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Executive Summary 

The objective of this project was to explore the development of new type of physical agents, 
called autonomous observers. An autonomous observer is a mobile robot equipped with 
cameras that can perform vision tasks in response to high-level inputs given by human users. 
To perform such tasks, multiple observers may team to reach the same results quicker or to 
attain goals that no agent could achieve alone. For example, finding and/or tracking a fast 
target reliably in a complex environment may not be possible with a single observer. 

Autonomous observers allow users to perform remote observation tasks (i.e., an important 
form of telepresence) without worrying about the details of camera motions. Instead, these 
motions are automatically computed and executed. The design and the implementation 
of the algorithms and architectural principles underlying autonomous observers yield new 
challenging problems in motion planning, control, and coordination, in which visibility con- 
ditions and motion obstructions must be simultaneously taken into account. Our research 

has addressed and solved some of these problems. 

The need for autonomous observers arises in a variety of applications. For example, in 
the military domain, they can be used to assess and clear the situation in a building, to 
monitor and track motions of enemy targets, and to perform search/rescue operations in 
a potentially hostile environment. In medical surgery, surgeons often operate by watching 
graphic displays of key tissues; in that case, an autonomous observer could be used to 
maintain visibility of the tissues in spite of obstructions caused by people and complex 
mechanical instruments. Autonomous observers can also assist in distributed collaborations: 
researchers at one institution may want to conduct an experiment using robotic hardware at 
another institution; autonomous observers could then be used to gather and transmit crucial 
real-time information allowing the remote researchers to effectively monitor their experiment. 
Other applications include remote monitoring of manufacturing operations in an assembly 

plant, and supervision of automated construction efforts in space. 

Our research has addressed three major topics: model building, target seeking, and target 
tracking. This sequence of three topics is implicitly based on the following hypothetical 
scenario: autonomous observers are dropped into an unknown environment, of which they 
first have to build a model (both for future navigation and for virtual fly-through on a graphic 
display); then they have to find a smart target hidding among view-obstructing obstacles; 
finally, they have to monitor this target and track its motions. However, the results that we 
have obtained on each topic can be separately used in other scenarios. 

For each topic, we have developed and implemented new algorithms. We have experimented 
with our software both in simulation and with an autonomous observer prototype that we 

have designed and built. 



Chapter 1 

Overview 

1.1    Scope and Motivation of Project 

The original objective of the project was to develop broadly applicable technology for design- 
ing and implementing effective teams of heterogeneous intelligent mobile agents operating 
in dynamic environments. Initial cut in the project budget eventually led us to reduce the 
scope of our effort. Instead of conducting a broad, but superficial investigation of this topic, 
we focused our research on the development of a new type of physical agents, which we call 
autonomous observers. An autonomous observer is a mobile robot that is equipped with 
cameras in order to perform a variety of vision tasks such as building 2-D and/or 3-D models 
of unknown environments, finding unpredictable moving targets in environments cluttered 
by occluding obstacles, and tracking targets. An autonomous observer can use cameras for 
its own navigation (e.g., to localize itself or detect unexpected obstacles), but the main goal 
is to perform vision tasks specified by remote users. To perform such tasks, multiple au- 
tonomous observers may team up to achieve the same result quicker or to achieve goals that 
no observer could achieve alone. For example, finding and/or tracking a fast target reliably, 
in a complex environment, may not be possible with a single observer. 

In other words, autonomous observers allow users to achieve remote observation (i.e., some 
form of telepresence) without worrying about camera motions. Instead, these motions are 
automatically computed and executed. The design and the implementation of the algorithms 
and architectural principles underlying autonomous observers yield new challenging problems 
in motion planning, control, and coordination, in which visibility conditions and motion 
obstructions must be simultaneously taken into account. Our research has addressed and 
solved some of these problems. But, perhaps even more interestingly, it has also uncovered a 
whole spectrum of new and broadly interesting problems for future research. We believe that 



planning and controlling cooperative motions for achieving complex vision tasks will soon 
be regarded as a critical research area to achieve effective telepresence over a non-real-time 

computer network. 

Indeed, the need for autonomous observers arises in a variety of applications. For example, 
in the military domain, they can be used to assess and clear the situation in a building, 
to monitor and track motions of enemy targets, and to perform search/rescue in a poten- 
tially hostile environment. In medical surgery, surgeons often operate by watching graphic 
displays of key tissues; in that case, an autonomous observer could be used to maintain 
visibility of the tissues in spite of obstructions caused by people and complex mechanical 
instruments. Autonomous observers can also assist in distributed collaborations: researchers 
at one institution may want to conduct an experiment using robotic hardware at another in- 
stitution; autonomous observers could then be used to gather and transmit crucial real-time 
information allowing the remote researchers to effectively monitor their experiment. Other 
applications include remote monitoring of manufacturing operations in an assembly plant, 
and supervision of automated construction efforts in space. 

These application tasks require performing several basic, high-level vision-oriented oper- 
ations, such as locating and tracking a moving target, or automatic model construction. 
Although similar problems have been studied in other contexts, one distinguishing charac- 
teristic of our project is the need to satisfy geometric visibility constraints in the planning 
and execution of motion strategies. For example, prior work in visual tracking typically does 
not consider potential visual obstruction by obstacles [35, 60]. 

1.2    Technical Approach 

Our research has addressed three major topics: model building, target seeking, and target 
tracking. This sequence of three topics is implicitly based on the following hypothetical 
scenario: autonomous observers are dropped into an unknown environment, of which they 
first have to build a model (both for future navigation and for virtual fly-through on a graphic 
display); then they have to find a smart target bidding among view-obstructing obstacles; 
finally, they have to monitor this target and track its motions. However, the results that we 
have obtained on each topic can be separately used in other scenarios. 

In this section, we give a high-level perspective on our research, by outlining our technical 
approach of the three topics mentioned above. Note that implementing real autonomous 
observers requires addressing several other technical issues, such as reliable mobile robot 
navigation and image processing for tracking a pattern in an image sequence. Although we 
devoted a substantial amount of time to some of these issues, we think that they are less 
characteristic of our project's main objectives than our work on planning and controlling 



motions under visibility constraints. Therefore, to keep our presentation focused, we will 
describe our work on peripheric issues in the appendices, and concentrate implementation 
details in Chapter 5: Implemementation of an Autonomous Observer Prototype. 

1.2.1    Model Building 

One of the most basic operations that autonomous observers may have to perform is to 
build a representation of an environment using vision sensing. If the only purpose of this 
model was to facilitate subsequent navigation of the observers, a two-dimensional model 
would be sufficient in most cases. But a useful application of the model is to allow remote 
users to "fly-trough" a virtual representation of the environment. Hence, our main goal has 
been to devise techniques to construct a model combining 3-D geometry with texture maps 
to produce realistic graphical renderings for virtual fly-through operations. This model, or 
part of it, can also be used for target finding and target tracking. Each sensing operation, 
which requires acquiring 3-D and texture data and merging this data with a current partial 
model, is rather expensive, so that creating an entire environment model can be quite time 
consumming. Therefore, part of our research has addressed strategic planning issues aimed 

at reducing the number of sensing operations. 

