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I.        INTRODUCTION AND SUMMARY 

During November 1996 a series of tests was performed in and around Caliente, 

NV. These tests, performed by the firms of Cambridge Acoustical Associates, Inc. and 

Wyle Laboratories, Inc., are part of a Small Business Innovative Research (SBIR) project, 

being sponsored by the Armstrong Laboratory of the United States Air Force. The 

project objective is to perfect measurement techniques that simulate structural response to 

sonic booms, and in turn allow one to assess potential damage, especially to 

unconventional structures. The goals of the Caliente tests were twofold. The first was to 

provide additional data for the validation of the techniques. The second was to 

demonstrate the process by which such measurements may be used to perform an 

environmental (structural) damage assessment. This report focuses on the latter. 

To limit the overall environmental impact on Caliente, supersonic operations from 

Nellis AFB have recently been prohibited within five miles of the town. To evaluate the 

adequacy of this restriction with respect to avoiding structural damage, window damage 

to be exact, a part of our test plan was devoted to a measurement survey of various 

windows throughout the town. From these data we have simulated their peak response 

(stress) to the sonic boom environment evaluated under the above mentioned flight 

restriction. 

Twenty windows were tested, including those of a number of commercial 

buildings, the library, train station, and one of the auxiliary hospital buildings. (Window 

installations with a noticeable rattle are not readily simulated and were excluded from the 

ensemble.) Based on our simulations (Table 3), the least susceptible to damage is a 

window of the Bureau of Land Management (BLM) Building and a train station window 

is the most vulnerable. For all windows tested, no breakage is anticipated under current 

flight restrictions. 



On the other hand, if our damage assessment methodology were applied without 

accounting for the current flight prohibition, we would predict some damage to be likely. 

We conclude that the current policy at Nellis AFB, of prohibiting supersonic operations 

within five miles of Caliente, is necessary and adequate for averting window damage in 

the town. Should window damage occur, it will likely be in connection with infractions 

of this policy. 

II.      THE STRUCTURAL-ACOUSTIC SIMULATION CONCEPT 

Our simulation concept uses stationary structural-acoustic tests to characterize how 

a given structural component, window, wall etc., responds to acoustic noise, to simulate 

its response to any supersonic operation. (Early validation tests are described in 

References 1. and 2.) The basic problem is posed in the cartoon of Fig. 1. A supersonic 

flight produces a sonic boom that impinges upon a structure. It vibrates in response, 

potentially with levels sufficiently high to cause damage. The boom signature may, but 

need not, be in the classic N-wave form shown. In the horizontal plane, the orientation of 

the incident acoustic wave is determined by the flight path. In a vertical plane the 

elevation angle is determined, as shown, by the local Mach number M=U/c, defined as the 

ratio of the effective flight speed to the local speed of sound. Our simulation tests are 

sketched in Figs. 2a and b. 

The first step is to identify the vulnerabilities of the structure, window glass 

breakage, cracks in plaster walls, etc. Second, with our "direct" simulation (Fig. 2a), we 

measure the vibrations of the vulnerable components, so identified, in response to a 

stationary acoustic noise source. (The noise from blank shells fired from a small yachting 

cannon was used for this purpose during our Caliente tests.) The orientation of this 

acoustic source is determined by the flight path and Mach number of the flight to be 

simulated. Its stand-off distance is typically 25 to 50 ft. Accelerometers, optical 



displacement sensors, and strain gages monitor the vibrations at the critical locations and 

the data are then analyzed as follows. 

The measured response is broken down frequency by frequency, creating a 

"transfer function" curve. This curve describes the susceptibility of a component to noise 

induced vibration for a range of frequencies that are typically around 5 to 100 Hz. This 

curve is then used to compute the response of the component to a specified supersonic 

operation, either hypothetical or actual. For a hypothetical operation the boom signature 

may be computed using various computer codes. '   Finally, this "simulated" response is 

compared to appropriate damage criteria, that is maximum allowable levels, as stated in 

available published literature. 

