
AEROSPACE REPORT NO.
ATR-94(4778)-6

SDVS 13 Tutorial

30 September 1994

Prepared by

T. K. MENAS AND I. V. FILIPPENKO
Trusted Computer Systems Department
Computer Science and Technology Subdivision
Computer Systems Division
Engineering and Technology Group

Prepared for 199709291
DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

»MC QÜilLfH IffSEECHBD.

Engineering and Technology Group

THE AEROSPACE
CORPORATION

El Segundo, California

APPROVED FOR PUBI4C RELEASE;
DISTRIBUTION IS

»UBMC RELE;
UNLIMITED

AEROSPACE REPORT NO.
ATR-94(4778)-6

SDVS 13 TUTORIAL

Prepared by

T. K. MENAS AND I. V. FILIPPENKO
Trusted Computer Systems Department

Computer Science and Technology Subdivision
Computer Systems Division

Engineering and Technology Group

30 September 1994

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

AEROSPACE REPORT NO.
ATR-94(4778)-6

SDVS 13 TUTORIAL

Prepared by

T-K%*^ (fi%) JUVA f^&^^w <U3

T. K. Menas I. V. Filippenko "

Approved by

J.^%MCM^^ ^Tfff^J^
L. G. Marcus, Principal Investigator D. B. Baker, Director
Computer Assurance Section Trusted Computer Systems Department

iii

Abstract

This report is a tutorial for the State Delta Verification System (SDVS), an automated
system developed at The Aerospace Corporation for use in formal computer verification.
SDVS helps users write and check mathematical proofs of computer correctness at the hard-
ware, firmware, and software levels. Currently, SDVS is capable of verifying properties of
computer descriptions or programs written in three computer languages. These languages
are subsets of the hardware description languages VHDL and ISPS, and of the Ada pro-
gramming language. In addition, SDVS may be used to verify the validity of a large class of
formulas of first-order temporal logic. This tutorial contains a description of most, but not
all, of the proof capabilities of SDVS. (The SDVS 13 Users' Manual [1] should be consulted
for a more comprehensive account.) The tutorial description is embedded in numerous
examples of proofs in SDVS.

Contents

Abstract v

1 Introduction 1

2 An Overview of SDVS 3

2.1 The Operational Nature of SDVS 4

2.2 The State Delta Language 5

2.2.1 Syntax 6

2.2.2 Semantics 7

2.3 Model of Storage 11

2.4 Proofs in SDVS 11

2.5 Installing SDVS 12

3 Dynamic Execution 17

3.1 Straight-line Proofs 17

3.2 Proofs by Cases 38

3.3 Proofs of Now and of Always 46

3.4 Proofs by Induction 55

4 Declaration of Types 69

5 Quantification in SDVS 73

6 Static Proofs 79

6.1 Invoking SDVS Axioms 84

6.2 Creating, Proving, and Invoking Lemmas 90

7 Interaction with Application Languages 101

7.1 Ada 104

7.1.1 A simple Ada program with a subprogram 104

7.1.2 Creating, proving, and invoking an Ada lemma 114

vii

7.1.3 Ada input and output 124

7.1.4 Ada loops 142

7.2 VHDL 158

7.2.1 State Delta specification 159

7.2.2 Interactive proof development 160

7.2.3 Batch proof 199

7.2.4 Lemma 200

7.3 ISPS 201

7.3.1 TR: Translator from ISPS to state deltas 201

7.3.2 Marking 201

7.3.3 Extensions of ISPS . 207

7.3.4 Extending ISPS by assumptions and state deltas 208

7.3.5 External and auxiliary variables 215

7.3.6 External variables 215

7.3.7 Auxiliary variables 218

7.3.8 The new ISPS translator 222

Index 225

References 227

Vlll

1 Introduction

The purpose of this tutorial is to introduce the reader, via examples, to the State Delta
Verification System (SDVS), an automated system developed at The Aerospace Corporation
for use in formal computer verification.1

SDVS is a prototype2 of a production-quality verification system that may be used to for-
mally verify software from the microcode level to high-level applications programs, and
hardware from the gate-level to high-level architecture. This prototype is based on a formal
theoretical framework [2] and has a practical, interactive system for constructing mathe-
matical proofs [1]. The software level of SDVS supports Ada [3] programs, the microcode
level supports either ISPS [4] or VHDL [5] hardware descriptions, and the hardware level
supports VHDL hardware descriptions. SDVS has language translators for subsets of Ada,
VHDL, and ISPS that automatically translate a program written in one of these subsets to
an SDVS formula (see Section 7).

Currently, the most advanced language translator in SDVS is the Ada translator. It handles
a subset of Ada that is roughly equivalent to Pascal without reals but with packages.
The most extensive application of SDVS to Ada verification has been the verification of a
modified portion of the Midcourse Space Experiment (MSX) tracking processor software,
which builds messages from sequences of commands. This portion of the software consisted
of about 800 lines of code [6].

The SDVS VHDL translator incorporates an extensive subset of VHDL, admitting both
behavioral (algorithmic, or register-transfer) and structural (component hierarchy) speci-
fications of digital systems. A number of example VHDL descriptions have been proved
correct (e.g. adders, multipliers, multiplexers), and a substantial "real-world" application
involving a commercial receiver/transmitter chipset is currently in progress.

In Section 2 of this tutorial, we present a brief overview of SDVS and its temporal logic.
We define the central concept of SDVS, the state delta, and provide several examples that
illustrate its syntax and semantics.

Sections 3 and 6 are the heart of the tutorial. The former is devoted to the most important
dynamic proof commands of SDVS and the latter to the static proof commands.

The SDVS integer, bitstring, and array data types are discussed in Section 4. Other types
are presented in Section 7.2.

In Section 5 we discuss the use of quantification in SDVS and prove a state delta that
contains existential and universal quantification over array indices.

In Section 7 we build on the previous sections and present proofs of correctness of Ada,
VHDL, and ISPS programs.

'For a more detailed account of SDVS, the reader should refer to the SDVS 13 User's Manual[l].
2The work on SDVS is ongoing.

2 An Overview of SDVS

The formal framework of SDVS relies on the language and techniques of mathematical logic.
SDVS is based on a specialized temporal logic whose characteristic formulas, called state
deltas, provide an operational semantic representation of computation. Our operational
model is discussed in more detail in the next section. Technically, SDVS checks proofs
of state deltas. SDVS can handle proofs of claims of the form "if P is true now, then Q
will become true in the future." Assuming P represents a program (perhaps with some
initial assertions) and Q is an output assertion, this is an input-output assertion about P.
SDVS can be used as well to prove a claim of the form "if P is true now, then Q is true
now;" assuming both P and Q represent programs, this claim asserts the implementation
correctness of P with respect to Q [7]. This is a claim that one program correctly implements
another. Specifications of programs may be directly formulated in state deltas, or may be
programs that can be translated into state deltas.

User SDVS

Specification

Ada / VHDL / ISPS
Program

Proof Commands

Interactive
Theorem
Prover

Domain
Knowledge

Translators

valid
proof? .
 _ yes/no

Figure 1: SDVS User Interaction

Figure 1 gives a high-level view of how a user typically interacts with SDVS.

SDVS has a theorem prover (also referred to as a proof checker), knowledge about several
computer domains (data types), and a set of translators. A user inputs either an Ada,
VHDL, or ISPS program together with a specification for that program. Then the user
interacts with SDVS to construct a proof that the program satisfies the specification. A
proof may be developed interactively and then later executed in batch mode.

t() t{ tj

o o o - -

Figure 2: A Timeline

The user communicates with SDVS through several languages. The user interface language
is used for interactive proof construction. The proof language is used to write a proof for
the system to check. The state delta language is used to express claims to be proven and
to describe the relevant programs and specifications. Finally, the application languages
(currently, subsets of ISPS, VHDL, and Ada) are used to express the computational objects
to be verified. The translators function as SDVS's interface to application languages by
translating them into the state delta language; the translator for each application language
is an implementation of a denotational semantics for the language in terms of state deltas.

SDVS has knowledge about domains used in the programs. A main component of the
theorem prover is the SDVS Simplifier, which implements these domains as theories with
complete or partial decision procedures (or solvers) [8]. The decision procedures are used to
deduce properties about domain objects. The complete decision procedures automatically
answer queries about propositions, equality, enumeration orderings, fragments of naive set
theory, and part of integer arithmetic. The partial decision procedures are part automatic
and part manual, with the user instructing the system to use various axioms to deduce
properties. The domain axiomatization is "hardwired" in SDVS, although we are currently
experimenting with a facility for user-defined domains [9] that is based on the Boyer-Moore
theorem prover [10]. Domains for which there are partial solvers include integer arithmetic,
bitstrings, arrays, VHDL time, and VHDL waveforms. The Simplifier handles combinations
of theories according to the Nelson-Oppen algorithm for cooperating decision procedures
[11].

2.1 The Operational Nature of SDVS

SDVS provides an operational approach to formal verification. Operational verification
systems equate a program with the class of all possible computation sequences3 (executions)
of that program; a verification system is used to show that a program is correct for all
possible computation sequences. In SDVS a computation sequence is a model of a formula in
the language of a temporal logic. Thus, correctness properties of programs can be expressed
and proved in a temporal logic framework; a proof of program correctness is a mathematical
proof of a temporal formula.

Every program written in a computer language accepted by SDVS describes a class of
temporal structures that are possible executions of the program. For a program P with
program variables (or registers) x, y, and z, and for a set of initial values (fixed or symbolic)
for these variables, a possible execution of P generates a linear sequence of times to, .., U,

3 A computational sequence of a program is a temporal structure that is a model of the program. Temporal
structures and models are defined in Section 2.2.2.

«0

o- -o

«o, x(t0), y(t0), z{t0), ->terminatedp(t0)>,
..., <t, x(t), y(t),z(t),terminatedp(t)>

where x(t0) = 2, y(t0) = 3, z(t0) = z0, x(t) = 2, y(t) = 3, z(t) = 5

Figure 3: A Model of P

..., tj, ..., where to is the initial time. We call this sequence a timeline; it is illustrated in
Figure 2. In our terminology, time is an abstraction that indexes the states of an execution;
it is not to be confused with the ticks of a clock. At each time t, the program variables have
fixed or symbolic values. For a variable x, let x(t) denote its value at time t. A state is an
ordered set consisting of a point of time t in the timeline of the execution of the program,
followed by the values of the program variables at time t. For example, <t,x(t),y(t),z(t)>
represents the state at time t for an execution of the program P. A model of P is a sequence
of states representing a possible execution of P.

Assertions about the program P are, in effect, assertions about the models of P. For
example, if program P calculates the sum of x and y and stores the result in z, then a
correctness assertion about P is that "for every pair of initial values of a; and y, P terminates
and, upon termination, the value of z is the sum of the initial values of x and y." This may
be stated by the formula qi:

<7i = 3t(z(t) = x(to) + y(to) A terminatedp(t))

where x(to) and y(to) are symbolic values, and where terminatedp is false until P ter-
minates, at which time it becomes true. The formula q\ is true in every model M of P.
Figure 3 shows an example of a model of P.

Just as assertions about a program P are assertions about all the models of P, proofs about
P are proofs about all the models of P. In SDVS, when one writes a correctness proof
about a program, the program is first translated into SDVS's temporal language, and then
the proof is performed in that language, using the logic of SDVS. We use tr(P) to denote
such a translation of a program P. The translation process is akin to compilation, in that
the program is "compiled" into a temporal logic formula.

For our example program P with its specification qi, a proof that P is correct with respect
to q\ is a proof that the formula tr(P) —> «^ (where q^ is a translation of q\ into a temporal
formula) is a valid formula of temporal logic and hence is true in all temporal structures.

2.2 The State Delta Language

Statements involving time can be expressed in temporal languages and proved in tempo-
ral logics. Temporal languages have symbols, called temporal operators, that are used to

express such statements. The only temporal operator of SDVS is the state delta.4 It is
a combination of the classical temporal operators always, eventually, and fragments of
until. In this section we briefly discuss its syntax and semantics.

2.2.1 Syntax

The language L of SDVS contains function, predicate, and constant symbols and two types
of variables, global and local.5 The values of the global variables are constant throughout
a timeline (computation), whereas the values of the local variables vary with time. The
atomic terms are either constants (e.g. 0 and 1), global variables, or of the form .x or #x,
where x ranges over the local variables.

In a manner analogous to that for the predicate calculus, terms and atomic formulas are
defined from the atomic terms, the function symbols (e.g. + and *), and the predicate
symbols (e.g. gt and le). For example, 2 * (#z - .y + a) is a term with local variables x and
y and global variable a, and 2 * (#x — .y + a) = .y is an atomic formula.

The set of formulas of SDVS is defined to be the smallest set that contains the atomic
formulas and that is closed under conjunction ("and"), disjunction ("or"), negation ("not"),
implication ("implies"), universal quantification over global variables ("forall a"), existential
quantification over global variables ("exists a"), and the state delta operator

[sd pre: p comod: c mod: m post: q]

where (1) the precondition p is a formula with the property that for every local variable x,
every occurrence of #x in p is an occurrence in either the precondition or postcondition of a
state delta subformula of p; (2) the postcondition q is a formula; and (3) the comodification
list c and modification list m are lists of local variables.

For every local variable x and formula <f>, an occurrence of .x (#x) in <f> is an upper level
occurrence if and only if the occurrence is not in the precondition or postcondition of a state
delta subformula of <j>. A formula <f> is of precondition type iff for every local variable x, 4>
has no upper-level occurrences of #x. A precondition type formula is static (nontemporal)
if and only if it has no state delta subformulas. Here are some examples:

(i) The first occurrence of #x in the formula

#x le 2*.y and [sd pre: true comod: x,y mod: x post: #x=.x+l]

is an upper-level occurrence, whereas the second occurrence is not. This formula is
not a precondition type formula.

(ii) The formula

4State deltas were first introduced in [12].
5Global and local variables may be constrained to range over specific SDVS data types (see Section 4).

By default, they are usually of type integer.

.x le 2*.y implies [sd pre: .x It .y comod: x mod: z post: #x=l]

is of precondition type but is not static,

(iii) The formula

exists a (.x+.y = 5 and a ge 3)

is a static formula.

2.2.2 Semantics

A temporal structure M consists of a first-order base structure (e.g. the integers), a timeline
T, and a valuation V, such that

(i) V assigns a function, predicate, and element of the base structure to every function,
predicate, and constant symbol of the language, respectively.

(ii) To every global variable a, V assigns an element, V(a), of the base structure.

(iii) For every local variable x and every time t of the timeline T, V assigns an element of
the base structure, V(.x,t) [or simply x(t)], to the atomic term .x at time t.

Let t be an element of T. Then for every term r in which # does not occur, V assigns
an element of the base structure, V(r,t), to the term r at time t. Furthermore, for every
static precondition formula <j>, V assigns a truth value to <f>, V{<f>,t), at time t, in a manner
analogous to that for the predicate calculus.

For example, if V(a) — 2, V(.x,t) = —1, and V(.y,t) — 4, then

V((.y = 3 * a + 2 * .x), *)) = true

and
V(3 b (b = a and .y = 3*b + 2* .x),t) = true

We proceed to define V(<f>,t) for every precondition formula <j> and every t in T. The
definition is by induction on the complexity of <j>.

Boolean operators and quantification over global variables are treated in the standard way.

Suppose that <f> is the state delta formula

[sd pre: p comod: c mod: m post: q]

and that .x\,..., .xn and #y\, ■ ■ ■ #yk are the upper-level (local) atomic terms of q.
Then <f> is true at time t if and only if for every ti >t such that every local variable in c is
constant in the closed time interval [t, ti] and such that p is true at time t\, then there is a

s 5 6 7 8 8
x 5 5 5 5 3
y 3 3 3 3 5
i 0 12 3 3

T to t\ t2 t3 t4

Figure 4: A Temporal Structure M

time ti > t\ such that every local variable not in m is constant in the closed time interval
[ii, £2] and such that

q[V(.xi,t1)/.x1,...,V(.xn,t1)/.xn ; .yi/#yi,...,.yk/#yk]

is true at time £2- The substitution of the value of the i,-'s at time ti for the .Xj's is made
prior to the substitution of the .j/j's for the #j/j's in q. In effect, the upper-level atomic
terms of q are evaluated at time t\ if they are of the form .z, and at time *2 if they are of
the form #y.

In the definition of the truth of the state delta <j>, a time with the properties of t\ described
above is said to be a "precondition time" of the state delta (with respect to the "current"
time t at which it is evaluated), and a time with the properties of t<i is said to be a "postcon-
dition time" of the state delta (with respect to t\). A modification or comodification list of
"all" is an abbreviation for the list (set) of all local variables of the language, (modification)
list of a state delta is (modification) field delta. If the comodification list of the state delta <f>
is "all," then every precondition time is, in effect, the same as the current time,6 i.e., ti = t.
Similarly, if the modification list of the state delta is empty, then every postcondition time
of the state delta is, in effect, equal to its corresponding precondition time, i.e. t\ = h.

Evidently, the state delta operator is complex. A few examples should clarify its semantics.
Suppose that x, y, s, and i are the only local variables of the language, a and b are global
variables, and the base first-order structure is the set of integers with functions "+", "-",
"*" and predicates "le", and "It".

Figure 4 depicts a temporal structure M with five points in its timeline. The base structure
is the set of integers with the usual functions and predicates. The numbers in each column
are the values of the local variables at each point of the timeline.

The discussion that follows refers to the structure M and to its timeline.

6 An important fact about every precondition formula <r of SDVS is that for every temporal structure, if
t < ti are elements of the timeline of the structure such that every local variable of the language is constant
in the time interval [t,h], then the truth value of a is constant in [t,ti]-

(i) The static formula .i + .y + .x = .s + 3 is true at t^.

(ii) A state delta with comodification and modification lists of "all" and precondition
"true", asserts that there is a time in the future (possibly now) such that the post-
condition is true. For example, the state delta

[sd pre: true comod: all mod: all post: #i=l]

is true at t0 and t\ and false at all other times,

(iii) The state delta

[sd pre: true comod: all mod: s,i post: #s=.s+l and #i=.i+l]

is true at times to, h, and f2, but false at all other times. The comodification list "all"
denotes the list of all local variables. At any particular time r in the timeline of a
temporal structure, this state delta is true iff there is a time t > r such that only s and
i may change their value in the closed time interval [r,t] and s(t) = s(r) + 1 A i(t) =
*(r) + l.

(iv) The state delta

[sd pre: true comod: all mod: x,y post: #y=.x and #x=.y]

is true at £3 but false at all other times.

(v) A state delta with a comodification list of "all" and an empty modification list asserts
that the precondition implies the postcondition at the current time. The reason for
this is that any precondition time is, in effect, equal to the current time, and any
postcondition time is, in effect, equal to the corresponding precondition time. Thus
the state delta

[sd pre: .i=0 comod: all mod: post: #s=5]

is true at time to- In fact, it is true at all other times as well, because its precondition
is false at every other time.

(vi) A state delta with empty comodification and modification lists asserts that at every
time t in the future, the precondition at time t implies the postcondition at time t.
For example, the state delta

[sd pre: true comod: mod: post: #i ge 1]

is true at time t\, since the value of i is greater than or equal to 1 at t\ and thereafter.
However, it is false at to-

(vii) The state delta

[sd pre: .i It .y
comod: x,y

mod: s,i
post: #s=.s+l and #i=.i+l]

is true at to. The precondition times with respect to the current time to, are to-, h,
and t2', for these precondition times the corresponding postcondition times are t\, t2,
and t3, respectively. Note that t3 and t4 are not precondition times with respect to
to-, because the precondition is false at the former time, and the comodincation list is
violated in the latter time (y is not constant in the interval [to»£4])- This state delta
is also true at t\ and £2- It is true at £3 by default, because of its comodification list
and the fact that its precondition is false at £3, and it is false at t4.

(viii) The "nested" state delta

[sd pre: true

comod: all

mod: i,s

post: #i=.i+l and #s=.s+i and

[sd pre: true
comod: all

mod: i,s
post: #i=.i+l and #s=.s+l]]

is true at to and t\, but false at all other times. It is not true at t% because the state
delta in its postcondition is false at £3.

A precondition formula is valid with respect to the first-order structure A iff it is true at
the initial point of every temporal structure M whose first-order base structure is A. For
example, if the base structure A is the set of integers, then the state deltas

[sd pre: .x=l and
[sd pre: true comod: all mod: y post: #y =.x+5]

comod: all
mod: y

post: #y=6]

and

[sd pre: .x=a and .y=b and
[sd pre: true

comod: all
mod: x,y

post: #x=.y and #y=.x]

comod: all
mod: x,y

post: #x=b and #y=a]

10

are valid with respect to A.

In SDVS the only formulas that may be proved (valid) are the state deltas. But this is not
an important limitation of the system, because for any precondition formula 5", the state
delta

[sd pre: true comod: all mod: post: S]

is valid iff S is valid.

2.3 Model of Storage

Although we have used the local variables (places in SDVS terminology) as if they were
independent of each other (so that, for example, a change of one does not affect the other),
places were historically considered to be memory locations that could possibly overlap. Thus
in situations in which they are considered to be independent, SDVS must be explicitly
informed of that fact. Thus, for the above examples it would be necessary to add the
statement "covering(all,x,y,i,s)" in the precondition of every upper-level state delta. This
statement asserts that the local variables x, y, i, and s are independent of each other and
that they comprise the set of all local variables. The discussion of ISPS (Section 7.3) will
describe the possible overlap of places in greater detail.

2.4 Proofs in SDVS

A proof is a structured argument, using mathematical logic, that a formula is true. The
state delta language is used to write theorems (formulas) to be proved. Using the proof
language in SDVS, the user has access to axioms and rules with which to write interactively
a proof that the system checks. If a state delta is proved in SDVS, then it is true in all
temporal structures (computational models) with the appropriate base structure.

The underlying proof method used by SDVS is symbolic execution. Symbolic execution
essentially involves executing a program or machine description from its initial state through
successive states, using symbolic values for the program variables or for the contents of
machine registers. Of course, the computation path is often conditional on specific values;
in these instances subproofs must be initiated to account for all possibilities. The correctness
claims that are proved are all of the form "At certain states some conditions are true." Thus,
during a proof there are two kinds of tasks: to go from state to state, and to prove that
certain things are true in a given state. These are the dynamic and static aspects of the
proof system, respectively.

The dynamic proof language has three basic rules: straight-line symbolic execution (for
instances where the path is not data dependent), proof by cases (at branch points), and
induction (necessary when the number of times through a loop is data dependent, but could
also be used for a large constant number of iterations). There are other variations to handle
special cases, such as a command to handle general recursive procedures.

11

Once SDVS has "arrived" at a state that the user knows (or hopes) will satisfy the conditions
to be proved, SDVS must be convinced that these conditions are true. Thus, SDVS has
some explicit facts about the state listed in its database, which perhaps do not include
verbatim the required condition. The problem is then to prove the "static" theorem that
those facts imply the required condition. This is a theorem of ordinary mathematics. The
domains associated with these theorems frequently involve bitstrings, integers, arrays, and
the like. Also, a knowledge of basic propositional logic, equality, and some quantification
theory is often needed.

In these domains (and others) SDVS has a mix of automatic deduction capability and
axioms that may be invoked by the user when proving theorems. As mentioned above,
there are two reasons for such a mix: For theoretical reasons of impossibility or inefficiency,
some deductions cannot be done automatically, or else a totally nonautomatic deduction
capability would be too time-consuming for the user.

2.5 Installing SDVS

SDVS is available on magnetic tape in three different formats: source code; object code for
Franz Allegro Common Lisp (FACL); and as a standalone executable utilizing the Franz
Allegro Runtime package. Each format requires its own procedure for creating or loading
SDVS, as outlined below. However, the procedure for reading the system files from the tape
is the same for all formats.

SOFTWARE REQUIREMENTS

SDVS currently runs under Franz Allegro Common Lisp release 4.2. SDVS is also available
as a standalone executable utilizing the Franz Allegro Runtime package; users of this version
of SDVS are not required to supply their own Common Lisp environment. SDVS assumes
that the underlying operating system is Unix, Sun OS 4.1, or equivalent.

HARDWARE REQUIREMENTS

The FACL binary and FACL runtime versions of SDVS require a Sparc processor. The
source code should run under FACL on other architectures without modification, although
this has not been tested. SDVS should port easily to other Common Lisp implementations
on other architectures, although, again, this has not been done.

DISK SPACE REQUIREMENTS

Table 1 gives the disk space requirements for SDVS 13. "Installed" represents the disk
requirements of the system after SDVS has been installed, and assumes that the tar file
from the tape has been recompressed. The size of your installed executable image, if you
are building SDVS from the source or either binary version, will depend on the size of your
(vanilla) Common Lisp image. These numbers are therefore approximate. All numbers are
in megabytes (MB).

12

Table 1: Disk Space Requirements for SDVS 13, in MB

To Load From Tape Installed
Source (.lisp)
Franz Object (.fasl)
Franz Runtime

???
???
???

N/A
???
???

READING THE SYSTEM FILES

First, you should create a top-level directory to contain all of the files and subdirectories
associated with SDVS. On our system, this directory is called versys (for VERification
SYStem) and resides as a subdirectory under /u giving /u/versys. Although you can give
your directory any name, we suggest you use the same name for compatibility; yours can
be located anywhere, however. For example, you might put it as a subdirectory of /usr/lib,
giving /usr/lib/versys. For the examples below, we assume you have /usr/lib/versys as your
top-level directory.

Next, you will want to load the SDVS system tar file from the tape. To do this, create a
tmp directory in your top-level versys directory, connect (cd) to it, and extract (tor) the
system tar file as follows ([unix] is the system prompt):

[unix] tar xfmv xxx

where xxx is the device name for your tape drive, e.g. /dev/rstO. This will create a file
named sdvsnn-xxxx.tar.Z where nn is the current release number (e.g. 13) and xxxx is
lisp (for source files), fasl (for FACL object), or runtime (for FACL runtime). The file
is compressed, so it must be uncompressed:

[unix] uncompress sdvsnn-xxxx.tar

replacing nn and xxxx appropriately.

Now, the system directories must be extracted from the tar file:

[unix] tar xfmv sdvsnn-xxxx.tar

This process creates a file structure containing the individual files from which the SDVS
system can be used or built. Once this process is complete, you may delete sdvsnn-xxxx.tar
if you feel you have no further need for it. An alternative is to recompress the file:

[unix] compress sdvsnn-xxxx.tar

Both will save disk space.

Before you can build and use an SDVS executable image or use the FACL Runtime exe-
cutable, you must define a UNIX environment variable as follows. This can be done directly
in the shell in which you plan to build or use SDVS or by adding the command to your
. cshrc file.

13

[unix] setenv SDVSJDIR "/usr/lib/versys/"

Of course, you will need to supply the correct path you have chosen for your top-level
directory. Please note the slash (/) character at the end; it is required.

BUILDING AN SDVS EXECUTABLE IMAGE

Once you have all of the system files available, you can build an executable SDVS image.
To do this, you must start up a (vanilla) Common Lisp session (either LCL or FACL) and
load the init-sdvs.lisp file found in your top-level directory. (If you don't know how to start
up a Common Lisp session, see your system administrator.) NOTE: If building SDVS on
top of LCL, before loading the init-sdvs.lisp file, you must change Common Lisp packages
to the CL-USER package by:

> (in-package :cl-user)

To load the init-sdvs.lisp file, type

> (load "/usr/lib/versys/init-sdvs")

After the init-sdvs.lisp file has been loaded, you are ready to tell Lisp to build your SDVS
executable. Two functions will do this: make-sdvs builds from the object files; make-new-
sdvs builds from the source files and compiles the entire system. Each function takes one
argument, the name you wish to give the executable; the executable will automatically
reside in your top-level directory. You may give the executable any name you want; in the
following examples, we use the name sdvslSfoT our executable. Each of these functions will
produce a trace of what is happening. (NOTE: For these operations, you must have write
privileges to the appropriate directories.)

For creating an SDVS executable from source:

> (make-new-sdvs "sdvslS")

For creating an SDVS executable from binary:

> (make-sdvs "sdvslS")

You may safely ignore any warning messages printed by the system. When you return to
the Lisp prompt, you can exit Lisp by

> (quit)

USING THE SDVS RUNTIME EXECUTABLE

If you have extracted the SDVS system files from a tape containing the "runtime" format,
the file /usr/lib/versys/sdvsl3 (assuming the appropriate top-level directory) contains
the executable image. This can be used to run SDVS directly, as noted below.

RUNNING SDVS

You have gone through this procedure and have created your executable. How do you run
SDVS? At the Unix shell, just type, for example

14

[unix] /usr/lib/versys/sdvslS

or just sdvsl3 if you are connected (cd) to the top-level directory (/usr/lib/versys in our
example) or if your $PATH environment variable contains the path to the top-level directory.

RUNNING THE TEST SUITE

Included in the SDVS release is a set of tests that exercise the system. To run these tests,
you must first start up SDVS. (After building your SDVS executable, you should restart
SDVS so that the system is initialized properly.) When you get to the SDVS prompt, invoke
the tests as follows:

<sdvs.l> run-test-proofs

A very long trace will appear. If the tests run successfully (this may take over two hours on
a Sun 4), you will return to the SDVS prompt. If something goes wrong, Lisp will "break,"
allowing you to examine the system; Lisp will print out some diagnostic information and
put you at a prompt. If this should happen, you may exit Lisp by typing (quit).

You may restart SDVS by first returning to the top level of Lisp and invoking the function
sdvs as follows:

> (sdvs)

From the SDVS prompt, you can return to Lisp by typing the SDVS command bye.

15

3 Dynamic Execution

In this section we present most of the SDVS commands that advance the state of a compu-
tation or program execution. (Section 6 is devoted to those commands that do not advance
the state, but rather enlarge the set of facts known to SDVS about a specific state.) In
Section 3.1 we consider those commands that are most often used in proofs that involve
the translation of assignment statements, in Section 3.2 those commands that involve the
translation of "case" program segments, and in Section 3.4 the induct command that is
used in proofs that involve "loop" program segments. Finally, in Section 3.3 we consider
ways of proving state deltas that are assertions about the current state or about all future
states.

Henceforth, in the system-user dialogue, typewriter print is system output and italic
print is user input. In the discussion of the examples, mathematical formulas and terms are
printed in TgjX math mode.

3.1 Straight-line Proofs

In this section we present in a very leisurely fashion two simple examples that will introduce
the reader to an extensive part of the SDVS proof environment.

Example 1 In the first example we prove that the state delta translation of the program
P in Section 2.1 implies its specification, namely, that if the initial values of x and y are
2 and 3, respectively, and z is assigned the value of x + j/, then there will be a time when
the values of x, y, and z will be 2, 3, and 5, respectively. Lest the reader be alarmed, we
note that the assignment of concrete values to the variables is only for pedagogic reasons:
in most of our examples, the values of the program variables will be symbolic.

We first create the state delta that corresponds to the assignment statement

z := x + y

using the createsd command.

sdvs.1> createsd
name: assign, sd

[SD pre: true
comod[] : all

mod[] : z
post: #z=.x+.y

]

If assign.sd is true at time to, then there is a time *i > to such that z(t\) = x(to) + J/(io)
and such that the values of x and y remain constant in the interval [io5*i] (because of the

17

modification list, only z may change its value in this time interval). Hence x{t\) = x(to),
and y(ti) = y(t0).

The pretty-print command pp displays the state delta associated with a given state delta
name:

<sdvs.l> pp
object: sd
state delta name: assign.sd

[sd pre: (true)
comod: (all)

mod: (z)

post: (fz = .x + .y)]

We now create the state delta that asserts that the state delta translation of P implies the
specification of P.

< s dvs. 1 > createsd
name: examplel.sd

[SD pre: covering(all,x,y,z), .x=2, .y=3, formula(assign.sd)
comod [] : all

mod[] : z
post: #x=2, #y=3, #z=5

]

Note that the proper way to include the state delta assign.sd in the precondition (or
postcondition) of examplel.sd is to include it with "formula^assign.sdy. Also note that
commas at the top level of the precondition and postcondition of a state delta are interpreted
as "and".

The initialization command init should always be used prior to the beginning of a top-level
proof. The command clears any knowledge that the system has acquired in a given session
(apart from the already established association of names with formulas).

<sdvs.i> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

SDVS has a list of flags that may be set by the user:

<sdvs.l> flags

18

abbreviation], evel = none

acceptfileproofs = on

autoclose = on

checkexistence = off
checksyntax = on

displaympsds = on

ekltraceflag = off

enumerate = off

invariance = off

optimizeassignments = simp

ppdottednames = off

pplinewidth = 75

reportpropagations = on

showstats = off

showstep* = off

strongcoverings = off

stronglytyped = off

traceflag = on

uniquenamelevel = 1

usedots = off

weaknext_tr = off

Type 'help flags' for a description.

If the autoclose flag is set to "off", SDVS will not usually "close"7 the proof of a state delta,
even if the goal (the postcondition) of the state delta has been achieved (reached).

<sdvs.l> setflag
flag variable: autoclose
on or off[off]: off

setflag autoclose — off

We are now ready to prove examplel.sd.

<sdvs.2> prove
state delta [] : examplel.sd
proof D : < CR>

open — [sd pre: (covering(all,x,y,z),.x = 2,.y = 3,formula(assign.sd))
comod: (all)

mod: (z)

7 A proof of a state delta is closed if the proof is complete.

19

post: (#x = 2,#y = 3,#z = 5)]

Complete the proof.

SDVS has now opened the proof of examplel.sd: it has advanced the state (subject to
the constraints of the comodification list "all") to a time at which the precondition of
the state delta is asserted (to be true), and has placed the translation of the postcondition
at the top of its goal stack. It has also noted the modification list "z"; by doing so, any
advancement of the state must henceforth be made subject to this modification list, that
is, any advancement must be restricted to possible changes in the value of z only.

Since the precondition has been asserted to be true, the values of x and y must be 2 and
3, respectively. This may be checked by the simp (simplify) command. Recall that the
current value of a place a is denoted by .a and not by #a.

