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Foreword

Contract DAAK11-78-C-0003 has consisted of three Tasks
which have successively contributed to the formulation,
development and documentation of an axisymmetric two dimen-
sional model of flamespreading in granular charges of gun
propellant. The findings of the first two tasks have been
previously documented in interim reports.

The earlier findings have been consolidated herein so
that the interim reports may now be regarded as obsolete.

Technical cognizance for the subject contract has been
provided by Mr. A.W. Horst, Jr., U.S. Army Ballistic Research

Laboratory, DRDAR-BLP.
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Summary

We describe a theoretical model for the digital simulation of flame-
spreading and pressure wave propagation in axisymmetric two dimensional pro-
pelling charges. Because longitudinal pressure waves are known to be strong-
ly influenced by the distribution of ullage around the charge, we describe
an approach which recognizes explicitly all internal boundaries defined by
jumps in porosity. Likewise, the formulation of the analysis of the internal
boundaries enables the explicit recognition of the influence on flamespread-
ing of bag material, liners and additives.

An important milestone in respect to the numerical implementation of
this model is the development of a technique of numerical solution for a
geometrically complex region of two dimensional two phase flow. We present
a solution technique based on an equipotential map of the physical domain
onto a square and an update of the state variables by an explicit two step
marching technique. A characteristic formulation of the equations is used
at the boundaries.

Stable solutions are presented for three-problems based on nominal data.
All three problems recognize the hemispherical shape of the breech closure
plug and the taper of the tube. The third problem considers the projectile
to have a boattail which intrudes into the propelling charge.
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1.0 INTRODUCTION

This report presents details of the formulation and partial development
of a model of the macroscopic, two dimensional, two phase, unsteady, react-
ing flow occurring in a gun.

The objectives of our enquiry and the scope of the present study are
described in section 1.1. In section 1.2 we provide some background infor-
mation which coordinates the present study with previous work. Finally, in
section 1.3 of this introduction, we summarize our approach and present

findings.

1.1 Objectives and Scope of Present Study

We describe first of all, the goals of our research as a whole. Al-
though the present document constitutes a final contract report, it is, in
a sense, an interim report. For this reason we shall try to clarify, as
much as possible, the extent to which the scope of the present study permits
us to reach our overall goals and to identify those aspects of the model
which are deferred for future study.

In the general area of interior ballistic phenomena in medium caliber
guns we may identify three topics of importance to the charge designer.
These are:
(a) The central problem of classical interior ballistics1; namely, to ob-
tain a desired muzzle velocity within a specified pressure limitation. Of
course, the designer must also take into account problems of systems com-
patibility and other constraints, but we are concerned here only with the
problems which have some hydrodynamic content.

(b) The minimization of tube erosion and of muzzle blast.
(c) The elimination of ignition anomalies which appear, in their mildest
form, as longitudinal pressure waves and, in their worst form, as cata-
strophic overpressures of the gun.

It is this last problem which is addressed by our enquiry as a whole.
Of particular interest are the important roles played by the detailed dis-
tribution of ullage, the igniter discharge characteristics and the flow in-
hibition due to the presence of bag materials together with the liners and
additives used to control erosion and wear.

The scope of the present study is as follows. We provide the details
of a model of the macroscopic, two dimensional, two phase unsteady reacting
flow in a gun. The discussion includes details of the governing equations
and the method of solution. Numerical solutions are generated for the prob-
lem of two dimensional convective flamespreading in a packed bed of granular
propellant in an ullage free, but geometrically complex, container with
stationary impermeable walls.

In its present state of numerical implementation, the model is there-
fore useful for the investigation of flamespreading in ullage-free case am-
munition in which the projectile intrusion due to the boattail or afterbody

Cotne,J "Theory of the Interior Ba~&ti! oA Guns"
New Yort, John Wtey and Son, Inc. 1950
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may be significant. However, the application of the model to bag charges,
for which ullage is present, and to the sequence of events following the
start of the motion of the projectile, is the subject of future work.

1.2 Background

The ideal propelling charge is thought to be one in which ignition oc-
curs simultaneously at all points so that all exposed surfaces are burning
uniformly from the initial instant. A limiting form of this ideal involves
the instantaneous combustion of the entire charge. From a theoretical point
of view, the hydrodynamical model of such an interior ballistic cycle in-
volves the study of a single phase substance expanding from a quiescent but
energetic initial state. Such was the problem considered by Lagrange and
later, in greater detail, by Pidduck and Kent1 .

From a practical point of view, however, a charge which burns instan-
taneously is one which subjects the tube to a certain level of stress while
propelling the projectile at much lower average value. Accordingly, charges
are designed to release their energy gradually, producing gas at a rate which
compensates for the motion of the projectile. In this fashion system "cost"
which is related to the maximum stress is better aligned with system "effec-
tiveness" which is related to the average stress. An obvious theoretical con-
sequence of this procedure is that a properly posed model of interior ballis-
tic phenomena must now consider the coupled motion of both the gas and solid
phases. By treating the motion as that of a well stirred mixture subjected
to an independently determined pressure gradient to represent the response to
projectile motion, one may establish a lumped parameter model of interior

2ballistic phenomena

In fact, the mixture is far from well stirred except possibly quite late
in the interior ballistic cycle as burnout is approached. Since many modern
charges produce burning almost throughout the entire propulsion event, the
assumption of well stirredness is rather limiting.

In order to understand the lack of equilibrium between the phases we re-
fer to figures 1.2.1 and 1.2.2 which respectively illustrate a typical cased
ammunition charge and a typical bag charge. It is apparent that inhomogeneity
exists in the combustion chamber from the initial instant due to the presence
of spaces around the charge. These spaces are referred to as ullage. Then,
when the igniter begins to function, further inhomogeneities arise as the
charge is not ignited uniformly. Rather, a spreading process occurs which
involves a front referred to as a convective flame. Hot pressurized gas pen-
etrates the charge, an aggregate of regularly formed grains. The penetration
is accompanied by intense convective heat transfer which ignites the charge,
and also by momentum transfer which accelerates the charge. Because of the
impermeability of the charge, the pressures at two stations in the chamber
may differ by tens of MPa during flamespreading.

It should be noted that the ignition system depends inherently on a prin-
ciple of inhomogeneous venting since the heat transfer rates associated with

2. BaeL,P.G. and Fran e,J.M. "The SimuXation o4 Inteino Baltcs

Perormance o6 Guns by Digital ComputeJL P ogram" BRL Report 1183 1962

AD 299980
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linear conduction and radiation are several orders of magnitude less than

those associated with convection. Yet, the pressure gradients associated

with inhomogeneous venting can produce pronounced wave phenomena which are

superimposed upon the ideal pressurization history. Significantly, the

existence of longitudinal pressure waves has been correlated in many cases

with weapon malfunction due to overpressurization3 . Therefore, the ignition
train is frequently designed so that, as shown in figures 1.2.1 and 1.2.2,
venting occurs as close to simultaneously as possible over the length of the
center line. The inhomogeneity is therefore concentrated in the radial di-
rection and the tendency to produce longitudinal waves is minimized.

The importance of igniter location and of the distribution of ullage has

been known since the time of Kent 4 and of Hedden & Nance 5 . Kent showed, in
the context of bag charges, that ullage around the charge was most influen-
tial in reducing the overall longitudinal pressure gradient during flame-
spreading. This is easy to understand since the ullage around the charge
provides a low impedance path for the flow of gas from the high pressure sec-
tions to the low pressure sections. Hedden and Nance demonstrated the strong

influence exerted by longitudinal ullage on wave amplitude. More recently,
several papers have appeared in which the dependence of the pressure wave
amplitude on primcr/propellant interface 6'7  charge permeability 8'9 and
charge configuration or ullage distributionS,1 0 has been explored.

." Budka, A.J. and Knapton, J.D. "PLessure Wave Generation in Gun Systems -
A Swvey" BRL Memor'andum ReporLt 2567, AD B008893L 1975

Ke.nt, R.H. "Study o4 Ignition o6 155-mm Gun"

BRL Report 22, AD 494703 1935

5. Hedden, S.E. and Nance, G.A. "An Experimentat Study o4 Presswe

Waves in Gun Chamberns" NPG Report 1534 1957

6. Horst, A.W., JL. and Smit, T.C. "The Influence o6 PropetUng Charge
Configuration on Gun Environment Prewte - Time Anomaliels"
Proc. 12th Jannaf Combustion Meeting 1975

7. May, I.W., Clarke, E.V. and Hassmann, H. "A Case Hilstory: Gun
Ignition Related Problems and Solutioz for the XM-198 HowitzLe"
BRL Intu}Km Memorandum Report 150 1973

8. Rocchio, J., Ruth, C. and May, 1. "Grain Geometry Effects on
Wave Dynamics in Large Caliber Guns"
Ptoc. 13th Jannaf Combustion Meeting 1976

9 orHst, A.W., Smth, T.C. and Mitchell., S.E. "Key Design

Paamerte in Contrtoling Gun - Environment PrasurIe Wave
Phenomena - Theory versus Experiment"
Proc. 13th Jannaf Combustion Meeting 1976

.Hot, A.W., Jr. and Gough, P.S. "Influence o4 Popetant

Packaging on Perf.iormance o6 Navy Case Gun Ammunition"
J. Balti ci v.1 N.3 1977

-4-



More or less concurrently with these experimental studies, the modeling
of interior ballistic phenomena according to an unsteady, two-phase, contin-

uum approach has been developed to the point of being able, in certain cases,
to predict the structure and amplitude of the longitudinal pressure waves.
While relatively limited flamespreading models were advanced by several
authors11 -1 4 , the models of Gough14 -i 8 and of Fisher1 9-2 2 have reflected in-
creasing attention to the detailed configuration of the charge.

The NOVA code developed by Gough 14 - 18 effects a quasi-one-dimensional
representation of the charge with precise attention to the axial distribution
of ullage. This code has shown good correlation with observatiog of case
ammunition 9 , 0,16 as well as with certain simpler configurations . The
CALSPAN code developed by Fisher1 9 - 2 2 goes beyond the NOVA code in terms of
phenomenological completeness. A two dimensional capacity exists, although
the code is customarily run as a quasi-two-dimensional model in which one
dimensional flow is considered in three concentric ducts corresponding to the
center core igniter, the main charge and the external ullage. In spite of the
greater completeness of modeling of the configuration of the bag charge, in

Est, J.L. and McCluwe, D.R. "Projectile Motion Predicted by a Soeid/Gcs
Flow Interiot Balis6tic Model" Ptoc. 10th Jannaf Combwtion Meeting 1973

12."Kriu, H., Van Tasel, W.F., Rajan, S. and Veuhaw, J. "Mode o6 Flame
Spreading and Combu~tion Through Packed Bedt of Propellant Grai,5"
Tech. Rept. AAE74-1, Univer/sity o6 Illinois at Urbana-Champaign 1974

13 Kuo, K.K., Koo, J.H., Davis, T.R. and Coata , G.R. "Ttansient Com-
bustion in Mobile, Gacu-Permeable Propellat6"
Acta Astron. v.3, No.7-8 pp.574-591 1976

1 4 "Gough, P.S. and Zwart6, F.J. "Theoretical Model fot Ignition o6

Gun Propettant" Final Report, Paxt II, Contract N00174-72-C-0223 1972
15"Gough, P.S. "Fundamental Investigation o6 the Interior Batli~tics

o6 Gu" " Final Report, Contrtact N00174-73-C-0501 1974
1 6 "Gough, P.S. "The Flow o4 a Comprtessib.e Ga Thrwugh au AggrLegate of

Mobile, Reacting Patites" Ph.D. The/sis McGilL University 1974
1 7 "Gough, P.S. "Computer Modelling o4 InteiorL Balistics"

Final Repoxt Contract N00174-75-C-0131 1975
18.Gough, P.S. "Numerical Analysi, of a Two-Phase Flow with Explicit

Internal Boundarie's" Final Report Contract N00174-75-C-0259 1977
1 9 "FiheL, E.B. and Gtaves, K.W. "Mathematical Mode o6 Double Bale

Propelant Ignition and Combustion in the 81mm Mortat"
CAL Repot No. DG-3029-D-1 1972

20.Fishe, E.B. and Tippe, A.P. "Mathematical Model o6 Center Cote

Ignition in the 175mm Gun" Calspan Report No. VQ-5163-D-2 1974
2 1 .Fi~herL, E.B. "Propelant Ignition and Combultion in the 105mm

Howitzer" CaX pan Repot No. VQ-5524-D-1 1975
22"Fihe, E.B. and Thippe, A.P. "Development o4 a Basis for Acceptance

of Continuously Produced Propellant" Caspan Report No. VQ-5163-D-1 1973
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the CALSPAN code, the NOVA code has been shown to agree better with a stand-
ard 155mm center core configuration2 3. However, neither code has successfully
been able to predict the anomalous behaviour of a high zone base ignited 155mm
charge except by ad hoc manipulation of the data base 24 or by assuming grain
fracture due to impact of the charge on the base of the projectile25

.

In order to determine the extent to which the quasi-one-dimensional as-
sumption fundamental to the NOVA code might limit its predictive capacity
with respect to bag charges, we recently performed a limited theoretical

study 26 . By modifying the code to accept coupled one dimensional models of
the base ignited bag charge and the external ullage we found that a completely
different flamespreading path could be produced from that predicted by the one
dimensional code in its usual form. Primer gas, produced in the breech, can
initiate flamespreading in the rear portion of the charge and, by flowing
around the bag, initiate a flame at the front so that the charge is ignited
by two flame sheets.

Thus it was concluded that predictions of flamespreading in bag charges
may be seriously in error unless careful attention is paid to the precise
distribution of all ullage. It was also noted that, depending on its permea-
bility, the bag material may play an extremely influential role in respect to
flamespreading. Naturally, the history of the longitudinal pressure wave can-
not be predicted unless the flamespreading path is accurately captured.

We may summarize the situation thus. The behaviour and amplitude of
longitudinal pressure waves are of interest because of their correlation
with catastrophic charge malfunction and also because they are believed to be

27correlated with performance variability 2 . Factors known to influence the
wave structure are the igniter venting characteristics, the permeability and
progressivity of the charge and the detailed distribution of a,:ial and radial
ullage. It is also thought that the bag material and liners may be influen-
tial. One dimensional modeling has been quite successful in respect to the
performance of case charges but is demonstrably deficient in respect to bag
charges.

Accordingly, the prediction of pressure w, ave structure in bag charges
requires at least a quasi-two-dimensional approach with careful attention
given to the ullage distribution and the influence of the bag and liner. The

L3.

Nelson, C. "Comparison o6 Predictiovis o6 Th'uee Two-Phase Fow Codes"
BRL MemorwLandwn Repott 2729, AD 037348 1977

24 Hot, A., Nel&son, C. and May, 1. "Flame Sprzeading in GLanuar Pro-

pe.lant Beds: A Diagnostic Comparilson o6 Theor y to Experiment"
PrLoc. AIAA/SAE 13th Joint PrLopuzion Confveece 1977
Hot, A.W., May, I.W. and Clardke, E.V.,Jr. "The Mizsing Link Be-
tween Pes/s/e Waves and BLeechbtows"
Proc. 14ta Jannaf Combttion Meeting 1977

26"Gough, P.S. "Theor eticat Study o4 Two-Phole Flow Associated with
GLanutaL Bag Charge" Finat Reportt, Conract DAAKI-77-C-0028 1978

27"Clarke, E.V.,Jr. and May, I.W. "Subtle Efect, o6 Low-Amptude
Prtes/surLe Wave Dynamin on the Ba itic Perotmance of Guzn1"
Proc. 11th Jannaf Combus~tion Meeting 1974

-6-



CALSPAN model does admit a quasi-two-dimensional formulation. However, the
radial expansion of the bed due to the center core igniter blast is not con-
sidered and the influence of the bag is neglected. We regard these as seL -
ous physical omissions. In addition, the numerical analysis contained in the
CALSPAN code is based on a highly diffusive, and therefore inaccurate scheme.
Finally, the axial distribution of ullage is represented implicitly and a
finite difference scheme is applied in spite of the presence of discontinu-
ities in the porosity. This can be expected to lead to further inaccuracy.

Our purpose is to produce an axisymmetric two dimensional code which
corrects these deficiencies and permits a significant advance in our ability
to predict the pressure wave amplitudes associated with bag charges. It
should be clearly understood, however, that while our investigation into
multi dimensional effects will be a major undertaking, it will not close all
gaps between theory and experiment. There is strong evidence that many
malfunctions 25 '28 may involve grain fracture, a process which has not yet
been seriously addressed by anyone in the gun modeling community.

The present report addresses the formulation of the model, its govern-
ing equations and the method of solution. Furthermore, we encode the model
to the point of enabling the determination of numerical solutions for a
single two phase flow region of complex two dimensional shape.

1.3 Summary of Approach and Findings

We will first summarize both our overall approach and the findings of
the present study. Subsequently, we will provide a more detailed discussion
of the factors which have influenced the approach chosen here as well as some
of the implications and limitations of our approach.

Our analytical approach may be summarized as follows. We divide the com-
bustion chamber into disjoint regions in each of which all the flow variables
may be regarded as continuously differentiable. In particular, one such re-
gion is allocated for each charge increment and the mixture boundaries always
coincide with the region boundaries. Accordingly, a precise representation
is made of the ullage. The flow inhibition associated with the bag material
and its various liners may be embedded accurately as boundary conditions link-
ing the flow in one region with that in its neighbors. For flexibility and
economy we consider that the flow in a given region may be any one of two
dimensional two phase, two dimensional single phase, quasi-one-dimensional two
phase, quasi-one-dimensional single phase or lumped parameter single phase.

The governing equations for each of these types of regions consist of
balance equations, which have been previously derived1 6,26, and constitutive
laws for which it is necessary, in some cases, to extrapolate from previous
one dimensional laws. The approach used to generate numerical solutions is
essentially a marching technique based on an explicit two step scheme. All
physical regions are mapped, in a time dependent manner, onto a regular com-
putational figure, either a unit line or a unit square.

28. Olenick, P.J.Jr., "Investigation o6 the 76m/62 Catliber Mark 75 Gun

Mount Malfunction" NSWC/DL TR-3144 1975
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The numerical approach is essentially a logical extension of that which

we have previously implemented successfully for one dimensional problems1 8 .

