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USE OF OBJECT-ORIENTED PROGRAMMING TO SIMULATE HUMAN BEHAVIOR 

IN EMERGENCY EVACUATION OF AN AIRCRAFT'S PASSENGER CABIN 

1. SUMMARY 

The paper presents an object-oriented framework 
to model human behavior under both certification 

and accident evacuations. The framework opens up a 
new area of analysis by proposing a paradigm for 
predicting human behavior. Object-oriented program- 
ming lends itself to the modeling of complex systems 
by supporting a one-to-one correspondence with the 

physical world, and thus, eases the burden of model 
validation. Easing model validation is of particular 
importance when the real-system's environment is 
hazardous, and performing tests on the real-system is 

either impossible or not repeatable. 

2. INTRODUCTION 

New designs of passenger aircraft are required to 

show compliance with 14 Code of Federal Regula- 
tions, Part 25, Section 803, Emergency Evacuation. 
This requirement is frequently referred to as The 90 

Second Rule. The manufacturer must show that with 
half of the available exits blocked, a full load of 
passengers can safely evacuate the aircraft into a dark- 
ened hanger in 90 second or less. This requirement 
provides a performance based test of the emergency 
evacuation system of an aircraft. It has been found 
that in many accidents, the passengers survive the 
impact but perish because they are overcome by smoke 
and fire while trying to evacuate (Marcus 1994). 

This certification testing has proven to be quite 

stressful and costly to the manufacturer. Today's 
certification test costs an average of $2.3 million, 
involves over 4000 people, and requires three years of 
planning (Shook 1995). Adding to the cost is the risk 
of injuries to the test subjects. Consequently, there 
has been increasing pressure to improve certification 

tests' safety, even if the resulting tests give up some 
realism (Marcus 1994). There is one realism that 

certification tests have never incorporated: the dy- 
namic environment of an aircraft cabin during an 

accident (i.e., fire and smoke). 
Since requiring manufacturers to perform certifi- 

cation tests under actual accident conditions is ethi- 
cally unacceptable, the need then exists to develop an 
evacuation model capable of simulating (i) various 
cabin configurations, (ii) the dynamic environment 
of fire, and (iii) passenger behavior. At issue is the 
ability to accurately predict human behavior. More 
specifically, the ability to simulate the physical and 
psychological effects fire and smoke have on human 

behavior and decision making. 
Past evacuation models have taken an expert sys- 

tem/ rule-based approach to model human decision 
making and behavior during aircraft evacuations (Galea 
and Galsarsoro 1993, Schroeder and Turtle 1991). 
The authors present a new approach to modeling 
human behavior: object-oriented programming. 

Object-oriented programming (OOP) has two 

inherent features: 
(1) OOP lends itself to the modeling of complex 

systems by supporting modular construction. 
(2) OOP yields a one-to-one correspondence with 

the physical world and thus, eases the burden of 

validation. 
Validation is critical to the successful use of a 

model as a predictive tool and involves testing to 
ensure that the model accurately reflects the behavior 
of the real system. Easing model validation is of 
particular importance when the real-system's envi- 

ronment is hazardous. 
Other benefits of an object-oriented approach to 

predicting human behavior are: (i) human behavior 
modeling will support and enhance certification tests, 
currently conducted with human subjects, since simu- 
lated tests lend themselves to statistical and predictive 
analysis, and (ii) human behavior modeling will assist 
in the investigation of aircraft accidents by providing 
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a means to analyze how behavior influences passenger 
survivability. For example, human behavior modeling 
will allow investigations into the impact flight atten- 
dants and their behavior have on directing passengers. 

The paper presents an object-oriented framework 
for modeling human behavior and decision making 
during aircraft evacuations. The remainder of the 
paper is organized as follows: 

(1) Section 3, Objectives, outlines the goals for the 
human behavior model. 

(2) Section 4, Object oriented Programming, presents 
a brief overview of the object-oriented approach 
to programming, corresponding terminology, and 

recent results in modeling cognitive processes via 
an object-oriented approach. 

(3) Section 5, Proposed Framework, is the proposed 
object-oriented framework for modeling human 
behavior during aircraft evacuations. 

