntr + 1],
.record(app_msgs.cmd_buf[.continue_build.cmd_buf_index],

third.byte))"
".cmds_rcvd mod 2=1

—> low.byte(#app_msg[.word_cntr + 1],
.record(app_msgs.cmd_bui[.continue_build.cmd_bui_ index],

fourth_byte))"))

This group applies when the number of previously received commands is odd. In such a
case, the high byte of the last used word in App_Msg is preserved, and the three bytes from
the current command are inserted into the low byte of that word, and the two bytes of the
next available word in App_Msg.

This CONTINUE_BUILD adalemma would normally be applied in a situation in which there
is a quantified statement expressing the relationship between the Cmd_Buf and the current
contents of App_Msg. The lemma must be constructed so that its application does not cause
the deletion of that statement from the usablequantifiers list, and so that an appropriately
enlarged quantified statement can be proved after the application of the adalemma. These
requirements translate into the need for an accurate mod list, and a complete rendering of
the new situation in the postcondition.

6.4.3 The "last" command case

The second adalemma for COMTTNUE_BUILD addresses the situation that the current command
is in fact the last one required for the build of the message to be complete: this occurs when

48

.cmds_rcvd = .num_cmds_ior_app_msg - 1

In this case, not only does CONTINUE_BUILD perform the same steps as before, but it also
copies the completed message into the App_Msg_Q. Therefore there are correspondingly more
places listed in the mod list and more assertions in the postcondition.9

The adalemma for the "last" command is

(def adalemma continue_biiild. data_load_cmd. last .not .eeprom. adalemma

"msx_program_final_version_saris_checksum.a"

continue _build

msx_program_final_version_sans_checksum.app_msgs.continue_tmild

(".build_in_progress"

•app_msgs.cmd_status_buf[.continue_build.cmd_buf-index] = .cmd_ok"

is.byte(.starting_cmd_with_par)"

is.byt e(.cont_cmd)"

is.byte(.cont_op_code)"

.cont_cmd = .data_load_cmd"

.cont_op_code = .cont_cmd"

1 le .cmds_rcvd"

.cmds_rcvd = .num_cmds_ior_app_msg - 1"

,cmds_rcvd mod 2 = .cmds_rcvd - (.cmds_rcvd / 2) * 2"

.cmds_rcvd mod 2 = 0 or .cmds_rcvd mod 2=1"

.cmds_rcvd mod 2=1 —> low.byte(.app_msg[.word_cntr],0)"

4 le .word_cntr"

.word_cntr le 78"

is.cmd_bytes_type(.app_msgs.cmd_buf[.continue_build.cmd_bui_index])"

origin(app_msgs.cmd_bui) le .continue_build.cmd_bui_inder"

.continue_build.cmd_buf_index

le (origin(app_msgs.cmd_buf) + range(app_msgs.cmd_buf)) - 1"

"3 le .num_words_ior_app_msg"

".num_words_ior_app_msg le (range(app_msg) + origin(app_msg)) - 4"

"forall q (origin(app_msg) le q ft q le .word_cntr —> is.word(.app_msg[q]))"

"(.oord_cntr + 2) - .cmds_rcvd mod 2 ge .num_vords_for_app_msg +1"

".app_msg_counter It .app_msg_q_size"

"0 le .q.tail"
".q_tail = 0 —> .app_msg_counter = 0"
".q_tail le (range(app_msg_q) + origin(app_msg_q)) - 1"
".q_tail It range(app_msg_q) & .q_tail mod .app_msg_q_size = .q_tail or
•q_tail = range(app_msg_q) £ .q_tail mod .app_msg_q_size = 0"

"30 mod 30 = 0"
" is. byt e (. app_msg [2]) "

9 Actually, there is a further case distinction made in CONTINUE-BUILD: whether the message completed is a
RAM-Mem Load, a EEPROMJtemJLoad, or a MemJ)umpJC_Frames message; in any of these cases further processing
of the message is performed before it is placed in the App_Msg_Q. But we are restricting consideration in this
report to the DataJStrucLoad messages, which do not require any further processing. Nevertheless, we have
proved the adalemma for even the more complex situation of the other message types mentioned. This third
C0NTTNUEJ3UILD adalemma will be listed at the end of this section, but will not be discussed further.

49

M.app_msg[2] ~= .ram_me-._load"

". app_rasg [2] "= .eeprom_me-_load"

".app_msg[2] ~- .mem_dump_x_rrames")

(oord_cn.tr

(element app_msg (minus (plus (dot word_cntr) 1) (mod (dot caids_rcvd) 2)))

(element app_msg (minus (plus (dot word.cntr) 2) (mod (dot cmds_rcvd) 2)))

cmds_rcvd

q_tail

num_words_ior_app_msg

(slice (element app_msg_q (plus (mod (dot q_tail) (dot app_msg_q_size)) 1))

1

(plus (dot num_¥ords_for_app_msg) 1))

(element (element app_msg_q (plus (mod (dot q_tail) (dot app_msg_q_size)) 1))

(dot app_msg_max))

app_msg_counter

cmd_1ast_app_msg

build_in_progress)

("forall q (origin(app_msg) le q k q le #word_cntr —> is.word(.app_msg[q]))"

"forall q (1 le q k q le .num_words_ior_app_msg

—> tapp_msg_q[.q_tail mod .app_msg_q_size + 1][q]
= #app_msg[q + 1])"

"#word_cntr = (.word_cntr + 2) - .cmds.rcvd mod 2"

"#cmds_rcvd - .cmds_rcvd +1"

".cmds_rcvd mod 2=0 —> #word_cntr = .word_cntr + 2"

".cmds_rc_d mod 2=0

—> high.byte(#app_msg[.word_cntr + 1],

.record(app_msgs.cmd_buf[.contijaue_build.cmd_bui_rndex] ,
second_byte))"

".cmds_rcvd mod 2=0

—> low.byte(#app_msg[.word_cntr + 1],

.record(app_msgs.cmd_bui[.continue_build. cmd_buf_index],

third_byte))M

".cmds_rcvd mod 2=0

—> high.byte(#app_msg[.Bord_cntr + 2],

. record(app_msgs.cmd_bui[.continue_build.cmd_buf_index],

fourth_byte))"

".cmds_rcvd mod 2=0 —> low.byte(#app_msg[.word_cntr + 2],0)"

".cmds_rcvd mod 2=1 —> #word_cntr = .word_cntr +1"

".cmds_rcvd mod 2=1

—> high.byte(#app_msg[.word_cntr],.app_msg[.word_cntr] / 256)"
".cmdsjrcvd mod 2=1

—> low.byte(#app_msg[.Bord_cntr],

.record(app_msgs.cmd_buf[.continue_build.cmd_buf_index],

second_byte))"

".cmds_rcvd mod 2=1

—> high.byte(#app_msg[.word_cntr + 1],

.record(app_msgs.cmd_buf[.cont inue_build.cmd_buf_index] ,

third_byte)) "

".cmds_rcvd mod 2=1

—> low.byte(fapp_msg[.word_cntr + 1],

.record(app_msgs.cmd_buf[.cont inue_build.cmd_buf.index],

lourth_byte))"

"#q_tail = .q_tail mod .app_msg_q_size + 1"

"origin(app_msg_q) le #q_tail k

#q_tail le (range(app_msg_q) + origin(app_msg_q)) - 1"

50

"#num_words_for_app_msg = .num_words_for_app_msg +1"
"#app_msg_q[.q_tail mod .app_msg_q_size + 1] [. app_msg_max]

= #num_words_for_app_msg - 1"
"#app_msg_counter = . app_msg_counter +1"
"#build_in_progress = false"))

The precondition, mod list, and postcondition of this adalemma are each an extension of
the corresponding part of the first adalemma. We shall discuss only the differences.

In the precondition, there are assertions concerning .mim_words_f or_app_msg, which express
what is known about this quantity at times when CONTINUE_BUILD is invoked. There are
several assertions about .q_tail, which serve to place it in the correct range, and also
to guide the simplifier in determining bounds on the new value, #q_tail. This includes
arithmetical facts about the result of using the mod function, which are mathematically
true but not automatically available to the simplifier. The initial value for .q_tail is 0,
but once anything has been written into the App_Hsg_Q, Q_tail is never again 0. Thus,
.q_tail = 0 —> .app_msg_counter = 0 is true, although this fact is never used anywhere
in the proof. (Note that the converse does not hold: .app_msg_q = 0 is possible even
when .q_tail "= 0.) The "30 mod 30 = 0" is present merely to coax the simplifier in the
right direction; this fact is automatically known if the simplifier is interrogated about it,
but apparently the act of interrogation, or including it in the precondition, increases its
availability for other behind-the-scenes work of the simplifier. Inserting this arithmetical
fact in the precondition saves a few "notice" commands later on in the proof. App_Msg(2)
contains the message id in its low-order byte. The exact value of .app_msg[2] would likely be
known to the simplifier at the moment of any particular application of this adalemma, but
we are stating and proving the adalemma in a general situation without any knowledge of an
exact value. Thus, we have precondition assertions giving needed facts about .app_msg[2].10

The mod list is, in user-interface instead of lisp notation,

word_cntr,
app_msg[.word_cntr+l-(.cmds_rcvd mod 2)] ,
app_msg[.nord_cntr+2-(.cmds_rcvd mod 2)],
cmds_rcvd,
q_tail,
num_Bords_for_app_msg,
app_msg_q[.q_tail mod .app_msg_q_size + 1][1:.num_words_for_app_msg + 1],
app_msg_q[.q_tail mod .app_msg_q_size + 1][.app_msg_max],
app_msg_counter,
build_ in_progress

The additional places are simply those that may be altered when the completed message is
copied into the App_Msg_Q.

The additional parts of the postcondition are mostly self-explanatory, merely expressing
what is accomplished by the additional code executed in the case of a completed message.
Noteworthy are the assertions concerning . app_msg_q:

10 In particular, the assertions that the current message is not one of RAM-Mem-Load, EEPR0M-Mem_Load, or
Mem_Dump JC _Fr ame s.

51

"forall q (1 le q k q le .num_words_for_app_msg
—> #app_msg_q[.q_tail mod .app_msg_q_size + 1] [q] - #app_msg[q + 1])"

"#app_msg_q[.q_tail nod .app_msg_q_size + 1][.app_msg_max]
= #num_words_for_app_msg - 1"

These indicate that the completed message has been copied to the App_Msg_Q.

The two adalemmas we have given suffice for handling the calls to C0NTINUE_BUILD when the
message being built is a Data_Strac_Load. We also proved an adalemma for the remaining
cases of the Data_Load_Cmd, namely that it is one of RAM_Mem_Load, EEPROM_Mem_Load, or
Mem_DTimp_X_Frames. This we present here, but we shall not discuss it further in this report:

(defadalemma cont imie_build.data_load_cmd.last.eeprom.adalemma

"msx_program_iinal_version_sans_cb.ecksum.a"

cont inue_build

msx_program_iinal_version_sans_checksum.app_msgs.continue_build

(".build_in_progress"

.app_msgs.cBd_status_bui[.continue_build.cmd_buf_index] = .cnd_ok"

'is.byte(.start ing_cmd_with_par)"

'is.byte(.cont.cmd)"

'is.byte(.cont_op_code)"

'.cont_cmd = .data_load_cmd"

'.cont_op_code - .cont_cmd"

'1 le .cmds_rcvd"

'.cmds_rcvd= .num_cmds_ior_app_msg - 1"

'.cmds_rcvd mod 2 = .cmds_rcvd - (.cmds_rcvd / 2) * 2"

'.cmds_rcvd mod 2 = 0 or .cmds_rcvd mod 2=1"

'.cmds_rcvd mod 2 = 1 —> low.byte(.app_msg[.word_cntr] ,0)"

"4 le .word_cntr"

'.oord_cntr le 78"

'is.cmd_bytes_type(.app_msgs.cmd.buf[.continue_build.cmd_buf_index])"

"origin(app_msgs.cmd_bni) le .continue_build.c»d_buf_index"

.continue_bnild.cmd_buf_index

le (origin(app_msgs.cmd_buf) + range(app_msgs.cmd_buf)) - 1"

"3 le .num_words_ior_app_msg"

.num_Bords_for_app_msg

le ((range(app_msg) + origin(app_msg)) - 1) - 3"

"xorall q (origin(app_msg) le q k q le .word_cntr —> is.word(.app_msg[q]))"

'(.word_cntr + 2) - .cmds_rcvd mod 2 ge .mim_words_ior_app_msg +1"

'.app_msg_counter It .app_msg_q_size"

"0 le .q_tail"

'.q_tail = 0 —> .app_msg_counter = 0"

'.q_tail le (range(app_msg_q) + origin(app_msg_q)) - 1"

'.q_tail It range(app_msg_q) &

.q_tail mod .app_msg_q_size + 1 = .q_tail + 1 or

.q_tail = range(app_msg_q) k

.q_tail mod .app_msg_q_size +1=1"

"30 mod 30 - 0"

".app_msg[2] = .eeprom_mem_load")

(word_cntr

(element app_msg (minus (plus (dot word_cntr) 1) (mod (dot cmds_rcvd)

2)))

(element app_msg (minus (plus (dot word_cntr) 2) (mod (dot cmds_rcvd)

2)))

52

cmds_rcvd

(element app_msg 1)

(element app_msg 2)

(element app_msg 3)

q_tail

num_words_ior_app_msg
(slice (element app_msg_q (plus (mod (dot q_tail) (dot app_msg_q_size))

1)) 1 (plus (dot num_words_ior_app_msg) 1))
(element (element app_msg_q (plus (mod (dot q_tail) (dot app_msg_q_size)) 1))

(dot app_msg_max))
app_msg_counter

cmd_last_app_msg
build_in_progress)

("forall q (origin(app_msg) le q & q le #word_cntr —> is.word(.app_msg[q]))'
"iorall q (1 le q ft q le .num_words_ior_app_msg

—> #app_msg_q[.q_tail mod .app_msg_q_size + 1][q] = #app_msg
Cq])"

"#word_cntr = (.word_cntr + 2) - .cmds_rcvd mod 2"
"#cmds_rcvd = .cmds_rcvd +1"
".cmds_rcvd mod 2=0 —> #word_cntr = .word_cntr + 2"
".cmds_rcvd mod 2=0

—> high.byte(#app_msg[.word_cntr + 1],
.record(app_msgs.cmd_buf[.cont inue_build.cmd_buf_index],

second_byte))"
".cmds_rcvd mod 2=0

—> low.byte(#app_msg[.word_cntr + 1],
.record(app_msgs.cmd_buf[.continue_build.cmd_bui_index],

third_byte))"
*'. cmds_rcvd mod 2 = 0

—> high.byte(#app_msg[.word_cntr + 2],
.record(app_msgs.cmd_btLf[.continue_build.cmd_buf_index] ,

fourth_byte))"
".cmds_rcvd mod 2=0 —> low.byte(#app_msg[.word_cntr + 2],0)"
".cmds_rcvd mod 2=1 —> #word_cntr = .word_cntr +1"
".cmds_rcvd mod 2=1

—> high.byte(#app_msg[.word_cntr],.app_msg[.word_cntr] / 256)"
".cmds_rcvd mod 2=1

—> low.byte(#app_msg[.word_cntr],
.record(app_msgs.cmd_buf[.continue_build.cmd_bui_index],

second_byte))"
".cmds_rcvd mod 2=1

—> high.byte(#app_msg[.word_cntr + 1],
. record(app_msgs.cmd_buf[.continue_build.cmd_buf_index],

third_byte)) »
".cmds_rcvd mod 2=1

—> low.byte(#app_msg[.nord_cntr + 1],
.record(app_msgs.cmd_buf[.cont inue_build.cmd_bui_index],

fourth.byte))"
"#app_msg[l] = .app_msg[2]"
"#app_msg[2] = .app_msg[3] / 256"
"#app_msg[3] = .app_msg[3] mod 256"
"#q_tail = .q_tail mod .app_msg_q_size + 1"
"origin(app_msg_q) le #q_tail &
#q_tail le (range(app_msg_q) + origin(app_msg_q)) - 1"

"#num_words_for_app_msg = .num_words_for_app_msg + 1"

53

"#app_Hsg_q[.q_tail »öd .app_msg_q_size + 1] [.app_»sg_inax]
= #num_words_for_app_msg"

"#app_msg_couiiter » . app_msg_couiiter +1"
"#build_in_progress = false"))

It should be noted that the proofs for the adalemmas in the "last" command cases do not
close properly. They fail during the final steps of undeclaration of local variables, at a point
where all goals apart from the "exited" condition have been proved. We have determined
that the problem is due to a bug in SDVS, in which a wrong choice is made for a symbol
to be used for a subprogram variable. The bug is possibly some type of "off by one" error.
Since all other goals are proved before the bug manifests, we expect that the same proofs
we have developed will close properly when the bug is fixed.

54

7 Conclusions

The primary purpose of this verification effort was to stress-test SDVS and help us formulate
further research and development strategies. This project lasted only a year, and because
(1) this was the first large Ada application verified and (2) SDVS development occurred
concurrently with the program verification, we were restricted in the complexity of the
specification and amount of code that could be tackled. However, we found this experience
very important for identifying weak and missing features in the tools and underlying theory,
and it is helping us prioritize future research and development tasks (see [6] for details).

This application has confirmed our belief that it is not always clear how to scale up (i.e.,
to verify large applications) from experiences with small examples. The Ada program we
verified was by far the largest Ada program to be translated by the SDVS Ada translator,
and we ran into unexpected storage and time problems. Perhaps some of these problems
are unavoidable given the size of the program. But it was only towards the end of the
project that we took a more promising approach to the verification of the program: proving
adalemmas for some of the more important subprograms. The incorporation of these lemmas
into the proof not only modularizes it but shortens it considerably as well. The reason we
did not start out with the adalemma, approach is that we thought it would be too time-
consuming and difficult within one year. But we were mistaken: our original proof strategy
without adalemmas - while more straightforward - ultimately proved too time-consuming.

Apart from stress-testing SDVS, the verification project allowed us to enhance the SDVS
Ada translator and add to the system three new proof commands that should facilitate long
proofs.

Had we more time to work on the project, we would prove more adalemmas about some
of the key subprograms (such as CMDJN-HANDLER) and try to prove correctness assertions
about more general schedulers and more realistic input conditions.

55

8 Appendix A - The Annotated Program

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

-SDVS

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

comment

We deleted definitions, object declarations, task declarations,

and subprogram declarations that we did not need from several of

the packages below. But we did not delete completely anything

from subprograms we use: if we did not need a particular statement

in a subprogram, we commented it out; the statement appears, but

only as a comment. The exceptions to the rule are: (1) the

subprogram STDRE_DATA_STRUC_IN_EEPROM in the package EEPROM_DATA

which bears no relation to the real one, (2) the function

CHECK_PARITY in the ASMJJTILITY package whose body is written in

1750A assembly, (3) CHG.STATE and RETRIEVE.COR.STATE in the

package MODE_STATE which are used to give us permission to write

to EEPRDM, and (4) the procedure REPORT_SYSTEM_ERRDR in the

package TM_DATA which is used to report errors. The packages

SERIAL_DIG_CMDS and APP_MSGS are presented in their entirety. For

our purposes, the packages GLOBAL_TYPES, CMDSJTYPES, and

TRKING_DATA_STRUC contain only type definitions and object

declarations used by SERIAL_DIG_CMDS and APP_MSGS.

Our deletions by comment are prefixed by ''—SDVS delete:'' or by

"—SDVS delete ('reason'),'' where 'reason' is one of the

reasons discussed in Section 4: for example, "—SDVS delete

(1750A)" means the deleted line includes a routine whose body is

written in 1750A assembly language. If the deleted line is

prefixed ''—SDVS delete:,'' the reason is given either within a

few lines preceding the deletion, or at the beginning of the

subprogram in which the statement appears.

with text_io; use text_io; —SDVS add for SDVS input and output

with integer_io; use integer_io; —SDVS add for SDVS input and output

procedure MSX_PROGRAM_FINAL_VERSION is

—SDVS comment: LONG_INTEGER and LONG_FLDAT are not standard Ada types. We provide

—SDVS comment: the SDVS_PACKAGE below for these type definitions.

package SDVSJPACKAGE is —SDVS add

subtype LONG.INTEGER is INTEGER; —SDVS add

subtype LONG.FLOAT is FLOAT; —SDVS add

end SDVS_PACKAGE; —SDVS add

use SDVS.PACKAGE; —SDVS add

— $users:[na.adacode.bldl]global_types.ads

GLOBAL.TYPES.ADS

— TYPE: Package Specification

— PURPOSE : This package contains the types used throughout

the tracking processor software.

— EXCEPTIONS:

57

— MOTES:

— CHANGE HISTORY:
ram/dd/yy ?. ????? Initial Version

package GLOBAL_TYPES is

--SDVS comment: L0HG_W0RD type is used only in MEMORY_HANAGER and in ARRAY_0F_BL0CKS
—SDVS comment: It is not used in the code we will need.
—SDVS delete: type LONGJJORD is range 0..2147483647;
—SDVS delete: for LONG.WORD'size use 32;

type WORD is range 0..65535;
for WORD'size use 16;

— Bit Sliced Unsigned Integer Definitions.
— "WORD" is used for 16 bits and "BYTE" is used for 8 bits.

—SDVS comment: types B15 .. Bl are never used in any part of the target code.

—SDVS delete: type B15 is range 0..32767;
—SDVS delete: for B15'size use 15;

—SDVS delete: type B14 is range 0..16383;
—SDVS delete: for B14'size use 14;

—SDVS delete: type B13 is range 0..8191;
—SDVS delete: for B13'size use 13;

—SDVS delete: type B12 is range 0..4095;
—SDVS delete: for B12'size use 12;

—SDVS delete: type Bll is range 0..2047;
—SDVS delete: for Bll'size use 11;

—SDVS delete: type BIO is range 0..1023;
—SDVS delete: for BIO'size use 10;

—SDVS delete: type B9 is range 0..511;
—SDVS delete: for B9'size use 9;

type BYTE is range 0..255;
for BYTE'size use 8;

—SDVS delete: type B7 is range 0..127;
—SDVS delete: for B7'size use 7;

—SDVS delete: type B6 is range 0..63;
—SDVS delete: for B6'size use 6;

—SDVS delete: type B5 is range 0..31;
—SDVS delete: for B5'size use 5;

58

—SDVS delete: type B4 is range 0..15;

—SDVS delete: for B4:size use 4;

—SDVS delete: type B3 is range 0..7;

—SDVS delete: for B3'size use 3;

—SDVS delete: type B2 is range 0..3;

—SDVS delete: for B2'size use 2;

—SDVS delete: type Bl is range 0..1;

—SDVS delete: for Bl'size use 1;

—sdvs comment: Only used in package TRKING_DATA_STRUC, in parts that we will not need.

—SDVS delete: type BYTE.INTEGER is range -128.. 127;

—SDVS delete: for BYTE_INTEGER'Size use 8;

—SDVS comment: Never used in any part of the target code.

—SDVS delete: type WORD_ARRAY_TYPE is array (INTEGER range <» of WORD;

—SDVS comment: Never used in any part of the target code.

—SDVS delete: type BYTE_ARRAY_TYPE is array (INTEGER range <» of BYTE;

—SDVS comment: Only used in the package TRKING_DATA_STRUC in parts that we will not need.

—SDVS delete: type ARRAY_OF_FLOAT_TYPE is array (INTEGER range <» of FLOAT;

-SDVS comment: Only used in the package TRKING_DATA_STRUC, in parts that we will not need.

-SDVS delete: type ARRAY_OF_LONG_FLOAT_TYPE is array (INTEGER range <» of L0NG_FL0AT;

type IO_STATUS_TYPE is array (0..15) of BOOLEAN;

—SDVS delete (pragma): pragma pack(IO_STATUS_TYPE);

end GLOBAL.TYPES;

—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS

—SDVS The three package instantiations below are not part of the original

—SDVS MSX software and are not a part of the code translated by the SDVS

—SDVS translator. However these instantiations are needed to compile and

—SDVS execute the code with the Verdix compiler at Aerospace and are

—SDVS required by standard Ada compilers. They are needed for the ''get"

—SDVS for objects of type WORD in SERIAL_DIG_CMDS.CHD_IN_HANDLER,

—SDVS the "put" for objects of type INTEGER in

—SDVS EEPROM_DATA.STORE_DATA_STRUC_IN_EEPR0H, and the "put" for

—SDVS objects of type BYTE in TM.DATA.MANAGE.REPORT_SYSTEM_ERROR.

—SDVS

—SDVS package NE¥_W0RD_I0 is new INTEGER_IO(GLOBAL.TYPES.WORD); use NEW_W0RD_I0;

—SDVS package NEW_INTEGER_IO is new INTEGER.IO (INTEGER) ; use NEW_INTEGER_IO;

—SDVS package NEW_BYTE_IO is new INTEGER.IO (GLOBALJTYPES. BYTE) ; use NEW_BYTE_IO;

—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS

ASM UTILITY.ADS

59

— TYPE: Package Specification

— PURPOSE : This package contains the utility subroutines

written in the 1750A assembly language.

— EXCEPTIONS:

— NOTES:

— CHANGE HISTORY:

10/16/91 B. Na Initial Version

—SDVS delete (with): with SYSTEM;

package ASMJJTILITY is

—SDVS delete (1750A, pragma): Pragma Foreign_Body ("Assembler");

--SDVS delete (1750A): Function CHECKJARITY (Address : in SYSTEM.ADDRESS)

—SDVS return BOOLEAN;

Function CHECK JARITY return BOOLEAN; —SDVS replace

—SDVS delete (1750A, pragma): Pragma Linkagejfame (CHECK.PARITY ,

—SDVS "CHECK_PARITY");

end ASMJJTILITY;

—lusers:[na.adacode.bld2]serial_dig_cmds.ads

SERIAL_DIG_CMDS.ADS

— TYPE: Package Specification

— PURPOSE : This package contains software to support the

interface with the serial digital command system.

The hierachy of subprograms in this package is

as follows:

I. RET_CMD_C0UNT (Called by the task APP.MSGS.BUILD)

II. RET_CMD_BUF_AND_STATOS (Called by the task APP.MSGS.BUILD

when the command count is > 0)

III. CMD_IN_HANDLER (This is the standard interrupt handler for

the short data command interrupt. When a short data

command interrupt occures, control is vectored to

TP_STD_INT_PROC_SERVICE_SETUP, in turn

TP_STD_INT_PROC_SERVICE_SETUP calls this routine to service

the interrupt.)

— EXCEPTIONS:

— NOTES:

60

CHANGE HISTORY:

10/16/91 B. Na Initial Version

--SDVS delete (with): with GLOBAL.TYPES;

package SERIAL_DIG_CMDS is

type CMD.BYTES.TYPE is record

First_Byte : GLOBAL.TYPES.BYTE;

Second_Byte : GLOBAL.TYPES.BYTE;

Third_Byte : GLOBAL.TYPES.BYTE;

Fourth_Byte : GLOBAL.TYPES.BYTE;

end record;

—SDVS delete (pragma): pragma pack(Cmd.Bytes.Type);

Cmd_Buf_Size : constant INTEGER := 70; — 37.5 interrupts/sec

type CMD_BUF_TYPE is array (1..Cmd.Buf.Size) oi CMD.BYTES.TYPE;

type CMD_STATUS_BUF_TYPE is array (1..Cmd.Buf.Size) of INTEGER;

— The following defines the possible command status values with the

— two exceptions:

(1) Cmd.Lost is allowed only for the last (70th) command

in the buffer.

(2) Cmd.Lost and Cmd.FIFO.Not.Empty are ORed to the rest of

other status values.

Cmd.OK : constant INTEGER := 0

App_Msg_Dropped : constant INTEGER := 1

Bad.Checksum : constant INTEGER := 2

Flushed.prior.Build : constant INTEGER := 3

Invalid_Data.Struct_Hsg.ID : constant INTEGER := 4;

Invalid_Starting_Cmd : constant INTEGER := 5;

App_Msg_Overwritten : constant INTEGER := 6;

— These are checked by

— by SERIAL_DIG_CMDS.

Cmd_Bad_Parity : constant INTEGER := 7; — Parity of the command is

— not odd.
Cmd_Lost : constant INTEGER := 8; — New command is lost

— because the command buffer

-- is full.

Cmd_FIF0_Not.Empty : constant INTEGER := 16; — The command in FIFO is not

— empty after one command

— (4 bytes) is read.

— function/procedure specifications

function RET.CMD.COUNT return INTEGER;

procedure RET_CMD_BUF_AND_STATUS

(Cmd_Buf : out CMD.BUF.TYPE;

Cmd.Status.Buf : out CHD.STATUS.BUF.TYPE;

61

Cmd_Count : out INTEGER;
FIFO_Not_Empty_Count : out INTEGER;
IO_Status_¥ord : out GLOBAL.TYPES.WORD;
Lost_Cmd : out BOOLEAN);

--SDVS comment: The function RET_MSG_ID has been added

—SDVS comment: for the scheduler. It returns the message identifier for

—SDVS comment: the next block of commands in the input encoding a message.

function RET_MSG_ID return GLOBAL.TYPES.BYTE; —SDVS add

procedure CMD_IN_HANDLER;

—SDVS delete (pragma): pragma linkage_name(CMD_IN_HANDLER, "CMD_IN_HANDLER");

end SERIAL_DIG_CMDS;

— $users:[na.adacode.bld2.1ongload.ds]cmds_types.ads

CMDS.TYPES.ADS

— TYPE: Package Specification

— PURPOSE : This package defines the data types that are

— commonly used by the Process Commands group packages.

-- EXCEPTIONS:

-- NOTES:

— CHANGE HISTORY:

mm/dd/yy B. Na Initial version

package CMDS_TYPES is

App_Msg_Max : constant INTEGER := 80;

—SDVS comment: The predefined type POSITIVE is not implemented in SDVS.

—SDVS delete: subtype INDEX_SUBTYPE is POSITIVE range 1..App_Msg_Max;

subtype INDEX_SUBTYPE is INTEGER range 1..App_Msg_Max;—SDVS replace

—SDVS comment: SDVS does not currently handle unconstrained array types.

—SDVS delete (unconstrained array): type APP_MSG_OUT_TYPE is

—SDVS cont: array (INDEX.SUBTYPE rangeO) of INTEGER;

type APP_MSG_OUT_TYPE is array (1 .. App_Msg_Max) of INTEGER; —SDVS replace

Load_Msg_Max : constant INTEGER := 127;

type L0AD_MSG_TYPE is array (1. .Load_Msg_Max) of INTEGER;

end CMDS.TYPES;

M0DE_STATE.ADS

TYPE: Package Specification

PURPOSE : BOGUS M0DE_STATE!

62

— EXCEPTIONS:

— NOTES:

— CHANGE HISTORY:

mm/dd/yy ?. ????? Initial Version

package MODE.STATE is

type MODE_STATE_TYPE is (Power_Up, Init.Setup, Init_EEPROM_Write,

Init.Memory_Load, Init.Memory.Dump,

Tracking.Setup, Tracking);

type STATUS.OF.REQUEST.TYPE is (State_Granted, State_Denied);

procedure PERFORM_SOFT_RESET;

function RETRIEVE.CUR.STATE return MODE_STATE_TYPE;

procedure CHG_STATE(Mode_State_Req : in MODE_STATE_TYPE;

Status.Of.Request : out STATUS.OF.REQUEST.TYPE);

end MODE.STATE;

— $users:[na.adacode.bld2.1ongload.ds]eepro__data.ads

EEPROM_DATA.ADS

— TYPE: Package Specification

— PURPOSE: This package stores and retrieves EEPROM data.

There are three types of EEPROM data stored and

retrieved by this package:

1. data structure

2. specific memory (EEPROM) load data

3. miscellaneous system variable data

The hierarchy of external subprograms in this package

is as follows:

I. STORE_DATA_STRUC_IN_EEPROM (called by APP_MSGS.PROCESS_MSG

and ARRAY.OF_BLOCKS.PROCESS_MSGS_IN_BLOCKS)

II. RET_DATA_STRUC_IN_EEPROM (called by TRKING.PARAMS.INIT.PARMS)

III. RET.SYS.CONFIG (called by APP_MSGS.PROCESS_MSG on powerup)

IV. WRITE_LOAD_DATA_TO_EEPROM (called by APP_MSGS.PROCESS.MSG

and ARRAY_0F_BL0CKS.PR0CESS_MSGS_IN_BL0CKS)

— EXCEPTIONS:

63

NDTES:

CHANGE HISTORY: 01/31/92 B. Na Initial Version

--SDVS delete (with): with GLOBALJTYPES;

—SDVS delete (with): with CMDS.TYPES;

package EEPROM.DATA is

procedure STORE_DATA_STRUC_IN_EEPROM

(Array.Of.Words : in

Data_Struc_ID : in

Data_Struc_Length : in

end EEPROM.DATA;

CMDS.TYPES.APP_MSG_aUT_TYPE;

INTEGER;

INTEGER);

—SDVS delete (with): with GLOBAL.TYPES;

package TRKING_DATA_STRUC is

— This package defines types to support data structures specified in the

— TP/CP IDS. The following table is a list of the data structure message

— IDs and associated name.

