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Abstract 

The compressible nature of the source terms in Lighthill's acoustic analogy can be closed. For 

weakly compressible flows, in the absence of thermoacoustic effects, the compressibility of the 

source field is known in terms of solenoidal modes of the vortical flow field. In such flows, the 

square of the fluctuating Mach number is small and this fact, coupled with the singular nature of 

the acoustic problem, and the fact that the phase speed of the acoustic sources is the advective 

speed, is used to formally close the compressible portion of the fluctuating Reynolds stresses. The 

closure resolves, as expressed in Crow's 1970 paper, the inconsistent incompressible approximation 

to Lighthill's source term. It is shown that the incompressible approximation to Lighthill's source 

term, accurate to order of the square of the Mach number, predicts an acoustic field accurate to 

order Mach number. 
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1. Introduction 

Many investigations in aeroacoustics begin with Lighthill's (1952, 1954) acoustic analogy: it is 

derived, without approximation, from the equations of motion and constitutes an exact solution for 

the acoustic field. The source term in Lighthill's equation while exact, requires in any application 

of the acoustic analogy, approximation. Any lack of agreement between Lighthill's theory and 

experiment is then due to approximations made when the source term is modeled. Lighthill (1952, 

1954) showed that an estimate of the source term neglecting its compressible nature, and where the 

density was taken to be the local mean density, constituted a useful approximation. Also underlying 

Lighthill's analogy is the hypothesis that the flow field, which is the source of the acoustic field, 

is distinct from an ambient constant property stationary medium enclosing the flow field; in the 

ambient medium Lighthill's source terms are assumed to be zero. Several issues, limitations, and 

ambiguities regarding the utility of such assumptions have been investigated by Crow (1970). 

In this article the compressible nature of the source terms in Lighthill's acoustic analogy are closed. 

That this might be possible, for compact sources, is suggested by the singular nature of the aeroa- 

coustic problem: in the near field source region, the wave operator, rescaled on the length and 

time scales of the source flow, becomes elliptic, Crighton (1975), Kambe (1986). The compressible 

aspects of the acoustic source are then given by a series of Poisson equations whose source terms 

are given by the solenoidal of the inner source field. A form of Lighthill's analogy accounting for 

the compressibility of the vortical source field is obtained and the incompressible approximation to 

the source terms in Lighthill's acoustic analogy can be understood and, if necessary, avoided. 

Problem statement 

Lighthill's acoustic analogy is written, Lighthill (1952), as 

P,tt  ~ <?ooP>jj  =   Tij>ij =   I PuiUi + (P  -   CloP) öij Uj ■ C1) 

It is convenient, for the present problem, to work in terms of pressure: Lighthill's analogy can then 

be written as 

c^o2P,tt ~ P,jj = {fmuj),ij + c~2 (p - clop)^ (2) 

The quantity (p - <%oP),tt is responsible for thermoacoustic effects, Crighton et al. (1992); it 

will be neglected for the class of flows that are the subject of this article. The present analysis is 

understood to be limited to the class of flows relevant to subsonic aeroacoustics: high Reynolds 

number (turbulent), weakly compressible, compact flows with a relatively constant mean density. 

In such a flow it can be shown, using the perturbation series derived below, that the quantity 

(P   -    cloP) makes contributions that are of C(Mt
2) with respect to the highest order terms 



included in the present analysis. Here Mt = uc/c is the fluctuating Mach number for which uc 

is a characteristic fluctuating velocity; its square is a measure of the strength of the effects of 

compressibility. 

In many analyses using Lighthill's analogy an incompressible approximation of the source terms is 

used: puiUj ~ Poo^iVj where vt represents the solenoidal velocity field. Lighthill's acoustic analogy 

is then written as 

cjp,tt  ~P,jj  =   Poc{VjVi),ij (3) 

and the difference between the compressible and incompressible term, [puiUj - p<x,ViVj],ij, is ne- 

glected. This article addresses the compressibility correction term, 

Tfjiij = [Puiuj - PooViVj],ij , (4) 

which can be viewed as encompassing, in the absence of thermoacoustic effects, the compressible 

nature of Lighthill's source term. The present focus will be on understanding the 1) scalings 

of T£; 2) identifying its acoustic nature, and 3) its contribution to the radiated acoustic field. 

The main result of this article, however, is a closure for the compressible correction term, as a 

result the full Lighthill source term (piiiUj),ij is then known. As a consequence, the incompressible 

approximation to the source term in Lighthill's acoustic analogy can be analytically and numerically 

better assessed. It is seen that in many cases of practical interest the incompressible approximation 

is sufficient. When it is not sufficient the contributions due to compressibility can now be obtained. 