<sdvs.2.1> simp
expression: .x

<sdvs.2.1> simp
expression: .y

The value of z at this point is symbolic and indeterminate:

< sdvs. 2.1 > simp
expression: .z

z\5

Since assign.sd is in the precondition, it is now true. This may be ascertained by the
usable query which displays the state deltas (and the quantified formulas) that are true in
the current state.

<sdvs.2.1> usable

u(i) [sd pre: (true)
comod: (all)

mod: (z)
post: (#z = .x + .y)]

No usable quantified formulas.

20

A state delta that is true at the current time may not be "applicable." To be applicable,
its precondition must also be true at the current time. Since the precondition of assign.sd
is always true, assign.sd is now applicable. This may be checked by the nsd command,
which displays the most recent state delta that the system knows to be applicable.

<sdvs.2.i> nsd

[sd pre: (true)
comod: (all)

mod: (z)
post: (#z = .x + .y)]

At any point in the course of a proof the user may ask SDVS to list the goals of the most
current proof that it does not know to be true:

<sdvs.2.1> whynotgoal
simplify?[no] : <CR>

g(3) #z = S

The apply command is used to advance the state by "applying" an applicable state delta
whose modification list is a sublist of the modification list of the state delta to be proved.
If no argument is given, SDVS applies the most recent applicable state delta:

<sdvs.2.1> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (z)
post: (#z = .x + .y)]

SDVS executes the application of a state delta S by

• linking every upper-level dotted place a in the postcondition of S to any information
about a it currently has,

• removing any information about the current state whose truth depends on the values
of places in the modification list of 5, and

• asserting the postcondition of 5.

Thus the application of assign.sd advances the state to a time at which x and y have
retained their previous values and at which the value of z is asserted to be equal to the
sum of these two previous values. Furthermore, assign.sd is no longer known to be true in

21

this state (because its comodification list did not allow anything to change) and is thus no
longer usable.

Let us check these facts:

<sdvs.2.2> simp
expression: .x

<sdvs.2.2> simp
expression: .y

<sdvs.2.2> simp
expression: .z

<sdvs.2.2> usable

No usable state deltas.

No usable quantified formulas.

Thus our goal has been reached. SDVS has not automatically closed the proof because the
"autoclose" flag is off.

Let us check the goals once more:

<sdvs.2.2> whynotgoal
simplify?[no] : <CR>

The goal is TRUE. Type 'close'.

The command close will close the proof:

<sdvs.2.2> close

close — 1 steps/applications

22

Once a proof of a state delta is closed, the state delta becomes true (usable) but any
information gained during its proof is lost and any information that was lost after its proof
was opened is restored: the state is "popped" to the time before the "prove" command was
used to prove it:

<sdvs.3> simp
expression: .x

x\7

<sdvs.3> simp
expression: .y

y\8

<sdvs.3> simp
expression: .z

z\9

<sdvs.3> usable

u(l) [sd pre: (covering(all,x,y,z),.x = 2,.y = 3,formula(assign.sd))
comod: (all)

mod: (z)
post: (#x = 2,#y = 3,#z = 5)]

No usable quantified formulas.

Note that although examplel.sd is usable, it is not applicable, because its precondition is
not necessarily true:

<sdvs.3> nsd

No applicable state deltas.

A proof that has just closed may be given a name and stored temporarily in the system
(for the duration of the current session only) using the dump-proof command:

< s dvs. 3 > dump-proof
name: example 1. sd.proof

Current proof dumped to example1.sd.proof.

23

This command must be given prior to an init command.

Now let us initialize the system once more to demonstrate that init will erase examplel.sd
from the usable list:

<sdvs.3> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> usable

No usable state deltas.

No usable quantified formulas.

The saved proof "examplel.sd.proof" may be run in batch mode by means of the init or
interpret commands.

<sdvs.l> init
proof named: examplel.sd.proof

State Delta Verification System, Version 13

Restricted to authorized users only.

setflag autoclose — off

open — [sd pre: (covering(all,x,y,z),.x = 2,.y = 3,formula(assign.sd))
comod: (all)

mod: (z)
post: (#x = 2,#y = 3,#z = 5)]

apply — [sd pre: (true)
comod: (all)
mod: (z)

post: (#z = .x + .y)]

close — 1 steps/applications

It may also be pretty-printed by the pp command:

24

<sdvs.3> pp
object: proof
proof name: examplel.sd.proof

proof examplel.sd.proof:

(setflag autoclose off,
prove examplel.sd

proof:
(apply u(l),
close))

But this is true only during the current session. To store in a file the proof and the
state deltas created in this SDVS session, the user may write them by means of the write
command:

<sdvs.3> write
path name[testproofs/foo.proofs]

state delta names []
proof names[]
axiom namesD
lemma names []

formula names[]
formulas names[]

macro names []

datatype names []

adalemma names □
vhdllemma names[]

tutorial/example 1
assign.sd, examplel.sd
examplel.sd.proof
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>

Write to file "tutorial/examplel' -- (assign.sd,examplel.sd,

examplel.sd.proof)

Furthermore the association of names with formulas in the current session may be severed
by the delete command:

<sdvs.3> delete
object type:
object name:

proof
example 1. sd.proof

25

<sdvs.3> delete
object type: sd

object name: assign.sd

<sdvs.3> pp
object: sd
state delta name: assign.sd

The name assign.sd is not associated with a state delta.

pp error: unknown state delta

<sdvs.3> pp
object: proof
proof name: examplel.sd.proof

The name examplel.sd.proof is not associated with a proof.

pp error: unknown proof

In any new session with SDVS, these associations may be read from the file

<sdvs.3> read
path name [tutorial/examplel] : tutorial/example 1

Definitions read from file "tutorial/examplel"
— (assign.sd.examplel.sd,examplel.sd.proof)

and executed via the init command or the interpret command:

< sdvs. 1 > interpret
proof name: examplel.sd.proof

setflag autoclose — off

open — [sd pre: (covering(all,x,y,z),.x = 2,.y = 3,formula(assign.sd))

comod: (all)
mod: (z)

post: (#x = 2,#y = 3,#z = 5)]

apply — [sd pre: (true)
comod: (all)

mod: (z)
post: (#z = .x + .y)]

26

close — 1 steps/applications

The main difference between the init command and the interpret command in running a
batch proof is that the interpret command does not initialize the system prior to running
the proof. Thus in the cases in which we want to run a batch proof of a state delta within
the proof of another state delta, the interpret command is appropriate.

Example 2 This second simple example differs from the first primarily in that the local
variables have only symbolic values. Proofs of such programs are said to be done by symbolic
execution. The example is a proof that the state delta translation of the program segment

Q

temp := x;
x := y;
y := temp;

implies that at the end of the execution of Q, x and y will have exchanged their initial values.
The example also illustrates the translation of a program consisting of several statements
to a nested state delta. The translation of the assignment statement

y := temp

is the state delta assign.temp.to.y.sd:

[sd pre: (true) comod: (all) mod: (y) post: (#y = .temp)]

The translation of the assignment statement

x := y

with its continuation is the state delta assign.y.to.x.sd:

[sd pre: (true)
comod: (all)

mod: (x)
post: (#x = .y,formula(assign.temp.to.y.sd))]

The truth of assign.y.to.x.sd at a time ti1 implies that there are times i;3 > U2 > t^ such
that

27

• x(U2) = t/(iil) and y(th) = temp(ti2) and

• only x may change its value in the interval [i^,^] and

• only y may change its value in the interval [ti2,t{3].

The translation of the assignment statement

temp := x

with its continuation is the state delta assign.x.to.temp.sd:

[sd pre: (true)

comod: (all)

mod: (temp)
post: (ttemp = .x,formula(assign.y.to.x.sd))]

This state delta is in fact the state delta translation of the program segment Q. Finally,
the assertion that the translation of Q implies the specification of Q is the state delta
example2.sd:

[sd pre: (covering(all,x,y,temp),formula(assign.x.to.temp.sd))
comod: (all)

mod: (all)
post: (#x = .y,#y = -x)]

Now let us open the proof of example2.sd:

<sdvs.l> prove
state deltaD : example2.sd
proof □ : < CR>

open — [sd pre: (covering(all,x,y,temp),formula(assign.x.to.temp.sd))
comod: (all)

mod: (all)
post: (#x = .y,#y = .x)]

Complete the proof.

The opening of the proof of example2.sd asserts its precondition at the initial state of the
computational model. At this state, the variables x and y are given symbolic values of the
form "variablenameXnumber", where "number" is a positive integer that is generated in
an indeterminate manner. These values are listed by the ppeq (pretty-print equivalence
class) command:

28

<sdvs.i.l> ppeq
expression: .x

eqclass = x\21

<sdvs.l.l> ppeq
expression: .y

eqclass = y\20

<sdvs.l.l> ppeq
expression: .temp

eqclass = temp\22

The goal of the proof of example2.sd, which is the interpreted postcondition of example2.sd,
may be viewed by means of the goals query:

<sdvs.l.l> goals

g(l) #x = y\20
g(2) #y = x\21

Since the precondition of example2.sd has been asserted, the state delta assign.x.to.temp.sd
is usable (true), and moreover, since its precondition is also true at the current state, it is
also applicable. This latter fact may be ascertained via the query applicable, to which
SDVS responds with a list of all the state deltas that it knows to be applicable at the current
state:

< sdvs. 1.1 > applicable

u(l) [sd pre: (true)
comod: (all)

mod: (temp)
post: (#temp = .x,formula(assign.y.to.x.sd))]

This state delta may be applied via the apply command with the parameters u and 1:

<sdvs.l.l> apply
sd/number[highest applicable/once]: u

number: 1

apply — [sd pre: (true)
comod: (all)

mod: (temp)
post: (#temp = .x,formula(assign.y.to.x.sd))]

29

The state has now been advanced to a time at which the symbolic value of temp is the

previous value of x, and x and y have retained their values:

<sdvs.l.2> ppeq
expression: .x

eqclass = x\21

<sdvs.l.2> ppeq
expression: .y

eqclass = y\20

<sdvs.l.2> ppeq

expression: .temp

eqclass = x\21

Furthermore, at this new state, assign.x.to.temp.sd is no longer necessarily true, because its
comodification list has a nonempty intersection with the modification list of the state delta
that was applied. Thus, it is also not applicable, but assign.y.to.x.sd is applicable since it
was asserted to be true by the application and its precondition is always true. Let us note
this fact and apply the state delta by using another parameter for the apply command,
namely, the name of the state delta to be applied:

<sdvs. 1. 2> applicable

u(l) [sd pre: (true)
comod: (all)

mod: (x)
post: (#x = .y,formula(assign.temp.to.y.sd))]

<sdvs.l.2> apply
sd/number[highest applicable/once]: assign.y.to.x.sd

apply — [sd pre: (true)
comod: (all)

mod: (x)
post: (#x = .y,formula(assign.temp.to.y.sd))]

The state has been advanced once more. Let us check the symbolic values of the variables

in the computation:

<sdvs.l.3> ppeq
expression: .x

30

eqclass = y\20

<sdvs.l.3> ppeq
expression: .y

eqclass = y\20

<sdvs.l.3> ppeq
expression: .temp

eqclass = x\21

As expected, one of the goals has been achieved: the current value of x is the initial value
of y. Once more, the goals are:

<sdvs.l.3> goals

g(l) #x = y\20
g(2) #y = x\21

The query whynotgoal will demonstrate that one of the goals has indeed been achieved
and will list the remaining ones:

<sdvs. 1. 3> whynotgoal
simplify? [no] : <CR>

g(2) #y = x\21

The query ps (proof state) will show the history of the proof:

<sdvs.l.3> ps

« initial state >>
proof in progress of example2.sd <3>

apply u(l) <2>
apply assign.y.to.x.sd <1>
—> you are here <—

Had we erred in the course of the proof, we would want to go back to the point before the
error and start anew. This may accomplished via the pop command:

<sdvs.l.3> pop
number of levels[1]: 2

2 levels popped.

31

We are now at the point before the first apply:

<sdvs.l.l> ps

<< initial state >>
proof in progress of example2.sd <1>

—> you are here <—

The command apply has another use: with a number n as the parameter, SDVS will try
to apply n state deltas, using at each point the first applicable state delta in its list:

<sdvs.l.l> apply
sd/number[highest applicable/once]: 2

apply — [sd pre: (true)
comod: (all)

mod: (temp)
post: (#temp = .x,formula(assign.y.to.x.sd))]

apply — [sd pre: (true)
comod: (all)

mod: (x)
post: (#x = .y,formula(assign.temp.to.y.sd))]

<sdvs.l.3> ps

« initial state >>
proof in progress of example2.sd <3>

apply <2>
apply <1>
—> you are here <—

So we are back to the state attained after two applications.

To illustrate another important way to advance the state of computation by the application

of state deltas, we pop back again

<sdvs.l.3> pop
number of levels[1]: 2

2 levels popped,

and get some help on the until command:

<sdvs.l.l> help

32

with [all] : until

until <postformula>
Symbolically executes highest applicable state deltas until
<postformula> is TRUE, there are no more applicable state deltas, or the
'autoclose' flag is on and the current goal is satisfied.

Let us apply until the goal #x = .y has been achieved, and then check where we are in the
proof:

<sdvs.l.l> until
formula: #x=.y

apply — [sd pre: (true)
comod: (all)

mod: (temp)
post: (#temp = .x,formula(assign.y.to.x.sd))]

apply — [sd pre: (true)

comod: (all)

mod: (x)

post: (#x = .y,formula(assign.temp.to.y.sd))]

until break point reached — #x = .y

One more application should close the proof, but let us first set the autoclose flag to "off."

<sdvs.i.3> setflag
flag variable: autoclose
on or off [on]: off

setflag autoclose — off

We now check to ensure that assign.temp.to.y.sd is applicable and then apply it:

<sdvs. 1. 4> applicable

u(l) [sd pre: (true) comod: (all) mod: (y) post: (#y = .temp)]

<sdvs.l.4> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (y)
post: (#y = .temp)]

33

The symbolic values of x and y should now meet the specification:

<sdvs.l.5> ppeq
expression: .y

eqclass = x\21

<sdvs.l.5> ppeq
expression: .x

eqclass = y\20

If the autoclose flag were "on," SDVS would have automatically closed the proof after the
last application, because it knows that all of the goals have been met:

< s dvs. 1.5 > whynotgoal
simplify?[no] : <CR>

The goal is TRUE. Type 'close'.

Let us look at the proof state:

<sdvs.l.5> ps

« initial state >>
proof in progress of example2.sd <5>

apply (until #x = .y) <4>
apply (until ...) <3>
autoclose flag turned off <2>
apply u(l) <1>
— > you are here < —

Close the proof:

<sdvs.l.5> close

close — 4 steps/applications

And see what ps has to say:

<sdvs.2> ps

« initial state >>
proved example2.sd <1>
— > you are here <—

34

At this point example2.sd is usable but not applicable. We could dump its proof via the
dump-proof command or quit the proof via the quit command (which will end the proof
session and associate the proof with the name "sdvsproof"). The command dump-proof
does not end the proof session, i.e., after a dump-proof, the most recently proved state
delta is still usable. Furthermore, dump-proof may be used in the middle of a proof. But
quit may be used only at the end of a proof, and afterwards the state delta that was proved
is no longer usable:

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> usable

No usable state deltas.

No usable quantified formulas.

A proof may also be pretty-printed:

<sdvs.l> pp
obj ect: proof
proof name: sdvsproof

proof sdvsproof:

prove example2.sd
proof:

(until #x = .y,
setflag autoclose off,
apply u(l),
close)

Let us turn the autoclose flag to "on" and prove example2.sd using the until command
with the postcondition of example2.sd as its goal:

<sdvs.l> setflag
flag variable: autoclose
on or off[on]: on

35

setflag autoclose — on

<sdvs.2> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : example2.sd
proof D: <CR>

open — [sd pre: (covering(all,x,y,temp),formula(assign.x.to.temp.sd))
comod: (all)

mod: (all)
post: (#x = .y,#y = .x)]

Complete the proof.

<sdvs.l.l> until
formula: #x=.y and #y=.x

apply — [sd pre: (true)

comod: (all)

mod: (temp)

post: (#temp = .x,formula(assign.y.to.x.sd))]

apply — [sd pre: (true)

comod: (all)
mod: (x)

post: (#x = .y,formula(assign.temp.to.y.sd))]

apply — [sd pre: (true)
comod: (all)

mod: (y)
post: (#y = .temp)]

close — 3 steps/applications

Now, quit will associate a different proof with "sdvsproof":

<sdvs.2> quit

36

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
object: proof
proof name: sdvsproof

proof sdvsproof:

prove example2.sd

proof: until #x = .y & #y = .x

37

3.2 Proofs by Cases

During the course of a proof, a disjunction of two or more formulas may be true, and it
may be that the proof can proceed only by considering each disjunct separately, i.e., it may
be necessary to prove that each disjunct implies that the goal will be achieved. For this
possibility, SDVS has the cases and meases commands. Our next example will feature the
use of the cases command.

Example 3 Consider the following conditional statement R:

if x <= y then
z := y - x;

else
z := x - y;

end if

At the end of the execution of this segment, the value of z should be the absolute value8 of
the difference of x and y, or equivalently, it should be true that

z>0A(z = x — y V z — y — x)

The statement R. may be translated in SDVS as the conjunction of the state delta if.sd

[sd pre: (.x le .y)
comod: (all)

mod: (z)
post: (#z = .y - .x)]

and the state delta else.sd

[sd pre: (.y It .x)
comod: (all)

mod: (z)
post: (#z = .x - .y)]

Thus, the state delta case.sd

[sd pre: (covering(all,x,y,z),formula(if.sd),formula(else.sd))
comod: (all)

mod: (z)
post: (#z ge 0,#z = .y - .x or #z = .x - .y)]

8 SDVS has an absolute value function, abs, but in most cases, proofs that involve it require "reading"
and invoking axioms, a subject that will be covered in Section 6.

38

asserts that the state delta translation of R implies its specification.

Let us initiate the proof of case.sd:

<sdvs.l> init
proof name[] : <CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.i> setflag
flag variable: autoclose
on or off[off]: off

setflag autoclose — off

<sdvs.2> prove
state delta [] : case.sd
proof [] : < CR>

open — [sd pre: (covering(all,x,y,z),formula(if.sd),formula(else.sd))
comod: (all)

mod: (z)
post: (#z ge 0,

#z = .y - .x or #z = .x - .y)]

Complete the proof.

The query ppl will display the symbolic values of the places x and y:

<sdvs.2.1> ppl
places [all]: <CR>

x x\30
y y\29

The symbolic value of z is unimportant at this point, since .z does not appear at the top
level of the postcondition of case.sd.

The interpreted postcondition of case.sd is the goal of the proof:

<sdvs.2.1> goals

g(l) #z ge 0

g(2) #z = y\29 - x\30 or #z = x\30 - y\29

39

And the state deltas else.sd and if.sd are usable:

<sdvs.2.1> usable

u(l) [sd pre: (.y It .x)
comod: (all)

mod: (z)
post: (#z = .x - .y)]

u(2) [sd pre: (.x le .y)
comod: (all)

mod: (z)
post: (#z = .y - .x)]

No usable quantified formulas.

But they are not applicable:9

< sdvs. 2.1 > applicable

The query whynotapply shows why:

<sdvs. 2.1 > whynotapply
state delta[highest usable] : if.sd

Because the following is not known to be true — .x le .y

< sdvs. 2.1 > whynotapply
state delta[highest usable] : else.sd

Because the following is not known to be true — .y It .x

Neither is applicable because, at this state, neither precondition is true. But the disjunction
of their preconditions is surely true:

<sdvs.2.1> simp

expression: .x le .y or .y It .x

true

9If there are usable state deltas but none of which is known to be applicable by SDVS, the applicable
query gives no information, because under certain circumstances, it may be possible for the user to prove
that one of the usable state deltas is in fact applicable.

40

Since SDVS knows that the disjunction of these two formulas is true, we may use the cases
command to split the proof of the goal to the case that .x < .y and to the case that .y < .x.
In the first case, if.sd wiU be applicable, and in the second case, else.sd will be applicable.
But in both cases, the goal will remain the same, and so will the modification list. The
comodification list will always be "all."

<sdvs.2.1> cases
case predicate: .x le .y

cases — .x le .y

open — [sd pre: (.x le .y)
comod: (all)

mod: (z)
post: (#z ge 0,

#z = y\29 - x\30 or #z = x\30 - y\29)]

The proof of the first case has been opened. The state has not been advanced (the "all" in
the comodification list assures this), but it is now assumed that .x < .y:

<sdvs.2.1.1.1> simp
expression: .x le .y

true

As we already noted, the goal remains the same:

<sdvs.2.1.1.1> goals

g(l) #z ge 0
g(2) #z = y\29 - x\30 or #z = x\30 - y\29

Furthermore, since the state has not been advanced, the same state deltas are usable:

<sdvs.2.1. i.l> usable

u(l) [sd pre: (.y It .x)
comod: (all)
mod: (z)
post: (#z = .x - .y)]

u(2) [sd pre: (.x le .y)
comod: (all)

mod: (z)

41

post: (#z = .y - .x)3

No usable quantified formulas.

But in this case, since .x < .t/, if.sd is also applicable:

< sdvs. 2.1.1.1 > applicable

u(2) [sd pre: (.x le .y)
comod: (all)

mod: (z)

post: (#z = .y - .x)]

Let us see where we are in the proof, and then apply if.sd:

<sdvs.2.1.1.1> ps

<< initial state >>
autoclose flag turned off <3>
proof in progress of case.sd <2>

case analysis in progress on: .x le .y or ~(.x le .y) <1>
1st case: in progress
—> you are here <—

<sdvs.2.1.1.1> apply
sd/number [highest applicable/once] : if.sd

apply — [sd pre: (.x le .y)
comod: (all)

mod: (z)
post: (#z = .y - .x)]

We inquire if the goal is true and close the proof of the first case:

<sdvs. 2.1.1. 2> whynotgoal
simplify? [no] : < CR>

The goal is TRUE. Type 'close'.

<sdvs.2.1.1.2> close

close — 1 steps/applications

42

open — [sd pre: (~(.x le .y))
comod: (all)

mod: (z)
post: (#z ge 0,

#z = y\29 - x\30 or #z = x\30 - y\29)]

Complete the proof.

SDVS has automatically opened the proof of the case .y < .x:

<sdvs.2.1.2.1> simp
expression: .y It .x

true

At this point there are several usable state deltas, but only one has a true precondition and
is applicable, else.sd:

<sdvs.2.1.2.1> usable

u(i) [sd pre: (.x le .y)
comod: (all)
mod: (z)

post: (#z ge 0,
#z = y\29 - x\30 or #z = x\30 - y\29)]

u(2) [sd pre: (.y It .x)
comod: (all)

mod: (z)
post: (#z = .x - .y)]

u(3) [sd pre: (.x le .y)
comod: (all)

mod: (z)
post: (#z = .y - .x)]

No usable quantified formulas.

<sdvs.2.1.2.1> applicable

u(2) [sd pre: (.y It .x)
comod: (all)

mod: (z)
post: (#z = .x - .y)]

43

Note that the first usable state delta is the state delta that was just proved, i.e., the first
case state delta. We apply else.sd and close the proof of the second case:

<sdvs.2.1.2.1> apply
sd/number [highest applicable/once] : else.sd

apply — [sd pre: (.y It .x)
comod: (all)

mod: (z)
post: (#z = .x - .y)]

After the proof of the second case, SDVS automatically "joins" the two cases into one state

delta and closes the proof of case.sd. (The "join" and close are automatic, even if the

autoclose flag is off.) Thus case.sd is now usable:

<sdvs.3> usable

u(l) [sd pre: (covering(all,x,y,z),formula(if.sd),formula(else.sd))
comod: (all)

mod: (z)
post: (#z ge 0,#z = .y - .x or #z = .x - .y)]

No usable quantified formulas.

Let us quit and look at the proof:

<sdvs.3> quit

Q.E.D. The proof for this session is in 'sdvsproof

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
obj ect: proof
proof name: sdvsproof

proof sdvsproof:

(setflag autoclose off,

prove case.sd

proof:

cases .x le .y

44

then proof:

(apply if.sd,
close)

else proof:

(apply else.sd,

close))

45

3.3 Proofs of Now and of Always

In this section, we will give some trivial examples of state deltas that assert that a formula
is true now and that a formula is true always (in the timeline).

Example 4 A state delta with a comodification list of "all" and an empty modification
list asserts that its precondition implies its postcondition at the current time. The reason
for this is that a comodification list of "all" does not allow any variables to change value
between now and the precondition time, and the empty modification list does not allow any
variables to change value between the precondition and postcondition times. Thus, if the
precondition implies the postcondition at the current state, the state delta is true.

Consider the state delta nowl.sd:

[sd pre: (covering(all,x), .x gt a)
comod: (all)
post: (#x ge a + 1)3

It asserts10 that x > a implies x > a + 1, which is of course true. The proof is trivial.

<sdvs.4> setflag
flag variable: autoclose
on or off [on]: off

setflag autoclose — off

<sdvs.5> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta n : nowl.sd
proof D: <CR>

open — [sd pre: (covering(all,x),.x gt a)
comod: (all)
post: (#x ge a + 1)]

Complete the proof.
10 Recall that in SDVS, integer is the default type of local and global variables.

46

Since the precondition has been asserted and the precondition implies the postcondition,
the goal is true, and we may close the proof.

<sdvs.l.l> simp
expression: .x gt a

true

<sdvs.l.l> simp
expression: .x ge a+1

true

<sdvs.l.l> close

close — 0 steps/applications

Example 5 A more interesting example of an implication posing as a state delta is now2.sd

[sd pre: (covering(all,x),formula(event.x.gt.5.sd))
comod: (all)
post: (formula(event.x.ge.6.sd))]

where event.x.gt.h.sd is the state delta

[sd pre: (true) comod: (all) mod: (x) post: (#x gt 5)]

and event.x.ge.Q.sd is the state delta

[sd pre: (true) comod: (all) mod: (x) post: (#x ge 6)]

Clearly, event.x.gt.h.sd implies event.x.ge.G.sd, which is the assertion of now2.sd.

Let us open the proof of this implication:

<sdvs.2> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

47

<sdvs.l> prove
state delta [] : now2.sd
proof [] : < CR>

open — [sd pre: (covering(all,x),formula(event.x.gt.5.sd))
comod: (all)
post: (formula(event.x.ge.6.sd))]

Complete the proof,

and look at the goals and the state deltas that are applicable:

<sdvs.l.l> goals

g(l) [sd pre: (true) comod: (all) mod: (x) post: (#x ge 6)]

< sdvs. 1.1 > applicable

u(l) [sd pre: (true) comod: (all) mod: (x) post: (#x gt 5)]

We really do not want to apply this last state delta right now, because

< s dv s. 1.1 > whynotapply
state delta[highest usable]: <CR>

Applicable, but must lead to a contradiction, because modlist too large.

The problem is that the state delta that we are proving, now2.sd, has an empty modification
list that does not allow us to advance the state under normal circumstances. To illustrate
a point, we nevertheless proceed with the application:

<sdvs.l.l> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (x)
post: (#x gt 5)]

Warning: the modlist of the last applied state delta mentions places (x)

outside of the modlist of the state delta to be proven. The current

proof can only be closed by contradiction.

48

SDVS will not allow us to close the proof unless we can prove that our application will
eventually lead to a contradiction, i.e., an inconsistent state. If the postcondition of
event.x.gt.b.sd did lead to a contradiction, for example, if the postcondition were #z =
#z + 1, then we could close the proof. But since in this case the postcondition is not
inconsistent, we must pop back one step.

<sdvs.l.2> ps

« initial state >>
proof in progress of now2.sd <2>

apply u(i) <1>
— > you are here <—

<sdvs.l.2> pop
number of levels[1]: <CR>

One level popped.

The only way to proceed with the proof is to open the proof of event.x.geS.sd:

<sdvs.l.l> goals

g(i) [sd pre: (true) comod: (all) mod: (x) post: (#x ge 6)]

<sdvs.l.l> prove
state deltaD: g

number: 1
proof []: <CR>

open — [sd pre: (true)
comod: (all)

mod: (x)
post: (#x ge 6)]

Complete the proof.

<sdvs.l.l.l> applicable

u(l) [sd pre: (true) comod: (all) mod: (x) post: (#x gt 5)]

At this point the modification list of the state delta to be proven, event.x.g.6.sd, is x, and
this list is a sublist of the modification list of event.x.gt.b.sd. That is why we may apply it
without having to reach a contradiction:

49

< sdvs. 1.1.1 > whynotapply
state delta[highest usable] : <CR>

Quite applicable.

<sdvs.l.l.l> apply
sd/number[highest applicable/once] : <CR>

apply — [sd pre: (true)
comod: (all)

mod: (x)
post: (#x gt 5)]

To complete the proof we have to close twice, since we opened the proof of two state deltas:

<sdvs.l.l.2> close

close — 1 steps/applications

Complete the proof.

<sdvs.l.2> usable

u(l) [sd pre: (true) comod: (all) mod: (x) post: (#x ge 6)]

u(2) [sd pre: (true) comod: (all) mod: (x) post: (#x gt 5)]

No usable quantified formulas.

<sdvs.l.2> close

close — 1 steps/applications

<sdvs.2> usable

u(l) [sd pre: (covering(all,x),formula(event.x.gt.5.sd))

comod: (all)
post: (formula(event.x.ge.6.sd))]

No usable quantified formulas.

50

Example 6 A state delta whose comodification and modification lists are both empty
asserts that, at every time in the future, the precondition implies the postcondition. The
reason for this is that since the comodification list is empty, no constraint is made between
the current time and any future time at which the precondition may be true. Thus, if at
any future time the precondition is true, then — because the modification list is empty —
the postcondition must be true at that very time. In particular, if the precondition is true,
then the postcondition must be true now and at every future time.

To illustrate these remarks, we provide a simple example. The state delta always.sd

[sd pre: (true) post: (#x gt #y)]

asserts that the value of x is always greater than the value of y. Thus, always.sd in
conjunction with the state delta eventuallyl.sd

[sd pre: (true) comod: (all) mod: (all) post: (#y = 100)]

implies the state delta eventually2.sd

[sd pre: (true) comod: (all) mod: (all) post: (#x gt 100)]

This implication is asserted by always.ex.sd

[sd pre: (covering(all,x,y),formula(eventually1.sd),formula(always.sd))
comod: (all)
post: (formula(eventually2.sd))]

which we proceed to prove.

<sdvs.3> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta [] : always.ex.sd
proof []: <CR>

open — [sd pre: (covering(all,x,y),formula(eventuallyl.sd),
formula(always.sd))

comod: (all)
post: (formula(eventually2.sd))]

Complete the proof.

51

<sdvs.l.l> usable

u(l) [sd pre: (true) post: (#x gt #y)]

u(2) [sd pre: (true)
comod: (all)

mod: (all)
post: (#y = 100)]

No usable quantified formulas.

<sdvs.l.l> goals

g(l) [sd pre
comod

mod
post

(true)
(all)
(all)
(#x gt 100)]

There is only one efficient way to proceed:

<sdvs.l.l> prove
state delta[] : g

number: 1
proof [] : < CR>

open -- [sd pre: (true)
comod: (all)

mod: (all)
post: (#x gt 100)]

Complete the proof.

,.,. . ,. . ,. . IT ^ i- ii ■,....;I..I . .i i ..l „„.;„„„ Because the comodification list of eventually!.sd is all, eventually!.sd and always.sd are
still usable (always.sd will always be usable, because its comodification list is empty, and
it will always be applicable, because its precondition is true and its modification list is also

empty.)

<sdvs.l.l.l> iLsablesds

u(l) [sd pre: (true) post: (#x gt #y)]

u(2) [sd pre: (true)
comod: (all)

mod: (all)

post: (#y = 100)]

We must now apply eventuallyl.sd and then always.sd, because the reverse order of appli-
cation would not reach the goal. To illustrate this point, let us first apply always.sd:

<sdvs.l.l.l> apply
sd/number[highest applicable/once]: always.sd

apply -- [sd pre: (true)
post: (#x gt #y)]

<sdvs.l.l.2> simp
expression: .x (jt .y

true

<sdvs.l.l.2> apply
sd/number [highest applicable/once] : eventuallyl.sd

apply — [sd pre: (true)
comod: (all)

mod: (all)
post: (#y = 100)]

<sdvs . 1.1. 3> simp
expression: .x gt .y

x\51 gt 100

Because the modification list of eventuallyl.sd included x, the application of eventuallyl.sd
erased the assertion .x > :y from the data base of facts. So let us pop back, apply in the

right order, and then close the two proofs.

<sdvs.l.l.3> pop
number of levels[1]: 2

2 levels popped.

<sdvs.l.l.l> apply
sd/number [highest applicable/once] : eventuallyl.sd

apply — [sd pre: (true)
comod: (all)

mod: (all)
post: (#y = 100)]

53

<sdvs . 1.1. 2> apply
sd/number[highest applicable/once]: always.sd

apply -- [sd pre: (true)
post: (#x gt #y)]

<sdvs.l.l.3> close

close — 2 steps/applications

Complete the proof.

<sdvs.l.2> close

close -- 1 steps/applications

54

3.4 Proofs by Induction

If a state delta is applicable at a certain point in a proof, and if its modification and
comodification lists are disjoint, then the state delta may be applicable a number of times.
For example, this is the case of the state delta

[sd pre: .i It .y
comod: x,y

mod: s,i
post: #s=.s+l and #i=.i+l]

at time t0 in the temporal structure M in Section 2.2.2. In certain situations it is possible to
proceed with a proof by applying the state delta a fixed number of times, but in other cases
the number of times that the state delta must be applied is not fixed but is data-dependent.
For these instances, SDVS has a special proof command, induct. In this section we first
present a simple and then a more complicated example illustrating this type of induction.

