
DOT/FAA/AM-97/20

Office of Aviation Medicine

Washington, D.C. 20591

Use of Object-Oriented
Programming to Simulate Human
Behavior in Emergency Evacuation
of an Aircraft's Passenger Cabin

Mary C. Court

University of Oklahoma
Norman, OK 73019

Jeffrey H. Marcus

Civil Aeromedical Institute
Federal Aviation Administration

Oklahoma City, OK 73125

August 1997

Final Report

This document is available to the public
through the National Technical Information
Service, Springfield, Virginia 22161.

©
U.S. Department
of Transportation

Federal Aviation
Administration

MIC QUALITY mSFECTBj) |"

19970929 028

NOTICE

This document is disseminated under the sponsorship of
the U.S. Department of Transportation in the interest of
information exchange. The United States Government

assumes no liability for the contents thereof.

Technical Report Documentation Page

1. Report No.
DOT/FAA/AM-97/20

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Use of Object-Oriented Programming to Simulate Human Behavior in

Emergency Evacuation of an Aircraft's Passenger Cabin

5. Report Date

August 1997

6. Performing Organization Code

7. Author(s)

Court, M.C.1 and Marcus, J.H.

8. Performing Organization Report No.

9. Performing Organization Name and Address

'University of Oklahoma

School of Industrial Engineering

Norman, OK 73109

2FAA Civil Aeromedical Institute

P. O. Box 25082

Oklahoma City, OK 73125

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

12. Sponsoring Agency name and Address

Office of Aviation Medicine

Federal Aviation Administration

800 Independence Avenue, S.W.

Washington, DC 20591

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Supplemental Notes

16. Abstract

Progress in the development of a computerized aircraft cabin evacuation model is described. The model has a two-fold

purpose (i) to supplement current certification tests that use human subjects, and (ii) to serve in the investigation of

aircraft accidents as a reconstruction tool and identify factors influencing survival of passengers. For the model to be a

valid predictive tool when simulating aircraft accidents, the toxic and debilitating effects on passenger behavior of fire

and smoke must be modeled. Other aircraft cabin evacuation models use an expert system/rule-based approach to

simulate these effects. The work described here presents an object-oriented approach to modeling human behavior in

aircraft cabin evacuations. Object-oriented programming (OOP) lends itself to the modeling of complex systems.

OOP's foundation is modularity. OOP allows a one-to-one correspondence with the physical world, and thus, eases the

burden of model validation. Validation is critical to the successful use of a model as a predictive tool and involves testing

to ensure that the model accurately reflects the behavior of a real system. Easing model validation is of particular

importance since the real system's environment is hazardous, and performing any tests on the real system is either

impossible or not repeatable. The result of this work will help to expand the simulation's capabilities in improved

passenger queuing analysis by allowing the incorporation of human behavior into class objects.

17. Key Words
Evacuation Model; Cabin Safety; Object-Oriented

Programming; Human Behavior

18. Distribution Statement
Document is available to the public through the

National Technical Information Service

Springfield, Virginia 2261

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
11

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

USE OF OBJECT-ORIENTED PROGRAMMING TO SIMULATE HUMAN BEHAVIOR

IN EMERGENCY EVACUATION OF AN AIRCRAFT'S PASSENGER CABIN

1. SUMMARY

The paper presents an object-oriented framework
to model human behavior under both certification

and accident evacuations. The framework opens up a
new area of analysis by proposing a paradigm for
predicting human behavior. Object-oriented program-
ming lends itself to the modeling of complex systems
by supporting a one-to-one correspondence with the

physical world, and thus, eases the burden of model
validation. Easing model validation is of particular
importance when the real-system's environment is
hazardous, and performing tests on the real-system is

either impossible or not repeatable.

