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SARD-TR 30 JUL 1990

MEMORANDUM FOR SEE DISTRIBUTION

SUBJECT: Proceedings of the 1990 Army Science Conference

The 17th Army Science Conference was held at the Omni
Durham Hotel and Convention Center, Durham, North Carolina,
12-15 June 1990. The conference presented a cross section
of the many significant scientific and engineering programs
carried out by the Department of the Army (DA). Additional-
ly, it provided an opportunity for DA civilian and military
scientists and engineers to present the results of their
research and development efforts before a distinguished and
‘critical audience.

These Proceedings of the the 1990 Army Science
Conference are a compilation of all papers presented at the
conference and the supplemental papers that were submitted.

Our purpose for soliciting these papers was to:

a. Stimulate the involvement of scientific and
engineering talent within the Department of the Army;

b. Demonstrate Army competence in research and
development;

c. Provide a forum wherein Army personnel can
demonstrate the full scope and depth of their current
projects; and

d. Promote the interchange of ideas among members
of the Army scientific and engineering community.

The information contained in these volumes will be of
benefit to those who attended the conference and to others
interested in Army research and development. It is requested
that these Proceedings be placed in technical libraries where
they will be available for reference.

N

. . /_\
George T. Singley III
Deputy Assistant Secretary
For Research and Technology
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Computational Fluid Dynamics Application to the
Aerodynamics of Symmetric Sabot Discard

* Michael J. Nusca
US Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5066

I. INTRODUCTION

Currently, the most widely utilized design for kinetic energy, antitank applications
is the gun launched, fin-stabilized, long-rod projectile. The cross-sectional diameter
of the rod is smaller than the diameter of the gun bore. Fins span the area between
the rod and the gun tube. Thus a sabot is required to reduce in-bore balloting of the
projectile. Once free of the gun tube, the sabot must be discarded in order to permit
unconstrained, low-drag flight to the target, see Figure 1. Typically, the sabot is divided
into three or four components along axial planes. For smooth bore gun tubes, these
components separate from the projectile under the action of elastic and aerodynamic
loads. During the separation, both mechanical interference and gasdynamic forces
may result in alteration of the projectile’s trajectory. This alteration can result in
unacceptable loss of accuracy at the target.

Schmidt and Shear!:2 have demonstrated that aerodynamic interference, generated
by the sabot petals, can be a significant source of pro jectile launch disturbance. Pertur-
bations to the projectile’s trajectory are magnified by geometric asymmetry in the dis-
card pattern and by extended periods during the flight when the sabot components are
in close proximity to the projectile. A detailed understanding of the three-dimensional
shock/boundary-layer interference flowfield between the sabot and the projectile is not
available.

Schmidt and Plostins34 have conducted an extensive experimental program to
investigate the aerodynamics of sabot discard. During these tests a representative pro-
jectile/sabot model was sting-mounted in the NASA Langley Unitary Plan wind tunnel
facility. The model configuration included a cone-cylinder projectile (without fins) at
zero yaw and zero axial spin, with three sabot components of simplified geometry.
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Figure 2 shows a schematic of the wind tunnel model and associated nomenclature.
Surface pressures were recorded on the projectile and sabot petals (both inner and
outer surfaces) for a freestream Mach number (ratio of velocity to speed of sound) of
4.5 and Reynolds number (ratio of inertial to viscous forces) of 6.6 million. A typical
flight Reynolds number of about 89 million could not be reproduced in the tunnel. Fig-
ure 3 is a schematic of a portion of the test series showing sabot petals symmetrically
located at four positions near the projectile and at angle of attack. This “simulated
sabot discard” sequence provides an good basis for comparison of computed and mea-
sured surface pressures during discard. Comparison of test data with simple Newtonian
flow theory demonstrated that the effects of shock /boundary-layer interaction must be
included in order to adequately reproduce measurements.

