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1.   MOTIVATION 

A family of simulation models has been developed to 

provide Monte Carlo simulation of atmospheric variables 

in time and space. These models are based on the 

superimposition of waves to approximate a standardized 

Gaussian field. Three parts of these models must function 

accurately if the generated fields are to imitate the 

atmosphere: 

a. Convergence to a normal distribution of 

the superimposed waves. 

b. Transformation of the normal distribution 

to the variables' climatological distribu- 

tion. 

c. Correlation structure in the generated 

Gaussian field must closely approximate 

the variables' equivalent normal correla- 

tion structure in time and space. 

It is the third requirement that this report addresses. 

Furthermore, the results are applicable to other 

statistical atmospheric problems including objective 

analysis, inferential testing, coverage distributions, 

and extremes. 



2.   WAVE GENERATORS 

Here, a wave is defined as a periodic function in 

one or more dimensions: 

Wave (u) = Wave (u + L) (1) 

where wave is some arbitrary waveform, e.g., a cosine or 

a sawtooth, L is the wavelength and (1) is true for any 

value of u. Initial consideration is limited to plane 

waves, that is, u is a linear function. 

In 3 dimensions;  u = cxx + cyy + c2z + u0        (2) 

In D dimensions:  u = c*x + u0 (3) 

where the c's are direction cosines of a line (the cosine 

of the angle between each axis and the line) with 

positive/negative orientation through the origin, c x is 

a dot product between c, a row vector of direction 

cosines, and x, a column vector, and u0, 0 < u0 < L, gives 

the phase at the origin. Equation (3) defines a plane 

perpendicular to the line specified by the direction 

cosines. As illustrated in Figure 1, the value of the 

wave is the same everywhere on this plane. 

Equation (1) along with (2) or (3) define the value, 

v, of the wave everywhere in the space considered. If a 

set of such waves, each with different direction cosines 



Figure 1. Geometry for a three-dimensional plane wave. 

Ray along line from 0 to P is defined by the direction 

cosines of the angles Ci, c2, and c3. The wave has the 

same value everywhere on the plane perpendicular to OP 

and passing through A, B, and C. 



and origin phases, is added together, an elaborate 

pattern results. If the direction cosines and origin 

phases are randomly chosen, the pattern will be random, 

but will have an underlying correlation structure 

depending on the type of wave and method of selecting 

direction cosines and origin phases. Also, as the number 

of waves goes to infinity, the resultant field may have 

fractal properties. 



3.   CORRELATION STRUCTURE FORMULAS 

To simplify the formulas, waves are first 

standardized so that over a wavelength the mean is zero 

and standard deviation is one. When m (m ^ 2) random- 

independent wave fields are added together with weights 

(W!)1/2, the resultant field, F, 

m 
F(x)= I Wj172 Wave. (Cj' x) (4) 

i = l 

will have a variance of one if, 

m 

and the waves have been standardized. Variance can be 

defined in two (at least) ways for the field F. One way 

is to use all values of x in a single realization to 

calculate the variance. The other way is to calculate 

variance at a single point using multiple realizations. 

Equation (5) is true for both cases. 

Given multiple realizations, suppose the correlation 

between the values of wave i of m waves at xa and x2 is ri 

(xi,x2), and that the i waves are independent of each 



other, then the correlation, rF, between values of F at Xi 

and X2 is: 

m 
rF=Z W. r. (6) 

i = l 

Proof:   The correlation between a set of standardized 

variables v(xa) and v(x2) is: 

K 
r = S v(x.) v(x2) (7) 

k = l V J 

where   the   summation   is    over   multiple,    1    to   K,    realiza- 

tions.     Combining   (4)   and   (7): 

Km m 
rF(x1,xa)=   Z       [£    W//2v. (x,)]E   W!/2v.(x2 

k=l     i=l ' j=i    J      J (8) 

All cross terms (VjVj, I * j) will go to zero as K goes to 

infinity since the waves are independent of each other. 