An obvious milestone in the path of the desired extension is the demonstra-

tion of a stable integration scheme for a single region of two dimensional
two phase flow in a closed chamber. Moreover, the demonstrated scheme must
be clearly capable of interfacing in a natural manner with the additional
requirements imposed by the considerations of multiple regions, including
ullage, separated by explicitly represented boundaries.

The specific approach that we take to this particular milestone is as
follows. We accomodate the geometrical complexity, imposed by the actual
shape of a typical gun propellant chamber and an intruding projectile, by
mapping the physical domain onto a square. An equipotential map of the type

used by Thompson et a1 2 9 is adopted for this purpose. The solution is up-
dated at interior mesh points by means of the MacCormack scheme 30 modified
according to some recommendations of Moretti 31 . The boundary values are up-
dated using Kentzer's 32 approach to the method of characteristics, also modi-
fied in accordance with some recommendations of Moretti.

We present stable solutions for three problems based on nominal data.
The first two differ only in respect to the representation of the granular
stress term, it being reversible in the first and irreversible in the second.
The container is tahken to have a curved breech closure similar to the mushroom
in a howitzer. The tube is tapered and the base of the projectile is flat.
Subsequently, in the third problem we allow the projectile to have a boattail
which intrudes into the two phase flow producing as complicated a geometry as

we expect to encounter, for any single region of continuous two phase flow, in
future applications to howitzer charges.

The analytical basis for the model as a whole is presented in section 2.0.
In section 3.0 we present the details of the method of solution and the three

solutions described in the preceding paragraph.

Having now summarized our approach and present findings, we will attempt
to clarify matters a little further by returning to the physical content of
the model. In particular, we will comment on the nature and manner of modell-
ing of the system components - breech block, tube, projectile, charge incre-
ments, igniter increments and the bag cloth, liner and additives.

20T.hompson, J. F, Thames, F. C. and Mastin, C.W, "Automatic Ntweiica

Genvacton o4 Body-Fitted Cu iv-near Coordinate System fot Field
ConotainCni Any Numbe o4 Arbitary Two-Dimensionae Bodies"
J. Comp. Phys. 15 , 299-319 1974

3 0 "MacCoachck, R.W. "Thte Efect o6 Viscosity in Hyp veeocity Impact
CrateAig" AIAA Papn No. 69-354 1969

3 7 Moi etti, G. "Catcutaticn o4 the Three-D'mens5ionat, Supe'sonic,
Inviscid, Steady Flow Past an Arow-Winged Airfrizame"
POLY-AE/AM Report No. 76-8 1976

32. KentzeL, C. P. "Vicnetizat.on of Bounday Conditions on Moving

DisLcontnuities" Puoc. 2nd Tnt. Conf. Num. Meth, in Fluid
Dyqam cs Berketey, Calif. Sept. 15-19 1970
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Figures 1.2.1 and 1.2.2 have respectively illustzated a typical case and
bag charge in relation to the tube, breech and projectile. The points that we
abstract from these figures are: (a) The tube is tapered and has fairly sharn
corners associated with the forcing cone and the origin of rifling where the
band of the projectile is approximately located (b) The breech of the Howitzer
is roughly hemispherical. (c) The boattail of the projectile has a rather short
intrusion into the tube. (d) Rather complex packaging elements are introduced
at the front end of the case charge. (e) Although the figure does not make
this clear, the bag charge is contained in a rather complex package consisting
of a cloth bag, lined, in part, with lead foil to assist decoppering of the
tube, and a layer of talc impregnated cloth to assist in the reduction of
erosion. It is also not uncommon for a bag of potassium nitrate to be stitched
onto one or both ends of the bag in order to eliminate muzzle flash. (f) It is
evident that the bag charge is not an axisymmetric configuration. Thus our
model involves a geometrical approximation from the very beginning. While it
is not so obvious, the same is true of the case charge since the bayonet primer
vents at a number of small holes and thereby introduces a three dimensional
flow.

Each region occupied by propellant is modeled as a heterogeneous two phase
mixture for which the balance equations have been established 6 . Thus, as in
previous work1 4 -1 8 we describe the flow by reference to macroscopic state var-
iables which are presumed to be averages formed over a region large enough to
contain many particles and yet small by comparison with the overall dimensions
of the chamber. It should, however, be noted that the fundamental assumption
that the scale of heterogeneity of the mixture is infinitesimal by comparison
with the proportions of the chamber is on less firm ground when we turn from
a consideration of axial to radial flow.

Also, as in previous work, the balance equations consist of statements
of conservation of mass, momentum and energy for the gas phase and of mass and
momentum for the solid phase. The solid phase is assumed to be microscopically
incompressible so that an energy balance is tantamount to a heat transfer re-
lation. Naturally, the bulk average temperature of the solid phase is not of
interest; we assume that ignition is predicated on the surface temperature.
As in previous work, we assume that drag, heat transfer and combustion can be
represented by empirical correlations based on the macroscopic states of the
two phases. The motion of the solid phase is taken to depend on the interphase
drag, the macroscopic pressure gradient in the gas and also on intergranular
stresses. These latter stresses are taken to depend on the porosity in an ir-
reversible manner since the bed modulus is known to be much greater during un-
loading than during loading. In neither phase do we consider a macroscopic
shear stress. The significant effects of viscosity and of heat conduction
are assumed to be confined to the boundary layers around the particles and to
be embedded in the correlations. They therefore appear in the balance equa-
tions as algebraic non-homogeneous terms rather than as higher order differ-
entials.

Each region occupied by the mixture is treated as a continuum at all
stages of the calculation. However, depending principally on its radial ex-
tent, it may be represented as either fully two dimensional or quasi-one-
dimensional. Thus, in treating the bag charge shown in figure 1.2.2, we would
expect the inner mixture region - the igniter - to be treated as quasi-one-
dimensional at most. We shall have further comments below, on the modeling
of the igniter.
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In addition, it is expected on the basis of studies of the radial flow 26

that following the completion of flamespreading, no mixture region will re-
quire anything more detailed than a quasi-one-dimensional representation.
The only non-trivial radial distribution, once flamespreading is complete, is
expected to be that of porosity. Thus we expect that even if a fully two di-
mensional approach is adopted during flamespreading, the analysis will eventu-
ally be amenable to a quasi-two-dimensional treatment and, possibly, if the
radial ullage disappears altogether, the latter portions of the interior bal-
listic cycle may be studied by the conventional quasi-one-dimensional model.

Similar considerations pertain to the regions which we employ in the re-
presentation of ullage. These are all presumed to contain an inviscid, non-
heat-conducting, compressible gas. The neglect of diffusion is in accord with
the purpose of the model which is to predict the structure of longitudinal
pressure waves. It is believed that, at least in conventional charges, the
influence of the tube mechanical and thermal boundary layers will be negligible.

Of course, if we were interested in erosion of the tube the behaviour of
these boundary layers would be of paramount interest. We also note that pre-
dictions of maximum pressure of the tube are barely influenced by the heat
loss to the tube and even the muzzle velocity is only affected to the extent
of 3-5%. There is no doubt in our mind that the influence of wall friction
and heat loss to the tube by the gas phase will be negligible in so far as the
structure of the longitudinal pressure waves is concerned. An additional ef-
fect of the boundary layer, namely flow displacement may be influential in
chambers which possess significant chambrage. Separation of the boundary
layer at a sharp entrance to the tube could conceivably provide an appreciable
constriction of the inviscid core flow. As far as displacement due to the
transient developing boundary layer in the tube is concerned, estimates based
on the momentum integral approach of Shelton et a133 show that it may be ne-
glected in medium caliber weapons.

The regions of ullage may be treated as two dimensional, quasi-one-dimen-
sional in either the radial or the axial direction or as lumped parameter. As
with the mixture regions, the principal criterion is extent in the radial and
axial directions.

The influence of the bag material is readily seen to be embedded in the
boundary conditions which govern the mass transfer between the mixture regions
and the ullage regions. It is important to note that as flamespreading occurs
the mixture regions will deform. Our approach follows this deformation pre-
cisely and the computational regions move and deform so that the boundaries
are always located precisely.

We now summarize the representation of the system elements.

Breech Block, Tube and Projectile

The configuration of the chamber as defined by these elements is repre-
sented accurately through tabular input. However, corners in the individual
boundary elements will not, in general, coincide with continuum mesh points.

3 3 "Shetton , S., Berglcs, A. and Saha, P. "Study of Heat Transfer and
Erosion in Gun Sae " AFATL-TR-73-69 1973
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The projectile is assumed to move as a rigid body and to be opposed by a pre-
determined law of barrel resistance due to engraving of the rotating band. In
general, the boundaries of the chamber are impermeable to both phases but gas
loss due to poor obturation in the breech or at the rotating band can be con-
sidered. Modeling of the ignition train may also eventually require the con-
sideration of a permeable boundary as discussed below.

Propellant Charge

It is assumed that each charge element consists of a single type of pro-
pellant and that within each such element, all the grains are initially iden-
tical. However, different elements need not contain the same propellant. The
propellant is assumed to be characterized by the same data base considered in
the one dimensional model1 8 . The propellant is assumed to be heated by the
gas phase until the surface temperature exceeds a value required for ignition
and, subsequently, to regress in accordance with a steady state combustion law.
The propellant moves as a consequence of drag, pressure gradient and also, in-
tergranular stress.

Propellant Packaging

Since our interest is primarily directed towards bag charges we do not
provide a model of the closure elements typical of case charges, figure 1.2.1,
and which have played an important role in our one dimensional studies1 0 . How-
ever, we assume that each charge element is surrounded by a bag material of
negligible thickness and mechanical strength and which has variable permeabil-
ity and inertia. The permeability is assumed to depend on the location of the
surface element of the charge. If data become available, the permeability may
be made time dependent by reference to the local mechanical and thermal environ-
ment. Once the bag material is determined to have been ruptured or rendered
fully permeable it disappears from consideration in the model.

Ignition Train

The ignition train can be modeled by a combination of an external source
and the representation of the center core charge as a quasi-one-dimensional
two phase region. However, the author is not aware of data which demonstrate
the reliability of predictions of flamespreading in black powder. Therefore,
the representation of the ignition train by a predetermined rate of injection
of energetic gas is thought to represent a more fruitful approach. Some com-
parisons of theoretical and observed flamespreading in black powder would soon
resolve this issue. If the modeling of black powder combustion is indeed
fruitful, then a mixture region can, in principle, be allocated for the re-
presentation of a black powder base pad. In such a case, the breech would be
taken to be gas permeable in order to permit the simulation of the spit hole.
However, that level of modeling is not recognized by the present study.

As regards the modeling of the ignition stimulus by an external source
term, we note that previous one dimensional studies have incorporated a cor-
rection for the volume originally occupied by the condensed phase of the
igniter 17,18,26 Here we take the attitude that, in the context of a two
dimensional model, the correction for the volume of the condensed phase is no
longer minor. Therefore, if it is to be considered at all, it must be em-
bedded into a properly posed differential equation expressing macroscopic con-
tinuity of the substance in question.
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We conclude the discussion of the model with some comments on its limi-
tations of applicability. As has already been discussed, the neglect of the
tube boundary layer implies that the model cannot be applied directly to prob-
lems of tube heat transfer and erosion. However, the model may be used to
drive a boundary layer analysis.

The combustion model is doubtless oversimplified. However, the present
status of the theory of transient combustion in the presence of cross flow is
not sufficiently advanced to justify a more complete model. Likewise, the
neglect of the possibility of grain fracture may well prevent the model from
predicting castastrophic overpressures.

We also note that the scale of heterogeneity of medium caliber charges is

not negligible by comparison with the radial dimensions of the tube. Accord-
ingly, attempts to resolve too many of the details of the flow predicated on
the ideal assumptions of a continuum theory are likely to amount to self-
deception. Therefore, the liberal use of quasi-one-dimensional and lumped
parameter representations is desirable not only to simplify the numerical an-
alysis but also to pose the simulation consistently with the underlying assump-
tions.

We comment now on the choice of computational examples used to test the
numerical scheme for two dimensional two phase flow. Figure 1.2.2 shows the
bag configuration to be initially rectangular in cross section. However, we
will represent the charge as uniformly occupying the entire chamber, includ-
ing the region around the boattail. As we discuss further in section 4.0,
such charge configurations are of immediate interest and are found in cased
ammunition for which the projectile intrusion may be very large. The rele-
vance of such a computational example to problems involving bag charges is
simply this: as a consequence of igniter blast, the bed will expand and the
most complicated geometry we expect, for any single region of continuous flow,
corresponds to that defined by the external boundaries.

We conclude our introduction with some comments on the choice of the
method of solution.

In terms of the gun problem and convective flamespreading in general, we
note that several approaches have been used with reasonable success. We have
used a variation of the MacCormack scheme3 0 in our most recent work1 8 supple-
mented by the method of characteristics at the external and internal boun-
daries. Kuo has used a Lax-Wendroff type scheme also supplemented by the
method of characteristics13 . Krier has used the Richtmyer scheme with arti-

ficial viscosity 12 and Fisher has used the Lax scheme1 9 - 22 . It should be noted
that the Lax scheme is very inaccurate due to the large implicit viscosity em-
beddedin~the differencing technique. Thus stability is acquired only with a
loss of accuracy. The artificial viscosity used by Krier and to a lesser ex-
tent by Kuo does not appear to be necessary in problems of gun flamespreading
according to our own experience. Because we have had satisfactory results
using the MacCormack scheme and the method of characteristics in our one di-
mensional simulation, it is natural for us to have considered using the same
approach in our two dimensional simulations.
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However, many papers are available to describe solutions of two dimen-
sional unsteady multiphase flow, almost all being the work of the Los Alpmos
group. Fortunately, there aUears to be complete compatibility between our
balance equations and theirs , so that their methods are of particular in-
terest.

We have previously commented on two papers by Harlow and Amsden
3 5'36

These papers demonstrate the feasibility of obtaining numerical solutions in
two dimensions with several internal boundaries, all represented implicitly.
Several programs are documented by the Los Alamos group including K-TIF37,
K-FIX3 8 and KACHINA3 9.

The methodology represented by these papers suffers from three difficul-
ties when we relate it to our own application. In the first place, the im-
plicit finite difference scheme is rather complicated. This is not a serious
objection per se. However, if modifications are required in our application,
the numerical ramifications may well be severe. For example, Lee et al4 0 re-
port difficulties experienced with the KACHINA code in applications to reac-
tor containment problems. These difficulties included loss of stability and,
not surprisingly, severe numerical diffusion problems. Secondly, there is a
surprising lack of regard even for external boundary conditions in these papers.
As usual, the reflection technique, which has been criticized by Moretti4l is
used to describe impermeable boundaries. More seriously, a simple continua-
tive condition is used in KACHINA to describe outflow, even for a subsonic con-
dition. Since the outflow depends upon the external pressure in the subsonic
mode, it is difficult to know what such solutions mean. Finally, the failure
to capture explicitly the internal boundaries defined by Jumps in porosity is
a very serious omission as far as our application is concerned.

34.
Gough, P.S. and Zwatt, F.J. "Modeling HetAogeneou Two Phase
Reacting Flow" AIAA. J. v.17 n.1 17-25 Janucuy 1979

35.
Harlow, F.H. and Amsden, A.A. "Numericat Calcuation of Muwtiphase
Fluid Flow" J.Comp. Phys. v.17 19-52 1975

36.
Hatow, F.H. and Amden, A.A. "Flow o6 InteLpenetrating Matetila
Ph" e" J. Comp. Phys. v.18 440-464 1975

37.
Hawlow, F.H. and Amsden, A.A. "K-TIF: A Two-Fluid Computet Progtram
for Downcomer Flow Dynamicu" Los, Atamos Scienti4ic Laboratory, LA 6994 1978

38.
Rivcard, W.C.andTorrey, M.D. "K-FIX: A Computu Program for
Ttanient, Two-Dimensionat, Two-Fluid Flow"
Los Alamos Scientific LaboratorLy, LA-NUREG-6623 1977

39.
Amsden, A.A. and Harlow, F.H. "KACHINA: An Euterian ComputeA Program
foL Muttifietd Fluid Flows" Los Alamos Scientific Laboratory LA-5680 1974

40.
Lee, W.H. and Lyczkowski, R.W. "Development of a State-of-the-Art
ReactoL Containment Program" Pr'oc. 17th National Heat TraneA Conf. 1977

41.
Mo.etti, G. "The Impoitance o6 Boundaty Conditio" in the
Numeicat Treatment of Hyperbolic Equoationv" PIBAL Report No. 68-34 1968
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The boundary conditions at the internal surfaces drive the flamespread-
ing to a large degree since it is through these conditions that we express
the behaviour of the bag and liner materials. Moreover, even a very small
gap around the charge can be extremely influential in respect to flamespread-
ing and the subsequent structure of the longitudinal pressure waves 2 6. Accord-
ingly, the prospect of numerical diffusion which would obscure the existence of
ullage is inadmissible in our application.

We close with the following general observations on the relative merits of
explicit and implicit schemes. Explicit schemes are attractive because of their
computational simplicity. Implicit schemes are generally more complex, requir-
ing greater computation per time step, but offer stability over time steps which
may greatly exceed those allowable with explicit schemes. When the allowable
time step is sufficiently greater than that obtainable with an explicit scheme,
the additional computational burden per time step, of the implicit scheme, be-
comes economically viable. Indeed, for problems which involve diffusion, the
implicit schemes offer significant overall economy relative to explicit schemes.

In the present case, however, the nonhomogeneous terms are known to exert
a dominant influence on the time step, at least during flamespreading. This has

been not only our own experience using an explicit scheme 8
, but also that ofL42

Kuo who used an implicit scheme in a pioneering study of convective flamespread-

ing in a stationary porous bed. Accordingly, as the explicit and implicit
approaches to a finite difference scheme are expected to be similarly constrained,
in regard to time step, the computational simplicity of the explicit scheme
weighs strongly in its favor.

42. Kuo, K.K., Vichnevetky, R. and Summeried, M. "Theory of Fame

Front Propagation in Porou/s Propellant Charges Undert Confinement"
AIAA J. v.11 No.4 1973
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2.0 GOVERNING EQUATIONS

As we have discussed in the introduction, our approach to the analysis
of flamespreading and pressure wave development in a complex propelling
charge is based on the solution of the balance equations for each region of
continuous flow together with explicit boundary conditions which reflect the
couplings between the regions. Our purpose, in the present section, is to
take note of these equations in sufficient detail as to provide an analyti-
cal basis for our model. At the same time, we will define that subset of the
governing equations whose numerical solution is undertaken in the present
study.