This paper describes computational fluid dynamics (CFD) solutions of the three-
dimensional Navier-Stokes equations applied to the aerodynamics of symmetric sabot
discard. For symmetric discard, multiple sabot petals are assumed to follow a similar
trajectory away from the projectile, and the projectile is assumed to be at zero yaw.
Figure 4 is an illustration of this configuration for three sabot petals. The computa-
tional domain for symmetric discard can be limited to a smaller portion of the flowfield
around the configuration. Thus requirements for three-dimensional simulations such
as computational grid size, computer memory, and computer run time are reduced.
For asymmetric discard the computational domain would be greatly expanded with
a corresponding increase in computer requirements. The portion of the launch cycle
which involves strong aerodynamic interference between the projectile and the sabot
components is examined. Thus simulations are performed for small vertical separation
of the sabot petals from the projectile and sabot angle of attack < 18°. Numerical
simulations reported here were performed using the wind tunnel model sabot configu-
ration illustrated in Figures 2 and 3. Zero axial spin is assumed for the pro jectile/sabot
configuration.

II. COMPUTATIONAL APPROACH

The CFD approach described in this section can be used to predict the com-
pressible flowfield around single and multiple component non-axisymmetric projectiles
by solving the Reynolds-averaged 3D Navier-Stokes equations. The CFD code was
developed by Chakravarthy.® The Navier-Stokes equations are written using the per-
fect gas assumption, however, versions of the code for a real gas (e.g. equilibrium air
or non-equilibrium gas models) have been documented as well.&7 Both laminar and
turbulent flows can be investigated, thus an adequate turbulence model® is required
for closure. In addition, backflow regions can be present, thus a backflow turbulence
model? is included. The equations are discretized using finite volume approximations.
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The code uses a class of numerical algorithms termed total variational diminishing, or
TVD, which do not require the inclusion of explicit smoothing or global dissipation
functions to achieve numerical stability. The resulting set of equations (see Reference
"10 for two-dimensional versions) is solved using an implicit, factored, time-stepping
algorithm. The solution takes place on a computational grid that is generated around
the projectile and sabot petals in zones, where the zonal boundaries can be made
transparent to the flowfield calculation. This code has been previously employed in the
solution of subsonic, transonic, supersonic and mixed flow problems including complex
three-dimensional and multi-body configurations by Chakravarthy et. al. 5:10-14

1. Computational Algorithm

The spacial discretization technique for the equations of motion must be reliable
and robust in order to successfully capture the complex physics of projectile/sabot in-
teracting flowfields. The TVD formulation for the convection terms (the hyperbolic
part of the time-dependent Navier-Stokes equations), along with a special treatment of
the diffusion terms, provides an appropriate simulation. In recent years, TVD formula-
tions have been constructed for shock-capturing finite-difference methods.’ Near large
gradients in the solution (extrema), TVD schemes automatically reduce to first-order
accurate discretizations locally, while away from extrema they can be constructed to be
of higher-order accuracy. This local effect, which is necessary to prevent the total varia-
tion from increasing, restricts the maximum global accuracy possible for TVD schemes
to third order for steady-state solutions. These methods manifest many properties
desirable in numerical solution procedures. By design, they avoid numerical oscilla-
tions and “expansion shocks” while at the same time being higher-order (more than
first-order) accurate. TVD formulations are also based on the principle of discrete or
numerical conservation, which is the numerical analog of physical conservation of mass,
momentum, and energy. Thus, TVD schemes can “capture” discontinuities with ease
and high resolution. At a fundamental level, they are based on upwind schemes; there-
fore, they closely simulate the signal propagation properties of hyperbolic equations.
Schemes based on the TVD formulation are completely defined. In contrast, central
difference schemes involve global dissipation terms for stability and have one or more
explicit coefficients that must be judiciously chosen to achieve desirable results.

2. Computational Grid

Numerical simulation of the interacting flowfield about projectile/sabot combina-
tions is complicated by the non-axisymmetric geometry (Figure 4). For even simpli-
fied sabot configurations, sharp corners severely hamper conventional grid generation
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schemes that require one set of grid lines to be tangential and another set to be normal
to the surface. Projectile/sabot geometries are more easily gridded using the zonal
approach. The configuration is divided into zones of simple geometric shape. In each
zone an algebraic grid is generated with grid clustering near the surface and high flow
gradient regions. In the zonal approach, the computational method and computer
program are constructed in such a manner that each zone may be considered as an
independent module, interacting with other zones before or after the information cor-
responding to each zone is updated one cycle. In addition, the zonal boundaries can
be made transparent to flowfield phenomena (e.g. shock waves).

