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Final Report: Automatic Classification of Biological Sounds in the Arctic 

ONR 
Kurt M. Fristrup 

Bioacoustics Research Program 
Cornell Laboratory of Ornithology 

Ambient underwater recordings in the Arctic are generated by a complex mixture of physical 

processes and biological events. There are relatively few experts who are familiar with all of the 

biological sounds that can be encountered in the Arctic. Even for these experts, it is difficult and 

time-consuming to detect and identify biological transients. During this project, improved 

methods for reviewing multichannel acoustic data and promising techniques for automatic 

classification of biological sounds were developed. 

The Cornell Bioacoustics Research Program developed an Acoustic Location System that proved 

effective during censuses of bowhead whale populations (Clark et al 1996). Technicians were 

able to review multichannel, real-time spectrograms to look for transients, and interactively select 

those transients (with time and frequency bounds) for subsequent processing to determine the 

location of the sound source. This system was based on TEAC RD135 8 channel instrumentation 

recorders, which were directly interfaced to a Macintosh computers using a Cornell-designed 

interface. The system's performance was accelerated by a Cornell-designed coprocessor board. 

When the principal investigator moved to Cornell from WHOI, it was decided to modify the 

Cornell ALS system such that it could process previously digitized data. This would allow the 

power of the ALS system to be applied to data from sources other than the TEAC recorders, 

including all of the Arctic data collected previously. The further advantage of this approach was 

that most of these data could be reviewed faster than real-time, with attendant savings in 

technician effort. These modifications proved more demanding than anticipated, but the new 

software was completed in early 1997. This system provides an unprecedented opportunity to 

interactively inspect multichannel acoustic data for acoustic transients, and locate the position of 

the source responsible for the sounds. 

The data collected during the 1994 TAP experiment have not been processed with this system yet. 

A small file conversion utility is needed to extract the data from the digital tape archives and 

reformat the multitrack audio into standard AIFF files. Spot inspections of the TAP data have 

revealed electrical artifacts in the recordings that will complicate processing somewhat, but there 

are several days of 4 channel data that merit close analysis. No animal acoustic transients have 
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been positively identified at this time. The parallel analysis of MIZEX data provided by 

Baggeroer et al. has not been initiated. 

Preparation for automatic recognition of Arctic biological transients proceeded independently of 

the software development effort. 699 sound transients encompassing eight species of marine 

mammals were extracted from library recordings at WHOI (Watkins et al. 1991, 1992). This set 

included isolated sounds, series of sounds from a single individual, choruses of several individuals. 

Some cuts that included other species' sounds in the background. This inclusive set was selected 

because automatic detection routines presently cannot be relied upon to identify clear, 

uncontaminated sounds. The feature extraction program was based on earlier work (Fristrup and 

Watkins 1992, 1994), but rewritten to improve its performance with noisy recordings and add 

features that seemed relevant to Arctic biological sounds. Features extracted from these 

transients were processed to determine their ability to reveal distinctions among these Arctic 

species. 

Two analytical methods demonstrated the promise of automatic recognition for these sounds. 

The first technique was a Classification Tree (Chambers and Hastie 1991), which is similar to 

C4.5 Machine Learning system (Quinlan 1993). This method produced a classifier consisting of a 

sequence of simple rules that were based on individual features. In addition to simplicity, this 

method had the advantage that it was insensitive to some idiosyncrasies of the feature set: 

disparities in the units (scales) of the features, correlations among features, and size of the feature 

set. CART also helped to identify which features were more important for discriminating among 

the species' sounds. Finally, it could produce a meaningful classifier when each species' sounds 

are polymodal in feature space: such structure would be expected if species possess a repertoire 

of distinct sound "types." 

A classification tree was computed that divided the collection of sounds into 23 categories; these 

22 rules were sufficient to correctly identify 591 of 699 sounds to species, or about 85% correct 

classification. The following table presents the "confusion matrix," which quantifies the kinds of 

mistakes that this classifier made. Large, off-diagonal cells indicated pairs of species that should 

be examined more closely to identify potential improvements in the feature extraction system. 



