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Abstract 

The matrix D — kI'm. polynomial approximations of order AT is similar to a large Jordan 

block which is invertible for nonzero k but extremely sensitive to perturbation. Solving the 

problem (D — kl)f — g involves similarity transforms whose condition number grows as AH, 

which exceeds typical machine precision for N > 17. By using orthogonal projections, we 
reformulate the problem in terms of Q, the pseudo-inverse of D, and therefore its optimal 

preconditioned The matrix Q in commonly used Chebyshev or Legendre representations 
is a simple tridiagonal matrix and its eigenvalues are small and imaginary. The particular 
solution of {I — kQ)f = Qg can be found for all real k at high resolutions and low compu- 

tational cost {O(N) times faster than the commonly used Lanczos tau method). Boundary 

conditions are applied later by adding a multiple of the known homogeneous solution. In 
Chebyshev representation, machine precision results are achieved at modest resolution re- 

quirements. Multidimensional and higher order differential operators can also take advantage 

of the simple form of Q by factoring or preconditioning. 
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1     Introduction 

In many situations it is necessary to solve a family of differential equations of the form 
Akf = g where Ak is a differential operator, k is a parameter, and / £ D{Ak) and g G R(Ak) 
are functions of the independent variable x € Ü. A common example of this problem is the 
differential equation 

{£ ■k)f{x)=9{x) (1) 

where k is real and the absolute value of k is bounded by a possibly large number K. The 
domain on which the differentia] equation holds is a finite interval, say x G (—1,1), and the 
Dirichlet boundary condition f(xb) = 0 is applied at the boundary xb £ {±1}. Since the 
problem admits the homogeneous solution fh{x) - ek^~x^ which can rapidly grow in the 
sgn(fc) direction, it is essential to apply the boundary condition at the proper side of the 
domain (xb = sgn(fe)) in order to have a well posed problem. 

Our choice of the model problem (1) is motivated by physical applications, but also by 
the fact that the polynomial approximation of (1) has the form of a Jordan block matrix. 
Since any matrix can be written as A = S + N where S is diagonalizable, N is nilpotent 
and SN = NS, the correspondence between (1) and its polynomial approximation is of 
fundamental importance. The well known numerical difficulties with Jordan blocks of a 
matrix are reflected in solving the problem (1). 

We shall show that continuous and discrete versions of the problem (1) may be replaced 
by a reformulated optimally preconditioned problem whose solution involves operations with 
simple tridiagonal matrices. The reformulated problem leads to a solution procedure which 
is very efficient, numerically stable, and accurate to machine precision (e ss 2.22 X 10_ie 

when double precision is used) in Chebyshev polynomial representation at modest resolution 
requirements which grow slowly with \k\. 

1.1    An example 

In cylindrical geometry, the Laplacian operator may be written as 

Ulog(r)J   +{d0) 

Taking the Fourier transform in the 6 direction, we may write 

JL    f      a      ]2 

' k vl (—V- \dlog(r)j 
.2 

1 

def       1 

d 

of log (r) 

d 

dlog(r) 

(2) 

+ 1*1 

(3) 

where k is the circumferential wavenumber and T and B are operators of the form (1) with 
x = log(r).  This factorization of the Laplacian arises in the context of applying the exact 



artificial boundary conditions [6]. To prohibit the growing mode as r -+ oo, one must have 

that 
"     d 

dlog(r) + 1*1 A(r) 0 (4) 

at the limit r = R of the finite computational domain. This boundary condition is nonlocal 

and it is best applied in the Fourier domain. TD solve the problem 

w= -w (5) 

with the boundary conditions 0|r=i = 0 and if? —> 0 as r —► oo, assume that the support of 

u; is contained within the computational domain of radius R. Given that u? = 0 outside the 

computational domain, the boundary condition (4) applied at r = R is the exact equivalent 

of the boundary condition at infinity. The solution in the Fourier domain takes three steps 

and may be written as 

(6) 

(?) 

(8) 

where the inverses of the operators T and B are taken by applying the indicated boundary 
conditions. Therefore, this numerical solution depends on solving the equation (1). 