A typical 6-zone grid used for computations described in this paper is designed
as follows: grid zone 1 covers the projectile from nose to base; zone 2 covers the area’
between zone 1 and the inner surface of the sabot petal; zone 4 covers the area between
the outer surface of the sabot petal and the uppermost extent of the computational
space; zones 5 and 6 cover the projectile and sabot base regions, respectively. Zones
1 thru 6, excluding zone 3, extend from 0 to 60° in the azimuthal direction. Grid
sone 3 covers the area between the azimuthal face of the sabot petal and the end
of the computational area (see Figure 4). The entire 6-zone grid consists of 320,000
points and requires 11 million word of memory on the BRL CRAY-2 supercomputer.
Grid clustering was used along all wall boundaries to resolve boundary layer profiles
and near geometric discontinuities to resolve ilow gradients. The same grid can be
used for cases where the sabot petal is pitched to an angle of < 18°, due to the use
of a no-reflection boundary condition on the uppermost surface of the computational
space. These grid dimensions are assumed to be sufficient for preliminary computational
simulations where relatively short computer run time was required. Grid refinement
studies are underway.

III. RESULTS

This paper presents numerical simulations for the wind tunnel projectile/sabot
model. The freestream Mach number and Reynolds Number (Re) are 4.5 and 6.6
million, respectively. Calculations are presented for laminar (i.e. viscosity depends on
temperature only) and inviscid (i.e. Re = oo) flow modeling since the current grid
spacings are inadequate for turbulent flow calculations. Converged solutions required
about 6 CPU hours for inviscid flow and 18 CPU hours for laminar flow modeling on
the BRL CRAY-2 computer.

Figure 5 shows pressure contours for the forward part of the projectile/sabot con-
figuration, in the pitch plane (azimuthal angle, ¢ = 0) . In this case the base of the
sabots are aligned with the projectile base, z/D = 0, the sabots and projectile are ver-
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tically separated by y/D = .75, and the sabot petals are at zero yaw. The maximum
diameter of the projectile is denoted D. Horizontal lines running from z/D = 0 — 5.62
are zonal boundaries. The presence of large flow gradients (e.g. shock waves) are indi-
cated by the clustering of contour lines. An oblique shock eminates from the nosetip
of the projectile while a normal shock is slightly detached from the leading edge of the
sabot petal. These shocks are followed downstream by a complex interaction and re-
flection pattern. A flow expansion at the cone-cylinder junction is followed by a strong
oblique shock on the projectile. Thus a high pressure, low speed and perhaps recir-
culating flow region may be present on the projectile beneath the sabot petals. This
region terminates with a second normal shock that appears at the end of the beveled
section of the sabot, z/D = 4.22. This normal shock intersects the projectile as well.

Figure 6 shows the sonic (Mach = 1) Mach contours for the same configuration.
Horizontal lines running from z/D = 0 — 5.62 are zonal boundaries. These contours
indicate that a region of subsonic (Mach < 1) flow extends from z/D = 2.8 — 4.22,
between the sabot petals and the projectile.

Figure 7 shows the pressure distribution over the projectile and sabot surfaces in
the pitch plane from computations and experimental measurements.®> These laminar
flow simulations for the projectile surface agree favorably with the magnitude and
location of a measured pressure peak (z/D = 4.22) and an elevated pressure (low speed
flow) region between the flow expansion at the cone-cylinder junction and the peak
(2 £ #/D < 4.22). The location of this pressure peak corresponds to the termination
of a low speed flow region on the projectile (see Figure 6). Downstream of the pressure
peak, the agreement between computation and measurement is also favorable. On the
inner surface of the sabot petals numerical simulation adequately predicts the pressure
levels and trends on the sabot slant surface (2.75 < z/D < 3.94). Pressure levels
on the rest of the sabot section agree with measurements including a pressure rise at
z/D = 5.5. The computed magnitude of this rise is somewhat larger than observed.

Figure 8 shows the pressure distribution over the projectile and sabot surfaces
in the pitch plane from computations and experiment. In this case the sabots and
projectile are vertically separated by y/D = .5, and the sabot petals are at 4° of yaw.
The pressure levels and trends are similar to those of Figure 7 but with slightly elevated
values from /D = 7 — 11 where the bodies are in closer proximity. The magnitude of
the pressure peak at z/D = 4.22 on the projectile is smaller for this case since only one
of the three sabot petals was mounted, while flow splitter plates were attached to the
projectile along symmetry planes (¢ = £60°). The computation did not include these
splitter plates.

