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1. Introduction. In this paper, we study the Local Discontinuous Galerkin 

(LDG) methods for nonlinear, convection-diffusion systems of the form 

Otu + V-F(u,£>u) = 0, in(0,T)xn, 

where fi C Md and u = («i,..., Umf. The LDG methods are an extension of the 

Runge-Kutta Discontinuous Galerkin (RKDG) methods for the nonlinear hyper- 

bolic system 

dtu + V ■ f (u) = 0, in (0, T) x Q, 

introduced by the authors [12,13,14,15,16], and further developed by Atkins and 

Shu [2], Bassi and Rebay [4], Bey and Oden [7], Biswas, Devine, and Flaherty [8], 

deCougny et al. [17], Devine et al. [19, 20], Lowrie, Roe and van Leer [30], and by 

Özturan et al. [33]. The RKDG methods are constructed by applying the explicit 

time discretizations introduced by Shu [37] and Shu and Osher [38,39] to a space 

discretization that uses discontinuous basis functions. Since the space discretization 

is highly local in character and produces easily invertible, block-diagonal mass 

matrices and since the time-marching scheme is explicit, the RKDG method is a 

highly parallelizable method; see Biswas, Devine, and Flaherty [8]. Moreover, it is 

not only a formally high-order accurate method that can easily handle complicated 

geometries, but it satisfies a cell entropy inequality that enforces a nonlinear L2- 

stability property even without the slope limiters typical of this method; see Jiang 

and Shu [27]. 

Extensions of the RKDG method to hydrodynamic models for semiconductor 

device simulation have been constructed by Chen et al. [9], [10]. In these extensions, 

approximations of the derivatives of the discontinuous approximate solution are 

obtained by using a simple projection into suitable finite elements spaces. This 

projection requires the inversion of global mass matrices, which in [9] and [10] are 

'lumped' in order to maintain the high parallelizability of the method. Since in [9] 
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and [10] polynomials of degree one are used, the 'mass lumping' is justified; however, 

if polynomials of higher degree were used, the 'mass lumping' needed to enforce 

the full parallelizability of the method could cause a degradation of the formal 

order of accuracy. Fortunately, this is not an issue with the methods proposed by 

Bassi and Rebay [5] (see also Bassi et al [6]) for the compressible Navier-Stokes 

equations. In these methods, the original idea of the RKDG method is applied 

to both u and D u which are now considered as independent unknowns. Like the 

RKDG methods, the resulting methods are highly parallelizable methods of high- 

order accuracy which are very efficient for time-dependent, convection-dominated 

flows. The LDG methods are a generalization of these methods. 

The basic idea to construct the LDG methods is to suitably rewrite the convection- 

diffusion system into a larger, degenerate, first-order system and then discretize it 

by the RKDG method. By a careful choice of this rewriting, nonlinear stability can 

be achieved even without slope limiters, just as the RKDG method in the purely 

hyperbolic case; see Jiang and Shu [27]. In the linear case, the stability result leads 

to the sub-optimal rate of (Ax)k for the L°° (0, T;L2)-norm of the error if polynomi- 

als of degree at most k are used. However, these estimates are sharp, as numerical 

evidence reported in Bassi et al. [6] and in this paper indicate. In the purely 

hyperbolic case, the rate of convergence of (Ax)fc+1/2 is recovered, as expected. 

Indeed, this is the same rate of convergence obtained for the original Discontinuous 

Galerkin method (introduced by Reed and Hill [35]) for purely hyperbolic case by 

Johnson and Pitkaränta [28] and confirmed to be optimal by Peterson [34]. LeSaint 

and Raviart [29] proved a rate of convergence of (Ax)h for general triangulations 

and of (Ax)k+1 for Cartesian grids; Richter [36] obtained the optimal rate of con- 

vergence of (Ax)k+1 for some structured two-dimensional non-Cartesian grids. The 

technique for proving the error estimates used in this paper is different from the 

techniques used in the above mentioned papers. It is very simple and relies, as ex- 
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2 pected, on a straightforward combination of (i) the L2-stability of the LDG method 

and of (ii) the approximation properties of the finite element spaces. 

The LDG methods introduced in this paper are very different from the so-called 

Discontinuous Galerkin (DG) method for parabolic problems introduced by Jamet 

[26] and studied by Eriksson, Johnson, and Thomee [25], Eriksson and Johnson [21, 

22, 23, 24], and more recently by Makridakis and Babuska [31]. In the DG method, 

the approximate solution is discontinuous only in time, not in space; in fact, the 

space discretization is the standard Galerkin discretization with continuous finite 

elements. This is in strong contrast with the space discretizations of the LDG 

methods which use discontinuous finite elements. To emphasize this difference, we 

call the methods developed in this paper the Local Discontinuous Galerkin meth- 

ods. We also must emphasize that the large number of degrees of freedom and the 

restrictive conditions of the size of the time step for explicit time-discretizations, 

render the LDG methods inefficient for diffusion-dominated problems; in this sit- 

uation, the use of methods with continuous-in-space approximate solutions is rec- 

ommended. However, as for the successful RKDG methods for purely hyperbolic 

problems, the extremely local domain of dependency of the LDG methods allows 

a very efficient parallelization that by far compensates for the extra number of 

degrees of freedom in the case of convection-dominated flows. 

Many researchers have worked in the devising and analysis of numerical meth- 

ods for convection-dominated flows. In particular, Dawson [18] and, more recently, 

Arbogast and Wheeler [1] have developed and analyzed methods that share several 

properties with the LDG methods: They use discontinuous-in-space approxima- 

tions, they are locally conservative, and they approximate the diffusive fluxes with 

independent variables (by using a mixed method). We refer the reader interested in 

numerical methods for convection-dominated flows to [18] and [1] and the references 

therein. 
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Another numerical method that uses discontinuous approximations is the one 

proposed and studied by Baker et al. [3]. This method, however, is not for 

convection-dominated flows but for the Stokes problem. The advantage of using 

discontinuous approximations in this setting is that this allows for a pointwise ver- 

ification of the incompressibility condition at the interior of each triangle. Optimal 

estimates are obtained. 

In this paper, we restrict ourselves to the semidiscrete LDG methods for convection- 

diffusion problems with periodic boundary conditions. Our aim is to clearly display 

the most distinctive features of the LDG methods in a setting as simple as possible. 

The fully discrete methods for convection-diffusion problems in bounded domains 

will be treated in a forthcoming paper. This paper is organized as follows: In §2, 

we introduce the LDG methods for the simple one-dimensional case d — 1 in which 

F(u, Du) = f(u) — a(u) dxu, 

u is a scalar and a(u) > 0 and show some preliminary numerical results displaying 

the performance of the method. In this simple setting, the main ideas of how to 

devise the method and how to analyze it can be clearly displayed in a simple way. 