Alternatively, with our "reciprocal" simulations (Fig. 2b) the fundamental concept 

remains the same. However, here the transfer function is obtained from measurements of 

the sound radiated by the structural component when set into vibration by a calibrated 

mechanical source. (During our Caliente tests, an instrumented hammer provided this 

mechanical source.) The radiated pressure is measured with a microphone. As with the 

acoustic source for our direct simulation, the microphone is located a distance about 25- 

50ft. from the structure along a line determined by the flight path and Mach number of 

the flight to be simulated. (The applicability of this test configuration to an incident sonic 

boom is hardly intuitive. However, it is based on well established structural-acoustic 

principles and used extensively in practice) 

III.     CALIENTE SITE SIMULATION MEASUREMENTS 

In order to evaluate the potential for breakage under current Nellis AFB flight 

rules, reciprocal simulation tests were performed on windows of various buildings 

throughout the town. Reciprocal rather than direct tests were chosen for this purpose 

because they are quicker to perform and less intrusive. However in some cases, direct 

tests were being performed for other purposes and these measurements were used to 



Supplement the data base. Windows with obvious rattling problems were excluded from 

the study. Their response tends to be "nonlinear", and not readily simulated by any 

means. 

A total of twenty windows were tested, including a number of commercial 

buildings, the library, train station, and one of the auxiliary hospital buildings. We 

concentrated on flight paths that produce sonic booms normally incident on the structures 

of interest, typically one of the more critical cases. Consequently, with our simulations 

the radiated pressure was monitored in front of the windows. Also, since our primary 

interest was operations with modest Mach numbers (see Section IV), simulations were 

carried out with the microphone placed roughly at the same elevation as the window 

center. Photos of two sites are shown in Fig. 3. 

From these data we can simulate the peak acceleration, velocity, or displacement, 

induced by any specified supersonic operation. For compatibility with available damage 

criteria, we focused on peak velocity ( v ,), which is more readily related to peak stress 

( a A Specifically, for representative glass parameters (Young's elastic modulus =107 

psi and weight density =0.82 lbf/in3) 

apk(psi) = 82.[1 + 25{albfV[\ +(a/b)2]vpk(in/s) (1) 

where stress is in units of pounds per square inch, velocity in inches per second, and a/b is 

the ratio of the smaller to larger lateral lengths of the pane.   (Sample comparisons 

between stresses from sonic booms and simulated values are presented in References 1 

and 2, in connection with tests in the vicinity of Edwards AFB, CA. With the only such 

comparison available from our tests in Caliente, a hospital trailer window, we measured a 

stress of 233 psi in response to a supersonic flyover versus a simulated value of 229 psi. 

It should be noted however, that this precision is extraordinary, more typical is an 

accuracy of 10-20%.) 
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IV.     THE SONIC BOOM ENVIRONMENT 

To perform an impact evaluation, the sonic boom environment must be specified. 

For this study, we assume that the sonic boom signatures are all of the classic N-wave 

form. This assumption is conservative. Modifications to this shape tend to shift the 

frequency spectrum to higher frequencies, while structural damage tends to be associated 

with the lower frequencies. N-shaped sonic booms are fully defined by their duration and 

peak pressure. We consider durations ranging from 0.1 to 0.2 msec, which covers most 

of the flights affecting the town. It remains to define the expected peak pressure. 

Two separate approaches are used, one analytical the other empirical. 

A. Analytical Estimate 

Using the sonic boom signature prediction code PCBOOM, the peak sonic boom 

pressure and duration for a variety of aircraft, flight altitudes, and climb and descent 

profiles, have been calculated at a stand off distance of five miles, laterally or forward. 

Results are presented in Table 1 for the F-15 aircraft which, on average, is responsible for 

more of the booms than any other aircraft. Also, being relatively heavy, it tends to 

produce relatively higher levels. The predicted levels in Table 1 assume steady flight and 

a standard atmosphere. Under these conditions the maximum computed peak 

overpressure is 4.3 psf, for a flight altitude of 16,000 ft and a 1.1 Mach No. 

B. Empirical Estimate 

An extensive sonic boom monitoring program was carried out in 1992, 

primarily within the Elgin Military Operating Area (MOA).7 The Elgin MOA is a 

subsection of the Nellis Range Complex, located south of the Caliente MOA. Supersonic 

flight tracks from 385 Air Combat Maneuver Instrumentation (ACMI) tapes are presented 

in Fig. 4.8 These tapes are a record of roughly one-third of the missions flown during the 

training period. During these missions, the majority of the sorties were with F-15 and F- 

16 aircraft. We note that 1992 predates current Caliente supersonic flight restrictions. 



Under the current restrictions, we estimate the peak sonic boom pressure to be expected 

in Caliente from all Nellis AFB operations as follows. 