Gb =  -f2wfc 

& =   B~lCk where &(r)|r=R = 0 

t^fc =   F~l£k where ^(r)|r=i = 0 

2     Polynomial approximation 

Our aim shall be to solve this equation numerically on function spaces consisting of polyno- 

mials of degree at most N. Let D be the discretized representation of the derivative operator 

on the (AT + l)-dimensional space PN of iV-th order polynomials, and let us write the original 

equation as follows: 
(D-kI)f = g (9) 

where / and g are vectors representing the functions f(x) and g(x) in Pff. The boundary 
condition also has to be satisfied, but as we shall see, this leads to an overdetermined problem 
whenever it ^ 0. In this regard, polynomial approximations are intrinsically different from 

the original continuous problem. 
There are two difficulties that have to be resolved. First, each differentiation reduces 

the degree of the polynomial, cascading all polynomials in PN to zero in at most N + 1 
differentiation steps. Therefore, D is a nilpotent operator with the characteristic polynomial 
X(s) = sN+l, which is also its minimal polynomial. It follows that for all k ^ 0 the ma- 

trix D — kl is invertible and our representation has a unique solution, which is in general 

incompatible with the boundary condition. 
Since x(^) = DN+1 = 0, we can write this solution exactly as a finite sum when k ^ 0: 

Tl—U 

(10) 



This equation, while exact, is extremely poorly conditioned for large N\ this constitutes 

the second difficulty [5]. By changing the polynomial basis functions from xn to xn/n), 

we see that the above formula defines an upper triangular Toeplitz matrix T with entries 
J\. = _fc*-i-i for j > i. However, the similarity transform between the basis functions 

a;" and xnjn\ has the condition number AT!, which appears singular to machine precision 
when N > 17. Therefore, this exact equation is not computationally useful in the context 

of solving differential equations where N needs to be much larger than just 17. 

This problem becomes even harder when orthogonal polynomials are used. The condition 

number of the similarity transform between the Chebyshev polynomial basis {Tn{x)}^=Q and 

the companion form basis {xn/n\}%=0 is 2N~lN\, which exceeds machine precision as soon 

as N > 14. 
Both difficulties can be traced to the loss of the homogeneous solution in the discretized 

problem. More degrees of freedom are needed to resolve the difficulties. The Lanczos tau 

method [4] introduces an additional high order polynomial of degree N + 1 in order to 

satisfy the boundary condition. The resulting system of equations on Pjv+i may be written 
as (A + uvT)f = (j?r,0)T, where A restricted to PN coincides with D — kl and the outer 

product uvT arises from the boundary condition. Even though the matrix A may have a 
simple structure, A + uvT is hard to invert since one cannot directly apply the Sherman- 

Morrison formula [3] 

(A+uv-r=A-1 - f^f^ (11) v 1 + v1 A lu 
due to the fact that inverting the restriction of A to P^ is ill-conditioned. 

We propose a procedure which is well conditioned and still preserves the tridiagonal form 
of the matrices involved. This approach is 0(N) times faster than the the tau method which 

introduces a full row into the matrix to be inverted. 

3    Problem reformulation 
The source of difficulties is the nilpotent part of D — kl. We note that D is a non-normal 

operator for which the commutator DD* —D*D is of rank 2 in companion form representation 

and acts by 

*-"!    n) iV! ra=0 

so it is natural to use a preconditioner based on D. Fortunately, the optimal preconditioner 
in typical spectral representations has a simple form. This important observation suggests 

the following solution method. 
Instead of using the Lanczos tau method to apply the boundary condition, we shall 

construct an integration operator Q as the pseudo-inverse of D and seek a particular solution 

of the discretized problem rewritten as follows: 

(I-kQ)fp*Qg = Q{D-kI)f. (13) 

The approximation QD w I will be justified later, in section 6. The reformulated prob- 

lem (/ - hQ)fp = Qg has the solution /„ = (/- kQ)~lQg.   The full solution of (9) is 



then obtained as / = fp + afh where fh represents the homogeneous solution ek^~Xb') and 

a = -fp(xb). This delayed application of the boundary condition allows us to choose an 

integration operator Q with optimal numerical properties, which can be thought of as a sur- 
rogate boundary condition. This two step solution procedure is analogous to the use of the 

Sherman-Morrison formula. The reformulated problem now involves integrations instead of 
differentiations. This change leads to well behaved numerical implementations. Moreover, 
we shall demonstrate that in typical polynomial representations the matrix Q has a simple 

form which leads to efficient algorithms. 
Integration preconditioned for differential operators in spectral methods are tridiagonal 

for arbitrary classical orthogonal polynomial families [2]. The use of the pseudoinverse of D, 

proposed here, is an improvement which simplifies analysis and guarantees optimal numerical 

results in each orthogonal polynomial representation. 