Outline 

In the next section, §2, some background material and a clarification of diverse issues are provided. 

In §3 single-time low Mach number expansions of the governing equations are conducted. The 

consequences and shortcomings of this procedure and its reliance on an unjustifiable imposition 

of a Helmholtz decomposition are indicated. In §4 a two-time low Mach number expansions is 

used; this procedure distinguishes acoustic from compressible modes by phase speed - as opposed 

to the Helmholtz decomposition used by Crow (1970) and in §3. The analysis highlights important 

kinematic features regarding the coupling between the solenoidal and the compressible strain field 

which allows a simple and straightforward closure for the compressible portions of the source term. 

In §5 the nature and scaling of the compressible source terms are investigated. 

2. Preliminaries 

Some background information useful for motivating the analysis and understanding the procedure is 



now given. As the singular nature of the problem is in fact what allows a closure for the compressible 

correction, it is described first. 

The singular nature of the aeroacoustical problem 

In the present closure for the effects of compressibility on the source terms in LighhiU's acoustic 

analogy the singular nature of the aeroacoustical problem is used to advantage. The singular nature 

of the acoustics problem manifests itself in the nonuniformity, Lauvstad (1970), of an expansion 

procedure; important physical processes take place on different length scales, Crighton (1975), 

Kambe (1986), Kambe, Minota and Takaoka (1993). The ratio of the two length scales goes to 

zero as the small parameter, Mu goes to zero. When the problem is scaled iising the length and 

time scales of the vortical flow field, [£,l/uc], the Lighthill equation, cj*p,tt - P,jj = (pUiUj),ij 

devolves to a Poisson equation for the pressure and one obtains a set of equations that are used to 

describe an incompressible flow: poo(vi,t + VkVi,k ) + P,i = 0, Vi,i = 0 and 

V2p   =   - poo(viVj),ij. (5) 

The problem is elliptic in nature. On the outer or acoustic scales, [f./Mt,£/uc], one obtains the 

sourceless wave eqiiation 

coo 1 P,jj = 0. (6) 

On the outer scales of the problem the hyperbolic nature of the problem manifasts itself. The nature 

of the two problems is clearly different; Crighton (1975) provides a pithy view. On the inner scales 

the Laplacian is more singular than the double time derivative. This fact is exploited to obtain 

closure for !£•,#; the compressible portions of the source terms will then be related to a series 

of Poisson (elliptic) equations whose source term is given by the solenoidal field and is therefore 

known. The essential point is that the compressible nature of the source term is known without 

solving the acoustic radiation problem. In the way that the leading order contribution to the sound 

field is obtained from the solenoidal modes, pooikVj, so also is the compressibility correction, Tfi. 

Observations by Crow 

The neglect of the compressible portions of the source term, Tg-,y, is sometimes justified on the 

grounds that T% is of Ö(M?) with respect to (viVj). This implicitly (and unjustifiably) assumes 

that the compressible correction, Z£,y, is quadrupole as is (^Uj).y- Crow (1970) has examined 

this idea. 

Crow (1970) investigated the structure of the Lighthill equation as a perturbation series in the 



fluctuating Mach number. 

Ml p,tt ~ P,,, = T°jHj + T?jyij +... = Poo(viVj)rij + Ml Tlpij +... . (7) 

The source term T^,ij represents contributions to the source term from interactions between incom- 

pressible and, in Crow's (1970) nomenclature, acoustic modes of the flow. Crow (1970) makes the 

point that to treat the sound problem by retaining Ö(M2) in the wave operator while neglecting 

in Tij a compressible term of ö(Mt
2), T^tij is inconsistent 2. Despite his demonstration of this 

inconsistency, he concludes that the incompressible approximation to the fluctuating quadrupole 

is adequate for compact flows with small fluctuating Mach number. This appears to be due to the 

nonuniformity of the problem; p,tt is not important in regions of the flow where T^,ij is important, 

and, in regions of the acoustic field where p,tt is important, T^,ij is not important - because of this 

behavior the effects of the truncation relative to the the term p,u is mitigated. Crow (1970) makes 

an additional point: a simple source in T^ will contribute terms of the same order as those in the 

incompressible quadrupole (viVj)ij. The major issue then appears to be whether the contribution 

to the acoustic field due to Ml T}pij can be neglected relative to Tfpij; this will not true if T^j 

contains a simple source. This important question motivates, in part, this analysis; its resolution 

requires a delineation of the compressible source terms which is only possible once a closure for 

these terms is obtained. 