Thus, the L2-stability of the method is proven in the general nonlinear case and 

the rate of convergence of (Ax)k in the L°°(0, T;L2)-norm for polynomials of degree 

k > 0 in the linear case is obtained; this estimate is sharp. In §3, we extend these 

results to the case in which u is a scalar and 

Fi(u,Du) = fi(u)-   ^2   aij(u)dXju, 

where a^- defines a positive semidefinite matrix. Again, the L2-stability of the 

method is proven for the general nonlinear case and the rate of convergence of 

(Ax)k in the L°° (0, T;L2)-norm for polynomials of degree k > 0 and arbitrary tri- 

angulations is proven in the linear case. In this case, the multidimensionality of the 



problem and the arbitrariness of the grids increase the technicality of the analysis 

of the method which, nevertheless, uses the same ideas of the one-dimensional case. 

In §4, the extension of the LDG method to multidimensional systems is briefly 

described and concluding remarks are offered. 

2. The LDG methods for the one-dimensional case. In this section, we 

present and analyze the LDG methods for the following simple model problem: 

dtu + dx{f(u)-a(u)dxu)=0   in(0,T)x(0,l), (2.1a) 

u(t = 0)=u0, on (0,1), (2.1b) 

with periodic boundary conditions. 

a.   General formulation and main properties. To define the LDG method, 

we introduce the new variable q = \J a(u) dxu and rewrite the problem (2.1) as 

follows: 

dtu + dx{f(u)-^a(u)q) = n    in (0,T) X (0,1), (2.2a) 

q - dx g(u) = 0 in (0, T) x (0,1), (2.2b) 

u(t = 0) = u0, on (0,1), (2.2c) 

where g(u) — fu \Ja(s) ds. The LDG method for (2.1) is now obtained by simply 

discretizing the above system with the Discontinuous Galerkin method. 

To do that, we follow [13] and [14]. We define the flux h = (hu, hq )* as follows: 

h(ix, q) = (fiu) - y/a(u) q, -g(u) )*. (2.3) 

For each partition of the interval (0,1), {XJ+I/2}JL0, we set Ij = (XJ-1/2,XJ+I/2)> 

and AXJ = xj+i/2-Xj-i/2 for j = 1,..., N; we denote the quantity maxi<j<jv Aa^ 

by Ax . We seek an approximation wh = {uu.qhY to w = («,<?)* such that for 

each time t E [0,T], both Uh(t) and quit) belong to the finite dimensional space 

Vh = V,fc = {ve Ll(0,1) : v\Is 6 P\lj), j = l,...,N}, (2.4) 
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where Pk{I) denotes the space of polynomials in / of degree at most k. In order 

to determine the approximate solution (uh,qh), we first note that by multiplying 

(2.2a), (2.2b), and (2.2c) by arbitrary, smooth functions vu, vq, and Vi, respectively, 

and integrating over Ij, we get, after a simple formal integration by parts in (2.2a) 

and (2.2b), 

/   dtu(x,t)vu(x)dx- /   hu(w(x,t))dxvu(x)dx 

+ hu{w(xj+1/2,t))vu(xJ+1/2) - hu{w(xj_1/2,t))vu(x+_1/2) = 0, 
(2.5a) 

/   q(x,t)vq(x)dx- /   hq(w(x,t))dxvq(x)dx 
hi hi 

+ hq(-w(xj+l/2,t))vg(x-/2) - hq(w{xj_l/2,t))vq(x+_1/2) = 0, 
(2.5b) 

/   u(x,0)vi(x)dx= /   uQ{x)vi{x)dx. (2.5c) 
hi hi 

Next, we replace the smooth functions vu, vq, and Vi by test functions Vh,u, Vh,q, and 

Vh,i, respectively, in the finite element space Vu and the exact solution w = (u, qf 

by the approximate solution wh = (uh,qhY- Since this function is discontinuous 

in each of its components, we must also replace the nonlinear flux h(w(ajj+1/2,t)) 

by a numerical flux h(w)j+1/2(i) = (^u(w/l)j+1/2(t),^(wh)i+1/2(t)) that will be 

suitably chosen later. Thus, the approximate solution given by the LDG method 

is defined as the solution of the following weak formulation: 

/   dtuh(x,t)vhtU(x)dx- /   hu{wh(x,t))dxvhiU(x)dx 
hi hi 

+ hu(wh)j+1/2{t) vh>u(xJ+1/2) - K(wh)j_l/2{t) vh,u{x+_1/2) = 0,        V vhtU € Pk(Ij), 
(2.6a) 

/   qh{x,t)vh,q(x)dx- /   hq(wh(x,t))dxvhiq(x)dx 
hi hi 

+ hq{wh)j+1/2(t) vh>q(xJ+l/2) - hqiyr^j-ißit) vh,q(x+_1/2) = 0,        V vh,q e P
k{Ij), 
(2.6b) 

/  uh(x,0)vhii(x)dx= f u0{x)vh,i(x)dx,        Vv^iEP^Ij). (2.6c) 



It only remains to choose the numerical flux h(wh)j+1/2{t). We use the notation: 

[p]=P+-P~,    and     p = -(p+ +p~), 

and p±
+1/2 = p(xf+l/2). To be consistent with the type of numerical fluxes used in 

the RKDG methods, we consider numerical fluxes of the form 

h(wh)j+l/2(t) = h(wh(xj+1/2,t),vrh(x'f+1/2,t)), 

that (i) are locally Lipschitz and consistent with the flux h, (ii) allow for a local 

resolution of qh in terms of uh, (iii) reduce to an E-flux (see Osher [32]) when 

a(-) = 0, and that (iv) enforce the Instability of the method. 

To reflect the convection-diffusion nature of the problem under consideration, 

we write our numerical flux as the sum of a convective flux and a diffusive flux: 

h(w_,w+) = hcon„(w-,w+) + hdiff(w~,w+). (2.7a) 

The convective flux is given by 

hco™(w-,w+) - {f(n-,u+),0)t, (2.7b) 

where f(u~,u+) is any locally Lipschitz E-flux consistent with the nonlinearity /, 

and the diffusive flux is given by 

h*//(w-, w+) = ( - [-^ q, -W) )* ~ Vdiff [w], (2.7c) 
u 

where 

Ci2 = Ci2(w_, w+)    is locally Lipschitz, (2.7e) 

ci2 = 0   when a(-) = 0. (2.7f) 

We claim that this flux satisfies the properties (i) to (iv). 



Let us prove our claim. That the flux h is consistent with the flux h easily 

follows from their definitions, (2.3) and (2.7). That h is locally Lipschitz follows 

from the fact that /(-, •) is locally Lipschitz and from (2.7d); we assume that /(■) 

and a(-) are locally Lipschitz functions, of course. Property (i) is hence satisfied. 

That the approximate solution qu can be resolved element by element in terms of 

Uh by using (2.6b) follows from the fact that, by (2.7c), the flux hq — -g(u)—ci2 [u] 

is independent of qh- Property (ii) is hence satisfied. 

Property (iii) is also satisfied by (2.7f) and by the construction of the convective 

flux. 

To see that the property (iv) is satisfied, let us first rewrite the flux h in the 

following way: 

h(w-,w+)=(IMl-I^i»,-9W)'-C[w], 

where 

with 4>{u) defined by 0(w) = Ju f(s) ds. Since /(-, ■) is an E-fiux, 

^11 = 7^2   r   {f(s)-f(u-,u+))ds>0, 
[ul      Ju- 

and so, by (2.7d), the matrix C is semipositive definite. The property (iv) follows 

from this fact and from the following result. 