4    The pseudo-inverse of the derivative operator 

The pseudo-inverse Q of the matrix D is the unique minimal Frobenius norm solution to 

min ||DQ — I\\F. This condition amounts to the requirement that DQ and QD be orthogonal 

projections onto image(D) and image(Q), respectively [3]. 
To construct the pseudo-inverse of D we first note that ker(D) = P0 and that image(D) = 

PN-I C PN- From the commutative diagram 

PN      -2»    PN 

n; t* (14) 
PNIPU   A   P,V-I 

where II is the canonical projection to the coset space PN/PQ, A is invertible, and $ is the 
insertion map, we conclude that the pseudo-inverse D'_1) is given by 

Q^DM^II^A-1*«-1) (is) 

where $(-0 is the orthogonal projection to PN-I and ü'-1^ is the insertion map whose image 

is PQ, the subspace orthogonal to PQ. In this construction orthogonality plays a key role. 

Each Q depends on a chosen inner product on PN, which will be clear from the context. 
This definition satisfies the conditions that QD and DQ be the orthogonal projections 

to image(Q) = PQ   and image(D) = PN-I, respectively. The commutator is 

[D, Q] = DQ-QD = UPN_, - UPo, = UPo - IT^ (16) 

which is an operator of rank 2, showing that Q and D nearly commute. Orthogonal projection 
operators 11^ to various subspaces V will be appear often in the following discussion. 

Let {pn}n=o be orthogonal basis polynomials (not necessarily normalized) such that 

deg(pn) = n. The matrix form of D is 

D=\ °™   _A    I (17) 
Ulxl      UlxAT 



and therefore 

Q 
OixN     Oixl 

A"1    Ov Xl 
(18) 

This gives us a simple method of constructing Q. For example, if the polynomials pn{x) — 
xn/n\ are defined to be orthogonal, D is reduced to its companion form where A = I and 
Q = DT. 

For the metric generated by the Chebyshev polynomials pn(x) = Tn(x) = cos(re cos l(x)), 
one obtains the tridiagonal matrix 

0 

Q 

0   0 0 0 
1   0 1, 

2 0 
o i 0 1 

4 

1 0 
1 

2{N-2) 

0 
0 0 

2(JV-1) 

0 

2(AT-2) 

0 
1 

2N 

(19) 

while the Legendre polynomials lead to a slightly different tridiagonal matrix 

Q 

o o 
1   0 
0   h 

0      0 0 

i n L_ 
2AT-5 u 2N-1 

0 
0 
0 

2AT-3 

0 2N-1 

(20) 

Numerical evidence indicates that the eigenvalues of Q in both Chebyshev and Legendre 
representations lie on the imaginary axis. This favorable distribution of eigenvalues need not 
happen in general. We conclude that in all three cases (companion form, Chebyshev and 
Legendre representations) the matrix / — kQ is an invertible tridiagonal system for all real 
fe. 

5     Eigenvectors and eigenvalues of Q 

Given an orthonormal basis of PN ordered by basis polynomial degree, let us denote the 
components of a vector v 6 PN by va, vi,... ,vN. In any polynomial representation, for 
eigenvalue A / 0 the equation Qv = \v implies that the constant polynomial component 
satisfies VQ = 0 so that v JL PQ. Thus, we obtain 

DQv = \Dv (21) 



where DQ is an orthogonal projection to Pff-i, the range of D. Recall that p^ _L PN-\ 
an(i 

scale v so that v = u + pw where u € PN-I- Therefore, DQv = v — pw and 

(/ - XD)v = PN 

so that 
N 

(i-\D)-i
PN = Y:*nDnPN 

(22) 

(23) 
n=0 

where v J_ P0 provided that A is an eigenvalue of Q. This exact equation defines the 

eigenvectors once the nonzero eigenvalues of Q have been obtained, but it is very sensitive 
to perturbations in A due to the same numerical difficulties as the equation (9). Conversely, 

eigenvalues A are very sharply defined. Our aim shall be to determine the form of eigenvectors 

analytically. 
We note that the homogeneous solution of the continuous equivalent of the eigenvector 

equation (22) is ex/x, a highly oscillatory function for small but nonzero imaginary A. One is 

reminded of the Fourier series, since the frequencies |1/A| are approximately evenly spaced 
given Chebyshev representation. The integration operator Q in Chebyshev representation 

may be thought of as a rough approximation of the Fourier integration operator. This 

suggests that the Jordan decomposition of Q may be reasonably well conditioned. 