Thus, section 2.1 includes equations for both two phase and single phase
flow in both one and two dimensional regions. However, the subsequent numer-
ical studies pertain solely to a two dimensional region of two phase flow.
In section 2.2 we discuss the constitutive laws required to close the balance
equations. In general, the extension from earlier one dimensional studies is
analytically straightforward. However, new restrictions on the validity of
the correlations for the interphase processes arise and are duly noted. We
also note the simplified forms of the constitutive laws used in the present
numerical studies.

Following the discussion of the constitutive laws, we consider, in sec-
tion 2.3, the conditions which apply at both the external boundaries of the
computational domain and at the internal boundaries which separate regions
of continuous flow. As part of this topic we discuss the behaviour of the
bag or packaging material and we note the form of the constitutive laws suit-
able for the description of bag strength, inertia and permeability. We also
comment on the initial conditions.

We conclude, in section 2.4, with a characteristic analysis of the bal-
ance equations. The resulting conditions of compatibility play an essential
role in respect to the method of solution, as we discuss further in section
3.0. Results are developed for both single and two phase two dimensional
flow, although only the latter are used in the present numerical studies. We
also note that the discussion of section 2.4 anticipates the numerical tech-
nique and therefore accounts for a transformation of independent variables
whose purpose is to map each region of continuous flow onto a regular figure.
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2.1 Systems of Balance Equations

We require statements of the balance equations for both two dimensional

and quasi-one-dimensional flow of either a single or two phase substance. In

the latter case we formulate the balance equations for each of the individual

species. We also consider a lumped parameter description for a region of

single phase flow, it being understood throughout this report that the single

phase flow is always that defined by the gas phase.

The two phase flow balance equations are as given previously and are

governing equations for macroscopic properties of each of the phases or aver-
ages formed over regions large in comparison with the scale of heterogeneity

of the mixture. As in our previous work, the complex boundary layer phenomena-

drag, heat transfer, combustion rate - appear as nonhomogeneous terms or alge-

braic entities in the balance equations. It is assumed that empirical corre-
lations are available to relate these processes to the macroscopic state
variables as we describe further in section 2.2.

The quasi-one-dimensional formulation of the two phase flow equations

contains a provision for mass exchange with neighboring regions. Both the
quasi-one-dimensional and the two dimensional systems incorporate a source

term to reflect an ignition stimulus. However, heat loss to the tube is ne-
glected and the stress tensor is taken to be isotropic for both species so
that resistance to shearing is not considered for either the gas or the solid

phase.

We assume the single phase continuum flow to be inviscid and non-heat
conducting. However, we do retain the source terms which may embed either an
ignition stimulus or mass transfer from a neighboring region.

2.1.1 Two Dimensional Two Phase Flow

In cylindrical coordinates such that z is the axial coordinate, r is the
radial coordinate and t is the time, the balance equations take the forms:

Balance of Mass of Gas Phase

D+t P[u+ v = + __V 2.1.1.1
Dt Dz r + r

The notation conforms with that used previously. We have p, the density of
the gas, E the porosity, u and v the z- and r- components of gas phase vel-

ocity, D/Dt the convective derivative along the gas phase streamline, i the

source term associated with a stimulus, ; the rate of production of gas due
to combustion of the solid phase. It should be noted, in accordance with the
discussion given in the introduction, that we neglect the volume occupied by

the condensed phase of the ignition stimulus.

We recall:

D Z 2.1.1.2
Dt t + u + v
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S
4 1s P = s Pdp P2.1.1.3m-- I- V p-p p

p

Here Sp, V, are the surface area and volume of an individual grain and d is
the rate oi surface regression. We have introduced s as the surface area
per unit volume.

Balance of Momentum of Gas Phase

Du 41
EP D+g + Vp = - f + m( - U) - U 2.1.1.4o p

Here u is the velocity with components u and v. Also, in cylindrical coord-
inates Vp = (Dp/9z, 9p/9r). The vector form of the interphase drag f should
be noted.

Balance of Energy of Gas Phase

De u + + DE - j
CP De + P[ z + 5 +P f 2

I u-u 12

p p

+ (e - e + u-u - EP v
IG2g o  r

0

Here e e(p,p) is the internal energy of the gas phase and q is the inter-
phase heat transfer per unit surface area of the solid phase.

Balance of Mass of Solid Phase

DF u av v
Dt (1-) [-- + - ]  + (I--P- 2.1.1.6

Dtp pz p r

The subscript p denotes properties of the solid phase and D/Dt is defined
by analogy with 2.1.1.2.

Balance of Momentum of Solid Phase

Du
(l-)p D + (I-C)goVp + goVa = f 2.1.1.7

P

The vector form of this equation should be noted. We have o =
where R is the average stress due to contacts between particles and
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will be assumed to depend upon porosity in an irreversible manner.

2.1.2 Quasi-One-Dimensional Two Phase Flow

We assume that for the applications of interest to us, the non-trivial
spacewise coordinate is aligned with the axis of the tube and that u, uP are

the non-trivial components of gas and solid phase velocity respectively. The
cross sectional area of the annulus through which the flow occurs is taken to

be A(z,t) and therefore depends upon both position and time. It is supposed
that the circumferential boundaries are permeable to the gas phase and that
mass transfers must be considered. We use Ri and Ro to denote respectively
the radii of a circumferential surface on which influx (mi) or efflux (mo)
occur. Attention should be paid to this convention. The subscripts i and o

do not refer to the interior and exterior surfaces, only to the direction of
mass transfer. We understand mi and ;o to represent rates of transfer per
unit surface area. Moreover, we will also denote the properties transported
with mij by the subscript i. Thus ui will be the axial velocity associated

with the incoming gas. The exiting properties are, of course, those of the
gas in the quasi-one-dimensional region presently under consideration.

Balance of Mass of Gas Phase

FtAp + cApu = Ai + A + 2Tr[ZRi-i -- ZRo o] 2.1.2.1

Of course, the summations are over all entering and all exiting fluxes.

Balance of Momentum of Gas Phase

pDt 0go --P = - u + m(u -u) + - ZR.m.(u.-u) 2.1.2.2
Dt DzP A 1I

Balance of Energy of Gas Phase

D+Ep - (u-u) -s q
t+ A Dt z go P P

+ [e- e + 2

2g0

(u-u p )2

P Pp 2go

p. (u-u.)
2

+ Z; ZRi[ei + Pi + 2g e]

A 1 11 P. 2g0

2r p Z R 2.1.2.3
A p 00
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Balance of Mass of Solid Phase

1iD (1-)A + (l-s) __- = _ 2.1.2.4
A Dt az p

Balance of Momentum of Solid Phase

Du
Pp (1-6) Du- + (l-g)g + g - f 2.1.2.5

P Dt 0 az 0az
P

2.1.3 Two Dimensional Single Phase (Gas) Flow

These equations are quite familiar. We also note that they represent

the limiting forms of 2.1.1.1, 2.1.1.4 and 2.1.1.5 as -*i, bearing in mind

that f, 1 and q-*o. We have:

Balance of Mass

uP + 3 tP-- 2.1.3.1
Dt z r r

Balance of Momentum

Du 2
p D- + g 0 - *u 2.1.3.2

Balance of Energy

De au v u*u e] p v 2.1.3.3
P D- + P z +  ] = [eIG+ 2g20° r

2.1.4 Quasi-One-Dimensional Single Phase (Gas) Flow

As in the previous section the balance equations for this case follow

from those set forth in section 2.1.2 by taking the limit c - 0. We have,

assuming the axial direction to be non-trival:

Balance of Mass

Ap + Apu = A + 2'[R ERoo] 2.1.4.1
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Balance of Momentum

PDu g u+-L--2 R i (u 2.1.4.2

Dt 0 zA

Balance of Energy

De p DA + u u 2

P Dt A Dt p z = IG-e 2g --
0

P. (u-u.)
2

+ IT;R, + e]
A 1i Pi 2g 0

2,T p Z R 2.1.4.3
A p o o

If, in fact, the non-trivial direction is not axial, the divergence and
transfer terms must be suitably modified.

2.1.5 Lumped Parameter Single Phase (Gas) Flow

As in previous work we provide balance equations only for mass and
energy. It is assumed that the velocity of the gas in the lumped parameter
region can be deduced from the boundary values by interpolation. Using V
to denote the volume of the region and S the bounding surface we have:

dV _+ +
dt w.n da 2.1.5.1

S

where w is the boundary velocity and n is the outward facing normal. The
mass balance is:

d oV= PV dv + Zm Zm 2.1.5.2dt 0

V

where the mi and mnow refer to the total fluxes rather than the fluxes per

unit area used previously.
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The energy balance is:

d *U.
2

pEV EV= dv + Em(e. +-pi+-- -pw n da
IG P. 2g 0P

V S

-m(E +~- 2.1.5.3
0

where E is the total energy e + u212g0
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2.2 Constitutive Laws

The constitutive laws required to close the foregoing systems of bal-
ance equations are of several types. As is usual in fluid mechanical prob-

lems we require an equation of state for the gas. However, we also need
formulae for the particle surface area and volume and for the granular stress
due to contacts among particles. In addition to these, we require formulae
for the interphase transfer processes - drag, heat transfer and combustion.
In order to discuss combustion we will have to introduce the surface temper-
ature of the solid phase and a criterion for ignition. All of the above
topics are addressed in the present section. However, the mass transfers

from one region to another, due to the gas permeability of the boundary be-
tween them will be discussed in section 2.3.

2.2.1 Equation of State of Gas

It is assumed that the gas obeys the covolume equation of state:

e = c T = p(l-bp) 2.2.1.1v (y-l)p

where b is the covolume, y is the ratio of specific heats and c is the

specific heat at constant volume. In previous studies we have considered
the composition dependence of the molecular weight and the specific heats.
From an analytical viewpoint this simply amounts to the addition of two
first order partial differential equations to the model. Physically, the
consequences of the composition dependence are found to be small as the
values of molecular weight and specific heat appropriate to the propellant
are quickly attained. Moreover, we do not consider, herein, mixtures of
propellants. Thus, in the present work we treat the molecular weight and
the ratio of specific heats as constants, an assumption which can be relaxed
easily when future studies so demand.

2.2.2 Granular Stress Law

The formulation of the granular stress law is of considerable importance
not only because of the physical role played by the forces transmitted from
grain to grain but also because of the influence of the stress law on the
degree of hyperbolicity of the balance equations. Thus, although the present
study can tolerate simplifications in certain of the constitutive laws for
the sake of temporary expedience, it is essential that we evaluate our numer-

ical scheme in the context of the physically complete granular stress law.

The granular stress is taken to degend on porosity and also on the di-
rection of loading. As in the past -, we embed the constitutive law into
the formula for the rate of propagation of intergranular disturbances:

a(6) = g da 2.2.2.1
p
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We may recast 2.2.2.1 into a form more suitable for numerical integra-

tion, namely:

Dat a2 D: 2.2.2.2
Dt p p go Dtp

In order to formulate the functional behaviour of a(E) we introduce co, the
settling porosity of the bed, and values of a(E) equal to a, and a2 which
respectively correspond to loading at co and to unloading/reloading. The
nominal loading curve, corresponding to monotonic compaction of the bed
from co to a smaller value of the porosity c is given by:

a 1
2  2 1 1

o a (s) = p - Eo (_ - -) 2.2.2.3
nom p g 0 o C

The functional dependence of a(s) may now be stated as:

- a 1 C / if < 0, y =  nom ,  C < C

a(c) = a 2  if O<<no m , < 2.2.2.4

or if c > 0, a = a , C < C
nom - 0

- 0 if a= 0 and > 0 or if c > E
0

Here we understand s to mean DE/DtD . In general, it appears that a2 - 3a1
so that the unload/reload modulus is roughly one order of magnitude greater
than the nominal loading value. We emphasize that this constitutive law
does not admit any granular stress when c > co, that is, when the bed is
dispersed. We also emphasize the absence of the stress decay factor used
in previous work for purely numerical reasonsl4-18.

2.2.3 Propellant Form Functions

It is assumed, in the present study, that the particles are multi-
perforated cylinders having initial length Lo, external diameter Do and per-
foration diameter do . The surface area per unit volume is related to the
individual surface area Sp and volume Vp of the particle according to:

Sp = (1-s)Sp/Vp 2.2.3.1

Until such time as slivering occurs, that is to say the time at which the
regressing perforation surfaces intersect, the surface area and volume
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are given by:

S = (L o - 2d)[(D - 2d) + N(d + 2d)]
p 0 0 0

+ Tr/2[(D - 2d) 2 
- N(d + 2d) 2 ] 2.2.3.2

0 0

V = IT(L - 2d)[(D -2d) 2 
- N(d + 2d) 2 1 2.2.3.3

p 0 0 0

where N is the number of perforations and d is the total linear surface
regression, assumed uniform over the surface.

Formulae for other grain geometries are simple to determine pro-
vided that the initial configuration is regular and that slivering has
not occurred. Formulae for the form functions following the slivering of
seven perforation grains may be found in Krier et a14 3 .

2.2.4 Interphase Drag

15i8
In previous work- we have assumed the interphase drag to be composed

of a steady state component and a transient component reflecting the virtual
mass effect:

f = f Dup 2.2.4.1
ffs + (1-C)"I[t Dt

P

where is the virtual mass constant. However, while our one dimensional
modeling exercises have carried the influence of virtual mass throughout
the analysis and coding, actual calculations have almost always been based
on the value = 0, due to the absence of reliable independent data for
the actual value. This being the case, we intend to neglect the virtual

mass effect ab initio as a simplification of the present study.

The formula for the steady state component of the drag is assumed to
follow as the obvious generalization of the one dimensional form:

s = D 0U-U ( -p)CDB (6, Re ) 2.2.4.2

K'_iv, H. Shimpi, S.A. and Adams, M.J. "InteriorL Baistic Predictiou
Using Data From Closed and Variable Volume Simutatoru"
Tech. Rept. AAE 73-6, University o6 Ilinois at ULbana-Champaign 1973
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where D is the effective diameter of the particles, given as D = 6V /SadRp = p- D/iste PP
and Rep = Pli-iplDpIp is the Reynolds number. In previous studies we have

414taken CDB equal to the value reported by Ergun , for packed beds of various
shaped particles, modified according to the tortuosity factor of Anderssen4 5

as the bed becomes dispersed. In the present study we treat CDB as constant
and equal to Ergun's limiting value of 1.75 for high Reynolds number flows.
Success with a vector form of Ergun's correlation has been reported by Stanek
and Szekely4 6 .

The value of CDB = 1.75 for a packed bed was determined by Ergun for a
Reynolds number regime which is, in fact, low by comparison with the values
expected in interior ballistic flows. Kuo 4 7 has shown that CDB continues
to decrease at least until Rep = 40000, in beds of ball propellant and that
a value of CDB -1.3 may be more typical of the interior ballistic situation
in which Rep _105. In computing the effective diameter of the particles,
the question arises as to the actual contribution of the surface area of the
perforations. Robbins4 8 has presented data which indicate that CDB -1.2 if
the entire surface area is used to compute the effective diameter and that
CDB -1.9 if only the contribution of the external surface is considered.

We also note that relatively few grains are present as we traverse the
tube in a radial direction. Generally speaking, a medium caliber weapon
whose diameter is, say, 15-20 cms has a charge consisting of grains whose
lengths are typically 2-3 cms and whose diameters are typically 1 cm. The
reported values of CDB are based on flows through long columns for which en-
trance and exit effects are negligible. Evidently, as few as 5 grains may
lie between the centerline of the tube and the inside of the wall. By in-
vestigating the drag on individual particles, van der Merwe and Gauvin

4 9

showed that seven or eight layers may be needed to produce conditions typical
of a long bed.

Ergun, S. "Flud FHow Through Packed Columns"

Chem. Eng. PrLogr%. v.48 p.89 1952
4 5 "Andeusen, K.E.B. "Priessure Drop in Idea Fluidization"

Chem. Eng. Sci. V.15 1961
4 6 .Stanek, V. and SzekeLy, J. "The Effect o4 Non-Unifotm Poriosity

in Causing Fow Matditributionz in Is6othermal Packed Beds"
Can. J. Chem. Eng. v.50 1972

47.
Kuo, K.K. and Nydegger, C.C. "FHow Rezistance MeasuLement and
Correlation in a Packed Bed o6 WC-870 Batt Propellants",
J. Baltics, v.2, No. I p. 1  1978

4 8 "Robbins, F. and Gough, P.S. "An ExperimentaZ Determination of Fow
Reistance in Packed Beds of Gun Propellant"
Proc. 15th Jannaf Combuztion Meeting September 1978

49.van deA Mewe, D.F. and Gauvin, W.H. "Pessure Driag Measuwements

for Turbulent Air Fow Through a Packed Bed" A.I.Ch.E.J. 1971
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2.2.5 Interphase Heat Transfer

Previously we have used both the Denton 5 0 correlation for packed beds
and the Gelperin-Einstein51 correlation for dispersed and packed beds. How-
ever, the two are sufficiently close that we consider, herein, only the cor-
relation of Gelperin-Einstein. We express the heat transfer in the form:

Nu = 0.4 Pr /gRe 2/3 2.2.5.1
P p

where Nu = hD /kf

Rep = pfiU-UpIDp/Pf

h = q/(T-T )

The subscript f denotes an evaluation of properties at the film temperature
(T+Tp)/2 where T and Tp are respectively the gas bulk average temperature
and the particle surface average temperature. The viscosity is taken to
have a Sutherland type dependence on temperature:

p = 0.134064 (T/298)152.2.5.2
T + 110

The thermal conductivity follows from the Prandtl number which is assumed
to satisfy:

Pr = = 4y 2.2.5.3
k 9y-5

2.2.6 Solid Phase Surface Temperature

In previous one dimensional studies we have treated the determination
of surface temperature as though conditions on the surface were essentially
homogeneous. That is to say, the heat flux given by 2.2.5.1 was treated as
uniform over the particle. Moreover, conduction to the interior was assumed
to be governed by a one dimensional form of the heat diffusion equation and
solved by means of a cubic profile14 .