(4) Section 6, Conclusions and Future Research, pro- 
vides an overview of the construct and outlines 
future work. 

3. OBJECTIVES 

The object-oriented framework of Section 5 is 

proposed to support the development of human be- 
havior models for analyzing aircraft cabin evacua- 
tions, with the following objectives: 

(1) The model must be capable of analyzing various 
aircraft cabin configurations without requiring 
changes to its source code. 

(2) The model must run in real-time or near real- 
time. 

(3) The model must be able to conduct simulations 
of both certification tests and accident evacua- 
tions. 

(4) The model must consider relationships among 
passengers. For instance, the impact on the evacu- 
ation behavior of a mother traveling with an 
infant versus a passenger traveling alone, must be 
incorporated. 

(5) The model must consider the impact a flight 

attendant's behavior has on passengers. This fea- 
ture will allow passenger management to be ex- 
plored, such as determining the optimal number 
of flight attendants per passenger load. 

(6) The model must offer dynamic behavior as op- 
posed to behavior that is fixed at the time of 
model execution. That is, the model must allow 

the behavioral characteristics of the passengers to 
change over time. 

(7) The model must take into account the dynamic, 

toxic environment of fire and consider the physi- 
cal as well as psychological effect of fire and 
smoke on human behavior. 

(8) The model must support simulation output analy- 

sis, designs of experiments, and sensitivity analysis. 
(9) The model must provide animation of the evacua- 

tions to support model validation and presentations. 

4. OBJECT-ORIENTED 
PROGRAMMING 

The advantages of object-oriented programming 
over traditional (procedural) programming are well 
documented (Cox 1986, Meyer 1987), as are the 
advantages of object-oriented design and develop- 
ment (Jacobson 1991, Kamath et al. 1993, Wang and 
Fulton 1994, Nof 1994, Fishwick 1995). The major 
advantage of this approach to modeling is the preser- 

vation and reusability of source code. Traditional 

design uses the functions the systems performs as its 
basis for software development; while the object- 
oriented approach uses objects the system manipu- 
lates as its foundation. Since functions are likely to 
fluctuate and objects tend to be stable, the object- 
oriented approach allows for modularity in design 
and maintains reusability of software. Reductions in 
software development cycles have been realized as a 
direct result of code reusability (Kamath et al. 1993). 

The following are definitions and features of 
object-oriented programming supporting the modu- 
lar decomposition of the software and code reusability: 
(1) Inheritance allows for base code reusability and the 

implementation of new objects from existing ob- 
jects. All objects belong to a class, where classes are 

defined in a hierarchical tree structure with sub- 
classes inheriting the procedures and data storage 
structures of their superclasses. For a biological 
system, man is a subclass of mammals, mammals 
is then a sub-class of vertebrate, etc. 
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(2) Items within a system are called objects. This 
classification allows for the separation of physical 
items from functionality. Objects are treated ei- 
ther as aclass or an instance of a class. A class is the 

software module providing the complete defini- 
tion (capabilities) of the members within a par- 
ticular class. These definitions are obtained either 
by procedures and data stored directly within the 
class definition, or are inherited from other re- 
lated classes. An instance of a class is a realization 
of the class having all of the capabilities provided 
in its class definition. That is, an instance repre- 
sents the execution of a class. Continuing the 

example of a biological system, a man is an in- 
stance of the class mammals. Man then inherits 
the features of other related classes, such as a 
vertebrate and animals. Man is distinguished from 
other mammal instances, like whales, through 
man's class definition of reasoning capabilities. 

(3) Late binding allows for delaying the process of 
joining procedures to the data on which they will 
operate until execution of the model. Traditional 
programming uses early binding where the proce- 
dures and their data are joined (hard coded) at the 
time of code construction. Delaying the binding 

allows data types to change during execution and, 

again, supports code reusability. 
(4) Encapsulation allows internal class implementa- 

tions to be modified without changing the rela- 
tionships of the instances of classes to other 
objects. Encapsulation ensures that an object's 
definition is within an impenetrable boundary. 
That is, the data stored within an object is only 
accessible by the procedures of its defined class. 
Message passing, as defined below, is a direct 
consequence of encapsulation. 