A particularly simple form of v can be derived when N + 1 = 2J. In this case, the sum 
of N + 1 terms can be factored as a product of only log2(7V + 1) terms so that 

j l 

v=]J(I+(\Df)p„. (24) 
j=o 

The eigenvalue zero has multiplicity at least one, since Qpw = 0. A basis for the invari- 

ant subspace associated with A = 0 can be constructed by seeking nontrivia.1 solutions to 

equations of the form Q^Vj = 0. For basis polynomials xn/n\ which bring D to its companion 

form, all eigenvalues of Q are zero, and Q acts by mapping xn/n\ i-> xn+l/(ra + 1)! for n < N. 
For Chebyshev or Legendre polynomials the matrix Q is related to the. simple matrix 

0 0 0 0 
10-10 
0    10-1 

1 0 -1   0 
0 1 0    0 
0 0 1     0 

(25) 

0 

by row or column scaling, respectively. This matrix also corresponds to another Q obtained 

from polynomial basis functions which satisfy the recurrence relation pn+\{x) — pn-i(x) = 

fpn(x)dx. 



Let A be a nonzero eigenvalue of this matrix. The first N components v0,..., u;v-i of the 
corresponding eigenvector may be then written as 

vn = i~n sm(n<f>) (26) 

with the last component being vN = - cos(/V0) tan (0)^/2. This follows from the formula 

i sin((re - 1)0) - T sin((re + 1)0) = 2i cos(0) sin(re0) (27) 
i 

and the requirement that sin(iV0) = 0. Nontrivial solutions can be obtained for <j) = mx/N 
where m = 1,..., N—l (except that m ^ Nj2). The corresponding eigenvalues A = 2i cos(0) 
all lie on the imaginary axis. The remaining 2 (for odd N) or 3 (for even AT) eigenvalues 
are zero, with the eigenvector pjv- Therefore, all eigenvalues lie on the imaginary axis and 
|A  < 2. 

For Q obtained from the Chebyshev polynomial basis, we write the eigenvector compo- 
nents v0...., VN i as vn = i~nZn and require Z0 = Zpj = 0. The last component is then 
vN = il~N

ZN-II(2N\). We obtain the recurrence relation 

Z„_! + Zn+l = -2inXZn (28) 

whose solutions for nonzero A are linear combinations of Bessel functions [1] 

Zn = aJn(p,)+ßYn{u) (29) 

where we have defined w = —i/X. 
We can obtain eigenvectors v provided that A is a root of the equation 

det 

or equivalent ly 

= 0 (30) 

where Hankel functions #^(w) = J„(w) + iYn(w) are introduced. 
Remembering that arg(z) = im(log(.z)), we consider the imaginary part of the function 

e(w)   =   Alogf^M) (32) 

which is approximately 1 over an interval of width O(N) and decays towards zero for u; > N. 
The plot of im(0(w)) for the case N = 32 is shown in figure 1. We conclude that in Chebyshev 
representation the eigenvalues A = — i/to are nearly evenly spaced in w over a broad range. 
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Figure 1: Derivative of the phase difference of Hankel functions vs. u> for the case N = 32. Dots are 
placed on the computed curve at w values corresponding to the numerically computed eigenvalues 
X = —i/u. The area under the curve between any two consecutive dots is 7r. 



The smallest root u> corresponds to the largest A. For u> < N, the equation (31) reduces 

to arg(ff^(w)) ra TT/2 and we conclude that min(|u;|) fa j01, the first zero of the Bessel 
function Ja(w). The corresponding max(|A|) w l/jo,i = 0.415831. 