Figure 9 shows the pressure distribution over the projectile and sabot surfaces in
the pitch plane from inviscid flow computations and experimental measurements. In-
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viscid flow simulations require significantly less computer time by excluding the viscous
terms in the Navier-Stokes equations. These simulations predict a smaller magnitude
pressure peak and lower pressure forward of the peak, indicating that these are per-
haps viscous phenomena. Inviscid simulations predict a much larger sabot leading edge
pressure and lower pressure on the sabot slant surface (2.75 < z/D < 3.94). Thus the
inviscid computation is not an adequate substitute for the fully viscous simulation.

Calculations for an axisymmetric configuration are presented in Figures 10 and
11. The axisymmetric configuration is generated by joining the three sabot petals
into a tube that is concentric with the projectile. The axisymmetric configuration
requires only a two-dimensional simulation which reduced the required computer time
from 18 hours to 3 hours on the BRL CRAY-2. Figure 10 shows that the axisymmetric
geometry generates a normal shock that is significantly detached from the sabot (tube).
As a result, this shock interferes with the flowfield at the cone-cylinder junction on
the projectile. A strong oblique shock is generated at this location. This flowfield is
significantly different from that for the actual geometry (see Figure 5).

Figure 11 shows the pressure distribution over the projectile and sabot surfaces in
the pitch plane for the axisymmetric configuration. Several pressure peaks are gener-
ated on the projectile surface. One of these peaks is similar in location to a measured
pressure peak. The pressure measurements on the sabot slant surface are reproduced
by the calculation, however pressures between the sabot (tube) and the projectile are
much higher than measurements. These results indicate that the axisymmetric simula-
tion predicts a choked flow between the projectile and the sabot and is not an adequate
substitute for the non-axisymmetric simulation.

IV. CONCLUSIONS AND FUTURE WORK

Computational fluid dynamics (CFD) solutions of the three-dimensional Navier-
Stokes equations have been applied to the aerodynamics of symmetric sabot discard.
The portion of the launch cycle which involves strong aerodynamic interference be-
tween the projectile and the sabot components was examined. A model configuration
was considered that included a cone-cylinder projectile at zero yaw with three sabot
components of simplified geometry. Computed and measured projectile and sabot sur-
face pressures are in good agreement for a freestream Mach number of 4.5 and wind
tunnel Reynolds number of six million. Computational modeling revealed the source
of a measured pressure peak on the projectile surface as the termination of a region of
high pressure, low speed flow. Computational solutions also indicate the importance of
three-dimensional, non-axisymmetric simulations over axisymmetric approximations,
and viscous flow modeling over inviscid flow.



NUSCA

Future computations for the wind tunnel projectile/sabot model will include tur-
bulence and separated flow modeling, grid refinement in the axial direction between
the projectile and the sabot petals, and additional configurations for which the sabot
petal is at angle of attack, including test cases for one sabot petal with flow splitter
plates. Numerical simulations will be attempted using larger Reynolds numbers ap-
proaching free flight values, with corresponding refinements in the computational grid.
Computational methods and technology proven using wind tunnel configurations can
be applied to fielded projectiles such as 25mm long-rod penetrators and the XM900
projectile and sabot. Detailed 3D numerical computations can also be used to enhance
rapid engineering sabot design codes that are based on local shock/expansion gasdy-
namic analysis techniques.!® Further, a subprogram to integrate surface pressure and
shear stress is in development and will be used to determine the aerodynamic forces
and moments acting on the sabot surfaces. This output could be used in quasi-steady
6 degree-of-freedom sabot trajectory simulations. The ultimate goal is a time-accurate,
linked aerodynamic solution/trajectory simulation.
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Figure 1: Spark Shadowgraphs of Typical Projectile/Sabot Discard Sequence.
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Figure 3: Schematic of Simulated Sabot Discard Wind Tunnel Test Sequence.
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Figure 4: Schematic of Symmetric Sabot Discard. Computational Domain Shown.
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Figure 5: Pressure Contours, Laminar Flow, Az/D =0, Ay/D = .75, Sabot at Zero Yaw, My = 4.5
Re = 6.6 million.
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Figure 6: Sonic (Mach = 1) Contours, Laminar Flow, Az/D = 0, Ay/D = .75, Sabot at Zero Yaw,
My = 4.5, Re = 6.6 million.
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Figure 7: Pressure Distributions on the Projectile and Sabot Surfaces in the Pitch Plane (¢ = 0)
Laminar Flow, Az/D = 0, Ay/D = .75, Sabot at Zero Yaw, M, = 4.5, Re = 6.6 million.
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Figure 8: Pressure Distributions on the Proj

ectile and Sabot Surfaces in the Pitch Plane (¢ = 0),
Laminar Flow, Az/D = 0, Ay/D