(5) For one object to interact or affect the internal 
condition of another object, the requesting ob- 
ject must send a message asking the second object's 

procedures to execute the request. This is called 
message passing. Sending a message to an object 
invokes the same-named method (execution of 
code/routine/procedure) to be carried out by that 

object. Methods may either be inherited or are 
within an instance. Groups of similar methods 

are called protocols. 

(6) The capability of different objects to respond to 
the same message in the appropriate manner is 
called polymorphism. That is, the message ini- 
tiates different behaviors in various objects, even 

though the same message is sent. 
Behavior is defined as the action an object takes 

when a message is received and when the object's 

behavior is influenced by its past behavior, then the 
object is said to have a state (Bourne 1992). For an 
object to achieve a state, both class and instance 
(internal) variables must be defined. Class variables 
are common to all instances of a class, while internal 

variables define the state for a particular instance. 
It was not until the 1980s when the works of King 

and Fisher (1986), Thomasma and Ulgen (1988), 

Adiga (1989), Mize et al. (1989), and Ulgen et al. 
(1989) showed that the underlying concepts of ob- 
ject-oriented programming could be extended to simu- 

lation modeling. 
Recent work has involved designing and develop- 

ing an object-oriented simulation environment for 
manufacturing systems (Tretheway and Court 1995). 
The approach was to model the physical and informa- 
tion/decision components of the manufacturing envi- 
ronment separately by using a five-level structured 
hierarchy of subsystems with the Smalltalk-80 lan- 
guage (Goldberg and Robson 1989). A set theoretic 
formalism, first proposed by Karacal (1990), was used 

to support this separation. 
There are many similarities between modeling 

manufacturing environments and modeling human 

behavior, such as: 
(1) both systems are physical, yet information/deci- 

sion based environments, 
(2) both systems use complex decision-making heu- 

ristics and structures to control various opera- 

tions (behavior), 
(3) both are subject to the same problems associated 

with decision making: decisions can only be based 
on information that is currently available, al- 
though it may be incomplete or inaccurate, 

(4) a passenger (like a decision maker within a manu- 
facturing environment) will use heuristics, per- 
sonal experience, and rules to arrive at control 
(behavior) decisions, and, 
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(5) as manufacturing systems are designed to achieve 
different goals and objectives yielding different 
levels of performance; humans are motivated and 
driven by different preferences and motivations, 
yielding different behaviors. 

However, if the formalism for simulating manu- 

facturing environments is followed, the objective of 
having the model run at real-time or near real-time 
will not be met. 

In 1988, Burns and Morgenson (1988) published 
a construct for simulating systems involving endog- 
enous decision making. Their work proposes describ- 
ing the system in terms of a suite of actor classes 

(collection of object classes) whose endogenous deci- 
sions impact the performance and behavior of the 

system. They suggest a model where all actors, includ- 

ing pseudo-actors (environment), follow an actor- 
centered description (Figure 1). Each actor class 

requires data structures (assets, attributes and vulner- 
abilities) and methods (cognitive and physical capa- 
bilities), described as follows: 

(1) Assets are discernible characteristics and attributes 
are descriptive characteristics. The actor's own 
assets and attributes comprise the actual state, 
while the perceived state is the actor's perception 
of its surroundings (the environment and other 
actors). The state of the actor is the combined 
data structures of the actual and perceived state. 
This state data is the input to the cognitive infer- 
ence engine of the actor. 

(2) The actor can physically move {transfer) or change 

{transform). Transformation takes place by modi- 

fying the actor's assets/attributes. Vulnerabilities 
represent degradation to the actor's capabilities 
via the reduction or destruction of the actor's 
assets. 

(3) An action space for cognitive capabilities and 
activities describes the decision set and state of 
each actor. A cognitive event (decision) is capable 
of (i) delaying decisions, (ii) invoking physical 
activity, and (iii) changing the action space. By 
delaying decisions and changing the action space, 
an actor then has the ability to "change its mind" 
(non-monotonic reasoning). 