5 0 "Denton, W. H. "General Disczsion on Heat Transfer"
Inzt. Mech. Eng. and Am. Soc. Mech. Eng. 1951

51.
GetpeAin, N.I. and Einstein, V.G. "Heat TLansfcer in Fliudized Beds"
Fluidization, edited by J.F.Davidson and D. Ha~v~ion,
Academic Press 1971
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The basis for the assumption of uniformity derives from observations of
quenched beds. In these the surfaces show regular regression of all surfaces.
Thus it is inferred that surface relaxation phenomena such as transverse
flamespreading proceed very quickly. This need not always be true, however.
Data acquired by Jakus 52 in conditions of low pressure ignition revealed very
poor uniformity. Also it is thought that the assumption of surface uniform-
ity may be poor for long grains, particularly stick or cord, which have
perforations.

In the multi dimensional calculation we have, in principle, an essen-
tially new feature. The stagnation point on a given particle may vary as the
direction of relative flow changes. In keeping with the previous assumption
of surface uniformity, this feature is neglected. Thus the surface tempera-
ture is given by:

T = T 2 hH 2 hH 2 4 hTH T = 2 hH + [ (Tp 3 k -I- +3 k-- - Tpo 2.2.6.1
P Po 3k2 P 3

p *o p p 0

where T is the initial surface temperature and H satisfies:
P0

DH pq 2.2.6.2
Dt

2.2.7 Ignition and Combustion

Ignition is assumed to occur when the surface temperature exceeds a
predetermined value. The rate of surface regression is given by:

Dd = B + B pfn 2.2.7.1
Dt 1 2

P

It should be noted that only one of 2.2.6.2 and 2.2.7.1 has to be solved
at each point according as the temperature is less than or equal to the
ignition temperature.

2.2.8 Primer Stimulus

The primer stimulus i is assumed to be given in tabular form as a
predetermined function of space and time.

Jak, K. "Study of Flame Spr'teading Through Single Base Ptopellant

Beds" Proc. 11th Jannaj Combustion Meeting 1974
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2.3 Initial and Boundary Conditions

The initial conditions are more or less self evident and require only

minimal attention. For problems of interest in interior ballistics we sup-
pose that both phases are at rest and at atmospheric pressure. The tempera-
tures of the two phases may differ but are uniform throughout each of the
respective media. The porosity is piecewise continuous, the discontinuities

being defined by the presence of ullage or of the boundary between bags.

We therefore turn our subsequent attention to the analysis of the bound-
ary conditions. The natural starting point for this discussion is the form
of the jump conditions at a discontinuity in two phase flow. This topic is
addressed in section 2.3.1. Then, in sections 2.3.2, 2.3.3 and 2.3.4 we suc-
cessively consider the boundary conditions which apply at the external boun-
daries, the gas permeable internal boundaries and at the impermeable internal
boundaries. In the context of the latter topic it is natural to include the
discussion of the behaviour of the bag or cloth material used to package the

propellant.

2.3.1 Jump Conditions at a Discontinuity in Two Phase Flow

We have previously derived these results for one dimensional flow 6 . The
extension to multidimensional flow is straightforward5 3 and requires no new

discussion. We designate the properties on each side of the discontinuity by
the subscripts 1 and 2. Moreover, we use un and upn to denote the normal com-

ponents of gas and solid phase velocity and u1 and upT to denote the trans-
verse components. The jump conditions are:

j E lPl(Unl- us ) = 6 2 P 2 (u- Us ) 2.3.1.1

jp (-C)p (u - u ) (i- ) ( - u ) 2.3.1.2
p - pp Pn L pp 1) 2 s

p1 1 2 P 2
P1 + (1-C )R1 + - (u - u + (1-s)-(u - u ) 2.3.1.3

0 n I o Pn
1

62 P2 2 PP2
p + (1-C )R + (u u ) + (1- )--(Un - u

2 2 90 n 2 s 2 p S
2

Pl (unl- us) 2 P2  (un2 - us)2

j{e + -+ } = j{e +- + 2.3.1.4
1 P1  2g 2 p2  2g0

53.KrLako, A.N. and Sternin, L.E. "Theory o4 Fow of a Two-Velocity Contnuous

Medium Containing Solid oL Liquid Particles" PMM v.29, n. 3 1965
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j (uT - u ) = 0 2.3.1.5
1 2

jp(upT - u ) 0 2.3.1.6

1 2

Here we have used us to denote the normal velocity of a point on the surface
of discontinuity. It is important to note that separate momentum jumps are
not provided for the individual species. The momentum jump is expressed for
the mixture alone. In general an exchange of momentum between the phases is
not forbidden at the discontinuity.

We will confine our interest to the case Jp = 0 since we do not consider
boundaries which are permeable to the solid phase. We may then distinguish
two cases of interest.

(a) Impermeable Boundary, j = 0

Evidently the boundary conditions are the intuitively obvious set. We
have:

u =u =u 2.3.1.7n n s
1 2

u = u =u 2.3.1.8
Pn Pn s

1 2

P + (i-I)RI = p + (i-c )R 2.3.1.9

and the tangential components uT , u T, u , u are unrestricted corres-

ponding to slip conditions. In the event that the flow exists on only one
side of the boundary 2.3.1.7, 2.3.1.8 and 2.3.1.9 apply to the non-trivial
side. We also note that 2.3.1.7 is the familiar condition for the inviscid
single phase flow.

(b) Gas Permeable Boundary, j # 0

We have the conditions:

cP (u Us) c P (U 2- u 2.3.1.10

Pl 222 2
p + (1-c )R + - (u u p + (l-c )R + 2 (u - u )

g0 s 2 go n2 s 2.3.1.11
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Pi (un- u s ) 2  P 2 (Un2- u s ) 2

e + -+ =e +- + 2.3.1.121 P 2g 2 2 P2 2g 2

u T  = u T  2.3.1.13
1 2

Also, according to 2.3.1.6, an arbitrary jump in the tangential velocity of

the solid phase is admitted. We observe that as cl' 62 1 these conditions
reduce to the familiar Rankine-Hugoniot conditions for a single phase fluid.
In fact, 2.3.1.12, the condition of adiabatic flow, is unchanged by the pre-
sence of the solid phase. The condition of continuity of mass, 2.3.1.10,
appears as the obvious generalization. The major novel features are associ-
ated with the momentum jump, 2.3.1.11. We see that progress cannot be made
without either specifying the manner in which the granular stress behaves at
the discontinuity or providing some functionally equivalent datum.

Since we have assumed R to embed the stresses due to direct contacts
among the grains it is natural to postulate:

(I-C1)RI = (I-E2R2 2.3.1.14

whereupon the gas phase momentum jump becomes;

1i l) 2P 0

P + -- -- (u u = 2 +' 2 (u - u ) 2.3.1.15
g1 n s g n 2  s

However, the postulational nature of 2.3.1.14 should be emphasized. The

tensor R arises formally as the difference between the average stress ten-ors for the two phasesi. The argument that it embeds only the influence

of granular contact is plausible only at low relative Mach numbers. At high
Mach numbers the situation is complicated by the influence of the pressure
distribution around each particle associated with drag.

On the other hand, 2.3.1.15 agrees with the familiar form of the momen-
tum jump used to analyze flow losses at a sudden increase in the cross sec-
tion of the flow54 5 5 of an incompressible fluid.

54 Prandt, . and Tietjen, O.G. "Fundaienta' of Hydro-and Aeromechanics"
Dovg Publications 1957

5.Kaufmnann, W. "Flid Mechaic/s " McGraw-Hill 1963
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2.3.2 External Boundaries

We do not consider the possibility of flow of the solid phase through an
external boundary. The gas permeable boundary is of interest only for prob-
lems involving poor obturation or detailed simulation of the ignition train.
The mass transfer relations for such cases can be deduced according to stan-
dard isentropic flow theory56 and are not discussed here. We confine our
attention, for the time being, to the fully impermeable boundary.

Accordingly, we have to consider simply the slip boundary conditions ap-
plied to both phases, equations 2.3.1.7, 2.3.1.8 and 2.3.1.9. For the sur-
faces of the tube and the breech we assume us = 0, corresponding to the ne-

glect of recoil and strain.

Now let SPROJ be the surface of the projectile which intrudes into the
combustion chamber and let 'A be the local normal to the surface, positive
pointing outwards from the combustion chamber. Let n = (nz, nr) describe the
z - and r - components of 'A. Let the axial speed of the projectile be uPROJ.
Then the boundary conditions at the projectile surface are:

u • n = u * n = nzupRoJ 2.3.2.1

Of course, the condition on the solid phase applies only in a region of two
phase flow.

The projectile motion is assumed to be governed by:

M du pRoJ (p + (1-c)R)n da - F 2.3.2.2
eff dt ( z res

SpROJ

where the effective mass is related to the actual mass, M, and polar moment
of inertia, I, according to:

4IM-5 tan2 e 2.3.2.3Meff

and D and e are respectively the diameter of the tube and the angle of the

rifling. The quantity Fre! is the bore resistance and will be assumed to

be available as a semi-empirical correlation.

56"Shapiro, A.H. "The Dynamics and Thermodynamics o6 Compressible Fluid
FHow" Ronald Prtess 1953
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2.3.3 Gas Permeable Internal Boundaries

We take equations 2.3.1.10, 2.3.1.12, 2.3.1.13, 2.3.1.14 and 2.3.1.15 to
apply at all the internal boundaries defined by a jump in porosity. When the

boundary separates two regions of two dimensional flow, the interpretation of
these conditions is straightforward since they refer to the boundary values
on each side of the discontinuity. We note, of course, that these conditions
reduce correctly when one or both sides of the boundary contains a single
phase flow.

When the boundary is such that the flow on one or both sides is quasi-
one-dimensional or lumped parameter, care must be taken with the interpreta-
tion of terms. For example let side 1 correspond to two dimensional two phase
flow so that values of c,, PI) P11 Un ' Upn , UT and u are available. If

1 n1  1 PT1
the side 2 represents a quasi-one-dimensional model of the tangential flow, we
identify C2, P2 with the state variables for side 2. However, un2 is not
modeled except implicitly through the mass transfer terms mi and mo . The values
of p, e2 ' uT2 correspond with the state of the quasi-one-dimensional flow only
when that region is acting as a donor.

The assumption that 2.3.1.14 and 2.3.1.15 are valid restricts our analy--
sis to relatively low subsonic transfers through the internal boundaries. In
our opinion, further study is required to permit a meaningful analysis of the
transonic and supersonic flows. Certainly, one can proceed pragmatically,
using quasi-equilibrium nozzle flow analyses as a basis for determining solu-
tions. However, the validity of such an approach is not clear at present.

Finally, we comment that from the application of these boundary condi-
tions we, in effect, establish the constitutive laws for the mass transfer
terms i. and i as used in section 2.1.

1 0

2.3.4 Impermeable Internal Boundaries

This topic is of considerable importance since it is here that we embed
the influence of the bag and additive materials on mass transfer and hence, on
flamespreading. If the bag is impermeable we have as boundary conditions,
2.3.1.7, 2.3.1.8 and 2.3.1.9. As in the previous section, the interpretation
of these terms is straightforward provided that both sides of the boundary
correspond to a two dimensional flow.

When one or both sides is a quasi-one-dimensional two phase flow, the
boundary condition 2.3.1.9 serves, in effect, to define the evolution of the
cross sectional area. As we have shown previously 26, the constitutive law
for the granular stress may be combined with the continuity equation for the
solid phase to produce the desired result. We also showed26 that when the
bag became ruptured, the mass transfer deduced according to the previous
section could be used to estimate the subsequent lateral dilation of the
quasi-one-dimensional flow.

If the data base warrants, it may be of value to treat the internal
boundary by explicitly recognizing the flow resistance and thermal loss as-
sociated with the bag material. Equations 2.3.1.11 and 2.3.1.12 may be
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modified to reflect a finite loss of momentum and energy experienced by gas
passing through the bag. Indeed, the permeability may be made time depend-
ent and linked to flow parameters which characterize the mechanical and
thermal attack due to the penetrating gas. Moreover, the momentum jump may
also reflect an inertial loss associated with acceleration of the bag mater-
ial. This level of modeling may well be necessary in order to study charge
configurations composed of several bags or even for single bag charges in
which a sophisticated use is made of the bag permeability to control flame-
spreading.
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2.4 Characteristic Analysis of Balance Equations

Our interest in this topic is principally motivated by the numerical ram-

ifications of the theory of characteristic surfaces. In the case of one di-

mensional unsteady flow, the existence of real characteristic directions en-

ables one to replace the system of partial differential equations by an equiv-

alent system of ordinary differential equations in which the derivatives are

taken along the characteristic lines. When we proceed to a larger number of

independent variables an analogous result holds for hyperbolic systems of equa-

tions. Given n independent variables, a hyperbolic system is one that admits

the existence of a hypersurface of dimension n-i such that only derivatives

interior to the surface appear in the equations.

We proceed as follows. In section 2.4.1, we discuss the theory in gen-

eral for a quasi linear system of partial differential equations which depend

on three independent coordinates. In section 2.4.2, we illustrate the theory

by reference to the equations for unsteady homentropic flow with azimuthal

symmetry.

In section 2.4.3 and 2.4.4 we deduce the characteristic forms for two di-

mensional single phase and two phase flows respectively.

2.4.1 Formulation of Characteristic Analysis

Consider a system of partial differential equations

A t + B z + C -r =D 2.4.i.1

where p and D are n-dimensional column vectors and A, B, C are n x n square ma-
trices. The concept of a characteristic surface follows naturally from the

consideration of an initial value problem posed for a surface:

(t, z, r) = 0

or, in general, the family of surfaces generated by the parameter p0 such
that:

z, r) = 2.4.1.2

Let a, be coordinates internal to the surface i = o then itself serves
as a normal coordinate. On = we assume that we are given values of

and hence, values of , and i$. The surface = o is said to be free if

equation 2.4.1.1 permits the determination of the normal derivative @ and

characteristic if it does not. If = o is characteristic it follows that

2.4.1.1 may be expressed in terms of derivatives with respect to a and B
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alone, that is to say, derivatives internal to the characteristic surface.

By means of the chain rule for differentiation, 2.4.1.1 may be trans-
formed into derivatives with respect to C, a and :

[A t+ B z+ C r] = D - [Act + B z+ Ccr]j - [A t+ B z+ C r] 2.4.1.3

Accordingly, the question of whether is free or characteristic is settled
by the rank of the matrix:

A=At + Bz + Cir  2.4.1.4

If Rank (A) = n, the system 2.4.1.3 always has a unique solution and the
surface = is free. However, if the value of Rank (A) <n then 2.4.1.3
does not possess a solution for arbitrary initial data on the surface C = o.
In the latter case the partial differential equation represents a constraint
on the data as expressed by the condition of solvability of 2.4.1.3. Thus if

we let A+ be the augmented matrix formed by appending to A the column vector
corresponding to the right hand side of 2.4.1.3.

A' = [A; D - [At+ Bz + Car] -[A t+ B z+ C r] ]

Then the condition of solvability is5 7 "

Rank (A + Rank (A) 2.4.1.5

The condition Rank (A) < n will lead to a partial differential equation
for (t,z,r) in the form:

F(t,z,r,@,ctP lz4 r 0 2.4.1.6

it being assumed that A,B,C are functions only of t,z,r and p. Since every
element of A is a homogeneous linear combination of Pt, Pz and r it follows

that F is homogeneous of order K > 1 in these quantities so that:

= X'F(t,z,r,4,t z4r) 2.4.1.7

5 7 4facdley, G. "Linear Algebra" Addison-Wesley 1961
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Accordingly it follows that:

F t+ F z + F 0 2.4.1.8
t ' z r

Because of the degree of freedom induced by the homogeneity of F it is
convenient in many cases to append an additional condition corresponding to

the normalization of the vector (Ot,(z,cr). In practice the most convenient
choice is to set 1t = - 1. This corresponds to having ( in the form:

( = t(z,r) - t 2.4.1.9

so that (t = - 1, Oz = t/ z and (r = t/ r.

58
It is useful to interpret these results geometrically . We may think

of ( = (o as defining a surface with normal vector proportional to (
Then 2.4.1.6, the partial differential equation for the characteristic sur-

face, imposes an algebraic constraint on the components of the normal at each
point in the (t,z,r) space. At each point 2.4.1.6 defines a family of planes
such that the characteristic surface must be tangent to one of them. If F is

not linear, the envelope of this family of planes is a cone, the Monge cone,
whose generators are called bicharacteristics.

According to 2.4.1.7 the family of allowable normal vectors at a given
point lies on the surface of a cone whose apex is the point in question. Thus
2.4.1.8 asserts that the vector (Ft , F Fr ) is perpendicular not only to

the surface of normal vectors, but also to the vectors themselves since they

lie along the cone. In fact, the vector (%, F(z, Fr) defines a bicharscter-

istic direction. From 2.4.1.8 it is evident that it must lie in a tangent
plane of a characteristic surface. However, the bicharacteristic may be thought

of as the limit of the line of intersection of neighboring tangent planes. Thus

if we write b as a bicharacteristic, n as the normal to a tangent plane and X as

a parameter which labels the planes at a given point, it fllows that b = n x

(n + dX dX). Therefore b = n x dn dX. Since both n and lie on a tangent

plane of the cone defined by 2.4.1.6 we see that b is parallel to (F t, FZ,
FP). The bicharacteristic ray may be written as:

dt dz dr 2.4.1.10
F t  F F

L Z r

58.Couant, R. and HiWbert, D. "Methods o6 Mathematical Physics" Interscience.

1953

- 36 -



This result may be used to eliminate t, z and r from 2.4.1.6 and to

describe the characteristic surface by reference to the bicharacteristics.