A classical problem in automatic model building using a vision sensor is known as the next- 
best-view problem: Where to place the sensor next to maximize the amount of information 
that will be added to the partial model built so far? This problem has attracted considerable 
attention (e.g., see [3, 17, 54, 62, 76]), but techniques to solve this problem are not ideal 
for autonomous observers. One reason is inherent to the problem itself: the next-best-view 
problem is a local planning problem [39], so that a sequence of next-best views to build a 
complete model would often yield a prohibitive number of sensing operations. Moreover, 
a limitation of current next-best-view techniques is that they assume precise localization 
of the sensor. Merging two partial models first requires 3D data from these models to be 
aligned through partial matching. With mobile-robot observers, odometric or GPS errors 
between successive views may cause significant misalignments resulting in incorrect models. 
Fixed scanners used to generate models for small objects (e.g., as in [73]) do not raise this 
difficulty, because their positioning is far more precise. Finally, due to physical obstructions, 
a next-best-view technique may not suggest viewing positions that are accessible to the 

observers. 

These remarks have led us to devise a new approach to model building. Assume for a moment 
that we are given a 2-D map of the environment describing the geometry of a horizontal 
cross-section at approximately the height of an observer's camera. A classical art-gallery 
algorithm [58] then computes a small number of positions such that if an observer successively 
visits each one of these positions, it eventually sees the entire 2-D environment (assuming 



omnidirectional and illimited-range vision).   The idea of our approach is simply to send 
autonomous observers to these locations, and to collect and merge data. If a single observer 
is available, it visits the locations in some sequence; if multiple observers are available, they 

can simultaneously collect data at several location. 

Of course, the principle of this model-building approach requires several refinements: 

(1) The fact that the entire 2-D environment is visible from a set of positions does not in 
general entail that the entire 3-D environment is also visible. For most indoor environments, 
however, this is almost true. A number of "holes" will usually remain in the model built, but 
these are usually small enough to be filled by adding a few sensing operations at locations 

computed using a next-best-view technique.1 

(2) Art-gallery algorithms strive to minimize the number of positions where to place the 
observers. However, 3-D/texture sensing at these positions can yield partial models that have 
very small overlap between them. As mentioned above, it is suitable to align 3-D data from 
two partial models before merging them. Reliable alignment requires some minimal overlap 
between the two models, which requires some adaptation of typical art-gallery algorithms. 

(3) Most art-gallery algorithms use a simple "line-of-sight" visibility model: one point sees 
another if the line segment between them does not cross any object. However, imperfections 
in vision sensors require that we use a more realistic definition taking distance and incidence 
into account. Like in remark (2), this yields new variants of the art-gallery problems. 

(4) The 2-D model must be built in the first place. We do this by letting the observer navigate 
in the environment, using a simple laser range sensor projecting a horizontal plane of light 
to obtain the environment's 2-D contour. Since this form of sensing is fast, the number of 
sensing operations is not critical. Since furthermore we don't have prior knowledge at this 
stage a next-best-view technique to decide on-line the successive viewing positions is then 

appropriate. 

Of course, one can imagine variants of this overall approach. A useful variant would be to 
interweave the construction of a 2-D model and that of a 3-D model to minimize the distance 
travelled by a robot. Another useful variant would be to construct the minimal model that 
contains objects specified as inputs. We have not investigated such variants, but we believe 
that the techniques we have developed could be used, in combination with others, to solve 

them. 

Chapter 2 presents our results in model building in detail. It describes a set of complementary 
techniques (which we have implemented into an integrated software module) for merging 
several 3-D images into a single 3-D mesh model and for mapping texture patches extracted 
from color images onto the elements (triangles) of this mesh. To illustrate, Figure 1.1 shows 

1 Since a mobile observer is usually not a free-flying device, some holes can never be eliminated. 



Figure 1.1: A preliminary result in map building 

a model built by this module. This model was constructed from two different views: the 
scene is a pile of boxes with a coffee mug to the right. The 3-D data in the two partial 
models have been aligned, then fused together, prior to texture mapping. Chapter 2 will also 
introduce some of the issues about planning strategies for the autonomous observers where 
they should acquire images of the environment. A subset of the corresponding algorithms 
have been implemented and tested so far. Chapter 2 is complemented by Appendix B. 

1.2.2    Target Finding 

Let us now suppose that a model for the environment is available. We would like our 
observers to visually locate a potentially-moving target. In some applications, a strong 
predictive model might be given for the target, which can greatly simplify the target-finding 
task. However, in many applications no such models, or only weak ones, are available (e.g., 
in military situation assessment and surveillance application). Therefore, we assume that the 
target is unpredictable, has unknown initial position, and is capable of moving arbitrarily 

fast. 

The target-finding problem is to plan a motion strategy for one or more observers in a given 
environment to eventually see a target. A visibility model defines the visibility region of 
the observers at any of their possible positions.   Ideally, we are seeking a motion strategy 



that guarantees that the target will ultimately lie in this visibility region. As the observers 
move, the visibility region deforms according to the observer's position and obstructions. 
The motion strategy must be such that, as the observers move, their visibility region sweeps 
the environment so that the target has no remaining place where to hide. Although related 
problems have been studied in other contexts [61, 68], this represents a novel robot planning 

problem. 

Important questions are raised by this problem: 

(1) What is the minimum number of observers needed for the existence of a guaranteed mo- 
tion strategy? (Clearly, a guaranteed strategy exists if the number of observers is illimited.) 

(2) If a guaranteed motion strategy for a given number of observers exist, how to plan it? 

(3) If no guaranteed motion strategy exist for a given number of observers, how to generate 
a strategy that achieves a weaker requirement, such as minimizing the space in which the 

target can still hide. 

The first question is important because of the cost of each observer and the complexity of 
coordinating multiple observers. Note that the answer depends only on the geometry of 
the environment. In our investigation so far, we have considered the case of 2-D polygonal 
environments of arbitrary complexity with and without holes, and the simple line-of-sight 
visibility model. We have established lower bounds which state that the number of needed 
observers can be logarithmic in the number of environment edges (geometric complexity) 
for a simply-connected free space and can be the square root of the number of holes for 
a multiply-connected free space (topological complexity). We have also established upper 
bounds which state that the number of observers is at most logarithmic in the number of 
environment edges for a simply-connected free space, and is at most linear in the number of 

holes for a multiply-connected free space. 

To address the second question above, we have designed and implemented a complete plan- 
ning algorithm, again for 2-D polygonal environments and line-of-sight visibility model. This 
algorithm precomputes a cell arrangement by identifying line segments that cause critical 
changes (topological variations) in the visibility region of the observers. A solution com- 
puted by this planner is shown in three frames in Figure 1.2 for one observer. The thick 
curve shows a portion of the observer's trajectory. Gray regions are the visibility regions of 
the observer at the positions attained in each frame. Black regions represent places where 
the target might still be hiding, and white regions represent the cleared area. The thin lines 

indicate cell boundaries. 