= .5, Sabot at 4° Yaw, M., = 4.5, Re = 6.6 million.
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Figure 9: Pressure Distributions on the Projectile and Sabot Surfaces in the Pitch Plane (¢ = 0), Inviscid
Flow, Az/D = 0, Ay/D = .75, Sabot at Zero Yaw, My, = 4.5, Re = 6.6 million.
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Figure 10: Pressure Contours for Axisymmetric Geometry, Az/D = 0, Ay/D = .75, Sabot at Zero Yaw,
My = 4.5, Re = 6.6 million.
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Figure 11: Pressure Distributions on the Projectile and Sabot Surfaces in the Pitch Plane (¢ = 0),
Axisymmetric Geometry, Az/D = 0, Ay/D = .75, Sabot at Zero Yaw, M, = 4.5, Re = 6.6 million.
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As the range of antiarmor weapons increases, the problem
of visual target acquisition becomes more daunting. Most sol-
diers cannot detect targets at ranges beyond two kllometers,
and visual recognition much beyond battlesight range is often
chancy at best. Even with the fielding of thermal sights,
this problem restricts the usefulness of weapons and calls
into question the adoption of systems with effective ranges
farther than the limited capacity of the soldier to service.

There are two approaches to this challenge in human per-
formance: training and selection. Training is an attractive
alternative because it does not cause pressures for the as-
signment of soldiers with specific talents to specific jobs;
however, the evidence from human performance studies suggests
that, though target detection skill can be improved by train-
ing, it is likely to plateau when some individual innate level
is reached. 1In addition, soldiers with high natural talent
are likely to benefit most from training

Selection of soldiers with high potential for assignment
to such specialties must be based on procedures that are reli-
able, valid, and efficient in application, and the predictive
power of these tests must be strong enough to justify inter-
vention in the assignment process.

The work described here was conducted at the Human Sci-
ences Laboratory of the Department of Behavioral Sciences and
Leadership, United States Military Academy, in 1988, under a
grant from the Army Research Institute for the Behavioral and
Social Sciences. The objective was the development of a
simple, powerful and reliable test battery for identification
of observers with high performance potential in tasks requir-
ing complex visual search. We employed tests of two general
visual faculties: wyisual lobe size and

Ihe Visual Lobe

Although a term common in engineering psychology, “visual
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lobe” is somewhat misleading, since the implication is of an
anatomical structure. Renshaw' described the concept as early
as 1945, using the term “visual form field”; Christenson? and
Smith® used the term “working field of view.” In essence, the
visual lobe is an area surrounding the center of vision within
which shapes are identifiable.

The visual lobe is associated with one of the two visual
pathways: the geniculostriate, as opposed to the relatively
primitive tectopulvinar, which serves peripheral as opposed to
central vision. Schneider has described this collection of
central vision pathways as the “what is it?” system, while the
peripheral pathways deal with the question “where is it?”¢

But the visual lobe cannot be based purely on the ana-
tomical structure of the eye. For one thing, central (foveal)
vision is much narrower than the empirically-derived visual
lobe dimensions; and the visual lobe is to some extent subject
to enlargement with training (“speed reading” exercises are
built around this observation), and the retina’s structure is
not. Hence, we will regard the visual lobe as a construct
rather than a physical entity.

The visual lobe has been shown in a variety of studies’¢
to be correlated with performance in visual search tasks.

Most of these studies, however, have employed rather sterile
laboratory paradigms, and their applicability to the battle-
field case is unclear.

Contrast Semsitivit

It stands to reason that measures of visual acuity should
be strongly correlated with visual search performance. Sur-
prisingly, traditional measures — Snellen and Landolt Rings
tests — have yielded disappointingly weak results.’