1 Beacon alignment first object

2 Beacon alignment second object

3 UVISI alignment visible NFOV imager

4 UVISI alignment visible WFOV imager

5 UVISI alignment UV NFOV imager

6 UVISI alignment UV WFOV imager

7 OSDP alignment

8 Initial Covariance

9 Covariance Q-ing

— 10 AP propagation time

— 11 Filter lag time

12 Beacon receiver measurement noise for frequency # 1

— 13 Beacon receiver measurement noise for frequency # 2

— 14 UVISI measurement noise visible NFOV imager

15 UVISI measurement noise visible WFOV imager

— 16 UVISI measurement noise UV NFOV imager

— 17 UVISI measurement noise UV WFOV imager

— 18 OSDP measurement noise

19 UVISI data association processing parameters

20 Roll angle bias

21 Sensor data priority

22 Filter loss of track rules

64

23 Sensor data acceptance threshold

24 UVISI 4 Hz Status

25 UVISI 4 Hz angle threshold

26 Priority level loss of track switch times

27 Raw data alpha - beta filter

28 Year

29 Roll Law Reference Vector

50 Event time/selection

51 Y-Z offset

52 Event stage times

53 Stage 1 polynomial coefficients

54 Stage 2 polynomial coefficients

55 Stage 1 sinusoidal curve fit coefficients

56 Stage 2 sinusoidal curve fit coefficients

57 Satellite parameters

58 Lat., Long., Alt., coefficients

59 Az., ft tangent height coefficients

60 ECI vector

61 Az ft EL coefficients

62 Beacon frequencies

63 Attitude Quaternions and rates

64 Attitude Quaternions - zero rates

65 Object Deployment Parameters

66 Time reference scan parameters

67 Geometric scan paramters

80 Change event stop time

81 Change sensor selection

82 Change pointing selection

83 New roll law selection number

84 Filter UVISI enable/disable

85 Change UVISI data association algorithm to use

86 Change stage 1 time

87 Change stage 2 time

88 Change current event Y-Z offset

89 New beacon frequency

90 Beacon object number to switch to

91 Change attitude quaternion and rates for current event

92 Change attitude quaternion only - zero rates for current event

93 Turn time filtering on/off

Num_Data_Struc : constant INTEGER := 109;

— This table lists the number of words in the message for

— a data structure load message. The data structure ID is used as an

— index into the table. ID 1 thru 49 are reserved for current/futrue

— event, 50 thru 79 are reserved for next event and 80 thru 109 are

— are reserved for current data structures.

— This table is used by APP_HSGS, ARRAY_0F_BL0CKS, and TRKING.PARAMS.

type W0RDS_F0R_DATA_STRUC_TYPE is array (1..Num_Data_Struc) of integer;

Words_For_Data_Struc : constant W0RDS_F0R_DATA_STRUC_TYPE :=

65

(20, 20, 20, 20, 20, 20, 20, 14, 14, 04,
04, 06, 06, 04, 04, 04, 04, 04, 11, 04,
04, 03, 06, 03, 05, 05, 06, 03, 08, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00,

15, 06, 08, 57, 57, 78, 78, 19, 08, 06,
09, 06, 07, 16, 10, 11, 11, 22, 00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,

05, 03, 03, 03, 03, 03, 05, 05, 06, 05,
03, 16, 10, 03, 00, 00, 00, 00, 00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00);

end TRKING_DATA_STRUC;

TM_DATA.ADS

TYPE: Package Specification

PURPOSE: This buffer package stores new telemetry data,
such as system errors, pointing or tracking data
for the last half second, UVISI gate results and
the last transmitted AP and Broadcast messages.

"Document something about command-out counter."

The buffered data is then retrieved by TM.COLLECT,
once a second, for reporting in housekeeping
telemetry.

— EXCEPTIONS:

— NOTES: This package is expected to be in the same Address
State as TM. Sys-Error-Buffer is a package level
variable and passed by reference.

package TM_DATA is

- MANAGE TASK TYPE

-SDVS delete (task): task type MANAGE.TYPE is
-SDVS delete (task): entry REP0RT_SYSTEM_ERR0R(Sys_Error_Code :
-SDVS in GL0BAL_TYPES.BYTE);

66

-SDVS delete (task)

-SDVS delete (task)

-SDVS delete (task)

end MANAGEJTYPE;

for MANAGEJTYPE'storage_size use 300 ;

MANAGE : MANAGEJTYPE;

package MANAGE is —SDVS replacement

procedure REPORT_SYSTEM_ERROR(Sys_Error_Code :

in GLOBAL.TYPES.BYTE); —SDVS replacement

end MANAGE; —SDVS replacement

end TM_DATA;

$users:[na.adacode.bld2.longload.ds]app_msgs.ads

APP_MSGS.ADS

TYPE: Package Specification

PURPOSE : This package contains software to build and

process the application messages for the serial digital

commands buffered by SERIAL_DIG_CMDS.

This package consists of following tasks and external

procedures and function:

I. BUILD (This task runs at a 2 Hz rate.)

II. PR0CESS_MSG (This task runs without any delay but pends at the

guarded entry MANAGE.MSG_RETRIEVAL.RET_NEXT_MSG.)

III. MANAGE_MSG_RETRIEVAL (This task rendezvous with PR0CESS_MSG when

the application message count is greater

than zero.)

IV. Other Procedures or Functions

A. NEW_TM_DATA

B. RET_LATEST_CMDS

C. RET_INIT_CMD_LAST_APP_MSG

EXCEPTIONS:

NOTES:

CHANGE HISTORY:

10/16/91 B. Na Initial Version

67

n/dd/yy B. Na Build 2 Changes

—SDVS delete (with): with SERIAL_DIG_CMDS;

--SDVS delete (with): with GLOBAL.TYPES;

package APP.MSGS is

Max_Num_Latest_Cmds : constant INTEGER := 40;

type LATEST.CMD_BUF_TYPE is array (1..Max_Num_Latest_Cmds) of

Serial_Dig_Cmds.Cmd_Bytes_Type;

type LATEST_STATÜS_BUF_TYPE is array (1..Max_Num_Latest_Cmds) of

INTEGER:

type LATEST,CMD_TM_TYPE is record

Cmd_Buf

Status.Buf

Fresh_Cmd_Count

Cmd_Total

IO_Status_Word

Rejected_Cmd_Count

FIFO_Hot_Empty_Count

Saved_Sat_Subsys_Config

end record;

LATEST_CMD_BUF_TYPE;

LATEST_STATUS_BÜF_TYPE;

INTEGER;

INTEGER;

GLOBAL.TYPES.WORD;

INTEGER;

INTEGER;

GLOBAL TYPES.WORD;

type LAST_APP_MSG_TM_TYPE is record

Starting_Cmd

Cmd_Total

IO_Status_Word

Rejected_Cnd_Count

FIF0_Not _Empty_ C ount

Saved_Sat_Subsys_Config

SERIAL_DIG_CMDS.CMD_BYTES_TYPE;

INTEGER;

GLOBAL.TYPES.WORD;

INTEGER;

INTEGER;

GLOBAL TYPES.WORD;

end record;

— function/procedure specifications

-SDVS comment: The function and two procedures that follow are never

-SDVS comment: called in this target code. They are

-SDVS comment: called by TM.COLLECT for telemetry reports on the system.

-SDVS delete: function NEW_TM_DATA return BOOLEAN;

-SDVS delete:

-SDVS delete:

procedure RET_LATEST_CHDS (Latest_Cmd_TH

out LATEST_CMD_TM_TYPE);

-SDVS delete: procedure RET_INIT_CMD_LAST_APP_MSG

-SDVS delete: (Last_App_Msg_TM : out LAST_APP_MSG_TM_TYPE);

-SDVS comment: The three procedures below were originally tasks and did

-SDVS comment: not appear in the visible part of the package APP.MSGS.

-SDVS comment: We have to include them in the visible part

-SDVS comment: of this package because they will be called by the main program.

procedure BUILD; —SDVS replace: Replaces task declaration type in body of APP_MSGS.

procedure MANAGE_MSG_RETRIEVAL(App_Msg_Out : out CMDS_TYPES.APP_MSG_OUT_TYPE);

68

— SDVS replace: Repl ices task declaration type in body of APP_MSGS.

procedure PROCESS_MSG; —SDVS replace: Replaces task declaration type
--SDVS in body of APP. .MSGS.

—SDVS comment : The function RET_MSG_LENGTH returns the length of the next block
—SDVS comment : of commands in the input based on the message identifier. We

—SDVS comment : added it for the scheduler.

function RET_MSG_LENGTH(Msg_Id: GLOBAL.TYPES.BYTE) return INTEGER; —SDVS add

end APP.MSGS;

—SDVS —SDVS— 3DVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS
—SDVS- —SDVS— 3DVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS
—SDVS comment BEGINNING OF BODY DECLARATIONS

—SDVS- —SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS--SDVS
—SDVS- —SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS

—SDVS delete :i750A) MODULE ASMJJTILITY

—SDVS delete [1750A) * Routines in this module !

—SDVS delete [1750A) DEFINE CHECK_PARITY * perform odd-parity check on
—SDVS delete :i750A) * Cmd_Bytes_Type.
—SDVS delete [1750A)

—SDVS delete [1750A) USRCODE CSECT.I
—SDVS delete [1750A) ***

—SDVS delete U750A) *
—SDVS delete [1750A) * Function Check.Parity (Address : in SYSTEM.ADDRESS)
—SDVS delete [1750A) * return BOOLEAN
—SDVS delete :i750A) * 1. Read 4 words stored starting at Address.

—SDVS delete :i750A) * 2. Count the number of l's in the lower bytes
—SDVS delete :i750A) * (bit 8 thru 15) of words.

—SDVS delete U750A) * 3. If odd number of l's, then return 1 (True).

—SDVS delete '1750A) * Otherwise, return 0 (False).
—SDVS delete :i750A) *
—SDVS delete :i750A) **

--SDVS delete [1750A) CHECK_PARITY EQU $
—SDVS delete .1750A) *
—SDVS delete ;i750A) * Get the Parameters off the stack

—SDVS delete '1750A) * SP => "Address"
—SDVS delete '1750A) *
—SDVS delete 1750A)- L R4.0.R15 * get the parameter (Address) of
—SDVS delete 1750A): * Cmd_Bytes_Type off the stack
—SDVS delete 1750A): PSHM R4.R6 * save R4 thru R6

—SDVS delete 1750A): SR R2,R2 * R2 <- init num_of_l's in
—SDVS delete 1750A): * Cmd_Bytes_Type data
—SDVS delete (1750A) LIM R6,4 * Cmd_Bytes_Type data occupies
—SDVS delete (1750A): * 4 words
—SDVS delete ;i750A). BITWORD EQU $

—SDVS delete ('1750A): LIM R3,8 * interested in only

—SDVS delete 1750A): lower 8 bits

69

—SDVS delete (1750A) L R5,0,R4 * get the cmd byte stored
—SDVS delete (1750A) * in bit 8 thru 15
—SDVS delete (1750A) : BITCHEK EQU $
—SDVS delete (1750A) TBR 8,R5 * if bit 8 is 0
—SDVS delete (1750A) JC 2,BITZERC * skip incrementing num_of_l's
—SDVS delete (1750A) * else
—SDVS delete (1750A) AIM R2,l * increment num_of_l,s
—SDVS delete (1750A) : BITZERQ EQU $
—SDVS delete (1750A) SLL R5,l * shift logical left once
—SDVS delete (1750A) SDJ R3,BITCHEK * repeat for 8 bits
—SDVS delete (1750A) AIM R4,l * get the next word
—SDVS delete (1750A) SOJ R6,BITWORD * repeat for 4 words
—SDVS delete (1750A)
—SDVS delete (1750A) ANDM R2,HEX(0001) * we only care whether odd
—SDVS delete (1750A) * or even number of 1's
—SDVS delete (1750A) POPM R4.R6 * restore R4 thru R6
—SDVS delete (1750A) LR R3.R0
—SDVS delete (1750A) * note: JC uses an index register which is R1...R15 (i.e. not RO)
—SDVS delete (1750A) JC 7,0,R3 * GOTD RETURN ADDRESS
—SDVS delete (1750A) *
—SDVS delete (1750A) * THATS ALL FOLKS
—SDVS delete (1750A) *
—SDVS delete (1750A) * ITS assembler doesn 't predefine RC ..R15
—SDVS delete (1750A) *
—SDVS delete (1750A) RO EQU 0
—SDVS delete (1750A) Rl EQU 1
—SDVS delete (1750A) R2 EQU 2
—SDVS delete (1750A) R3 EQU 3
—SDVS delete (1750A) R4 EQU 4
—SDVS delete (1750A) R5 EQU 5
—SDVS delete (1750A) R6 EQU 6
—SDVS delete (1750A) R7 EQU 7
—SDVS delete (1750A) R8 EQU 8
—SDVS delete (1750A) R9 EQU 9
—SDVS delete (1750A) RIO EQU 10
—SDVS delete (1750A) Rll EQU 11
—SDVS delete (1750A) R12 EQU 12
—SDVS delete (1750A) R13 EQU 13
—SDVS delete (1750A) R14 EQU 14
—SDVS delete (1750A): R15 EQU 15
—SDVS delete (1750A): ALL EQU 7
—SDVS delete (1750A): END

package body ASM.UTILITY is —SDVS add

function CHECK.PARITY return BOOLEAN is —SDVS add
begin —SDVS add
return true; —SDVS add
end CHECK.PARITY; —SDVS add

end ASM.UTILITY; —SDVS add

INTRINSIC_FUNCTIONS.ADS

70

— TYPE: Package Specification

— PURPOSE : this package instantiates the Tartan intrinsic functions to

— perform XID functions and bit operations.

— EXCEPTIONS:

— NOTES:

CHANGE HISTORY

02/14/92 R. Pham

02/28/92 R. Pham

03/02/92 R. Pham

Initial Version

Instantiate Shift functions using UNSIGNED_W0RD as

result type

Instantiate functions using UNSIGNED J3YTE

03/05/92 S. Hutton Modified for tracking processor

-SDVS comment: This package instantiates generic functions from the Tartan
-SDVS comment: supplied INTRISICS package. The functions perform bit
-SDVS comment: manipulations. We needed only a few of the instantiated
-SDVS comment: functions. To compile and execute the code with the
-SDVS comment: Verdix compiler at Aerospace, we supplied Ada code for
-SDVS comment: the functions we needed. In the final SDVS proofs, this
-SDVS comment: code was not used: we used adalemmas to characterize
-SDVS comment: their behavior. These adalemmas were not proved.

—SDVS delete (with): with GLOBAL JYPES;

—SDVS delete (with): with INTRINSICS; use INTRINSICS;

package INTRINSIC_FUNCTIONS is

—SDVS delete: function AND_I is new ANDi (INTEGER,

—SDVS delete: INTEGER,

—SDVS delete: INTEGER);

function AND_I(X, Y: INTEGER) return INTEGER; —SDVS replace above declaration

—SDVS comment: Needed for masking in PR0CESS_MSG_TYPE.

—SDVS delete: function AND_W0RD is new ANDi (GLOBALJTYPES.WORD,

—SDVS delete: GLOBALJTYPES.WORD,

—SDVS delete: GLOBALJTYPES.WORD) ;

function AND_W0RD(X, Y: GLOB ALJTYPES. WORD) return GLOBALJTYPES. WORD; —SDVS replace

— The comment in the spec says 16 or 32-bit logical and. The comment is

— not next to the operand or result type. Thus, bytes can be used and the

— system will generate correct code.

—SDVS comment: Needed for masking in Buildjype (only use in the code).

—SDVS delete: function ANDJ3YTE is new ANDi (GLOBALJTYPES.BYTE,

—SDVS delete: GLOBALJTYPES.BYTE,

—SDVS delete: GLOB ALJTYPES. BYTE) ;

function AND_BYTE(X, Y: GLOB ALJTYPES. BYTE)

return GLOBALJTYPES. BYTE; —SDVS replace

71

— "or" is a reserved word.

-SDVS delete: function 0R_I is new ORi (INTEGER,

-SDVS delete: INTEGER,

-SDVS delete: INTEGER);

function 0R_I(X, Y: INTEGER) return INTEGER;—SDVS replace

-SDVS delete: function DR_W0RD

-SDVS delete:

-SDVS delete:

function 0R_W0RD(X, Y: GLOBAL_TYPES.WORD)

is new ORi (GLOBAL_.TYPES.WORD,

GLOBAL_TYPES.WORD,

GLOBAL._TYPES.WORD);

return GLOBAL_TYPES.WORD; —SDVS replace

SDVS delete: function XQR.WORD is new XORi (GLOBAL_TYPES.WORD,

GLOBAL_TYPES.WORD,

GLOBAL_TYPES.WORD);

-SDVS delete

-SDVS delete

function XOR.WORD(X, Y: GLOBAL_TYPES.WORD)

return GLOBALJTYPES.WORD; —SDVS replace

— 16-bit shift logical. For shift logical count in register, if |N|>16,

— the fixed point OYerflow occurs.

—SDVS delete: function SHIFT_LOGICAL_WORD is new SL (GLOBAL_TYPES.WORD,

—SDVS delete: GLOBAL_TYPES.WORD) ;

function SHIFT_LOGICAL_W0RD(X: GLOBAL_.TYPES.WORD; Y: INTEGER)

return GLOB ALJTYPES. WORD; —SDVS replace

end INTRINSIC.FUNCTIONS;

We wrote code for the functions in the INTRINSIC_FUNCTIONS

package below to test the target software on the Verdix

compiler. Our proofs do not use the code. We characterized

these functions by adalemmas for the code.

—SDVS add

—SDVS comment:

—SDVS comment:

—SDVS comment:

—SDVS comment:

package body INTRINSIC.FUNCTIONS is

use GLOBALJTYPES; —SDVS add

function AND_I (X, Y: INTEGER) return INTEGER is —SDVS add

TEMPX, TEMPY, RET: INTEGER; —SDVS add

POWER: INTEGER; —SDVS add

begin —SDVS add

TEMPX := X; —SDVS add

TEMPY := Y; —SDVS add

RET := 0; —SDVS add

POWER := 0; —SDVS add

while (TEMPX /= 0) or (TEMPY /= 0) loop —SDVS add

RET :»

RET + ((TEMPY mod 2)*(TEMPX mod 2))*(2 ** POWER); —SDVS add

TEMPX := TEMPX / 2; TEMPY := TEMPY / 2; —SDVS add

POWER := POWER + 1; —SDVS add

72

end loop; —SDVS add

return RET; —SDVS add

end AND.I; —SDVS add

function AND_W0RD (X, Y: GL0BAL_TYPES.WORD)

return GLOBAL_TYPES.WORD is —SDVS add

TEMPX, TEMPY, RET: GLOBAL_TYPES.WORD; —SDVS add

POWER: GLOBAL.TYPES.WORD; —SDVS add

begin —SDVS add

TEMPX := X; —SDVS add

TEMPY := Y; —SDVS add

RET := 0; —SDVS add

POWER := 0; —SDVS add

while (TEMPX /= 0) or (TEMPY /= 0) loop —SDVS add

RET : =

RET + ((TEMPY mod 2)*(TEMPX mod 2))*(2 ** POWER); —SDVS add

TEMPX := TEMPX / 2; TEMPY := TEMPY / 2; —SDVS add

POWER := POWER + 1; —SDVS add

end loop; —SDVS add

return RET; —SDVS add

end AND.WORD; —SDVS add

function AND.BYTE (X, Y: GLOBAL_TYPES.BYTE)

return GLOBALJTYPES.BYTE is —SDVS add

TEMPX, TEMPY, RET: GLOBALJTYPES.BYTE; —SDVS add

POWER: GLOBAL.TYPES.BYTE; —SDVS add

begin —SDVS add

TEMPX := X; —SDVS add

TEMPY := Y; —SDVS add

RET := 0; —SDVS add

POWER := 0; —SDVS add

while (TEMPX /= 0) or (TEMPY /= 0) loop —SDVS add

RET : =

RET + ((TEMPY mod 2)*(TEMPX mod 2))*(2 ** POWER); —SDVS add

TEMPX := TEMPX / 2; TEMPY := TEMPY / 2; —SDVS add

POWER := POWER + 1; —SDVS add

end loop; —SDVS add

return RET; —SDVS add

end AND_BYTE; —SDVS add

function 0R_I (X, Y: INTEGER) return INTEGER is —SDVS add

TEMPX, TEMPY, RET: INTEGER; —SDVS add

POWER: INTEGER; —SDVS add

begin —SDVS add

TEMPX := X; —SDVS add

TEMPY := Y; —SDVS add

RET := 0; —SDVS add

POWER := 0; —SDVS add
while (TEMPX /= 0) or (TEMPY /= 0) loop —SDVS add

RET := RET + (TEMPX mod 2 + TEMPY mod 2 - —SDVS add
((TEMPY mod 2)*(TEMPX mod 2)))*(2 ** POWER); —SDVS add

TEMPX
POWER

end loop

= TEMPX / 2; TEMPY := TEMPY / 2; —SDVS add
= POWER + 1; —SDVS add
—SDVS add

RETURN RET; —SDVS add

73

end OR_I; --SDVS add

function 0R_W0RD (X, Y: GLOBALJTYPES.WORD)

return GLOBAL_TYPES.WORD is --SDVS add
TEMPX, TEMPY, RET: GLOBALJTYPES.WORD; —SDVS add
POWER: GLOBAL.TYPES.WORD; --SDVS add
begin —SDVS add

TEMPX := X; —SDVS add
TEMPY := Y; —SDVS add
RET := 0; —SDVS add
POWER := 0; —SDVS add
while (TEMPX /= 0) or (TEMPY /= 0) loop —SDVS add
RET := RET + (TEMPX nod 2 + TEMPY mod 2 - —SDVS add

((TEMPY mod 2)*(TEMPX mod 2)))*(2 ** POWER); —SDVS add
TEMPX := TEMPX / 2; TEMPY := TEMPY / 2; —SDVS add
POWER := POWER + 1; —SDVS add

end loop; —SDVS add
RETURN RET; —SDVS add

end 0R_W0RD; —SDVS add

function SHIFT_LOGICAL_WORD (X: GLOBALJTYPES.WORD; Y: INTEGER)
return GLOBALJTYPES. WORD is —SDVS add

TEMPX:GLOBALJTYPES.WORD; —SDVS add
begin —SDVS add
TEMPX := X; —SDVS add
if Y >= 0 then —SDVS add

for I in 1..Y loop —SDVS add
if TEMPX >= 32768 then TEMPX := TEMPX - 32768; —SDVS add
end if; —SDVS add
TEMPX := TEMPX*2; —SDVS add

end loop; —SDVS add
return TEMPX; —SDVS add
else —SDVS add
for I in 1. . (-Y) loop —SDVS add

TEMPX := TEMPX / 2; —SDVS add
end loop; —SDVS add
return TEMPX; —SDVS add

end if; —SDVS add
end SHIFT.LOGICALJWORD; —SDVS add

function XORJrfORD (X, Y: GLOBALJTYPES.WORD)
return GLOBALJTYPES.WORD is —SDVS add

TEMPX, TEMPY, RET: GLOBALJTYPES.WORD; —SDVS add
POWER: GLOBALJTYPES.WORD; —SDVS add
begin —SDVS add

TEMPX := X; —SDVS add
TEMPY := Y; —SDVS add
RET := 0; —SDVS add
POWER := 0; —SDVS add
while (TEMPX /= 0) or (TEMPY /= 0) loop —SDVS add
RET := RET + (TEMPX mod 2 + TEMPY mod 2 - —SDVS add

((TEMPY mod 2)*(TEMPX mod 2)))*(2 ** POWER); —SDVS add
TEMPX
POWER

end loop

= TEMPX / 2; TEMPY := TEMPY / 2; —SDVS add
= POWER + 1; —SDVS add
—SDVS add

74

RETURN RET; --SDVS add

end XOR.WORD; —SDVS add

end INTRINSIC.FUNCTIONS; --SDVS add

—$users:[na.adacode.bld2.longload.ds.chg]serial_dig_cmds.adb

SERIAL_DIG_CMDS.ADB

— TYPE: Package Body

— PURPOSE : This package contains software to support the

interface with the serial digital command system.

The hierachy of subprograms in this package is

as follows:

I. RET_CMD_CQUNT (Called by the task APP_MSGS.BUILD)

II. RET_CMD_BUF_AND_STATUS (Called by the task APP.MSGS.BUILD

when the command count is > 0)

III. CMD_IN_HANDLER (This is the standard interrupt handler for

the short data command interrupt. When a short data

command interrupt occures, control is vectored to

TP_STD_INT_PROC_SERVICE_SETUP, in turn

TP_STD_INT_PROC_SERVICE_SETUP calls this routine to service

the interrupt.)

A.ASM.UTILITY.CHECK_PARITY

— EXCEPTIONS:

— NOTES:

— CHANGE HISTORY:

10/16/91 B. Na Initial Version

yy/mm/dd B. Na Build 2 Changes

—SDVS delete (with): with GLOBAL.TYPES;
—SDVS delete (with): with ARTCLIENT;
—SDVS delete (with): with UNCHECKED_C0NVERSI0N;
—SDVS delete (with): with INTRINSIC_FUNCTIONS;
use INTRINSIC_FUNCTIONS;

—SDVS delete (with): with MEMORY_HANAGER;
—SDVS delete (with): with ASM.UTILITY;

package body SERIAL_DIG_CMDS is

— Holds the commands read from the FIFO and not yet retrieved by

— APP_MSGS.BUILD. Filled with the commands as they received by

— CMD_IN_HANDLER. Cmd_Count is used as an index into the buffer.

— If Cmd_Count = N, the following depicts the command buffer.

75

+ + +

I First Byte | Second Byte |
(1) I + 1 Command 1

I Third Byte I Fourth Byte |
+ + +

I First Byte | Second Byte |
(2) I + 1 Command 2

I Third Byte | Fourth Byte I
+ + +

I First Byte I Second Byte I
(3) I + 1 Command 3

I Third Byte I Fourth Byte I
+ . + +

I First Byte I Second Byte I
(N) I t- 1 Command

I Third Byte | Fourth Byte |
+ + +

-I I I
— (70) I + 1
— I I I

+ + +

Cmd.Buf : CMD_BUF_TYPE;

— Holds the command statuses that are not yet retrieved by
— APP_MSGS.BUILD. Cmd_Count is used as an index into the buffer.
— If Cmd_Count = N, the following depicts the status buffer.

+ +
(1) I Command 1 Status |

+ +

(2) I Command 2 Status |
+ +

— (3) I Command 3 Status |
+ +

(M) I Command H Status I
+ +

I I
+ +

— (70) I |
+ +

Cmd_Status_Buf : CMD_STATUS_BUF_TYPE;

— The following command status values are possible while the
— commands are being received and buffered by SERIAL_DIG_CMDS:

76

Cmd_OK = 0,
Cmd_Bad_Parity = 7,
Cmd_Lost = 8,
Cmd_FIFO_Not_Empty = 16

Cmd_FIFO_Not_Empty and Cmd_Bad_Parity =16 + 7

Cmd.Lost and Cmd_Bad_Parity =8+7

— Cmd_Lost is allowed only for the last (70th) command in the

— buffer.

Cmd.Status : INTEGER;

— Indicates that the new command read is not stored in the buffer (lost)

— because the buffer is already full.

Lost.Cmd : BOOLEAN := False;

Cmd.Count : INTEGER := 0; — Used as the index into Cmd_Buf.

FIFO_Not_Empty_Count : INTEGER := 0; -- Running total of FIFO not empty

— condition.

io status type is an array 1..16 of boolean.

Spacecraft 10 # 1 Status Bit Map

Bit 0 - Housekeep TLH FIFO empty flag, 0 = empty

Housekeep TLH FIFO full flag, 0 = empty

Memory Dump FIFO empty flag, 0 = empty

Memory Dump FIFO full flag, 0 = empty

Universal TimeFIFO empty flag, 0 = empty

Universal Time Mode Status, 0=internal, l=normal

Data Cmd FIFO empty flag, 0 = empty

Data Cmd FIFO full flag, 0 = empty

: GLDBAL.TYPES.I0_STATUS_TYPE;

: GLOBAL.TYPES.WORD;

— Procedures and functions used in this package

-SDVS comment: C0NV_W0RD_T0_BIT_ARRAY is used only in parts of the code that we will not
-SDVS comment: check.
-SDVS delete: function C0NV_W0RD_T0_BIT_ARRAY is new

-SDVS delete: UNCHECKED_C0NVERSI0N

-SDVS delete: (SOURCE => GLOBAL.TYPES.WORD,

-SDVS delete: TARGET => GLOBAL.TYPES.I0_STATUS_TYPE);

-SDVS comment: The function RET_MSG_ID has been added

-SDVS comment: for the scheduler. It returns the message identifier for

-SDVS comment: the next block of commands in the input encoding a message.

function RET_MSG_ID return GLOBAL.TYPES.BYTE is —SDVS add

begin —SDVS add

return Cmd_Buf(1).Third_Byte; —SDVS add

end RET_MSG_ID; —SDVS add

— Bit 1 ■
~ Bit 2 •
— Bit 3 ■
— Bit 4 ■
— Bit 5 •
— Bit 6 ■
— Bit 7 ■

10. _Status_Bits
10. _Status_Word

FUNCTION RET.CMD.COUNT

PURPOSE: This function returns the command count. The

command count is read to see if the command buffer

77

contains any commands to be retrieved. Only called

by APP.MSGS.BUILD.

KOTES:

CHANGE HISTORY:

10/16/91 B. Na Initial Version

function RET_CHD_C0U1T return INTEGER is

begin

return SERIAL_DIG_CMDS.Cmd.Count;

end RETCMDCOUNT;

PROCEDURE RET_CMD_BUF_AND_STATUS

PURPOSE This procedure provides the commands and statuses

buffered to be build into application messages.

The commands and statuses are not double-buffered.

Once the buffer content is copied to the output

parameters, it is re-initialized. This procedure

is called by APP_HSGS.BUILD.

NOTES:

CHANGE HISTORY:

10/16/91 B. Na Initial Version

procedure RET_CMD_BUF_AND_STATUS

(Cmd_Buf :

Cmd_Status_Buf :

Cmd_Count :

FIFO_Not_Empty_Count :

I0_Status_Word :

Lost_Cmd :

begin

out CMD_BUF_TYPE;

out CHD_STATUS_BUF_TYPE;

out INTEGER;

out INTEGER;

out GLOBALJTYPES.WORD;

out BOOLEAN) is

— XIO RA.DSBL disables int. Programmers should ensure that

— exceptions do not cause calls to Leave_Critical_Section to

— be missed. Refer to page 8-21 of Tartan manual.

-SDVS delete (artclient): Artclient.Enter_Critical_Section;

— Copy buffer contents and counters to output parameters.

Cmd_Buf :=- SERIAL_DIG_CMDS.Cmd.Buf;

78

Cmd_Status_Buf

Cmd_Count

FIFO_Not_Empty_Count

IO_Status_Word

Lost_Cmd

= SERIAL_DIG_CMDS.Cmd_Status_Buf;

= SERIAL_DIG_CMDS.cmd.Count;

= SERIAL_DIG_CMDS.FIFO_Not_Empty_Count;

= SERIAL_DIG_CMDS.IO_Status_Word;

= SERIAL_DIG_CMDS.Lost_Cmd;

— Re-initialize counters.

SERIAL_DIG_CMDS.Cmd_Count := 0;

SERIAL_DIG_CHDS.FIFO_Not_Empty_Count := 0;

SERIAL_DIG_CMDS.Lost_Cmd := False;

— XIO RA.ENBL enables int.

-SDVS delete (artclient): Artclient.Leave_Critical_Section;

end RET_CMD_BTJF_AND_STAT0S;

PROCEDURE CMD_IN_HANDLER

— PURPOSE: This interrupt handler is called by

TP_STD_INT_PROC_SERVICE_SETUP when a serial

digital command interrupt occurs. This routine

reads the command bytes from the FIFO, checkes

its parity and reads and saves the spacecraft

10 #1 status. Then the read commands are packed

into two 16-bit words and stored in the command

buffer.

The serial digital command FIFO address is E0800 -E09FF

(E1800 - E19FF ... E7800 - E79FF). To reset the

Data_Cmd_FIF0, write to I/O address 0230 (0230 - 0237).

1/0 address 8200 (8200-820f) provides status.

Bit D6 (numbered D0-D15) is data cmd FIFO not empty flag

(0 = empty). Bit D7 is data cmd FIFO not full flag

(0 = full(). To reset the Data Cmd interrupt,

write to I/O address 0228 (0228 - 022F). It does not

matter what the data value is.