The governing equations 

The following equations are used to describe the flow: 

p*,t +u*kp*,k   =   -p*u*,p (8) 

p*ult+p*utut,k+p*,i   =   0 (9) 

P'/Poo     =     (//Poo)7- (10) 

An asterisk denotes the fact that the superscripted variable is dimensional. The last equation comes 

from the assumption of isentropy: -^ s = 0 =» p-j% h = §-t p from which the equation follows given 

the ideal gas law. The enthalpy, h, is given by h{-y-l) = c2 where c2 = -yp*/p* and -g-t = ft+u%-^. 

The momentum and continuity equations can be combined to give p*,tt - P*,jj= (p*u*u*)>iji 

which becomes a wave equation for p or p if the gas law is used to eliminate one in favor of the 

other. For clarity of exposition, the viscous terms are not carried; they can be shown, for a high 

Reynolds number flows, to be of higher order. Perturbing about a reference state, (poo,Poo), the 

nondimensional forms of the pressure and density are taken as p* = £«,(1 +p) and p* = p^l + p). 

2A similar inconsistency in Ribner's (1962) dilatational acoustic theory has been indicated in Ristorcelli (1997). 



The equations, where \p,p] are now dimensionless, become 

p,t+u*kp,k   =   -(l+p)u*p,p (11) 

(l+p)[u*,t+u*ku*,k} + ^P,i   =   0 (12) 

v - IP  =  ip{i - 1
)P

2 (13) 

ft«-—p.«  =  [(i+pK«3k- (14) 

The velocities are still dimensional. In these equations c*, = fPoo/poo- These equations will be 

used as the starting point. The following definitions for the strain and the rotation will also be 

needed: Sij = ±[vi,j +Vj,i} and ry = \[vhj -Vjri\. The superscript "c" as in s^ and r?- will denote 

the strain and the rotation associated with the compressible portion of the velocity field. 

3. A single time perturbation analysis 

A small fluctuating Mach number expansion of the compressible Navier-Stokes equations is now con- 

ducted. The analysis is understood to be addressing high Reynolds number, weakly compressible, 

turbulent flows - the class of flows relevant to subsonic aeroacoustics for which isentropy implies 

dp = (?dp. Similarites to the Crow (1970) analysis are discussed. Shortcomings are highlighted. 

A single time perturbation analysis 

Regular expansions of the form p = e2 [pi+ e2P2 + •■•], P = <? [P\+ ^Pl + •■■]> ui/uc = vi + Wi = 

Vi + e2 [ w\i + e2W2i + ■••], are inserted into the governing equations. To the lowest order a set of 

equations that are the same as that used to describe an incompressible flow, 

Vi,t +vpvi>p +pi,i = 0 (15) 

vt,i = 0 (16) 

V2pi = - (vw)^ (17) 

Pi = JPi (18) 

are obtained. The velocity has been made nondimensional with uc and e2 — ^M? = ful/c^ where 
clo = IPoofpoc- The independent variables are still dimensional — length and time scales have not 

been chosen. The fluctuating pressure, p\ is obtained from a Poisson equation whose source term 

is known in terms of the solenoidal modes of the velocity field; the leading order density fluctuation 

is linearly related to the leading order pressure. The next order equations are 

Pl,t +vpp\,p   =   -w\k,k = - d\ (19) 



U>U,t  +VpWu,p  +WipVi,p  +V2,i     —     -Pl{Vi,t+VpVi,p) (20) 
1 

2 P2-7P2    =    o 7(7 - x)p\ (21) 

~P2,jj   =    {wiiVj+wijVi + piViVj),ij putt- (22) 

The compressible portion of the source flow, [wu,Pi,P2], does not involve a wave equation. In the 

near field region the compressible pressure is felt effectively instantaneously. Since 7/^ = pu the 

next order continuity equation yields a diagnostic relationship for the dilatation, d\ = wik,k, 

-7dl = put +vkpi,k = -j^Pi- (23) 

where ■£   = 4 +vkJ
L.  The dilatation is, to leading order, not an acoustic quantity - it does 

Ut ot @'&k 

not propagate with the acoustic phase speed. The dilatation, d\ = wu,i is related to the pressure 

that satisfies V2pi = - {viVj),^. It can be shown, Crow(1970), that the solenoidal pressure falls 

off from the source region as p\ ~ x~3. Using the continuity equation indicates that wu,i = d\ ~ 

-ßl Pi ~ x~3 and WH ~ x~2 which differs from the acoustic scaling, wu ~ x-1. 

Lighthill's acoustic analogy is reconstituted, in dimensional form, as 

cjp,tt  - V2p = Poo [ViVj] ,ij + Poo [WiVj + WjVi + pViVj] ,ij . (24) 

The identifications Wi = iM?ucwu and p = iMfpi have been made. This is what Crow (1970) 

has called a self-consistent form of Lighthill's acoiistic analogy — Ö(M?) terms on both sides of 

the equation are retained. 