Table 1: Classification Tree Confusion Matrix 
Predicted Identity 

Known AAIA BBIA  BB2A  CB1A  CC12G CC12H CC1A  CC2A 
Identity 
AAIA 
BBIA 

47 
2 

0 
128 

0 
3 

3 
11 

2 
1 

0 
1 

0 
0 

0 
3 

BB2A 0 11 68 3 0 4 0 0 
CB1A 4 6 0 239 7 0 0 4 
CC12G 0 0 0 5 40 0 0 1 
CC12H 0 11 4 2 0 24 0 0 
CC1A 0 0 1 0 0 0 0 1 
CC2A 3 0 4 11 0 0 0 45 

Table 2: Species Codes Used in Tables and Figures 

Species 1 AAIA 
Species 2 BBIA 
Species 3 BB2A 
Species 4 CB1A 
Species 5 CC12G 
Species 6 CC12H 
Species 7 CC1A 
Species 8 CC2A 

Balaena mysticetus 
Delphinapterus leucas 
Monodon monoceros 
Odobenus rosmarus 
Phoca groenlandica 
Phoca hispida 
Cystophora cristata 
Erignathus barbatus 

bowhead whale 
beluga whale 
narwhal 
walrus 
harp seal 
ringed seal 
hooded seal 
bearded seal 

To help interpret the confusion matrix, consider one species: the ringed seal. Looking across the 

6th row, we see that 17 of 41 sounds known to be produced by this species were incorrectly 

attributed to other species. Looking down the 6th column, however, we see that 24 of the 29 

sounds attributed to that species were correct. Thus, the classifier failed to recognize almost half 

of the ringed seal sounds, although it was fairly good at discriminating some kinds of ringed seal 

sounds from all others. The existing ringed seal classification categories were fairly good, but 

additional categories likely went unrecognized. The need for 23 categories to identify the sounds 

of 8 species reinforced this indication allowance for the complexity of some species' repertoires. 

Note that the classifier did not allocate a category to identify the hooded seal sounds, because 

there were only two of them in the sample. Figure 1 illustrates the classification tree. 

The tree is displayed from the "root," at the top of the diagram, to the "tips" at the bottom. The 

tips represented the terminal categories, each of which was labeled by the species that comprised 

the majority of the sounds in that category. At each fork in the tree, an abbreviated name for a 

feature was juxtaposed with a value in an inequality. This indicated that the sounds were sorted 

into the left and right branches beneath the node on the basis of the named feature, with samples 



on the left branch having values less than the displayed values. The length of the vertical 

segments of each branch provided an indication of the fraction of the overall diversity in sound 

identities that was resolved by that rule. Thus, branches with long vertical segments helped to 

identify large numbers of sounds, while branches with short segments were less effective, in the 

context of the samples analyzed. This indication of the importance of each rule was dependent on 

the number of sound samples available for each species. 

Although the overall pattern was somewhat complex, note that the right-hand fork of the first 

branch separated a large fraction of beluga whale sounds from the main group (with some narwhal 

and ringed seal sounds). This distinction was based on a feature that measures the range of 

frequency modulation in the sounds: beluga whale sounds tended to be more highly modulated. 

The appendix provides qualitative descriptions of the new features that appear in the classification 

tree. 

The tree-based analysis did not express the multivariate structure in the complete feature set. To 

provide a balanced view, the acoustic feature data were rescaled such that the mean and variance 

of each feature were zero and one. Principal component scores were extracted from the rescaled 

data, to obtain new features that were mutually orthogonal, and identify which axes expressed the 

preponderance of the overall variation. The dominant principal component scores were then 

subjected to a discriminant function analysis, to obtain a set of two-dimensional projections that 

provide a useful perspective on the distinctiveness of the species' sounds. These three steps 

eliminated artifacts of scaling, reduced the effects of redundant measurements and high 

correlations among some features, and reduced the dimensionality of the discriminant problem for 

improved reliability. 