NOTES:

CHANGE HISTORY:

10/16/91 B. Na Initial Version

procedure CMD_IN_HANDLER is

-SDVS delete (hex): Cmd_In_FIF0_Addr : constant L0NG_INTEGER := 16#OOOE0800#;
Cmd_In_FIF0_Addr : constant L0NG_INTEGER := 919552;—SDVS replace
— The intrisic INPUTJTORD will add 16#8000# before performs
— XIO to read from the input port

79

-SDVS delete (hex):

IO_Status_Port

-SDVS delete (hex):

Ser_Dig_Int_Port

-SDVS delete (hex):

Ser_Dig_FIFO_Reset_Port

Data_C»d_FIFO_Not_Empty

IO_Status_Port

: constant INTEGER

Ser_Dig_Int_Port

: constant INTEGER

Ser_Dig_FIFO_Reset_Port

constant INTEGER

constant INTEGER

Data_Cmd_FIFO_Not_Full constant INTEGER

constant INTEGER := 16#0200#

512;— SDVS replace

constant INTEGER := 16#0228#

552;—SDVS replace

constant INTEGER := 16#0230#

560;—SDVS replace

6;

7;

— Dperate on 4 byte (= 32 bit) serial digital command.

Cmd.Size : constant INTEGER :» 4;

CmdJJnpacked : array (1. .Cmd.Size) of GLOBAL.TYPES.WORD;

Cmd : CMD_BYTES_TYPE; — 4 bytes are packed in 2 words

Good.Parity : BOOLEAN := TRUE; indicates the parity-check

status of Cmd.

begin

— May want to move one byte at a time and check FIFO empty since

— parity bit is only a 507. test if do not get all 4 bytes. However,

— 8085 on S/C I/O #1 always sends 4 bytes or none. May lose some

— commands but should not get spurious ones. Discuss keeping parity

— bit or changing it (maybe nibble parity or no parity).

— Read 4 bytes from cmd in FIFO into a temporary buffer. The FIFO

— is only byte wide. High order byte is not used.

Cmd.Unpacked Format
+ + +

I I First Byte I
+ + +

I I Second Byte |

+ + +

I I Third Byte |
+ + +

I I Fourth Byte |
+ + +

-SDVS comment: CmdJJnpacked gets a value by the call to MEMORY .MANAGER. READ_FIF0,

-SDVS comment: which is written in 1750A. We replaced this call by the "for" loop which

-SDVS comment: gets 4 bytes from the input.

-SDVS delete (1750A):

-SDVS delete (1750A):

-SDVS delete (1750A):

for i in 1 .. 4 loop

MEMORY.MANAGER.READ_FIF0(Cmd_In_FIFO_Addr,

Cmd_Unpacked'address,

Cmd_Size);

—SDVS replace

get(Cmd_Unpacked(i)); —SDVS replace

end loop; —SDVS replace

— Initialize command status.

Cmd_Status := Cmd_0K;

-SDVS comment: The next two assignment statements and the "if" statement are

-SDVS comment: used to determine the I0_Status_Word and the FIFO_Not_Empty_Count

-SDVS comment: for the command just obtained. These values are eventually passed

80

—SDVS comment: to APP_HSGS.RET_LATEST_CHDS which processes the information for

—SDVS comment: housekeeping telemetry. RET.LATEST.CHDS is never called in the

—SDVS comment: target software. For this reason and because the code below uses

—SDVS comment: intrinsic functions (supplied for the Tartan compiler only),

—SDVS comment: we have deleted the assignment statements and

—SDVS comment: the "if" statement. However, because the IO.Status.Word is assigned

—SDVS comment: to an out parameter of type "word" in a procedure call, SDVS requires

—SDVS comment: that, in the symbolic execution of this call, the out parameter

—SDVS comment: value be in the range 0..255. Thus, we arbitrarily assign

—SDVS comment: 0 to IO.Status.Word to meet this constraint.

— Read Spacecraft 10 #1 Status after the data is read out of the

— FIFO but before the FIFO is reset or receives the next message.

— Refer to TP/DHS IDS, page 6.

—SDVS delete: IO.Status.Word := INPUT_W0RD(PI, IO.Status.Port) ;

IO.Status.Word := 0; —SDVS add

—SDVS delete: IO.Status.Bits := CONV.WORD.TO.BIT.ARRAY(IO.Status.Word) ;

—SDVS delete: if IO.Status.Bits(Data.Cmd.FIFO.Not.Empty) then

—SDVS delete: 0UTPUT_I(16#0000#, P0, Ser.Dig_FIFO_Reset.Port) ;

—SDVS delete: Cmd.Status := Cmd_FIFO_Not.Empty;

—SDVS delete: FIFO.Not.Empty.Count := (FIFO.Not.Empty.Count + 1) mod 256;

—SDVS delete: end if;

— Check for odd parity

—SDVS delete: Good.Parity := ASM_UTILITY.CHECK_PARITY(Cmd_Unpacked'address);

Good.Parity := ASH.UTILITY.CHECK.PARITY;—SDVS replace

if Good.Parity then

Cmd.Status := Cmd.Status + Cmd.OK;

else

Cmd.Status := Cmd.Status + Cmd.Bad.Parity;

end if;

— Packed Format

1 First Byte 1 Second Byte 1

1 Third Byte 1 Fourth Byte 1

Cmd.First.

Cmd.Seconc

Cmd. Third.

Cmd.Fourth

Byte

.Byte

Byte

.Byte

= GLOBAL.

= GLOBAL.

= GLOBAL.

= GLOBAL.

.TYPES

.TYPES

.TYPES

.TYPES

. BYTE (CmdJJnpacked (1));

.BYTE(Cmd_Unpacked(2));

.BYTE(Cmd_Unpacked(3));

. BYTE (CmdJJnpacked (4)) ;

— Reset Serial Digital Command Interrupt.

-SDVS delete (intrinsics): 0UTPUT_I(16#0000#, PO, Ser.Dig_Int.Port);

— Store the cmd in the buffer if the buffer is not full

if Cmd.Count < Cmd.Buf.Size then

— Cannot allow reading of cmd.count till buffers are updated.

— Also cannot allow reading of buffers while not in a steady

81

— State. Since done at interrupt level this is not necessary.

— Artclient.Enter_Critical_Section;

— Never wraps around because of RET_CMD_BUF_AND_STATUS proc.

— don't need head index - always 1.

— Cmd_Count is same as tail_index

C«d_Count := Cmd.Count + 1;

Cmd_Buf(Cmd.Count) := Cmd;

Cmd_Status_Buf(Cmd_Count) := Cmd_Status;

— Since done at interrupt level this is not necessary.

— Artclient.Leave_Critical_Section;

else

Cmd_Status_Buf(Cmd_Buf.Size) := Cmd_Status_Buf(Cmd_Buf_Size) + Cmd_Lost;

Lost_Cmd := True; — This condition will be reported as system error

— by APP.MSGS.BUILD.
end if;

end CMD_IN_HANDLER;

begin

null; — There will be no specific initialization done at the elaboration

— of Serial_Dig_Cmds and no exception is anticipated for this

— package.

end SERIAL_DIG_CMDS;

—SDVS comment: JHU/APL did not give us a body for the MODE_STATE package,

—SDVS comment: since it did not appear we would need it.

—SDVS comment: These procedures allow us to write to EEPRDM.

—SDVS comment: We have provided trivial bodies for them.

package body MODE_STATE is —SDVS add

procedure PERFORM_SOFT_RESET is —SDVS add

begin —SDVS add

null; —SDVS add

end PERFORM_SQFT_RESET; —SDVS add

function RETRIEVE.CUR_STATE return MODE_STATE_TYPE is —SDVS add

begin —SDVS add

return Init_EEPROM_Write; —SDVS add

end RETRIEVE.CUR.STATE; —SDVS add

procedure CHG_STATE(Mode_State_Req : in MODE_STATE_TYPE; —SDVS add

Status_Of_Request : out STATUS_OF_REQUEST_TYPE) is —SDVS add

begin —SDVS add

82

Status_Of_Request := State_Granted; —SDVS add

end CHG.STATE; --SDVS add

end MDDE_STATE; --SDVS add

— $users:[na.adacode.bld2.1ongload.ds]eeprom_data_struc.adb

EEPROM_DATA.ADB

~ TYPE: Package Body

— PURPOSE : This package stores and retrieves EEPROM data.

There are three types of EEPROM data stored and

retrieved by this package:

1. data structure

2. specific memory (EEPROM) load data

3. miscellaneous system variable data

The hierarchy of subprograms in this package is
as follows:

I. STORE_DATA_STRUC_IN_EEPROM (called by APP_MSGS.PROCESS_MSG

ARRAY_0F_BL0CKS.PROCESS_MSGS_IN_BLOCKS)

A. COPY_P0INTERS_FROM_EEPROM (updates Data_Struc_Ptr_List
and Free_Area pointers)

1. MEMORY_MANAGER.MOVE_FROM_PHY_LOC_TO_VARIABLE

B. DETERMINE_STORAGE_LOC

1. TM.DATA.MANAGE.REPORT_SYSTEM_ERROR

2. CORRECT_BAD_STRUC_PTR

2.1. TM_DATA.MANAGE.REPORT_SYSTEM.ERROR
2.2. MEMORY_MANAGER.WRITE_BL0CK_T0_EEPR0M

2.3. MEM0RY_MANAGER.C0NFIRM_EEPR0M_DATA

C. WRITE_LOAD_DATA_T0_EEPR0M

1. WRITE.BLOCK

1.1. MEMORY.MANAGER.WRITE_BL0CK_T0_EEPR0M

1.2. MEMORY_MANAGER.CONFIRM_EEPROM_DATA

1.3. TM.DATA.MANAGE.KEPORT.SYSTEMJERROR

2. MEMORY_MANAGER.WRITE_TO_EEPROM_BLOCK_ALIGN

3. MEMORY_MANAGER.CONFIRM_EEPROM_DATA

4. TM.DATA. MANAGE.REPORT_SYSTEM_ERROR

D. ALLOC_NEW_ST0RAGE_AREA

1. ALL0CATE_ST0RAGE

1.1. UPDATE_EEPROM_STRUC_PTRS

1.1.1. MEMORY_MANAGER.WRITE_BLOCK_TO_EEPROM

1.2. UPDATE_EEPROM_FREE_PTRS

1.1.1. MEM0RY_MANAGER.WRITE_BLOCK_TO_EEPROM

1.1.2. MEMORY_MANAGER.CONFIRM_EEPROM_DATA

2. CORRECT_BAD_FREE_AREA_PTR

2.1 TM_DATA. MANAGE.REPORT_SYSTEM_ERROR

3. UPDATE_EEPROM_STRUC_PTRS

3.1 MEMORY_MANAGER.WRITE_BLOCK_TO_EEPROM

4. TM_DATA.MANAGE.REP0RT_SYSTEM_ERROR

E. MEMORY.MANAGER.CONV TYPE

83

F. TM.DATA.MANAGE.REPORT_SYSTEM_ERROR

II. RET_DATA_STRUC_IN_EEPRDM (called by TRKING.PARAMS.INIT.PARMS)

A. C0PY_P0INTERS_FROM_EEPROM

1. MEMORY.MANAGER.MOVE_FROM_PHY_LOC_TO_VARIABLE

B. DETERMINE_STORAGE_LOC

1. TM_DATA.MANAGE.REPORT_SYSTEM_ERROR

2. MEMORY_MANAGER.WRITE_BLOCK_TO_EEPRDM

3. MEMDRY_MANAGER.CDNFIRM_EEPROM_DATA

III. RET.SYS.CONFIG (called by APP.MSGS.PROCESS.MSGS.IN.BLOCKS)

A. MEMORY.MANAGER.MDVE_FROM_PHY_LOC_TO.VARIABLE

B. MEMORY.MANAGER.WRITE.BLOCK.TO.EEPROM

C. MEMORY.MANAGER.CONFIRM_EEPROM_DATA

D. TM.DATA.MANAGE.REPORT_SYSTEM_ERROR

IV. WRITE_LOAD_DATA_TO_EEPROM (called bye APP.MSGS.PROCESS.

MSG.TYPE and ARRAY.OF.BLOCKS.WRITE.TO.MEMORY)

WRITE.BLOCK

1. MEMORY.MANAGER.WRITE.BLOCK.TO.EEPROM

2. MEMORY.MANAGER.CONFIRM.EEPROM.DATA

3. TM.DATA. MANAGE.REPORT.SYSTEM.ERROR

MEMORY.MANAGER.WRITE.TO.EEPROM.BLOCK.ALIGN

MEMORY.MANAGER.CONFIRM.EEPROM.DATA

TM.DATA. MANAGE.REPORT.SYSTEM.ERROR

EXCEPTIONS:

NOTES:

CHANGE HISTORY: 01/31/92 S. HUTTON/B. Na Initial Version

package body EEPROM.DATA is

PROCEDURE STORE.DATA.STRUC.IN EEPROM

PURPOSE : This procedure is the main control software for

storing data structures in EEPROM.

Before fly, in general (unless EEPROM failure location

before fly) Data_Struc.Ptr.List for 1st data struc block

are allocated and default values exist for structures.

The 2nd data structure block is set as shown below to

designate never allocated.

Data.Struc.Ptr.List(1.Data.Struc.ID)

Data.Struc_Ptr.List(2,Data.Struc.ID)

Data_Struc_Ptr_List(3,Data_Struc_ID)

68;

18;

9;

84

EEPROM Data Structure Block Format

Physical Address

(Blk 1) (Blk 2)

80000 BF800 +

80050 BF850 + +

Data_Struc_Ptr_List(2,1..79)

8009E BF89E + +

807FF BFFFF

Data_Struc_Ptr_List(l,l. .79)

Data_Struc_Ptr_List(3,1..79)

800ED BF8ED + +

Free_Area pointer (1)

Free_Area pointer (2)

Free_Area pointer (3)

800F0 BF8F0 + +

Data Structure Storage

Area

Data Stucture Storage

Free Area

NOTES:

CHANGE HISTORY: 01/10/92 S. HUTTON/B. NA Original

procedure ST0RE_DATA_STRUC_IN_EEPR0H

(Array_0i_Words : in

Data_Struc_ID : in

Data_Struc_Length : in

CMDS_TYPES.APP_MSG_0UT_TYPE;

INTEGER;

INTEGER) is

use INTRINSIC_FUNCTI0NS; —SDVS add

85

begin

for I in 2 .. Data_Struc_Length + 1 loop —SDVS replace

put(Array.Of_Words(i)); —SDVS replace

end loop; —SDVS replace

end ST0RE_DATA_STRUC_IN_EEPR0M;

begin

null;

end EEPROM.DATA;

—SDVS comment: The package body of TM_DATA below is only a simplification

—SDVS comment: of the real TM_DATA body. In the real one, MANAGE is a task

—SDVS comment: and REPDRT_SYSTEM_ERROR is one of its entries. Furthermore,

—SDVS comment: we do not even have the body of TM_DATA and it probably does

—SDVS comment: not contain a "put." We dealt with these problems in the manner

—SDVS comment: below. No branch in the SDVS execution lead to a call of

—SDVS comment: the procedure REPORT_SYSTEM_ERROR

package body TM_DATA is

package body MANAGE is —SDVS replacement

procedure REPORT_SYSTEM_ERROR(Sys_Error_Code :

in GLOBAL.TYPES.BYTE) is —SDVS replacement

begin —SDVS replacement

put(Sys_Error_Code); —SDVS replacement

end REPORT_SYSTEM_ERR0R; —SDVS replacement

end MANAGE; —SDVS replacement

end TM.DATA;

— Susers: [na.adacode.bld2.longload]app_msgs.adb

APP.MSGS.ADB

— TYPE: Package Body

— PURPOSE : This package contains software to build and

process the application messages for the serial digital

86

commands buffered by SERIAL_DIG_CMDS.

The hierachy of subprograms in this package is as follows:

I. BUILD (This task runs at a 2 Hz rate and initiates a rendezvous

with MANAGE.MSG.RETRIEVAL at the entry point

NOTIFY.MSG.STORED.)

A. SERIAL_DIG_CMDS.RET_CMD_COUNT

B. SERIAL_DIG_CMDS.RET_ CMD.BÜF.AND.STATUS

C. TM.DATA.MANAGE.REPORT.SYSTEM.ERROR

D. INITIATE_BUILD

E. CONTINUE_BUILD

F. MANAGE_MSG_RETRTEVAL.NOTIFY_MSG_STORED

II. PROCESS.MSG (This task runs without any delay but pends at the

guarded entry MANAGE_MSG_RETRIEVAL.RET_NEXT_MSG.)

A. MANAGE.MSG.RETRIEVAL.RET.NEXT.MSG

B. MDDE_STATE.RETRIEVE. CUR.STATE

C. MODE_STATE.CHG_STATE

D. EEPROM.DATA.ST0RE.DATA_STRUC_IN_EEPROM

E. TM.DATA.MANAGE.REPORT_SYSTEH_ERROR

F. TRKING.PARAMS.MANAGE.STORE_TRKING_STRUC

G. MEMORY.MANAGER.tfRITE.BLOCK.TO.EEPROM

H. PRIME_SCIENCE_DATA.SET_PRIME_SCI_DATA_RATE

I. MODE_STATE.PERFORM_SOFT_RESET

J. ARRAY_DF_BLOCKS.INIT_LDNG_LOAD

K. ARRAY_DF_BLDCKS.PROCESS_MSGS_IN_BLOCKS.PREPARE_FOR_TIMEDUT

L. MEMORY.MANAGER.C0NV_TYPE

M. POINTING_INFO_OUT.SHUTD0WN_IMHINENT

N. TM.PROCESS.CMD.UPDATE.VAR.MON.ADDR

0. TM_PRDCESS_CMD.CHK_NO_DP_CMD

P. EEPROM.DATA.WRITE_LOAD.DATA.TO.EEPROM

III. MANAGE.MSG.RETRIEVAL (This task rendezvous with PROCESS.MSG when

the application message count is greater

than zero. This task also rendezvous with

BUILD when the application message queue

becomes not empty from empty.)

A. MEMORY_MANAGER.C0NV_TYPE

IV. Other Procedures or Functions

A. NEW_TM_DATA

B. RET_LATEST_CMDS

C. RET_INIT_CMD_LAST_APP_MSG

D. INITIATE_BUILD

1. TM.DATA.MANAGE.REPORT.SYSTEM.ERROR

E. CONTINUE.BUILD

1. TM.DATA.MANAGE.REPORT.SYSTEM.ERROR

EXCEPTIONS:

NOTES:

CHANGE HISTORY:

10/16/91 B. Na Initial Version

87

01/31/92 B. Na Build 2 Changes

—SDVS comment: For the body of APP_MSGS, we delete all "with" and "use"
—SDVS comment: clauses appearing before its declarative part. However, we
—SDVS comment: move all "use" clauses for packages that we actually need
—SDVS comment: within and in the beginning of the declarative part
—SDVS comment: of the APP.MSGS body.

—SDVS delete (with): with ARTCLIENT;
—SDVS delete (with): with SYSTEM; use SYSTEM;
—SDVS delete (with): with INTRINSIC.FUNCTIONS; use INTRINSIC.FUNCTIONS;
—SDVS delete (with): with UMCHECKED_CDNVERSIDN;

—SDVS delete (with): with GL0BAL_TYPES; use GLOBAL.TYPES; — Globally used types.

—SDVS delete (with): with CMDS_TYPES; — Commonly used types among the command systems

— group packages.

—SDVS delete (with): with TRKING_DATA_STRUC; — contains number of words per

— data structure table

—with SYSTEMJTIME;

—SDVS delete (with): with MEMORYJIAMAGER;

— 4/21/92 changed sys_error_type from enum to integer.

—SDVS delete (with)

—SDVS delete (with)

—SDVS delete (with)

—SDVS delete (with)

—SDVS delete (with)

—SDVS delete (with)

—SDVS delete (with)

—SDVS delete (with)

—SDVS delete (with)

with TM.DATA; — no longer need use TM_DATA;

with TM; use TM;

with MDDE.STATE; use MODE.STATE;

with SERIAL_DIG_CMDS; use SERIAL_DIG_CMDS;

with PRIME_SCIENCE_DATA;

with TRKING_PARAMS;

with P0INTING_INF0_0UT;

with ARRAY_DF_BLOCKS;

with EEPR0M_DATA;

— REMOVE LATER!!!

—SDVS delete (with): with SIMPLE.IO; use SIMPLE.IO;

—SDVS delete (pragma): pragma elaborate (TM_DATA);
—SDVS delete (pragma): pragma elaborate (TRKING_PARAMS);
—SDVS delete (pragma) : pragma elaborate (EEPR0M_DATA) ;

—SDVS delete (pragma) : pragma elaborate (INTRINSIC_FUMCTIONS) ;

—SDVS delete (pragma) : pragma elaborate (PRIME_SCIENCE_DATA) ;

package body APP_MSGS is

use INTRINSIC_FUNCTIONS; —SDVS replace (reposition)

use GLOBAL.TYPES; —SDVS replace (reposition)

—SDVS delete use TM; —SDVS replace (reposition)

use MODE.STATE; —SDVS replace (reposition)

use SERIAL_DIG_CMDS; —SDVS replace (reposition)

— I. Variables Associated With Retrieved Commands From SERIAL_DIG_CMDS.

— Holds the number of commands retrieved.

Cmd_Count : INTEGER;

— Retrieved commands are stored in this buffer.

Cmd.Buf : SERIAL_DIG_CMDS.CMD_BUF_TYPE;

— Retrieved command statuses are stored in this buffer.

Cmd_Status_Buf : SERIAL_DIG_CMDS.CMD_STATUS_BUF_TYPE;

— The following defines the possible command status values with the

— two exceptions:

(1) Cmd.Lost is allowed only for the last (70th) command

in the buffer.

(2) Cmd.Lost and Cmd_FIFD_Not_Empty may be ORed with the rest

of status values.

— Cmd.OK = 0

— App_Hsg_Dropped = 1

— Bad_Checksum = 2

— Flushed_prior_Build = 3

— Invalid_Data_Struct_Hsg_ID = 4

— Invalid_Starting_Cmd = 5

— App_Msg_Overwritten = 6

— (The following three conditions are checked by SERIAL_DIG_CMDS)

— Cmd_Bad_Parity = 7 (Parity of the command is not odd)

— Cmd_Lost = 8 (New command is lost because the

command buffer is full)

— Cmd_FIFO_Not_Empty = 16 (The command-in FIFO is not empty after

one command is read)

— This flag indicates that one or more commands read from the FIFO were

— not stored in the buffer because the buffer was full. This flag is

— checked by APP_MSGS.BUILD to generate the system error message.

Lost_Cmd : BOOLEAN := False;

— Holds the number of occurances that FIFO is not empty after one command

— (4 bytes) is read.

FIFO_Not_Empty_Count : INTEGER := 0;

Rejected_Cmd_Count : INTEGER := 0; — 0 thru 255

Max_Rejected_Cmd_Count : constant INTEGER := 256;

— II. Variables Set and Used While Building Message

— The messages built and ready to be retrieved and processed are stored

— in this queue. 4/21/92 changed App_Hsg_Q_Size from = 30 to = 15 to

— save space; saves 15 * 80 = 1200 words, changed back to =30 5/15/92

App_Msg_Q_Size : constant INTEGER := 30;

type APP_MSG_TYPE is array (1..CMDS_TYPES.App_Msg_Max) of GLOBAL.TYPES.WORD;

-SDVS delete (2-dimensional array): type APP_MSG_Q_TYPE is array

-SDVS delete (2-dimensional array): (1..App_Msg_Q_Size, 1..CMDS_TYPES.App_Msg_Max)

-SDVS delete (2-dimensional array): of GLOBAL.TYPES.WORD;

type APP_MSG_Q_TYPE is array (1. .App_Hsg_Q_Size) of APP_MSG_TYPE; —SDVS replace
App_Msg_Q : APP_HSG_Q_TYPE;

— This buffer holds the intermediate result while the message is being

— built. As the message become complete, the completed message is moved

— to App-Msg-Q.

89

■-SDVS delete (others): App.Msg : APP_MSG_TYPE := (others => 0);

App_Msg : APP_MSG_TYPE; —SDVS replace

— Used to control build process. A logic False indicates the start

— of build process. Will be set to True by INITIATE_BUTLD when

— more commands are needed to build the message. Any one of the

— following abnomalies will set this variable to False:

Cmd parity fail

Msg checksum fail

Invalid op-code

Build_In_Progress : BOOLEAN := False;

— First byte (opcode and parity) of the start command of the multiple

— commands message is saved; so it can be reported to TM as the start

— command associated with the last received application message.

Starting_Cmd_With_Par : GLOBAL.TYPES.BYTE;

— Used as a word index into the App_Msg while build is in progress to

— store incoming command bytes.

Word.Cntr : INTEGER := 0;

— Holds the number of commands received for the message currently

— being built.

Cmds.Rcvd : INTEGER := 0;

— Set by Initiate_Build and used by Continue.Build. Holds the number

— of required commands to be recevied for the build.

Num_Cmds_For_App_Msg : INTEGER := 0;

— Set by Initiate_Build and used by Continue_Build. Holds the the number

— of words of the message to be stored into the application message queue.

Num_¥ords_For_App_Msg : INTEGER := 0;

— Set by Initiate_Build and used by Continue_Build. Holds the next expected

— command type to complete the build.

Cont.Cmd : GLOBAL.TYPES.BYTE;

— Set and used only by Initiate_Build and Continue_Build. Holds the

— last written position in the application message queue.

Q_Tail : INTEGER := 0;

— Set and used only by MANAGE_MSG_RETRIEVAL. Holds the next

— read position in the application message queue.

Q.Head : INTEGER := 1;

— Holds the number of messages built and stored in the queue.

App_Msg_Counter : INTEGER := 0;

— Holds the start command associated with the last received message.

-SDVS delete (others): Cmd_Last_App_Msg

-SDVS delete (others): : SERIAL_DIG_CMDS.CMD_BYTES_TYPE := (others => 0);

Cmd_Last_App_Hsg : SERIAL_DIG_CHDS.CMD_BYTES_TYPE; —SDVS replace

— III. Starting Command Op-Codes (and Continuation Codes)

90

+ +-

I p I
+ +-

_+ + +

OP-CODE
_+ + +

-+ + + + + +-

I Cmd Data (Bits 0 - 7)

— + + + + +—

Data_Struc_Load

RAM_Mem_Load

EEPROM_Mem_Load

Set_RAM_Def_Tab_Entry

Prep_For_Long_Load

Mem_Dump_X_Frames

Shutdown.Imminent

Sat_Subsys_Config

No_op_Cmd

Chg_Monitor_Loc

Soft.Reset

Mem_Dump_Data_Struc

Clr.Timeout.Telltale

UT_Control

— Continuation commands

Data_Load_Cmd :

Ert.Dump.X.Frames :

Ext.Chg.Mon.Loc :

Cmd Data (Bits 8 - 23)
-+ + + + + + +_

c onst ant GLOBAL.TYPES.BYTE

constant GLOBAL.TYPES.BYTE

constant GLOBAL_TYPES.BYTE

constant GLOBAL.TYPES.BYTE

constant GLOBAL_TYPES.BYTE

constant GLOBAL_TYPES.BYTE

constant GLOBAL_TYPES.BYTE

constant GLOBAL_TYPES.BYTE

constant GLOBAL_TYPES.BYTE

constant GLOBAL_TYPES.BYTE

constant GLOBAL.TYPES.BYTE

constant GLOBAL.TYPES.BYTE

constant GLOBAL.TYPES.BYTE

constant GLOBAL.TYPES.BYTE

constant GLOBAL.TYPES.BYTE

constant GLOBAL.TYPES.BYTE

constant GLOBAL.TYPES.BYTE

= 1

= 2

= 4

= 7

= 11

= 13

= 19

= 22

= 25

= 28

= 32

= 35

= 37

= 38

8

16

31

— IV. Variables Used To Buffer and Report Last 40 Commands To TM.

-SDVS—SDVS—SDVS—SDVS--SDVS—SDVS—SDVS--SDVS—SDVS—SDVS--SDVS--SDVS

-SDVS—SDVS—SDVS—SDVS—SDVS--SDVS—SDVS—SDVS—SDVS—SDVS—SDVS--SDVS

-SDVS The following group of declarations are used to report SDVS

-SDVS to telemetry. The declared objects are not used in the SDVS

-SDVS target code and are therefore deleted. Any assignments SDVS

-SDVS to them in BUILD are also deleted. SDVS

-SDVS—SDVS—SDVS—SDVS—SDVS-- SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—-SDVS

-SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS

— Used in RETJLATEST.CMDS to determine the first command in

— Latest.Cmds.Q to be reported to TM at this frame.

-SDVS delete: Read.Ptr : INTEGER := 0;

— Points to the last written entry in the queue. Queue entries

— extend from 1 to 75. Incremented by BUILD as the incoming

— commands are buffered in the Latest.Cmds.Q

-SDVS delete: Write.Ptr : INTEGER := 0;

-SDVS delete: Latest.Cmds_Q.Size : constant INTEGER := 75;

— Holds up to 75 commands and statuses which will be reported to TM.

-SDVS delete: Zero.Cmd : constant Serial_Dig_Cmds.Cmd_Bytes.Type

91

-SDVS delete: := (0,0,0,0);

-SDVS delete
-SDVS delete
-SDVS delete

Latest_Cmds_Q : array (1..Latest_Cmds_Q_Size) of
Serial_Dig_Cmds.Cmd_Bytes_Type;
:= (others => (0,0,0,0));

-SDVS delete: Latest_Status_Q : array (1..Latest_Cmds_Q_Size) of INTEGER
-SDVS delete: (others => Cmd_0K);
-SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS
-SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS

— IV. Constants Associated With Data Structures.

— These data structures are used only by INITIATE_BUILD. However,
— to conserve runtime stack space, the structures are defined here
— rather than in INITIATE_BUILD.

— This table lists the number of commands required to build
— a data structure load message. The data structure ID is used as an
— index into the table. ID 1 thru 49 are reserved for current/future
— event, 50 thru 79 are reserved for next event and 80 thru 109 are
— are reserved for current data structures.

type CMDS_FGR_DATA_STRUC_TYPE is array (1..TRKING_DATA_STRUC.Num_Data_Struc)
of integer;

Cmds_For_Data_Struc : constant CMDS_FDR_DATA_STRUC_TYPE :=
(14, 14, 14, 14, 14, 14, 14, 10, 10, 03,
03, 04, 04, 03, 03, 03, 03, 03, 08, 03,
03, 02, 04, 02, 04, 04, 04, 02, 06, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00,

10, 04, 06, 38, 38, 52, 52, 13, 06, 04,
06, 04, 05, 11, 07, 08, 08, 15, 00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,

04, 02, 02, 02, 02, 02, 04, 04, 04, 04,
02, 11, 07, 02, 00, 00, 00, 00, 00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00);

— IV. Other Micellaneous Variables.

— Last commanded satellite subsystem configuration value saved
— to be reported to TM. If the "Store Subsys Config in EEPRDH"
— bit is set, then the value will be stored in EEPRDM.
Saved_Sat_Subsys_Config : GLDBAL_TYPES.WORD := 0;

— Holds the Data structure to be stored in EEPR0M or memory load
— data to be stored in EEPR0M. This array is passed to the
— EEPR0M_DATA.WRITE_L0AD_DATA_T0_EEPR0M to modify EEPR0M.
Load.Hsg : CMDS_TYPES.L0AD_MSG_TYPE;

— The range of Cmd.Total will be 0 to 31999.
Cmd_Total : INTEGER;

92

Cmd.Total.Max constant INTEGER 32000;

— Holds the spacecraft 10 #1 status to be reported in TM.

I0_Status_Word : GLOBAL.TYPES.WORD;

— Tasks, Procedures and Functions Used

function C0NV.WORD TO.INTEGER is new UNCHECKED.CONVERSION

(SOURCE => GLOBAL.TYPES.WORD,

TARGET => INTEGER);

function CONV_BYTE_TO_INTEGER is new UNCHECKED.CONVERSION

(SOURCE => GLOBAL.TYPES.BYTE,

TARGET => INTEGER);

function CONV_INTEGER_TO_BYTE is new UNCHECKED_CONVERSION

(SOURCE => INTEGER,

TARGET => GLOBAL.TYPES.BYTE);

function C0NV_BYTE_T0_W0RD

function C0NV_W0RD_T0_BYTE

procedure INITIATE_BUILD (Start_Op_Code

Cmd.Buf.Index

procedure CONTINUE_BUILD (Cont_0p_Code

Cmd.Buf.Index

UNCHECKED.CONVERSION

(SOURCE => GLOBAL.TYPES

TARGET => GLOBAL.TYPES

UNCHECKED.CONVERSION

(SOURCE => GLOBAL.TYPES

TARGET => GLOBAL.TYPES

in GLOBAL.TYPES.BYTE;

in INTEGER);

in GLOBAL.TYPES.BYTE;

in INTEGER);

BYTE,

WORD);

WORD,

BYTE);

-SDVS delete (task)
-SDVS delete (task)
-SDVS delete (task)
-SDVS delete (task)
-SDVS delete (task)

task type BUILD.TYPE is

pragma priority (18);

end BUILD.TYPE;

for BUILD.TYPE'Storage.Size use 350;

BUILD : BUILD.TYPE;

-SDVS delete (task):
-SDVS delete (task):
-SDVS delete (task):
-SDVS delete (task):
-SDVS delete (task):
-SDVS delete (task):

task type PROCESS.HSG.TYPE is

pragma priority (13);

end PROCESS.MSG.TYPE;

- for PROCESS.MSG.TYPE'Storage.Size use 4000;

for PROCESS.MSG.TYPE'Storage.Size use 700;

PROCESS.MSG : PROCESS.MSG.TYPE;

-SDVS delete (task)
-SDVS delete (task)
-SDVS delete (task)
-SDVS delete (task)

task type MANAGE.MSG.RETRIEVAL.TYPE is

entry RET.NEXT.MSG (App_Msg_Out : out CMDS_TYPES.APP_MSG_OUT.TYPE);

entry NOTIFY.MSG.STORED;

pragma priority (14);

93

-SDVS delete (task)

-SDVS delete (task)

-SDVS delete (task)

end MANAGE_MSG_RETRIEVAL_TYPE;

for MANAGE_MSG_RETRIEVAL_TYPE'storage_size use 150;

MANAGE_MSG_RETRIEVAL : MANAGE MSG RETRIEVAL TYPE;

TASK BUILD

PURPOSE : This task first checks if there is any commands

to be processed by calling SERIAL_DIG_CHDS. If no command

is available to be processed, then the task 'sleeps' for

two seconds and repeats the task.