2. INTRODUCTION

New designs of passenger aircraft are required to

show compliance with 14 Code of Federal Regula-
tions, Part 25, Section 803, Emergency Evacuation.
This requirement is frequently referred to as The 90

Second Rule. The manufacturer must show that with
half of the available exits blocked, a full load of
passengers can safely evacuate the aircraft into a dark-
ened hanger in 90 second or less. This requirement
provides a performance based test of the emergency
evacuation system of an aircraft. It has been found
that in many accidents, the passengers survive the
impact but perish because they are overcome by smoke
and fire while trying to evacuate (Marcus 1994).

This certification testing has proven to be quite

stressful and costly to the manufacturer. Today's
certification test costs an average of $2.3 million,
involves over 4000 people, and requires three years of
planning (Shook 1995). Adding to the cost is the risk
of injuries to the test subjects. Consequently, there
has been increasing pressure to improve certification

tests' safety, even if the resulting tests give up some
realism (Marcus 1994). There is one realism that

certification tests have never incorporated: the dy-
namic environment of an aircraft cabin during an

accident (i.e., fire and smoke).
Since requiring manufacturers to perform certifi-

cation tests under actual accident conditions is ethi-
cally unacceptable, the need then exists to develop an
evacuation model capable of simulating (i) various
cabin configurations, (ii) the dynamic environment
of fire, and (iii) passenger behavior. At issue is the
ability to accurately predict human behavior. More
specifically, the ability to simulate the physical and
psychological effects fire and smoke have on human

behavior and decision making.
Past evacuation models have taken an expert sys-

tem/ rule-based approach to model human decision
making and behavior during aircraft evacuations (Galea
and Galsarsoro 1993, Schroeder and Turtle 1991).
The authors present a new approach to modeling
human behavior: object-oriented programming.

Object-oriented programming (OOP) has two

inherent features:
(1) OOP lends itself to the modeling of complex

systems by supporting modular construction.
(2) OOP yields a one-to-one correspondence with

the physical world and thus, eases the burden of

validation.
Validation is critical to the successful use of a

model as a predictive tool and involves testing to
ensure that the model accurately reflects the behavior
of the real system. Easing model validation is of
particular importance when the real-system's envi-

ronment is hazardous.
Other benefits of an object-oriented approach to

predicting human behavior are: (i) human behavior
modeling will support and enhance certification tests,
currently conducted with human subjects, since simu-
lated tests lend themselves to statistical and predictive
analysis, and (ii) human behavior modeling will assist
in the investigation of aircraft accidents by providing

I

a means to analyze how behavior influences passenger
survivability. For example, human behavior modeling
will allow investigations into the impact flight atten-
dants and their behavior have on directing passengers.

The paper presents an object-oriented framework
for modeling human behavior and decision making
during aircraft evacuations. The remainder of the
paper is organized as follows:

(1) Section 3, Objectives, outlines the goals for the
human behavior model.

(2) Section 4, Object oriented Programming, presents
a brief overview of the object-oriented approach
to programming, corresponding terminology, and

recent results in modeling cognitive processes via
an object-oriented approach.

(3) Section 5, Proposed Framework, is the proposed
object-oriented framework for modeling human
behavior during aircraft evacuations.

(4) Section 6, Conclusions and Future Research, pro-
vides an overview of the construct and outlines
future work.

3. OBJECTIVES

The object-oriented framework of Section 5 is

proposed to support the development of human be-
havior models for analyzing aircraft cabin evacua-
tions, with the following objectives:

(1) The model must be capable of analyzing various
aircraft cabin configurations without requiring
changes to its source code.

(2) The model must run in real-time or near real-
time.

(3) The model must be able to conduct simulations
of both certification tests and accident evacua-
tions.

(4) The model must consider relationships among
passengers. For instance, the impact on the evacu-
ation behavior of a mother traveling with an
infant versus a passenger traveling alone, must be
incorporated.

(5) The model must consider the impact a flight

attendant's behavior has on passengers. This fea-
ture will allow passenger management to be ex-
plored, such as determining the optimal number
of flight attendants per passenger load.