Example 7 Consider for example the state delta x.increases.sd:

[sd pre: (.x It 100)
mod: (x)

post: (#x = .x + 1)]

If, at some point in a proof, x.increases.sd is true and the value of x is less than 100, then
at this point x.incr eases.sd is not only true but applicable as well. In fact, from this point
on, it may be applied repeatedly until the value of x reaches 100. Of course, the number of
times that it must be applied for x to reach the value of 100 depends on the initial value
of x itself. We will illustrate the induct command by giving a proof of the state delta

inductionl.sd:

[sd pre: (.x le 0,formula(x.increases.sd))

comod: (all)
mod: (x)

post: (#x = 100)3

<sdvs.3> init
proof name[] : <CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove

State delta[] : inductionl.sd

proof [] : < CR>

open — [sd pre: (.x le 0,formula(x.increases.sd))

comod: (all)
mod: (x)

post: (#x = 100)]

inserting -- pcovering(all.x)

Complete the proof.

The value of x is now symbolic and less than or equal to 0. In fact, let us give a name to
this symbolic value by using a useful naming device in SDVS, the let command.

<sdvs.l.l> let
new variable: a

value: .x

let -- a = .x

It should be pointed out that the name of the "new variable" must be new and that the
value assigned to it must be a term of type precondition (no # 's). For example,

<sdvs.l.2> let
new variable: b

value: 2*.x

let -- b = 2 * .x

<sdvs.l.3> simp
expression: b—2*a

true

We can verify that a is the current value of x and list its range of possible values:

<sdvs.l.3> ppeq
expression: .x

eqclass = a
x\54

<sdvs.l.3> range

expression: .x

Range -infinity ... 0

The state delta x.increases.sd is certainly applicable:

<sdvs . 1. 3> applicable

u(l) [sd pre: (.x It 100)
mod: (x)

post: (#x = .x + 1)]

We are now ready to induct.

<sdvs . 1. 3> induct
induction expression

from

to

invariant list[]
comodification list[]

modification list[]
base proof []
step proof []

z
a
100
.x=i
<CR>
X

<CR>
<CR>

induction i from a to 100

open — [sd pre: (i = a)
comod: (all)
post: (.x = i)]

Several comments are in order:

(i) We are inducting from i = a. to i = 100.

(ii) The invariant list of the induct command must be true now. In general, the invariant
list of the induction command is a precondition formula that must be true at every
step of the induction, but not necessarily at every intermediate state.

(iii) If i does reach 100 and the invariant list is true, then our goal will also be true, namely,
the value of .r must then be 100.

(iv) The comodification and modification lists for the induct command must be disjoint.

(v) The modification list to the induct command must be included in the modification
list of the state delta to be proven.

57

Upon the invocation of the induction command, SDVS automatically opens the proof of the
base case state delta and then, upon the completion of this proof, the proof of the step case
state delta. The base case proof is a proof that if i is equal to the initial value of .x, then
the invariant is true now. The step case proof is the proof of the state delta that asserts
that if i is somewhere between the specified limits of the range, i.e., a < i < 100, and the
invariant is true for i, then there is a future time when the invariant will be true for i + 1,
and in the meantime, only x may change its value. Since the autoclose flag is "off," we have

to close the base case proof.

<sdvs . 1.3.1.1 > close

close — 0 steps/applications

open — [sd pre
mod

post

Complete the proof.

(i ge a,i It 100,.x = i)
(x)
(#x = i + 1)]

The proof of the state delta that, was automa.tica.lly opened is the step case proof. In order
to complete this proof, we have to advance the state, and this can be done only by applying

x.increases.sd (which, of course, is still applicable):

<sdvs . 1.3.2.1> applicable

u(l) [sd pre: (.x It 100)
mod: (x)

post: (#x = -x + 1)]

<sdvs. 1.3.2.1> apply
sd/number[highest applicable/once]: x.increases.sd

apply -- [sd pre: (.lit 100)
mod: (x)

post: (#x = .x + 1)]

Let us look at. the proof state and then close the proof by induction:

<sdvs.l.3.2.2> ps

« initial state >>
proof in progress of inductionl.sd <5>

let a = .x <4>

let b = 2 * .x <3>

58

induction in progress on i from a to 100 <2>

base case: complete

step case: in progress

apply x.increases.sd <1>

--> you are here <--

<sdvs .1.3.2.2> close

close — 1 steps/applications

join induction cases — [sd pre: (a le 100)
comod: (all)

mod: (x)
post: (#x = 100)]

Complete the proof.

Finally SDVS joins the two proofs. The goal should now have been reached.

<sdvs.l.4> ppeq
expression: .x

eqclass = 100

<sdvs.l.4> close

close — 3 steps/applications

Our next example of induction in SDVS differs from the last one in that the invariant list
for the induction and the comodification and modification lists is more complex.

Example 8 Suppose that at some point in the execution of a program, the value of the
program variable y is greater than or equal to zero and the program segment to be executed

is S:

sum:= x;
ctr:= 0;
while (ctr < y) loop

sum:= sum + 1;
ctr:= ctr + 1;

end loop;

59

At the end of the execution of S, the value of sum should be the sum of the initial values

of x and y.

The loop portion of S cannot be translated into state deltas of the form that we have so
far discussed. The semantics of a loop requires the concept of a circular state delta, which
is defined as the greatest fixed point of an operator on predicates and is beyond the scope
of this tutorial. But for another illustration of induction, we collapse the two assignment
statements of the loop into one statement and translate the program segment S as the fol-

lowing series of nested state deltas:

assign.x.to.sum.sd:

[sd pre (true)

comod (all)

mod (sum)

post (#sum = .x,formula(assign.0.to.ctr.sd))]

assign. 0. to. ctr.sd:

[sd pre: (true)
comod: (all)

mod: (ctr)
post: (#ctr : 0,formula(loop.sd))]

loop.sd:

[sd pre: (.ctr It .y)

comod: (x,y)
mod: (sum,ctr)

post: (#sum = .sum + l,#ctr .ctr + 1)3

The first two state deltas are assignment statements with a continuation. But loop.sd is the
test for the loop (its precondition) and the collapsed loop body itself (its postcondition).
Note that it is the only state delta without an "all" in its comodification list. When this
state delta first becomes true, it will be applicable as long as x and y do not change their
values and as long as the precondition is true. This is the state delta that will allow us to

proceed with the induction.

Finally, the state delta sum.sd

[sd pre
comod

mod
post

(covering(all,x,y,ctr,sum),.y ge O,formula(assign.x.to.sum.sd))

(all)
(sum,ctr)
(#sum = .x + .y)]

60

X 5 5 5

y 3 3 3
sum sum(to) 5 5
ctr ctr(to) cti^tj) 0

0 5 5
3 3 3
6 7 8
I 2 3

Figure 5: A Model N of the Precondition of sum.sd

asserts that if the initial value of y is greater than or equal to zero, a.nd if assign.x.to.sum
is true, then eventually the value of sum will be equal to the sum of the initial values of x
and y. Furthermore, because of its modification list, in that interval of change x and y will

remain constant.

For an example of a model N of the precondition of the state delta sum.sd, refer to Figure
5. In N the initial values of x and y are 5 and 3, respectively. The value of sum is symbolic
at t0, and the value of ctr is symbolic at t0 and f1# The state delta assign.x.to.sum.sd
is applicable (true with a true precondition) at t0; assign.O.to.ctr.sd is applicable at ti;
and loop.sd is applicable at t2, t3, and t4. The precondition time of sum.sd is t0, and its

postcondition time is i5.

Let us open the proof of sum.sd, check the symbolic values of x and y, and then check the

goal of the proof:

<sdvs.3> init
proof name[] : <CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : sum.sd

proof [] : < CR>

open — [sd pre: (covering(all,x,y,ctr,sum),.y ge 0,
formula(assign.x.to.sum.sd))

comod: (all)
mod: (sum,ctr)

post: (#sum = .x + .y)]

Complete the proof.

61

<sdvs.l.l> ppl
places [all]: <CR>

x x\62

y y\ei

<sdvs.l.l> goals

g(l) #sum = x\62 + y\61

We now use until to advance through the first two assignment statements:

<sdvs.l.l> until
formula: #ctr=0

apply -- [sd pre: (true)
comod: (all)

mod: (sum)
post: (#sum = .x,iormula(assign.O.to.ctr.sd))]

apply — [sd pre: (true)
comod: (all)

mod: (ctr)
post: (tctr = O,formula(loop.sd))]

until break point reached — tctr = 0

As we expected, the assignments have been executed and the goal remains the same:

<sdvs.l.3> ppl
places [all]: <CR>

sum x\62

everyplace UNDEFINED

ctr 0

x x\62

y y\61

<sdvs.l.3> goals

g(l) #sum = x\62 + y\61

The state delta loop.ad is now usable but not applicable because if the value of y happens

to be 0, then its precondition is not true.

62

<sdvs . 1. 3> usable

u(l) [sd pre
comod

mod
post

(.ctr It .y)
(x,y)
(sum,ctr)
(#sum = .sum + l,#ctr = .ctr + 1)]

No usable quantified formulas.

<sdvs . 1.3> applicable

< sdvs. 1. 3> whynotupply
state delta[highest usable] : loop.sd

Because the following is not known to be true — .ctr It .y

We are thus forced to do cases on .ctr > .y. If this case is true, then y — 0 and our goal is

trivially true:

< sdvs. 1.3 > cases
case predicate: .ctr ye .y

cases -- .ctr ge .y

open — [sd pre: (.ctr ge .y)
comod: (all)

mod: (sum,ctr)
post: (#sum = x\62 + y\61)]

< sdvs. 1.3.1.1> close

close -- 0 steps/applications

open — [sd pre: ("(.ctr ge .y))

comod: (all)
mod: (sum,ctr)

post: (#sum = x\62 + y\61)]

Complete the proof.

SDVS has now opened the case of .ctr < .•</. Since this is the precondition of loop.sd, it is
now applicable and we use it in our induction.

<sdvs . 1.3.2.1 > applicable

63

u(2) [sd pre: (.ctr It .y)
comod: (x,y)

mod: (sum,ctr)
post: (#sum = .sum + l,#ctr = .ctr + 1)]

In this example the use of the induct command is less trivial. A little thought shows that
sum = x + ctr is true at the current state, and that it will continue to be true after each
application of loop.sd. Furthermore, when the value of ctr is equal to the value of y, our
goal will be true. It follows that we should induct from .ctr = 0 to .ctr — .y, with the
invariant being .sum = .x + .ctr. The «modification list should consist of x and y, since
they must remain constant during the induction, and the modification list should consist of
sum and ctr, since they must be allowed to change. Note that these two lists are disjoint,

as they must be. So, let us proceed with the induction.

< sdvs.1.3.2.1> induct

induction expression
from

to

invariant list[]
comodif ication list[]

modification list[]
base proof []
step proof []

.ctr
0

■V

.sum=.x+.ctr

x,y
sum, ctr
<CR>
<CR>

induction -- .ctr from 0 to .y

open -- [sd pre: (true)
comod: (all)
post: (.sum = .x + .ctr,.ctr = 0)]

SDVS has opened the proof of the base case which is trivially true, and we close it.

<sdvs.l.3.2.1.1.1> close

close — 0 steps/applications

open -- [sd pre: (.ctr ge 0,.ctr It .y,.sum = .x + .ctr)

comod: (x,y)
mod: (sum,ctr)

post: (#sum = #x + #ctr,#ctr = .ctr + 1)]

Complete the proof.

For the step case proof, the invariant is assumed to be true now, and we have to reach the
state at which it will continue to be true and the value of ctr will be incremented by 1. Let

64

us check the proof state at this juncture:

<sdvs.l.3.2.1.2.1> ps

<< initial state >>
proof in progress of sum.sd <5>

apply (until #ctr = 0) <4>
apply (until ...) <3>
case analysis in progress on: .ctr ge .y or ~(.ctr ge .y) <2>

1st case: complete
2nd case: in progress
induction in progress on .ctr from 0 to .y <1>

base case: complete
step case: in progress

—> you are here <—

Since at this state ctr < y, and x and y have remained constant, loop.sd should be applicable:

< sdvs . 1.3.2.1.2.1 > applicable

u(l) [sd pre: (.ctr It .y)
comod: (x,y)

mod: (sum.ctr)
post: (#sum = .sum + l,#ctr = .ctr + 1)]

Before applying this state delta, let us check the symbolic values of the places and the goal:

<sdvs.l.3.2.1.2.1> ppl
places [all] : < CR>

sum sum\70

everyplace UNDEFINED
ctr ctr\69

x x\62

y y\6i

<sdvs.l.3.2.1.2.1> yoals

g(l) #sum = #x + #ctr

g(2) #ctr = ctr\69 + 1

Now we apply loop.sd and check the symbolic values once more:

<sdvs.1.3.2.1.2.1> apply

65

sd/number[highest applicable/once]: loop.sd

apply -- [sd pre: (.ctr It .y)
comod: (x,y)

mod: (sum.ctr)
post: (#sum = .sum + l,#ctr = .ctr + 1)]

<sdvs.l.3.2.1.2.2> ppl
places [all]: <CR>

sum (1 + x\62) + ctr\69
everyplace UNDEFINED

ctr 1 + ctr\69
x x\62

y y\6i

The values of sum and ctr have increased by one, and the invariant should remain 1

these new values.

<sdvs. 1.3.2.1.2.2> simp
expression: .sum=.x+.ctr

true

<sdvs .1.3.2.1.2.2> applicable

<sdvs.l.3.2.1.2.2> close

close — 1 steps/applications

join induction cases — [sd pre: (0 le .y)
comod: (all.x.y)

mod: (sum,ctr)

post: (#ctr = .y,#sum = #x + #y)]

Complete the proof.

SDVS has now joined the two case of the induction proof. Let us check the proof state:

<sdvs.l.3.2.2> ps

<< initial state >>
proof in progress of sum.sd <5>

66

apply (until #ctr = 0) <4>
apply (until ...) <3>
case analysis in progress on: .ctr ge .y or "(.ctr ge .y) <2>

1st case: complete
2nd case: in progress
proved via induction, then applied

[sd pre: (0 le .y)
comod: (all.x.y)

mod: (sum,ctr)
post: (#ctr = .y,#sum = #x + #y)] <1>

— > you are here < —

The goal of the second case of the cases true has now been reached.

<sdvs.l.3.2.2> simp
expression: .sum=.x+.y

true

We thus close the second case proof and then the proof of sum.sd itself.

<sdvs . 1.3.2.2> close

close — 1 steps/applications

join -- [sd pre: (true)
comod: (all)

mod: (sum,ctr)
post: (#sum = x\62 + y\61)]

close — 3 steps/applications

<sdvs.2> ps

« initial state >>
proved sum.sd <1>
— > you are here < —

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

C7

4 Declaration of Types

In our previous examples we did not declare the type of the variables. SDVS assumed
that they were integers. However, it is possible to declare explicitly the types of the local
variables by the declare statement. The SDVS types accepted by the declare statement
may be listed with the help query:

<sdvs.l> help
with[all]: types

<<<SDVS Help>>> Types <<<SDVS Help>>>

type(boolean) Boolean

type(character) Ada characters

type(bitstring.n) bitstring of length n

type(polymorphic) polymorphic (any type)

type(fn.exp) a function defined by the expression exp

type(float) floating point

type(integer) integer

type(integer,lb,ub) bounded integer, that is, lb<=i<=ub

type(array,lb,ub,type) array with lower bound lb, upper bound ub, and
specified element type

type(record,fieldl(typel),...,fieldj(typej)) record with field names of
specified types

type(time) VHDL time

type(waveform) VHDL waveform

type(integerwaveform) VHDL integer waveform

type(bitwaveform) VHDL bit waveform

type(bitstringwaveform,n) VHDL bitstring (length n) waveform

69

The last five types are peculiar to VHDL. The "record," "character," and "float" types are
for Ada, and the bitstring type is for ISPS and VHDL. If a is an array, then origin(a)
is its initial index, range(a) is its length, and for i and j such that origin(a) < i < j <
(origin(a) + range(a)), a[i : j] is the slice (subarray) of a from the i'th to the i'th index.
If b is a bitstring, then lh(b) is the length of b, the zeroth bit is the low-order bit, and the
lh(b) - 1 bit is the high-order bit. The integer value of b is denoted by |i|. If i and j are
such that 0 < j and 0 < i < 2-> - 1, then i(j) is the bitstring of length j and integer value
i. Thus, if b = 10(4), then b =< 1010 >. If 0 < i < j < lh(b) - 1, then b < j : i > is the
substring of b of length j - i + 1 whose bits are the bits of b from the i'th to the j'th bit.
Some bitstring operations are addition (++), subtraction (-), multiplication (**), bitstring
"or" (usor), bitstring "and" (&&), and concatenation (@). Some bitstring inequalities are:
"uslt," "usle," "usgt," and "usge" (the "us" prefix means unsigned). Here is an example
of a few declarations:

<sdvs.l> pp
obj ect: sd
state delta name: types.sd

[sd pre: (declare(a,type(array,-l,5,type(integer))),
declare(abit,type(array,1,10,type(bitstring,4))),
declare(p,type(boolean)),declare(q,type(boolean)),
declare(r,type(boolean)),declare(cbit,type(bitstring,6)),
covering(all,a,abit,p,q,r),.p,".q,-r,.a[l] = 2,.a[2] = 100,
.abit[l] = 9(4),.abit[2] = 8(4),.abit[3] = 7(4),
.cbit = 12(6))

comod: (all)
mod: (p,q)

post: (#q)]

Note that the initial values of abit[l], abit[2], and abit[3] are < 1001 >, < 1000 >, and
< 0111 >, respectively. Also, initially, p and ■/■ are true, and q is false. The above state
delta is, of course, not provable, but if we open its proof we can then use the simplifier to
illustrate some notation:

<sdvs.l> prove
state delta[] : types.sd
proof []: <CR>

open -- [sd pre: (declare(a,type(array,-l,5,type(integer))),
declare(abit,type(array,1,10,type(bitstring,4))),
declare(p,type(boolean)),declare(q,type(boolean)),
declare(r,type(boolean)),
declare(cbit,type(bitstring,6)),
covering(all,a,abit,p,q,r),.p,".q,.r,.a[l] = 2,
.a[2] = 100,.abit[l] = 9(4),.abit [2] = 8(4),

70

.abit[3] = 7(4),.cbit = 12(6))

comod: (all)

mod: (p,q)

post: (#q)]

inserting — pcovering(all,cbit)

Complete the proof.

<sdvs.l.l> simp
expression: .q

false

<sdvs.l.l> simp
expression: .q implies (.p and .r)

true

< sdvs.1.1> simp
expression: .q or (.q implies (.p and .r))

true

<sdvs.1.1> simp
expression: .a[l]+.a[2]

102

<sdvs.1.1> simp
expression: origin(a)

-1

<sdvs.l.l> simp
expression: raiujc(a)

<sdvs.l.l> simp

expression: range(a[2:3])

<sdvs.l.l> simp

71

expression: .a[2:3][2]

100

<sdvs.l.l> simp
expression: \.abit[2]\

8

<sdvs.l.l> simp
expression: .abit[2]

8(4)

<sdvs.l.l> simp
expression: lli,(.cbit)

<sdvs. 1. 1> simp
expression: .ubit[l]++.abit[2]

17(5)

<sdvs.l.l> simp
expression: .cbit<2:0>

4(3)

<sdvs.l.l> simp
expression: .cbit<3:3>

1(1)

<sdvs.l.l> simp
expression: .abitfl] usor .ubit[2]

9(4)

<sdvs.l.l> simp
expression: .abitfl] @ .abitß]

152(8)

72

5 Quantification in SDVS

Quantification and proof rules involving quantifiers have been implemented in SDVS, but
not in a very general way. The universal quantifier V is "forall" and the existential quantifier
3 is "exists." Both of these quantifiers may be used, untyped, over values of program
variables (places), but only the existential quantifier may be used over the program variables
themselves. In this section we illustrate two of the most important quantification proof rules,

instantiate, and provebyinstantiation, by using a simple example.

Example 9 Consider the state delta quant.ad

[sd pre: (declare(a,type(array,1,10«type(integer))),
forall i (1 le i & i le 10 --> .a[i] = 1),
exists j ((1 le j & j le 10) & formula(increase.aj.sd)))

comod: (all)
mod: (all)

post: (exists k (#a[k] = 3))]

where increase.aj.sd is the state delta

[sd pre
mod

post

(true)
(a[j3)
(#a[j] = .a[j] + 1)]

The precondition of quant.sds declares a to be an array variable of ten integers such that,
initially, all the indexed values of a are equal to 1. It also asserts that for some index j in
the range of indices of a, increase.aj.sd is initially true. Because the comodification list of
increase, a j.sd is the empty list, increase.a j.sd asserts that from now on, for this index j
and for whatever value a[j] has, there will be a. future time when this value will increase by
1. Thus, quant.sd asserts that if its precondition is now true, then there will be a time in
the future at which the value of some a[k] will be equal to 3. Of course, one of these Fs

will be j.

The proof of quant.sd. requires both of the quantification proof rules mentioned above;
moreover, it requires the use of instantiate in two different contexts.

<sdvs.l> prove
state delta[] : quant.sd

proof [] : < CR>

open -- [sd pre: (declare(a,type(array,1,10,type(integer))),
forall i (1 le i & i le 10 —> .a[i] = 1),
exists j ((1 le j & j le 10) &

formula(increase.aj.sd)))

comod: (all)
mod: (all)

post: (exists k (#a[k] = 3))]

Complete the proof.

<sdvs.l.l> setflay
flag variable: uutoclose

on or off [on]: off

setflag autoclose -- off

<sdvs . 1. 2> usable

No usable state deltas.

q(l) exists j ((1 le j k j le 10) k
([sd pre: (true)

mod: (a[j])
post: (#a[j] = .a[j] + 1)]))

q(2) forall i (1 le i k i le 10 —> .a[i] = 1)

<sdvs.l.2> goals

g(l) exists k (#a[k] = 3)

Notice that the query usable lists two quantified statements, one of which involves the state
delta increase.aj.sd, and that the goal of the proof is an existentiaUy quantified statement.
The quantified assertion </(!) can not be applied because it is not a state delta: we must
first instantiate the j in </(l) by some variable that has not appeared outside of q(l); in
fact, we will use j itself for the substitution. (This technique is similar to a technique in
predicate logic that consists of substituting a new constant in a formula for an existentially
quantified variable of the formula). The proof command instantiate allows us to perform
this substitution and delete the existential quantifier from </(l). Note that, in this case, we
are "instantiating" a usable formula to remove the existential quantifier. Later in the proof,
we will use instantiate to prove the existentially quantified goal.

<sdvs . 1. 2> instantiate
existential formula: q

number: 1

existential variable []: j
instantiated by: j

74

existential variable[]: <CR>

instantiate in q(l) -- j for j.

<sdvs . 1. 3> usable

u(l) [sd pre: (true)
mod: (a[j])

post: (#a[j] = .a[j] + 1)]

q(l) exists j ((1 le j & j le 10) &
([sd pre: (true)

mod: (a[j])
post: (#a[j] = .a[j] + 1)]))

q(2) forall i (1 le i & i le 10 --> .a[i] = 1)

In this case the parameters to the instantiate command are the usable existential formula
q(l), the existential variable, and the variable by which it will be replaced in the matrix of
</(l), followed by a carriage return to the last, query.

If the formula <f> to be instantiated has a series of existential variables in its prefix, i.e., if cf> is
of the form (3X!I)(3J:;2) .. .(3xln)tp, then only one invocation of the instantiate command
is needed to instantiate all of the x,-'s. The parameters to the instantiate command would
be the formula to be instantiated, followed by the first existential variable and the variable
by which it will be replaced, followed by the second existential variable and the variable by
which it. will be replaced, etc. The input to the command terminates with a carriage return

to the query "existential variable)]".

Note that the instantiated formula increase.aj.sd is now usable and, of course, applicable.
We will apply it. twice. But first we must establish that, at this point, a[j] — 1. This follows
logically from </(2), but SDVS is not automatically aware of it. It. may be established by the
provebyinstantiation command. If in the course of a. proof a formula, of the form (\/x)cf>(x)
is usable, provebyinstantiation may be used to assert <f>(c/x), for any term c. More
generally, if (Vx,.,)(Vx;2)... (Vx,-n)<f> is usable, then one invocation of provebyinstantiation
suffices to assert (f){cn/xil,cl2/xi2 .. .cin/xin).

<sdvs . 1. 3> provebyinstantiation
prove formula[] : -a[j]=l

using universal formula: q
number: 2

universal variable []: i
instantiated by: j

universal variable[]: <CR>

75

provebyinstantiation -- a\88 - 1

<sdvs.l.4> simp
expression: .ufj]

Before we proceed, we should note that we could not have switched the last two proof
commands. If we had first asserted that a[j] - 1 and then tried to instantiate, an error
would have occurred in the instantiation, since at that point j would have already been
used. If we apply in.crease.aj.sd twice, we will reach the state at which our goal is true.

<sdvs.l.4> apply
sd/number[highest applicable/once]: 2

apply — [sd pre: (true)
mod: (a[j])

post: (#a[j] = .a[j] + 1)]

apply -- [sd pre: (true)
mod: (a[j])

post: (#a[j] = .a[j] + 1)]

<sdvs.l.6> ps

<< initial state >>
proof in progress of quant.sd <6>

autoclose flag turned off <5>
instantiate j for j in q(l) <4>
provebyinstantiation .a[j] = 1 <3>
apply <2>
apply <1>
—> you are here <—

<sdvs.l.6> simp
expression: .a[jj

So our goal is true, but again SDVS does not automatically know that a.[j] = 3 implies that

(3k)(a[k] = 3).

76

<sdvs . 1. 6> wliynotgoal
simplify? [no] : <CR>

g(l) exists k (#a[k] = 3)

We must prove this through another invocation of the instantiate command, where this
time the existentially quantified formula is not a usable formula but a goal. If (3x)<f>(x) is
a goal and we invoke instantiate with this goal as the existentially quantified formula, x
as the existential variable, and c as the term to be substituted in <f> for x, then the goal
becomes <f>(c/x).

<sdvs.l.6> instantiate
existential formula: g

number: 1
existential variable[]: k

instantiated by: j
existential variable[]: <CR>

instantiate in goal 1 — j for k.

<sdvs. 1. 7> goals

g(D #a[j] = 3

SDVS knows that this goal is true; so we close the proof and quit:

<sdvs . 1. 7> close

close — 6 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
object: proof
proof name: sdvsproof

proof sdvsproof:

11

prove quant.sd

proof:
(setflag autoclose off,

instantiate (j=j) in q(l),
provebyinstantiation .a[j]

using: q(2)
substitutions: (i=j),

apply 2,
instantiate (k=j) in g(l),

close)

78

6 Static Proofs

In actual practice the most difficult and time-consuming parts of a proof of program cor-
rectness in SDVS are not the dynamic but rather the static parts of the proof, that is, those
parts of the proof that require the proof of a nontemporal formula that the simplifier does
not automatically know to be true.

The reason for this is that complete decision procedures have been implemented in the
simplifier for only certain theories over the SDVS domains.

For example, complete decision procedures have been implemented for prepositional logic
and for quantifier-free formulas for integer and bitstring arithmetic with addition, but not
for integer or bitstring arithmetic that involves multiplication or for integer arithmetic that
involves the absolute-value function and the integer logarithmic function to the base 2. A
few facts are known by the simplifier about these operations, but certainly not all. For
example, the simplifier knows11 that the following statements are true:

<sdvs.l> simp
expression: x+y=y+x

true

<sdvs.l> simp
expression: 2*x=x*2

true

<sdvs.l> simp
expression: 3*(x+y-2*z)=3*y-6*z+3*x

true

<sdvs.l> simp
expression: a It 0 implies abs(a)—-u

true

<sdvs.l> simp
expression: a ye. 0 implies abs(a)=a

true

<sdvs.l> simp

11 By "knows", we mean th.it the statement in question is automatically derivable from the current state
by the simplifier.

79

expression: i le 121 and j le 121 and a=i(l) and b=j(l) implies \a++b\=\b++a\

true

But it does not automatically know that these are also true:

<sdvs.l> simp
expression: x*y=y*x

x * y = y * x

<sdvs.l> simp
expression: x*(x+2)=x*x+2*x

x*(2 + x)=2*x + x*x

<sdvs.l> simp
expression: abs (a-b)=abs (b-a)

abs(a - b) = abs(b - a)

<sdvs.l> simp
expression: i le 121 and j le 121 and a=i(l) and b=j(7) implies \a**b\=\b**a\

i le 127 k (j le 127 k (a = i(7) k b = j(7)))
--> |a ** b| = |b ** a|

The latter propositions must be proved in the larger context of a proof of a state delta,
by invoking the appropriate SDVS axioms. Alternatively, the user may create and prove
a lemma and then apply it in the course of a larger proof. This alternative is especially
useful if the lemma is required at more than one point in a proof. It is even possible for a
lemma to be created and used in the proof of a state delta and the proof of the lemma to
be deferred for a later time. At the end of the proof of a state delta (after a quit), SDVS
will inform the user of those lemmas that were used but not proved prior to the proof.

SDVS axioms are invoked by means of the rewritebyaxiom and provebyaxiom com-
mands. Before an axiom name is entered as a parameter to these proof commands, the
SDVS axiom file that contains it must first be read by the read command. The SDVS

axiom files may be listed by the help command:

<sdvs.l> help
with [all] : axioms

<<<SDVS Help>>> Axioms <<<SDVS Help>>>

SO

axioms/abs.axioms integer absolute value

axioms/arraycoverings.axioms arrays and coverings

axioms/arrays.axioms 0-origin arrays (obsolete)

axioms/bitstring.axioms bitstrings

axioms/div.axioms integer division

axioms/exp.axioms integer exponentiation

axioms/idiv.axioms unsigned integer division

axioms/lastone.axioms the LAST.ONE bitstring function

axioms/log2.axioms integer log base 2

axioms/minmax.axioms integer min and max

axioms/mod.axioms integer modulus

axioms/mult.axioms integer multiplication

axioms/origin-arrays.axioms arbitrary-origin arrays

axioms/quant.axioms quantification

axioms/rem.axioms integer remainder

axioms/sqrt.axioms integer square root

They may be read:

<sdvs.l> read
path name[tutorial/example2] : axioms/mult, axioms

Definitions read from file "axioms/mult.axioms"
— (multO,mult1.multcommute.multassoc,multdistributeplus,

multdistributeminus.multminus.multsquaregeO.multgeO.multleO.multge,

multgtO.multltO,multgt)

<sdvs.2> read
path name [axioms/mult .axioms] : axioms/abs. axioms

81

Definitions read from file "axioms/abs.axioms"
— (abs\neg,abs\pos)

<sdvs.3> read
path name [axioms/abs. axioms] : axioms/exp. axioms

Definitions read from file "axioms/exp.axioms"
-- (el,e2,e3,e4,e5,e6,e7,expmult,expdiv,e8,e9,el0,ell,expabsval,

multeqsquare)

Each axiom that has been read may be pretty-printed:

<sdvs.4> pp
object: axiom
axiom name: multdistributeplus

axiom multdistributeplus (x,y,z):
x* (y+z)=x*y+x*z

A list of the current axioms (i.e., the axioms that have been read in the current session,
that contain a specific function or predicate symbol) may also be displayed with the pp
command. The "symbol" that is entered as a parameter to the pp command must be
the simplifier name for that symbol. The simplifier symbols may be listed with the help
command:

<sdvs.4> help
with [all] : symbols

<<<SDVS Help>>> Symbols used in Axioms and Lemmas <<<SDVS Help>>>

constants everyplace, emptyplace, emptyarray, true, false

functions mkarray, val, inertial_update, transport_update, transaction,
waveform, abs, mod, rem, div (/), min, max, expt ("), mult (*),
minus (-), plus (+), parity, lastone, ones, zeros, useqv,
usnor, usnand, usxor, usor, usand (&&) , usnot (""), usremainder
(usmod), usquotient (//), ustimes (**) , usdifference (—),
usplus (++), usgeq (usge), usgtr (usgt) , usleq (usle), uslss
(us.lt), usneq ("==), useql (==), usconc (6), ussub, bcons, bs,
usval, lh, aconc, element, origin, range, slice, union, diff,
vhdltime, timeglobal, timedelta, timeplus, tcval

predicates timege, timegt, timele, timelt, vhdltimep, sd-value, It, le,

82

gt, ge, alldisjoint, pcovering, covering, disjointarray, lhp,
usvalp, elt, ele, egt, ege, esucc, epred, cond, and (&) , or,
xor, implies (-->), not (~), eq (=), neq ("=), distinct,

preemption, waveformp

Here is a list of the current axioms with the "minus" function:

<sdvs.4> pp
ob j ect: axioms
axiom names [] : < CR>
with symbols []: minus

axiom expabsval (a,b,c): ((b ge a & a ge -b) &, b ge 0) & c ge 1
—> b " c ge a ~ c

axiom expdiv (a,k): k ge 1 —> a"(k-l)=a"k/a

axiom expmult (a,k): k ge 1 --> a~k=a*a~ (k-1)

axiom abs\neg (x): x It 0 --> abs(x) = -x

axiom multminus (x,y): (-x) * y = -(x * y)

axiom multdistributeminus (x,y,z): x*(y-z)=x*y-x*z

The pp command may also be used to display the current axioms that contain a list of
specified symbols. Here is how to list the current axioms in which both """ and "-" appear:

<sdvs.4> pp
object: axioms
axiom names [] : < CR>
with symbols []: ex.pt, minus

axiom expabsval (a,b,c): ((b ge a & a ge -b) & b ge 0) & c ge 1
—> b " c ge a ~ c

axiom expdiv (a,k): k ge 1 —> a~(k-l)=a~k/a

axiom expmult (a,k): k ge 1 —> a"k=a*a~ (k-1)

Furthermore, there is a command to delete all or some of the current axioms:

< sdvs . 4> deleteaxioms
axiom names [all]: <CR>

83

deleteaxioms -- (el0,e9,e7,e6,el,multgt,multlt0,multgt0,expabsval,ell,e8,

e2,multge.multleO.multgeO.multsquaregeO,multeqsquare,

expdiv,expmult,e5,e4,e3,abs\pos,abs\neg.multminus,
multdistributeminus.multdistributeplus,multassoc,

multcommute,mult 1.multO)

6.1 Invoking SDVS Axioms

Example 10 In this example we prove a simple mathematical formula, due to Gauss, that
is translated as a state delta loop. The formula states that the sum of the first n positive

integers is equal to n(n + l)/2 , i.e., £"=i * = '»('"• + l)l'2- To simI)lify matters we prove the
equivalent assertion 2 * 2~Z"=i * = n(n + -0-

The sum can be calculated by a "while" loop. One interpretation of the formula is given
by the state delta gauss.sd

[sd pre: (covering(all,i,sigma),.i = l,n ge l,.sigma = 1,
formula(gaussloop.sd))

comod: (all)
mod: (i,sigma)

post: (2 * #sigma = n * (n + l),#i = n)]

where gaussloop.sd is the state delta

[sd pre: (.i It n)
mod: (sigma,i)

post: (#i = .i + l,#sigma = .sigma + #i)]

Not surprisingly, the SDVS proof of gauss.sd mirrors the standard proof by induction of
the formula.