If there are commands to be processed, then the cmd buffer,

status buffer and the other associated variables are retrieved

from SERIAL_DIG_CMDS. For each command in the buffer, its status

is checked for errors such as parity error and FIFO not

empty and command lost errors. Then, either COHTINUE_BUILD

or INITIATEJ9UILD is called to build the application message(s).

out of commands.

First the type of application to be built is determined.

If the application message has a checksum, then the message is

built in the form to validate the checksum. Once the checksum

is verified, the application message is stored in the queue of

application messages.

A queue of the last 75 commands is also maintained to be

collected by TM.COLLECT.

This task does not have any entry points.

NOTES:

CHANGE HISTORY:

10/16/91 B. Na Initial Version

—SDVS delete (task): task body BUILD .TYPE is

procedure BUILD is —SDVS replace

-SDVS comment

-SDVS comment

-SDVS delete

-SDVS delete

-SDVS delete

-SDVS delete

The four declarations that follow are never used in the code.

Actually, Time_To_Run is set to 0 but never used thereafter.

Delay_Time : LONG.FLOAT;

Time_To_Run : L0NG_FLDAT;

Current_UT_Time : L0NG_FL0AT;

Time_Interv_Between_Exec : constant L0NG_FL0AT := 0.5; —

01d_App_Msg_Count

Cmd_Buf_Index

INTEGER;

INTEGER;

0p_Code GL0BAL_.TYPES.BYTE;

94

—SDVS delete (hex): Parity_Bit_Hask : constant GLOBAL.TYPES.BYTE := 16#7F#;

Parity_Bit_Mask : constant GLOBAL_TYPES.BYTE := 127; --SDVS replace

Saved.Cmd.Status : INTEGER;

begin

— Hark the task start time to be used in calculating the delay

— duration required to schedule this task for a 2 Hz rate.

— Tinte_To_Run := SYSTEM_TIME.RETURN_CUR_TIME;

—SDVS delete: Time_To_Run := 0.0;

—SDVS delete (task loop) : loop

—SDVS delete (task loop) : loop — for tasking_error

—SDVS delete (task loop): begin

— Watchdog timer is initially armed in the boot program just

— before handing over control to the application program. The

— application program has 65 ms to stop or reset the timer.

— The application program then rearm the timer for TBD seconds.

— This task periodically reset the timer to prevent the reset

— of the tracking processor.

—SDVS delete (intrinsics): 0UTPUT_WDRD(16#0000#, GO, 0);

— Check if any serial digital command is received and buffered.

Cmd_Count := SERIAL_DIG_CMDS.RET_CMD_COUNT;

if Cmd_Count > 0 then

— Retrieve the buffered commands.

SERIAL_DIG_CMDS.RET_CMD_BUF_AND_STATUS

(Cmd.Buf,

Cmd_Status_Buf,

Cmd_Count,

FIFO_Not_Empty_Count,

I0_Status_Word,

Lost_Cmd);

— total number of cmds received since power-up excluding the

— number of cmds received during boot.

Cmd_Total := (Cmd_Total + Cmd_Count) mod Cmd_Total_Max;

if Lost_Cmd then

— Cmd_Lost_Occured = 1.

TM.DATA.MANAGE.REP0RT_SYSTEM_ERR0R(1);

end if;

— Used to notify buffer task, MANAGE_HSG_RETRIVAL, that now

— have messages to process.

01d_App_Msg_Count := App_Msg_Counter;

95

for C»d_Buf.Index in 1..Cnd_Count loop

Saved_Cmd_Status := Cmd_Status_Buf(Cmd_Buf_Index);

— Temporarily mask Cmd_FIFO_Not_Empty (bit 4) and Cmd.Lost (bit 3)

— of the command status word during the build process.

Crad_Status_Buf(Cmd_Buf_Index) :=

AND_I(Cmd_Status_Buf(Cmd_Buf.Index), 7);

if Cmd_Status_Buf(Cmd_Buf.Index) = C»d_0K then

— zero parity bit

Op.Code :=

AND_BYTE(Cmd_Buf(Cmd_Buf_Index).First_Byte, Parity_Bit_Mask);

if Build_In_Progress then

— If build complete, stores the message in queue to

— process and increment App_Msg_Counter.

Continue_Build(Op_Code, Cmd.Buf„Index);

else

— If build complete, stores the message in queue to

— process and increment App_Hsg_Counter.

Initiate_Build(Op_Code, Cmd_Buf_Index);

end if;

else — Cmd_Status_Buf(Cmd.Buf_Index) /= Cmd_0K

— implies bad parity

— Parity_Failed = 16

TM.DATA.MANAGE.REPORT_SYSTEM_ERROR(16);

— Update the number of rejected commands to report in TM.

Rejected_Cmd_Count :=

(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;

— Terminate build process

Build_In_Progress :« False;

end if;

if Saved_Cmd_Status > 7 then

— If Cmd_Lost and/or Cmd_FIFO_Not_Empty condition(s) exists,

— then set the corresponding bit(s) of the command status word.

— These bits were temporarily masked during the build process.

Cmd_Status_Buf(Cmd_Buf_Index) :=

0R_I(Saved.Cmd_Status, Cmd_Status_Buf(Cmd_Buf_Index));

end if;

96

end loop; — for Cmd.Buf_Index in l..Cmd_Count loop

— APP_MSGS provides the last 40 commands received to TM.

— Since TM collects data once a second on average, APP_MSGS

— queues up to 75 commands to give TM some time to catch up

— in the event of heavy influx of commands in short period

— of time.

—SDVS comment: As we noted in the specification of APP_MSGS, the function
--SDVS comment: NEW_TM_DATA, and the two procedures RET_LATEST_CMDS, and
—SDVS comment: RET_INIT_CMD_LAST_APP_HSG are used to report to telemetry.
—SDVS comment: Since they are not used in the target code to build or
—SDVS comment: process messages (and are never called by the target software),
—SDVS comment: we deleted them. The loop that follows assigns values to
—SDVS comment: objects which are used only by NEW_TM_DATA, RET_LATEST_CMDS,
—SDVS comment: and RET_INIT_CMD_LAST_APP_MSG. Thus, we deleted the entire
—SDVS comment loop.

—SDVS delete: for Cmd_Buf_Index in l..Cmd_Count loop

— Latest_Cmds_Q will be Q of last 75 cmds. Cmds are stored

— here until these are collected, up to 40 cmds per frame,

— by TM.COLLECT.

—SDVS delete (artclient): Artclient.Enter_Critical_Section;

— Write_Ptr is used to report the last 40 commands to TM.

— If, for some reason, TM.COLLECT fails to collect data

— as scheduled, then Write_Ptr could wrap around and

— pass Read_Ptr (i.e. queue overflow condition). In this

— case, the commands received before the 75th command

— (counting backward, most recent command being 1st) will

— be not reported to TM.

—SDVS delete: Write_Ptr := (Write_Ptr mod 75) + 1;

—SDVS delete: Latest_Cmds_Q(Write_Ptr) := Cmd_Buf (Cmd.Buf „Index);

—SDVS delete: Latest_Status_Q(Write_Ptr) := Cmd_Status_Buf(Cmd_Buf_Index);

—SDVS delete (artclient): Artclient.Leave_Critical_Section;

—SDVS delete: end loop;

-SDVS delete (task): if (01d_App_Msg_Count = 0) and

-SDVS delete (task): (App_Msg_Counter > 0) then

-SDVS delete (task): MANAGE_MSG_RETRIEVAL.N0TIFY_MSG_ST0RED;

-SDVS delete (task): end if;

97

end if; — if Cmd_Count > 0 then

—Tine_ ro_Run := Time_To_Run + Time_Interv_Between_Exec;

—Current_UT_TiHe := SYSTEM_TIME.RETÜRN_CUR_TIME;

—if Tiaie_To_Run > Current_UT_Tise then

—Delay„Time := Tine_To_Run - Current_UT_Time;

—DELAY(DURATION(Delay_Time));

--SDVS delete (task): DELAY(0.5);

--end if;

—SDVS delete (task): exit;

--SDVS delete (exception): exception

—SDVS delete (exception): when tasking.error =>

--SDVS delete (exception): writestring("apbte 1");

—SDVS delete (exception): writeln;

—SDVS delete (exception): — App_Msgs_Build_Tasking_Exception = 86

—SDVS delete (exception): TM_DATA.MANAGE.REP0RT_SYSTEM_ERR0R(86);

—SDVS delete (exception): when others =>

—SDVS delete (exception): writestring("apbe 2");

—SDVS delete (exception): writeln;

— App_Msgs_Build_Exception = 87

—SDVS delete (exception): TH_DATA.MANAGE.REP0RT_SYSTEM_ERRDR(87);

—SDVS delete end; — for begin

—SDVS delete (task loop): end loop;

—SDVS delete (task loop): end loop;

—SDVS delete (exception): exception

—SDVS delete (exception): when tasking_error =>

—SDVS delete (exception): writestring("apbteol 3");

—SDVS delete (exception): writeln;

—SDVS delete (exception): when others =>

—SDVS delete (exception): writestring("apbeol 4");

—SDVS delete (exception): writeln;

end BUILD;

98

TASK PROCESS MSG

PURPOSE: This task retrieves and processes the next

available application message from the application

message queue.

This task continuously initiates a rendezvous with

MANAGE_MSG_RETRIEVAL at the entry point RET_NEXT_MSG.

This task does not have any entry points.

NOTES:

CHANGE HISTORY:

10/16/91 B. Na

nun/dd/yy B. Na

Initial Version

Build 2 Changes

-SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS

-SDVS The task PROCESS_MSG processes 11 types of application messages.—SDVS

-SDVS Since we are only interested in data-structure messages and the —SDVS

-SDVS messages are processed in an Ada ''case" statement, we —SDVS

-SDVS deleted all the statements in all of the cases (and substituted —SDVS

-SDVS the "null" statement for them) except for the —SDVS

-SDVS Data_Struc_Load case. Any other uncommented deletions are for —SDVS

-SDVS assignments to objects that are used only in the deleted cases. —SDVS

-SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—SDVS

—SDVS delete (task) : task body PROCESS_MSG_TYPE is

procedure PR0CESS_MSG is —SDVS replace

— Holds the message to be processed next.

—SDVS delete (unconstrained array , others):

—SDVS cont: New_App_Hsg : CMDS_TYPES.APP_HSG_OUT_TYPE(CMDS_TYPES.INDEX_SUBTYPE)

—SDVS cont: := (others => 0);

New_App_Msg : CMDS_TYPES.APP_MSG_OUT_TYPE; —SDVS replace

New_Cmd_0p_Code : GLOBALJTYPES.BYTE;

Holds intermediate results while performing bitwise

operations.

Temp_Word

Temp_Word_l

Temp_Word_2

GLOBALJTYPES.WORD

GLOB ALJTYPES. WORD

GLOBALJTYPES.WORD

TP_Num_And_Config_Save_Bits

Subsys_Config_Bits

GLOBAL_TYPES.WORD;

GLOBAL_TYPES.WORD;

Addr_0f_RAM_Load

Last_Addr_Load

Dump_Address

LONG.INTEGER;

LONG.INTEGER;

L0NG_INTEGER;

-SDVS delete: Dump.Params : TM.DUMP.PARAMS_TYPE

-SDVS delete: Mem_Locations_To_Honitor : TM.L0CS_T0_M0N_TYPE

Status_0f.Request : M0DE_STATE.STATUS_0F_REQUEST_TYPE

Curr.Mode.State : MODE_STATE.MODE_STATE_TYPE;

99

Data structure storage selection values.

Update.RAM

Update_EEPRDM
Update_Both

UT.Internal

constant INTEGER

constant INTEGER

constant INTEGER

= 1

= 2

= 3

constant INTEGER := 1;

Storage.Selection : INTEGER;

Memory_Upload_Select : INTEGER;

Data_Struc_ID

Data_Struc_Length

INTEGER;

INTEGER;

— Used to write load data or data sturcture message to EEPROM.

Load_Msg_Is_Data_Struc : BOOLEAN;

Stored : BOOLEAN;

begin

— Configure satellite subsystem with the configuration word

— preserved in EEPROM.

-SDVS—SDVS—SDVS—SDVS—SDVS—SDVS--SDVS—SDVS—SDVS—SDVS--SDVS--SDVS--SDVS

-SDVS comment: The next block of code (up to the simple loop) is executed

-SDVS only once at the elaboration of the task. It serves no function

-SDVS for our purposes.

-SDVS—SDVS—SDVS—SDVS—SDVS—SDVS—-SDVS—SDVS—SDVS—SDVS—SDVS—SDVS--SDVS

-SDVS delete: Saved_Sat_Subsys_Config := EEPROM_DATA.RET_SYS_CONFIG;

-SDVS delete: OUTPUT_WORD(Saved_Sat_Subsys_Config, PO, 16#0028#);

— Set prime science data rate based on Bit 4 of

— Saved_Sat_Subsys_Config.

-SDVS delete: Temp_Word := AND_WORD(Saved_Sat_Subsys_Config, 16#0800#);

-SDVS delete: if Temp_Word = 16#0800# then

-SDVS delete: PRIME_SCIENCE_DATA.SET_PRIME_SCI_DATA_RATE(5);

-SDVS delete: else

-SDVS delete: PRIME_SCIENCE_DATA.SET_PRIME_SCI_DATA_RATE(25);

-SDVS delete: end if;

—SDVS delete (task loop): loop

-SDVS delete (task loop):

-SDVS delete (task loop):

loop — for tasking_error

begin

Waiting for a message to be sent from CP and

built to process

100

—SDVS delete (writestring, writeln): WRITESTRINGO'apPM pends") ; WRITELN;

-SDVS comment: The next statement is an extended rendezvous with the task
-SDVS comment: MANAGE_MSG_RETRIEVAL at the entry RET_NEXT_MSG. The rendezvous

-SDVS comment: can take place only if App_Msg_Counter > 0. Hence, we have
-SDVS comment: replaced the rendezvous with an if statement that executes
-SDVS comment: the code following the rendezvous only if App_Msg_Counter > 0.

-SDVS delete (task): MANAGE_MSG_RETRIEVAL.RET_NEXT_MSG(New_App_Msg);

if App_Msg_Counter > 0 then —SDVS replace

MANAGE_MSG_RETRIEVAL(New_App_Msg) ; —SDVS replace

-SDVS delete (writestring, writeln): WRITESTRING("apPMp"); WRITELN;

— The following code will be executed only if

— MANAGE_MSG_RETRIEVAL.RET_NEXT_MSG has been accepted

— (or rendezvoused).

— Typical Message Format
+ + +

— (1) I I op-code I
+ + +

(2) I msg word I
+ + +

I I I
+ + +

(n) I msg checksum I
+ + +

I I I
+ + +

(80)I size of msg words = n I
+ + +

New_Cmd_0p_Code := CONV_INTEGER_TO_BYTE(NEW_APP_MSG(D) ;

Curr_Mode_State := MODE.STATE. RETRIEVE.CUR_STATE;

case New_Cmd_0p_Code is

when Data_Struc_Load =>

— Data Struc Load Message Format
+ + + + + + + + + + + + + + + + +

— 1 10 0 0 0 0 0 0 01 opcode = 1 |
+ + + + + + + + + + + + + + + + +

— 2 |0 0 0 0 0 OlEIRl data structure id I

101

— 3 I data structure word 1
+ + + + + + + + + + + + + + + + +

1 data structure word 1
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

1 checksum 1
+===+===+===+=====+===+==+===+====+===+===+====+====+===+===+====+===+

I////////////////I
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

— 80 I num of msg words 1

— E : 1 - store in EEPROM
— R : 1 - store in RAM

--SDVS comment: The call below to MEHORY_MANAGER.CDNV_TYPE is used to assign
—SDVS comment: the value of New_App_Msg(2) (an integer) to Temp_Word_l
--SDVS comment: (a word). The body of C0NV_TYPE is written in 1750A. We replace
—SDVS comment: this call by a type conversion.
--SDVS delete (1750A) MEMORY_MANAGER.CONV.TYPE

—SDVS delete (1750A) (New_App_Msg(2)'address, — Source

—SDVS delete (1750A) Temp_Word_l'address, — Target

—SDVS delete (1750A) 1); — Words

Temp_Word_l := GL0BAL_TYPES.W0RD(Hew_App_Msg(2)) ; —SDVS replace

—SDVS delete (hex): Temp_Word := AND_W0RD(16#FF00#, Temp_¥ord_l);

Temp_Word := AND.WORD(65280, Temp_Word_l) ; —SDVS replace

—SDVS delete (hex): Temp_Word_2 := AND_W0RD(16#00FF#, Temp_Word_l);

Temp_Word_2 := AND_W0RD(255, Temp_Word_l);

Temp_Word_l := SHIFT_LDGICAL_WORD(Temp_Word, -8);
Storage_Selection := CONV_WORD_TO_INTEGER(Temp_Word_l);

Data_Struc_ID := CDNV_W0RD_T0_INTEGER(Temp_Word_2);

Data_Struc_Length := TRKING_DATA_STRUC.Words_For_Data_Struc(
Data_Struc_ID);

if Data_Stn ic_Length /= 0 then

if (Curr_Mode_State /= Init_Memory_Load) and

(Curr_Mode_State /= Init„Memory_Dump) then

if (Storage_Selection = Update_EEPR0H) or

(Storage_Selection = Update_Both) then

MODE_STATE.CHG_STATE(Init_EEPROM_Write, Status_0f.Request);

102

if Status_Of.Request = State_6ranted then

— Strip off New_App_Msg(l) which contains opcode,

— the contents of data structure (including checksum)is

— stored in New_App_Msg(2) thru (Data_Struc_Length+l).

—New_App_Msg(l..Data_Struc_Length) :=

New_App_Msg(2..Data_Struc_Length+l);

—SDVS delete (array slice): EEPROM_DATA.STORE_DATA_STRUC_IN_EEPROM

(New_App_Msg(l..Data_Struc.Length),

—SDVS delete (array slice) : (Nen_App_Msg(2..Data_Struc_Length+l),

—SDVS delete (array slice): Data_Struc_ID,

—SDVS delete (array slice): Data_Struc_Length);

EEPROM_DATA.STORE_DATA_STRUC_IN_EEPROM

(New_App_Msg,

Data_Struc_ID,

Data_Struc_Length);

MDDE_STATE.CHG_STATE(Curr_Mode_State, Status_Df_Request);

if Status_0f„Request /= State_Granted then

~ State_Not_Restored_After_EEPRDM_Wr = 43.

TM_DATA.MANAGE.REPORT_SYSTEH_ERROR (43);

end if;

else — Init_EEPROH_Write state not granted.

— Data_Struc_Lost_EEPROM_State_Denied = 44

TM.DATA.MANAGE.REPORT_SYSTEM_ERRDR (44);

end if;

end if;

if (Storage_Selection = Update_RAM) or

(Storage_Selection = Update_Both) then

— Mask storage selection field before passing to

— store in RAM.

—SDVS delete New_App_Msg(2) := Data_Struc_ID;

— Strip off checksum word.

—New_App_Msg(l.-Data_Struc_Length-l) :=

New_App_Msg(2..Data_Struc_Length);

—TRKING_PARAMS.MANAGE.STORE_TRKING_STRUC(

New_App_Msg(1..Data_Struc_Length-l));

—SDVS delete TRKING_PARAMS.MANAGE.STORE_TRKING_STRUC(

—SDVS delete New_App_Msg(2..Data_Struc_Length));

null; —SDVS replace

end if;

if (Storage_Selection > Update_Both) and

(Storage_Selection < Update_RAM) then

— Data_Struc_Storage_Invalid = 45

TM_DATA.MANAGE.REPORT_SYSTEM_ERROR (45);

end if;

else — Current mode is either init memory dump or memory load.

— Data_Struc_Lost_Invalid_State = 46

TM_DATA.MANAGE.REPORT_SYSTEM_ERR0R (46);

103

end if;

end if; — Data struc length is not 0. Length 0 implies unused
— data struc ID.

when . 5at_Subsys_Config =>
null; --SDVS add

— Satellite Subsystem Configuration Message Format
—
— 1 lOOOOOOOOl opcode = 22 |
—
— 2 I////////I reserved 1 A 1 B 1 C 1 D 1 E 1
—
— 3 1/ / / / / / / / I 0 0 0 0 0 OIFIGI
— +===+==+==+==+===+===+===+===+==+==+==+==+==+===+==+===+

— I////////////////I

—

—

— 80 1 num of msg words = 3 |
—
— A 0 - AP 1
— 1 - AP 2
— B : 0-25 MBPS
— 1-5 MBPS
— C : 0 - CP 1
— 1 - CP 2
— D : 0 - Upload 1

— 1 - Upload 2
— E : 0 - DHS 1
— 1 - DHS 2
— F : 0 - TP 1
— 1 - TP 2
— G : 0 - Do not save configuration word in EEPROM
— 1 - Save configuration word in EEPROM

—SDVS delete: if Curr_Mode_State = Init_Setup or
--SDVS delete: Curr_Mode_State = Tracking_Setup or
--SDVS delete: Curr_Mode_State = Tracking then

--SDVS delete: MEMORY.MAHAGER.CONV.TYPE
—SDVS delete: (New_App_Msg(2)'address, — Source
--SDVS delete: Temp_Word'address, — Target
—SDVS delete: 1); — Words
—SDVS delete: Subsys_Config_Bits := SHIFT_LOGICAL_WORD(Temp_Word, 8);

—SDVS delete: MEMORY_MANAGER.CONV.TYPE
—SDVS delete: (New_App_Msg(3)'address, — Source
—SDVS delete: Temp_Word'address, — Target
—SDVS delete: 1); — Words
—SDVS delete: TP_Num_And_Config_Save_Bits := AND_WORD(Tenip_Word, 16#0003#);

104

-SDVS delete: OUTPUT_WDRD(Subsys_Config_Bits, PD, 16#0028#);

-SDVS delete: Saved_Sat_Subsys_Config
-SDVS delete: := OR_WORD(Subsys_Config.Bits, TP_Num_And_Config_Save_Bits);

— Save the configuration word in EEPRDM if flagged to
— do so and also provide it to TH for reporting.

-SDVS delete: if (Kew_App_Msg(3) = 1) or
-SDVS delete: (New_App_Msg(3) = 3) then
-SDVS delete: EEPROM_DATA.STORE_SYS_CONFIG(Saved_Sat_Subsys_Config);
-SDVS delete: end if;
-SDVS delete:

— Set prime science data rate.

-SDVS delete: Temp.Word := AND_WORD(Saved_Sat_Subsys_Config, 16#0800#);
-SDVS delete: if Temp.Word = 16#0800# then
-SDVS delete: PRIME_SCIENCE_DATA.SET_PRIME_SCI_DATA_RATE(5);
-SDVS delete: else
-SDVS delete: PRIME_SCIENCE_DATA.SET_PRIME_SCI_DATA_RATE(25);
-SDVS delete: end if;

-SDVS delete: else — current state inhibit satellite subsystem config change.
— Subsys_Config_Chg_Not_Allowed = 5

-SDVS delete: TH_DATA.MANAGE.REP0RT_SYSTEM_ERR0R(5);
-SDVS delete: end if;

when Soft_Reset =>
null; —SDVS add
Soft Reset Message Format

+ + + + + + + + + + + + + + + + +

— 1 10 0 0 0 0 0 0 0 I opcode = 32 |

-2I////////////////I
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +
— 80 I num of msg words = 1 |

+ + + + + + + + + + + + + + + + +

— Soft.Reset message is allowed in any mode/state except
— in Init_EEPROM_¥rite state which cannot happen when
— processing this message since enter and exit Init_EEPR0M_
— Write state are required while storing an message in EEPROM.

-SDVS delete: M0DE_STATE.PERF0RM_S0FT_RESET;

when Prep_For_Long_Load =>
— Prepare For Long Load Message Format

105

110 0 0 00 OOOI opcode = 11 |
+ + + + + + + + + + + + + + + + +

2I////////I00OO00IAI
+ + + + + + + + + + + + + + + + +

3I////////I num of blocks I

\ I I / I I I I I I I I I t I I I \
+ + + + + + + + + + + + +—+ + + +

+ + + + + + + + + + + + + + + +.—+
— 80 I num of msg words = 3 |

+ + + + + + + + + + + + + + + +—+

— A: 1 - command system 1
2 - command system 2

null; —SDVS add
-SDVS delete: MODE_STATE.CHG_STATE(Init_Memory_Load, Status_0f.Request);

-SDVS delete: if Status_0f.Request = State_Granted then

-SDVS delete: Memory_Upload_Select := AND_I(New_App_Msg(2), 16#0003#);

-SDVS delete: if Memory_Upload_Select = 1 then

— configure for memory upload 1
-SDVS delete: Saved_Sat_Subsys_Config : = AND_W0RD
-SDVS delete: (Saved_Sat_Subsys_Config, 16#FD03#);
-SDVS delete: elsif Memory_Upload_Select = 2 then

— configure for memory upload 2
-SDVS delete: Saved_Sat_Subsys_Config := 0R_W0RD
-SDVS delete: (Saved_Sat_Subsys_Config, 16#0200#);
-SDVS delete: end if;

-SDVS delete: OUTPUT_WORD(Saved_Sat_Subsys_Config, PO, 16#0028#);

— Initiate long memory load process.
-SDVS delete: ARRAY_0F_BL0CKS.INIT_L0NG_L0AD(New_App_Msg(3));
-SDVS delete: ARRAY_0F_BL0CKS.PROCESS J1SGS_INJBL0CKS.PREP ARE J'ORjriMEOUT;

-SDVS delete: else — state not granted
— Init_Mem_Load_Sta_Denied = 2

-SDVS delete: TM.DATA.MANAGE.REP0RT_SYSTEM_ERR0R(2);
-SDVS delete: end if; — state granted or denied

when Mem_Dump_X_Frames =>
null; —SDVS add

— Memory Dump X Frames Message Format
+ + + + + + + + + + + + + + + + +

— 1 I 0 0 0 0 0 0 0 01 opcode = 13 I
+ + + + + + + + + + + + + + + + +

— 2 |0 0 0 0 0 0 0 01 num of dump data words = k I
+ + + + + + + + + + + + + + + + +

106

310 0 0 0 0 0 0 010 0 0 01 high addr bits I
+ + + + + + + + + + + + + + + + +

4 I low addr bits I
+ + + + + + + + + + + + + + + + +

5 I checksum I

\ I I I I I I I I I I I I I I I I \
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

— 80 I num of msg words = 5 I
+ + + + + + + + + + + + + + + + +

-SDVS delete: MODE_STATE.CHG_STATE(Init.Memory.Dump, Status_0f.Request);

-SDVS delete: if Status_0f„Request = State_Granted then

-SDVS delete: MEMORY_MANAGER.CONV_TYPE(New_App_Msg(3)'address,
-SDVS delete: Dump_Address'address,
-SDVS delete: 2);

-SDVS delete: Dump_Params := (Kind_0f_Dump => Spec_Addr,
-SDVS delete: Num.Frames => NEW_APP_MSG(2),
-SDVS delete: Start.Address => Dump_Address);

-SDVS delete: TH.PROCESS_CMD.SET_MEM_DUMP_PARAMS(Dump_Params);

-SDVS delete: else — Status.Of.Request = State_Denied
— Init_Mem_Dump_Sta_Denied = 3

-SDVS delete: TM_DATA.MANAGE.REPDRT_SYSTEM_ERR0R(3);

-SDVS delete: end if;

when Shutdown.Imminent =>
null; —SDVS add
Shutdown Imminent Message Format

+ + + + + + + + + + + + + + + + +

— 1 10 0 0 0 0 0 0 0| opcode = 19 I

— 2I////////////////I
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

— 80 | num of msg words = 1 I
+ + + + + + + + + + + + + + + + +

-SDVS delete: P0INTING_INF0_0UT.SET_SHUTD0WN_IMMINENT;

when Chg_Monitor_Loc =>

107

null; --SDVS add
Change Monitor Location Message Format
+ + + + + + + + + + + + + + + + +

llOOOOOOOOl opcode = 28 I
+ + + + + + + + + + + + + + + + +

210000000000001 high addr bits I
+ + + + + + + + + + + + + + + + +

3 I low addr bits I
+. + + + + + + + + + + + + + + + +

410000000000001 high addr bits I
+ + + + + + + + + + + + + + + + +

5 I low addr bits I
+ + + + + + + + + + + + + + + + +

610000000000001 high addr bits I
+ + + + + + + + + + + + + + + + +

7 I low addr bits I
+ + + + + + + + + + + + + + + + +

810000000000001 high addr bits I
+ + + + + + + + + + + + + + + + +

9 I low addr bits I
H + + + y + + y + + + y y y + + +

lOlOOOOOOOOOOOOl high addr bits I
+ + + + + + + + + + + + + + + + +

11 | low addr bits I
+ + + + + + + + + + + + + + + + +

12 10000000000001 high addr bits I
+ + + + + + + + + + + + + + + + +

13 I low addr bits I
+ + + + + + + + + + + + + + + + +

14 I checksum I

\ I I I I I I I I I I I I I I I I \
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

— 80 I num of msg words = 14 I
+ H + 1— y + H + + + + + + + H + +

-SDVS delete: if Curr_Mode_State = Init_Setup or
-SDVS delete: Curr_Mode_State = Tracking_Setup or
-SDVS delete: Curr_Mode_State = Tracking then

— Convert integers to an array of addresses
-SDVS delete: MEMORY.MANAGER.C0NV_TYPE
-SDVS delete: (New_App_Msg(2)'address,
-SDVS delete: Mem_Locations_To_Monitor(l)'address,

-SDVS delete: 12);

-SDVS delete: TM.PRDCESS_CMD.UPDATE.VAR_MON_ADDR(Mea_Locations_To_Monitor);

-SDVS delete: else
— Chg_Monitor_Loc_Denied = 6

-SDVS delete: TM.DATA.MANAGE.REPORT.SYSTEM_ERR0R(6);

108

—SDVS delete: end if;

when No_Op_Cmd =>
null; --SDVS add

— No-Operation Message Format
+ + + + + + + + + + + + + + + + +

— 1 10 0 0 0 0 0 0 0| opcode = 25 I

— 2 \ I I I I I I I I I I I I I I I I \
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

— 80 I num of msg words = 1 I
+ + + + + + + + + + + + + + + + +

-SDVS delete: if Curr_Mode_State = Init_Setup or
-SDVS delete: Curr_Hode_State = Init_Hemory_Load or
-SDVS delete: Curr_Mode_State = Tracking.Setup or
-SDVS delete: Curr_Mode_State = Tracking then

-SDVS delete: TM.PR0CESS_CMD.CHK_N0_0P.CMD;

-SDVS delete: else
— No_0p_Cmd_Denied = 7

-SDVS delete: TM.DATA.MANAGE.REPORT.SYSTEMJERR0RC7);

-SDVS delete: end if;

when RAM_Mem_Load =>
null; —SDVS add

— RAM Memory Load Message Format
+ + H + + + + + + + + + + + h + +

— 110 0 0 0 0 0 0 01 opcode = 2 I
+ + + + + + + + H + + + + + + + +

— 2 I 0 0 0 0 0 0 0 0| num of load data words = k I
+ + + + + + + + + + + + + + + + +

— 3 10 0 0 0 0 0 0 010 0 0 01 high addr bits I
+ + + + + + + + + + + + + + + + +

— 4 I low addr bits I
+ + + + + + + + + + + + + + + + +

— 5 I load data word 1 I
+ + + + + + + + + + + + + + + + +

— 6 I load data word 2 I
+ + + y 1 + 1 + + + + 1. H H + + +

+ + + + + + + + + + + + + + + + +

-- K+4| load data word k I
+ + + + + + + + + + + + + + + + +

109

— K+51 checksum 1
— ==+==■ =+== =+

—
1 //////////// / / / / 1

-+

— 80 I num of msg words = K+5

—+— -+— -+

1
 f.

