
AEROSPACE REPORT NO.
ATR-94(4778)-4

A Formal Description of the Incremental
Translation of Stage 4 VHDL into State Deltas
in SDVS

30 September 1994

Prepared by

I. V. FILIPPENKO
Trusted Computer Systems Department
Computer Science and Technology Subdivision
Computer Systems Division
Engineering and Technology Group

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

Engineering and Technology Group

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

^ A -LktiL'.-

THE AEROSPACE
CORPORATION

El Segundo, California 19970929 121

AEROSPACE REPORT NO.
ATR-94(4778)-4

A FORMAL DESCRIPTION OF THE INCREMENTAL TRANSLATION
OF STAGE 4 VHDL INTO STATE DELTAS IN SDVS

Prepared by

I. V. FILIPPENKO
Trusted Computer Systems Department

Computer Science and Technology Subdivision
Computer Systems Division

Engineering and Technology Group

30 September 1994

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

AEROSPACE REPORT NO.
ATR-94(4778)-4

A FORMAL DESCRIPTION OF THE INCREMENTAL TRANSLATION OF
STAGE 4 VHDL INTO STATE DELTAS IN SDVS

Prepared by

-i v,r;
I. V. Filippenko

Approved by

/' r
- ■ ^ ill /£,, ,

L. G. Marcus, Principal Investigator
Computer Assurance Section

V
D. B. Baker, Director
Trusted Computer Systems Department

in

Abstract

This report documents a formal semantic specification of Stage 4 VHDL, a subset of the
VHSIC Hardware Description Language (VHDL), via translation into the temporal logic of
the State Delta Verification System (SDVS). Stage 4 VHDL is the fifth of successively more
sophisticated VHDL subsets to be interfaced to SDVS.

The specification is a continuation-style denotational semantics of Stage 4 VHDL in terms

of state deltas, the distinguishing logical formulas used by SDVS to describe state transi-
tions. The semantics is basically specified in two phases. The first phase performs static
semantic analysis, including type checking and other static error checking, and collects an
environment for use by the second phase. The second phase performs the actual transla-
tion of the subject Stage 4 VHDL description into state deltas. An abstract syntax tree
transformation is interposed between the two translation phases.

The translator specification was, for the most part, written in DL, the semantic metalan-
guage of a denotational semantics specification system called DENOTE. DENOTE enables
the semantic equations of the specification to be realized both as a printable representation
(included in this report) and an executable Common Lisp program that constitutes the
translator's implementation. However, the second phase semantics of the VHDL simulation
cycle has a direct operational implementation in the VHDL translator code.

Acknowledgments

The author thanks his colleagues in the Computer Assurance Section for their support and
contributions to the adaptation of SDVS to VHDL.

VI

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

2 History of Our Semantic Approach to VHDL 4

3 Overview of Stage 4 VHDL 5

4 Preliminaries 9

4.1 Environments 9

4.2 Continuations 12

4.3 Other Notation and Functions 12

5 Syntax of Stage 4 VHDL 14

5.1 Syntactic Domains 15

5.2 Syntax Equations 15

5.2.1 Concrete Syntax 16

5.2.2 Abstract Syntax: Phase 1 32

5.2.3 Abstract Syntax: Phase 2 34

6 Phase 1: Static Semantic Analysis and Environment Collection 38

6.1 Overview 38

6.2 Descriptors, Types, and Type Modes 39

6.2.1 Type and type descriptor predicates 45

6.2.2 Additional primitive accessors and predicates 46

6.3 Special-Purpose Environment Components and Functions 49

6.4 Phase 1 Semantic Domains and Functions 50

6.4.1 Phase 1 Semantic Domains 51

6.4.2 Phase 1 Semantic Functions 52

6.5 Phase 1 Semantic Equations 55

vii

6.5.1 Stage 4 VHDL Design Files 55

6.5.2 Design Units 57

6.5.3 Contex Items 57

6.5.4 Library Units 57

6.5.5 Configuration Declarations 58

6.5.6 Entity Declarations 60

6.5.7 Architecture Bodies 61

6.5.8 Generic Declarations 61

6.5.9 Port Declarations 62

6.5.10 Generic Maps and Port Maps 63

6.5.11 Declarations 66

6.5.12 Concurrent Statements 83

6.5.13 Sensitivity Lists 87

6.5.14 Sequential Statements 88

6.5.15 Case Alternatives 95

6.5.16 Discrete Ranges 96

6.5.17 Waveforms and Transactions 98

6.5.18 Expressions 98

6.5.19 Primitive Semantic Equations 105

7 Interphase Abstract Syntax Tree Transformation 106

7.1 Interphase Semantic Functions 106

7.2 Transformed Abstract Syntax of Names 107

7.3 Interphase Semantic Equations 109

7.3.1 Stage 4 VHDL Design Files 109

7.3.2 Design Units 109

7.3.3 Contex Items 109

7.3.4 Library Units 109

7.3.5 Configuration Declarations 110

7.3.6 Entity Declarations 110

7.3.7 Architecture Bodies Ill

vin

7.3.8 Generic Declarations Ill

7.3.9 Port Declarations Ill

7.3.10 Generic Maps and Port Maps 112

7.3.11 Declarations 112

7.3.12 Concurrent Statements . 113

7.3.13 Sensitivity Lists 115

7.3.14 Sequential Statements 115

7.3.15 Case Alternatives 117

7.3.16 Discrete Ranges 117

7.3.17 Waveforms and Transactions 117

7.3.18 Expressions 117

8 Phase 2: State Delta Generation 121

8.1 Phase 2 Semantic Domains and Functions 121

8.1.1 Phase 2 Semantic Domains 122

8.1.2 Phase 2 Semantic Functions 123

8.2 Phase 2 Execution State 125

8.2.1 Unique Name Qualification 125

8.2.2 Universe Structure for Unique Dynamic Naming 125

8.2.3 Execution Stack 128

8.3 Special Functions 130

8.3.1 Operational Semantic Functions . 130

8.3.2 Constructing State Deltas 131

8.3.3 Error Reporting 132

8.4 Phase 2 Semantic Equations 133

8.4.1 Stage 4 VHDL Design Files 133

8.4.2 Design Units 138

8.4.3 Contex Items 138

8.4.4 Library Units 139

8.4.5 Configuration Declarations 139

8.4.6 Entity Declarations 140

IX

8.4.7 Architecture Bodies 140

8.4.8 Declarations 140

8.4.9 Concurrent Statements 159

8.4.10 Sequential Statements 160

8.4.11 Waveforms and Transactions 179

8.4.12 Expressions 179

8.4.13 Expression Types 184

8.4.14 Primitive Semantic Equations 186

9 Conclusion 1ST

References 188

1 Introduction

The State Delta Verification System (SDVS), under development over the course of several
years at The Aerospace Corporation, is an automated verification system that aids in writing
and checking proofs that a computer program or (design of a) digital device satisfies a formal

specification.

The long-term goal of the SDVS project is to create a production-quality verification system

that is useful at all levels of the hierarchy of digital computer systems; our aim is to verify
hardware from gate-level designs to high-level architecture, and to verify software from the
microcode level to application programs written in high-level programming languages. We
are currently extending the applicability of SDVS to both lower levels of hardware design
and higher levels of computer programs. A technical overview of the system is provided by
[1] and [2], while detailed information on the system may be found in [3] and [4].

Several features distinguish SDVS from other verification systems (refer to [5] for a detailed
discussion). The underlying temporal logic of SDVS, called the state delta logic, has a
formal model-theoretic semantics. SDVS is equipped with a theorem prover that runs in
interactive or batch modes; the user supplies high-level proof commands, while many low-
level proof steps are executed automatically. One of the more distinctive features of SDVS
is its flexibility — there is a well-defined and relatively straightforward method of adapting
the system to arbitrary application languages (to date: ISPS, Ada, and VHDL). Further-
more, descriptions in the application languages potentially serve as either specifications or
implementations in the verification paradigm. Incorporation of a given application language
is accomplished by translation to the state delta logic via a Common Lisp translator pro-
gram, which is (generally) automatically derived from a formal denotational semantics for

the application language.

Prior to 1987 we adapted SDVS to handle a subset of the hardware description language
ISPS. However, ISPS has serious limitations regarding the specification of hardware at levels
other than the register transfer level. In fiscal year 1988 we documented a study of some
of the hardware verification research being conducted outside Aerospace and investigated
VHDL (VHSIC Hardware Description Language), an IEEE and DoD standard hardware
description language released in December 1987. We selected VHDL as a possible medium
for hardware description within SDVS.

The aim of the ongoing formal hardware verification effort in SDVS is to verify hardware
descriptions written in VHDL. This choice of hardware description language is particu-
larly well-suited to our overall aim of verifying hardware designs across the spectrum from
gate-level designs to high-level architectures. Indeed, the primary hardware abstraction in
VHDL, the design entity, represents any portion of a hardware design that has well-defined
inputs and outputs and performs a well-defined function. As such, "a design entity may
represent an entire system, a sub-system, a board, a chip, a macro-cell, a logic gate, or any
level of abstraction in between" [6].

Prerequisites for adapting SDVS to VHDL are (1) to define VHDL semantics formally in
terms of SDVS's underlying logic (the state delta logic) and (2) to implement a translator
from VHDL to the state delta logic. As with the incorporation of Ada into SDVS [7], the

approach taken with VHDL has been to implement increasingly complex language subsets;
this has enabled a graded, structured approach to hardware verification.

In fiscal year 1989 we defined an initial subset of VHDL, called Core VHDL, that cap-
tured the most essential behavioral features of VHDL, including: ENTITY declarations;
ARCHITECTURE bodies; CONSTANT, VARIABLE, SIGNAL, and PORT declarations; predefined
types BOOLEAN, BIT, BIT.VECTOR, and INTEGER; variable and signal assignment statements;
IF, CASE, WAIT, and NULL statements; and concurrent PROCESS statements. We defined both
the concrete syntax and the abstract syntax for Core VHDL, formally specified its seman-
tics and, on the basis of this semantic definition, implemented a Core-VHDL-to-state-delta

translator [8].

In fiscal year 1990, SDVS was enhanced to provide the capability of verifying hardware
descriptions written in Core VHDL [9, 10]. In fiscal year 1991, the translator underwent ex-
tensive revision to accommodate a second VHDL subset, Stage 1 VHDL [11], which included:

WAIT statements in arbitrary contexts; LOOP, WHILE, and EXIT statements; TRANSPORT delay;

aggregate signal assignments; and a revised translator structure.

Implemented in fiscal year 1992, Stage 2 VHDL provided a considerably more complex and
capable VHDL language subset. Stage 2 VHDL extended Stage 1 VHDL with the addition
of the following VHDL language features: (restricted) design files, declarative parts in
entity declarations, package STANDARD (containing predefined types BOOLEAN, BIT, INTEGER,
TIME, CHARACTER, REAL, STRING, and BIT-VECTOR), user-defined packages, USE clauses, array
type declarations, enumeration types, subprograms (procedures and functions, excluding
parameters of object class SIGNAL), concurrent signal assignment statements, FOR loops,
octal and hexadecimal representations of bitstrings, default object class SIGNAL for ports,

and general expressions of type TIME in AFTER clauses.

The VHDL language subset implemented in fiscal year 1993, Stage 3 VHDL, extended Stage
2 VHDL with the addition of subtypes of scalar types, integer type definitions, and type
conversions between integer types. Furthermore, the capability was added to set "statement
marks" (in the form of interpreted comments) for sequential statements. Finally, a facility
for specifying, proving, and invoking the behavior of a VHDL subprogram — VHDL offline
characterization — was implemented [3]. The SDVS VHDL and Ada translators were
reengineered to a uniform implementation reflecting language similarities where these exist,

and optimized for greater space- and time-efficiency.

Stage 4 VHDL, implemented in fiscal year 1994, comprises a significantly more powerful
subset of VHDL than did previous stages, in that Stage 4 VHDL admits the structural
description of hardware in terms of its hierarchical decomposition into connected subcom-
ponents as outlined in [12]. The previous versions of the SDVS VHDL translator handled
only behavioral (e.g., algorithmic or dataflow) hardware descriptions. Thus, Stage 4 VHDL
incorporates language constructs such as component declarations, component instantiation
statements, BLOCK statements, generics, generic maps, port maps, and configuration decla-

rations.

The purpose of the present report is to provide a formal description of the translation of
Stage 4 VHDL hardware descriptions into state deltas. This amounts to a formal semantic
specification of Stage 4 VHDL, presented herein as a continuation-style denotational seman-

tics [13] for which the state delta language provides the semantic domain. The translation
basically consists of parsing followed by two semantic analysis phases.

The first phase receives the abstract syntax tree generated by the Stage 4 VHDL parser for

a given hardware description, and:

• performs static semantic analysis, including type checking;

• collects an environment that associates all names declared in the subject Stage 4
VHDL hardware description with their attributes;

• appropriately disambiguates identical names declared in different scopes, as required
by the static block structure of the hardware description; and

• for the convenience of the second phase, transforms the abstract syntax tree of the

subject hardware description.

Phase 2 receives the transformed abstract syntax tree and the environment constructed by
Phase 1, and uses these to translate the Stage 4 VHDL hardware description into state
deltas. This translation is incremental, in the sense that it is driven by symbolic execution
of the hardware description, producing further state deltas as symbolic execution proceeds.

The Stage 4 VHDL formal description is an extensive revision and expansion of the formal
specifications of the Core VHDL, Stage 1 VHDL, Stage 2, and Stage 3 VHDL translators
[8, 11, 14, 15]. The Stage 4 VHDL translator specification was written in DL, the semantic
metalanguage of a denotational semantics specification system called DENOTE [16]. DE-
NOTE enables the semantic equations of the specification to be automatically translated
into both a printable representation (included in this report) and an executable Common
Lisp program that constitutes the translator's implementation.

This report is organized as follows.

• Our approach to the semantics of Stage 4 VHDL is discussed in Section 2.

• Section 3 contains an overview of the Stage 4 VHDL subset.

• Section 4 provides preliminary information (background and notation) on the partic-

ular method of semantic description used.

• Section 5 lists both the concrete and abstract syntax of Stage 4 VHDL.

• Section 6 presents the Stage 4 VHDL static semantics.

• Section 7 presents the interphase abstract syntax tree transformation.

• Section 8 presents the Stage 4 VHDL dynamic semantics in terms of state deltas.

• Finally, some concluding remarks are made in Section 9.

2 History of Our Semantic Approach to VHDL

The VHDL translator essentially functions as a simulator kernel, maintaining a clock and
a list of future events that are defined as state deltas. For Core VHDL (fiscal years 1989
and 1990), the translator transformed possibly multiple Core VHDL statements: sequential
statements between WAIT statements within a process were all translated and then composed
into a single state delta. The translator updated the clock to the next time at which a signal
driver became active or a process resumed. As the clock advanced, the translator merged
the composite state deltas into a single state delta that specified the behavior of all processes

at that point in the execution.

For Stage 1 VHDL (fiscal year 1991), we re-evaluated the feasibility of using composition

in the translation of VHDL to state deltas, and concluded that although composition had
initially seemed viable in the case of Core VHDL, it is impossible in principle to apply

the technique to more complex VHDL subsets, as the attempt would require the ability to

compose over sections of VHDL code that would necessitate static proof in SDVS. More

generally, the ability to compose over arbitrary WAIT-bracketed code in PROCESS statements
would be tantamount to the automatic construction of correctness proofs without user

intervention — a theoretically undecidable problem.

Therefore, we abandoned composition for Stage 1 VHDL and subsequent SDVS VHDL
subsets. Instead, within a given execution (simulation) cycle, processes are translated se-
quentially, in the order in which they appear in the VHDL description, and the user has
control over stepping through the sequential statements within each process. Thus, rather
than trying to have the VHDL translator model the concurrency of the processes, we choose
to take for granted a certain "metatheorem" about VHDL: that any two sequentializations
of the processes are equivalent. A brief justification for this point of view is that the problem
of mutual exclusion is not a concern in VHDL, since

• all variables are local to the process in which they are declared, and

• distinct processes modify distinct drivers of a given signal (known as a resolved signal),
and the ultimate signal value is obtained by application of a user-defined resolution

function.1

A gratifying benefit of the revised translation strategy is that the understandability of the
resulting proofs has been remarkably improved — the dynamic flow of process execution
precisely reflects the simulation semantics of VHDL (as defined in the VHDL Language
Reference Manual [6]), but with the crucial aspect of symbolic execution (use of abstract
values rather than concrete) thrown in. The current Stage 4 VHDL translator thus functions
as a "symbolic simulator," with the effect of being reasonably intuitive as a proof engine.

'As of Stage 4 VHDL, however, resolved signals are still disallowed.

3 Overview of Stage 4 VHDL

The primary VHDL abstraction for modeling a digital device is the design entity. A design
entity consists of two parts: an entity declaration and an architecture body. The entity
declaration provides the "external view" of the device: it defines the interface between
the design entity and its environment, including the number, direction, and type of ports,
and corresponds to a symbol in a traditional CAE (Computer-Aided Engineering) design
methodology. The architecture body provides the "internal view" of the device, describing
its behavior or structure, and thereby expressing the relationship between its inputs and
outputs. A given entity declaration may be shared by several design entities, each with a
different architecture body.

In Stage 4 VHDL, each architecture body consists of a set of declarations and concurrent

statements defining the structure or function of the device being modeled. The allowable
concurrent statements are of four kinds, to be discussed below: PROCESS statements, con-

current signal assignment statements (conditional and selected), BLOCK statements, and
component instantiation statements.

The special case of a structural architecture, in particular, corresponds to the CAE notion of
a schematic. A structural architecture for a design entity is described by declaring internal
signals and connecting these, as well as the ports of the entity declaration, to the ports
of various subcomponents declared in component declarations and created by component
instantiation statements in the architecture body.

Component declarations provide a "template" mechanism, whereby an architecture body
containing component instantiations can be analyzed — checked for syntactic and semantic
correctness — independently of prior analysis of entity declarations for those components.
This is accomplished by having the instantiations refer not to entity declarations, but to
component declarations.

The configuration declaration provides the mechanism whereby architecture bodies are
paired with entity declarations to configure specific design entities. A configuration dec-
laration is analogous to a "parts list," describing which part to use for each component
of a design. (The configuration specification, an essentially equivalent alternative, is not
supported by Stage 4 VHDL.)

A component instantiation statement specifies an instance of a child component occurring
inside a parent component. At the point of instantiation, only the external view of the
child component — the names, types, and directions of its ports — is visible; the child
component's internal signals are not visible. The component instantiation statement iden-
tifies the child component and specifies which ports or signals in the parent component
are connected to which ports in the child component. Component instantiation statements
are transformed, in a manner prescribed by the VHDL LRM [6], to pairs of nested BLOCK
statements during the elaboration of a VHDL design entity prior to its execution. A BLOCK
statement provides a block-structured scope with local declarations and a body consisting
of concurrent statements. Elaboration of a design entity recursively transforms component
instantiation statements occuring in BLOCK statements until the innermost blocks contain
only PROCESS and concurrent signal assignment statements.

A PROCESS statement, the most fundamental kind of concurrent statement in VHDL, is a
block of sequential zero-time statements that execute sequentially but "instantaneously" in
zero time [17], and some (possibly none) distinguished sequential WAIT statements whose
purpose is to suspend process execution and allow time to elapse.

A process typically schedules future values to appear on data holders called signals, by
means of sequential signal assignment statements. The execution of a signal assignment
statement does not immediately update the value of the target signal (the signal assigned
to); rather, it updates the driver associated with the signal by placing (at least one) new
transaction, or time-value pair, on the waveform that is the list of such transactions con-
tained in the driver. Each transaction projects that the signal will assume the indicated
value at the indicated time; the time is computed as the sum of the current clock time of the
model and the delay specified (explicitly or implicitly) by the signal assignment statement.

Two types of time delay can be specified by a sequential signal assignment statement, and
Stage 4 VHDL encompasses both. Inertial delay, the default, models a target signal's inertia
that must be overcome in order for the signal to change value; that is, the scheduled new
value must persist for at least the time period specified by the delay in order actually to
be attained by the target signal. Transport delay, on the other hand, must be explicitly
indicated in the signal assignment statement with the reserved word TRANSPORT, and models
a "wire delay" wherein any pulse of whatever duration is propagated to the target signal

after the specified delay.

In lieu of explicit WAITs, a process may have a sensitivity list of signals that activate process
resumption upon receiving a distinct new value (an event). The sensitivity list implicitly
inserts a WAIT statement as the last statement of the process body.

Concurrent signal assignment statements always represent equivalent PROCESS statements,
and come in two varieties: conditional signal assignment and selected signal assignment.
A conditional signal assignment is equivalent to a process with an embedded IF statement
whose branches are sequential signal assignments; similarly, a selected signal assignment
is equivalent to a process with an embedded (possibly degenerate) CASE statement whose
branches are sequential signal assignments. The VHDL translator syntactically transforms
concurrent signal assignment statements to their corresponding PROCESS statements before

translating them into state deltas.

Signals act as data pathways between processes. Each process applies operations to values

being passed through the design entity. We may regard a process as a program implementing
an algorithm, and a Stage 4 VHDL description as a collection of independent programs

running in parallel.

In full VHDL, a target signal can be assigned to in multiple processes, in which case it
possesses correspondingly many drivers for updating by the different processes; the value
taken on by the signal at any particular time is then computed by a user-defined resolution

function of these drivers.

Currently Stage 4 VHDL disallows such resolved signals: a signal is not permitted to appear
as the target of a sequential signal assignment statement in more than one process body;
equivalently, every signal has a unique driver. Resolved signals and their resolution functions

will be implemented in a future version of SDVS.

The Stage 4 VHDL data types are: BOOLEAN, BIT, UNIVERSAL.INTEGER, INTEGER, REAL (pre-
liminary version), TIME (a predefined physical type of INTEGER range), CHARACTER, STRING
(arrays of characters), BIT_VECTOR (arrays of bits), user-defined enumeration types, user-
defined array types, subtypes of scalar types, and integer type definitions. Furthermore,
explicit type conversions between integer types are allowed. The preliminary implemen-
tation allows VHDL descriptions involving type REAL to be parsed and translated, but
provides no support for reasoning about floating point numbers.

Concrete and abstract syntaxes for Stage 4 VHDL have been defined — see Section 5 — as
required, of course, for the implementation of the Stage 4 VHDL translator. The following

is a convenient synopsis of the Stage 4 VHDL language subset.

• VHDL design files

- design units

• package STANDARD

- predefined types: BOOLEAN, BIT, INTEGER, TIME, CHARACTER, REAL, STRING, BIT_VECTOR

- various units of type TIME: FS, PS, NS, US, MS, SEC, MIN, HR

- restriction: implementation of type REAL is preliminary

• user-defined packages

- package declarations

- package bodies

• USE clauses for accessing packages

• entity declarations

- entity header: generics, port declarations

- entity declarative part: other declarations

• architecture bodies

• configuration declarations

- generic maps, port maps

• object declarations

- CONSTANT, VARIABLE, SIGNAL

- octal and hexadecimal representations of bitstrings

- entity ports of default object class SIGNAL

• array type declarations

- arrays (bidirectional; constrained or not) of arbitrary element type

- attributes 'low and 'high for lower and upper bounds of an array type (restric-

tion: but not of an object of type array)

• user-defined enumeration types

• subtypes of scalar types

• integer type definitions

• type conversion

• signals of arbitrary types

• subprograms

- procedures and functions: declarations and bodies

- restriction: excluding parameters of object class SIGNAL

■ concurrent statements

- PROCESS statements

- conditional signal assignments

- selected signal assignments

- BLOCK statements

- component instantiation statements

• sequential statements

- null statement: NULL

- variable assignments (scalar and composite)

- signal assignments (scalar and composite, inertial or TRANSPORT delay)

- conditionals: IF, CASE

- loops: LOOP, WHILE, FOR

- loop exits: EXIT

- subprogram calls

- subprogram return: RETURN

- process suspension: WAIT

• operators

- numeric unary operators: ABS, +, -

- numeric binary operators: +, -, *, /, ** (exponentiation), MOD (modulus),

REM (remainder)

- boolean and bit operators: NOT, AND, NAND, OR, NOR, XOR

- relational operators: =, /=, <, <=, >, and >=

- array concatenation operator: k

- restriction: =, /=, and k are the only Stage 4 VHDL operators defined for user-

defined array types

4 Preliminaries

The purpose of this section is to provide some of the background and notation necessary
for the research documented in this report. It is assumed that the reader is familiar with

• the descriptive aspects of the denotational technique for expressing the semantics
of programming languages (including concepts such as syntax, semantic functions,
lambda notation, curried function notation, environments, and continuations) as pre-
sented in [13]; and

• the theory and practice of state deltas [3, 18, 19].

Denotational semantic definitions of programming languages consist of two parts: syntax
and semantics. The syntax part consists of domain equations (equivalent to productions of
a context-free grammar) that define the syntactic variables (analogous to grammar nonter-
minals) and the (abstract) syntactic elements of the language. The semantic part defines a
semantic function for each syntactic variable and the definition (by syntactic cases) of these
functions; it also defines auxiliary functions that are used in the definition of the semantic
functions. The semantic functions constitute a syntax-directed mapping from the syntactic
constructs of the language to their corresponding semantics.

Certain principal notions, among which are environments and continuations, are central to
standard denotational semantic definitions of programming languages.

4.1 Environments

Environments are functions from identifiers to their "definitions"; these definitions are called
denotable values. Identifiers that have no corresponding definition are formally bound to
the special token *UNBOUND*. The identifiers are names for objects (e.g. constants,
variables, procedures, and exceptions) in a program written in the language being defined.
Environments are usually created and modified by the elaboration of declarations in the
language.

The domain of environments, Env, is typically

Env = Id -+ (Dv + »UNBOUND*)

where Id and Dv are, respectively, the domains of identifiers and denotable values. If r is an
environment, then r(id) is the value (»UNBOUND* or a Dv-value) bound to the identi-
fier id. The empty environment rO is the environment in which rO(id) = »UNBOUND*
for every identifier id. In definitions of languages that have block-structured scoping, it
is necessary to combine two environments that may each associate a denotable value with
the same identifier. If rl and r2 are environments, then rl[r2] is a combined environment
defined by

rl[r2](id) = (r2(id) = *UNBOUND* -+ rl(id), r2(id))

where (a —> b,c) is an abbreviation for if a then b else c. That is, in rl[r2], the r2-value
of an identifier "overrides" the rl-value of that same identifier, except when its r2-value is

UNBOUND. An environment can be changed by this means. If r is an environment,
d a value, and id an identifier, then r[d/id] denotes an environment that is the same as r
except that (r[d/id])(id) = d.

Tree-Structured Environments

When the use of the above combination of environments is inconvenient or inappropriate,
it is sometimes necessary to use a structured collection of environments. A tree-structured

environment (TSE) is a tree whose nodes are environments and whose edges are labeled by
identifiers or numerals, called edge labels, where no two edges emanating from a given node
can have the same label. A path is a list of zero or more edge labels. Such a path denotes
a sequence of connected edges from the root node to another node of a tree-structured
environment. A path p can be extendedby an edge labeled elbl via %(p)(elbl), where

%(path)(id) = append(path,(id))

Formally, a TSE can be regarded as a partial function from paths to environments. Thus
the set of paths in a TSE t is precisely the set of paths p for which t(p) is defined. If t is
a TSE and p is a path in t, then t(p) denotes the unique environment in t located at the

end of p.

If t is a TSE and p is one of its paths, the pair (t,p) can be used to represent the set of
environments containing all of the identifier bindings visible at a given point in a Stage 4
VHDL hardware description, where the identifiers in p are the names of the lexical scopes
whose local environments are on the path p. At the program point whose identifier bindings
are represented by (t, (elbli, ..., elbln)), t^elbh, ..., elbln)) is the most local set of
bindings, ..., and t(() is the most global set of bindings, where e denotes the empty path.
Thus t(p)(id) is the value bound to id in the most local environment of (t,p).

Qualified Names

The same identifier is bound in every component environment of a TSE, although many
(if not most) of those bindings may be to *UNBOUND*. It is convenient to be able to
distinguish uniquely an occurrence of an identifier by prefixing to the identifier a represen-
tation of the path that designates the location in the TSE of the environment associated
with that instance. Such a uniquely distinguished identifier will be called a fully qualified
name. Thus if t is a TSE, p one of its paths, and id an identifier, then $(p)(id) is id's fully
qualified name relative to t(p). If p = (elblj, ..., elbln), then $(p)(id) is represented as
elblj.elbE. elbln.id. When p = e (empty path), $(e)(id) is simply represented by

id. $ is defined by

$(path)(id) = (path = e —►id, $(rest(path))(catenate(last(path),".",id)))

The function rest returns a list consisting of the first n - 1 elements of an n-element list,
and catenate is a curried function that concatenates its (variable number of) arguments

into an atom.

Identifiers qualified with the full TSE path that locates their associated component envi-
ronment are cumbersome and hard to read. If only those instances of identifiers not bound
to *UNBOUND* are of interest, then such full name qualification may be unnecessary.

10

Often a suffix of this path is sufficient to distinguish uniquely an instance of such an iden-
tifier. An identifier so qualified is said to be uniquely qualified. In the limit, if all identifiers
not bound to *UNBOUND* were distinct, then no qualification (an empty suffix) would
be necessary to distinguish them. Given a TSE, it is possible to determine the minimum
path suffix necessary to distinguish uniquely each identifier instance; this is done in our

implementation of Stage 4 VHDL.

Descriptors

The denotable values to which identifiers are bound in the component environments of a

TSE are called descriptors.

A descriptor contains several fields of information, each of which holds an attribute of the
identifier instance to which the descriptor is bound in a given TSE component environment.
The number of fields in a descriptor depends on the attributes of its associated identifier,
but each descriptor always has fields that contain the identifier to which it is bound, the
identifier instance's statically uniquely qualified name (see Section 8.2.1), and a tag that
identifies the kind of descriptor (and hence its remaining fields).

Descriptors for Stage 4 VHDL are discussed in detail in Section 6.2.

Tree-Structured Environment Access

Certain non-*UNBOUND* (i.e., denotable) values of an identifier id in (t,p) can be
accessed by the functions lookup and lookup-local. These functions are given later in the
context of semantic equations in which they are used.

Tree-Structured Environment Modification

A TSE's component environments can be modified (in particular, descriptors can be bound
to unbound identifiers or existing descriptors can be modified) via a function built into
DENOTE. This function, enter, is used extensively in the DENOTE description of the
Stage 4 VHDL translator. enter(t)(p)(id)(d), where t is a TSE, p a path in t, id an
identifier, and d a partial descriptor (containing all its fields except the identifier field),
yields a TSE that is the same as t except that its component environment t(p) is replaced
by the environment

t(p)[d'/id], where if d = (qid, tag, ...), then d' = (id, qid, tag, ...).

Tree-Structured Environment Extension

One can add additional component environments to a TSE by extending it. If t is a TSE,
p a path in t, and elbl an edge label, and if %(p)(elbl) is not a path in t, then

extend(t)(p)(elbl)

denotes the TSE that is the same as t except that

(extend(t)(p)(elbl))(%(p)(elbl)) = rO.

Thus one can extend t along one of its paths p by adding a legally labeled edge onto the
end of p and placing a node that is the empty environment rO at the end of that extended
path %(p)(elbl).

11

4.2 Continuations

Continuations are a technical device for capturing the semantics of transfers of control,
whether they be explicit (gotos, returns from procedures and functions) or implicit (normal
sequential flow of control to the next program element, abnormal termination of program
execution). Continuations are functions intended to map the "normal" result of a semantic
function to some ultimate "final answer" [some final value(s) or an error message]. If the
semantic function does not produce a normal result, its continuation can be ignored and
some "abnormal" final answer (such as an error message) can be produced instead.

For example, in the first phase of our formal description of the Stage 4 VHDL translator, a
continuation supplied to a semantic function that elaborates declarations normally maps a
new "translation state" to a final answer, but if a declaration illegally duplicates or conflicts
with an existing definition, then the continuation is ignored and an error message (such as

DUPLICATE-DECLARATION) is the resulting final answer.

The initiation of the second phase of our formal description of the Stage 4 VHDL translator
assumes that the program has first "passed" the first phase without error. In fact, the

second phase is used as the continuation for the first.

4.3 Other Notation and Functions

Fairly standard lambda notation (see [13]) is used in this report, except that structured
arguments are permitted in lambda-abstractions. Lambda-abstractions normally have the
form Ax.body, where body is a lambda-term and x may be free in body. The term
Ax.Ay.body is printed as Ax,y.body. If x is, for example, a pair, then the components of
x can be represented in body by the application of projection functions to x. Instead, the

individual components of x can be bound to variables y and z that appear free in body
(instead of projection functions applied to x) by using the abstraction A(y,z).body . This
is defined if and only if the value of x is indeed a pair. This notation will be used only when

its result is defined.

A list is represented in the usual way: (x,y,z). Standard Lisp functions are used, but they
are curried, as in cons(x)(y) and append(x)(y). If x is a nonempty sequence (list), then
hd(x) denotes its first element and tl(x) the sequence (list) of its remaining components;

x = cons(hd(x))(tl(x)).

Some general-purpose functions are second, third, fourth, fifth, sixth, and last, which
return the second, third, fourth, fifth, sixth, and last elements, respectively, of a list. Ad-
ditionally, we have rest, which returns a list consisting of the first n - 1 elements of an
n-element list, and length, which returns the integer length of a list.

second(x) = hd(tl(x))

third(x) = hd(tl(tl(x)))

fourth(x) = hd(tl(tl(tl(x))))

fifth(x) = hd(tl(tl(tl(tl(x)))))

12

sixth(x) = hd(tl(tl(tl(tl(tl(x))))))

last(id+) = (null(tl(id+)H hd(id+), last(tl(id+)))

rest(id+) = (null(tl(id+)H «. cons(hd(id+),rest(tl(id+))))

length(x) = (nuU(x)— 0, l+length(tl(x)))

13

5 Syntax of Stage 4 VHDL

Three Stage 4 VHDL syntaxes are used by the translator: a concrete syntax, which is
SLR(l) and is used for parsing Stage 4 VHDL hardware descriptions; and two abstract

syntaxes, which are used, respectively, in Phases 1 and 2 of the semantic definition. The
concrete syntax is intended to be the "reference" grammar for the Stage 4 VHDL language

subset.

In all three syntaxes the syntactic constructs are the members of syntactic domains, which
are of two kinds: primitive and compound. The primitive syntactic domains are given.
The compound syntactic domains are functions of the primitive domains; these functional
dependencies are expressed as a set of syntax equations represented as productions of a
context-free grammar. Terminals and nonterminals of this grammar range, respectively,
over the primitive and compound syntactic domains. Only those syntactic domains of the
abstract syntax that actually appear in a semantic equation will be given explicit names;
other syntactic domains will be unnamed, as these names are not used in the specification.

The terminal classes are: identifiers, unsigned decimal numerals, bit literals, character
literals, bitstrings (binary, octal, and hexadecimal), and strings. The remaining terminal
symbols serve as reserved words.

The concrete syntax of Stage 4 VHDL, being SLR(l), is unambiguous. The abstract syn-
taxes are considerably smaller than the concrete syntax, because they are not concerned with
providing a parsable representation of Stage 4 VHDL, but rather simply provide the min-
imum syntactic information necessary for a syntax-directed semantic specification. Then-

use yields a more compact formal definition.

The translation of a hardware description (from concrete syntax) to its abstract syntactic
representation is accomplished by semantic action routines in the Stage 4 VHDL parser.
This process is straightforward, and a formal specification of how the Phase 1 abstract
syntax is derived from the concrete syntax is omitted from this report. It is felt that the
correspondence between the concrete and Phase 1 syntaxes is so close that no such formal
specification is needed. The derivation of Phase 2 syntactic objects from corresponding
Phase 1 syntactic objects is explicit in the specification of the interphase abstract syntax

tree transformation; see Section 7.

There are some minor variations between the concrete and abstract syntaxes of Stage 4
VHDL. For example, in the concrete syntax, labels for PROCESS statements and loops (LOOP,
WHILE, FOR statements) are optional. It was found, however, that the semantics of Stage
4 VHDL requires that every process and loop have a label. Thus in the abstract syntaxes
(which drive the semantics), process and loop labels are required. This is enforced by
having the parser and the constructor of the Phase 1 abstract syntax tree supply a distinct
system-generated label for each unnamed process and loop. These labels are taken from a
primitive syntactic domain Sysld of system-generated identifiers, disjoint from the primitive
syntactic domain Id of identifiers. Similarly, anonymous array types are given distinct

system-generated names.

The following subsections present the syntactic domains and equations for Stage 4 VHDL.

14

5.1 Syntactic Domains

Primitive Syntactic Domains

id: Id
Sysld
bit : BitLit
constant : NumLit
char : CharLit
bitstring, octstring,hexstring : BitStr
string : Str

Compound Syntactic Domains

design-file : Design
design-unit : DUnit
context-item : CItem
library-unit : LUnit
configuration-decl : Conflg
block-conf ig : BConf
component-conf ig : CConf
binding-indication : Bind
entity-decl : Ent
architecture-body : Arch
generic-decl : GDec
port-decl : PDec
generic-map-aspect : GMap
port-map-aspect : PMap
decl, package-decl, package-body,

use-clause, component-decl : Dec

conc-stat : CStat
seq-stat : SStat
case-alt : Alt
discrete-range : Drg
waveform : Wave
transaction : Trans
expr: Expr
ref : Ref
unary-op : Uop
binary-op : Bop
relational-op : Bop

identifiers
system-generated identifiers (disjoint from Id)

bit literals
numeric literals (unsigned decimal numerals)

character literals
bitstring literals
string literals

design files
design units
context items
library units
configuration declarations
block configurations
component configurations
binding indications
entity declarations
architecture bodies
generic declarations
port declarations
generic map aspects
port map aspects

declarations
concurrent statements
sequential statements
case alternatives
discrete ranges
waveforms
transactions
expressions
references
unary operators
binary operators
relational operators

5.2 Syntax Equations

In Sections 5.2.1, 5.2.2, and 5.2.3 we present, respectively, the concrete syntax for Stage
4 VHDL hardware descriptions admissible as input to the SDVS VHDL language parser,

15

the syntax of VHDL abstract parse trees generated by the parser for use by Phase 1 of the
VHDL translator, and the syntax of transformed parse trees produced during Phase 1 for
use by translator Phase 2.

5.2.1 Concrete Syntax

The concrete syntax for Stage 4 VHDL is shown below.

The productions are numbered for reference purposes. The first production and the nonter-
minal **start** are inserted by the SLR(l) grammar analyzer to facilitate SLR(l) parsing,
and the (terminal) symbol *E* denotes the beginning or end of a file. Terminal symbols
appear in uppercase letters, while nonterminal symbols and pseudo-terminals (terminals
denoting a set of values) are in lowercase; pseudo-terminals are prefixed by a "dot" (.).

STAGE 4 VHDL CONCRETE SYNTAX

1 **start**
::- *E* design-file *E*

2 design-file
::= init design-unit-list

3 init

4 design-unit-list
::= design-unit

5 I design-unit-list design-unit

6 design-unit

::« context-item-list library-unit

7 context-itein-list

8 I context-item-list context-item

9 context-item
::= use-clause

10 library-unit
::» primary-unit

11 I secondary-unit

12 primary-unit
::= configuration-decl

13 I package-decl
14 I entity-decl

15 secondary-unit

::= package-body

16 I architecture-body

16

17 configuration-decl

::= CONFIGURATION .id OF .id IS config-decl-part

block-config END opt-id ;

18 config-decl-part

::= config-decl-item-list

19 config-decl-item-list

20 I config-decl-item-list config-decl-item

21 config-decl-item

::= use-clause

22 block-config
: := FOR block-spec use-clause-list config-item-list END

FOR ;

23 block-spec

::= .id

24 config-item-list

25 I config-item-list config-item

26 config-item

: := block-config

27 I component-config

28 component-config

::= FOR component-spec USE binding-indication ;

block-config END FOR ;
29 I FOR component-spec USE binding-indication ; END FOR

)
30 I FOR component-spec END FOR ;

31 component-spec

::= instantiation-list : dotted-name

32 instantiation-list

::= id-list

33 I all

34 I others

35 binding-indication

::= entity-aspect opt-generic-map-aspect opt-port-map-aspect

36 entity-aspect

::= ENTITY dotted-name (. id)

37 I ENTITY dotted-name

38 I CONFIGURATION dotted-name

39 package-decl-list

40 I package-decl-list package-decl

41 package-decl

17

::» PACKAGE .id IS package-decl-part END opt-id ;

42 package-decl-part
::» package-decl-item-list

43 package-decl-item-list

44 I package-decl-item-list package-decl-item

45 package-decl-iten

::= const-decl

46 I sig-decl

47 I type-decl

48 I subtype-decl

49 I subprog-decl

50 I use-clause

51 opt-id

52 1 .id

53 package-body-list

54 1 package-body package-body-list

55 package-body
::= PACKAGE BODY .id IS package-body-decl-paxt END

opt-id ;

56 package-body-decl-part

::= package-body-decl-item-list

57 package-body-decl-item-list

58 1 package-body-decl-item-list package-body-decl-item

59 package-body-decl-item

::« const-decl

60 1 type-decl
61 1 subtype-decl

62 1 subprog-decl

65 use-clause-list

66 I use-clause-list use-clause

67 use-clause

::= USE dotted-name-list ;

68 dotted-name-list

::= dotted-name
69 I dotted-name-list , dotted-name

70 dotted-name

::» .id

18

71 I dotted-name .id

72 I dotted-name . all

73 all

::= ALL

74 others

::= OTHERS

75 entity-decl
::= ENTITY .id IS opt-generic-clause opt-port-clause END

opt-id ;
76 I ENTITY .id IS opt-generic-clause opt-port-clause

ent-decl-part END opt-id ;

77 opt-generic-clause

78 I generic-clause

79 opt-port-clause

80 I port-clause

81 generic-clause

::= GENERIC (generic-list) ;

82 generic-list
::= generic-decl

83 I generic-list ; generic-decl

84 generic-decl
::= opt-constant id-list : opt-in type-mark opt-init

85 I opt-constant id-list : opt-in slice-name opt-init

86 opt-constant

87 I CONSTANT

88 opt-in

89 I IN

90 ent-decl-part

::= ent-decl-item-list

91 ent-decl-item-list

::= ent-decl-item

92 I ent-decl-item-list ent-decl-item

93 ent-decl-item
::= const-decl

94 I sig-decl

95 I type-decl

96 I subtype-decl

97 I subprog-decl

98 I subprog-body

99 I use-clause

19

100 architecture-body
::= ARCHITECTURE .id OF .id IS arch-decl-part BEGIN

arch-stat-part END opt-id ;

101 arch-decl-part
::= arch-decl-item-list

102 arch-decl-item-list

103 I arch-decl-item-list arch-decl-item

104 arch-decl-item

::= const-decl

105 I sig-decl

106 1 type-decl

107 I subtype-decl

108 I subprog-decl

109 I subprog-body

110 | use-clause

111 I component-decl

112 arch-stat-part
::= conc-stats

113 port-clause
::= PORT (port-list) ;

114 port-list
::= port-decl

115 1 port-list ; port-decl

116 port-decl
::- opt-signal id-list : opt-mode type-mark opt-init

117 1 opt-signal id-list : opt-mode slice-name opt-init

118 opt-signal

119 1 SIGNAL

120 id-list

::= .id

121 1 id-list , .id

122 opt-mode

123 I mode

124 mode

: := IN

125 I OUT

126 I IN0UT

127 I BUFFER

128 type-mark

::= dotted-name

20

129 slice-name
::= type-mark (discrete-range)

130 discrete-range

::= range

131 range
: := simple-expr direction simple-expr

132 direction

: := TO

133 I DDWNTO

134 opt-init

135 I := expr

136 const-decl
::= CONSTANT id-list : type-mark := expr ;

137 I CONSTANT id-list : slice-name := expr

138 var-decl
::= VARIABLE id-list : type-mark opt-init ;

139 I VARIABLE id-list : slice-name opt-init

140 sig-decl
::= SIGNAL id-list : type-mark opt-init ;

141 I SIGNAL id-list : slice-name opt-init ;

142 type-decl
::= enum-type-decl

143 I array-type-decl

144 I integer-type-decl

145 enum-type-decl
::= TYPE .id IS enum-type-def ;

146 enum-type-def

::= (id-list)

147 I (char-list)

148 char-list
::= character-literal

149 I char-list , character-literal

150 array-type-decl
::= TYPE .id IS array-type-def ;

151 array-type-def
::= ARRAY (discrete-range) OF type-mark

152 integer-type-decl

::= TYPE .id IS RANGE discrete-range ;

153 subtype-decl

::= SUBTYPE .id IS type-mark opt-constraint

21

154 opt-constraint

155 I constraint

156 constraint
::= range-constraint

157 range-constraint

::= RANGE discrete-range

158 conponent-decl
::= COMPONENT .id opt-generic-clause opt-port-clause END

COMPONENT ;

159 subprog-decl

::- subprog-spec ;

160 subprog-spec
::= PROCEDURE .id opt-procedure-formal-part

161 I FUNCTION .id opt-function-foraal-part RETURN type-mark

162 opt-procedure-formal-part

163 I (procedure-par-spec-list)

164 opt-function-formal-part

165 I (function-par-spec-list)

166 procedure-par-spec-list
::= procedure-par-spec

167 I procedure-par-spec-list ; procedure-par-spec

168 function-par-spec-list

::= function-par-spec
169 I function-par-spec-list ; function-par-spec

170 procedure-par-spec
::» proc-object-class id-list : procedure-par-mode

type-mark opt-expr

171 I id-list
172 I id-list

173 I id-list

IN type-mark opt-expr
OUT type-mark opt-erpr

INOUT type-mark opt-expr

174 function-par-spec
::= fn-object-class id-list : function-par-mode type-mark

opt-expr

175 proc-object-class

::= CONSTANT

176 I VARIABLE

177 fn-object-class

178 I CONSTANT

179 procedure-par-mode

22

180 I IN

181 I OUT

182 I INOUT

183 function-par-mode

184 I IN

185 subprog-body
::= subprog-spec IS subprog-decl-part BEGIN

subprog-stat-part END opt-id ;

186 subprog-decl-part
::= subprog-decl-item-list

187 subprog-decl-item-list

188 I subprog-decl-item-list subprog-decl-item

189 subprog-decl-item

::= const-decl

190 var-decl

191 type-decl

192 subtype-decl

193 subprog-decl

194 subprog-body

195 use-clause

196 subprog-stat-part

::= seq-stats

197 conc-stats

198 I conc-stats conc-stat

199 conc-stat
::= block-stat

200 I process-stat
201 I concurrent-sig-assn-stat

202 I component-instantiation-stat

203 block-stat
::= unit-label BLOCK block-header BEGIN block-stat-part

END BLOCK opt-id ;
204 I unit-label BLOCK block-header block-decl-part BEGIN

block-stat-part END BLOCK opt-id ;

205 block-header

206 I generic-part

207 I port-part

208 I generic-part port-part

209 generic-part

::= generic-clause
210 I generic-clause generic-map-aspect ;

23

211 port-part

::= port-clause

212 I port-clause port-map-aspect ;

213 block-decl-part

::= block-decl-item-list

214 block-decl-item-list

: := block-decl-item

215 I block-decl-item-list block-decl-item

216 block-decl-item

::= const-decl

217 I sig-decl

218 I type-decl

219 1 subtype-decl

220 I subprog-decl

221 1 subprog-body

222 I use-clause

223 I component-decl

224 block-stat-part

::= conc-stats

225 process-stat
::= opt-unit-label PROCESS process-decl-part BEGIN

process-stat-part END PROCESS opt-id ;

226 I opt-unit-label PROCESS (sensitivity-list)
process-decl-part BEGIN process-stat-part END PROCESS

opt-id ;

227 opt-unit-label

228 I unit-label

229 unit-label

::= .id :

230 process-decl-part

::= process-decl-item-list

231 process-decl-item-list

232 I process-decl-item-list process-decl-item

233 process-decl-item

::= const-decl

234 var-decl

235 type-decl

236 subtype-decl

237 subprog-decl

238 subprog-body

239 use-clause

240 process-stat-part

::= seq-stats

24

241 concurrent-sig-assn-stat
::= selected-sig-assn-stat

242 I conditional-sig-assn-stat

243 selected-sig-assn-stat
::= opt-unit-label WITH expr SELECT target <=

opt-transport selected-waveforms ;

244 I .atmark opt-unit-label WITH expr SELECT target <=

opt-transport selected-waveforms ;

245 opt-transport

246 I transport

247 transport

::= TRANSPORT

248 selected-waveforms

::= selected-waveform

249 I selected-waveforms , selected-waveform

250 selected-waveform
::= waveform WHEN choices

251 conditional-sig-assn-stat
::= target <= opt-transport conditional-waveforms waveform

»
252 I .atmark target <= opt-transport conditional-waveforms

waveform ;

253 I .id : target <= opt-transport conditional-waveforms

waveform ;
254 I .atmark .id : target <= opt-transport

conditional-waveforms waveform ;

255 conditional-waveforms

256 I conditional-waveforms conditional-waveform

257 conditional-waveform

::= waveform WHEN expr ELSE

258 waveform
::= waveform-elt-list

259 waveform-elt-list

::= waveform-elt

260 I waveform-elt-list , waveform-elt

261 waveform-elt

::= expr

262 I expr AFTER expr

263 component-instantiation-stat

::= .id : name opt-generic-map-aspect opt-port-map-aspect

25

264 opt-generic-map-aspect

265 1 generic-map-aspect

266 generic-map-aspect

::= GENERIC MAP (assoc-list)

267 opt-port-map-aspect

268 I port-map-aspect

269 port-map-aspect

::= PORT MAP (assoc-list)

270 assoc-list

::= assoc-elt

271 I assoc-list , assoc-elt

272 assoc-elt

::= formal-part => actual-part

273 formal-part

::= formal-designator

274 f ormal-des ignator

: :~ name

275 actual-part

::= actual-designator

276 actual-designator

::= expr

277 seq-stats

278 1 seq-stats seq-stat

279 seq-stat
::= null-stat

280 1 var-assn-stat

281 1 sig-assn-stat

282 1 if-stat

283 1 case-stat

284 1 loop-stat

285 1 exit-stat

286 1 return-stat

287 1 proc-call-stat

288 1 wait-stat

289 null-stat

::' NULL
290 I .atmark NULL

291 var-assn-stat

::= name := expr ;

292 I .atmark name :~ expr

26

293 sig-assn-stat

::= target <= opt-transport waveform ;

294 I .atmark target <= opt-transport waveform ;

295 if-stat

::= if-head if-tail

296 I .atmark if-head if-tail

297 if-head

::= IF eipr THEN seq-stats

298 I if-head ELSIF eipr THEN seq-stats

299 if-tail

::= END IF ;

300 I ELSE seq-stats END IF ;

301 case-stat
::= CASE eipr IS case-alt-list END CASE ;

302 I .atmark CASE eipr IS case-alt-list END CASE ;

303 case-alt-list

::= case-alt

304 I case-other-alt
305 I case-alt case-alt-list

306 case-alt

::= WHEN choices => seq-stats

307 case-other-alt

::= WHEN OTHERS => seq-stats

308 choices

::= choice

309 I choices I choice

310 choice

::= simple-eipr

311 I discrete-range

312 loop-stat

::= simple-loop

313 I while-loop

314 I for-loop

315 simple-loop

::= opt-unit-label LOOP seq-stats END LOOP opt-id ;

316 I .atmark opt-unit-label LOOP seq-stats END LOOP

opt-id ;

317 while-loop

::= opt-unit-label WHILE eipr LOOP seq-stats END LOOP

opt-id ;

318 I .atmark opt-unit-label WHILE eipr LOOP seq-stats END

LOOP opt-id ;

319 for-loop

::= opt-unit-label FOR name IN discrete-range LOOP

27

seq-stats END LOOP opt-id ;

320 I .atmark opt-unit-label FOR name IB discrete-range

LOOP seq-stats END LOOP opt-id ;

321 exit-stat
::« EXIT opt-dotted-name opt-when-cond ;

322 I .atmark EXIT opt-dotted-name opt-when-cond ;

323 opt-dotted-name

324 I dotted-name

325 opt-when-cond

326 I WHEN expr

327 proc-call-stat
::= name ;

328 I .atmark name ;

329 return-stat
::= RETURN ;

330 I .atmark RETURN ;

331 I RETURN expr ;

332 I .atmark RETURN expr ;

333 ¥ait-stat
::« WAIT opt-sensitivity-clause opt-condition-clause

opt-timeout-clause ;
334 I .atmark WAIT opt-sensitivity-clause

opt-condition-clause opt-timeout-clause ;

335 opt-sensitivity-clause

336 I sensitivity-clause

337 sensitivity-clause

::= ON sensitivity-list

338 sensitivity-list

::= name-list

339 name-list

::= name

340 I name-list , name

341 opt-condition-clause

342 I condition-clause

343 condition-clause

::- UNTIL expr

344 opt-timeout-clause

345 I timeout-clause

28

346 timeout-clause

: : = FDR expr

347 expr-list

::= expr

348 1 expr-list expr

349 opt-expr

350 1 expr

351 expr

::= rel

352 I rel and-expr

353 I rel nand-expr

354 I rel or-expr

355 I rel nor-expr

356 I rel xor-expr

357 rel
::= simple-expr

358 I simple-expr relop simple-expr

359 and-expr

::= and-part

360 I and-part and-expr

361 and-part

: : = AND rel

362 nand-expr

: := nand-part

363 I nand-part nand-expr

364 nand-part

::= NAND rel

365 or-expr
: := or-part

366 I or-part or-expr

367 or-part

::= OR rel

368 nor-expr

: : = nor-part

369 I nor-part nor-expr

370 nor-part

::= NOR rel

371 xor-expr

: := xor-part

372 I xor-part xor-expr

373 xor-part

::= XOR rel

29

374 simple-expr
::= simple-exprl

375 I + simple-exprl

376 I - simple-exprl

377 simple-exprl

::= term

378 I simple-exprl addop term

379 term
::= factor

380 I term mulop factor

381 factor

::= primary

382 I primary ** primary

383 I ABS primary

384 I NQT primary

385 primary

::= primaryl

386 I aggregate

387 I (expr)

388 primaryl
: := literal

389 I .atmark

390 I name

391 literal
::= boolean-literal

392 I bit-literal
393 I character-literal

394 I numeric-literal

395 I time-literal

396 I bitstring-literal

397 I string-literal

398 boolean-literal

: : = FALSE

399 I TRUE

400 bit-literal
::= .bit

401 character-literal

::= .char

402 numeric-literal

::= .constant

403 time-literal
::- opt-time-constant time-unit

404 opt-time-constant

30

405 1 .constant

406 time-unit

::= FS

407 1 PS

408 1 NS

409 1 US

410 1 MS

411 1 SEC

412 1 HIN

413 1 HR

414 bitstring-literal

::= .bitstring

415 I .octstring

416 I .hexstring

417 string-literal

::= .string

418 aggregate
::= (2-expr-list)

419 2-expr-list

::= erpr , expr

420 I 2-expr-list , expr

421 target

::= name

422 name

::= namel

423 namel

::= selector

424 I namel . selector

425 I namel (expr-list)

426 selector

::= .id

427 relop

428 I /=

429 I <

430 I <=

431 I >

432 I >=

433 addop

: := +

434 I -

435 I ft

436 mulop

: := *

437 I /

31

438 I MOD
439 I REM

5.2.2 Abstract Syntax: Phase 1

The abstract syntax of Stage 4 VHDL used during Phase 1 translation is shown below.