Up to now, all our experiments have been done in simulation. The algorithm is quite efficient 
for problems that can be solved by a single observer. If the problem requires multiple 
observers, we currently use a greedy technique for combining the searches of individual 
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Figure 1.2: A computed target-finding strategy 

observers. This technique works as follows: A first observer tries to clear the largest possible 
portion of the workspace (measured by the number of cells in which the target can no longer 
be). Then a second observer comes into action and does the same for the remaining space. 
And so on. However, the multi-observer algorithm is somewhat more sophisticated. Indeed, 
after a new observer is introduced, it may become possible for a previous observer to resume 

moving and increase the size of the region it can clear. 

Our algorithms solve many hard problems efficiently. But when multiple observers are needed 
and our greedy algorithm finds a solution with more than two observers, we cannot guarantee 
that the number of observers is minimal. Applying the greedy algorithm with a given number 
of observers may yield a non-guaranteed strategy. But, in that case, the strategy minimizes 
the size (in number of cells) of the region where the target still hides. 



We are currently studying several variations. In one, we incorporate a more realistic visibility 
model (i.e., limited field of view). In another, we try extend our algorithms to 3-D workspace. 

1.2.3    Target Tracking 

Once a target has been found, the next logical step is to maintain visibility with the target 
by appropriately moving the observers, again taking visibility and motion obstructions into 
account. Unlike with target finding, time is critical. The faster the planner and the more 
efficient the motion strategies, the better. But these two goals - fast planner vs. efficient 
strategies - are conflicting. This led us to develop and experiment with several planning 
algorithms to adapt to different tracking conditions; these algorithms, however, are based 
on similar principles. Our algorithms also try to optimize a given criterion such as the total 
distance traveled, energy utilized by the observer, or the quality of the visual information. 

Our algorithms can be divided into two categories, on the basis of whether the target is 

predictable, or not: 

1. For the predictable case, our algorithm runs off-line and computes an optimal solution 

(for the given criterion). 

2. When the target is only partially predictable (e.g., we might only know its maximum 
speed or acceleration), two on-line variants have been developed that each attempt to 
maintain future visibility with limited prediction: 

• One computes a strategy by maximizing the probability that the target will re- 

main in view in a subsequent time step. 

• The other maximizes the minimum time in which the target could escape the 

visibility region. 

We have also considered the intermediate case where the target is restricted to move along a 
predefined network of paths, but its decision at each node of this network is unpredictable. 

Unlike for target seeking, these algorithms can easily adapt to different and realistic visibility 
models. In most of our work, we have assumed that visibility is limited to a cone of given 

angle and bounded by some maximal distance. 

We have implemented these algorithms and performed numerous successful experiments both 
in simulation and with our autonomous observer system. Figure 1.3 shows two simulation 
examples computed by the off-line planner.   The target is displayed as a black disc and 

10 
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Figure 1.3: Optimal target tracking strategies. 

Figure 1.4: Our mobile robots used in the experiments. 
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Figure 1.5: The on-line planner interface during experimentation 

the observer as a white disc. Gray areas indicate obstacles creating visibility and motion 
obstruction. In Figure 1.3(a), the planner generates a tracking trajectory that minimizes the 
total distance traveled, while in (b) it minimizes the time during which the observer does 
not see the target under the additional constraint that the observer's speed is only half that 
of the target. Figure 1.4 shows our experimental setup: the robot in the forefront is the 
observer, while the other robot, with a distinctive "hat" used to facilitate target tracking, 
is the target. Figure 1.5 shows an experimental run as it appears on the user's display (the 
gray disc is the target and the black disc the observer). Visibility computations are done in 

a 2-D model of the workspace. 

Our algorithms apply to one or several observers. However, our optimal off-line planning 
algorithms take exponential time in the number of observers and take prohibitive time for 
more than two observers. On the other hand, on-line algorithms are basically linear m the 

number of observers. 

In Chapter 4, we will describe our target-tracking planning algorithms in detail. We will 
also present experimental results, both in simulation and with real robots. We have also 
developed software to track more complex targets (e.g., humans); see Appendix C. 

12 
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Figure 1.6: Architecture of the Target-Tracking System 

1.3    Experimental Systems and Software Modules 

We have built three separate experimental systems, for model building, target finding, and 
target tracking. The target-finding system works in simulation only. The other two operate 
in real 3-D environments. 

The architectures of these systems and the software modules they contain will be described 
in more detail in the following chapters. The target-tracking system illustrates well the 
architecture of a complete autonomous observer. This architecture is shown in Figure 1.6. 
It combines of a rather large number of software modules running on different processors. 
At a high architectural level, these modules include: a landmark-based navigation module 
(described in Appendix A), a visual target tracking module, the target-tracking motion 
planner, and a motion control module. The navigation, visual tracking, and motion control 
modules run on on-board processors mounted on the autonomous observer. The planner 
runs on a fixed workstation connected to the network. The observer is equipped with a 
network radio interface. The overall system is accessible through a Web interface. Chapter 5 
describes the implementation of an autonomous observer prototype. 

Our three systems consist of many software modules, which could be of independent interest, 
e.g.: robust visibility analysis in 2-D workspace; landmark detection, recognition, and local- 
ization; visual tracking of a simple geometric pattern in an image sequence; visual tracking of 
a natural 3-D pattern in an image sequence; acquisition of 3-D models using a camera-laser 
sensor; fusion of overlapping 3-D models (triangular meshes). 

13 



1.4 Main Contributors 

The main contributor for Model Building is Hector Gonzalez-Bafios. 

Target Finding is the work of Steve LaValle and David Lin. 

The contributors for Target Tracking are Craig Becker, Steve LaValle, David Lin, and 

H. Gonzalez-Bafios. 

Implementation of the autonomous observer prototype was achieved by Craig Becker, 
H. Gonzalez-Bafios, and David Lin. The motion planner, landmark detector and the target 
tracker was coded by Craig Becker. The graphical user interface to the system and operation 
thru the web is the work of David Lin. Asynchronous control of the robot and integration 

of system-state information was done by H. Gonzalez-Bafios. 

The main contributor to the appendix on Landmark-Based Navigation is Craig Becker. 

The appendix on Range-Image Acquisition is the work of Hector Gonzalez-Bafios. 

The main contributor to the appendix on Pattern-Tracking in an Image Sequence is Rafael 

Murrieta. 

Prof. Leo Guibas, Rajeev Motwani, and Carlo Tomasi have also contributed to several aspects 

of this project. 

1.5 Exchanges and Technology Transfers 

1.5.1    Interaction with Other Grants 

• The landmark-based navigation techniques were derived from previous work done under 

grant N00014-92-J-1809. 

• The notion of cooperating autonomous observers have led us to identify visibility-based 
motion planning problems as being of great interest for military applications. We currently 
investigate several such problems under ARO MURI grant DAAH04-96-1-007 and a new 

NSF grant. 

• We believe that one important application of autonomous observers is to help geograph- 
ically distributed researchers to perform joint experiments in robotics. In this context ob- 
servers are used to acquire pertinent data about the ongoing experiments and to show relevant 
images to remote researchers. In February '97 we have submitted a new proposal to NSF on 
this application, in collaboration with Prof. Bajcsy (University of Pennsylvania). 