(6) The model must offer dynamic behavior as op-
posed to behavior that is fixed at the time of
model execution. That is, the model must allow

the behavioral characteristics of the passengers to
change over time.

(7) The model must take into account the dynamic,

toxic environment of fire and consider the physi-
cal as well as psychological effect of fire and
smoke on human behavior.

(8) The model must support simulation output analy-

sis, designs of experiments, and sensitivity analysis.
(9) The model must provide animation of the evacua-

tions to support model validation and presentations.

4. OBJECT-ORIENTED
PROGRAMMING

The advantages of object-oriented programming
over traditional (procedural) programming are well
documented (Cox 1986, Meyer 1987), as are the
advantages of object-oriented design and develop-
ment (Jacobson 1991, Kamath et al. 1993, Wang and
Fulton 1994, Nof 1994, Fishwick 1995). The major
advantage of this approach to modeling is the preser-

vation and reusability of source code. Traditional

design uses the functions the systems performs as its
basis for software development; while the object-
oriented approach uses objects the system manipu-
lates as its foundation. Since functions are likely to
fluctuate and objects tend to be stable, the object-
oriented approach allows for modularity in design
and maintains reusability of software. Reductions in
software development cycles have been realized as a
direct result of code reusability (Kamath et al. 1993).

The following are definitions and features of
object-oriented programming supporting the modu-
lar decomposition of the software and code reusability:
(1) Inheritance allows for base code reusability and the

implementation of new objects from existing ob-
jects. All objects belong to a class, where classes are

defined in a hierarchical tree structure with sub-
classes inheriting the procedures and data storage
structures of their superclasses. For a biological
system, man is a subclass of mammals, mammals
is then a sub-class of vertebrate, etc.

j

(2) Items within a system are called objects. This
classification allows for the separation of physical
items from functionality. Objects are treated ei-
ther as aclass or an instance of a class. A class is the

software module providing the complete defini-
tion (capabilities) of the members within a par-
ticular class. These definitions are obtained either
by procedures and data stored directly within the
class definition, or are inherited from other re-
lated classes. An instance of a class is a realization
of the class having all of the capabilities provided
in its class definition. That is, an instance repre-
sents the execution of a class. Continuing the

example of a biological system, a man is an in-
stance of the class mammals. Man then inherits
the features of other related classes, such as a
vertebrate and animals. Man is distinguished from
other mammal instances, like whales, through
man's class definition of reasoning capabilities.

(3) Late binding allows for delaying the process of
joining procedures to the data on which they will
operate until execution of the model. Traditional
programming uses early binding where the proce-
dures and their data are joined (hard coded) at the
time of code construction. Delaying the binding

allows data types to change during execution and,

again, supports code reusability.
(4) Encapsulation allows internal class implementa-

tions to be modified without changing the rela-
tionships of the instances of classes to other
objects. Encapsulation ensures that an object's
definition is within an impenetrable boundary.
That is, the data stored within an object is only
accessible by the procedures of its defined class.
Message passing, as defined below, is a direct
consequence of encapsulation.

(5) For one object to interact or affect the internal
condition of another object, the requesting ob-
ject must send a message asking the second object's

procedures to execute the request. This is called
message passing. Sending a message to an object
invokes the same-named method (execution of
code/routine/procedure) to be carried out by that

object. Methods may either be inherited or are
within an instance. Groups of similar methods

are called protocols.