The superscript "*" denotes Kleene closure (e.g. "decl*" denotes zero or more occurrences
of the syntactic object "decl"), and a superscript "+" denotes one or more occurrences. In
a syntactic clause, subscripts denote (possibly) different objects of the same class.

As in the concrete syntax, terminal symbols appear in upper case, while all other symbols
are either nonterminals or pseudo-terminals (id, bitlit, and constant).

STAGE 4 VHDL ABSTRACT SYNTAX: PHASE 1

design-file ::= DESIGN-FILE id design-unit"1"

design-unit ::= DESIGN-UNIT context-item* library-unit

context-item ::= use-clause
use-clause ::= USE dotted-name+

library-unit ::= primary-unit | secondary-unit
primary-unit ::= configuration-decl | package-decl | entity-decl
secondary-unit ::= package-body | architecture-body
configuration-decl ::= CONFIGURATION idi id2 use-clause* block-config opt-id
package-decl ::= PACKAGE id decl* opt-id
entity-decl ::= ENTITY id generic-decl* port-decl* decl* opt-id
package-body ::= PACKAGEBODY id decl* opt-id
architecture-body ::= ARCHITECTURE idi id2 decl* conc-stat* opt-id
opt-block-config ::= e | block-config
block-config ::= BLOCK-CONFIG id use-clause* component-config*
component-config ::= COMP-CONFIG component-spec opt-binding-indication opt-block-config

component-spec ::= id"1" dotted-name
opt-binding-indication ::= t | binding-indication
binding-indication ::= BIND entity-aspect opt-generic-map-aspect opt-port-map-aspect
entity-aspect ::= BOUND-ENTITY dotted-name opt-id |

BOUND-CONFIGURATION dotted-name
opt-generic-map-aspect ::= t | generic-map-aspect
generic-map-aspect ::= GENERICMAP assoc-elt+

opt-port-map-aspect ::= e | port-map-aspect
port-map-aspect ::— PORTMAP assoc-elt+

generic-decl ::= DEC GENERIC id+ type-mark opt-expr |
SLCDEC GENERIC id+ slice-name opt-expr

port-decl ::= DEC PORT id+ mode type-mark opt-expr |
SLCDEC PORT id+ mode slice-name opt-expr

mode ::= IN | OUT | INOUT | BUFFER
atmark ::= AT id

32

type-mark ::= dotted-name
dotted-name ::= id+
slice-name ::= type-mark discrete-range
discrete-range ::= direction exprj expr2

direction ::= TO | DOWNTO
decl ::= object-decl | type-decl | subtype-decl | package-decl |

package-body | subprog-decl | subprog-body | use-clause |
component-decl

object-decl ::= DEC object-class id+ type-mark opt-expr |
SLCDEC object-class id+ slice-name opt-expr

object-class ::= CONST | VAR | SIG
type-decl ::= ETDEC id id+ | ATDEC id discrete-range type-mark |

ITDEC id discrete-range
subtype-decl ::= STDEC id type-mark opt-discrete-range

subprog-decl ::= subprog-spec
subprog-spec ::= PROCEDURE id proc-par-spec* |

FUNCTION id func-par-spec* type-mark
proc-par-spec ::= object-class id+ proc-par-mode type-mark opt-expr
func-par-spec ::= object-class id+ func-par-mode type-mark opt-expr

proc-par-mode ::= IN | OUT | INOUT
func-par-mode ::= IN
subprog-body ::= SUBPROGBODY subprog-spec decl* seq-stat* opt-id
component-decl ::= COMPONENT id generic-decl* port-decl*
conc-stat ::= block-stat | process-stat | selected-sig-assn-stat |

conditional-sig-assn-stat | component-instantiation-stat
block-stat ::= BLOCK id block-header decl* conc-stat* opt-id
block-header ::= generic-part port-part
generic-part ::= generic-decl* generic-map-aspect
port-part ::= port-decl* port-map-aspect
process-stat ::= PROCESS id ref* decl* seq-stat* opt-id
selected-sig-assn-stat ::= SEL-SIGASSN atmark delay-type id expr ref selected-waveform4"
selected-waveform ::= SEL-WAVE waveform discrete-range4"
conditional-sig-assn-stat ::= COND-SIGASSN atmark delay-type id ref cond-waveform* waveform

cond-waveform ::= COND-WAVE waveform expr
component-instantiation-stat ::— COMPINST id ref opt-generic-map-aspect opt-port-map-aspect

assoc-elt ::= ref expr
seq-stat ::= null-stat | var-assn-stat | sig-assn-stat | if-stat | case-stat |

loop-stat | while-stat | for-stat | exit-stat | call-stat |
return-stat | wait-stat

null-stat ::= NULL atmark
var-assn-stat ::— VARASSN atmark ref expr
sig-assn-stat ::= SIGASSN atmark delay-type ref waveform
delay-type ::= INERTIAL | TRANSPORT
waveform ::= WAVE transaction4"
transaction ::= TRANS expr opt-expr
if-stat ::— IF atmark cond-part+ else-part

33

cond-part ::= expr seq-stat*
else-part ::= seq-stat*
case-stat ::= CASE atmark expr case-alt+

case-alt ::= CASECHOICE discrete-range+ seq-stat* |
CASEOTHERS seq-stat*

loop-stat ::= LOOP atmark id seq-stat* opt-id
while-stat ::= WHILE atmark id expr seq-stat* opt-id
for-stat ::= FOR atmark id ref discrete-range seq-stat* opt-id
exit-stat ::= EXIT atmark opt-dotted-name opt-expr
call-stat ::= CALL atmark ref
return-stat ::= RETURN atmark opt-expr
wait-stat ::= WAIT atmark ref* opt-expr! opt-expr2

expr ::— (| bool-lit | bit-lit | num-lit | time-lit | char-lit |
bitstr-lit | str-lit | ref | positional-aggregate | unary-op expr |

binary-op expr] expr2 | relational-op expr] expr2

bool-lit ::= FALSE | TRUE
bit-lit ::= BIT bitlit
num-lit ::= NUM constant
time-lit ::= TIME constant time-unit
char-lit ::= CHAR constant
bitstr-lit ::= BITSTR bit-lit*
str-lit ::= STR char-lit*
ref ::= REF name
name ::= id | name id | name expr*
positional-aggregate ::= PAGGR expr*
unary-op ::= NOT | PLUS | NEG | ABS
binary-op ::= AND | NAND | OR | NOR | XOR | ADD | SUB | MUL | DIV | MOD

REM j EXP | CONCAT
relational-op ::= Eq | NE | LT | LE | GT | GE
time-unit ::= FS | PS | NS | US | MS | SEC | MIN | HR
opt-id ::= (\ id
opt-discrete-range ::= e | discrete-range
opt-dotted-name ::= e | dotted-name
opt-expr ::= (| expr

5.2.3 Abstract Syntax: Phase 2

The abstract syntax of Stage 4 VHDL used during Phase 2 translation differs in certain
respects from that employed by Phase 1. An abstract syntax transformation is performed
at the very end of Phase 1, and just prior to the invocation of Phase 2, as described in

Section 7.

The most significant transformations of Phase 1 syntax to that of Phase 2 are: (1) the
"desugaring" (i.e., reduction to more basic constructs) of concurrent signal assignment
statements (conditional signal assignment and selected signal assignment) into equivalent

34

PROCESS statements; (2) the desugaring of component instantiation statements into equiv-
alent pairs of nested BLOCK statements, and (3) the disambiguation of REFs into simple
references, array references, record field accesses (not fully supported by Stage 4 VHDL),

and subprogram calls.

STAGE 4 VHDL ABSTRACT SYNTAX: PHASE 2

design-file ::= DESIGN-FILE id design-unit+
design-unit ::= DESIGN-UNIT context-item* library-unit

context-item ::= use-clause
use-clause ::= USE dotted-name+
library-unit ::= primary-unit | secondary-unit
primary-unit ::= configuration-decl | package-decl | entity-decl
secondary-unit ::= package-body | architecture-body
configuration-decl ::= CONFIGURATION idj id2 use-clause* block-config opt-id
package-decl ::= PACKAGE id decl* opt-id
entity-decl ::= ENTITY id decl*i decl*2 decl*3 opt-id phasel-hook
package-body ::= PACKAGEBODY id decl* opt-id
architecture-body ::= ARCHITECTURE id] id2 decl* conc-stat* opt-id
opt-block-config ::= e | block-config
block-config ::- BLOCK-CONFIG id use-clause* component-config*
component-config ::= COMP-CONFIG component-spec opt-binding-indication opt-block-config

component-spec ::= id+ dotted-name
opt-binding-indication ::= t | binding-indication
binding-indication ::= BIND entity-aspect opt-generic-map-aspect opt-port-map-aspect
entity-aspect ::= BOUND-ENTITY dotted-name opt-id |

BOUND-CONFIGURATION dotted name
opt-generic-map-aspect ::= e | generic-map-aspect
generic-map-aspect ::= GENERICMAP assoc-elt+

opt-port-map-aspect ::= (. | port-map-aspect
port-map-aspect ::= PORTMAP assoc-elt+
assoc-elt ::= ref expr
decl ::= object-decl | type-decl | subtype-decl | package-decl | package-body |

subprog-decl | subprog-body | use-clause | component-decl
object-decl ::= DEC object-class id+ type-mark opt-expr |

SLCDEC object-class id+ slice-name opt-expr

object-class ::= CONST | VAR | SIG
type-mark ::= dotted-name
dotted-name ::= id+
slice-name ::= type-mark discrete-range
discrete-range ::= direction expri expr2

direction ::= TO | DOWNTO
type-decl ::= ETDEC id id+ | ATDEC id discrete-range type-mark |

ITDEC id discrete-range

35

subtype-decl ::= STDEC id type-mark opt-discrete-range
subprog-decl ::= subprog-spec
subprog-spec ::= PROCEDURE id proc-par-spec* |

FUNCTION id func-par-spec* type-mark
proc-par-spec ::= object-class id+ proc-par-mode type-mark opt-expr
func-par-spec ::= object-class id+ func-par-mode type-mark opt-expr
proc-par-mode ::= IN | OUT | INOUT
func-par-mode ::= IN
subprog-body ::= SUBPROGBODY subprog-spec decl* seq-stat* opt-id
component-decl ::= COMPONENT id decl*, decl*2 phasel-hook
conc-stat ::= block-stat | process-stat
block-stat ::= BLOCK id decl* conc-stat* opt-id phasel-hook
process-stat ::= PROCESS id decl* seq-stat* opt-id phasel-hook
seq-stat ::= null-stat | var-assn-stat | sig-assn-stat | if-stat | case-stat |

loop-stat | while-stat | for-stat | exit-stat | call-stat |

return-stat | wait-stat

atmark ::= AT id
null-stat ::= NULL atmark
var-assn-stat ::= VARASSN atmark ref expr
sig-assn-stat ::= SIGASSN atmark delay-type ref waveform
delay type ::= INERTIAL | TRANSPORT
waveform ::= WAVE transaction"*"
transaction ::= TRANS expr opt-expr
if-stat ::= IF atmark cond-part+ else-part
cond-part ::= expr seq-stat*
else-part ::■= seq-stat*
case-stat ::= CASE atmark expr case-alt+
case-alt ::= CASECHOICE discrete-range"1" seq-stat* |

CASEOTHERS seq-stat*
loop-stat ::= LOOP atmark id seq-stat* opt-id
while-stat ::= WHILE atmark id expr seq-stat* opt-id
for-stat ::= FOR atmark id ref discrete-range seq-stat* opt-id
exit-stat ::= EXIT atmark opt-dotted-name opt-expr
call-stat ::= CALL atmark ref
return-stat ::= RETURN atmark opt-expr
wait-stat ::= WAIT atmark ref* opt-expri opt-expr2
expr ::= (| bool-lit | bit-lit | num-lit | time-lit | char-lit |

enum-lit | bitstr-lit | str-lit | ref | positional-aggregate |
type-conversion | unary-op expr | binary-op expri expr2 |
relational-op expri expr2

bool-lit ::= FALSE | TRUE
bit-lit ::= BIT bitlit
num-lit ::= NUM constant
time-lit ::= TIME constant FS
char-lit ::= CHAR constant
enum-lit ::= ENUMLIT id

36

bitstr-lit ::= BITSTR bit-lit*
str-lit ::= STR char-lit*
ref ::= REF modifier+
modifier ::= SREF id+ id | INDEX expr | SELECTOR id | PARLIST expr*
positional-aggregate ::= PAGGR expr*
type-conversion ::= TYPECONV expr type-mark
unary-op ::= NOT | BNOT | PLUS | NEG | ABS | RNEG | RABS
binary op ::= AND | NAND | OR | NOR | XOR | BAND | BNAND | BOR | BNOR |

BXOR | ADD | SUB | MUL | DIV | MOD | REM | EXP | RPLUS | RMINUS
RTIMES | RDIV | REXPT | CONCAT

relational-op ::= EQ | NE | LT | LE | GT | GE | RLT | RLE | RGT | RGE
opt-id ::= t | id
opt-discrete-range ::= t | discrete-range
opt-dotted-name ::= (| dotted-name

opt-expr ::= € | expr

The occurrences of phasel-hook in the Phase 2 abstract syntax for certain constructs
point to the Phase 1 abstract syntax for the respective constructs, for the purposes of the
(experimental) SDVS VHDL Symbolic Execution Trace Window.

37

6 Phase 1: Static Semantic Analysis and Environment Col-
lection

Now that the necessary background has been established, we are ready to examine the

formal description of the Stage 4 VHDL translator.

In this section, an overview of Phase 1 and its relation to Phase 2 will be presented, followed
by detailed discussions of the environment manipulated by the translator and the Phase 1
semantic domains and function types, and finally the Phase 1 semantic equations themselves.

6.1 Overview

A Stage 4 VHDL hardware description is first parsed according to the Stage 4 VHDL
concrete grammar, producing an abstract syntax tree that serves as the input to Phase 1

translation.

Phase 1 of the translation accomplishes the following.

• Performs static semantic checks to verify that certain conditions are met, including:

- Objects, subprograms, packages, and process and loop labels must be declared

prior to use.

- Identifiers with the same name cannot be declared in the same local context.

- References to objects and labels must be proper, e.g. scalar objects must not
be indexed, array references must have the correct number of indices, and EXIT

statements must reference a loop label.

- All components of statements and expressions must have the proper type, e.g.
expressions used as conditions must be boolean, array indices must be of the
proper type, operators must receive operands of the correct type, procedure and
function calls must receive actual parameters of the proper type, function calls
must return a result of a type appropriate for their use in an expression.

- Sensitivity lists in PROCESS and WAIT statements must contain signal identifiers.

- The collection of discrete ranges defining a CASE statement alternative must be
exhaustive and mutually exclusive.

- The time delays in the AFTER clause of a signal assignment statement must be

increasing.

• Creates a new abstract syntax tree — a transformed version of the original abstract
syntax tree (used by Phase 1) — that will be more conveniently utilized by Phase 2
of the translation.

• Creates and manipulates a tree-structured environment (TSE) that, in the absence of

errors, is provided to Phase 2 of the translation.

38

If the VHDL translator completes Phase 1 without error, then it can proceed with Phase
2, state delta generation. Phase 2 requires two inputs: the transformed abstract syntax
tree and the tree-structured environment for the hardware description, both constructed by

Phase 1.

The tree-structured environment contains a complete record of the name/attribute associ-
ations corresponding to the hardware description's declarations, and its structure reflects
that of the description. Referring to this TSE, Phase 2 incrementally generates and (per
user proof commands) applies state deltas via symbolic execution and the theories built

into the Simplifier.

6.2 Descriptors, Types, and Type Modes

When a declaration of an identifier is processed by Phase 1, that identifier is bound in
the TSE to a descriptor, a structured object that contains the attributes of the identifier

instance associated to it by that declaration.

At the time a descriptor is created and entered into the TSE, its qid field is set to c.
The value of the qid field is eventually set to the proper statically uniquely qualified name
(SUQN), when such a qualified name makes sense; see Section 8.2.1. These updates to the
qid fields become possible only once the TSE is fully constructed, i.e., at the very end of
Phase 1 — or in other words, at the very beginning of Phase 2, the phase in which these
uniquely qualified names are needed.

Fourteen kinds of descriptor are employed in Phase 1: object, design file, configuration,
package, entity, architecture, component, block name, process name, loop name, function,

procedure, enumeration type element, and type. Their structures are as follows:

object :
< id, qid, tag, path, exported, type, value, process >

The id field contains the identifier to which this descriptor is bound, and the qid
field contains its statically uniquely qualified name (SUQN). The tag field contains
OBJECT. The path field contains the path in the tree-structured environment to
the component environment in which this instance of the identifier is bound. The ex-
ported field indicates whether the definition of this identifier instance can be exported
to other environments. A value true (represented by DENOTE symbol tt) indicates
exportation is permitted, and a value false (represented by DENOTE symbol ff)
indicates that it is not. This becomes an issue when the declaration whose elabora-
tion created this descriptor was contained in a package specification (exportable) or
package body (not exportable).

If the identifier id represents a constant initiabzed via a static expression, then the
value field contains the initial value; otherwise it contains *UNDEF* (undefined).
Array and record references never represent static values in VHDL, so the value field
of corresponding object descriptors contains *UNDEF*.

If the identifier id represents a signal, then the label of the first PROCESS statement
in which id is the target of a signal assignment is entered into the process field, to

39

enable the detection of assignments to the signal by multiple processes (disallowed in

Stage 4 VHDL).

Finally, the object descriptor's type field contains the type of the identifier, repre-
sented by a pair < tmode, tdesc >:

• tmode is the type mode, itself a pair;
normally,

tmode = <object-class, ref-mode>,

where object-class £ {CONST, VAR, SIG}
and ref-mode 6 {VAL,REF, OUT}.

The tmode indicates, first, whether the object is a constant (object-class =
CONST), variable (object-class = VAR), or signal (object-class = SIG),
and second, whether the object is read-only (ref-mode = VAL), read-write

(ref-mode = REF), or write-only (ref-mode = OUT).

For technical purposes, it is also occasionally convenient for Phase 1 transla-
tion to manipulate "dummy" type modes of the form < DUMMY, VAL >,
< DUMMY,OBJ >, < DUMMY, ACC >, < DUMMY, AGR >, and
< DUMMY, TYP >, as well as "path" type modes of the form < PATH,p >
where p is a path in the TSE.

• tdesc is the type descriptor (see below). It gives the object's basic type, irre-

spective of the type mode.

To introduce a bit more terminology, a type in which the ref-mode is REF or OUT
will be called a reference type, while one whose ref-mode is VAL will be called a
value type. A reference type indicates that the associated object can have its value

altered (by an assignment, say), as opposed to a value type.

Finally, the type descriptor d = tdesc is the basic type of the type < tmode, tdesc >
of which it is the second component.

design file :
< id, qid, »DESIGN - FILE*, t >

The id and qid fields are as above. *DESIGN-FILE* constitutes the tag field,
and the path field contains e.

configuration :
< id, qid, »CONFIGURATION*, entity >

The id and qid fields are as above. *DESIGN-FILE* constitutes the tag field,
and the entity field contains the name of the configured entity.

package :
< id, qid, »PACKAGE*,path, exported, pbody >

The id, qid, path, and exported fields are as above. The tag field contains
PACKAGE. If this package has a body, the pbody field contains the trans-
formed abstract syntax tree of the package body; otherwise it contains e.

entity :
< id,qid, »ENTITY*, path, exported >

40

The id, qid, path, and exported fields are as above. *ENTITY* constitutes the

tag field.

architecture :
< id, qid, * ARCHITECTURE*, path, exported >

The id, qid, path, and exported fields are as above. * ARCHITECTURE*
constitutes the tag field.

component :
< id, qid, »COMPONENT*, path, exported >

The id, qid, path, and exported fields are as above. »COMPONENT* consti-

tutes the tag field.

block name :
< id,qid,*BLOCKNAME*,path >

The id and path fields are as above. The tag field contains *BLOCKNAME*
(the block label).

process name :
< id,qid,*PROCESSNAME*,path >

The id and path fields are as above. The tag field contains *PROCESSNAME*

(the process label).

loop name :
< id, qid, +LOOPNAME*, path >

The id, qid, and path fields are as in a process name. The tag field contains
LOOPNAME (the loop label).

function :

< id, qid, »FUNCTION*, path, exported, signatures, body, characterizations >

The id, qid, exported, and path fields are as above. The tag field contains
»FUNCTION*.

The signatures field contains a list of signatures, that is, < pars,rtype > pairs; this
list will be a singleton unless the function is overloaded. The pars field of a signature
is a list that indicates the names and types of the function's formal parameters. Each
list element is a pair, whose first component is the identifier that denotes the formal
parameter's name and whose second component is its type. The rtype (result type)
field of a signature contains the type of the function's result for these particular
parameter types; this type is always a value type.

The body field of a function descriptor contains the transformed abstract syntax
tree of the function's body (including its local declarations) if a body exists, and (
otherwise. The characterizations field of a function descriptor always contains e

(see procedure descriptors for a description of this field).

procedure :

< id, qid, »PROCEDURE*, path, exported, signatures, body, characterizations >

The id, qid, path, exported, signatures, body, and characterizations fields are
as in the function descriptor. The tag field contains »PROCEDURE* (procedure).

41

Since procedures return no result, all rtype fields in each signature contain the void
standard value type (see below).

The characterizations field of a procedure descriptor, unlike that of a function
descriptor, is potentially nonempty. One of either the body or the characterizations
must contain e; either a procedure has a body that may be symbolically executed, or
it has been characterized by a set of state deltas.

A characterization is a 6-tuple containing the following information:

• the path to the procedure;

• the identifier that names the procedure;

• a list of the identifiers that name the arguments to the procedure;

• a (possibly empty) precondition that determines under which conditions this

characterization may be used;

• a modification list of the names of variables changed by this procedure; and

• a postcondition that states the effects of the procedure.

The last three items in the tuple must be given in SDVS internal state delta notation,
as they form the basis for a state delta that characterizes the actions of the procedure.

enumeration type element :

< id, qid, *ENUMELT*, path, exported, type >

The id field contains the name of an enumeration type element, the tag field is
ENUMELT, and the type field contains the descriptor of the enumeration type.

type :
There are six kinds of type descriptor: those for standard types, enumeration types,
array types, subtypes, integer definition types, and record types. Although record
types are not actually incorporated in the Stage 4 VHDL language subset, the Stage
4 VHDL translator contains support for their eventual implementation.

Each type descriptor has an id field (containing the name ofthat type), a correspond-
ing qid field, a tag field (indicating the kind of type descriptor), path and exported
fields (that serve the usual purpose), and additional fields that contain information
appropriate to the type represented by the descriptor. The detailed structures of the
type descriptors are as follows:

standard type :
< id, qid, tag, path, exported >

Standard types are those considered to be predeclared; they are always ex-
portable. In Stage 4 VHDL, the standard types are boolean, bit, integer, real,
time, character, biLvector, and string; they cannot be redeclared.

The id and tag fields denote the following Stage 4 VHDL standard types:

id = BOOLEAN, tag = *BOOL*

id = BIT, tag = *BIT*

42

id = UNIVERSALJNTEGER, tag = *INT*

id = INTEGER, tag = *INT*

id = REAL, tag = *REAL*

id = TIME, tag = *TIME*

id = BIT-VECTOR, tag = *ARRAYTYPE*

id = STRING, tag = *ARRAYTYPE*

For completeness, we also provide void and polymorphic standard types for Stage
4 VHDL:

id = VOID, tag = *VOID*

id = POLY, tag = *POLY*

Functions are available that look up the type descriptors for the standard types;
during translation Phase 1, these type descriptors are bound to the type identi-
fiers in the t((STANDARD)) component environment of the TSE t:

bool-type-desc(t) = t((STANDARD))(BOOLEAN)

bit-type-desc(t) = t((STANDARD))(BIT)

univint-type-desc(t) = t((STANDARD))(UNIVERSAL JNTEGER)

int-type-desc(t) = t((STANDARD))(INTEGER)

reaJ-type-desc(t) = t((STANDARD))(REAL)

time-type-desc(t) = t((STANDARD))(TIME)

void-type-desc(t) = t((STANDARD))(VOID)

poly-type-desc(t) = t((STANDARD))(POLY)

In each of the above cases, the type descriptor has the form:

< id, t, tag, (STANDARD), tt, lb, ub >

char-type-desc(t) = t((STANDARD))(CHARACTER)

The type descriptor for the CHARACTER type has the form:

< CHARACTER, e, *ENUMTYPE*, (STANDARD), tt, (CHAR 0),(CHAR 127), literals >

bitvector-type-desc(t) = t((STANDARD))(BIT_VECTOR)

43

The type descriptor for the BIT_VECTOR type has the form:

< BIT.VECTOR, e, *ARRAYTYPE*, (STANDARD), tt, TO, (NUM 0), t, bittypedesc >

string-type-desc(t) = t((STANDARD))(STRING)

The type descriptor for the STRING type has the form:

< STRING, c, »ARRAYTYPE*, (STANDARD), tt, TO, (NUM 1), i, chartypedesc >

enumeration type :

< id, qid, »ENUMTYPE*, path, exported, literals >

The literals field is a nonempty list of identifiers giving the enumeration literals
(in order) for this type. Both characters and identifiers are admissible enumera-

tion literals in Stage 4 VHDL.

array type :

< id, qid, * ARRAYTYPE*, path, exported, direction, lb, ub, elty >

Every array type has a name; unique names are generated for anonymous ar-
ray types. Arrays in Stage 4 VHDL are one-dimensional, of index type UNI-
VERSALJNTEGER. Note that the standard types BIT_VECTOR and

STRING are array types.
The direction field contains either TO or DOWNTO, indicating whether the
indices of the array increase or decrease, respectively. The lb and ub fields
contain, respectively, abstract syntax trees for expressions that denote the array
type's lower and upper bounds. The elty (element type) field contains the de-
scriptor of the type of the array's elements. The values of the array's lower and
upper bounds are not necessarily static; therefore, array bounds-checking gen-
erally cannot be performed in Phase 1, but must be deferred to Phase 2 ("run
time"), when state deltas are applied ("executed").

The following function accepts arguments for the creation of an array type:
array-type-desc(array-name, qid, path, exported, direction, lower-bound, upper-bound, element-type)
= <array-name,qid,*ARRAYTYPE* ,path,exported,direction,lower-bound,upper-bound,element-type>

subtype :
< id, qid, *SUBTYPE*, path, exported, lb, ub, basetype >

The lb and ub fields contain, respectively, abstract syntax trees for expressions
that denote the subtype's lower and upper bounds. The basetype field contains

the descriptor of the subtype's base type.

integer defiriition type :

< id,qid,*INT_TYPE*,path, exported, lb, ub, parenttype >

The lb and ub fields contain, respectively, abstract syntax trees for expressions
that denote the integer definition type's lower and upper bounds. The parent-
type field contains the descriptor of the integer definition type's parent type,

which is always UNIVERSALJNTEGER.

44

record type :
< id, qid, *RECORDTYPE+, path, exported, components >

The components field is a nonempty list of triplets; each triplet represents a
field of this record type. The first element of each triplet is an identifier that
is this field's name. The second element is a descriptor representing this field's
basic type. The third element either is empty or contains an abstract syntax
tree for Phase 2 initialization for components of objects declared to be of this
record type. As noted above, records are not implemented as part of Stage 4
VHDL, and record types are included simply in preparation for the anticipated

implementation of records.

6.2.1 Type and type descriptor predicates

Predicates are available for distinguishing specific types and type descriptors:

is-boolean?(type) = is-boolean-tdesc?(tdesc(type))

is-boolean-tdesc?(d) = idf(d)= BOOLEAN

is-bit?(type) = is-bit-tdesc?(tdesc(type))

is-bit-tdesc?(d) = idf(d)= BIT

is-integer?(type) = is-integer-tdesc?(tdesc(type))

is-integer-tdesc?(d) = tag(d)€ (*INT* *INT_TYPE*)

is-real?(type) = is-real-tdesc?(tdesc(type))

is-real-tdesc?(d) = idf(d)= REAL

is-time?(type) = is-time-tdesc?(tdesc(type))

is-time-tdesc?(d) = idf(d)= TIME

is-void?(type) = is-void-tdesc?(tdesc(type))

is-void-tdesc?(d) = idf(d)= VOID

is-poly?(type) = is-poly-tdesc?(tdesc(type))

is-poly-tdesc?(d) = idf(d)= POLY

is-character?(type) = is-character-tdesc?(tdesc(type))

45

is-character-tdesc?(d) = idf(d)= CHARACTER

is-array?(type) = is-array-tdesc?(tdesc(type))

is-array-tdesc?(d) = tag(d)= *ARRAYTYPE*

is-record?(type) = is-record-tdesc?(tdesc(type))

is-record-tdesc?(d) = tag(d)= *RECORDTYPE*

is-bitvector?(type) = is-bitvector-tdesc?(tdesc(type))

is-bitvector-tdesc?(d)
= let idf = idf(d) in

idf = BIT-VECTOR V (consp(idf)A hd(idf)= BIT-VECTOR)

is-string?(type) = is-string-tdesc?(tdesc(type))

is-string-tdesc?(d)
= let idf = idf(d) in

idf = STRING V (consp(idf)A hd(idf)= STRING)

is-const?(type) = object-class(tmode(type))= CONST

is-var?(type) = object-class(tmode(type))= VAR

is-sig?(type) = object-class(tmode(type))= SIG

6.2.2 Additional primitive accessors and predicates

Certain primitive functions can be applied to descriptors. For each kind of descriptor and
field there exists an access function, ordinarily with the same name as the field (the only
exception being idf instead of id). When applied to a descriptor of the proper kind, the
access function extracts the contents of that descriptor's corresponding field. For example,
if d is an object descriptor, then tag(d) = *OBJECT*.

If d is any descriptor, then the fully qualified name of the corresponding identifier instance
is returned by function namef:

namef(d) = $(path(d))(idf(d))

Defined below are the descriptor component access functions, a few related constructor and

access functions, and some convenient additional predicates.

idf(d) = hd(d)

qid(d) = hd(tl(d))

46

tag(d) = hd(tl(tl(d)))

path(d) = hd(tl(tl(tl(d))))

exported(d) = hd(tl(tl(tl(tl(d)))))

configured-entity(d) = hd(tl(tl(tl(tl(d)))))

component-name(d) = hd(tl(tl(tl(tl(tl(d))))))

type-tick-low(d) = hd(tl(tl(tl(tl(tl(d))))))

type-tick-high(d) = hd(tl(tl(tl(tl(tl(tl(d)))))))

base-type(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

parent-type(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

literals(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

pbody(d) = hd(tl(tl(tl(tl(tl(d))))))

type(d) = hd(tl(tl(tl(tl(tl(d))))))

value(d) = hd(tl(tl(tl(tl(tl(tl(d)))))))

sources(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

signatures(d) = hd(tl(tl(tl(tl(tl(d))))))

body(d) = hd(tl(tl(tl(tl(tl(tl(d)))))))

characterizations(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

direction(d) = hd(tl(tl(tl(tl(tl(d))))))

lb(d) = hd(tl(tl(tl(tl(tl(tl(d)))))))

ub(d) = hd(tl(tl(tl(tl(tl(tl(tl(d))))))))

elty(d) = hd(tl(tl(tl(tl(tl(tl(tl(tl(d)))))))))

components(d) = hd(tl(tl(tl(tl(tl(d))))))

mk-real-dotted-name(id*)

= (nuU(id*)— e,
let first-id = hd(id*)

and rest-ids = tl(id*) in
(null(rest-ids)—► first-id,
catenate(first-id,".",mk-real-dotted-name(rest-ids))))

pars(signature) = hd(signature)

rtype(signature) = hd(tl(signature))

47

get-base-type(d) = (tag(d)= *SUBTYPE* — base-type(d), d)

get-parent- type(d)
= (tag(d)e (*INT_TYPE* *DERIVED_TYPE*) — parent-type(d),

error(cat("Not a derived type: ")(d)))

mk-type(tmode)(tdesc) = (tmode.tdesc)

tmode(type) = hd(type)

tdesc(type) = hd(tl(type))

mk-tmode(object-class)(ref-mode) = (object-class, ref-mode)

object-class(tmode) = hd(tmode)

ref-mode(tmode) = hd(tl(tmode))

is-const?(type) = object-class(tmode(type))= CONST

is-var?(type) = object-class(tmode(type))= VAR

is-sig?(type) = object-class(tmode(type))= SIG

is-readable?(type) = ref-mode(tmode(type))6 (VAL REF)

is-writable?(type) = ref-mode(tmode(type))g (REF OUT)

is-ref?(expr) = consp(expr)A length(expr)= 2

is-paggr?(expr) = hd(expr)= PAGGR

is-unary-op?(op) = op € (NOT PLUS NEG ABS)

is-binary-op?(op)
= op g (AND NAND OR NOR XOR ADD SUB MUL DIV MOD REM EXP CONCAT)

is-relational-op?(op) = op 6 (EQ NE LT LE GT GE)

48

6.3 Special-Purpose Environment Components and Functions

Certain component environments r of the tree-structured environment (TSE) part of the
translation state have special identifier-like names that are bound to values specific to that
environment's associated program unit (design file, configuration, package, entity, architec-
ture, component, block, process, procedure, function, or loop):

UNIT :
r(*UNIT*) contains a tag that identifies what kind of program unit led to the cre-
ation of r. These tags are *DESIGN-FILE* (design file), »PACKAGE* (package),
ENTITY (entity), »ARCHITECTURE* (architecture), *PROCESS* (pro-
cess), *PROCEDURE* (procedure), *FUNCTION* (function), and *LOOP*
(loop). These tags are used to locate the innermost instance of a specific kind of
environment (such as one associated with a process) on the current lookup path in
the TSE.

LAB :
When the tag of r(*UNIT*) is *ARCHITECTURE*, the value bound to r(*LAB*)
contains an identifier list of all the labels of concurrent statements (blocks or processes)
in the corresponding architecture body. When the tag of r(*UNIT*) is ♦PRO-
CESS*, »PROCEDURE*, *FUNCTION*, or *LOOP*, the value bound to
r(*LAB*) contains an identifier list of all the loop labels declared in the program
unit. These lists are used to ensure that the identifiers serving as process and loop
labels are distinct in (the top-level scope of) each program unit.

USED :
The environment corresponding to any program unit admitting USE clauses in its
declarative part has a *USED* component. In this case, r(*USED*) is a list repre-
senting the set of fully qualified names of packages named in USE clauses appearing in
that declarative part, omitting the qualified names of packages that textually enclose
those USE clauses. In order to ensure that the TSE used in Phase 2 of the Stage 4
VHDL translator can remain fixed as that generated by Phase 1, a slight restriction
is imposed on the concrete syntax of Stage 4 VHDL. This restriction requires that
all of the USE clauses in a declarative part appear only at the end of that declarative
part. This will be discussed more fully later.

IMPT :
Whenever a program unit has a *USED* component, it also has a *IMPT* com-
ponent. r(*IMPT*) is a list of the fully qualified names of those items that can be
imported into the program unit's environment by the elaboration of the USE clauses
in its declarative part. Consequently, no two of these fully qualified names can have
the same last identifier (unqualified name), nor can the last identifier of any of these
fully qualified names be the same as an identifier whose (local) declaration appears in
this program unit's declarative part.

SENS :
When the tag of r(*UNIT*) is *PROCESS*, the value bound to r(*SENS*) con-

49

tains a list of the transformed abstract syntax trees of the refs appearing in that pro-
cess' sensitivity list. Phase 1 translation of a WAIT statement occurring in a PROCESS
statement checks to make sure this *SENS* list is empty; otherwise, the WAIT occurs

illegally in a process with a sensitivity list.

Special Phase 1 Functions

Three special-purpose Phase 1 functions defined by SDVS are set-difference, new-array-
type-name, and delete-duplicates; these are provided by SDVS because of the difficulty
of writing their definitions in the DENOTE language (DL).

Function set-difference returns the set difference of two lists. Function new-array-
type-name returns a new unique name for an anonymous array type. Function delete-

duplicates destructively deletes duplicate items from a list.

Error Reporting

Phase 1 errors are reported by three SDVS functions: error, which takes a string-valued er-
ror message; error-pp, which takes a string-valued error message and an additional VHDL
abstract syntax subtree to be pretty-printed; and cat, which makes a string from its (vari-
able number of) arguments, each of which is made into a string.

6.4 Phase 1 Semantic Domains and Functions

The formal description of Phase 1 translation consists of semantic domains and semantic
functions, the latter being functions from syntactic to semantic domains. Compound se-
mantic domains are defined in terms of primitive semantic domains. Similarly, primitive
semantic functions are unspecified (their definitions being understood implicitly) and the
remaining semantic functions are denned (by syntactic cases) via semantic equations.

The principal Phase 1 semantic functions (and corresponding Stage 4 VHDL language con-
structs for which they perform static analysis) are: DFT (design files), DUT (design units),
CIT (context items), LUT (library-units), CFT (configuration declarations), BCT (block
configurations), CMT (component configurations), BIT (binding indications), ENT (en-
tity declarations), ART (architecture bodies), GDT (generic declarations), PDT (port
declarations), GMT (generic maps), PMT (port maps), DT (declarations), CST (con-
current statements), SLT (sensitivity lists), SST (sequential statements), AT (case alter-
natives), DRT (discrete ranges), WT (waveforms), TRT (transactions), MET (reference
lists), ET and RT (expressions), OT1 (unary operators), OT2 (binary and relational
operators), B (bit literals), and N (numeric literals).

Each of the principal semantic functions requires an appropriate syntactic argument — an
abstract syntactic object (tree) generated by the Stage 4 VHDL language parser. Most of

the semantic functions take (at least) the following additional arguments:

• a path, indicating the currently visible portion of the (partially constructed) tree-

structured environment;

50

• a continuation, specifying which Phase 1 semantic function to invoke next; and

• a (partially constructed) TSE, containing the information gathered from declarations
previously elaborated and checked.

In the absence of errors, the Phase 1 semantic functions update the TSE. Moreover, ET
and RT also construct a pair consisting of an expression's type and its static value. The
type is either a value type or a reference type; see Section 6.2. Only an expression with a
reference type may be the target of an assignment operation.

An expression's static value is *UNDEF* ("undefined") unless it is a static expression, in
which case its static value is determined as follows. A static expression is:

• a boolean, bit, numeric, or character literal: the static value is the value of the

corresponding constant;

• an identifier explicitly declared as a scalar constant and initialized by a static expres-
sion: the static value is the static value of the initialization expression;

• an operator applied to operands that are static expressions: the static value is deter-
mined by the semantics of the operator and the static value of the operands;

• a static expression enclosed in parentheses: the static value is the static value of the

enclosed static expression.

Note that a subscripted array reference, even if the subscript is a static expression and the
array was declared as a constant initialized with a list of static expressions, is not a static
expression. (The same is true for a selected record component.)

6.4.1 Phase 1 Semantic Domains

The semantic domains and function types for Phase 1 of the Stage 4 VHDL translator are

as follows.

Primitive Semantic Domains

Bool = {FALSE, TRUE} boolean constants
Bit = {0, 1} bit constants
Char = {(CHAR 0), ..., (CHAR 127)} character constants (ASCII-128 representations)
n : N = {0, 1, 2, ...} numeric constants (natural numbers)

identifiers
system-generated identifiers (disjoint from Id)

tree-structured environments (TSEs)

descriptors (see Section 6.2)

51

id : Id
Sysid

t :
d

TEnv
Desc

sd : SD
Assert

Error

Compound Semantic Domains

elbl : Elbl = Id + Sysld
p, q: Path = Elbl*
qname: Name = Elbl (. Elbl)*

d : Dv = Desc
r : Env = Id — (Dv + {*UNBOUND*})

state deltas
SDVS Simplifier assertions

error messages

TSE edge labels
TSE paths
qualified names

denotable values (descriptors)

environments

Tmode = {PATH} X Id* +
({CONST, VAR, SIG, DUMMY} x

{VAL, OUT, REF, OBJ, ACC, TYP})

type modes

w : Type = Tmode X Desc
e : Value

h : CSet = P(Bool) + P(Char) + P,(N)
+ {INT} + {ENUM}

u : TDc = TEnv -> Ans
c : TSc = TDc
k : TEc = (Type x Value) -> TSc
h : TMc = (Type* X Value*) -► TSc
y : TAc = CSet -► TSc
v : TTc = Type -* Ans
z : Desc — TDc

Ans = (SD + Assert)* + Error

types
values

case selection sets [P(») denotes "powerset of"
and P/(«) denotes "set of finite subsets of"]

declaration & concurrent statement continuations
sequential statement continuations
expression continuations
reference list continuations
case alternative continuations
type continuations
descriptor continuations

final answers

6.4.2 Phase 1 Semantic Functions

The semantic functions for Phase 1 of the Stage 4 VHDL translator are as follows.

DFT : Design —► Id —> Ans design file static semantics

DUT : DUnit* ->■ Id -+ Path -»■ Bool -> TDc ->■ TDc design unit static semantics

CIT : CItem* —>• Path —► Bool —► TDc —> TDc context item static semantics

LUT : LUnit —► Id —+ Path —► Bool —► TDc —► TDc library unit static semantics

52

CFT : Config -► Path -+ TDc -* TDc

BCT : BConf -► Id -> Path -► TDc -» TDc

CMT : CConf -> Id -► Path — TDc — TDc

BIT : Bind -* Id -> BConf -► TDc — TDc

ENT : Ent — Path -► TDc -» TDc

ART : Arch -► Path -► TDc — TDc

GDT : GDec* -► Path -+ Bool -» TDc -► TDc

PDT : PDec* -► Path — Bool -+ TDc -► TDc

GMT : GMap -> Id -► Id — Path -f Path
- TDc - TDc

PMT : PMap -> Id — Id - Path — Path
-> TDc -* TDc

DT Dec* -► Path -► Bool — TDc -» TDc

CST : CStat* -> Path -> TDc -> TDc

SLT : Ref* -» Path -> TDc -► TDc

SST : SStat* -* Path -4 TSc -> TSc

AT : Alt* -► Type -> Path -» TAc -4 TSc

DRT : Drg -► Type -»• Path -4 TAc -» TSc

WT : Wave -> Path -> TEc -► TSc

TRT : Trans* -♦ Path -* TEc -» TSc

MET : Ref* -► Path -► TMc -> TSc

ET : Expr -> Path -» TEc -> TSc

RT : Expr -► Path -» TEc -»■ TSc

OT1 : Uop -* TEc -> TEc

configuration declaration static semantics

block configuration static semantics

component configuration static semantics

binding indication static semantics

entity declaration static semantics

architecture body static semantics

generic declaration static semantics

port declaration static semantics

generic map static semantics

port map static semantics

declaration static semantics

concurrent statement static semantics

sensitivity list static semantics

sequential statement static semantics

case alternative static semantics

discrete range static semantics

waveform static semantics

transaction static semantics

reference list static semantics

expression static semantics

expression static semantics

unary operator static semantics

53

OT2 : Bop -* TEc -► (Type x Value) — TEc

B : BitLit — Bit

N : NumLit -► N

binary, relational operator static semantics

bit values of bit literals
(primitive)

integer values of numeric literals
(primitive)

54

6.5 Phase 1 Semantic Equations

6.5.1 Stage 4 VHDL Design Files

(DFT1) DFT [DESIGN-FILE id design-unit+ 1 (using-configuration)
= let to = mk-initial-tse() in

let p = %(e)(id) in
let t[= enter-standard(to) in

let t2 = enter-textio(ti) in
let t3 = enter(t2)(£)(id)(<e,*DESIGN-FILE* ,e>) in
let t4 = enter(extend(t3)(£)(id))(p)(*UNIT*)(<e,*DESIGN-FILE* >) in

let t5 = enter(t4)(p)(*LAB*)(<£,£>) in
let t6 = enter(t5)(p)(*USED*)(<£,£>) in
let t7 = enter(t6)(p)(*IMPT*)(<e,e,e>) in

enter-objects
((VHDLTIME ,VHDLTIME_PREVIOUS))
(<e,*OBJECT* ,£,tt,

((DUMMY ,VAL),vhdltime-type-desc(t0)),*UNDEF* ,e>)(t7)(e)(u)
where
u = At.let use-clause = (USE .((STANDARD ,ALL))) in

DT I use-clause] (e)(tt)(U])(t)
where
ui = At,PUT [[design-unit"1"]] (using-configuration)(p)(tt)(u2)

(t)
where
U2 = At.phasel-tail(t)(using-configuration)(p)(u3)

where
U3 — At.let transformed-abstract-syntax-tree = intermediate-phase

(design-file)
(using-configuration)
(t) in

phase2
(id)
(transformed-abstract-syntax-tree)(t)
(using-configuration)

enter-standard(t)
= let ti = enter-package(t)(e)(STANDARD) in

let t2 = enter(ti)(e)(*USED*)(<£,£>) in
let t3 = enter(t2)(e)(*IMPT*)(<£,£,£>) in

let t4 = enter-standard-predefined(t3)((STANDARD)) in
t4

enter-textio(t)
= let ti = enter-package(t)(£)(TEXTIO) in

let t2 = enter(t,)(£)(*USED*)(<e,e>) in
let t3 = enter(t2)(e)(*IMPT*)(<e,e,e>) in

let t4 = enter-textio-predefined(t3)((TEXTIO)) in
t4

enter-objects(id*)(field-values)(t)(p)(u)
= (nuU(id*)— u(t),

let id = hd(id*) in
(t(p)(id)^ *UNBOUND* — error(cat("Duplicate object declaration: ")($(p)

(id))),
let ti = enter(t)(p)(id)(field-values) in

enter-objects(tl(id*))(field-values)(ti)(p)(u)))

55

phasel-tail(t)(using-configuration)(p)(u)
= let t»i = update-tse-wrt-component-instantiations(using-configuration)(t) in

let t2 = update-tse-wrt-configuration(ti)(using-configuration)(p) in
u(t2)

intermediate-phase(design-file)(using-configuration)(t)
= DFX [design-file] (using-configuration)(t)

enter-standard-predefined (t)(p)
= let tj = enter(t)(p)(BOOLEAN)(<£,*BOOL* ,(STANDARD) ,tt,FALSE ,TRUE >) in

let t2 = enter
(t.)(p)(BIT)
(<e,*BIT* ,(STANDARD) ,tt,mk-bit-simp-symbol(0),

mk-bit-simp-symbol(l)>) in
let t3 = enter(t2)(p)(UNIVERSAL_INTEGER)(<e,*INT* .(STANDARD) ,tt,£,e>) in
let U = enter(t3)(p)(INTEGER)(<e,*INT* .(STANDARD) ,tt,e,e>) in

let t5 = enter(t4)(p)(REAL)(<£,*REAL* .(STANDARD) ,tt,e,e>) in
let t6 = enter(t5)(p)(TIME)(<E,*TIME* .(STANDARD) ,tt,£,£>) in

let t7 = enter(t6)(p)(VHDLTIME)(<e,*VHDLTIME* .(STANDARD) ,tt,£,e>) in
let tg = enter(t7)(p)(VOID)(<£,*VOID* .(STANDARD) ,tt,e,e>) in
let t9 = enter(t8)(p)(POLY)(<e,*POLY* .(STANDARD) ,tt,£,c>) in

let 110 = enter
(t9)(p)(BIT_VECTOR)
(tl(array-type-desc

(BIT.VECTOR)(e)((STANDARD))(tt)(TO)((NUM 0))(e)
(bit-type-desc(tg)))) in

let tu = enter-characters(tio)(p) in
let ti2 = enter-string(tn)(p) in

tl2

enter-textio-predefined(t)(p) = t

enter-package(t)(p)(id)
= let pi = %(p)(id) in

let package-desc = <e,*PACKAGE* ,p,tt.e> in
let ti = enter(t)(p)(id)(package-desc) in
let t2 = enter(extend(ti)(p)(id))(pi)(*UNIT*)(<£,*PACKAGE* >) in

let t3 = enter(t2)(Pl)(*USED*)(<£,£>) in
let t4 =enter(t3)(Pl)(*IMPT*)(<£,£,£>) in

t4

enter-characters(t)(p)
= let id+ = gen-characters(0)(127) in

let field-values, = <£,*ENUMTYPE* ,p,tt,hd(id+),last(id+),id+> in
let char-type-desc = cons(CHARACTER .field-valuesi) in

let field-values2 = <e,*ENUMELT* ,p,tt,mk-type((CONST VAL))(char-type-desc)> in
enter-objects(id+) (field-values2)(t)(p)(u)
where u = At, .enter(t,)(p)(CHARACTER)(field-valuesi)

gen-characters(start)(finish)
= (start = finish -► ((CHAR .finish)),

cons((CHAR ,start),gen-characters(start-)-])(finish)))

enter-string(t)(p)
= let expr = (NUM 1) in

let string-type-desc = array-type-desc
(STRING)(e)(p)(tt)(TO)(second(EX [expr] (p)(t)))(s)
(char-type-desc(t)) in

enter(t)(p)(STRING)(tl(string-type-desc))

56

6.5.2 Design Units

(DUTO) PUT ([ell (using-configuration)(p)(vis)(u)(t) = „(t)

(DUT1) PUT [design-unit design-unit* J (using-configuration)(p)(vis)(u)(t)
= PUT [design-unit]) (using-configuration)(p)(vis)(ui)(t)

where ui = At.PUT IT design-unit*] (using-configuration)(p)(vis)(u)(t)

(DUT2) PUT [PESIGN-UNIT context-item* library-unit] (using-configuration)(p)(vis)(u)(t)
= CIT [context-item* J (p)(vis)(ui)(t)

where ui = At.LUT [library-unit | (using-configuration)(p)(vis)(u)(t)

6.5.3 Contex Items

(CITO) CIT [el(p)(vis)(u)(t)=u(t)

(CIT1) CIT [context-item context-item* 1 (p)(vis)(u)(t)
= CIT I context-item I (p)(vis)(ui)(t)

where m = At.CIT [context-item*] (p)(vis)(u)(t)

(CIT2) CIT [USE dotted-name+] (p)(vis)(u)(t)
= let decl = context-item in

PT[decl](p)(vis)(u)(t)

6.5.4 Library Units

(LUT1) LUT [CONFIGURATION idj id2 use-clause* block-config opt-id] (using-configuration)(p)(vis)(u)(t)
= u(t)

(LUT2) LUT [PACKAGE id decl* opt-id 1 (using-connguration)(p)(vis)(u)(t)
= let decl = library-unit in

PT[decl](p)(vis)(u)(t)

(LUT3) LUT [ENTITY id generic-decl* port-decl* decl* opt-id] (using-configuration)(p)(vis)(u)(t)
= let entity-decl = library-unit in

ENT [entity-decl]] (p)(u)(t)

(LUT4) LUT I PACKAGEBOPY id decl* opt-id 1 (using-configuration)(p)(vis)(u)(t)
= let decl = library-unit in

fiT[decl](p)(vis)(u)(t)

(LUT5) LUT [ARCHITECTURE id, id2 decl* conc-stat* opt-id 1 (using-configuration)(p)(vis)(u)(t)
= let architecture-body = library-unit in

ART [architecture-body | (using-configuration)(p)(u)(t)

57

6.5.5 Configuration Declarations

(CFTl) CFT I CONFIGURATION idi id2 use-clause* block-config opt-id 1 (p)(u)(t)
= (->null(opt-id)A opt-id ^ id!