<sdvs.4> init
proof name[] : <CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> setflag
flag variable: autoclose
on or off [on]: off

84

setflag autoclose -- off

<sdvs.2> prove
state delta[] : gauss.$d
proof [] : < CR>

open — [sd pre: (covering(all,i,sigma),.i = l,n ge 1,. sigma
formula(gaussloop.sd))

comod: (all)
mod: (i,sigma)

post: (2 * #sigma = n * (n + l),#i = n)]

Complete the proof.

1,

<sdvs . 2. 1> induct
induction expression .-/

from 1
to n

invariant list[] 2*.sigma= i*(.i+l)
comodification list[] <CR>

modification list[] i,sigma.
base proof [] <CR>
step proof [] <CR>

induction — .i from 1 to n

open — [sd pre: (true)
comod: (all)

post: (2 * .sigma . l * (.i + l),.i = 1)]

<sdvs . 2.1.1.1 > close

close — 0 steps/applications

open [sd pre: (.i ge 1,.i It n,

2 * .sigma = .i * (.i + 1))

mod: (i,sigma)

post: (2 * #sigma = #i * (#i + 1),#i ■ i + D]

Complete the proof.

SDVS has opened the step case of the induction proof. The precondition of the step case
state delta is the assumption that the formula is true for A, and the postcondition is the
assertion that the formula is true for A + 1. If a. decision procedure for multiplication of

85

integers had been implemented in the simplifier, then an application of the applicable state
delta yuussloop.sd would close the proof. But as we have pointed out, this is not the case:
we will have to "read" and use the SDVS axioms for integer multiplication.

For a clear- analysis of our strategy, we simplify matters by first naming the current values of
i and siyma, since, after the application of yuussloop.sd, these values will change. (Actually,
these values have a symbolic representation that will not be erased by the application of
yuussloop.sd, but it is more elegant to give them names.)

<sdvs.2.1.2.1> let
new variable: oldi

value: .i

let -- oldi = .i

<sdvs.2.1.2.2> let
new variable: oldsiyma

value: .siyma

let -- oldsigma = .sigma

<sdvs.2.1.2.3> ppcq
expression: .i

eqclass = oldi
i\101

<sdvs .2.1.2.3> ppeq
expression: .siyma

eqclass = oldsigma
sigma\l02

< sdvs . 2 .1.2. 3> apply
sd/number[highest applicable/once]: yuussloop.sd

apply -- [sd pre: (.i It n)
mod: (sigma,i)

post: (#i = .i + l,#sigma = .sigma + #i)]

At this point, the simplifier should know that, the following equalities are true:

EQ 1:2* oldsiyma = oldi * (oldi +1)

EQ 2: .i = oldi + 1

86

EQ 3: .siymu = oldsigma + (oldi +1)

Furthermore, the current goal

2 * .sigina = .i * (.i + 1)

is known by SDVS as the equivalent equation

E : 2 * (oldsigma + (oldi + 1)) = (oldi + 1) * (oldi + 2)

Let us verify these assertions:

<sdvs.2.1.2.4> simp
expression: 2*oldsi(jma=oldi*(oldi+l)

true

<sdvs . 2.1.2.4> simp
expression: .i—oldi+1

true

<sdvs.2.1.2.4> simp
express ion: .si(jm<i=oldsi<jma+(oldi+1)

true

<sdvs.2.1.2.4> whynotyoal
simplify?[no]: yes

g(l) 2 * ((1 + oldi) + oldsigma) = (1 + oldi) * (2 + oldi)

If we substitute the right-hand side of EQ 1 for the term 2 * oldsigma in equation E and
expand the terms oldi * (oldi + 1) and (oldi + 1) * (oldi + 2), we see that this new equation
El is in fact true. Yet the simplifier does not know the goal to be true:

<sdvs.2.1.2.4> whyiiotgoul
simplify?[no] : <CR>

g(l) 2 * #sigma = #i * (#i + 1)

The reason that, SDVS does not know that the goal is true is that, although the substi-
tution is done automatically, the expansions are not, and the simplifier does not know

automatically that the expansions are true:

87

<sdvs.2.1.2.4> simp
expression: oldi*(oldi+l)=oldi*oldi+oldi

2 * oldsigma = oldi + oldi * oldi

<sdvs .2.1.2.4> simp
expression: (oldi+1) *(oldi+2)=oldi*oldi+3*oldi+2

(1 + oldi) * (2 + oldi) = (2 + oldi * oldi) + 3 * oldi

This is why we must use the SDVS integer-multiplication axioms. But first, let us dump

our partial proof so that we may use it in the next example:

<sdvs.2.1.2.4> dump-proof

name: gauss, partia.il. proof

Current proof dumped to gauss.partiall.proof.

We now "read" the integer multiplication axioms and pretty-print the two that we will need.

<sdvs.2.1.2.4> read.
path name[axioms/exp.axioms] : axioms/mult.axioms

Definitions read from file "axioms/mult.axioms"
-- (multO,multl,multcoinmute,murtassoc,multdistributeplus,

multdistributeminus.multminus.multsquaregeO.multgeO,multleO,
multge,multgtO.multltO.multgt)

<sdvs.2.1.2.5> pp
ob j ect: axiom
axiom name: multdistributeplus

axiom multdistributeplus (x,y,z):

x*(y+z)=x*y+x*z

<sdvs.2.1.2.5> pp

object: axiom
axiom name: multcomrnute

axiom multcommute (x,y):

x * y = y * x

If at a certain point in a proof we wish to assert that, two terms fx and t2 are equal and a
current axiom has the form t\ = t\ or t*2 = tj, where tx and t2 are of the form tj and ^j
respectively, then an invocation of the rewritebyaxiom command with the current axiom

88

as the "axiom name" parameter and the term ti as the "term to rewrite" parameter will

assert the equality of ti and t2-12

We first expand the term oldi * (oldi + 1) by means of the rewritebyaxiom command.

<sdvs.2.1.2.5> rewritebyaxiom
term to rewrite: oldi*(oldi+l)

axiom name[] : multdistributeplus

rewritebyaxiom multdistributeplus — oldi * (oldi + 1)
= oldi * oldi +

oldi * 1

<sdvs .2.1.2.6> sirup
expression: oldi* (oldi+1) =oldi*oldi+oldi

true

The expansion of {oldi + 1) * {oldi + 2) is more complicated:

<sdvs. 2.1.2. 6> rewritebyaxiom
term to rewrite: (oldi+l)*(oldi+2)

axiom name[] : multdistributeplus

rewritebyaxiom multdistributeplus — (oldi + 1) * (oldi + 2)
= (oldi + 1) * oldi +

(oldi + 1) * 2

<sdvs. 2.1.2. 7> rewritebyaxiom
term to rewrite: (oldi+l)*oldi

axiom name[] : multcommute

rewritebyaxiom multcommute -- (oldi + 1) * oldi
= oldi * (oldi + 1)

<sdvs.2.1.2.8> rewritebyaxiom
term to rewrite: oldi*(oldi+l)

axiom name [] : multdistributeplus

rewritebyaxiom multdistributeplus -- oldi * (oldi + 1)

= oldi * oldi +

oldi * 1

12Tlie term t is of the form t' if ami only if /. = t*[si/xi,..., sn/xn] , where the s,'s are terms and the
li's are variables of t*.

89

<sdvs.2.1.2.9> simp
express ion: (oldi+1) *(oldi+2)=oldi*oldi+3*oldi+2

true

The goal is now known to be true:

<sdvs .2.1.2.9> whynotgoal
simplify?[no] : <CR>

The goal is TRUE. Type 'close5.

We close the two proofs and "quit":

<sdvs.2.1.2.9> close

close — 8 steps/applications

join induction cases -- [sd pre: (1 le n)
comod: (all)

mod: (i,sigma)

post: (#i = n,
2 * #sigma = n * (n + 1))]

Complete the proof.

<sdvs.2.2> close

close — 1 steps/applications

<sdvs.3> quit.

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

6.2 Creating, Proving, and Invoking Lemmas

Example 11 In this example, we will prove gauss.sd once more, following the proof in the
last example up to the point at which we invoked the command rewritebyaxiom. At that

90

point we will create a lemma, and, without proving it, we will use it to complete the proof.
When we "quit" the proof of gauss.sd, SDVS will inform us that we used this lemma in
the proof, but that a proof had not been provided (prior to the proof of gauss.sd).

We sta.rt the proof of gauss.sd by using the partial proof that we dumped in the previous
example.

<sdvs.l> init
proof named : gauss.partiall.proof

State Delta Verification System, Version 13

Restricted to authorized users only.

setflag autoclose — off

open — [sd pre: (covering(all,i,sigma),.i = l,n ge l,.sigma = 1,
formula(gaussloop.sd))

comod: (all)
mod: (i,sigma)

post: (2 * #sigma = n * (n + l),#i = n)]

induction — .i from 1 to n

open — [sd pre: (true)
comod: (all)
post: (2 * .sigma = .i * (.i + l),.i = 1)]

close -- 0 steps/applications

open -- [sd pre: (.i ge l,.i It n,
2 * .sigma = .i * (.i + l))

mod: (i,sigma)

post: (2 * #sigma = #i * (#i + l),#i = .i + 1)]

let — oldi = .i

let -- oldsigma = .sigma

apply — [sd pre: (.i It n)
mod: (sigma,i)

post: (#i = .i + l,#sigma = .sigma + #i)]

Complete the proof.

We are now at the point of the proof at which we previously used the rewritebyaxiom

91

command. Instead of using the axioms, we "create" a lemma and use it, instead. (We should
point out that we could have created the lemma prior to the initiation of this proof.)

<sdvs.l> createlemma
name: gausslemma.

pattern: (a+b)*(c+d)=c*a+d*a+c*b+d*b

free variables []: u,b,c,d
constant symbols[]: <CR>
function symbols [] : <CR>

predicate symbols[]: <CR>

Lemma 'gausslemma' created.

Note that the free variables a, b, c, and d that we used in the lemma are new. This is not
required by SDVS, but since we will eventually have to prove the lemma "at the top level,"
(that is, not within another proof), we gain nothing by using variables in the current proof,
since at the "top level" nothing will be known about these variables. The pattern of the
lemma is a little odd, because we need this pattern only in the current proof, and because
the more obvious equation (a + b)*(c + d) = a*c + a*d + b*c+b*d requires four more

invocations of the axiom "multcommute" in its proof.

We may now use the command rewritebylemma, which is entirely analogous to the

rewritebyaxiom command, to complete the proof.

<sdvs. 2 .1.2. 4> rewritebylemma
term to rewrite: (oldi+0)*(oldi+l)

lemma name [] : gausslemma

rewritebylemma gausslemma — (oldi + 0) * (oldi + 1)
= ((oldi * oldi + 1 * oldi) +

oldi * 0) +
1*0

<sdvs .2.1.2.5> simp
expression: oldi*(oldi+1) = oldi* oldi+oldi

true

<sdvs . 2.1.2. 5> rewritebylemma
term to rewrite: (oldi+l)*(oldi+2)

lemma name[] : gausslemma

rewritebylemma gausslemma -- (oldi + 1) * (oldi + 2)
= ((oldi * oldi + 2 * oldi) +

oldi * 1) +

2*1

92

Note the way we entered the "term to rewrite" in the first invocation of the rewrite-
bylemma command. We could not have entered the term oldi * {oldi + 1) instead, because
it is not of the form of either of the two sides of the equality of the lemma, even though

SDVS knows that (oldi + 0) is equivalent to oldi.

We may now close the proof as before, but we dump the proof prior to the "quit."

<sdvs .2.1.2.6> whynotgoal

simplify? [no] : <CR>

The goal is TRUE. Type 'close'.

<sdvs.2.1.2.6> close

close — 5 steps/applications

join induction cases — [sd pre: (1 le n)
comod: (all)
mod: (i,sigma)

post: (#i = n,
2 * #sigma = n * (n + 1))]

Complete the proof.

<sdvs.2.2> close

close — 1 steps/applications

<sdvs.3> dump-proof
name: yauss.partial2.proof

Current proof dumped to gauss.partial2.proof.

<sdvs.3> quit

Proof session closed using unproved lemmas: (gausslemma)
The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

Note that SDVS has informed us that the unproved lemma yausslemma was used in the
proof and that, the customary "Q.E.D." did not follow the "quit".

93

Example 12 We will now prove the lemma that we created in the last example. First
we will initialize the system and then use the SDVS command provelemma to open the
proof. The lemma must be "created" prior to the invocation of this command. We are still
in the session that we started at the beginning of this section. Thus SDVS knows that the
lemma has been "created," and the current axioms include the axioms that we will need in

its proof.

<sdvs. 1> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs . 1 > pTovclcmma
lemma name: gausslemma

proof [] : < CR>

open — [sd pre: (true)
post: ((a + b) * (c + d)

= ((c *a + d*a) + c*b)+d* b)]

<sdvs.l.l> yoals

g(l) (a + b) * (c + d)
= ((c *a + d*a)+c*b)+d*b

The provelemma command opens the proof of a state delta that has empty comodification
and modification lists. The precondition is p if the lemma pattern is of the form p —► q and
is true otherwise. In the first case, the state delta asserts that henceforth (always) p —* q,
and in the second case, the state delta asserts that henceforth (always) q is true.

We first rewritebyaxiom two times and then discuss another use of this command.

<sdvs . 1. 1> rewritebyaxiom
term to rewrite: (a+b)*(c+d)

axiom name [] : multdistributeplus

rewritebyaxiom multdistributeplus -- (a + b) * (c + d)
= (a + b) * c +

(a + b) * d

<sdvs . 1. 2> rewritebyuxiom
term to rewrite: (a+b)*c

axiom name[] : rnulteornmute

94

rewritebyaxiom multcommute — (a + b) * c = c * (a + b)

If an "axiom name" parameter is not given to the rewritebyaxiom command, SDVS
searches the list of current axioms to find an axiom in which the "term to rewrite" parameter
is of the form of one of the axiom equality terms. If it succeeds in this search, it rewrites
the term parameter to the rewritebyaxiom command according to the axiom:

<sdvs . 1. 3> rewritebyaxiom
term to rewrite: c*(a+b)

axiom name[]: <CR>

rewritebyaxiom multdistributeplus -- c * (a + b)
= c*a+c*b

<sdvs . 1.4> rewritebyaxiom
term to rewrite: (a+b)*d

axiom name[] : <CR>

rewritebyaxiom multcommute — (a + b) * d = d * (a + b)

<sdvs . 1. 5> rewritebyaxiom
term to rewrite: d*(a+b)

axiom name[] : <CR>

rewritebyaxiom multdistributeplus — d * (a + b)
= d*a+d*b

<sdvs.l.6> clone

close -- 5 steps/applications

<sdvs.l> quit

Q.E.D. The proof for this session is in 'sdvsproof

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> write
path name [axioms/mult. axioms]

state delta names []
proof names []

tutorial/gauss, sdvs
<CR>
<CR>

95

axiom
lemma

formula
formulas

macro
datatype
adalemma

vhdllemma

names []
names []
names []
names []
names []
names []
names []
names []

multdistributeplus,midtcommute

gausslemma

<CR>
<CR>
<CR>
<CR>
<CR>
<CR>

Write to file "tutorial/gauss.sdvs" -- (multdistributeplus,multcommute,

gausslemma)

Once the proof of a lemma closes, SDVS automatically associates the proof with the lemma
name. The lemma and its proof may be pretty-printed by the pp command:

<sdvs.2> pp
object: lemma
lemma name: gausslemma

lemma gausslemma (a,b,c,d): (a + b) * (c + d)
= ((c*a + d*a) + c*b) +

d * b

<sdvs.2> pp
ob j ect: lemmaproof
lemma name: gausslemma

(provelemma gausslemma

proof:
(rewritebyaxiom (a + b) * (c + d)

using: multdistributeplus,

rewritebyaxiom (a + b) * c

using: multcommute,

rewritebyaxiom c * (a + b)
using: multdistributeplus,

rewritebyaxiom (a + b) * d

using: multcommute,

rewritebyaxiom d * (a + b)

using: multdistributeplus,

close))

If we were to use the write command and enter the name of the lemma to the query "lemma
names," then SDVS would not only write the lemma to the specified file, but it would write
its proof as well. For completeness, the names of the axioms used in the proof of the lemma

should also be written to the file.

96

Thus, a read of the file would also read the proof of the lemma and the axioms used in its
proof. The entire proof could then be run in the session in which this file was read.

The reader should use the init command with <jauss.partial2.proof for the "proof name"
parameter to see that after "quitting" the proof, SDVS will display "Q.E.D" and will no
longer assert that unproved lemmas were used in the proof.

Example 13 Two other important static proof commands are provebyaxiom and prove-
bylemma. The latter is used like the former once a lemma has been created. In this
example we will create and prove a lemma using the provebyaxiom command.

The provebyaxiom command is used in a proof to assert an atomic formula q* using
an axiom either of the form p —*• q or the form q, where q* = q[ti/xi,...,tn/xn], the
i,-'s are terms, the Xj's are variables of q, and where if the axiom is of the form p -> q,
p[h/xi,.. .,t,Jxn] is known to be true in the current state.

We first create and open the proof of square.iaeq.lemma, which asserts that if b > a > 0,
then b*b > a* a. Since this lemma is an implication, the state delta that is created by the
provelemma command has the antecedent in its precondition rather than true.

<sdvs.l> createlemma
name: square, ineq. lemma

pattern: (0 It a and a It b) implies a*a It b*b
free variables []: a,b

constant symbols[]: <CR>
function symbols []: <CR>

predicate symbols[]: <CR>

Lemma 'square.ineq.lemma' created.

<sdvs.l> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> provelemma
lemma name: square.ineq.lemma

proof [] : < CR>

open — [sd pre: (0 It a & a It b)
post: (a * a It b * b)]

97

<sdvs.l.l> pp
obj ect: axiom
axiom name: mxdtijt

axiom multgt (x.y.z):
x gt 0 k y gt z or 0 gt x k z gt y --> x * y gt x * z

We use the axiom multgt in the provebyaxiom command. The substitutions, which are
done automatically by SDVS, are b for x and y, and a for z. Note that the axiom is of the

form p —> q and that p[b/x, b/y, a/z] is true.

<sdvs . 1. 1> provebyaxiom
formula to prove: b*b (jt b*a

axiom name [] : multgt

provebyaxiom multgt -- b * b gt b * a

<sdvs . 1. 2> provebyaxiom
formula to prove: a*b gt a*a

axiom name [] : < CR>

provebyaxiom multgt — a * b gt a * a

So far we have established that b*b > b*a and that a * b > a * a. We must still prove that
b * a = a*b. We do this, close and quit the proof, and pretty-print it.

<sdvs . 1.3> rewritebyaxiom
term to rewrite: a*b

axiom name[] : <CR>

rewritebyaxiom multcommute --a*b=b*a

<sdvs.l.4> close

close -- 3 steps/applications

<sdvs.l> quit

Q.E.D. The proof for this session is in 'sdvsproof'.

State Delta Verification System, Version 13

Restricted to authorized users only.

98

<sdvs.l> pp
object: lemmaproof
lemma name: squuTC.ineq.lemma

(provelemma square.ineq.lemma

proof:

(provebyaxiom b * b gt b * a

using: multgt,

provebyaxiom a * b gt a * a

using: multgt,

rewritebyaxiom a * b

using: multcommute,

close))

If we were to prove that b > a > 0 —*■ b * b > a * a, we would have to do a proof by cases
on the case a = 0.

99

7 Interaction with Application Languages

Our approach to adapting SDVS to the verification of programs in a new application lan-
guage involves the following steps:

1. defining a sequence of application language subsets of increasing complexity, to be
incorporated incrementally into SDVS;

2. defining in state deltas the semantics of the current application language subset; and

3. augmenting the SDVS Simplifier, domain repertoire, and proof rules with components
necessary to support the application language subset.

As already indicated, an SDVS correctness proof of a subject program proceeds by symbolic
execution of a state delta representation of the program, with the goal of achieving states
in which the specification of the program holds. This state delta representation is obtained
by invoking the application language translator, with the subject program as its argument.

The SDVS language translators are all organized according to the same scheme:

Parsing. A program is parsed according to the concrete syntax for the language subset,
producing an abstract syntax tree for manipulation by the two subsequent translation
phases. We use our own tools to specify and implement this process.

Phase 1: Static Checking. This first phase of semantic analysis detects "static" errors,
such as items undeclared before their use, inappropriate types, and semantically ill-
formed constructs. Provided that no errors occur in Phase 1, an environment for the
second (and final) phase of the translator is produced.

Phase 2: State Delta Generation. This final phase of semantic analysis generates the
state deltas that define the semantics and allow the symbolic execution of the program.

The formal specification of both phases of each translator is written in a continuation-
style denotational semantics [13]. Space limitations constrain the following discussion to be
simplified and sketchy; full details appear in various reports [14, 15, 16, 17, 18, 19]. The
translator is a Common Lisp program, whose behavior is largely specified by the mathemat-
ical equations of a continuation-style denotational semantics for the application language
in terms of the state delta logic.

The implementation of the translator from the semantics is carried out automatically by
a tool, also developed at The Aerospace Corporation, called the Denotational Semantics
Translator Environment (DENOTE) [20]. The DENOTE Language (DL) was specifically
designed for expressing semantic equations. DENOTE translates specifications written
in DL, generating both (a) documentation in the form of formatted equations, and (b) a
Common Lisp implementation of the equations. DENOTE is employed for the development
of all language interfaces to SDVS.

101

Figure 6 shows SDVS's scheme for translating a computer program into the state delta lan-
guage. Single vectors represent inputs; triple vectors represent the generation of programs,
data or text; oval areas surround SDVS input; single-boxed areas surround text files, which
are either output or data or both; and double-boxed areas represent programs. The ar-
eas enclosed in dashed boxes need be executed only once for each language - once for the
grammar and once for the semantic definition of the translator.

Consider a computer language L being adapted to SDVS. First an SLR(l) grammar is
created with a grammar analysis tool. This grammar is input to a parser generator tool
whose output is a parser table. Any program written in L can be parsed by the table-driven
parser along with the generated table for L. This parser is created once for the language
and, when it is input a syntactically legal program, it outputs an abstract syntax tree for
that program. The abstract syntax tree is input to the two phases of the translator backend.
The backend is also generated once for the language and is created by the DENOTE tool.
DENOTE accepts a set of equations that define the semantics of L, and outputs either the
translator backend for L or the formatted equations for L.

A correctness proof of an application program must deal not only with the program's
flow of control, but also with its data types. The language translator is responsible for
properly modeling control flow, but knowledge about the data types must be incorporated
into SDVS's inference mechanism (the Simplifier and domain axiomatizations). One must
decide which existing components of SDVS can be directly adapted to deal with the new
data types, and what enhancements to SDVS's inference machinery must be made.

102

SLR(l) *\
Grammar I-

forL J

Program

SLR(l)
Parser

Generator

SLR(l)
Parser Table

forL

LR(1)
Table-driven

Parser

Abstract
Syntax Tree

for L Program

Common Lisp
Translator

ForL

Denotational
Semantic
Equations
Defining

Translator for L

State Delta Semantics for L Program

Figure 6: Parsing and Translating an L Program

103

7.1 Ada

The purpose of this section is to illustrate most of the techniques available to the user of
SDVS in proofs of correctness properties of Ada programs.

The first three examples involve two versions of a simple Ada program with a procedure call.
The main program orders two integers by calling a switch procedure, if the integers are not
in the right order. The first version assigns concrete values to the integer variables, while the
second version reads the (symbolic) values of the variables from a standard input file and,
after ordering them, outputs these values to a standard output file. For the first version,
we can only prove that the program terminates. We provide two proofs of this fact: the
first proof introduces the salient features of an Ada proof, while the second illustrates the
creation, proof, and invocation of an Ada lemma. In the third example, we use the second
version of the program and prove a specification that relates the output to the input.

The last example is an Ada version of Example 8 in Section 3.4. The Ada program reads
two integers, x and y from the standard input file, and if y > 0, computes their sum by
means of a while loop and writes the sum to the standard output file. We include this
example to illustrate the SDVS translation of an Ada while loop and the use of the induct
command in its symbolic execution.

In SDVS (Version 13), a theorem concerning a correctness property of the Ada program
mainprogname stored in the file progfile.ada is a state delta of the form

[sd pre: ada(progfile.ada), <input specifications>
comod; all

mod: all
post: terminated(mainprogname), <input-output specifications^

The formula ada (progfile.ada) is a translation of mainprogname into the language of the
state delta logic. This formula acquires a meaning only after the invocation of the adatr
command, at the top level, with the only argument to the command being the path name
of the file progfile.ada. The predicate terminated(mainprogname) is asserted by SDVS
at the last state of the symbolic execution of ada (progfile.ada). The last two examples
of this section illustrate the use of the input and the input-output specifications.

7.1.1 A simple Ada program with a subprogram

Example 14 Consider the following Ada program which is stored in the file orderl. ada.

with text.io; use text.io;

with integer_io; use integer_io;

procedure orderl is

u, v, switched : integer;

104

procedure switch(x, y : in out integer) is

temp : integer;

begin

temp:= x;

x:= y;

y:= temp;

end switch;

begin

u:= 3;

v:= 2;

if u <= v then

switched :=0;

else

switch(u,v);

switched := 1;

end if;

end orderl;

Clearly, the execution of this program terminates, and during the execution the values of the
variables u and v are switched and the variable switched is assigned the value 1. Since these
variables have neither initial nor final values, and in fact cannot be referenced at the top
level of the precondition or postcondition of a state delta asserting a correctness property
of the program (in the current SDVS semantic interpretation of Ada, these variables do
not even exist at the initial and final states of the execution of the program), the only
correctness property that we can prove about this program is that it terminates. The state
delta orderl.sd asserts this correctness property:

[s d pre: (ada(order i.ada))
comod: (all)

mod: (all)
post: (terminated(orderl))]

To prove this state delta we must first invoke the adatr command, at the top level, and
then open the proof.

<sdvs.l> adatr
path name[testproofs/foo.ada] : tutorial/order1.ada

Parsing Stage 4 Ada file — "tutorial/orderl.ada"

Translating Stage 4 Ada file — "tutorial/orderl.ada"

<sdvs.2> setflag

105

flag variable: autoclose
on or off [on]: off

setflag autoclose — off

<sdvs.3> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : orderl.sd
proof D : < CR>

open — [sd pre: (ada(orderl.ada))
comod: (all)

mod: (all)
post: (terminated(orderl))]

Complete the proof.

<sdvs.l.l> goals

g(l) terminated(orderl)

Here is the state delta that is usable at the beginning of the proof.

<sdvs.l.l> usable

u(l) [sd pre: (true)

comod: (all)

mod: (orderl\pc)

post: (<adatr procedure orderl is

u, ... : integer

begin

u := 3;

end orderl;>)]

No usable quantified formulas.

106

The only element in the modification list of this usable and applicable state delta is the
variable orderl\pc, which represents the program counter of the main program orderl. The
program counter will appear in the modification list of every state delta that is generated
by the Ada translator. We apply this state delta and check the next state delta that is
generated by the translator.

<sdvs.l.l> apply
sd/number[highest applicable/once] : <CR>

apply - - [sd pre: (true)

comod: (all)
mod: (orderl\pc)

post: (<adatr procedure orderl is

u, ... : integer

begin

u := 3;

end orderl;>)]

<sdvs.l.2> usable

u(l) [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl)
post: (alldisjoint(orderl,.orderl,u,v,switched),

covering(#orderl,.order!,u,v,switched) ,
declare(u,type(integer)),declare(v,type(integer)),
declare(switched,type(integer)),
<adatr u, ... : integer>)]

No usable quantified formulas.

This usable state delta elaborates and declares the objects u, v, and switched to be of the
type specified by the Ada program. We apply it and thereby elaborate the variables.

<sdvs.l.2> apply
sd/number [highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl)
post: (alldisjoint(orderl,.orderl,u,v,switched),

107

covering(#orderl,.orderl,u,v,switched),
declare(u,type(integer)),declare(v,type(integer)),
declare(switched,type(integer)),
<adatr u, ... : integer>)]

<sdvs.l.3> usable

u(l) [sd pre: (true)
comod: (all)

mod: (orderl\pc,u)
post: (#u = 3,

<adatr u := 3;>)]

No usable quantified formulas.

We first execute past the two assignment statements.

< sdvs. 1.3 > apply
sd/number[highest applicable/once]: 2

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,u)
post: (#u = 3,

<adatr u := 3;>)]

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,v)
post: (#v = 2,

<adatr v := 2;>)]

<sdvs.l.5> usable

u(l) [sd pre: (~(.u le .v))
comod: (all)
mod: (orderl\pc)

post: (<adatr if u <= v
switched := 0;

else switch (u, ...);

end if;>)]

108

u(2) [sd pre: (.u le .v)

comod: (all)

mod: (orderl\pc)

post: (<adatr if u <= v

switched := 0;

else switch (u, ...);

end if ;>)]

No usable quantified formulas.

< s dvs. 1.5 > applicable

u(l) [sd pre: (~(.u le .v))
comod: (all)
mod: (orderl\pc)

post: (<adatr if u <= v

switched := 0;

else switch (u, ...);

end if;>)]

The conjunction of the two usable state deltas u(l) and u(2) is the SDVS translation of
the "if ... then . .. else ... end if" program segment. Since u is greater than
v, only u(l) is applicable.

<sdvs.l.5> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: ("(.u le .v))
comod: (all)

mod: (orderl\pc)
post: (<adatr if u <= v

switched := 0;
else switch (u, ...);

end if;>)]

<sdvs.l.6> usable

u(l) [sd pre: (true)

comod: (all)

mod: (orderl\pc,orderl)
post: (alldisjoint(orderl,.orderl,x,y),

109

covering(#orderl,.orderl,x,y),declare(x,type(integer)),
declare(y,type(integer)),
<adatr switch (u, ...)>)]

No usable quantified formulas.

This usable state delta, «(1), represents the elaboration of the objects x and y of procedure
switch. We elaborate the declarations, bind x and y to u and v, respectively, and advance
the program counter to "at(orderl .switch)".

<sdvs.l.6> apply
sd/number[highest applicable/once]: 3

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl)
post: (alldisjoint(orderl,.orderl,x,y),

covering(#orderl,.orderl,x,y),
declare(x,type(integer)),declare(y,type(integer)),
<adatr switch (u, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,x,y)
post: (#x = .us#y = .v,

<adatr switch (u, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc)
post: (#orderl\pc = at(orderl.switch),

<adatr switch (u, ...)>)]

<sdvs.l.9> usable

u(l) [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl)
post: (alldisjoint(orderl,.orderl,temp),

covering(#orderl,.orderl,temp),
declare(temp,type(integer)),
<adatr temp : integer>)]

110

No usable quantified formulas.

The identifier orderi .switch is the qualified name of procedure switch, and the usable
state delta u(l) represents the elaboration of the object temp of procedure switch. We
elaborate the declaration, and execute through the body of the procedure.

<sdvs. 1. 9> apply
sd/number[highest applicable/once] 4

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderi)
post: (alldisjoint(orderi,.orderi,temp),

covering(#orderl,.orderi,temp),
declare(temp,type(integer)),
<adatr temp : integer>)]

apply —

apply

apply

[sd pre: (true)
comod: (all)

mod: (orderl\pc,temp)
post: (#temp = .x,

<adatr temp := x;>)]

[sd pre: (true)
comod: (all)

mod: (orderl\pc,x)
post: (#x = .y,

<adatr x := y;>)]

[sd pre: (true)
comod: (all)

mod: (orderl\pc,y)
post: (#y = .temp,

<adatr y := temp;>)]

<sdvs.l.l3> simp
expression: .x

<sdvs.l.l3> simp
expression: .y

111

<sdvs . 1.13> applicable

u(l) [sd pre: (true)
comod: (all)

mod: (orderl\pc,order1,temp)
post: (covering(.orderl.torderl,temp),undeclare(temp),

<adatr temp : integer>)]

We now "undeclare" the object temp and advance the state to the point at which the
program counter is at "exited(orderl.switch)".

<sdvs.l.l3> apply
sd/number[highest applicable/once]: 2

apply — [sd pre: (true)
comod: (all)

mod: (order1\pc,order1,temp)
post: (covering(.orderl,#orderl,temp)»undeclare(temp),

<adatr temp : integer>)]

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc)
post: (#orderl\pc = exited(orderl.switch),

<adatr switch (u, ...)>)]

<sdvs.l.l5> simp
expression: .x

<sdvs.l.l5> simp
expression: .y

Notice that, at this point, x and y have not been "undeclared." We assign the current
values of x and y to u and t;, respectively, and "undeclare" x and y.

<sdvs.l.l5> apply
sd/number[highest applicable/once]: 2

apply — [sd pre: (true)
comod: (all)

112

mod: (orderl\pc,u,v)
post: (#u = .x,#v = .y,

<adatr switch (u, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order1\pc,orderl,x,y)
post: (covering(.orderl,#orderi,x,y),undeclare(x,y),

<adatr switch (u, ...)>)]

<sdvs.l.l7> usable

u(l) [sd pre: (true)
comod: (all)

mod: (orderl\pc,switched)
post: (#switched = 1,

<adatr switched := !;>)]

No usable quantified formulas.

We have now truly exited the procedure switch and are at the assignment switched := 1
of the main program. We execute the assignment, undeclare u and v, and close, quit, and
pretty-print the proof.