Imposition of a Helmholtz decomposition 

In order to close the source terms expressions for pi and wu are required. This is readily accom- 

plished as the leading order problem [vi,pi] is considered known. 

In the perturbation anslysis above the small parameter was used to order various dynamical aspects 

of the physics. The problem, following Crow(1970), is now kinematically partitioned: the Helmholtz 

decomposition allows, for any suitably compact vector field, a unique decomposition into the curl 

of vector, vit and the gradient of a scalar, 1^: Ui = Vi+Wi= Vi + fa. The decomposition implies, 

of course, wu = 4>\n anc* ^2<Pl = <^l and the usual Biot-Savart relation V2Ui = Sijk^k^j- Here 

Ui — SijkVj,k is the vorticity. The compressible modes are therefore determined by the inversion of 

the following Poisson equation for the potential 

-7V2^ = -g pi, (25) 



using the methods of Green's functions. The homogeneous solution is the trivial solution. The 

velocity field is given by 

—lV7wu = (—pi),i =*> wu = -- V 2(— pi),*. (26) 

There are several other simplifications that can be made to this expression using the fact that wiX 

is a double convolution. This does not suit present intentions. The fluctuating density is, of course, 

linearly related to the fluctuating pressure ~yp\ = p\. Thus all terms in [wuVj + w\jVi + p\ViVj] are 

closed once 

v2pi = -\wiU (27) 

is solved. The Lighthill equation, to order Mt
2, has now been formally closed. This is similar 

to Crow's (1970) analysis; Crow (1970), however, was interested in different questions and did 

not pursue the question of a closure for the compressible correction Tfpij = [puiUj - Poo^j] »j = 

Poo[WiVj + WjVi + pViVj],ij. 

There are some theoretical and practical problems with this result. 

• The Helmholtz decomposition has partitioned the flow field such that all the vorticity is in the 

leading order problem, [vi,pi]\ all the effects of compressibility are in the irrotational mode. 

The Helmholtz decomposition precludes any representation of a compressible rotational mode. 

• Inspection of the evolution equation for wu shows that wu is not irrotational. 

• Contributions to the source term wu,j Vj,i = (4/ +rij)vJ>» does not account for tne interaction 

term Tf,-u/,t since the rotational compressible are not captured in this representation.  Here 

sij = ^[wliyj+wljn] and rtj = i^i'i ~WV»\ 

• Any calculation of the compressible correction requires a double convolution. Any solution 

for the acoustic field requires a triple convolution. 

These shortcomings can be resolved with a multi-time analysis. 

4. A two-time perturbation analysis 

The ability of a two-time expansion to distinguish, in the source field, compressible from acoustic 

modes is essential to closing for the compressible aspects of the source terms in Lighthill's acoustic 

analogy. The multi-scale procedure distinguishes acoustic modes, with acoustic phase speed from 



compressible modes, with advective phase speed. This is a distinction that is not possible with the 

methodology employed above. 

In the flow field there axe two velocity scales, the sound speed, c, and a characteristic fluctuating 

velocity, uc. In the flow field one length scale is recognized: L Two time scales can be identified: 

a fast time that scales with the eddy crossing time, £/coc, and a slow time that scales with the 

eddy turnover time, f./uc. The ratio of these two time scales is the turbulent Mach number and 

is the small parameter in a two-timing procedure. The problem is recognized as being driven by 

the vortical flow which evolves on the advective (slow) time scale: if there were no flow evolving 

on the slow time there would be no compressible or acoustic field. The problem can be viewed as 

a forced linear oscillator with forcing coming from the slow vortical modes with advective scales 

[uc,f]. While simple in concept diverse subtelties associated with the aeroacoustical problem can 

be more readily seen if the two-time procedure is first applied to the forced linear oscillator. 

The forced linear oscillator 

Consider the forced linear oscillator driven with frequency to much slower than the natural frequency 

of the oscillator, LOQ, LO/LOQ « 1: 

Ü + UJQU =  OJQCOS cot. (28) 

The exact solution is written as a sum of homogeneous and particular solutions: 

to2 

u{t;Lü0,Lü)=uH(t;LO0)+uP(t;üJu,u)=A1e
+™nt + A2e **>* +    a   °   2 cos at. (29) 

LÜn CO 

Note that the homogeneous solution has no relation whatsoever to the forcing, uH(t;iü0) / /(w). 

This property of the homogeneous solution will be used to eliminate its consideration as a solution 

relevant to the acoustic source generated by the flow field. If the initial conditions are such that 

the eigensolutions are not stimulated, A\ = A2 = 0, the solution is the particular solution, u(t) = 

^ = cos{üJt) + ö($). 