—SDVS delete if Curr_Mode_State = Init_Setup or
--SDVS delete Curr_Mode_State = Tracking_Setup or

—SDVS delete Curr_Mode_State = Tracking then

—SDVS delete MEMORY.MAKAGER.CONV.TYPE(New.App.Msg(3)'address
—SDVS delete Addr_Of_RAM_Load' address,
—SDVS delete 2);

—SDVS delete Last_Addr_Load := Addr_0f_RAM_Load +
—SDVS delete LOHG_INTEGER(New_App.Msg

— REMINDER: need logic to verfy that the Addr_Of_RAH.
— is not violating the restricted RAM (air?) space.

(2)) •

Load

- l;

—SDVS delete if Last_Addr_Load <= 16#7FFFF# and
—SDVS delete Addr_Of_RAM_Load >= 0 then

— pass destination addr, data and number of words.
—SDVS delete MEMORY_MANAGER.¥RITE_T0_RAM
—SDVS delete (Addr_Of_RAM_Load,
—SDVS delete NEW_APP_MSG(5)'ADDRESS,
—SDVS delete New_App_Msg(2));

—SDVS delete else — load addr is beyond RAM addr
— RAM_Load_Addr_Invalid = 10

—SDVS delete TM.DATA.MANAGE.REP0RT_SYSTEM_ERR0R(10);
—SDVS delete end if; — load addr is within or beyond RAM addr

—SDVS delete else
- not allowed during memory dump or long load
- RAM_Mem_Load_Denied = 9

—SDVS delete TM_DATA.MANAGE.REPORT.SYSTEM.ERRORO);
—SDVS delete

when]
nu!

— El

end if;

:EPR0M_Mem_Load =>
LI; —SDVS add
IPROM Memory Load Message Format

— + + + + + + + + + + + + + +- —+— -+— -+

— 1 1000000001 opcode = 4 1

— 2 10 0 0 0 0 0 0 01 num of load data words = = k 1

— 3 10 0 0 0 0 0 0 010 0 0 01 high addr bit si

110

+ + + + h + + h h + + h h + H + h

— 4 I low addr bits I
+ + + + + + + + + + + + + + + + +

— 5 I load data word 1 I
+ + + + + + + + + + + + + + + + +

— 6 | load data word 2 I
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

K+4| load data word k I
+ + + + + + + + + + + + + + + + +

K+5I checksum I

\ I I I I I I I I I I I I I I I I \
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

— 80 I num of msg words = k+5 I
+ + f H + + + + h + + + h + + + +

-SDVS delete: MODE_STATE.CHG_STATE(Init_EEPROM_Write, Status.Of.Request);

-SDVS delete: if Status_0f.Request = State_Granted then

— Strip off New_App_Msg(l), opcode word
-SDVS delete: MEM0RY_MANAGER.C0NV_TYPE(New_App_Msg(2)'address,
-SDVS delete: Load_Msg(l)'address,
-SDVS delete: CMDS_TYPES.App_Msg_Max-l);

-SDVS delete: Load_Msg_Is_Data_Struc := False;
-SDVS delete: EEPR0M_DATA.WRITE_L0AD_DATA_T0_EEPR0M
-SDVS delete: (Load.Hsg,
-SDVS delete: Load_Msg_Is_Data_Struc,
-SDVS delete: Stored);

-SDVS delete: HDDE_STATE.CHG_STATE(Curr_Hode_State, Status_0f.Request);
-SDVS delete: if Status_0f.Request /= State_Granted then

— State_Not_Restored_After_EEPROM_Ur = 43
-SDVS delete: TH.DATA.MANAGE.REP0RT_SYSTEM_ERR0R (43);
-SDVS delete: end if;

-SDVS delete: else — EEPROM write state denied
— Init_EEPROM_W_Sta_Denied = 8

-SDVS delete: TM_DATA.MANAGE.REP0RT_SYSTEM_ERR0R(8);
-SDVS delete: end if; — EEPROM Write state granted or denied

when Set_RAM_Def_Tab.Entry =>

— COMING SOON, may not come forever

111

null;

when Clr_Timeout_Telltale =>
null; —SDVS add

— Clear Timeout Telltale Message Format
+ + 1. H + + + + + H 1. 1. + + + + +

— 1 |0 0 0 0 0 0 0 0| opcode = 37 I

— 1 \ I I I I I I I I I I I I I I I I \
+ + + + + + + + + + + + + + + + +

+ + + +. + + + + + + + + + + + + +

80 | num of msg words = 1 I
+ + + + + + + + + + + + + + + + +

-SDVS delete: OUTPUT_WORD(16#0000#, PD, 16#0018#);

when UT_Control =>
null; —SDVS add

— UT Control Message Format

11000000001 opcode = 38 I
+ + + + + + + + + + + + + + + + +

2I////////IO000OOOOI
+ + + + + + + + + + + + + + + + +

31/ / / / / / / / 10 0 0 0 0 0 Olli

4I////////////////I
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

80 I num of msg words = 3 I
+ + + + 1- h + + + + + 1 + H + h h

I : 1 - UT interal control
0 - UT normal control

-SDVS delete
-SDVS delete
-SDVS delete
-SDVS delete
-SDVS delete

if New_App_Msg(3) = UT_Internal then
0UTPUT_W0RD(16#0000#, PD, 16#0260#);

else
0UTPUT_WDRD(16#0000#, P0, 16#0250#);

end if;

when others =>

— Added to aid debugging.
— In¥alid_Opcode_While_Processing = 102
TM.DATA.MANAGE.REP0RT_SYSTEM_ERRDR(102);

112

snd case;

end Lf; —SDVS add — if App_Msg_Counter > 0
—SDVS delete (exception): exit;

—SDVS delete (exception): exception

—SDVS delete (exception): when tasking_error =>

—SDVS delete (exception): writestring("appmte 1");

—SDVS delete (exception): writeln;

—SDVS delete (exception): when others =>

—SDVS delete (exception): writestring("appme 2");
—SDVS delete (exception): writeln;

—SDVS delete : end; — for begin

—SDVS delete (task loop): end loop;

—SDVS delete (task loop): end loop;

—SDVS delete (exception): exception

—SDVS delete (exception): when tasking.error =>

—SDVS delete (exception): writestring("appmteol 3");
—SDVS delete (exception): writeln;

—SDVS delete (exception): when others =>

—SDVS delete (exception): writestring("appmeol 4");
—SDVS delete (exception): writeln;

end PROCESS.MSG;

— TASK MANAGE_MSG_RETRIEVAL

— PURPOSE : This task returns the next application message

— to be processed by the APP_HSGS.PROCESS_MSG.

— APP_MSGS.PROCESS_MSG initiates a rendezvous with MANAGE.

— MSG.RETRIEVAL at the entry point RET_NEXT_MSG.

— APP_MSGS.BUILD initiates a rendezvous with MANAGE.MSG-
— RETRIEVAL at the entry point N0TIFY_MSG_ST0RED when the

— message queue goes from empty to a message stored.

— NOTES:

— CHANGE HISTORY:

10/16/91 B. Na Initial Version

mm/dd/yy B. Na Build 2 Changes

113

--SDVS delete (task): task body MANAGE_MSG_RETRIEVAL_TYPE is

procedure MANAGE_MSG_RETRIEVAL(App_Msg_Out :

out CMDS_TYPES.APP_MSG_OUT.TYPE) is --SDVS replace

Hum_Words_Curr_App_Msg : INTEGER;

begin

—SDVS delete (task loop) : loop

—SDVS delete (task loop): loop — for tasking_error

—SDVS delete (task loop): begin

—SDVS delete (task): select

—SDVS delete (task): when App_Msg_Counter > 0 =>

—SDVS delete (task): accept RET_NEXT_MSG(App_Msg_Out : out

—SDVS cont: CMDS_TYPES. APP_HSG_OUT_TYPE) do

—SDVS delete (2-dimensional array): Num_Words_Curr_App_Msg :=

—SDVS cont: C0NV_W0RD_T0_INTEGER (App_Hsg_Q(Q_Head, CMDSJTYPES.App_Msg_Max));

Num_Words_Curr_App_Msg :=

CONV_WORD_T0_INTEGER (App_Msg_Q(Q_Head) (CMDSJTYPES.App_Msg_Max)) ; —SDVS replace

—SDVS delete (1750A): MEMORY.MANAGER.CONV.TYPE

—SDVS delete (1750A): (App_Msg_Q(Q_Head, 1)'address,

—SDVS delete (1750A): App_Msg_Out(1) 'address,

—SDVS delete (1750A): Num_Words_Curr_App_Msg);

for index in 1 .. Num_Words_Curr_App_Msg loop —SDVS replace

App_Msg_Out(index) := INTEGER(App_Msg_Q(Q_Head)(index)); —SDVS replace

end loop; —SDVS replace

— save the number of words for application message at the

— bottom.

App_Msg_Out(CMDS_TYPES.App_Msg_Max) := Nu»_Words_Curr_App_Msg;

Q_Head := (QJHead mod App_Msg_Q_Size) + 1;

— XID RA.DSBL

—SDVS delete (artclient) : ARTCLIENT.ENTER.CRITICAL.SECTION;

App.Msg.Counter := App_Hsg_Counter - 1;

— XID RA.ENBL enables int.

—SDVS delete (artclient): ARTCLIENT.LEAVE.CRITICAL.SECTIDN;

—SDVS delete (task) : end RET.NEXT.MSG;

114

--SDVS delete (task): or

-SDVS delete (task): accept NOTIFY_MSG_STORED;

-SDVS delete (task); end select;

-SDVS delete (task): exit;

-SDVS delete (exception): exception

-SDVS delete (exception): when tasking_error =>

-SDVS delete (exception): writestring("apmrte 1");

-SDVS delete (exception): writeln;

-SDVS delete (exception): when others =>

-SDVS delete (exception): writestring("apmre 2");

-SDVS delete (exception): writeln;

-SDVS delete: end; - -for begin

-SDVS delete (task loop) : end loop;

-SDVS delete (task loop) : end loop;

-SDVS delete (exception): null;

-SDVS delete (exception): exception

-SDVS delete (exception): when tasking.error =>

-SDVS delete (exception): writestring("apmrteol 3");

-SDVS delete (exception): writeln;

-SDVS delete (exception): when others =>

-SDVS delete (exception): writestring("apmreol 4");
-SDVS delete (exception): writeln;

end MANAGE_MSG_RETRIEVAI

-SDVS comment: The function and two procedures that follow are never

-SDVS comment: called in this target code. They are

-SDVS comment: called by TH.COLLECT for telemetry reports on the system.

-SDVS comment: We have therefore deleted them.

115

FUNCTION NEW TM.DATA

PURPOSE: This function returns TRUE, if new telemetry data is

available to be collected. Otherwise, FALSE is returned.

NOTES:

CHANGE HISTORY:

10/16/91 B. Na Initial Version

-SDVS delete: function NEW_TM_DATA return BOOLEAN is

-SDVS delete: begin

-SDVS delete: if Read.Ptr = Write_Ptr then

-SDVS delete: return FALSE;

-SDVS delete: else

-SDVS delete: return TRUE;

-SDVS delete: end if;

-SDVS delete: end NEW_TM_DATA;

PROCEDURE RETLATEST CMDS

— PURPOSE: To provide the latest 40 serial digital commands

received from CP to TM.COLLECT for reporting in the next

frame of the housekeeping telemetry.

-- NOTES:

— CHANGE HISTORY:

11/11/91 B. Na Initial Version

-SDVS delete: procedure RET_LATEST_CMDS (Latest_Cmd_TM : out LATEST_CMD_TM_TYPE) is

-SDVS delete: Buf.Index

-SDVS delete: Que_Index

-SDVS delete: Temp_Read_Ptr

-SDVS delete: Nun_New_Cmds

INTEGER

INTEGER

INTEGER

INTEGER

-SDVS delete: begin

-SDVS delete: Temp_Read_Ptr := Read_Ptr;

— Determine the number of the latest cmds stored in queue

— and not reported in TM previously

-SDVS delete: Num_New_Cmds := 0;

116

-SDVS delete: while ((Temp_Read_Ptr /= Write.Ptr) and

-SDVS delete: (Num_New_Cmds <= Latest_Cmds_q_Size)) loop

-SDVS delete: Temp_Read_Ptr := (Temp_Read_Ptr mod Latest_Cmds_Q_Size) + 1;

-SDVS delete: Num_New_Cmds := Num_New_Cmds + 1;

-SDVS delete: end loop;

-SDVS delete: Latest_Cmd_TH.Fresh.Cmd_Count := Num_New_Cmds;

-SDVS delete: if (Temp_Read_Ptr /= 0) and (Num_new_cmds <= Max_Num_Latest_Cmds) then

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

— Set to

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

—SDVS delete:

Que_Index := Temp_Read_Ptr;

for Buf_Index in 1..Max_Num_Latest_Cmds loop

Latest_Cmd_TM.Cmd_Buf(Buf.Index) := Latest_Cmds_q(Que_Index);

Latest_Cmd_TM.Status_Buf(Buf.Index) := Latest.Status_Q(Que_Index);

Que_Index := Que_Index - 1;

if Que_Index <= 0 then

Que_Index := Latest_Cmds_Q_Size;

end if;

end loop;

Read.Ptr := Temp_Read_Ptr;

elsif (Temp_Read_Ptr /= 0) then — if number of latest cmds is

— more than 40

Temp_Read_Ptr := Read.Ptr;
for Buf_Index in reverse 1..Max_Num_Latest_Cmds loop

Temp_Read_Ptr := (Temp_Read_Ptr mod Latest_Cmds_Q_Size) + 1;

Latest_Cmd_TM.Cmd_Buf(Buf.Index) := Latest_Cmds_Q(Temp_Read_Ptr);

Latest_Cmd_TM.Status_Buf(Buf_Index) := Latest_Status_Q(Temp_Read_Ptr);

end loop;

Read.Ptr := Temp_Read_Ptr;

else — if Read.Ptr = 0, no cmd is received since power up

something to avoid exception.

for Buf_Index in 1..Max_Num_Latest_Cmds loop

Latest_Cmd_TM.Cmd_Buf(Buf.Index) := Latest_Cmds_Q(Buf_Index);

Latest_Cmd_TH.Status_Buf(Buf_Index) := Latest_Status_Q(Buf_Index);

end loop;

end if;

Note: Cmd_Total is not always consistent/correlated with

Rejected_Cmd_Count because increase Cmd_Total by

117

Cmd.Count and later individually process cuds to see

if should increment Rejected.Cmd.Count.

-SDVS delete:

-SDVS delete:

-SDVS delete:

-SDVS delete:

-SDVS delete:

Latest_Cmd_TM.Cmd.Total

Latest.Cmd.TM.Rejected.Cmd.Count

Latest.Cmd.TM.IO.Status.Word

Latest.Cmd.TM. FIFO_Mot_E_.pty_Count

= APP_MSGS.Cmd.Total;

= APP.MSGS.Rejected.Cmd.Count;

= APP_MSGS.IO_Status_Word;

= APP.MSGS.FIFO.Not.Empty.Count;

Latest_Cmd_TM.Saved_Sat_Subsys_Config := APP_MSGS.Saved_Sat_Subsys_Config;

—SDVS delete: end RET_LATEST_CMDS;

PROCEDURE RET.INIT CMDLAST APP MSG

PURPOSE: To provide the starting serial digital command

corresponding to the last application message to TH.COLLECT

for reporting in the next frame of the housekeeping telemetry.

— NOTES:

CHANGE HISTORY:

11/11/91 B. Na Initial Version

-SDVS delete: procedure RET_INIT_CMD_LAST_APP_MSG

-SDVS delete: (Last_App_Hsg_TH : out LAST_APP_MSG_TM_TYPE) is

-SDVS delete: begin

-SDVS delete: Last_App_Msg_TM.Starting.Cmd

-SDVS delete: Last_App_Msg_TM.Cmd.Total

-SDVS delete: Last_App.Msg.TM.Rejected.Cmd.Count

-SDVS delete: Last_App_Msg_TM.FIFO_Not_Empty_Count

-SDVS delete: Last_App_Msg_TM.IO_Status.Word

-SDVS delete: Last_App_Msg_TM.Saved_Sat_Subsys_Config

-SDVS delete: end RET_INIT_CMD LAST.APP MSG:

APP_MSGS.Cmd_Last_App_Msg;

APP.MSGS.Cmd.Total;

APP.MSGS. Re jected_Cmd.Count;

APP.MSGS.FIFO.Not.Empty.Count;

APP.MSGS.IO_Status_Word;

:= APP.MSGS.Saved_Sat_Subsys_Config;

—SDVS comment: The function RET_MSG_LENGTH returns the length of the next block

—SDVS comment: of commands in the input based on the message identifier. We

—SDVS comment: added it for the scheduler,

function RET_MSG_LENGTH(Msg_Id: GLOBAL_TYPES.BYTE) return INTEGER is —SDVS add
begin —SDVS add

return Cmds_For_Data_Struc(CONV_BYTE_TO_INTEGER(Msg_Id)) ; —SDVS add

end RET_MSG_LENGTH; —SDVS add

INITIATE_BUILD

118

— PURPOSE : This procedure initiates the application message

building when called by APP_MSGS.BUILD. The rules for

building an app_msg to verify the checksum are as follows:

1) app_msg(l) is blank. This is so that after the

checksum is verified, the header for RAM_mem_Load,

EEPROH_mem_load, and Mem_Dump_X_Frames can be

easily modified to store the address in 32 bits.

2) app_msg(2) contains the initial data op-code for

the application msg.

3) if more than one command is required for an application

message then the data associated with the checksum is

stored in app_msg(3)..app_msg(n). App_msg(n) is a

complete word. There is not a spare byte at the end.

App_msg(n+1) contains the checksum.

— EXCEPTIONS:

— NOTES:

CHANGE HISTORY:

10/16/91 B. Na

mm/dd/yy B. Na

Initial Version

Build 2 Changes

procedure INITIATE_BUILD (Start_Op_Code : in GLOBALJTYPES. BYTE;

Cmd_Buf_Index : in INTEGER) is

Used to hold intermediate values for bitwise operations.
Temp_word

High_Byte_Word
Low_Byte_Word

GLOBAL_TYPES.WORD
GLOBALJTYPES. WORD
GLOBALJTYPES.WORD

Data_Struc_ID_Found
Start_Build

: BOOLEAN;

: BOOLEAN;

StrucJIDJIndex INTEGER;

— Used to hold intermediate values during the calcualtions of the

— number of commands and number of words for for the memory load

— messages.

X : INTEGER;

Y : INTEGER;

begin

Start.Build := False;

case Start_Op_Code is

when Data_Struc_Load =>

119

— See message format for Group 1 commands below.

Data_Struc_ID_Found := False;

Struc_ID_Index :=

CONV_BYTE_TO_INTEGER(Catd_Buf (Cmd.Buf.Index).ThirdJByte);

if (Struc.ID.Index <= TRKING_DATA_STRUC. Num_Data_Stmc) and

(Struc_ID_Index > 0) then

Cont_Cmd :~ Data_Load_Cmd;

Num_C«ds_For_App_Msg := Cmds_For_Data_Struc(Struc_ID_Index);

Num_Words_For_App_Msg := TRKIHG_DATA_STRUC.Words_For_Data_Struc(

Struc_ID_Index) + 1;

— The look-up table, Cmds_For_Data_Struc, holds a value 0

— 0 if the corresponding data structure does not exist,

if (NuM_C»ds_For_App_Msg /= 0) then

Data_Struc_ID_Found := True;

Start.Build := True;

end if;

end if;

if (Data_Struc_ID_Found = False) then

C«d_Status_Buf(Cmd_buf_index) := Invalid_Data_Struct_Msg_ID;

— Data_Struct_ID_Not_Found = 13

TM.DATA.MANAGE. REPORT,SYSTEM_ERR0R(13);

Rejected_Cmd_Count :=

(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;

end if;

when RAH_Mem_Load I EEPROM_Mem_Load =>

— See message format for Group 1 commands below.

— X is the number of load data words specified in the command.

X := CONV_ByTE_TO_IMTEGER(Cmd_Buf(Cmd_buf_index).Second_Byte);

— Limit the number of load data words to 75 here to prevent

— a constraint error (App_Msg is defined for 80 words).

if (X > 0) and (X <= 75) then

Cont_Cmd :- Data_Load_Cmd;

— New Method:

Y := 2 + 2X / 3 where X = num of load words, > 0

Num_C«ds_For_App_Msg := Y if remainder = 0

Mum_Cmds_For_App_Msg := Y + 1 if remainder /= 0

Y := 2 + ((2 * X)/ 3);

if (X rem 3) » 0 then

Num_Cmds_For_App_Msg := Y;

120

else
Num_Cmds_For_App_Msg := Y + 1;

end if;

Num_Words_For_App_Msg := X + 4;

StartJBuild := True;

else — Invalid number of load data words.

— Invalid_Num_Of_Load_Data_Words = 103
TM.DATA. MANAGE.REPORT.SYSTEM_ERR0R(103);

Rejected_Cmd_Count :=
(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;

end if;

when Set_RAM_Def_Tab_Entry =>

— COMING SOON or maybe never
null;

when Prep_For_Long_Load I Sat_Subsys_Config I UT_Control =>

if App_Msg_Counter < App_Msg_Q_Size then

— Message Format For Group 2 Commands
+ + + h + H H + + y + y + + y 1 +

— 1 1 0 0 0 0 0 0 0 0| and byte 1 without parity I
+ + + + + + + + + + + + + + + + +

— 2 I //////// I and byte 2 I
+ + + + + + + + + + + + + + + + +

— 3 I I I I I I I I I I and byte 4 I

\ I I I I I I I I I I I I I I I / \
+ + + y + H y y + + y y + + H y y

+ + + + + + + + + + + + + + + + +
— 80 I num of msg words = 3 I

+ + + + + + + + + + + + + + + + +

— Note: / represents bits not initialized.
and byte 3 is not used.

— Save the command associated with the last application message,
— so it can be reported to TM.
Cmd_Last_App_Msg := Cmd_Buf(Cmd_buf_index);

Q_Tail := (Q_Tail mod App_Msg_Q_Size) + 1;

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, 1) :=

121

-SDVS delete CONV_BYTE_TO_WORD(Start_Dp_Code);

App_Hsg_Q(Q_Tail)(l) := CQHV_BYTE_TD_WDRD(Start_Op_Code); --SDVS replace

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, 2) :=

-SDVS delete (2-dimensional array): CONV_BYTE_TO_WORD(Ciid_Buf (Cmd_buf_index) .Second_Byte) ;

App_Msg_Q(Q_Tail)(2) := —SDVS replace

COHV_BYTE_TO_WC]RD(Cmd_Buf(Cmd_buf_index).Second_Byte); —SDVS replace

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, 3) :=

-SDVS delete (2-dimensional array): CDNV_BYTE_TD_WORD(Cmd_Buf(C»d_buf_index).Fourth_Byte);

App_Msg_Q(Q_Tail)(3) := —SDVS replace

CONV_BYTE_TO_WORD(Cmd_Buf(Cmd_buf„index) .Fourth_Byte) ; —SDVS replace

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, CMDS_TYPES.App_Msg_Max) := 3;

App_Msg_Q(Q_Tail)(CMDS_TYPES.App_Msg_Max) :=3; —SDVS replace

~ XIO RA.DSBL disables int.

-SDVS delete (artclient): Artclient.Enter_Critical_Section;

— *** REMINDER ***

— Check assembly to make sure App_Msg_Counter read fron RAM

— (i.e. current Yalue of App_Msg_Counter) not from register.

App_Msg_Counter := App_Msg_Counter + 1;

— XIO RA.EHBL enables interrupt.

-SDVS delete (artclient): Artclient.Leave_Critical_Section;

else — queue is full

— App_Msg_Q_Overflowed *= 17

TM.DATA.MANAGE.REPORT_SYSTEM_ERRDR(17);

Rejected_Cmd_Count :=

(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;

Cmd_Status_Buf(Cmd_buf_index) := App_Msg_Dropped;

end if;

when Mem_Dump_X_Frames =>

— See message format for Group 1 commands below.

Cont_Cmd := Ext_Dump_X_Frames;

Num_Cmds_For_App_Msg := 2;
Num_Words_For_App_Msg := 4;

Start_Build := True;

122

when No_op_Cmd I Clr_Timeout_Telltale =>

if App_Msg_Counter < App_Msg_Q_Size then

— Message Format For Group 3 Commands
+ + + + + + + + + + + + + + + + +

— 1 10 0 0 0 0 0 0 0| and byte 1 without parity I

\ I I I I I I I I t I I I I I I I \
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

— 80 I num of msg words = 1 |
+ + + + + + + + + + + + + + + + +

— Note: / represents bits not initialized.
cmd byte 2, 3 and 4 are not used.

— Save the command associated with the last application message,
— so it can be reported to TH.
Cmd_Last_App_Msg := Cmd_Buf(Cmd_buf„index);

Q_Tail := (Q_Tail mod App_Hsg_Q_Size) + 1;

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, 1) :=
-SDVS delete C0NV_BYTE_T0_W0RD(Start_0p_Code);

App_Msg_Q(Q_Tail)(l) := CDNV_BYTE_TD_WORD(Start_Op_Code) ; —SDVS replace

— store application message size for this type of commands
— at the end of application message array

-SDVS delete (2-dimensional array): App_Hsg_Q(Q_Tail, CMDS_TYPES.App_Msg_Max) := 1;
App_Msg_Q(Q_Tail)(CMDS_TYPES.App_Msg_Max) :=1; —SDVS replace

— XIO RA.DSBL disables int.
-SDVS delete (artclient): Artclient.Enter_Critical_Section;

— *** REMINDER ***
— Check assembly to make sure App_Msg_Counter read from RAM
— (i.e. current value of App_Msg_Counter) not from register.

App_Msg_Counter := App_Msg_Counter + 1;

-SDVS delete (artclient): Artclient.Leave_Critical_Section; — XIO RA.ENBL

else — queue is full
— App_Msg_Q_Overflowed = 17
TM.DATA.MANAGE. REP0RT_SYSTEM_ERR0R(17);
Rejected_Cmd_Count :=

(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;
Cmd_Status_Buf(Cmd_buf„index) := App_Msg_Dropped;

end if;

123

when Chg_Monitor_Loc =>

— See »essage format for Group 1 commands below.

Cont_Cmd := Ext_Chg_Mon_Loc;

Num_Cmds_For_App_Msg :- 9;
NuM_Words_For_App_Msg := 14;

Start_Build :- True;

when Soft_Reset =>

— Message Format For Group 4 Commands
+ + + + + + + + + + + + + + + + +

— 1 I 0 0 0 0 0 0 0 0| cmd byte 1 without parity I

\ I I I I / I I I I I I I I / I I \
+ + y (. + + + + + h + 1- + + + + +

+ + + H + \. + + 1 + + H H H + + +

— 80 I num of msg words = 1 I
H + + + + (. + + H + H 1 H H h + +

— Hote: / represents bits not initialized.
cmd byte 2, 3 and 4 are not used.

— Save the command associated with the last application message,
— so it can be reported to TM.
Cmd_Last_App_Msg := Cmd_Buf(Cmd_buf_index);

if App_Msg_Counter < App_Msg_Q_Size then

Q_Tail :« (Q_Tail mod App_Msg_Q_Size) + 1;

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, 1) :=
-SDVS delete C0NV_BYTE_T0_tf0RD(Start_0p_Code);

App_Msg_Q(Q_Tail)(l) := C0NV_BYTE_T0_W0RD(Start_Dp_Code) ; —SDVS replace

— Store application message size for this type of commands
— at the end of application message array

-SDVS delete (2-dimensional array): App_Hsg_Q(Q_Tail, CMDS_TYPES.App_Msg_Max)
-SDVS delete := 1;

App_Msg_Q(q_Tail)(CMDS_TYPES.App_Msg_Max) := 1; —SDVS replace

— XID RA.DSBL disables int.
-SDVS delete (artclient): Artclient.Enter_Critical_Section;

— *** REMINDER ***
— Check assembly to make sure App_Msg_Counter read from RAM
— (i.e. current value of App_Msg_Counter) not from register.

App_Msg_Counter := App_Msg_Counter + 1;

124

-SDVS delete (artclient): Artclient.Leave_Critical_Section;

else

— FOR SOFT RESET, IF THERE IS NOT ROOM, MAKE ROOM!

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, 1) :=
-SDVS delete CONV_BYTE_TO_WORD(Start_Op_Code);

App_Msg_Q(Q_Tail)(l) := CONV_BYTE_TO_WORD(Start_Op_Code) ; —SDVS replace

— Store application message size for this type of commands
— at the end of application message array

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, CMDS_TYPES.App_Msg_Max) := 1;
App_Msg_Q(Q_Tail)(CHDS_TYPES.App_Msg_Max) :=1; —SDVS replace
— App_Msg_Overwritten_Sys = 15
TM.DATA.MANAGE.REP0RT_SYSTEM_ERR0R(15);
Cmd_Status_Buf(Cmd.buf_index) := App_Msg_Overwritten;

end if;

when others =>
— Starting_Cmd_Not_Valid = 14
TM.DATA.MANAGE.REPORT_SYSTEM_ERROR(14);
Rejected_Cmd_Count :=

(Rejected_Cmd_Count + 1) mod Mar_Rejected_Cmd_Count;
Cmd_Status_Buf(Cmd_buf_index) := Invalid_Starting_Cmd;

end case; — Start_0p_Code

if Start_Build then

— Message Format For Group 1 Commands
+ + + + + + + + + + + + + + + + +

— 1 I 0 0 0 0 00 00 0 0 000 00 0|
+ + + + + + + + + + + + + + + 1. +

— 210 0 0 0 0 0 0 01 cmd byte 1 without parity I
+ H + + V + H + Y + 1 H -I H + + +

— 3 I cmd byte 2 I cmd byte 3 I
+ + + + + + + + + + + + + + + + +

— 4 I cmd byte 4 |to be filled by continue_build 1
+ + + + + + + + + + + + + + + + +

I to be filled by continue build |
+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

I checksum = to be filled by continue build I

125

+ + + + + + ^ + + + + + 1 + + H +

80 I num of msg words = to be filled by continue build |
.—+ + + + + + + + + + + + + + + +_

App_Msg(l) := 0;
App_Msg(2) :■ C0NV_BYTE_T0_W0RD(Start_0p_Code) ;

— join Second_Byte and Third_Byte and store in App_Msg(3)
Temp.word :~ C0NV_BYTE_T0_W0RD(Cmd_Buf(C»d_buf_ index).SecondJByte);
High_Byte_Word :* SHIFT_LDGICAL_WORD(Temp_word, 8);

Temp_Word := C0NV_BYTE_T0_WDRD(CMd_Buf(Cnd_buf.index).Third_Byte);
App_Msg(3) := OR_WQRD(High_Byte_¥ord, Temp.Word);

Temp_word := C0MV_BYTE_T0_WDRD(Cmd_Buf(CMd_buf_index).Fourth_Byte);
App_Msg(4) :■= SHIFT_LOGICAL_WDRD(Temp_¥ord, 8);

— Save the opcode with parity to be included in Cmd_Last_App_Msg which
— will be reported to TM.
Starting_Cmd_With_Par := Cmd_Buf(Cmd_buf.index).First_Byte;

— First of the multiple commands message received.
Cmds_Rcvd := 1;

— Next word to be filled by Continue_Build.
tford_Cntr := 4;

Build_In_Progress := True;

Start_Build := False;

end if; — start_build = true

-SDVS delete (exception):

-SDVS delete (exception):

-SDVS delete (exception):
-SDVS delete (exception):

exception

when others =>

writestring("ibe 2");
writeln;

end IMITIATE_BUILD;

CONTINXJE_BUILD

PURPOSE : This procedure continues to build the application
message for the serial digital command whose opcode

126

signals the continuation of the last starting command.

— EXCEPTIONS:

— NOTES:

— CHANGE HISTORY:

10/16/91 B. Na Initial Version

mm/dd/yy B. Na Build 2 Changes

procedure CONTINUE.BUILD

(Cont_0p_Code : in GLOBAL_TYPES.BYTE;

Cmd_Buf_Index : in INTEGER) is

App_Msg_Checksum

App_Msg_St art _Word

Msg_Word_Index

Q_Word_Index

GLOBAL_TYPES.WORD;

INTEGER;

INTEGER;

INTEGER;

Used to hold intermediate values for bitwise operations.

Temp_Word

High_Byte_Word

Low_Byte_Word

GLOBAL.TYPES. WORD

GLOBAL_TYPES. WORD

GLOBAL_TYPES. WORD

begin

if Cont_0p_Code = Cont_Cmd then

— Continue build the message,

if (Cmds_Rcvd mod 2) = 0 then

— Note: 1st byte of a command is op-code.

— Word_Cntr+l I
+-

+2 I
+-

2nd byte

4th byte

.+ +

I 3rd byte |
_+ +

I(will be filled next)I
_+ +

Word_Cntr := Word_Cntr + 1;

Temp_Word

High_Byte_Word

Low_Byte_Word

C0NV_BYTE_T0_W0RD(Cmd_Buf(Cmd_Buf.Index).Second.Byte);

SHIFT_LOGICAL_WORD(Temp_Word, 8);

CONV_BYTE_TO_WORD(Cmd_Buf(Cmd_Buf_Index).Third.Byte);

App_Msg(Word_Cntr) := 0R_W0RD(High_Byte_Word, Lo¥_Byte_Word);

Word.Cntr := Word_Cntr + 1;

Temp.Word := CONV_BYTE_TO_WORD(Cmd_Buf(Cmd_Buf_Index).Fourth_Byte);

App_Msg(Word_Cntr) := SHIFT_LOGICAL_WORD(Temp_Word, 8);

127

else — (Cmds_Rcvd mod 2) /= 0

— Note: 1st byte of a command is op-code.