< sdvs. 1.17> apply
sd/number[highest applicable/once] : <CR>

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,switched)
post: (»switched = 1,

<adatr switched := 1;>)]

<sdvs.l.l8> apply
sd/number[highest applicable/once]: 2

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl,u,v,switched)
post: (covering(.orderl,#orderl,u,v,switched),

undeclare(u,v,switched),
<adatr u, ... : integer>)]

113

apply — [sd pre: (true)
comod: (all)

mod: (order i\p c)
post: (terminated(orderl))]

<sdvs. 1.20> whynotgoal
simplify?[no] : <CR>

The goal is TRUE. Type 'close'.

<sdvs.l.20> close

close — 19 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification Systems Version 13

Restricted to authorized users only.

<sdvs.l> pp
obj ect: proof
proof name: sdvsproof

proof sdvsproof:

prove orderl.sd
proof:

(apply u(l),
apply u(l),
apply 2,
apply u(l),
apply 11,
apply u(l),
apply 2,
close)

The applys above could be replaced by one use of the go command.

7.1.2 Creating, proving, and invoking an Ada lemma

114

Example 15 In this example we create and prove a lemma about the subprogram switch
of the program orderi, and then reprove the state delta orderl.sd of Example 14 by
invoking the lemma at the appropriate point in the proof. We also demonstrate the go
command in the elaboration of the declarations.

We first initialize the system and translate the Ada program in the file orderi .ada. (It is
not necessary to translate the file again if it has been translated in the current session.)

<sdvs.l> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

We can now create the Ada lemma.

<sdvs.l> createadalemma
lemma name: switch.lemma
file name: tutorial/orderi.ada

subprogram name: switch
qualified name: orderi.switch

preconditions [] : < CR>
mod listD : x,y

postconditions: #x=.y,#y=.x

createadalemma — [sd pre: (.orderl\pc = at(orderi.switch))
comod: (all)

mod: (orderl\pc,x,y)
post: (#x = .y,#y = .x,

#orderl\pc = exited(orderl.switch))]

Notice that the system created a state delta with some of our entries and supplied additional
ones. Specifically, the precondition and postcondition include the expected values of the
program counter of the main program orderi, in which the subprogram switch is contained.
In Example 14 we saw at which points of the execution these values were attained. The
precondition value of the program counter was attained after the declaration and binding
of the variables x and y, and the postcondition value was attained after the local variable
temp was undeclared. Note that we entered a null parameter to the preconditions [] :
query of the createadalemma command. The user may enter any precondition formula
whose program variables are either in the scope of the subprogram declaration or are formal
parameters of the subprogram. Of course, this formula must be true at the time that the
lemma is invoked. The program counter was also added to the modification list of the
state delta. Finally, this is the state delta that will be asserted by the invokeadalemma
command.

115

We will now prove this Ada lemma. The proveadalemma command sets up the environ-
ment to prove the lemma.

<sdvs.2> setflag
flag variable: autoclose
on or off[on]: on

setflag autoclose — on

<sdvs.3> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> proveadalemma
Ada lemma name: switch.lemma

proof D: <CR>

open — [sd pre: (alldisjoint(orderl,.orderl),
covering(.orderl,orderi\pc,u,v,switched,stdin,stdin\ctr,

stdout,stdout\ctr),
declare(u,type(integer)),declare(v,type(integer)),
declare(switched,type(integer)),
declare(stdin,type(polymorphic)),
declare(stdin\ctr,type(integer)),
declare(stdout,type(polymorphic)),
declare(stdout\ctr,type(integer)),
< adatr null;; >)

comod: (all)
mod: (all)

post: ([sd pre: (.orderl\pc = at(orderl.switch))
comod: (all)

mod: (diff(all,
diff(union(orderl\pc,u,v,switched,stdin,

stdin\ctr,stdout,stdout\ctr,x,

y).
union(orderl\pc,x,y))))

post: (#x = .y,#y = .x,
#orderl\pc = exited(orderl.switch))])]

apply — [sd pre: (true)

comod: (all)

mod: (orderl\pc,orderl)

116

post: (alldisjoint(orderl,.orderl,x,y),

covering(#orderl,.orderl,x,y),

declare(x,type(integer)),declare(y,type(integer)),

<adatr null;>)]

apply — [sd pre: (true)

comod: (all)

mod: (orderl\pc,x,y)

post: (#x = .x,#y = .y,

<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc)
post: (#orderl\pc = at(orderl.switch),

<adatr null;>)]

go — breakpoint reached

open — [sd pre: (.orderl\pc = at(orderl.switch))
comod: (all)

mod: (diffCall,
diff(union(orderi\pc,u,v,switched,stdin,

stdin\ctr,stdout,stdout\ctr,x,y),
union(orderl\pc,x,y))))

post: (#x = .y,#y = .x,
#orderl\pc = exited(orderl.switch))]

<sdvs.l.4.1> usable

u(l) [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl)
post: (alldisjoint(orderl,.orderl,temp),

covering(#orderl,.orderl,temp),
declare(temp,type(integer)),
<adatr temp : integer>)]

No usable quantified formulas.

The proof proceeds as before; we use the until command for the applications.

<sdvs.l.4.1> until
formula: #orderl\pc=exited(orderl.switch)

117

apply — [sd pre: (true)

comod: (all)

mod: (orderl\pc,orderl)

post: (alldisjoint(order1,.order1,temp),

covering(forder1,.order1,temp),

declare(temp,type(integer)),

<adatr temp : integer>)]

apply

apply

apply —

[sd pre: (true)

comod: (all)

mod: (orderl\pc,temp)

post: (#temp = .x,

<adatr temp := x;>)3

[sd pre: (true)

comod: (all)

mod: (orderl\pc,x)

post: (#x = .y,

<adatr x := y;>)]

[sd pre: (true)

comod: (all)

mod: (orderi\pc,y)

post: (#y = .temp,

<adatr y :* temp;>)]

apply — [sd pre: (true)

comod: (all)
mod: (orderi\pc,orderl,temp)
post: (covering(.orderl,#orderl,temp),undeclare(temp),

<adatr temp : integer>)]

apply — [sd pre: (true)

comod: (all)
mod: (orderl\pc)

post: (#orderl\pc = exited(orderl.switch),

<adatr null;>)]

close — 6 steps/applications

close — 4 steps/applications

proveadalemma — [sd pre: (.orderl\pc
comod: (all)

= at(orderl.switch))

118

mod: (orderl\pc,x,y)
post: (#x = .y,#y = .x,

#orderl\pc = exited(orderl.switch))]

<sdvs.l> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

Let us once more open the proof of orderl.sd.

<sdvs.l> init
proof name[]: <CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : orderl.sd
proof D: <CR>

open — [sd pre: (ada(orderl.ada))
comod: (all)

mod: (all)
post: (terminated(orderl))]

Complete the proof.

The go command is similar to until except that

• in the application of state deltas, go will only apply a state delta if it is applicable
and at the top of the usable state deltas stack,

• until requires a formula parameter whereas go does not, and

• go also instantiates quantified formulas that are "applicable."

<sdvs.l.l> go
until [] : #orderl\pc=at(orderl.switch)

119

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc)

post: (<adatr procedure order1 is
u, ... : integer

begin
u := 3;

end orderl;>)]

apply — [sd pre: (true)

comod: (all)
mod: (orderl\pc,order1)

post: (alldisjoint(orderl,.orderl,u,v,switched),

covering(#orderl,.orderl,u,v,switched),
declare(u,type(integer)),declare(v,type(integer)),
declare(switched,type(integer)),
<adatr u, ... : integer>)]

apply — [sd pre: (true)

comod: (all)
mod: (orderl\pc,u)

post: (#u = 3,
<adatr u := 3;>)]

apply

apply -

[sd pre: (true)
comod: (all)

mod: (orderl\pc,v)

post: (#v = 2,
<adatr v := 2;>)]

[sd pre: (-(.u le .v))
comod: (all)

mod: (orderl\pc)
post: (<adatr if u <= v

switched := 0;
else switch (u,

end if ;>)]

.);

apply — [sd pre: (true)

comod: (all)
mod: (orderl\pc,orderl)

post: (alldisjoint(orderl,.orderl,x,y),

120

covering(#orderl,.orderl,x,y),

declare(x,type(integer)),declare(y,type(integer)),

<adatr switch (u, ...)>)]

apply — [sd pre: (true)

comod: (all)

mod: (orderl\pc,x,y)

post: (#x = .u,#y = .v,

<adatr switch (u, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc)
post: (#orderl\pc = at(order1.switch),

<adatr switch (u, ...)>)]

go — breakpoint reached

<sdvs.l.9> usable

u(l) [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl)
post: (alldisjoint(orderl,.order1,temp),

covering(#orderl,.orderl,temp),
declare(temp,type(integer)),
<adatr temp : integer>)]

No usable quantified formulas.

We are at the point at which the precondition of the state delta created by the cre-
ateadalemma command is true, and we may apply the lemma using the invokeadalemma
command. This is the only point where we may use the lemma, because it is the only point
at which the program counter has the correct value.

<sdvs. 1. 9> invokeadalemma
Ada lemma name: switch.lemma

invokeadalemma — [sd pre: (.orderl\pc = at(order1.switch))
comod: (all)

mod: (orderl\pc,x,y)
post: (#x = .y,#y = .x,

#orderl\pc = exited(orderl.switch),
<adatr return;>)]

121

<sdvs.l.lO> usable

u(l) [sd pre: (.orderl\pc = exited(orderl.switch))
comod: (all)

mod: (order1\p c)
post: (<adatr switch (u, ...)>)]

u(2) [sd pre: (true)
comod: (all)

mod: (orderl\pc)
post: (#orderl\pc = exited(orderl.switch),

<adatr switch (u, ...)>)]

No usable quantified formulas.

<sdvs.l.lO> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (.orderl\pc = exited(orderl.switch))
comod: (all)

mod: (orderl\pc)
post: (<adatr switch (u, ...)>)]

<sdvs.l.ll> simp
expression: .x

<sdvs.l.ll> simp
expression: .y

<sdvs.l.ll> simp
expression: .u

<sdvs.l.ll> simp
expression: .v

122

After the application of the state delta created by the lemma, we are at a familiar point in
the proof; we assign the values of x and y to u and v and execute to the end using until.
Finally, we close and quit the proof, then pretty-print it.

<sdvs.l.ll> apply
sd/number[highest applicable/once] : <CR>

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,u,v)
post: (#u = .x,#v = .y,

<adatr switch (u, ..)>)]

<sdvs.l.!2> simp
expression: .u

<sdvs.l.l2> simp
expression: .v

<sdvs.!.12> until
formula: terminated(orderl)

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl,x,y)
post: (covering(.orderl,#orderi,x,y),undeclare(x,y),

<adatr switch (u, ...)>)]

apply [sd pre: (true)

comod: (all)

mod: (orderl\pc,switched)

post: (»switched = 1,
<adatr switched := !;>)]

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc,orderl,u,v,switched)
post: (covering(.orderl,#orderl,u,v,switched),

undeclare(u,v.switched),
<adatr u, ... : integer>)]

123

apply — [sd pre: (true)
comod: (all)

mod: (orderl\pc)
post: (terminated(orderl))]

close — 15 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
object: proof
proof name: sdvsproof

proof sdvsproof:

prove orderl.sd
proof:

(go #orderl\pc = at(orderl.switch),
invokeadalemma switch.lemma,
apply u(l),
apply u(l),
until terminated(orderl))

7.1.3 Ada input and output

The program, orderl in Examples 14 and 15 did not read or write any values of its objects.
Consequently, the only specification we could state and prove about the program was that it
terminated. In practice, a program inputs and outputs data, and a specification concerning
it is usually a relation of the output to the input.

Standard input and output buffers are part of the predefined environment for SDVS Ada
programs. The SDVS Ada translator behaves as if every main program contains a package

roughly of the form

package STANDARD is
package TEXT.IO is

stdin : array(l..?) of polymorphic;

124

stdin\ctr : integer := 1;
stdout : array(l..?) of polymorphic;
stdout\ctr : integer := 1;
procedure get(get\item : out polymorphic) is
begin
get\item := stdin(stdin\ctr);
stdin\ctr := stdin\ctr+l;

end get;
procedure put(put\item : in polymorphic) is
begin
stdout(stdout\ctr) := put\item;
stdout\ctr := stdout\ctr+l;

end put;

The reader may have noticed in the last example that the proveadalemma command
opened the proof of a state delta, two of whose fields allude to the objects in this fictional
"STANDARD" package. A "get(u)" or a "put(u)" in an Ada program is translated as if
it were a procedure call to the get and put procedures of this package.

Our next example concerns an Ada program with both input and output and a state delta
assertion of the correctness of its output with respect to its input.

Example 16 Consider the program order2 in the file order2.ada:

with text_io; use text.io;

with integer_io; use integer_io;

procedure order2 is

u, v, switched : integer;

procedure switch(x, y : in out integer) is

temp : integer;

begin

temp:= x;

x:= y;
y:= temp;

end switch;
begin

get(u);

get(v);

if u <= v then

switched :=0;

else

switch(u,v);

switched := 1;

125

end if;

put(u);

put(v);

put(switched);

end order2;

and the state delta order2.sd:

[sd pre: (ada(order2.ada))
comod: (all)

mod: (all)
post: (terminated(order2),#stdout[l] le #stdout[2],

(#stdout[3] = 0 & #stdout[i] = .stdin[l]) &
#stdout[2] = .stdin[2] or

(#stdout[3] = 1 k tstdoutCl] = .stdin[2]) &
#stdout[2] = .stdin[l])]

In the symbolic execution of ada(order2.ada), i.e., of the SDVS translation of the program
order2, u and v will be initially assigned the values of stdin[l] and stdin[2], respectively,
and towards the end of the execution, stdout[l], stdout[2], and stdout[3] will be assigned
the values of u, v, and switched, respectively. It should be obvious from the program that
order2.sd is a valid state delta (provided that sicfm[l] and stdin[2] remain constant during
the execution).

Here is a proof of order2.sd.

<sdvs.l> setflag
flag variable: autoclose
on or off[off]: on

setflag autoclose — on

<sdvs.2> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> adatr
path name[tutorial/orderl.ada] : tutorial/order2.ada

Parsing Stage 4 Ada file — "tutorial/order2.ada"

126

Translating Stage 4 Ada file — "tutorial/order2.ada"

<sdvs.2> pp
object: ada

file name[order2.ada] : order2.ada

alldisj oint(order2,.order2)

covering(.order2,order2\pc,stdin,stdin\ctr,stdout,stdout\ctr)

declare(stdin,type(array,1,range(stdin).type(polymorphic)))

declare(stdin\ctr,type(integer))

.stdin\ctr = 1

declare(stdout,type(array,l,range(stdout),type(polymorphic)))

declare(stdout\ctr,type(integer))
.stdout\ctr = 1

<sdvs.2> prove
state delta [] : order2.sd
proof []: <CR>

open — [sd pre: (ada(order2.ada))
comod: (all)

mod: (all)
post: (terminated(order2),#stdout[l] le #stdout[2],

(«stdout[3] = 0 & «stdout[1] = .stdin[1]) &
«stdout[2] = .stdin[2] or

(«stdout[3] = 1 & «stdout[1] = .stdin[2]) i
«stdout[2] = .stdin[l])]

Complete the proof.

<sdvs.2.1> usable

(1) [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (<adatr procedure order2 is

u, ... : integer

begin
get (u);

end order2;>)]

127

No usable quantified formulas.

Notice that it is possible to pretty-print (a portion of) the translation of the Ada program,
and that the parameter given to the pp command is the file name of the Ada program, not
the name of the program itself.

We now proceed as before.

<sdvs.2.1> apply
sd/number[highest applicable/once] : <CR>

apply ■ [sd pre: (true)

comod: (all)

mod: (order2\pc)

post: (<adatr procedure order2 is

u, ... : integer

begin
get (u);

end order2;>)]

<sdvs.2.2> apply
sd/number [highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2)
post: (alldisjoint(order2s.order2,u,v,switched),

covering(#order2,.order2,u,v,switched),
declare(u,type(integer)),declare(v,type(integer)),
declare(switched,type(integer)),
<adatr u, ... : integer>)]

<sdvs.2.3> usable

u(l) [sd pre: (true)
comod: (all)
mod: (order2\pc,order2)

post: (alldisjoint(order2,.order2,get\item),

covering(#order2,.order2,get\item),

declare(get\item,type(polymorphic)),

<adatr get (u)>)]

No usable quantified formulas.

128

The applicable state delta u(l) is the beginning of the translation of the get(u) statement.
We execute through its full translation.

<sdvs.2.3> apply
sd/number[highest applicable/once]: 6

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2)
post: (alldisjoint(order2,.order2,get\item),

covering(#order2,.order2,get\item),
declare(get\item,type(polymorphic)),
<adatr get (u)>)]

apply —

apply

apply -

[sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (#order2\pc = at(standard.text_io.get),

<adatr get (u)>)]

[sd pre: (.order2\pc = at (standard, text J.o. get))
comod: (all)

mod: (order2\pc,stdin\ctr,get\item)
post: (#get\item = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,
#order2\pc = exited(standard.text_io.get) ,
<adatr null;>)]

[sd pre: (true)
comod: (all)

mod: (order2\pc,u)
post: (#u = .get\item,

<adatr get (u)>)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,order2,get\item)

post: (covering(.order2,#order2,get\item),

undeclare(get\item),

<adatr get (u)>)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,order2)
post: (alldisjoint(order2,.order2,get\item!2),

129

covering(#order2,.order2,get\item!2),
declare(get\item!2,type(polymorphic)),
<adatr get (v)>)]

<sdvs.2.9> usable

u(l) [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (#order2\pc = at(standard.text_io.get) ,

<adatr get (v)>)]

No usable quantified formulas.

We are now at the beginning of the translation of the get(v) statement of the program.
Having already seen the flow of the first get, we quickly proceed to the "if u <= v then

else ... end if" statement, using go, which will stop at that point because there
will be no applicable state deltas at the top of the usable stack to apply.

sdvs.2.9> go
until [] : <CR>

apply — [sd pre:
comod:

mod:
post:

apply — [sd pre:
comod:

mod:
post:

(true)
(all)
(order2\pc)
(#order2\pc = at (standard. text_io. get) ,
<adatr get (v)>)]

(.order2\pc = at (standard. textJ.o. get))
(all)
(order2\pc,stdin\ctr,get\item!2)
(#get\item!2 = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,
#order2\pc = exited(standard.text_io.get) ,
<adatr null;>)]

apply —

apply

[sd pre: (true)
comod: (all)

mod: (order2\pc,v)
post: (#v = .get\item!2,

<adatr get (v)>)]

[sd pre: (true)
comod: (all)

130

mod: (order2\pc,order2,get\item!2)
post: (covering(.order2,#order2,get\item!2),

undeclare(get\item!2),
<adatr get (v)>)]

go — no more declarations or statements

<sdvs.2.13> usable

u(l) [sd pre: (~(.u le .v))

comod: (all)

mod: (order2\pc)

post: (<adatr if u <= v

switched := 0;

else switch (u, ...);

end if;>)]

u(2) [sd pre: (.u le .v)

comod: (all)

mod: (order2\pc)

post: (<adatr if u <= v

switched := 0;

else switch (u, ...);

end if;>)3

No usable quantified formulas.

<sdvs. 2.13> applicable

The reason that neither of the two usable state deltas is applicable is that neither precon-
dition is necessarily true. We must use the cases command to consider each possibility.

<sdvs.2.13> cases
case predicate: .u le .v

cases — .u le .v

open — [sd pre: (.u le .v)

comod: (all)

mod: (all)

post: (terminated(order2),#stdout[l] le #stdout[2],

(#stdout[3] = 0 & #stdout[l] = stdin\232) &

131

#stdout[2] = stdin\234 or
(#stdout[3] = 1 k #stdout[l] = stdin\234) k

#stdout[2] = stdin\232)]

The proof of the first case, in which u < v, has been opened by the system. The goal
remains the same. We must execute until we reach the goal, at which point SDVS will open
the proof of the second case. We execute to the put(u) statement.

<sdvs.2.13.1.1> apply
sd/number[highest applicable/once]: 2

apply — [sd pre: (.u le .v)

comod: (all)

mod: (order2\pc)

post: (<adatr if u <= v
switched := 0;

else switch (u, .);

end if;>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,switched)

post: (#switched = 0,

<adatr switched := 0;>)]

<sdvs.2.13.1.3> usable

u(l) [sd pre:

comod:

mod:

post:

(true)

(all)

(order2\pc,order2)
(alldisjoint(order2,.order2,put\item),
covering(#order2,.order2,put\item),
declare(put\item,type(polymorphic)),
<adatr put (u)>)]

No usable quantified formulas.

The put(u) statement is translated in a manner roughly akin to a procedure call to put.
We now proceed through five applications to the next statement of the program order2.

<sdvs.2.13.1.3> apply
sd/number[highest applicable/once]: 5

132

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2)
post: (alldisjoint(order2,.order2,put\item),

covering(#order2,.order2,put\item),
declare(put\item,type(polymorphic)),
<adatr put (u)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,put\item)
post: (#put\item = .u,

<adatr put (u)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (#order2\pc = at (standard. text_io. put) ,

<adatr put (u)>)]

apply — [sd pre: (.order2\pc = at(standard.text_io.put))
comod: (all)

mod: (order2\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item,

#stdout\ctr = .stdout\ctr + 1,
#order2\pc = exited(standard.text_io.put) ,
<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2,put\item)
post: (covering(.order2,#order2,put\item),

undeclare(put\item),
<adatr put (u)>)]

<sdvs.2.13.1.8> usable

u(l) [sd pre:
comod:

mod:
post:

(true)
(all)
(order2\pc,order2)

(alldisjoint(order2,.order2,put\item!2) ,

covering(#order2,.order2,put\item!2),

declare(put\item!2.type(polymorphic)),

<adatr put (v)>)]

133

No usable quantified formulas.

We are now at the beginning of the next two statements, put(v) and put (switched). We
execute through both, to the end of the first case, using the go command.

<sdvs.2.13.1.8> go
until D : ~(#u le #v)

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2)
post: (alldisjoint(order2,.order2,put\item!2),

covering(#order2,.order2,put\item!2),
declare(put\item!2,type(polymorphic)),
<adatr put (v)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,put\item!2)
post: (#put\item!2 = .v,

<adatr put (v)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (#order2\pc = at (standard.text_io.put) ,

<adatr put (v)>)]

apply — [sd pre: (.order2\pc = at(standard.text_io.put))
comod: (all)

mod: (order2\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item!2,

#stdout\ctr = .stdout\ctr + 1,
#order2\pc = exited(standard.text_io.put) ,
<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2,put\item!2)
post: (covering(.order2,#order2,put\item!2),

undeclare(put\item!2),
<adatr put (v)>)]

apply — [sd pre: (true)

134

apply -

comod: (all)

mod: (order2\pc,order2)

post: (alldisjoint(order2,.order2,put\item!3),

covering(#order2,.order2,put\item!3),

declare(put\item!3,type(polymorphic)),

<adatr put (switched)>)]

[sd pre: (true)
comod: (all)

mod: (order2\pc,put\item!3)
post: (#put\item!3 = .switched,

<adatr put (switched)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (#order2\pc = at(standard.text_io.put) ,

<adatr put (switched)>)]

apply — [sd pre: (.order2\pc = at(standard.text_io.put))
comod: (all)

mod: (order2\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item!3,

#stdout\ctr = .stdout\ctr + 1,
#order2\pc = exited(standard.text_io.put) ,
<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2,put\item!3)
post: (covering(.order2,#order2,put\item!3),

undeclare(put\item!3),
<adatr put (switched)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2,u,v,switched)
post: (covering(.order2,#order2,u,v.switched),

undeclare(u, v,switched),
<adatr u, ... : integer>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (terminated(order2))]

135

close — 19 steps/applications

open — [sd pre: (~(.u le .v))

comod: (all)

mod: (all)
post: (terminated(order2),#stdout[l] le #stdout[2],

(#stdout[3] = 0 k #stdout[l] = stdin\232) k

#stdout[2] = stdin\234 or

(#stdout[3] = 1 k #stdout[l] = stdin\234) k

#stdout[2] = stdin\232)3

Complete the proof.

The system has opened the proof of the second case (u > v). Since this case is similar to the
first, we use go to reach one of our goals, terminated(order2). Once this goal is reached,
the other goals will have been achieved as well. No other commands are necessary for this
simple proof.

<sdvs.2.13.2.1> go
until[]: terminated(order2)

apply - [sd pre: (-(.u le .v))

comod: (all)

mod: (order2\pc)

post: (<adatr if u <= v
switched := 0;

else switch (u,

end if;>)]

•);

apply — [sd pre: (true)
comod: (all)

mod: (order2\p c,order2)
post: (alldisjoint(order2,.order2,x,y),

covering(#order2,.order2,x,y),
declare(x,type(integer)),

declare(y,type(integer)),

<adatr switch (u, ...)>)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,x,y)

post: (#x = .u,#y = .v,

<adatr switch (u, ..)>)]

136

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (#order2\pc = at(order2.switch),

<adatr switch (u, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2)
post: (alldisjoint(order2,.order2,temp),

covering(#order2,.order2,temp),
declare(temp,type(integer)),
<adatr temp : integer>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,temp)
post: (#temp = .x,

<adatr temp := x;>)]

apply —

apply —

[sd pre: (true)
comod: (all)

mod: (order2\pc,x)
post: (#x = .y,

<adatr x := y;>)]

[sd pre: (true)

comod: (all)

mod: (order2\pc,y)

post: (#y = .temp,

<adatr y := temp;>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2,temp)
post: (covering(.order2,#order2,temp),undeclare(temp),

<adatr temp : integer>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (#order2\pc = exited(order2.switch),

<adatr switch (u, ...)>)]

137

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,u,v)

post: (#u = .i,#v = .y,

<adatr switch (u, ...)>)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,order2,x,y)

post: (covering(.order2,#order2,x,y),undeclare(x,y),

<adatr switch (us ...)>)]

apply ~ [sd pre: (true)

comod: (all)

mod: (order2\pc,switched)

post: (#switched = 1,

<adatr switched := 1;>)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,order2)

post: (alldisjoint(order2,.order2,put\item),

covering(#order2,.order2,put\item),

declare(put\item,type(polymorphic)),

<adatr put (u)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,put\item)
post: (#put\item = .u,

<adatr put (u)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (forder2\pc = at(standard.textJLo.put),

<adatr put (u)>)]

apply — [sd pre: (.order2\pc = at(standard.text_io.put))
comod: (all)

mod: (order2\pc,stdout[.stdout\ctr],stdout\ctr)
post: (fstdout[.stdout\ctr] = .put\item,

tstdout\ctr = .stdout\ctr + 1,
#order2\pc = exited(standard.text_io.put),
<adatr null;>)]

138

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2,put\item)
post: (covering(.order2,#order2,put\item),

undeclare(put\item),
<adatr put (u)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2)
post: (alldisjoint(order2,.order2,put\item!2),

covering(#order2,.order2,put\item!2),
declare(put\item!2,type(polymorphic)),
<adatr put (v)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,put\item!2)
post: (#put\item!2 = .v,

<adatr put (v)>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc)
post: (#order2\pc = at (standard. text_Lo.put),

<adatr put (v)>)]

apply — [sd pre: (.order2\pc = at (standard.text_io.put))
comod: (all)

mod: (order2\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item!2,

#stdout\ctr = .stdout\ctr + 1,
#order2\pc = exited(standard.text_io.put) ,
<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (order2\pc,order2,put\item!2)
post: (covering(.order2,#order2,put\item!2),

undeclare(put\item!2) ,
<adatr put (v)>)]

apply — [sd pre: (true)
comod: (all)

139

mod: (order2\pc,order2)

post: (alldisjoint(order2,.order2,put\item!3),
covering(#order2,.order2,put\item!3),

declare(put\item!3,type(polymorphic)),

<adatr put (switched)>)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,put\item!3)

post: (#put\item!3 = .switched,

<adatr put (switched)>)]

apply — [sd pre: (true)

comod: (all)
mod: (order2\pc)

post: (#order2\pc = at (standard. text_io.put) ,
<adatr put (switched) >)]

apply — [sd pre: (.order2\pc = at(standard.text_io.put))
comod: (all)
mod: (order2\pc,stdout[.stdout\ctr] ,stdout\ctr)

post: (#stdout[.stdout\ctr] = .put\item!3,

#stdout\ctr = .stdout\ctr + 1,

#order2\pc = exited(standard.text_io.put),

< adatr null; >)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,order2,put\item!3)

post: (covering(.order2,#order2,put\item!3),

undeclare(put\item!3),

<adatr put (switched) >)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc,order2,u,v,switched)

post: (covering(.order2,#order2,u,v,switched),

undeclare(u,v,switched),

<adatr u, ... : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (order2\pc)

post: (terminated(order2))]

140

close — 30 steps/applications

join — [sd pre: (true)
comod: (all)

mod: (all)
post: (terminated(order2),#stdout[l] le #stdout[2],

(#stdout[3] = 0 & #stdout[l] = stdin\232) &
#stdout[2] = stdin\234 or

(#stdout[3] = 1 & #stdout[l] = stdin\234) j
#stdout[2] = stdin\232)]

close — 13 steps/applications

<sdvs.3> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
object: proof
proof name: sdvsproof

proof sdvsproof:

(adatr "tutorial/order2.ada"s

prove order2.sd
proof:

(apply u(l),
apply u(l),
apply 6,

cases .u le .v
then proof:

(apply 7,
go ~(#u le #v))

else proof: go terminated(order2)))

The first close is the "close" of the second case, and the second close is the "close" of the
proof of order2.sd.

141

7.1.4 Ada loops

The Ada programs in the first three Ada examples did not include a loop. A proof of
correctness of an Ada program with a loop will almost always include the induct command,
which we illustrate in our last example.

Example 17 Consider the Ada program add in the file add.ada.

with text_io; use text_io;
with integer_io; use integer.io;
procedure add is

i,s,x,y : integer;
begin
get(x);
get(y);

i:= 0;
s:= x;
while i < y loop

i:= i+1;
s:= s+1;

end loop;
put(s);

end add;

If the input for the object y is nonnegative, then the output of s is the sum of x and y.

This is the assertion of the state delta add.sd:

[sd pre: (ada(add.ada),.stdin[2] ge 0)
comod: (all)

mod: (all)
post: (terminated(add),#stdout[l] = .stdinCl] + .stdin[2])]

We open the proof of add.sd and execute to the "while" loop using the go command with

no parameters.

<sdvs.l> adatr
path name [tutorial/order2. ada] : tutorial/add.ada

Parsing Stage 4 Ada file — "tutorial/add.ada"

Translating Stage 4 Ada file — "tutorial/add.ada"

<sdvs.2> setflag

142

flag variable: autoclose
on or off [off]: on

setflag autoclose — on

<sdvs.3> init
proof name[] : <CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state deltaD : add.sd
proof []: <CR>

open — [sd pre: (ada(add.ada),.stdin[2] ge 0)
comod: (all)

mod: (all)
post: (terminated(add),

#stdout[l] = .stdinCl] + .stdin[2])]

Complete the proof.

<sdvs.l.l> go
until []: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (add\pc)
post: (<adatr procedure add is

i, ... : integer
begin

get (x);

end add;>)]

apply — [sd pre: (true)
comod: (all)

mod: (add\pc,add)
post: (alldisjoint(add,.add,i,s,x,y),

covering(#add,.add,i,s,x,y),
declare(i,type(integer)),declare(s,type(integer)),
declare(x,type(integer)),declare(y,type(integer)),
<adatr i, ... : integer>)]

143

apply — [sd pre: (true)
comod: (all)

mod: (add\pc,add)
post: (alldisjoint(add,.add,get\item),

covering(#add,.add,get\item),
declare(get\item,type(polymorphic)),
<adatr get (x)>)]

apply — [sd pre: (true)
comod: (all)

mod: (add\pc)
post: (#add\pc = at(standard.text_io.get),

<adatr get (x)>)]

apply -- [sd pre: (.add\pc = at(standard.text_io.get))
comod: (all)

mod: (add\pc,stdin\ctr,get\item)
post: (#get\item = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,
#add\pc = exited(standard.text_io.get) ,
<adatr null;>)]

apply -

apply —

[sd pre: (true)
comod: (all)

mod: (add\pc,x)

post: (#x = .get\item,

<adatr get (x)>)]

[sd pre: (true)

comod: (all)
mod: (add\p c,add,get\it em)

post: (covering(.add,#add,get\item),undeclare(get\item),
<adatr get (x)>)]

apply — [sd pre: (true)

comod: (all)

mod: (add\pc,add)

post: (alldisjoint(add,.add,get\item!2),

covering(tadd,.add,get\item!2),

declare(get\item!2,type(polymorphic)),

<adatr get (y)>)]

apply [sd pre:

comod:

(true)

(all)

144

mod: (add\pc)
post: (#add\pc = at(standard.text_io.get),

<adatr get (y)>)]

apply — [sd pre: (.add\pc = at(standard.text_io.get))
comod: (all)

mod: (add\pc,stdin\ctr,get\item!2)
post: (#get\item!2 = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,
#add\pc = exited(standard.textJ.o.get),
<adatr null;>)]

apply

apply —

apply ~

apply -

[sd pre: (true)
comod: (all)

mod: (add\pc,y)
post: (#y = .get\item!2,

<adatr get (y)>)3

[sd pre: (true)
comod: (all)

mod: (add\pc,add,get\item!2)
post: (covering(.add,#add,get\item!2),

undeclare(get\item!2),
<adatr get (y)>)]

[sd pre: (true)
comod: (all)

mod: (add\pc,i)
post: (#i = 0,

<adatr i := 0;>)]

[sd pre: (true)
comod: (all)

mod: (add\pc,s)
post: (#s = .X,

<adatr s := x;>)]

go — no more declarations or statements

<sdvs.l.l5> simp
expression: .x=.stdin[l] and .y=.stdin[2] and .1=0 and .s=.x and .y ge 0

true

<sdvs. 1.15> usable

145

u(l) [sd pre: (~(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)]

u(2) [sd pre: (.i It .y)
comod: (all)
mod: (add\pc)

post: (<adatr while i < y

i := i + 1;

end loop;>)]

No usable quantified formulas.