Since QPN — 0, A = 0 is an eigenvalue with multiplicity at least one. The basis of the 
invariant subspace associated with A = 0 depends on the parity of N. For odd AT, A = 0 has 
multiplicity 2 and Q acts by mapping 

JV(l1012,01210,...,210)rAp^Ao    , (34) 

while for even AT, the zero eigenvalue has multiplicity three and one obtains the sequence 

AT (N2/2,Q, N* - 22,0, AT2 - 42,0,..., AT2 - {N - 2)2,0,o)T A 

]V(0,2,012,ö1...,2,0fApJVÄ0. (35) 

This longer sequence is also responsible for a substantial increase in the condition number 
of the similarity transform S between the Q in Chebyshev representation and its Jordan 
decomposition. For example, K(S) is 36.3848 for AT = 63. increases to 1.38497 x 106 for 
N = 64, and goes back down to 23.3846 for N = 65. In general, odd N produced better 
conditioned Jordan decomposition in all of the numerical tests, with rc(S) fa 0(N/2). We 
shall pay particular attention to odd N of the form 2J — 1. 

The physical interpretation of these sequences generated by the nilpotent part of Q 
for large N is that polynomial representations of functions whose first (and possibly second) 
integrals have discontinuities at the boundaries (a; = ±1) are mapped to pNl which is mapped 

to zero. 
While this completes the description of the effect of Q in Chebyshev representation, the 

equation (31) could not be solved in closed form for all roots u. Instead, the characteristic 
polynomial of Q was derived analytically in Mathematica 3.0 for N = 32, confirming that 
machine precision intervals around the numerically computed eigenvalues bracket the true 
roots. Numerical evidence suggests that all eigenvalues of Q obtained from the Chebyshev 
polynomial basis lie on the imaginary axis and that |A| < 0.415831. This inequality is in 
excellent agreement with the analytic approximation (within machine precision for AT > 
12). Similarly, eigenvalues of Q arising from the Legendre polynomial basis are also on the 
imaginary axis, with |A| < 0.318310. 

Finally, the square of the Frobenius norm of Q in the limit N ->■ oc is given by 

1 1 1 N"2      1 7T2 "\ 
1 + i + + J_+y--^ > — + - = 1.57247 (36) 

+ 4 + 4(N -1)2 + 4AT2     ^2 2n2 12 T 4 K    ' 

for the Q derived in the Chebyshev representation and by 

i N-l n _2 i n 

l + L + Y —-L— -_> !L - i^ = 1.35629 (37) 
32     ^ (2n +1)2 4       9 V    ' 

for the Q derived in the Legendre representation. 



6    Numerical results 

Since Q is singular and its eigenvalues A lie on the imaginary axis, for all real k the condition 

number of I — kQ is 

K(J - kQ) = ^/l + (fcmax(|A|))2 (38) 

which approaches |fc|max(|A|) for large |fc|. The eigenvalues of (J - kQ)~lQ are of the 
form p = A/(l - kX). For real k one obtains \p\2 = |A|2/(1 + &2|A|2). We conclude that 

max( (i\) = max(|A|). Both Chebyshev and Legendre polynomial bases have small upper 
bounds on |A|, so that the spectral radius of the proposed numerical scheme is well behaved 

for all real k. 
The accuracy of the proposed method can be analyzed as follows. Let ft represent the 

true solution satisfying the boundary condition and let (D — kl)ft = g. When k — 0, the 
truncation error in representing ft(x) corresponds to setting the last coefficient gN to zero. 

Similarly, the truncation error in representing the exact homogeneous solution /(,(#) is also 

involved when fc ^ 0. The error in determining fp needs to be analyzed next. 
Since QD = I - nft and DQ = I - UPL , writing (/ - kQ)fp = Qg = {QD - kQ)f 

leads to 
fp = (I    kQY\l    kQ    Hfl,)/, (39) 

so that 
U-fp = {I-kQ)-lUPJt (40) 

and since D-kl = D{I - kQ) - n^ 

(D - kl)fp = g + Mpx_t (/ - kQ)-lILpJt. (41) 