The forced linear oscillator is now treated by the method of multiple-scales. The role a small 

parameter will be played by e = LO/LüQ « 1. Time can be rescaled, t' = u>at to produce, after 

dropping the primes, 

ü + u = cos et. (30) 

Following the us\ial multi-scale procedures the original time variable, [t], is replaced by two 

independent time variables, [to,ti]; *o is tne fast time scale and t\ is the slow time scale. The 

multi-time-scale ansatz for the dependent variable is u(x,t) = ii(x,io>*l), where to = t and t\ = et. 



The time derivative of u(x, t) is then written, using the chain rule, ~ u(t; e) = ^^ u(t0,ti;e) + 

TJj^u(<0,*i;e) = &u(*o,ti,e) + e^;«(*o,*i,e). Expanding ix(t;e) = u0(*o,*i) + «Ji(*o,*i) + 

e2ix2(to, ti) + ••• the problem for the forced oscillator takes the form 

d2 

-"2^0+1*0    =     costi (31) 

MUl+Ul = ~2öä"°- (32) 

The leading order solution can be written as a sum of homogeneous and particular solutions, 

«o(*o,*i) = M{ti)e+it» + A2(h)e *> + costx. (33) 

The slow time coefficients, Ai(ti), are determined by the removal of secular terms in the equation 

for u\. They are constants for this problem. The solution, when the eigenmodes are not stimulated, 

Ai = A-2 = 0, is the particular solution: iz0(*o,*i) = uop(h) = costi = cosut which is, to C(e2), 

the exact solution given above. The realization that the particular solution u0(ti; OJ) is the solution 

relevant to the forcing and that the homogeneous solution, u0H(t0;Lüa), is not associated with the 

forcing and not relevant to the aeroacoustical problem driven by the fluctuating velocity field. 

Multi-scaling the compressible source flow 

A multi-scaling of the compressible Navier Stokes equations, modulo viscosity, is now conducted. 

An analogy between the compressible aspects of the source flow and the forced linear oscillator is 

made. The time scale of the forcing, w_1, can thought of as an eddy turnover time of the turbulent 

source field, £/uc. The slow or advective time scale is l/uc. The time scale U>Q , can be identified 

with the sound crossing time, tfc^. The fast or acoustic time scale is £/uc. The small parameter 

is the turbulent Mach number which is the ratio of these two time scales. 

Compressible portions of the flow evolving on the fast time scale will be called acoustic modes; 

compressible portions of the flow evolving on a slow time scale will be called advective compressible 

modes. The multi-time procedure is crucial to distinguishing these two aspects of the compressible 

flow.  The compressible portions of LighthiH's source terms will be seen to be a function of the 

advective compressible modes. 

Starting with the compressible Navier Stokes equations given in §2 the following ansatz, as suggested 

by earlier results, for the dependent variable is proposed: 

u*   =   uc(vi + 4>wWi) (34) 

V   =   <h(Ps+<J>\Pc) (35) 

P  =  <j>o{Ps + 4>iPc)- (36) 

9 



The subscript "s" is understood to indicate solenoidal in reference to Vi which has zero divergence 

and from which both ps and ps are derived. The subscript "C" will signify the compressible nature 

of the nondimensional pressure and density fields. Inserting the decompositions into the governing 

equations produces on the inner length and time scales the problem: 

Vi,t + vkVi,k + ps,i = 0 Vk,k = 0 (37) 

Ps,jj = - (ViVj),ij IPs = Ps■ (38) 

The leading order problem is described by equations used to model an incompressible flow with 

characteristic time, length and velocity scales [£, £, uc]. The gauge function <f>a = <yM? is established 

by balance. 

The compressible portion of the problem, \pc>Pc,wi[i ls 

[l + 4>o(ps + 4>iPc)}[wi,t+vkWi,k+wkVi,k+4>w'Wk'Wi,k}4>w   +   -JrL4>o<PiPc,i = 

= -<fa(Ps   +   4>iPc)[vi,t+VkVi,k] (39) 

Mi[PCt +VkPc,k +4>wWkpc,k ] + [1 + 4>o{Ps + <S>iPc)\u>k,k <j>w   =   -4>a[Ps,t +VkPs,k] (40) 

<l>o<f>i(pc - IPC)   =   2^(7 -1)<f>l(ps + 4>\PC)\AI) 

The dependent variables of this problem are all nondimensional: [vi,Wi,ps,pc,ps,Pc] are in units 

of [uc,poo,Poo]- It is important to note that the independent variables are dimensional: length and 

time scales have not yet been chosen. The scalings for length and time will determine <j>i and <j>w. 