Thus, with only J=i terms (8) becomes: 

K    m 
,1/2 

rF(x,,x2) = Z    I [W;/2v (x,)][W!/2v. (x2)]      (9) 
k=l  1=1     *     J  ] 

m     K 
= XWi   Z  v (x.) v (xj 
i=l   k=l       ! (10) 

and using (7) becomes (6). 

The  importance  of  this  result  is  that  many 

waveforms, each with its own correlation structure, can 



The importance of this result is that many 

waveforms, each with its own correlation structure, can 

be superimposed to provide a great variety of correlation 

structures. Further, since the correlation structure is 

generated from a set of realizations (ignoring the 

trivial case v-0 everywhere), the correlation structure 

resulting from a superimposition of waves will have a 

positive definite matrix of correlations for any set of 

points. Thus, any of the resulting correlation structures 

are eligible for consideration in objective analysis. 



4.   HOMOGENEOUS ISOTROPIC CORRELATION 

If the correlation depends only on the distance 

between two points, not on where or in what direction 

distance is measured, the correlation structure is said 

to be homogeneous and isotropic. Such a structure results 

when a field is the result of many waves superimposed 

with their directions uniformly random, that is, any 

direction is as equally likely as any other. 

One way to pick a random direction is to randomly 

pick a point in a sphere and to use the ray from the 

center of the sphere to the point to specify a direction. 

A random point in a sphere can be chosen by picking a 

random point in a cube enclosing the sphere using uniform 

random variables, but only using the point if it lies 

within the sphere. This algorithm is described in detail 

in Gringorten and Boehm (1987). This and other algorithms 

are discussed in Marsaglia (1972). 

4.1.   Direction Cosines 

The direction cosines specify the direction of a 

linear wave. Given that any direction is equally 

probable, what is the probability density of the 

direction cosines? 



Given the area of a sphere (in 2 dimensions "area" 

is the length of arc on a circle while in D dimensions 

"area" is the boundary of a hypersphere) less than a 

given direction cosine, the change in area per change in 

direction cosine gives the probability density, fcD, that 

a specific direction cosine, c, would be chosen: 

1 step function .5 at -1      spike at -1 and 1   (11) 

2 [sin-^cj/n] + 1/2 l/[n(l - c2)1/2      (12) 

3 (c + l)/2 1/2 (13) 

4 sin"1(c)+c(l-c2)1/2 + 1/2 
n 

5 2 + 3c - c3 

n 

/ (D - 1)     fD - 1) 
-c+1 ( —2—),[—2— 

2(1   -   c2)1/2 (14) 
n 

3(1   -   c2)/4 (15) 

(1 - c2) [(D-3y2] 

/ 1  c (16) 

B(l/2,(D-l)/2 

where Ix(a,b) is the incomplete beta function using the 

notation of Eq (26.5.1) of Abramowitz and Stegon (1964), 

and B is the beta function: 

B[l/2, (D-D/2] =     IMD/2) 

r(l/2)T( (D-D/2) 

The left side of (11) to (16) is the integral of the 

right side.  In the general case, (16), the form of the 



incomplete beta function is obtained from the right side 

by noting that, 

(l-c)nd-3)/2] (1 + c)C(d-3)/2]  =  (1_c2)[(d-3)/2] (18) 

and changing the variable of integration c=2x-l. 

The direction cosine density is symmetric and 

therefore the odd moments are zero and the raw moments 

are equal to moments about the mean. Given the form of a 

beta distribution through the change of variable s=l-c2, 

moments of the direction cosine density are easy because 

the moment integral itself is given by a beta function. 

The mth, moment, u(m), is: 

(m) _ B[(m + l)/2,(D-l)/2] (ig) 

B[l/2,(D-l)/2] 

As D becomes large, the distribution of the 

direction cosine approaches a normal distribution with a 

mean of zero and variance of 1/D. 