The last equation follows from the observation that DIIp0 = 0. Let /0 = (p0,TLp0ft) be the 
constant function component of ft. Therefore, fv is the exact solution of a modified problem 

where a term proportional to pw(x)fo has been added to the right hand side. 
When fc = 0 or /o = 0, the method is exact apart from the truncation error. When k ^ 0 

and /a ^ 0, the additional term in (41) follows from the expansion by minors, which is easily 
evaluated since Q is tridiagonal in representations of interest. For example, in Chebyshev 

representation, we obtain 

2k{~y^c(k, N)PN(x)f0 
d=f e(k, N)PN(x)fu (42) 

where 

C(fc' N) = det(J-fcQ) = (-ft)"+lXtf(l/*0 (43) 

and XN{-) is tne characteristic polynomial of Q. The proportionality constant is given by 

4 
E(fc'N) = (-2)N+'N\XN(l/k) (44) 

and decreases rapidly as N —► oo. 

10 



Let us consider the continuous analogue 

h(x) -k f h(x)dx = 1 where   f h(x)dx 1 P0 (45) 

and the exact solution 
Ekx 

The Chebyshev polynomial representation of ft (a;) is 

»w = 1+lwr-w (47) 

where Iv(k) are the modified Bessel functions.   For large enough N the truncation error 

becomes small and  hN+1\ < \hN\ < e. Therefore, whenever \k\ < N 

{r-kQ)h = l-k^T)-kf^^.l (48) 

so that k is approximately the solution of the discrete problem as well. We obtain 

e(fc,N)w2fe/^fe) when|fc|<iV. (49) 

However, the range of applicability of this approximation is too narrow since the term 

e(k, N) may be small even if \k\ 3> N. The resolution criterion |e(fc, iV)| < e leads to 

4 4 /       e       \N+1   [W+Y 
\x»(W\^7r^™l[w^))     V^T (50) 

where the approximation follows from Stirling's asymptotic formula for AH = r(N + 1) 

applicable for N 3> 1. This criterion can be simplified as follows. 
Clearly c(0, N) = 1. For each N, nonzero eigenvalues of Q occur in conjugate pairs on 

the imaginary axis and det(7 — kQ) is the product of the terms of the form 1 + fe2|Aj|2 > 1, 
showing that \c(k. N)\ -> 0 as \k ->■ oo. One would expect that the solution k to |e(fe, N)\ < e. 

depends on the ability to resolve the thin boundary layer near xb. Indeed, by curve fitting 
the numerical results for N = 4,5,..., 128 one obtains the criterion that machine precision 

e = 2.22045 x 10"16 is approximately reached provided that AT > 2.06131 + 8.53338^/l + |fc|. 

Truncation error in representing fh{x) must also be considered. The resolution require- 

ments are virtually identical. For Chebyshev polynomial basis and \k\ » 1, fh{x) can be 
represented to machine precision provided that the last coefficient of fh (which is given in 

terms of the modified Bessel function IN{-)) satisfies 2IN(\k\)e~^ < e. This leads to the 

approximate criterion AT > 2.81178 +8.05974^/1 + |fc|, according to asymptotic analysis and 

curve fitting to numerical experiments. 
The simplified combined criterion 

N > 3 + 9J\k\ + l <S>  k\ < (N ~ 3)   - 1 and AT > 12 (51) v 81 

11 



works well in practice (figure 2). The criterion (51) has been verified for 12 < N < 256, 
where |e(fc, N)\ < 6.60738 x 10~15 and the truncation error is even lower. For AT > 256, the 
resolution requirements are only slightly more stringent, since the worst case residual error 
appears to be slowly growing with N. A more complicated criterion of the form 

/WTT < ^ + ^log(AT) - 3 (52) 

fits the numerical results almost exactly for 128 < N < 256 and may be extrapolated to 
larger N. Our numerical results indicate that the criterion (52) produces worst case residues 
|e(&, AT)| of less that lOOe at N = 4096 and less than lO"10 at N = 216 = 65536. 