2.4.2 Illustration: Homentropic Flow

In order to understand the formulism we consider briefly the balance
equations for homentropic, unsteady, single phase, compressible flow in two
dimensions with cylindrical symmetry.

t + pu + L pv + - 0 2.4.2.19t Dz Dr r

9 -u u ju c 2 9p
+ u- - ---- - = 0 2.4.2.2t z ar p Dz

9 9v+ av +c 2  -at u az a pa 2.4.2.39t + 9z + D r + p r

Here we have used c2 = (p/p) s as the square of the speed of sound. We have:

A1 i ; B = p u

0 0

C = v
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Thus we must consider the rank of:

t + U z + V r PNz POr

-z Vr

c2  0 t + Uz + V r

p r

A necessary condition that the rank of A be less than 3 is det(A) = 0 or:

( t + U z+ V r){( t+ U z+ V r) 2 - c2 (r2+ z 2 )} = 0 2.4.2.4

Evidently the characteristic surface consists of two sheets:

G(t,zlr ) = t + U z + Vlr = 0 2.4.2.5

and F(4tcpz r) = (Ot + U z + vr )2 - c2 (I r2 + z2) = 0 2.4.2.6

The bicharacteristics corresponding to 2.4.2.5 are just the particle path-
lines. Those for the quadratic sheet may be expressed as:

b = {2(t + ulz + Vr ), 2u( t + u z + v r ) - 2c2qz ,

2v(P t + u z + v r ) - 2c2 r}

Accordingly we can express t ,  z and r in terms of the components of

(dt, dz, dr) as:

t = {dt(c 2 - u2 - v2 ) + udz + vdr}/c 2

= (udt - dz)/c 2

= (vdt - dr)/c 2

- 38 -



whereupon substitution into 2.4.2.6 shows the bicharacteristics to satisfy:

dz _ dr 2 2 2.4.2.7

In a computational application we expect that dt is known as the time
increment through which the solution is to be advanced. Moreover, we select
the bicharacteristic to lie in a given plane. Therefore the ratio dz:dr is
known and 2.4.2.7 enables us to determine their separate values. These, when
entered into the condition of compatibility lead to a finite difference formula
for the state variables. Since we have no application for this simple case we
do not bother to write down the condition of compatibility. It follows mechan-
ically from a consideration of the augmented matrix.

2.4.3 Single Phase Two Dimensional Unsteady Flow

We now wish to deduce complete results for a two dimensional single
phase flow. These results will differ from those of the preceding section
in three essential respects. We will assume that an initial transformation
of variables has been made for computational purposes. Secondly, we will not
take the entropy to be the same for all fluid particles. Thirdly, we will de-
duce the conditions of compatibility.

The balance equations are given in cylindrical coordinates in section
2.1.3. As usual, we recast the energy equation by means of the continuity
equation and the identity:

0 e C2  9e)c ( e 2.4.3.1

P P P 0 P

Thus we have:

P +v = 2.4.3.2
Dt 9 r )  r

Du 0 = -u = C2 2.4.3.3
Dt + go z

DV 0P r =  v = E3 2.4.3.4

Dp c 2
D~p {e + -- - e - P/p} = 4 2.4.3.5

Dt g Dt p( De gIG+ 2go
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where 4 is understood to be a source term and is not to be confused with the

column vector of state variables.

We identify these equations with the system:

A + B + C 3 = D 2.4.3.6tr

by setting:

P 1 0 0 0

= ul ; D= A= 0 p 0 0
v 3 0 0 p 0

i L I]- goo- - --C 0 0 1

u P 0 0

B 0 Pu 0 g0

0 0 Pu 0

- 0 0 u

v 0 P 0

C 0 pv 0 0 2.4.3.7

0 0 pv 90

c2 v

0 0 v

At this point we have established the balance equations in a form suit-

able for the application of the methodology described in section 2.4.1. How-

ever, we now consider a transformation of coordinates in the form:

T t

= C(t,z,r) 2.4.3.8

n = f(t,z,r)

We assume that this transformation is one to one and has continuous partial
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derivatives and that 2(r,,) (z,r)# 0 so that we can also write:

t T

z = z(zr,,) 2.4.3.9

r = r(T,r,n)

We have used a separate notation T for the time in the transformed frame. This
facilitates the use of subscripts to denote partial derivatives. Thus we

understand = ( i) whereas p = (-) and is an arbitrary property.
t z,r T T,

Bearing this in mind we define:

u z
m T 2.4.3.10
v =r
m T

Thus um and vm are the velocity components in a cylindrical coordinate frame
of a point moving so that it is stationary with respect to the transformed
frame. Evidently, if we impose the requirement um = u and vm = v we will
have selected the transformed frame to coincide with a Lagrangian description
of the fluid whereas the choice um = vm = 0 implies the retention of an
Eulerian description, possibly in a different coordinate frame established by
a stationary transformation.

It follows that the balance equations 2.4.3.6 subject to 2.4.3.8 and
2.3.4.10 become:

[(B-Au ) z+ (C-Avm) ] P + [(B-Au )T1 + (C-A) r ] D
m z m r m z M r aq

2.4.3.11

Thus we now consider the characteristic surfaces for the system:

A + B' +' - D 2.4.3.12aT aTI

where we identify B' and C' as:

w P~z P~r 0

B1 0 pw 0 g oC z

0 0 pw go r

Bc2w/g0 0 0 W

x i z PIr

C' 0 px 0 go I
0 0 px gO0 T1

Lc2x/g ° 0 0
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and where we have introduced:

w = (U-Um)C z + (V-Vm) r

2.4.3.13

x = (U-Um)qz + (V-Vm)nr

Then the characteristic surfaces P(T,,11) are such that the rank of A

is less than four where:

A = ApT + B'i + C'6 2.4.3.14

Thus we have:

P( z C + pz n ) p(Cro + 1rp) 0

0 0 go(C z + nc)

S0p$ go(C r + nr)

-c2 /go  0 0

and where we have introduced:

+) wl +x 2.4.3.15

Now in our applications of the conditions of compatibility we shall

always require that either OC = 0 or that , = 0 so that the normal lies

either in the T-fl plane or the T- plane. We assume therefore that ! = 0.

The corresponding results for the case C = 0 will follow from considera-

tions of symmetry. With this assumption A reduces to:

$- pC pcro C  0

0 p5 0 gocz C

2.4.3.16

0 0 p$ go~rl

-c2/g 0 0
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Now we consider two possibilities
(i) Let 1 =0 Then A reduces to:

0 0~p pz0C C 0

0 0 0 g0 cj

A=

0 0 0 9

0 0 0 0

From this it is apparent that the streamline

S= 4 T + W = 0

is a characteristic direction. In order to establish the condition of com-
patibility we now introduce a and as coordinates internal to the charac-
teristic surface. Then we may write the augmented matrix as:

-{ap + P[ a + rj a, ]u + a[ O + -q a ]v}

-OP + P[ + T1 ]u + P[C + T1 ]v
{z ~ Zr Tj r ~ r T

f pau + g [~a+ rj a lp
2 0 0 z ~ Zf

- pav + g [C a + nj a ]p P
3 0 r~ rn oi

-{p~v + g [C + ]p}

- ~ -cP /g I- U3p -cp /i-0

where aand 13are defined by analogy with
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Accordingly, if we write i', i=1,..., 4 to denote the members of the
fifth column of At , the conditions of solvability yield the following con-

ditions of compatibility.

ZE3' - r 42 =0 2.4.3.17

4 0 2.4.3.18

A convenient choice for a , B is:

= = 2.4.3.19

and we will adhere to this convention. The use of a separate nomenclature
for the coordinates internal to the characteristic surface is again motivated

by the desire to maintain clarity in respect to the representation of the par-
tial derivatives.

Evidently:

T = = T 0

= =3 = 1

It follows that wv, = vT + wpC whereupon 2.4.3.17 may be identified as a
linear combination of the two momentum equations.

On the other hand, since the bicharacteristic ray satisfies dt = wdT we
can write 2.4.3.18 as:

-c
2  c

[pa - p d a = [ 4 - (p - g P )]dT 2.4.3.20
909

This is now recognized as the familiar one dimensional result with the

- derivatives (i.e. n -derivatives) taken to the right hand side and treated
formally as non-homogeneous terms.

(ii) Now let 4 # 0. Then perform successively the following row and column
operations to A as given by.equation 2.4.3.16. Add go/c 2 times column one to
column four; subtract czPc/P times row two from row one; subtract goCz /p$

times column two from column four; subtract gor q/p times column three from
column four; subtract - CrkC/ times row three from row one; add go/c 2 times row
four to row one. Then A is equivalent to A where:
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0 0 0 _2 [ C2 ( Z 24 2 + 2q 2)]

0 p$ 0

0 0 P$ 0

-c25/g 0 0 0
0

Accordingly, J can only be characteristic if:

2= c2  2 2.4.3.21

That is:

c[w _+ Cz2+T ] 2.4.3.22

Thus the bicharacteristics satisfy the familiar one dimensional form:

dT - d C 2.4.3.23
w ± c( 2+~2 VC( z +I

The corresponding condition of compatibility is easily seen to be:

I - CI2 -- $ I + gCTI = 0
12 3 C7 -4

Then choosing a and B as before, equation 2.4.3.19, and observing /$ = i/c
where c, = C(z 2 + Cr 2) the condition of compatibility may be expressed as:

{p + Pc ( zU + rV )

a go /27 do,

z r

= c,2dT{[ 1 - (xPo + PRIz uB + P]rV )]

+ - (pxu + gpn)

Cr

+ [ 3 - (OxvB + gopr)1

goc

2- [ - x(PN - g- P)j} 2.4.3.24

0
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As before, the - derivatives are, in effect, fl - derivatives which is to
say derivatives along a coordinate curve which we may align with a compu-
tational boundary. Again, 2.4.3.24 is analogous with the one dimensional

result with the cross derivatives ($ - derivatives) treated formally as non
homogeneous terms.

2.4.4. Two Phase Two Dimensional Unsteady Flow

Finally, we wish to establish complete results for a two dimensional
two phase flow, including the conditions of compatibility. As in the pre-
ceding section we shall see that the algebraic problem is complicated only
to the extent that the non-homogeneous terms now include derivatives along
one of the internal coordinate directions. This direction will always con-
form with a computational coordinate line as a consequence of the transfor-
mation 2.4.3.8 which we will also apply to the two phase flow equations.

In addition, we will introduce a parameter X into the solid phase mo-
mentum equations such that when A = 1 the pressure gradient is treated,
correctly, as a differential term and when A = 0, the pressure gradient is
treated as a non-homogeneous term. It is emphasized that the results
corresponding to a non-unit value of X are to be thought of as merely for-
mal; they do not represent the hyperbolic structure of the balance equa-
tions. Our purpose in introducing them is to provide certain approximate
results for use in determining numerical solutions.

The system to be studied includes, of course, the balance equations
2.1.1.1 through 2.1.1.7. In addition, we must consider the constitutive law
2.2.2.2 which is in differential form. The constitutive laws 2.2.6.2 and
2.2.7.1 need not be considered. Although they are expressed as partial
differential equations, they are not coupled, at a differential level, to
the other governing equations.

Eliminating the internal energy in favor of the pressure and density in
2.1.1.5 and adding the appropriate component of (A-i) (1-c)g 0 V p to each side
of 2.1.1.7 leads to the system, in transformed coordinates:

A k+ B' + C' -- =D 2.4.4.1
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Where:

p

U

V

p

E 2.4.4.2

u
p

Lp

+ pv

r

2 ~ f z+rn(u- u) -u

3 -f + (v- V) - v

D = 1{f .(tu-u )-s q + rn(e -e + p(--
4 E _e) p p p p p

p p 
p

+ -yp -- + (e ~ ke +f )
2g0 IG0

;l/ p + (1-Ov p/r

c f z+ (X-i) (1-c)g 0 P/ z

f r+ (X-1)(1-s)g 0 p/ar

0 2.4.4.3
8
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0 0 0 p 0 0 0

E 0 0 0 0 0 0

o 0 cp 0 0 0 0 0

C 0 0 1 0 0 0 0
e 2 2

0gA 2 .4 .4 ,4

0 0 0 0 1 0 0

0 0 0 0 0 (l-F) pp 0 0

o 0 0 0 0 0 (l-F) p 0

p

0 0 0 0 p 0 0 1

p 0

LW Ep4 Epr 0 pw 0 0 0w pz epr

o ow 0 goC z  0 0 0 0

o 0 pw cgo r  0 0 0 0

B' = 2.4.4.5

0 0 w0

o 0 0 0 w -(-C) z -(l-)4 0p zr

0 0 0 X (l-s)go0 z  0 (l-) ppWp 0 goC z

0 0 0 X (1-s) go0r  0 0 (l-) pvl) gCr

0 0 0 0 0 0 w
p 9 P
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6x CpT z  EprIr  0 px 0 0 0

0 Epx 0 goIz  0 0 0 0

0 0 Cpx gFo r  0 0 0 0

C' = 2.4.4.6
-c2x 00x 0 0 0 0
go

0 0 0 0 x - (l-) Tlr 0P

0 0 0 X(-)g nz 0 (1-C) ppxp 0 golz

0 0 0 X(-E)g nr 0 0 (1-6)p x go T

0 0 0 0 p a_ 0 0 x
P 0o P

As in the previous section we have introduced the kinematic coefficients
w, x, w and x such that:P p

w = (u-u )C + (v-v)
Tn z m

x = (u-u)p + (v-v )n

2.4.4.7

w = (u- u) z + (v- v)C r

x = (u p- u m)z + (v P- vm r

The characteristics are determined from the rank of A given by:
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4 EPa (zi cp (r 0 p$ 0 0 0

0 p0 0g( C z 0 0 0 0

+ nz I

0o 0 cp Eg(C r  0 0 0 0

+ nr n
r T

c i 0 0 cp0 0 0 0

A = 0 0 0 0 0-(-z)(4zp -(-s)(4r 0

+ nIz I )  + n]r I )

0 0 0 goX (l-)( z 0 (1-t) p 0 go(Cz

+ nJz n )  + )z n )

0 0 0 goX(1-)(C r 0 0 (1-C)p p p go (cr

+ nr I )  + Tjrl n

0 0 0 0 p 0 0
pg90  2.4.4.8

and where = + w + x

p T + Wp C + X p)

We do not pursue the general case any further. Our interest will be confined to
cases in which k, or = 0. As in the previous section, we proceed under the as-
sumption i = 0. Then the characteristic conditions are found to be:

T 2 2 T  2 jc24 2
( + w )- c, W a = X( ) + w] 2.4.4.9
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0 2.4.4.10

q =0 2.4.4.11

P

which are formally identical with the one dimensional results 6
. We have used:

C, 2 = C2 ( z2 + Cir2)

a, 2 = a 2 ( z2 + Cr2)

It is also clear why we have introduced the coefficient X. When X = 0, equa-
tion 2.4.4.9 factors and always has four real roots.

With the same choice of coordinates internal to the characteristic sur-
face as we used in the previous section we may tabulate the members of the last
column of the augmented matrix, Ci', i=1'...., 8 as:

!1

1 1 - [Cwpa + Pzu + EPrV + pwC ]

- [Cxp + Cplz u6 + EPflrV6 + pxC ]

2 , 2 - [Cpwu + egoczpa] - [E pxu6 + -goTnzpz]

3 = 3 - [CpwvU + grp ] - [pxv + T rP

c2  c2
- w[p g PI - x[p - -p]

4 4 X go a 0
'= - [w £ - (1-£) zUp - (1-£) rVp ]

5 5 [ P zpa rpa

- [x p - (l-)lzU - (l-E)r v 0]

6 = 6 - [A(l-)g° zP + (I-c)p W u + g 0z] a]

- [X(l-0)g oTz p + (l-C)pp x pU + g Cz ad

C7= C - [A(1-c)go Pa + (I-C)p wpvp + go ra ]

- [A(l-C)gorp + (1-C)ppxpVp0 + go0T]rCa

-w [ pDa2[ ] - X g C
8 8 p a g a p 9g0

o 0
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In terms of these quantities we may express the conditions of compatibility
corresponding to 2.4.4.10 and 2.4.4.11 in the simple forms:

I = 0 2.4.4.12
4

I' = 0 2.4.4.13
8

The condition of compatibility corresponding to the acoustic characteris-
tics of equation 2.4.4.10 has the form:

P [5 +  I- (C T 0 ' + goz- ('8
S 7 8 PP6 P8

: [1 ] 7 - 2 31 2.4.4.14

1 c '4 2 q 3

In order to deduce results in a form suitable for our computational
applications, we define:

E - [ ) + + Ep v + pxC ]61 1 [x gTzUH g rrj

2 = 2 - [CPxurT + g0pqzPr]

3 = E 3 - [Cpxv1 +cg0p rl

-4I~ c 2
1

" = C -x g P
0

- [xc - (-c)H u - (-c)H v{5 = 5 pH r)rzpr 1grrp

6 =6 - [X(1-s)g zP + (1-C)pp x pu + goqzHU]

7 7 [X(1-s)g rP + (l-C)pp x pv + aor

* 8 [a + 2go - ]
8 8 P Hi g 0 H
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Next, we use 2.4.1.10 to recast 2.4.4.9 as:

S 2 2 )2_ 2] =X 2  l-sj[d 2
d 2 - c, ] ( _ w a* 2 Xc 2 - w] 2.4.4.15
I( P p c dT

Evidently, when X = 0 this yields the roots:

d- = w + c and d -- = w + a
dT - dT p

We introduce y = dT -w 2.4.4.16

y w 2.4.4.17
p dT p

and, by reference to 2.4.4.14 we define:

S=* + 0* +-Z + * 2.4.4.18

* r go~ z * go_!

0 or 7 0 z
B PP y P PyP 6 y P 8

2.4.4.19

It then follows, when X = 0 and = 0 and y. = + a*, corresponding to the solid
phase acoustic characteristic, that 2.4.4.14 yields:

w
p y B + (-)( +-) u + v

p = { B zpo rp) } 2.4.4.20
o g (1+ _) r2 + Z2
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Moreover, when we have simply 4 = 0 then 2.4.4.14 may be written as:

ego 0-A + PYYP

c1 + w ( + W)(y 2- a*,2)
Y Y P

+ 
P

gow
1+-- y(i++y-()(2r 2

+ ,Z 2

+yyp(1-Z)( +;~ )( + +Orpc
+W

(1 + )) (y 2 - aa2)

gD wp r

Y Y

+ py P 2.4.4.21
1 W1+-

y

We note that whereas 2.4.4.20 requires A = 0, 2.4.4.21 does not. In practice,
however, we will use X = 0. Evidently 2.4.4.21 reduces to 2.4.4.20 when

yp = + a*. We will use 2.4.4.20 to determine values of a on the computational
boundaries. Equation 2.4.4.21 will be used, with y = + c, corresponding
to the gas phase acoustic characteristics, to determine values of p. We also
note:

+a 2.4.4.22
T dT

All the foregoing results were obtained subject to the assumption =.