To obtain values along a single axis in D space, it 

is not necessary to generate direction cosines for all 

the axes. Since the correlation is isotropic, any line 

can arbitrarily be aligned as the first axis then all 

terms in (2) or (3) except the phase at the origin, u0, 

and the first direction cosine term are zero.   In this 

10 



case, the cumulative probabilities, the left side of (11) 

through (16), can be used to generate a random direction 

cosine using a uniform random number: 

To directly generate values along a second or third 

axis, the conditional probability must be used. The 

conditional density is the probability density of the 

next lower dimension times a factor that reduces its 

range, 

fcDcm|cm+„...,cD) = (l -  Z c?),/2fc(D.m) (2D 

f*(c2|cI) = (l-c?)
,,afea„) (2°) 

D 
cn|cn+I,...,cD) = (1 -  Z cj)1/2fc( 

4.2.   Isotropie Correlation in D Dimensions 

Consider  the  correlation between  values  at  two 

points  separated  by  a  distance,  5,      along  a  one 

dimensional wave: 

1 
r,(<5) = { J Wave(x) Wave(x+£) dx-//2}/c7 

0 

(22) 

where x and 5 are in units of wavelength, JJ. is the mean 

of the wave, and 5 the standard deviation. Two ways of 

viewing (22) are equally valid. First, consider the two 

points as fixed and x as the phase, i.e., integrating 

over all phases zero to one.   The second way is to 

11 



consider the phase fixed and x as a location, that is, 

integrating overall locations from zero out to one 

wavelength. 

If multiple waves are used as in (4), then the 

resulting correlation functions can be calculated by (6). 

If the probability density of a given wave is used for 

the weight, the resulting correlation function is an 

expected value, e.g., the asymptotic result of many 

realizations. 

Further, if the probability density used is the 

probability density of a direction cosine as in (11) to 

(16) above, the resulting generality separation distance, 

5, may be measured along the first axis and the first 

direction cosine completely defines the equivalent 

wavelength, 1/c, along that axis. 

Correlation as a function of separation distance, 5, 

can be calculated by integrating [vice summing as in (6)] 

over all possible values of the direction cosine weighted 

by that value's probability density; 

1 
r
D(<?) = J fcD(c) r,(£/c) dc (23) 

-1 

12 



The integral is sometimes easier to integrate if the 

lower limit is set to zero and the result multiplied by 2 

(because of symmetry) and the distance, s, s=5/c, is 

substituted as a change of variable: 

2     J 
rD^) = 4   J fcD[s/<?K(s)  ds (24) 

5    0 

(24) along with (11) through (16) and (22) were used 

to find correlation functions for several waveforms. 

4.3.   Correlation  of Sine Waves 

Sine and cosine waves have a mean of zero and 

variance of 1/2.   The wavelength of sine  (and cosine) 

waves are generally expressed in radians so that if 5  is 

in wavelengths, arguments must be multiplied by 2n.  The 

one-dimensional correlation is simply: 

(25) 
rising) = cos(2?r<5) 

from which the higher dimensional correlations can be 

calculated: 

r^W = Jo (2a*) <26) 

13 



Separation Distance a 

Sine/Cosine Wave Correlation 

Figure 2.  Sine or cosine wave correlation as a 

function of separations distance for waves with uniform 

distributions of direction and phase in 2, 3, 4, and 5 

dimensions. 
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r^iS) = 2 J,(2»*)/(2*tf) (28) 

3sin(27T<?) - 27röcos(27rS) (29) 
r5sin(<?) = —       o_3^3 

where Jn is the nth order Bessel function of the first 

kind (Abramowitz and Stegon, 1964) . Bessel functions can 

not be evaluated directly, however, series expansions, 

approximations, and computer algorithms are available. 

Since other waveforms can usually be represented as 

a series of sine and cosine waves via the Fourier 

transform, the correlation functions can also be 

represented as a series of sine correlation functions. 

However, integrating the forms directly most often 

results in a simpler form. 