14 



1.5.2    Publications, Seminars, and Web Sites: 

• We have published or submitted the following invited or refereed articles: 

C. Becker, J. Salas, K. Tokusei, and J.C. Latombe. Reliable Navigation Using Landmarks. 
Proc. of the IEEE Intl. Conf. on Robotics and Automation, Nagoya, Japan, May 1995, 

pp. 401-406. 

C. Becker, H.H. Gonzalez-Bahos, J.C. Latombe, and C. Tomasi. An Intelligent Observer. 
Lecture Notes in Control and Information Sciences, Proc. 4th Int. Symp. on Experimental 
Robotics, Stanford, 153-160, June-July 1995. 

J.C. Latombe. Controllability, Recognizability, and Complexity Issues in Robot Motion 
Planning. Proc. 36th Annual Symp. on Foundations of Computer Science (FOCS), 484-500, 
October 1995. 

S.M. LaValle, H.H. Gonzälez-Banos, C. Becker, and J.C. Latombe. Motion Strategies for 
Maintaining Visibility of a Moving Target. IEEE Int. Conf. on Robotics and Automation, 
Albuquerque, NM, 1997. 

S.M. LaValle, D. Lin, J.C. Latombe, L.J. Guibas, and R. Motwani. Finding an Unpredictable 
Target in a Workspace with Obstacles. IEEE Int. Conf. on Robotics and Automation, Al- 

buquerque, NM, 1997. 

L.J. Guibas, J.C. Latombe, S.M. Lavalle, D. Lin, and R. Motwani. A Visibility-Based 
Pursuit-Evasion Problem. Invited paper in the Special Issue on the CGC Workshop on 
Computational Geometry, International Journal of Computational Geometry and Applica- 

tions, 1997. 

L.J. Guibas, J.C. Latombe, S.M. LaValle, D. Lin, and R. Motwani. Visibility-Based Pursuit- 
Evasion in a Polygonal Environment. Proc. Workshop on Algorithms and Data Structures 

(WADS '97), 1997. 

H.H. Gonzälez-Banos, J.C. Latombe, S.M. LaValle and D. Lin. Motion Planning with Visi- 
bility Constraints: Building an Autonomous Observer. Accepted for publication at the 8th 
Int. Symp. on Robotics Research, Osaka, Japan, October 1997. 

K. Pfleger and B. Hayes-Roth.   Plans Should Abstractly Describe Intended Behavior.   In 
A. Meystel, J. Albus, and R. Quintero (eds.), Intelligent Systems: A Semiotic Perspective, 
Proc. Int. Multidisciplinary Conf., Vol. I: Theoretical Semiotics, 29-34, NIST, Gaithersburg, 
MD, 1996. 

B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Balabanovic. A Domain- 
Specific Software Architecture for Adaptive Intelligent Systems. IEEE Trans, on Software 
Engineering, 21(4):288-301, 1995. 
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• We also have given the following additional seminars and presentations: 

S.M. LaValle. A Visibility-Based Pursuit-Evasion Problem. CGC Workshop on Computa- 

tional Geometry. John Hopkins U., October 1996. 

S M LaValle Visually Locating and Monitoring Moving Targets in Cluttered Environments. 
U. of Pennsylvania, October 10, 1996; CMU. October 15, 1996; U. of Illinois at Urbana- 

Champaign, October 18; U.C. Berkeley, April 1, 1997. 

S.M. LaValle. Game-Theoretic Motion Planning with Emphasis on Algorithms for Visibility- 

Based Tasks. Iowa State University, March 20, 1997. 

• Our results are presented in the following (linked) web pages, which include Postcript files 

of several papers as well as Java applets: 

Papers only: http://robotics.stanford.edu/ latombe/pub.html#G 

Short description, papers, and applet: http://robotics.Stanford.EDU/ latombe/projects/#D 

Long description: http://robotics.stanford.edu/groups/mobots/home.html 

Status page: http://robotics.stanford.edu/users/io/ 

Architecture of Autonomous Observer and description of software modules: 
http://robotics.stanford.edu/users/io/io_architecture.html 

1.5.3 Joint Experiments with Other Laboratories 

We have integrated a complete prototype of an autonomous observer with target tracking 
capabilities. The functions of this system are accessible through an interface on the Web. 
Using this system we have conducted experiments with Prof. Bajcsy's group (as part of a 
small project called ANVIL jointly supported by NSF and DARPA) at the University of 
Pennsylvania, with Prof. J.L. Gordillo at ITESM, Monterrey, Mexico, as part of a two-year 
project jointly funded by NSF and CONACyT, and with Prof. S. Hutchinson's group at the 
University of Illinois (Urbana-Champaign). The prototype system used m these experiments 

is the one described in Chapter 5. 

1.5.4 Technology Transfer 

We have transferred our landmark-based navigation technology to Nomadic Technologies 
that now markets it with its robotics products. Nomadic Technologies is a company based 
in Mountain View (CA) which designs and markets mobile-robot products.   This transfer 
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consisted on training Nomadic Technology engineers on the new technology, improving the 
software, and cooperatively building an experimental demonstration. The work was done 
under a separate STTR DARPA grant supporting Nomadic Technologies and Stanford Uni- 

versity (J.C. Latombe and C. Tomasi). 

Our general research in motion planning (for which N00014-94-1-0721 provides partial sup- 
port) has led multiple transfers to other companies. We have transferred path planning 
technology to General Electric Research (Schenectady, NY), where it is used to check that 
designated parts can be removed from an aircraft engine for inspection and repair. GE has 
reported a gain of 500% in planning efficiency. Our planning techniques have been integrated 
by GE engineers in a larger software system that GE has made available to other companies 
like Boeing. We have transferred a similar planner to General Motors Research Labs (War- 
ren, MI) for testing part removability in automotive assemblies. In another collaboration 
with Pfizer Pharmaceuticals, we have adapted motion planning technology to design and 
implement tools to help chemists select promising drug molecules; in this work, molecules 
are treated as kinematic structures under the influence of force fields. 

1.5.5 Military Interactions 

Jean-Claude Latombe visited ARL, Aberdeen Proving Ground (MD) and gave a presentation 

in March '96. 

CWO L.R. Cook (Fort Belvoir, VA), Major C. Hunt (Fort Belvoir, VA), and Major J.T. Gi- 
rard visited our group in February '97. We gave them a presentation of our work on au- 

tonomous observers. 

Jean-Claude Latombe participated in the DARPA SMART meeting (Dulles Airport) in May 

1997. 

1.5.6 Other Interactions 

We have interacted with Prof. G. Hager (Yale) and Prof. D. Huttenlocher (Cornell) to ac- 
quire state-of-the-art visual tracking software. Eventually, we decided to use Huttenlocher's 

techniques (see Appendix C). 