Ginsburg, for example, reports that Snellen acuity was not
significantly related to target detection in a sample of Air
Force pilots.®

Snellen acuity, however, measures only sensitivity to
very high spatial frequencies. Years of research in pattern
perception have demonstrated the existence of multiple dis-
crete channels in the visual system selectively sensitive to
rather narrow ranges of spatial frequency (size).® These
channels might, when directed at a patch of woods, consist of
“forest detectors,” “tree detectors,” and “leaf detectors.”
Sensitivity (measured as the inverse of the contrast at
threshold) varies across a range of frequencies, resulting in
a spatial frequency modulation transfer function (MTF). High-
est human sensitivity is in the range or 4-6 cycles per de-
grees of retinal angle, with weaker performance (less sensi-
tivity) for very low (for example, .5 c/d) or very high (20-30
c/d). Observers’ spatial MTF’s vary considerably. We should
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also note that the traditional Snellen-Landolt type test meas-
ures only the highest frequencies.

Ginsburg noted, in the same study that saw the failure of
Snellen as a target detection predictor, that the spatial MTF
was strongly correlated with target detection, with a coeffi-
cient in the .9 range.!” This and other diagnostic virtues of
contrast sensitivity make it an attractive tool for vision
research and a prime candidate for observer selection.

Method

: Thirty volunteers from the Staff and Faculty,
United States Military Academy, and the lst Battalion, 1lst
Infantry, participated in this study. All observers had natu-
ral or corrected 20/20 vision (Snellen) and normal color vi-
sion (Dvorine pseudoisochromatic). Ages ranged from 19 to 42.
All had some experience in target detection, through initial
training or incident to MOS requirements.

‘Tests and Apparatus:

Contrast sensitivity was measured at 1.5, 3, 6, 12 and 18
cycles/degree using the Vistech VCTS test. This is a wall
chart with systematic rows and columns of patches with sinu-
soidal gratings of various orientations and contrasts. Ob-
servers were required to identify the orientation of the grat-
ing for each patch; sensitivity was derived from the lowest
contrast patch with an identifiable grating. As a backup, the
observers were tested against a series of drifting gratings
‘generated by computer on a phosphor screen.

The visual lobe measure yielded to a locally-designed
test (Visual Lobe Test). This consisted of observation of a
19-inch video display viewed at a distance of 1 meter. A cen-
tral fixation point appeared, and subsequently letters flashed
for a duration of 250 ms each at varying distances from the
center along the vertical and horizontal meridians. There are
ten trials at each position, 240 total trials. The width of
the visual lobe is derived from the distances from center at
which an observer can correctly identify a letter with fifty
percent accuracy (Figure 1)

In addition, we administered a Visual Search Test, in
which observers viewed the display filled with a random matrix
of identical letters, with one different target letter (a “T”
among “0”’s, for example). The system measured elapsed time
from presentation to detection, signalled by closure of a fin-
ger switch.

Finally, observers completed the Degraded Letters Test, a
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Figure 1: Typical visual lobe measure

paper measure correlated with contrast sensitivity developed
at West Point in the 1970’s.!® This consists of a series of
dot-matrix letters with random additions and deletions, in ef-
fect “camouflaging” the shapes. (Figure 2)

":E\Z"g;,:-;s“i}:i}éi: DID Figure 2: DLT test figures.
R L D

Target detection skill was measured using three methods.

First, observers viewed a series of 35mm transparencies
rear-projected on a ground glass screen. Each slide showed a
field site with a hidden vehicle, target size less than 3 de-
grees visual subtense. The system measured response time from
stimulus presentation to switch closure signalling detection.
Target detection was verified using a superimposed grid.

Second, the first ten slide presentations were accompa-
nied by measurement of eye movement patterns using an ASL 1996
eye view monitor. After analysis, it was possible to deter-
mine the number of fixations necessary to find the target, and
the mean number of fixations for ten targets was added to the
mean visual response time.
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Finally, observers viewed a series of slides containing a
small silhouette of a tank superimposed on a field of visual
noise (Figure 3). Stimuli were presented for 250 msec using a
projection tachistoscope. The observer reported in each case
(1) whether a target was present, and (2) its position on a
nine-section grid. Twenty-five percent of the stimuli were
“null trials” with no target. The result was a signal detec-
tion paradigm in which probability of detection and probabil-
ity of false alarm are critical.

Figure 3: Noise pattern (left); target shape (right). The
target shape has been significantly enlarged.