4.4.   Correlation of Sawtooth Waves 

The sawtooth wave is discontinuous at integer values 

of wavelength, 6, so that it is convenient to define f as 

fraction of wavelength (or phase): 

*      x     ■ *m (30) 
f = o - lnt(d) 

where int(<5) is the largest integer in 5.     Note:  int is 

defined this way in Basic but only for positive values in 

15 



FORTRAN.  The value of the sawtooth wave is equal to the 

phase, 

Saw(£) = f (31) 

Integrals are generally evaluated piecewise between 

integer values, so that when the integral, 

1 US 1 
JSaw(x)Saw(x + <S) dx = j   x(x + S) dx +    f x(x+S-l)  dx 
0 0 l-S 

(32) 

= (2 - 3S + 3S2)/6 

is combined with the mean of 1/2 and variance of 1/12 for 

the sawtooth wave the correlation is given as a function 

of separation distance: 

(33) 
r,saw(<?) = 1 -6S + 6S\        5 < 1 

or, 

rlsaw(<?) = 1 - 6f + 6f2,   f = 8-m\{8) (34) 

Integration of (24) using (33) is straightforward 

and gives in general: 

^|,il)-'-(p..mMV + '>-<' 
In fitting models to observed correlations, the 

inverse equation, i.e., distance given correlation, is 

sometimes needed.  This distance is unambiguous only as 

16 



far  as  the  first  minimum. The  lower  dimensional 

equations, their inverses and first minimums (r|lst min) 

are: 

12 <•   , „ „2 (36) 
r2saw(£|<5<l) = 1 8 +3<? 

7t 

21'« (37) S*„(r\S<2/x) = 2/x - [(r-l)/3 + 4/^2] 

r3saw(£|£<l) = 1-38 +2Ö2 (38) 

83sav/(r\8<3/4) = 3/4 - (r/2 + 1/16)1/2 (39) 

r^(^<l) = l-^ + f*2 (40) 
7t 2 

S<-.(T\6Z±) = ± - [2(r - l)/3 + -^f2 (41) 

For 5> 1, values of correlation can be obtained by 

integrating (24) by separating 5 into two parts, 

8 = I + f, where I = int(£), andf = 8 - int(8), (42) 

and integrating each term separately. After combining 

terms, the correlation is given by: 

r^-l'-S + 3S2 +  6(1 +12) - 
x (43) 

- itisin-'^ + ^-i2)"2] 
7t      i=l        O 

r3_ = (f -3f
2 + 2?M8 (44) 

17 



hs». = l--£ + 42 + 6(I + i2)- 
71 Z 

(45) 

1ZK2 + -^)(<y
2-i2) + 3isi„-'(l)] 

n i-i £2 £ 

r5saw  = 1 - 2.25£ + 1.2 S2 + 6(I2 +I)-4.5I<? - 

3I(I2+1.51 +1/2)/J + I(0.3I4+0.75I3+0.5I2-0.05)/£3 (46) 

4.5.   Correlation of Triangular Waves 

The value of the  triangular wave  can be written: 

Tri(<?) = 1 - 2f, 0<f<l/2 (47) 

= 2f - 1,       l/2< f < 1 

with   f   =   8   -   int (8)    as   above.    The   convolution   integral   can 

then be written: 

1 l/2-f 

J Tri(x)Tri(x + f) dx = J (l-2x)[l-2(x + f)] dx 
0 0 

1/2 1-f 

+ j* (l-2x)[2(x + f)-l]   dx + j"(2x-l)[2(x+f)-l] dx 
l/2-f 1/2 

+ J   (2x-l)[l-2(x-l-f)]dx, for f< 1/2 
i-f 

l/3-2S2+-S\ for f< 1/2 
3 

(48; 

(49) 
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Separation Distance a 

Sawtooth Wave Correlation 

Figure  3.  Sawtooth  wave correlation  as  a 

function of separations distance for waves with uniform 

distributions of direction and phase in 2, 3, 4, and 5 

dimensions. 
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A similar set of integrals for 1/2 < f < results in: 

i 

jTri(x)Tri(x + £) dx = l-4f + 6f2 - |f3, (50) 

forl/2<f<l 

When these results  are combined with the triangular 

wave's mean of 1/2 and variance of 1/12, the correlation 

becomes: 

rltri(£|f<l/2) = 1 - 24f2 + 32f3 <51) 

rltri(£|l/2<f <1) = 9 - 48f + 72f2 - 32f3 (52) 