(6) The capability of different objects to respond to
the same message in the appropriate manner is
called polymorphism. That is, the message ini-
tiates different behaviors in various objects, even

though the same message is sent.
Behavior is defined as the action an object takes

when a message is received and when the object's

behavior is influenced by its past behavior, then the
object is said to have a state (Bourne 1992). For an
object to achieve a state, both class and instance
(internal) variables must be defined. Class variables
are common to all instances of a class, while internal

variables define the state for a particular instance.
It was not until the 1980s when the works of King

and Fisher (1986), Thomasma and Ulgen (1988),

Adiga (1989), Mize et al. (1989), and Ulgen et al.
(1989) showed that the underlying concepts of ob-
ject-oriented programming could be extended to simu-

lation modeling.
Recent work has involved designing and develop-

ing an object-oriented simulation environment for
manufacturing systems (Tretheway and Court 1995).
The approach was to model the physical and informa-
tion/decision components of the manufacturing envi-
ronment separately by using a five-level structured
hierarchy of subsystems with the Smalltalk-80 lan-
guage (Goldberg and Robson 1989). A set theoretic
formalism, first proposed by Karacal (1990), was used

to support this separation.
There are many similarities between modeling

manufacturing environments and modeling human

behavior, such as:
(1) both systems are physical, yet information/deci-

sion based environments,
(2) both systems use complex decision-making heu-

ristics and structures to control various opera-

tions (behavior),
(3) both are subject to the same problems associated

with decision making: decisions can only be based
on information that is currently available, al-
though it may be incomplete or inaccurate,

(4) a passenger (like a decision maker within a manu-
facturing environment) will use heuristics, per-
sonal experience, and rules to arrive at control
(behavior) decisions, and,

I

(5) as manufacturing systems are designed to achieve
different goals and objectives yielding different
levels of performance; humans are motivated and
driven by different preferences and motivations,
yielding different behaviors.

However, if the formalism for simulating manu-

facturing environments is followed, the objective of
having the model run at real-time or near real-time
will not be met.

In 1988, Burns and Morgenson (1988) published
a construct for simulating systems involving endog-
enous decision making. Their work proposes describ-
ing the system in terms of a suite of actor classes

(collection of object classes) whose endogenous deci-
sions impact the performance and behavior of the

system. They suggest a model where all actors, includ-

ing pseudo-actors (environment), follow an actor-
centered description (Figure 1). Each actor class

requires data structures (assets, attributes and vulner-
abilities) and methods (cognitive and physical capa-
bilities), described as follows:

(1) Assets are discernible characteristics and attributes
are descriptive characteristics. The actor's own
assets and attributes comprise the actual state,
while the perceived state is the actor's perception
of its surroundings (the environment and other
actors). The state of the actor is the combined
data structures of the actual and perceived state.
This state data is the input to the cognitive infer-
ence engine of the actor.

(2) The actor can physically move {transfer) or change

{transform). Transformation takes place by modi-

fying the actor's assets/attributes. Vulnerabilities
represent degradation to the actor's capabilities
via the reduction or destruction of the actor's
assets.

(3) An action space for cognitive capabilities and
activities describes the decision set and state of
each actor. A cognitive event (decision) is capable
of (i) delaying decisions, (ii) invoking physical
activity, and (iii) changing the action space. By
delaying decisions and changing the action space,
an actor then has the ability to "change its mind"
(non-monotonic reasoning).

Notice that the actor-centered description pro-
posed by Burns and Morgenson (1988) is not a pure
object-oriented paradigm, since knowledge bases (pro-
duction rules and heuristics) and inference engines are

utilized for achieving cognitive activity. Then adopt-
ing this approach would equate to developing data,

knowledge, and method structures for each actor
(passenger) and pseudo-actor (environment). Thus
the objective of supporting real-time simulation may
not be met.

The proposed framework of Section 5 modifies
the actor-centered description by avoiding the incor-
poration of knowledge bases and inferences via a pure

object-oriented paradigm. By maintaining a pure ob-
ject-oriented approach, it is expected that all of the

objectives for the human behavior model (outlined in
Section 3) will be achieved.