Figure 2 presented a series of four plots that displayed the distribution of the sounds with respect 

to seven discriminant function axes. The numbering of the sounds was in accordance with the 

listing in Table 2 above. In the first plot (axes 1 and 2), the sounds of belugas (2), narwhals (3), 

ringed seals (6), and to a lesser extent, bearded seals (8), were broken out from the mass of other 

sounds. In the second plot (axes 3 and 4), beluga and ringed seal sounds were distinguished, and 

walrus sounds (4) were somewhat distinctive. The third and fourth plots illustrated the dramatic 

distinction between the two hooded seal sounds and all the other sounds (a fact that was lost in 

the tree-based classifier), and bowhead whale sounds (1) began to emerge. These analyses 

illustrated the potential for constructing parametric classifiers. The advantage of such methods is 

the ability to augment identifications with a measure of likelihood or confidence. 
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FMEDsprd(FMODsprd) = the range of center frequency values in the Short-Time Fourier 
Transforms computed from the file, where center frequency was represented as the MEDian (or 
MODal) value in the power spectrum. A signal with strong FM modulation or frequency-hopping 
had a large value for this measurement. 

FSPRDmed(FSPRDmod) = the median (modal) STFT bandwidth (bandwidth computed as the 
range of frequencies contributing the loudest 50% of the signal). A consistently broad-band signal 
had a large value for this measurement. 

AM7upp(AM5upp) — the upper frequency bound encountered in the amplitude modulation 
spectrum while accumulating the strongest 75%(50%) of the spectral energy. A signal with rapid 
amplitude modulation had a large value for this measurement. 

ENVconc7(ENVconc5) = measures of the duration of the signal, which capture 75% or 50% of 
the signal energy. 

AM7asym = the asymmetry of the amplitude modulation spectrum. A value of 0.5 indicated a 
symmetric spectrum; lower values indicated spectra whose medians were shifted toward lower 
frequencies in the range of the spectrum. 

SWPabsmag == the absolute value of center frequency differences between adjacent STFT power 
spectra (expressed in Hz/s). Signals with abrupt, dramatic FM modulation had a large value for 
this measurement. 

AM7mode(equals AM5mode) = the modal value in the amplitude modulation spectrum. A large 
value for this measurement indicated of rapid amplitude modulation. 

FSPRDsprd(CONCsprd) = measurements of the spread in the short-term bandwidth 
measurements made from STFT power spectra. Large values for these measurements indicated 
that the signal had both narrowband and wideband components. 

UPSmean = the average increase in center frequency values in adjacent STFT power spectra. A 
positive value indicated the signal's tendency to increase in frequency; a negative value indicated 
a tendency to decrease in frequency. 

FMEDmed = the median of the median frequency values computed from STFT power spectra. 
Signals that maintained a high pitch would produce large values for this measurement. 

MaxFlat = the longest interval in the signal for which the center frequency remained relatively 
constant. 

ERGmxmd = the ratio of the loudest element in the signal to the median amplitude of the signal. 
Signals with strong, isolated impulses will generate large values for this measurement. 



Figure 1: 

This Figure shows the classification tree output. Beginning at the top of the tree ("trunk"), each 

fork in the tree lists the feature used as a discriminator, along with the value used for that decision 

point. A sound sample would be sorted into the left or right branch depending on the sample's 

value. The length of the vertical segments represents the proportion of calls that were sorted 

along that branch path. The terminal portion of the branching structures ("tips") shows the 

abbreviated species name. 
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Figure 2A-2D: 

This Figure shows four plots of the distribution of calls plotted on eight different discriminant 

function axes (1-8). Species are represented by number. Bowhead whales (1), belugas (2), 

narwhals (3), walrus (4), harpd seal (5), ringed seals (6), hooded seals (7) and bearded seals (8) 

are plotted. Figure 2 A shows the discrimination of belugas, narwhals, ringed seals, and bearded 

seals. Figure 2B beluga and ringed seals were distinguished, and walrus sounds were somewhat 

distinctive. Figures 2C and 2D show the dramatic distinction between hooded seal sounds and all 

others, a distinction not made with the tree-based classifier shown in Figure 1. Bowhead calls 

also begin to appear in Figures 2C and 2D. 
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