When  (50)  is put  into  the  D-dimensional  correlation 

formula (24), the following are obtained: 

rM(S\S <l/2) = 1 - 12<?2 + — S3 (53) 

rM(S\S<\/2) = 1 - SS2 + SS' (54) 

r4t,(S\S<l/2) = l-6S2 + ^S2 

157T (55, 

20 



For separation distances, 5, greater than one-half, 

the  integral  is  possible  but  becomes  increasingly 

complicated: 

r^ (S) = S {sin"1 (T)[(2881 + 72) S2 + 192i2 + 144i2 - 6) 
i-i 

i=0 

_sin-i(ili^)[(576i + 288)^2 + 384i3 + 576i2 + 288i + 48] 
8 

+ sin-i(i±i)[(288i + 216)^2 + 192i3 + 432i2 + 288i + 54] 
8 

+ (<?2-i2)'/2(128<?2 + 352i2 + 216i) 

+ [^2-(i + l/2)2],/2[-128^2-352(i2 + i)-88] (56) 

+ [£2-(i + l)2]1/2(128£2+352i2+488i + 136)}    +R(f) 

where   R(f)    is    [Recall   from    (8)    f   =   8   -   int(5)    and   I   = 

int(8)] : 

R(f | f >l/2) = sin -1 (-)[(288I + 72) 82 +19213 +14412 - 6] 
8 

_ sin-' (i±!^)[(576I + 288) 82 + 38413 + 576 f + 2881 + 48] 
8 

+ (£2-I2)1/2(128£2 + 352l2 + 216I) + 2[£2-(I + -)2][-128£2 

(57) 
-352(I2 + I)-88] + ;r[(144I + 108)j2 + 96l3| + 216l2 + 144I + 27] 

R(f I f < 1/2) = sin'1 (-)[(288I + 72) 82 + 192I3 +14412 - 6] 
8 (58) 

+ (82 -I)1/2(128 S2 + 352I2 + 2161)- ^[(1441+ 36)S2 + 9613 + 7212 - 3] 

21 



The three-dimensional triangular wave correlation 

function is easier because of the simpler form of the 

three-dimensional directional cosine density: 

h* (ß I f <l/2) = (f - 8 f3 + 8 f 4)I6 (59) 

r3tri(£|f >l/2) = -[(l-f)-8(l-f)3+ 8(l-f)4]/£ (60) 

22 
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Figure 4. Triangular wave correlation as a function 

of separations distance for waves with uniform 

distributions of direction and phase in 2, 3, and 4 

dimensions. 
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5.   DISCUSSION 

This report presents the method of calculating 

correlation functions for periodic functions - waves - in 

D-dimensional space. Explicit formulas for correlation 

functions of several important waveforms are given. These 

waveforms include the sine/cosine, the sawtooth wave, and 

the triangular wave. 

The correlation function for triangular waves is 

nearly the same for as that for sine waves. When the 

graph for one is placed on top of graph for the other, 

the graphs appear to be identical. This similarity has 

two important applications. In simulating a field that 

has a sine type of correlation, the triangular wave can 

be used; the triangular wave being an order of magnitude 

faster to simulate than a sine wave. 

The second application is in approximating the first 

order Bessel function. The 2D sawtooth correlation is 

particularly applicable in inverse Bessel function. 

Often objective analysis requires correlation 

functions of a certain shape. The sawtooth has a 

correlation similar to exp(-52). By mixing the sawtooth 

24 



and triangular wave correlation curves and by also mixing 

the wavelengths, a variety of correlations is possible. 

These correlation curves are guaranteed to regression 

using correlations will always (in theory) be able to be 

inverted. Further, objective analysis is mainly concerned 

with close (less than one 8) points. For these points, 

the resulting mixture is a simple quadratic polynomial 

that is very fast to calculate. 

At first, sawtooth correlation functions were only 

available as the result of numerous simulations. When 

these were to be combined to approximate another 

correlation function, numerous simulation runs were 

required. In order to see the effect of varying different 

weights and wavelengths, graphs from these different runs 

were placed side to side and top to bottom. They filled 

the whole floor of a room. What a help the equations in 

this report could have been then. 

25 
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