Figure 1. Actor-Centered Description
Source: Burns and Morgenson [1988] {modified}

J

5. FRAMEWORK

The proposed framework for modeling human

behavior is to adopt the actor-centered description of

Burns and Morgenson (1988) but avoid the incorpo-

ration of knowledge bases and inference engines. This
is achieved by allowing the actors to obtain their data

and functions by copying other objects or parts of

objects. This construct supports the need to have (i) a

varied passenger and crew profile, (ii) a wide variety of

aircraft cabin configurations, and (iii) the capability of

simulating various hazardous environmental conditions.

An overview of the system is presented in Figure

2. The system is described below:
(1) The user is responsible for constructing a

passenger scenario module, or choosing a system gener-

ated scenario. The passenger scenario includes all of

the physical characteristics of the passengers and crew

Passenger -i

' T

T T+T+l
Synchronizer

L

KEY

Symbol Definition Symbol Definition

CD User Module ► Object Generation

i i Object —> Data

(ZZ) Copied Objects
*->

Method/Function

Figure 2. Object-Oriented Framework for Human Behavior Model

I

members (age, sex, height, weight, etc.), relationships
between passengers (husband, wife, father, etc.) and
those passengers identified as traveling together.

(2) The layout module is used to assign passengers

and crew members to their seats and generate cabin

configurations (number of rows, number and types of

exits, locations of exits, aisle widths, etc.). The user

has the option of using pre-existing cabin configura-
tions, as well as the capability of generating new

configurations. The user also has the option of pre-

assigning the exits passengers and crew members use

to evacuate the aircraft. Operable and blocked exits
are also identified in this module.

(3) The cabin environment module is the vehicle

to simulate accident/hazardous conditions. For ex-

ample, the user has the option of invoking a pre-set

fire with a known location and any ensuing toxicity or

smoke. To run a certification test simulation the user
would choose not to initiate this module.

(4) When the input to the three modules is com-
plete, the system compiles the data and generates the
various actors and pseudo-actors. For each passenger
and crew member an actor object is created. Thefire,
smoke, and toxicity objects are pseudo-actors. For
certification simulations these objects are not gener-

ated. Pre-existing objects are the coordinate, navigate,
advancement, synchronizer, panic, and responsibility
objects. The synchronizer object coordinates the ob-
jects and runs the simulation.

The coordinate, navigate, and advancement ob-
jects are copied into each of the actors and pseudo-

actors. This construct avoids the need for developing
knowledge bases and inference engines for each type
of actor or pseudo-actor generated. The coordinate
object receives the data input by the user and generates

a map of the aircraft cabin. The passenger, crew, fire,
smoke, and toxicity objects copy the coordinate func-

tions of the coordinate object, and thus, are able to
store and update their positions and distances from

other objects. The navigate object is also copied into

each actor object; and if applicable, the fire, smoke,

and toxicity objects. The navigate functions allow the

actors and pseudo-actors the capability of choosing

headings (direction) for movement. The path object is
called upon to generate possible paths for the actors

and pseudo-actors, (fire, smoke, and toxicity) based

on their positions, headings, and cognitive abilities to
access the environment. The advancement object func-

tions are used to move the actors and pseudo-actors to

their requested positions. Data from the block object

is used to keep actors and pseudo-actors from moving

into inaccessible positions. The block data types con-

sist of architectural (seats, walls, etc.), human (passen-

ger and crew), and environmental (fire, smoke, and
toxicity) obstacles.

How "capable" the actor is at using the coordi-

nate, navigate, and advancement objects depends on

its physical and cognitive capability objects. For ex-

ample, the possible paths an object can construct and

how many times a new path is generated, depends not

only on how often the path object is called upon, but

is a function of the actor's actual and perceived states.

Thus, path generation is a function of the actor's (i)

immediate environment (fire, smoke and toxicity
levels), (ii) ability to access its current path and

blockages, (iii) time spent in hazardous environments,
and (iv) the type of evacuation being performed (cer-
tification or emergency).

The panic object directly influences the actor's
ability to reason and react. Again, the call to the panic

object will depend on the actual and perceived state of
the actor and thus, is a function of the actor's capabilities.