Notice that the actor-centered description pro- 
posed by Burns and Morgenson (1988) is not a pure 
object-oriented paradigm, since knowledge bases (pro- 
duction rules and heuristics) and inference engines are 

utilized for achieving cognitive activity. Then adopt- 
ing this approach would equate to developing data, 

knowledge, and method structures for each actor 
(passenger) and pseudo-actor (environment). Thus 
the objective of supporting real-time simulation may 
not be met. 

The proposed framework of Section 5 modifies 
the actor-centered description by avoiding the incor- 
poration of knowledge bases and inferences via a pure 

object-oriented paradigm. By maintaining a pure ob- 
ject-oriented approach, it is expected that all of the 

objectives for the human behavior model (outlined in 
Section 3) will be achieved. 

Figure 1. Actor-Centered Description 
Source:    Burns and Morgenson [1988] {modified} 
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5. FRAMEWORK 

The proposed framework for modeling human 

behavior is to adopt the actor-centered description of 

Burns and Morgenson (1988) but avoid the incorpo- 

ration of knowledge bases and inference engines. This 
is achieved by allowing the actors to obtain their data 

and functions by copying other objects or parts of 

objects. This construct supports the need to have (i) a 

varied passenger and crew profile, (ii) a wide variety of 

aircraft cabin configurations, and (iii) the capability of 

simulating various hazardous environmental conditions. 

An overview of the system is presented in Figure 

2. The system is described below: 
(1) The user is responsible for constructing a 

passenger scenario module, or choosing a system gener- 

ated scenario. The passenger scenario includes all of 

the physical characteristics of the passengers and crew 

Passenger -i 

' T 

T   T+T+l 
Synchronizer 

L  

KEY 

Symbol Definition Symbol Definition 

CD User Module  ► Object Generation 

i    i Object —> Data 

(ZZ) Copied Objects 
*-> 

Method/Function 

Figure 2. Object-Oriented Framework for Human Behavior Model 
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members (age, sex, height, weight, etc.), relationships 
between passengers (husband, wife, father, etc.) and 
those passengers identified as traveling together. 

(2) The layout module is used to assign passengers 

and crew members to their seats and generate cabin 

configurations (number of rows, number and types of 

exits, locations of exits, aisle widths, etc.). The user 

has the option of using pre-existing cabin configura- 
tions, as well as the capability of generating new 

configurations. The user also has the option of pre- 

assigning the exits passengers and crew members use 

to evacuate the aircraft. Operable and blocked exits 
are also identified in this module. 

(3) The cabin environment module is the vehicle 

to simulate accident/hazardous conditions. For ex- 

ample, the user has the option of invoking a pre-set 

fire with a known location and any ensuing toxicity or 

smoke. To run a certification test simulation the user 
would choose not to initiate this module. 

(4) When the input to the three modules is com- 
plete, the system compiles the data and generates the 
various actors and pseudo-actors. For each passenger 
and crew member an actor object is created. Thefire, 
smoke, and toxicity objects are pseudo-actors. For 
certification simulations these objects are not gener- 

ated. Pre-existing objects are the coordinate, navigate, 
advancement, synchronizer, panic, and responsibility 
objects. The synchronizer object coordinates the ob- 
jects and runs the simulation. 

The coordinate, navigate, and advancement ob- 
jects are copied into each of the actors and pseudo- 

actors. This construct avoids the need for developing 
knowledge bases and inference engines for each type 
of actor or pseudo-actor generated. The coordinate 
object receives the data input by the user and generates 

a map of the aircraft cabin. The passenger, crew, fire, 
smoke, and toxicity objects copy the coordinate func- 

tions of the coordinate object, and thus, are able to 
store and update their positions and distances from 

other objects. The navigate object is also copied into 

each actor object; and if applicable, the fire, smoke, 

and toxicity objects. The navigate functions allow the 

actors and pseudo-actors the capability of choosing 

headings (direction) for movement. The path object is 
called upon to generate possible paths for the actors 

and pseudo-actors, (fire, smoke, and toxicity) based 

on their positions, headings, and cognitive abilities to 
access the environment. The advancement object func- 

tions are used to move the actors and pseudo-actors to 

their requested positions. Data from the block object 

is used to keep actors and pseudo-actors from moving 

into inaccessible positions. The block data types con- 

sist of architectural (seats, walls, etc.), human (passen- 

ger and crew), and environmental (fire, smoke, and 
toxicity) obstacles. 