Proposition 2.1.  (L2-stability) We have, 

1   f1 fT fl 1   f1 

-I    u2
h(x,T)dx + J   j    q2

h(x,t)dxdt+&T,c([wh})<7iJo   u
2

0{x)dx, 

where 

eTlc(N) = /    E ( K(*)]*c [wfc(t)]}      dt. 
J°     1<J<N l J J + 1/2 



This result will be proven in section §2.c. Thus, this shows that the flux h given 

by (2.7) does satisfy the properties (i) to (iv)- as claimed. 

Now, we turn to the question of the quality of the approximate solution defined 

by the LDG method. In the linear case /' = c and a(-) = a, from the above stability 

result and from the the approximation properties of the finite element space Vh, 

we can prove the following error estimate. We denote the L2(0, l)-norm of the i-th. 

derivative of u by \u\e.. 

Theorem 2.2. (L2-error estimate) Let e be the approximation error w — Wh- Then 

we have, 

|   f1 \eu(x,T)\2dx + J J   \eq(x,t)\2dxdt + eT,c([e})\      < C(Ax)k, 

where C = C(k, | u \k+i, \ u \k+2)- ^n the purely hyperbolic case a = 0, the constant 

C is of order (Ax)1/2 and in the purely parabolic case c — 0, the constant C is of 

order Ax for even values of k for uniform grids and for C identically zero. 

This result will be proven in section §2.d. The above error estimate gives a 

suboptimal order of convergence, but it is sharp for the LDG methods. Indeed, 

Bassi et al [6] report an order of convergence of order k + 1 for even values of 

k and of order k for odd values of k for a steady state, purely elliptic problem 

for uniform grids and for C identically zero. Our numerical results for a purely 

parabolic problem give the same conclusions; see Table 5 in the section §2.b. 

Our error estimate is also sharp in that the optimal order of convergence of 

k + 1/2 is recovered in the purely hyperbolic case, as expected. This improvement 

of the order of convergence is a reflection of the semipositive definiteness of the 

matrix C, which enhances the stability properties of the LDG method. Indeed, 

since in the purely hyperbolic case 

ÖT,c([Wfc]) =   /        5^    { [^(t)]*Cn ^(t)] } dt, 
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the method enforces a control of the jumps of the variable UH, as shown in Propo- 

sition 2.1. This additional control is reflected in the improvement of the order of 

accuracy from A; in the general case to k + 1/2 in the purely hyperbolic case. 

However, this can only happen in the purely hyperbolic case for the LDG meth- 

ods. Indeed, since en = 0 for c — 0, the control of the jumps of Uh is not enforced 

in the purely parabolic case. As indicated by the numerical experiments of Bassi et 

al. [6] and those of section §2.b below, this can result in the effective degradation of 

the order of convergence. To remedy this situation, the control of the jumps of Uh 

in the purely parabolic case can be easily enforced by letting Cn be strictly positive 

if | c | + | a | > 0. Unfortunately, this is not enough to guarantee an improvement 

of the accuracy: an additional control on the jumps of q^ is required! This can be 

easily achieved by allowing the matrix C to be symmetric and positive definite when 

a > 0. In this case, the order of convergence of k + 1/2 can be easily obtained for 

the general convection-diffusion case. However, this would force the matrix entry 

C22 to be nonzero and the property (ii) of local resolvability of qn in terms of UH 

would not be satisfied anymore. As a consequence, the high parallelizability of the 

LDG would be lost. 

The above result shows how strongly the order of convergence of the LDG meth- 

ods depend on the choice of the matrix C. In fact, the numerical results of section 

§2.b in uniform grids indicate that with yet another choice of the matrix C, see 

(2.9), the LDG method converges with the optimal order of k + 1 in the general 

case. The analysis of this phenomenon constitutes the subject of ongoing work. 

b. Preliminary numerical results. 

In this section we provide preliminary numerical results for the schemes discussed 

in this paper. We will only provide results for the following one dimensional, linear 
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convection diffusion equation 

dtu + cdxu- ad%u = 0   in (0,T) x (0,2TT), 

u(t = 0,x) = sm(x), on(0,27r), 

where c and a > 0 are both constants; periodic boundary conditions are used. The 

exact solution is u(t, x) = e~at sin(a; - ct). We compute the solution up to T = 2, 

and use the LDG method with C defined by 

/ \c\      _VE\ C=U    o'j- (2'9) 

We notice that, for this choice of fluxes, the approximation to the convective term 

cux is the standard upwinding, and that the approximation to the diffusion term 

a &l u is the standard three point central difference, for the P° case. On the other 

hand, if one uses a central flux corresponding to ci2 = -c2i = 0, one gets a spread- 

out five point central difference approximation to the diffusion term adxu. 

The LDG methods based on Pk, with k = 1,2,3,4 are tested. Elements with 

equal size are used. Time discretization is by the third-order accurate TVD Runge- 

Kutta method [38], with a sufficiently small time step so that error in time is 

negligible comparing with spatial errors. We list the L^ errors and numerical 

orders of accuracy, for uh, as well as for its derivatives suitably scaled Axmd™uh 

for 1 < m < k, at the center of of each element. This gives the complete description 

of the error for Uh over the whole domain, as Uh in each element is a polynomial 

of degree k. We also list the L^ errors and numerical orders of accuracy for qh at 

the element center. 

In all the convection-diffusion runs with a > 0, accuracy of at least (k + l)-th 

order is obtained, for both Uh and qh, when Pk elements are used. See Tables 1 to 

3. The P4 case for the purely convection equation a = 0 seems to be not in the as- 

ymptotic regime yet with iV = 40 elements (further refinement with N = 80 suffers 
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from round-off effects due to our choice of non-orthogonal basis functions), Table 

4. However, the absolute values of the errors are comparable with the convection 

dominated case in Table 3. 

Table 1. The heat equation a = 1, c = 0. L^ errors and numerical order of 

accuracy, measured at the center of each element, for Axmd"lUh for 0 < m < k, 

and for q^. 

k variable N = 10 N = 20 AT = 40 

error error order error order 

u 4.55E-4 5.79E-5 2.97 7.27E-6 2.99 
1 Axdxu 9.01E-3 2.22E-3 2.02 5.56E-4 2.00 

Q 4.17E-5 2.48E-6 4.07 1.53E-7 4.02 

u 1.43E-4 1.76E-5 3.02 2.19E-6 3.01 
2 Axdxu 7.87E-4 1.03E-4 2.93 1.31E-5 2.98 

[Axfdlu 1.64E-3 2.09E-4 2.98 2.62E-5 2.99 

Q 1.42E-4 1.76E-5 3.01 2.19E-6 3.01 

u 1.54E-5 9.66E-7 4.00 6.11E-8 3.98 
Axdxu 3.77E-5 2.36E-6 3.99 1.47E-7 4.00 

3 [Lxfdlu 1.90E-4 1.17E-5 4.02 7.34E-7 3.99 
(Ax)3 dlu 2.51E-4 1.56E-5 4.00 9.80E-7 4.00 