Results

Table 1 shows the correlation matrix. C1l through C5 rep-
resent contrast sensitivity at 1.5, 3, 6, 12 and 18 c¢/d re-
spectively; DL is the Degraded Letters Test VL is the Visual
Lobe Test; PH is probability of detection in the signal detec-
tion test; MD is mean detection time; and MF is mean number of
fixations per trial.

Note that contrast sensitivity at 6, 12, and 18 c/d were

strongly correlated with visual lobe size (Pearson r=.5

.69, .55 respectively) This is consistent with Ginsburg’s
results. These measures were also highly correlated with
probability of detection in the signal detection task (.58,

.48, .35). Mean detection time was predicted strongly by a
number of variables, but most notably higher contrast sensi-
tivity (12 c¢/d). However, DLT and VST were also moderately
correlated (both with Pearson r of .54) with detection time,
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TABLE 1: CORRELATION MATRIX
C1 c2 c3 C4 C5 DL Vs VL PH MD MF

Cl 1 .31 .43 .23 -.03 .06 -.11 .23 .21 .19 .16
c2 1 .67 .38 .18 .07 -.15 .07 -.09 .06 -.20
C3 1 .67 .57 .02 -.42 .50 .58 -.57 .00
c4 1 .60 -.19 -.43 .69 .48 -.67 -.38
C5 1 -.09 -.48 .55 .35 -.46 .16
DL 1 -.09-.14 .08 .54 .08
Vs 1 -.35 -.19 .54 .08
VL 1 .66 -.68 -.15
PH 1 -.65 -.39
MD 1 .11

and virtually independent of each other. Mean fixation time
was moderately correlated with contrast sensitivity at 12 c¢/d
and, as we might expect, with probability of detection.

We felt that the three measures of target detection
should be viewed together, since they represented subtly dif-
ferent aspects of the actual task; hence we used a canonical
correlation of all predictor variables on all dependent meas-
ures.

The result was a canonical correlation coefficient of
.897 — an exceptionally strong predictive power, in essence
explaining roughly eighty percent of the variance in detection
performance.

Dj .

The principal objective of devising a test battery for
observer selection was clearly met. The four tests include
one recently available and increasingly widespread in the
practice of optometry and oculometry; two that require only a
personal computer; and one written test requiring about five
minutes to complete.

But there were surprises in the results that may prove
more valuable than the test battery. The most important was
the discovery of a small population of “super-lobe” observers
(Figures 4 to 6). These soldiers had, essentially, no limita-
tion to apparent foveal vision. This is anatomically impos-
sible, and must be related to some other phenomenon. We note
that the “super-lobes” also had exceptionally high spatial
MTF’s. One possibility is that their contrast sensitivity is
so excruciating that they were able to fixate on the fading
phosphor trace of the target letter! This hypothesis will be

20



O'NEILL, BATTEN AND WOONTNER

1.0

PROBABILITY CORRECT
()]
]

I T S U O Y O S T I W
-7-6-5-4-3-2-10 12 345 67
<« VISUAL ANGLE FROM CENTER

Figure 4:

5
I

PROBABILITY CORRECT
)]
!

N N N U O U T Y S TS
-7-6-5-4-3-2-10 12 345 67
VISUAL ANGLE FROM CENTER

Atypical visual lobes; aggregate visual lobe distri-

bution (left), two "super-lobe" examples (right)

| | Al Bl el bl el vl &l
Observer ID: 23
Target Number: 6

N
| N ]+= |

b0
| & 1 @

4]
La

| MBI S| PIEIF] €

_I Al B] c] DT El Fl G-[
Observer ID: 4
Target Number: 8 :
2 =2
3 3
<3 <3
 — ——
S =1
1 MBS PIEIF| <

Figure 5:

Typical search patterns.

The diamond shapes are

based on the measured horizontal and vertical visual lobes for
the observers.

tested using a tachistoscopic method.