—► error
(cat("Configuration declaration ")('di)
(" ended with incorrect identifier: ")(opt-id)),

let d = t(p)(id2) in
(d = »UNBOUND* V tag(d)^ »ENTITY*

—► error
(cat("No entity ")(id2)(" for configuration declaration ")(idi)),

(t(p)(idi)^ »UNBOUND*
—► error(cat("Duplicate configuration declaration: ")($(p)(idi))),
let t, =enter(t)(p)(id,)(<£,*CONFIGURATION*,p,id2>) in

let p, =%(p)(id,)

and p2 = %(p)(id2) in
let t2 = enter

(extend(t1)(p)(idi))(pi)(*UNIT*)(<E,*CONFIGURATION* >) in

let t3 = enter(t2)(pi)(*LAB*)(<£,£>) in

let t4 =enter(t3)(pi)(*USED*)(<£,£>) in
let ts = enter(t4)(pi)(*IMPT*)(<e,£,£>) in

DT [use-clause*] (pi)(tt)(u1)(t5)
where m = At.BCT [block-config] (idj)(p2)(u2)(t)
where u2 = At.u(t))))

(BCT1) BCT [BLOCK-CONFIG id use-clause* component-config* 1 (configuration-id)(p)(u)(t)

= let d = t(p)(id) in
(d = »UNBOUND* V tag(d)^ »ARCHITECTURE*

—* error
(cat("In configuration declaration ")(connguration-id)
("the identifier ")(id)
("fails to refer to an architecture of entity ")

(last(p))),
let Pl = %(p)(id) in

DT [use-clause*] (p)(tt)(ui)(t)
where ui = At.CMT [component-config*] (configuration-id)(pi)(u)(t))

(CMTO) CMT [£ 1 (configuration-id)(p)(u)(t) = u(t)

(CMT1) CMT [[component-config component-config*] (configuration-id)(p)(u)(t)
= CMT [[component-config J (configuration-id)(p)(ui)(t)

where ui = At.CMT [component-config*] (configuration-id)(p)(u)(t)

(CMT2) CMT I COMP-CONFIG component-spec opt-binding-indication opt-block-config J (configuration-id)(p)(u)(t)

= let id+ = hd(component-spec)
and component-name = second(component-spec)
and arch-id = last(p) in

let d = lookup-desc-for-ref((REF ,component-name))(p)(t) in
(d = »UNBOUND* V tag(d)^ »COMPONENT*

—♦ error
(cat("In configuration declaration ")(configuration-id)
("there is no component declaration ")
(mk-real-dotted-name(component-name))

("for component instances ")(id+)

("in architecture body ")(arch-id)),

58

let Pl = %(p)(idf(d)) in
process-component-spec(id+)(configuration-id)(arch-id)(p)(ui)(t)

where
ui = At.(null(opt-binding-indication)

—>• (null(opt-block-config)^ u(t),
error

(cat("Configuration ")(configuration-id)
("has no binding indication for component specification ")

(component-spec))),
let binding-indication = opt-binding-indication in

BIT [binding-indication]] (configuration-id)
(opt-block-conng)(Pl)(u)(t)))

process-component-spec(id*)(configuration-id)(arch-id)(p)(u)(t)

= (null(id*)— u(t),
let component-id = hd(id') in

let d = t(p)(component-id) in
(d = »UNBOUND* V tag(d)/ *BLOCKNAME*

—* error
(cat("In configuration ")(configuration-id)("the label ")(component-id)
("matches no component instantiation statement in architecture body ")

(arch-id)),
process-component-spec(tl(id*))(configuration-id)(arch-id)(p)(u)(t)))

(BIT1) BIT [BIND entity-aspect opt-generic-map-aspect opt-port-map-aspect]
(configuration-id)(opt-block-config)(p)(u)(t)

= (hd(entity-aspect)= BOUND-ENTITY

—► process-bound-entity
(entity-aspect)(opt-generic-map-aspect)(opt-port-map- aspect)

(configuration-id)(opt-block-config)(p)(u)(t),

process-bound-configuration
(en tity-aspect)(opt-generic-map-aspect) (opt-port-map-aspect)

(configuration-id)(opt-block-config)(p)(u)(t))

process-bound-entity (entity-aspect)
(opt-generic-map-aspect) (opt-port-map-aspect)(configuration-id)(opt-block-config)

(P)(»)(t)
= let dotted-name = second(entity-aspect)

and opt-id = third(entity-aspect) in
let real-dotted-name = mk-real-dotted-name(dotted-name)

and d = lookup-desc-for-ref((REF ,dotted-name))(p)(t) in

(d = »UNBOUND* V tag(d)/ »ENTITY*

—<• error
(cat("Conf iguration declaration ")(configuration-id)
("refers to unknown entity ")(real-dotted-name)),

let q = %(path(d))(idf(d)) in
(opt-generic-map-aspect

—► let generic-map-aspect = opt-generic-map-aspect in
GMX [generic-map-aspect] (configuration-id)(CONFIGURATION)(q)(p)(u,)(t),

(null(third(t(p)(*GENERICS*)))— u,(t),

error
(cat("Configuration declaration ")(configuration-id)
("requires a generic map for entity aspect ")

(entity-aspect))))

where

59

U] = At.(opt-port-map-aspect
—* let port-map-aspect = opt-port-map-aspect in

PMT f port-map-aspect] (configuration-id)(CONFIGURATION)(q)

(p)M(t).
(null(third(t(p)(*PORTS*)))— u2(t),
error

(cat("Configuration declaration ")(configuration-id)

("requires a port «ap for entity aspect ")
(entity-aspect))))

where

u2 = At.(nul](opt-id)—► u(t),
(null(opt-block-config)—► u(t),
(opt-id ^ second(opt-block-config)

—► error
(cat("In configuration declaration ")(configuration-id)

("the block specification identifier ")

(second (opt-block-config))
("does not match the architecture identifier ")

(opt-id)("of the associated bound entity ")

(entity-aspect)),

»3(t))))
where
u3 = At.let block-config = opt-block-config in

BCT I block-config j (configuration-id)(q)(u)(t))

process-bound-configuration(entity-aspect)
(opt-generic-map-aspect)(opt-port-map-aspect)(configuration-id)(opt-block-config)

(P)(»)(t)
= let dotted-name = second(entity-aspect) in

let real-dotted-name = mk-real-dotted-name(dotted-name)

and d = lookup-desc-for-ref((REF ,dotted-name))(p)(t) in

(d = »UNBOUND* V tag(d)# »CONFIGURATION*
— error

(cat("Configuration declaration ")(configuration-id)

("refers to unknown configuration ")(real-dotted-name)),
u(t))

6.5.6 Entity Declarations

(ENTl) ENT I ENTITY id generic-decl* port-decl* decl* opt-id] (p)(u)(t)
= (-mull(opt-id)A opt-id ^ id

—► error
(cat("Entity declaration ")(id)
(" ended with incorrect identifier: ")(opt-id)),

(t(p)(id)/ »UNBOUND*
— error(cat("Duplicate entity declaration: ")(S(p)(id))),
let ti = enter(t)(p)(id)(<£,»ENTITY* ,p,ff>) in

let p, = %(p)(id) in
let t2 = enter(extend(t,)(p)(id))(p,)(*UNIT*)(<e,*ENTITY* >)

let t3 = enter(t2)(pi)(*LAB*)(<e,e>) in
let t4 =enter(t3)(pi)(*USED*)(<£,£>) in

let t5 = enter(t4)(pi)(*IMPT*)(<e,e,c>) in
let t6 =enter(t4)(pi)(*GENERICS*)(<£,£>) in

let t7 = enter(t4)(pi)(*PORTS*)(<£,£>) In
GDT | generic-decl*] (pi)(tt)(m)(t7)

60

where Ul = At.PPT [port-decl* 1 (p,)(tt)(u2)(t)
where u2 = At.DT [decl*] (Pl)(tt)(u)(t)))

6.5.7 Architecture Bodies

(ARTl) ART H ARCHITECTURE id] id2 decl* conc-stat* opt-id 1 (using-configuration)(p)(u)(t)
= (-inull(opt-id)A opt-id ^ idi

—» error
(cat("Architecture body ")(idi)
(" ended with incorrect identifier ")(opt-id)),

let d = t(p)(id2) in
(d = »UNBOUND* V tag(d)# *ENTITY*

—«■ error(cat("No entity ")(id2)(" for architecture body ")(idi)),
let p, = %(p)(id2) in

(t(Pl)(id1)# »UNBOUND*
—► error(cat("Duplicate architecture body: ")($(pi)(idi))),
let p2 = %(pi)(idi) in
let t! =enter(t)(pi)(idi)(<e,*ARCHITECTURE*,pi,ff>) in

let t2 = enter
(extend(t1)(pi)(idi))(p2)(*UNIT*)(<£,»ARCHITECTURE* >) in

let t3 = enter(t2)(p2)(*LAB*)(<e,e>) in
let t4 = enter(t3)(p2)(*USED*)(<£,£>) in

let t5 =enter(t4)(p2)(*IMPT*)(<£,£,£>) in
DT[decl*l(p2)(tt)(u1)(t5)

where
ui = Ate-CST If conc-stat*] (using-configuration)(p2)(u)(t6))))

6.5.8 Generic Declarations

(GDTO) GDT I e] (p)(vis)(u)(t) = u(t)

(GDT1) GDT [generic-decl generic-decl* 1 (p)(vis)(u)(t)
= GDT I generic-decl] (p)(vis)(ui)(t)

where m = At.GDT [generic-decl*] (p)(vis)(u)(t)

(GDT2) GDT [DEC GENERIC id+ type-mark opt-expr] (p)(vis)(u)(t)
= lookup-type(type-mark)(p)(z)(t)

where
z = Ad.let type = mk-type((REF VAL))(d) in

let generic* = third(t(p)(*GENERICS*)) in
let generic, = append(id+,generic*) in

(duplicates?(generic*)
—* error

(cat("Duplicate generics declared in generic clause: ")
(generic-decl)),

let t! = enter(t)(p)(*GENERICS*)((£,genericl)) in
process-dec(id+)(type)(opt-expr)(p)(vis)(u)(ti))

(GDT3) GDT [SLCDEC GENERIC id+ süce-name opt-expr J (p)(vis)(u)(t)
= let (type-mark,discrete-range) = slice-name in

lookup-type(type-mark)(p)(z)(t)
where
z = Ad.let type = mk-type((REF VAL))(d) in

61

let generic* = third(t(p)(*GENERICS*)) in
let generic* = append(id+,generic*) in

(duplicates?(generic*)
—* error

(cat("Duplicate generics declared in generic clause: ")
(generic-decl)),

let t, = enter(t)(p)(*GENERICS*)((e,generic*)) in
process-slcdec

(id+)(type)(discrete-range)(opt-expr)(p)(vis)(u)(ti))

6.5.9 Port Declarations

(PDTO) PDT [e] (p)(vis)(u)(t) = u(t)

(PDT1) PDT [port-decl port-decl*] (p)(vis)(u)(t)

= PDT [port-decl J (p)(vis)(m)(t)
where U[= At.PDT f port-decl*] (p)(vis)(u)(t)

The elaboration and checking of a sequence of port declarations proceeds from the first to
the last declaration in the sequence.

(PDT2) PDT I DEC PORT id+ mode type-mark opt-expr 1 (p)(vis)(u)(t)
= lookup-type(type-mark)(p)(z)(t)

where
z = Ad.let type = (case mode

IN - mk-type((SIG VAL))(d),
OUT — mk-type((SIG OUT))(d),
(INOUT .BUFFER) — mk-type((SIG REF))(d),

OTHERWISE
—► error

(cat("Illegal mode in port declaration: ")

(port-decl))) in
let port* = third(t(p)(*PORTS*)) in

let port* = append(id+,port*) in
(duplicates?(port*)
—► error

(cat("Duplicate ports declared in port clause: ")
(port-decl)),

let ti = enter(t)(p)(*PORTS*)((e,port*)) in
process-dec(id+)(type)(opt-expr)(p)(vis)(u)(ti))

duplicates?(things)
= (null(things)— ff,

let first-thing = hd(things)
and rest-things = tl(things) in

(first-thing 6 rest-things —♦ tt, duplicates?(rest-things)))

Refer to the discussion following semantic equation DT5 in Section 6.5.11.

(PDT3) PDT I SLCDEC PORT id+ mode slice-name opt-expr] (p)(vis)(u)(t)
= let (type-mark,discrete-range) = slice-name in

lookup-type(type-mark)(p)(z)(t)
where

62

Ad.let type = (case mode
IN — mk-type((SIG VAL))(d),
OUT -> mk-type((SIG OUT))(d),
(INOUT .BUFFER) — mk-type((SIG REF))(d),

OTHERWISE
—► error

(cat("Illegal mode in port declaration: ")

(port-decl))) in
let port* = third(t(p)(*PORTS*)) in

let port* = appended4 ,port*) in
(duplicates?(port*)
—<■ error

(cat("Duplicate ports declared in port clause: ")

(port-decl)),
let ti = enter(t)(p)(*PORTS*)((e,port*)) in

process-slcdec
(id+)(type)(discrete-range)(opt-expr)(p)(vis)(u)(ti))

Refer to the discussion following semantic equation DT6 in Section 6.5.11.

6.5.10 Generic Maps and Port Maps

(GMT1) GMT If GENERICMAP assoc-elt+ 1 (id)(context)(formals-path)(actuals-path)(u)(t)
= let formal* = get-refs-identifiers(map-hd(assoc-elt+))

and actual* = get-refs-identifiers(map-second(assoc-elt+))
and formal-generic* = third(t(formals-path)(*GENERICS*))
and local-generic* = third(t(actuals-path)(*GENERICS*)) in

(duplicates?(formal*)
—► error

(cat("Duplicate formal parts in association list: ")(assoc-elt+)),
(context = CONFIGURATION
—► check-existence-formals(id)(formal*)(formal-generic*)(ui)(t),
check-formal-local-correspondence

(id)(formal*)(local-generic*)(ui)(t))

where

Ul = At.(context = CONFIGURATION
—« check-coverage-locals

(id)(local-generic*)(actual*)(u2)(t),

u(t))
where
U2 = At.type-check-genericmap-elements

(assoc-elt+)(formals-path)(actuals-path)(u)(t))

type-check-genericmap-elements(assoc-elt*)(formals-path) (actuals-path) (u)(t)

= (null(assoc-elt*)—► u(t),
let assoc-elt = hd(assoc-elt') in

type-check-genericmap-element(assoc-elt)(formals-path)(actuals-path)(ui)(t)

where
ui = At.type-check-genericmap-elements

(tl(assoc-elt*))(formals-path)(actuals-path)(u)(t))

type-check-genericmap-element(assoc-elt)(formals-path)(actuals-path)(u)(t)

= let expri = hd(assoc-elt)
and expr2 = second(assoc-elt) in

ET [expn] (formals-path)(ki)(t)

63

where
ki = A(wi,ei),t.

R.T I expr2 | (actuals-path)(k2)(t)
where
k2 = A(w2,e2),t.

(match-types(tdesc(wi),tdesc(w2))—* u(t),
error

(cat("has type mismatch in generic map association element: ")
(assoc-elt)))

(PMT1) PMT [PORTMAP assoc-elt+ J (id)(context)(formals-path)(actuals-path)(u)(t)
= let formal* = get-refs-identifiers(map-hd(assoc-elt+))

and actual* = get-refs-identifiers(map-second(assoc-elt+))
and formal-port* = third(t(formals-path)(*PORTS*))
and local-port* = third(t(actuals-path)(*PORTS*)) in

(duplicates?(formal*)

—>■ error
(cat("Duplicate formal parts in association list: ")(assoc-elt+)),

(context = CONFIGURATION
—+ check-existence-formaJs(id)(formal*)(formal-port*)(ui)(t),
check-formaJ-local-correspondence(id)(formal*)(local-port*)(uj)(t))

where
ui = At.(context = CONFIGURATION

—► check-coverage-locals(id) (local-port*) (actual*)(u2)(t),
u2(t))

where
u2 = At.check-portmap-elements

(assoc-elt+)(formals-path)(actuals-path)(u)(t))

check-portmap-elements(assoc-elt*)(formals-path) (actual s-path)(u)(t)
= (null(assoc-elt')—► u(t),

let assoc-elt = hd(assoc-elt*) in
check-portmap-element(assoc-elt)(formals-path)(actuals-path)(ui)(t)
where
ui = At.check-portmap-elements

(tl(assoc-elt*))(formals-path)(actuals-path)(u)(t))

check-portmap-element(assoc-elt)(formals-path) (actuals-path)(u)(t)
= let expri = hd(assoc-elt)

and expr2 = second(assoc-elt) in
ET [expr,] (formals-path)(k,)(t)

where
ki = A(wi,ei),t.

ET [expr2 1 (actuals-path)(k2)(t)
where
k2 = A(w2,e2),t.

(-iis-sig?(w2)
—► error

(cat("Non-signal actual ")(expr2)
("in port map element ")(assoc-elt)),

read-check-portmap-element(assoc-elt)(wi)(w2)(ui)(t)
where
ui = At.write-check-portmap-element

(assoc-elt)(wi)(w2)(formals-path)
(actuals-path)(u2)(t)

where
u2 = At.type-check-portmap-element

(assoc-elt)(tdesc(wi))(tdesc(w2))(u)(t))

64

read-check-portmap-element(assoc-elt)(wi)(w2)(u)(t)
= (is-readable?(wi)

—► (is-readable?(w2)—» u(t),
error

(cat("Non-readable actual in port map association element: ")(assoc-elt))),
u(t))

write-check-portmap-element(assoc-elt)(formal-type)(actual-type)(formal-path)(actual-path)(u)(t)
= let actual = second(assoc-elt) in

(is-writable?(formal-type)
—• (is-writable?(actual-type)

—► let d = lookup-desc-for-ref(actual)(actual-path)(t) in
let sources = sources(d) in

(formal-path 6 sources —► u(t),
rest(formal-path)£ map-rest(sources)
—<■ error(cat("Resolved signal illegal in Stage 4 VHDL: ")(namef

(d))).
let ti = enter

(t)(path(d))(idf(d))
(<e,*OBJECT* ,path(d),exported(d),type(d),value(d),

cons(formal-path,sources)>) in

"(ti))-
error

(cat("Non-writable actual ")(actual)

("in port map association element: ")(assoc-elt))),

u(t))

type-check-portmap-element(assoc-elt)(di)(d2)(u)(t)
= (match-types(di,d2)—♦ u(t),

error(cat("Type mismatch in port map association element: ")(assoc-elt)))

check-existence-formals(id)(formal*)(compare-formal*)(u)(t)
= (null(formal*)— u(t),

let first-formal = hd(formal*) in
(first-formal £ compare-formal*

—► check-existence-formals
(id)(tl(formal*))(remove(first-formal)(compare-formal*))(u)(t),

error
(cat("Statement or configuration declaration ")(id)
("refers to unknown formal ")(first-formal))))

check-formal-local-correspondence(id)(formal*)(local*)(u)(t)
= (null(formal*)

— (nuU(local*)— u(t),
error

(cat("Statement ")(id)
("fails to associate actuals with the following formals:
(local*))),

let first-formal = hd(formal*) in
(first-formal £ local*

—♦ check-formal-local-correspondence
(id)(tl(formal*))(remove(nrst-formal)(local*))(u)(t),

error
(cat("In statement ")(id)("the formal ")(first-formal)

("has no corresponding local "))))

65

check-coverage-locals(id)(local*)(compare-locaJ*)(u)(t)

= (null(locaT)— u(t),
let first-local = hd(locaJ') in

(first-local S compare-locaJ*
—► check-coverage-locals

(id)(tl(local*))(remove(first-locaJ)(compare-local*))(u)(t),
error

(cat("Configuration declaration ")(id)("f ails to associate the local ")

(first-local)("as an actual »ith sone formal"))))

6.5.11 Declarations

(DTO)DT[e](p)(vis)(u)(t) = u(t)

(DTI) DT [decl decl*] (p)(vis)(u)(t)

= DT I decl] (p)(vis)(u,)(t)

where u, = At.DT [[decl* J (p)(vis)(u)(t)

(DT2) DT [package-decl package-decl* J (p)(vis)(u)(t)
= DT f package-decl J (p)(vis)(uj)(t)

where Uj = At.DT f package-decl* | (p)(vis)(u)(t)

(DT3) DT [package-body package-body* J (p)(vis)(u)(t)
= DT J package-body J (p)(vis)(u,)(t)

where m = At.DT [package-body*] (p)(vis)(u)(t)

(DT4) DT J use-clause use-clause*] (p)(vis)(u)(t)
= DT I use-clause 1 (p)(vis)(m)(t)

where m = At.DT [use-clause* J (p)(vis)(u)(t)

The elaboration and checking of a sequence of declarations proceeds from the first to the
last declaration in the sequence.

(DT5) DT I DEC object-class id+ type-mark opt-expr] (p)(vis)(u)(t)
= let q = find-progunit-env(t)(p) in

let d = t(q)(*UNIT*) in
let tg = tag(d) in

(case object-class
(CONST ,SYSGEN) — lookup-type(type-mark)(p)(z)(t),
VAR
-—► (case tg

(»PACKAGE* ,*ENTITY* ^ARCHITECTURE*)
—► error

(cat("Illegal VARIABLE declaration in ")(tg)(" context: ")
(decl)),

OTHERWISE — lookup-type(type-mark)(p)(z)(t)),
SIG
—► (case tg

(♦PROCESS* ,»PROCEDURE* ,»FUNCTION*)
—► error

(cat("Illegal SIGNAL declaration in ")(tg)(" context: ")

(decl)),
OTHERWISE — lookup-type(type-mark)(p)(z)(t)),

OTHERWISE — error
(cat("Illegal object class in declaration: ")(decl)))

where
z = Ad.let type = (object-class = CONST — mk-type((CONST VAL))(d),

mk-type(mk-tmode(object-class)(REF))(d)) in
process-dec(id+)(type)(opt-expr)(p)(vis)(u)(t)

66

find-progunit-env(t)(p)
= (t(p)(*UNIT*)yt »UNBOUND* — p,

(null(p)— error("No program unit ??! "),
find-progunit-env(t)(rest(p))))

lookup-type(id*)(p)(z)(t)
= (nul](id*)-* z(void-type-desc(t)),

name-type(id*)(e)(p)(t)(v)
where
v = Aw.(second(tmode(w))= TYP —► z(tdesc(w)),

error(cat("Not a type: ")(namef(tdesc(w))))))

name-type(name)(w)(p)(t)(v)
= (null(w)

—» let wj = lookup2(t)(p)(e)(hd(name)) in
(w, = »UNBOUND*

—* error
(cat("Unbound identifier in auxiliary semantic function NAME-TYPE:
($(p)(hd(name)))),

let tm = tmode(wi)
and d = tdesc(wi) in

(second(tm)e (OBJ TYP) — name-type(tl(name))(wi)(p)(t)(v),
hd(tm)= PATH
—► (-ivalidate-access(name)(wi)(second(tm))

—► error(cat("Illegal access via: ")(namef(d))),
name-type(tl(name))(((PATH ,tl(second(tm))),d))(p)(t)(v)),

error
(cat("Shouldn't happen in auxiliary semantic function NAME-TYPE: ")

(w,)))),
let d = tdesc(w) in
let tg = tag(d) in

(null(name)
- (tg € (»PROCEDURE* »FUNCTION*)

—«■ (null(pars(hd(signatures(d))))—► v(extract-rtype(d)),
error(cat("Missing subprogram arguments: ")(namef(d)))),

v(w)),
let x = hd(name)

and tm = tmode(w) in
(consp(x)
— (second(tm)= TYP

-. (nuU(tl(x))
- name-type(tl(name))(((DUMMY ,VAL),d))(p)(t)(v),
error

(cat("Explicit conversion of multiple expressions to type: ")
(namef(d)))),

list-type(x)(p)(t)(h)
where
h = AwJ.eJ.

((second(tm)= OBJ A is-array?(type(d)))
V (second(tm)e (REF VAL) A is-array-tdesc?(d))

— (length(x)> 1
—► error(cat("Too many array indices for: ")(namef

(d))).
(is-integer-tdesc?(get-base-type(tdesc(hd(wj))))

—► name-type
(tl(name))
((second(tm) = OBJ

67

—► mk-type(tmode(type(d)))(elty(tdesc(type(d)))),

mk-type(tm)(elty(d))))(p)(t)(v),
error(cat("Non-integer array index for: ")(namef

(d))))),
tg € (»PROCEDURE* »FUNCTION*)
—► let rtype = compatible-signatures(wJ)(signatures(d)) in

(null(rtype)

—► error
(cat("Incompatible parameter types for: ")

(namef(d))),
name-type(tl(name))(rtype)(p)(t)(v)),

error(cat("Cannot have an argument list: ")(namef

(d))))),
((second(tm)= OBJ A is-record?(type(d)))

V (second(tm)E (REF VAL) A is-record-tdesc?(d))

— let di = (second(tm)= OBJ -► tdesc(type(d)), d) in

let d2 = lookup-record-field(components(di))(x) in
(d2 = »UNBOUND* -» error(cat("Unknown record field: ")(x)),

let tmm = (second(tm)= OBJ —► tmode(type(d)), tm) in
name-type(tl(name))(mk-type(tmm)(d2))(p)(t)(v)),

second(tm)^ OBJ V second(tm)^ TYP
— let w, = lookup-local(x)(%(path(d))(idf(d)))(p)(t) in

(Wl = »UNBOUND*
—► error

(cat("Unknown identifier in function NAME-TYPE: ")

($(%(path(d))(idf(d)))(x))),
second(tmode(w1))^ ACC — name-type(tl(name))(wi)(p)(t)(v),

hd(tm)= PATH
—+ (->null(tl(name))A -ivalidate-access(name)(wi)(second(tm))

—► error(cat("Illegal access via: ")(namef(tdesc(wi)))),

name-type
(tl(name))(((PATH ,tl(second(tm))),tdesc(w1)))(p)(t)

(v)),
error

(cat("Shouldn't happen in auxiliary semantic function NAME-TYPE: ")

(wi))),
error(cat("Illegal access via: ")(namef(d)))))))

lookup2(t)(p)(q)(id)
= let d = t(p)(id) in

(d = *UNBOUND*
- (-null(p)- lookup2(t)(rest(p))(cons(last(p),q))(id), »UNBOUND*),

(case tag(d)
(»OBJECT* .»ENUMELT*) — ((DUMMY ,OBJ),d),
(»PACKAGE* ,»COMPONENT* .»PROCESS* *PROCEDURE* ,*FUNCTION* ,*LOOPNAME*

»PROCESSNAME* »BLOCKNAME*)

- ((PATH ,q),d),
OTHERWISE - ((DUMMY ,TYP),d)))

validate-access(name)(w)(q)

= let tg = tag(tdesc(w)) in
(tg e (»PROCEDURE* »FUNCTION*)

A (->nul](tl(name))A -iconsp(hd(tl(name))))

—► ->null(q)A hd(name)= hd(q),

tt)

list-type(expr*)(p)(t)(vv)

68

= (null(expr*)—► VV(E),

let expr = hd(expr') in
ET[expr]](p)(k)(t)
where
k = A(w,e),t.

(second(tmode(w))= ACC
—► error(cat("Non-value (art access): ")(namef(tdesc(w)))(expr)),
list-type(tl(expr*))(p)(t)(Aw*.vv(cons(w,w*)))))

lookup-local(id)(definitiori-path)(occurrence-path)(t)
= let d = t(definition-path)(id) in

(d = »UNBOUND* — »UNBOUND* ,
let tg = tag(d) in

(tg e (»BLOCKNAME* *PROCESSNAME* *LOOPNAME*) — ((DUMMY ,ACC),d),
(prefix-path(definition-path)(occurrence-path)V exported(d)

—> (case tg
(»OBJECT* ,*ENUMELT*) - ((DUMMY ,OBJ),d),
(♦PACKAGE* ,»COMPONENT* .»BLOCK» ,»PROCESS* .»PROCEDURE* .»FUNCTION*)
— ((DUMMY ,ACC),d),
OTHERWISE - ((DUMMY ,TYP),d)),

»UNBOUND*)))

compatible-signatures(types)(signatures)
= (null(signatures)—► e,

let signature = hd(signatures) in
(compatible-par-types(types)(extract-par-types(pars(signature)))

—» rtype(signature),
compatible-signatures(types)(tl(signatures))))

compatible-par-types(actuals) (form als)
= (length(actuals)^ length(formals)—<■ ff,

length(actuals)= 0 —+ tt,
let W] = hd(actuals)

and w2 = hd(formals) in
(match-types(tdesc(wi),tdesc(w2))

—>■ let mi = ref-mode(tmode(w!))
and rri2 = ref-mode(tmode(w2)) in

(mi = REF V mi = m2 —» compatible-par-types(tl(actuals))(tl(formals)), ff),

«))

extract-par-types(pars)
— (null(pars)—* e, cons(second(hd(pars)),extract-par-types(tl(pars))))

extract-rtype(d)
= let signature = hd(signatures(d)) in

rtype(signature)

lookup-record-field(comp*)(id)
= (null(comp')— »UNBOUND* ,

let (x,d) = hd(comp*) in
(x = id —♦ d, lookup-record-field(tl(comp*))(id)))

process-dec(id+)(w)(opt-expr)(p)(vis)(u)(t)
= (null(opt-expr)

— (is-const?(w)^ error(cat("Uninitialized constant: ")($(p)(hd(id+)))),
enter-objects(id+)(<£,»OBJECT* ,p,vis,w,*UNDEF* ,e>)(t)(p)(u)),

let expr = opt-expr in

69

RT|[expr](p)(k)(t)
where
k = A(wi ,e),t.

let d = tdesc(w)
and di = tdesc(wi) in

(match-types(d,di)
— let init-val = ((is-sysgen?(w)V is-const?(w))

A ->(is-array?(w)V is-record?(w))
—► e,

♦UNDEF*) in
enter-objects(id+)(<e,*OBJECT* ,p,vis,w,init-val,e>)(t)(p)(u),

error(cat("Initialization type mismatch: ")(d)(di))))

match-types(di ,d2)
= (case tag(di)

(*BOOL* ,*BIT* *REAL* ,*TIME* ,*ENUMTYPE*) — d, = get-base-type(d2)
(*INT* ,*INT_TYPE*)
—* is-integer-tdesc?(get-base-type(d2))

A match-integer-types(di)(get-base-type(d2)),
•SUBTYPE* —► match-types(get-base-type(di),get-base-type(d2)),
♦ARRAYTYPE*
— tag(d2)= *ARRAYTYPE* A match-array-type-names(di,d2),
RECORDTYPE
- tag(d2)= *RECORDTYPE*

A null(set-difference(filter-coniponents(type(di)))(filter-components(type(d2)))),
OTHERWISE — match-type-names(idf(di),idf(d2)))

match-in teger-types(di ,d2)
= idf(d,)= UNIVERSAL JNTEGER V idf(d2)= UNIVERSAL-INTEGER

get-base-type(d) = (tag(d)= *SUBTYPE* — base-type(d), d)

match-array-type-names(di ,d2)
= let idf, = hd(di)

and idf2 = hd(d2) in
(consp(idfi)A consp(idf2)-^ match-type-names(hd(idfi),hd(idf2)),
consp(idfi)—<• match-type-names(hd(idfi),idf2),
consp(idf2)—<• match-type-names(idfi,hd(idf2)),
match-type-names(idfi,idf2))

match-type-names(idi ,id2)
= id, = »ANONYMOUS* V id2 = »ANONYMOUS*

array-size(d)
= (ub(d)A lb(d)

— let lbound = hd(tl(lb(d)))
and ubound = hd(tl(ub(d))) in

(u bound—lbound)+l,

-1)

filter-components(components)
= (null(components)—► e,

let component = hd(components) in
cons((hd(component),second(component)),
filter-components(tl(components))))

70

An object declaration declares a list of identifiers to be of the type given by the type-mark,
which must be the name of a type that has already been entered in the visible part of the
TSE. The identifiers must be distinct. The first of these identifiers is used in error messages.
If the identifiers are being declared as constants but no initialization expression is present,
then an UNINITIALIZED-CONSTANT error is reported. If constants are being declared,
then their type is a value type; variables and signals have reference types. If variables
or signals are being declared without an initialization expression, then the identifiers are
entered into the TSE with an undefined initial value *UNDEF* by the function enter-
objects, whose operation is explained below. If present, the initialization expression is
checked and its type compared to the value type of the declared identifiers. If these types
are not equal, then an initialization type mismatch is reported. If the identifiers are being
declared as constants, they are entered into the TSE with an initial value equal to the

(static) value of the initialization expression.

The function enter-objects enters into the TSE a scalar descriptor for each of a list of
identifiers. Duplicate declarations are detected. The descriptors are created from (1) the
identifiers and (2) a list of remaining field values input to enter-objects.

The function name-type returns the type (consisting of a type mode and a type descriptor)
of a reference (ref). In Phase 1, refs are essentially sequences of identifiers and expression
lists; refs must begin with an identifier. As name-type processes a ref, it carries along
(in parameters name and w, respectively) the remainder of the ref to be processed and
the type to be computed for that portion of the original ref processed thus far. During
this processing, special type modes that are identifier lists may be used to validate accesses
to items declared inside packages or subprograms; validate-access checks these accesses.
The function list-type returns the list of the types of its components; when a list is used
as an actual parameter list in a subprogram call, compatible-par-types checks whether
the types of this list's components are compatible with (not necessarily equal to) the types
of the corresponding formal parameters of the subprogram.

(DT6) DT [SLCDEC object-class id+ slice-name opt-expr] (p)(vis)(u)(t)
= let (type-mark,discrete-range) = slice-name in

let q = find-progunit-env(t)(p) in
let d = t(q)(*UNIT*) in

let tg = tag(d) in
(case object-class

(CONST ,SYSGEN) — lookup-type(type-mark)(p)(z)(t),
VAR
—* (case tg

(♦PACKAGE* ,*ENTITY* ^ARCHITECTURE*)
—► error

(cat("Illegal VARIABLE declaration in ")(tg)
(" context: ")(decl)),

OTHERWISE — lookup-type(type-mark)(p)(z)(t)),
SIG
—* (case tg

(♦PROCESS* ,*PROCEDURE* ,»FUNCTION*)
—► error

(cat("Illegal SIGNAL declaration in ")(tg)(tt context: ")
(decl)),

OTHERWISE — lookup-type(type-mark)(p)(z)(t)),
OTHERWISE

71

—► error(cat("Illegal object class in declaration: ")(decl)))
where
z = Ad.let type = (object-class = CONST -. mk-type((CONST VAL))(d),

mk-type(mk-tmode(object-class)(R.EF))(d)) in
process-slcdec(id+)(type)(discrete-range)(opt-expr)(p)(vis)(u)(t)

process-slcdec(id+)(w)(discrete-range)(opt-expr)(p)(vis)(u)(t)
= let d = tdesc(w) in

(-iis-array?(w)—- error(cat("Can't form slice of non-array type: "((d)),
let (direction,expri ,expr2) = discrete-range in
RTJexpr,](p)(k,)(t)

where
k] = A(w!,ei),t.

RT[expr2] (p)(k2)(t)
where
k2 = A(w2,e2),t.

(-i(is-integer-tdesc?(get-base-type(tdesc(w!)))
A is-integer-tdesc?(get-base-type(tdesc(w2))))

—► error
(cat("Non-integer array bound for: ")($(p)

(hd(id+)))),
let field-values = tl(array-type-desc

(TEMP-NAME)(e)(p)(vis)
(direction)
((direction = TO

— (ei = *UNDEF*
— second (EX [expn] (p)(t)),
(NUM ,ei)),

(e2 = *UNDEF*
— second(EX [expr2 1 (p)(t)),
(NUM ,e2))))

((direction = TO
— (e2 = »UNDEF*

— secondCEX U expr2] (p)(t)),
(NUM ,e2)),

(e, = *UNDEF*
— second(EX I expn] (p)(t)),
(NUM ,e,))))(elty(d))) in

(null(opt-expr)
—► enter-array-objects

(id+)(idf(d))(tmode(w))(field-values)(t)(p)(vis)

check-array-aggregate(opt-expr)(p)(v)(t)
where
v = Aw3.(match-types(elty(d),tdesc(w3))

—► enter-array-objects
(id+)(idf(d))(tmode(w))
(field-values)(t)(p)(vis) (u),

error
(cat("Initialization type mismatch for: ")
($(p)(hd(id+))))))))

enter-array-objects(id*)(array-type-name)(tmode)(field-values)(t)(p)(vis)(u)
= (nuU(id*)— u(t),

let idi = hd(id*) in
let id2 = new-array-type-name(array-type-name) in
let di = cons(id2,field-values) in

72

let ti = enter(t)(p)(id2)(field-values) in
let new-type = mk-type(tmode)(di) in

(t(p)(idi)^ »UNBOUND*
—► error(cat("Duplicate array declaration: ")($(p)(idi))),
let d2 = <e,*OBJECT* ,p,vis,new-type,*UNDEF* ,e> in

let t2 = enter(ti)(p)(idi)(d2) in
enter-array-objects

(tl(id*))(array-type-name)(tmode)(field-values)(t2)(p)(vis)(u)))

check-array-aggregate(expr)(p)(v)(t)
= let (tg,expr+) = expr in

(tg ^ BITSTR A tg j£ STR
—► error(cat("Improper array initialization aggregate: ")(expr)),
let expri = hd(expr+) in
RT[expri](p)(k)(t)

where k = A(w1,ei),t.check-exprs(w1)(tl(expr+))(p)(v)(t))

check-exprs(w)(expr*)(p)(v)(t)
= (null(expr')—> v(w),

let expr = hd(expr') in
RT [expr] (p)(k)(t)
where
k = A(wi,ei),t.

(wi / w —► "Nonuniform array aggregate ",
check-exprs(w)(tl(expr*))(p)(v)(t)))

A declaration of a slice of a (previously defined) array type is a special form of object
declaration for arrays of anonymous type. Because a declaration of a list of identifiers is
considered to be an abbreviated representation of the sequence of corresponding declarations
of each of the individual identifiers in the list, the (anonymous) type of each of the declared
identifiers is distinct. Each of these distinct anonymous array types is given a distinct,
new, system-generated name in Phase 1 of the Stage 4 VHDL translator (via the function
new-array-type-name), and corresponding distinct type descriptors are entered into the
TSE. If present, the initialization part of the declaration is a list of scalar expressions.

The elaboration and checking of a slice declaration begins in the same way as for a scalar
declaration. The slice bound expressions are then evaluated and checked to ensure that
both are integers. If the initialization part is absent, then descriptors for the declared array
identifiers, together with the descriptors for the corresponding anonymous array types, are
entered into the environment by enter-array-objects.

If the initialization part is present, then it is first processed by check-array-aggregate,
which invokes check-exprs to ensure that each element of the initialization part has the
same (value) type; check-aggregate returns this type, which is then compared to the ar-
ray's declared value type. Finally, enter-array-objects is invoked to enter the descriptors
for the declared arrays into the environment.

Refer also semantic equation DT8, shown below.

(DT7) DT [ETDEC id id+] (p)(vis)(u)(t)
= let field-values, = <e,*ENUMTYPE* ,p,vis,mk-enumlit(hd(id+)),

mk-enumlit(last(id+)),id+> in
(check-enum-lits(t)(p)(id)(id+)

73

—► enter-objects((id))(field-valueS!)(t)(p)(uj),
nil)
where
ui — Ati.let d = cons(id,field-vaJuesi) in

let field-valuesz = <e,*ENUMELT* ,p,vis,
mk-type((CONST VAL))(d)> in

enter-objects(id+)(field-values2)(t])(p)(u)

check-enum-lits(t)(p)(id)(id*)

= (null(id')— tt,

let id, = hd(id*) in

(lookup(t)(p)(idi)= »UNBOUND* — check-enum-lits(t)(p)(id)(tl(id*)),

error

(cat("Illegal overloading for enumeration literal: "){id!)

(" in enumeration type: ")($(p)(id)))))

An enumeration type declaration causes corresponding enumeration type descriptors to be
entered into the TSE. At the same time, descriptors for the individual elements of the
enumeration type are entered into the TSE; these elements are treated as constants.

(DT8) DT [ATDEC id discrete-range type-mark J (p)(vis)(u)(t)
= lookup-type(type-mark)(p)(z)(t)

where
z = Ad.let (direction,expri ,expr2) = discrete-range in

let array-type-desc = array-type-desc
(id)(e)(p)(vis)(direction)
((direction = TO

— second (EX [expn] (p)(t)),
secondfEX [expr2 1 (p)(t))))

((direction = TO
— second(EX [expr2] (p)(t)),
second (EX [expn] (p)(t))))(d) in

attributes-low-high
((id.expr, ,expr2,array-type-desc,(UNIVERSAL JNTEGER)))(p)
(vis)(u)(t)

attributes-low-high(id,expri ,expr2,type-desc,attribute-type-mark)(p)(vis)(u)(t)
= let dech = (DEC ,SYSGEN ,(mk-tick-low(id)),attribute-type-mark,expri)

and decl2 = (DEC ,SYSGEN ,(mk-tick-high(id)),attribute-type-mark,expr2) in
enter-objects((id))(tl(type-desc))(t)(p)(ui)

where u, = Ati.DT | dech] (p)(vis)(u2)(ti)
where u2 = At2.DT I decl2 1 (p)(vis)(u)(t2)

mk-tick-low(id) = catenate(id,"'LDW")

mk-tick-high(id) = catenate(id,"'HIGH")

An array type declaration causes corresponding array type descriptors to be entered into the
TSE. The array type attributes 'low and 'high, representing the lower and upper bounds,
respectively, are declared as system-generated identifiers.

(DT9) DT [PACKAGE id decl* opt-id] (p)(vis)(u)(t)
= (t(p)(id)^ »UNBOUND*

— error(cat("Duplicate package declaration: ")($(p)(id))),

74

(-inull(opt-id)A opt-id ^ id
—► error

(cat("Package ")($(p)(id))(" ended oith incorrect identifier: ")
(opt-id)),

let d = <e,*PACKAGE* ,p,vis,£> in
let ti = enter(t)(p)(id)(d) in

let t2 =enter(extend(t1)(p)(id))(%(P)(id))(*UNIT*)(<e,*PACKAGE* >) in
let t3 = enter(t2)(%(p)(id))(*USED*)(<e,e>) in

let t4 =enter(t3)(%(p)(id))(*IMPT*)(<e,e,e>) in
Ui(t4)

where u, = At.DT [decl* J (%(p)(id))(tt)(u)(t)))

(DT10) DT [PACKAGEBODY id decl* opt-id 1 (p)(vis)(u)(t)
= let d = t(p)(id) in

(d = »UNBOUND* — error(cat("Missing package declaration: ")($(p)
(id))),

tag(d)/ »PACKAGE*^ error(cat("Not a package declaration: ")($(p)
(id))),

-.null(pbody(d))-> error(cat("Duplicate package body: ")($(p)(id))),
-mull(opt-id)A opt-id ^ id
—<• error

(cat("Package body ")($(p)(id))(" ended with incorrect identifier: ")
(opt-id)),

let q = %(path(d))(id) in
let ti = enter(t)(q)(*LAB*)(<£,£>) in

let t2 =enter(t1)(p)(id)(<£,*PACKAGE* ,path(d),exported(d),*BODY* >) in
DT[decl'](q)(ff)(u)(t2))

A package is an encapsulated collection of declarations (including other packages) of logi-
cally related entities identified by the package's name. A package is generally provided in
two parts: the package declaration and the package body. The package declaration provides
declarations of those items that are exported (i.e., made visible) by the package. The package
body provides the bodies of items whose declarations appear in the package declaration, to-
gether with the declarations and bodies of additional items that support the items exported
by the package. These latter items are not exported by the package, i.e., they cannot be
made visible outside the package. In our implementation, the descriptors of exported and
nonexported items alike are entered into the same local environment. The exported field of
these descriptors distinguishes between the two kinds of items. If an item can be exported
by a USE clause, then the exported field of its descriptor contains tt (denoting true; if not,

then this field contains ff (false).

The items declared in a package declaration are not directly visible outside the package, but
they can be accessed by using a dotted name beginning with the package name, provided
that the package name is visible at the point of access. A descriptor for the package
declaration is entered into the current environment. In order to encapsulate the items
within a package, the resulting TSE is then extended along the current path by an edge
labeled with the package name; the new environment is marked (in its *UNIT* cell) as a
package environment. Then the constituent declarations of the package are elaborated and
checked in the new environment.

The items declared in a package body are not exported from the package and thus must
not be accessible by an extended name. Therefore the exported field of the descriptors for
the inaccessible entities must be set to ff, thus marking them as not exportable.

75

(DT11) DT I PROCEDURE id proc-par-spec*] (p)(vis)(u)(t)

= (t(p)(id)^ »UNBOUND*
—» error(cat("Duplicate procedure declaration for: ")($(p)(id))),

let p, = %(p)(id) in
let t, = enter(extend(t)(p)(id))(p,)(*UNIT*)(<£ »PROCEDURE* >) in

enter-formal-pars(*PROCEDURE*)(proc-par-spec*)(ti)(pi)(u1)

where
U! = At2.let formals = let id+ = coUect-fids(proc-par-spec*) in

collect-formal-pars(id+)(t2)(pi) in
let d = <e,»PROCEDURE* ,p,vis,

((formals,
mk-type((CONST VAL))(void-type-desc(t)))),e,e> in

U(enter(t2)(p)(id)(d)))

(DT12) DT [FUNCTION id func-par-spec* type-mark] (p)(vis)(u)(t)

= (t(p)(id)# »UNBOUND*
—► error(cat("Duplicate function declaration for: ")($(p)(id))),

let Pl = %(p)(id) in

lookup-type(type-mark)(p)(z)(t)

where
z = Adi.let tj = enter

(extend(t)(p)(id))(pi)(*UNIT*)(<e,»FUNCTION* >) in
enter-formal-pars(*FUNCTION*)(func-par-spec*)(t1)(p,)(m)

where
Ui = At2.let formals = let id+ = collect-fids

(func-par-spec*) in
collect-formal-pars

(id+)(t2)(Pl) in
let d = <e,»FUNCTION* ,p,vis,

((formals,mk-type((VAR VAL))(di))),c,e> in
u(enter(t2)(p)(id)(d)))

enter-formal-pars(tg)(par-spec*)(t)(p)(u)
= (null(par-spec*)—► u(t),

let par-spec = hd(par-spec*) in
let (object-class,id+ ,mode,type-mark,opt-expr) = par-spec in

(case tg
»PROCEDURE*
—► (case object-class

(CONST ,VAR)
—► (case mode

(IN ,OUT ,INOUT) — lookup-type(type-mark)(p)(z)(t),

OTHERWISE
—► error

(cat("Illegal mode for procedure parameters: ")($(p)

(hd(id+))))),

OTHERWISE

—► error
(cat("Unimpl@mented object class ")(object-class)

(" for procedure parameters: ")($(p)(hd(id+))))),

♦FUNCTION*
—► (case object-class

CONST
—► (case mode

IN —► lookup-type(type-mark)(p)(z)(t),

OTHERWISE

76

(cat("Illegal mode for function parameters: ")($(p)

(hd(id+))))),
OTHERWISE
—♦ error

(cat("Unimplemented object class ")(object-class)
(" for function parameters: ")($(p)(hd(id+))))),

OTHERWISE^ error(cat("Illegal subprogram tag: ")(tg)))
where
z = Ad.let type = (case mode

IN —* mk-type(mk-tmode(object-class)(VAL))(d),
OUT -► mk-type(mk-tmode(object-class)(OUT))(d),
OTHERWISE — mk-type(mk-tmode(object-class)(REF))(d)) in

let fv = <e,*OBJECT* ,p,tt,type,*UNDEF* ,e> in
enter-objects(id+)(fv)(t)(p)(ui)

where ui = At.enter-formal-pars(tg)(tl(par-spec*))(t)(p)(u))

col]ect-fids(par-spec*)
= (null(par-spec*)—► e,

let par-spec = hd(par-spec') in
let (object-class,id+,mode,type-mark,opt-expr) = par-spec in

append(id+ ,collect-fids(tl(par-spec*))))

coUect-formal-pars(id*)(t)(p)
= (null(id*)- e,

let d = t(p)(hd(id*)) in
cons((hd(id*),type(d)),coUect-formal-pars(tl(id*))(t)(p)))

Checking a subprogram (procedure or function) declaration first extends the TSE and iden-
tifies the new environment at the end of the extended path (in its *UNIT* cell) as a
procedure or function environment. Then descriptors for the subprogram's formal parame-
ters are entered (by enter-formal-pars) into this new environment. Finally, a descriptor
for the subprogram (with a body field of ff, indicating that no body for this subprogram
has been encountered) is entered into the environment in which the subprogram is declared
locally. Procedures are always given a void return type. The function enter-formal-pars
accepts a tag »PROCEDURE* or »FUNCTION* (procedure or function) to enable
it to check that the formal parameters are appropriate to the subprogram. For example,

functions can have only IN parameters.

(DT13) DT [SUBPROGBODY subprog-spec decl* seq-stat* opt-id J (p)(vis)(u)(t)
= let (tg,id,par-spec*,type-mark) = subprog-spec in

let qname = $(p)(id)
and d = t(p)(id) in

(d = »UNBOUND*
—► let decl = subprog-spec in

El[decl](p)(vis)(u,)(t)
where
ui = At.let d = t(p)(id) in

process-subprog-body
(t)(p)(id)(d)(decl*)(seq-stat*)(u),

-.(tag(d)G (*PROCEDURE* »FUNCTION*))
—► error(cat(qname)(" is not a subprogram specification")),
(tg = PROCEDURE A tag(d)= »FUNCTION*)

V (tg = FUNCTION A tag(d)= »PROCEDURE*)
—> error(cat("Wrong kind of subprogram body: ")(qname)),

77

-inull(body(d))—► error(cat("Duplicate subprogram body: ")(qname)),
-inull(opt-id)A opt-id ^ id
—► error

(cat("Subprogram body ")(qname)
(" ended with incorrect identifier ")(opt-id)),

let formals = let id+ = collect-hds(par-spec*) in
collect-formal-pars(id+)(t)(%(p)(id)) in

(formals ^ pars(hd(signatures(d)))
—► error

(cat("Nonconforaiing formal parameters for subprogram: ")(qname)),

lookup-type(type-mark)(p)(z)(t)
where
z = Adi .(di 7^ tdesc(extract-rtype(d))

—► error
(cat("Unequal result types for subprogram: ")

(qname)),

process-subprog-body(t)(p)(id)(d)(decl*)(seq-stat*)(u))))

process-subprog-body(t)(p)(id)(d)(decl*)(seq-stat*)(u)

- let pi = %(p)(id) in
let t, = enter(t)(p,)(*LAB*)((e,e)) in
let t5 = enter(t,)(Pl)(*USED*)(<£,£>) in

let t6 = enter(t5)(pi)(*IMPT*)(<£,£,£>) in

let t? = enter
(t6)(p)(id)(<£,tag(d),path(d),exported(d),signatures(d),£,£>) in

DTIdecl*](p,)(tt)(u1)(t7)
where ui = At2.SST [seq-stat* J (pi)(u2)(t2)

where
u2 = Ata.let t4 = enter

(t3)(p)(id)
(<£,tag(d),path(d),exported(d),signatures(d),

(DX[decl*](pi)(t3),SSX[seq-staf J (Pl)(t3)),e>) in

u(t4)

Checking the declaration of a subprogram body first checks whether a declaration for the
subprogram has already been encountered. If not, then descriptors for the subprogram
and its formal parameters must be entered into the TSE as above. Otherwise, the declara-
tion part of the subprogram body must be checked for conformity with the corresponding
information previously entered in the TSE. In Stage 4 VHDL conformity is very strict:
subprogram types and formal parameter names and types must agree exactly, except that
formal parameters with no explicit mode are regarded as having been specified with mode
IN. The subprogram's body (which consists of local declarations followed by statements) is
checked by process-subprog-body, where initial entries are made into its environment's
LAB, *USED*, and *IMPT* cells, and its transformed abstract syntax tree is entered

into the body field of the subprogram's descriptor. Note that a dummy value *BODY* is
temporarily entered in the descriptor's body field, so that recursive calls of this subprogram

will not incorrectly indicate that a call is being made to a subprogram for which a body
has not been supplied (see the Phase 1 semantics of subprogram calls).