Q 1.48E-5 9.66E-7 3.93 6.11E-8 3.98 

u 2.02E-7 5.51E-9 5.20 1.63E-10 5.07 
Axd^u 1.65E-6 5.14E-8 5.00 1.61E-9 5.00 

4 (Ax)2d*u 6.34E-6 2.04E-7 4.96 6.40E-9 4.99 
(Ax)3 dlu 2.92E-5 9.47E-7 4.95 2.99E-8 4.99 
(Ax)4 d*u 3.03E-5 9.55E-7 4.98 2.99E-8 5.00 

q 2.10E-7 5.51E-9 5.25 1.63E-10 5.07 
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Table 2. The convection diffusion equation a = 1, c = 1. L^ errors and numerical 

order of accuracy, measured at the center of each element, for Axmd™ Uh for 0 < 

m < k, and for qu- 

k variable N = 10 N = 20 iV = 40 

error error order error order 

u 6.47E-4 1.25E-4 2.37 1.59E-5 2.97 
1 Axdxu 9.61E-3 2.24E-3 2.10 5.56E-4 2.01 

Q 2.96E-3 1.20E-4 4.63 1.47E-5 3.02 

u 1.42E-4 1.76E-5 3.02 2.18E-6 3.01 
2 Ax dxu 7.93E-4 1.04E-4 2.93 1.31E-5 2.99 

[Axfdlu 1.61E-3 2.09E-4 2.94 2.62E-5 3.00 

Q 1.26E-4 1.63E-5 2.94 2.12E-6 2.95 

u 1.53E-5 9.75E-7 3.98 6.12E-8 3.99 
Axdxu 3.84E-5 2.34E-6 4.04 1.47E-7 3.99 

3 [Axfdlu 1.89E-4 1.18E-5 4.00 7.36E-7 4.00 
{Axf dlu 2.52E-4 1.56E-5 4.01 9.81E-7 3.99 

Q 1.57E-5 9.93E-7 3.98 6.17E-8 4.01 

u 2.04E-7 5.50E-9 5.22 1.64E-10 5.07 
Axdxu 1.68E-6 5.19E-8 5.01 1.61E-9 5.01 

4 {Axf dlu 6.36E-6 2.05E-7 4.96 6.42E-8 5.00 
{Axf dlu 2.99E-5 9.57E-7 4.97 2.99E-8 5.00 
{Axfdiu 2.94E-5 9.55E-7 4.95 3.00E-8 4.99 

q 1.96E-7 5.35E-9 5.19 1.61E-10 5.06 
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Table 3. The convection dominated convection diffusion equation o = 0.01,c = l. 

Loo errors and numerical order of accuracy, measured at the center of each element, 

for Axmd™Uh for 0 < m < fc, and for q^. 

k variable N = 10 N = 20 AT = 40 

error error order error order 

u 7.14E-3 9.30E-4 2.94 1.17E-4 2.98 
1 Axdxu 6.04E-2 1.58E-2 1.93 4.02E-3 1.98 

Q 8.68E-4 1.09E-4 3.00 1.31E-5 3.05 

u 9.59E-4 1.25E-4 2.94 1.58E-5 2.99 
2 Axdxu 5.88E-3 7.55E-4 2.96 9.47E-5 3.00 

{Axfdlu 1.20E-2 1.50E-3 3.00 1.90E-4 2.98 

Q 8.99E-5 1.11E-5 3.01 1.10E-6 3.34 

u 1.11E-4 7.07E-6 3.97 4.43E-7 4.00 
Axdxu 2.52E-4 1.71E-5 3.88 1.07E-6 4.00 

3 (Ax)2d*u 1.37E-3 8.54E-5 4.00 5.33E-6 4.00 
(Ax)3 dlu 1.75E-3 1.13E-4 3.95 7.11E-6 3.99 

q 1.18E-5 7.28E-7 4.02 4.75E-8 3.94 

u 1.85E-6 4.02E-8 5.53 1.19E-9 5.08 
Axdxu 1.29E-5 3.76E-7 5.10 1.16E-8 5.01 

4 {Axfdlu 5.19E-5 1.48E-6 5.13 4.65E-8 4.99 
[Axfdlu 2.21E-4 6.93E-6 4.99 2.17E-7 5.00 
(Ax)4d*u 2.25E-4 6.89E-6 5.03 2.17E-7 4.99 

Q 3.58E-7 3.06E-9 6.87 5.05E-11 5.92 
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Table 4. The convection equation a = 0, c = 1. L^ errors and numerical order of 

accuracy, measured at the center of each element, for Axmd"luh for 0 < m < k. 

k variable AT = 10 AT = 20 AT = 40 

error error order error order 

1 u 7.24E-3 9.46E-4 2.94 1.20E-4 2.98 
Axdxu 6.09E-2 1.60E-2 1.92 4.09E-3 1.97 

u 9.96E-4 1.28E-4 2.96 1.61E-5 2.99 

2 Axdxu 6.00E-3 7.71E-4 2.96 9.67E-5 3.00 
{Ax)2d2

xu 1.23E-2 1.54E-3 3.00 1.94E-4 2.99 

u 1.26E-4 7.50E-6 4.07 4.54E-7 4.05 

3 Axdxu 1.63E-4 2.00E-5 3.03 1.07E-6 4.21 

{Ax)2 d\u 1.52E-3 9.03E-5 4.07 5.45E-6 4.05 

{Ax)3 dlu 1.35E-3 1.24E-4 3.45 7.19E-6 4.10 

u 3.55E-6 8.59E-8 5.37 3.28E-10 8.03 
Axdxu 1.89E-5 1.27E-7 7.22 1.54E-8 3.05 

4 {Ax)2 dlu 8.49E-5 2.28E-6 5.22 2.33E-8 6.61 
(Ax)3 dlu 2.36E-4 5.77E-6 5.36 2.34E-7 4.62 

(Ax)4 d*u 2.80E-4 8.93E-6 4.97 1.70E-7 5.72 

Finally, to show that the order of accuracy could really degenerate to k for Pk, 

as was already observed in [6], we rerun the heat equation case a = 1, c = 0 with 

the central flux 

C-(!S)- 
This time we can see that the global order of accuracy in L^ is only k when Pk is 

used with an odd value of k. 
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Table 5. The heat equation a = 1, c = 0. L^ errors and numerical order of 

accuracy, measured at the center of each element, for Axmd™uh for 0 < m < k, 

and for eft, using the central flux. 

k variable N = 10 N = 20 N = 40 

error error order error order 

u 3.59E-3 8.92E-4 2.01 2.25E-4 1.98 
1 Axdxu 2.10E-2 1.06E-2 0.98 5.31E-3 1.00 

q 2.39E-3 6.19E-4 1.95 1.56E-4 1.99 

u 6.91E-5 4.12E-6 4.07 2.57E-7 4.00 

2 Axdxu 7.66E-4 1.03E-4 2.90 1.30E-5 2.98 
{^xfdlu 2.98E-4 1.68E-5 4.15 1.03E-6 4.02 

Q 6.52E-5 4.11E-6 3.99 2.57E-7 4.00 

u 1.62E-5 1.01E-6 4.00 6.41E-8 3.98 

Axdxu 1.06E-4 1.32E-5 3.01 1.64E-6 3.00 

3 {Axfdlu 1.99E-4 1.22E-5 4.03 7.70E-7 3.99 
{Axfdlu 6.81E-4 8.68E-5 2.97 1.09E-5 2.99 