The five-mile outer envelope for the recorded supersonic flights, that is the locus 

of points at least five miles from all recorded tracks, was determined. This is shown as 

the dashed line in Fig. 4. Sonic boom monitoring sites were scattered throughout the 

area. Indicated in the figure are those that were located near the envelope, specifically 

within two miles, inside or outside. The average and maximum peak overpressures 

recorded at these three sites for the duration of the study are shown in Table 2. The 

maximum peak recorded is 2.03 psf (at site No. 24). The corresponding maximum peak- 

overpressure recorded at the Caliente site (No. 37) from these activities (over a period of 

171 days) was 2.34 psf. These values are roughly one half the maximum value predicted 

above for our hypothetical ensemble of supersonic operations which, conservatively, is 

used below for our assessment. For perspective, the maximum peak overpressure 

recorded at any site during the 1992 monitoring effort was 19.35 psf. This may be 

viewed as an estimate of the sonic boom environment within any MO A, including the 

Caliente MO A, but in the absence of a flight prohibition. 

In summary, we will define the sonic boom environment to be N-shaped pulses 

with durations ranging from 0.1-0.2 msec, typical of F-15 aircraft. Further, based on our 

analysis in Section A, we will conservatively assume a peak overpressure of 4.3 psf, a 

value roughly twice that predicted from Elgin MOA data. 

V.       DAMAGE CRITERION: MAXIMUM ALLOWABLE LEVELS 

A summary of the data base regarding the strength of common construction 

materials may be found in Ref. 5. For consistency with a linear analysis such as ours, we 

use a value of 12,800 psi for the mean strength of uncracked, used glass under short term, 

sonic boom-like, loadings. (This value is based on data as analyzed in Ref. 9, but 

including the correction factor suggested in Ref. 5.) Any grouping of windows, in 



practice, will exhibit variations in strength around these mean values. Statistics for these 

variations have been compiled for an ensemble of glass panels. Requiring a 95% 

confidence level that the strength of any of the windows tested will exceed our standard, 

we arrive at a maximum allowable value that is reduced by twice the standard deviation 

computed for the ensemble. This reduced strength value gives a damage criterion of 

4,736 psi, or 37% of the mean strength. In other words, 5% of glass panes can be 

expected to fail when initially subjected to an event that produces a stress of 4,736 psi, 

due to regular variations in glass quality. For any grouping of windows that has passed 

such a test, however, no further breakage should be expected with subsequent events. 

VI.     SIMULATED PEAK WINDOW STRESS: DAMAGE ASSESSMENT 

Results of our simulations are tabulated in Table 3. Columns 2-4 identify the 

window. The simulation technique, direct (d) or reciprocal (r) is listed in column 5. In 

the sixth column we have tabulated the simulated peak window stress for the estimated 

maximum peak sonic boom overpressure (4.3 psf). These values were predicted by our 

measurements, using Eq. 1. Lastly, we show our damage assessment in terms of a factor 

of safety. This factor is defined, for each pane, as the ratio of the maximum allowable 

stress for used glass (4,736 psi), to the predicted peak stress. 

Relative factors of safety yield the relative vulnerabilities of the windows tested. 

Least susceptible to damage is a window of the Bureau of Land Management (BLM) 

building and a train station window is the most vulnerable. Absolute levels may be 

interpreted as follows. For any window with a factor of safety greater than one, there is 

less than a 5% chance that it would have broken if, as assumed, it were subjected to the 

hypothesized flight operations (and even less likely for the operations flown during the 

Elgin Study). Having survived such flights, no further damage is anticipated with future, 

like operations. This is the case for all of the twenty windows. 



If our damage assessment methodology were applied without accounting for the 

current flight prohibition, we would predict window damage to be considerably more 

likely. This is readily seen by observing that the maximum peak overpressure recorded 

anywhere within the Elgin MOA during the study described in Ref. 7 was 19.35 psf, or 

roughly 4.4 times that used in this assessment. To account, the computed factors of safety 

in Table 3 would have to be divided by 4.4, resulting in 25% of the 20 sites now having a 

factor of safety less than 1.0. 