<sdvs.l.l5> applicable

The translation of the "while" loop is the conjunction of the two usable state deltas, u(l)
and u(2). But neither one is applicable, because neither precondition is necessarily true.
To proceed, we must use the cases command. The simpler of the two cases is that (t ^ y),
because, in this case, the value of y is 0 and s = x + y. Thus, we enter this predicate to the
cases command and go until terminated(add) is true.

<sdvs.l.l5> cases
case predicate: ~(.i It .y)

cases — (.i It .y)

open — [sd pre: (~(.i It .y))
comod: (all)

mod: (all)
post: (terminated(add),

#stdout[l] = stdin\354 + stdin\352)]

< sdvs. 1.15.1.1 > applicable

u(l) [sd pre: (~(.i It .y))
comod: (all)

146

mod: (add\pc)

post: (<adatr while i < y

i := i + 1;

end loop;>)]

<sdvs.l.l5.1.1> go
until[]: terminated(add)

apply — [sd pre: (~(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

apply -

i := i + 1;

end loop;>)]

[sd pre: (true)
comod: (all)

mod: (add\pc,add)
post: (alldisjoint(add,.add,put\item),

covering(tadd,.add,put\item),
declare(put\item,type(polymorphic)),
<adatr put (s)>)]

apply [sd pre: (true)
comod: (all)

mod: (add\pc,put\item)
post: (#put\item = .s,

<adatr put (s)>)]

apply — [sd pre: (true)
comod: (all)

mod: (add\pc)
post: (#add\pc = at(standard.text_io.put) ,

<adatr put (s)>)]

apply — [sd pre: (.add\pc = at(standard.text_io.put))
comod: (all)

mod: (add\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item,

#stdout\ctr = .stdout\ctr + 1,
#add\pc = exited(standard.text_io.put) ,

147

<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (add\pc,add,put\item)
post: (covering(.add,#add,put\item),

undeclare(put\item),
<adatr put (s)>)]

apply — [sd pre: (true)
comod: (all)

mod: (add\pc,add,i,s,x,y)
post: (covering(.add.taddji.s.x.y),undeclare(i,s,x,y),

<adatr i, ... : integer>)]

apply — [sd pre: (true)
comod: (all)

mod: (add\pc)
post: (terminated(add))]

close — 8 steps/applications

open — [sd pre: ("(("(.i It .y))))

comod: (all)

mod: (all)

post: (terminated(add),

#stdout[i] = stdin\354 + stdin\352)]

Complete the proof.

<sdvs.l.l5.2.1> usable

u(l) [sd pre: ("(.i It .y))
comod: (all)

mod: (all)
post: (terminated(add),#stdout[l] = stdin\354 + stdin\352)]

u(2) [sd pre: ("(.i It .y))
comod: (all)
mod: (add\pc)

post: (<adatr while i < y

i := i + 1;

end loop;>)]

148

u(3) [sd pre: (.i It .y)
comod: (all)
mod: (add\pc)

post: (<adatr while i < y

i := i + 1;

end loop;>)]

No usable quantified formulas.

<sdvs.l.l5.2.1> applicable

u(3) [sd pre: (.i It .y)
comod: (all)
mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)]

<sdvs.l.l5.2.1> letsd
name: loopsdl
state deltaD: u

number: 2

letsd — loopsdl = u(2)

<sdvs.l.l5.2.2> letsd
name: loopsd2
state delta[] : u

number: 3

letsd ~ loopsd2 = u(3)

<sdvs.l.l5.2.3> pp
object: sd
state delta name: loopsdl

[sd pre: (~(.i It .y))
comod: (all)

mod: (add\pc)

149

post: (<adatr while i < y

i := i + 1;

end loop;>)]

The proof of the first case has closed and the proof of the second has opened. The first
usable state delta asserts that the first case leads to the goal. The conjunction of the second
and third usable state deltas is the translation of the "while" loop. Notice that we have
conveniently used the letsd command to label the two components of the loop. Only the
third state delta, loopsd2, is applicable.

As in Example 8 we have to induct on the counter i, from A = 0 to .i = .y with a
comodification list of x and y. But in this case, the induction invariant is trickier. It can
not simply be .s = .x + .i, because at the step case proof there will be no state deltas to
apply, since both loopsdl and loopsd2 have all in their comodification lists. In fact, at
the step case proof, loopsd2 must be applicable so that we may execute through the loop,
i.e., increment i and s. So we must add it to the induction invariant. However, even this
addition will not suffice. The addition of loopsd2 to the invariant will allow us to complete
the induction. But after the "close" of the induction, .s = .x + .y and loopsd2 will both
be true, but loopsd2 will not be applicable, because its precondition will be false. If at the
end of the induction proof, we also had loopsdl as a usable state delta, then we would be
able to proceed with the proof, because it would be applicable. Thus the invariant of the
induction proof must also include loopsdl. Finally, the modification list parameter of the
induction command must have add\pc as well as i and 5.

<sdvs. 1.15.2.3> induct
induction expression: .i

from: 0
to: .y

invariant listD: .s=.x+.i,formula(loopsdl),formula(loopsd2)
comodification listD: x,y

modification list □ : i,s,add\pc
base proof D: <CR>
step proof []: <CR>

induction — .i from 0 to .y

open — [sd pre: (true)
comod: (all)
post: (.s = .x + .i,

[sd pre: (~(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

150

i := i + 1;

end loop;>)] ,
[sd pre (.i It .y)
comod (all)
mod (add\pc)
post (<adatr while i < y

i := i + 1;

end loop;>)] ,

.i = 0)]

close -- 0 steps/applications

open -- [sd pre: (.i ge 0,.i It .y,.s= .x+ .i,
[sd pre: (~(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)] ,
[sd pre: (.i It .y)
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop; >)])
comod: (x,y)

mod: (i,s,add\pc)
post: (#s = #x + #i,

[sd pre: ("(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)] ,
[sd pre: (.i It .y)

151

comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)] ,

#i = .i + 1)]

Complete the proof.

The base case of the induction proof has closed and the step case has opened. We proceed

with apply interspersed with queries.

<sdvs.l. 15.2.3.2.1> usable

u(l) [sd pre: (.i It .y)
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)]

u(2) [sd pre: (~(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)]

No usable quantified formulas.

<sdvs .1.15.2.3.2.1> applicable

u(l) [sd pre: (.i It .y)

comod: (all)
mod: (add\pc)

post: (<adatr while i < y

i := i + 1;

152

end loop; >)]

<sdvs.l. 15.2.3.2.1> apply
sd/number[highest applicable/once]: <CR>

apply -- [sd pre: (.i It .y)
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)]

<sdvs.l.l5.2.3.2.2> usable

u(l) [sd pre: (true)
comod: (all)

mod: (add\pc,i)
post: (#i = .i + 1,

<adatr i := i + 1;>)]

No usable quantified formulas.

<sdvs.l.l5.2.3.2.2> apply
sd/number [highest applicable/once] : <CR>

apply -- [sd pre: (true)

comod: (all)

mod: (add\pc,i)

post: (#i = .i + 1,
<adatr i := i + 1;>)]

<sdvs.l.l5.2.3.2.3> apply
sd/number [highest applicable/once]: <CR>

apply — [sd pre: (true)

comod: (all)

mod: (add\pc,s)

post: (#s = .s + 1,

<adatr s := s + 1;>)]

close — 3 steps/applications

153

join induction cases [sd pre: (0 le .y)
comod: (all,x,y)

mod: (i,s,add\pc)
post: (#i = .y,#s = #x + #y,

[sd pre: (~(.i It .y))

comod: (all)

mod: (add\pc)

post: (<adatr while i < y

l : =

Complete the proof.

<sdvs . 1.15.2.4> usable

u(l) [sd pre: (.i It .y)
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)]

u(2) [sd pre: ("(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)]

end loop;>)] ,

[sd pre: (.i It .y)

comod: (all)

mod: (add\pc)

post: (<adatr while i < y

l ::

end loop;>)])]

154

No usable quantified formulas.

<sdvs . 1.15.2. 4> applicable

u(2) [sd pre: ("(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop; >)]

<sdvs.l. 15.2.4> simp
expression: .s=.x+.y and .x=.stdin[l] and .y=.stdin[2]

true

The first "close" was the end of the step case of the induction proof. The rest of the proof
is now routine. We execute to the end using go.

<sdvs.l.l5.2.4> (jo
until D : terminated (add)

apply -- [sd pre: ("(.i It .y))
comod: (all)

mod: (add\pc)
post: (<adatr while i < y

i := i + 1;

end loop;>)]

apply -- [sd pre: (true)
comod: (all)

mod: (add\pc,add)
post: (alldisjoint(add,.add,put\item),

covering(#add,.add,put\item),

declare(put\item,type(polymorphic)),

<adatr put (s)>)]

apply -- [sd pre: (true)

comod: (all)

mod: (add\pc,put\item)

post: (#put\item = .s,

155

<adatr put (s)>)]

apply — [sd pre: (true)

comod: (all)
mod: (add\pc)

post: (#add\pc = at(standard.text_io.put),

<adatr put (s)>)]

apply — [sd pre: (.add\pc

comod: (all)

at(standard.text_io.put))

mod: (add\pc,stdout[.stdout\ctr],stdout\ctr)

post: (#stdout[.stdout\ctr] = .put\item,

#stdout\ctr = .stdout\ctr + 1,

#add\pc = exited(standard.text_io.put),

<adatr null;>)]

apply — [sd pre: (true)
comod: (all)
mod:

post:

(add\pc,add,put\item)

(covering(.add,#add,put\item),

undeclare(put\item),

<adatr put (s)>)]

apply — [sd pre: (true)
comod: (all)

mod: (add\pc,add,i,s,x,y)
post: (covering(.add,#add,i,s,x,y),undeclare(i,s,x,y),

<adatr i, ... : integer>)]

apply — [sd pre: (true)
comod: (all)

mod: (add\pc)
post: (terminated(add))]

close -- 11 steps/applications

join -- [sd pre: (true)
comod: (all)

mod: (all)
post: (terminated(add),

#stdout[l] = stdin\354 + stdin\352)]

close -- 15 steps/applications

<sdvs.2> quit

156

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
object: proof
proof name: sdvsproof

proof sdvsproof:

prove add.sd

proof:

(go,
cases ~(.i It .y)

then proof: go terminated(add)

else proof:

(letsd loopsdl = u(2),
letsd loopsd2 = u(3),

induct on: .i

from: 0

to: .y
invariants: (.s = .x + .i,formula(loopsdl),

formula(loopsd2))

comodlist: (x,y)

modlist: (i,s,add\pc)

base proof:

step proof:

(apply u(l),

apply u(l),

apply u(D),
go terminated(add)))

157

7.2 VHDL

The following Stage 4 VHDL description, contained in the file full.adder.dataf low.vhdl,
models a hardware device we call a one-bit full udder. It accepts three input bits, x, y,
and ein ("carry-in"), which are to be added and the result recorded on output ports sum
and cout ("carry-out"), also of type BIT. The modeling is in the dataflow style of register-
transfer-like concurrent signal assignment statements.

The architecture uses an auxiliary signal a, which stores the logical exclusive or, XOR, of the
x and y input ports; a is subsequently XOR-ed with input port ein to yield the value of the
output port sum. The cout output port is set to bit '1' if any two of the three input ports

are '1'.

The architecture body consists of three concurrent signal assignment statements, in which
the explicit delays are a.rbitrarily chosen for illustrative purposes. The Stage 4 VHDL
translator will regard each of these concurrent signal assignment statements as an equivalent
PROCESS statement.

ENTITY full.adder IS

PORT (x, y, ein : IN BIT;

sum, cout : OUT BIT);

END full.adder;

ARCHITECTURE dataflow OF full.adder IS

SIGNAL a : BIT;

BEGIN

update.a :
a <= x XOR y AFTER 3 NS;

update.sum :
sum <= a XOR ein AFTER S NS;

update.cout :

cout <= (x AND y) OR

(x AND ein) OR

(y AND ein) AFTER 7 NS;

END dataflow;

158

7.2.1 State Delta specification

We wish to formulate and prove the following claim about the VHDL description adder:

At any point at which the translation of the VHDL design entity ADDER holds, there
will be a point at which the model will have been elaborated and such that at some
later point, the values of the sum and cout signals will reflect the sum of the input
ports x, y, and ein; furthermore, at this point the model will be done executing.

This English-language specification is expressed as the following state delta, contained in
the file full_adder_dataflow. spec:

full_adder_dataflow.sd =

[sd pre: (vhdl(adder))
comod:

mod: (all)
post: (vhdl_model_elaboration_complete(adder),

[sd pre: (true)
comod: (all)

mod: (all)
post: (|#cout @ #sum| = I.x ++ .y ++ .cin|,

vhdl_model_execution_complete(adder))])]

A bit in SDVS is represented as a bitstring of length one. The theory of bitstrings imple-
mented by the Simplifier includes the operators @ and ++, denoting bitstring concatenation
and bitstring addition, respectively. Furthermore, the operator I I denotes the integer
value of its bitstring argument under unsigned radix-two arithmetic. Its use in the above
specification is crucial: whereas the concatenation of two bitstrings of length one produces a
bitstring of length two, the bitstring sum of three bitstrings of length one is (by definition) a
bitstring of length three; however, in our case the integer value of both sides of the equation
should be the same.

The most important general observation to make about the above specification is the appear-
ance of a nested state delta in the postcondition of the top-level SD13 full_adder_dataf low.sd,
with the intuitively desired final state as the postcondition of the nested SD. This device
is common to most SDVS VHDL specifications, reflecting the fa,ct that it is the passage
from the precondition time to the postcondition time of the top-level SD that allows the
places mentioned in the final (nested) postcondition to be created, by elaboration of the cor-
responding decla.rat.ions in the VHDL description. Referring to these places in advance of
their creation, e.g. in the postcondition of the top-level SD, can result in false specifications
in cases where the corresponding declarations contain initialization expressions.

13 Henceforth, "SD" is an abbreviation for "state delta."

159

The practical consequence of this structure for the specification is that during the proof,
once symbolic execution has reached a point where all the declarations have been elaborated,
it is necessary to open a proof of the nested SD, and this is the only point at which it is

appropriate to do so.

7.2.2 Interactive proof development

We present the trace of an interactive SD VS proof session showing the construction of a proof
that the VHDL description satisfies its specification. This trace is punctuated with various
remarks elucidating typical aspects of VHDL correctness proofs. The reader is referred to
[18] for a formal semantic specification of the Stage 4 VHDL language translator.

Our general proof strategy is to simulate the VHDL description with symbolic values,
aiming to reach a state in which the final postcondition of the state delta specification
full_adder_dataflow.sd is true. At points in the proof where no usable state deltas are
known to be applicable, static reasoning (by invocation of suitable lemmas) will establish
that certain preconditions do indeed hold, so that symbolic execution can proceed.

The salient aspects of the general correctness proof of the one-bit full adder, distinguishing
it from mere simulation of the description with concrete values, are as follows:

• The initial values of the input ports x, y, and ein are symbolic, rather than concrete
bit values.

The VHDL Language Reference Manual (LRM) [5] specifies implicit default values for
objects that, lack an explicit default expression in their declarations (see, e.g., Section
4.3.1.2 of [5]). We conjecture that the rationale for this (rather odd) convention stems
from the simulation semantics for VHDL as defined by the LRM: without concrete

values for objects, a description cannot be simulated (in the usual sense of the word).
On the other hand, for the purposes of verification, it is not at all suitable to assume
implicit default values for uninitialized objects: by definition, a correctness proof must
be valid for arbitrary values of (nonconstant) objects. Therefore, the VHDL translator
assigns symbolic values to uninitialized objects.

• Symbolic values for the input ports imply two important consequences for the cor-
rectness proof:

- During each execution cycle, when the VHDL translator updates signals and
then determines which processes should resume, a case analysis must be made on
whether actual events occurred on signals to which processes are sensitive, that
is, whether the updates actually changed those signals' values. Indeed, according

to the LRM [5], a process that resumes execution by virtue of its sensitivity to
a signal does so only as a result of such an event; "stuttering" on the old signal

value is not enough.

- When, as the result of an inertia! signal assignment statement, the projected
output waveform on a signal's driver is updated with new transactions, a case

Kit)

analysis must be made on whether the signal value currently scheduled for the
greatest time strictly less than the time of the earliest new transaction is, or is
not, equal to the value of that new transaction. The VHDL LRM preemption
rules for updating the projected output waveform distinguish between these cases
(see [5], Section 8.3.1).

We begin by initializing the system and turning the autoclose flag to off, in order to

develop the proof without SDVS closing it automatically.

<sdvs.l> init
proof name [] : < CR>

State Delta Verification System, Version 11

Restricted to authorized users only.

<sdvs . 1 > sctflag
flag variable: autoclose
on or off [on] : off

setflag autoclose — off

Our first essential order of business is to translate the VHDL design entity residing in file
full_adder_dataflow.vhdl into its sta.te delta representation, vhdl(adder), so that we
may prove our claim about it. This is done by invoking the VHDL translator with the
command vhdltr, given the following arguments: design name, directory name, source files,
and name of the configuration declaration to be used. Care should be taken to terminate
the directory name with a "/"• If a VHDL design entity is purely behavioral, requiring no
configuration declaration for the binding of component instances, then "none" should be
specified in response to the prompt "using configuration"; otherwise, the name of the
configuration declaration should be given, and this configuration declaration should occur

in the last file to be translated.

<sdvs.2> vhdltr
design narae[foo]: adder

directory name[testproofs/vhdl/]:
file names [foo. vhdl] : full'udder'dataflow.vhdl

using configuration[none]:

Parsing Stage 4 VHDL file -- "testproofs/vhdl/full_adder_dataflow.vhdl"

Translating Stage 4 VHDL design — "ADDER"

<sdvs.3> pp

1G1

object: vhdl
design name[foo] : adder

alldisjoint(adder,.adder)
covering(.adder,adder\pc,vhdltime,vhdltime_previous)
declare(vhdltirae,type(vhdltime))
declare(vhdltime_previous,type(vhdltime))
.vhdltime = vhdltime(0,0)
.vhdltime_previous = vhdltime(0,0)
[sd pre: (true)

comod: (all)
mod: (adder\pc)

post: (<VHDLTR>)]

We have just exhibited the "initial segment" of the translation of the full adder description,
consisting of the declaration and initialization of the places vhdltime and vhdltime_previous,
as well as a state delta whose postcondition contains a representation of (a state delta for)
the incremental continuation of the translation.

In general, each state delta generated by the VHDL translator will contain, as part of
its postcondition, a continuation label enclosed in angle brackets; this continuation label
simply stands for the next state delta to be incrementally generated by the translator — the
continuation. The generic label <VHDLTR> appears most frequently, but occasional labels
attempt to be more descriptive of the next increment of translation.

Sometimes, as in the initial segment of translation, the translator generates a state delta
with precondition (true), comodlist (all), a (\pc) modlist, and only a continuation in
the postcondition. Such a state delta corresponds to an action, to be unconditionally
performed by the translator, resulting in no change in the state (contents of places) except
for the program counter. When such a state delta is applied, it is not printed out in its
entirety in the proof trace; rather, the tag action is printed, followed by the continuation
label.

<sdvs.3> read
path name[testproof s/foo .proof s] : testproofs/vhdl/full'adder'dataflow.spec

Definitions read from file "testproofs/vhdl/full_adder_dataflow.spec"
— (full_adder.dataflow.sd,full_adder_dataflow_original.sd)

<sdvs.4> ppsd
st at e delta: full 'adder 'dataflow, sd

[sd pre: (vhdl(adder))
mod: (all)

post: (vhdl_model_elaboration_complete(adder),
[sd pre: (true)

162

comod: (all)
mod: (all)

post: (|#cout @ #sum| = |(.x ++ .y) ++ .cin|,
vhdl_model_execution_complete(adder))])]

This is the specification to be proved.

The proof will require two lemmas concerning bitstrings, which we read from a file and
display.

<sdvs.4> read
path name[testproofs/vhdl/full_adder_dataflow.spec]:

testproofs/vhdl/fxdl 'udder 'dataflow, lemmas

Definitions read from file "testproofs/vhdl/full_adder_dataflow.lemmas"
— (append_cout_sum.lemma)

<sdvs.5> pp
ob j ect: appeiuLcout.sum.lemma

lemma append_cout_sum.lemma (x,y,cin,sum,cout):
(((((lh(x) = 1 &

lh(y) = 1) &
lh(cin) = 1) &

lh(sum) = 1) &
lh(cout) = 1) &

sum = (x usxor y) usxor ein) k
cout = (x kk y usor x kk ein) usor y kk ein

—> |cout @ sum| = |(x ++ y) ++ cin|

Lemma append_cout_sum.lemma asserts that if bits sum and cout are related to bits x,
y, and ein as indicated, then the bitstring conc.atena.tion of cout with sum has the same
integer value as the bitstring sum of x, y and ein. Again, this lemma has an easy proof by
exhaustive case analysis of the possibilities for x, y, and ein.

Note that this lemma essentially mimics the way in which the VHDL description computes
sum and cout; not, siirprisingly, it will be used to establish the required static fact upon
completion of the dynamic symbolic execution of the description.

We now open the proof of full_adder_dataf low.sd:

<sdvs.5> prove
state delta[] : full'udder'dataflow, sd

proof []: <CR>

103

open -- [sd pre: (vhdl(adder))
mod: (all)

post: (vhdl_model_elaboration_complete(adder),

[sd pre: (true)
comod: (all)

mod: (all)
post: (|#cout © #sum| = |(.x ++ .y) ++ .cin|,

vhdl_model_execution_complete(adder))])]

Complete the proof.

<sdvs.5.1> iisd

[sd pre (true)

comod (all)
mod (adder\pc)

post (<VHDLTR>)]

The applicable state delta just shown is the "bootstrap" state delta for the incremental
translation of the Stage 4 VHDL description. Issuing the command go with the until
argument of vhdljmodel_elaboration_complete (adder) will apply this state delta as the
first in a sequence of continuations that accomplish automatic elaboration of the entity
port declarations for x, y, ein, sum, and cout, as well as of the internal signal a in the
architecture body and the processes represented by the three concurrent signal assignment

statements.

<sdvs.5.1> go
until []: vhdl_model_elaboration_complete(adder)

action -- <VHDLTR>

apply — [sd pre: (true)
comod: (all)

mod: (adder,adder)
post: (alldisjoint(adder,.adder,x,y,ein,driver\x,driver\y,

driver\cin),
covering(tadder,.adder,x,y,ein,driver\x,driver\y,

driver\cin),

declare(x,type(bit)),
declare(driver\x,type(waveform,type(bit))),

declare(x,type(fn,val(.driver\x,.vhdltime))),

declare(y,type(bit)),

declare(driver\y,type(waveform.type(bit))),
declare(y,type(fn,val(.driver\y,.vhdltime))),

declare(cin,type(bit)),

164

declare(driver\cin,type(waveform,type(bit))),

declare(cin,type(fn,val(.driver\cin,.vhdltime))),

<VHDLTR>)]

apply -- [sd pre: (true)

comod: (all)

mod: (adder,x,y,ein,driver\x,driver\y,driver\cin)

post: (#driver\x
= waveform(x,transaction(vhdltime(0,0),x\l3)),

#driver\y
= waveform(y,transaction(vhdltime(0,0),y\l5)),

#driver\cin

= waveform(cin,
transaction(vhdltime(0,0),cin\17)),

<VHDLTR>)]

apply -- [sd pre: (true)

comod: (all)
mod: (adder,adder)

post: (alldisjoint(adder,.adder,sum,cout,driver\sum,

driver\cout),

covering(#adder,.adder,sum,cout,driver\sum,

driver\cout),

declare(sum,type(bit)),

declare(driver\sum,type(waveform,type(bit))),
declare(sum,type(fn,val(.driver\sum,.vhdltime))),

declare(cout,type(bit)),

declare(driver\cout,type(waveform,type(bit))),

declare(cout,type(fn,val(.driver\cout,.vhdltime))),

<VHDLTR>)]

apply -- [sd pre: (true)

comod: (all)
mod: (adder,sum,cout,driver\sum,driver\cout)

post: (#driver\sum
= waveform(sum,

transaction(vhdltime(0,0),sum\22)),

#driver\cout

= waveform(cout,

transaction(vhdltime(0,0),cout\24)),
<VHDLTR>)]

apply — [sd pre: (true)

comod: (all)

mod: (adder,adder)

1G5

post: (alldisjoint(adder,.adder,a,driver\a),

covering(#adder,.adder,a,driver\a),

declare(a,type(bit)),

declare(driver\a,type(waveiorm,type(bit))),
declare(a,type(fn,val(.driver\a,.vhdltime))),

<VHDLTR>)]

apply -- [sd pre: (true)

comod: (all)

mod: (adderia,driver\a)

post: (#driver\a

= waveform(a,transaction(vhdltime(0,0),a\29)),

<VHDLTR>)]

action -- <ELABORATE PROCESS: UPDATE_A>

action — <ELABORATE PROCESS: UPDATE_SUM>

action -- <ELABORATE PROCESS: UPDATE_COUT>

go -- breakpoint reached

<sdvs.5.11>

The evaluation of the three SDVS commands vhdltime, vhdl-signals, and vhdl-processes
is a convenient means of querying SDVS about aspects of the state of the Stage 4 VHDL
proof. Particularly in the case of signals, this query provides information in a much more
intelligible form than that returned by, say, the query command ppl . Note that 0(1) is
the Simplifier representation of the bitstring with integer value 0 and length 1 — that is,
the bit '0'.

<sdvs . 5 .11 > vhdltime

global time = 0

delta time = 0

<sdvs . 5.11 > vhdl-signals
signal-names [all] : <CR>

simplify? [no] : <CR>

signal X :

166

current value = x\l3

previous value = x\l3

projected output waveform = ()

driver history = (transaction(vhdltime(0,0),x\l3))

signal Y :

current value = y\l5

previous value = y\l5

projected output waveform = ()

driver history = (transaction(vhdltime(0,0),y\l5))

signal CIN :

current value = cin\l7

previous value = cin\l7

projected output waveform = ()

driver history = (transaction(vhdltime(0,0),cin\l7))

signal SUM :

current value = sum\22

previous value = sum\22

projected output waveform = ()

driver history = (transaction(vhdltime(0,0),sum\22))

signal COUT :

w;

current value = cout\24

previous value = cout\24

projected output waveform = ()

driver history = (transaction(vhdltime(0,0),cout\24))

signal A :

current value = a\29

previous value = a\29

projected output waveform = ()

driver history = (transaction(vhdltime(0,0),a\29))

The declarations have been elaborated symbolically. For example, places x and driver\x
have been created to represent a signal and its driver, respectively, and the contents of
driver\x have been initialized with waveform(x,transaction(vhdltime(0,0),x\l3)),
a waveform (indexed by x) consisting of a single transaction. This transaction stipulates
that at vhdltime(0,0), x acquires the symbolic bit value x\l3.

In the display generated by the command vhdl-signals, the driver is split conceptually
into two disjoint parts, each represented as a. list:

• A projected output waveform, consisting of future transactions scheduled to occur
on the signal (some of which might be preempted, or deleted from the waveform,
during subsequent execution of the description). The time components of projected
transactions are all greater than the vhdltime. For ease of reference, the projected
transactions are displayed in chronological order according to their time components,
so that the next scheduled transaction occurs first in the list.

• A driver history, consisting of those transactions that have already been "actualized,"
i.e., whose time component is at most the value .vhdltime. For ease of reference once
again, but in contradistinction to the projected output waveform, these transactions
are displayed in reverse chronological order: the most recent actualized transaction
for the signal appears at. the head of the driver history, and its value component is
always the current, value of the signal driver.

Thus, the entire signal driver itself is the concatenation of the reverse of the driver history
with the projected output waveform.

168

<sdvs . 5.11 > vhdl-pTocesses

process-names [all] : <CR>

process UPDATE.A

current state = SUSPENDED

scheduled time = VHDLTIME(O.O)

scheduled reason = INITIALIZATION

process UPDATE.SUM

current state = SUSPENDED

scheduled time = VHDLTIME(0,0)

scheduled reason = INITIALIZATION

process UPDATE.COUT

current state SUSPENDED

scheduled time = VHDLTIME(0,0)

scheduled reason INITIALIZATION

Note that the Stage 4 VHDL translator represents the three concurrent signal assignment
statements as processes.

All processes are shown as currently suspended, because we have not yet begun executing
the model, but they are scheduled to "resume" execution at vhdltime(O.O), by reason of
the initialization phase of the simulation semantics informally defined in the VHDL LRM
[5]. In the initialization pha.se, each process is executed until it suspends. As the next
applicable state delta indicates, the translation is ready to commence model execution.

<sdvs.5.11> nsd

[sd pre: (true)
comod: (all)

mod: (adder\pc)
post: (<BEGIN VHDL MODEL EXECUTION>)]

1G9

<sdvs.5.11> wlujnotyoal
simplify? [no] : <CR>

g(2) [sd pre: (true)
comod: (all)

mod: (all)
post: (|#cout ffi #sum| = |(.x ++ .y) ++ .cin|,

vhdl_model_execution_complete(adder))]

This is an appropriate point at which to open a. proof of the goal g(2).

<sdvs . 5.11> prove

state delta[] : <j

number: 2

proof []: <CR>

open -- [sd pre: (true)
comod: (all)

mod: (all)
post: (|#cout <8 #sum| = |(.x ++ .y) ++ .cin|,

vhdl_model_execution_complete(adder))]

Complete the proof.

Applying the next and subsequent applicable state deltas causes each process to execute,

in order, and then suspend.

<sdvs .5.11. 1> apply
sd/number [highest applicable/once] : J,

action — <BEGIN VHDL MODEL EXECUTION

action -- <BEGIN INITIALIZATION PHASE>

action -- <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>

action — <EXECUTE PROCESS: UPDATE_A>

<sdvs.5.11.5> usable

u(l) [sd pre: ("(preemption(.driver\a,
transaction(timeplus(.vhdltime,

vhdlt ime(3000000,0)),

170

.x usxor .y))))

comod: (all)
mod: (adder\pc,driver\a)

post: (#driver\a
= inertial_update(.driver\a,

transaction(timeplus(.vhdltime,

vhdltime(3000000,0)),
.x usxor .y)),

<VHDLTR>)]

u(2) [sd pre: (preemption(.driver\a,
transaction(timeplus(.vhdltime,

vhdltime(3000000,0)),

.x usxor .y)))

comod: (all)
mod: (adder\pc,driver\a)

post: (#driver\a
= inertial_update(.driver\a,

transaction(timeplus(.vhdltime,
vhdltime(3000000,0)),

.x usxor .y)),
<VHDLTR>)]

No usable quantified formulas.

The above pair of usable SDs constitute the state delta semantics of the signal assignment
a <= x XOR y AFTER 3 NS in the body of process update_a; it is important to understand
the rationale for this. The VHDL semantics of inertiul driver update (the default being
used here, as opposed to transport update, which must be explicitly specified in the signal
assignment statement) requires that the inertial update take into account whether or not
currently scheduled transactions on the projected output waveform are to be preempted (re-
placed) by the new transaction(s) to be scheduled ([5], Section 8.3.1). Thus, the translation
of the signal assignment statement generates a conjunction of two SDs, each predicated
in its precondition on the occurrence of preemption or not. Note tha.t the conjunction of
the preconditions is simply true, meaning that the update will occur in any case; the only
difference will be in the transactions of the projected output waveform following the update.

In the present situation, the projected output waveform of signal a is empty, so only state
delta u(l) is applicable. However, we will have occasion to revisit this issue later on in a
less obvious situation.

Observe also how the Stage 4 VHDL translator converts all VHDL TIME units to femtosec-
onds, so that 3 nanoseconds (3 NS) is represented as 3000000 femtoseconds.

Invoking the SDVS go command causes successive next-applicable state deltas to be applied

171

until the current goal is reached or the top usable state delta is not applicable (or until an

explicitly stated condition is reached).

<sdvs.5.11.5> go

untilD: <CR>

apply -- [sd pre: (~(preemption(.driver\a,
trans act ion(t imeplus(.vhdlt ime,

vhdltime(3000000,0)),

.x usxor .y))))

comod: (all)

mod: (adder\pc,driver\a)

post: (#driver\a
= inertial_update(.driver\a,

transaction(timeplus(.vhdltime,
vhdltime(3000000,0))

.x usxor .y)),

<VHDLTR>)]

action — <SUSPEND PROCESS: UPDATE_A>

action -- <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>

action -- <EXECUTE PROCESS: UPDATE_SUM>

apply — [sd pre: ("(preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein))))

comod: (all)
mod: (adder\pc,driver\sum)

post: (#driver\sum
= inertial_update(.driver\sum,

transaction(timeplus(.vhdltime,
vhdltime(5000000,0))

.a usxor .ein)),

<VHDLTR>)]

action -- <SUSPEND PROCESS: UPDATE_SUM>

action — <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>

action — <EXECUTE PROCESS: UPDATE_COUT>

apply -- [sd pre: ("(preemption(.driver\cout,

172

transaction(timeplus(.vhdltime,

vhdltime(7000000,0)),

(.x kk . y usor

.x kk .ein) usor
.y kk .ein))))

comod: (all)
mod: (adder\pc,driver\cout)

post: (#driver\cout
= inertial_update(.driver\cout,

transaction(timeplus(.vhdltime,

vhdltime(7000000,0)),

(.x kk .y usor
.x kk .ein) usor

.y kk .ein)),

<VHDLTR>)]

action — <SUSPEND PROCESS: UPDATE_COUT>

action — <END INITIALIZATION PHASE>

Having completed the initialization phase of execution, the VHDL translator determines
the earliest, future time at which a signal driver becomes active (i.e., has a transaction on
its projected output waveform) or a process is scheduled to resume (by reason of timeout
or sensitivity to a signal). This earliest time, if it exists, is the one to which vhdltime is
advanced, initiating a new execution cycle: signals are updated and processes (possibly)

resumed [5].

action — <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,
3. RESUME PROCESSES>

apply -- [sd pre: (true)

comod: (all)
mod: (adder\pc,vhdltime,vhdltime_previous,a)

post: («vhdltime = vhdltime(3000000,0),

#vhdltime_previous = .vhdltime,

<UPDATE SIGNALS>)]

action — <RESUME (?) NEXT SCHEDULED PROCESS: UPDATE_SUM>

go -- no more declarations or statements

<sdvs .5.11.19> vhdltime

173

global time = 3000000

delta time = 0

<sdvs.5.11.19> vlull-signals
signal-names [all] : a, sum, cout

simplify? [no]: yes

signal A :

current value = x\l3 usxor y\l5

previous value = a\29

projected output waveform = ()

driver history = (transaction(vhdltime(3000000,0),
x\13 usxor y\15) ,

transaction(vhdltime(0,0),a\29))

signal SUM :

current value = sum\22

previous value = sum\22

projected output waveform = (transaction(vhdltime(5000000,0),

a\29 usxor cin\l7))

driver history = (transaction(vhdltime(0,0),sum\22))

signal COUT :

current value = cout\24

previous value = cout\24

projected output waveform = (transaction(vhdltime(7000000,0),

(x\l3 kk y\l5 usor
x\l3 && cin\l7) usor

174

y\l5 && cin\l7))

driver history = (transaction(vhdltime(0,0),cout\24))

< sdvs. 5.11.19 > vhdl-processes
process-names [all] : <CR>

process UPDATE.A :

current state = SUSPENDED

process UPDATE.SUM

current state

scheduled time

scheduled reason

= SUSPENDED

VHDLTIME(3000000,0)

SENSITIVITY

process UPDATE.COUT :

current state = SUSPENDED

Note tha,t the query vhdl-processes reveals that of the three processes, only update_sum
might resume execution at any later time. This is as it should be, in light of the following

facts:

• the other two processes are sensitive only to the input signals; and

• we are operating under the implicit stability assumption that the input signals do not
change for the settle time of the description [21].