1 1.54E-5 1.01E-6 3.93 6.41E-8 3.98 

u 8.25E-8 1.31E-9 5.97 2.11E-11 5.96 
Ax dvu 1.62E-6 5.12E-8 4.98 1.60E-9 5.00 

4 {Axfdlu 1.61E-6 2.41E-8 6.06 3.78E-10 6.00 

(Ax)3 dlu 2.90E-5 9.46E-7 4.94 2.99E-8 4.99 
(Ax)4diu 5.23E-6 7.59E-8 6.11 1.18E-9 6.01 

Q 7.85E-8 1.31E-9 5.90 2.11E-11 5.96 

c. Proof of the nonlinear stability. In this section, we prove the the nonlinear 

stability result of Proposition 2.1. To do that, we first show how to obtain the 

corresponding stability result for the exact solution and then mimic the argument 

to obtain Proposition 2.1. 

The continuous case as a model. We start by rewriting the equations (2.5a) 

and (2.5b), in compact form. If in equations (2.5a) and (2.5b) we replace vu{x) and 
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vq{x) by vu(x,t) and vq(x,t), respectively, add the resulting equations, sum on j 

from 1 to N, and integrate in time from 0 to T, we obtain that 

B(w,v) = 0,        V smooth v(£),    Vte(O.T), (2.10a) 

where 

B(w,v)=       /    dtu(x,t)vu(x,t)dxdt +       /    q(x,t)vq(x,t) dxdt 
Jo Jo Jo Jo 

-ft   h(w(x,t)Ydxv(x,t)dxdt, (2.10b) 
Jo Jo 

using the fact that h(w(a;, £))*dxw(x,t) = dx{<f>(u) - g(u) q) is a complete deriva- 

tive, we see that 

If1 fT f1 1   fl 

B(w,w) = -/    u2(x,T)dx +       /    q2(x,t)dxdt--       u2
Q{x)dx, 

2 Jo Jo Jo 2 Jo (2.11) 

and that #(w, w) = 0, by (2.10a), we immediately obtain the following Instability 

result: 

-/   u2(x,T)dx +       /    q2(x,t)dxdt=--       ul(x)dx. 
2 Jo Jo Jo z Jo 

This is the argument we have to mimic in order to prove Proposition 2.1. 

The discrete case. Thus, we start by finding a compact form of equations 

(2.6a) and (2.6b). If we replace vh>u(x) and vhtq(x) by vhtU(x,t) and vh,q{x,t) in 

the equations (2.6a) and (2.6b), add them up, sum on j from 1 to AT" and integrate 

in time from 0 to T, we obtain 

ßfc(wÄ,vh) = 0,        VvÄ(t)e^x<    Vt6(0,T). (2.12a) 

where 

Bh{vih,\h)=l   I   dtuh(x,t)vhtU(x,t)dxdt+       /    qh(x,t)vhiq(x,t)dxdt 
Jo Jo Jo Jo 

- I    ^   h(wh);.+1/2(t)[vh(t)]j+1/2<ft 
0   1<3<N 

-f    J2    f  H™h(x,t)ydxvh(x,t)dxdt. (2.12b) 
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Next, we obtain an expression for ^(WJ^W/J). It is contained in the following 

result. 

Lemma 2.3.   We have 

Bh(yvh,wh) =^ f  u2
h{x,T)dx+f J    q2

h{x,t)dxdt + 6T,c(M) - - j   u2
h{x,0)dx, 

where ®T,c{[^h\) is defined in Proposition 2.1. 

Next, since Bhiy^hi^h) = 0, by (2.12a), we get the inequality 

^/   u2
h(x,T)dx + J J   qfcx,t)dxdt + GT,cQyvh]) = \J   u2

h{x,0)dx 

from which Proposition 2.1 easily follows, since 

-/    u2
h(x,0)dx<-       ul{x)dx, 

by (2.5c). It remains to prove Lemma 2.3. 

Proof Lemma 2.3. After setting v^ = w/j in (2.12b), we get 

ß(wfc,wh)=4/    u2
h(x,T)dx+ I    I    ql{x,t)dxdt+        ®diss(t)dt--        u2

h{x,0)dx, 
* Jo Jo Jo Jo A Jo 

where 

®diss{t) = -     Ys     {h(Wfc)5+1/2(t) [Wfc(t)]j+i/2 +  I     h(wh{x,t)YdxWh(x,t) dx 1. 

It only remains to show that JQ   @diss(t) dt = ©T,C([
W

/I])- 

To do that, we proceed as follows. Since 

h(wh(x, t)Ydx wh(x,t) = (f(uh) - \/a{uh) qh )dxuh- g(uh) dx qh 
/Uh 

f(s) ds - g(uh) qh) 

- dx (4>(uh) - g{uh) qh) 

= dxH(wh(x,t)), 
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we get 

&diss(t)=    Y,     {[^(W^W)Ul/2-h(wh)5+1/2(t)[wh(t)]j+1/2| 
l<j<N *• J 

=   E   f[%4i))l-W(t)[w,(f)]) 
i<i<iv * J i+1/2 

Since, by the definition of H, 

[H(wh(t))} = [ <f>(uh(t))}- [g(uh(t))qh(t)] 

= [4>(uh(t))}- [g(uh(t))]qh(t) - [qh(t)]g(uh(t)), 

and since (hu, hq)1 — h, we get 

Qdiss(t)=   V   \{(l>(uh(t))]-[g(uh(t))}qh(t)-[uh(t)}hu) 

+ E (-[^)]9MW-[^)IU 
l<j<JV  l JJ+V2 

T/iis is the crucial step to obtain the I?-stability of the LDG methods, since the 

above expression gives us key information about the form that the flux h should 

have in order to make @diss (*) a nonnegative quantity and hence enforce the In- 

stability of the LDG methods. Thus, by taking h as in (2.7a), we get 

&diss(t)=   E    { [wh(*)]*C [wh(t)] 1 
l<j<iV   I Jj + l/2 

and the result follows. This completes the proof.      D 

This completes the proof of Proposition 2.1. 

c. The error estimate in the linear case. In this section, we prove the error 

estimate of Theorem 2.2 which holds for the linear case /'(•) = c and a(-) = a. To do 

that, we first show how to estimate the error between the solutions w„ = (uv, <?„)*, 

^ = 1,2, of 

dtuv + 8X {f{uv) - ^Ja{uv)qv) = 0    in (0,T) x (0,1), 

fc-3dW = 0 in(0,T)x(0,l), 

uv(t = 0) = u0fV, on (0,1). 
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Then, we mimic the argument in order to prove Theorem 2.2. 