(DT14) DT [USE dotted-name+ J (p)(vis)(u)(t)
= let pkgs-used-here = tl(dotted-name+)U {hd(dotted-name+)} in

process-use-clause(pkgs-used-here)(p)(vis)(u)(t)

78

process-use-clause(dotted-name+)(p)(vis)(u)(t)
= check-pkg-names(dotted-name+)(£)(p)(vis)(j)(t)

where
j = Apkg-qualified-names.

let pkg-qnames = remove-enclosing-pkgs(p)(t)(pkg-qualified-names) in
let local-pkgs-used = third(t(p)(*USED*)) in

let ti — enter
(t)(p)(*USED*)
((E,pkg-qnames U local-pkgs-used)) in

let t2 = let d = t(p)(*IMPT*) in
let qname-list = third(d)

and id-list = fourth(d) in
import-qualified-names

(pkg-qnames)(qname-list)(id-list)(p)(ti) in
u(t2)

check-pkg-names(dotted-name*)(pkg-qualified-names)(p)(vis)(j)(t)
= (null(dotted-name*)^ j(pkg-qualified-names),

let dn = hd(dotted-name') in
let suffix = last(dn) in

(suffix 7* ALL
—► error(cat("Selected name in USE clause must end with suffix ALL: ")(dn)),
name-type(rest(dn))(£)(p)(t)(v)

where
v = Aw.let d = tdesc(w) in

(tag(d)^ *PACKAGE*
—► error(cat("Non-package name in USE clause: ")(namef

(d))),
check-pkg-names

(tl(dotted-name*))(cons(%(path(d))(idf(d)),pkg-qualified-names))
(p)(vis)(j)(t))))

remove-enclosing-pkgs(p)(t)(pkg-set)
= (null(p)—► pkg-set,

let d = t(p)(*UNIT*) in
(d = ""UNBOUND* —► remove-enclosing-pkgs(rest(p))(t)(pkg-set),
(third(d)= *PACKAGE*

—► remove-enclosing-pkgs(rest(p))(t)(set-difFerence(pkg-set)((p))),
remove-enclosing-pkgs(rest(p))(t)(pkg-set))))

import-qualified-names(pkg-qualified-names)(item-qualified-names)(ids-used)(p)(t)
= (pkg-qualified-names = e

—* enter(t)(p)(*IMPT*)((e,item-qualified-names,ids-used)),
let pkg-qn = hd(pkg-qualified-names) in

let pkg-env = t(pkg-qn) in
let exported-qnames = export-qualified-names(pkg-env)(e) in

let local-env = t(p) in
let (qname*,id*) = import-legal

(exported-qnames) (item-qualified-names) (ids-used)
(local-env) in

import-qualified-names(tl(pkg-qualified-names))(qname*)(id*)(p)(t))

import-legal(exported-qnames)(qname-list)(id-list)(env)
= (null(exported-qnames)—> (qname-list,id-list),

let qname = hd(exported-qnames) in
let id = last(qname) in
let remaining-exported-qnames = tl(exported-qnames) in

79

(id G id-list
—► let qn = simple-name-match(id)(qname-list) in

(null(qn)
—+ import-legal(remaining-exported-qnames)(qname-list)(id-list)(eiiv),
import-legal

(remaining-exported-qnames)(set-difference(qname-list)((qn)))
(id-list)(env)),

let d = env(id) in
(d = »UNBOUND*

—<■ import-legal
(remaining-exported-qnames)(cons(qname,qname-list))
(cons(id,id-list))(env),

import-legal
(remaining-exported-qnames)(qname-list)(cons(id,id-list))(env))))

simple-name-match(id)(qname*)
— (null(qname*)—► e,

(id = last(hd(qname*))—► hd(qname'), simple-name-match(id)(tl(qname*))))

export-qualified-names(env) (qualified-names)
= (null(env) —► qualified-names,

let d = hd(env) in
let id = idf(d) in

(case id
(*UNIT* ,*LAB* ,*USED* ,*IMPT*)
—► export-qualified-names(tl(env)) (qualified-names),
OTHERWISE
—► (exported(d)

—► export-qualified-names(tl(env))(cons(%(path(d))(id),qualified-names)),
export-qualified-names(tl(env))(qualified-names))))

A USE clause is a declaration that makes items declared in a package specification visible
at the location of the USE clause. Each of the dotted names in a USE clause, neglecting
the (obligatory) suffix ALL, must denote the name of a package. In essence, a USE clause
combines the exported environments associated with its named packages both with each
other and with the local environment (among whose declarations the USE clause appears).
Such a combination of environments may introduce conflicts, since there may be several
different declarations of an object of the same name in the packages (as well as one locally).
Therefore, certain constraints must govern how environments are combined:

1. If an object x is declared locally, then no declarations of x may be imported to the
local environment by the USE clause.

2. If an object x is declared in more than one of the packages named in the USE clause,
then none of these declarations of x may be imported to the local environment by the
USE clause, even if x is not declared locally.

These constraints ensure that (1) no local declaration is masked by an imported one, and
(2) no duplicate or conflicting declarations are imported.

USE clauses are treated by process-use-clause, which assumes that all the USE clauses in
a program unit's declarative part are located together at the end of that declarative part.

80

This restriction on the location and grouping of USE clauses enables a determination of
those items imported into a local environment to be made once and for all by the time the
unit's declarative part has been processed. This ensures that the list of items imported into
an environment (stored in its *IMPT* cell) need not vary in Phase 2, thereby ensuring
that the entire TSE is fixed throughout Phase 2. If declarations other than USE clauses were
allowed to appear between USE clauses, then the set of importable items may change before
and after such interposed declarations, requiring a dynamic evaluation of the import list
during Phase 2. We feel that such generality is unnecessary, because the names of items
can always be changed so that their interposed declarations can be moved in front of the
group of USE clauses.

First, the list of names appearing in this USE clause (with duplicates removed) is given to
process-use-clause. Then these names are checked by check-pkg-names to ensure that
they denote packages; a list of fully qualified package names is returned. The names of
packages that enclose packages in this list are removed by remove-enclosing-packages.
The (set-theoretic) union of the resulting set of package names (called pkg-qnames) and
the set of names of packages already appearing in USE clauses in this declarative part (stored
in the *USED* cell of this environment) is computed (in order to avoid duplication); the
resulting set of package names is entered back into the *USED* cell. Next, the current set
of fully qualified names of items imported into this environment (qname-list) is retrieved
from its *IMPT* cell. A separate list of simple identifiers (id-list) is also maintained in
the *IMPT* cell; this list is used to prevent illegal importations into the current envi-
ronment. Then pkg-qnames, qname-list, and id-list are passed to import-qualified-
names, which adds the fully qualified names of those items that can be legally imported
into the local environment by the USE clause being processed. The auxiliary functions
export-qualified-names and import-legal are used by import-qualified-names.

(DTI5) DT [STDEC id type-mark opt-discrete-range] (p)(vis)(u)(t)
= lookup-type(type-mark)(p)(z)(t)

where
z = Ad.let base-type-desc = get-base-type(d) in

(null(opt-discrete-range)
— let field-values = <£,*SUBTYPE* ,p,vis,type-tick-low(d),

type-tick-high(d),base-type-desc> in
attributes((id,£,£,d,field-values)) (p)(vis) (u)(t),

let (direction,expri ,expr2) = opt-discrete-range in
RTJexpn](p)(k,)(t)

where
ki = A(wi,ei),t.

RT[expr2](p)(k3)(t)
where
k2 = A(w2,e2),t.

(match-types(tdesc(wi),base-type-desc)
A match-types(tdesc(w2),base-type-desc)

— let field-values = <£,*SUBTYPE* ,p,vis,
(direction = TO
— (ei = *UNDEF*

—+ second
(EX I expr, 1

(P)(t)),
(NUM ,ei)),

(e2 = *UNDEF*

—► second
(EX [expr2 1

(P)(t)),
(NUM ,e2))),

(direction = TO
- (e2 = *UNDEF*

—♦ second
(EX [expr2]

(P)(0),
(NUM ,e2)),

(e, = *UNDEF*
—► second

(EX [expr,]

(P)(t)),
(NUM ,ei))),base-type-desc> in

attributes
((id,

(direction = TO —► expri,
expr2),

(direction = TO —► expr2,
expri),d,field-values))(p)

(vis)(u)(t),
error

(cat("Range constraint for subtype incompatible with base type:
(base-type-desc)(tdesc(w]))
(tdesc(w2))(decl))))

at tributes(id, lower-bound, upper-bound, d, field- values) (p)(vis) (u)(t)
= let decli = (DEC ,SYSGEN ,(mk-tick-low(id)),(idf(d)),lower-bound)

and decl2 = (DEC ,SYSGEN ,(mk-tick-high(id)),(idf(d)),upper-bound) in
enter-objects((id))(field-values)(t)(p)(ui)

where u, = At].DT [decli J (p)(vis)(u2)(ti)
where u2 = At2.DT f decl2 1 (p)(vis)(u)(t2)

Static semantic analysis of a subtype declaration involves making certain that the lower
and upper bounds of the range constraint are compatible with the subtype's base type;
declaring the 'low and 'high attributes (representing these bounds) as system-generated
identifiers; and entering a subtype descriptor in the TSE.

(DTI6) DT [ITDEC id discrete-range] (p)(vis)(u)(t)
= let parent-type-desc = univint-type-desc(t) in

let (direction,expri ,expr2) = discrete-range in
RT[expr,](p)(k,)(t)
where
ki = A(wi ,ei),t.

RT[expr2 J (p)(k2)(t)
where
k2 = A(w2,e2),t.

(e, = *UNDEF* V e2 = *UNDEF*
—+ error

(cat("Non-static bound in range constraint: ")
(decl)),

(match-types(tdesc(wi),parent-type-desc)
A match-types(tdesc(w2),parent-type-desc)

— let field-values = <e,*INT_TYPE* ,p,vis,

82

(direction = TO
— (NUM .eO,
(NUM ,e2)),

(direction = TO
— (NUM ,e2),
(NUM ,ei)),parent-type-desc> in

attributes
((id,(direction = TO —► exprj, expr2),

(direction = TO —<• expr2, expri),parent-type-desc,field-values))
(p)(vis)(u)(t),

error
(cat("Incompatible range constraint for integer type: ")

(tdesc(w,))(tdesc(w2))(decl))))

Static semantic analysis of an integer definition type involves making certain that the lower
and upper bounds of the range constraint are static expressions compatible with the integer
type's parent type (UNIVERSAL JLNTEGER); declaring the 'low and 'high attributes (rep-
resenting these bounds) as system-generated identifiers; and entering an integer definition
type descriptor in the TSE.

(DT17) DT I COMPONENT id generic-decl* port-decl*] (p)(vis)(u)(t)
= let tj = enter(t)(p)(id)(<e,*COMPONENT* ,p,ff>) in

let pi = %(p)(id) in
let t2 =enter(extend(t1)(p)(id))(pi)(*UNIT*)(<e,*COMPONENT*>) in

let t3 = enter(t2)(pi)(*LAB*)(<e,e>) in
let t4 = enter(t3)(pi)(*USED*)(<e,e>) in
let t5 = enter(t4)(pi)(*IMPT*)(<£,e,e>) in

let t6 = enter(t4)(pi)(*GENERICS*)(<e,e>) in
let t7 =enter(t4)(pi)(*PORTS*)(<£,£>) in

GDT H generic-decl* J (pi)(vis)(Ul)(t7)
where m = At.PPT [port-decl*] (pi)(vis)(u)(t)

6.5.12 Concurrent Statements

(CSTO) CST [e J (using-configuration)(p)(u)(t) = u(t)

(CSTl) CST [conc-stat conc-stat* J (using-configuration)(p)(u)(t)
= CST | conc-stat | (using-configuration)(p)(ui)(t)

where ui = At.CST [conc-stat*]] (using-configuration)(p)(u)(t)

Concurrent statements are statically checked in the textual order of their appearance in the
hardware description.

(CST2) CST I BLOCK id block-header decl* conc-stat* opt-id] (using-configuration)(p)(u)(t)
= let q = find-progunit-env(t)(p) in

let labels = third(t(q)(*LAB*)) in
(id 6 labels

—► error(cat("Duplicate concurrent statement label: ")($(q)(id))),
(-inull(opt-id)A opt-id ^ id

—► error
(cat("BLOCK statement ")(id)
(" ended with incorrect identifier: ")(opt-id)),

83

let t, = enter(t)(q)(*LAB*)((e,cons(id,labels))) in
let t2 = enter(t1)(q)(id)(<£,*BLOCKNAME* ,p,ff>) in

let pi = %(p)(id) in
let t3 = enter(extend(t2)(p)(id))(pi)(*UNIT*)(<e,*BLOCK* >) in

let t4 = enter(t3)(p!)(*LAB*)(<e,e>) in
let t6 = enter(t4)(pi)(*USED*)(<£,£>) in
let t6 = enter(t5)(pi)(*IMPT*)(<e,e,£>) in
let t7 =enter(t6)(Pl)(*GENERICS*)(<£,£>) in

let tg = enter(t7)(Pl)(*PORTS*)(<£,£>) in

process-block-header(block-header)(id)(pi)(u2)(t8)

where u, = At.DT [decl* 1 (p,)(tt)(u,)(t)
where
Ui = At.CST [conc-stat* | (using-configuration)(pi)(u)(t)))

process-block-header(block-header)(id)(p)(u)(t)

= let generic-part = hd(block-header)
and port-part = second(block-header) in

process-generic-part(generic-part)(id)(p)(ui)(t)
where ui = At.process-port-part(port-part)(id)(p)(u)(t)

process-generic-part (generic-part)(id)(p)(u)(t)

= (nulJ(generic-part)—► u(t),
let generic-decl* = hd(generic-part)

and generic-map-aspect = second(generic-part) in

GDT I generic-decl* J (p)(tt)(ui)(t)

where
uj = At.(null(generic-map-aspect)—► u(t),

GMT [generic-map-aspect] (id)(BLOCK)(p)(p)(u)(t)))

process-port- part(port-part)(id)(p)(u)(t)

= (null(port-part)—► u(t),
let port-decl* = hd(port-part)

and port-map-aspect = second(port-part) in
PPT [port-decl*] (p)(tt)(ui)(t)

where
ui = At.(null(port-map-aspect)—► u(t),

PMT I port-map-aspect J (id)(BLOCK)(p)(p)(u)(t)))

(CST3) CST [PROCESS id ref* decl* seq-stat* opt-id J (using-configuration)(p)(u)(t)

= let labels = third(t(p)(*LAB*)) in

(id E labels
—► error(cat("Duplicate concurrent statement label: ")($(p)(id))),

let ti = enter(t)(p)(*LAB*)((e,cons(id,labels))) in

(-inull(opt-id)A opt-id ^ id
—► error

(cat("PROCESS statement ")(id)

(" ended with incorrect identifier: ")(opt-id)),
let t2 = enter(t1)(p)(id)(<£,*PROCESSNAME* ,p,ff,ref*>) in

let p, = %(p)(id) in
let t3 =enter(extend(t2)(p)(id))(Pl)(*UNIT*)(<£,*PROCESS*>) in

let t4 = enter(t3)(pi)(*LAB*)(<£,£>) in
let t5 =enter(t4)(p1)(*USED*)(<£,£>) in

let t6 = enter(t5)(p1)(*IMPT*)(<e,e,e>) in
let t7 =enter(t6)(pi)(*SENS*)(<£,£>) in

SLTlref*](Pl)(u2)(t7)
where u2 = At.DT I decl* J (pi)(tt)(m)(t)
where m = At.SST J seq-stat* | (pi)(u)(t)))

84

find-architecture-env(t)(p)
= (nuU(p)v tag(t(p)(*UNIT*))= »ARCHITECTURE*

find-architecture-env(t)(rest(p)))

(CST4) CST I SEL-SIGASSN atmark delay-type id expr ref selected-waveform"1" 1
(using-configuration)(p)(u)(t)
= let expr* = cons(expr,

collect-expressions-from-selected-waveforms
(selected-waveform"1")) in

let ref* = delete-duplicates
(collect-signals-from-expr-list(expr*)(t)(p)(e)) in

let case-alt+ = construct-case-alternatives
(ref)(delay-type)(selected-waveform+) in

let case-stat = (CASE ,atmark,expr,case-alt+) in
let process-stat = (PROCESS ,id,ref*,e,(case-stat),id) in

CST [process-stat] (using-configuration)(p)(u)(t)

collect-expressions-from-selected-waveforms(selected- waveform*)
= (null(selected-waveform*)—► e,

let selected-waveform = hd(selected-waveform*) in
let waveform = second(selected-waveform)

and discrete-range"1" = third(selected-waveform) in
let transaction-exprs = collect-transaction-expressions(second(waveform)) in

nconc
(transaction-exprs,
cons(second(discrete-range+),
cons(third(discrete-range+),
collect-expressions-from-selected- waveforms

(tl(selected- waveform *))))))

collect-transaction-expressions(trans*)
= (null(trans*)—» e,

let transaction = hd(trans*) in
cons(second(trans action),collect-transaction-expressions(tl(trans*))))

collect-signal s-from-expr-list(expr*)(t)(p)(signal-refs)
= (null(expr*)—► signal-refs,

let expr = hd(expr') in
coUect-signals-from-expr

(expr)(t)(p)(collect-signals-from-expr-list(tl(expr*))(t)(p)(signal-refs)))

collect-signals-from-expr(expr)(t)(p)(signal-refs)
= (-iconsp(expr)—» signal-refs,

is-ref?(expr)
—► let d = lookup-desc-for-ref(expr)(p)(t) in

(tag(d)= *OBJECT* A is-sig?(type(d))
—► cons(expr,

(consp(second(expr))
—► collect-signals-from-expr-list(second(expr))(t)(p)(signal-refs),
collect-signals-from-expr(second(expr))(t)(p)(signal-refs))),

(consp(second(expr))
—* collect-sign als- from-expr-list(second(expr))(t)(p) (signal-refs),
collect-signals-from-expr(second(expr))(t)(p) (signal-refs))),

is-paggr?(expr)
—► collect-signals-from-expr-list (second (expr))(t)(p) (signal-refs),
is-unary-op?(hd(expr))

85

—► collect-signals- from-expr(second(expr))(t)(p)(signal-refs),

is-binary-op?(hd(expr))V is-relational-op?(hd(expr))
— collect-signals-from-expr

(second(expr))(t)(p)
(collect-signals-from-expr(third (expr))(t)(p)(signal-refs)),

collect-signals-from-expr-list(expr)(t)(p)(signal-refs))

lookup-desc-for-ref(ref)(p)(t)

= let name = second(ref) in
let id+ = (consp(last(name))—► rest(name), name) in
let q = access(rest(id+))(t)(p) in

lookup-desc-on-path(t)(q)(last(id+))

lookup-desc-on-path(t)(p)(id)

= let d = t(p)(id) in
(d = ""UNBOUND* — (null(p)— »UNBOUND* , lookup-desc-on-path(t)(rest(p))(id)), d)

access(id*)(t)(p)

= (null(id*) — p,
let id = hd(id*) in

let d = lookup(t)(p)(id) in
(d = »UNBOUND*

—► error
(cat("Unbound identifier in auxiliary semantic function ACCESS: ")(id)),

access(tl(id*))(t)(%(path(d))(idf(d)))))

construct-case-alternatives(ref) (delay-type) (selected-waveform*)

= (null(selected-waveform*)—► e,
let selected-waveform = hd(selected-waveform') in

let waveform = second(selected-waveform)
and discrete-range+ = third(selected-waveform) in

let sig-assn-stat = (SIGASSN ,(AT ,mk-atmark()),delay-type,ref,waveform) in
let case-alt = (CASECHOICE ,discrete-range4,(sig-assn-stat)) in

cons(case-alt,
construct-case-alternatives(ref)(delay-type)(tl(selected-waveform*))))

(CST5) CST [COND-SIGASSN atmark delay-type id ref cond-waveform* waveform 1
(using-configuration)(p)(u)(t)

= let expr* = nconc
(collect-expressions-fro m-conditional-waveforms

(cond-waveform*),
collect-transaction-expressions(second(waveform))) in

let ref* = delete-duplicates
(collect-signals-from-expr-list(expr*)(t)(p)(e)) in

(null(cond- waveform*)
—► let sig-assn-stat = (SIGASSN ,(AT ,mk-atmark()),delay-type,ref,waveform) in

let process-stat = (PROCESS ,id,ref*,e,(sig-assn-stat),id) in

CST | process-stat] (using-configuration)(p)(u)(t),

let cond-part+ = construct-cond-parts
(ref) (delay-type)(cond-waveform*)

and else-part = ((SIGASSN ,(AT ,mk-atmark()),delay-type,ref,waveform)) in

let if-stat = (IF ,atmark,cond-part+,else-part) in
let process-stat = (PROCESS ,id,ref*,e,(if-stat),id) in

CST | process-stat J (using-configuration)(p)(u)(t))

86

collect-expressions- from-conditional-waveforms(cond- waveform*)
= (null(cond-waveform*) —► e,

let cond-waveform = hd(cond-waveform*) in
let waveform = second(cond-waveform)

and condition = third(cond-waveform) in
let transaction-exprs = collect-transaction-expressions(second(waveform)) in

nconc
(transaction-exprs,
cons(condition,
collect-expressions-from-conditional-waveforms(tl(cond-waveform*)))))

construct-cond-parts(ref)(delay-type)(cond-waveform*)

= (null(cond-waveform*)—► e,
let cond-waveform = hd(cond-waveform*) in

let waveform = second(cond-waveform)
and condition = third(cond-waveform) in

let sig-assn-stat = (SIGASSN ,(AT ,mk-atmark()),delay-type,ref,waveform) in

let cond-part = (condition,(sig-assn-stat)) in
cons(cond-part,construct-cond-parts(ref)(delay-type)(tl(cond-waveform*))))

(CST6) CST [COMPINST id ref opt-generic-map-aspect opt-port-map-aspect I
(using-configuration)(p)(u)(t)
= let d = lookup-desc-for-ref(ref)(p)(t) in

(d = »UNBOUND* V tag(d)/ »COMPONENT*

—► error
(cat("No component declaration ")("for component instance ")(id)),

record-equivalent-nested-block-stat
(conc-stat)(using-configuration)(p)(u)(t))

6.5.13 Sensitivity Lists

(SLTO) SLT [e 1 (p)(u)(t) = u(t)

(SLT1) SLT [ref ref* 1 (p)(u)(t)

= SM[ref](p)(u,)(t)
where u, = At.SLT [ref*] (p)(u)(t)

The refs in the sensitivity list of a PROCESS statement are checked in sequential order.

(SLT2) SLT I REF name] (p)(u)(t)

= let expr = ref in

ET|[expr](p)(k)(t)
where
k = A(w,e),t.

let d = tdesc(w) in
(->is-sig?(w)

—► error
(cat("Non-signal in process sensitivity list: ")(ref)),

let d, = lookup(t)(p)(*SENS*) in

let ti = enter
(t)(p)(*SENS*)
(<£,(cons(SLX [ref 1 (p)(t),sensitivity(di)))>) in

u(t,))

87

6.5.14 Sequential Statements

(SSTO) SSTJe J(p)(c)(t) = c(t)

(SST1) SST H seq-stat seq-stat*] (p)(c)(t)
= SST I seq-stat] (p)(ci)(t)

where cj = At.SST [[seq-stat*] (p)(c)(t)

Sequential statements are statically checked in the textual order of their appearance in the
hardware description.

(SST2) SST [NULL atmark 1 (p)(c)(t) = c(t)

NULL statements require no checking.

(SST3) SST I VARASSN atmark ref expr 1 (p)(c)(t)
= let expr0 = ref in

ETJexpro J(p)(k)(t)
where
k = A(w,e),t.

let d = tdesc(w) in
(->is-var?(w)

—> error
(cat("Illegal target in variable assignment statement: ")
(seq-stat)),

-iis-writable?(w)
—► error(cat("Read-only variable: ")(namef(d))),
RT[expr](p)(k])(t)
where
ki = A(wi,ei),t.

let di = tdesc(wi) in
(match-types(d,di)—► c(t),
error(cat("Assignment type mismatch: ")(d)(di))))

find-process-en v(t)(p)
= (null(p)V tag(t(p)(*UNIT*))= »PROCESS* — p, find-process-env(t)(rest(p)))

First the left part of a variable assignment statement is checked, and then the right part.
The left part must be a variable of reference type (checked by is-var? and is-writable?),
and the basic types of the left and right parts must be the same, as verified by match-types
(refer to the definitions following semantic function DT5).

(SST4) SST | SIGASSN atmark delay-type ref waveform 1 (p)(c)(t)
= let expr = ref in

ET[expr](p)(k)(t)
where
k = A(w,e),t.

let d = tdesc(w)
and q = find-process-env(t)(p) in

(->is-sig?(w)
—♦ error

(cat("Illegal target of signal assignment statement: ")
(namef(d))),

88

-iis-writable?(w)—► error
(cat("Read-only signal: ")(namef

(d))),
nuU(q)

—<■ error
(cat("Sequential signal assignment statement not in a process: ")

(seq-stat)),
let di = lookup-desc-for-ref(ref)(p)(t) in

let sources = sources(di) in
(q 6 sources —► ci(t),
rest(q)G map-rest(sources)
— error

(cat("Resolved signal illegal in Stage 4 VHDL: ")

(namef(di))),
let ti = enter

(t)(path(d,))(idf(d,))
(<£,*OBJECT* ,path(di),exported(di),type(di),

value(di),cons(q,sources)>) in

ci(ti))
where
c, = At, WT I waveform] (p)(ki)(t)

where
k! = A(wi,ei),t.

let di = tdesc(wi) in
(match-types(d,di)—» c(t),

error
(cat("Assignment type mismatch: ")

(d)(d!))))

(SST5) SST I IF atmark cond-part+ else-part] (p)(c)(t)

= let seq-stat* = else-part in
check-if(cond-part+)(p)(ci)(t)

where cj = At.(null(seq-stat*)— c(t), SST [seq-stat*] (p)(c)(t))

check-if(cond-part*)(p)(c)(t)
= (null(cond-part*)—+ c(t),

let (expr,seq-stat*) = hd(cond-part*) in
RT[expr](p)(k)(t)
where
k = A(w,e),t.

(is-boolean?(w)
-► SST If seq-stat*] (p)(ci)'(t)

where ci = At.check-if(tl(cond-part*))(p)(c)(t),

error(cat("Non-boolean condition in IF statement: ")(tdesc

(w)))))

A Stage 4 VHDL IF statement consists of one or more conditional parts (cond-parts)
followed by a (possibly empty) else-part. Each cond-part consists of a test expression
followed by sequential statements that are to be executed when the test expression is the
first to evaluate to true; the sequential statements constituting the else-part are to be
executed when none of the test expressions is true.

The cond-parts are first checked, in order, by auxiliary semantic function check-if, after
which the else-part, if nonempty, is checked by SST. Checking each cond-part involves
first ascertaining that the basic type of its test expression is boolean, and then invoking
SST to check its sequential statements.

89

(SST6) SST I CASE atmark expr case-alt+] (p)(c)(t)
= RT[expr](p)(k)(t)

where
k = A(w,e),ti.

let d = get-base-type(tdesc(w)) in
AT[case-alt+] (d)(p)(y)(t,)
where

y = Ah,t2.
(-icase-type-ok(d)

—► error
(cat("Illegal CASE selector type: ")(namef(d))
(seq-stat)),

-icase-coverage(d)(h)

—> error
(cat("Incomplete CASE coverage for type: ")

(namef(d))(seq-stat)),

c(t2))

case-type-ok(d)

= is-boolean-tdesc?(d)V is-bit-tdesc?(d)

case-coverage(d)(h)
— (is-boolean-tdesc?(d)A set-card(h)= 2)

V (is-bit-tdesc?(d)A set-card(h)= 2)

set-card(x) = length(x)

A Stage 4 VHDL CASE statement consists of a selector expression followed by one or more
case alternatives, each consisting of sequential statements preceded either by a nonempty
sequence of discrete ranges or by the reserved word OTHERS. This discrete range sequence
defines a case selection set for the particular case alternative.

The Stage 4 VHDL concrete syntax aUows the statements in a case alternative to be preceded
by a list of discrete ranges and expressions; for uniformity, in the Phase 1 abstract syntax
(generated by the Stage 4 VHDL parser) these expressions are converted into equivalent

one-element discrete ranges.

A CASE statement must be checked for the foDowing:

• The basic type of all the case selection sets (and thus of the expressions that define
the discrete ranges) must be the same, and must match that of the selector expression.
In Stage 4 VHDL, the only such basic types are BOOLEAN, BIT, INTEGER, and
enumeration types (including CHARACTER).

• Every expression of every discrete range in a CASE statement must be static, i.e., must
have a value defined by Phase 1. This enables the contents of each case selection set
to be determined during Phase 1. The OTHERS alternative, if present, defines a case
selection set that is the complement of the union of the other case selection sets with
respect to the set of values associated with the basic type. The BOOLEAN basic
type is associated with the set of truth values {FALSE, TRUE}, the BIT basic type
with the set of bit values {0, 1}, the INTEGER basic type with the set of integers
{..., -2, -1, 0, 1, 2, ...}, the CHARACTER basic type with the set {(CHAR
0), ..., (CHAR 127)} of ASCII-128 character representations, and an arbitrary

enumeration type with the set of its enumeration literals.

90

• The selection sets for each case alternative must be mutually disjoint, and their union
must be the set associated with the basic type of the selector expression. The case
selection subsets denned by the discrete ranges within each case alternative need
not be disjoint. Note that a CASE statement with a selection expression of basic
type INTEGER must have an OTHERS alternative, as the set of integers cannot be
covered by a finite number of case alternatives, each with only a finite number of
(finite) discrete ranges.

The basic type of the selector expression is first determined. Then semantic function AT is
invoked with this basic type to check the case alternatives. Refer to the discussion of AT,
which returns the union of the case selection sets associated with all of the case alternatives,
a union that must cover the set associated with the selector expression's basic type.

(SST7) SST [LOOP atmark id seq-stat* opt-id f (p)(c)(t)
= let q = find-looplabel-env(t)(p) in

let labels = third(t(q)(*LAB*)) in
(id G labels —► error(cat("Duplicate loop label: ")($(q)(id))),
let t, = enter(t)(q)(*LAB*)((e,cons(id,labels))) in

(-mull(opt-id)A opt-id ^ id
—► error

(cat("Loop ")(id)(" ended with incorrect identifier: ")(opt-id)),
let t2 = enter(t1)(q)(id)(<e,*LOOPNAME* ,p>) in

let pi = %(p)(id) in
let t3 = enter(extend(t2)(p)(id))(Pl)(*UNIT*)(<e,*LOOP* >) in

let t4 = enter(t3)(pi)(*LAB*)(<£,£>) in
let t5 = enter(t4)(p)(id)(<e *LOOPNAME* ,p>) in

let ci = At.SST ([seq-stat' J (pi)(c)(t) in
ci(t8)))

(SST8) SST [WHILE atmark id expr seq-stat* opt-id J (p)(c)(t)
= let q = find-looplabel-env(t)(p) in

let labels = third(t(q)(*LAB*)) in
(id € labels —► error(cat("Duplicate loop label: ")($(q)(id))),
let ti = enter(t)(q)(*LAB*)((e,cons(id,labels))) in

(opt-id ^ e A opt-id ^ id
—<■ error

(cat("Loop ")(id)(" ended with incorrect identifier: ")(opt-id)),
let t2 =enter(t1)(q)(id)(<£,*LOOPNAME* ,p>) in

let pi = %(p)(id) in
let t3 =enter(extend(t2)(p)(id))(Pl)(*UNIT*)(<£,*LOOP* >) in

let t4 = enter(t3)(pi)(*LAB*)(<£,£>) in
let t5 = enter(t4)(p)(id)(<e,*LOOPNAME* ,p>) in

let ci = At.SST [seq-stat*] (p,)(c)(t) in
£I|[expr](p,)(k)(ts)

where
k = A(w,e),t.

(is-boolean?(w)—► ci(t),
error

(cat("Non-boolean condition in WHILE statement: ")
(tdesc(w))))))

(SST9) SST [FOR atmark id ref discrete-range seq-stat* opt-id]) (p)(c)(t)
= let q = find-looplabel-env(t)(p) in

let labels = third(t(q)(*LAB*)) in

91

(id £ labels — error(cat("Duplicate loop label: ")($(q)(id))),
let ti = enter(t)(q)(*LAB*)((e,cons(id,labels))) in

(-mull(opt-id)A opt-id ^ id
—♦ error

(cat("Loop ")(id)(" ended with incorrect identifier: ")(opt-id)),
let t2 = enter(t1)(q)(id)(<e,*LOOPNAME* ,p>) in

let p, = %(p)(id) in
let t3 =enter(extend(t2)(p)(id))(pi)(*UNIT*)(<£,*LOOP* >) in

let t4 = enter(t3)(pi)(*LAB*)(<e,e>) in
let t5 = enter(t4)(p)(id)(<£,*LOOPNAME* ,p>) in

let (direction,expn ,expr2) = discrete-range in
RTjexpn](p)(k,)(t)
where
k, = A(w1,e1),t.

let di = tdesc(wi) in
KT[expr2l(p)(k2)(t)

where
k2 = A(w2,e2),t.

let d2 = tdesc(w2) in
(match-types(di,d2)
— let decl = (DEC .CONST ,

(hd(hd(tl(ref)))),
(hd(d,)),
hd(tl(discrete-range))) in

DT[decll(p,)(tt)(u)(t5),
error

(cat("Bounds type mismatch in FOR statement: ")

(seq-stat)))

where

U = At6.Cl(t6)

where ci = At7.SST [[seq-stat* J (pi)(c)(t7)))

find-looplabel-env(t)(p)
= let tg = tag(t(p)(*UNIT*)) in

(null(p)v tg G (*PROCESS* »PROCEDURE* »FUNCTION* *LOOP*) - p,
find-looplabel-env(t)(rest(p)))

In Stage 4 VHDL, entering a loop (i.e., a LOOP, WHILE or FOR statement) creates a new com-
ponent environment of the TSE, just as in the case of entering a subprogram (see below).
The identifier that is the loop's label must be checked for uniqueness among the identifiers
used thus far as labels in the innermost enclosing program unit (process, procedure, func-
tion, or loop). If unique, the identifier is appended to the innermost enclosing unit's label
identifier list (bound to the special identifier *LAB* of the corresponding environment).

A *LOOPNAME* descriptor is then entered into the current environment. The resulting
TSE is extended to reflect loop entry; the *UNIT* entry in the extended TSE is set
to *LOOP* to associate the extended TSE with the loop, and the *LOOPNAME*
descriptor is also entered into the extended TSE. This latter descriptor is used by EXIT
statements contained in this loop to validate the visibility of their loop names.

In the case of a WHILE loop, the basic type of the iteration control expression is checked to

be BOOLEAN, and the loop body is also checked by SST.

In the case of a FOR loop, the basic types of the iteration bounds expressions are checked to
match, the implicit declaration of the iteration parameter is processed by semantic function

92

DT, and the loop body is checked with SST.

(SST10) SST [EXIT atmark opt-dotted-name opt-expr] (p)(c)(t)
= (null(find-loop-env(t)(p))

—► error(cat("EXIT statement not in a loop: ")(seq-stat)),
(null(opt-dotted-name)—► Cjft),
name-type(opt-dotted-name)(£)(p)(t)(v)

where
v = Aw.(tag(tdesc(w))^ *LOOPNAME*

—► error(cat("Not a loop name: ")(namef(tdesc(w)))),

ci(t)))
where
ci = At.(null(opt-expr)—♦ c(t),

let expr = opt-expr in
RT|[expr](p)(k)(t)
where
k = A(w,e),t.

(is-boolean?(w)—► c(t),
error

(cat("Non-boolean condition in EXIT statement: ")

(tdesc(w))))))

An EXIT statement must be contained within a loop; otherwise, an error is raised. If an
exit control expression is present, its basic type is checked; if not BOOLEAN, an error is
raised.

(SST11) SST IT CALL atmark ref] (p)(c)(t)
= let expr = ref in

ET[expr](p)(k)(t)
where
k = A(w,e),t.

(tag(tdesc(w))= *VOID* — c(t),
error(cat("Invalid procedure call: ")(seq-stat)))

A procedure call statement boils down to an expression that is a Stage 4 VHDL name. This
expression is checked by ET, and must have a VOID basic type.

(SST12) SST H RETURN atmark opt-expr] (p)(c)(t)
= let d = context(t)(p) in

let tg = tag(d)
and cname = namef(d) in

(null(opt-expr)
— (tg / »PROCEDURE*

—► error
(cat("RETURN without expression in context of non-procedure: ")

(cname)(seq-stat)),

c(t)),
(tg ^ »FUNCTION*

—♦ error
(cat("RETURN with expression in context of non-function: ")
(cname)(seq-stat)),

let expr = opt-expr in
RT [expr 1 (P)(k)(t)
where

93

k = A(w,e),t.
(map-match-types(tdesc(w))(extract-rtypes(signatures(d)))

- c(t),
error

(cat("Incorrect return expression type in function: ")
(cname)(seq-stat)))))

context(t)(path)
= let d = t(path)(*UNIT*) in

(d = »UNBOUND* — context(t)(rest(path)),

(case tag(d)
(»PROCEDURE* ,*FUNCTION* .»PACKAGE*) — t(rest(path))(last(path)),

OTHERWISE — context(t)(rest(path))))

extract-rtypes(signatures)

= (null(signatures) —► e,
cons(tdesc(rtype(hd(signatures))),extract-rtypes(tl(signatures))))

RETURN statements have two forms, depending on the PROCEDURE or FUNCTION context in
which they can appear. Auxiliary semantic function context returns the descriptor of the
smallest subprogram or package enclosing the program text whose local environment is at
the end of the current path. It is first determined whether the RETURN statement is in the
proper context. If so, then if the RETURN statement has an expression, its basic type must
be equal to the basic type of the result type of the function in which it appears.

(SST13) SST I WAIT atmark ref* opt-expr, opt-expr2 1 (p)(c)(t)
= let ci = At.let d = lookup(t)(p)(*SENS*) in

(->null(sensitivity(d))
—► error

(cat("¥AIT statement ")(seq-stat)
(" illegal in process with sensitivity list: ")

(last(p))),
let c2 = At.(null(opt-expr2)—► c(t),

let expr2 = opt-expr2 in
RT[expr2](p)(k2)(t)

where
k2 = A(w2,e2),t2.

(is-time?(w2)—► c(t2),
error

(cat("Ill-typed timeout clause in WAIT statement: ")

(seq-stat)))) in

(null(opt-expri)—► C2(t),
let expri = opt-expri in

RTfexpr, 1 (p)(k,)(t)
where
ki = A(wi,ei),ti.

(is-boolean?(wi)—► C2(ti),

error
(cat("Non-boolean condition clause in WAIT statement: ")

(seq-stat))))) in
check- wait-refs(seq-stat)(ref*)(p)(ci)(t)

check-wait-refs(seq-stat)(ref*)(p)(c)(t)

= (null([rer]Hc(t),
let ref = hd(ref*)

and ci = At.check-wait-refs(seq-stat)(tl(ref*))(p)(c)(t) in

check-wait-ref (seq-stat)(ref)(p)(ci)(t))

94

check-wait-ref(seq-stat)(ref)(p)(c)(t)
= let expr = ref in

ET [expr] (p)(k)(t)
where
k = A(w,e),t.

let d = tdesc(w) in
(d = »UNBOUND* -► error(cat("Unbound identifier: ")(namef

(d))),
(is-sig?(w)— c(t),
error

(cat("Non-signal ")(ref)
(" in sensitivity clause of WAIT statement: ")
(seq-stat))))

Semantic equation SST13 specifies the static semantics of the WAIT statement, which con-
sists of a sensitivity list ref", an optional condition opt-expr^ and an optional timeout
expression opt-expr2. First, auxiliary semantic function check-wait-refs recursively tra-
verses the sensitivity list, checking that each ref denotes a declared signal. Next, a descriptor
for the special identifier *SENS* is looked up, and if its sensitivity field is nonempty, then
the WAIT statement illegally appears inside a PROCESS statement with a sensitivity list. If
present, the condition is checked to have basic type BOOLEAN. Finally, if present, the
timeout expression is checked to have basic type TIME.

6.5.15 Case Alternatives

(ATO) AT [e] (d)(p)(y)(t) = y(emptyset)(t)

(ATI) AT [case-alf case-alt J (d)(p)(y)(t)
= AT f case-alt*] (d)(p)(yi)(t)

where
yi = Ahi.ti.

AT I case-alt](d)(p)(y2)(ti)
where
y2 = Ah2,t2.

(case-overlap(d)((hi ,li2))
—> error

(cat("Overlapping case alternatives for type: ")
(namef(d))),

y(case-union(d)((hi ,h2)))(t2))

(AT2) AT [CASECHOICE discrete-range+ seq-stat* 1 (d)(p)(y)(t)
= DRT I discrete-range+ 1 (d)(p)(yi)(t)

where
yi = Ah,ti.

SST I seq-stat* J (p)(c)(ti)
where c = At2.y(h)(t2)

(AT3) AT [CASEOTHERS seq-stat*] (d)(p)(y)(t)
= SST [seq-stat* 1 (p)(c)(t)

where
c = Ati.y((is-boolean-tdesc?(d)— {FALSE ,TRUE },

is-bit-tdesc?(d)— {0,1},
is-integer-tdesc?(d)—> INT ,

95

is-emimeration-tdesc?(d)—► ENUM ,
error

(cat("Illegal CASE selector type: ")(namef(d))(case-alt))))
(ti)

case-overlap(d)(x,y)
= ((is-integer-tdesc?(d)A (x = INT V y = INT))

V (is-enumeration-tdesc?(d)A (x = ENUM V y = ENUM))
— ff,
x n y ^ emptyset)

case-union (d)(x,y)
= (is-integer-tdesc?(d)A (x = INT Vy = INT) — INT ,

is-enumeration-tdesc?(d)A (x = ENUM V y = ENUM) — ENUM ,
x U y)

Semantic function AT processes each case alternative in turn, beginning with the last one.

As the case selection set of each alternative is computed, it is checked for disjointness with
the union of the selection sets of the preceding alternatives. If disjoint, then the union of
these two case selection sets is returned; otherwise an error is raised.

Note that the case selection set of an OTHERS alternative (represented by CASEOTHERS in
the abstract syntax) is always disjoint from the union of the selection sets of the preceding
alternatives, because (1) a CASE statement can contain at most one such alternative; (2) if
such an alternative is present, it must be the last alternative; and (3) the case selection set
of an OTHERS alternative is the relative complement of the union of the case selection sets
of the preceding alternatives.

AT invokes the semantic function DRT to compute the case selection set defined by the
sequence of discrete ranges of a particular case alternative.

6.5.16 Discrete Ranges

(DRTO) DRT [e] (d)(p)(y)(t) = y(emptyset)(t)

(DRT1) DRT [discrete-range discrete-range*] (d)(p)(y)(t)
= DRT IT discrete-range] (d)(p)(yi)(t)

where
yi = Ahi.ti.

DRT I discrete-range* 1 (d)(p)(y2)(ti)
where y2 = Ari2,t2.y(hi U Ii2)(t2)

A sequence of discrete ranges is processed in order, from left to right.

(DRT2) DRT [discrete-range] (d)(p)(y)(t)
= let (direction,expri ,expr2) = discrete-range in

RTJexpn](p)(k,)(t)
where
ki = A(w1,e1),ti.

(->match-types(d,tdesc(wi))
—<■ error(cat("CASE type mismatch: ")(d)(tdesc(wi))),

96

Appropriate constraints make sure that all simulated j;ignal_sources occur in the same
simulation cycle as the containing simulated_explicit jsignal_state and that they are legitimate
sources of the simulated signal according to the design source description.

96a

ei = *UNDEF*
—► error(cat("Non-static CASE expression: ") [expri]),

RT[expr2](p)(k2)(t1)
where
k2 = A(w2,e2),t2.

(-■match-types(d,tdesc(w2))

—► error
(cat("CASE type mismatch: ")(d)(tdesc

(w2))),

e2 = *UNDEF*
—► error

(cat("Non-static CASE expression: ")

[expr2]),
y(mk-set(d)((direction,ei ,e2)))(t2)))

mk-set(d)(direction,ei ,e2)

= (case tag(d)
BOOL
— (ei = e2 -+ {ei},

(direction = TO — (e] = FALSE A e2 = TRUE — {FALSE ,TRUE }, emptyset),

(ei = TRUE A e2 = FALSE — {TRUE .FALSE }, emptyset))),

BIT
— (ei = e2 -► {ei},

(direction = TO — (e, = 0 A e2 = 1 — {0,1}, emptyset), (e, = 1 A e2 = 0 — {1,0}, emptyset))),

(*INT* ,*INT_TYPE*)
—♦ (direction = TO

— (ei < e2 —► {ei} U mk-set(d)((direction,(ei +l),e2)), emptyset),
(ei > e2 -♦ {ei} U mk-set(d)((direction,(ei-l),e2)), emptyset)),

»ENUMTYPE*
—♦ (direction = TO —* mk-enum-set(literals(d))(ei)(e2),

mk-enum-set(reverse(literals(d)))(ei)(e2)),
OTHERWISE -* error(cat("Illegal CASE expression type tag: ")(tag(d))))

mk-enum-set(id+)(idi)(id2)

= let ni = position(idi)(id+)
and n2 = position(id2)(id+) in

(n2 < ni —► £,
nth-tl(ni)(reverse(nth-tl(length(id+)-(n2 + l))(reverse(id+)))))

nth-tl(n)(x) = (n = 0 — x, nth-tl(n-l)(tl(x)))

position(a)(x) = position-aux(a)(x)(0)

position-aux(a)(x)(n)
= (null(x)-* ff, (a = hd(x)—► n, position-aux(a)(tl(x))(l+n)))

reverse(x) = reverse-aux(x)(e)

reverse-aux(x)(y) = (null(x)— y, reverse-aux(tl(x))(cons(hd(x),y)))

Semantic function DRT receives a case selector expression's basic type from AT. DRT
detects a mismatch between the basic type of a discrete range and that of the selector
expression; it also detects the presence of nonstatic expressions in a discrete range. Case
selection sets are constructed by the function mk-set ("make set"), which takes a type
descriptor and a pair of translated static expressions that represent a discrete range (that
the expressions are static is checked in Phase 1) and returns the corresponding set of values.

97

6.5.17 Waveforms and Transactions

(WT1) WT IT WAVE transaction] (p)(k)(t) = TRT [[transaction+] (p)(k)(t)

(TRT1) TRT I transaction transaction*] (p)(k)(t)
= TRT [transaction 1 (p)(ki)(t)

where
ki = A(wi,ei),ti.

let di = tdesc(wi) in
(null(transaction*)—♦ k((wi,ei))(ti),
let transaction]1" = transaction* in

TRT If transaction^](p)(k2)(ti)
where
k2 = A(w2,e2),t2.

let d2 = tdesc(w2) in
(-imatch-types(d i ,d2)

—► error
(cat("Type mismatch for waveform transactions: ")
(transaction)(hd(transaction51"))),

e, ^ *UNDEF* A e2 ^ *UNDEF*

— (ei > e2

—► error
(cat("Nonascending times for waveform transactions: ")

(transaction)(hd(transactionf))),
k((w2,e2))(t2)),

k((w2,ei))(t2)))

(TRT2) TRT [TRANS expr opt-expr] (p)(k)(t)
= RT[exprl(p)(k1)(t)

where
k, = A(wi,ei),ti.

(null(opt-expr)-» k((wi,0))(ti),
let expr2 = opt-expr in

Kr[expr2](p)(k2)(t,)
where
k2 = A(w2,e2),t2.

(->is-time?(w2)
—► error

(cat("Transaction has ill-typed time expression: ")

(tdesc(w2))),

e2 # *UNDEF*
— (e2 < 0

—► error
(cat("Transaction has negative time expression: ")

(e.)),
k((w1>e2))(t2)),

k((w1>e2))(t2)))

6.5.18 Expressions

(ETO)El[e](p)(k)(t) = k((e,e))(t)

(ET1) ET [FALSE] (p)(k)(t) = k((mk-type((CONST VAL))(bool-type-desc(t)),FALSE))(t)

(ET2) ET I TRUE 1 (P)(k)(t) = k((mk-type((CONST VAL))(bool-type-desc(t)),TRUE))(t)

98

(ET3) ET [BIT bitlit] (p)(k)(t)
= k((mk-type((CONST VAL))(bit-type-desc(t)),B [bitlit]))(t)

(ET4) ET [NUM constant J (p)(k)(t)
= k((mk-type((CONST VAL))(int-type-desc(t)),N [constant I))(t)

(ET5) ET [TIME constant time-unit J (p)(k)(t)
= let normalized-constant = (case time-unit

FS — N I constant] ,
PS ■— lOOOxN I constant | ,
NS — lOOOOOOxN I constant] ,
US — lOOOOOOOOOxN f constant] ,

MS — lOOOOOOOOOOOOxN | constant] ,
SEC — lOOOOOOOOOOOOOOOxN J constant] ,
MIN — 60x(1000000000000000xN [constant J),

HR — 3600x(1000000000000000xN [constant I),

OTHERWISE
—► error

(cat("Illegal unit name for physical type TIME: ")
(time-unit))) in

k((mk-type((CONST VAL))(time-type-desc(t)),normalized-constant))(t)

(ET6) ET I CHAR constant 1 (p)(k)(t)
= let expr = (CHAR .constant) in

let d = lookup(t)((STANDARD))(expr) in
k((type(d),idf(d)))(t)

(ET7) ET [BITSTR bit-lit* 1 (p)(k)(t)
= let expr* = bit-lit* in

(null(expr*)
— k((mk-type((CONST VAL))(lookup(t)(£)(BIT_VECTOR)),*UNDEF*))(t),
list-type(expr*)(p)(t)(vv)

where vv = Aw*.array-type(BIT.VECTOR)(expr*)(w*)(t)(p)(k))

(ET8) ET [STR char-lit*] (p)(k)(t)
= let expr* = char-lit* in

(null(expr*H k((mk-type((CONST VAL))(lookup(t)(e)(STRING)),*UNDEF*))(t),
list-type(expr*)(p)(t)(vv)

where vv = Aw*.array-type(STRING)(expr*)(w*)(t)(p)(k))

array- type(array-type-name) (expr*)(w*)(t)(p)(k)
= let d = tdesc(hd(w*)) in

(chk-array-type(d)(tl(w*))
—» let array-type-desc = array-type-desc

(new-array-type-name(array-type-name))(e)(p)(tt)
(TO)((NUM 1))((NUM ,length(w*)))(d) in

k((mk-type(tmode(hd(w*)))(array-type-desc),*UNDEF*))(t),
error(cat("Array aggregate of inhomogeneous type: ")(expr*)))

chk-array-type(d)(w*)
= (null(w*)— tt,

match-types(d)(tdesc(hd(w*)))—► chk-array-type(d)(tl(w*)),

ff)

99

(ET9) ET l REF name J (p)(k)(t)
= name-type(name)(e)(p)(t)(v)

where
v = Aw.let d = tdesc(w) in

(second(tmode(w))= TYP
—* error(cat("Wrong context for a type: ")(namef(d))(expr)),
tag(d)= *OBJECT* — k((type(d),value(d)))(t),
tag(d)= *ENUMELT* - k((type(d),idf(d)))(t),
k((w,*UNDEF*))(t))

(ET10) ET [PAGGR expr*] (p)(k)(t)
= (length(expr*)= 1

—► let expr = hd(expr') in
ET [expr] (p)(k)(t),

list-type(expr*)(p)(t)(vv)
where vv = Aw*.array-type(*ANONYMOUS*)(expr*)(w*)(t)(p)(k))

(ET11) ET [unary-op expr] (p)(k)(t)
= RT|[expr](p)(k1)(t)

where kj = A(w,e),t.OTl [[unary-op 1 (k)((w,e))(t)

(ET12) ET [binary-op expn expr2] (p)(k)(t)
= RT|Iexprll(p)(k1)(t)

where
ki = A(wi,ei),t.

RT[expr2l(p)(k2)(t)
where k2 = A(w2,e2),t.

OT2 [binary-op] (k)((w1,e,))((w2,e2))(t)

(ET13) ET [relational-op expn expr2 J (p)(k)(t)
= RT[[expr1](p)(k,)(t)

where
ki = A(wi,ei),t.

RIIexpr2](p)(k2)(t)
where
k2 = A(w2,e2),t.