< sdvs . 5.11.19 > usable

u(l) [sd pre: (.a = val(.driver\a,.vhdltime_previous),
.ein = val(.driver\cin,.vhdltime_previous))

comod: (all)
mod: (adder\pc)

post: (<END EXECUTION CYCLE>)]

u(2) [sd pre: (.ein ~= val(.driver\cin,.vhdltime.previous))

175

comod: (all)
mod: (adder\pc)

post: ([sd pre

comod

mod
post

u(3) [sd pre

comod

mod

post

(true)

(all)
(adder\pc)
(<EXECUTE PROCESS: UPDATE_SUM>)])]

(.a ~= val(.driver\a,.vhdltime_previous))

(all)
(adder\pc)

([sd pre: (true)

comod: (all)

mod: (adder\pc)
post: (<EXECUTE PROCESS: UPDATE_SUM>)])]

No usable quantified formulas.

<sdvs.5.11.19> n»d

No applicable state deltas.

<sdvs . 5 .11.19> wliynotapply
state delta[highest usable]: u

number: 1

Because the following is not known to be true —

.a = val(.driver\a,.vhdltime_previous)

This is the first crucial point to understand in the symbolic execution, as it relies on an
important aspect of VHDL semantics. The essential point to realize is that the resumption
of the process update_sum is contingent upon whether or not the signal a, to which the
process is sensitive, has actually received a new and different value at the current time,
vhdltime (3000000,0) (the value of signal ein will necessarily remain unchanged, as this
signal is a port of mode IN). The VHDL semantics of process resumption requires that such
an event on a must have occurred in order for update_sum to resume execution.

Thus, in order to render one of the two usable state deltas applicable, we must open up an
argument by cases at this point.

<sdvs .5.11.19> cast»
case predicate: .a = val(.driver\a,.vlidltime'previous)

cases — .a = val(.driver\a,.vhdltime.previous)

176

open — [sd pre: (.a = val(.driver\a,.vhdltime.previous))

comod: (all)

mod: (all)

post: (|#cout @ #sum|

= |(x\36 ++ y\37) ++ cin\38|,

vhdl_model_execution.complete(adder))]

<sdvs.5.11.19.1.1> apply
sd/number[highest applicable/once] : 3

apply — [sd pre: (.a = val(.driver\a,.vhdltime.previous),

.ein = val(.driver\cin,.vhdltime.previous))

comod: (all)

mod: (adder\pc)
post: (<END EXECUTION CYCLE>)]

action -- <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

apply -- [sd pre: (true)
comod: (all)

mod: (adder\pc,vhdltime,vhdltime.previous,sum)
post: (#vhdltime = vhdltime(5000000,0),

#vhdltime_previous = .vhdltime,
<UPDATE SIGNALS>)]

Note tha.t, in this case, process update_sum did not resume; instead, a new execution cycle
commenced and vhdltime advanced to the next, time at which a signal had a transaction on
its projected output waveform — this signal is sum, and the time is vhdltime(5000000,0).

<sdvs . 5.11.19 .1. 4> vlidltime

global time = 5000000

delta time = 0

<sdvs . 5.11.19 .1. 4> vhdl-siynals
signal-names [all] : a, sum, cout

simplify?[no]: yes

177

signal A :

current value = a\29

previous value = a\29

projected output waveform = ()

driver history = (transactionCvhdltime(3000000,0),a\29) ,

transaction(vhdltime(0,0),a\29))

signal SUM :

current value = a\29 usxor cin\l7

previous value = sum\22

projected output waveform = ()

driver history = (transaction(vhdltime(5000000,0),

a\29 usxor cin\l7),

transaction(vhdltime(0,0),

sum\22))

signal COUT :

current value = cout\24

_ -t-\ o/i previous value = cout\24

projected output waveform = (transactionCvhdltime(7000000,0),
(X\13 kk y\l5 usor
x\l3 kk cin\l7) usor
y\l5 kk cin\l7))

driver history = (transaction(vhdltime(0,0),cout\24))

<sdvs . 5.11.19.1. 4> vhdl-processes
process-names [all] : <CR>

178

process UPDATE.A :

current state = SUSPENDED

process UPDATE.SUM :

current state = SUSPENDED

process UPDATE.COUT :

current state = SUSPENDED

<sdvs.5.11.19.1.4> apply
sd/number[highest applicable/once]: 3

action — <END EXECUTION CYCLE>

action — <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

apply -- [sd pre: (true)
comod: (all)

mod: (adder\pc,vhdltime,vhdltime_previous,cout)
post: (#vhdltime = vhdltirae(7000000,0),

#vhdltime_previous = .vhdltime,
<UPDATE SIGNALS>)]

<sdvs.5.11.19 .1. 7> vhdltime

global time = 7000000

delta time = 0

<sdvs . 5.11.19 .1. 7> vhdi-signals
signal-names [all] : a, sum, c.out

simplify? [no]: yes

179

signal A :

current value = a\29

previous value = a\29

projected output waveform = ()

driver history (transaction(vhdltime(3000000,0),a\29),

transaction(vhdltime(0,0),a\29))

signal SUM :

current value = a\29 usxor cin\17

previous value = sum\22

projected output waveform = ()

driver history = (transaction(vhdltime(5000000,0),

a\29 usxor cin\l7),
transaction(vhdltime(0,0),

sum\22))

signal COUT :

current value = (x\l3 kk y\l5 usor
x\13 kk cin\l7) usor
y\l5 kk cin\l7

previous value = cout\24

projected output waveform = ()

driver history (transaction(vhdltime(7000000,0),
(x\13 kk y\l5 usor
x\l3 kk cin\l7) usor
y\l5 kk cin\l7),

transaction(vhdltime(0,0),
cout\24))

<sdvs . 5.11.19.1. 7> vhdl-proccsses

180

process-names [all] : <CR>

process UPDATE.A :

current state = SUSPENDED

process UPDATE.SUM :

current state = SUSPENDED

process UPDATE.COUT :

current state = SUSPENDED

At this point, no signal drivers are a.ctive, and no processes are scheduled to resume. There-
fore, the VHDL model will suspend execution indefinitely (that is, until it receives a new-

value for an input port).

<sdvs.5.11.19.1.7> apply
sd/number[highest applicable/once]: Jt

action — <END EXECUTION CYCLE>

action -- <BEGIN EXECUTION CYCLE:

1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

action — <END VHDL MODEL EXECUTION>

apply -- [sd pre: (true)
comod: (all)

mod: (adder\pc)
post: (vhdl_model_execution_complete(adder))]

<sdvs .5.11.19.1.11> wlnjnotgoul
simplify? [no] : <CR>

g(l) |#cout @ #sum| = |(x\36 ++ y\37) ++ cin\38|

The goal g(l) is established by a static proof that appeals directly to the lemma
append_cout_s urn. lemma:

181

<sdvs .5.11.19.1.11> provebylernma
formula to prove: \.cout @ .sum\ = \(.x ++ .y) ++ .cin\

lemma name[]: <CR>

provebylernma append.cout_sum.lemma -- |.cout 6 .sum|
= |(.x ++ .y) ++ .cin|

<sdvs .5.11.19.1.12> ivhynotgoal
simplify? [no] : <CR>

The goal is TRUE. Type 'close'.

<sdvs.5.11.19.1.12> close

close -- 11 steps/applications

open -- [sd pre: ("(.a = val(.driver\a,.vhdltime_previous)))
comod: (all)

mod: (all)
post: (|#cout <S #sum|

= |(x\36 ++ y\37) ++ cin\38|,
vhdl_model_execution_complete(adder))]

Complete the proof.

The second case Inas now been opened, wherein the current and previous values of signal a

are asserted to be different.

Note that the vhdltime has reverted back to vhdltime(3000000,0), and the signals have
reverted to their states at the beginning of the previous case, except that the current value
of signal a this time is the bit '1', represented in the Simplifier as the bitstring 1(1) with

integer value 1 and length 1.

<sdvs.5.11.19.2.1> vli.dlt.ime

global time = 3000000

delta time = 0

<sdvs .5.11.19.2.1> vlull-signals
signal-names [all] : a, sum, coat

simplify? [no]: yes

182

Signal A :

current value = a\86

previous value = a\29

projected output waveform = ()

driver history = (transaction(vhdltime(3000000,0),a\86),

transaction(vhdltime(0,0),a\29))

signal SUM :

current value = sum\22

previous value = sum\22

projected output waveform = (transaction(vhdltime(5000000,0),

a\29 usxor cin\l7))

driver history (transaction(vhdltime(0,0),sum\22))

signal COUT :

current value = cout\24

previous value = cout\24

projected output waveform = (transaction(vhdltime(7000000,0),
(X\13 kk y\l5 usor
x\13 kk cin\l7) usor
y\l5 kk cin\l7))

driver history = (transaction(vhdltime(0,0),cout\24))

<sdvs.5.11.19.2.1> vhdl-processes
process-names [all] : <CR>

process UPDATE.A :

183

current state SUSPENDED

process UPDATE.SUM :

current state = SUSPENDED

scheduled time = VHDLTIMEC3000000 ,0)

scheduled reason = SENSITIVITY

process UPDATE.COUT

current state = SUSPENDED

Since the current cases branch pr asumes an event on the signal a, the scheduled

update _sum does resume execution

<sdvs. 5.11.19.2.1> nsd

[sd pre: (.a "= val(.driver\a,.vhdltime.previous))

comod: (all)
mod: (adder\pc)

post: ([sd pre: (true)
comod: (all)

mod: (adder\pc)
post: (<EXECUTE PROCESS: UPDATE_SUM>)])]

<sdvs.5.11.19.2.1> go
untilG: <CR>

apply -- [sd pre: (.a "= val(.driver\a,.vhdltime_previous))

comod: (all)
mod: (adder\pc)

post: ([sd pre: (true)
comod: (all)

mod: (adder\pc)
post: (<EXECUTE PROCESS: UPDATE_SUM>)])]

action -- <EXECUTE PROCESS: UPDATE_SUM>

go -- no more declarations or statements

<sdvs . 5.11.19.2. 3> usable

184

u(l) [sd pre: (~(preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein))))

comod: (all)

mod: (adder\pc,driver\sum)

post: (#driver\sum
= inertial_update(.driver\sum,

transaction(timeplus(.vhdltime,
vhdltime(5000000,0)),

.a usxor .ein)),

<VHDLTR>)]

u(2) [sd pre: (preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein)))

comod: (all)
mod: (adder\pc,driver\sum)

post: (#driver\sum

= inertial_update(.driver\sum,

transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),
.a usxor .ein)),

<VHDLTR>)]

No usable quantified formulas.

<sdvs . 5.11.19.2. 3> wliynotapply
state delta[highest usable]: u

number: 2

Because the following is not known to be true —

preemption(.driver\sum,
transaction(timeplus(.vhdltime,vhdltime(5000000,0)),

.a usxor .ein))

We have arrived at the second crucial point to understand in the symbolic execution; it
revisits the earlier discussion of the preemptive semantics of inertia! driver update.

The single action of process update_sum is to update the driver of signal sum, and the
manner in which this update takes place depends on whether or not the value of the existing
transaction on that driver's projected output waveform, namely cin\l7 (= . ein), is or is not

185

equal to the value to be scheduled by the update transaction, namely . a usxor . ein. The
semantics of inertial driver update in VHDL requires that the former (existing) transaction
be deleted if these values are different {preemption), but retained if they are the same.

Thus, we again need to open a proof by cases at this juncture on whether or not preemption

will take place:

<sdvs.5.11.19.2.3> cases

case predicate: preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein))

cases -- preemption(.driver\sum,

transaction(timeplus(.vhdltime,
vhdltime(5000000,0)),

.a usxor .ein))

open -- [sd pre: (preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein)))

comod: (all)

mod: (all)
post: (|#cout ® #sum|

= |(x\36 ++ y\37) ++ cin\38I,
vhdl_model_execution_complete(adder))]

<sdvs.5.11.19.2.3.1.1> nsd

[sd pre: (preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein)))

comod: (all)
mod: (adder\pc,driver\sum)

post: (#driver\sum
= inertial_update(.driver\sum,

transaction(timeplus(.vhdltime,
vhdltime(5000000,0)),

.a usxor .ein)),

<VHDLTR>)]

<sdvs.5.11.19.2.3.1.1> apply
sd/number[highest applicable/once]: <CR>

18G

apply — [sd pre: (preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein)))

comod: (all)

mod: (adder\pc,driver\sum)

post: (#driver\sum

= inertial_update(

.driver\sum,

transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein)

),
<VHDLTR>)]

<sdvs . 5.11.19 .2.3.1. 2> vhdl-signals
signal-names [all] : a, sum, coat

simplify? [no] : yes

signal A :

current value = a\86

previous value = a\29

projected output waveform = ()

driver history = (transaction(vhdltime(3000000,0),a\86),

transaction(vhdltime(0,0),a\29))

signal SUM :

current value = sum\22

previous value = sum\22

projected output waveform = (transaction(vhdltime(8000000,0),

a\86 usxor cin\l7))

driver history = (transaction(vhdltime(0,0),sum\22))

signal COUT :

187

current value = cout\24

previous value = cout\24

projected output waveform = (transaction(vhdltime(7000000,0),

(X\13 kk y\l5 usor
X\13 kk cin\l7) usor
y\l5 kk cin\l7))

driver history = (transaction(vhdltime(0,0),cout\24))

Observe howtransaction(vhdltime(5000000,0),a\29 usxor cin\l7) has been preempted

from driver\sum by transaction(vhdltime(8000000,0),a\86 usxor cin\l7).

From this point on, the proof proceeds essentially as before, with the only difference being
that the times to which vhdltime gets to advance are a little different. Note, in particular,
that now vhdltime(8000000,0) is achieved.

<sdvs.5.11.19.2.3.1.2> <jo
until []: <CB>

action -- <SUSPEND PROCESS: UPDATE.SUM>

action — <END EXECUTION CYCLE>

action — <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

apply -- [sd pre: (true)
comod: (all)

mod: (adder\pc,vhdltime,vhdltime.previous,cout)
post: (#vhdltime = vhdltime(7000000,0),

#vhdltime_previous = .vhdltime,
<UPDATE SIGNALS>)]

action -- <END EXECUTION CYCLE>

action -- <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

188

apply -- [sd pre: (true)

comod: (all)

mod: (adder\pc,vhdltime,vhdltime_previous,sum)

post: (#vhdltime = vhdltime(8000000,0),

#vhdltime_previous = .vhdltime,

<UPDATE SIGNALS>)]

action -- <END EXECUTION CYCLE>

action — <BEGIN EXECUTION CYCLE:

1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

action -- <END VHDL MODEL EXECUTION>

apply — [sd pre: (true)
comod: (all)

mod: (adder\pc)
post: (vhdl_model_execution_complete(adder))]

go -- no more declarations or statements

<sdvs . 5.11.19.2.3.1.13> vhdltime

global time = 8000000

delta time = 0

<sdvs .5.11.19.2.3.1.13> vhdl-sujnals
signal-names [all] : a, sum, coat

simplify? [no]: yes

signal A :

current value = a\86

previous value = a\29

projected output waveform = ()

driver history = (transaction(vhdltime(3000000,0),a\86),

189

transaction(vhdltime(0,0),a\29))

signal SUM :

current value = a\86 usxor cin\l7

previous value = sum\22

projected output waveform = ()

driver history (transactionCvhdltime(8000000,0),

a\86 usxor cin\l7),

transaction(vhdltime(0,0),

sum\22))

signal COUT :

current value (X\13 kk y\l5 usor
x\13 kk cin\l7) usor
y\15 kk cin\!7

previous value = cout\24

projected output waveform = ()

driver history = (transaction(vhdltime(7000000,0),

(X\13 kk y\l5 usor
x\13 kk cin\17) usor

y\!5 kk cin\l7),
transactionCvhdltime(0,0),

cout\24))

<sdvs .5.11.19.2.3.1.13> vhdl-proctsses

process-names [all] : <CR>

process UPDATE.A :

current state = SUSPENDED

process UPDATE.SUM :

190

current state = SUSPENDED

process UPDATE.COUT :

current state = SUSPENDED

<sdvs .5.11.19.2.3.1.13> whynotyoal

simplify?[no] : <CR>

g(l) |#cout @ #sum| = |(x\36 ++ y\37) ++ cin\38|

<sdvs . 5.11.19.2.3.1.13> provebylemma
formula to prove: \.cout @ .sum\ = \(.x ++ .y) ++ .cin\

lemma name [] : < CR>

provebylemma append.cout_sum.lemma — |.cout @ .sum|
= |(.x ++ .y) ++ .cin|

<sdvs .5.11.19.2.3.1.14> whynotyoal
simplify? [no] : <CR>

The goal is TRUE. Type 'close5.

<sdvs .5.11.19.2.3.1.14> close

close — 13 steps/applications

open -- [sd pre: ("(preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0)),

.a usxor .ein))))

comod: (all)
mod: (all)

post: (|#cout @ #sum|
= I(x\36 ++ y\37) ++ cin\38|,

vhdl_model_execution_complete(adder))]

Complete the proof.

<sdvs.5.11.19.2.3.2.1> nsd

[sd pre: ("(preemption(.driver\sum,

191

transaction(timeplus(.vhdltime,
vhdltime(5000000,0)),

.a usxor .ein))))

comod: (all)
mod: (adder\pc,driver\sum)

post: (#driver\sum
= inertial_update(.driver\sum,

transaction(timeplus(.vhdltime,
vhdltime(5000000,0)),

.a usxor .ein)),

<VHDLTR>)]

<sdvs.5.11.19.2.3.2.1> apply
sd/number[highest applicable/once] :

apply -- [sd pre: ("(preemption(.driver\sum,
transaction(timeplus(.vhdltime,

vhdltime(5000000,0))

.a usxor .ein))))

comod: (all)
mod: (adder\pc,driver\sum)

post: (#driver\sum
= inertial_update(

.driver\sum,
transaction(timeplus(.vhdltime,

vhdlt ime(5000000,0)),

.a usxor .ein)

),
<VHDLTR>)3

<sdvs . 5.11.19.2.3 .2. 2> vhdl-sujnah
signal-names[all]: a, sum, cout

simplify?[no]: yes

signal A :

current value = a\86

previous value = a\29

projected output waveform = ()

driver history = (transaction(vhdltime(3000000,0),a\86),

transaction(vhdltime(0,0),a\29))

192

Signal SUM :

current value = sum\22

previous value = sum\22

projected output waveform = (transaction(vhdltime(5000000,0),

a\86 usxor cin\l7),

transaction(vhdltime(8000000,0),

a\86 usxor cin\l7))

driver history = (transaction(vhdltime(0,0),sum\22))

signal COUT :

current value = cout\24

previous value = cout\24

projected output waveform = (transaction(vhdltime(7000000,0),
(X\13 kk y\l5 usor
x\13 kk cin\l7) usor
y\l5 kk cin\l7))

driver history = (transaction(vhdltime(0,0),cout\24))

We have entered the case where the value scheduled for sum at time vhdltime (5000000,0)
will nut be preempted; that is, the previously scheduled value a\29 usxor cin\l7 and
the newly scheduled value a\86 usxor cin\l7 are considered equivalent, as reflected by
examination of sum's projected output, waveform after application of the state delta.

The proof now proceeds much as before, with the only difference being manifested, again,
in the times to which vhdltime gets to advance.

<sdvs.5.11.19.2.3.2.2> <jo
untilG: <67?.>

action — <SUSPEND PROCESS: UPDATE_SUM>

action — <END EXECUTION CYCLE>

action — <BEGIN EXECUTION CYCLE:

193

1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

apply - -- [sd pre: (true)
comod: (all)
mod: (adder\pc,vhdltime,vhdltime_previous,sum)

post: (»vhdltime = vhdltime(5000000,0),

#vhdltime_previous = .vhdltime,

<UPDATE SIGNALS>)]

action -- <END EXECUTION CYCLE>

action -- <BEGIN EXECUTION CYCLE:

1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

apply - - [sd pre: (true)

comod: (all)
mod: (adder\pc,vhdltime,vhdltime_previous,cout)

post: («vhdltime = vhdltime(7000000,0),
#vhdltime_previous = .vhdltime,

<UPDATE SIGNALS>)]

action — <END EXECUTION CYCLE>

action -- <BEGIN EXECUTION CYCLE:

1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

apply -- [sd pre: (true)
comod: (all)
mod: (adder\pc.vhdltime,vhdltime_previous,sum)

post: («vhdltime = vhdltime(8000000,0),

#vhdltime_previous = .vhdltime,
<UPDATE SIGNALS>)]

action — <END EXECUTION CYCLE>

action — <BEGIN EXECUTION CYCLE:

1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

194

action — <END VHDL MODEL EXECUTION>

*** Execution Time reached TIME'HIGH :
no active drivers or resuming processes ***

apply -- [sd pre: (true)
comod: (all)

mod: (adder\pc)
post: (vhdl_model_execution_complete(adder))]

go — no more declarations or statements

<sdvs .5.11.19.2.3.2.16> vhdltimc

global time = 8000000

delta time = 0

<sdvs .5.11.19.2.3.2.16> vhdl-sigiuds
signal-names[all]: a, sum, cout

simplify?[no]: yes

signal A :

current value = a\86

previous value = a\29

projected output waveform = ()

driver history = (transaction(vhdltime(3000000,0),a\86),

transaction(vhdltime(0,0),a\29))

signal SUM :

current value = a\86 usxor cin\l7

previous value = a\86 usxor cin\l7

projected output waveform = ()

19'

driver history = (transaction(vhdltime(8000000,0),
a\86 usxor cin\l7),

transaction(vhdltime(5000000,0),
a\86 usxor cin\l7),

transaction(vhdltime(0,0),

sum\22))

signal COUT :

current value = (x\l3 kk y\15 usor

x\l3 kk cin\l7) usor

y\l5 kk cin\l7

previous value = cout\24

projected output waveform = 0

driver history = (transaction(vhdltime(7000000,0),
(X\13 kk y\l5 usor
x\13 kk cin\l7) usor
y\l5 kk cin\l7),

transaction(vhdltime(0,0),

cout\24))

<sdvs.5.11.19.2.3.2.16> vhdl-processes
process-names[all]:

process UPDATE.A :

current state = SUSPENDED

process UPDATE.SUM :

current state = SUSPENDED

process UPDATE.COUT :

current state = SUSPENDED

190

<sdvs .5.11.19.2.3.2.16> whynottjoul
simplify?[no]:

g(l) |#cout @ #sum| = |(x\36 ++ y\37) ++ cin\38|

<sdvs.5.11.19.2.3.2.16> provebylemma
formula to prove: |.cout @ .sum| = |(.x ++ .y) ++ .cin|

lemma name[] :

provebylemma append_cout_sum.lemma — |.cout @ .sum|
= |(.x ++ .y) ++ .cin|

<sdvs .5.11.19.2.3.2.17> wliynoUjoul

simplify?[no]:

The goal is TRUE. Type 'close'.

<sdvs .5.11.19.2.3.2.17> close

close -- 16 steps/applications

join — [sd pre: (true)

comod: (all)

mod: (all)

post: (|#cout @ #sum|
= |(x\36 ++ y\37) ++ cin\38|,

vhdl_model_execution_complete(adder))]

close -- 3 steps/applications

join — [sd pre: (true)

comod: (all)

mod: (all)

post: (|#cout @ #sum| = | (x\36 ++ y\37) ++ cin\38|,
vhdl_model_execution_complete(adder))]

close — 19 steps/applications

Complete the proof.

<sdvs . 5 .12> whyuotgoal
simplify? [no] : <CR>

The goal is TRUE. Type 'close'.

197

<sdvs . 5 .12> close.

close -- 11 steps/applications

<sdvs .6>

198

7.2.3 Batch proof

The batch proof shown here is essentially a dump of the proof developed in the preceding
section, with successive apply commands merged into invocations of the go command.
Recall that, with the autoclose flag set to off, the go command applies successive highest
applicable state deltas until the top usable state delta is not applicable or the indicated
condition (if any) is achieved.

(defproof full_adder_dataflow.proof
"(setflag autoclose off,

vhdltr adder \"testproofs/vhdl/\" (\"full_adder_dataflow.vhdl\") none,
read \"testproofs/vhdl/full_adder_dataflow.spec\",
read \"testproofs/vhdl/full_adder_dataflow.lemmas\",
prove full_adder_dataflow.sd

proof:
(go vhdl_model_elaboration_complete(adder),
prove g(2)

proof:

(go.
cases .a = val(.driver\\a,.vhdltime_previous)

then proof:
(go,
provebylemma l.cout @ .sumI

= |(.x ++ .y) ++ .cin|
using: append.cout_sum.lemma,

close)
else proof:

(go,
cases preemption(.driver\\sum,

transaction(timeplus(.vhdltime,
vhdltime(5000000,0)),

.a usxor .ein))
then proof:

(go,
provebylemma l.cout @ .sum|

= I(.x ++ .y) ++ .cinl
using: append_cout_sum.lemma,

close)
else proof:

(go,
provebylemma l.cout @ .sumI

= |(.x ++ .y) ++ .cinl
using: append_cout_sum.lemma,

close))),
close))")

199

7.2.4 Lemma

Here we record the lemma used in the above proof. It has a straightforward proof by

exhaustive case analysis.

(deflemma append_cout_sum.lemma
•'(((((lh(x) = 1 k

lh(y) = 1) k
lh(cin) = 1) k

lh(sum) = 1) &
lh(cout) = 1) k

sum = (x usxor y) usxor ein) k
cout = (x kk y usor x kk ein) usor y kk ein

--> |cout @ suml = I(x ++ y) ++ cin|"
(x y ein sum cout) nil nil nil
:proof "(provelemma append_cout_sum.lemma

proof:
meases

(case: (x = 0(1) k y = 0(1)) k ein = 0(1)
proof: close

case: (x = 0(1) k y = 0(1)) k ein = 1(1)
proof: close

case: (x = 0(1) k y = 1(D) k ein = 0(1)
proof: close

case: (x = 0(1) & y = 1(D) k ein = 1(1)
proof: close

case: (x = 1(1) k y = 0(D) k ein = 0(1)
proof: close

case: (x = 1(1) & y = 0(D) k ein = 1(1)
proof: close

case: (x = 1(1) k y = 1(D) k ein = 0(1)
proof: close

case: (x = 1(1) k y = 1(D) k ein = 1(1)
proof: close))")

200

7.3 ISPS

7.3.1 TR: Translator from ISPS to state deltas

This section describes the action of the TR translator on the machine description language
ISPS.

In fact, there are two different versions of the translator from ISPS to state deltas. The new
translator will be discussed only in the last section of this chapter. It is still to be considered
experimental, although it will eventually replace the old translator. It has been generated
by the same uniform method as the translators for Ada and VHDL, and recognizes a slightly
larger piece of ISPS (it allows "don't care" digits, and bit order in bitstrings can be low to
high).

The version of ISPS that the (old) translator (TR) recognizes differs from the version de-
scribed in the ISPS manual [4] in several respects. The first category of differences contains
those aspects of the "official" ISPS that TR does not support; these include parallelism and
two's-complement arithmetic.

The second category of differences consists of extra features that SDVS needs for the im-
plementation proof paradigm. For example, when one is not interested in implementing
the action of all target places, some of the machine variables ("place" names) must be
designated as significant and the others as auxiliary. The mapping is defined only on the
designated significant places. Another useful feature is the capability to intersperse stan-
dard ISPS code with state deltas. This can be used when one is not interested in the details
of how a certain postcondition was brought about, but only in its effect, or in case that
effect is not expressible in ISPS.

The semantics of TR are described in [19], [22], and [23]; problems with ISPS are described
in [24].

7.3.2 Marking

SDVS does the processing necessary to turn an ISPS program into an equivalent state
delta or set of state deltas. Thus, ISPS programs can be used in, or as, preconditions or
postconditions of state deltas.

We present an example illustrating the capability to execute from an ISPS mark point. One
can run a set of example ISPS proofs by typing eval (runtestproofs *isps-tests*).

When dealing with a proof based on state deltas created by TR from an ISPS program, the
user does not have a convenient method of handling the specific state deltas representing
the "continuation" of the program from each control point. To solve that problem, the
system allows the user to label the location of control points in the ISPS program.

The initial and final control points are named by the system <machine-name>\ STARTED
and <machine-name>\HALTED, respectively. The exit point for an internal subroutine,

201

<subroutine>, is <subroutine>\exited.

Consider the following ISPS program, gcd.isp:

gcd.machine US := BEGIN ! gcd algorithm computes gcd(x,y)
! for inputs x and y

** local.variables **

x<15:0>,
y<15:0>,
twos<5:0>,
gcdresult<15:0>

** algorithm **

input variable x

input variable y

indicates common factor of twos between x

result of gcd(x,y)

and y

gcd MAIN := BEGIN

twos _ LAST.ONE(x OR y) NEXT

y _ y SRO LAST.ONE(y) NEXT

x _ x SRO LAST.ONE(x) NEXT

REPEAT

BEGIN

ml:= IF x LSS y => x@y

x _ x - y NEXT !

m2:= IF x EQL 0 =>

(m4 := gcdresult _ y NEXT !

gcdresult _ gcdresult SLO twos NEXT !

LEAVE gcd) NEXT ! and exit

m3:= x _ x SRO LAST.ONE(x) !

! store common factor of twos

! strip low-order zeros from y

! strip low-order zeros from x

! main loop

y@x NEXT swap x,y if x<y

assign x-y to x

if x=0 (finished) then

assign y to gcdxy,

remember common twos,

strip low-order zeros from x

END
END
END

The command mpisps generates state deltas corresponding to the state changes between
mark points, instead of every state change represented in the unmarked ISPS program. If
mpisps is used on an ISPS program with a potentially infinite loop in which the loop does
not have a mark point at the top, mpisps will not terminate. Gcd. isp has five mark points,
including the initial state, which is a default mark point.

Mpisps prompts for starting mark point, stopping mark point, and preconditions.

< sdvs. 1 > mpisps
path name[testproof s/alias. isp] : testproofs/gcd.isp

starting mark point[]: <CR>
ending mark points [] : <CR>

preconditions [] : <CR>
unique name level [1] : < CR>

202

Parsing ISPS file — "testproofs/gcd.isp"

Markpoint-to-markpoint translating ISPS file "testproofs/gcd.isp"

[sd pre: (.gcd.machine\upc = gcd.machine\started)

mod: (x,twos,y,gcd.machine\upc)

post: (#gcd.machine\upc = ml,

#x = (zeros(|lastone(.x)|) @ .x)

<15 + |lastone(.x)|:|lastone(.x)|>,

#y = (zeros(|lastone(.y)|) 6 .y)

<15 + |lastone(.y)|:|lastone(.y)|>,

#twos = lastone(.x usor .y))]

[sd pre:

mod:
post:

[sd pre:

mod:

post:

[sd pre:

mod:

post:

[sd pre:

mod:

post:

[sd pre:

mod:

post:

[sd pre:

mod:

post:

|.y| gt |.x|, .gcd.machine\upc = ml)

x,y,gcd.machine\upc)
#gcd.machine\upc = m2,#x = (.y — .x)<15:0>,#y = .x)]

|.y| le | .x|, .gcd.machine\upc = ml)

x,gcd.machine\upc)

#gcd.machine\upc = m2,#x = (.x — .y)<15:0>)]

|.x| = 0,.gcd.machine\upc = m2)

gcd.machine\upc)

#gcd.machine\upc = m4)3

|.x| "= 0,.gcd.machine\upc = m2)

gcd.machine\upc)

#gcd.machine\upc = m3)]

.gcd.machine\upc = m4)

gcdresult,gcd.machine\upc)

#gcd.machine\upc = gcd.machine\halted,

«gcdresult = (.y @ zeros(| .twos|))<15:0>)3

.gcd.machine\upc = m3)

x,gcd.machine\upc)

#gcd.machine\upc = ml,

#x = (zeros (|lastone(.x)|) (3 .x)

<15 + |lastone(.x)|:|lastone(.x)|>)]

The flag displaympsds was on. If it were off, the above state deltas would not be displayed.