The continuous case as a model. By the definition of the form B(-, •), (2.10b), 

we have, for v — 1,2, 

B(w„,v) =0,        V smooth v(t),    Vt E (0,T). 

Since in this case, the form #(■, ■) is bilinear, from the above equation we obtain 

the so-called error equation: 

£(e,v) = 0,        V smooth v(£),    Vte(0,T), 

where e = Wi — w2. Now, from (2.11), we get that 

B(e,e)=4/   el(x,T)dx+ [   f   e2
q{x,t)dxdt-\  I   e2

u(x,0)dx, 
2 Jo Jo Jo z Jo 

and since eu(x,0) = u0,i{x) - u0>2(x) and B(e,e) = 0, by the error equation, we 

immediately obtain the error estimate we sought: 

-I   e2
u{x,T)dx +       /    e2{x,t)dxdt=-       {uQ,i{x) - uo^x))2 dx. 

2 Jo Jo Jo A Jo 

To prove Theorem 2.2, we only need to obtain a discrete version of this argument. 

The discrete case. Since, 

Bh{wh,vh)=0,        Vvh(t)eVhxVh,    Vie(0,T), 

Bh(w,vh)=0,      Vvh(t)eVhxVh,   V£e(0,T), 

by (2.12a) and by equations (2.5a) and (2.5b), respectively, we immediately obtain 

our error equation: 

Bh{e,wh)=0,        Vvh(t) e Vh x Vh,    Vte(0,T), 

where e = w-w/j. Now, according to the continuous case argument, we should con- 

sider next the quantity Bh(e, e); however, since e is not in the finite element space, it 
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is more convenient to consider Bh(Fh(e),Fh(e)), where Fh(e(t)) = (Fh(eu(t)),Fh(eq(t))) 

is the so-called L2-projection of e(t) into the finite element space V* x V£.  The 

L2-projection of the function p into V^, Ph(p), is defined as the only element of the 

finite element space Vh such that 

/   {Vh{p)(x)-p(x))vh(x)dx = 0,       VvheVh. (2.13) 
Jo 

Note that, in fact uh(t = 0) = Ph(«o), by (2.6c). 

Thus, by Lemma 2.3, we have 

Bh(Fh(e),Fh(e))=l [   \Fh(eu(T))(x)\2dx+ f   [   \Fh(eq(t))(x)\2dxdt 
1 Jo Jo Jo 

+ eTlc([Ph(e)]) - \ j   |Ph(eu(0))(a;) \2dx, 

and since 

Ph(eu(0)) = Fh{u0 - uh(0)) = Fh{u0) - uh{0) = 0, 

by (2.6c) and (2.13), and 

Bh(Fh(e),Fh(e)) = Bh(Fh(e)- e,Pfc(e))= ßh(Ph(w) - w,Ph(e)), 

by the error equation, we get 

I f   \Fh(eu{T))(x)\2dx + f   f   \Fh(eq(t))(x)\2dxdt 
^ Jo Jo Jo 

+ eT,c([Ph(e)]) = Bh(Fh(w) - w,Ph(e)). 
(2.14) 

Note that since in our continuous model, the right-hand side is zero, we expect the 

term B(Fh(w) - w,Ph(e)) to be small. 

Estimating the right-hand side. To show that this is so, we must suitably 

treat the term B(Fh(w) - w,Fh(e)). 
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Lemma 2.4.  For p = P/i(w) — w; we have 

Bh(p,Fh(e))<^@T,c(p) + ^J j   \Fh(eq(t)){x)\2dxdt 

+ (Ax)2k  I   Cx(t)dt+{Ax)k J   C2 (*){/"   \Fh(eu(t))(x)\2dx\     dt, 

where 

Ci{t) = 2 c\ | ( (|C|+1
CU)2 A*| c12 |2 d\ ) | «(t) \l+1 + a (Axf('k-V | u(t) ||+1 }, 

C2(i)= 2Cfc|v^|ci2|«(t)|i+2 + a(Ax)2^-fc)|«(t)||+2|. 

where the constants Ck and dk depend solely on k, and k = k except when the grids 

are uniform and k is even, in which case k = k + 1. 

Note how Cn appears in the denominator of Ci(t). However, C\(t) remains 

bounded as cn goes to zero since the convective numerical flux is an E-flux. 

To prove this result, we will need the following auxiliary lemmas. We denote by 

I u 12rT<.k+i)(j) the integral over J of the square of the (fc + l)-the derivative of u. 

Lemma 2.5.  For p = P/i(w) — w, we have 

\pZj+i/2 I < ck (Ax)k+1/2 \u \H(f.+iHji+1/a), 

I [Pu]j+i/2| < Ck{Ax)k+1/2\u\m*+i)(j.+1/2), 

\p^j+1/2\< ckVa~(Ax)k+1/2\u\mk+2HJ.+i/2), 

| [pq }j+1/2 | <  Ck Vä ( AX )fc+1/2 | U |jT(*+a)( ji+1/a), 

where Jj+1/2 = Ij U Ij+i, the constant ck depends solely on k, and k = k except 

when the grids are uniform and k is even, in which case k = k + 1. 

Proof. The two last inequalities follow from the first two and from the fact that 

q = i/o dxu. The two first inequalities with k = k follow from the definitions of pZ, 

and [pu] and from the following estimate: 

\*h(u){xf+l/2)-uj+i/2\< -ck{Ax)k+l/2\u\H(k+1){J.+i/2), 
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where the constant Ck depends solely on k. This inequality follows from the fact 

that ¥h{u)(x± l/2) - Uj+i/2 = 0 when u is a polynomial of degree k and from a 

simple application of the Bramble-Hilbert lemma; see Ciarlet [11]. 

To prove the inequalities in the case in which k = k + 1, we only need to show 

that if u is a polynomial of degree k + 1 for k even, then p^ = 0. It is clear that it 

is enough to show this equality for the particular choice 

u(x) = {(x-xj+1/2)/(Ax/2))k+1. 

To prove this, we recall that if Pi denotes the Legendre polynomials of order £: 

(i) J\ Pt{s)Pm{s)ds = ^5lm, (ii) P/(±l) = (±1)', and (iii) Pe(s) is a linear 

combination of odd (even) powers of s for odd (even) values of £. Since we are 

assuming that the grid is uniform, AXJ = Axj+l = Ax, we can write, by (i), 

for x 6 Ij. Hence, for our particular choice of u, we have 

R*+I/2=4 E ^r1/1 ^){(^-i)fc+1^(i) + (^+i)fc+1^(-i)}^ 

= \ E 21i1[k+l)f ^^{(-i^-'w + ^c-1)}* 
0<^,i<fc \     %     J J-l 

0<«,i<fc ^ ' 1 

by (ii). When the factor {(-l)fc+1~i + (—1)^} is different from zero, \k+l-i + £\ 

is even and since k is also even, | % — I | is odd. In this case, by (iii), 

!\Pi{s) si ds = 0, 

and so Puj+1/2 = 0- This completes the proof.    D 

We will also need the following result that follows from a simple scaling argument; 

see Ciarlet [11]. 
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Lemma 2.6.   We have 

I [Ph(p)]i+i/21 < 4 (Ax)"1/21| Ph(p) ||L3(j), 

w/iere Jj+1/2 — Ij U -fj+i anc^ ^e constant dk depends solely on k. 