OT2 l relational-op] (k)((wj,ei))((w2,e2))(t)

(RTl)RT[exprl(P)(k)(t)
= ET[expr](p)(k,)(t)

where
ki = A(w,e),t.

let tm = tmode(w)
and d = tdesc(w) in

(second(tm)= ACC —► error
(cat("Non-value (an access): ")(expr)),

second(tm)= OUT
—> error

(cat("Cannot dereference formal OUT parameter: ")(expr)),
second(tm)= VAL A is-void-tdesc?(d)
—► error(cat("Void value: ")(expr)),
let w, = ((second(tm)= AGR - (DUMMY AGR) , (DUMMY VAL)),tdesc(w)) in

k((w,,e))(t))

100

(OT1.1) OT1 [unary-op] (k)(w,e)(t)
= let d = tdesc(w) in

(match-types(d,argtypesl(unary-op)(d))
—► k((restypel(unary-op)(d),resvall(unary-op)(e)(d)))(t),
error

(cat("Argument type Mismatch for unary operator: ")(unary-op)(d)))

argtypesl (unary-op)fd)
= (case unary-op

NOT
—► (is-boolean-tdesc?(d)V is-bit-tdesc?(d)—► d,

argtypesl-error(unary-op)(d)),
(PLUS ,NEG ,ABS)
—♦ (is-integer-tdesc?(d)V is-time-tdesc?(d)—* d,

argtypesl-error(unary-op)(d)),
OTHERWISE - error

(cat("Unrecognized Stage 4 VHDL unary operator: ")(unary-op)))

argtypesl-error(unary-op)(d)
= error(cat("Unary operator ")(unary-op)(" not implemented for type: ")(d))

restypel(unary-op)(d) = mk-type((DUMMY VAL))(d)

resvall(unary-op)(e)(d)
= (e = *UNDEF* — »UNDEF* ,

(case unary-op
NOT
—► (is-boolean-tdesc?(d)—► ->e,

is-bit-tdesc?(d)—► invert-bit(e),
UNDEF),

PLUS — e,
NEG — -e,
ABS — abs(e),
OTHERWISE -► *UNDEF*))

invert-bit(bitlit) = mk-bit-simp-symbol((—bitlit) + l)

mk-bit-simp-symbol(bitlit)
= (case bitlit

0 — (BS 0 1) ,
1 — (BS 1 1) ,
OTHERWISE -+ error(cat("Can't construct simp symbol for bit: ")(bitlit)))

(OT2.1) OT2 [binary-op] (k)(wi,ei)(w2,e2)(t)
= let di = tdesc(wi)

and d2 = tdesc(w2) in
(argtypes2(binary-op)((di ,d2))
—► k((restype2(binary-op)((di ,d2))(t),

resval2((di,d2))(binary-op)((ei,e2))))(t),
error

(cat("Argument type mismatch for binary operator: ")(binary-op)(di

(d2)))

101

(OT2.2) OT2 [relational-op] (k)(w1,ei)(w2,e2)(t)
= let di = tdesc(wi)

and d2 = tdesc(w2) in
(argtypes2(relational-op)((di ,d2))
— k((mk-type((DUMMY VAL))(bool-type-desc(t)),

resval2((di ,d2))(relational-op)((ei ,e2))))(t),
error

(cat("Argument type mismatch for relational operator: ")

(relational-op)(di)(d2)))

argtypes2(op)(di,d2)
= (case op

(AND ,NAND ,OR ,NOR ,XOR)
—► (case tag(dj)

BOOL —<• is-boolean-tdesc?(d2)V argtypes2-error(op)(d])(d2),
BIT — is-bit-tdesc?(d2)V argtypes2-error(op)(d,)(d2),
OTHERWISE — argtypes2-error(op)(di)(d2)),

(ADD ,SUB)
—> (case tag(di)

(*INT* ,*INT_TYPE*) — match-types(d,)(d2)V argtypes2-error(op)(di)(d2)
(*TIME* ,*REAL*) — di = d2 V argtypes2-error(op)(d,)(d2),
OTHERWISE — argtypes2-error(op)(d!)(d2)),

MUL
—► (case tag(di)

(*INT* ,*INT_TYPE* *REAL*)
—► match-types(di)(d2)V is-time-tdesc?(d2),
TIME
—► is-integer-tdesc?(d2)V is-real-tdesc?(d2),
OTHERWISE - argtypes2-error(op)(d1)(d2)),

DIV
—+ (case tag(di)

(*INT* ,*INT_TYPE* ,*REAL*)
— match-types(di)(d2)V argtypes2-error(op)(di)(d2),
TIME
—► is-integer-tdesc?(d2)V is-real-tdesc?(d2),
OTHERWISE - argtypes2-error(op)(d1)(d2)),

(MOD ,REM)
—► (case tag(di)

(*INT* ,*INT_TYPE*)
—► is-integer-tdesc?(d2)V argtypes2-error(op)(di)(d2),
OTHERWISE — argtypes2-error(op)(di)(d2)),

EXP
—► (case tag(di)

(*INT* ,*INT_TYPE* ,*REAL*)
—► is-integer-tdesc?(d2)V argtypes2-error(op)(di)(d2),
OTHERWISE — argtypes2-error(op)(d1)(d2)),

CONCAT
—► (is-bit-tdesc?(di)

—» is-bit-tdesc?(d2)V is-bitvector-tdesc?(d2),
(is-bit-tdesc?(d2)

—- is-bit-tdesc?(di)V is-bitvector-tdesc?(di),
(is-array-tdesc?(di)A is-array-tdesc?(d2)

—► match-array-type-names(idf(di),idf(d2))
A match-types(elty(di),elty(d2)),

argtypes2-error(op)(di)(d2)))),
(EQ ,NE) —► match-types(di,d2)V argtypes2-error(op)(di)(d2),
(LT ,LE ,GT ,GE)

102

—► (is-scalar-tdesc?(di)A is-scalar-tdesc?(d2)
— match-types(di)(d2)V argtypes2-error(op)(di)(d2),
is-bitvector-tdesc?(di)A is-bitvector-tdesc?(d2)—>• tt,
argtypes2-error(op)(di)(d2)),

OTHERWISE -«• error(cat("Unrecognized Stage 4 VHDL operator: ")(op)))

argtypes2-error(op)(di)(d2)
= error(cat("Operator ")(op)(" not implemented for pair of types: ")(di)(d2))

restype2(binary-op)(di ,d2)(t)
= (case binary-op

(AND ,NAND ,OR ,NOR ,XOR ,ADD ,SUB ,MOD ,REM ,EXP) — mk-type((DUMMY VAL))(d,),

MUL
—► (case tag(di)

(*INT* ,*INT_TYPE* ,*REAL*) — mk-type((DUMMY VAL))(d2),
♦TIME* - mk-type((DUMMY VAL))(d0,
OTHERWISE — error("Shouldn't happen!")),

DIV
— (case tag(di)

(*INT* ,*INT_TYPE* ,*REAL*). ->■ mk-type((DUMMY VAL))(d2),
TIME
—* (case tag(d2)

(*INT* ,*INT_TYPE* ,*REAL*) — mk-type((DUMMY VAL))(di),
♦TIME* — mk-type((DUMMY VAL))(univint-type-desc(t)),
OTHERWISE — error ("Shouldn't happen!")),

OTHERWISE — error("Shouldn't happen!")),
CONCAT — mk-type((DUMMY VAL))(mk-concat-tdesc(di)(d2)(t)),
OTHERWISE
— error(cat("Unrecognized Stage 4 VHDL binary operator: ")(binary-op)))

mk-concat-tdesc(di)(d2)(t)
= (is-bit-tdesc?(di)V is-bitvector-tdesc?(d!)

—► array-type-desc
(new-array-type-name(BIT_VECTOR))(e)(e)(tt)(direction(d1))(lb(di))(e)
(bit-type-desc(t)),

let idfi = idf(di) in
array-type-desc

(new-array-type-name((consp(idfi)— hd(idfi), idfi)))(e)(e)(tt)
(direction(di))(Ib(di))(e)(elty(d,)))

resval2(d1,d2)(op)(el,e2)
= (el = *UNDEF* V e2 = *UNDEF* — *UNDEF* ,

let tg = tag(di) in
(case tg

BOOL
—* (case op

AND -el A e2,
NAND — -(el A e2),
OR — el V e2,
NOR — -.(el V e2),
XOR — (el = e2 — ff, tt),
EQ — el = e2,
NE — el / e2,
LT -► -el A e2,
LE -> -el V e2,
GT — el A -e2,
GE — el V ->e2,

103

OTHERWISE
—>• error

(cat("Unrecognized Stage 4 VHDL 'boolean' binary operator: ")(op))),

BIT
—► (case op

AND
—► (el = 1 A e2 = 1 —* mk-bit-simp-symbol(l), mk-bit-simp-symbol(O)),

NAND
—* (el = 0 V e2 = 0 —► mk-bit-simp-symbol(l), mk-bit-simp-symbol(O)),

OR
—- (el = 1 V e2 = 1 —► mk-bit-simp-symbol(l), mk-bit-simp-symbol(O)),

NOR
—► (el = 0 A e2 = 0 —«• mk-bit-simp-symbol(l), mk-bit-simp-symbol(O)),

XOR —► (el = e2 —* mk-bit-simp-symbol(O), mk-bit-simp-symbol(l)),

EQ — el = e2,

NE -* el # e2,

LT -► el = 0 A e2 = 1,
LE -> el = 0 V e2 = 1,
GT — el = 1 A e2 = 0,
GE — el = 1 V e2 = 0,
OTHERWISE
—► error

(cat("Unrecognized Stage 4 VHDL 'bit' binary operator: ")(op))),

(*INT* ,*INT_TYPE* ,*TIME*)

—<• (case op
ADD — el+e2,
SUB — el-e2,
MUL — elxe2,
DIV -* (e2 = 0 -<■ error("Illegal division by zero!"),

el/e2),
MOD — mod(el,e2),
REM — rem(el,e2),
EXP — el"e2,
EQ — el = e2,
NE — el ^ e2,
LT — el < e2,
LE — el < e2,

GT — el > e2,
GE — el > e2,
OTHERWISE
—> error

(cat("Unrecognized Stage 4 VHDL 'integer' binary operator: ")(op))),

REAL —► error(cat("Floating point operator not yet implemented: ")(op)),

ENUMTYPE
—► (case op

EQ -► el = e2,
NE — el ^ e2,
LT — enum-lt(el)(e2)(literals(di)),

LE -» enum-le(el)(e2)(literals(di)),

GT — enum-lt(e2)(el)(literals(di)),
GE — enum-le(e2)(el)(literals(di)),

OTHERWISE
—> error

(cat("Unrecognized Stage 4 VHDL 'enumeration type' binary operator: ")

(op))),
ARRAYTYPE - *UNDEF* ,
OTHERWISE

104

—► error(cat("Unrecognized Stage 4 VHDL binary operator type: ")(tg))))

enum-lt(el)(e2)(enum-lits)
= let elpos = positional)(enum-lits)

and e2pos = position(e2)(enum-lits) in
elpos < e2pos

enum-le(el)(e2)(enum-lits)
= let elpos = positional)(enum-lits)

and e2pos = position(e2)(enum-lits) in
elpos < e2pos

6.5.19 Primitive Semantic Equations

(Nl) N [constant J = constant

(Bl) B Ibitlit 1 = bitlit

105

7 Interphase Abstract Syntax Tree Transformation

Owing to the relative simplicity of the Stage 1 VHDL language subset, Phases 1 and 2 of
the Stage 1 VHDL translator were able to use the same abstract syntax.

Stage 2 VHDL was a considerably more sophisticated language subset. Consequently, it
became convenient to allow Phase 2 of the VHDL translator for Stage 2 VHDL and sub-
sequent stages, in particular Stage 4 VHDL, to employ a different abstract syntax for the

language than does Phase 1, for reasons discussed below.

Accordingly, as the final act of Phase 1 translation of a given Stage 4 VHDL hardware
description, an "interphase" abstract syntax tree transformation is performed that yields a
new abstract syntax tree (AST) for use by Phase 2. This transformation does not modify
the original AST. Although the resulting transformed AST may resemble the original in
many respects, there will also be substantial differences.

We should recall that in Phase 1, when abstract syntax trees are occasionally injected
into the TSE, it is their transformed versions that are used; this occurs with array type
descriptors created by functions process-slcdec and DT8, subprogram descriptors created
by function process-subprog-body, and *SENS* (sensitivity list) descriptors updated

with new refs by function SLT2.

7.1 Interphase Semantic Functions

The abstract syntax tree transformation is carried out by principal semantic functions DFX
(design files), DUX (design units), CIX (context items), LUX (library-units), CFX (con-
figuration declarations), BCX (block configurations), CMX (component configurations),
BIX (binding indications), ENX (entity declarations), ARX (architecture bodies), GDX
(generic declarations), PDX (port declarations), GMX (generic maps), PMX (port maps),
DX (declarations), CSX (concurrent statements), SLX (sensitivity lists), SSX (sequen-
tial statements), AX (case alternatives), DRX (discrete ranges), WX (waveforms), TRX
(transactions), MEX (reference lists), and EX and RX (expressions). These are assisted
by several important auxiliary semantic functions, most notably the function transform-

name.

Following Phase 1 construction of the tree-structured environment (TSE), semantic func-
tion DFX is applied to the original AST to initiate the transformation, which uses (but
does not modify) the TSE. Once the AST transformation is complete, Phase 1 auxiliary
semantic function phase2 is invoked with the transformed AST and the TSE as syntactic
and semantic arguments, respectively, to initiate Phase 2 translation (see Section 8).

Generally speaking, the AST-transforming semantic functions straightforwardly reconstruct
their syntactic arguments from their transformed immediate syntactic constituents, with the

following exceptions:

• "desugaring" of component instantiation statements into pairs of nested BLOCK state-

ments

106

• "desugaring" of concurrent signal assignment statements:
converting them into equivalent PROCESS statements

• "desugaring" of sensitivity lists in PROCESS statements:
converting them into explicit final WAIT statements

• transformation of PORT declarations into SIGNAL declarations

• "desugaring" of secondary units of physical type TIME:
converting them into the base unit FS (femtoseconds)

• disambiguation of refs as either array references or subprogram calls

• overload resolution between BOOLEAN and BIT operators

• overload resolution between INTEGER and REAL operators

Listed below are the names of Common Lisp functions, not denotationally defined, that
assist in the first of these tasks.

record-equivalent-nested-block-stat

construct-equivalent-nested-block-stat

update-tse-wrt-component-instantiations

update-tse-wrt-configuration

accomplish-generic-and-port-maps

7.2 Transformed Abstract Syntax of Names

An important case in point is the translation of names, e.g. refs, which are heavily over-
loaded: the Phase 1 semantic function name-type, which checks them and determines
their type, is necessarily complex. Given the identical abstract syntax, a Phase 2 semantic
function for refs would exhibit analogous complexity; instead, it was deemed preferable to
transform the abstract syntax of refs into a form more suitable for Phase 2.

Thus, the abstract syntax of refs used in Phase 1 is:

ref ::= REF name
name ::= id I name id I name expr*

while the abstract syntax of refs used in Phase 2 is:

ref ::= REF basic-ref

basic-ref ::= modifier"1"

modifier ::= SREF id+ id
I INDEX expr

I SELECTOR id

I PARLIST expr*

107

Although not reflected in the syntax shown above, a basic-ref (basic reference) must begin
with a simple reference SREF id+ id, which has for convenience been classified with the
modifiers. The id is the root identifier, and id+ is the TSE access path for this ref. The
structures following this root basic reference are called modifiers. An INDEX modifier
denotes an array reference, a SELECTOR modifier denotes a record field access (not used
in Stage 4 VHDL), and a PARLIST modifier denotes a subprogram call. This linear
arrangement of a simple reference followed by zero or more modifiers makes the translation
of refs in Phase 2 relatively straightforward, as the components of a ref are grouped from

the left and thus a ref can be translated from left to right.

108

7.3 Interphase Semantic Equations

Most of the semantic equations for the interphase abstract syntax tree transformation, beinj
straightforward, will be displayed without comment.

7.3.1 Stage 4 VHDL Design Files

(DFXl) DFX [DESIGN-FILE id design-unit+] (using-configuration)(t)
= let p = %(e)(id) in

(DESIGN-FILE ,id,DUX [design-unit+ J (using-configuration)(p)(t))

7.3.2 Design Units

(DUXO) DUX [£ J (using-configuration)(p)(t) = e

(DUX1) DUX IT design-unit design-unit* | (using-configuration)(p)(t)
= cons(DUX [design-unit J (using-configuration)(p)(t),

DUX [design-unit* J (using-configuration)(p)(t))

(DUX2) DUX [DESIGN-UNIT context-item* library-unit J (using-configuration)(p)(t)
= (DESIGN-UNIT ,CIX [context-item*] (p)(t),

LUX [library-unit | (using-configuration)(p)(t))

7.3.3 Contex Items

(CIXO) CIX[el(p)(t) = e

(CIX1) CIX [context-item context-item* | (p)(t)
= consfCIX [context-item] (p)(t),CIX [context-item* | (p)(t))

(CIX2) CIX [USE dotted-name+] (p)(t)
= let decl = context-item in

DXIdecl](p)(t)

7.3.4 Library Units

(LUXl) LUX [CONFIGURATION id! id2 use-clause* block-config opt-id] (using-configuration)(p)(t)
= let configuration-decl = library-unit in

CFX [configuration-decl 1 (p)(t)

(LUX2) LUX [PACKAGE id decl* opt-id] (using-configuration)(p)(t)
= let decl = library-unit in

DX [decl J (p)(t)

(LUX3) LUX [ENTITY id generic-decl* port-decl* decl* opt-id] (using-configuration)(p)(t)
= let entity-decl = library-unit in

ENX [entity-decl 1 (p)(t)

(LUX4) LUX If PACKAGEBODY id decl* opt-id] (using-configuration)(p)(t)
= let decl = library-unit in

DX [decl] (p)(t)

(LUX5) LUX [ARCHITECTURE id! id2 decl* conc-stat* opt-id J (using-configuration)(p)(t)
= let architecture-body = library-unit in

ARX [architecture-body J (using-configuration)(p)(t)

109

7.3.5 Configuration Declarations

(CFX1) CFX If CONFIGURATION id, id2 use-clause' block-config opt-id] (p)(t)
= (CONFIGURATION ,idi,id2,DX [use-clause* 1 (%(p)(id,))(t),

BCX [block-config] (%(p)(id2))(t),opt-id)

(BCX1) BCX [BLOCK-CONFIG id use-clause* component-config* 1 (p)(t)
= (BLOCK-CONFIG ,id,DX [use-clause* J (p)(t),

let p, = %(p)(id) in
CMX [component-config* | (pi)(t))

(CMXO) CMX I e J (p)(t) = e

(CMX1) CMX [f component-config component-config* | (p)(t)
= cons(CMX | component-config | (p)(t),CMX | component-config* J (p)(t))

(CMX2) CMX [COMP-CONFIG component-spec opt-binding-indication opt-block-config | (p)(t)
= (null(opt-binding-indication)—♦ (COMP-CONFIG ,component-spec,e,e),

let binding-indication = opt-binding-indication
and component-name = second(component-spec) in

let d = lookup-desc-for-ref((REF ,component-name))(p)(t) in
let entity-aspect = second(binding-indication) in

let p, = (hd(entity-aspect)= BOUND-ENTITY
—+ let entity-name = last(second(entity-aspect)) in

let entity-desc = lookup(t)(p)(entity-name) in
%(path(entity-desc))(entity-name),

let configuration-desc = lookup

(t)(p)
(last(second(entity-aspect))) in

let entity-name = configured-entity(configuration-desc) in
let entity-desc = lookup(t)(p)(entity-name) in

% (path (entity-desc)) (entity-name))
and p2 = %(p)(idf(d)) in

(COMP-CONFIG ,component-spec,BIX [binding-indication] (pi)(p2)(t),
(null(opt-block-config)—♦ e,
let block-config = opt-block-config in

BCX [block-config] (pi)(t))))

(BIXl) BIX [[BIND entity-aspect opt-generic-map-aspect opt-port-map-aspect J (pi)(p2)(t)
= (BIND .entity-aspect,

(null(opt-generic-map-aspect)—+ e,
let generic-map-aspect = opt-generic-map-aspect in

GMX J generic-map-aspect | (pi)(p2)(t)),
(null(opt-port-map-aspect)—► e,
let port-maj>-aspect = opt-port-map-aspect in

PMX [port-map-aspect] (p,)(p2)(t)))

7.3.6 Entity Declarations

(ENX1) ENX I ENTITY id generic-decl* port-decl* decl* opt-id] (p)(t)
= insert-phasel-hook

((ENTITY ,id,GDX [generic-decl*] (%(p)(id))(t),
PDX [port-decl*] (%(p)(id))(t),DX [decl* J (%(p)(id))(t),opt-id))

(entity-decl)

110

7.3.7 Architecture Bodies

(ARX1) ARX [ARCHITECTURE idi id2 decl* conc-stat* opt-id] (using-configuration)(p)(t)
= let Pl =%(%(p)(id2))(id,) in

(ARCHITECTURE ,idi,id2,DX [decl* 1 (pi)(t),
CSX [conc-stat* | (using-configuration)(pi)(t)(tt),opt-id)

7.3.8 Generic Declarations

(GDXO)GDXJ£J(p)(t) = £

(GDX1) GDX I generic-decl generic-decl* J (p)(t)
= consfGDX [generic-decl] (p)(t),GDX [generic-decl* 1 (p)(t))

(GDX2) GDX I DEC GENERIC id+ type-mark opt-expr] (p)(t)
= (DEC ,CONST ,id+,type-mark,

let expr = opt-expr in
second(EX I expr] (p)(t)))

(GDX3) GDX [SLCDEC GENERIC id+ slice-name opt-expr] (p)(t)
= (SLCDEC ,CONST ,id+,

let (type-mark,discrete-range) = slice-name in
(type-mark,DRX [discrete-range]] (p)(t)),

let expr = opt-expr in
second (EX I expr] (p)(t)))

7.3.9 Port Declarations

(PDXO)PDXJ£](p)(t) = e

(PDX1) PDX I port-decl port-decl* 1 (p)(t)
= cons(PDX [port-decl] (p)(t),PDX [port-decl* J (p)(t))

(PDX2) PDX [DEC PORT id+ mode type-mark opt-expr 1 (p)(t)
= (DEC ,SIG ,id+,type-mark,

let expr = opt-expr in
second (EX I expr 1 (p)(t)))

(PDX3) PDX [SLCDEC PORT id+ mode slice-name opt-expr] (p)(t)
= (SLCDEC ,SIG ,id+,

let (type-mark,discrete-range) = slice-name in
(type-mark,DRX [discrete-range | (p)(t)),

let expr = opt-expr in
second(EX I expr] (p)(t)))

111

7.3.10 Generic Maps and Port Maps

(GMX1) GMX I GENERICMAP assoc-elt+ 1 (p,)(p2)(t)
= (GENERICMAP ,transform-assoc-elts(assoc-elt+)(p1)(p2)(t))

fPMXl) PMX IT PORTMAP assoc-elt+ J (Pi)(p2)(t)
= (PORTMAP ,transform-assoc-elts(assoc-elt+)(pI)(p2)(t))

transform-assoc-elts(assoc-elt*)(pi)(p2)(t)
= (null(assoc-elt*)—► e,

let assoc-elt = hd(assoc-elt*) in
let expri = hd(assoc-elt)

and expr2 = second(assoc-elt) in
cons(cons(second(EX [expn J (p,)(t)),second(EX [[expr2 J (p2)(t))),
transform-assoc-elts(tl(assoc-elt*))(pi)(p2)(t)))

7.3.11 Declarations

(DXO)DX[eJ(p)(t) = e

(DX1) DX [decl decl* 1 (p)(t) = cons(DX [decl] (P)(t),DX [decl*] (p)(t))

(DX2) DX [package-decl package-decl*] (p)(t)
= cons(DX I package-decl 1 (p)(t),DX [package-decl*] (p)(t))

(DX3) DX | package-body package-body*] (p)(t)
= cons(DX I package-body] (p)(t),DX I package-body*] (p)(t))

(DX4) DX I use-clause use-clause*] (p)(t)
= consfDX I use-clause] (p)(t),DX [use-clause*] (p)(t))

(DX5) DX I DEC object-class id+ type-mark opt-expr] (p)(t)
= (DEC ,object-class,id+,type-mark,

let expr = opt-expr in
second(EX I expr 1 (p)(t)))

(DX6) DX [SLCDEC object-class id+ slice-name opt-expr] (p)(t)
= (SLCDEC ,object-class,id+,

let (type-mark,discrete-range) = slice-name in
(type-mark,DRX [discrete-range J (p)(t)),

let expr = opt-expr in
second (EX [expr] (p)(t)))

(DX7) DX [ETDEC id id+ J (p)(t) = (ETDEC ,id,id+)

(DX8) DX [ATDEC id discrete-range type-mark] (p)(t)
= (ATDEC .id.DRX J discrete-range 1 (p)(t),type-mark)

(DX9) DX I PACKAGE id decl* opt-id J (p)(t)
= (PACKAGE ,id,DX Jdecl* } (%(p)(id))(t),opt-id)

112

(DX10) DX [PACKAGEBODY id decl* opt-id] (p)(t)
= let d = t(p)(id) in

let q = %(path(d))(id) in
(PACKAGEBODY ,id,DX [decl*] (q)(t),opt-id)

(DX11) DX [PROCEDURE id proc-par-spec* J (p)(t)
= let d = t(p)(id) in

(null(body(d))-^ error(cat("Missing subprogram body: ")(namef
(d))),

(PROCEDURE ,id,proc-par-spec*))

(DX12) DX [FUNCTION id func-par-spec* type-mark J (p)(t)
= let d - t(p)(id) in

(null(body(d))—► error(cat("Hissing subprogram body: ")(namef
(d))),

(FUNCTION ,id,func-par-spec*,type-mark))

(DX13) DX [SUBPROGBODY subprog-spec decl* seq-stat* opt-id] (p)(t)
= let (tg,id,par-spec*,type-mark) = subprog-spec in

let Pl = %(p)(id) in
(SUBPROGBODY ,
let decl = subprog-spec in

DX [decl 1 (p)(t),DX I decl*] (Pl)(t),SSX [seq-stat* 1 (p,)(t),opt-id)

(DX14) DX I USE dotted-name+ J (p)(t) = (USE ,dotted-name+)

(DX15) DX [STDEC id type-mark opt-discrete-range] (p)(t)
= (STDEC ,id,type-mark,

(nuil(opt-discrete-range)—► e,
let (direction,expri ,expr2) = opt-discrete-range in

(direction,second(EX [expn] (p)(t)),second(EX [expr2 1 (p)(t)))))

(DX16) DX [ITDEC id discrete-range 1 (p)(t)
= (ITDEC ,id,

let (direction,expri ,expr2) = discrete-range in
(direction,second(EX [expri 1 (p)(t)),second(EX [[expr2 1 (p)(t))))

(DX17) DX [COMPONENT id generic-decl* port-decl*] (p)(t)
= insert-phasel-hook

((COMPONENT .id.GDX [generic-decl*] (p)(t),PDX I port-decl*] (p)(t)))
(decl)

7.3.12 Concurrent Statements

(CSXO) CSX I £ 1 (using-configuration)(p)(t)(phasel-hook?) = e

(CSX1) CSX |conc-stat conc-stat*] (using-configuration)(p)(t)(phasel-hook?)
= cons(CSX [conc-stat | (using-configuration)(p)(t)(phasel-hook?),

CSX [conc-stat* J (using-configuration)(p)(t)(phasel-hook?))

113

(CSX2) CSX [[BLOCK id block-header decl* conc-stat* opt-id] (using-configuration)(p)(t)(phasel-hook?;
= let Pl = %(p)(id)

and generic-part = hd(block-header)
and port-part = second(block-header) in

let generic-decl* = (null(generic-part)^ e, hd(generic-part))
and generic-map-aspect = (null(generic-part)—<■ e,

second(generic-part))
and port-decl* = (null(port-part)—<■ e, hd(port-part))
and port-map-aspect = (null(port-part)—> e, second(port-part)) in

let transformed-generic-map = (null(generic-map-aspect)—► e,
GMX [generic-map-aspect] (pi)(pi)(t))

and transformed-port-map = (null(port-map-aspect)—► e,
PMX [port-map-aspect] (p,)(p,)(t)) in

(phasel-hook? = tt
—> insert-phasel-hook

(accomplish-generic-and-port-maps
(transformed-generic-map)(transformed-port-map)
((BLOCK ,id,DX [decl*] (pi)(t),

CSX I conc-stat* I (using-configuration)(pi)(t)(phasel-hook?),opt-id)))
(conc-stat),

accomplish-generic-and-port-maps
(transformed-generic-map)(transformed-port-map)
((BLOCK ,id,DX I decl*] (pi)(t),

CSX I conc-stat*] (using-configuration)(pi)(t)(phasel-hook?),opt-id)))

(CSX3) CSX I PROCESS id ref* decl* seq-stat* opt-id] (using-configuration)(p)(t)(phasel-hook?)
= let Pl = %(p)(id) in

(phasel-hook? = tt
—> insert-phasel-hook

((PROCESS ,id,DX [decl* J (pi)(t),
let seq-stat* = (null(seq-stat')

— ((WAIT ,(AT ,mk-atmark()),ref*,£,e)),
(null(ref*)—♦ seq-stat*,
append

(seq-stat*,
((WAIT ,(AT ,mk-atmark()),rer,£,e))))) in

SSX I seq-stat*] (pi)(t),opt-id))(conc-stat),
(PROCESS ,id,DX [decl*] (pi)(t),
let seq-stat* = (null(seq-stat*)

— ((WAIT ,(AT ,mk-atmark()),ref ,e,£)),
(null(ref*)—► seq-stat*,
append

(seq-stat*,
((WAIT ,(AT ,mk-atmark()),ref*,£,£))))) in

SSX |[seq-stat*] (pi)(t),opt-id))

(CSX4) CSX I SEL-SIGASSN atmark delay-type id expr ref selected-waveform"1"]
(using-configuration)(p)(t)(phasel-hook?)
= let expr* = cons(expr,

collect-expressions-from-selected- waveforms
(selected-waveform+)) in

let ref* = delete-duplicates
(collect-signals-from-expr-list(expr*)(t)(p)(£)) in

let case-alt+ = construct-case-alternatives
(ref)(delay-type)(selected-waveform"1") in

let case-stat = (CASE ,atmark,expr,case-alt+) in
let process-stat = (PROCESS ,id,ref*,£,(case-stat),id) in

114

insert-phase 1-hook
(CSX [process-stat J (using-configuration)(p)(t)(ff))(conc-stat)

(CSX5) CSX I COND-SIGASSN atmark delay-type id ref cond-waveform* waveform]
(using-configuration)(p)(t)(phasel-hook?)
= let expr* = nconc

(collect-expressions-from-conditional-waveforms
(cond-waveform*),

collect-transaction-expressions(second(waveform))) in
let ref* = delete-duplicates

(collect-signals-from-expr-list(expr*)(t)(p)(e)) in
(null(cond-waveform*)

—• let sig-assn-stat = (SIGASSN ,atmark,delay-type,ref,waveform) in
let process-stat = (PROCESS ,id,ref*,£,(sig-assn-stat),id) in

insert-phasel-hook
(CSX | process-stat] (using-configuration)(p)(t)(ff))
(conc-stat),

let cond-part+ = construct-cond-parts
(ref)(delay-type)(cond-waveform*)

and else-part = ((SIGASSN ,(AT ,mk-atmark()),delay-type,ref.waveform)) in
let if-stat = (IF ,atmark,cond-part+,else-part) in

let process-stat = (PROCESS ,id,ref*,e,(if-stat),id) in
insert-phasel-hook

(CSX [process-stat] (using^configuration)(p)(t)(ff))(conc-stat))

(CSX6) CSX I COMPINST id ref opt-generic-map-aspect opt-port-map-aspect]
(using-configuration)(p)(t)(phasel-hook?)
= let block-stat = construct-equivalent-nested-block-stat

(conc-stat)(using-configu ration) (last (rest (p)))
(last(p)) in

(hd(block-stat)= UNCONFIGURED-COMPONENT
—► insert-phasel-hook (block-stat) (conc-stat),
insert-phasel-hook

(CSX [block-stat | (using-configuration)(p)(t)(ff))(conc-stat))

7.3.13 Sensitivity Lists

(SLXO)SLX[e](p)(t)=e

(SLX1) SLX IT ref ref*] (p)(t) = cons(SLX [ref] (p)(t),SLX [ref*] (p)(t))

(SLX2) SLX I REF name] (p)(t)
= let expr = ref in

second(EX [expr] (p)(t))

7.3.14 Sequential Statements

(SSXl) SSX I seq-stat seq-stat* | (p)(t)
= cons(SSX I seq-stat] (p)(t),SSX [seq-stat*] (p)(t))

(SSX2) SSX [NULL atmark] (p)(t) = (NULL ,atmark)

115

(SSX3) SSX [VARASSN atmark ref expr 1 (p)(t)
= (VARASSN ,atmark,

let expro = ref in
secondfEX I expro 1 (p)(t)),second(EX [expr 1 (p)(t)))

(SSX4) SSX [SIGASSN atmark delay-type ref waveform] (p)(t)
= (SIGASSN ,atmark,delay-type,

let expr = ref in
second(EX [expr] (p)(t)),WX [[waveform] (p)(t))

(SSX5) SSX I IF atmark cond-part+ else-part 1 (p)(t)
= let seq-stat* = else-part in

(IF ,atmark,transform-if(cond-part+)(p)(t),SSX f seq-stat*] (p)(t))

transform-if(cond-part*)(p)(t)
= (null(cond-part*)—> e,

let (expr,seq-stat*) = hd(cond-part') in
cons((second(EX f expr] (p)(t)),SSX [seq-stat*] (p)(t)),
transform-if(tl(cond-part*))(p)(t)))

(SSX6) SSX [CASE atmark expr case-alt+] (p)(t)
= (CASE ,atmark,second(EX [expr J (p)(t)),AX [case-alt+] (p)(t))

(SSX7) SSX [LOOP atmark id seq-stat* opt-id] (p)(t)
= (LOOP .atmark.id.SSX j seq-stat*] (%(p)(id))(t),opt-id)

(SSX8) SSX I WHILE atmark id expr seq-stat* opt-id J (p)(t)
= (WHILE ,atmark,id,second(EX [expr 1 (%(p)(id))(t)),

SSX IT seq-stat*] (%(p)(id))(t),opt-id)

(SSX9) SSX I FOR atmark id ref discrete-range seq-stat* opt-id] (p)(t)
= (FOR ,atmark,id,second(EX J ref 1 (%(p)(id))(t)),

DRX I discrete-range 1 (%(p)(id))(t),SSX [seq-stat*] (%(p)(id))(t),opt-id)

(SSX10) SSX I EXIT atmark opt-dotted-name opt-expr 1 (p)(t)
= (EXIT ,atmark,opt-dotted-name,

let expr = opt-expr in
secondfEX I expr J (p)(t)))

(SSX11) SSX H CALL atmark ref] (p)(t)
= (CALL ,atmark,

let expr = ref in
second(EX [expr] (p)(t)))

(SSX12) SSX I RETURN atmark opt-expr] (p)(t)
= (RETURN .atmark,

let expr = opt-expr in
second(EX [expr] (p)(t)))

(SSX13) SSX [WAIT atmark ref* opt-expn opt-expr2] (p)(t)
= let expri = opt-expri

and expr2 = opt-expr2 in
(WAIT ,atmark,MEX [ref*] (p)(t),second(EX [expn] (p)(t)),
second(EX [expr2] (p)(t)))

116

7.3.15 Case Alternatives

(AXO) AX[e](p)(t) = e

(AX1) AX I case-alt case-alt*] (p)(t)
= cons(AX [case-alt] (p)(t),AX [case-alt* JJ (p)(t))

(AX2) AX I CASECHOICE discrete-range+ seq-stat* 1 (p)(t)
= (CASECHOICE ,DRX [discrete-range+ 1 (p)(t),SSX [seq-stat* TJ (p)(t))

(AX3) AX [CASEOTHERS seq-stat* I (p)(t) = (CASEOTHERS ,SSX [seq-stat*] (p)(t))

7.3.16 Discrete Ranges

(DRXO) DRX [e] (p)(t) = e

(DRX1) DRX [discrete-range discrete-range*] (p)(t)
= consfDRX [discrete-range | (p)(t),DRX [[discrete-range* TJ (p)(t))

(DRX2) DRX [discrete-range 1 (p)(t)
= let (direction,expri ,expr2) = discrete-range in

(direction,second(EX [expn] (p)(t)),second(EX [expr2] (p)(t)))

7.3.17 Waveforms and Transactions

(WX1) WX [WAVE transaction+ TJ (p)(t) = (WAVE TRX [transaction+] (p)(t))

(TRXl) TRX f transaction transaction* J (p)(t)
= (nuU(transaction')—► (TRX IT transaction | (p)(t)),

let transaction]1" = transaction* in
cons(TRX [transaction J (p)(t),TRX [transaction+] (p)(t)))

(TRX2) TRX [TRANS expr opt-expr] (p)(t)
= (TRANS ,second(EX fT expr] (p)(t)),

let expri = opt-expr in
second(EX [expn 1 (p)(t)))

7.3.18 Expressions

(MEXO) MEX [£ | (p)(t) = e

(MEX1) MEX [ref ref*] (p)(t) = cons(second(EX [ref] (p)ft)|,MEX [[ref*] (p)(t))

(EXO) EX [£ J (p)(t) = (void-type-desc(t),£)

(EX1) EX [FALSE 1 (p)(t) = (bool-type-desc(t),(FALSE))

(EX2) EX [TRUE J (p)(t) = (bool-type-desc(t),(TRUE))

(EX3) EX [BIT bitlit] (p)(t) = (bit-type-desc(t),(BIT .bitlit))

(EX4) EX [NUM constant] (p)(t) = (int-type-desc(t),(NUM .constant))

117

(EX5) EX I TIME constant time-unit] (p)(t)
= let normalized-constant = (case time-unit

FS — N I constant | ,
PS — lOOOxN I constant J ,

NS — lOOOOOOxN [constant J ,
US — lOOOOOOOOOxN f constant] ,

MS — lOOOOOOOOOOOOxN [[constant] ,

SEC —• lOOOOOOOOOOOOOOOxN [constant J ,
MIN — 60x(1000000000000000xN [[constant]),
HR — 3600x(lOOOOOOOOOOOOOOOxN [[constant |),

OTHERWISE
—* error

(cat("Illegal unit name for physical type TIME:

(time-unit))) in
(time-type-desc(t),(TIME ,normalized-constant,FS))

(EX6) EX I CHAR constant J (p)(t)
= let d = lookup(t)((STANDARD))(expr) in

(type(d),(CHAR .constant))

(EX7) EX [BITSTR bit-lit* 1 (p)(t) = (e,(BITSTR ,bit-lit*))

(EX8) EX I STR char-lit*] (p)(t) = (e,(STR ,char-lit*))

(EX9) EX [REF name J (p)(t) = transform-name(name)(£)(e)(p)(t)

transform-name(name)(w)(ast*)(p)(t)

= (nuU(w)
— let wi = lookup2(t)(p)(e)(hd(name)) in

(w, = »UNBOUND*
—► error

(cat("Unbound identifier in auxiliary semantic function TRABSFORH-NAME: ")

($(p)(hd(name)))),
(second(tmode(wi))= TYP —► transform-name(tl(name))(w1)(e)(p)(t),

transform-name
(tl(name))(wi)(((SREF ,path(tdesc(w1)),idf(tdesc(w,)))))(p)(t))),

let d = tdesc(w)
and tm = tmode(w) in

let tg = tag(d) in
(null(name)
— (second(tm)= TYP — transform-name-aux(*CONVERSION*)(d)(ast*),

transform-name-aux(tg)(d)(ast*)),

let x = hd(name) in

(consp(x)
—<• let ast* = transform-list(x)(p)(t) in

(second(tm)= TYP
—► transform-name

(tl(name))(w)((TYPECONV ,hd(astt),%(path(d))(idf(d))))(p)(t),

second(tm)= OBJ A is-array-tdesc?(d)

—♦ transform-name
(tl(name))(mk-type(tm)(elty(d)))
(nconc(ast0*,((INDEX ,hd(ast*)))))(p)(t),

(second(tm)= OBJ A is-array?(type(d)))

V (second(tm)e (REF VAL) A is-array-tdesc?(d))
—<• transform-name

(tl(name))
((second(tm)= OBJ

118

—* mk-type(tmode(type(d)))(elty(tdesc(type(d)))),
mk-type(tm)(elty(d))))

(nconc(ast;,((INDEX,hd(astJ)))))(p)(t),
transform-name

(tl(name))(extract-rtype(d))
(nconc(astJ,((PARLIST ,astn)))(p)(t)),

((second(tm)= OBJ A is-record?(type(d)))
V (second(tm)e (REF VAL) A is-record-tdesc?(d))

—* let d] = (second(tm)= OBJ —► tdesc(type(d)), d) in
let d2 = lookup-record-field(components(di))(x) in

transform-name
(tl(name))(mk-type(tm)(d2))(nconc(astJ,((SELECTOR ,x))))
(P)(t),

second(tm)= OBJ A is-record-tdesc?(d)
—► let d2 = lookup-record-field(components(d))(x) in

transform-name
(tl(name))(mk-type(tm)(d2))(nconc(astJ,((SELECTOR ,x))))

(P)(0,
let w, = lookup-local(x)(%(path(d))(idf(d)))(p)(t) in

(w, = ""UNBOUND*
—♦ error

(cat("Unknown identifier in function TRANSFORM-NAME: ")
($(%(path(d))(idf(d)))(x))),

transform-name
(tl(name))(w,)(((SREF ,path(tdesc(wi)),idf(tdesc(w,)))))(p)
(t))))))

transform-name-aux(tg)(d)(ast)
= (case tg

♦OBJECT* -» (second(type(d)),(REF ,ast)),
♦ENUMELT* — (second(type(d)),(ENUMLIT ,idf(d))),
(♦PROCEDURE* ,*FUNCTION*)
—► (second(rtype(hd(signatures(d)))),

(REF ,nconc(ast,((PARLIST ,e))))),
♦CONVERSION* — (d.ast),
♦PACKAGE* — (d,(REF ,ast)),
OTHERWISE — (d,(REF ,ast)))

transform-list(x)(p)(t)
= (null(x)—* e,

let expr = hd(x) in
cons(second(EX J expr] (p)(t)),transform-list(tl(x))(p)(t)))

The functions transform-name, transform-name-aux, and transform-list produce the
linear form of the basic references discussed above.

(EX10) EX | PAGGR expr*] (p)(t)
= (length(expr*)= 1

—♦let expr = . hd(expr*) in
EX[expr](p)(t),

(£,(PAGGR,ex-paggr(expr*)(p)(t))))

(EX11) EX [unary-op expr] (p)(t)
= let (d,e) = EX fexpr] (p)(t) in

119

(case unary-op
PLUS — (d,e),
NOT — (d,(scalar-op(unary-op)(d),e)),
NEG —♦ (d,(scalar-op(unary-op)(d),e)),
ABS —► (d,(scalar-op(unary-op)(d),e)),
OTHERWISE
—► error

(cat("Unrecognized Stage 4 VHDL unary operator: ")(unary-op)))
(EX12) EX I binary-op expr, expr2] (p)(t)

= let (di,ei) = EX|[expr,](p)(t) in
let (d2,e2) = EX|[expr2l(p)(t) in

(di ,(scalar-op(binary-op)(di),ei,e2))
(EX13) EX I relational-op expri expr2] (p)(t)

= let (dJ,e1) = EX|[expr1](p)(t) in
let (d2,e2) = EX [expr2] (p)(t) in

(bool-type-desc(t),(scalar-op(relational-op)(di),e] ,e2))
scalar-op(op)(d)
= (is-bit-tdesc?(d)V is-bitvector-tdesc?(d)—► bits-op(op),

is-real-tdesc?(d)—► real-op(op),
op)

bits-op(op)
— (case op

EQ — EQ ,
NE — NE ,
LT — LT ,
LE - LE ,
GT — GT ,
GE — GE ,
NOT — BNOT,
AND — BAND,
NAND — BNAND,
OR — BOR,
NOR — BNOR,
XOR — BXOR,
OTHERWISE — error(cat(Undefined bitwise operator:)(op)))

real-op(op)
= (case op

EQ - EQ ,
NE — NE ,
LT - RLT ,
LE - RLE ,
GT — RGT,
GE — RGE,
NEG — RNEG ,
ABS — RABS,
ADD - RPLUS ,
SUB — RMINUS ,
MUL — RTIMES ,
DIV — RDIV ,
EXP — REXPT,
OTHERWISE — error(cat(Undefined 'real' operator:)(op)))

The functions scalar-op, bits-op, and real-op do overload resolution between INTEGER,
BIT, and REAL operators.

(RX1) RX [expr] (p)(t) = EX [expr] (p)(t)

120

8 Phase 2: State Delta Generation

If Phase 1 of the Stage 4 VHDL translator completes without error, then after the interphase
abstract syntax tree transformation has been accomplished (see Section 7), Phase 2, state
delta generation, can proceed. Several kinds of checks have already been performed on the
hardware description in Phase 1, the most significant being the detection of missing prior
declarations of items such as variables and labels, the improper use of names, and static
type checking. Thus, these checks do not have to be duplicated in Phase 2.

Phase 2 receives from Phase 1 the transformed abstract syntax tree (AST) for the hardware
description, together with the tree-structured environment (TSE) — a complete record of
the name/attribute associations corresponding to the hardware description's declarations

and whose structure reflects that of the description. The TSE remains fixed throughout
Phase 2. It contains all definitions needed to execute its corresponding Stage 4 VHDL

hardware description, and Phase 1 has ensured that only that portion of the TSE visible at
any given textual point of the description can be accessed during Phase 2. With the aid of
the TSE, Phase 2 incrementally generates SDVS Simplifier assertions and state deltas.

8.1 Phase 2 Semantic Domains and Functions

The formal description of Phase 2 translation consists of semantic domains and semantic
functions, the latter being functions from syntactic to semantic domains. Compound se-
mantic domains are defined in terms of primitive semantic domains. Similarly, primitive
semantic functions are unspecified (their definitions being understood implicitly) and the
remaining semantic functions are defined (by syntactic cases) via semantic equations.

The principal Phase 2 semantic functions (and corresponding Stage 4 VHDL language con-
structs to which they assign meanings) are: DF (design files), DU (design units), CI (con-
text items), LU (library-units), CF (configuration declarations), EN (entity declarations),
AR (architecture bodies), D (declarations), CS (concurrent statements), SS (sequential
statements), W (waveforms), TRM and TR (transactions), ME and MR (expression
lists), E and R (expressions), T (expression types), B (bit literals), and N (numeric liter-

als).

Each of the principal semantic functions requires an appropriate syntactic argument — an
abstract syntactic object (tree) produced by the interphase abstract syntax tree transforma-
tion (see Section 7). Most of the semantic functions take (at least) the following additional

arguments:

• the tree-structured environment (TSE) generated in Phase 1;

• a path, indicating the currently "visible" portion of the TSE;

• a continuation, specifying which Phase 2 semantic function to invoke next;

• a universe structure; and

• an execution stack.

121

In the absence of errors, the Phase 2 semantic functions return a list of Simplifier assertions
and state deltas. Moreover, E and R also return a translated expression and list of guard
formulas. Guard formulas are inserted in the precondition of generated state deltas to
ensure that certain conditions are met in the proof in which the state deltas appear. For
example, if an array name is indexed by an expression, then Phase 2 generates a guard
formula asserting that the index value is not out of range.

The execution state manipulated by Phase 2 translation involves two components: a universe
structure (see Section 8.2.2) and an execution stack (see Section 8.2.3). An analogy with
conventional denotational semantics can be applied: the execution state corresponds to the
store, translated expressions and guard formulas correspond to expression values, and state
delta/assertion lists correspond to non-error final answers.

When state deltas are generated by a semantic function, the continuation that is input to
that function plays a slightly unconventional role: the result of applying to an execution
state the continuation, or other continuations derived from the continuation, is appended to
the postconditions of the generated state deltas. In the absence of errors, the item appended
represents a list of state deltas. Such a continuation is evaluated and applied only when the
state delta in whose postcondition it appears is applied.

For example, an IF statement having no ELSE part generates two state deltas: one for the
case in which its condition evaluates to true, the other for the false case. The continuation
for the true case represents the execution of the body of the IF statement succeeded by
the execution of the statement following the IF statement. The continuation for the false
case skips the body, and proceeds directly to the statement following the IF statement.
Whichever of these two state deltas is applied determines which continuation is evaluated
and applied to an execution state, and therefore which additional state deltas are subse-
quently generated.

8.1.1 Phase 2 Semantic Domains

The semantic domains and function types for Phase 2 of the Stage 4 VHDL translator are
as follows.

Primitive Semantic Domains

Bool = {FALSE, TRUE} Simplifier propositional (boolean) constants
Bit = {(BS 0 1), (BS 1 1)} Simplifier bit constants (length 1 bitstrings)
Char = {(CHAR 0), ..., (CHAR 127)} Simplifier character constants
n : N = {0, 1, 2, ...} Simplifier natural number constants

id : Id identifiers
Sysld system-generated identifiers (disjoint from Id)

ast : ASyn abstract syntax trees
t : TEnv tree-structured environments (TSEs)
d : Desc descriptors (see Section 6.2)

122

v : UStruct universe structures (see Section 8.2.2)

stk : Stk execution stacks (see Section 8.2.3)

e : TExpr translated expressions
trans : TTrans translated transactions

f, guard : GForm lists of guard formulas

sd : SD state deltas

Assert SDVS Simplifier assertions

Error error messages

Compound Semantic Domains

elbl : Elbl = Id + Sysld TSE edge labels

p, q: Path = Elbl* TSE paths

qname: Name = Elbl (. Elbl)* qualified names

d : Dv = Desc denotable values (descriptors)

r : Env = Id — (Dv + {»UNBOUND*}) environments

Tmode = {PATH} X Id* + type modes
({CONST, VAR, SIG, DUMMY} x

{VAL, OUT, REF, OBJ ACC, TYP})

w : Type = Tmode x Desc types

u : Dc = UStruct —► Stk —» Ans declaration & concurrent statement
c : Sc = Dc sequential statement continuations
k : Ec = (TExpr X GForm) -> Sc expression continuations
h : Mc = (TExpr* X GForm*) — Sc expression list continuations
wave-cont : Wc = (TTrans* X GForm*) —► Sc waveform continuations
trans-cont : Tc = (TTrans x GForm) —► Sc transaction continuations

Ans = (SD + Assert)* + Error final answers

8.1.2 Phase 2 Semantic Functions

The semantic functions for Phase 2 of the Stage 4 VHDL translator are as follows.

DF : Design -► TEnv -> Id -> Ans

DU : DUnit* -> Asyn -+ TEnv -► Path
-» Dc -► Dc

design file dynamic semantics

design unit dynamic semantics

123

CI : CItem* —»• TEnv —» Path —> Dc —► Dc context item dynamic semantics

LU : LUnit -> Asyn -> TEnv -» Path
— Dc -> Dc

CF : Config -> TEnv -» Path — Dc — Dc

EN : Ent -» TEnv -> Path -> Dc -+ Dc

AR Arch -> TEnv -+ Path -► Dc -♦ Dc

D : Dec* -+ TEnv -► Path ^ Dc -^ Dc

CS CStat* -► TEnv -» Path — D< Dc

SS : SStat* -» TEnv — Path -► Sc -► SC

W Wave -> TEnv -► Path -+ Wc — Sc

TRM : Trans* -► TEnv -+ Path -* Wc -► Sc

TR : Trans -> TEnv — Path -»• Tc — Sc

ME : Expr* — TEnv -> Path -» Mc -* Sc

MR : Expr* -► TEnv -► Path -» Mc -> Sc

E : Expr -» TEnv -» Path -* Ec — Sc

R : Expr -> TEnv -> Path -+ Ec -+ Sc

T : Expr -+ TEnv -> Path -> Desc

B : BitLit -► Bit

N : NumLit -► N

library unit dynamic semantics

configuration declaration dynamic semantics

entity declaration dynamic semantics

architecture body dynamic semantics

declaration dynamic semantics

concurrent statement dynamic semantics

sequential statement dynamic semantics

waveform dynamic semantics

transaction list dynamic semantics

transaction dynamic semantics

expression ust dynamic semantics (l-values)

expression list dynamic semantics (r-values)

expression dynamic semantics (l-values)

expression dynamic semantics (r-values)

expression types

bit values of bit literals (primitive)

integer values of numeric literals (primitive)

124

8.2 Phase 2 Execution State

As mentioned in Section 8.1, the execution state manipulated by Phase 2 translation consists
of a universe structure and an execution stack. The purpose of this section is to elucidate
the nature and role of these aspects of the execution state.

8.2.1 Unique Name Qualification

Except for quantification, the language of state deltas has no scoping, i.e., it is "flat." Even
with quantification, the state deltas generated by the Stage 4 VHDL translator certainly
do not have a scoping structure that naturally parallels the scopes of their corresponding
Stage 4 VHDL hardware description. Furthermore, even if there were such a correspondence
between source (Stage 4 VHDL) and target (state deltas) scopes, it would still be convenient
to generate unique names for the SDVS user to use in proofs.

For example, a PROCESS statement may contain a declaration of a variable x of the same
name as a signal in the enclosing architecture body. The inner instance of x can be distin-
guished from the outer instance by prefixing or qualifying it with the name (user-supplied
or system-generated) of the process in which the inner instance is declared. We shall call
such a qualified name, derived from the static structure of the Stage 4 VHDL hardware
description, a statically uniquely qualified name or SUQN. At the beginning of Phase 2
translation (after the interphase AST transformation — see Section 7), the SUQN of any
object (for which such a name makes sense) is recorded in the qid field associated with the

object in the TSE.

Another important kind of unique name qualification is based on the dynamic execution
of a Stage 4 VHDL description. A program unit can be reentered, either by repetition or
recursion, and local declarations in the reentered program will be re-elaborated, creating
new dynamic instances of entities that cannot be distinguished on the basis of static program
structure. In this case new names that are distinct dynamic instances of the same statically
uniquely qualified name are sufficient to enable the SDVS user to distinguish all instances
of names for use in proofs. The separate dynamic instances of a name are indicated by
appending !n to it, where n is a dynamic instance index for that name (e.g. a.x, a.x!2,
a.x!3, ..., where a.x!l is simply denoted a.x). These names are called dynamically uniquely

qualified names (DUQNs).

Only statically and dynamically uniquely qualified names appear in the state deltas gener-
ated by Phase 2 translation.

8.2.2 Universe Structure for Unique Dynamic Naming

Given that there may be several dynamic instances of the same SUQN in a Stage 4 VHDL
hardware description, Phase 2 translation employs a mechanism called a universe structure
(together with functions that access and manipulate it) to manage the creation of new
dynamic instances of each distinct SUQN, as well as to ensure that the correct dynamic
instance of each SUQN is available at any given time.