The responsibility object is used to bind objects
together. This is one of the vehicles used to establish
a psychological profile for each actor, as well as a

means to distinguish flight attendants and crew mem-
bers from passengers. A flight attendant is expected to
assist and direct passengers during an evacuation. In
this paradigm, a flight attendant actor has access to
the internal data of other objects. This is achieved in

object-oriented programming by designating objects

as friends to other objects. Friend-type objects also
include passengers traveling together. The amount of

internal data sharing depends on the relationship type

and the amount of responsibility an actor has toward
another actor.

The construct supports pre-defined biological
hierarchies but allows distinction between objects

within the same biological class. For example, although

females have many similar physical characteristics,
they do not have the same physical capabilities; like-
wise, they do not have the same cognitive reasoning

J

abilities. Thus a distinction based on technical knowl-

edge can be made between a female passenger and a
female flight attendant. That distinction is incorpo-

rated through the ability to copy the coordinate,
navigate, and advancement objects. The flight atten-
dant is expected to have knowledge of the aircraft's

configuration and therefore, has more access to the
functions and data of the aforementioned objects then
an average passenger. Also consider a female passenger
traveling alone versus one traveling with an infant.
The mother is bound to her child and therefore,
would be expected to ensure that the child is evacu-
ated safely. In the construct, when the mother actor is
generated a copy of the bonding function from the
responsibility object is copied into the mother actor.

The mother actor is now tied to her child actor where
the child's state is input to the cognitive object of the
mother actor.

6. CONCLUSIONS AND FUTURE
RESEARCH

The construct presented is an object-oriented
approach to modeling human behavior and decision
making during aircraft evacuations. The construct alters
the actor-centered description of Burns and Morgenson
(1988) by allowing objects to copy other objects for
function execution. The ability to copy objects or parts
of objects is the mechanism for actors to carry out
cognitive and physical activities and thus, avoids the
need for inference engines and knowledge bases.

Actors are capable of carrying out non-monotonic
reasoning by repeatedly copying other object func-
tions when deemed necessary by the actor. The num-
ber of times the copying can be carried out, the
function that is actually copied, and the action that is
taken by the actor (including no action at all), are all

dependent on the actor's own cognitive and physical
capabilities.

The construct also provides a means to study (i)
the debilitating effects fire, smoke, and toxicity have
aircraft evacuations, (ii) passenger management is-

sues, and (iii) bonding.
The construct is currently being implemented at

the University of Oklahoma's School of Industrial
Engineering. The human behavior study is at the

object and user module development stage, with vali-

dation being performed against certification test data.
The study is also identifying the physical and psycho-
logical parameters most influential to passenger sur-

vivability (Jayarama and Court 1995). A preliminary
set of parameters is currently being incorporated into

the model.

7. REFERENCES

Adiga, S. (1989), "Software Modelling of Manufactur-
ing Systems: A Case for an Object-Oriented Pro-
gramming Approach," In Analysis, Modelling and
Design of Modern Production Systems, A. Kusiak and
W.E. Wilhelm, Eds.,

Bourne, J.R. (1992), Object-Oriented Engineering:
Building Engineering Systems Using Smalltalk-80,
Aksen Associates Incorporated Publishers,
Homewood, IL.

Burns, J.R. and J.D. Morgenson (1988), "An Object-
Oriented World-View for Intelligent, Discrete, Next-
Event Simulation," Management Science 34,12,1425-
1440.

Cox, BJ. (1986), Object-Oriented Programming: An
Evolutionary Approach, Addison Wesley, New York.

Fishwick, P.A. (1995), Simulation Model Design and
Execution: Building Digital Worlds, Prentice-Hall,
Inc., Engelwood Cliffs, NJ.

Galea, E.R. and J.M. Perez Galsarsoro (1993), "EXO-
DUS: An Evacuation Model for Mass Transport
Vehicles," Technical Report: CAA Paper93006, Civil
Aviation Authority of the United Kingdom, London,

Goldberg, A. and D. Robson (1989), Smalltalk-80 The
Language, Addison-Wesley, Reading, MA.