The corresponding results for ;5 i follow from considerations of symmetry.
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3.0 TWO DIMENSIONAL CONVECTIVE FLAMESPREADING IN A CLOSED CHAMBER

From a consideration of the systems of balance equations presented in
the preceding section it may be seen that a logical step in the development
of a fully two dimensional interior ballistic code is the establishment of a
technique for the numerical solution of the equations of two phase flow in a
two dimensional, axisymmetric chamber. Techniques have been developed pre-
viously for one dimensional two phase flows in the full degree of generality
required by our ultimate goal. In the present section we confine ourselves
to the problem of convective flamespreading in a closed chamber, without
ullage. Thus we are concerned, for the moment, only with impermeable sta-
tionary external boundaries and not at all with internal boundaries. How-
ever, we will consider the complications imposed by the detailed geometry of
typical gun chambers, namely the hemispherical breech closure plug and the
projectile intrusion due to the presence of a boattail. The manner of ex-
tension of the present techniques, in combination with those previously de-
veloped, will be discussed in chapter 4.0.

The method of solution for a single region of continuous two phase flow
bounded by stationary impermeable walls is contained in section 3.1. Solu-
tions generated with this method are presented in section 3.2.

3.1 Method of Integration

The present section has five subsections, reflecting five aspects of
the task of numerical integration. In 3.1.1 we discuss the choice of co-
ordinate transformation used to map the physical domain onto a unit square.
In 3.1.2 we discuss the method of integration for interior mesh points and
in 3.1.3 we discuss the treatment of points which lie on the boundaries. In
section 3.1.4 we comment on the special treatment reserved for the boundary
points which lie on the corners of the computational domain. Finally, in
section 3.1.5 we note some numerical devices.

3.1.1 Coordinate Transformations

The physical domain has stationary boundaries in the present study.
Accordingly, a single transformation is sufficient to map the physical do-
main once and for all onto a unit square. However, in subsequent work we
will be confronted with the more general problem in which the boundaries are
mobile and which therefore demands a time dependent mapping technique.

The approach taken here consists of two steps. Initially, we transform
the arbitrarily configured physical domain onto a square by means of an
equipotential map. Subsequently, we effect a solid phase Lagrangian trans-
formation so that the mesh moves with the particles. This second step, which
is not really required in the present study, is expected to provide the de-

sired extension to the case in which the boundaries are mobile. It has,
moreover, several benefits even in the present case. The troublesome convec-
tive terms in the solid phase balance equations1 8 vanish. Accordingly, the
path of flamespreading is more sharply resolved due to the elimination of
numerical diffusion in the solid phase thermal equation, 2.2.6.2.
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Our approach to the first part of the coordinate transformation follows
that of Thompson et a129 . The computational coordinates are embedded into
an elliptic equation as follows:

zz + rr =0 3.1.1.1

)zz + irr = 0 3.1.1.2

It should be noted that as we have neglected the divergence terms, 3.1.1.1
and 3.1.1.2 do not express Laplace's equation in cylindrical coordinates.

We do not solve 3.1.1.1 and 3.1.1.2 directly. Rather, we solve the
inverted system:

Uz -2 z 0 + yz = 0 3.1.1.3

or -2 r q + yr = 0 3.1.1.4

where a z 2 + r 2

=z z +rr

y = z 
2 

+ r 
2

Thompson et al solved 3.1.1.3 and 3.1.1.4 subject to Dirichlet data on all
boundaries. In effect, therefore, only the distribution of mesh points on
the boundaries is required. The use of 3.1.1.3 and 3.1.1.4 produces a
smoothly varying network of mesh lines on the interior. In order to solve
3.1.1.3 and 3.1.1.4, we replace all derivatives by second order differences.
The resulting finite difference equations are solved using the method of suc-

cessive over-relaxation5 g.

In the present work, Dirichlet data are generated on each boundary by
specifying the element as a string of straight line segments. Mesh points
are always located on the ends of each segment. The interior of each seg-
ment is assigned mesh points at regularly spaced intervals. The number of
points assigned to the interior of each segment may be prespecified. If
the total number of points allocated to the boundary element is not exhausted
by the foregoing criteria, the surplus is allocated so as to minimize the
maximum physical mesh interval in the given boundary element.

5 9 . Roache, P.J. "Computationat Fluid Dynamc"

He>unosa Publisheu 1972
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In addition, we have encoded the capacity to apply Neumann data on any
or all boundary segments to express the requirement that the mesh lines in-
tercept the boundaries at right angles. Each of the four boundary elements
may only have one of Dirichlet or Neumann data over each of its segments.
Otherwise, the selection is arbitrary. When Neumann data are required only

the segment end points are predetermined. Boundary values are chosen to sat-
isfy the orthogonality condition as expressed by a second order one-sided
difference formula after each sweep of the interior by the relaxation scheme.

3.1.2 Integration at Interior Mesh Points

The integration scheme used for interior mesh points is basically the
MacCormack algorithm3 0 with some refinements suggested by Moretti3i The
basic algorithm of MacCormack, applied to the system:

D$-+ B + C 1 = D 3.1.2.1

may be expressed as a two-level scheme:

n
B.ni~ ni~ 1, , A ,i,j n,

n
C._11( n n

- A iJTI1 - )] At 3.1.2.2

n+1 n ~ B.
Pij= - (*~ +  ij ) + [DiLj - A- , -i-~

Ci'j At 3.1.2.3

Arl j~ - ijj -2

Thus alternating forward and backward differences are used for the repre-
sentation of the spacewise derivatives.

The modification suggested by Moretti relates to the discretization
of the convective derivatives. These are always represented by upstream
differences as follows, except where forbidden by proximity to a boundary:

Predictor

_ = -AC [i+lj - di j] 3.1.2.4

Corrector + [3i+,j 3 ..2--[3 -q.i 2 ,j- 2i..] 3.1.2.5

-i 7
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The upper or lower sign is used according as the pre-multiplying velocity
component is negative or positive respectively. It should be noted that
3.1.2.5 is not a second order accurate form. It only yields formal second
order accuracy in combination with 3.1.2.4. When the mesh point is adjacent
to a boundary and the rule expressed by 3.1.2.4, 3.1.2.5 would require data
outside the computational domain, we revert to the regular MacCormack pre-
scription.

We also note that the matrices B and C involve terms like Cz. These
are deduced by first expressing z., zq, rE, r by means of centered differ-
ences. Then Cz, Cr' "1z' Nr follow from an elementary theorem of partial
differentiation as:

Cz = r TC/Jr = - z /J

3.1.2.6

nz = - rC/J r = zC/J

where J = z r - z rC

It was not found necessary, in the cases considered in the present
study, either to time-split the non-homogeneous terms or to introduce im-
plicitness for stability. However, we have incorporated an element of im-
plicitness into the determination of the interphase drag. If we write

fs = (U-Up )IU-Up) then the vectorial prefactor is represented implicitly
in the term u.

The integration scheme is assumed to be stable when subjected to a
usual C-F-L domain of dependence limitation. If C is the fastest local
wavespeed we require:

At < (r -kr )z + (z -kz )r 3.1.2.7
A-/(r -kr )2 + (z -kz )2

Where k = + A /Af according as zpzC + r r > 0. In practice, we further
constrain this heuristic limit by dividing it by a safety factor which we

have taken to be 1.1.

3.1.3 Integration at Boundary Points

At the boundary poin we use a variation by Moretti 3 1 of a scheme
apparently due to Kentzer-. The method is based on the characteristic
forms of the balance equations. However, the characteristic forms are in-
tegrated explicitly using one sided differences for the spacewise deriva-
tives. We describe first the computational sequence and subsequently the
procedure of discretization.
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Along a ? = constant boundary we may combine the components of the gas

phase momentum equation to yield a tangential equation:

z3- r 2 go

v -  U = - Z xv + CrxU +- (C r - Czr)p 3.1.3.1

Equation 3.1.3.1 involves only T- and q- derivatives of the state variables
and may be marched forward according to the same prescription as we described
in the preceding section on interior points. Then the application of the
boundary condition, which requires the normal velocity component to vanish,
yields updated values of u and v. A similar procedure is followed for the

solid phase and, for both phases, on an l = constant boundary.

Then, the rate of propagation of granular disturbances is computed. If
it is zero, the porosity is updated directly from the solid phase continuity
equation using one sided differences for the normal derivatives as prescribed
by 3.1.2.4 and 3.1.2.5. If the rate of propagation is not zero, we use equa-
tion 2.4.4.20 to integrate a and then 6 follows from 2.4.4.13.

In any case, the pressure p follows from equation 2.4.4.21 and the den-
sity may then be determined from equation 2.4.4.12.

In discretizing the characteristic forms we use exactly the prescription
of the previous section, on interior points, to evaluate all derivatives
along the boundary. Except as noted in section 3.1.5, the normal spacewise
derivatives are evaluated according to 3.1.2.4 and 3.1.2.5 with the sign
chosen to ensure differencing inside the computational domain. The coordin-
ate transformation derivatives are deduced using centered differences for
the derivatives along the boundary and the usual second order one sided three
point difference for the normal derivatives.

3.1.4 Integration at Corner Points

At the corners both the normal derivatives and the derivatives along the

boundaries must be resolved in one-sided forms. Moreover, the definition of
the normal direction is ambiguous as it may coincide with either of the in-
tersecting coordinate lines. In the present study we have chosen the charac-
teristic plane according to the structure of the flow near the boundary. The
normal direction is chosen as either - T or as T] - T according as:

ICU +Cv PHlu + H v
Z~ r ' <ZHr r T

Except as noted in the following section, equations 3.1.2.4 and 3.1.2.5
are used to discretize both the normal and the tangential spacewise deriva-
tives of the state variables. The mesh transformation derivatives are de-
duced according to the usual second order accurate one sided difference
formula.
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3.1.5 Numerical Devices

The purpose of this section is to record certain details of the present
method of solution which amount to ad hoc devices. Two topics are addressed.
The first relates to the ignition of particles on the boundaries and the
second relates to the renresentation of normal derivatives in the character-
istic analysis.

We have noted previously in one dimensional studies1 8 that ignition
can be significantly delayed for particles on impermeable boundaries where
the slip velocity and hence the convective heating may vanish. Physically,
flamespreading is continued to the boundary by different mechanisms than
that expressed by our model. In our one dimensional work we simply extrapo-
lated the flame trajectory to the boundary in order to estimate the ignition
delay for particles on the boundary. In the present two dimensional study,
an extrapolation of the path of flamespreading is difficult due to the geo-
metrical factors. Moreover, in subsequent applications to bag charges we
expect to deal with permeable boundaries for which the extended ignition
delay does not arise. Accordingly, we have simply compared the surface tel--
perature of a particle on the boundary with that of its neighbor in the in-
terior and replaced it by the greater of the two values. Thus if there is
significant convective heating due to a tangential flow, ignition of a
boundary particle will follow in the natural manner. On the other hand, if
the boundary corresponds to a stagnation region, the particle temperature
follows that of its neighbor in the interior.

As described in section 3.1.3, thecorrector step in the analysis of the
boundary values involves a three point difference formula to provide overall
second order formal accuracy. We have found that as the flamefront approaches
the boundary, the three point formula provides less real accuracy than a uni-
formly first order scheme. The same effect has been noted in our one dimen-
sional solutions1S. Similar observations have been made in the context of
highly structured single phase flow 6 0 . Accordingly, we only use the three
point correctorwhen ignition has occurred at the boundary point in question.
During the pre-heat period we use the first order difference formula on both
the predictor and the corrector steps.

3.2 Numerical Results

We now present numerical results for three problems. In the first two
problems we assume that the projectile does not intrude into the combustion
chamber. These serve as a baseline against which to consider the third prob-
lem in which the projectile is assumed to have a long boattail. The first
two problems differ from one another only in respect to the law governing
the intergranular stresses. In the first problem the stress is assumed to
be reversible while, in the second, it is taken to be irreversible. The
data bases for these solutions are presented in section 3.2.1. The solu-
tions themselves are respectively discussed in sections 3.2.2 through 3.2.4.

6 0 "Abbett, M.J. "Boundary Condition Calculation Procedwzes foL Inviscid
Supe~orv>c Fow Fields" Pzoc. 1st AIAA Comp. Fluid Dynamin Conf. 1973
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3.2.1 Discussion of Data Bases

Figure 3.2.1.1 presents the boundary configurations and the initial mesh
distributions for the zero intrusion projectile, discussed in sections 3.2.2
and 3.2.3, and for the long intrusion projectile, discussed in section 3.2.4.
In both cases the mesh has been generated using Dirichlet data along each
boundary element.

The mesh for the zero intrusion projectile involves 16 points in the
axial direction and 7 in the radial direction. An overrelaxation coefficient
of 1.6 was used to produce a mesh convergent to 1 part in 105 after 36 iter-
ations. The 21x7 mesh used for the long intrusion projectile required 39
iterations to converge to the same precision. Notable features of the
physical domain, in both cases, are the representation of the curvature of
the breech and the taper of the tube. It is important to note that only the
four corners defined by the intersections of the four boundary elements are
treated explicitly inthe calculation. Thus, in the case of the long intru-
sion projectile the corner defined by the termination of the boattail at the
base is perceived implicitly by the numerical method as a point on a smooth
and continuously differentiable boundary curve. Therefore, numerical diffu-
sion is to be expected at this corner with a corresponding degradation of
accuracy.

The thermophysical data used to determine the three solutions are pre-
sented in Table 3.2.1.1. The tabular representation of the igniter discharge
is given in Table 3.2.1.2. Tables 3.2.1.3 and 3.2.1.4 respectively present
the tabular data used to define the boundary elements for the zero intrusion
and long intrusion cases.

It should be noted that the data bases are nominal in the sense that we
do not attempt to simulate a specific in-service round. The purpose of these
calculations is simply to enable us to appraise the operability of the numer-
ical scheme.

Attention is drawn to Table 3.2.1.2. The distribution of the igniter
venting function is seen to be quite localized, especially in the radial di-
rection. As only seven points are used to resolve the radial structure of
the flow we should not anticipate great accuracy in these solutions. How-
ever, problems of resolution concerning the igniter venting characteristics
are not a concern in the present study. We intend, in subsequent work, to
pose more properly the physical model of the center core igniter. Ultimately,
it will be treated as a separate computational zone, linked to the behaviour
of the two phase flow in the propelling charge by an explicit representation
of the boundary separating the two zones.
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Table 3.2.1.1 Thermophysical Properties Used in Two Dimensional Simulations

Initial Temperature (°K) 305.6

Initial Pressure (MPa) 0.1014

Initial Porosity (-) 0.5

Settling Porosity of Granular Bed (-) 0.5

Speed of Granular Compression Wave (m/sec) 442.

Speed of Granular Expansion Wave (m/sec)* 1270.

Density of Solid Phase (gm/cc) 1.6608

Thermal Conductivity (J/cm-sec-°K) 0.0016

Thermal Diffusivity (cm2/sec) 0.0006

Ratio of Specific Heats (-) 1.25

Molecular weight (gm/gmol) 28.8

Covolume (cc/gm) 1.084

Ignition Temperature (°K) 488.9

Chemical Energy of Propellant (J/gm) 4982.

Burn Rate Additive Constant (cm/sec) 0.

Burn Rate Pre-Exponential Factor (cm/sec-MPan ) 0.25159

Burn Rate Exponent (-) 0.6

External Diameter of Grain (cm) 1.270

Length of Grain (cm) 2.54

Diameter of Perforations (cm) 0.127

Number of Perforations (-) 7

Energy of Igniter (J/gm) 3487

Set equal to 442 m/sec for problem with reversible stress law
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Table 3.2.1.2 Tabular Data Used to Define Igniter Discharge*

Rate of Discharge at 0 msec

Radial Location (cm) 0 1.5 4.0
Axial Location (cm)

0. 27.68 27.68 0
10. 27.68 27.68 0
20. 0 0 0

Rate of Discharge at 1 msec

Radial Location (cm) 0 1.5 4.0
Axial Location (cm)

0. 27.68 27.68 0
10. 27.68 27.68 0
20. 0 0 0

*
Values linearly interpolated for arguments within table range.
Discharge zero outside table argument range.

Table 3.2.1.3 Tabular Data Used to Define Geometry of Chamber with
Zero Intrusion Projectile*

Axial Position (cms) Radial Position (cms)

Breech
3.0 0
3.0 4.5
2.5 6.0
1.5 7.5
0. 9.0

Projectile Base
33.0 0.
33.0 8.

Internal Boundary
3.0 0.

33.0 0.

External Boundary
0. 9.0
33.0 8.0

Points located on each boundary element by linear interpolation.
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Table 3.2.1.4 Tabular Data Used to Define Geometry of Chamber with
Long Intrusion Projectile*

Axial Position (cms) Radial Position (cms)

Breech

3.0 0.

3.0 4.5
2.5 6.0
1.5 7.5
0. 9.0

Projectile Base

33.0 0.
33.0 4.0
45.0 8.0

Internal Boundary

3.0 0.
33.0 0.

External Boundary

0. 9.0
45.0 8.0

Points located on each boundary element by linear interpolation.
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3.2.2 Zero Intrusion Projectile with Reversible Granular Stress Law

Some aspects of this solution are depicted in figures 3.2.2.1 through
3.2.2.7. These are confined to some distributions of porosity and pressure
at three times during the flamespreading process and the distribution of gran-
ular stress at the conclusion of flamespreading.

From the distribution of igniter venting given in Table 3.2.1.2 we antici-
pate the following sequence of physical events. As the rate of venting is
quite vigorous, that part of the bed adjacent to the region of venting is sub-
jected to intense convective heating from the initial instant. Therefore,
ignition occurs very quickly around the venting region. The convective flame
sweeps rapidly outward in the radial direction and induces ignition of the en-
tire rear portion of the charge. The equilibration of pressure over the cross-
section of the tube occurs faster than the forward spreading of the flame.
The flow soon develops a one dimensional character, with the distribution of
pressure resembling that of the NOVA code.

Figures 3.2.2.1, 3.2.2.2 and 3.2.2.3 present the distributions of poros-
ity at three times. Flamespreading is complete by 1.0 msec, the latest time

considered in these figures.