— Word_Ctr+0 I (already filled) | 2nd byte

+1 I 3rd byte I 4th byte I
+ + +

Low_Byte_¥ord :- C0NV_BYTE_T0_W0RD(Cmd.Buf(Cmd_Buf.Index).Second.Byte);

App_Msg(Word_Cntr) := OR_WORD(App_Msg(tford_Cntr), Low_Byte_Word);

Word_Cntr := Word_Cntr + 1;

Temp.Word

High_Byte_Word

Lo¥_Byte_Word

= CONV_BYTE_TO_WDRD(Cmd_Buf(Cmd_Buf_Index).Third.Byte);

= SHIFT_LOGICAL_WORD(Temp.Word, 8);

= COMV_BYTE_TO_WORD(Cmd_Buf(Cmd.Buf.Index).Fourth.Byte);

App.Msg(Word.Cntr) := OR_WORD(High_Byte_Word, Low.Byte.Word);

end if;

Cmds_Rcvd := Cmds.Rcvd + 1;

if Cmds_Rcvd = Num.Cmds.For.App.Msg then

— 1)Check checksum (i.e. validate msg).

— 2)If good checksum then:

a) If rooM in Queue, then store msg in App_Msg_Q.

b) Else, report system error and flag app_msg_dropped.

— 3)Elseif bad checksum report with cmd status.

— 4)Reset build_in_progress flag.

App_Msg_Checksum := 0;

— To verify the checksum, bytes are stored in App_Msg with App_Msg(l)

— blank, App_Msg(2) containing the Data op-code for the first cmd

— associated with the App_Msg. Data associated with the checksum

— for the App_Msg starts at App_Msg(3). Num_Words_For_App_Msg does

— not include the checksum location.

for Msg_Word_Index in 3..Num_Hords_For_App_Msg loop

App_Msg_Checksum := XQR.WORD (App_Msg_Checksum,

App_Msg(Msg_Word_Index));

end loop;

after_checksum_calculation —SDVS add

if App_Msg_Checksum = App_Msg(Num_Words_For_App_Hsg +1) then

— Checksum good!

128

if App_Msg_Counter < App_Msg_Q_Size then

— Queue is not full.

App_Msg_Start_Word := 2;

if (C0NV_W0RD_T0_BYTE(App_Msg(2)) = RAM_Mem_Load) or
(C0NV_W0RD_T0_BYTE(App_Hsg(2)) = EEPROM_Mem_Load) or
(C0NV_¥DRD_T0_BYTE(App_Hsg(2)) = Mem_Dump_X_Frames) then

— If memory load or dump then convert

(from this format) to (this format)
+ + + + + +

—II 0 I 0 I I 01 opcode I
+ + + + +J. +

— 21 0 I opcode I I 0 I 2nd byte I
+ + + + + +

— 3 i 2nd byte I 3rd byte I I 0 [3rd byte I
+ + + + + +

— 4 I 4th byte I I | 4th byte I |
+ + + + + +

App_Hsg(l) := App_Msg(2);

-SDVS delete (hex): High_Byte_Word := AND_W0RD(App_Msg(3),16#FF00#);
High_Byte_Word := AND_W0RD(App_Hsg(3) ,65280) ; —SDVS replace

App_Msg(2) := SHIFT_LOGICAL_WDRD(High_Byte_Word, -8);

-SDVS delete (hex): Low_Byte_Word := AND_W0RD(App_Msg(3),16#00FF#);
Low_Byte_Word := AND_W0RD(App_Msg(3) ,255) ; —SDVS replace

App_Hsg(3) := Low_Byte_Word;

App_Msg_Start_¥ord := 1;

end if;

— The message has been built. Now store it in the queue
— if the queue is not full.

Q_Tail := (Q_Tail mod App_Msg_Q_Size) + 1;

— To include checksum at the end of the message
Num_Words_For_App_Msg := Num_Words_For_App_Hsg + 1;

Q_Word_Index := 0;

— Copy from message buffer to queue
for Msg_Word_Index in App_Msg_Start_Word..Num_Words_For_App_Msg loop

q_Word_Index := q_Word_Index + 1;
-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, Q_Word_Index) :=
-SDVS delete App.Msg(Msg_Word_Index);

App_Hsg_Q(Q_Tail)(Q_Word_Index) :=

129

App_Msg(Msg_Word_Index); —SDVS replace

end loop;

— Store the size of this application message at the bottom

— so that MANAGE_MSG_RETRIEVAL can retrieve the exact number

— of words for this message.

-SDVS delete (1750A) MEMORY_MANAGER.CONV_TYPE

-SDVS delete (1750A) (Q_Word_Index>address, — Source

-SDVS delete (1750A App_Msg_Q(Q_Tail, CMDS_TYPES.App_Msg_Max)'address, — Target

-SDVS delete (1750A 1); —Words

App_Msg_Q(Q_Tail)(CMDS_TYPES.App_Msg_Max) := —SDVS replace

GLDBAL_TYPES.WORD(Q_Vord_Index); —SDVS replace

— XIO RA.DSBL disables interrupt. Programmers should ensure

— that exceptions do not cause calls to Leave_Critical_Section

— to be missed. Refer to page 8-21 of the Tartan manual.

-SDVS delete (artclient): Artclient.Enter_Critical_Section;

— *** REMINDER ***

— Check assembly to make sure App_Msg_Counter read from RAM

— (i.e. current value of App_Msg_Counter) not from register.

App_Msg_Counter :- App_Msg_Counter + 1;

— XIO RA.ENBL enables int.

-SDVS delete (artclient): Artclient.Leave_Critical_Section;

— Save the latest start cmd that identifies the type of

— applicaton message last received. This will be collected

— by TM.COLLECT during tracking state.

— App_Msg Format (shown only first 3 1/2 words)

for the following ends:

— RAM_Mem „Load,

— EEPR0M_ 4em_Load,

— for other cmds Mem_Dump_X_Frames.

+- + -+ +- _+ +

— 1 1 0 I 0 1 I 0 I opcode |
+- + -+ +- _+ +

— 2 1 0 I opcode 1 1 0 1 2nd bytel

+- + -+ +- _+ +

- 3 | 2nd byte 1 3rd byt el 1 0 1 3rd bytel
+_ + -+ +- _+ +

— 4 I 4th byte | 1 1 4th byte 1 1
+. + -+ +- _+ +

Cmd_Last_App_Msg.First_Byte := Starting_Cmd_With_Par;

if App_Msg_Start_Word = 1 then — For memory load or dump message

— Second_Byte is App_Msg(2).Low_Bvte;

Cmd_Last_App_Msg.Second_Byte := C0NV_¥0RD_T0_BYTE(App_Msg(2));

else — All other message

— Second_Byte is App_Msg(2).High_Byte;

Temp.Word := SHIFT_L0GICAL_W0RD(App_Msg(3), -8);

Cmd_Last_App_Msg.Second_Byte := CONV_WORD_TO_BYTE(Temp_Word);

130

end if;

— Third_Byte is App_Msg(3).Low.Byte;

-SDVS comment: The assignment statement that follows can not be executed in SDVS

-SDVS comment: (the result of its execution is compiler depended), because

-SDVS comment: the result of using unchecked conversion to convert App_Msg(3),

-SDVS comment: which is a "word" with value possibly greater than 255, to a

-SDVS comment: byte is unknown. This is a safeguard that SDVS places on unchecked

-SDVS comment: conversions. The authors of the MSX code are assuming that their

-SDVS comment: compiler will execute the assignment statement by assigning to

-SDVS comment: Cmd_Last_App_Msg.Third_Byte the lower byte of App_Msg(3).

-SDVS delete: Cmd_Last_App_Msg.Third_Byte := C0NV_W0RD_T0_BYTE(App_Hsg(3));

Cmd_Last_App_Msg.Third_Byte :=

CDNV_W0RD_Ta_BYTE(AND_W0RD(App_Msg(3),255)); —SDVS replace

— Fourth_Byte is App_Msg(4).High_Byte;

Temp.Word := SHIFT_L0GICAL_W0RD(App_Msg(4), -8);

Cmd_Last_App_Msg.Fourth_Byte := CONV_WORD_TO_BYTE(Temp_¥ord);

else

— gets time-tagged in TM_Data

— App_Msg_Q_Overflowed = 17

TM.DATA.MANAGE.REPORT_SYSTEM_ERROR(17);

Cmd_Status_Buf(Cmd_Buf_Index) := App_Msg_Dropped;

Rejected_Cmd_Count :=

(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;

end if;

else — Checksum failed

— Checksum_Failed = 18

TM_DATA.MANAGE. REPORT.SYSTEM_ERROR(18);

Rejected_Cmd_Count :=

(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;

Cmd.Status.Buf(Cmd.Buf.Index) := Bad_Checksum;

end if; — App_Msg_Checksum good or bad

Build_In_Progress := False;

end if; — Cmds.Rcvd = Num_Cmds_For_App_Msg

else — if Cmd_Buf(Cmd_Buf„Index).Cont_0p_Code /= Cont_Cmd then

— The No-op cmd could be interspersed in another cmd. This

— is because of the prioritized order of cmds from the TP

— being higher than delayed cmds. This is the only cmd that

— can be interspersed.

if (Cont_0p_Code = No_op_Cmd) then

if (App_Msg_Counter < App_Msg_Q_Size) then

131

Q_Tail := (Q_Tail nod App_Msg_Q_Size) + 1;

—SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, 1) :=

-SDVS delete CONV_BYTE_TD_WORD(Cont_Op_Code);

App_Msg_Q(Q_Tail)(l) := CONV_BYTE_TO_WORD(Cont_Op_Code) ; —SDVS replace

— store application message size for this type of commands

— at the end of application message array

-SDVS delete (2-dimensional array): App_Msg_Q(Q_Tail, CMDS_TYPES.App_Msg_Max)

-SDVS delete := 1;

App_Msg_Q(Q_Tail)(CMDS.TYPES.App_Msg_Max) :=i; —SDVS replace

— XID RA.DSBL disables int.

-SDVS delete (artclient): Artclient.Enter_Critical_Section;

— *** REMINDER ***

— Check assembly to make sure App_Msg_Counter read from RAM

— (i.e. current value of App_Msg_Counter) not from register.

App_Msg_Counter := App_Msg_Counter + 1;

— XIO RA.ENBL enables int.

-SDVS delete (artclient): Artclient.Leave_Critical_Section;

Cmd_Last_App_Msg :=• Cmd_Buf(C«d_Buf .Index) ;
else

— App_Msg_Q_Overflowed = 17

TM_DATA.MANAGE.REPORT_SYSTEM_ERRDR(17);

Cmd_Status_Buf(Cmd_Buf_Index) := App_Msg_Dropped;

Rejected_Cmd_Count :=

(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;
end if;

else — Cont_0p_Code is not No_0p_Cmd

— Prior_Build_Flushed =12

TM.DATA.MANAGE.REPORT,SYSTEMJERROR(12);

Rejected..Cmd.Count : =

(Rejected_Cmd_Count + 1) mod Max_Rejected_Cmd_Count;

Cmd_Status_Buf(Cmd_Buf„Index) := Flushed_Prior_Build;

Build_In_Progress := False;

end if;

end if; — build in progress and next.cmd = or /= Cont_Cmd

-SDVS delete (exception): exception

-SDVS delete (exception): when others =>

-SDVS delete (exception): writestring("cbe 2");

-SDVS delete (exception): Britein;

132

end CONTINUE_BUILD;

—**

begin

—SDVS delete (TM): for I in 1..Latest_Cmds_Q_Size loop

—SDVS delete (TM): Latest_Cmds_Q(I) := Zero_Cmd;

—SDVS delete (TM) : end loop;

null;

—SDVS delete (exception): exception

—SDVS delete (exception): nhen tasking_error =>

—SDVS delete (exception): writestringO'apte 5");

—SDVS delete (exception): uriteln;

— App_Msgs_Pkg_Tasking_Exception = 76

—SDVS delete (exception): TM.DATA. MANAGE. REP0RT_SYSTEM_ERR0R(76) ;

—SDVS delete (exception): when others =>

—SDVS delete (exception): writestring("ape 6");

—SDVS delete (exception): uriteln;

— App_Msgs_Pkg_Exception = 77

—SDVS delete (exception): TM_DATA.MANAGE.REP0RT_SYSTEM_ERR0R(77) ;

end APP.MSGS;

begin —SDVS add

—8 loop_begin —SDVS add

loop —SDVS add

SERIAL_DIG_CMDS.CMD_IN_HANDLER; —SDVS add

for i in 2 .. APP_MSGS.RET_MSG_LENGTH(SERIAL_DIG_CMDS.RET_MSG_ID) loop —SDVS add
SERIAL_DIG_CMDS.CMD_IN_HANDLER; —SDVS add

end loop; —SDVS add

APP_MSGS.BUILD; —SDVS add

APP_MSGS.PROCESS_MSG; —SDVS add
end loop; —SDVS add

end MSX_PROGRAM_FINAL_VERSION; —SDVS add

133

9 Appendix B - The Proofs

9.1 Definitions, etc. used in the main proof

; -*- Syntax: Common-lisp; Package: USER; Mode: LISP -*-"'/. ; File name

: /u/versys/msx/:mfinite_sequence_data_structure_messages.defs

This file contains the formulas, macros and proofs used in the main proof

(found in file

/u/versys/msx/infinite_sequence_data_structure.messages.proof).

This file is for the most part organized bottom-up: that is, definitions,

lemmas, etc. are introduced immediately before they are used. The major

exception to this is the first section which contains macros. A top-down

explanation of main proof is given in the body of the technical report.

9.1.1 Macros

;;; Macro section

;; Macro is.byte is a predicate which is true if x is between 0 and 255

;; inclusive, false otherwise.

(defmacroo is.byte

"0 le x & x le 255"

(x) nil)

;; Macro is.byte is a predicate which is true if x is between 0 and 65536

;;inclusive, false otherwise.

(defmacroo is.word

"0 le x & x le 65535"

(x) nil)

;; Macro mk.word is a function which returns the value of a word whose

;; high-order bits are the byte a and whose low-order bits are the byte b.

(defmacroo mk.word

"256 * a + b"

(a b) nil)

;; Macro all.high is a predicate which returns true if x is a word all of

;; whose low-order bits are 0, false otherwise.

(defmacroo all.high

"0 le x & x le 65535 & x mod 256 = 0" ; The is.word macro is not used

135

(x) nil) ; here as SDVS does not currently

; handle nested macros

;; Macro all.low is a predicate which returns true if x is a word all of whose

;; low-order bits are 0, false otherwise.

(defmacroo all.low

"0 le x fc x le 255"

(x) nil)

;; Macro high.bits is a function whose value is the high-order bits of a word.

(defmacroo high.bits

"i / 256"

(x) nil)

;; Macro low.bits is a function whose value is the low-order bits of a word,

(defmacroo low.bits

"x mod 256"

(x) nil)

9.1.2 Timing proofs

;;; Proofs used for timing. These proofs are used to give the date at various points

;;; in the main proof if the variable timing is set to true.

;; Proof printdate prints the date if the timing flag is true, does nothing otherwise.

(defproof printdate_if.wanted

"(if timing

then printdate)")

;;Proof printdate simply prints the date

(defproof printdate

"(date)")

9.1.3 Formulas used in the precondition

;;; The following section contains formulas used in the precondition
;;; of the main state delta (infinite_sequence_data_structure_messages.sd).

The following formulas (which are accompanied below by their
proofs) are included in the precondition to avoid re-proving for
each run with a different step_case.proof

136

The state deltas input_places_disjoint.sd and

output_places_disjoint.sd are used in the step case to prove

that the input and output places associated with the nth message are

disjoint from the places mentioned in the output condition (i.e., those

associated with the xth message).

State delta input_places_disjoint.sd is applied in the n It i case in the

step case oi the induction so that the prover is able to deduce that the input

places for the nth message are disjoint from the input places for the xth message.

(defsd input_places_disjoint.sd

"[sd pre: (formula(msg_input_begins_at_definition),n ge 1, n It x,

formula(msg_in_lh_definition),formula(allowed_message_ids))

post: (msg_input_begins_at(n) + msg_in_lh(n) - 1

It msg_input_begins_at(x))]")

;; Proof input_places_disjoint.proof is the proof of input_places_disjoint.sd.

(defproof input_places_disjoint.proof

"(setflag traceflag on,

comment \ "Beginning interpretation of input_places_disjoint.proof... \ ",

setflag traceflag off,

interpret printdate_if„wanted,

; The proof is a fairly straightforward induction on n - x

natural induction on: k

formulas: (forall x ((n ge 1 & n It x) k

k = x - (n + 1)

—> msg_input_begins_at(n)

+ (msg_in_lh(n)-l)

It msg_input_begins_at((n +

k) +

1)))
base proof:

(provebyinstantiation

using: msg_in_lh_definition

substitutions: (x=n),

provebyinstantiation

using: msg_input_begins_at_definition
substitutions: (x=n + 1),

close)

step proof:

(letq induct_hyp = q(l),

provebyinstant iat ion

using: msg_input_begins_at_definition

substitutions: (x=(n + k) +2),

provebyinstantiation

using: msg_in_lh_definition

substitutions: (x=(n + k) +1),

provebyinst ant iat ion

using: induct_hyp

substitutions: (x=(n + k) + 1),

137

proYebyinstantiation
using: allowed_iiessage_ids
substitutions: (x=(n + k) + 1),

close),

provebyinstantiation
using: q(l)
substitutions: (k=x - (n + 1)),

enotice x - (n + 1) ge 0,
notice
x - (n + 1) ge 0

--> forall x ((n ge 1 k n It x) k
x - (n + 1) = x - (n + 1)
—> msg_input_begins_at(n) + (msg_in_lh(n)-l)

It Bsg_input_begins_at((n +
(x - (n +

1))) +
D),

notice
forall x ((n ge 1 k n It x) &

x - (n + 1) = x - (n + 1)
—> Msg_input_begins_at(n) + (msg_in_lh(n)-l)

It »sg_input_begins_at((n +
(x - (n + 1))) +

1».
provebyinst ant iat ion

using: q(l)
substitutions: (x=x),

interpret printdate_if_wanted,

setflag traceflag on,
coBment

\ "Finished with interpretation of input_places_disjoint.proof... \ ",
setflag traceflag off,
close)")

;; Proof separate_input_places simply applies input_places_disjoint.sd.

(defproof separate_input_places
"(setflag traceflag on,
coament \ "Beginning interpretation of separate_input_places... \ ",
setflag traceflag off,

interpret printdate.if„wanted,

apply input_places_disjoint.sd,

interpret printdate.if„wanted,

setflag traceflag on,
comment \ "Finished with interpretation of separate_input„places... \ ",
setflag traceflag off)")

;; State delta output_places_disjoint.sd is applied in the n It x case in the

138

; step case of the induction so that the prover is able to deduce that the

; output places for the nth message are disjoint from the output places for

; the xth message.

(defsd output_places_disjoint.sd

"[sd pre: (formula(msg_output_begins_at.definition),n ge 1, n It x,

formula(msg_out_lh_definition),formula(allowed_message_ids))

post: (msg_output_begins_at(n) + msg_out_lh(n) - 1

It msg_output_begins_at(x))]")

;; Proof output_places_disjoint.proof is the proof of output_places_disjoint.sd.

(defproof output_places_disjoint.proof

"(setflag traceflag on,

comment \ "Beginning interpretation of output_places_disjoint.proof... \ ",

setflag traceflag off,

interpret printdate_if„wanted,

; Again, the proof is a fairly straightforward induction on n - x

natural induction on: k

formulas: (forall i ((n ge 1 t n It i) ft

k = x - (n + 1)

—> msg_output_begins_at(n)

+ (msg_out_lh(n)-l)

It msg_output_begins_at((n +

k) +

1)))
base proof:

(provebyinstantiation

using: msg_out_lh_definition
substitutions: (x=n),

provebyinst ant iat ion

using: msg_output_begins_at_definition

substitutions: (x=n + 1),

close)

step proof:

(letq induct_hyp = q(l),

provebyinst ant iat ion

using: msg_output_begins_at_definition

substitutions: (x=(n + k) +2),

provebyinstantiation

using: msg_out_lh_definition

substitutions: (x=(n + k) + 1),

provebyinstantiation

using: induct_hyp

substitutions: (x=(n + k) + 1),

provebyinstantiation

using: allowed_message_ids

substitutions: (x=(n + k) + 1),

close) ,

provebyinst ant iat ion

139

using: q(l)
substitutions: (k=x - (n + 1)),

enotice x - (n + 1) ge 0,
notice
x - (n + 1) ge 0

—> forall x ((n ge 1 & n It x) k
x - (n + 1) = x - (n + 1)
—> msg_output_begins_at(n) + (msg_out_lh(n)-l)

It asg_output_begins_at((n +
(x - (n +

1))) +
D),

notice
forall x ((n ge 1 & n It x) &

x - (n + 1) = x - (n + 1)
—> msg_output_begins_at(n) + (msg_out_lh(n)-l)

It Msg_output_begins_at((n +
(x - (n + 1))) +

D),
provebyinstantiation
using: q(l)
substitutions: (x=x),

interpret printdate_if„wanted,

setflag traceflag on,
comment

\ "Finished with interpretation of output_places_disjoint.proof...
setflag traceflag off,
close)")

;; Proof separate_input_places simply applies input_places_disjoint.sd.

(defproof separate_output_places
"(setflag traceflag on,
comment \ "Beginning interpretation of separate_output_places... \ ",
setflag traceflag off,

interpret printdate_if_wanted,

apply output_places_disjoint.sd,

interpret printdate_if.wanted,

setflag traceflag on,
comment \ "Finished with interpretation of separate_output„places... \ ",
setflag traceflag off)")

;; State delta finale.sd is used after the induction and allows the main
;; proof to be run without using EKL.

(defsd finale.sd
"[sd pre: (x + 1 = x + 1

—> (x ge 1
—> forall z (1 le z & z le msg_out_lh(x)

140

—> .stdout
[msg_output_begins_at(x)

(z - 1)]
= mk.fford

(.stdin

+

[msg_input_begins_at(x) +
(8 * z - 5) / 3]

.stdin
[msg_ input .begins. _at(x) +

(8 * z - 1) / 3]))))
post: (x ge 1

--> forall z (1 le z k z le msg_out_lh(x)
—> .stdout

[msg.
= mk

output_begrns_at (x) + (z -
.word
(.stdin

[msg_input_begins_at(x)
(8 * z - 5) / 3] ,

.stdin
[msg_input_begins_at (x)

(8 * z - 1) / 3])))]

1)]

+

+

')

;; Proof finale.proof is the (completely automatic) proof of finale.sd

(defproof finale.proof
"(quantification on,
prove finale.sd

proof:)")

;;; The rest of the formulas in this section specify that the input is
;;; correct.

;; Formula allowed_message_ ids states which message ids are allowed (i e. , are
;; actually legitimate message ids for data- structure messages.

(defformula allowed_message .ids
"forall x ((ige 1) —> msg. .id(x] = 1

or msg. .id(x] = 2
or msg. .idd: = 3
or msg. .id(x] = 4
or msg. .idd: = 5
or msg. .id(x: = 6
or msg. .idd: = 7
or msg. .id(x] = 8
or msg. .id(x] = 9
or msg. .idU: = 10
or msg. .id(x] = 11
or msg. .id(x] = 12
or msg. .id(x] = 13
or msg. .id(x' = 14
or msg. .id(x' = 15
or msg. .id(x' = 16
or msg. .id(x) = 17
or msg. .id(x) = 18

141

or msg_id(x = 19
or asg_id(x] = 20
or msg_id(x] = 21
or msg_id(x! = 22
or msg_id(x; = 23
or msg_id(x^ = 24
or msg_id(x} = 25
or msg_id(x! = 26
or msg_id(x> = 27
or msg_id(x) = 28
or asg_id(x; = 29
or msg_id(x) = 50
or msg_id(x) = 51
or msg_id(x) = 52
or msg_id(x] = 53
or msg_id(x] = 54
or msg_id(x) = 55
or msg_id(x) = 56
or msg_id(x) = 57
or msg_id(x) = 58
or msg_id(x) - 59
or asg_id(x) = 60
or asg_id(x) = 61
or msg_id(x) = 62
or msg_id(x) = 63
or msg_id(x) = 64
or msg_id(x] = 65
or msg_id(x) = 66
or Msg_id(x) = 67
or msg_id(x) = 80
or msg_id(x) = 81
or msg.idCx] = 82
or msg_id(x) = 83
or asg_id(x) = 84
or msg_id(x) = 85
or msg_id(x) = 86
or msg_id(x) = 87
or msg_id(x) = 88
or asg_id(x) = 89
or asg_id(x) = 90
or asg_id(x) - 91
or msg_id(x) = 92
or msg_id(x) = 93)

Formula asg_in_lh_definition defines the function asg_in_lh.
This function gives the number of bytes of input for a message. N.B: The values
of this function are four times as large as the values in the
specification, as there the number of commands rather than the number of
bytes is used.

(defformula msg_in_lh_def inition
"forall x ((x gt 0) —>

(if msg_id(x) - 1 then msg_in_lh(x) 56 else

142

(if msg_id(x) 2 then msg_in_lh(x) 56 else

(if msg_id(x) = 3 then msg_in_lh(x) = 56 else
(if msg_id(x) = 4 then msg_in_lh(x! = 56 else
(if msg_id(x) = 5 then msg_in_lh(x! = 56 else
(if msg_id(x) = 6 then msg_in_lh(x) = 56 else
(if msg_id(x! = 7 then msg_in_lh(x) = 56 else
(if msg_id(x) = 8 then msg_in_lh(x) = 40 else
(if msg_id(x) = 9 then msg_in_lh(x) = 40 else
(if msg_id(x) = 10 then msg_in_lh(x] = 12 else
(if msg_id(x) = 11 then msg_in_lh(x) = 12 else
(if msg_id(x) = 12 then msg_in_lh(x] = 16 else
(if msg_id(x) = 13 then msg_in_lh(x) = 16 else
(if msg_id(x) = 14 then msg_in_lh(x' = 12 else
(if msg_id(x) = 15 then msg_in_lh(x] = 12 else
(if msg_id(x) = 16 then msg_in_lh(x) = 12 else
(if msg_id(x) = 17 then msg_in_lh(r) = 12 else
(if msg_id(x) = 18 then msg_in_lh(x] = 12 else
(if msg_id(x] = 19 then msg_in_lh(x) = 32 else
(if msg_id(x) = 20 then msg_in_lh(x) = 12 else
(if msg_id(x] = 21 then msg_in_lh(x] = 12 else
(if msg_id(x] = 22 then msg_in_lh(x) = 8 else
(if msg_id(x] = 23 then msg_in_lh(x) = 16 else
(if msg_id(x) = 24 then msg_in_lh(x) = 8 else
(if msg_id(x) = 25 then msg_in_lh(x) = 16 else
(if msg_id(x) = 26 then msg_in_lh(x) = 16 else
(if msg_id(x) = 27 then msg_in_lh(x' = 16 else
(if msg_id(x^ = 28 then msg_in_lh(x] = 8 else
(if msg_id(x) = 29 then msg_in_lh(x] = 24 else
(if msg_id(x) = 50 then msg_in_lh(x] = 40 else
(if msg_id(x) = 51 then msg_in_lh(x) = 16 else
(if msg_id(x; = 52 then msg_in_lh(x] = 24 else
(if msg_id(x) = 53 then msg_in_lh(x) = 152 else
(if msg_id(x) = 54 then msg_in_lh(x) = 152 else
(if msg_id(x) = 55 then msg_in_lh(x) = 208 else
(if msg_id(x) = 56 then msg_in_lh(x] = 208 else
(if msg_id(x) = 57 then msg_in_lh(x] = 52 else
(if msg_id(x) = 58 then msg_in_lh(x] = 24 else
(if msg_id(x) = 59 then msg_in_lh(x) = 16 else
(if msg_id(x) = 60 then msg_in_lh(x) = 24 else
(if msg_id(x) = 61 then msg_in_lh(x) = 16 else
(if msg_id(x) = 62 then msg_in_lh(x) = 20 else
(if msg_id(x) = 63 then msg_in_lh(x) = 44 else
(if msg_id(x) = 64 then msg_in_lh(x] = 28 else
(if msg_id(x) = 65 then msg_in_lh(x) = 32 else
(if msg_id(x) = 66 then msg_in_lh(x) = 32 else
(if msg_id(x; = 67 then msg_in_lh(x) = 60 else
(if msg_id(x) = 80 then msg_in_lh(x] = 16 else
(if msg_id(x) = 81 then msg_in_lh(x) = 8 else

(if msg_id(x) = 82 then msg_in_lh(x] = 8 else

(if msg_id(x) = 83 then msg_in_lh(x) = 8 else

(if msg_id(x) = 84 then msg_in_lh(x) = 8 else

(if msg_id(x) = 85 then msg_in_lh(x] = 8 else

(if msg_id(x) = 86 then msg_in_lh(x' = 16 else
(if msg_id(x] = 87 then msg_in_lh(x' = 16 else
(if msg_id(x) 88 then msg_in_lh(x) 16 else

143

(if msg_id(x) = 89 then msg_in_lh(x) = 16 else

(if Bsg_id(x) = 90 then msg_in_lh(x) = 8 else

(if msg_id(x) s 91 then nsg_in_lh(x) = 44 else

(if msg_id(x) = 92 then msg_in_lh(x) = 28 else

(if Msg_id(x) = 93 then msg_in_lh(x) = 8 else Bsg_in_lh(x) = 0

))")

Formula nisg_out_lh_def inition defines the function msg_out_lh.

This function gives the number of words of output for a message.

(defformula msg_out_

"forall x ((x gt

(if msg_id(x!
(if msg_id(x'
(if msg_id(x'
(if »sg_id(x!
(if asg_id(x
(if msg_id(x!
(if msg_id(x
(if msg_id(x
(if msg_id(x
(if msg_id(x!
(if msg_id(x
(if msg_id(x
(if asg_id(x
(if «sg_id(x!
(if msg_id(x
(if msg_id(x
(if nsg_id(x'
(if Msg_id(x]
(if «sg_id(x'
(if msg_id(xi
(if *sg_id(x'
(if msg_id(x]
(if msg_id(x'
(if asg_id(x'
(if msg_id(x!
(if msg_id(x]
(if msg_id(:
(if asg_id(:
(if Msg_id(:
(if msg_id(x!
(if msg_id(x!
(if msg_id(xi
(if msg_id(x!
(if msg_id(x!
(if msg_id(x!
(if msg_id(x
(if BSg. ' "
(if msg.
(if BSg.
(if «sg
(if «sg
(if ms;

f?-i

.id(x

.id(x:

.id(x:
.d(x

.id(xi

.id(x

lh_def inition
0) —>

: 1 then nsg_out_lh(x)

= 2 then msg_out_lh(x)

= 3 then msg_out_lh(x)

- 4 then msg_out_lh(x)

- 5 then msg_out_lh(x)

= 6 then msg_out_lh(x)

= 7 then msg_out_lh(x)

= 8 then Bsg_out_lh(x)

- 9 then Bsg_out_lh(x)

= 10 then msg_out_lh(x

=11 then Bsg_out_lh(x

= 12 then msg_out_lh(x

= 13 then msg_out_lh(x

= 14 then Bsg_out_lh(x

- 15 then BSg_out_lh(x

= 16 then asg_out_lh(x
= 17 then Bsg_out_lh(x

= 18 then Bsg_out_lh(x

= 19 then msg_out_lh(x

» 20 then Bsg_out_lh(x

-21 then BSg_out_lh(xi

= 22 then msg_out_lh(x!

= 23 then msg_out_lh(x!

" 24 then msg_out_lh(x!

= 25 then msg_out_lh(x'

- 26 then msg_out_lh(x!

= 27 then msg_out_lh(x'

= 28 then «sg_out_lh(xi

= 29 then asg_out_lh(x'

= 50 then msg_out_lh(x!

= 51 then msg_out_lh(x'

= 52 then Bsg_out_lh(x!

= 53 then msg_out_lh(x!

= 54 then msg_out_lh(x

= 55 then msg_out_lh(x!

= 56 then Bsg_out_lh(x!

= 57 then Bsg_out_lh(x!