Recently, we have had several meetings with Prof. S. Rock (Aero-& Astronautics Dept., 
Stanford) to discuss cooperation on two projects: target finding and tracking with an au- 
tonomous helicopter (a project that Prof. Rock conducts with Boeing), and fish finding 
and tracking with an autonomous submarine (a project that Prof. Rock conducts with the 
Monterey Bay Aquarium Research Institute). Both projects are good application domains 
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for our techniques. In connection with these meetings, we have started the investigation of 
target finding in 3-D space with a new student (Cheng-yu Lee). We also have set up a small 
project for tracking fishes in an aquarium with two undergraduate students (Jian Bao and 

Stephen Sorkin). 

1.6    Summary 

In summary, our research demonstrates that, in addition to being useful for navigation, vision 
sensors can also be the main "effector" of mobile robots. It also shows that teams of mobile 
robots equipped with cameras can accomplish tasks that no single robot could accomplish, 
and that they can accomplish other tasks with much greater reliability and efficiency than 

any single robot alone. 

Our research has produced a variety of new algorithmic techniques for motion planning with 
visibility constraints. With the convergence of a number of new technologies (telepresence, 
multimedia, virtual and augmented reality, etc), we believe that this area will attract much 
more interest in the coming years. We have also developed generic agent architecture for 
cooperating autonomous observers [Hayes-Roth et al, 1995; Pfleger and Hayes-Roth, 1996] 

Our experimental prototypes integrate techniques demonstrating the interplay of several 
capabilities, including visual tracking, landmark-based navigation, collision avoidance, visi- 
bility analysis, motion planning, and motion control. 
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Chapter 2 

Three-Dimensional Model Building 

This chapter presents a detailed description of our progress on the model building problem, 
which was briefly discussed in Section 1.2.1. The task is to coordinate the motions of one 
or more robots to build a visual model of a new environment. This model combines 3-D 
information along with texture maps. Most of our work so far has been targeted toward model 
acquisition and construction. Since environments can be very complex, we have strived to 
design techniques to generate sparse, yet realistic, models. Our work on computing a motion 
strategy optimizing the number of sensing operations is still preliminary. 

2.1    Introduction 

Imagine that a collection of autonomous observers are dropped into a new environment. 
Their initial task is to build a visual model of this environment suitable for both graphic 
fly-through operations and physical navigation. The model we wish to build consists of 
(1) a representation of the 3-D geometry of the environment in the form of a triangular or 
quadrangular mesh, and (2) color texture maps for each element in the mesh. The automatic 
construction of such visual maps have many potential applications, independent of other 
functions that autonomous observers may offer (e.g.: military, architecture, archeology, etc.). 

Three-dimensional model construction has been a research focus within the computer vi- 
sion and graphics communities since range-data acquisition hardware became an accessible 
experimental option to even moderately funded research groups, and range-data files have 
been made available via FTP. However, most of the work related to 3-D model construction 
has been done within the framework of computer graphics with fixed range-data acquisition 
platforms. 
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Figure 2.1: Software architecture for model building 

Model construction using mobile robots poses particular issues that are not commonly seen 
in fixed range-data acquisition platforms. For instance, robot odometry is far less pre- 
cise than the positioning sensors of fixed systems, which makes the alignment of successive 
views and the computation of texture maps significantly more complicated, especially in a 
multi-robot scenario where some robots acquire range images while others obtain the color 
information (distributed sensing, see [74]). Another issue is the size of the model. While 
fixed range-data acquisition platforms are used to build representations of relatively small 
objects, autonomous observers should be used to generate models of large and complex en- 
vironments; moreover, in most cases we will want to send these models to remote locations 
using a limited-bandwidth network. Therefore, representations need to be as compact as 

possible. 

We have studied an approach to model construction which yields the software architecture 
depicted in Figure 2.1. In this approach the model building process is decomposed in four 

phases: 

1. Model acquisition. We wish to use the visual model to perform virtual fly-through 
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navigation through the environment at a fast image rate. Hence, the size of the 3- 
D mesh underlying this model is a crucial issue. One may precompute the visibility 
structure of the environment in order to avoid overwhelming the Z-buffer with many 
unecessary triangles. Instead, one may generate relatively coarse representations. Al- 
though these two approaches can be combined, our research has specifically explored 
the second. We have developed techniques to build and simplify sparse meshes. 

2. Texture mapping. Once a geometric model has been obtained, we map color infor- 
mation given by color cameras into this model. Here, it is important to generate no 
or very few artifacts. To achieve this, we first establish correspondence between a few 
points in the geometric model and those in a camera image, and solve a minimization 
problem to recover the transformation that maps each point in the model onto the 
image. We then use this transformation to find the correspondence between arbitrary 
points in the model and those in the image in order to define the texture map for the 
reconstruction. 

3. Fusion of multiple views. Several sensing operations, performed by the same ob- 
server moving at successive locations, or by several observers, give multiple 3-D/color 
images. The main issue to be solved is now the following: Given two 3-D/color images 
of two overlapping subsets of the environment, how can we fuse them into a single 
model? The issue is complicated by the fact that the localization of the observers 
may not be very precise, which requires the partial models to be geometrically aligned 
before fusion. 

4. Sensing strategy planning. Sensing operations and fusion of partial models can be 
extremely time consumming. We must therefore try to minimize the number of such 
operations, by planning the best set of positions where the observers should perform 
the sensing operations. In the absence of prior information, we propose to derive a 
sensing strategy from a simple 2-D model that is easier and faster to build than a 3-D 
one. 

We now describe each phase in more detail. 

2.2    Model Acquisition 

Each autonomous observer is equipped with a laser-camera system for range-data acquisition. 
As described in detail in Appendix B, the range finder operates under the principle of 
triangulation. The laser projects a plane of light perpendicular to the orientation of a CCD 
camera equipped with an appropriate filter. Hardware on board the robot detects the pixel 
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Figure 2.2: The range-finder takes a "cut" of the environment in one sensing operation. 

of highest intensity value in each row of the image every time a new measurement acquistion 
takes place. One row is called a scanline, and the collection of all the intensity peaks for 
each scanline is called a scan profile. A scan profile is described by an array A of integers 
containing the column numbers of those pixels with the highest intensity value per scanline. 
Based on a sensor model (see Appendix B), the information contained in A is converted 
into a distance image. The calibration of the sensor is done prior to any model acquisition 
operation using a procedure described in Appendix B (subsection B.1.3). 

A scan profile basically takes a "cut" of the environment as shown in Figure 2.2. As the robot 
rotates its turret, the plane of light sweeps over the surfaces in the scene, effectively acquiring 
scan profiles of the environment. During a sweep, the robot acquires a large collection of data 
points corresponding to those surface points visible to the camera when the illumintated by 
the laser plane of light during the acquisition process. Given this set of points, we desire to 
contruct a representation of the surfaces sampled by the sensor. 

There has been considerable research in range-image segmentation, and good techniques 
have been proposed to recover surface information from range-data. Recently, the desire of 
teleoperating robots remotely through existing non-dedicated networks (such as the Internet) 
has sparked interest in fast on-line (incremental) reconstruction methods and in sparse-mesh 

representations (e.g., see [26]). 