We are now ready to prove Lemma 2.4. 

Proof of Lemma 2.4. To simplify the notation, let us set v^ = Fhe. By the defini- 

tion of Bh(-, ■)> we have 

Bh{p,vh)=       /    dtPu(x,t)vhiU(x,t)dxdt+       /   pq(x,t)vhtq{x,t) dxdt 
Jo Jo Jo Jo 

- f      E    6(P)i+l/2(*)[Vh(*)Ul/2<ft 

- /    E    / Hp(x>t)Yd^vh{x,t)dxdt 
0   l<j<N''Ii 

=-/ E Mp);+1/2(t)[v4i)]i+i/2Ä, 
0 i<j<^ 

by the definition of the L2-projection (2.13). 

Now, recalling that p = (PmVqY and that v/j = (vu,vqY, we have 

h(p)*[vfc(t)] = (cpZ-cu[pu])[vu] 

+ (-Va~Pq~- cl2[pq}) [vu] 

+ {-VäpZ + Cl2[Pu]) [vq] 

= 01+02+03- 

By Lemmas 2.5 and 2.6, 

,   |0x| < ck(Ax)k+1/2\u\Hk+HJ)(\c\ + cu)|[uu]|, 

I 02 I < Cfc 4 (Acc)fc (a I it |HM-2(i7) (A£c)fc_fc + Vä | ci2 \ \ u \m+^(j))) II vu \\L*(J), 

\93\< ckdk{Ax)k (^/ä\u\Hfl+1{j){Ax)k~k + |ci2 | |«|jy*+i(j))) IKIUw 
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This is the crucial step for obtaining our error estimates. Note that the treatment of 

61 is very different than the treatment of 92 and 03. The reason for this difference is 

that the upper bound for 0i can be controlled by the form 0T,C(K])- we recall that 

vh = Fh(e). This is not the case for the upper bound for 82 because ©T,C[V/I] = 0 

if c = 0 nor it is the case for the upper bound for 83 because @T,C [vh] does not 

involve the jumps [vq]! 

Thus, after a suitable application of Young's inequality and simple algebraic 

manipulations, we get 

h(p)* [ vh(*)] < \ dl [vu? + \\\vq |||2(J) + \ d(t) {Ax)2k + \ C2(t) (Ax)k || vu ll^jr). 

Since 

r-T-t 

Bh(p,vh)<[    Yl    |h(p)-+i/2(*)[vh(t)]i+i/2|^ 
0 i<j<w 

and since Jj+1/2 — Ij U Ij+u tne result follows after simple applications of the 

Cauchy-Schwartz inequality. This completes the proof.    D 

Conclusion.  Combining the equation (2.14) with the estimate of Lemma 2.4, 

we easily obtain, after a simple application of Gronwall's lemma, 

{  f \Fh(eu(T))(x)\2dx + j J   \Fh(eq(t))(x)\2dxdt + eT,c([Ph(e)])\ 

<  (Ax)k   I   ^/cUt)dt + {Ax)k j   C2{t)l I   |Pfc(eu(t))(a:)|2da;|     dt. 

Theorem 2.2 follows easily from this inequality, Lemma 2.6, and from the following 

simple approximation result: 

||p-Ph(p)IU2(0il) < gk{Ax)k+1\p\H(*+i){0!l) 

where gk depends solely on k; see Ciarlet [11]. 
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3. The LDG methods for the multi-dimensional case. In this section, we 

consider the LDG methods for the following convection-diffusion model problem 

dtu+  £ ^(/i(«)-   E   aij(u)dXju)=0   in(0,T)x(0,l)d,   (3.1a) 
l<i<d l<j<d 

u(t = 0)=UQ, on(0,l)d, (3.1b) 

with periodic boundary conditions. Essentially, the one-dimensional case and the 

multidimensional case can be studied in exactly the same way. However, there are 

two important differences that deserve explicit discussion. The first is the treatment 

of the matrix of entries dij(u), which is assumed to be symmetric, semipositive 

definite and the introduction of the variables <#, and the second is the treatment of 

arbitrary meshes. 

To define the LDG method, we first notice that, since the matrix aij{u) is as- 

sumed to be symmetric and semipositive definite, there exists a symmetric matrix 

bij (u) such that 

aij(u) =   ^2   l>ie(u)b£j(u)- (3-2) 
i<e<d 

Then we define the new scalar variables qt - Y,i<j<d ^j(u) ®XJ 
u and rewrite the 

problem (3.1) as follows: 

l<i<d l<e<d 

qi-   E  ^^-(«)=0,    £ = l,...d, in(0,T)x(0,l)d,      (3.3b) 
l<j<d 

u(t = 0)=«o, on(0,l)d, (3.3c) 

where gtj(u) = Ju btj(s)ds. The LDG method is now obtained by discretizing 

(3.3) by the Discontinuous Galerkin method. 

We follow what was done in §2. So, we set w = (it, q)* = (u, <?i, ■ ■ ■ , qdY and, 

for each i = 1, • ■ ■ , d, introduce the flux 

hi(w) = (fi(u) -   ^2   Mw) Qi> -9u{u), • - - , -gdi(u))'. (3.4) 
K£<d 
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We consider triangulations of (0, l)d, TAX = { K}, made of non-overlapping poly- 

hedra. We require that for any two elements K and K', K n K is either a face 

e of both K and K' with nonzero {d — 1)-Lebesgue measure | e |, or has Hausdorff 

dimension less than d — 1. We denote by £&x the set of all faces e of the border 

of K for all K e T&x. The diameter of K is denoted by Aa;^ and the maximum 

AXK, for K E T&x is denoted by Ax. We require, for the sake of simplicity, that 

the triangulations T&x be regular, that is, there is a constant independent of Ax 

such that 

PK 

where PK denotes the diameter of the maximum ball included in K. 

We seek an approximation w^, = (UH, qa,)* = (uh, Qhi, - - - , IhdY to w such that 

for each time t € [0, T], each of the components of wa, belong to the finite element 

space 

Vh = Vf = {ve L\(0, If) : v\K e Pk(K) V K e TAx}, (3.5) 

where Pk(K) denotes the space of polynomials of total degree at most k. In or- 

der to determine the approximate solution w/,, we proceed exactly as in the one- 

dimensional case. This time, however, the integrals are made on each element K of 

the triangulation TAx. We obtain the following weak formulation on each element 

K of the triangulation TAx: 

/   dtuh(x,t)vh,u{x)dx-  Y]   /   hiu(wh(x,t))dXivhiU(x)dx 
JK lMdJK 

+ /    hu{wh, ndK)(x,t)vhlU(x) dT(x) = 0,        V vhfU e Pk(K), 
J9K (3.6a) 

For £= 1,--- ,d: 

/   qM(x,t)vh,qi{x)dx-   V    /   hjqe(wh(x,t))dXjvh,qf(x)dx 

+ [   K(™h,ndK)(x,t)vhtqe(x)dr(x)=0,    Vvh}qfePk(K), 
J9K (3.6b) 
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/   uh(x,0)vhti(x)dx=       uo{x)vhti(x)dx,        Vvh>iePk(K), 
JK JK (3.6C) 

where XIQK denotes the outward unit normal to the element K at x 6 dK.   It 

remains to choose the numerical flux (hu,hqi,--- ,hqdY = h = h(wh,YLSK)(X,t). 