Choosing the £/c and £ for the scalings the only consistent balance of the momentum and continuity 

equations produces <f>w = Mt
2 and <f>\ = Mt- 

The compressible independent and dependent variables are now expanded in a series of form: 

Wi(x,t0,ti)    =    woi{x,t0,ti) + ewH{x,t0,t1) +... (43) 

pc(x,t0,ti)    =   p0(x,tc,t1) + epi(x,t0,tl) + ... (44) 

Pc{x,tQ,h)    =    po(x,t0,ti) + epl(x,t0,t1) + ...   . (45) 

Here ^ =^+i>feg|-and-^- = J7 +ffcät^ The equations are made nondimensional with 

the integral length scale, £, and the fast time scale, £/c. Inserting the expansions for the dependent 

variables and the temporal differential operators produces to leading order: 

7T- w0i + po,i   =   0 (46) 

D L 
D (A7\ 

Df0
Po + Wok'k = 'mi*' (47) 

Po - 1PG   =   0. (48) 

10 



The set of equations are equivalent to those of the forced linear oscillator, yi—y2 = 0 and Vs+^o V^ = 

cos (wt). The analogy can be seen in Fourier space where the complications of the spatial derivative 

on W(n are removed. (The second order equations are given in the appendix.) The compressible 

velocity gradients evolve according to: 

7TT wot'j   =   ~ Pa,ij ~ vp,j wDi,p , (49) 
L>to 

from which the equations for the divergence and the vorticity are readily obtained, 

—— w0j,j   =   -po,jj-vp,jW0j,p. (50) 

„.    uoq   =   - eqijvp,jwoi,p. (51) 
JUto 

The associated wave equations are given in the Appendix. 

The particular solution and its consequences 

Recalling the forced oscillator analog, the general solution for the leading order problem is written 

as a sum of homogeneous and particular solutions, woi = WOIH{X, fa) +u>iip{%, *i)> Po = POH(X, fa) + 

PIP{X, ti). The homogeneous solution is independent of the forcing and is relevant to acoustic fields 

that are generated by initial or boundary conditions and is not of interest to the acoustic source 

problem. 

The portion of the compressible problem driven by the slow solenoidal modes is of interest; the 

solution of relevance is the particular solution, wGi = WfaP(x, *i),po = POP(X, h). As was seen in the 

forced linear oscillator example, the particular solution, to 0(e2), is found by setting -^ [^o,Po] = 

0. Thus: 

W0k,k     =     ~ "j^-   Ps (52) 

Po(Mi)   =   Po(x,ti) = 0. (53) 

The two-time expansion indicates slow compressible modes are, at this order, irrotational, and 

found by 

wok,k= V2</.(z,ti) = - — Ps- (54) 

Rotational modes can exist at this order; they are associated with the homogeneous solution and 

are a function of arbitrary initial conditions. The equation for the divergence with, -^ w0j,j — 0, 

indicates that the particular solution has the following property: 

vp,j WQJ,P = vp,j <f>,jp = 0. (55) 
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This is a consequence of the two-time expansion; it is, as will be seen, a very useful fact. Kine- 

matically it is understood as indicating that VP,JWQJ,P = spjSc
jp = 0; the principal• axes of the 

compressible strain rate are orthogonal to the principle axes of the solenoidal strain field. In the 

compressible portions of the acoustic source quantities such as (wuVj),^ can be simplified using 

the above fact: (vjfa ),y = Vj V20y + vitj 0,y = VjV2<j),j = - Vj{^ ps),j since vp,j <f>,jp = 0. The 

compressible correction term, Zg-,„• = p^, [woiVj + w0jVi + pMVj] ,ij = Poo [0,j Vj + <f>,j Vi + psViVj] ,„■, 

is then written as 

Tfj ,ij = Poo [- 2 (VJ — ps) ,j + (PsViVj) ,ij} (56) 

and Lighthill's acoustic analogy is reconstituted, in dimensional variables, as 

cjp,tt ~ V2p = pooiviVj)^ + - cJlipsViVj)^ - 2(v,-— Ps),j}. (57) 

As the perturbation analysis is finished, ps, is now dimensional. The compressible nature of the 

source terms can be obtained from the solenoidal field and the equation is closed: ps is obtained 

from its Poisson equation; -V2ps = Poo(viVj),ij. Several features and advantages of the multi-scale 

closure are summarized: 

• The compressible field is, to leading order\ irrotational. The multi-scale result justifies the 

assumption of a Hehnholtz decomposition in the previous section (and in Crow's (1970) 

analysis). 