Finally, it is informative to compare these site specific damage assessments with 

the corresponding analysis in Section 4.1.3.3 of the "Environmental Assessment For 

Supersonic Flight Over The Nellis Range Complex".     Specifically, consider the two 

statements from that document, "The average boom of 1 psf has very little chance of 

damage...", and "Laboratory studies have shown that properly installed glass in good 

condition does not break at pressures less than 10 psf. Our results are in full agreement 

with one exception. The factor of safety for one of the windows, computed for a peak 

overpressure of 4.3 psf, is not sufficient to accommodate a level of 10 psf. That is, the 

factor of safety for this window (No. 16) under a 10 psf sonic boom would be (4.3/10) 

1.8=0.78, or less than unity. 
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Table 1 - Predicted Sonic Boom peak Overpressure and Duration for F-15E Aircraft 
Under Steady Flight Conditions 

Altitude 
(kft above MSL) 

Peak (psf)/Duration (sec) 
Mach Number 

1.1 1.2 1.3 1.4 1.5 

Five Mile Lateral Offset 

10 ~ ~ 1.0/. 11 0.9/. 10 0.9/. 10 

12 — 0.9/. 12 0.8/. 11 2.7/. 10 2.8/.10 

16 — 2.6/. 13 2.6/. 12 2.6/. 11 2.7/. 11 

20 — 2.3/. 14 2.3/. 12 2.4/. 12 2.5/. 11 

25 — 2.0/. 15 2.1/.13 2.1/.13 2.2/. 12 

30 — 1.9/. 16 1.9/. 15 1.9/. 14 1.9/. 13 

Five Mile Forward Standoff 

10 ~ ~ ~ — — 

12 ~ ~ ~ — ~ 

16 4.3/. 13 ~ ~ — — 

20 3.3/. 15 3.6/. 12 — — — 

25 2.8/.16 2.8/. 14 3.0/. 13 3.1/.12 — 

30 « 2.3/. 15 2.4/. 14 2.5/. 13 2.6/.13 

Table 2 - Elgin Range Overpressure for Individual Sites Within ±2 miles of Five 
Mile Track Envelope 

Site Number 
Operating 

Days 
Total Number 

of Booms 
Overpressure, psf 

Average Maximum 

24 191 42 0.64 2.03 

35 124 13 0.44 0.80 

36 90 3 0.41 0.69 
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Table 3 - Window Damage Potential Under Current Flight Restrictions: Structural 
Acoustic Simulations 

Window 
Number 

Description 
Size 

Simulation 
Technique 

Simulated 
Peak 

Stress1 

(psi) 

Factor of 
Safety2 

Width 
(ft.) 

Height 
(ft.) 

1 Drug Store 8.92 6.92 r 593 8.0 

2 Gottfredsons Furniture 5.33 7.00 r 863 5.5 

3 Gottfredsons Storage 
Bldg. 

2.67 4.42 r 261 18.2 

4 Tru-Value Hardware 3.83 5.75 r 577 8.2 

5 BLM Bldg: Center 4.17 3.67 r 383 12.4 

6 BLM Bldg: Side 2.67 3.67 r 211 22.5 

7 Dolan & Edwards Ins. 6.25 4.75 r 601 7.9 

8 That Little Shop in 
Caliente 

5.92 6.00 r 529 8.9 

9 Library:   SW1 3.67 4.00 d 371 12.8 

10 Library:   SW2 3.67 4.00 d 375 12.6 

11 Library: SW3 3.67 4.00 d 339 14.0 

12 Library: SW4 3.67 4.00 d 485 9.8 

13 Library: NW1 3.67 4.00 r 934 5.1 

14 Library: NW2 3.67 4.00 r 603 7.8 

15 RR Station: NW1 2.50 5.00 r 1,505 3.1 

16 RR Station: NW2 2.50 5.00 r 2,638 1.8 

17 Hospital Admin. Bldg.: 
Optometrist's Office 

2.00 2.42 r 1,069 4.4 

18 Hospital Admin. Bldg.: 
Side Door 

2.17 2.33 r 1,176 4.0 

19 Hospital: Trailer 2.50 2.17 d 1,646 2.9 

20 Hot Springs Hotel 1.25 2.67 r 1,019 4.6 

1 Based on a peak sonic boom overpressure of 4.3 psi. 
2 Based on a damage stress criterion of 4,736 psi. 
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Boom Signature 

> 

Figl Boom From Supersonic Flyover Vibrates Structure, Potentially 
Causing Damage (Glass Breakage, Plaster Cracking, Etc.) 
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Acoustic source 

'   Vibration response of structure 

Fig 2a. Direct 
irect Structural-Acoustic Simulation of Sonic Boom Impulse Response Function 

Radiated pressure O 

(1/M) 

n Mechanical vibration source 

Fig 2b. Reciprocal Strucmral-Acoustic Simulation of Sonic Boom Impulse Response Function 
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(a) 

(b) 

Fig. 3. Microphone Setup for (Reciprocal) Sonic Boom Simulation Tests: (a) Train 
Station, and (b) Gottfredsons. 
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