125

A universe structure consists of four components:

universe name :
The name of the current universe. A universe name has the form z\u\n, where z is
the name of the main program and n is the current universe's ordinal number (n =
1,2,...).

universe counter :
The current universe's ordinal number.

universe stack :
A stack of universe names used to save and restore prior universes in accordance with
the changes of environment in a Stage 4 VHDL hardware description.

universe variables :
The current universe's environment of statically and dynamically uniquely qualified
names. This is a list of entries of the form (SUQN, ordinal-number, ordinal-
stack), one for each distinct SUQN. The ordinal number denotes the most recently
created dynamic instance of that SUQN. The ordinal stack is a stack of this SUQN's
ordinal numbers, whose top element denotes the current dynamic instance of this
SUQN. This stack is used to save and restore prior dynamic instances of this SUQN in
accordance with the changes of environment in a Stage 4 VHDL hardware description.

mk-initial-universe(z)
= let uname = catenate(z,"\u",l) in

make-universe-data(uname,l,(uname),((z,l,(l))))

make-universe-data(uname,ucounter,ustack,uvars)
= (uname,ucounter,ustack,uvars)

universe-name(v) = hd(v)

universe-counter(v) = second(v)

universe-stack(v) = third(v)

universe-vars(v) = fourth(v)

push-universe(v,z,suqn*)
= let ucounter = l+universe-counter(v) in

let uname = catenate(z,"\u",ucounter) in
let ustack = cons(uname,universe-stack(v)) in

make-universe-data
(uname, ucounter, ustack, push-universe- vars(suqn*, universe- vars(v)))

push-universe-vars(suqn* ,vars)
= (null(suqn')—» vars,

let suqn = hd(suqn') in
let v = assoc(suqn,vars) in

(nuU(v)—► push-uni verse-vars(tl(suqn*),cons(init-var(suqn), vars)),
push-universe-vars(tl(suqn*),cons(push-var(v), vars))))

126

push-var(v)
= let n = next-var(secondfv)) ill

(hd(v),n,cons(n,third(v)))

next-var(n)
= (numberp(n)—- n-fl,

(symbolp(n) —► mk-exp2(ADD ,n,l),
let m = third(n) in

(numberp(m)—<• mk-exp2(ADD ,second(n),m+l),
mk-exp2(ADD ,second(n),mk-exp2(ADD ,m,l)))))

init-var(suqn) = (suqn,l,(l))

pop-universe(v)(suqn*)
= let ustack = tl(universe-stack(v)) in

let uname = hd(ustack) in
make-universe-data

(uname,universe-counter(v),ustack,
pop-universe-vars(suqn*)(universe-vars(v)))

pop-universe-vars(suqn* ,vars)
= (null(suqn*)—► vars,

let suqn = hd(suqn') in
let v = assoc(suqn,vars) in

pop-universe-vars(tl(suqn*),cons(pop-var(v), vars)))

pop-var(v) = (hd(v),second(v),tl(third(v)))

get-qualified-ids(suqn*)(v)
= (null(suqn*)—> £,

cons(qualified-id(hd(suqn*))(v),get-qualified-ids(tl(suqn*))(v)))

qualified-id(suqn)(v)
= let vars = universe-vars(v) in

let suqn-triple = assoc(suqn,vars) in
(suqn-triple

—► let n = hd(third(suqn-triple)) in
name-qualified-id(suqn)(n),

name-qualified-id(suqn)(l))

name-qualified-id (suqn)(n)
= (new-declarations()— (PLACELEMENT ,suqn,n),

(n = 1 —► suqn, catenate(suqn,"!",n)))

Currently, the only part of the universe structure that is actually used for dynamic name
qualification is the universe variables component. Each time a program unit that may
have a declarative part (packages, entities, architectures, processes, subprogram bodies) is

entered, the current universe is saved and an updated universe structure is created by push-
universe. The universe structure's counter (ordinal) is incremented by one, a corresponding
new universe name is created, and the old universe name is pushed onto the universe stack.
In the universe variables component of the universe structure, the triple for each SUQN
corresponding to each name declared in the unit's declarative part (except types) is updated:
the value of its ordinal is incremented by one and this new ordinal value is pushed onto the
ordinal stack of the SUQN's triple. Whenever any SUQN needs to be dynamically uniquely

127

qualified, the top element of its ordinal stack is used to find the index of the current dynamic

instance of that SUQN.

When such a program unit is exited, pop-universe restores the universe name by popping

it from the universe stack. The ordinal stack of the triple of the SUQN of each (non-type)
name declared in this unit is popped, restoring the current dynamic qualification of that

SUQN to a former value.

The functions get-qualified-ids, qualified-id, and name-qualified-id accomplish the
dynamic qualification of SUQNs relative to a universe structure.

8.2.3 Execution Stack

The elements of the execution stack are descriptors that contain information to control nor-
mal returns and exits from program units, as well as the undeclaration of objects, packages,

subprograms, and formal parameters.

There are several kinds of execution stack descriptors, and more detailed explanations of
their roles will be provided at the points in the semantics where they are used. For now, we
note that each descriptor has four components: an identifying tag; an identifier, identifier

sequence, or fully qualified name that associates the descriptor with some program unit; a
path that may replace the current path to effect a change of environment; and a function,
which may be a continuation or continuation transformer, that will effect a change of control
and environment corresponding to the descriptor's purpose.

stack bottom :
< *STKBOTTOM*, id, e, e >

This descriptor is the execution stack "bottom marker," used to terminate model
execution and to prevent execution stack underflow. The identifier id is the name of

the Stage 4 VHDL design file.

package body exit :
< *PACKAGE-BODY-EXIT*, id, p, u >

This descriptor is pushed onto the execution stack just prior to the elaboration of
a package body. The identifier id is the package name, and u: Dc is a declaration
continuation that will continue execution (most likely elaboration) at the package

body's successor in the environment denoted by p.

subprogram return :
< *SUBPROGRAM-RETURN*, id, p, c >

This descriptor is pushed onto the execution stack after a subprogram (procedure
or function) is entered, but just before the elaboration of the subprogram's local
declarations. The identifier id is the subprogram name, and c: Sc is a continuation
that will continue execution at the successor of the subprogram call in the environment

denoted by p.

128

loop exit :

< *LOOP-EXIT*, id, p, c >

This descriptor is pushed onto the execution stack when a loop statement (LOOP,
WHILE, or FOR) is entered. The identifier id is the loop label, and c: Sc is a continuation
that will continue execution at the loop's successor in the environment denoted by p.

block exit :
< *BLOCK-EXIT*, id, p, c >

This descriptor is pushed onto the execution stack just before the elaboration of a FOR
loop's iteration parameter, which implicitly establishes a block scope. The identifier
id is the FOR loop label, and c: Sc is a continuation that will continue execution at
the FOR loop's successor statement in the environment denoted by p.

begin marker :

< *BEGIN*, id, p, c >

This descriptor is pushed onto the execution stack immediately after the local declara-
tions of a subprogram, or the iteration parameter of a FOR loop, have been elaborated.

rmdeclaratioTi :
< *UNDECLARE*, id+, p, g >

This descriptor, pushed onto the execution stack when a subprogram is called, enables
the eventual explicit undeclaration (upon subprogram exit) of the subprogram's for-
mal parameters and other locally declared objects. The identifier list id+ names the
objects to be undeclared, and g: Sc —► Sc is a continuation transformer which, after
carrying out the explicit undeclaration specified in g (thereby popping this *UNDE-
CLARE* descriptor from the execution stack), continues execution by means of its
continuation argument.

129

8.3 Special Functions

Certain functions appearing in the semantic specification of Phase 2 translation are not
defined denotationally, for either of two reasons: (1) their denotational description is too
cumbersome or not well understood, or (2) they are used to construct SDVS-dependent
representations of expressions or formulas.

These functions, implemented directly in Common Lisp, are described below.

8.3.1 Operational Semantic Functions

To understand Phase 2 translation, it is important to recognize that in defining the seman-
tics of the VHDL simulation cycle, the VHDL translator involves a significant operational
component. This is to be distinguished from the semantics of sequential statements within
processes, which the translator defines in a primarily denotational manner.

We are referring here to our strategy, explained in Section 2, of designing aspects of a
simulator kernel into the Stage 4 VHDL translator. After application of the state deltas
specifying the behavior of one execution cycle for the active processes, the translator is
responsible for:

• determining the next VHDL clock time at which a driver becomes active or a process
resumes;

• advancing the SDVS state to this new time; and

• generating the state delta that specifies the next sequential statement in the first
resuming process for the new execution cycle.

After a given resuming process suspends, its continuation is the textually next resuming
process.

It is the internal translator machinery to perform these tasks that is operationally defined
— much of it embodied in a portion of the translator that is directly coded in Common Lisp,
rather than described by semantic equations. The names of the Common Lisp functions
serving this purpose are listed below.

find-configuration-abstract-syntax

make-vhdl-process-elaborate

make-vhdl-begin-model-execution

make-vhdl-try-resume- next-process

make-vhdl-process-suspend

find-signal-structure

name-driver

130

init-scalar-signal

init-array-signal-to

init-array-signal-downto

mk-element-waves-aux

get-loop-enum-param-vals

eval-expr

8.3.2 Constructing State Deltas

The construction of state deltas is specified via functions mk-sd(z)(pre, comod, mod,
post) and mk-sd-decl(z)(pre, comod, mod, post), which take five arguments: the

design file name z (if p is the current path, this is always hd(p)) and representations of
the precondition, comodification list, modification list, and postcondition of the state delta

to be constructed.

These functions are used to represent the construction of state deltas without specifying
their exact representation, which is SDVS-dependent and not given here. The pre- and
postconditions of a state delta are lists of formulas, each of which represents a formula
that is the logical conjunction of the formulas in this list. If the precondition and comod
list arguments of mk-sd and mk-sd-decl are e, then the precondition and comod list of
the constructed state delta are (TRUE) and (ALL), respectively. Otherwise, the given
arguments are used directly in the state delta. The postcondition may contain a state delta,
which is usually represented as a statement continuation applied to an execution stack.

mk-sd and mk-sd-decl are almost the same, the only difference being that a state delta
created by mk-sd-decl is given a special tag that identifies its association with declaration
elaboration rather than statement execution.

For technical reasons, the comod fist of every state delta is (ALL) and the mod list of every
state delta must be nonempty. To ensure that a state delta's mod list is never empty, mk-
sd(z)(...) will always prefix z\pc to its mod list argument, where z\pc is a unique place
(represented by a system identifier) in which z is the name of the Stage 4 VHDL hardware
description being translated. This unique place is the name of a program counter whose
value implicitly changes when any state delta is applied. This program counter place does
not make any other kind of appearance in a translated Stage 4 VHDL hardware description.

The notation of state deltas requires that certain symbols sometimes be prefixed to uniquely
qualified names: the dot (.) and pound (#) symbols. The functions dot and pound,
applied to uniquely qualified names, accomplish this.

dot(placename) — (DOT ,placename)
pound(placename) = (POUND ,placename)

Finally, the two functions fixed-characterized-sds and subst-vars are employed by the
Phase 2 semantics of procedure calls to implement the SDVS offline characterization mech-

anism [20, 21], which will be incorporated in Stage 4 VHDL.

131

8.3.3 Error Reporting

The few kinds of errors that can occur in Phase 2 are reported by the functions impl-error
and execution-error.

The function impl-error is used, for example, to report invalid arguments passed to the
low-level utility functions mk-scalar-rel, mk-expl, and mk-exp2, although this should
never occur.

The function execution-error is used to report execution errors such as an empty execution
stack, although again, such errors should never occur if Phase 1 has done its job.

132

8.4 Phase 2 Semantic Equations

This section constitutes the heart of the present report. It documents the semantic equations
and auxiliary semantic functions in terms of which Phase 2 of the Stage 4 VHDL translator
— state delta generation — is specified denotationally.

8.4.1 Stage 4 VHDL Design Files

(DFl) DF [DESIGN-FILE id design-unit+ J (t)(using-configuration)
= let po = %(e)(id)

and configuration-ast = (null(using-configuration)—► e,
find-configuration-abstract-syntax

(design-unit+)(using-configuration)) in
let v = mk-initial-universe(id)

and stk = (<*STKBOTTOM* ,id,e,e>) in
(mk-disjoint(id,(dot(id))),
mk-cover(dot(id),(catenate(id,"\pc"),VHDLTIME ,

VHDLTIME_PREVIOUS)),
mk-scalar-decl(VHDLTIME ,(TYPE VHDLTIME)),
mk-scalar-decl(VHDLTIME_PREVIOUS ,(TYPE VHDLTIME)),
mk-rel(vhdltime-type-desc(t))((EQ ,dot(VHDLTIME),mk-vhdltime(0)(0))),
mk-rel

(vhdltime-type-desc(t))((EQ ,dot(VHDLTIME_PREVIOUS),mk-vhdltime(0)(0))),
mk-decl-sd(id)(e)(e)(e)(u,(v)(stk)))
where
ui = Av.stk.

DU I design-unit+] (configuration-ast)(t)(p0)(u2)(v)(stk)
where 112 = Av,stk.block-exit(v)(stk)

mk-disjoint(id,lst) = cons(ALLDISJOINT ,cons(id,lst))

mk-cover(id,lst) = cons(COVERING ,cons(id,lst))

mk-scalar-decl(placename,place-type) = (DECLARE ,placename,place-type)

vhdltime-type-desc(t) = (((STANDARD))(VHDLTIME)

mk-rel(d)(op,ei ,62)
= let tg = tag(d) in

(C3.SC t£

(*BOOL* ,*BIT* ,*INT* ,*REAL* ,*TIME* ,*VHDLTIME* ,*ENUMTYPE* ,*VOID* ,*POLY*)
—► mk-scalar-rel(tg)((op,ei ,ej)),
»SUBTYPE* -» mk-scalar-rel(tag(base-type(d)))((op,ei,e2)),
INT_TYPE —► mk-scalar-rel(tag(parent-type(d)))((op,ei,e2)),
WAVE^ (EQ ,ei,e2),
ARRAYTYPE
—* (is-bitvector-tdesc?(d)

—► (case op
EQ
—► (is-constant-bitvector?(ei)A is-constant-bitvector?(e2)

— (EQ ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)—► (EQ ,ei,cons(USCONC ,62)),
is-constant-bitvector?(ei)— (EQ ,cons(USCONC ,ei),e2),
(EQ ,ei,e2)),

NE

133

—► (is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
— (NEQ ,cons(USCONC .e,),cons(USCONC ,e2)),
is-constant-bitvector?(e2)— (NEQ ,e1,cons(USCONC ,e2)),
is-constant-bitvector?(ei)— (NEQ ,cons(USCONC ,ei),e2),
(NEQ,ei,e2)),

LT
- (EQ,(BS,1,1),

(is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
— (USLSS ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)—► (USLSS ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(ei)— (USLSS ,cons(USCONC ,ei),e2),
(USLSS ,ei,e2))),

LE
-> (EQ ,(BS ,1,1),

(is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
— (USLEQ ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)-* (USLEQ ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(ei)-♦ (USLEQ ,cons(USCONC ,e,),e2),
(USLEQ ,elie2))),

GT
-(EQ,(BS,1,1),

(is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
— (USGTR ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2) — (USGTR ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(ei)— (USGTR ,cons(USCONC ,ei),e2),
(USGTR ,eile2))),

GE
-(EQ,(BS,1,1),

(is-constant-bitvector?(ei)A is-constant-bitvector?(e2)
— (USGEQ ,cons(USCONC ,ei),cons(USCONC ,e2)),
is-constant-bitvector?(e2)— (USGEQ ,ei,cons(USCONC ,e2)),
is-constant-bitvector?(e!)— (USGEQ ,cons(USCONC ,e,),e2),
(USGEQ ,e,,«*))),

OTHERWISE — impl-error("Shouldn't happen!")),
is-string-tdesc?(d)
—► (case op

EQ
—♦ (is-constant-string?(ei)A is-constant-string?(e2)

— (EQ ,cons(ACONC ,ei),cons(ACONC ,e2)),
is-constant-string?(e2)—* (EQ ,ei,cons(ACONC ,e2)),
is-constant-string?(ei)—► (EQ ,cons(ACONC ,ei),e2),
(EQ ,ei,e2)),

NE
—► (is-constant-string?(ei)A is-constant-string?(e2)

— (NEQ ,cons(ACONC ,ei),cons(ACONC ,e2)),
is-constant-string?(e2)—> (NEQ ,ei,cons(ACONC ,e2)),
is-constant-string?(ei)— (NEQ ,cons(ACONC ,ei),e2),
(NEQ,e,,e2)),

OTHERWISE — impl-error("Shouldn't happen!")),
(case op

EQ
—» (dotted-expr-p(e2)—► (EQ ,ei,e2), impl-error("Shouldn't happen!")),
NE
—► (dotted-expr-p(e2)—► (NEQ ,ei,e2),

impl-error("Shouldn' t happen!")),
OTHERWISE — impl-error("Shouldn't happen!"))),

RECORDTYPE

134

—► (dotted-expr-p(e2) — (EQ ,ei,e2), impl-error("Shouldn't happen!")),
OTHERWISE-+ impl-error("Shouldn't happen!"))

is-constant-bitvector?(expr*)
= null(expr')

V (consp(expr')
A let expri = hd(expr') in

consp(expri)A hd(expri)= BS)

is-constant-string?(expr*)
= null(expr')

V (consp(expr')
A let expri = hd(expr') in

consp(expri)A hd(expri)= CHAR)

dotted-expr-p(expr) = consp(expr)A hd(expr)= DOT

mk-scalar-rel(type-tag)(relationaJ-op,el,e2)
= (case type-tag

BOOL
—» (case relational-op

EQ —► mk-bool-eq(type-tag,el,e2),
NE —<• mk-bool-neq(type-tag,el,e2),
LT — (AND ,(EQ ,el,FALSE),(EQ ,e2,TRUE)),
LE — (IMPLIES ,el,e2),
GT — (AND ,(EQ ,el,TRUE),(EQ ,e2,FALSE)),
GE — (IMPLIES ,e2,el),
OTHERWISE
—* impl-error

("Unrecognized Stage 4 VHDL BOOLEAN relational operator: "a"
relational-op)),

BIT
—► (case relational-op

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
LT — (EQ ,(USLSS ,el,e2),(BS ,1,1)),
LE — (EQ ,(USLEQ ,el,e2),(BS ,1,1)),
GT - (EQ ,(USGTR ,el,e2),(BS ,1,1)),
GE — (EQ ,(USGEQ ,el,e2),(BS ,1,1)),
OTHERWISE
—► impl-error

("Unrecognized Stage 4 VHDL BIT relational operator: "a",
relational-op)),

("TNT* ,*TIME*)
—► (case relational-op

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
LT — (LT ,el,e2),
LE — (LE ,el,e2),
GT — (GT ,el,e2),
GE — (GE ,el,e2),
OTHERWISE
—* impl-error

("Unrecognized Stage 4 VHDL INTEGER relational operator: ~a"
relational-op)),

♦VHDLTIME*
—► (case relational-op

135

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
LT — (TIMELT,el,e2),
LE — (TIMELE ,el,e2),
GT — (TIMEGT ,el,e2),
GE — (TIMEGE ,el,e2),
OTHERWISE
—► impl-error

("Unrecognized Stage 4 VHDL VHDLTIME relational operator: "a",
relational-op)),

♦REAL*
—► (case relational-op

EQ — (EQ ,el,e2),
NE-* (NEQ ,el,e2),
(RLT ,RLE ,RGT ,RGE) — (relational-op,el,e2),
OTHERWISE
—► impl-error

("Unrecognized Stage 4 VHDL REAL relational operator: "a",
relational-op)),

ENUMTYPE
—► (case relational-op

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
LT — (ELT ,el,e2),
LE — (ELE ,el,e2),
GT - (EGT ,el,e2),
GE — (EGE ,el,e2),
PRED — (EPRED ,el,e2),
SUCC — (ESUCC ,el,e2),
OTHERWISE
—► impl-error

("Unrecognized Stage 4 VHDL ENUMERATION relational operator: "a",
relational-op)),

VOID
—► (case relational-op

EQ — (EQ ,el,e2),
NE — (NEQ ,el,e2),
OTHERWISE
—<• impl-error

("Unrecognized Stage 4 VHDL VOID relational operator: "a",
relational-op)),

POLY
—* (case relational-op

EQ - (EQ ,el,e2),
NE— (NEQ ,el,e2),
OTHERWISE
—► impl-error

("Unrecognized Stage 4 VHDL POLYMORPHIC relational operator: "a",
relational-op)),

OTHERWISE — impl-error("Unsupported Stage 4 VHDL basic type "a.",type-tag))

mk-bool-eq(type-tag,el ,e2)
= (type-tag = *BOOL*

—► (simple-term(el)
— (simple-term(e2)— (EQ ,el,e2), (EQ ,el,(COND ,e2,TRUE .FALSE))),
simple-term(e2)— (EQ ,e2,(COND ,el,TRUE .FALSE)),
(COND ,el,e2,(NOT ,e2))),

(EQ ,el,e2))

136

mk-bool-neq(type-tag,el ,e2)
= (type-tag = *BOOL*

—► (simple-term(el)
— (simple-term(e2)— (NEQ ,el,e2), (NEQ ,el,(COND ,e2,TRUE .FALSE))),
simple-term(e2)— (NEQ ,e2,(COND ,el,TRUE ,FALSE)),
(COND ,el,e2,(NOT ,e2))),

(NEQ ,el,e2))

simple-term (term)
= let operators = (DOT POUND) in

-iconsp(term)V hd(term)g operators

mk-vhdltime(global)(delta) = (VHDLTIME ,global,delta)

block-exit(v)(stk)
= let <tg,qname,p,g> = hd(stk) in

(case tg
STKBOTTOM —* model-execution-complete(qname),
UNDECLARE — g(Avv,s.block-exit(vv)(s))(v)(stk),
(*BLOCK-EXIT* ,*SUBPROGRAM-RETURN*) — g(v)(stk-pop(stk)),
(♦BEGIN* ,*LOOP-EXIT* ,*PACKAGE-BODY-EXIT*) — block-exit(v)(stk-pop(stk)),
OTHERWISE
—► impl-error("Unknown execution stack descriptor with tag: ~a",tg))

model-execution-complete(id)
= (mk-sd(id)(£)(e)(£)(((VHDL_MODEL_EXECUTION_COMPLETE ,id))))

A Stage 4 VHDL design file has a name id — supplied as an argument to the SDVS
command vhdltr — and consists of a nonempty sequence of design units.

The semantics of the design file has two semantic arguments: the TSE t constructed by
Phase 1, and an identifier using-configuration supplied to the vhdltr command that
specifies the configuration declaration to be used in configuring the design entity (in the
absence of such a configuration, this identifier is expected to be none).

The design file name id denotes a special place, whose value .id is itself a place that will
represent, at any given point during the translation, the current universe of visible places.
This name is available to most of the Phase 2 semantic functions as the first edge label in

the current path.

Translation of a design file commences by generating some top-level assertions and decla-

rations for the SDVS Simplifier:

• A disjointness assertion, required for technical reasons.

The function mk-disjoint(place-list) generates an SDVS assertion stating that the

places in place-list are mutually disjoint.

• A covering assertion that the initial universe of visible places .id consists of certain
predefined places: the program counter place id\pc as well as the places vhdltime
and vhdltime_previous.

137

The function mk-cover (place, place-list)2 generates an SDVS covering assertion
that place covers all the places in place-list and that all of the places in place-list
are mutually disjoint.

• Declarations of the places vhdltime and vhdltime_previous. The function mk-
scalar-decl(placename,place-type) (make scalar declaration) generates an SDVS
declaration of a scalar-value place of the indicated type.

• Assertions that the places vhdltime and vhdltime_previous have as their initial

value the time object vhdltime(0,0) of the Simplifier VHDL Time domain.

The function mk-rel(type-desc)(relation,accessed-place,expression) (make re-

lation) constructs an SDVS typed relation that asserts that the value of a place at
pre- or postcondition time stands in a certain relation to the value of an expression.

Then a state delta that defines the execution of the hardware description is generated. The
application of this state delta leads to further usable state deltas, whose generation in the
absence of errors is accomplished by continuations. With respect to the TSE t, an initial
path consisting of the design file's name, an initial universe, and an initial execution stack
containing a *STKBOTTOM* descriptor to terminate model execution (see Section 8.2),
these state deltas symbolically elaborate the design file's design units.

8.4.2 Design Units

(DUO) DU [e] (configuration-ast)(t)(p)(u)(v)(stk) = u(v)(stk)

(DUl) DU [design-unit design-unit*] (configuration-ast)(t)(p)(u)(v)(stk)
= DU [design-unit] (configuration-ast)(t)(p)(ui)(v)(stk)

where
ui = Avi,stki.

DU [design-unit* J (configuration-ast)(t)(p)(u)(vi)(stki)

(DU2) DU [DESIGN-UNIT context-item* library-unit] (configuration-ast)(t)(p)(u)(v)(stk)
= CI I context-item*] (t)(rest(p))(ui)(v)(stk)

where
ui = Avi ,stki.

LU [library-unit] (configuration-ast)(t)(p)(u)(vi)(stki)

8.4.3 Contex Items

(CIO) CI [e] (t)(p)(u)(v)(stk) = u(v)(stk)

(CI1) CI [context-item context-item*] (t)(p)(u)(v)(stk)
= CI [context-item] (t)(p)(ui)(v)(stk)

where ui = Avi ,stki.CI [context-item* J (t)(p)(u)(vi)(stki)

(CI2) CI [USE dotted-name+ 1 (t)(p)(u)(v)(stk)
= let decl = context-item in

D[decl](t)(p)(u)(v)(stk)

2The function mk-cover has in some instances been superseded by mk-cover-already; it implements
an experimental new naming scheme for VHDL variables. The scheme is available only when the SDVS
function new-declarations is defined to return non-NIL. In SDVS Version 12, this new scheme is not
available, so we will not discuss the actions of this function here.

138

8.4.4 Library Units

(LUl) LU [CONFIGURATION idi id2 use-clause* block-config opt-id 1 (configuration-ast)(t)(p)(u)(v)(stk)
= let configuration-decl = library-unit in

CF [configuration-decl] (t)(p)(u)(v)(stk)

(LU2) LU [PACKAGE id decl* opt-id] (configuration-ast)(t)(p)(u)(v)(stk)
= let decl = library-unit in

D[decl](t)(p)(u)(v)(stk)

(LU3) LU [ENTITY id decl* decl* decl* opt-id phasel-hook] (configuration-ast)(t)(p)(u)(v)(stk)
= (null(configuration-ast)

— let entity-decl = library-unit in
ENJ entity-decl l(t)(p)(u)(v)(stk),

let configuration-entity-id = get-configuration-entity-id
(configuration-ast) in

(id = configuration-entity-id
— let entity-decl = library-unit in

EN H entity-decl] (t)(p)(u)(v)(stk),
u(v)(stk)))

(LU4) LU [PACKAGEBODY id decl* opt-id] (configuration-ast)(t)(p)(u)(v)(stk)
= let decl = library-unit in

D[decl](t)(p)(u)(v)(stk)

(LU5)LU [ARCHITECTURE idi id2 decl* conc-stat* opt-id 1 (configuration-ast)(t)(p)(u)(v)(stk)
= (null(configuration-ast)

—♦ let architecture-body = library-unit in
AR [architecture-body] (t)(p)(u)(v)(stk),

let configuration-entity-id = get-configuration-entity-id
(configuration-ast)

and configuration-architecture-id = get-configuration-architecture-id
(configuration-ast) in

(id2 = configuration-entity-id A idi = configuration-architecture-id
—► let architecture-body = library-unit in

AR [architecture-body] (t)(p)(u)(v)(stk),
u(v)(stk)))

get-configuration-entity-id(configuration-ast) = hd(tl(tl(configuration-ast)))

get-configuration-architecture-id(configuration-ast)
= hd(tl(hd(tl(tl(tl(tl(configuration-ast)))))))

8.4.5 Configuration Declarations

(CFl) CF [CONFIGURATION idi id2 use-clause* block-config opt-id] (t)(p)(u)(v)(stk)
= u(v)(stk)

139

8.4.6 Entity Declarations

(EN1) EN [ENTITY id decl* declj decl* opt-id phasel-hook 1 (t)(p)(u)(v)(stk)
= let p! = %(p)(id) in

Dldecin(t)(P.)(u1)(v)(stk)
where
ui = Avi.stki.

D[deci;](t)(Pi)(«2)(vi)(stk,)
where u2 = Av2 ,stk2 .D [[decl*] (t)(pj)(u)(v2)(stk2)

Phase 2 translation of an entity declaration effects the elaboration, via semantic function
D, first of its port declarations, and then of any other declarations local to the entity. The
interphase abstract syntax tree transformation has arranged for the Phase 2 abstract syntax
of port declarations to be identical to that for other objects of class SIGNAL.

8.4.7 Architecture Bodies

(ARl) AR [ARCHITECTURE idi id2 decl* conc-stat* opt-id] (t)(p)(u)(v)(stk)
= let Pl =%(%(p)(id2))(idi) in

D[decr](t)(Pi)(u,)(v)(stk)
where
m = Avi ,stki.

CS [conc-stat*] (t)(pi)(u2)(v1)(stk1)
where
ii2 = Av2,stk2.

cons((VHDL_MODEL-ELABORATION_COMPLETE ,hd(p)),
(mk-sd

(hd(p))(£)(£)(e)
((make-vhdl-begin-model-execution

(hd(p))(u)(t)(v2)(stk2)))))

Phase 2 translation of an architecture body first effects the elaboration, via semantic func-
tion D, of the architecture's local declarations, and then initiates the translation, via se-
mantic function CS, of its concurrent statements (which have been uniformly converted to
PROCESS statements by the interphase abstract syntax tree transformation at the end of
Phase 1; see Section 7). The continuation of concurrent statement elaboration returns a
Simplifier assertion to the effect that the VHDL model's elaboration is complete, as well
as a state delta, constructed by special function make-vhdl-begin-model-execution, that
initiates symbolic execution of the model.

8.4.8 Declarations

(DO)D[£l(t)(p)(u)(v)(stk)=u(v)(stk)

(Dl) D [decl decl*] (t)(p)(u)(v)(stk)
= Dffdecl]](t)(p)(Ul)(v)(stk)

where m = Av, .stki.D [[decl* 1 (t)(p)(u)(v,)(stki

140

(D2) D [package-decl package-decl*] (t)(p)(u)(v)(stk)
= D [package-decl] (t)(p)(u,)(v)(stk)

where Ui = Avi,stki.D [package-decl*] (t)(p)(u)(vi)(stki)

(D3) D [package-body package-body*] (t)(p)(u)(v)(stk)
= D I package-body 1 (t)(p)(u,)(v)(stk)

where U] = Avi ,stki .D | package-body*] (t)(p)(u)(v!)(stki

(D4) D [use-clause use-clause*] (t)(p)(u)(v)(stk)
= D | use-clause] (t)(p)(u!)(v)(stk)

where Ui = Avi,stk].D [use-clause*] (t)(p)(u)(v!)(stki)

The Phase 2 processing of declarations proceeds sequentially, from first to last.

(D5) D [DEC object-class id+ type-mark opt-expr] (t)(p)(u)(v)(stk)
= let d = lookup-desc(type-mark)(t)(p) in

(case tag(d)
(*BOOL* ,*BIT* ,*INT* ,*REAL* ,*TIME* »ENUMTYPE* ,»SUBTYPE* ,*INT_TYPE*
—* gen-scalar-decl

(decl)(object-class)(id+)(d)(opt-expr)(t)(p)(u)(v)(stk),
♦ARRAYTYPE*
—► gen-array-decl

(decl)(object-class)(id+)(d)(direction(d))(real-lb(d))
(real-ub(d))(elty(d))(opt-expr)(t)(p)(u)(v)(stk),

RECORDTYPE
—► gen-record-decl

(decl)(object-class)(id+)(d)(opt-expr)(t)(p)(u)(v)(stk),
OTHERWISE — u(v)(stk))

(D6) D I SLCDEC object-class id+ slice-name opt-expr 1 (t)(p)(u)(v)(stk)
= let d = lookup(t)(p)(hd(id+)) in

let anon-array-type-desc = second(type(d)) in
gen-array-decl

(decl)(object-class)(id+)(anon-array-type-desc)
(direction(anon-array-type-desc))(lb(anon-array-type-desc))
(ub(anon-array-type-desc))(elty(anon-array-type-desc))(opt-expr)(t)(p)
(u)(v)(stk)

lookup-desc(id*)(t)(p)
= (null(id*)—► void-type-desc(t),

let q = access(rest(id*))(t)(p) in
lookup-desc-on-path(t)(q)(last(id*)))

lookup-desc-on-path(t)(p)(id)
= let d - t(p)(id) in

(d = »UNBOUND* — lookup-desc-on-path(t)(rest(p))(id), d)

access(id*)(t)(p)
= (null(id')— p,

let d = lookup(t)(p)(hd(id*)) in
access(tl(id*))(t)(%(path(d))(idf(d))))

141

gen-scalar-decl(decl)(object-class)(id+)(d)(expr)(t)(p)(u)(v)(stk)
= (null(expr)

—► gen-scalar-decl-id+(decl)(object-class)(id+)(d)(expr)(t)(p)(u)(v)(stk),
gen-scalar-decl-id*(decl)(object-class)(id+)(d)(expr)(t)(p)(u)(v)(stk))

gen-scalar-decl-id+(decl)(object-class)(id+)(d)(expr)(t)(p)(u)(v)(stk)
= (object-class = SIG

—► gen-scalar-signal-decl-id+(decl)(id+)(d)(expr)(t)(p)(u)(v)(stk),
gen-scalar-nonsignal-decl-id-f(decl)(id+)(d)(expr)(t)(p)(u)(v)(stk))

gen-scalar-decl-id*(decl)(object-class)(id*)(d)(expr)(t)(p)(u)(v)(stk)
= (nuU(id*)— u(v)(stk),

let id+ = (hd(id*)) in
gen-scalar-decl-id+(decl)(object-class)(id+)(d)(expr)(t)(p)(ui)(v)(stk)
where
uj = Avi ,stki.

gen-scalar-decl-id *
(decl)(object-class)(tl(id*))(d)(expr)(t)(p)(u)(vi)(stki))

gen-scalar-nonsignal-decl-id-|-(decl)(id+)(d)(expr)(t)(p)(u)(v)(stk)
= RJexpr](t)(p)(k)(v)(stk)

where
k = A(e,f),V),stki.

let z = hd(p)
and suqn+ = get-qids(id+)(t)(p) in

let v2 = push-universe(vi)(z)(suqn+) in
let duqn+ = get-qualified-ids(suqn+)(v2) in

(mk-decl-sd
(z)(f)(e)((z))
(nconc

(mk-qual-id-coverings(suqn+)(duqn+)(z)(v)(t),
mk-scalar-nonsignal-dec-post

(decl)((duqn+,e,d))(t)(p)(u)(vj)(stk))))

get-qids(id')(t)(p)
= (nuU(id')-* e, cons(qid(t(p)(hd(id*))),get-qids(tl(id,))(t)(p)))

get-qualified-ids(suqn*)(v)
= (null(suqn*)—► e,

cons(qualified-id(hd(suqn*))(v),get-qualified-ids(tl(suqn*))(v)))

qualified-id (suqn)(v)
= let vars = universe-vars(v) in

let suqn-triple = assoc(suqn,vars) in
(suqn-triple

—> let n = hd(third(suqn-triple)) in
name-qualified-id(suqn)(n),

name-qualified-id(suqn)(l))

name-qualified-id (suqn)(n)
= (new-declarations()— (PLACELEMENT ,suqn,n),

(n = 1 —► suqn, catenate(suqn,"!",n)))

already-qualified-id(suqn)(v) = -inull(assoc(suqn,universe-vars(v)))

142

qualified-id-decls(suqn*)
= (null(suqn*)—» e,

let suqn = hd(suqn') in
cons((DECLARE ,suqn,(TYPE .PLACEARRAY)),qualified-id-decls(tl(suqn*))))

mk-qual-id-coverings(suqn+)(duqn+)(z)(v)(t)
= (new-declarations()

— (already-qualified-id(hd(suqn+))(v)
— (mk-rel(univint-type-desc(t))((EQ ,pound(z),dot(z)))),
nconc

((mk-disjoint(z,cons(dot(z),suqn+)),
mk-cover(pound(z),cons(dot(z),suqn+))),qualified-id-decls(suqn+))),

(mk-disjoint(z,cons(dot(z),duqn+)),mk-cover(pound(z),cons(dot(z),duqn+))))

mk-scalar-nonsignal-dec-post(decl)(duqn*,e,d)(t)(p)(u)(v)(stk)
= let type-spec = mk-type-spec(d)(t)(p) in

(null(e)
—« nconc

(mk-scalar-nonsigna]-dec-post-declare(duqn*)(type-spec),
u(v)(stk)),

let precondition = mk-constraint-guards((e))((d))(t)(p)(v)(stk) in
nconc

(mk-scalar-nonsignal-dec-post-declare(duqn*)(type-spec),
ui(v)(stk))

where
ui = Avi ,stki.

(mk-decl-sd
(hd(p)) (precondition)(e)(duqn*)
(nconc

(mk-scalar-nonsignal-dec-post-init(duqn*)(e)(d),
u(v,)(stk1)))))

mk-type-spec(d)(t)(p)
= (case tag(d)

BOOL — (TYPE BOOLEAN) ,
BIT — (TYPE BIT) ,
(*IWT* ,*INT_TYPE* ,*TIME*) — (TYPE INTEGER) ,
♦REAL* — (TYPE FLOAT) ,
VHDLTIME — (TYPE VHDLTIME) ,
ENUMTYPE
— (idf(d)= CHARACTER -» (TYPE CHARACTER) ,

cons(TYPE ,cons(ENUMERATION ,literals(d)))),
♦SUBTYPE* — mk-type-spec(base-type(d))(t)(p),
VOID — (TYPE VOID) ,
POLY — (TYPE POLYMORPHIC) ,
RECORDTYPE — cons(TYPE ,cons(RECORD ,record-to-type(components(d))(t)(p))),
ARRAYTYPE
—♦ let expri = lb(d) in

Rlexpn !(t)(p)(k1)(e)(e)
where
ki = A(ej ,fi),vi,stki.

let expr2 = ub(d) in
R[expr2](t)(p)(k2)(v1)(stk1)
where
k2 = A(e2,f2),V2,stk2.

cons(TYPE ,
(ARRAY ,ei,e2,mk-type-spec(elty(d))(t)(p))),

WAVE — (TYPE .WAVEFORM ,mk-type-spec(hd(type(d)))(t)(p)),
OTHERWISE —■ impl-error("Unrecognized Stage 4 VHDL type: -a",tag(d)))

143

record- to- type(record-components)(t)(p)
= (null(record-components)—> e,

let (id,d) = hd(record-components) in
cons((id,mk-type-spec(d)(t)(p)),
record-to-type(tl(record-components))(t)(p)))

mk-scalar-nonsignal-dec-post-declare(duqn *) (type-spec)
= (null(duqn*)—► e,

let duqn = hd(duqn') in
cons(mk-scalar-decl(duqn, type-spec),
mk-scalar-nonsignal-dec-post-declare(tl(duqn*))(type-spec)))

mk-scalar-decl(placename,place-type) = (DECLARE ,placename,place-type)

mk-scalar-nonsignal-dec-post-init(duqn*)(e)(d)
= (null(duqn')—<■ e,

let duqn = hd(duqiT) in
nconc

(assign(d)((duqn,e)),mk-scalar-nonsignal-dec-post-init(tl(duqn*))(e)(d)))

assign(d) (target, value)
= (case tag(d)

(*BOOL* ,*BIT* ,*INT* ,*REAL* ,*TIME* ,*VHDLTIME* ,*ENUMTYPE* ,*WAVE* ,*VOID* ,
POLY)

—► (mk-rel(d)((EQ ,pound(target),value))),
♦SUBTYPE* — assign(base-type(d))((target,value)),
INT_TYPE — assign(parent-type(d))((target,value)),
ARRAYTYPE
—+ (is-bitvector-tdesc?(d)

—► (is-constant-bitvector?(value)
—♦ (case direction(d)

TO
—» assign-array-to

(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—> assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,
mk-exp2(ADD .(ORIGIN .target),(RANGE ,target)), 1))(0),

OTHERWISE->• impl-error("Illegal direction: -a",direction

(d))).
(mk-rel(d)((EQ ,pound(target),value)))),

is-string-tdesc?(d)
—► (is-constant-string?(value)

—► (case direction(d)
TO
—* assign-array-to

(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—<• assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,
mk-exp2(ADD .(ORIGIN ,target),(RANGE .target)), 1))(0),

OTHERWISE -* impl-error("Illegal direction: "a",direction
(d))).

144

(mk-rel(d)((EQ ,pound(target),value)))),
(dotted-expr-p(value) — (mk-rel(d)((EQ ,pound(target),value))),
(case direction(d)

TO — assign-array-to(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—♦ assign-array-downto

(target) (value)(elty(d))
(mk-exp2

(SUB ,mk-exP2(ADD ,(ORIGIN ,target),(RANGE .target)),

1))(0),
OTHERWISE — impl-error("Illegal direction: ~a",direction(d))))),

RECORDTYPE
—► (dotted-expr-p(value) — assign-record(d)((target,value)),

assign-record-fields(components(d))((target, value))),
OTHERWISE— impl-error("Unrecognized Stage 4 VHDL type tag: ~a",tag(d)))

is-constant-bitvector?(expr*)
= null(expr*)

V (consp(expr')
A let expri =hd(expr*) in

consp(expri)A hd(expri)= BS)

is-constant-string?(expr*)
= null(expr*)

V (consp(expr')
A let expri = hd(expr') in

consp(expri)A hd(expri)= CHAR)

dotted-expr-p(expr) = consp(expr)A hd(expr)= DOT

assign-array-to(target)(aggregate)(element-type-desc)(start-index)(m)
= (null(aggregate)—► e,

nconc
(assign

(element-type-desc)
(((ELEMENT ,target,mk-exp2(ADD ,start-index,m)),hd(aggregate))),

assign-array-to
(target) (tl(aggregate))(element-type-desc)(start-index)(m+l)))

assign-array-downto(target)(aggregate)(element-type-desc)(start-index)(m)
= (null(aggregate)—► e,

nconc
(assign

(element-type-desc)
(((ELEMENT ,target,mk-exp2(SUB ,start-index,m)),hd(aggregate))),

assign-array-downto
(target) (tl(aggregate))(element-type-desc)(start-index)(m+l)))

mk-exp2(binary-op,el ,e2)
= (case binary-op

AND — (AND ,el,e2),
NAND — (NAND ,el,e2),
OR — (OR ,el,e2),
NOR — (NOR ,el,e2),
XOR — (XOR,el,e2),
BAND — (USAND ,el,e2),
BNAND - (USNAND ,el,e2),

145

BOR — (USOR ,el,e2),
BNOR — (USNOR ,el,e2),
BXOR — (USXOR ,el,e2),
ADD — (PLUS ,el,e2),
SUB — (MINUS ,el,e2),
MUL- (MULT,el,e2),
DIV - (DIV ,el,e2),
MOD — (MOD ,el,e2),
REM — (REM ,el,e2),
EXP — (EXPT ,el,e2),
(RPLUS ,RMINUS ,RTIMES ,RDIV ,REXPT) - (binary-op,el,e2),
CONCAT — (ACONC ,el,e2),
OTHERWISE
—► impl-error("Unrecognized Stage 4 VHDL binary operator: "a",binary-op))

assign-record (d)(target-record, dot ted-source-record)
= cons(mk-rel(d)((EQ ,pound(target-record),dotted-source-record)),

assign-record-au x
(components(d))((target-record,second (dotted-source-record))))

assign-record-aux(comp")(target-record,source-record-name)
= (null(comp*)—» e,

let (id,d) = hd(comp*) in
nconc

(assign

(d)
((mk-recelt(target-record,id),dot(mk-recelt(source-record-name,id)))),

assign-record-aux(tl(comp*))((target-record,source-record-name))))

assign-record-fields(comp*)(target-record, source-fields)
= (null(comp*)—* e,

let (id,d) = hd(comp*) in
nconc

(assign(d)((mk-recelt (target-record, id), second(assoc(id, source-fields)))),
assign-record-fields(tl (comp*)) ((target-record,source-fields))))

mk-recelt(e)(id) = (RECORD ,e,id)

gen-scalar-signal-decl-id+(decl)(id+)(d)(expr)(t)(p)(u)(v)(stk)
= R[expr](t)(p)(k)(v)(8tk)

where
k = A(e,f),vi,stki.

let z = hd(p)
and signal-suqn+ = get-qids(id+)(t)(p) in

let driver-suqn"1" = name-drivers(signal-suqn+) in
let suqn+ = append(signal-suqn+,driver-suqn+) in

let v2 = push-universe(vi)(z)(suqn+) in
let signal-duqn+ = get-qualified-ids(signal-suqn+)(v2)

and driver-duqn+ = get-qualified-ids(driver-suqn+)(v2) in
let duqn+ = append(signal-duqn+,driver-duqn+) in

(mk-decl-sd
(z)(f)(e)((z))
(nconc

(mk-qual-id-coverings(suqn +)(duqn+)(z)(v)(t),
mk-scalar-signal-dec-post

(decl)((duqn+ ,signal-duqn+ ,driver-duqn+ ,e,d))(t)(p)(u)
(v2)(stk))))

146

name-drivers(signal-names)
= (null(signal-names)—► e,

cons(name-driver(hd(signal-names)),name-drivers(tl(signaJ-names))))

mk-scalar-signa]-dec-post(decl)(duqn*,signaJ-duqn*,driver-duqn*,e,d)(t)(p)(u)(v)(stk)
= let sigtype-spec = mk-sigtype-spec(d)(t)(p)

and waveform-type-spec = (TYPE ,WAVEFORM ,mk-type-spec(d)(t)(p))
and precondition = mk-constraint-guards((e))((d))(t)(p)(v)(stk) in

nconc
(mk-scalar-signal-dec-post-declare

(signal-duqn*)(driver-duqn*)(sigtype-spec)(waveform-type-spec),
u,(v)(stk))

where
Ui = Avi ,stki.

(mk-decl-sd
(hd(p))(precondition)(e)(duqn*)
(nconc

(mk-scalar-signal-dec-post-init
(signal-duqn*)(driver-duqn*)(e)(d)(waveform-type-desc(d)),

u(v,)(Stk,))))

mk-scalar-signal-dec-post-declare(signaJ-duqn*)(driver-duqn*) (sigtype-spec) (waveform-type-spec)
= (null(signal-duqn*)—► e,

let signal-duqn = hd(signal-duqn')
and driver-duqn = hd(driver-duqn') in

nconc
(mk-scalar-signal-decl

((signal-duqn,driver-duqn))((sigtype-spec, waveform-type-spec)),
mk-scalar-signal-dec-post-declare

(tl(signal-duqn*))(tl(driver-duqn*))(sigtype-spec)(waveform-type-spec)))

mk-scalar-signal-decl(signal-name,driver-name)(sigtype-spec, waveform-type-spec)
= (mk-scalar-decl(signal-name,sigtype-spec),

mk-scalar-decl(driver-name, waveform-type-spec))

mk-scalar-signal-fn-decl (signal-name,driver-name)
= (DECLARE ,signal-name,(TYPE ,FN ,(VAL ,dot(driver-name),dot(VHDLTIME))))

waveform-type-desc(type-desc) = <WAVEFORM ,e,*WAVE* .(STANDARD) ,tt,type-desc>

mk-scalar-signal-dec-post-init (signal-duqn*)(driver-duqn*)(e)(type-desc)(waveform-type-desc)
= (null(signal-duqn*) —► e,

let signal-duqn = hd(signal-duqn*)
and driver-duqn = hd(driver-duqn') in

let initial-signal-val = (null(e)-^ eval-expr(dot(signal-duqn)), e) in
let initial-waveform = init-scalar-signal

(signal-duqn)(driver-duqn)(type-desc)
(initial-signal-val) in

nconc
(assign(waveform-type-desc)((driver-duqn, initial- waveform)),
mk-scalar-signal-dec-post-init

(tl(signal-duqn*))(tl(driver-duqn*))(e)(type-desc) (waveform-type-desc)))

147

gen-array-decl(decl)
(object-class)(id+)(type-desc)(direction)(lower-bound)(upper-bound)(element-type-desc)(expr)

(t)(p)(u)(v)(stk)
= (null(expr)

— gen-array-decl-id+
(decl)(object-class)(id+)(type-desc)(direction)(lower-bound)(upper-bound)
(element-type-desc)(expr)(t)(p)(u)(v)(stk),

gen-array-decl-id*
(decl)(object-class)(id+)(type-desc)(direction)(lower-bound)(upper-bound)
(element-type-desc)(expr)(t)(p)(u)(v)(stk))

real-lb(d)
= let bound = lb(d) in

(is-num-lit?(bound)-^ bound,
(REF ,((SREF ,path(d),mk-tick-low(idf(d))))))

real-ub(d)
= (path(d)= (STANDARD) A idf(d)€ (STRING BIT.VECTOR) - e,

let bound = ub(d) in
(is-num-lit?(bound)—► bound,
(REF ,((SREF ,path(d),mk-tick-high(idf(d)))))))

mk-tick-low(id) = catenate(id,u,LOW")

mk-tick-high(id) = catenate(id,"'HIGH")

gen-array-decl-id+(decl)
(object-class)(id+)(type-desc)(direction)(lower-bound)(upper-bound)(element-type-desc)(expr)

(t)(p)(u)(v)(stk)
= (object-class = SIG

—► gen-array-signal-decl-id-f-
(decl)(id+)(type-desc)(direction)(lower-bound)(upper-bound)
(element-type-desc)(expr)(t)(p)(u)(v)(stk),

gen-array-nonsignal-decl-id+
(decl)(id+)(direction)(lower-bound)(upper-bound)(element-type-desc)(expr)
(t)(p)(u)(v)(stk))

gen-array-decl-id* (decl)
(object-class)(id*)(type-desc)(direction)(lower-bound)(upper-bound)(element-type-desc)(expr)

(t)(p)(u)(v)(stk)
= (null(id*)-> u(v,stk),

let id+ = (hd(id*)) in
gen-array-decl-id+

(decl)(object-class)(id+)(type-desc)(direction)(lower-bound)(upper-bound)
(element-type-desc)(expr)(t)(p)(ui)(v)(stk)

where
ui = Avi,stki.

gen-array-decl-id*
(decl)(object-class)(tl(id*))(type-desc)(direction)(lower-bound)
(upper-bound)(element-type-desc)(expr)(t)(p)(u)(vi)(stki))

gen-array-nonsignal-decl-id-f(decl)
(id+)(direction)(expri)(expr2)(element-type-desc)(expr)
(t)(p)(u)(v)(stk)

= E[exprl(t)(p)(k)(v)(stk)
where

148

k = A(e,f),vi,stk].
R[expri J(t)(p)(k1)(vi)(stk,)

where
kj = A(ei,fi),v2,stk2.

R[expr2 J(t)(p)(k2)(v2)(stk2)
where
k2 - A(e2,f2),v3,stk3.

let z = hd(p)
and len = length-expr(expr)
and suqn+ = get-qids(id+)(t)(p) in

let V4 = push-universe(v3)(z)(suqn+) in
let duqn+ = get-qualified-ids(suqn+)(v4) in

let g, = (ei A e2

—» mk-rel
(univint-type-desc(t))
((LE,e],e2)),

TRUE)
and g2 = (ei A e2

—► mk-rel
(univint-type-desc(t))
((GE,

mk-exp2
(ADD ,mk-exp2(SUB ,e2,ei),
l),len)),

TRUE) in
(mk-decl-sd

w
(nconc

(fi,f2,(gi),
(len =0^f, nconc((ga),f))))(e)((*))

(nconc
(mk-qual-id-coverings

(suqn+)(duqn+)(z)(v)(t),
mk-array-nonsigncil-dec-post

(decl)
((duqn+,e,direction,ei ,e2,element-type-desc))

(t)(P)(u)(v«)(stk3))))

length-expr(expr)
= (null(expr)—► 0,

hd(expr)G (BITSTR STR PAGGR) — length(second(expr)),

1)

mk-array-nonsignal-dec-post (decl)
(duqn*,e, direction, lower-bound, upper-bound ,element-type-desc)

(t)(p)(u)(v)(stk)
= let element-type-spec = mk-type-spec(element-type-desc)(t)(p) in

(null(e)
—+ nconc

(mk-array-nonsignal-dec-post-declare
(duqn*) (direction) (lower-bound) (upper-bound) (element-type-spec),

u(v)(stk)),
nconc

(mk-array-nonsignal-dec-post-declare
(duqn*) (direction)(lower-bound) (upper-bound) (element-type-spec),

ui(v)(stk))
where

149

uj = Avi ,stki.
(mk-decl-sd

(hd(p))(e)(e)(duqn*)
(nconc

((direction = TO
—► mk-array-nonsignal-dec-post-init-to

(duqn*)(e)(element-type-desc)(lower-bound),
mk-array-nonsignal-dec-post-init-downto

(duqn*)(e)(element-type-desc)(upper-bound)),
u(v1)(stk1)))))

mk-array-nonsignal-dec-post-declare(duqn*)(direction)(lower-bound) (upper-bound) (element-type-spec)
= (null(duqn')—> e,

let duqn = hd(duqn') in
nconc

(mk-vhdl-array-decl
(duqn)(direction)(lower-bound)
((null(upper-bound)

— (lower-bound = 1 — (RANGE ,duqn),
mk-exp2(SUB ,mk-exp2(ADD .(RANGE ,duqn),lower-bound),l)),

upper-bound)) (element-type-spec),
mk-array-nonsignal-dec-post-declare

(tl(duqn*))(direction)(lower-bound)(upper-bound)(element-type-spec)))

mk-vhdl-array-decl(id)(direction)(lower-bound)(upper-bound)(element-type-spec)
= (case second(element-type-spec)

BIT
-+ (mk-array-decl(id)(lower-bound)(upper-bound)(element-type-spec),

mk-bitvec-fn-decl(id)(direction)(lower-bound)(upper-bound)),
CHARACTER
—► (mk-array-decl(id)(lower-bound)(upper-bound)(element-type-spec),

mk-string-fn-decl(id)(direction)(lower-bound)(upper-bound)),
OTHERWISE
—► (mk-array-decl(id)(lower-bound)(upper-bound)(element-type-spec)))

mk-array-decl(id)(lower-bound)(upper-bound)(element-type-spec)
= (DECLARE ,id,(TYPE ,ARRAY ,lower-bound,upper-bound,element-type-spec))

mk-bitvec-fn-decl(bitvec-name)(direction)(lower-bound)(upper-bound)
= let bitvec-elt-names = (direction = TO

—► mk-slice-elt-names-to
(bit vec-name)(lower-bound) (upper-bound),

mk-slice-elt-names-downto
(bitvec-name)(lower-bound)(upper-bound)) in

(DECLARE ,bitvec-name,(TYPE ,FN ,concatenate-bits(bitvec-elt-names)))

mk-string-fn-decl(string-name)(direction)(lower-bound)(upper-bound)
= let string-elt-names = (direction = TO

—► mk-slice-elt-names-to
(string-name)(lower-bound)(upper-bound),

mk-slice-elt-names-downto
(string-name)(lower-bound)(upper-bound)) in

(DECLARE ,string-name,(TYPE ,FN ,concatenate-characters(string-elt-names)))

mk-slice-elt-names-to(slice-name)(lower-bound)(upper-bound)
= (lower-bound > upper-bound —► e,

cons(mk-array-elt (slice-name) (lower-bound),
mk-slice-elt-names-to(slice-name)(lower-bound-(-l)(upper-bound)))

150

mk-slice-elt-names-downto(slice-name) (lower-bound) (upper-bound)

= (upper-bound < lower-bound —► e,
cons(mk-array-elt (slice-name) (upper-bound),
mk-slice-elt-names-downto(slice-name) (lower-bound) (upper-bound — 1)))

mk-array-elt(id)(e) = (ELEMENT ,id,e)

concatenate-bits(bit-names) = cons(USCONC ,mk-dotted-names(bit-names))

concatenate-characters(char-names) = cons(ACONC ,mk-dotted-names(char-names))

mk-dotted-names(names)
= (null(names)—► c, cons(dot(hd(names)),mk-dotted-names(tl(names))))

mk-array-nonsignal-dec-post-init-to(duqn*)(e)(element-type-desc)(lower-bound)

= (null(duqn')—► e,

nconc
(assign-array-to(hd(duqn'))(e)(element-type-desc)(lower-bound)(0),

mk-array-nonsignal-dec-post-init-to

(tl(duqn*))(e)(element-type-desc) (lower-bound)))

mk-array-nonsignal-dec-post-init-downto(duqn*)(e)(element-type-desc) (upper-bound)

= (null(duqn*)—<■ e,
nconc

(assign-array-downto(hd(duqn*))(e)(element-type-desc)(upper-bound)(0),
mk-array-nonsignal-dec-post-init-downto

(tl(duqn*))(e)(element-type-desc)(upper-bound)))

gen-array-sign al-decl-id-l-(decl)
(id+)(type-desc)(direction)(expri)(expr2)(element-type-desc)(expr)

(t)(p)(u)(v)(stk)

= R[exPr](t)(p)(k)(v)(stk)
where
k = A(e,f),vi,stki.