• The principal axes of the compressible strain rate are orthogonal to the principle axes of the 

solenoidal strain field, since vp,j WQJ,P = 0. 

• The compressible correction term can be written in terms of the solenoidal modes of the 

source flow: 

'««' =  ~ cJifaWj)*] ~ 2(vi~Bt 

Tii*i = Z CJ[(PsViVj),ij - 2(Vj — ps)d ]. (58) 

• The solenoidal field, [vi,ps], is calculated from the leading order equations — a set of equations 

that is describes an incompressible flow. 

• The compressible correction term does not require a double convolution. 

Caveat 

The analysis presented is relevant to a general fluctuating flow in which there is one characteristic 

fluctuating velocity scale and whose characteristic Mach number, the turbulent Mach number, is 
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small. For such a flow the slow compressible field is, to leading order, irrotational. The irrotation- 

ality of the slow compressible field, for subsonic flows, is a useful approximation as long as the mean 

strain rate, S, does not approach the eddy crossing time: it. when S£/c —> 1. When Si je ~ 1, the 

slow compressible modes become rotational and Sl/c enters the analysis as an additional governing 

parameter. Thus the present analysis is relevant to applications for which Si/c < 1; this is the case 

for many developed turbulent flows for which uc ~ Si. 

5. Detailing the compressible contribution to the acoustic source 

As the analytical work is now complete the presentation returns to the dimensional variables as 

used in §1. The main result of this work has been the closure for the compressible correction to 

the Lighthill source terms, 

T^ij=[puiuj - PocViVj],^ = —^-[{PsVivj),ij-2(vj— ps),j}. 
7C0O 

Various properties of this closure for the compressible source terms are now investigated. The far 

field solution to the wave equation is presented and the nature of the new source terms is defined. 

The asymptotic scaling of each of the terms is also indicated.   It is first noted that the second 

compressible source term can be rewritten 

-(vJJj-tPs),j= (vjd)v (59) 

as the flux of the leading order dilatation using the diagnostic relation, d = - jyt ps, derived above. 

Note that if the pressure, ps, were frozen, it would not contribute to the compressible source term. 

The nature of the compressible contribution to the source 

The contribution of the compressible source terms to the acoustic field is, however, determined by 

integrating over the volume of the source field. The closed Lighthul analogy reads 

cjp,tt ~ V2p = PooiViVj)^ + - cJ[(paViVj)rij - 2(vj-pt Ps),j\> (60) 

and the solution, for an unbounded flow, is obtained by convolution, 

1      92      f dx! 

+ i   i    d2    r,      ,   <ix' 
/ \PsViVj]   | 77 

J x — x' 47T7 C^ dXidXj 

2     1    d    f     D      ,     dx! 
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where the square brackets indicate a quantity evaluated at [x',tr] where tr = t -    c* ■   is the 

retarded time. 

Following the usual procedures for the far field solution, ^ = --£ ^ ft, due to symmetry in space 

and time. The far field solution is, 

,    . 1   1  1 XiXj d2   r     r     . , , 

2    1  1 Xj d   r,    D , 
47T7 c^, x x dt J      Dt 

+ ±i£?2w i*-^"- (62) 

From a mathematical point of view the three contributions to the acoustic field — ordered according 

to the expansion parameter — are seen to scale, respectively, as Ö(M?) + Ö(M?) + 0{Mf). It 

is seen that though T^ is C(Mt
2) with respect to ViVj, in Lighthill's wave equation, its contribution 

to the acoustic field is 0{Mt) with respect to the contribution from ViVj. From a more applied 

viewpoint the contributions to the acoustic pressure scale as 

p(x,t)   ~   0(v*) + 0{u\) + 0{ul). (63) 

The first term produces the well known eight power velocity scaling for the sound intensity of a 

quadrupole source, Lighthill (1952). To leading order (pp) ~ u*; to next higher order crossterms 

will produce a u9
c scaling. 

The second term, involving the flux of the dilatation, can be understood as a lateral quadrupole. 

Using the momentum equation the fiux of the dilatation can be rearranged as 

VjT>i Ps = m (VjPs>> + 2^PsPs^'j' ^ 
giving a clearer indication of quadrupole nature. The (psps),j will make a higher order contribution, 

at the same order in Mt as the last term. The second term will, nonetheless, be left as a flux of 

the leading order dilatation. The last source term is a quadrupole. 

Asymptotic decay of the compressible portion of the source field 

As a consequence of the Biot Savart law, Crow (1970), Howe (1975), Kambe (1986), the boundedness 

of the first moment of the vorticity indicates that the fall off of the solenoidal velocity associated with 

a compact vorticity distribution is Vi ~ x 3. As a consequence, the incompressible approximation 

to the source falls off, with distance from the source region, as v^j ~ x~G. 