How "capable" the actor is at using the coordi- 

nate, navigate, and advancement objects depends on 

its physical and cognitive capability objects. For ex- 

ample, the possible paths an object can construct and 

how many times a new path is generated, depends not 

only on how often the path object is called upon, but 

is a function of the actor's actual and perceived states. 

Thus, path generation is a function of the actor's (i) 

immediate environment (fire, smoke and toxicity 
levels), (ii) ability to access its current path and 

blockages, (iii) time spent in hazardous environments, 
and (iv) the type of evacuation being performed (cer- 
tification or emergency). 

The panic object directly influences the actor's 
ability to reason and react. Again, the call to the panic 

object will depend on the actual and perceived state of 
the actor and thus, is a function of the actor's capabilities. 

The responsibility object is used to bind objects 
together. This is one of the vehicles used to establish 
a psychological profile for each actor, as well as a 

means to distinguish flight attendants and crew mem- 
bers from passengers. A flight attendant is expected to 
assist and direct passengers during an evacuation. In 
this paradigm, a flight attendant actor has access to 
the internal data of other objects. This is achieved in 

object-oriented programming by designating objects 

as friends to other objects. Friend-type objects also 
include passengers traveling together. The amount of 

internal data sharing depends on the relationship type 

and the amount of responsibility an actor has toward 
another actor. 

The construct supports pre-defined biological 
hierarchies but allows distinction between objects 

within the same biological class. For example, although 

females have many similar physical characteristics, 
they do not have the same physical capabilities; like- 
wise, they do not have the same cognitive reasoning 
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abilities. Thus a distinction based on technical knowl- 

edge can be made between a female passenger and a 
female flight attendant. That distinction is incorpo- 

rated through the ability to copy the coordinate, 
navigate, and advancement objects. The flight atten- 
dant is expected to have knowledge of the aircraft's 

configuration and therefore, has more access to the 
functions and data of the aforementioned objects then 
an average passenger. Also consider a female passenger 
traveling alone versus one traveling with an infant. 
The mother is bound to her child and therefore, 
would be expected to ensure that the child is evacu- 
ated safely. In the construct, when the mother actor is 
generated a copy of the bonding function from the 
responsibility object is copied into the mother actor. 

The mother actor is now tied to her child actor where 
the child's state is input to the cognitive object of the 
mother actor. 

6. CONCLUSIONS AND FUTURE 
RESEARCH 

The construct presented is an object-oriented 
approach to modeling human behavior and decision 
making during aircraft evacuations. The construct alters 
the actor-centered description of Burns and Morgenson 
(1988) by allowing objects to copy other objects for 
function execution. The ability to copy objects or parts 
of objects is the mechanism for actors to carry out 
cognitive and physical activities and thus, avoids the 
need for inference engines and knowledge bases. 

Actors are capable of carrying out non-monotonic 
reasoning by repeatedly copying other object func- 
tions when deemed necessary by the actor. The num- 
ber of times the copying can be carried out, the 
function that is actually copied, and the action that is 
taken by the actor (including no action at all), are all 

dependent on the actor's own cognitive and physical 
capabilities. 

The construct also provides a means to study (i) 
the debilitating effects fire, smoke, and toxicity have 
aircraft evacuations, (ii) passenger management is- 

sues, and (iii) bonding. 
The construct is currently being implemented at 

the University of Oklahoma's School of Industrial 
Engineering. The human behavior study is at the 

object and user module development stage, with vali- 

dation being performed against certification test data. 
The study is also identifying the physical and psycho- 
logical parameters most influential to passenger sur- 

vivability (Jayarama and Court 1995). A preliminary 
set of parameters is currently being incorporated into 

the model. 
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