Our approach is based on the observation that, in a single sweep, range data is acquired with 
an implicit order due to the physics of the sensing device. To illustrate this point, consider the 
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robot-laser configuration shown in Figure 2.2. When the turret rotates counterclockwisely 
by 9 < 27T, the data collected is ordered in slices corresponding to increasing values of 0, 
and the sensor gets the data in each slice in descending order. Stating the problem in 
cylindrical coordinates (p,9,z) leads to capture the environment surface as an array p{9,z); 
a slice (column) of this array contains information about the changes in the distance when 
z varies, while successive slices describe the evolution of the surface when 9 varies. We 
take advantage of this sorting to incrementally build a mesh description of the surface. We 
iteratively construct compact representations of the slices (or scan profiles) and we assemble 
these representations into surface meshes. In other words, the segmentation process yielding 
the mesh representation is done in two steps: first, along the vertical direction and then 

along the direction of the sweep. 

2.2.1    Scan Profile Segmentation 

Each individual profile can be processed and segmented during the acquisition stage, greatly 
reducing the amount of information transmitted wireless from the robot by this step alone.1 

To achieve this, we successively pre-filter, cluster, and segment the profile data. 

The pre-filtering process is done to eliminate spurious peaks due to noise inherent to the 
sensing operation; this step is basic signal processing. Clustering groups the data traced 
from distinct surfaces into different groups, while segmentation builds a representation of 
each cluster using geometric primitives. The simplified process is described by the schematic 

shown in Figure 2.3. 

Clustering 

The goal of clustering is to separate contiguous groups of points in a scan profile that lie on 
surface patchs which, from the sensor perpective, are different. Refer to Figure 2.4. If we had 
a sensor with infinite resolution, points of discontinuity in the curve r(0,z), at the current 
fixed 9, would only arise where the continuous light strip projected on the environment 
surface is sectioned or where occlusions occur along the line of sight of the camera. The 
question is how to break a scan profile that has finite resolution. 

A simple procedure is to consider every two consecutive points in the scan profile and compute 
the distance between them. If this distance is below a certain threshold, then we assume 
that the two points are in the same surface patch and we include them in the same cluster. 

xOur mobile robots communicate to the local network using radioethernet bridges. The amount of 
real-time processing and information sharing that can be outsourced to other computers is limited by the 
communication bandwidth. 
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Figure 2.3: Pipeline for scan profile segmentation, (a) Initial data acquisition and prefilter- 
ing. (b) Clustering into distinct groups and conversion of each cluster into a list of segments. 

Otherwise, we create a new cluster. One drawback of this procedure is that points far from 
the sensor are not scanned with the same resolution as those which are nearby. Hence, 
for a particular threshold value, we may cluster points located in the same surface patch 
into distinct groups; had this patch been located closer to the sensor, the scanned points 
would have been clustered together, instead. The converse could also happen if we tighten 
the threshold value. Although such a tradeoff is inherent to thresholding, we will like the 
generated clusters to be less sensitive to the choice of the threshold. 

A better clustering approach is to use the line of sight test (LOS). This test (illustrated in 
Figure 2.4) uses the distance between successive points in the direction of the sensor line of 
sight, instead of the absolute distance. The LOS test starts by calculating f, the unit vector 
describing the direction of the line of sight at a midpoint between two consecutive samples. 
Then, given s (the vector between samples), it computes | s ■ r | and compares this distance 

to a threshold. 

Piecewise Linear Approximation of Scan Profiles 

We now represent each cluster of points as a series of straight-line segments.2 We have 
developed a technique that generates this representation in linear time. It first transforms 
the point set into a more favorable coordinate system, then fits the point set with the weighted 

2More complex primitives could be used here, if needed. 
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s = ( Pi - Pi+1) 

d = IS-r 

Figure 2.4: Line-of-sight test: The separation between points in the direction of the sensor's 
line of sight is used to determine if a pair is in the same cluster. 

sum of the first n Chebyshev polynomials, and finally uses this continuous approximation as 
a noise-free representation of the surface being segmented. This technique is quite robust to 
noise in the measurement process. 

This technique and another one (called successive pivoting) are described in detail in Sec- 
tion B.2 of Appendix B. 

2.2.2    Profile Assembly 

Profile segmentation produces a vector of segmented slices £[i]"=1 as output, where every 
element of the vector is a list of clusters, i.e., L[i] = {Ci,C2, ■■■}■ A cluster is itself a list of 
line segments, i.e., Cj = {sj,52,...}. The vector L[- • •], called the profile vector, represents 
the environment surface sampled by the sensor in a single sweep. 

The profile vector is converted into a mesh structure using the following algorithm: 
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Algorithm Assemble mesh surface from segmented profiles 

Input: 
1.- a vector of segmented profiles L[i]"=1 

2.- a predicate bool Match(C,M)    to establish if a sequence of seg- 

ments C matches the partially-built mesh M 
Output: a list of surface meshes M = {Mi, M2,..., }, where M, = 

{Ci,C2, ■ • •} is a list of successive surface slices (list of segments) 

along the sweep direction 
1. for k = 1 to n do 

while L[k] not empty do 
extract (with deletion) the first element T from the list L[k], 

let M = T and i = k, 
while (i < n) do 

let i = i + 1, and flag = false 
for every element C in list L[i] do 

if Match (C,M) 
append C to surface M, 
remove element C from L[i], 
let flag = true , and break, 

else continue, 
if flag is false break, 
else continue, 

if M has more than one element append to M. 
2. Filter list M to eliminate extremely small or thin meshes. 

3. Make meshes uniform. 

To work efficiently, the algorithm depends on a good definition of the predicate bool 
Match(C„ M). The predicate must be accurate and robust to noise; its computational 
complexity must not explode with the size of M. We have experimented with different 
predicates. Although we had obtained good results with some of them, optimal predicate 

selection is still an open question. 

2.3    Texture Mapping 

Given a geometric model specified in a coordinate system TA and the image data specified in 
the image coordinate system Tc (2.5), we would like to find the transform T that associates 
every point in the model with a point in the image, in order to map the image onto the 

geometric model. 

Theoretically, a careful calibration procedure would solve our problem.   Calibrating the 
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Figure 2.5: Geometric relationship between the RAS coordinate system T\ and the camera 
coordinate system TB- Transformation T maps a point specified in TA to its coordinates in 

the image plane of the camera. 

relative position and orientation of the camera's coordinate system TB with respect to TA 

gives the transformation Tj. Calibrating the camera gives the projective transformation T2 

that maps the coordinates of a point in TB to its coordinates in the image coordinate system 
Tc- Composing 7\ and T2 provides the required transformation T. However, this is not a 
very practical approach for a mobile robot system. The relative placement of the range finder 
and the color camera are likely to change frequently as the robot is reconfigured for different 
tasks. Lenses and other components of the range finder and the camera may also change due 
to different task requirements, which would often result in time-consuming re-calibration. In 
addition, imperfections in the system make it virtually impossible to have a precise mapping 
over the entire range of operations. 