As in the one-dimensional case, we require that the fluxes h be of the form 

h{wh,ndK)(x) = h(wh{xint«,t),wh(xextK,t);ndK), 

where wh(x
intK) is the limit at x taken from the interior of K and Wh(xextK) the 

limit at x from the exterior of K, and consider fluxes that (i) are locally Lipschitz, 

conservative, that is, 

Hwh(x
intK),wh(x

extK);ndK)+Hwh(xe:c^),wh(x
in^)]-ndK) = 0, 

and consistent with the flux 

/] hjna^i, 
l<i<d 

(ii) allow for a local resolution of each component of q^, in terms of UH only, (iii) 

reduce to an E-flux when a(-) = 0, and that (iv) enforce the Instability of the 

method. 

Again, we write our numerical flux as the sum of a convective flux and a diffusive 

flux: 

h = hconv + hdiff, 

where the convective flux is given by 

hcom,(w_,w+;n) = (f(u~,u+] n),0)*, 

where f(u~ ,u+; n) is any locally Lipschitz E-fiux which is conservative and consis- 

tent with the nonlinearity 

Y^j   fi(.U)ni> 
Ki<d 
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and the diffusive flux hdi//(w  , w+; n) is given by 

l<i,£<d Ki<d Ki<d 

where 

■*iff 

(     0 C12 Ci3 

-Ci2 0 0 

-eis 0 0 

V-cid 0 0 

Cld\ 
0 
0 

0 / 

dj = cij(w  , w+)    is locally Lipschitz for j = 1, ■ ■ ■ , d, 

cij = 0   when o(-) = 0   for j = 1, - ■■ ,d. 

We claim that this flux satisfies the properties (i) to (iv). 

To prove that properties (i) to (iii) are satisfied is now a simple exercise. To see 

that the property (iv) is satisfied, we first rewrite the flux h in the following way: 

(- £ ^9xt--qWi,-  J2 9n(u)ni,~- ,-  ^ &d(w)ni )*-C| w 
l<i,(.<d 

U 
Ki<d Ki<d 

where 

C = 

/   Cn        Ci2     Ci3      ■ 
-Ci2        0 0        ■ 
-Ci3        0 0        ■ 

C\ 

\-cid     0      0     ■ 

1    /   V-    [0i(«)] 
1_M    2_, 

■    J  M<t<d      L    J 

Cld\ 
0 
0 

0/ 

n4-/(«",u+;n) J, 

where $;(«) = /u /i(s) ds. Since /(-, ■; n) is an E-flux, 

1       fu+ 
c^ = Tl2   /      ( £ /i(s)ni-/(«-,«+;n))ds>0> 

KKd 

and so the matrix C is semipositive definite.  The property (iv) follows from this 

fact and from the following multidimensional version of Proposition 2.1. 
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Proposition 3.1.  (Instability) We have, 

T 
I n?(x.T)d.x +  I If        u2

h{x,T)dx+ [   [        \qh(x,t)\2dxdt + @TtC({wh})<l f        u2(x)dx, 
2 J(o,i)d Jo J(o,i)d z J(o,i)d 

where 

9r,c([wh])=/     Yl   f[^h(x,t)]tC[wh(x,t)}dT(x)dt. 

We can also prove the following error estimate.   We denote the integral over 

(0, l)d of the sum of the squares of all the derivatives of order (k + 1) of u by 

l«lfc+i- 

Theorem 3.2.  (L2-error estimate) Let e be the approximation error w —w^.  Then 

we have, for arbitrary, regular grids, 

{   f        \eu(x,T)\2dx+ f   [        |eg(a;,i)|26M + eTiC([e]))      <C(Ax)\ 
I J(o,i)d Jo J(0,l)d ) 

where C = C(k, | u \k+i, \ u \k+2)- In the purely hyperbolic case aij = 0, the constant 

C is of order (Ax)1/2. In the purely parabolic case c = 0, the constant C is of order 

Ax for even values of k and of order 1 otherwise for Cartesian products of uniform 

grids and for C identically zero provided that the local spaces Qk are used instead 

of the spaces Pk, where Qk is the space of tensor products of one dimensional 

polynomials of degree k. 

The algebraic manipulations needed to prove this result are a straightforward 

extension to the multidimensional case of the manipulations of the proof of the 

corresponding one-dimensional result, Theorem 2.2. The approximation properties 

of the finite element spaces Vu that extend the results of Lemmas 2.5 and 2.6 are 

the following. Let e denote a face of the element K and let us denote by Ke the 

element sharing the face e with K, then 

|| Ph {u^-u || L2(e) < -ck(Ax)k+1/2\u\H(k+iHKuKs), 
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where Pj^ti)* is either the value of Ph(u) at e from the interior of K or from its 

exterior, and 

II [Pfc(p)] \\me) <  dk (Ax)"1/2 || Fh(p) \\L2{KUKJ, 

where [lr\(p)] denotes the jump at e of Ph(p). Finally, we also use the following 

result: 

\\p-Wh(p)\\LZ(o,iy < Ä(Ax)fc+1|p|H(fc+i)(o,i)d, 

All these approximation results can be found in Ciarlet [11], for example. 

4. Concluding remarks. In this paper, we have considered the so-called LDG 

methods for convection-diffusion problems. For scalar problems in multidimensions, 

we have shown that they are L2-stable and that in the linear case, they are of order 

k if polynomials of order k are used. We have also shown that this estimate is sharp 

and have displayed the strong dependence of the order of convergence of the LDG 

methods on the choice of the numerical fluxes. 

The LDG methods for multidimensional systems, like for example the compress- 

ible Navier-Stokes equations and the equations of the hydrodynamic model for 

semiconductor device simulation, can be easily defined by simply applying the pro- 

cedure described for the multidimensional scalar case to each component of u. In 

practice, especially for viscous terms which are not symmetric but still semipos- 

itive definite, such as for the compressible Navier-Stokes equations, we can use 

q = {pXx u,...,dXd u) as the auxiliary variables. Although with this choice, the L2- 

stability result will not be available theoretically, this would not cause any problem 

in practical implementation; see Bassi and Rebay [5] and Bassi et al [6]. 

The main advantage of these methods is their extremely high parallelizabil- 

ity and their high-order accuracy which render them suitable for computations 

of convection-dominated flows.   Indeed, although the LDG method have a large 
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amount of degrees of freedom per element, and hence more computations per ele- 

ment are necessary, its extremely local domain of dependency allows a very efficient 

parallelization that by far compensates for the extra amount of local computations. 

Acknowledgments. The authors want to thank X. Makridakis for bringing to 

their attention the reference [3], and H. Atkins for helpful discussions in the com- 

putation. 
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