Whatever the details of the visual faculties that con-
tributed to observer performance, the results of this stage of
the program show that prediction of target detection skill is
now simple, accurate and powerful, and yields collateral in-
sights into the incredible complexity of wvision.
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none of the fixations falls close enough to the target to
explain detection.
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OPTICAL STUDIES OF THE FLOW START-UP
IN CONVERGENT/ DIVERGENT NOZZLES

*Klaus O. Opalka
Dixie M. Hisley
Terminal Ballistics Division
U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, MD, 21005-5066

A shock tube test was carried out to investigate the influence of the divergent cone angle
and length of four convergent/divergent nozzles on the pressure signature in the expansion
region downstream from the nozzle. The diaphragm was mounted in the throat of these noz-
zles and located at the upstream cdge of the test section window of high-quality optical glass
through which shadowgraphs and schlieren pictures could be taken. The objectives of this
investigation were to obtain optical rccords of the shock formation and flow start-up processes
in the divergent nozzles immediately after rupturing the diaphragm, and to facilitate comparis-
ons with one- and two-dimensional hydrocode computations. The optical measurements were
complemented by measurements of the static pressure at three locations downstream from the
nozzles. The test sct-up and the results of this experimental study are presented and the most
significant findings discusscd.

1. BACKGROUND

The U.S. Army has been developing the concept of a Large Blast and Thermal Simula-
tor (LB/TS) suitable to test full-scale military equipment for its vulnerability to thermal and
blast effects of decaying blast waves such as arc associated with nuclear explosions. Large
blast simulators are basically shock tunnels whose cross-scctional areas vary along their
lengths. They employ convergent/ divergent nozzles at the driver exits to retard the outflow of
the high-pressure driver gas and generate long flow durations because straight shock tubes can-
not produce the flow durations which are observed in dccaying blast waves. The diaphragms
are mounted in the throats of the nozzles. A single driver is technically impractical because of
the size of these facilities and the rcquired supply pressurcs in the drivers. A number of
smaller drivers have to be employed to accommodate the necessary initial test conditions.

The U.S. LB/TS concept is described in detail in the References! " and illustrated in
Figure 1. Blast waves will be simulated by relcasing compressed gas from several high-
pressure steel driver tubes into a large cxpansion tunncl constructed of prestressed concrete.

* .
References are listed at the end of the report.
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The test section for the targets is located in the expansion tunnel, seven diameters downstream
from the exit of the driver nozzles. It has a semi-circular cross-section with a 10m radius.
This size is deemed necessary to avoid blocking of the flow about the target. The thermal
simulation will be effected through aluminum/oxygen combustion near the target.

Each driver of the planned U.S. LB/TS facility has the diaphragm which separates the
high-pressure from the low-pressure region mounted in the throat of a convergent/divergent
nozzle. When the diaphragm is ruptured, a shock forms and travels downstream into the
divergent section, while a rarefaction fan travels upstream into the convergent section. The
divergent nozzles increase the thrust on the reaction pier which is generated by the "rocket
motor” formed by the driver-nozzle combination. Therefore, eliminating the divergent nozzles
would have the double advantage on the design and performance of the U.S. LB/TS of reduc-
ing the thrust on the pier as the drivers empty, as well as reducing the construction cost of the
drivers. On the other hand, results of small-scale pilot experiments seem to indicate that there
are pressure losses connected with the introduction of a large area discontinuity at the exit of
the nozzle throat, which are lessened when divergent nozzles are used. Therefore, the use of
divergent nozzles cannot be easily dismissed. However, if divergent nozzles are included in the
U.S. LB/TS design, the nozzle length becomes a critical material parameter which itself
depends on the cone half-angle chosen for the nozzle design.

Convergent/divergent nozzles have been extensively investigated, both in theory and

experiment, and a summary of these efforts is presented, e. g., by Amann? Amann has shown
in his research that the start-up process of the nozzle is shortest when the cone half-angle of
the divergent nozzle is largest. The start-up process of the nozzle is defined as the time from
the rupturing of the diaphragm to the establishment of a quasi-steady flow pattern in the noz-
zle. Consequently, a 90° angle at the exit of the throat should be optimal. However, the scope
of Amann’s rescarch effort was limited to cone half-angles of 5°-15° and it is not known
whether the trend continues at the higher angles. Furthermore, in all of the known investiga-
tions, the diaphragm separating the high-pressure from the low-pressure region was located far
upstream from the nozzle under investigation so that a well-formed shock would enter the noz-
zle from the upstream side. This is not the case in the present nozzle design, which has the
diaphragm mounted in the throat of the nozzle. No previous experimental research is known
for either the starting process, or the quasi-steady flow phase of this problem and, therefore,
the present experimental study was initiated.

2. EXPERIMENTAL APPARATUS

Th