- 58 then msg_out_lh(x
= 59 then «sg_out_lh(x'
■ 60 then msg_out_lh(x
= 61 then »sg_out_lh(x!
= 62 then »sg_out_lh(x

= 20 else
= 20 else
» 20 else
= 20 else
- 20 else
= 20 else
= 20 else
= 14 else
= 14 else

) = 4 else
) = 4 else
) = 6 else
) = 6 else
) = 4 else
) = 4 else
) = 4 else
) = 4 else
) = 4 else
) = 11 else
) = 4 else
) = 4 else
) = 3 else
) = 6 else
) = 3 else
) = 5 else
) = 5 else
) = 6 else
) = 3 else
) = 8 else
) = 15 else
) = 6 else
) = 8 else
) = 57 else
) = 57 else
) = 78 else
) = 78 else
) = 19 else
) = 8 else
) = 6 else
) = 9 else
) = 6 else
) = 7 else

144

(if msg_id(x) = 63 then msg_out_lh(x) = 16 else
(if msg_id(x) = 64 then msg_out_lh(x) = 10 else
(if msg_id(x) = 65 then msg_out_lh(x) = 11 else
(if msg_id(x = 66 then msg_out_lh(x) = 11 else

(if msg_id(x = 67 then msg_out_lh(x) = 22 else

(if msg_id(x =80 then msg_out_lh(x) = 5 else

(if msg_id(x > = 81 then msg_out_lh(x) = 3 else

(if msg_id(x = 82 then msg_out_lh(x) = 3 else

(if msg_id(x! = 83 then msg_out_lh(x) = 3 else

(if msg_id(x" = 84 then msg_out_lh(x) = 3 else

(if msg_id(x] = 85 then msg_out_lh(x) = 3 else

(if msg_id(x] = 86 then msg_out_lh(x) = 5 else

(if msg_id(xl = 87 then msg_out_lh(x) = 5 else

(if msg_id(x] = 88 then msg_out_lh(x) = 6 else

(if msg_id(x] = 89 then msg_out_lh(x) = 5 else

(if msg_id(x] = 90 then msg_out_lh(x) = 3 else

(if msg_id(xl =91 then msg_out_lh(x) = 16 else
(if msg_id(x] = 92 then msg_out_lh(x) = 10 else

(if msg_id(x] = 93 then msg_out_lh(x) = 3 else msg_out_lh(x) = 0
))))))))))):)) ")

; Formul. i msg_input_begins_at_definition defines the

; function msg_inj 3Ut_begins_< it which gives the beginning input locat ion
; for messages.

(defformula msg_in])ut_begins_< it_def inition

"f orall x (msg. _input_begins_at(l) = 1 ft

((X j ;t 1) —>

(ms >g_input_begins_at(x) =
i isg_input_begins_at(x-l) ^ • nsg. .in_lh(x-l))))")

; Formula msg_out] 3ut_begins_< at_definition defines the

; function msg_ou1 :put_begins. .at which gives the beginning output location
; for messages.

(defformula msg_ou1 :put „begins. _at_def inition

"forall x (msg. .output _begins_at(l) = 1 i
((X | ;t 1) -->

(ms ;g_output_begins_at(x) =
i isg_output_begins_at(x-1) + msg_out_lh(x-l))))")

; Formula checksui n_first_k_bytes_message_n_ .definition defines the function

; checksum_first_] c_bytes_message_n(n,k) , which gives the result of applying
; the sdvs_xor_woj -d function to the first] actual input bytes of message n.

(defformula checks* im_first_k_bytes_message_n_definition

"forall n

(forall k (

(k = 0 - —>

ched csum_first_k_bytes_message_n(n,k) = 0) ft

(k gt 0 - —>

(che(:ksum_first _k_bytes_message_n(n,k)

= sdvs_xor_word(checksum_first_k_bytes_message_n(n,k -1),
mk.word(. 3tdin[msg_input_beg ins_at(n) + ((8 * k - 5) / 3)],

145

.stdin[nsg_input_begins_at(ii) + ((8 * k - 1) / 3)]))))))")

Formula checksum_definition defines the function checksuii(x) , which gives

the result of applying the sdvs_xor_word function to all of the actual

input bytes of message x.

(defformula checksum_definition

"(forall x (x ge 0 —>

(checksum(x) = checksum_first_k_bytes_message_n(x, nsg_out_lh(x) -1))

k is.word(checksum(x))))")

;; Formula input.condition is the principal formula used to specify the input.

(defformula input_condition

"forall x

(forall z

(x ge 1 —>

; The first byte is always 1.

((z = 1 —> .stdin[msg_input_begins_at(x) + (z-1)] = 1) &

; The second byte is always 2.

(z = 2 —> .stdin[msg_input_begins_at(x) + (z-1)] = 2) &

; The third byte is the message identifier.

(z = 3 —> .stdin[msg_input_begins_at(x) + (z-1)] = msg_id(x)) &

; As for the remaining bytes. . .

((4 le z & z le msg_in_lh(x)) —>

; If it's the first byte of a command, it's an eight:

((z mod 4=1 —> .stdin[msg_input_begins_at(x) + (z-1)] = 8) &

; otherwise, we only know it's a byte.

(z mod 4 ~= 1 —> is.byte(.stdin[msg_input_begins_at(x) + (z-1)])))) &

; First checksum byte is the high bits of the checksum word for message x

((z = ((8 * msg_out_lh(x) - 2) / 3)) —>

.stdin[msg_input_begins_at(x) + (z-1)] =

high.bits(checksum(x))) t

; Second checksum byte is the low bits of the checksum word for message x

((z = ((8 * msg_out_lh(x) +2) / 3)) —>

.stdin[msg_input_begins_at(x) + (z-1)] =

low.bits(checksum(x))))))")

9.1.4 Formulas used in the postcondition

;;; Formulas used in the postcondition of the main state delta

; ;; (infinite_sequence_data_structure_messages.sd)

146

Formula output.condition states that all words output for the xth message are

correct, i.e., are words formed from the specified inputs in the high and low bytes.

(defformula output_condition

"x ge 1 —> (forall z ((llez&zle msg.out.lh(x))

—> #stdout[msg_output_begins_at(x) +(z-l)]

= mk.word(.stdin[msg_input_begins_at(x) + ((8 * z - 5) / 3)],

.stdin[msg_input_begins_at(x) + ((8 * z - 1) / 3)])))")

9.1.5 The correctness assertion

; The correctness assertion

State delta infinite_sequence_data_structure_messages.sd is the correctness

assertion and states that if the input is correct, the program eventually

produces the correct output.

(defsd infinite_sequence_data_structure_messages.sd

"[sdpre: (formula(finale.sd),

formula(input_places_disjoint.sd) ,

formula(output_places_disjoint.sd),

ada(msx_program_final_version.a),

foraula(checksum_f irst_k_bytes.message_n_definition),

formula(checksum_definition),

formula(msg_in_lh_definition),

formula(msg_out_lh_definition),

formula(msg_input_begins_at_definition),

formula(msg_output_begins_at.definition),

formula(allowed_message_ids),

f ormula(input _c ondit ion))

comod: (all)

mod: (all)

post: (formula(output.condition))]")

9.1.6 Proofs used in the main proof

Proofs used in the main proof. Each of these proofs is embedded

in setflag and comment commands that allow the traceflag to be turned off

in the main proof so that an abbrieviated trace can be obtained. Each

proof is also surrounded by printdate.if.wanted commands that allow timing

information to be obtained if the timing variable is set to true in the

main proof.

147

;;; The following three proofs are used before the loop induction in the Main

;;; proof.

;; Proof fix_constant_arrays fixes problems with the initialization of

;; the large constant arrays WORDS_FOR_DATA_STRUC_TYPE and CMDS_FOR_DATA_STRUC_TYPE.

(defproof fix_constant_arrays

"(setflag traceflag on,

comment \ "Beginning interpretation of fix_constant„arrays... \ ",

setflag traceflag off,

interpret printdate_if.wanted,

; Go to declaration of WORDS_FOR_DATA_STRUC_TYPE

g°
#words_for_data_struc_typeJfirst = 1,

apply 3,

; Fix declaration of WORDS_FOR_DATA_STRUC_TYPE

eval (load \ "/u/versys/msx/array_constant \ "),

apply,

eval (load \ "/u/versys/msx/correct_array_constant \ "),

; Go to declaration of CMDS_FOR_DATA_STRUC_TYPE

go

#cmds_for_data_struc_type'first - 1,
apply 3,

; Fix declaration of CMDS_FDR_DATA_STRUC_TYPE

eval (load \ "/u/versys/msx/array_constant \ "),

apply,
eval (load \ "/u/versys/msx/correct_array_constant \ "),

interpret printdate_if.wanted,

setflag traceflag on,

comment \ "Finished with interpretation of fix_constant_arrays... \ ",

setflag traceflag off)")

;; Proof go_to_beginning_of_loop symbolically executes until the beginning of the

;; main infinite loop in the program.

(defproof go_to_beginning_of.loop

"(setflag traceflag on,

comment \ "Beginning interpretation of go_to_beginning_of_loop... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

go #msx_program_final_version \\ pc = at(loop_begin),

interpret printdate_if_wanted,

148

setflag traceflag on,

comment \ "Finished with interpretation of go_to_beginning_of_loop... \ ".
setflag traceflag off)")

;; Proof do_lets renames various things so that they can be easily referred to

;; later (e.g., in quantifier commands).

(defproof do_lets

"(setflag traceflag on,

comment \ "Beginning interpretation of do_lets... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

letsd loopsd = u(l),

let old_universe = .msx_program_final_version,

letq input_condition = q(l),

letq allowed_message_ids = q(2),

letq msg_output_begins_at_definition = q(3),

letq msg_input_begins_at.definition = q(4),

letq msg_out_lh_definition = q(5),

letq msg_in_lh_definition = q(6),

letq checksum.definition = q(7),

letq checksum_first_k_bytes_message_n_definition = q(8),

interpret printdate_if„wanted,

setflag traceflag on,

comment \ "Finished with interpretation of do_lets... \ ",

setflag traceflag off)")

; The remaining proofs are used in the loop induction in the main proof.

; These are split into those used in the base case, and those used in the step

: case.

;; Proof base_case.proof proves the base case of the loop induction in the main proof

(defproof base_case.proof

"(setflag traceflag on,

comment \ "Beginning interpretation of base_case.proof... \ ",
setflag traceflag off,

interpret printdate_if„wanted,

; All goals are vacuously true except those concerning the equality of the

; the standard input counter and msg_input_begins_at(l), and of the

; standard output counter and msg_output_begins_at(l)

provebyinstantiation

using: msg_input_begins_at.definition

substitutions: (x=l),

provebyinst ant iat ion

using: msg_output_begins_at_definition

subst itut ions: (x=1),

149

interpret printdate_if_wanted,

setflag traceflag on,

continent \ "Finished with interpretation of base_case.proof... \ ",

setflag traceflag off,

close)")

;; Proof instantiate_kth_input instantiates the input condition with the Yalue k.

(defproof instantiate_kth_input

"(setflag traceflag on,

comment \ "Beginning interpretation of instantiate_kth_input... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

provebyinst ant iat ion

using: input_condition_instantiated_on_n
substitutions: (z=k),

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of instantiate_kth_input... \ ",

setflag traceflag off)")

;; Proof produce.input_information instantiates the input condition the appropriate

;; number of times so that the prover knows about the inputs for the nth message.

(defproof produce_input_information

"(setflag traceflag on,

comment \ "Beginning interpretation of produce_input_information... \ ",

setflag traceflag off,

interpret printdate_if.wanted,

provebyinstant iat ion

using: input_condition

substitutions: (x=n),

letq input_condition_instantiated_on_n = q(l),

repeat instantiate_kth_input iterating on k from 1 to msg_in_lh(n),

interpret printdate_if.wanted,

setflag traceflag on,

comment \ "Finished with interpretation of produce_input_information... \ ",

setflag traceflag off)")

;; Proof go_to_return_from_call_to_ret_cmd_buf_and_status symbolically executes

;; until the exit from the procedure RET_CMD_BUF_AND_STATUS.

(defproof go_to_return_from_call_to_ret_cmd_buf_and_status

"(setflag traceflag on,

150

comment \ "Beginning interpretation of

go_to_return_from_call_to_ret_cmd_buf_and_status... \ ",

setflag traceflag off,

interpret printdate_if„wanted,

S°
#msx_program_final_version \\ pc =

exit ed(msx_program_f inal.version.serial_dig_cmds.ret_cmd_buf_and_status),

interpret printdate_if„wanted,

setflag traceflag on,

comment \ "Finished with interpretation of

go_to_return_from_call_to_ret_cmd_buf_and_status... \ ",

setflag traceflag off)")

;;; The following proofs are needed as SDVS does not handle array assignments in the

;;; best possible way. This will eventually be fixed.

;; Proof consider_cmd_status_buf„element considers one element of the data structure

;; CMD_STATUS_BUF in SERIAL_DIG_CMDS.

(defproof consider_cmd_status_buf„element

"(setflag traceflag on,

comment \ "Beginning interpretation of consider.cmd_status_buf„element... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

consider .cmd_status_buf[k],

interpret printdate_if„wanted,

setflag traceflag on,

comment \ "Finished with interpretation of consider_cmd_status_buf„element... \ ",

setflag traceflag off)")

Proof notice_cmd_bufs_records_equal_implies_fields_equal forces the prover to notice

that if the kth elements of the CMD_BUF data structures in SERIAL_DIG_CMDS and

APP_MSGS are equal, their fields are equal.

(defproof notice_cmd_bufs_records_equal_implies_fields_equal

"(setflag traceflag on,

comment \ "Beginning interpretation of
notice_cmd_huis_records_equal_implies_fields_equal... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

notice

. app_msgs. cmd_buf [k] = . cmd_buf [k] —>
.record(app_msgs.cmd_buf[k],first_byte) = .record(cmd_buf [k],first_byte),

notice

151

. app_msgs. cmd_buf W = . cmd_buf[k] —>

.record(app_*sgs.cmd_buf[k],second_byte) = .record(cmd_buf[k],second_byte),
notice

. app_msgs. cmd_buf [k] = . cmd_buf[k] —>

.record(app_msgs.cmd_buf [k] ,third_byte) = .record(cmd_buf[k] ,third_byte) ,

notice

. app_msgs. cmd_buf [k] = . cmd_buf [k] —>

.record(app_msgs.cmd_buf[k],fourth_bjrte) = .record(cmd_buf[k],fourth_byte),

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of

notice_cmd_bufs_records_equal_implies_fields_equal... \ ",

setflag traceflag off)")

;; Proof consider_app_msgs.cmd_status_buf„element considers one element of the

;; data structure CMD_STATUS_BUF in APP_MSGS.

(defproof consider_app_msgs.cmd_status_buf.element

"(setflag traceflag on,

comment \ "Beginning interpretation of

consider_app_msgs.cmd_status_buf„element... \ ",
setflag traceflag off,

interpret printdate_if_wanted,

consider .app_msgs.cmd_status_buf[k],

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of

consider_app_msgs.cmd_status_buf_element... \ ",
setflag traceflag off)")

; Proof fix_array_values_after_call_to_ret_cmd_buf_and_status uses the

; three proofs above to "remind" the prover of certain information about

; the arrays passed out of RET_CMD_BUF_AND_STATUS.

(defproof fix_array_values_after_call_to_ret_cmd_buf_and_status
"(setflag traceflag on,

comment \ "Beginning interpretation of

fix_array_values_after_call_to_ret_cmd_buf_and_status... \ ",
setflag traceflag off,

interpret printdate_if_wanted,

apply u(l),

repeat consider_cmd_status_buf„element

iterating on k from 1 to msg_in_lh(n)/4 + 1,

repeat notice_cmd_bufs_records_equal_implies_fields_equal

iterating on k from 1 to msg_in_lh(n)/4 + 1,

152

repeat consider_app_msgs.cmd_status_buf.element

iterating on k from 1 to msg_in_lh(n)/4 + 1,

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of

fix_array_values_after_call_to_ret_cmd_buf_and_status... \ ",

setflag traceflag off)")

The following section contains the adalemmas for the intrinsic functions

used in the program and proofs which use them. Note that the postconditions

of the adalemmas are as weak as possible, i.e., geared for input values which

actually occur in the program. These lemmas are not proved as they replace calls

to 1750A code.

;; Adalemma or_word.adalemma is the adalemma for the 0R_W0RD intrinsic function.

(defadalemma or_word.adalemma

"/u/versys/msx/msx_program_final_vers ion.a"

or_word msx_program_final_version.intrinsic_functions.or_word

("all.high(.or_word.x) & all.low(.or_word.y)") (or_word)

("(#or_word = .or.word.x + .or_word.y & is.word(#or_word))"))

;; Proof handle_first_or_word_call simply invokes or_word.adalemma and is used

;; only on the first call to OR.WORD.

(defproof handle_first_or_word_call

"(setflag traceflag on,

comment \ "Beginning interpretation of handle_first_or_word_call... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

invokeadalemma or_word.adalemma,

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of handle_first_or_word_call... \ ",

setflag traceflag off)")

;; Lemma all.low.times.256.is.all.high states that if x is all.low, then 256*x

; ; is all.high.

(deflemma all.low.times.256.is.all .high

"x ge 0 & x le 255

--> (256 * x ge 0 & 256 * x le 65535) &

(256 * x) mod 256 = 0"

(x) nil nil (ok) ;

153

:proof "(provelemma all.low.times.256.is.all.high

proof:

(read \ "axioms/mod.axioms \ ",

provebyaxiom 0 mod 256 = (0 + x * 256) mod 256

using: modmult))")

Proof handle_remaining_or_word_calls handles all calls to DR_W0RD except the first.

It uses the lemma all.low.times.256.is.all.high to ensure the precondition of

or_word.adalemma is met before it is invoked.

(defproof handle_remaining_or_word_calls

"(setflag traceflag on,

comment \ "Beginning interpretation of handle_remaining_or_word_calls... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

provebylemma

(256 * .stdin[(((8*(.word_cntr -3))+3)/3)

+ msg_input_begins_at(n)] ge 0 k

256 * .stdin[(((8*(.word_cntr -3))+3)/3)

+ msg_input_begins_at(n)] le 65535) &

(256 * .stdin[(((8*(.word_cntr -3))+3)/3)

+ msg_input_begins_at(n)]) mod 256 = 0

using: all.low.times.256.is.all.high,

invokeadalemma or_word.adalemma,

interpret printdate_if_wanted,

setflag traceflag on,

comment

\ "Finished with interpretation of handle_remaining_or_word_calls... \ ",

setflag traceflag off)")

Proof handle_or_word_call uses the proof handle_first_or_word_call on the

first call to 0R_WDRD, handle_remaining_or_word_calls on subsequent calls.

This is done because the lemma all.low.times.256.is.all.high is not needed

on the first call since the first argument is then 2, and the prover knows

all.high(256*2) without any help.

(defproof handle_or_word_call

"(setflag traceflag on,

comment \ "Symbolic execution is at the entry

to the intrinsic function 0R_W0RD \ ",

comment \ "This function will be handled by handle_or_word_call, \ ",

comment \ "which invokes an adalemma \ ",

comment \ "Beginning interpretation of handle_or_word_call... \ ",

setflag traceflag off,

interpret printdate_if.wanted,

if not -build_in_progress

then handle_first_or_word_call,

154

if .build_in_progress

then handle_remaining_or_word_calls,

interpret printdate_if.wanted,

setflag traceflag on,

comment \ "Finished with interpretation of handle_or_word_call... \ ",

setflag traceflag off)")

;; Adalemma and_word.lemma is the adalemma for the AND_W0RD intrinsic function.

(defadalemma and_word.adalemma

"/u/versys/msx/msx_program_f inal_version.a"

and_word msx_program_final_version.intrinsic_functions.and.word

("true") (and.word)

("(.and_word.y = 65280 —> #and_word = (.and_word.x/256)*256) ft

(.and_word.y = 255 —> #and_word = .and_word.x mod 256) ft

(.and_word.x = 65280 —> #and_word = (.and_word.y/256)*256) ft

(.and_word.x = 255 —> #and_word = .and_word.y mod 256) ft

is.word(#and_word)"))

;; Proof handle_and_word_call simply invokes the adalemma and_word.adalemma.

(defproof handle_and_word_call

"(setflag traceflag on,

comment \ "Symbolic execution is at the entry

to the intrinsic function AND.WORD \ ",

comment \ "This function will be handled by handle_and_word_call, \ ",

comment \ "which invokes an adalemma \ ",

comment \ "Beginning interpretation of handle_and_word_call... \ ",

setflag traceflag off,

interpret printdate_if„wanted,

invokeadalemma and_word.adalemma,

interpret printdate_if„wanted,

setflag traceflag on,

comment \ "Finished with interpretation of handle_and_word_call... \ ",

setflag traceflag off)")

;; Adalemma and_i is the adalemma for the AND_I intrinsic function.

(defadalemma and_i.adalemma

"/u/versys/msx/msx_program_f inal_version.a"

and_i msx_program_final„version.intrinsic_functions.and_i

("true") (and_i)

("(.and.i.y = 7 —> #and_i = .and_i.x mod 8) ft is.word(#and_i)"))

155

;; Proof handle_and_i_call simply invokes the adalemma and_i.adalemma.

(defproof handle_and_i_call

"(setflag traceflag on,

comment \ "Symbolic execution is at the entry

to the intrinsic function AND_I \ ",

comment \ "This function will be handled by handle_and_i_call, \ ",

comment \ "which invokes an adalemma \ ",

comment \ "Beginning interpretation of handle_and_i_call... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

invokeadalemma and_i.adalemma,

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of handle_and_i_call... \ ",

setflag traceflag off)")

;; Adalemma and_byte is the adalemma for the AND_BYTE intrinsic function.

(defadalemma and_byte.adalemma

"/u/versys/msx/msx_program_f inal_version.a"

and_byte msx_program_final_version.intrinsic_functions.and_byte

("true") (and_byte)

("(.and_byte.y = 127 —> #and_byte = .and_byte.x mod 128) & is.word(#and_byte)"))

;; Proof handle_and_byte_call simply invokes the adalemma and_byte.adalemma.

(defproof handle_and_by"te_call

"(setflag traceflag on,

comment \ "Symbolic execution is at the entry

to the intrinsic function AND.BYTE \ ",

comment \ "This function will be handled by handle_and_byte_call, \ ",

comment \ "which invokes an adalemma \ ",

comment \ "Beginning interpretation of handle_and_byte_call... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

invokeadalemma and_byte.adalemma,

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of handle_and_byte_call... \ ",

setflag traceflag off)")

;; Adalemma shift_logical_word.adalemma is the adalemma for the SHIFT_LDGICAL_WORD

156

;; intrinsic function.

(defadalemma shift_logical_word.adalemma

"/u/versys/msx/msx_program_final_version.a"

shift_logical_word msx_program_final_version.intrinsic.f unctions.shift_logical_word

("true") (shift_logical_word)

("(.shift_logical_word.y = -8 —>

(#shift_logical_word =

.shift_logical_word.x / 256 k is.byte(#shift_logical_word))) &
(is.byte(.shift_logical_word.x) & .shift_logical_word.y = 8 —>

(#shift_logical_word =

.shift_logical_word.x * 256 & is.word(#shift_logical_word)))"))

;; Proof handle_shift_logical_word_call simply invokes the adalemma

;; shift_logical_word.adalemma.

(defproof handle_shift_logical_word_call

"(setflag traceflag on,

comment \ "Symbolic execution is at the entry

to the intrinsic function SHIFT_LOGICAL_WORD \ ",

comment \ "This function will be handled by handle_shift_logical_sord_call, \
comment \ "which invokes an adalemma \ ",

comment \ "Beginning interpretation of handle_shift_logical_word_call... \ ",

setflag traceflag off,

interpret printdate_if„wanted,

invokeadalenuna shift_logical_word.adalemma,

interpret printdate_if.wanted,

setflag traceflag on,

comment

\ "Finished with interpretation of handle_shift_logical_word_call... \ ",

setflag traceflag off)")

; ; Adalemma xor_word.adalemma is the adalemma for the X0R_¥0RD intrinsic function.

(defadalemma xor_word.adalemma

"/u/versys/msx/msx_program_f inal„version.a"

xor_word msx_program_final_version.intrinsic.functions.xor_word

("true") (xor_word)

("(#xor_word = sdvs_xor_word(.xor_word.x,.xor_word.y) & is.word(#xor_word))"))

(defproof handle_xor_word_call

"(setflag traceflag on,

comment \ "Symbolic execution is at the entry

to the intrinsic function XOR.WORD \ ",

157

comment \ "This function will be handled by handle_xor_sord_call, \ ",

comment \ "which invokes an adalemma \ ",

comment \ "Beginning interpretation of handle_xor_word_call... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

invokeadalemma xor_word.adalemma,

interpret printdate_if.wanted,

setflag traceflag on,

comment \ "Finished with interpretation of handle_xor_word_call... \ ",

setflag traceflag off)")

;;; The following proofs handle problems with array assignments after the call to

;;; MANAGE_MSG_RETRIEVAL.

;; Proof consider_app_msg_out_element considers the kth element of .app_msg_out.

(defproof consider_app_msg_out„element

"(setflag traceflag on,

comment \ "Beginning interpretation of consider.app_msg_out_element... \ ",
setflag traceflag off,

interpret printdate_if„wanted,

consider .app_msg_out[k],

interpret printdate_if„wanted,

setflag traceflag on,

comment \ "Finished with interpretation of consider_app_nisg_out_element... \ ",

setflag traceflag off)")

;; Proof fix_array_values_after_call_to_manage_msg_retrieval "reminds" the prover

;; of information about the array .app_msg_out.

(defproof f ix_array_values_after_call_to_manage_nisg_retrieval

"(setflag traceflag on,

comment \ "Symbolic execution is at the exit from the

MAMGE_MSG_RETRIEVAL procedure \ ",

comment \ "Beginning interpretation of

fix_array_values_after_call_to_manage_msg_retrieval... \ ",
setflag traceflag off,

interpret printdate_if„wanted,

apply u(l),

repeat consider_app_msg_out.element

iterating on k from 1 to (1 + msg_out_lh(n)),

interpret printdate_if_wanted,

158

setflag traceflag on,

comment \ "Finished with interpretation of

fix_array_values_after_call_to_manage_msg_retrieval... \ ",

setflag traceflag off)")

;; Lemma checksum.lemma is used in proof prove_checksum_correct.

(deflemma checksum.lemma

"x ge 0 & y gt 0 —> (x / y) * y + x mod y = x"

(x y) nil nil nil

rproof "(provelemma checksum.lemma

proof:

(read \"axioms/rem.axioms\",

read \"axioms/mod.axioms\",

meases

(case: x gt 0

proof:

(provebyaxiom x mod y = x rem y

using: modreml,

provebyaxiom x=(x/y)*y + x rem y

using: remdef)

case: x = 0

proof:

(read \"axioms/div.axioms\",

provebyaxiom x / y = 0

using: diveqO,

provebyaxiom x mod y = x rem y

using: modreml,

provebyaxiom x=(x/y)*y+x rem y

using: remdef))))")

;; Proof instantiate_checksum_message_n instantiates k for n in the quantified

; ; formula checksum_message_n .

(defproof instantiate_checksum_message_n

"(setflag traceflag on,

comment \ "Beginning interpretation of instantiate_checksum_message_n ... \ ",

setflag traceflag off,

interpret printdate.if.wanted,

provebyinstant iat ion

using: checksum_message_n

substitutions: (k=z) ,

interpret printdate.if.wanted,

setflag traceflag on,

comment \ "Finished with interpretation of instantiate_checksum_message_n \ ",

159

setflag traceflag off)")

; Proof prove_checksum_correct proves that the result of the checksum

; calculation has the sane value as the output word formed from the

; input checksum bytes.

(defproof prove_checksum_correct

"(setflag traceflag on,

comment \"Beginning interpretation of prove_checksum_correct..,\",

setflag traceflag off,

interpret printdate_if_wanted,

provebyinstantiation

using: checksum_definition

substitutions: (x=n),

provebylemma (checksum(n) / 256) * 256 + checksum(n) mod 256

= checksum (n)

using: checksum.lemma,

provebyinstantiation

using: checksum_first_k_bytes_message_n_definition

substitutions: (n=n),

letq checksum_message_n = q(l),

repeat instantiate_checksum_message_n

iterating on z from 0 to msg_out_lh(n) - 1,

apply,

interpret printdate_if_wanted,

setflag traceflag on,

comment \"Finished with interpretation of prove_checksum_correct... \",

setflag traceflag off)")

Proof loop_body symbolically executes until it reaches the call of an

intrinsic function, the exit from MANAGE_MSG_RETRIEVAL, the proof label

after_checksum calculation, or the top of the loop. It uses the

appropriate proof (prefixed with handle_) on the call of an intrinsic function,

fixes array values after_MSG_RETRIEVAL with the proof

fix_array_values_after_call_to_manage_msg_retrieval, and uses

prove_checksum_correct after the checksum calculation to prove the checksum

values are correct.

(defproof loop_body

"(setflag traceflag on,

comment \ "Beginning interpretation of loop_body... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

160

1°
;Call to an intrinsic function

(#msx_program_final_version \\ pc =

at(msx_program_final.version.intrinsic_functions.or_word)) or

(#msx_program_final_version \\ pc =

at(msx_program_final_version.intrinsic.functions.xor_word)) or

(#msx_program_final_version \\ pc =

at (msx_program_final_version.intrinsic.!unctions.and_i)) or

(#msx_program_final_version \\ pc =

at(msx_program_final_version.intrinsic.!unctions.and_word)) or

(#msx_program_iinal_version \\ pc =

at(msx_program_f inal.version.intrinsic_functions.and.byte)) or

(#msx_program_final_version \\ pc =

at(msx_program_final.version.intrinsic_functions.shift_logical_nord)) or

;Af t er MANAGE_MSG_RETRIEVAL

(#msx_prograin_f inal_version \\ pc =

exited(msx_program_final„version.app_msgs.manage_msg_retrieval)) or

;After checksum calculation

(#msx_program_final.version \\ pc =

at(after_checksum_calculation)) or

;Beginning of loop

formula(loopsd),

; Handle intrinsic calls with adalemmas

if .msx_program_final_version \\ pc =

at(msx_program_f inal_version.intrinsic.functions.or_word) then
handle_or_word_call,

if .msx_program_final_version \\ pc =

at(msx_program_final.version.intrinsic_functions.xor_oord) then

handle_xor_word_call,

if .msx_program_final_version \\ pc =

at(msx_program_final_version.intrinsic.functions.and_nord) then
handle_and_word_call,

if .msx_program_final_version \\ pc =

at (msx_program_f inal.version.intrinsic_functions.and_i) then

handle_and_i_call,

if .msx_program_final_version \\ pc =

at(msx_program_final_version.intrinsic_functions.and_byte) then
handle_and_byte_call,

if .msx_program_final_version \\ pc =

at(msx_program_final_version.intrinsic_functions.shift_logical_oord) then

handle_shift_logical_word_call,

;Fix array values

if .msx_program_final_version \\ pc =

161

exit ed(msx_program.f inal.version. app.msgs.manage_msg_retrieval) then

fix_array_values_after_call_to_manage_msg_retrieval,

;Prove checksum bytes have correct value

if .msx.program.final.version \\ pc =

at(after.checksum.calculation) then

prove_checksum_correct,

interpret printdate_if.wanted,

setflag traceflag on,

comment \ "Finished with interpretation of loop_body... \ ",

setflag traceflag off)")

;; Proof handle_intrinsics_until_end_of„program interprets loop.body until the top

;; of the loop.

(defproof handle_intrinsics_until_end_of„program

"(setflag traceflag on,

comment \ "Beginning interpretation of

handle_intrinsics.until_end.of.program... \ ",

setflag traceflag off,

interpret printdate.if.wanted,

loop until formula(loopsd) with loop.body,

interpret printdate.if.wanted,

setflag traceflag on,

comment \ "Finished with interpretation of

handle.intrinsics.until.end.of.program... \ ",

setflag traceflag off)")

Lemma queue_bounds.lemma is needed to prove that after the variable Q.HEAD and

Q.TAIL are updated, they are still legitimate array bounds (i.e., between one and

thirty inclusive). State deltas that correspond to statements which use these

variables as array indices have preconditions requiring that these variables

are in bounds, so statements that the original values of these variables are in

bounds are part of the loop invariant in the main proof.

(deflemma queue.bounds.lemma

"z ge 1 k z le 30

—> z mod 30 + 1 ge 1 & z mod 30 + 1 le 30"

(z) nil nil nil

:proof "(provelemma queue.bounds.lemma

proof:

(read \ "axioms/mod.axioms \ ",

read \ "axioms/rem.axioms \ ",

read \ "axioms/div.axioms \ ",

cases z It 30

then proof:

(provebyaxiom z / 30 = 0

162

using: diveqO,

provebyaxiom z = (z / 30) * 30 + z rem 30

using: remdef,

provebyaxiom z mod 30 = z rem 30

using: modreml)

else proof:))")

; Proof finish_off_non_output_goals proves that all of the goals which the prover

; does not know to be true after symbolically executing through the loop with the

; exception of the goal involving the output condition.