We note particularly the progressive rarefaction of the solid phase in
the region of igniter blast due to the gas dynamic forces exerted by the expand-
ing products of combustion. This rarefaction is, of course, balanced by a net

compression in the outer regions. The degree of compaction is comparatively
mild, due to the influence of the granular stress. In fact, the present prob-
lem is made relatively difficult from a computational point of view by the ab-
sence of an explicit treatment of ullage. The problem would be better posed,
computationally as well as physically, if the igniter were taken to vent into
the bed through a permeable boundary. In such a case, the region of rarefac-
tion seen in figures 3.2.2.1 through 3.2.2.3 would be replaced by a separate
computational zone and linked to the compacted bed by an explicitly repre-
sented internal boundary. This aspect of the solution will be present in all
the three cases which we consider. We will, in the succeeding sections, look
a little more closely at the evidence of numerical strain imposed by the re-
quirement of capturing, with a coarse mesh, the interaction between the com-
pression wave and the rarefaction wave in the solid phase.

Concerning the figures, we make the following general observations. They
are all oblique views of the three dimensional surface formed by the state
variable in question and the axial and radial coordinates. The axially di-
rected lines are, in fact, contours of constant q while the radially directed

lines constitute contours of constant C. Here C and q are the computational
coordinates. The intersections of the two families define the mesh point

values of the quantity in question. The contours are all drawn as straight
line segments between successive pairs of mesh points and hidden lines are re-
moved from the drawings. As the computational coordinates follow the motion
of the solid phase, the mesh distortion can be inferred from these figures,
particularly those for which the variable in question is essentially uniform.
It should also be noted that the axial length scale is foreshortened relative
to the radial length scale in all the figures.
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Returning now to the specific results, we consider figures 3.2.2.4
through 3.2.2.7. We note the fully two dimensional nature of the flow at
0.2 msec as the flame is still in the process of spreading radially. By
0.4 msec, radial equilibration is nearly complete and by 1.0 msec. the pres-
sure distribution has virtually no radial structure.

Figure 3.2.2.7 presents the distribution of granular stress at the con-
clusion of flamespreading. It, too, shows very little radial structure at
this time.

We will explore more fully the radial structure of the remaining state
variables in the two succeeding sections. Physically speaking, we are more
interested in the cases in which the granular stress law is irreversible. We
have now sufficient information about the present problem for our purpose,
namely to provide a benchmark comparison with the next problem.

3.2.3 Zero Intrusion Projectile with Irreversible Granular Stress Law

The solution for this problem is represented by figures 3.2.3.1 through
3.2.3.33 and is therefore displayed in much greater detail than that of the
preceding section.

We emphasize that the only physical difference between the present prob-
lem and that of the preceding section relates to the granular stress law. In
the preceding section the unloading modulus was taken to be the same as the
loading modulus. In the present section, as shown by Table 3.2.1.1, the un-
loading modulus, proportional to the square of the wave speed, is approxi-
mately ten times as great as the loading modulus.

Figure 3.2.3.1 presents the distribution of porosity following the com-
pletion of flamespreading at 1.0 msec. By comparison with figure 3.2.2.3 we
see that the relative absence of elastic recovery in the present example re-
sults in somewhat greater rarefaction in the region directly influenced by
the primer blast. Figure 3.2.3.2 presents the porosity at a still later
time and shows even greater expansion. Indeed, the porosity is very nearly
discontinuous at the leading edge of the granular rarefaction.

Figures 3.2.3.3 through 3.2.3.6 present distributions of pressure at
various times. The first three of these may be compared with their counter-
parts in the previous section. Evidently, the change in the granular stress
law has produced no qualitative changes in the pressure distributions and
only minor quantitative differences are seen. Figure 3.2.3.6 shows that by
1.3 msec the pressure has completely equilibrated throughout the chamber in
spite of the transient flamespreading process. This may be regarded as an
indication of the high degree of mechanical dissipation present in the two
phase flow. The figure also enables one to assess the total mesh distortion
which takes place during flamespreading.

Thus far we have discussed flamespreading without providing any quanti-
tative details of its history. In figures 3.2.3.7 through 3.2.3.11 we pre-
sent the distributions of the surface temperature of the solid phase. The
fully two dimensional flamespreading induced by the igniter blast is seen
clearly in figures 3.2.3.7 and 3.2.3.8. By 0.3 msec, as shown in figure
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3.2.3.9, flamespreading has a largely one dimensional character although the
continuing venting of the igniter produces a somewhat greater rate of spread-
ing at the centerline. This is also seen in figure 3.2.3.10. By 1.0 msec,
as seen in figure 3.2.3.11, flamespreading is complete.

These figures indicate just how short the preheat or induction phase is
at the leading edge of the flame. The surface temperature distribution es-
sentially consists of two plateaux, the lower at ambient temperature and the
higher at the ignition temperature. Actually, the upper surface is seen to
depart slightly from an ideally uniform distribution. The departure is due
to a slight overshoot of the temperature history during the time step corres-
ponding to the ignition event at any given mesh point.

In figures 3.2.3.12 through 3.2.3.15, we consider the distributions of
gas density at four times. These exhibit a pronounced entropy layer near the
external and forward boundaries when the pressure distributions are also taken
into account. The density at the external and forward boundaries, where igni-
tion is delayed due to weak convection, is seen to be very much greater than
that elsewhere in the chamber. In effect, the density at these boundaries re-
sults largely from an isentropic response to the pressure field. The tempera-
ture distribution is correspondingly depressed, as shown in figure 3.2.3.16.
Of course, once ignition has occurred on the boundaries the density distribu-
tion tends to become more uniform as may be seen by comparing figures 3.2.3.14
and 3.2.3.15.

Figures 3.2.3.12 and 3.2.3.13 reveal the rather weak adiabatic precursor
that runs ahead of the convective flame in the axial direction. It is also
clear why upstream differencing of the convective terms is necessary for
stability. The use of the standard MacCormack prescription for the convective
terms is found to lead to negative values of the density at mesh points adja-
cent to the cool boundaries.

We turn now to some additional aspects of the behaviour of the solid
phase, looking first at some distributions of granular stress and subsequently
at the velocity components.

The distributions of granular stress are presented in figures 3.2.3.17
through 3.2.3.22. In all of these figures the granular stress is seen to van-
ish in the region of igniter venting where the porosity corresponds to dispersed
flow. Figures 3.2.3.17 through 3.2.3.19 indicate that quite a strong radial
compression is established by the igniter blast. Then, as the flame penetrates
to the outside of the charge, the granular stress quickly unloads. By 0.6 msec,
as shown in figure 3.2.3.20, we have an essentially one dimensional compression
wave moving in the axial direction. The granular stress exerted on the base
of the projectile is seen, in figure 3.2.3.21, eventually to rise to a value
comparable to that experienced, much earlier, at the external boundary near
the breech in figure 3.2.3.19. By 1.3 msec, figure 3.2.3.22, the granular
stress has decayed strongly in the forward region. At this point the grains
have rebounded somewhat and a mild level of stress is seen in the outer part
of the breech.

In figure 3.2.3.22 we see, for the first time, an unsatisfactory level of
numerical noise. This is due in part to the non-analytical character of the

- 67 -



granular stress law and also to the numerical strain imposed by the interac-
tion of the reflected compression wave with the rarefaction in the region of
igniter blast. We do not address the problem of alleviating these numerical
wiggles in the present study. In the first place, they are associated with
relatively low amplitudes of granular stress. In the second place, as we
have already noted, subsequent studies will introduce an explicit internal
discontinuity to separate the region of igniter venting from the compacted bed.

Some idea of the granular velocity field may be had by reference to
figures 3.2.3.23 through 3.2.3.26. The maximum grain velocity appears to oc-
cur at the periphery of the region of igniter venting. We see that both the
axial and radial components have maxima equal to 11 m/sec and that these
maxima are virtually constant throughout flamespreading. Virtually no radial
motion of the charge occurs forward of the region of igniter venting. The
axial component is seen not to exceed 5 m/sec in this region at 0.6 msec and,
by 1.0 msec, to be slightly negative as the axial compression wave is reflec-

ted from the base of the projectile.

We conclude our discussion of this solution by examining some distribu-
tions of the components of the gas velocity. The axial component is illus-
trated at two times in figures 3.2.3.27 and 3.2.3.28. These reveal no espec-
ially surprising features in view of the preceding discussion. The gas vel-
ocity is seen to have a value of approximately 220 mi/sec at 0.6 msec. How-
ever, the maximum value has subsided to approximately 110 m/sec by 1.0 msec.
The largest value of the axial component occurs shortly after the start of
igniter venting and is approximately 270 m/sec or slightly more than that
shown in figure 3.2.3.27.

The distributions of the radial component of the gas phase velocity are
of somewhat greater interest, figures 3.2.3.29 through 3.2.3.33. At 0.2 msec,
the maximum value of the radial component is approximately 270 m/sec which is
the same as that for the axial component. By 0.6 msec, the maximum has al-
ready decreased to about 80 m/sec, by 1.0 msec to about 30 m/sec and by 1.3
msec to less than 10 m/sec. The rapid damping of the radial component of the
gas velocity is in accord with our previous findings based on the solutions

26for cylindrical flow

It is interesting to note, in figures 3.2.3.30 and 3.2.3.31, the exis-
tence of two maxima in the radial velocity distributions. The profile near
the breech is associated with the venting of the igniter which is represented
as continuing for 1 msec. The forward profile is apparently driven by the
tendency of the convective flame to produce ignition somewhat earlier at the
centerline than at the outside. Once the igniter venting is terminated the
radial velocity distribution at the rear reverses itself. Gas now flows in-
ward to supply the region attenuated by the igniter blast and which is accord-
ingly deficient in terms of local gas generation. This is seen in figures
3.2.3.32 and 3.2.3.33. The forward profile disappears altogether once igni-
tion of the bed is complete.
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3.2.4 Long Intrusion Projectile

This problem differs from that of the preceding section in respect to
the geometry of the projectile which is now taken to have a boattail which
intrudes into the combustion chamber. Thus we introduce an added measure of
geometrical complexity.

In many respects, however, the solution for the present problem resembles
that of the preceding section. Therefore, we will not present as many details
of the solution as we did in the preceding case. We will first provide some
indications of the similarity of the two solutions and, subsequently, dwell
on the differences. The present solution is represented by figures 3.2.4.1
through 3.2.4.21.

Figure 3.2.4.1 presents the distribution of porosity at 1.4 msec, follow-
ing the conclusion of flamespreading. The additional delay to complete flame-
spreading is, of course, due to the extension of the chamber defined by the
region around the boattail. We have, as in the preceding cases, a pronounced
rarefaction in the region of igniter blast accompanied by a modest compression
of the remainder of the charge.

Figures 3.2.4.2 through 3.2.4.5 present the distributions of pressure at
four different times. These resemble, qualitatively, the results presented
in the previous section. In particular we see that shortly after the conclu-
sion of flamespreading, figure 3.2.4.5, the pressure is virtually uniform
throughout the chamber, including the region around the boattail. Figure
3.2.4.5 also provides a clear indication of the total mesh distortion which
occurs during flamespreading.

We note that there is no sign of numerical wiggles in the vicinity of the
corner defined by the intersection of the boattail and the base of the projec-
tile. The density and temperature of the gas are equally well behaved as in-
dicated by figures 3.2.4.6 and 3.2.4.7. Of course, the pronounced entropy
layer is still present although, due to the somewhat later time considered
here, the effect is diminished at the external boundary.

Figures 3.2.4.8 through 3.2.4.11 illustrate the path of flamespreading.
By 1.0 msec the entire portion of the charge to the rear of the base is fully
ignited, in keeping with the finding of the previous section.

Distributions of granular stress are shown, at three times, in figures
3.2.4.12 through 3.2.4.14. The distribution at 0.3 msec is seen to be vir-
tually the same as in the previous case, as one would expect. By 1.0 msec
some differences are apparent as the stress becomes quite large in the region
around the boattail. At 1.3 msec the stress in the corner defined by the in-
tersection of the tube and the boattail reaches its maximum value of nearly
20 MPa. Subsequently, unloading occurs, partly as a consequence of wave re-
flection and partly due to combustion of the grains. We note that 20 MPa
represents a rather large value of the average granular stress. Considering
that the actual bearing surface to support the stress may be quite small, the
localized values within the grains may be significantly higher than this value.
Therefore the possibility of grain fracture ought not be overlooked.
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We conclude by examining some of the distributions of the velocity com-
ponents of each of the phases. The axial component of the gas velocity is
shown in figures 3.2.4.15 through 3.2.4.17. Again, the distribution at 0.6
msec resembles closely that of the previous section, the gas being quiescent
in the region around the boattail at this time. By 0.1 msec, the convection
around the boattail has strengthened as the flame begins to penetrate that
region. By 1.4 msec, however, the axial component of the gas phase velocity
has subsided significantly and a weak backflow is apparently about to occur,
near the breech, in the region rarefied by the igniter blast,

The corresponding distributions of the radial component of the gas phase
velocity are shown in figures 3.2.4.18 through 3.2.4.20. The only noteworthy
comment concerns the existence of a numerical wiggle in the corner defined by
the tube and the boattail. This is probably due to the relatively coarse mesh
spacing in that region, compounded by the delayed ignition. Once flamespread-
ing is complete, the wiggle is seen to be much less pronounced, figure 3.2.4.20.

Finally, in figures 3.2.4.21 and 3.2.4.22 we present the distributions of
the axial and radial components of the solid phase velocity. These have the
expected correspondence with their counterparts of the preceding section.
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4.0 CONCLUDING REMARKS

We have described the overall theoretical framework for a model of the
two dimensional flow in a gun. The objective of the model being the analysis
of longitudinal wave propagation, emphasis has been given to the precise nu-r
merical treatment of such potentially important aspects of the propelling
charge as the location of ullage and of the influence of bag material.

As a step towards the complete numerical implementation of the model,
we have encoded a method of solution of the equations of two dimensional hetero-
geneous reacting two phase flow and presented results for chamber geometries
whose complexity is typical of what we expect to encounter in howitzer charges.

We now provide some comments on the extendability of the present methods
to account for ullage and we indicate the next steps in the path of develop-
ment of the code.

Regarding the extension of the present method to account for ullage,
we comment successively on the overall approach to programming strategy, the
influence of the gas permeable internal boundaries and the mapping techniques
for the regions of ullage.

The strategy is a natural extension of that used previously in the devel-
opment of the one dimensional model1 8. We assume the existence of two user
supplied spatial resolution factors, one axial and one radial. Then a con-
tinuum representation is made of either the radial or the axial structure of
a given region of the flow in accordance with a criterion which compares the
extent of the region with that of the chamber as a whole. If the radial ex-
tent of the region exceeds the product of the radial resolution factor and
the radius of the tube, a continuum representation is made of the radial
structure of the flow and likewise for the axial structure. On this basis a
given region can be determined as two dimensional, quasi-one-dimensional, or as
lumped parameter.

The present method is well suited to the problem of the gas permeable
internal boundary. The jump conditions may be differentiated along the path-
line of the boundary to provide a system of partial differential equations
which are updated explicitly in combination with the characteristic forms
to yield new values of the state variables on both sides of the internal
boundary.

As regards the mapping of the regions of ullage, new considerations
arise only when the ullage is treated as a two dimensional region. However,
the equipotential map is easily made time dependent so that no difficulty is
anticipated in maintaining a suitable mesh distribution.

We conclude with some comments on the application of the code, in its
present form, to the analysis of flamespreading in a charge for which the
projectile intrusion is extremely large. Figure 4.1 presents two possible
mesh distributions for the representation of a 105mm Howitzer with the
XM622 projectile. The first distribution was generated by mapping the entire
rear surface of the projectile, including afterbody and boattail onto one
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side of the square computational domain. This approach is seen to provide
very crowded mesh lines in the rear of the chamber while the resolution at
the front is poor. Since the physical problem of interest relates to the
possibility of large granular stress in the corner defined by the intersec-

tion of the boattail and the tube, this mesh is unsatisfactory.

The second mesh was generated by mapping only the boattail onto one
side of the computational domain. The portion of the centerline between the

breech and the base of the projectile together with the entire afterbody has
been mapped onto the computational boundary normally thought of as the in-
ternal boundary. This is seen to provide a much better distribution of mesh
points. As motion of the projectile is not considered, no difficulty arises
from the apparent splitting of the physical boundary element.