2.3.1    Related Work 

Our texture mapping problem is related to motion estimation and camera calibration for 
stereo matching. These problems has been addressed in the literature. A known result 
is that five pairs of points in non-degenerate positions are sufficient to recover the required 
projective transformation. In [52] it is shown that eight pairs determine a set of simultaneous 
linear equations to provide a unique closed-form under general conditions. A similar result 
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was presented in [71], showing that seven points are sufficient, barring degenerate cases. A 
method adequate for noisy data is the eight-point method presented in [75]. 

The above algorithms need pairs of corresponding points as inputs. Instead, feature-tracking 
algorithms based on image intensity can use cross-correlation [77, 72] or sum-of-squared- 
differences [53, 11] as similarity measures. These algorithms run a numerical method to 
optimize the chosen measure. Shi and Tomasi [67] presented a Newton-Raphson technique 

that works for a wide variety of similarity measures. 

2.3.2    Our Algorithm 

We propose to take the transform T0 : TA -4 Tc, obtained from calibration as an initial 
estimate and compute a better estimate f. The following procedure is used to obtained T, 
where a quadrilateral mesh surface (the result of a previous segmentation procedure on the 

range-data) is used as input. 

Algorithm FindTransformation 
Input: geometric model, 

image, 
initial estimate T0 of the transform from TA to the image plane 

Output: a better estimate T 
1. Project selected features of the meshed surface onto the image plane of the camera 

using T0 to get a binary image Ix. 
2. Apply edge detection to the input image to get a new image I2. 
3. Establish correspondence for features in h and I2 to obtain pairs of corresponding 

points (Xi,Xl), where X{ is a point in the geometric model and X[ is a point in 

the input image. 
4. Solve the minimization problem 

mm^lTXi-X'i '|2 

T 

where T is a transform from TA to Tc ■ 

In Step 1, the features selected for projection are the corners of the surface, that is, places on 
the surface with high curvature. At the corners, the surface normal changes sharply, which 
often results in sharp image intensity changes. Given a mesh surface, the curvature at mesh 
points can be easily estimated by finite difference methods. 

In Step 3, we find corresponding features in h and I2 based on image intensity. This can be 
done either manually, or automatically by a template matching procedure based on cross- 
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correlation, sum of squared differences, or Hausdorff's distances. 

Once we have T, we define our texture mapping procedure as follows: 

Algorithm MapTexture 
Input: 

A set S of mesh points whose corresponding points in the image have been 
found by explicit matching in FindTransformation, 
Transform T 

Output: a texture mapping function 
1. For each mesh point X, € 51, its corresponding texture coordinates are U{. 
2. For each mesh point not in 5, compute its texture coordinates by using T. 

T is used to map only points not in S because we feel that correspondence established by 
explicit matching is more reliable and yield better reconstructed images. 

2.3.3    Experiments 

The images in Figure 2.6 show experimental results on three different scenes. The top row 
shows a picture of each scene, the second row shows the 3-D model with texure mapped with 
an inaccurate initial guess of the transform. The third row shows a distorted texture map, 
the result of mapping explicitly identified correspondence pairs. The last row is the result 
of mapping the rest of the mesh using the updated transformation estimate T. 

One potential problem in FindTransformation is that the minimization procedure may get 
trapped in a local minimum. We never observed this problem, however, despite the fact that 
in all our experiments, the initial estimate T0 supplied to FindTransformation contained 
severe errors. 

2.4    Fusion of Multiple Views 

Several sensing operations, performed by one or several observers, result in multiple partial 
models that must be fused into a single model. 

Model fusion is complicated by the fact that the localization of the observers may not be very 
precise, which requires the partial models to be geometrically aligned before fusion. This 
is the alignment step. Aftewards, distinct models are combined together by mesh fusion, 
which merges the mesh representations of different views into a single quadrilateral mesh 
structure. These two operations operate over the pair (m^, Mk-i), which is composed of the 
most recently acquired partial model (m^) and the current accumulated model (Mk-i). 
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Scene 1 Scene 2 Scene 3 

Figure 2.6: Some examples of reconstructed scenes with texture mapping. 
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Left view Right view 

Figure 2.7: A scene is captured from two different viewpoints ( left and right columns). The 
bottom row is the scene as observed from the range-finder CCD camera. 

2.4.1    Alignment 

Consider the situation shown in Figure 2.7, where a pile of boxes is scanned from two 
different viewpoints. Since distinct surfaces are captured during the model acquisition stage, 
two different set of surface meshes are built, each one representing a portion of the scene. 

Geometric features captured by both viewpoints should be present in both partial models. 
Ideally, when transformed into a global coordinate system, the models should be superim- 
posed at the common features. Good superimposition, unfortunately, is rarely observed in 
practice. A model constructed in a single scan sweep can be accurately expressed in the 
robot's local coordinates. To convert it into a world coordinate system, however, the robot's 
position must be known precisely, which is often not the case. We usually get a model su- 
perimposition like the one shown in Figure 2.8. The alignment step (also called registration) 
attempts to recover the transform T that characterizes the superimposition error. 

Our aligment procedure, shown in Figure 2.9, computes the transform T such that the pair 
rrik and T(Mk-i) minimizes some error criterion. The algorithm is the following: 
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Algorithm Align the current model with the last partial view 

Input: 
1.- new measurements hk taken during the last scan sweep k 
2.- a model acquisition procedure to obtain the mesh representation rrik 

from hk (see Section 2.2) 
3.- the accumulated model Mk-i 
4.- a perfomance criteria £ = £(/ijt,mfc) Mk-i) 

Output: a transformation T(Mk-i) that minimizes 

£(/>*, m^M^]) 

1. Compute the partial mesh reprsentation mk given the acquired 
information hk (see Section 2.2) 

2. Solve the minimization problem 

T*    =   arg mm ((hk,mk,T[Mk-i}). (2.1) 

The optimization step of the algorithm can be done using any existing minimization pro- 
cedure (see [63]). More critical, however, is the selection of the perfomance criteria £. We 
propose three alternatives, each based on three possible measures of mesh separation: mesh- 
to-mesh overlap, point-to-mesh separation, and contour-to-contour overlap. 

Mesh-to-Mesh Overlap 

One way to define £ is to compute the overlap of each quadrilateral in mesh m* with mesh 
M = T(Mk-i). A quadrilateral overlap is computed by finding the projection of its area into 
M, and multiplying it by a decreasing function of distance w(r~x) (see Figure 2.10). The 
error £ will be the negative sum of overlaps of all quadrilaterals in m* with M. Hence, when 
we execute step 2 in the alignment algorithm we will in fact maximize the degree of overlap 
beween m^ and M. 

The result using mesh-to-mesh overlap is very satisfactory. The views superimposed in 
Figure 2.8 are aligned as shown in Figure 2.11. The minor artifacts appearing in the figure 
are the result of quantization due to integer mesh representations.3 

Mesh-to-mesh overlap has several drawbacks, however. It does not guarantee alignment, 
even if the optimization algorithm is perfect, and it is computationally expensive. In our 
experiments, alignment is by far the most consuming procedure of the whole model building 
process, exceeding mesh construction and mesh fusion in by orders of magnitude. 