Jacobson, I. (1991), Object-Oriented Software Engineer-
ing, ACM Press, New York.

Jayarama, S. and M.C. Court, "Evacuation Model Pa-
rameter Sensitivity Study: Project Progress," Tech-
nical Report, School of Industrial Engineering, Uni-
versity of Oklahoma, June, 1-34.

Karacal, S.C. (1990), "The Development of an Integra-
tive Structure for Discrete event Simulation, Object-
oriented Programming, and Imbedded Decision Pro-
cesses," Ph.D. Dissertation, School of Industrial
Engineering and Management, Oklahoma State
University, Stillwater, OK.

Kamath, Y.H., R.E. Smilan, and J.G. Smith (1993),
"Reaping Benefits with Object-Oriented Technol-
ogy,"^ T&T Technicaljournal, September/October,
14-21.

King, C.U. and E.L. Fisher (1986), "Object-Oriented
Shop-Floor Design, Simulation, and Evaluation,"
In Proceedings of the 1986 Fall Industrial Engineering
Conference, Institute of Industrial Engineers,
Norcross, GA, 131-137.

Marcus, J. (1994), "A Review of Computer Evacuation
Models and Their Data Needs," Technical Report
Number DOT/FAA/AM-94/11, Department of
Transportation, Federal Aviation Administration,
May 1994. NTIS ordering no. ADA280707.

Meyer, B. (1987), "Reusability: The Case for Object-
Oriented Design," IEEE Software, 4, 2, 50-64.

Mize,J.H.,T.G. Beaumariage, andS.C.Karacal (1989),
"Systems Modelling Using Object-Oriented Pro-
gramming," In Proceedings of the 1989 Spring Indus-
trial Engineering Conference, Institute of Industrial
Engineers, Norcross, GA, 13-18.

Nof, S.Y. (1994), "Critiquing the potential of object
orientation in manufacturing,"Internationaljournal
of Computer Integrated Manufacturing, 7,1,3-16.

Schroeder, J.E. and M.L. Tuttle (1991), "Development
of an Aircraft Evacuation (AIREVAC) Computer
Model, Phase I: Front End Analysis and Data Col-
lection," Technical Report: SwRI Project Number 12-
4099, Southwest Research Institute, San Antonio, TX.

Shook, William (1995), Technical Meetingon the Evacu-
ation Model Parameter Sensitivity Study, University
of Oklahoma, School of Industrial Engineering,
March 6, 1995.

Tretheway, S. and M.C. Court (1995),"The Experi-
mental Frame: A Conceptual Structure and an Out-
line of Research Issues for Developing a Compre-
hensive Manufacturing Analysis Tool," The 1996
Industrial Engineering Research Conference, May 1996.

Thomasma, T. and O.M. Ulgen (1988), "Hierarchical,
Modular Simulation Modeling in Icon-based Simu-
lation Program Generators for Manufacturing," In
Proceedings of the 1988 Winter Simulation Confer-
ence, M. Abrams P. Haigh, and J. Comfort, Eds.
IEEE, Piscataway, NJ, 254-262.

Ulgen, O.M., T. Thomasma, and Y. Mao (1989), "Ob-
ject Oriented Toolkits for Simulation Program Gen-
erators," In Proceedings of the 1989 Winter Simula-
tion Conference, E.A. MacNair, K.J. Musselman,
and P. Heifelberger, Eds. IEEE, Piscataway, NJ,
593-600.

Wang, C.Y. and R.E. Fulton (1994), "Information
system design for optical fiber manufacturing using
an object-oriented approach," International Journal
of Computer Integrated Manufacturing, 7, 1, 61-73.

-&U.S. GOVERNMENT PRINTING OFFICE: 1997 - 559-079/60027