(defproof finish_off_non_output_goals

"(setflag traceflag on,

comment \ "Beginning interpretation of finish_off_non_output_goals... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

; Proves that the statements concerning the queue variables

; in the invariant are re-established

provebylemma old_q_head mod 30 + 1 ge 1 k
old_q_head mod 30 + 1 le 30

us ing: queue„bounds.1emma,

; Input/output counters have been incremented appropriately

provebyinst ant iat ion

using: msg_output_begins_at_definition

substitutions: (x=n + 1),

provebyinstantiation

using: msg_input_begins_at„definition

substitutions: (x=n + 1),

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of finish_off_non_output.goals... \ ",

setflag traceflag off)")

The following section contains proof commands used to prove the output condition

in the n = x case. At the end of this case, the prover knows (i.e., can simplify

to true) the output condition at 1, 2,, msg_out_lh(x), but doesn't know the

actual output condition. So we are the position of having to convince the prover

of forall z (1 le z & z le msg_out_lh(x) —> P(z)) when it already knows P(l),

P(2), ..., P(msg_out_lh(x) - 1), P(msg_out_lh(x)).

Proof notice_output_condition_at_k_quantified_over_z notices forall z P(k)

when P(k) is true and puts it on the list of quantifiers (N.B.: z does not

occur free in P(k))

(defproof notice_output_condition_at_k_quantified_over_z

"(setflag traceflag on,

163

comment \ "Beginning interpretation of

notice_output_condition_at_k_quantified_over_z... \ ",
setflag traceflag off,

interpret printdate_if_wanted,

notice

forall z (.stdout[msg_output_begins_at(x) + (k - 1)]

« ink. word (.stdin[msg_input_begins_at(x) + (8 * k - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * k - 1) / 3])),

interpret printdate_ifjsanted,

setflag traceflag on,

comment \ "Finished with interpretation of

notice_output_condition_at_k_quantified_over_z... \ ",

setflag traceflag off)")

;; Proof another_version_of_output_condition_at_k_quantified_over_z proves

;; forall z (z=k —> P(k)) from forall z P(k)

(defproof another_version_of„output_condition_at_k_quantified_over_z

"(setflag traceflag on,

comment \ "Beginning interpretation of

another_version_of_output_condition_at_k_quantified_over_z... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

provebygeneralization

forall z (z = k —>

.stdout[«sg_output_begins_at(x) + (z - 1)]

= mk.word(.stdin[msg_input_begins_at(x) + (8 * z - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * z - 1) / 3]))

using: (forall z (.stdout [msg_output_begins_at(x) + (k - 1)]
= mk.word(.stdin[msg_input_begins_at(x) + (8 * k - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * k - 1) / 3]))) ,

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of

another_version_of_output_condition_at_k_quantified_over_z... \ ",

setflag traceflag off)")

;; Proof prove_output_condition_for_z_equal_to_l proves

;; forall z (lie J t z It 2 —> P(z)) from forall z (z = 1 —> P(z))

(defproof prove_output_condition_for_z_equal_to_l

"(setflag traceflag on,

comment \ "Beginning interpretation of

prove_output_condition_for_z_equal_to_l... \ ",

setflag traceflag off,

164

interpret printdate.if.wanted,

provebymakeboundedquantifier

forall z (1 le z & z It 2 —>

.stdout[msg_output_begins_at(x) + (z - 1)]
= mk.word(.stdin[msg_input_begins_at(x) + (8 * z - 5) / 3],

.stdin[msg_input_begins_at(x) + (8 * z - 1) / 3]))

using: (forall z (z = 1 —>

.stdout[msg_output_begins_at(x) + (z - 1)]

= mk.word(.stdin[msg_input_begins_at(x) + (8 * z - 5) / 3],

.stdin[msg_input.begins_at(x) + (8 * z - 1) / 3]))),

interpret printdate_if.wanted,

setflag traceflag on,

comment \ "Finished with interpretation of

prove_output_condition_for_z_equal_to_l... \ ",

setflag traceflag off)")

Proof prove_output_condition_for_z_ranging_from_l_to_k_plus_l proves

forall z (1 le z ft z It k+1 —> P(z)) from forall z (1 le z ft z It k --> P(z))

and forall z (z=k —>P(z))

(defproof prove_output_condition_for_z_ranging_from_l_to_k_plus_l

"(setflag traceflag on,

comment \ "Beginning interpretation of

prove_output_condition_for_z_ranging_from_l_to_k_plus_l... \ ",
setflag traceflag off,

interpret printdate_if.wanted,

provebymakeboundedquantifier

forall z (1 le z ft z It k+1 —>

.stdout[msg_output_begins_at(x) + (z - 1)]

= mk.word(.stdin[msg_input_begins_at(x) + (8 * z - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * z - 1) / 3]))

using: (forall z (1 le z ft z It k —>

.stdout[msg_output_begins_at(x) + (z - 1)]

= mk.word(.stdin[msg_input_begins_at(x) + (8 * z - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * z - 1) / 3])) ,

forall z (z = k —>

.stdout[msg_output_begins_at(x) + (z - 1)]

= mk.word(.stdin[msg_input_begins_at(x) + (8 * z - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * z - 1) / 3]))) ,

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of

prove_output_condition_for_z_ranging_from_l_to_k_plus_l... \ ",
setflag traceflag off)")

165

;; Proof prove_actual_output_condition is the last step in the proof

;; finish_off_output_goal and proves the actual output condition.

(defproof prove_actual_output_condition

"(setflag traceflag on,

comment \ "Beginning interpretation of prove_actual_output_condition... \ ",

setflag traceflag off,

interpret printdate_if_¥anted,

provebyaakeboundedquantifier

forall z ((1 le z k z le msg_out_lh(x)) —>

(.stdout[msg_output_begins_at(x) + (z - 1)]

= mk.word(.stdin[msg_input_begins_at(x) + (8 * z - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * z - 1) / 3])))

using: (forall z ((1 le z k z It k) —>

(.stdout[msg_output_begins_at(x) + (z - 1)]

= mk.word(.stdin[msg_input_begins_at(x) + (8 * z - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * z - 1) / 3]))),

forall z ((z = k) —>

(.stdout[»sg_output_begins_at(x) + (z - 1)]

= mk.word(.stdin[njsg_input_begins_at(x) + (8 * z - 5) / 3] ,

.stdin[msg_input_begins_at(x) + (8 * z - 1) / 3])))),

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of prove_actual_output_condition... \ ",

setflag traceflag off)")

;; Proof finish_off_output_goal uses the above proof commands to prove the

;; output condition.

(defproof finish_off_output_goal

"(setflag traceflag on,

comment \ "Beginning interpretation of finish.off„output_goal... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

repeat notice_output_condition_at_k_quantified_over_z

iterating on k from 1 to msg_out_lh(x),

eval (load \ "/u/versys/msx/dotted_subexpressions \ "),

repeat another_version_of_output_condition_at_k_quantified_over_z

iterating on k from 1 to msg_out_lh(x),

eval (load \ "/u/versys/msx/correct_dotted_subexpressions \ "),

interpret prove_output_condition_for_z_equal_to_l,

repeat prove_output_condition_for_z_ranging_from_l_to_k_plus_l

166

iterating on k from 2 to msg_out_lh(x) - 1,

repeat prove_actual_output_condition

iterating on k from msg_out_lh(x) to msg_out_lh(x),

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finished with interpretation of finish_off_output_goal... \ ",

setflag traceflag off)")

;; Proof every.case.proof is the generic proof for every case in the step case

;; of the induction.

(defproof every_case.proof

"(setflag traceflag on,

comment \ "Beginning interpretation of every.case.proof... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

; Want to name current value of q_head to use in queue_bounds.lemma

let old_q_head = .q_head,

; These instantiations are needed so that the prover knows the concrete

; values of the input and output length of the current message, as

; these are used in repeat loops.

provebyinstantiation

using: msg_in_lh_definition

substitutions: (x = n) ,

provebyinstant iat ion

using: msg_out_lh_definition

substitutions: (x = n) ,

(case: n It x

proof:

(setflag traceflag on,

comment \ "Beginning interpretation of n It x case... \ ",

setflag traceflag off,

interpret printdate_if_wanted,

; Needed to speed up proof (see comments at definitions)

interpret separate_input„places,

interpret separate_output_places,

; Common part of both cases

interpret produce_input_information,

167

interpret go_to_return_f rom_call_to_ret_oid_buf _and_status,

interpret fix_array_values_after_call_to_ret_cmd_buf_and_status,

interpret handle_intrinsics_until_end_of_program,

interpret finish_off_non_output_goals,

; End of common part

comment \ "Attempting to close on goals for n It i case... \ ",

interpret printdate_if„wanted,

close)

case: n = x

proof:

(setflag traceflag on,

comment \ "Beginning interpretation of n = x case... \ ",

setflag traceflag off,

interpret printdate_if.wanted,

; Common part of both cases

interpret produce_input_information,

interpret go_to_return_from_call_to_ret_cmd_buf_and_status,

interpret fix_array_values_after_call_to_ret_cmd_buf_and_status,

interpret handle_intrinsics_until_end_of„program,

interpret finish_off_non_output_goals,

; End of common part

interpret finish_off„output_goal,

comment \ "Attempting to close on goals for n = x case... \ ",

interpret printdate_if„wanted,

close)),

interpret printdate_if„wanted,

setflag traceflag on,

comment \ "Finished with interpretation of every_case.proof... \ ",

setflag traceflag off)")

9.1.7 The versions of step_case.proof used in the main proof

Proof step_case.proof just instantiates allowed_message_ids with n

for x, and then runs e¥ery_case.proof on all possible message ids

in a multiple cases command. Due to concerns about system crashes,

we ran the proof with different versions of step_case.proof. In

each version, we proved one or more cases and deferred the rest.

All of the versions of step_case.proof used are given (in order)

below. The cases handled in each version are given in the second

comment line.

168

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 1\",

setflag traceflag off,

interpret printdate_if„wanted,

; Get the possible message identifiers for n

provebyinstantiation

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 1

proof:

(setflag traceflag on,

comment \"Currently handling message id l...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id l....\",

setflag traceflag off)

case: msg_id(n) ~= 1

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 1 \",

setflag traceflag off,

defer)),

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 2 and 3\",

setflag traceflag off,

interpret printdate_if„wanted,

; Get all the possible message ids for n

169

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment abo¥e, and defer all other cases

meases

(case: msg_id(n) = 2

proof:

(setflag traceflag on,

comment \"Currently handling message id 2...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 2. . . .\",

setflag traceflag off)

case: msg_id(n) - 3
proof:

(setflag traceflag on,

comment \"Currently handling message id 3...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 3....\",

setflag traceflag off)

case: (msg_id(n) ~= 2 & msg_id(n) ~= 3)

proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except : 2 and 3 ... \",

setflag traceflag off,

defer)),

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defpro of st ep_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 4 and 5\",

170

setflag traceflag off,

interpret printdate.if.wanted,

; Get all the possible message ids for n

provebyinstant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 4

proof:

(setflag traceflag on,

comment \"Currently handling message id 4...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 4... .\",

setflag traceflag off)

case: msg_id(n) = 5

proof:

(setflag traceflag on,

comment \"Currently handling message id 5...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 5....\",

setflag traceflag off)

case: (msg_id(n) "= 4 & msg_id(n) ~= 5)

proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except : 4 and 5 ... \",

setflag traceflag off,

defer)),

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step.case.proof...\",

setflag traceflag off)")

171

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 6 and 7\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get all the possible message ids for n

provebyinstant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) - 6

proof:

(setflag traceflag on,

comment \"Currently handling message id 6...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 6....\",

setflag traceflag off)

case: msg_id(n) = 7

proof:

(setflag traceflag on,

comment \"Currently handling message id 7...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 7....\",

setflag traceflag off)

case: (msg_id(n) "= 6 k msg_id(n) ~= 7)
proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except : 6 and 7 ... \",

setflag traceflag off,

defer)),

interpret printdate_if_wanted,

172

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step.case.proof... \",

comment \"This version of step.case.proof handles message ids:

8, 9, 10, 11, and 12\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get all the possible message ids for n

provebyinstant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 8

proof:

(setflag traceflag on,

comment \"Currently handling message id 8...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 8....\",

setflag traceflag off)

case: msg_id(n) = 9

proof:

(setflag traceflag on,

comment \"Currently handling message id 9...\",

setflag traceflag off,

interpret every„case.proof,

setflag traceflag on,

comment \"Finished with message id 9....\",

setflag traceflag off)

case: msg_id(n) = 10

proof:

(setflag traceflag on,

comment \"Currently handling message id 10...\",

setflag traceflag off,

173

interpret e¥ery_case.proof,

setflag traceflag on,

comment \"Finished with message id 10....\",

setflag traceflag off)

case: asg_id(n) «11

proof:

(setflag traceflag on,

comment \"Currently handling message id 11...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 11....\",

setflag traceflag off)

case: msg_id(n) = 12

proof:

(setflag traceflag on,

comment \"Currently handling message id 12...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 12....\",

setflag traceflag off)

case: (msg_id(n) ~= 8 k msg_id(n) ~= 9 & msg_id(n) ~= 10
k msg_id(n) ~- 11 k msg_id(n) ~- 12)

proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except :

8, 9, 10, 11, and 12 ... \",

setflag traceflag off,

defer)),

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comaient \"Beginning interpretation of step_case.proof.. .\" ,

comment \"This version of step_case.proof handles message ids:

13, 14, 15, 16, 17, 18, 19, and 20\",

setflag traceflag off,

174

interpret printdate_if.wanted,

; Get all the possible message ids for n

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 13

proof:

(setflag traceflag on,

comment \"Currently handling message id 13...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 13....\",

setflag traceflag off)

case: msg_id(n) = 14

proof:

(setflag traceflag on,

comment \"Currently handling message id 14...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 14....\",

setflag traceflag off)

case: msg_id(n) = 15

proof:

(setflag traceflag on,

comment \"Currently handling message id 15...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 15....\",

setflag traceflag off)

case: msg_id(n) = 16

proof:

(setflag traceflag on,

comment \"Currently handling message id 16...\",

setflag traceflag off,

175

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with Message id 16.. •A".
setflag traceflag off)

case: msg_id(n) = 17

proof

(setflag traceflag on,

comment \"Currently handling message id 17...\",
setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 17.. A".
setflag traceflag off)

case: msg_id(n) « 18

proof

(setflag traceflag on,

comment \"Currently handling message id 18.. A",
setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 18.. A".
setflag traceflag off)

case: i isg_id(n) = 19

proof

(setflag traceflag on,

comment \"Currently handling message id 19..A",
setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 19.. A".
setflag traceflag off)

case: i ise id(n) = 20

proof:

(setflag traceflag on,

comment \"Currently handling message id 20.. A"»

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 20.... \",

setflag traceflag off)

176

case: (msg_id(n) ~= 13 & msg_id(n) "= 14 & msg_id(n) ~= 15
ft msg_id(n) ~= 16 ft msg_id(n) ~= 17 ft msg_id(n) ~= 18
ft msg_id(n) "= 19 ft msg_id(n) "= 20)

proof:
(setflag traceflag on,

comment \"Def erring proofs for all ids except :

13, 14, 15, 16, 17, 18, 19, and 20... \",

setflag traceflag off,

defer)),

interpret printdate_if.wanted,

close,

setflag traceflag on,

comment \"Finished with, interpretation of step.case.proof...\" ,

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids:

21, 22, 23, 24, 25, and 26\",

setflag traceflag off,

interpret printdate_if.wanted,

; Get the possible message identifiers for n

provebyinstant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 21

proof:

(setflag traceflag on,

comment \"Currently handling message id 21...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 21....\",

setflag traceflag off)

case: msg_id(n) = 22

proof:

(setflag traceflag on,

177

comment \"Currently handling Message id 22. •\".
setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 22....\"

setflag traceflag off)

case: msg_id(n) « 23

proof:

(setflag traceflag on,

comment \"Currently handling message id 23. •\",
setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 23...,\"

setflag traceflag off)

case: msg_id(n) = 24

proof:

(setflag traceflag on,

comment \"Currently handling message id 24. •\".
setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 24... .\"

setflag traceflag off)

case: mse_id(n) ■= 25

proof:

(setflag traceflag on,

comment \"Currently handling message id 25...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 25....\",

setflag traceflag off)

case: msg_id(n) = 26

proof:

(setflag traceflag on,

comment \"Currently handling message id 26...\",

setflag traceflag off,

int erpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 26....\",

178

setflag traceflag off)

case: (msg_id(n) ~= 21 ft msg_id(n) ~= 22 ft msg_id(n) "= 23
ft msg_id(n) ~= 24 ft msg_id(n) "= 25 ft msg_id(n) ~= 26)

proof:
(setflag traceflag on,

comment \"Deferring proofs for all ids except :

21, 22, 23, 24, 25 ,and 26... \",

setflag traceflag off,

defer)) ,

interpret printdate_if.wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof... \",

comment \"This version of step_case.proof handles message ids:

27, 28, and 29\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get all the possible message ids for n

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (r=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 27

proof:

(setflag traceflag on,

comment \"Currently handling message id 27...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 27.. . .\",

setflag traceflag off)

case: msg_id(n) = 28

proof:

(setflag traceflag on,

179

comment \"Currently handling message id 28...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 28....\",

setflag traceflag off)

case: msg_id(n) = 29

proof:

(setflag traceflag on,

comment \"Currently handling message id 29...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 29....\",

setflag traceflag off)

case: (msg_id(n) ~= 27 & msg_id(n) ~= 28 & msg_id(n) ~= 29)
proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except :

27, 28, and 29 ... \",

setflag traceflag off,

defer)),

interpret printdate_if.wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 50\"

setflag traceflag off,

interpret printdate_if_wanted,

; Get the possible message identifiers for n

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

180

meases

(case: msg_id(n) = 50

proof:

(setflag traceflag on,

comment \"Currently handling message id 50...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 50....\",

setflag traceflag off)

case: msg_id(n) ~= 50

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 50 \",

setflag traceflag off,

defer)),

interpret printdate_if.wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof..,\",
setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 51 and 52\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get all the possible message ids for n

provebyinstant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 51

proof:

(setflag traceflag on,

comment \"Currently handling message id 51...\",

setflag traceflag off,

interpret every_case.proof,

181

setflag traceflag on,

comment \"Finished with message id 51....\",

setflag traceflag off)

case: msg_id(n) * 52

proof:

(setflag traceflag on,

comment \"Currently handling message id 52...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 52....\",

setflag traceflag off)

case: (msg_id(n) ~- 51 & msg_id(n) "= 52)

proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except : 51 and 52... \",

setflag traceflag off,

defer)),

interpret printdate_if.wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

; N.B: We were unable to complete cases 53, 54, 55, and 56 due to

; problems with running out of storage, so there are no versions of

; step_case.proof which handle these cases.

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 57\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get the possible message identifiers for n

provebyinstantiat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

182

(case: msg_id(n) = 57

proof:

(setflag traceflag on,

comment \"Currently handling message id 57...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 57....\",

setflag traceflag off)

case: msg_id(n) "= 57

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 57 \",

setflag traceflag off,

defer)),

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 58\",
setflag traceflag off,

interpret printdate_if„wanted,

; Get the possible message identifiers for n

provebyinstantiation

using: allowed_message_ids
subst itut ions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 58

proof:

(setflag traceflag on,

comment \"Currently handling message id 58...\",

setflag traceflag off,

interpret every_case.proof,

183

setflag traceflag on,

comment \"Finished with Message id 58....\",

setflag traceflag off)

case: msg_id(n) ~= 58

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 58 \",

setflag traceflag off,

defer)),

interpret printdate_if„wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 59\",

setflag traceflag off,

interpret printdate_if„wanted,

; Get the possible message identifiers for n

provebyinstant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 59

proof:

(setflag traceflag on,

comment \"Currently handling message id 59. . .\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 59....\",

setflag traceflag off)

case: msg_id(n) ~== 59

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 59 \",

setflag traceflag off,

defer)),

184

interpret printdate_if.wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step.case.proof handles message ids: 60\"

setflag traceflag off,

interpret printdate_if_wanted,

; Get the possible message identifiers for n

provebyinstantiation

using: allowed_message_ids

substitutions: (x=n) ,

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 60

proof:

(setflag traceflag on,

comment \"Currently handling message id 60...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 60....\",

setflag traceflag off)

case: msg_id(n) "= 60

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 60 \",

setflag traceflag off,

defer)),

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

185

comment \"Beginning interpretation of step_case.proof.. .\" ,

comment \"This version of step_case.proof handles message ids: 61 and 62\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get all the possible message ids for n

provebyinstantiation

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 61

proof:

(setflag traceflag on,

comment \"Currently handling message id 61...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 61....\",

setflag traceflag off)

case: msg_id(n) = 62

proof:

(setflag traceflag on,

comment \"Currently handling message id 62...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 62....\",

setflag traceflag off)

case: (msg_id(n) ~= 61 & msg_id(n) ~= 62)

proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except : 61 and 62... \",

setflag traceflag off,

defer)),

interpret printdate_if.wanted,

close,

setflag traceflag on,

186

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof... \",

comment \"This version of step_case.proof handles message ids: 63\",

setflag traceflag off,

interpret printdate_if„wanted,

; Get the possible message identifiers for n

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 63

proof:

(setflag traceflag on,

comment \"Currently handling message id 63...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 63....\",

setflag traceflag off)

case: msg_id(n) ~= 63

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 63 \",

setflag traceflag off,

defer)),

interpret printdate_if„wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids:

64, 65, and 66\",

setflag traceflag off,

187

interpret printdate_if_wanted,

; Get all the possible message ids for n

provebyinstantiation

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 64

proof:

(setflag traceflag on,

comment \"Currently handling message id 64...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 64....\",

setflag traceflag off)

case: msg_id(n) » 65

proof:

(setflag traceflag on,

comment \"Currently handling message id 65...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 65....\",

setflag traceflag off)

case: msg_id(n) = 66

proof:

(setflag traceflag on,

comment \"Currently handling message id 66...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 66....\",

setflag traceflag off)

case: (msg_id(n) ~= 64 & msg_id(n) "= 65 k msg_id(n) ~= 66)
proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except :

64, 65, and 66 ... \",

setflag traceflag off,

188

defer)),

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof... \",

comment \"This version of step_case.proof handles message ids: 67\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get the possible message identifiers for n

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

(case: msg_id(n) = 67

proof:

(setflag traceflag on,

comment \"Currently handling message id 67...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 67....\",

setflag traceflag off)

case: msg_id(n) "= 67

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 67 \"

setflag traceflag off,

defer)),

interpret printdate.if.wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\" ,

setflag traceflag off)")

189

(defproof step.case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids:

80, 81, 82, and 83\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get all the possible message ids for n

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 80

proof:

(setflag traceflag on,

comment \"Currently handling message id 80...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 80....\",

setflag traceflag off)

case: msg_id(n) = 81

proof:

(setflag traceflag on,

comment \"Currently handling message id 81...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 81....\",

setflag traceflag off)

case: msg_id(n) = 82

proof:

(setflag traceflag on,

comment \"Currently handling message id 82...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 82....\",

190

setflag traceflag off)

case: msg_id(n) = 83

proof:

(setflag traceflag on,

comment \"Currently handling message id 83...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 83 \",

setflag traceflag off)

case: (msg_id(n) ~= 80 & msg_id(n) "= 81 & msg_id(n) "= 82

& msg_id(n) "= 83)
proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except :

80, 81, 82, and 83 ... \",

setflag traceflag off,

defer)),

interpret printdate_if.wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids:

84, 85, 86, and 87\",

setflag traceflag off,

interpret printdate_if„wanted,

; Get all the possible message ids for n

provebyinstant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

(case: msg_id(n) = 84

proof:

(setflag traceflag on,

191

comment \"Currently handling message id 84...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 84....\",

setflag traceflag off)

case: msg_id(n) = 85

proof:

(setflag traceflag on,

comment \"Currently handling message id 85...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 85.. . .\",

setflag traceflag off)

case: msg_id(n) = 86

proof:

(setflag traceflag on,

comment \"Currently handling message id 86...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 86....\",

setflag traceflag off)

case: msg_id(n) s 87

proof:

(setflag traceflag on,

comment \"Currently handling message id 87...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 87. . . .\",

setflag traceflag off)

case: (msg_id(n) ~= 84 k msg_id(n) "= 85 & msg_id(n) ~= 86

& msg_id(n) "» 87)
proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except :

84, 85, 86, and 87 ... \",

setflag traceflag off,

defer)),

192

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof... \".

setflag traceflag off)")

(defproof step.case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof... \",

comment \"This version of step_case.proof handles message ids:

88, 89, and 90\",

setflag traceflag off,

interpret printdate_if_wanted,

; Get all the possible message ids for n

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 88

proof:

(setflag traceflag on,

comment \"Currently handling message id 88...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 88....\",

setflag traceflag off)

case: msg_id(n) = 89

proof:

(setflag traceflag on,

comment \"Currently handling message id 89...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 89....\",

setflag traceflag off)

case: msg_id(n) = 90

proof:

(setflag traceflag on,

193

comment \"Currently handling message id 90...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 90. . . .\",

setflag traceflag off)

case: (msg_id(n) ~= 88 & msg_id(n) "= 89 k msg_id(n) ~= 90)

proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except :

88, 89, and 90 ... \",

setflag traceflag off,

defer)),

interpret printdate_if_¥anted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step_case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof...\",

comment \"This version of step_case.proof handles message ids: 9l\",

setflag traceflag off,

interpret printdate_if„wanted,

; Get the possible message identifiers for n

provebyinstantiation

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 91

proof:

(setflag traceflag on,

comment \"Currently handling message id 91...\",

setflag traceflag off,

interpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 91....\",

194

setflag traceflag off)

case: msg_id(n) ~= 91

proof:

(setflag traceflag on,

comment \"Deferring proofs for all message ids except : 91 \",

setflag traceflag off,

defer)),

interpret printdate_if„wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",

setflag traceflag off)")

(defproof step.case.proof

"(setflag traceflag on,

comment \"Beginning interpretation of step_case.proof... \",

comment \"This version of step_case.proof handles message ids: 92 and 93\"

setflag traceflag off,

interpret printdate_if.wanted,

; Get all the possible message ids for n

provebyinst ant iat ion

using: allowed_message_ids

substitutions: (x=n),

; Run the cases for the message identifiers mentioned in the

; comment above, and defer all other cases

meases

(case: msg_id(n) = 92

proof:

(setflag traceflag on,

comment \"Currently handling message id 92...\",

setflag traceflag off,

int erpret every_case.proof,

setflag traceflag on,

comment \"Finished with message id 92....\",

setflag traceflag off)

case: msg_id(n) = 93

proof:

(setflag traceflag on,

comment \"Currently handling message id 93.. .\",

setflag traceflag off,

interpret every_case.proof,

195

setflag traceflag on,

comment \"Finished with message id 93....\",

setflag traceflag off)

case: (msg_id(n) ~- 92 & msg_id(n) ~- 93)

proof:

(setflag traceflag on,

comment \"Deferring proofs for all ids except : 92 and 93... \",

setflag traceflag off,

defer)) ,

interpret printdate_if_wanted,

close,

setflag traceflag on,

comment \"Finished with interpretation of step_case.proof...\",
setflag traceflag off)")

9.2 The main proof

; -*- Syntax: Common-lisp; Package: USER; Mode: LISP -*-""/.

; File name : /u/versys/msx/infinite_sequence_data_structure_messages.proof

;;; This file contains the main proof and the proof prelude.

;; Proof prelude does various tasks that are needed before the proof of

;; infinite_sequence_data_structure_messages.sd begins.

(defproof prelude

"(setflag traceflag on,

comment \ "Entering prelude... \ ",

setflag traceflag off,

; load the new adatr fixes...

eval (load_adatr_fix),

; Load the lisp file with the new proof commands

eval (load \ "/u/versys/msx/new_proof_commands \ "),

; Translate the program.

adatr \ "/u/versys/msx/msx_program_final.version.a \ ",

; Read in the file containing definitions, lemmas, etc. needed in

; the main proof,

read \ "/u/versys/msx/infinite_sequence_data_structure„messages.defs \ ",

setflag traceflag on,

comment \ "Exiting prelude... \ ",

196

setflag traceflag off)")

;; Proof main.proof is the top-level proof of the correctness assertion for

;;the program.

(defproof main.proof

"(interpret prelude,

setflag autoclose off,

prove infinite_sequence_data_structure_messages.sd

proof:

(setflag traceflag on,

comment \ "Starting main proof... \ ",

setflag traceflag off,

let timing = false,

interpret printdate_if_wanted,

;Since the postcondition has the form i ge 1 —> ..., we

;immediately get rid of the trivial case ~(x ge 1).

cases ~(x ge 1)

then proof:

(setflag traceflag on,

comment \ "Trivial case... \ ",

setflag traceflag off,

close)

else proof:

(setflag traceflag on,

comment \ "Starting non-trivial case... \ ",

setflag traceflag off,

interpret printdate_if„wanted,

; Go to the beginning of the main loop in the

; program, handling the constant arrays

interpret fix_constant_arrays,

interpret go_to_beginning_of_loop,

interpret do_lets,

comment \ "Starting induction... \ ",

induct on: n
from: 1
to: x + 1
invariants:

(

;Needed for covering information

pcovering(.msx_program_final_version,old_universe),

197

;Variable values

.build_in_progress = false,

.cmd_count = 0,

.lost_cmd = false,

.app_msg_counter = 0,

;Queue variables and bounds

.q_head

= 1 + .q_tail mod .app_msg_q_size,

.q_head ge origin(app_msg_q),

.q_head

le (origin(app_»sg_q) +

range(app_msg_q)) - 1,

.q_tail mod .app_msg_q_size + 1

ge origin(app_msg_q),

.q_tail mod .app_msg_q_size + 1

le (origin(app_msg_q) +

range(app_msg_q)) - 1,

;State delta at beginning of loop

formula(loopsd),

;Input/output counters are where they should be

msg_input_begins_at(n) = .stdin \\ ctr,

Msg_output_begins_at(n) - .stdout \\ ctr,

;Output condition is true after execution of loop when

;n - x. This is stated in this way due to efficiency

;considerations (i.e., the more straightforward way

;introduces many new places - see report for more details).

n = x + 1 —> formulaCoutput„condition))

comodlist:

(diff

(old_universe,

union(

cmd.buf,cmd_status_buf,cmd_status,

lost_cmd,cmd_count,fifo_not_empty_count,

io_status_word,app_msgs.cmd_count,

app.msgs.cmd_bstatus_buf,

app_msgs.lost_cmd,

app.msgs.fifo_not_empty_count,

rej ected_cmd_comsg,app_msg_q,

build_in_progress,scmd_with_par,

word_cntr,cmds_rcmds_for_app_msg,

num_words_f or_app_msg,c ont ail,q_head,

app_msg_counter,cmd_last_app_msg,

saved_sat_subsys_config,load_msg,cmd_total,

app_msgs.io_status_word,stdout \\ ctr,

198

msx_program_final_version \\ pc,
msx_program_final_version,stdin \\ ctr.stdout)))

modlist:
(cmd_buf,cmd_status_buf,cmd_status,lost_cmd,

cmd_count,fifo_not_empty_count,

io_status.word,app_msgs.cmd_count,

app_msgs.cmd.buf,app_msgs.cmd_status_buf,

app_msgs.lost_cmd,

app_msgs.fifo_not_empty_count,

rej ected_cmd_count,app_msg,app_msg_q,

build_in_progress,starting_cmd_with_par,

word_cntr, cmds_rcvd ,num_caids_f or_app_msg,

ntun_Hords_f or_app_msg, cont_cmd, q_tail ,q_head,

app_msg_counter,cmd_last_app_msg,

saved_sat_subsys_config,load_msg,cmd_total,

app_msgs.io_status_word,stdout \\ ctr,

msx_program_final_version \\ pc,

msx_program_final_version,stdin \\ ctr.stdout,

diff(all,old_universe))

base proof: interpret base_case.proof

step proof: interpret step_case.proof,

interpret printdate_if_wanted,

setflag traceflag on,

comment \ "Finishing off induction .. \ ",

apply finale.sd,

setflag traceflag off,

close),

interpret printdate_if„wanted,

setflag traceflag on,

comment \ "Finishing off main proof... \ ",

setflag traceflag off,

close),

setflag traceflag on,
comment \ "Main proof completed \ ",
interpret printdate_if.wanted)")

199

References

[1] T. K. Menas, "A Proposal for the Verification in SDVS of a Portion of the MSX Tracking
Processor Software," Technical Report ATR-92(2778)-7, The Aerospace Corporation,
September 1992.

[2] G. Heyler, S. Hutton, and R. L. Waddell, "Midcourse Space Experiment (MSX) Track-
ing Processor Software Detailed Design Document," Technical Report S1A-084-91,
JHU/APL, 1991.

[3] R. L. Waddell and S. Hutton, "Midcourse Space Experiment (MSX) Tracking Processor
Software Functional Design," Technical Report S1A-031-90, JHU/APL, 1990.

[4] S. Hutton, "Tracking Processor / Command Processor Interface Design Specification
(Version 2)," Technical Report S1A-136-91, JHU/APL, 1991.

[5] U. S. Department of Defense, Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A), 22 January 1983.

[6] T. K. Menas, J. M. Bouler, J. E. Doner, I. F. Filippenko, B. H. Levy, and L. G. Marcus,
"Overview of the MSX Verification Experiment using SDVS," Technical Report ATR-
93(3778)-6, The Aerospace Corporation, September 1993.

201