R[expr,](t)(p)(k,)(v,)(stk,)
where
ki = A(ei,fi),v2,stk2.

RIexpr2l(t)(p)(k2)(v2)(stk2)
where
k2 = A(e2,f2),v3,stk3. ■

let z = hd(p)
and len = length-expr(expr)
and signal-suqn+ = get-qids(id+)(t)(p) in

let driver-suqn+ = name-drivers(signal-suqn+) in
let suqn+ = append(signal-suqn+,driver-suqn+) in

let V4 = push-universe(v3)(z)(suqn+) in
let signal-duqn+ = get-qualified-ids

(signal-suqn+)(v4)
and driver-duqn+ = get-qualified-ids

(driver-suqn+)(v4) in

let duqn+ = append
(signal-duqn+,driver-duqn+) in

let gi = (ei A e2

—► mk-rel
(univint-type-desc(t))

((LE ,ei,e2)),

151

TRUE)
and g2 = (ei A e2

—♦ mk-rel
(univint-type-desc(t))
((GE,

mk-exp2
(ADD ,
mk-exp2(SUB ,e2,e1),l),len)),

TRUE) in
(mk-decl-sd

to
(nconc

(fi,f2,(gi),
(len = 0 - f, nconc(f,(g2)))))(£)((z))

(nconc
(mk-qual-id-coverings

(suqn+)(duqn+)(z)(v)(t),
ink-array-signal-dec-post

(decl)
((duqn+ ,signal-duqn+ ,driver-duqn+ ,e,type-desc,direction,

ei,e2,element-type-desc))(t)(p)(u)
(v4)(stk3))))

mk-array-signal-dec-post(decl)
(duqn*,signal-duqn*,driver-duqn*,e,type-desc,
direction, lower-bound, upper-bound, element-type-desc)

(t)(p)(u)(v)(stk)
= let element-sigtype-spec = mk-sigtype-spec(element-type-desc)(t)(p)

and element-waveform-type-spec = mk-waveform-type-spec
(mk-type-spec(element-type-desc)(t)(p)) in

nconc
(mk-array-signal-dec-post-declare

(signal-duqn*)(driver-duqn*)(direction)(lower-bound)(upper-bound)
(element-sigtype-spec)(element-waveform-type-spec)(tt)(t)(p)(v)(stk),

u,(v)(stk))
where
ui = Avi ,stki.

(mk-decl-sd
(hd(p))(e)(£)(duqn-)
(nconc

(mk-array-signal-dec-post-init
(signal-duqn*)(driver-duqn*)(e)(type-desc)(direction)
(lower-bound)(upper-bound)(element-type-desc)
(waveform-type-desc(element-type-desc))(t)(p)(v)(stk),

u(v,)(stk,))))

ink- waveform- type-spec(type-spec)
= (case second(type-spec)

ARRAY —► append(rest (type-spec),(mk-waveform-type-spec(last(type-spec)))),
OTHERWISE — (TYPE .WAVEFORM ,type-spec))

mk-array-signal-dec-post-declare(signal-duqn*)(driver-duqn*)(direction)(lower-bound)(upper-bound)
(element-sigtype-spec)(element-waveform-type-spec)(fn-decls?)
(t)(p)(v)(stk)

= (null(signal-duqn')—► e,
let signal-duqn = hd(signal-duqn')

and driver-duqn = hd(driver-duqn') in

152

nconc
(mk-array-signal-decl

(signal-duqn)(driver-duqn) (direction) (lower-bound) (upper-bound)
(element-sigtype-spec)(element-waveform-type-spec)(fn-decls?)(t)(p)(v)
(stk),

mk-array-signal-dec-post-declare
(tl(signal-duqn*))(tl(driver-duqn*))(direction)(lower-bound)
(upper-bound)(element-sigtype-spec) (element- waveform- type-spec)
(fn-decls?)(t)(p)(v)(stk)))

mk-array-signal-decl (signal-name) (driver-name) (direction) (lower-bound) (upper-bound)
(element-sigtype-spec) (element- waveform- type-spec) (fn-decls?)
(t)(P)(v)(stk)

= nconc
(mk-vhdl-sigarray-decl

(signal-name) (direction) (lower-bound)
((null(upper-bound)

—► (lower-bound = 1 —♦ (RANGE ,signal-name),
mk-exp2(SUB ,mk-exp2(ADD ,(RANGE ,signal-name),lower-bound),1)),

upper-bound))(element-sigtype-spec) (fn-decls?),
(mk-array-decl

(driver-name) (lower-bound)
((null(upper-bound)

■^ (lower-bound = 1 —► (RANGE ,driver-name),
mk-exp2(SUB ,mk-exp2(ADD ,(RANGE ,driver-name),lower-bound),l)),

upper-bound)) (element-waveform-type-spec)))

mk-array-signal-elt-fn-decls (sign al-duqn)(driver-duqn)(element-type-desc) (lower-bound) (upper-bound)
(t)(p)(v)(stk)

= (is- array- tdesc?(element-type-desc)
—» let signal-elts = mk-slice-elt-names-to

(signal-duqn)(lower-bound)(upper-bound)
and driver-elts = mk-slice-elt-names-to

(driver-duqn)(lower-bound)(upper-bound) in
let expn = real-lb(element-type-desc) in
RJexpn](t)(p)(k,)(v)(stk)
where
ki = A(ei,fi),vi,stki.

let expr2 = real-ub(element-type-desc) in
R[expr2](t)(p)(k2)(v1)(stk1)
where
k2 = A(ea,f2),V2,stk2.

mk-array-signal-elt-fn-decls-aux
(signal-el ts)(driver-elts)(elty(element-type-desc))
(e1)(e2)(t)(p)(v2)(stk2),

let scalar-signal-elts = mk-slice-elt-names-to
(signal-duqn) (lower-bound) (upper-bound)

and scalar-driver-elts = mk-slice-elt-names-to
(driver-duqn)(lower-bound)(upper-bound) in

mk-scalar-signal-fn-decls(scalar-signal-elts,scalar-driver-elts))

mk-array-signal-elt-fn-decls-aux(signal-duqn*)(driver-duqn*)
(element-type-desc) (lower-bound) (upper-bound)
(t)(p)(v)(stk)

= (null(signal-duqn*)—► c,
let signal-duqn = hd(signal-duqn')

and driver-duqn = hd(driver-duqn') in

153

nconc
(mk-array-signal-elt-fn-decls

(signal-duqn)(driver-duqn)(element-type-desc)(lower- bound) (upper-bound)
(t)(p)(v)(stk),

mk-array-signal-elt-fn-decls-aux
(tl(signal-duqn*))(tl(driver-duqn*))(element-type-desc)(lower-bound)
(upper-bound)(t)(p)(v)(stk)))

mk-scalar-signa]-{n-decls(signal-names,driver-names)
= (null(signal-names)—* e,

cons(mk-scalar-signa]-fn-decl(hd(signal-names),hd(driver-names)),
mk-scalar-signal-fn-decls(tl(signal-names),tl(driver-names))))

mk-array-signal-dec-post-init(signal-duqn*)(driver-duqn*)(e)
(type-desc)(direction)(lower-bound) (upper-bound)
(element-type-desc)(element- waveform- type-desc)
(t)(p)(v)(8tk)

= (direction = TO
—► mk-array-signal-dec-post-init-to

(signal-duqn*)(driver-duqn*)(e)(type-desc)(lower-bound)(upper-bound)
(element-type-desc)(element-waveform-type-desc)(t)(p)(v)(stk),

mk-array-signal-dec-post-init-downto
(signal-duqn*)(driver-duqn*)(e)(type-desc)(lower-bound)(upper-bound)
(element-type-desc)(element-waveform-type-desc)(t)(p)(v)(stk))

mk-array-signal-dec-post-init-to(signal-duqn*)(driver-duqn*)(e)
(type-desc) (lower-bound) (upper-bound)
(elemen t-type-desc) (element-waveform-type-desc)
(t)(p)(v)(stk)

= (is-array-tdesc?(element-type-desc)
—► let expri = real-lb(element-type-desc) in

RJexpn](t)(p)(ki)(v)(stk)
where
ki = A(ei ,fi),vi,stki.

let expr2 = real-ub(element-type-desc) in
R[expr2l(t)(p)(k2)(v1)(stki)
where
k2 = A(e2,f2),v2,stk2.

mk-array-signal-dec-post-init-elt-arrays-to
(signal-duqn*)(driver-duqn*)(e)(type-desc)
(lower-bound) (upper-bound) (element-type-desc)
(direction(element-type-desc))(ei)(e2)(t)(p)(v2)(stk2),

mk-array-signal-dec-post-init-elt-scalars-to
(signal-duqn*)(driver-duqn*)(e)(type-desc)(lower-bound)(upper-bound)
(element- type-desc)(element-waveform-type-desc)(t)(p)(v)(stk))

mk-array-signal-dec-post-init-downto(signal-duqn*)(driver-duqn*)(e)
(type-desc) (lower-bound)(upper-bound)
(element-type-desc)(element-waveform-type-desc)
(t)(p)(v)(stk)

= (is-array-tdesc? (element-type-desc)
—* let expri = real-lb(element-type-desc) in

R[expr1l(t)(p)(k1)(v)(stk)
where
ki = A(ei,fi),vi,stki.

let expr2 = real-ub(element-type-desc) in
R[expr2l(t)(p)(k2)(v1)(stk1)

154

where
k2 - A(e2,f2),V2,stk2.

mk-array-signal-dec-post-init-elt-arrays-downto
(signal-duqn*) (driver-duqn*)(e)(type-desc)
(lower-bound) (upper-bound)(element-type-desc)
(direction(element-type-desc))(e])(e2)(t)(p)(v2)(stk2),

mk-array-signal-dec-post-init-elt-scalars-downto
(signal-duqn*)(driver-duqn*)(e)(type-desc)(lower-bound)(upper-bound)
(element-type-desc)(element-waveform-type-desc)(t)(p)(v)(stk))

mk-array-signal-dec-post-init-elt-arrays-to(signal-duqn*)(driver-duqn*)(e)
(type-desc) (lower-bound) (upper-bound)
(elt-type-desc)(elt-direction)(elt-lower-bound)(elt-upper-bound)
(t)(p)(v)(stk)

= (null(signal-duqn*)—<■ e,
let signal-duqn = hd(signaJ-duqn')

and driver-duqn = hd(driver-duqn') in
nconc

(let signal-elts = mk-slice-elt-names-to
(signal-duqn)(lower-bound)(upper-bound)

and driver-elts = mk-slice-elt-names-to
(driver-duqn)(lower-bound)(upper-bound) in

mk-array-signal-dec-post-init-aux
(signal-elts) (driver-elts) (e) (el t-type-desc)(elt-direction)
(elt-lower-bound)(elt-upper-bound) (el ty(elt-type-desc))
(waveform-type-desc(elty(elt-type-desc)))(t)(p)(v)(stk),

mk-array-signal-dec-post-init-elt-arrays-to
(tl(signal-duqn*))(tl(driver-duqn*))(tl(e))(type-desc) (lower-bound)
(upper-bound)(elt-type-desc) (el t-direction)(elt-lower-bound)
(elt-upper-bound)(t)(p)(v)(stk)))

mk-array-signal-dec-post-init-elt-arrays-downto(signal-duqn*)(driver-duqn*)(e)
(type-desc)(lower-bound) (upper-bound)
(elt-type-desc)(elt-direction)(elt-lower-bound)(elt-upper-bound)
(t)(p)(v)(stk)

= (null(signal-duqn*)—► e,
let signal-duqn = hd(signal-duqn')

and driver-duqn = hd(driver-duqn') in
nconc

(let signal-elts = mk-slice-elt-names-downto
(signal-duqn) (lower-bound) (upper-bound)

and driver-elts = mk-slice-elt-names-downto
(driver-duqn)(lower-bound)(upper-bound) in

mk-array-signal-dec-post-init-aux
(signal-elts) (driver-elts) (e) (el t-type-desc)(elt-direction)
(el t-lower-bound)(elt-upper-bound)(elty(elt-type-desc))
(waveform-type-desc(elty(elt-type-desc)))(t)(p)(v)(stk),

mk-array-signal-dec-post-init-elt- arrays-down to
(tl(signal-duqn*))(tl(driver-duqn*))(tl(e)) (type-desc) (lower-bound)
(upper-bound)(elt-type-desc)(elt-direction)(elt-lower-bound)
(elt-upper-bound)(t)(p)(v)(stk)))

mk-array-signal-dec-post-init-aux(signal-duqn*)(driver-duqn*)(e)
(type-desc) (direction) (lower-bound) (upper-bound)
(element-type-desc) (element-waveform-type-desc)
(t)(p)(v)(stk)

= (null(signal-duqn*)—► e.

155

let signal-duqn = hd(signal-duqn*)
and driver-duqn = hd(driver-duqn') in

nconc
(mk-array-signal-dec-post-init

((signal-duqn))((driver-duqn))(hd(e))(type-desc) (direction)
(lower-bound) (upper-bound)(element-type-desc)(element-waveform-type-desc)
(t)(p)(v)(stk),

mk-array-signal-dec-post-init-aux
(tl(signal-duqn*))(tl(driver-duqn*))(tl(e))(type-desc)(direction)
(lower-bound)(upper-bound) (element-type-desc) (element-waveform-type-desc)
(t)(p)(v)(Btk)))

mk-array-signal-dec-post-init-elt-scalars-to(signal-duqn*)(driver-duqn*)(e)
(type-desc) (lower-bound) (upper-bound)
(element-type-desc)(element-waveform-type-desc)
(t)(p)(v)(stk)

= (null(signal-duqn*)—► e,
let signal-duqn = hd(signal-duqn')

and driver-duqn = hd(driver-duqn*) in
let initial-waveforms = init-array-signal-to

(signal-duqn)(driver-duqn)(e)(type-desc)
(element-type-desc)(lower-bound)(upper-bound) in

nconc
(assign-array-to

(driver-duqn)(initial-waveforms)(element-waveform-type-desc)
(lower-bound) (0),

mk-array-signal-dec-post-init-elt-scalars-to
(tl(signal-duqn*))(tl(driver-duqn*))(e)(type-desc) (lower-bound)
(upper-bound)(element-type-desc)(element-waveform-type-desc)(t)(p)(v)

(stk)))

mk-array-signal-dec-post-init-elt-scalars-downto(signal-duqn*)(driver-duqn*)(e)
(type-desc) (lower-bound)(upper-bound)
(element-type-desc)(element- waveform- type-desc)
(t)(p)(v)(stk)

= (null(signal-duqn*)—► e,
let signal-duqn = hd(signal-duqn')

and driver-duqn = hd(driver-duqn*) in
let initial-waveforms = init-array-signal-downto

(signal-duqn)(driver-duqn)(e)(type-desc)
(element-type-desc)(lower-bound)(upper-bound) in

nconc
(assign-array-down to

(driver-duqn) (initial-waveforms)(element- waveform- type-desc)
(upper-bound) (0),

mk-array-signal-dec-post-init-elt-scalars-downto
(tl(signal-duqn*))(tl(driver-duqn*))(e)(type-desc)(lower-bound)
(upper-bound)(element-type-desc)(element-waveform-type-desc)(t)(p)(v)
(stk)))

(D7) D [ETDEC id id+.] (t)(p)(u)(v)(stk)
= (mk-decl-sd

(hd(p))(£)(e)(£)
(nconc(mk-etdec-post((id))(t)(p),u(v)(stk))))

mk-etdec-post(type-mark)(t)(p)
= let d = lookup-desc(type-mark)(t)(p) in

mk-enumlit-rels(d)(literals(d))

156

mk-enumlit-rels(d)(id*)
= (null(tl(id*)) — c,

let id, = hd(id*)
and id2 = hd(tl(id*)) in

cons(mk-rel(d)((PRED ,idi ,id2)),mk-enumlit-rels(d)(tl(id*))))

The translation of an enumeration type declaration emits an SDVS declaration of the enu-
meration type.

(D8) D I ATDEC id discrete-range type-mark J (t)(p)(u)(v)(stk)
= let (direction,expri ,expr2) = discrete-range in

let lower-bound = (direction = TO —► expri, expr2)
and upper-bound — (direction = TO —► expr2, expri) in

attributes-low-high
((id,lower-bound,upper-bound,(UNIVERSAL-INTEGER)))(t)(p)(u)(v)(stk)

attributes-low-high(id, lower-bound, upper-bound, attribute- type-mark)(t)(p)(u)(v)(stk)
= let decli = (DEC .SYSGEN ,(mk-tick-low(id)),attribute-type-mark,lower-bound)

and decl2 = (DEC ,SYSGEN ,(mk-tick-high(id)),attribute-type-mark,upper-bound) in
let decl+ = (decli,decl2) in
D[decl+](t)(p)(u)(v)(stk)

mk-tick-low(id) = catenate(id,"'LOW")

mk-tick-high(id) = catenate(id,"'HIGH")

An array type declaration declares and initializes the 'low and 'high array type attributes.

(D9) D I PACKAGE id decl* opt-id 1 (t)(p)(u)(v)(stk)
= D[decl*](t)(%(P)(id))(u)(v)(stk)

The declarations contained within a package are translated as usual, but in the package's
context in the TSE, via the extended path %(p)(id).

(D10) D [PACKAGEBODY id decl* opt-id 1 (t)(p)(u)(v)(stk)
= let pb-exit-desc = <*PACKAGE-BODY-EXIT* ,id,p,Av,s.u(v)(s)> in

D l decl*] (t)(%(p)(id))(ui)(v)(stk-push(pb-exit-desc)(stk))
where ui = Avi,stki.package-body-exit(vi)(stki)

package-body-exit(v)(stk)
= let <tg,qname,p,g> = hd(stk) in

(case tg
♦STKBOTTOM* -+ model-execution-complete(qname),
UNDECLARE — g(Avv,s.package-body-exit(vv)(s))(v)(stk),
(♦BEGIN*) —► package-body-exit(v)(stk-pop(stk)),
(♦PACKAGE-BODY-EXIT* ,*LOOP-EXIT* .»SUBPROGRAM-RETURN*) — g(v)(stk-pop(stk)),
OTHERWISE
—► impl-error("Unknown execution stack descriptor with tag: ~a",tg))

The declarations contained in a package body are translated in the package's context in
the TSE, via the extended path %(p)(id). A *PACKAGE-BODY-EXIT* descriptor
is first pushed onto the execution stack to prevent the package's declarations from being
unelaborated when the package body is exited.

157

(DU) D I PROCEDURE id proc-par-spec*] (t)(p)(u)(v)(stk) = u(v)(stk)

(D12) D I FUNCTION id func-par-spec* type-mark] (t)(p)(u)(v)(stk) = u(v)(stk)

(D13) D I SUBPROGBODY subprog-spec decl* seq-stat* opt-id] (t)(p)(u)(v)(stk)

= u(v)(stk)

Subprogram declarations need no Phase 2 translation, nor do subprogram bodies.

(D14) D I USE dotted-name+ J (t)(p)(u)(v)(stk) = u(v)(stk)

The effect of USE clauses has already been recorded in the TSE during Phase 1; no further
Phase 2 translation is necessary.

(D15) D [STDEC id type-mark opt-discrete-range } (t)(p)(u)(v)(stk)

= let z = hd(p)
and subtype-desc = lookup-desc-on-path(t)(p)(id) in

let basetype-desc = base-type(subtype-desc) in
let exprj = type-tick-low(basetype-desc)

and expr2 = type-tick-low(subtype-desc)
and expr3 = type-tick-high(subtype-desc)
and expr4 = type-tick-high(basetype-desc) in

Rjexpr, l(t)(p)(kO(v)(stk)

where
ki = A(ei,fi),vi,stki.

RIexpr2](t)(p)(k2)(v1)(stk1)

where

k2 = A(e2,f2),V2,stk2.
R[expr3](t)(p)(k3)(v2)(stk2)
where

k3 = A(e3,f3),v3,stk3.
R[expr4](t)(p)(k4)(v3)(stk3)

where
k4 = A(e4,f4),v4)stk4.

(mk-decl-sd

(z)
(nconc

((e.
—<• (mk-rel

(basetype-desc)

((LE,e,,e2))),

e),
(e4

—+ (mk-rel
(basetype-desc)
((LE ,e3,e4))),

e)))(e)(e)

(u,(v4)(stk4)))
where

ui = Av5,stk5.
attributes-low-high

((id,expr2,expr3,
(idf(basetype-desc))))(t)(p)(u)

(v5)(stk5)

158

The Phase 2 semantics of subtype declarations generates a state delta with guards in the
precondition to ensure that the subtype range falls within the range of allowable values
for the subtype's base type. Assuming this holds, the continuation in the state delta's
postcondition performs the Phase 2 processing of declarations and initializations for the
'low and 'high attributes representing the subtype bounds.

(D16) D [ITDEC id discrete-range] (t)(p)(u)(v)(stk)
= let z = hd(p)

and integer-type-desc = lookup-desc-on-path(t)(p)(id) in
let expri = type-tick-low(integer-type-desc)

and expr2 = type-tick-high(integer-type-desc) in
attributes-low-high

((id.expr,,expr2,(UNIVERSALJNTEGER)))(t)(p)(u)(v)(stk)

The Phase 2 semantics of integer type declarations simply processes declarations and ini-

tializations for the 'low and 'high attributes representing the integer type bounds.

(D17) D I COMPONENT id decl* decl* phasel-hook J (t)(p)(u)(v)(stk) = u(v)(stk)

8.4.9 Concurrent Statements

(CSO) CS [e J (t)(p)(u)(v)(stk) = u(v)(stk)

(CS1) CS fl conc-stat conc-stat*] (t)(p)(u)(v)(stk)
= CS I conc-stat 1 (t)(p)(ui)(v)(stk)

where m = Av.stk.CS [conc-stat*] (t)(p)(u)(v)(stk)

A list of concurrent statements is translated in order, from first to last.

(CS2) CS J BLOCK id decl* conc-stat* opt-id phasel-hook J (t)(p)(u)(v)(stk)
= let pi = %(p)(id) in

D[decl*l(t)(Pl)(u1)(v)(stk)
where U] = Avi.stki .CS f conc-stat*] (t)(pi)(u)(vi)(stki)

(CS3) CS J PROCESS id decl* seq-stat* opt-id phasel-hook] (t)(p)(u)(v)(stk)
= let process-qid = qid(lookup(t)(p)(id))

and pi = %(p)(id) in
(mk-decl-sd

(hd(p))(e)(£)(£)
((make-vhdl-process-elaborate

(process-qid)(t)(pi)(seq-stat*)(ui)(v)(stk))))
where u, = Av.stk.D [decl*] (t)(p,)(u)(v)(stk)

159 I
i

I

8.4.10 Sequential Statements

(550) SS II e] (t)(p)(c)(v)(stk) = c(v)(stk)

(551) SS [[seq-stat seq-stat*] (t)(p)(c)(v)(stk)
= SS [seq-stat] (t)(p)(ci)(v)(stk)

where d = Av,stk.SS [seq-stat*] (t)(p)(c)(v)(stk)

A list of sequential statements is translated in order, from first to last.

(552) SS [NULL atmark] (t)(p)(c)(v)(stk)
= ((EQ ,pound(catenate(hd(p),"\pc")),atmark),

mk-sd(hd(p))(£)(e)(e)(c(v)(stk)))

NULL statements have no effect.

(553) SS I VARASSN atmark ref expr] (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let d = T[ref 1 (t)(p) in
E[refl(t)(p)(k,)(v)(stk)
where
ki = A(ei,fi),v,stk.

R|[expr](t)(p)(k2)(v)(stk)
where
k2 = A(e2,f2),v,stk.

let precondition = nconc
(mk-constraint-guards

((e2))((d))(t)
(p)(v)(stk),f,,fa) in

(mk-sd
(hd(p))(precondition)(e)((ei))
(nconc

(assign(d)((ei ,e2)),
C(v)(8tk)))))

assign(d)(target, value)
= (case tag(d)

(*BOOL* ,*BIT* ,*INT* ,*REAL* ,*TIME* ,*VHDLTIME* ,*ENUMTYPE* ,*WAVE* ,*VOID* ,
POLY)

—<• (mk-rel(d)((EQ ,pound(target),value))),
♦SUBTYPE* -» assign(base-type(d))((target,value)),
INT_TYPE — assign(parent-type(d))((target,value)),
ARRAYTYPE
—* (is-bitvector-tdesc?(d)

—<• (is-constant-bitvector?(value)
—► (case direction(d)

TO
—► assign-array-to

(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—* assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,

160

mk-exp2(ADD .(ORIGIN .target),(RANGE ,target)), 1))(0),
OTHERWISE-* impl-error("Illegal direction: ~a",direction

(d))),
(mk-rel(d)((EQ ,pound(target),value)))),

is-string-tdesc?(d)
—<■ (is-constant-string?(value)

—► (case direction(d)
TO
—► assign-array-to

(target)(value)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—► assign-array-downto

(target)(value)(elty(d))
(mk-exp2

(SUB ,
mk-exp2(ADD ,(ORIGIN .target),(RANGE ,target)),1))(0),

OTHERWISE^ impl-error("Illegal direction: "a".direction
(d))),

(mk-rel(d)((EQ ,pound(target),value)))),
(dotted-expr-p(value)—► (mk-rel(d)((EQ ,pound(target),value))),
(case direction(d)

TO — assign-array-to(target)(vaJue)(elty(d))((ORIGIN ,target))(0),
DOWNTO
—► assign-array-downto

(target)(value) (elty(d))
(mk-exp2

(SUB ,mk-exp2(ADD ,(ORIGIN ,target),(RANGE ,target)),
1))(0),

OTHERWISE^ impl-error("Illegal direction: ~a",direction(d))))),
♦RECORDTYPE*
—* (dotted-expr-p(value)—► assign-record(d)((target,value)),

assign-record-fields(components(d))((target, value))),
OTHERWISE -*• impl-error("Unrecognized Stage 4 VHDL type tag: ~a",tag(d)))

The translation of a variable assignment statement first translates its left and right parts,
obtaining translated expressions and guard formulas. Note that the left part is translated
by E and is therefore not dereferenced (by application of the dot function), as it would be if
R were used instead. The precondition of the generated state delta consists of the combined
lists of guard formulas, and its mod list is the translated left part. Its postcondition asserts
the new value of the left part place, and then asserts succeeding state deltas by appropriately
using the continuation c. Assignments in Stage 4 VHDL can be scalar or can assign entire
arrays. Entire array assignments are asserted element by element via auxiliary semantic
function array-signal-assignment.

(SS4) SS [SIGASSN atmark delay-type ref waveform] (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let d = T[ref J(t)(p) in
(case tag(d)

(*BOOL* ,*BIT* ,*INT* ,*REAL* ,*TIME* ,*ENUMTYPE* ,*SUBTYPE* ,
INT_TYPE)

—► scalar-signal-assignment
(seq-stat)(delay-type)(ref)(waveform)(d)(t)(p)(c)(v)(stk),

ARRAYTYPE
—► array-signal-assignment

161

(atmark)(delay-type)(ref)(waveform)(t)(p)(c)(v)(stk),

OTHERWISE
—<• impl-error

("Signal assignment not implemented for object ",ref,

" 01 type ",d)))

scalar-signal-assignment(seq-stat)(delay-type)(ref)(waveform)(d)(t)(p)(c)(v)(stk)

= E[ref](t)(p)(k)(v)(stk)

where
k = A(signal-name,guard),v,stk.

let driver-name = name-driver(signal-name) in
W [waveform J (d)(t)(p)(wave-cont)(v)(stk)

where
wave-cont = A(trans*,guard*),v,stk.

let all-guards = nconc(guard,guard*) in
(delay-type = TRANSPORT

—► (mk-sd
(hd(p))(all-guards)(e)((driver-name))

(nconc
(assign

(waveform-type-desc(d))
((driver-name,

mk-transport-update
(dot(driver-name))(trans*))),

c(v)(stk)))),
let earliest-new-transaction = hd(trans') in

(mk-sd
(hd(p))
(cons(mk-preemption

(dot(driver-name))
(earliest-new-transaction),all-guards))(e)((driver-name))

(nconc
(assign

(waveform-type-desc(d))
((driver-name,

mk-inertial-update
(dot(driver-name))(trans*))),

c(v)(stk))),
mk-sd

(hd(p))
(cons(mk-not

(mk-preemption
(dot(driver-name))
(earliest-new-transaction)),

all-guards)) (£)((driver-name))

(nconc
(assign

(waveform-type-desc(d))
((driver-name,

mk-inertial-update
(dot(driver-name))(trans*))),

c(v)(stk)))))

waveform-type-desc(type-desc) = <WAVEFORM ,e,*WAVE* .(STANDARD) ,tt,type-desc>

mk-transport-update(dot-driver)(trans*)
= cons(TRANSPORT_UPDATE ,cons(dot-driver,trans*))

162

mk-preemption (dot-driver) (transaction)
= (PREEMPTION ,dot-driver,transaction)

mk-inertial-update(dot-driver)(trans*)
= cons(INERTIAL_UPDATE ,cons(dot-driver,trans*))

mk-not(e) = (NOT ,e)

array-signal-assignment(atmark)(delay-type)(ref) (waveform) (t)(p)(c)(v)(stk)
= let seq-stat+ = cascade-array-signal-assignment

(atmark)(delay-type)(ref)(waveform)(t)(p)(c)(v)(stk) in
SS I seq-stat+] (t)(p)(c)(v)(stk)

cascade-array-signal-assignment(atmark)(delay-type)(ref)(agg-wave)(t)(p)(c)(v)(stk)
= let array-refs = mk-array-refs(ref)(t)(p)(c)(v)(stk)

and element-waves = mk-element-waves(agg-wave)(t)(p)(c)(v)(stk) in
mk-scalar-signal-assignments(atmark)(delay-type)(array-refs)(element-waves)

mk-scalar-signal-assignments(atmark)(delay-type)(array-refs)(element-waves)
= (null(array-refs)—► e,

cons((SIGASSN ,atmark,delay-type,hd(array-refs),hd(element-waves)),
mk-scalar-signal-assignments

(atmark)(delay-type)(tl(array-refs))(tl(element-waves))))

mk-array-refs(ref)(t)(p)(c)(v)(stk)
= let d =T [ref] (t)(p) in

let direction = direction(d)
and expri = lb(d)
and expr2 = ub(d) in

RIexpn](t)(P)(k,)(v)(stk)
where
ki = A(ei,fi),vi,stki.

RJexprj l(t)(p)(k2)(v1)(stk1)
where
k2 = A(ej,f2),v2,stk2.

let sref = hd(second(ref))
and indices = (direction = TO

—-► gen-ascending-indices(ei)(e2),
gen-descending-indices(ei)(e2)) in

mk-array-refs-aux(sref)(indices)

gen-ascending-indices(min)(max)
= (min > max —<• e, cons(min,gen-ascending-indices(min-)-l)(max)))

gen-descending-indices(min)(max)
= (max < min —► e, cons(max,gen-descending-indices(min)(max—1)))

mk-array-refs-aux(sref) (indices)
= (null(indices)—► e,

cons((REF ,(sref,(INDEX ,(NUM ,hd(indices))))),
mk-array-refs-aux(sref)(tl(indices))))

mk-element-waves(agg-wave)(t)(p)(c)(v)(stk)
= let aggregate-transactions = second(agg-wave) in

let element-transaction-lists = mk-element-transaction-lists
(aggregate-transactions)(t)(p)(c)(v)(stk) in

mk-element- waves- aux(element- transaction-lists)

163

mk-element-transaction-lists(aggregate-transactions)(t)(p)(c)(v)(stk)
= (nuU(aggregate-transactions)—► e,

cons(mk-transaction-list(hd (aggregate-transactions))(t)(p)(c)(v)(stk),
mk-element-transaction-lists(tl(aggregate-transactions))(t)(p)(c)(v)(stk)))

mk-transaction-list(agg-trans)(t)(p)(c)(v)(stk)
= let agg-value-expr = second(agg-trans)

and time-expr = third(agg-trans) in
let element-value-exprs = (case hd(agg-value-expr)

REF
—♦ mk-array-refs(agg-value-expr)(t)(p)(c)(v)(stk),
(BITSTR ,STR ,PAGGR) — hd(tl(agg-value-expr)),
OTHERWISE
—♦ impl-error

("Illegal aggregate in transaction: ",
agg-value-expr)) in

mk-simultaneous-transactions(element-value-exprs)(time-expr)

mk-simultaneous-transactions(expr*)(time-expr)
= (null(expr')—> e,

cons((TRANS ,hd(expr*),time-expr),
mk-simultaneous-transactions(tl(expr*)) (time-expr)))

(SS5) SS I IF atmark cond-part+ else-part] (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let seq-stat* = else-part in
gen-if(cond-part+)(seq-stat*)(seq-stat)(t)(p)(c)(v)(stk))

gen-if(cond-part*)(seq-stat*)(ifclause)(t)(p)(c)(v)(stk)
= (null(cond-parf)— SS [seq-stat*] (t)(p)(c)(v)(stk),

let (expr,seq-stat*) = hd(cond-part') in
R[expr](t)(p)(k)(v)(stk)
where
k = A(e,f),vi,stki.

(mk-sd
(hd(p))(cons(e,f))(e)(e)
(let ci = Av2,stk2.SS [seq-stat* J (t)(p)(c)(v2)(stk2) in

ci(vj)(stki)),

mk-sd
(hd(p))(cons(mk-not(e),f))(e)(e)
(let C2 = Av3,stk3.

gen-if
(tl(cond-part*))(seq-stat*)(e)(t)(p)(c)(v3)(stk3) ill

ca(v,)(stki))))

The abstract syntax of a Stage 4 VHDL IF statement consists of a finite, nonempty list of
cond-parts followed by a (possibly empty) else-part. Each cond-part corresponds to an
IF expr THEN seq-stats or an ELSIF expr THEN seq-stats construct in the concrete
syntax. Thus each cond-part must be translated into two state deltas: one for the case
where expr evaluates to true and the other where it evaluates to false. The translation is
performed by auxiliary semantic function gen-if, which takes as arguments (among others):
the cond-part list and the seq-stats comprising the else-part. Successive recursive calls
of gen-if process the first element of their cond-part list, reducing it to empty. When the
cond-part list is empty, gen-if produces the translation of the else-part. The function
mk-not constructs the logical negation of its argument.

164

(SS6) SS I CASE atmark expr case-alt+ J (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

RIexpr](t)(p)(k)(v)(stk)
where
k = A(e,f),v,stk.

let d = T [expr 1 (t)(p) in
gen-case(£)(d)((e,f))(case-alt+)(t)(p)(c)(v)(stk))

gen-case(g)(d)(e,f)(case-alt*)(t)(p)(c)(v)(stk)
= (null(case-alt*)—» e,

let (h,sd) =gen-alt(g)(d)((e,f))(hd(case-alt*))(t)(p)(c)(v)(stk) in
cons(sd,gen-case(append(g,h))(d)((e,f))(tl(case-alt*))(t)(p)(c)(v)(stk)))

gen-alt(g)(d)(e,f)(case-alt)(t)(p)(c)(v)(stk)
— let case-alt-tag = hd(case-alt) in

(case-alt-tag = CASEOTHERS
—» let seq-stat* = hd(tl(case-alt)) in

let d = Avi,stki.SSI seq-stat*] (t)(p)(c)(vi)(stki) in

(=,
mk-sd

(hd(p))(append(f,(mk-not(mk-ors(g)))))(e)(£)
(c,(v)(stk))),

let (case-set,seq-stat*) = tl(case-alt) in
let ci = Avi.stki.SS [seq-stat* I (t)(p)(c)(vi)(stki) in
let h = append(f,gen-guard(case-set)(d)(e)(t)(p)) in

(h,mk-sd(hd(p))(h)(e)(e)(c,(v)(stk))))

mk-ors(disjs)
= (case length(disjs)

1 —' hd(disjs),
2 — mk-or(hd(disjs))(hd(tl(disjs))),
OTHERWISE — mk-or(hd(disjs))(mk-ors(tl(disjs))))

mk-or(el,e2)
= (null(el)— e2,

null(e2)— el,
consp(el)A consp(e2)
- (hd(el)= OR

— (hd(e2)= OR — cons(OR ,append(tl(el),tl(e2))), append(el,(e2))),
hd(e2)= OR — nconc((OR ,el),tl(e2)),
(OR ,el,e2)),

(OR ,el,e2))

gen-guard(discrete-range*)(d)(e)(t)(p)
= (null(discrete-range')—► e,

let (direction,expri,expr2) = hd(discrete-range*) in
R I expr,](t)(p)(k,)(e)(e)
where
k] = A(ei ,fi),vi,stki.

(expri = expr2
— let h = nconc(fi,(mk-rel(d)((EQ ,e,ei)))) in

(null(tl(discrete-range*))—► h,
(cons(OR ,
cons(hd(h),gen-guard(tl(discrete-range*))(d)(e)(t)(p))))),

RIexpr2l(t)(p)(k2)(v1)(stki)
where
k2 = A(e2,f2),V2,stk2.

165

let h = nconc

(fl,f2,
(direction = TO
- ((AND ,mk-rel(d)((GE ,e,ei)),

mk-rel(d)((LE ,e,e2)))),
((AND ,mk-rel(d)((LE,e,e,)),

mk-rel(d)((GE ,e,e2)))))) in
(cons(OR ,
cons(hd(h),
gen-guard(tl(discrete-range*))(d)(e)(t)(p))))))

The abstract syntax of a CASE statement consists of a selector expression followed by a
finite, nonempty list of case alternatives. Each case alternative consists of a list of sequential
statements, preceded either by a nonempty list of discrete ranges (indicated by CASECHOICE)
or (for the last alternative only) by CASEOTHERS. Each of these discrete range lists represents
a set of values, called a case selection set. If the selector expression evaluates to one of these
values, then the corresponding sequential statement list is executed, after which control
passes to the successor of the CASE statement. CASEOTHERS represents a case selection set
that is the complement of the union of all of the other case selection sets relative to the set
of values in the selector expression's type. Phase 1 has ensured that no case selection sets

intersect.

The Phase 2 translation of a CASE statement first processes its selector expression, obtaining
a translated expression and a guard formula. The translation is completed by the function

gen-case, which takes the following arguments:

• a formula, initially empty, that is the disjunction of formulas representing the case
selection sets of case alternatives translated so far in this CASE statement — this for-
mula's negation represents the case selection set indicated by CASEOTHERS (if present)

in the CASE statement;

• the basic type of the selector expression (and the case selection set elements);

• the selector expression's translation and guard formula; and

• a list of case alternatives.

Each successive recursive call to gen-case processes the first element of its case alternative
list, reducing the list to empty, at which time processing terminates normally. Each case
alternative is processed by auxibary semantic function gen-alt, which returns a formula
representing the case selection set for that alternative and a state delta representing the
execution of the corresponding sequential statement list. This formula and state delta are
collected by gen-case; the final result returned by gen-case is a list of state deltas. The
function gen-guard converts discrete range lists into formulas representing case selection
sets. The function mk-or(formulai, formula2) constructs the logical disjunction of two
formulas; if one of the formulas is empty, then mk-or ignores it and returns the nonempty

one.

(SS7) SS [LOOP atmark id seq-stat* opt-id] (t)(p)(c)(v)(stk)

166

= let lp-desc = <*LOOP-EXIT* ,id,p,Av,s.c(v)(s)> in
let stki = stk-push(lp-desc)(stk) in

cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),
loop-infinite(seq-stat)(id)(seq-stat*)(t)(%(p)(id))(c)(v)(stki))

loop-infinite(seq-stat)(id)(seq-stat*)(t)(p)(c)(v)(stk)
= let ci = Av,stk.

SS [seq-stat*] (t)(p)(c2)(v)(stk)
where
c2 = Av,stk.

loop-infinite(seq-stat)(id)(seq-stat*)(t)(p)(c)(v)(stk) in
(mk-sd(hd(p))(e)(£)(e)(Cl(v)(stk)))

(SS8) SS [WHILE atmark id expr seq-stat* opt-id] (t)(p)(c)(v)(stk)
= let lp-desc = <*LOOP-EXIT* ,id,p,Av,s.c(v)(s)> in

let stko = stk-push(lp-desc)(stk) in
cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),
loop-while(seq-stat)(id)(expr) (seq-stat*)(t)(%(p)(id))(c)(v) (stko))

loop-while(seq-stat)(id)(expr)(seq-stat*)(t)(p)(c)(v)(stk)
= R[exprJ(t)(p)(k)(v)(stk)

where
k = A(e,f),v,stk.

let ci = Av,stk.
SS [seq-stat*] (t)(p)(c2)(v)(stk)

where
c2 = Av,stk.

loop-while
(seq-stat)(id)(expr)(seq-stat*)(t)(p)(c)(v)
(stk) in

(mk-sd
(hd(P))(cons(e,f))(e)(e)(c1(v)(stk)),

mk-sd
(hd(p))(cons(mk-not(e),f))(e)(e)
(c(v)(stk-pop(stk))))

(SS9) SS [FOR atmark id ref discrete-range seq-stat* opt-id] (t)(p)(c)(v)(stk)
= let d = T [ref J (t)(p) in

let lp-desc = <*LOOP-EXIT* ,id,p,
Av,s.c(v)(s)> in

let stko = stk-push(lp-desc)(stk) in
let (direction,expri ,expr2) = discrete-range in

cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),
R I expr,](t)(p)(k,)(v)(stk0)

where
ki = A(e1,f1),v],stki.

R[expr2l(t)(p)(k2)(v1)(stkI)

where
k2 = A(e2,f2),v2,stk2.

let bk-desc = <*BLOCK-EXIT* ,id,p,Av,s.c(v)(s)> in
let decl = (DEC ,CONST ,

(last(hd(hd(tl(ref))))),
(hd(d)),hd(tl(discrete-range))) in

D[decl](t)(%(p)(id))(u)(v2)
(stk-push(bk-desc)(stk2))

167

where
u = Av3,stk3.

let bg-desc = <*BEGIN* ,id,%(p)(id),
Av,s.ci(v)(s)> in

(mk-sd
(hd(p))(nconc(f1,f2))(£)(£)
((case tag(d)

INT
—* let final-iter-val = eval-expr

(e2) in
loop-for-int

(seq-stat)(ref)(d)
(direction)
(final-iter-val)
(seq-stat*)(t)(%(p)(id))(c1)

(V3)
(stk-push(bg-desc)(stk3)),

♦ENUMTYPE*
—♦ let initial-iter-val = eval-expr

(e.)
and final-iter-val = eval-expr

(e2)
and enum-lits = literals

(d) in
let parameter-updates = tl(get-loop-enum-param-vals

(initial-iter-val)
(final-iter-val)
(direction)
(enum-lits)) in

loop-for-enum
(seq-stat)(ref)(d)
(direction)
(parameter-updates)
(final-iter-val)
(seq-stat*)(t)(%(p)(id))
(C)(v3)
(stk-push

(bg-desc)(stk3)),
OTHERWISE
—► impl-error

("Illegal FOR loop parameter type: "a",

d))))
where
C] = Av4,stk4.

block-exit(v4)(stk4))

loop-for-int(seq-stat)(ref)(d)(direction)(final-iter-val)(seq-stat*)(t)(p)(c)(v)(stk)
= E[ref](t)(p)(k)(v)(stk)

where
k = A(e,f),v,stk.

RIrefl(t)(p)(k1)(v)(stk)
where
ki = A(ei,fi),vi,stki.

let Co = Avo,stko.
SS [seq-stat*] (t)(p)(ci)(v0)(stk0)

where
Ci = Av2,stk2.

168

(mk-sd
(hd(p))(e)(e)((e))
(cons(mk-rel

(d)
((EQ ,pound(e),

(direction = TO
— mk-exp2(ADD ,ei,l),
mk-exp2(SUB ,e,,l)))),

loop-for-int
(seq-stat)(ref)(d)(direction)
(finai-iter-val)(seq-stat*)(t)
(p)(c)(v2)(stk2)))) in

(mk-sd
(hd(p))
(cons(mk-rel

(d)
(((direction = TO - LE , GE),ei,final-iter-val)),fi))(£)(e)(c0(v1)(stki)),

mk-sd
(hd(p))
(cons(mk-rel

(d)
(((direction = TO — GT , LT),ei,rinal-iter-val)),f,))(e)(e)

(c(v,)(stk,)))

loop-for-enum(seq-stat)(ref)(d)(direction)(parameter-updates)(iinal-iter-val)(seq-stat*)(t)(p)(c)(v)(stk)

= E[ref](t)(p)(k)(v)(5tk)
where
k = A(e,f),v,stk.

REref](t)(p)(k,)(v)(stk)
where
ki = A(ei,fi),vi,stki.

let co = AvojStkp.
SS [seq-stat* J (t)(p)(ci)(v0)(stko)

where
d = Av2,Stk2.

(parameter-updates
—♦ (mk-sd

(hd(p))(£)(e)((e))
(cons(mk-rel

(d)
((EQ ,pound(e),

hd(parameter-updates))),
loop-for-enum

(seq-stat)(ref)(d)
(direction)
(tl(parameter-updates))
(final-iter-val)(seq-stat*)
(t)(p)(c)(v2)(stks)))),

(mk-sd

(hd(P))(e)(e)(0
(c(v2)(stk2)))) in

(mk-sd
(hd(p))
(cons(mk-rel

(d)
(((direction = TO — LE , GE),e1,final-iter-val)),fi))(e)(e)(co(v1)(stk1)),

mk-sd

169

(hd(p))
(cons(mk-rel

(d)
(((direction = TO — GT , LT),e1,final-iter-val)),f1))(e)(e)

(c(v,)(stk,)))

A loop — i.e., a LOOP, WHILE, or FOR statement — has a label (used for leaving that loop
by means of an EXIT statement) and a body consisting of sequential statements. When a
loop is entered, a new local environment is created (signified by an extended path in the
TSE), and a *LOOP-EXIT* descriptor is pushed onto the execution stack, to be used by
EXIT statements to leave the loop properly. The continuation in the descriptor is that of
the loop statement itself.

In the case of a simple LOOP statement, the loop is nonterminating, and a recursive state
delta is generated by auxiliary semantic function loop-infinite.

In the case of a WHILE statement, auxiliary semantic function loop-while first processes the
control expression, yielding its translation and a guard formula, and then uses these items
to generate two state deltas, one of which is recursive. The recursive state delta represents
the situation where the control expression is true and the loop's body is executed; recursion
stems from the appearance of loop-while in the continuation of the loop body's translation.
The execution stack remains unchanged in this case. The other state delta represents the
case where the loop is exited "naturally" by virtue of its control expression having the value
false. The postcondition of this state delta is the loop statement's continuation applied to
the result of popping the loop statement's descriptor from the execution stack.

The case of a FOR statement is analogous to that of the WHILE statement, only more complex

technically.

(SS10) SS [EXIT atmark opt-dotted-name opt-expr] (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let expr = opt-expr in
RJ expr] (t)(p)(k)(v)(stk)
where
k = A(e,f),vi,stki.

let loop-name = (null(opt-dotted-name)—» e,
last(opt-dotted-name)) in

(null(e)—► exit(loop-name)(vi)(stk),
(mk-sd

(hd(p))(cons(e,f))(e)(e)
(c1(v1)(stk1)

where ci = Av2,stk2.exit(loop-name)(v2)(stk2)),
mk-sd

(hd(p))(cons(mk-not(e),f))(e)(e)
(c(v,)(stk,)))))

exit (loop-name) (v)(stk)
= let <tg,id,p,g> = hd(stk) in

(case tg
LOOP-EXIT
—► (-inull(loop-name)A id ^ loop-name —+ exit(loop-name)(v)(stk-pop(stk)),

g(v)(stk-pop(stk))),
♦UNDECLARE* - g(Avv,s.exit(loop-name)(vv)(s))(v)(stk),

170

(♦BEGIN* ,*BLOCK-EXIT*) — exit(loop-name)(v)(stk-pop(stk)),
OTHERWISE— execution-error("*** EXECUTIOH ERROR — ILLEGAL EXIT ***"))

An EXIT statement:

• transfers control from the interior of a loop to the immediate successor of that loop,
provided that the EXIT statement's condition (if any) is satisfied; and

• adjusts the state of SDVS to reflect that transfer of control.

The loop being exited can be named in the EXIT statement; Phase 1 has ensured that an

appropriate label is used. If a loop is named, then that loop is exited. If no name appears,
then the smallest loop enclosing the EXIT statement is exited. The EXIT statement may be

enclosed within a system of nested loops. When the loop statement is exited, these other
loops must first be exited in the order opposite that in which they were entered. When a
FOR loop is exited, the effect of its implict local declaration of the iteration parameter is
reversed by encountering an *UNDECLARE* descriptor on the execution stack.

The translation of an EXIT statement first processes its control expression (which may be
empty), resulting in a translated expression and a guard formula. If the control expression
is nonempty, two state deltas are generated. The first represents the case where the control
expression has the value true; in this case the exit process proceeds by invoking the semantic
function exit, which appears in the state delta's postcondition. The other state delta
represents the case where the control expression has the value false, whereupon the exit
does not occur and control passes to the immediate successor of the EXIT statement. If the
control expression is empty, the exit is unconditional; the second state delta is not even

generated.

(SSll) SS I CALL atmark ref J (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let basic-ref = second(ref) in
let (tg,q,id) = hd(basic-ref) in

let d = t(q)(id) in
let expr* = second(second(basic-ref)) in

gen-call(ref)(d)(expr*)(tt)(ff)(t)(p)(c)(v)(stk))

gen-cal](ref)(d)(expr*)(gen-guards?)(no-unbirid?)(t)(p)(c)(v)(stk)
= let z = hd(p)

and q = %(path(d))(idf(d)) in
let (decr,seq-stat*) = body(d) in

bind-parameters(ref)(d)(expr*) (gen-guards?) (t)(p)(u)(v)(stk)
where
u = Avi ,stki.

let sp-desc = <*SUBPROGRAM-RETURN* ,idf(d),p,Av,s.c(v)(s)>
and par-desc = <*UNDECLARE* ,collect-allpars(extract-pars(d)(t)),p,

Aci,V4,Stk4.

(mk-sd
(z)(e)(0(=)
(cons((EQ ,pound(catenate(z,"\pc")),

(EXITED ,$(path(d))(idf(d)))),
unbind-parameters

171

(ref)(d)(expr*)(no-unbind?)(t)(p)(c1)
(v„)(stk4))),

mk-sd
(z)
(((EQ ,dot(catenate(z,"\pc")),

(EXITED ,$(path(d))(idf(d))))))(e)(£)
(unbind-parameters

(ref)(d)(expr*)(no-unbind?)(t)(p)(c1)(v4)
(stk4)))> in

let stk5 = stk-push(par-desc)(stk-push(sp-desc)(stki)) in
(mk-sd

(z)(e)(0(0
(cons((EQ ,pound(catenate(z,"\pc")),

(AT ,$(path(d))(idf(d)))),
u2(v,)(stk5))))

where
u2 = Av6,stk6.