However, it should be noted that a stagnation boundary condition is
applied to both phases at the corners of the computational mesh and nowhere
else. Accordingly, further attention will be required to the problem of
posing correctly, within the macroscopic point of view, the boundary condi-
tions at sharp internal edges of the type associated with projectiles having
a long afterbody.
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Fig. 3.2.2.1 Distribution of porosity at 0.2 msec in case of zero
intrusion projectile with reversible granular stress
law
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Fig. 3.2.2.3 Distribution of porosity at 1.0 msec in case of zero
intrusion projectile with reversible granular stress
law
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Fig. 3.2.2.6 Distribution of pressure at 1.0 msec in case of zero

intrusion projectile with reversible granular stress
law
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Fig. 3.2.2.7 Distribution of granular stress at 1.0 msec in case
of zero intrusion projectile with reversible granular

stress law
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Fig. 3.2.3.1 Distribution of porosity at 1.0 msec in case of zero

intrusion projectile with irreversible granular
stress law
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Fig. 3.2.3.2 Distribution of porosity at 1.3 msec in case of zero
intrusion projectile with irreversible granular
stress law
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Fig. 3.2.3.3 Distribution of pressure at 0.2 msec in case of zero
intrusion projectile with irreversible granular
stress law
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Fig. 3.2.3.4 Distribution of pressure at 0.4 msec in case of zero
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stress law
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Fig. 3.2.3.5 Distribution of pressure at 1.0 msec in case of zero

intrusion projectile with irreversible granular

stress law
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Fig. 3.2.3.7 Distribution of solid phase surface temperature at
0.1 msec in case of zero intrusion projectile with
irreversible granular stress law
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Fig. 3.2.3.8 Distribution of solid phase surface temperature at
0.2 msec in case of zero intrusion projectile with
irreversible granular stress law
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Fig. 3.2.3.9 Distribution of solid phase surface temperature at

0.3 msec in case of zero intrusion projectile with

irreversible granular stress law
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Fig. 3.2.3.11 Distribution of solid phase surface temperature at
1.0 msec in case of zero intrusion projectile with
irreversible granular stress law
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Fig. 3.2.3.12 Distribution of density of gas at 0.2 msec in case

of zero intrusion projectile with irreversible

granular stress law
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Fig. 3.2.3.13 Distribution of density of gas at 0.4 insec in case
of zero intrusion projectile with irreversible
granular stress law
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Fig. 3.2.3.14 Distribution of density of gas at 1.0 msec in case

of zero intrusion projectile with irreversible granular

stress law
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Fig. 3.2.3.15 Distribution of density of gas at 1.3 msec in case
of zero intrusion projectile with irreversible
granular stress law
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Fig. 3.2.3.16 Distribution of temperature of gas at 1.3 msec in case
of zero intrusion projectile with irreversible granular
stress law

- 96 -



ZERO INTRRUSIN PRJECTLE
IRREVERSIBLE STRESS LAW
STEP 1I4 TINE IHSEC) 0.100

U,

cc
C m

-

AXIAL LOCITION tCMS)

Fig. 3.2.3.17 Distribution of granular stress at 0.1 msec in case
of zero intrusion projectile with irreversible
granular stress law
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Fig. 3.2.3.18 Distribution of granular stress at 0.2 msec in case
of zero intrusion projectile with irreversible
granular stress law
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Fig. 3.2.3.19 Distribution of granular stress at 0.3 insec in case
of zero intrusion projectile with irreversible
granular stress law
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Fig. 3.2.3.20 Distribution of granular stress at 0.6 msec in case
of zero intrusion projectile with irreversible
granular stress law
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Fig. 3.2.3.21 Distribution of granular stress at 1.0 msec in case
of zero intrusion projectile with irreversible
granular stress law
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Fig. 3.2.3.22 Distribution of granular stress at 1.3 msec in case
of zero intrusion projectile with irreversible
granular stress law
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Fig. 3.2.3.25 Distribution of radial component of solid phase
velocity at 0.6 msec in case of zero intrusion
projectile with irreversible granular stress law
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Fig. 3.2.3.26 Distribution of radial component of solid phase
velocity at 1.0 msec in case of zero intrusion
projectile with irreversible granular stress law
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Fig. 3.2.3.27 Distribution of axial component of gas phase

velocity at 0.6 msec in case of zero intrusion

projectile with irreversible granular stress law
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Fig. 3.2.3.28 Distribution of axial component of gas phase
velocity at 1.0 msec in case of zero intrusion
projectile with irreversible granular stress law
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Fig. 3.2.3.29 Distribution of radial component of gas phase

velocity at 0.2 msec in case of zero intrusion

projectile with irreversible granular stress law
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Fig. 3.2.3.31 Distribution of radial component of gas phase
velocity at 1.0 msec in case of zero intrusion
projectile with irreversible granular stress law
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Fig. 3.2.3.32 Distribution of radial component of gas phase

velocity at 1.1 msec in case of zero intrusion

projectile with irreversible granular stress law
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Fig. 3.2.4.1 Distribution of porosity at 1.4 msec in case of
long intrusion projectile
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Fig. 3.2.4.2 Distribution of pressure at 0.2 insec in case
of long intrusion projectile
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Fig. 3.2.4.3 Distribution of pressure at 0.4 msec in case
of long intrusion projectile
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Fig. 3.2.4.4 Distribution of pressure at 1.0 msec in case
of long intrusion projectile
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Fig. 3.2.4.5 Distribution of pressure at 1.4 msec in case
of long intrusion projectile
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Fig. 3.2.4.6 Distribution of density of gas at 1.4 msec in case
of long intrusion projectile
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Fig. 3.2.4.7 Distribution of temperature of gas at 1.4 msec in

case of long intrusion projectile
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Fig. 3.2.4.8 Distribution of solid phase surface temperature
at 0.2 insec in case of long intrusion projectile
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Fig. 3.2.4.9 Distribution of solid phase surface temperature
at 0.4 msec in case of long intrusion projectile
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Fig. 3.2.4.11 Distribution of solid phase surface temperature
at 1.4 msec in case of long intrusion projectile
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Fig. 3.2.4.12 Distribution of granular stress at 0.3 msec in
case of long intrusion projectile
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Fig. 3.2.4.13 Distribution of granular stress at 1.0 msec in
case of long intrusion projectile
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Fig. 3.2.4.14 Distribution of granular stress at 1.3 msec in case
of long intrusion projectile
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Fig. 3.2.4.15 Distribution of axial component of gas phase
velocity at 0.6 msec in case of long intrusion
proj ectile
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Fig. 3.2.4.16 Distribution of axial component of gas phase
velocity at 1.0 msec in case of long intrusion
projectile
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Fig. 3.2.4.17 Distribution of axial component of gas phase velocity
at 1.4 msec in case of long intrusion projectile
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Fig. 3.2.4.18 Distribution of radial component of gas phase
velocity at 0.6 msec in case of long intrusion
projectile
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Fig. 3.2.4.19 Distribution of radial component of gas phase
velocity at 1.0 mfsec in case of long intrusion
proj ectile
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velocity at 1.0 msec in case of long intrusion
projectile

- 135 -



!1

S SD

Sc

S 9

Fig 4. wNosbeMs itiuin o 0m

Hoite wihX62Prjcie

-136



REFERENCES

i. Corner, J.
"Theory of the Interior Ballistics of Guns"
New York, John Wiley and Son, Inc. 1950

2. Baer, P.G. and Frankle, J.M.
"The Simulation of Interior Ballistics Performance of Guns
by Digital Computer Program"
BRL Report 1183 1962

3. Budka, A.J. and Knapton, J.D.
"Pressure Wave Generation in Gun Systems - A Survey"

BRL Memorandum Report 2567 1975

4. Kent. R.H.

"Study of Ignition of 155-mm Gun"
BRL Report 22 1935

5. Hedden, S.E. and Nance, G.A.
"An Experimental Study of Pressure Waves in Gun Chambers"

NPG Report 1534 1957

6. Horst, A.W., Jr. and Smith, T.C.
"The Influence of Propelling Charge Configuration on Gun
Environment Pressure-Time Anomalies"
Proc. 12th Jannaf Combustion Meeting 1975

7. May, I.W., Clarke, E.V. and Hassmann, H.

"A Case History: Gun Ignition Related Problems and Solutions
for the XM-198 Howitzer"
BRL Interim Memorandum Report 150 1973

8. Rocchio, J., Ruth, C. and May, I.
"Grain Geometry Effects on Wave Dynamics in Large Caliber Guns"
Proc. 13th Jannaf Combustion Meeting 1976

9. Horst, A.W., Smith, T.C. and Mitchell, S.E.

"Key Design Parameters in Controlling Gun - Environment
Pressure Wave Phenomena - Theory versus Experiment"
Proc. 13th Jannaf Combustion Meeting 1976

10. Horst, A.W., Jr. and Gough, P.S.

"Influence of Propellant Packaging on Performance of Navy
Case Gun Ammunition"
J. Ballistics v. 1 No.3 1977

11. East, J.L. and McClure, D.R.

"Projectile Motion Predicted by a Solid/Gas Flow Interior
Ballistic Model"
Proc. 10th Jannaf Combustion Meeting 1973

12. Krier, H., van Tassel, W.F., Rajan, S. and Vershaw, J.
"Model of Flame Spreading and Combustion Through Packed Beds
of Propellant Grains"
Tech. Rept AAE74-1, University of Illinois at Urbana-Champaign 1974

13. Kuo, K.K., Koo, J.H., Davis, T.R. and Coates, G.R.
"Transient Combustion in Mobile, Gas-Permeable Propellants"
Acta Astron. v.3, No.7-8 pp. 5 74 -59 1  1976

- 137 -



14. Gough, P.S. and Zwarts, F.J.

"Theoretical Model for Ignition of Gun Propellant"

Final Report, Part II, Contract N00174-72-C-0223 1972

15. Gough, P.S.
"Fundamental Investigation of the Interior Ballistics of Guns"

Final Report, Contract N00174-73-C-0501 1974

16. Gough, P.S.
"The Flow of a Compressible Gas Through an Aggregate of
Mobile, Reacting Particles"
Ph.D Thesis McGill University 1974

17. Gough, P.S.
"Computer Modelling of Interior Ballistics"
Final Report Contract N00174-75-C-0131 1975

18. Gough, P.S.

"Numerical Analysis of a Two-Phase Flow with Explicit
Internal Boundaries"
Final Report Contract N00174-75-C-0259 1977

19. Fisher, E.B. and Graves, K.W.

"Mathematical Model of Double Base Propellant Ignition and
Combustion in the 81mm Mortar"
CAL Report No. DG-3029-D-1 1972

20. Fisher, E.B. and Trippe, A.P.
"Mathematical Model of Center Core Ignition in the 175mm Gun"
Calspan Report No. VQ-5163-D-2 1974

21. Fisher, E.B.
"Propellant Ignition and Combustion in the 105mm Howitzer"
Calspan Report No. VQ-5524-D-1 1975

22. Fisher, E.B. and Trippe, A.P.
"Development of a Basis for Acceptance of Continuously
Produced Propellant"
Calspan Report No. VQ-5163-D-1 1973

23. Nelson, C.

"Comparison of Predictions of Three Two-Phase Flow Codes"
BRL Memorandum Report 2729 1977

24. Horst, A., Nelson, C. and May I.
"Flame Spreading in Granular Propellant Beds: A Diagnostic
Comparison of Theory to Experiment"
Proc. AIAA/SAE 13th Joint Propulsion Conference 1977

25. Horst, A.W., May, I.W. and Clarke, E.V., Jr.

"The Missing Link Between Pressure Waves and Breechblows"
Proc. 14th Jannaf Combustion Meeting 1977

26. Gough, P.S.
"Theoretical Study of Two-Phase Flow Associated with Granular
Bag Charges"
Final Report, Contract DAAKII-77-C-0028 1978

27. Clarke, E.V. Jr. and May, I.W.
"Subtle Effects of Low-Amplitude Pressure Wave Dynamics
on the Ballistic Performance of Guns"
Proc. 11th Jannaf Combustion Meeting 1974

- 138 -



28. Olenick, P.J. Jr.
"Investigation of the 76rmm/62 Caliber Mark 75 Gun Mount
Malfunction"
NSWC/DL TR-3144 1975

29. Thompson, J.F., Thames, F.C. and Mastin, C.W.
"Automatic Numerical Generation of Body-Fitted Curvilinear
Coordinate System for Field Containing Any Number of Arbitrary
Two-Dimensional Bodies"
J. Comp. Phys. 15 299-319 1974

30. MacCormack, R.W.
"The Effect of Viscosity in Hypervelocity Impact Cratering"
AIAA Paper No. 69-354 1969

31. Moretti, G.
"Calculation of the Three-Dimensional, Supersonic, Inviscid,
Steady Flow Past an Arrow-Winged Airframe"
POLY-AE/AM Report No. 76-8 1976

32. Kentzer, C.P.
"Discretization of Boundary Conditions on Moving Discontinuities"
Proc. 2nd Int. Conf. on Num. Meth in Fluid Dynamics
Berkeley, Calif. Sept. 15-19 1970

33. Shelton, S., Bergles, A. and Saha, P.
"Study of Heat Transfer and Erosion in Gun Barrels"
AFATL-TR-73-69 1973

34. Gough, P.S. and Zwarts, F.J.
"Modeling Heterogeneous Two-Phase Reacting Flow"
AIAA J v.17 n.1 pp.17-25 January 1979

35. Harlow, F.H. and Amsden, A.A.
"Numerical Calculation of Multi phase Fluid Flow"
J. Comp. Phys. 17 19-52 1975

'6. Harlow, F.H. and Amsden, A.A.
"Flow of Interpenetrating Material Phases"
J. Comp. Phys. 18 440-464 1975

37. Harlow, F.H. and Amsden, A.A.
"K-TIF: A Two-Fluid Computer Program for Downcomer Flow
Dynamics"
Los Alamos Scientific Laboratory, LA 6994 1978

38. Rivard, W.C. and Torrey, M.D.
"K-FIX: A Computer Program for Transient, Two-Dimensional,
Two-Fluid Flow"
Los Alamos Scientific Laboratory, LA-NUREG-6623 1977

39. Amsden, A.A. and Harlow, F.H.
"KACHINA: An Eulerian Computer Program for Multifield
Fluid Flows"
Los Alamos Scientific Laboratory, LA-5680 1974

40. Lee, W.H. and Lyczkowski, R.W.
"Development of a State-of-the-Art Reactor Containment Program"
Proc. 17th National Heat Transfer Conference 1977

- 139 -



41. Moretti, G.
"The Importance of Boundary Conditions in the Numerical

Treatment of Hyperbolic Equations"

PIBAL Report No. 68-34 1968

42. Kuo, K.K., Vichnevetsky, R. and Summerfield, M.

"Theory of Flame Front Propagation in Porous Propellant

Charges Under Confinement"

AIAA J. v.11 No.4 1973

43. Krier, H., Shimpi, S.A. and Adams, M.J.

"Interior Ballistic Predictions Using Data From Closed and

Variable Volume Simulators"

Tech. Rept.AAE73-6, University of Illinois at L]rbana-Champaign 1973

44. Ergun, S.

"Fluid Flow Through Packed Columns"

Chem. Eng. Progr. v.48 p.89 1952

45. Anderssen, K.E.B.

"Pressure Drop in Ideal. Fluidization"

Chem. Eng. Sci. v.15 1961

46. Stanek, V. and Szekely, J.

"The Effect of Non-Uniform Porosity in Causing Flow

Maldistributions in Isothermal Packed Beds"

Can. J. Chem. Eng. v.50 1972

47. Kuo, K.K. and Nydegger, C.C.

"Flow Resistance Measurement and Correlation in a

Packed Bed of WC-870 Ball Propellants"

J. Ballistics, v.2, No.1 p. 1  1978

48. Robbins, F. and Gough, P.S.

"An Experimental Determination of Flow Resistance in

Packed Beds of Gun Propellant"

Proc. 15th Jannaf Combustion Meeting September 1978

49. van der Merwe, D.F. and Gauvin, W.H.

"Pressure Drag Measurements for Turbulent Air Flow

Through a Packed Bed"

A.I.Ch.E.J 1971

50. Denton, W.H.

"General Discussion on Heat Transfer"

Inst. Mech. Eng. and Am. Soc. Mech. Eng. 1951

51. Gelperin, N.I. and Einstein, V.G.

"Heat Transfer in Fluidized Beds"

Fluidization, edited by J.F. Davidson and I). Harrison

Academic Press 1971

52. Jakus, K.

"Study of Flame.Spreading Through Single Base Propellant Beds"

Proc. 11th Jannaf Combustion Meeting 1974

53. Kraiko. A.N. and Sternin, L.E.

"Theory of Flow of a Two-Velocity ConLinuous Medium Containing

Solid or Liquid Particles"

PMM, v.29, n.3 1965

- 140 -



54. Prandtl, L. and Tietjens, O.G.
"Fundamentals of Hydro- and Aeromechanics"
Dover Publications 1957

55. Kaufmann, W.
"Fluid Mechanics"
McGraw-Hill 1963

56. Shapiro, A.H.
"The Dynamics and Thermodynamics of Compressible Fluid Flow"
Ronald Press 1953

57. Hadley, G.
"Linear Algebra"
Addison-Wesley 1961

58. Courant, R. and Hilbert, D.
"Methods of Mathematical Physics"
Interscience 1953

59. Roache, P.J.
"Computational Fluid Dynamics"
Hermosa Publishers 1972

60. Abbett, M.J.
"Boundary Condition Calculation Procedures for Inviscid Supersonic
Flow Fields"
Proc 1st AIAA Comp. Fluid Dynamics Conference 1973

- 141 -



NOMENCLATURE

Certain symbols are used in different contexts with different meanings.
It is not expected that confusion will result as the contexts are very differ-
ent.

English Symbols

A Cross sectional area of a quasi-one-dimensional flow

a Rate of propagation of granular disturbances
aI  Value of a for settled bed during compression
a Value of a for unloading or reloading bed when porosity is less thansettling porosity

B Burn rate additive constant
B2 Burn rate pre-exponential factor
b Covolume of gas phase
c Speed of sound in gas phase
CvC p  Specific heats at constant volume and constant pressure
D Effective diameter of a grain of propellant

( Rate of surface regression of burning propellant
E Sum of internal and kinetic energies
e Internal energy of gas phase
e Chemical energy released in combustion of solid phase
FRES Bore resistance

f Interphase drag
go Constant used to reconcile units of measurement
H Parameter used to deduce propellant surface temperature by cubic

profile method
h Heat transfer coefficient
I Polar moment of inertia of projectile
k Thermal conductivity
M Projectile Mass

Meff Effective projectile Mass

m Mass production per unit volume per unit time due to propellant
combustion

mi,mo Mass fluxes to and from a region

n Normal vector
n Burn rate exponent
Pr Prandtl number
p Pressure

q Heat flux
R Intergranular stress
Re Reynolds number based on effective particle diameter
Ri ,R0  Radii of surfaces of quasi-one-dimensional axial flow across which

mass enters and exits, respectively
r Radial coordinate

S Surface area of a propellant grain
s p Surface area of propellant per unit volume
Tp  Gas temperature
T Surface temperature of solid phase
t Time
u Gas velocity vector, components (u,v)
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Up Solid phase velocity vector, components (up,vp)
VP Volume of a propellant grain
w,wp P - component of gas, solid velocity in computational plane
X,Xp q - component of gas, solid velocity in computational plane
z Axial coordinate

Greek Symbols

aCharacteristic coordinate
a P Thermal diffusivity of a grain

Virtual mass coefficient; also characteristic coordinate
y Ratio of specific heats
EPorosity
6o Settling porosity
CComputational coordinate
TI Computational coordinate
e Angle of rifling of tube
X Coefficient used to render balance equations pseudo-totally

hyperbolic
P Viscosity
p Density of gas

Pp Density of solid propellant, a constant
a (l-C)R

t Time coordinate in computational frame
Rate of production of gas per unit volume due to igniter; also
used to represent a column vector of state variables

Special symbols and subscripts

D/Dt Convective derivative along average gas phase streamline
D/Dtp Convective derivative along average solid phase streamline

A dot over a quantity indicates differentiation with respect to
time along a material path line

IG, p The subscript IG is used to denote properties of the igniter and
p is used to denote properties of the solid phase. Gas phase

properties are unsubscripted
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