Numerical tests in Chebyshev polynomial representation were done at N = 16,32,64 
and it = -10,-1,0,1,10 and compared to the analytically obtained integrals for g(x) = 
Tn(x) where n = 1, 2,4,8,..., N/2. Standard precision was used to obtain the polynomial 
approximation of the solution but the exact integrals 

f{x)=fek^g{s)ds (53) 

were obtained analytically and then evaluated in extended precision using Mathematica 3.0, 
which was essential to capture the delicate cancellations in the exact solutions. For example, 
the exact solution of 

df{x) 
dx 

with the boundary condition /(l) = 0 satisfies 

fix) = r32(x) (54) 

/(0)   =   1523681485112275626378695517688630699203508225/e - 

560531093266377270849883382873867646780763137 (55) 

which is about —0.00062, i.e. 48 orders of magnitude less than the terms involved. 
In 63 of the 75 tests, the L2 and Lra relative norms of the error at the Chebyshev 

collocation points were below 10-14. The remaining 12 results are summarized in Table 1. 
These results match the above analysis. For example, when |fc| = 10 and N = 16, the relative 
truncation error in representing e*^-*1'' is 2.73 X 10-6 and does not become negligible until 
iV = 32. 

7    Generalizations 

The method presented here may be generalized to higher order equations in one variable of 
the form 

3=0 

rewritten as 

E QJ-^iU = QJ9 = E QJDjA^f (57) 
j=0 3=0 
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Figure 2: The maximum residual log10|e(fc(iV). N)\ vs. N for the worst case k(N) according to 
the resolution criteria. (51) [upper points] and (52) [lower points]. The criterion (51) gives residues 
closer to e for N < 80 and remains usable at somewhat larger N, but the slightly more conservative 
criterion (52) is closer to achieving full precision for N > 80. Horizontal lines indicate the machine 
precision e = IQ-156536 and the error tolerance set at, lOOe. 
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N k n M2/II/II2 IHIoo/ll/IU 
16 -10 1 8.55882 x 10-" 8.71212 x 10-' 
16 -10 2 1.28628 x 10-6 2.01382 x IO"6 

16 -10 4 3.03513 x 10 6 3.05528 x 10 6 

16 -10 8 7.85599 x IO-5 8.82017 x IO"5 

16 1 8 4.96642 x 10~13 4.46525 x 10-13 

16 1 8 4.97129 x 10-13 4.47325 x 10-13 

16 10 1 8.55882 x IO-7 8.71212 x IO-7 

16 10 2 1.28628 x 10-6 2.01382 x IO-6 

16 10 4 3.03513 x 10~6 3.05528 x IO"6 

16 10 8 7.85599 x IO-5 8.82017 x IO"5 

32 -10 16 1.11479 x 10"" 1.09573 x IO-12 

32 10 16 1.11461 x IO-12 1.09789 x 10~12 

other 63 t ssts < io-'4 < IO"'4 

Table 1: Relative error in the L2 and the L^ norm at the Chebyshev collocation points for 
each resolution. 

so that fp becomes 

L ={&*'-'A   QJ9- (58) 
Invertibility depends on the specific Aj. Furthermore, J boundary conditions are to be satis- 
fied by adding a linear combination of J precomputed homogeneous solutions. Alternatively, 

problems of the form 

{[{D-Aj)f = 9 (59) 
3=1 

can be converted into a sequence of first order problems 

fpi = {I-QAi)-
lQgi (60) 

where gY = g, fj = f and gj = fj-i for j = 2,..., J. In addition to invertibility require- 
ments, this approach requires precomputing the homogeneous solutions of the J subproblems. 
Boundary conditions on each fj = fpj + ctjfhj must also be available. 

In multidimensional domains, the number of homogeneous solutions is proportional to 
the number of boundary points. Therefore, the proposed method is most beneficial in low 
dimensional problems where the differential operators have a favorable structure. However, 
some multidimensional problems may be factored into a sequence of one dimensional prob- 
lems, for which the proposed method can be very effective. In fact, this investigation was 
motivated by a factorization of the 2D Laplacian. This example shows that non-normal 
operators of type (9) arise naturally in solving partial differential equations as well. 
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8    Conclusion 

The advantages of the proposed method include numerical stability, high accuracy and ef- 
ficiency. The pseudo-inverse of the derivative operator has a simple tridiagonal form in 

commonly used polynomial representations and I — kQ is easily inverted for real k. The 

boundary condition is applied afterwards. By contrast, the Lanczos tau method applies 

the boundary condition by introducing a full row into the matrix to be inverted, and thus 

increases the computational effort by a factor of O(N). 

Our analysis and numerical experiments indicate that the pseudo-inverse of D and delayed 

application of boundary conditions are most useful in one-dimensional problems and low 
multidimensional problems which may be factored into one-dimensional subproblems. 
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