(null(characterizations(d))
-D[decl*l(t)(q)(Ul)(v6)(stk6),
null(seq-stat')
—♦ gen-characterizations

(e)(p)(characterizations(d))(c2)(v6)(stk6)
where
C2 = Av7,Stk7-

unbind-parameters
(ref)(d)(expr*)(no-unbind?)(t)(p)(c3)
(v7)(stk7)

where c3 = Av8,stkg.block-exit(v8)(stk8),
impl-error

("Offline Characterization not yet implemented
for procedures with nonempty bodies !"))

where
ui = Av2,stk2-

let bg-desc = <*BEGIN* ,idf(d),q,Avv,s.ci(vv)(s)> in
SS [seq-stat*] (t)(q)(ci)(v2)(stk-push(bg-desc)(stk2))
where ci = Av3,stk3.block-exit(v3)(stk3)

gen-characterizations(sds)(p)(characterizations)(c)(v)(stk)
= (nuli(characterizations)—♦ fix-characterized-sds(sds)(c(v)(stk)),

let (q,id,parnames,pre,mod) = hd(characterizations) in
let post = sixth(hd(characterizations)) in

gen-characterizations
(cons(gen-characterization(hd(p))($(q)(id))(parnames)(pre)(mod)(post)(v),sds))
(p)(tl(characterizations))(c)(v)(stk))

gen-characterization(z)(qid)(parnames)(pre)(mod)(post)(v)
= let sd = mk-sd

(z)(((EQ ,dot(catenate(z,"\pc")),(AT ,qid))))(e)(mod)
(append

(post,((EQ ,pound(catenate(z,"\pc")),(EXITED ,qid))))) in
subst-vars(parnames)(v)(sd)

bind-parameters(ref)(d)(actuais)(gen-guards?)(t)(p)(u)(v)(stk)
= let z = hd(p)

and q = %(path(d))(idf(d))
and par-assoc-list = extract-pars(d)(t) in

(null(par-assoc-list)—> u(v)(stk),

172

let all-formals = get-qids(collect-allpars(par-assoc-list))(t)(q)
and to-formals = get-qids(collect-topars(par-assoc-list))(t)(q)
and type-descriptors = collect-topars-types(par-assoc-list)
and from-actuals = collect-fromargs(actuals)(par-assoc-list) in

let v0 = push-universe(v)(z)(all-formals) in
let qual-all-formals = get-qualified-ids(all-formals)(vo)

and quaJ-to-formals = get-qualified-ids(to-formals)(v0) in

(mk-decl-sd
(z)(e)(e)((z))
(nconc

(mk-qual-id-coverings(all-formals)(qual-all-formals)(z)(v)(t),

mk-par-decls(q)(par-assoc-list)(p)(t)(vo),
(null(qual-to-formals)—► u(v0)(stk),
let expr* = from-actuals in

MMexpr- 1 (t)(p)(h)(v0)(stk)
where

h = Ate'.n.VLstkj.
ui(vi)(stki)

where
ui = Av2,stk2.

let precondition = (gen-guards?
—► nconc

(mk-constraint-guards
(e*)(type-descriptors)
(t)(P)(v2)(stk2),r),

f*) in
(mk-decl-sd

(z)(precondition)(e)(qual-to-formals)
(nconc

(assign-multiple
(quaJ-to-formals)(type-descriptors)(e*),

u(v2)(stk2)))))))))

extract-pars(d)(t)
= let signatures = signatures(d) in

let signature = hd(signatures) in
(null(tl(signatures))—► pars(signature),
extract-poly-pars(pars(signature))(t))

extract-poly-pars(par-assoc-list)(t)
= (null(par-assoc-list)—► e,

let par = hd(par-assoc-list) in
cons((hd(par),(hd(second(par)),poly-type-desc(t))),
extract-poly-pars(tl(par-assoc-list))(t)))

collect-allpars(par-assoc-list)
= (null(par-assoc-list)—* e,

let (id,w) = hd(par-assoc-list) in
cons(id,collect-allpars(tl(par-assoc-list))))

collect-topars(par-assoc-list)
= (null(par-assoc-list)—•■ e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))£ (REF VAL)

—♦ cons(id,collect-topars(tl(par-assoc-list))),
collect-topars(tl(par-assoc-list))))

173

coUect-fromargs(actuals)(par-assoc-list)
= (null(par-assoc-list)—► e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))e (REF VAL)
—► cons(hd(actuals),collect-fromargs(tl(actuals))(tl(par-assoc-list))),
collect-fromargs(tl(actuals))(tl(par-assoc-list))))

collect-frompars(par-assoc-list)(p)
= (null(par-assoc-list)—<• e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))€ (REF OUT)
- cons((REF ,((SREF ,p,id))),

collect-frompars(tl(par-assoc-list))(p)),
collect-frompars(tl(par-assoc-list))(p)))

collect-toargs(actuals-ids)(par-assoc-list)
= (null(actuals-ids)—► e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))€ (REF OUT)

—> cons(hd(actuals-ids),collect-toargs(tl(actuals-ids))(tl(par-assoc-list))),
collect-toargs(tl(actuals-ids))(tl(par-assoc-list))))

collect-topars-types(par-assoc-list)
= (null(par-assoc-list)—* e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))e (REF VAL)
—► cons(tdesc(w),collect-topars-types(tl(par-assoc-list))),
collect-topars-types(tl(par-assoc-list))))

collect-toargs-types(actuals)(par-assoc-list)(t)(p)
= (null(actuals) —► e,

let (id,w) = hd(par-assoc-list) in
(ref-mode(tmode(w))6 (REF OUT)
—► let expr = hd(actuals) in

cons(T [expr J (t)(p),
collect-toargs-types(tl(actuals))(tl(par-assoc-list))(t)(p)),

collect-toargs-types(tl(actuals))(tl(par-assoc-list))(t)(p)))

collect-guards-for-exprs(expr*)(d*)(t)(p)(v)(stk)
= ME I expr* 1 (t)(p)(h)(v)(stk)

where h = A(e*,f*),v,stk.mk-constraint-guards(e*)(d*)(t)(p)(v)(stk)

mk-constraint-guards(e*)(d*)(t)(p)(v)(stk)
= (nulHe')— e,

let e = hd(e*)
and d = hd(d*) in

(-(tag(d)e (*INT* *SUBTYPE* *INT_TYPE*))
-» mk-constraint-guards(tl(e*))(tl(d*))(t)(p)(v)(stk),
(tag(d)= *INT* — mk-constraint-guards(tl(e*))(tl(d*))(t)(p)(v)(stk),
let dd = (tag(d)= *SUBTYPE* — base-type(d), parent-type(d))

and expri = type-tick-low(d)
and expr2 = type-tick-high(d) in

EIexpr,]|(t)(p)(ki)(v)(stk)
where
ki = A(ei,fi),v1,stki.

R[expral(t)(p)(k2)(v,)(stk,)
where
k2 = A(e2,f2),V2,stk2.

nconc
((e, - (mk-rel(dd)((LE,e,,e))), e),
(e2 - (mk-rel(dd)((LE ,e,e2))), e),
mk-constraint-guards(tl(e*))(tl(d*))(t)(p)(v)(stk)))))

174

mk-par-decls(q)(par-assoc-list)(p)(t)(v)

= (null(par-assoc-list) —> e,
let (id,w) = hd(par-assoc-list) in

cons((DECLARE ,qualified-id(qid(t(q)(id)))(v),mk-type-spec(tdesc(w))(t)(p)),

mk-par-decls(q)(tl(par-assoc-list))(p)(t)(v)))

assign-multiple(duqn*)(type-descriptors)(e*)

= (null(duqn*)—<• e,
let target = hd(duqn')

and d = hd(type-descriptors)
and source = hd(e') in

nconc
(assign(d)((target,source)),
assign-multiple(tl(duqn*))(tl(type-descriptors))(tl(e*))))

unbind-parameters(ref)(d)(actuals)(no-unbind?)(t)(p)(c)(v)(stk)

= let z — hd(p)
and q = %(path(d))(idf(d))
and par-assoc-list = extract-pars(d)(t) in

let all-formals = get-qids(collect-allpars(par-assoc-list))(t)(q) in

let qual-all-formals = get-qualified-ids(all-formals)(v) in

(null(qual-all-formals)

—» (mk-sd
(z)(e)(e)(£)
(c(pop-universe(v)(all-formals))(stk-pop(stk)))),

(no-unbind?
— (mk-sd

(z)(£)(e)(cons(z, qual-all-formals))
(cons(mk-cover-already((dot(z),cons(pound(z),qual-all-formaJs)))(t),

cons(mk-undeclare(qual-aJl-formals),
c(pop-universe(v)(all-formals))(stk-pop(stk)))))),

let expr* = actuals in
MR[exprri(t)(p)(h1)(v)(stk)
where
hi = A(eJ,fJ),vi,stki.

let to-actuals = collect-toargs(underef(e*))(par-assoc-list) in
let qual-to-actuals = get-qualified-ids(to-actuals)(vi) in

(null(qual-to-actuals)

—► (mk-sd
(z)(e)(e)(cons(z,qual-all-formals))

(cons(mk-cover-already
((dot(z),cons(pound(z),qual-all-formals)))(t),

cons(mk-undeclare(qual-all-formals),
c(pop-universe(vi)(all-formals))(stk-pop(stki)))))),

let from-formals = collect-frompars(par-assoc-list)(q)
and type-descriptors = collect-toargs-types

(actuals)(par-assoc-list)(t)(p) in

let expr* = from-formals in

MR [exprj 1 (t)(q)(h3)(vj)(stk,)
where
h2 = A(e2*,f*),v2,stk2.

ui(v2)(stk2)
where
Ul = Av3,stk3.

let guard* = nconc
(collect-guards-for-exprs

(from-formals)

175

(type-descriptors)(t)
(q)(v3)(stk3),fr,

fj) in
(mk-sd

(z)(guard*)(E)(qual-to-actuals)
(nconc

(assign-multiple
(qual-to-actuals)
(type-descriptors)(e2),

u2(v3)(stk3))))
where
u2 = Av4,stk4.

(mk-sd
(z)(e)(e)
(cons(z,qual-all-formals))
(cons(mk-cover-already

((dot(z),
cons(pound(z),
qual-all-formals)))(t),

cons(mk-undeclare
(qual-all-formals),

c(pop-universe

(V4)

(all-formals))
(stk-pop(stk4)))))))))

underef(actuals)
= (null(actuals)—► e,

let actual = hd(actuals) in
(dotted-expr-p(actual)—> cons(second(actual),underef(tl(actuals))),
cons(actual,underef(tl(actuals)))))

mk-cover-already(id,lst)(t)
= (new-declarations()— mk-rel(univint-type-desc(t))((EQ ,hd(lst),id)),

mk-cover(id.lst))

mk-undeclare(lst) = cons(UNDECLARE ,1st)

Procedure calls in Stage 4 VHDL use call by value-result semantics. The translation of a

procedure call consists of the following steps:

■ The actual parameters are translated and then gen-call pushes a subprogram return
descriptor and then a (single) undeclaration descriptor for all of the formal parameters

onto the execution stack.

• SDVS declarations of all of the formal parameters are emitted (in bind-parameters).

• The IN and INOUT formal parameters are bound to their corresponding actual param-
eters by first translating the actual parameters and then in effect assigning them to
their corresponding formals by emitting appropriate equality relations (as in the trans-
lation of assignment). This is done by auxiliary semantic function bind-parameters.
In these equality relations, the qualified names of the formal parameters must refer to
the procedure's declaration TSE, whereas the qualified names in the actual parame-
ters refer to the procedure's calling environment. This implements the semantics of

static binding required by VHDL.

176

• The subprogram may have either a specific body or a set of state delta characteriza-
tions, but not both. Different actions are performed in each case.

1. If the procedure has a body, the procedure's local declarations and statements
are translated in the procedure's declaration environment after first pushing a
♦SUBPROGRAM-RETURN* descriptor on the execution stack. This de-
scriptor will be used to perform a return from the procedure, whether that return
is explicit via a RETURN statement or implicit via encountering the end of the pro-

cedure's body.

2. If the procedure has one or more characterizations, state deltas representing the
actions of the procedure are produced by the functions gen-characterizations
and gen-characterization. These two functions use the SDVS functions fixed-
characterized-sds and subst-vars, part of the implementation of an offline

characterization mechanism for SDVS [3].

• Auxiliary semantic function unbind-parameters is invoked to assign the (final) val-
ues of the INDUT and OUT formal parameters to their corresponding actual parameters
(which must, of course, have reference types).

(SS12) SS [RETURN atmark opt-expr J (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let expr = opt-expr in
R[exprl(t)(p)(k)(v)(stk)
where
k = A(e,f),v,stk.

(null(e)— (mk-sd(hd(p))(e)(c)(e)(rcturn(v)(stk))),
let d = context(t)(p) in
let result-d = tdesc(extract-rtype(d)) in

let precondition = nconc
(mk-constraint-guards

((e))((result-d))(t)(p)
(v)(stk),f) in

(mk-sd
(hd(p))(precondition)(e)
((qualified-id(qid(d))(v)))
(nconc

(assign(result-d)((qualified-id(qid(d))(v),e)),
ci(v)(stk)

where ci = Av,stk.retum(v)(stk))))))

return(v)(stk)
= let <tg,qname,p,g> = hd(stk) in

(case tg
UNDECLARE — g(Avv,s.return(vv)(s))(v)(stk),
(*BLOCK-EXIT* .»SUBPROGRAM-RETURN*) — g(v)(stk-pop(stk)),
(♦BEGIN* ,*LOOP-EXIT* ,*PACKAGE-BODY-EXIT*) — return(v)(stk-pop(stk)),
OTHERWISE
—► impl-error("Bad execution stack descriptor tag in context: ~a",tg))

context(t)(path)
= let d = t(path)(*UNIT*) in

(d = »UNBOUND* — context(t)(rest(path)),
(case tag(d)

(♦PROCEDURE* ,*FUNCTION* ,»PACKAGE*) — t(rest(path))(last(path)),
OTHERWISE — context(t)(rest(path))))

177

extract-rtype(d)
= let signature = hd(signatures(d)) in

rtype(signature)

RETURN statements come in two varieties: with an expression, to effect a return from a
function, and without an expression, to effect a return from a procedure. If the RETURN is
from a function, then the expression must first be translated and an assignment of its value
to the function's (statically and dynamically uniquely qualified) name must be asserted via
an equality relation. Then (no matter whether the RETURN is from a procedure or a function),
the function return (similar to exit) is invoked to use the topmost *SUBPROGRAM-
RETURN* descriptor on the execution stack to return from the subprogram, after first
effecting exits from intervening loops and effecting necessary undeclarations. The function
context determines the qualified name of the subprogram from which the return is being
made.

(SS13) SS [WAIT atmark ref* opt-expn opt-expr2] (t)(p)(c)(v)(stk)
= cons((EQ ,pound(catenate(hd(p),"\pc")),atmark),

let Ci = Av,stk.
(mk-sd

(hd(p))(£)(£)(e)
((make-vhdl-try-resume-next-process(hd(p))))) in

Ml I ref] (t)(p)(h)(v)(stk)
where
h = A(e*,f*),v,stk.

let expri = opt-expri in
Rlexpr,](t)(p)(k,)(v)(stk)
where
ki = A(ei ,fi),v,stk.

let expr2 = opt-expr2 in
R[expr2](t)(p)(k2)(v)(stk)
where
k2 = A(e2,f2),v,stk.

let process-id = last(find-process-env
(t)(p)) in

let process-qid = qid(lookup
(t)(p)
(process-id)) in

(mk-sd

(hd(p))(nconc(fi,f2,r))(e)(e)
((make-vhdl-process-suspend

(process-qid)
(get-signals(e'))
(e1)(e2)(c)(v)(stk)(c1(v)(stk))))))

find-process-env(t)(p)
= (null(p)V tag(t(p)(*UNIT*))= *PROCESS* — p, find-process-env(t)(rest(p)))

get-signals(signal-names)
= (null(signal-names)—► s,

cons(find-signal-structure(hd(signal-names)),get-signals(tl(signal-names))))

178

8.4.11 Waveforms and Transactions

(Wl) W [WAVE transaction+] (d)(t)(p)(wave-cont)(v)(stk)
= TRM I transaction"1"] (d)(t)(p)(wave-cont)(v)(stk)

(TRMO) TRM [ej (d)(t)(p)(wave-cont)(v)(stk) = wave-cont((e,e))(v)(stk)

(TRM1) TRM [transaction transaction*] (d)(t)(p)(wave-cont)(v)(stk)
= TR [transaction J (d)(t)(p)(trans-cont)(v)(stk)

where
trans-cont = A(trans, guard), v,stk.

TRM I transaction*] (d)(t)(p)(wave-conti)(v)(stk)
where
wave-conti = A(trans*,guard*),v,stk.

wave-con t
((cons(trans, trans*),

nconc(guard,guard*)))(v)(stk)

The transactions in a waveform are translated in order, from left to right.

(TR1) TR [TRANS expr opt-expr J (d)(t)(p)(trans-cont)(v)(stk)
= R[expr](t)(P)(k)(v)(stk)

where
k = A(ei ,fi),v,stk.

let expr2 = opt-expr in
R[expr2](t)(p)(k,)(v)(stk)
where
ki = A(e2,f2),v,stk.

trans-cont
((mk-transaction-for-update(ei)(e2),

nconc
(mk-constraint-guards

((e,))((d))(t)(p)(v)(stk),f,,fa)))
(v)(stk)

mk-transaction-for-update(transaction-value)(delay-time)
= let transaction-time = (null(delay-time)—► mk-add-delay-time(0)(l),

mk-add-delay-time(delay-time)(0)) in
mk-transaction (transaction-time)(transaction-value)

mk-add-delay-time(global) (delta)
= (TIMEPLUS ,dot(VHDLTIME),mk-vhdltime(global)(delta))

mk-vhdltime(global)(delta) = (VHDLTIME ,global,delta)

8.4.12 Expressions

Two semantic functions, E and R, translate expressions. E obtains the (qualified) place
name corresponding to a scalar or array. R yields an expression that represents a value
rather than a reference.

(MEO) ME [e] (t)(p)(h)(v)(stk) = h((e,e))(v)(stk)

179

(ME1) Ml [ref ref*] (t)(p)(h)(v)(stk)
= E[ref](t)(p)(k)(v)(stk)

where
k = A(e,f),vi,stki.

ME[reri(t)(p)(h1)(v1)(stk1)
where hi = A(e*,f*),v2)stk2.h((cons(e,e*),nconc(f,r)))(v2)(stk2)

(MRO) ME le] (t)(p)(h)(v)(stk) = h((e,e))(v)(stk)

(MR1) ME I expr expr* 1 (t)(p)(h)(v)(stk)
= R [expr] (t)(p)(k)(v)(stk)

where
k = A(e,f),vi,stki.

MRIexpr'KOlpXhOfvOfstk,)
where hi = A(e*,r),v2,stk2.h((cons(e,e*),nconc(f,f*)))(v2)(stk2)

The translation of a (possibly empty) multiple expression list yields a list of translated
expressions and a corresponding list of guard formulas.

(El) E I REF modified] (t)(p)(k)(v)(stk)
= let basic-ref = modifier"*" in

let (basic-name,d) = gen-basic-name(basic-ref)(t)(v) in
gen-name(ref)(basic-name)(e)(d)(tl(basic-ref))(t)(p)(k)(v)(stk)

gen-basic-name(basic-ref)(t)(v)
= let (tg,q,id) = hd(basic-ref) in

let d = t(q)(id) in
(case tag(d)

(♦PROCEDURE* »FUNCTION*) — (qualified-id(qid(d))(v),d),
OTHERWISE — (qualified-id(qid(d))(v),tdesc(type(d))))

gen-name(ref)(e)(f)(d)(ref-tail)(t)(p)(k)(v)(stk)
= (null(ref-tail)-* k((e,f))(v)(stk),

let modifier = hd(ref-tail) in
let (tg,isp) = modifier in

(case tg
INDEX — gen-array-ref(isp)(e)(f)(d)(t)(p)(c)(v)(stk),
SELECTOR — gen-record-ref(isp)(e)(t)(d)(c)(v)(stk),
PARLIST -* gen-function-call(ref)(isp)(d)(t)(p)(c)(v)(stk),
OTHERWISE
-» impl-error("Unrecognized Stage 4 VHDL reference modifier tag: ~a",tg))

where
c = A(ei,fi,di),v,stk.

gen-name(ref)(e,)(f,)(d,)(tl(ref-tail))(t)(p)(k)(v)(stk))

gen-array-ref(expr)(e)(f)(d)(t)(p)(c)(v)(stk)
= R|[exprl(t)(p)(k)(v)(stk)

where
k = A(e0,fo),v,stk.

c(((ELEMENT ,e,e0),
nconc

(f,fo,
(nuU(ub(d))
— (mk-rel(univint-type-desc(t))((GE ,e0,(ORIGIN ,e)))),
(mk-rel(univint-type-desc(t))((GE ,e0,(ORIGIN ,e))),
mk-rel

(univint-type-desc(t))
((LE ,e0,

mk-exp2(SUB ,mk-exP2(ADD .(ORIGIN ,e),(RANGE ,e)),l)))))),
elty(d)))(v)(stk)

180

gen-record-ref(id)(e)(f)(d)(c)(v)(stk)
= c((mk-recelt(e,id),f,lookup-record-desc(components(d))(id)))(v)(stk)

mk-recelt(e)(id) = (RECORD ,e,id)

lookup-record-desc(comp*)(id)
= (null(comp*)-* »UNBOUND* ,

let (x,d) = hd(comp") in
(x = id —► d, lookup-record-desc(tl(comp*))(id)))

gen-function-call(ref)(expr*)(d)(t)(p)(c)(v)(stk)
= declare-function-name(d)(t)(p)(u)(v)(stk)

where
u = Av,stk.

gen-cal](ref)(d)(expr*)(tt)(tt)(t)(p)(c1)(v)(stk)
where
ci = Av,stk.

c((qualified-id(qid(d))(v),e,tdesc(extract-rtype(d))))(v)(stk)

declare-function-name(d)(t)(p)(u)(v)(stk)
= let q = path(d)

and dd = tdesc(extract-rtype(d)) in
let z = hd(q) in

let suqn+ = get-qids((idf(d)))(t)(q) in
let vi = push-universe(v)(z)(suqn+) in

let duqn+ = get-qualified-ids(suqn+)(vi) in
let dc-desc = <*UNDECLARE* ,idf(d),q,

Aui ,v2,stk2.
undeclare-function-name

(suqn+)(duqn+)(z)(t)(ui)(v2)(stk2)> in
(mk-decl-sd

(z)(e)(e)((z))
(nconc

(mk-qual-id-coverings(suqn+)(duqn+)(z)(v)(t),
mk-scalar-nonsignal-dec-post

(e)((duqn+,£,dd))(t)(q)(u)(vi)(stk-push(dc-desc)(stk)))))

undeclare-function-name(suqn+)(duqn+)(z)(t)(u)(v)(stk)
= (mk-sd

(z)(e)(e)(cons(z,duqn+))
(cons(mk-cover-already((dot(z),cons(pound(z),duqn+)))(t),
cons(mk-undeclare(duqn+),
u(pop-universe(v)(suqn+))(stk-pop(stk))))))

A reference must begin with at least a basic reference, which contains its root identifier
and access path. Following its basic reference, a reference has zero or more array index,
record field selection, or actual parameter list modifiers. The reference itself is translated
by gen-name; the basic reference is translated by gen-basic-name. The array index and
record field selection modifiers are translated by gen-array-ref and gen-record-ref. The
translation of a reference is complicated by the appearance of a parameter list modifier,
which represents a function call; these are translated by gen-function-call.

Whenever a function is called (as part of an expression), the name of that function is used
in the expression to name the value returned by that particular invocation. Because the

181

same function can be invoked more than once in the same expression, each corresponding
instance of the function's name must be uniquely dynamically qualified, and each of those
DUQNs must be declared (and later undeclared when they should no longer exist) to SDVS.
The declaration is performed by function declare-function-name and the undeclaration
by undeclare-function-name; the invocation of the latter function is encapsulated in an
undeclaration (*UNDECLARE*) descriptor pushed onto the execution stack. After a
new dynamic instance of the function's name is declared, gen-function-call evaluates the
actual parameters and then invokes gen-call to finish the translation of this function call.

(RO) R [e 1 (t)(p)(k)(v)(stk) = k((e,e))(v)(stk)

For technical convenience, expressions can be empty; the translation of an empty expression
yields empty results.

(Rl) RJ FALSE 1 (t)(p)(k)(v)(stk) = k((FALSE ,e))(v)(stk)

(R2) R I TRUE] (t)(p)(k)(v)(stk) = k((TRUE ,e))(v)(stk)

(R3) R [BIT bitlit 1 (t)(P)(k)(v)(stk) = k((B [bitlit] ,e))(v)(stk)

(R4) R I NUM constant 1 (t)(p)(k)(v)(stk) = k((N [constant] ,e))(v)(stk)

(R5) R [TIME constant FS] (t)(p)(k)(v)(stk) = k((N |[constant] ,c))(v)(stk)

(R6) R [CHAR constant J (t)(p)(k)(v)(stk) = k((expr,e))(v)(stk)

(R7) R [ENUMLIT id] (t)(p)(k)(v)(stk) = k((id,e))(v)(stk)

(R8) R I BITSTR bit-lit*] (t)(p)(k)(v)(stk)
= let expr* = bit-lit* in

MR[[expr*](t)(p)(k)(v)(stk)

(R9) R [STR char-lit*] (t)(p)(k)(v)(stk)
= let expr* = char-lit* in

MR I expr*] (t)(p)(k)(v)(stk)

(RIO) R [REF modifier+] (t)(p)(k)(v)(stk)
= let ref = expr in

EIref](t)(p)(k:)(v)(stk)
where ki = A(e,f),v1,stk,.k((dot(e),f))(v1)(stki)

Scalar and array references are first E-translated, yielding an expression and a guard for-
mula. The corresponding R-translation is obtained by applying the dot operation to the
translated expression.

182

(Rll) R I PAGGR expr'] (t)(p)(k)(v)(stk) = ME I expr* J (t)(p)(k)(v)(stk)

(R12) R [TYPECONV expr type-mark J (t)(p)(k)(v)(stk)
= let d = lookup-desc(type-mark)(t)(p) in

Rjexpr](t)(p)(k,)(v)(stk)
where
ki = A(e,f),v,stk.

let constraint-guard* = mk-constraint-guards
((e))((d))(t)(p)(v)(stk) in

(null(constraint-guard*)—> k((e,f))(v)(stk),
(mk-sd(hd(p))(constraint-guard*)(e)(e)(k((e,f))(v)(stk))))

(R13) R I unary-op expr] (t)(p)(k)(v)(stk)
= Rlexprl(t)(p)(k1)(v)(stk)

where ki = A(e,f),vi ,stki.k((mk-expl(unary-op,e),f))(v1)(stk])

mk-expl (unary-op,e)
= (case unary-op

NOT — (NOT ,e),
BNOT — (USNOT ,e),
PLUS — e,
NEG — (MINUS ,e),
ABS — (ABS ,e),
(RNEG ,RABS) -» (unary-op,e),
OTHERWISE
—• impl-error("Unrecognized Stage 4 VHDL unary operator: ~a",unary-op))

(R14) R I binary-op expn expr2 1 (t)(p)(k)(v)(stk)
= R[expn](t)(p)(k,)(v)(stk)

where
ki = A(ei,fi,vi,stki).

R[expr2](t)(p)(k2)(v1)(stk1)
where
k2 = A(e2,f2),V2,stk2.

k((mk-exp2(binary-op,ei,e2),nconc(fi,f2)))(v2)(stk2)

(R15) R | relational-op expn expr2 1 (t)(p)(k)(v)(stk)
= RIexpr,](t)(p)(k1)(v)(stk)

where
ki = A(ei,fi,vi,stki).

R[expr2](t)(p)(k2)(v,)(stk1)
where
k2 = A(e2,f2),v2,stk2.

let d = TI expn 1 (t)(p) in
k((mk-rel(d)((relational-op,ei,e2)),nconc(fi,f2)))
(v2)(stk2)

183

8.4.13 Expression Types

The function mk-rel (described earlier) requires a type descriptor as its first argument;
application of the semantic function T determines the type descriptor of an expression as
follows:

• if the expression is a constant, its type descriptor is the basic type of that constant;

• if the expression is a reference, its type descriptor is the basic type of that reference,
obtained by the function get-type-desc; and

• if the expression contains operators, its type descriptor is the basic result type of its
top-level operator (if there is one);

(TO) T [e] (t)(p) = void-type-desc(t)

(Tl) T I FALSE 1 (t)(p) = bool-type-desc(t)

(T2) T [TRUE 1 (t)(p) = bool-type-desc(t)

(T3) T [BIT bitlit 1 (t)(p) = bit-type-desc(t)

(T4) T I NUM constant } (t)(p) = univint-type-desc(t)

(T5) T I TIME constant FS] (t)(p) - time-type-desc(t)

(T6) T [CHAR constant J (t)(p) = char-type-desc(t)

(T7) T I ENUMLIT id 1 (t)(p)
= let d = lookup-desc-on-path(t)(p)(id) in

tdesc(type(d))

(T8) T I BITSTR bit-lit*] (t)(p) = bitvector-type-desc(t)

(T9) T ft STR char-lit*] (t)(p) = string-type-desc(t)

(T10) T ft REF modified] (t)(p)
= let basic-ref = modifier+ in

get-type-desc(basic-ref)(t)(p)

get-type-desc(basic-ref)(t)(p)
= let (tg,q,id) = hd(basic-ref) in

let d = t(q)(id) in
(case tag(d)

(»PROCEDURE* ,*FUNCTION* ,*PROCESS*)
—* process-ref-tail(d)(tl(basic-ref))(t)(p),
OTHERWISE — process-ref-tail(tdesc(type(d)))(tl(basic-ref))(t)(p))

184

process-ref-tail(d)(ref-tail)(t)(p)
= (null(ref-tail)— d,

let modifier = hd(ref-tail) in
(case hd(modifier)

INDEX — process-ref-tail(elty(d))(tl(ref-tail))(t)(p),
SELECTOR
— process-ref-tail

(lookup-record-desc(components(d))(second(modifier)))(tl(ref-tail))

(t)(p),
PARLIST — process-ref-tail(tdesc(extract-rtype(d)))(tl(ref-tail))(t)(p),
OTHERWISE
—<• impl-error

("Unrecognized Stage 4 VHDL reference modifier tag: "a",
hd(modifier))))

(Til) T [PAGGR expr* J (t)(p) = void-type-desc(t)

(T12) T [TYPECONV expr type-mark] (t)(p) = lookup-desc(type-mark)(t)(p)

(T13) T [unary-op expr] (t)(p) = tdesc(restypel(unary-op)(t))

restypel(unary-op)(t)
= (case unary-op

NOT — (VAL ,bool-type-desc(t)),
BNOT — (VAL ,bit-type-desc(t)),
(PLUS ,NEG ,ABS) — (VAL ,univint-type-desc(t)),
(RNEG ,RABS) — (VAL ,real-type-desc(t)),
OTHERWISE
—♦ impl-error("Unrecognized Stage 4 VHDL unary operator: "a",unary-op))

(T14) T [binary-op expri expr2 1 (t)(p)
= tdesc(restype2(binary-op)((expri ,expr2))(t)(p))

restype2(binary-op)(expri ,expr2)(t)(p)
= (case binary-op

(AND ,NAND ,OR ,NOR ,XOR) — mk-type((DUMMY VAL))(bool-type-desc(t)),
(BAND ,BNAND ,BOR ,BNOR ,BXOR) — mk-type((DUMMY VAL))(bit-type-desc(t)),
(ADD ,SUB ,MUL ,DIV ,MOD ,REM ,EXP) -* mk-type((DUMMY VAL))(univint-type-desc(t)),
(RPLUS .RMINUS ,RTIMES ,RDIV ,REXPT) — mk-type((DUMMY VAL))(real-type-desc(t)),
CONCAT
-let di =TIexpr,] (t)(p)

and d2 = T I expr2 1 (t)(p) in
mk-type((DUMMY VAL))(mk-concat-tdesc(d,)(d2)(t)),

OTHERWISE
—♦ impl-error("Unrecognized Stage 4 VHDL binary operator: "a",binary-op))

mk-concat-tdesc(di)(d2)(t)
= (is-bit-tdesc?(di)V is-bitvector-tdesc?(di)

—► array-type-desc
(new-array-type-name(BIT_VECTOR))(e)(e)(tt)(direction(di))(lb(di))(e)
(bit-type-desc(t)),

let idfi = idf(di) in
array-type-desc

(new-array-type-name((consp(idfi)—► hd(idfi), idfi)))(e)(e)(tt)
(direction(d,))(lb(d,))(e)(elty(d,)))

(T15) T [relational-op expn expr2 J (t)(p) = bool-type-desc(t)

8.4.14 Primitive Semantic Equations

The following semantic functions are primitive.

(Nl) N [constant | = constant

(Bl) B f bitlit] = mk-bit-simp-symbol(bitlit)

mk-bit-simp-symbol(bitlit)
= (case bitlit

0 — (BS 0 1) ,
1 — (BS 1 1) ,
OTHERWISE-* impl-error("Can't construct simp symbol for bit: ~a ",bitlit))

186

9 Conclusion

A precise and well-documented formal specification of the Stage 4 VHDL translator has been
presented in this report. We have completed and exercised a Common Lisp implementation
of both translation phases described herein. As the SDVS interface to VHDL continues to
expand and mature, our confidence grows in our language translator semantic specification

and implementation paradigm.

Stage 4 VHDL represents a robust subset of the VHSIC Hardware Description Language,
supporting both behavioral and structural descriptions of digital devices with the inclu-
sion of the following language constructs: design files, design units, configuration decla-
rations, entity declarations, architecture bodies, ports, declarative parts in entity declara-

tions, package STANDARD (containing predefined types BOOLEAN, BIT, UNIVERSAL-INTEGER,
INTEGER, TIME, CHARACTER, REAL, STRING, and BIT_VECTOR), user-defined packages, USE

clauses, generics, component declarations, generic and port maps, array type declarations,
certain predefined attributes, enumeration types, subtypes of scalar types, integer type
definitions, type conversions, BLOCK statements, PROCESS statements, concurrent signal as-
signment statements, component instantiation statements, subprograms (procedures and
functions), IF and CASE statements, WHILE and FOR loops, octal and hexadecimal represen-
tations of bitstrings, and general expressions of type TIME in AFTER clauses.

Much of our work henceforth will focus on applying SDVS and the VHDL translator to
the formal verification of realistic VHDL hardware descriptions. Indeed, we have already
made significant steps in this direction in fiscal year 1994. We identified VHDL descriptions
suitable for a Stage 4 VHDL verification exercise, developed in-house at the National Se-
curity Agency. These specify a set of commercial standard parts, the Am7968/Am7969
TAXIchip™ (Transparent Asynchronous Xmitter-Receiver Interface) Integrated Circuits
designed by Advanced Micro Devices, Inc. (AMD). The TAXIchip Am7968 Transmit-
ter/Am7969 Receiver chipset constitutes a general-purpose interface for high-speed serial
communication between two parallel-data hosts, and is used in a prototype cryptographic
device currently being built by NSA.

We wrote formal state delta specifications for simplified versions of these descriptions, as
well as a specification for a combined system in which the output of the transmitter is
input to the receiver, and have completed proofs that the descriptions meet several of these
specifications.

In fiscal year 1995, we intend to proceed by incrementally incorporating additional features
of the original TAXIchip descriptions into the simplified descriptions we have produced,
and by attempting to prove successively more interesting properties of the latter. After
implementing a few, relatively minor, enhancements to the VHDL translator — principally,
a subset of the IEEE STD_L0GIC_1164 multivalue logic system — not much additional effort
will be required to formulate and prove specifications of the TAXIchip VHDL as originally

given.

187

References

[1] J. V. Cook, I. V. Filippenko, B. H. Levy, L. G. Marcus, and T. K. Menas, "Formal
Computer Verification in the State Delta Verification System (SDVS)," in Proceedings

of the AIAA Computing in Aerospace Conference, (Baltimore, Maryland), pp. 77-87,
American Institute of Aeronautics and Astronautics, October 1991.

[2] B. Levy, I. Filippenko, L. Marcus, and T. Menas, "Using the State Delta Verification
System (SDVS) for Hardware Verification," in Proceedings of the IFIP TCW/WG 10.2
International Conference on Theorem Provers in Circuit Design: Theory, Practice and

Experience: Nijmegen, The Netherlands (ed. V. Stavridou, T. F. Melham, and R. T.
Boute), pp. 337-360, North-Holland, June 1992.

[3] L. G. Marcus, "SDVS 13 Users' Manual," Technical Report ATR-94(4778)-5, The
Aerospace Corporation, September 1994.

[4] T. K. Menas and I. V. Filippenko, "SDVS 13 Tutorial," Technical Report ATR-
94(4778)-6, The Aerospace Corporation, September 1994.

[5] B. H. Levy, "Feasibility of Hardware Verification Using SDVS," Technical Report ATR-
88(3778)-9, The Aerospace Corporation, September 1988.

[6] IEEE, Standard VHDL Language Reference Manual, 1988. IEEE Std. 1076-1987.

[7] D. F. Martin and J. V. Cook, "Adding Ada Program Verification Capability to the
State Delta Verification System (SDVS)," in Proceedings of the 11th National Com-
puter Security Conference, National Bureau of Standards/National Computer Security
Center, October 1988.

[8] T. Aiken, I. Filippenko, B. Levy, and D. Martin, "A Formal Description of the In-
cremental Translation of Core VHDL into State Deltas in the State Delta Verifica-
tion System (SDVS)," Technical Report ATR-89(4778)-9, The Aerospace Corporation,
September 1989.

[9] I. V. Filippenko, "Example Proof of a Core VHDL Description in the State Delta
Verification System (SDVS)," Technical Report ATR-90(5778)-6, The Aerospace Cor-
poration, September 1990.

[10] I. V. Filippenko, "Some Examples of Verifying Core VHDL Hardware Descriptions
Using the State Delta Verification System (SDVS)," Technical Report ATR-91(6778)-
6, The Aerospace Corporation, September 1991.

[11] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 1
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-91(6778)-7, The Aerospace Corporation, September 1991.

[12] I. V. Filippenko and L. G. Marcus, "Integrating Structural VHDL Hardware De-
scriptions into the State Delta Verification System (SDVS)," Technical Report ATR-

92(8180)-!, The Aerospace Corporation, September 1992.

188

[13] M. J. C. Gordon, The Denotational Description of Programming Languages: An In-

troduction, (New York: Springer-Verlag, 1979).

[14] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 2
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-92(2778)-4, The Aerospace Corporation, September 1992.

[15] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 3
VHDL into State Deltas in SDVS," Technical Report ATR-93(3778)-2, The Aerospace
Corporation, September 1993.

[16] J. V. Cook, "The Language for DENOTE (Denotational Semantics Translation
Environment)," Technical Report TR-0090(5920-07)-2, The Aerospace Corporation,

September 1990.

[17] L. Marcus and B. H. Levy, "Specifying and Proving Core VHDL Descriptions in
the State Delta Verification System (SDVS)," Technical Report ATR-89(4778)-5, The

Aerospace Corporation, September 1989.

[18] L. Marcus, T. Redmond, and S. Shelah, "Completeness of State Deltas," Technical
Report ATR-86(8454)-2, The Aerospace Corporation, September 1986.

[19] T. K. Menas, "The Relation of the Temporal Logic of the State Delta Verification
System (SDVS) to Classical First-Order Temporal Logic," Technical Report ATR-

90(5778)-10, The Aerospace Corporation, September 1990.

[20] J. E. Doner and J. V. Cook, "Offline Characterization of Procedures in the State
Delta Verification System (SDVS)," Technical Report ATR-90(8590)-5, The Aerospace

Corporation, September 1990.

[21] J. V. Cook and J. E. Doner, "Example Proofs Using Offline Characterization of Proce-
dures in the State Delta Verification System (SDVS)," Technical Report TR-0090(5920-
07)-3, The Aerospace Corporation, September 1990.

189

Index
access 86, 141
accomplish-generic-and-port-maps 107

already-qualified-id 142

arl 140
argtypesl 101
argtypesl-error 101
argtypes2 103
argtypes2-error 103
array-signal-assignment 163

array-size 70

array-type 99
array-type-desc 44

artl 61
arxl 111
assign 145, 161
assign-array-downto 145
assign-array-to 145
assign-multiple 175

assign-record 146
assign-record-aux 146
assign-record-fields 146

atO 95
atl 95
at2 95
at3 96
attributes 82
attributes-low-high 74, 157

axO 117
axl 117
ax2 117
ax3 117
bl 105, 186
base-type 47
bctl 58

bcxl 110
bind-parameters 173

bit-type-desc 43
bitl 59
bits-op 120
bitvector-type-desc 44

bixl 110
block-exit 137

body 47

bool-type-desc 43
cascade-array-signal-assignment 163

case-coverage 90

case-overlap 96
case-type-ok 90
case-union 96

cfl 139
cftl 58

cfxl 110
char-type-desc 43

characterizations 47
check-array-aggregate 73
check-coverage-locals 66
check-enum-lits 74
check-existence-formals 65
check-exprs 73
check-formal-local-correspondence 66

check-if 89
check-pkg-names 79
check-portmap-element 64

check-portmap-elements 64

check-wait-ref 95

check-wait-refs 94
chk-array-type 99

ciO 138
cil 138
ci2 138
citO 57
citl 57
cit2 57

cixO 109
cixl 109
cix2 109
cmtO 58
cmtl 58
cmt2 59

cmxO 110
cmxl 110
cmx2 110
collect-allpars 173
collect-expressions-from-conditional-waveforms

87
collect-expressions-from-selected-waveforms

190

85 dl2 158
collect-fids 77 dl3 158
collect-formal-pars 77 dl4 158
collect-fromargs 174 dl5 159
collect-frompars 174 dl6 159
collect-guards-for-exprs 174 dl7 159
collect-signals-from-expr 86 d2 141
collect-signals-from-expr-list 85 d3 141
collect-toargs 174 d4 141
collect-toargs-types 174 d5 141

collect-topars 174 d6 141
collect-topars-types 174 d7 156

collect-transaction-expressions 85 d8 157
compatible-par-types 69 d9 157

compatible-signatures 69 declare-function-nair
component-name 47 dfl 133
components 47 dftl 55
concatenate-bits 151 dfxl 109
concatenate-characters 151 direction 47
configured-entity 47 dot 131
construct-case-alternatives 86 dotted-expr-p 135, 1
construct-cond-parts 87 drtO 96
construct-equivalent-nested-block-stat 107 drtl 96
context 94, 177 drt2 97

csO 159 drxO 117

csl 159 drxl 117

cs2 159 drx2 117

cs3 159 dtO 66
cstO 83 dtl 66

cstl 83

cst2 84

cst3 84
cst4 85

cst5 87

cst6 87

csxO 113

csxl 113
csx2 114

csx3 114

csx4 115

csx5 115

csx6 115

dO 140

dl 140

dlO 157

dll 158

dtlO 75

dtll 76

dtl2 76
dtl3 78

dtl4 79

dtl5 82

dtl6 83

dtl7 83

dt2 66

dt3 66

dt4 66

dt5 66

dt6 72

dt7 74

dt8 74

dt9 75

duO 138

191

dul 138
du2 138
duplicates? 62
dutO 57
dutl 57
dut2 57
duxO 109
duxl 109
dux2 109
dxO 112
dxl 112
dxlO 113
dxll 113
dxl2 113
dxl3 113
dxl4 113
dxl5 113
dxl6 113
dxl7 113
dx2 112
dx3 112
dx4 112
dx5 112
dx6 112
dx7 112
dx8 112
dx9 112
el 180
elty 47
enl 140
entl 61
enter-array-objects 73
enter-characters 56
enter-formal-pars 77
enter-objects 55
enter-package 56
enter-standard 55
enter-standard-predefined 56
enter-string 56
enter-textio 55
enter-textio-predefined 56
enum-le 105
enum-lt 105
enxl 110
etO 98
etl 98

etlO 100
etll 100
etl2 100
etl3 100
et2 98
et3 99
et4 99
et5 99
et6 99
et7 99
et8 99
et9 100
eval-expr 131
exO 117
exl 117
exlO 119
ex11 120
exl2 120
exl3 120
ex2 117
ex3 117
ex4 117
ex5 118
ex6 118
ex7 118
ex8 118
ex9 118
exit 171
export-qualified-names 80
exported 47
extract-par-types 69
extract-pars 173
extract-poly-pars 173
extract-rtype 69, 178
extract-rtypes 94
fifth 12
filter-components 71
find-architecture-env 85
find-configuration-abstract-syntax 130
find-looplabel-env 92
find-process-env 88, 178
find-progunit-env 67
find-signal-structure 130
fixed-characterized-sds 131
fourth 12
gdtO 61

192

gdtl 61
gdt2 61
gdt3 62
gdxO 111
gdxl 111
gdx2 111
gdx3 111
gen-alt 165
gen-array-decl 148
gen-array-decl-id* 148
gen-array-decl-id+ 148

gen-array-nonsignal-decl-id-f 149

gen-array-ref 180

gen-array-signal-decl-id+ 152
gen-ascending-indices 163

gen-basic-name 180
gen-call 172
gen-case 165
gen-characterization 172
gen-characterizations 172
gen-characters 56
gen-descending-indices 163
gen-function-call 181
gen-guard 166

gen-if 164
gen-name 180
gen-record-ref 181
gen-scalar-decl 142
gen-scalar-decl-id* 142
gen-scalar-decl-id-f 142
gen-scalar-nonsignal-decl-id+ 142
gen-scalar-signal-decl-id-t- 146
get-base-type 48, 70
get-configuration-architecture-id 139
get-configuration-entity-id 139
get-loop-enum-param-vals 131
get-parent-type 48
get-qids 142
get-qualified-ids 127, 142
get-signals 178
get-type-desc 184

gmtl 63

gmx 1112
idf 46
import-legal 80
import-qualified-names 79

nit-array-signal-downto 131
nit-array-signal-to 131
nit-scalar-signal 131
nit-var 127
nt-type-desc 43
ntermediate-phase 56
nvert-bit 101
s-array-tdesc? 46
s-array? 46
s-binary-op? 48
s-bit-tdesc? 45

s-bit? 45
s-bitvector-tdesc? 46

s-bitvector? 46
s-boolean-tdesc? 45

s-boolean? 45
s-character-tdesc? 46
s-character? 45
s-const? 46, 48
s-constant-bitvector? 135, 145
s-constant-string? 135, 145
s-integer-tdesc? 45
s-integer? 45
s-paggr? 48
s-poly-tdesc? 45
s-poly? 45
s-readable? 48
s-real-tdesc? 45
s-real? 45
s-record-tdesc? 46
s-record? 46
s-ref? 48
s-relational-op? 48
s-sig? 46, 48
s-string-tdesc? 46
s-string? 46
s-time-tdesc? 45
s-time? 45
s-unary-op? 48
s-var? 46, 48
s-void-tdesc? 45

s-void? 45
s-writable? 48

last 13

lb 47
length 13

193

length-expr 149
list-type 69
literals 47
lookup-desc 141
lookup-desc-for-ref 86
lookup-desc-on-path 86, 141
lookup-local 69
lookup-record-desc 181
lookup-record-field 69
lookup-type 67

lookup2 68
loop-for-enum 170
loop-for-int 169
loop-infinite 167
loop-while 167

lul 139
lu2 139
lu3 139
lu4 139
lu5 139
hit 1 57
lut2 57
lut3 57
lut4 57
lut5 57
luxl 109
lux2 109
lux3 109
lux4 109
lux5 109
make-universe-data 126
make-vhdl-begin-model-execution 130
make-vhdl-process-elaborate 130
make-vhdl-process-suspend 130
make-vhdl-try-resume-next-process 130
match-array-type-names 70
match-integer-types 70
match-type-names 70
match-types 70

meO 179
mel 180
mexO 117
mexl 117
mk-add-delay-time 179

mk-array-decl 150
mk-array-elt 151

mk-array-nonsignal-dec-post 150
mk-array-nonsignal-dec-post-declare 150
mk-array-nonsignal-dec-post-init-downto 151

mk-array-nonsignal-dec-post-init-to 151

mk-array-refs 163
mk-array-refs-aux 163
mk-array-signal-dec-post 152
mk-array-signal-dec-post-declare 153
mk-array-signal-dec-post-init 154
mk-array-signal-dec-post-init-aux 156

mk-array-signal-dec-post-init-downto 155
mk-array-signal-dec-post-init-elt-arrays-downto

155
mk-array-signal-dec-post-init-elt-arrays-to

155
mk-array-signal-dec-post-init-elt-scalars-downto

156
mk-array-signal-dec-post-init-elt-scalars-to

156
mk-array-signal-dec-post-init-to 154
mk-array-signal-decl 153
mk-array-signal-elt-fn-decls 153
mk-array-signal-elt-fn-decls-aux 154

mk-bit-simp-symbol 101, 186
mk-bitvec-fn-decl 150
mk-bool-eq 137
mk-bool-neq 137
mk-concat-tdesc 103, 185
mk-constraint-guards 174
mk-cover 133
mk-cover-already 176
mk-disjoint 133
mk-dotted-names 151
mk-element-transaction-lists 164
mk-element-waves 163
mk-element-waves-aux 131
mk-enum-set 97
mk-enumlit-rels 157
mk-etdec-post 156

mk-expl 183
mk-exp2 146
mk-inertial-update 163
mk-initial-universe 126
mk-not 163
mk-or 165
mk-ors 165

194

mk-par-decls 175
mk-preemption 163
mk-qual-id-coverings 143
mk-real-dotted-name 47
mk-recelt 146, 181

mk-rel 135
mk-scalar-decl 133, 144
mk-scalar-nonsignal-dec-post 143
mk-scalar-nonsignal-dec-post-declare 144
mk-scalar-nonsignal-dec-post-init 144

mk-scalar-rel 136
mk-scalar-signal-assignments 163
mk-scalar-signal-dec-post 147
mk-scalar-signal-dec-post-declare 147

mk-scalar-signal-dec-post-init 147

mk-scalar-signal-decl 147
mk-scalar-signal-fn-decl 147
mk-scalar-signal-fn-decls 154

mk-set 97
mk-simultaneous-transactions 164
mk-slice-elt-names-downto 151
mk-slice-elt-names-to 150
mk-string-fn-decl 150
mk-tick-high 74, 148, 157
mk-tick-low 74, 148, 157

mk-tmode 48
mk-transaction-for-update 179
mk-transaction-list 164
mk-transport-update 162
mk-type 48
mk-type-spec 143
mk-undeclare 176
mk-vhdl-array-decl 150

mk-vhdltime 137, 179
mk-waveform-type-spec 152
model-execution-complete 137

mrO 180
mrl 180
nl 105
nl 186
name-driver 130
name-drivers 147
name-qualified-id 127, 142
name-type 68

namef 46
next-var 127

nth-tl 97
object-class 48
otl.l.tex 101
ot2.1.tex 102
ot2.2.tex 102
package-body-exit 157
parent-type 47
pars 47
path 47
pbody 47
pdtO 62
pdtl 62

pdt2 62

pdt3 63
pdxO 111
pdxl 111
pdx2 111
pdx3 111
phasel-tail 56
pmtl 64
pmxl 112
poly-type-desc 43
pop-universe 127
pop-universe-vars 127
pop-var 127
position 97
position-aux 97
pound 131
process-block-header 84
process-bound-configuration 60
process-bound-entity 60
process-component-spec 59

process-dec 70
process-generic-part 84
process-port-part 84
process-ref-tail 185
process-slcdec 72
process-subprog-body 78
process-use-clause 79
push-universe 126
push-universe-vars 126

push-var 127
qid 46
qualified-id 127, 142
qualified-id-decls 143

rO 182

195

rl 182 sbcO 115

rlO 182 ski 115
rll 183 slx2 115
rl2 183 sources 47
rl3 183 ssO 160

rl4 183 ssl 160
rl5 183 sslO 170
r2 182 ssll 171
r3 182 ssl2 177
r4 182 ssl3 178

r5 182 ss2 160
r6 182 ss3 160
r7 182 ss4 162
r8 182 ss5 164
r9 182 ss6 165
read-check-portmap-element 65 ss7 167
real-lb 148 ss8 167
real-op 120 ss9 168
real-type-desc 43 sstO 88
real-ub 148 sstl 88
record-equivalent-nested-block-stat 107 sstlO 93
record-to-type 144 sstll 93
ref-mode48 sstl2 94
remove-enclosing-pkgs 79 sstl3 94
rest 13 sst2 88
restypel 101, 185 sst3 88
restype2 103, 185 sst4 89
res vail 101 sst5 89
resval2 105 sst6 90
return 177 sst7 91
reverse 97 sst8 91
reverse-aux 97 sst9 92
rtl 100 ssxl 115
rtype 47 ssxlO 116
rxl 120 ssxll 116
scalar-op 120 ssxl 2 116
scalar-signal-assignment 162 ssxl3 116
second 12 ssx2 115
set-card 90 ssx3 116
signatures 47 ssx4 116
simple-name-match 80 ssx5 116
simple-term 137 ssx6 116
sixth 13 ssx7 116
sltO 87 ssx8 116
sltl 87 ssx9 116
slt2 87 string-type-desc 44

196

subst-vars 131

tO 184
tl 184
tlO 184
til 185

tl2 185
tl3 185
tl4 185
tl5 185
VI 184

t3 184

t4 184
t5 184

t6 184

t7 184
t8 184
t9 184
tag 47
tdesc 48
third 12
time-type-desc 43
tmode 48

trl 179
transform-assoc-elts 112
transform-if 116
transform-list 119
transform-name 119
transform-name-aux 119

trmO 179
trail 179
trtl 98
trt2 98
trxl 117
trx2 117
type 47
type-check-genericmap-element 64
type-check-genericmap-elements 63
type-check-portmap-element 65

type-tick-high 47
type-tick-low 47

ub 47
unbind-parameters 176
undeclare-function-name 181

underef 176
universe-counter 126
universe-name 126

universe-stack 126
universe-vars 126
univint-type-desc 43
update-tse-wrt-component-instantiations 107
update-tse-wrt-configuration 107
validate-access 68
value 47
vhdltime-type-desc 133
void-type-desc 43
wl 179
waveform-type-desc 147, 162
write-check-portmap-element 65

wtl 98
wxl 117

197