Similarly it has been shown, see Crow (1970), that ps ~ x 3. As a consequence 

D_ 
~D~t 
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and Wi ~ M%x 2.  Using the above facts the source terms in Lighthills acoustic analogy, ViVj + 

WiVj + WjVi + psViVj, fall off, from the source region, as: 

„-6 

-5 
WiVj    ~    x 

PsViVj    ~    x 

Thus in the inner source flow there are contributions due to the compressible nature of the fluctu- 

ations that are both more and less compact than the incompressible approximation to the source 

term. The assumption underlying Lighthill's acoustic analogy, that Ty = 0 outside the source 

region, is validated when the compressible nature of the source term is included. 

Note that the compressible velocity field scales as a;-2; this is not the acoustic scaling assumed in 

Crow (1970). Crow's (1970) arguments were based on the fact that the compressible component of 

the velocity scaled as x~l thus w^Vj ~ x~4. As has been shown the compressible correction term, 

Tc, is due to the advective nature of the compressible flow, not its acoustic nature. 

6. Summary and conclusions 

For a high Reynolds number weakly compressible flow, in the absence of Important irreverssible 

processes, a multi-time scale procedure has been used to distinguish compressible modes with acous- 

tic phase speed from compressible modes with advective phase speed. The advective compressible 

modes are identified as acoustic source terms. The procedure has produced the following results: 

• The assumption underlying Lighthill's acoustic analogy, that ly = 0 outside the source region, 

is justified when the compressible nature of the source term is included. 

• The compressible strain field is orthogonal to the solenoidal strain field: spj<j>,jP = 0. 

• A closure for the compressible correction, Tfinj = [pUiUj - PooViVj],^, to the incompressible 

approximation of Lighthill's source term, Poc{viVj),ij, has been obtained. 

• Lighthill's acoustic analogy can be written in closed form: 

C^P,tt   ~V'2p = Poo(ViVj),ij    +   J^C^ÜPsViVj),^   -2(Vj—pa),j] 

where -V2ps = Poo(viVj),ij. The incompressible approximation to the Lighthill source term 

is, of course, Poo(viVj),ij, the dominant term. 

• Though If- is of C(Mt
2) with respect to v&j its contribution to the acoustic field is of ö(Mt) 

with respect to the contribution from v^Vj. 
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• The C(Mt
2) incompressible approximation to the Lighthill source term, pUiUj » Poo^iVj, 

predicts an acoustic field accurate to ö(Mt). 

The results indicate the possibility of investigating the consequences of compressibility analyti- 

cally. The results also indicate a procedure that extends the possibility of incompressible DNS to 

investigate the compressible effects on sound generation. This has some utility as incompressible 

simulation methodologies are better understood, further advanced, and cheaper, allowing larger 

Reynolds number and longer simulation times. 
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Appendix: leading order compressible equations 

Additional aspects of the leading order compressible problem given in §4 are summarized. The 

leading order compressible momentum, continuity and thermodynamic equations are 

77- woi + po,i   =   0 (66) 

D , D (Kf\ 
ÜZQ L)t\ 

Po-lPo   =   0. (68) 

The equations are nondimensional — the sound speed is unity. The compressible velocity gradients 

evolve according to: 

—— woi,j   =   -Po,ij-Vp,jivoi,p, (69) 
■Uta 

from which the equations for the divergence and the vorticity are readily obtained, 

— w0j,j   =   -Pa,jj-Vp,jw0j,p. (70) 

——   üJQq     =     — BqijVp,j W0i,p ■ (71) 

On the slow time scale, setting ^ = 0 one finds p0 = 0, w0k,k = --— ps and vp,j w0j,p = 0. The 

vorticity results solely from the initial conditions -^ ujQq = 0 on the homogeneous solution. Some 

wave equations are derivable 

-^2  Pa ~ V2po = vp,j woj,p (72) 

taking -J^-  the leading order equations can be combined to give a third order wave equation 

D   ,D2 _a    . D ,    . 
Df0

[w0
p°-^PD]=v^Dra

Woj'p- (73) 

For the slow portion of the compressible field -^- ww.,j= 0, and the following sourceless wave 

equation describes the fast acoustic modes: 

D      Iß 
Dt0   [D1?0 

In the general case -$- Wfa,j ^ 0, and a Lilley type wave equation, Goldstein (1976), results: 

D      D2 

-—  [-=r-J2 Pa - V2po] + vk,ip0,ik = -Vk,iVp,kW0i,p . (75) 

Had the problem included a mean shear a form of Lilley's equations with the familiar factors of 2 

in the refractive term and source terms would have resulted. 
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