<sdvs.2> ppsd
state delta: mpisps

203

file name: gcd.isp
starting mark point[]: <CR>
ending mark points[]: <CR>

preconditions[] : <CR>

covering(gcd.machine,x,y,twos,gcdresult,gcd.machine\upc)
declare(x,type(bitstring, 16))
declare(y,type(bitstring,16))
declare(twos,type(bitstring, 6))
declare(gcdresult, type(bitstring,16))
[sd pre: (.gcd.machine\upc = gcd.machine\started)

mod: (x,twos,y,gcd.machine\upc)
post: (#gcd.machine\upc = ml,

#x = (zeros(|lastone(.x)|) ® .x)
<15 + |lastone(.x)| :|lastone(.x)|>,

#y = (zeros(|lastone(.y)|) @ .y)
<15 + |lastone(.y)|:|lastone(.y)|>,

ttwos = lastone(.x usor .y))]
[sd pre: (|.y| gt | .x|,.gcd.machine\upc = ml)

mod: (x,y,gcd.machine\upc)
post: (#gcd.machine\upc = m2,#x = (.y — .x)<15:0>,#y

[sd pre: (|.y| le | .x|,.gcd.machine\upc = ml)
mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.x — .y)<15:0>)]
[sd pre: (|.x| = 0,.gcd.machine\upc = m2)

mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m4)]

[sd pre: (|.x| "= 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m3)]
[sd pre: (.gcd.machine\upc = m4)

mod: (gcdresult,gcd.machine\upc)
post: (#gcd.machine\upc = gcd.machine\halted,

«gcdresult = (.y @ zeros(| .twos|))<15:0>)]
[sd pre: (.gcd.machine\upc = m3)

mod: (x,gcd.machine\upc)
post: (#gcd.machine\upc = ml,

#x = (zeros(|lastone(.x)|) © .x)
<15 + |lastone(.x)|:|lastone(.x)|>)]

= -x)]

Now we will use mpisps with mark points chosen.

< s dv s. 2 > mpisps
path name[testproofs/gcd.isp]:

starting mark point[]:
testproofs/gcd. isp
m2

204

ending mark points[]

preconditions[]

unique name level[1]

m3
<CR>
<CR>

Parsing ISPS file — "testproofs/gcd.isp"

Markpoint-to-markpoint translating ISPS file "testproofs/gcd.isp1

[sd pre:

mod:

post:

[sd pre:

mod:

post:

[sd pre:

mod:

post:

|.x| = 0,.gcd.machine\upc = m2)

gcd.machine\upc)

#gcd.machine\upc = m4)]

|.x| "= 0,.gcd.machine\upc = m2)

gcd.machine\upc)

#gcd.machine\upc = m3)]

.gcd.machine\upc = m4)

gcdresult,gcd.machine\upc)

#gcd.machine\upc = gcd.machine\halted,

#gcdresult = (.y <3 zeros(| .twos|))<15:0>)]

< sdvs. 3 > mpisps
path name [testproofs/gcd.isp] : <CR>

starting mark point D : m2
ending mark pointsD: <CR>

preconditions □ : <CR>
unique name level [1] : < CR>

Parsing ISPS file — "testproofs/gcd.isp"

Markpoint-to-markpoint translating ISPS file — "testproofs/gcd. isp'

[sd pre:
mod:

post:

[sd pre:
mod:

post:

[sd pre:
mod:

post:

|.x| = 0,.gcd.machine\upc = m2)
gcd.machine\upc)
#gcd.machine\upc = m4)]

|.x| "= 0,.gcd.machine\upc = m2)
gcd.machine\upc)
#gcd.machine\upc = m3)]

.gcd.machine\upc = m3)
x,gcd.machine\upc)
#gcd.machine\upc = ml,
#x = (zeros(|lastone(.x)|) 0 .x)

<15 + |lastone(.x)| :|lastone(.x)|>)]

205

[sd pre: (.gcd.machine\upc = m4)
mod: (gcdresult,gcd.machine\upc)

post: (#gcd.machine\upc = gcd.machine\halted,
«gcdresult = (.y @ zeros(| .twos|))<15:0>)]

[sd pre: (|.y| le | .x|, .gcd.machine\upc = ml)
mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.x -- .y)<15:0>)]

[sd pre: (|.y| gt | .x|, .gcd.machine\upc = ml)
mod: (x,y,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.y — .x)<15:0>,#y = .x)]

< sdvs. 4> mpisps
path nameCtestproofs/gcd.isp] : <CR>

starting mark point [] : m2
ending mark points [] : <CR>

preconditions[] : \.x\ ge \.y\
unique name level[1]: <CR>

Parsing ISPS file — "testproofs/gcd.isp"

Markpoint-to-markpoint translating ISPS file — "testproofs/gcd.isp"

[sd pre: (|.x| ge |.y|,|.x| = 0, .gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m4)]

[sd pre: (|.x| ge |.y|,|.x| "= 0, .gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m3)
mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = ml,
fx = (zeros(|lastone(.x)|) © .x)

<15 + |lastone(.x)|:|lastone(.x)|>)]

[sd pre: (.gcd.machine\upc = m4)
mod: (gcdresult,gcd.machine\upc)

post: (#gcd.machine\upc = gcd.machine\halted,
tgcdresult = (.y @ zeros(| .twos|))<15:0>)]

[sd pre: (|.y| le | .x|, .gcd.machine\upc = ml)

206

mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.x — .y)<15:0>)]

[sd pre: (|.y| gt | .x|,.gcd.machine\upc = ml)

mod: (x,y,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.y — .x)<15:0>,#y = .x)]

< s dvs. 5 > mpisps
path name[testproofs/gcd.isp] : <CR>

starting mark point [] : m2
ending mark points[]: <CR>

preconditions[] : \.x\ =0
unique name level[1]: <CR>

Parsing ISPS file — "testproofs/gcd.isp"

Markpoint-to-markpoint translating ISPS file — "testproofs/gcd.isp"

[sd pre: (|.x| = 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m4)]

[sd pre: (.gcd.machine\upc = m4)
mod: (gcdresult,gcd.machine\upc)

post: (#gcd.machine\upc = gcd.machine\halted,
#gcdresult = (.y Q zeros(| .twos|))<15:0>)]

The differences between isps and mpisps are as follows:

1. isps gives an incremental translation (with TRs in the postcondition); mpisps gives
a set of state deltas;

2. isps translates every state ISPS state change; mpisps accumulates effects from mark
point to mark point;

3. mpisps takes account of extensions of ISPS by state deltas, assumptions, and external
and auxiliary variables; and

4. isps(file.isp) should be used only in the precondition of a state delta (as a host de-
scription).

7.3.3 Extensions of ISPS

The user may extend ISPS code in two main ways:

207

1. by interspersing assumptions or state deltas between ISPS statements, and

2. by declaring some ISPS variables to be external or auxiliary.

These extensions were found to be useful in specifying real machines in the context of setting
up implementation proofs.

7.3.4 Extending ISPS by assumptions and state deltas

The two methods for extending ISPS that are discussed in this section are

1. assumptions .'.'[ASSUME: (expr)J, and

2. inserting state deltas !![SD (pre) (comod) (mod) (post)].

The expr field in assumption is any state delta formula (note that a statement such as "#x
= 1" is not a legal state delta formula); it is interpreted to be a precondition to the rest of
the ISPS routine. In other words, if the assumption is not true, execution cannot continue
from that point.

The extended state delta is interpreted with the same internal semantics as any state delta,
and with the same control as if it had been a regular ISPS statement. It is useful for
expressing state changes that cannot be expressed in ISPS. Notice that one may make a
static assertion by using an extended state delta with nil precondition and nil mod list.

As an example, consider the following extended ISPS program extest2.isp:

sd.machine US :=
BEGIN
♦♦Registers**

x<15:0>, y<15:0>

♦♦Algorithm**

exec MAIN:=
BEGIN

!![EXTSD: () (|.x| ge |.y|) () (x, y) (#x = 0(16) or #y = 0(16))] NEXT

POINT:=
if x eql 0 => y _ 1 NEXT

if y eql 0 => x _ 0

END

END

208

Let us mpisps it and look at the resulting state deltas.

< sdvs. 1 > mpisps
path name[testproofs/gcd.isp] : testproofs/extest2.isp

starting mark point []: <CR>
ending mark points []: <CR>

preconditions [] : <CR>
unique name level[1]: <CR>

Parsing ISPS file ~ "testproofs/extest2.isp"

Markpoint-to-markpoint translating ISPS file — "testproofs/extest2.isp"

[sd pre:
mod:

post:

[sd pre:
mod:

post:

[sd pre:
mod:

post:

[sd pre:
mod:

post:

[sd pre:
mod:

post:

|.x| ge |.y|,.sd.machine\upc = sd.machine\started)
y,x,sd.machine\upc)
#x = 0(16) or #y = 0(16),#sd.machine\upc = point)]

|.x| It |.y|,.sd.machine\upc = sd.machine\started)
sd.machine\upc)
#sd.machine\upc = point)]

|.x| = 0,.sd.machine\upc = point)
y,sd.machine\upc)
#sd.machine\upc = sd.machine\halted,#y = 0(14) @ 1(2))]

|.x| "= 0 & .sd.machine\upc = point,|.y| = 0)
x,s d.machine\up c)
#sd.machine\upc = sd.machine\halted,#x = 0(16))]

|.x| "= 0 & .sd.machine\upc = point,|.y| "= 0)
sd.machine\upc)
#sd.machine\upc = sd.machine\halted)]

<sdvs.2> ppsd
state delta: mpisps

file name: extest2.isp
starting mark point[] : <CR>
ending mark points □: <CR>

preconditionsD : <CR>

covering(sd.machine,x,y,sd.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
[sd pre: (|.x| ge | .y|,.sd.machine\upc = sd.machine\started)

mod: (y,x,sd.machine\upc)

209

post:
[sd pre:

mod:
post:

[sd pre:
mod:

post:
[sd pre:

mod:
post:

[sd pre:
mod:

post:

#x = 0(16) or #y = 0(16),#sd.machine\upc = point)]
|.x| It | .y|,.sd.machine\upc = sd.machine\started)
s d.machine\up c)
#sd.machine\upc = point)]

|.x| = 0,.sd.machine\upc = point)

y,sd.machine\upc)
#sd.machine\upc = sd.machine\halted,#y = 0(14) © 1(2))]

|.x| "= 0 & .sd.machine\upc = point,|.y| = 0)

x,s d.machine\up c)

#sd.machine\upc = sd.machine\halted,#x = 0(16))]
|.x| "= 0 & .sd.machine\upc = point,|.y| "= 0)
sd.machine\upc)
#sd.machine\upc = sd.machine\halted)]

Let extest.isp be the above without POINT:

sd.machine US :=
BEGIN
♦♦Registers**

x<15:0>, y<15:0>

♦♦Algorithm**

exec MAIN:=

BEGIN

!![EXTSD: () (|.x| ge |.y|) () (x, y) (#x = 0(16) or #y = 0(16))] NEXT

if x eql 0 => y _ 1 NEXT
if y eql 0 => x _ 0

END

END

< s dvs. 1 > mpisps
path name [testproof s/extest2. isp] : testproofs/extest.isp

starting mark point[]: <CR>
ending mark pointsD: <CR>

preconditions D : <CR>
unique name level [1] : < CR>

Parsing ISPS file ~ "testproofs/extest.isp"

Markpoint-to-markpoint translating ISPS file — "testproofs/extest.isp1

210

[sd pre: (|.x| ge |.y|,.sd.machine\upc = sd.machine\started)

mod: (x,y,sd.machine\upc)

post: (exists gv-y-11054 exists gv-x-11053 (((gv-x-11053 = 0(16) or

gv-y-11054 = 0(16)) &

lh(gv-x-11053) = 16 &

lh(gv-y-11054) = 16) &

(|gv-x-11053| = 0

—> #sd.machine\upc

= sd.machine\halted

#y = 0(14) C

1(2) &

#x = 0(16))))]

[sd pre: (|.x| ge |.y|,.sd.machine\upc = sd.machine\started)

mod: (x,y,sd.machine\upc)

post: (exists gv-y-11054 exists gv-x-11053 (((gv-x-11053 = 0(16) or

gv-y-11054 = 0(16)) &

lh(gv-x-11053) = 16 &

lh(gv-y-11054) = 16) &

(|gv-x-11053| '= 0

—> #sd.machine\upc

= sd.machine\halted

#x = 0(16) &

#y = 0(16))))]

[sd pre: (|.x| It |.y| & .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) S 1(2))]

[sd pre: (|.x| It |.y| & .sd.machine\upc = sd.machine\started,

|.x| "= 0)

mod: (sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted)]

ivs.2> ppsd
state delta: mpisps

file name: extest, isp
starting mark pointD: <CR>
ending mark points[]: <CR>

preconditions □ : <CR>

covering(sd.machine,x,y,sd.machine\up c)

declare(x,type(bitstring,16))

declare(y,type(bitstring,16))

[sd pre: (|.x| ge | .y|,.sd.machine\upc = sd.machine\started)

211

mod: (x,y,sd.machine\upc)

post: (exists gv-y-11054 exists gv-x-11053 (((gv-x-11053 = 0(16) or

gv-y-11054 = 0(16)) k
lh(gv-x-11053) = 16 k
lh(gv-y-11054) = 16) &

(|gv-x-11053| = 0

—> #sd.machine\upc

= sd.machine\halted &

#y = 0(14) fi

1(2) k
#x = 0(16))))]

[sd pre: (|.x| ge |.y|, .sd.machine\upc = sd.machine\started)

mod: (x,y,sd.machine\upc)

post: (exists gv-y-11054 exists gv-x-11053 (((gv-x-11053 = 0(16) or

gv-y-11054 = 0(16)) k
lh(gv-x-11053) = 16 k
lh(gv-y-11054) = 16) k

(|gv-x-11053| "= 0

—> #sd.machine\upc
= sd.machine\halted k

#x = 0(16) k
#y = 0(16))))]

[sd pre: (|.x| It |.y| k .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) @ 1(2))]

[sd pre: (|.x| It |.y| k .sd.machine\upc = sd.machine\started,
|.x| "= 0)

mod: (sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted)]

It is clear that the following state delta (call it extsdl) is true:

[sd pre: (mpisps(extest2.isp),.sd.machine\upc = sd.machine\started)
mod: (all)

post: (|#x| le |#y|,#sd.machine\upc = sd.machine\halted)]

and the following proof works:

(prove extsdl
proof:

cases |.x| ge |.y|

then proof:

(apply,

cases |.x| = 0

then proof:

212

(apply,
close)

else proof:
(notice |.y| = 0,
apply,
close))

else proof:
(apply,
cases |.x| = 0

then proof:
(apply,
close)

else proof:
cases |.y| = 0

then proof:
else proof:

(apply,
close)))

As a good exercise, try to input the above state delta and proof in the editor, using the
defsd and defproof functions. Remember to use two slashes "\\" in the editor to get one
real slash.

We cannot currently prove the corresponding state delta involving extest.isp; any state
deltas resulting from mpisps that contain existential quantifiers should be suspect. The
user should eliminate these quantifiers by adding mark points in suitable places in the
original ISPS.

Now let us examine the state delta formed by making .x > .y an assumption. Call the
following extended ISPS program extest3.isp:

sd.machine US :=

BEGIN

♦♦Registers**

x<15:0>, y<15:0>

♦»Algorithm**

exec MAIN:=
BEGIN

!! [ASSUME: (|.x| ge |.y|)] NEXT
if x eql 0 => y _ 1 NEXT
if y eql 0 => x _ 0
END

213

END

< s dvs. 1 > mpisps
path name[testproofs/extest.isp] : testproofs/extestS.isp

starting mark point [] : <CR>
ending mark points[]: <CR>

preconditions[] : <CR>
unique name level[1]: <CR>

Parsing ISPS file — "testproofs/extest3.isp"

Markpoint-to-markpoint translating ISPS file — "testproofs/extest3.isp"

[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) © 1(2))]

[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,
|.x| "= 0,|.y| = 0)

mod: (x,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#x = 0(16))]

[sd pre: (|.x| ge |.y| k .sd.machine\upc = sd.machine\started,
|.x| "= 0,|.y| '= 0)

mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

<sdvs.2> ppsd
state delta: mpisps

file name: extestS.isp
starting mark point[] : <CR>
ending mark points□ : <CR>

preconditions □ : <CR>

covering(sd.machine,x,y,sd.machine\upc)

declare(x,type(bitstring,16))

declare(y,type(bitstring,16))

[sd pre: (|.x| ge |.y| k .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)

214

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) @ 1(2))]
[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,

|.x| "= 0,|.y| = 0)
mod: (x,sd.machine\upc)

post: (#sd.machine\upc = sd.mach.ine\halted,#x = 0(16))]
[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,

|.xj "= 0,|.y| "= 0)
mod: (sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted)]

7.3.5 External and auxiliary variables

External and auxiliary variables are introduced into ISPS descriptions in order to extend
the possibilities of expression, not just to facilitate expression. These extended possibilities
are reflected in the translation of the description into state deltas and the methods of proof
needed to verify claims of implementation between two levels of description.

Both external and auxiliary variables satisfy specification needs arising from real problems.
External variables have their intuitive motivation in "input variables," that is, variables
whose value may change at random, upon receipt of a signal from some external source
(external with respect to the level of description in which they appear designated as "ex-
ternal"), in addition to any changes explicitly required by that description.

The idea for auxiliary variables is found in the concept of temporary variables. Generally
speaking, the designation "auxiliary" is used for any variable whose contents are not to
be relied on, or even considered, by any "outside" observer (although of course they may
be essential to the internal workings of the description). When viewed from the outside,
auxiliary variables are not considered to be part of the state of the system.

7.3.6 External variables

The suffix Hext may be appended to any ISPS declaration, e.g.

X<15:0>!!ext.

This indicates that the variable may change value during any state change explicitly allowed
by the ISPS program. There is no need to change the syntax or semantics of state deltas to
account for the external variables. An ISPS program with ext is translated into state deltas
just as before, with the addition that the external variables appear in every mod list.

In the case of markpoint-to-markpoint translation, care must be taken, for example, when
there is a case split on an external variable between the starting and ending markpoint.
However, when we take the view that markpoint-to-markpoint translation equals the com-
position of the state deltas representing the translation of the fine-grained state changes,
the problem of external variables is just a subcase of the general problem (remember that
the only special handling that external variables need is to be placed in every mod list).

215

For example, consider the machine (on file extest4.isp):

sd.machine US :=
BEGIN
Registers

x<15:0>,
y<15:0>! !ext

Algorithm

exec MAIN:=

BEGIN

if x eql 0 => y _ 1 NEXT
if y eql 0 => x _ 0
END
END

and consider the state delta

<sdvs.l> ppsd
state delta: extsd

[sd pre: (|.x| = l,isps(extest4.isp),
.sd.machine\upc = sd.machine\started)

mod: (all)
post: (#sd.machine\upc = sd.machine\halted,|#x| = 0 or |#x| = 1)]

The following proof works:

<sdvs.l> pp
ob j ect: extproof

proof extproof:

prove extsd

proof:

(apply,

cases | .y| = 0

then proof:

(apply 3,

close)

else proof:

216

(apply 2,
close))

< sdvs. 1 > interpret
proof name: extproof

open — [sd pre: (|.x| = i,isps(extest4.isp),
.sd.machine\upc = sd.machine\started)

mod: (all)
post: (#sd.machine\upc = sd.machine\halted,

|#x| = 0 or |#x| = 1)]

apply — [sd pre: (.sd.machine\upc = sd.machine\started,
.x == 0(2) "= 1(1))

mod: (sd.machine\upc)
post: ([tr in SD.MACHINE IF;])]

cases — |.y| = 0

open — [sd pre: (|.y| = 0)
comod: (all)

mod: (all)
post: (#sd.machine\upc = sd.machine\halted,

|#x| = 0 or |#x| = 1)]

apply — [sd pre: (.y == 0(2) = 1(1))
comod: (sd.machine\upc)

mod: (sd.machine\upc)
post: ([tr in SD.MACHINE X ;])]

apply — [sd pre: (true)

comod: (sd.machine\upc)

mod: (sd.machine\upc,x)

post: (#x = 0(14) 0 0(2),

[tr QSD.MACHINE\halted])]

apply — [sd pre: (true)

comod: (sd.machine\upc)
mod: (sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted)]

close — 3 steps/applications

open — [sd pre: (~(|.y| =0))
comod: (all)

217

mod: (all)
post: (#sd.machine\upc = sd.machine\halted,

|#x| = 0 or |#x| = 1)]

apply — [sd pre: (.y == 0(2) "= 1(1))
comod: (sd.machine\upc)

mod: (sd.machine\upc)
post: (Ctr @SD.MACHINE\halted])]

apply — [sd pre

comod
mod

post

(true)

(sd.machine\upc)
(sd.machine\upc)

(#sd.machine\upc = sd.machine\halted)]

close — 2 steps/applications

join — [sd pre: (true)
comod: (all)

mod: (all)
post: (#sd.machine\upc = sd.machine\halted,

|#x| = 0 or |#x| = 1)]

close — 2 steps/applications

7.3.7 Auxiliary variables

The suffix Haux may be appended to any ISPS declaration, e.g.

X<15:0>!!aux.

The difference between the semantics of such an annotated ISPS program and the semantics
of an unannotated one becomes apparent only when one considers the interaction of the
programs with another level. Auxiliary variables in target or host cannot play a role in
the mapping. Thus, target auxiliary variables are not mapped from, and host auxiliary
variables are not mapped to. Auxiliary variables do not appear in state deltas that are the
result of mpisps.

Consider the machine

aux.machine US :=
BEGIN
Registers

x<15:0>,
y<15:0>,
temp<15:0>! !aux

218

Algorithm

exec MAIN:=
BEGIN
temp _ x next
x _ y next
y _ temp
END
END

<sdvs.l> ppsd

state delta: mpisps
file name: auxtest.isp

starting mark pointD: <CR>
ending mark points [] : < CR>

preconditions[] : <CR>

covering(aux.machine,x,y,aux.machine\upc)
declare(x,type(bitstring, 16))
declare(y,type(bitstring,16))
[sd pre: (.aux.machine\upc = aux.machine\started)

mod: (y,x,aux.machine\upc)
post: (#aux.machine\upc = aux.machine\halted,#y = .x,#x = .y)]

Now we shall construct a theorem saying that auxtest implements itself.

< sdvs. 1 > implementation
theorem name: aux.thm

upper-level spec: mpisps
file name: auxtest.isp

starting mark point[]: <CR>
ending mark pointsQ: <CR>

preconditions [] : <CR>
lower-level spec: isps

file name: auxtest.isp
mappings: mappingf.x, .x), mappingf.y, .y),

mapping (. aux. machine\ upc,. aux. machine\ upc)
constants []: <CR>

invariants G : < CR>

Implementation theorem 'aux.thm' created.

<sdvs.l> ppsd

state delta: aux.thm

219

[sd pre: (isps(auxtest.isp),

aux.thm.places = union(x,y,aux.machine\upc,

aux.machine\aux),

aux.thm.mapped.places = union(x,y,aux.machine\upc),

aux.thm.unmapped.places

= diff(aux.thm.places,aux.thm.mapped.places))

post: (alldisjoint(x,y,aux.machine\upc),

[sd pre: (true)

comod: (all)

post: (forall al (lh(al) = 16 —> lh(al) = 16),

forall al (lh(al) = 16 —> lh(al) = 16))],

[sd pre: (.aux.machine\upc = aux.machine\started)

mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)

post: (#aux.machine\upc = aux.machine\halted,#y = .x,

#x = .y)])]

<sdvs.l> prove
state delta[] : aux.thm

proof []: <CR>

open — [sd pre: (isps(auxtest.isp),
aux.thm.places

= union(x,y,aux.machine\upc,aux.machine\aux),

aux.thm.mapped.places = union(x,y,aux.machine\upc),

aux.thm.unmapped.places

= diff(aux.thm.places,aux.thm.mapped.places))

post: (alldisjoint(x,y,aux.machine\upc),

[sd pre: (true)

comod: (all)

post: (forall al (lh(al) = 16 —> lh(al) = 16),

forall al (lh(al) = 16 --> lh(al) = 16))],

[sd pre: (.aux.machine\upc * aux.machine\started)

mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)

post: (#aux.machine\upc = aux.machine\halted,

#y = .x,fx = .y)])]

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(2) [sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 16 —> lh(al) = 16),

220

forall al (lh(ai) = 16 --> lh(al) = 16))]
g(3) [sd pre: (.aux.machine\upc = aux.machine\started)

mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)
post: (#aux.machine\upc = aux.machine\halted,#y = .x,#x

<sdvs.l.l> prove
state delta[] : g

number: 2
proof D: <CR>

= .y)]

open d pre: (true)
comod: (all)
post: (forall al (lh(al) = = 16 — > lh(al) = = 16),

forall al (lh(al) = = 16 —> lh(al) = = 16))]

close — 0 steps/applications

Complete the proof.

<sdvs.l.2> prove
state deltaD: g

number: 3
proof []: <CR>

open — [sd pre: (.aux.machine\upc = aux.machine\started)
mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)

post: (#aux.machine\upc = aux.machine\halted,#y = .x,
#x = .y)]

Complete the proof.

<sdvs.l.2.1> *

apply — [sd pre: (.aux.machine\upc = aux.machine\started)
mod: (aux.machine\upc,temp)

post: (#temp = .x,
[tr in AUX.MACHINE X ; Y ;])]

apply — [sd pre: (true)
comod: (aux.machine\upc)
mod: (aux.machine\upc,x)

post: (#x = .y,
[tr in AUX.MACHINE Y ;])]

apply — [sd pre: (true)

221

comod: (aux.machine\upc)
mod: (aux.machine\upc,y)

post: (#y = .temp,
[tr ©AUX.MACHINE\halted])]

apply — [sd pre: (true)

comod: (aux.machine\upc)
mod: (aux.machine\upc)

post: (#aux.machine\upc = aux.machine\halted)3

close — 4 steps/applications

close — 2 steps/applications

7.3.8 The new ISPS translator

The new translator can he accessed by the command ispstr. The associated predicate is
newisps. We present an example comparing the new with the old translator on the ISPS

program incl.isp:

! incl.ISP

incl US := (

♦♦Registers**

x<7:0>

♦♦Processes**

incl MAIN := BEGIN

REPEAT BEGIN

loopl:= x _ x + 1

END

END

)

First, using the new translator:

<sdvs.l> pp
ob j ect: newincO.sd

222

[sd pre: (newisps(incl.isp))
post: (newisps(incl.isp))]

We would expect this to be true and trivially provable, and it is with the new translator.

<sdvs. 1> setflag
flag variable: autoclose
on or off [off] : off

setflag autoclose — off

<sdvs.2> prove
state delta□ : newincO.sd
proof []: <CR>

open — [sd pre: (newisps(incl.isp))
post: (newisps(incl.isp))]

Complete the proof.

<sdvs.2.1> goals

g(l) covering(incl,incl\upc,x)
g(2) declare(x,type(bitstring,8))
g(3) [sd pre: (.inci\upc = incl\started)

comod: (all)
mod: (incl\upc)

post: ([ispstr t(incl) incl ...])]

< sdvs. 2.1 > whynotgoal
simplify?[no] : <CR>

The goal is TRUE. Type 'close».

<sdvs.2.1> close

close — 0 steps/applications

<sdvs.3> setflag
flag variable: autoclose
on or off[on]: on

setflag autoclose — on

Using the old translator things are not so trivial:

223

<sdvs.l> pp
object: newincl.sd

[sd pre: (isps(incl.isp))
post: (isps(incl.isp))]

<sdvs.l> prove
state delta[] : newincl.sd
proof D: <CR>

open — [sd pre: (isps(incl.isp))
post: (isps(incl.isp))]

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(3) [tr @INC1\STARTED in INC1 REPEAT;]
g(4) [tr QL00P1 in INC1 X_...; REPEAT;]

In fact, it appears that this is improvable in SDVS 13.

224

Index
ada(progfile.ada) 104
adatr 104
applicable 21
apply with no argument 21
apply with usable state delta number 29
apply with state delta name 30
apply a number of times 32
apply with modlist violation 48
apply decls 165
array type 70

length 70
origin 70
range 70
slice 70

bitstring type 70
operations 70

boolean type 70
cases 38, 41
close 22
createadalemma 115
createlemma 92
createsd 17
declare 69
delete 25
deleteaxioms 83
displaympsds flag 203
dump-proof 23, 35
dump-proof for a partial proof 88
exists 73
flags 19
forall 73
go 119
goals 29
help with axioms 80
help with function and predicate symbols

82
help with types 69
induct 55, 57, 64
init 18, 26
init with proof name parameter 24
instantiate 73
instantiate for a goal 77

instantiate for a usable quantified for-
mula 75

integer type 70
interpret 24, 26
invokeadalemma 121
ispstr 222
isps 207
letsd 150
let 56
meases 38
mpisps 202, 207
newisps 222
nsd 21
pc 106
pop 31
ppsd 162
pp 18, 24
pp proof 33
pp axioms 82
pp lemma and lemmaproof 96
pp a translated Ada program 128
ppeq 28
ppl39
prove 19
prove with a goal parameter 49
proveadalemma 116
provebyaxiom 80, 97
provebyinstantiation 73, 75
provebylemma 97
provelemma 94
ps 31
quantification 73
quit 35
quit with "unproved lemma" notification

93
range 56
read 26
read axioms 81
rewritebyaxiom 80, 88
rewritebyaxiom with no axiom parame-

ter 95
rewritebylemma 92

225

run-test-proofs 15
setflag 19
simp 20
until 32, 117
usable 20
vhdl-processes 166, 168
vhdl-signals 166
vhdl-time 166
vhdltr 161
whynotapply 40, 48, 63
why not goal 21, 31
whynotgoal with simplify 87
write 25
write with lemma name parameter 96

226

References

1] L. G. Marcus, "SDVS 13 Users' Manual," Technical Report ATR-94(4778)-5, The
Aerospace Corporation, September 1994.

2] T. K. Menas, "The Relation of the Temporal Logic of the State Delta Verification
System (SDVS) to Classical First-Order Temporal Logic," Technical Report ATR-
90(5778)-10, The Aerospace Corporation, September 1990.

3] U. S. Department of Defense, Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A), 22 January 1983.

4] M. R. Barbacci, G. E. Barnes, R. G. Cattell, and D. P. Siewiorek, "The ISPS Computer
Description Language," Technical Report CMU-CS-79-137, Carnegie-Mellon Univer-
sity, Computer Science Department, August 1979.

5] IEEE, Standard VHDL Language Reference Manual, 1988. IEEE Std. 1076-1987.

6] T. K. Menas, J. M. Bouler, J. E. Doner, I. V. Filippenko, B. H. Levy, and L. G. Marcus,
"Overview of the MSX Verification Experiment using SDVS," Technical Report ATR-
93(3778)-6, The Aerospace Corporation, September 1993.

7] M. M. Cutler, "Verifying Implementation Correctness Using the State Delta Verifi-
cation System (SDVS)," in Proceedings of the 11th National Computer Security Con-
ference, National Bureau of Standards/National Computer Security Center, October
1988.

8] T. Redmond, "Simplifier Description," Technical Report ATR-86A(8554)-2, The
Aerospace Corporation, September 1987.

9] J. V. Cook and J. Doner, "User Defined Data Types in the State Delta Verification
System (SDVS)," Technical Report TR-0090(5920-07)-l, The Aerospace Corporation,
September 1990.

[10] R. S. Boy er and J. S. Moore, The User's Manual for a Computational Logic. Compu-
tation Logic, Inc., 1987.

[11] G. Nelson and D. C. Oppen, "Simplification by Cooperating Decision Procedures,"
ACM Trans. Programming Languages and Systems, Vol. 1, pp. 245-257, October 1979.

[12] S.D. Crocker, State Deltas: A Formalism for Representing Segments of Computation.
PhD thesis, University of California, Los Angeles, 1977.

[13] M. J. C. Gordon, The Denotational Description of Programming Languages: An In-
troduction, (New York: Springer-Verlag, 1979).

[14] D. F. Martin and J. V. Cook, "Adding Ada Program Verification Capability to the
State Delta Verification System (SDVS)," in Proceedings of the 11th National Com-
puter Security Conference, National Bureau of Standards/National Computer Security
Center, October 1988.

227

[15] J. V. Cook, "Example Proofs of Stage 3 Ada Programs in the State Delta Verifica-
tion System (SDVS)," Technical Report ATR-91(6778)-3, The Aerospace Corporation,
September 1991.

[16] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 2
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-92(2778)-4, The Aerospace Corporation, September 1992.

[17] I. V. Filippenko, "Some Examples of Verifying Stage 3 VHDL Hardware Descriptions
Using SDVS," Technical Report ATR-93(3778)-l, The Aerospace Corporation, Septem-
ber 1993.

[18] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 4
VHDL into State Deltas in SDVS," Technical Report ATR-94(4778)-4, The Aerospace
Corporation, September 1994.

[19] T. A. Aiken and D. F. Martin, "A Revised Formal Description of the Incremental
Translation of ISPS into State Deltas in the State Delta Verification System (SDVS),"
Technical Report ATR-90(5778)-l, The Aerospace Corporation, September 1990.

[20] J. V. Cook, "The Language for DENOTE (Denotational Semantics Translation
Environment)," Technical Report TR-0090(5920-07)-2, The Aerospace Corporation,
September 1990.

[21] L. Marens and B. H. Levy, "Specifying and Proving Core VHDL Descriptions in
the State Delta Verification System (SDVS)," Technical Report ATR-89(4778)-5, The
Aerospace Corporation, September 1989.

[22] D. F. Martin, "A Preliminary Formal Description of the Incremental Translation of
ISPS into State Deltas in the State Delta Verification System," Technical Report ATR-
86A(2778)-7, The Aerospace Corporation, September 1987.

[23] J. V. Cook, "Test Suite for Static Semantic Errors in ISPS Descriptions," Technical
Report ATR-89(4778)-3, The Aerospace Corporation, September 1989.

[24] B. H. Levy, "Inadequacies of ISPS as a Specification Language for Microcode Verifi-
cation," Technical Report ATR-86A(2778)-1, The Aerospace Corporation, September
1987.

228