3There is no need to use integer representations. We selected them to ease coding. 
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Figure 2.10: Overlap of a quadrilateral from mk with mesh M - T(Mk-i) 

Figure 2.11: Two views are matched using mesh-to-mesh overlap 
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mesh I 

mesh II 

Figure 2.12: Correspondence points for the ICP algorithm. Pairs too far apart and points in 
the mesh boundary should be avoided as they drag the mesh in a direction opposite to the 
majority of correspondences (from Turk and Levoy 94). 

Point-to-Mesh Separation 

This approach is based on the iterated closed-point algorithm (ICP) proposed by Turk and 
Levoy in [73]. The basic process is the following: Compute the nearest position in mesh mt 
to each vertex in mesh Mk-\, find the transformation that minimizes the sum of squared 
distances between pairs, and iterate the whole process until convergence. 

The idea behind ICP is that, by computing the points in ink nearest to the vertices of Mk-\, 
we will have pairs of points that correspond roughly to the same location in the true surface. 
Hence, these pairs should be used to compute the degree of matching. After such problem is 
solved, we should repeat the process to allow the fact that the pairs were not exact matches. 

Turk and Levoy recommend that points in the boundary of m^ should be discarded, as well 
as those pairs of points that are too far apart. The reasoning behind this can be understood 
from Figure 2.12. Points in the mesh boundary tend to drag a mesh in a direction opposite 
to the majority of correspondences. At the same time, pairs too far apart are likely to 
correspond to portions in M not scanned in m^. 

Given a number of pairs, the best rigid transformation in the least-squares sense can be 
computed in linear time using the closed-form solution obtained by Horn (see [32]). Horn's 
method finds the displacement vector S and the rotation V, such that 

E = J2\pt-R(qi-qc)-5\2 

i=i 

is minimized, where (pi,<7;)"=1 are the given pairs, and qc the centroid of all the g.'s. 

The ICP algorithm is superior in speed to mesh-to-mesh overlap techniques: 
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Algorithm Iterated closed-point alignment 

Input: 
1.- a partial model mk 

2.- the accumulated model Mk-\ 
Output: the transformation r(Mjk-i) that alignsMfc_i with mk 

1. Find the nearest point on mesh mk to each vertex in Mk-i- 

2. Discard pairs that are too far apart. 
3. Eliminate pair in which either point is on a boundary. 
4. Find the rigid transformation that best aligns the pairs in the 

least-squares sense. 
5. Iterate the process until convergence. 

There two main problems with the ICP algorithm. One is extracting the correpondence pairs. 
If the mesh vertices are uniformly distributed, and its quadrilaterals limited in size, then it is 
possible to perform a uniform subdivision of the space based on a distance threshold. With 
the subdivision we may constrain the nearest-point search to a local neighborhood, outside 
of which we can guarantee the solution does not exist. However, for sparse meshes we do 
not have uniformity, and no hard bound on the quadrilaterals' size. The nearest-point query 
may then be expensive, although this issue is made less critical by the fact that a sparse 
mesh should not contain a very large number of quadrilaterals in the first place (except tor 
highly curved objects). The second problem is determining the threshold beyond which we 
determine a point pair as too far apart. The threshold can be easily determined if we have 
a bound on the size of the quadrilaterals. Again, for a sparse mesh, this is not possible tor 

general scenes. One must use heuristics to obtain the threshold value. 

Contour-to-Contour Overlap 

An extension of the mesh-to-mesh overlap technique is to use contours. It is based on the 
observation that the robot's position is given by three coordinates (x,y,9). Mismatchs are 
due to errors in the estimation of these coordinates. So, T should consist of two translations 
Tx and Ty and a rotation T0. We can take a x-y cross-section cut of mk and M at some 
height z, and use 2-D matching techniques to recover T* entirely (see Figure 2.13). A better 
estimate of T* can be computed by using more than one cut. 

By using solving the problem in cross-sectional cuts, we fall into one of the classic prob- 
lems in computer vision: template matching. Different techniques had been proposed in the 
literature to solve this problem. See [77, 72] for cross-correlation approaches, and [53, 11J 
for the use of sum-of-squared-differences as a similarity measure. A Newton-Rapshon ap- 
proach presented in [67] can be used for a wide variety of similarity measures. If we do not 
think orientation errors are present (Te = 0), we can use the fast techniques proposed by 
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Figure 2.13: By matching cross-section cuts of two meshes, we can recover the transformation 

T* = (Tx,Ty,Te) that aligns the views. 

Huttenlocher to recover T* and Ty* (see [37] and [36]). 

Alignment operations over cross-sectional cuts can be executed very quickly, so this approach 
looks very promising. We are currently in the process of evaluating its practical perfomance. 

2.4.2    Mesh Fusion 

After alignment, we need to fuse the mesh of mk with the mesh of T(Mk-\)- Consider the 
situation shown in Figure 2.14. Two meshes resulting from distinct views are shown together 
after alignment. The mesh regions with no overlap should be detached from the rest of the 
structure to form a new independent mesh. The overlapping information from both views 
should be fused together into a new middle mesh. In order to merge two models together, 
one must compute all the intersecting meshes. 

The key function in the mesh fusion process is the predicate 
bool Match-Pair(a, b, left,right, compose), which returns true if meshes a and b intersect 
and false otherwise. If they do intersect, right and left return the non-intersecting portions 
(residuals), and compose returns the composite (overlapping) mesh. 
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Figure 2.14: Merging two meshes together. If the structures intersect, the merging function 

returns the residuals left and right, and the composite mesh. 

-"V 

Figure 2.15: Projection of profile onto a mesh slab. 
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Match-Pair(-) runs by repeatedly executing the operation shown in Figure 2.15. This basic 
operation computes the projection of a piecewise linear curve onto a mesh slab. Midway 
between the projection and the original curve, a new segment sequence is constructed. The 
construction extends within the endpoints of both the original curve and the slab. The 
details of this operation are tediously complicated, and do not give much insight about the 

fusion process, so we omit the details. 

The fusion algorithm operates over two models A and B. Each model is composed of a list 
of quadrilateral meshes. In order to merge them together, we first define a function bool 
Merge (6, A, 71) to merge a single mesh with a complete model: 

Algorithm    bool Merge(6, A,C)    Fuse a mesh with a model 

Input: 
a mesh h 
a model A = {ai,..., an} 

Output: 
a list C containing all the composite meshes, 
A returns containing its non-intersecting elements only, 
returns false if there is no match 

1. Let C and 1Zaux be empty 
2. while (true) 

if A is empty 
LieTJ  %rx —   I\SQ,UX 

return false 
Move the first item in list A to item top 
if ( Match-Pair(iop, 6 Je ft, right, compose) ) 

if left residual was part of top append left to lZaux 

else if ( Merge(/e/i,^4, aux)  ) append aux to C 
else append left to C 

if ( Merge (compose, .4., aux)  ) append aux to 1Zaux 

else append compose to Ttaux 

if right residual was part of top append right to Tlaux 

else if ( Merge (right, A, aux)  ) append aux to C 
else append right to C 

insert list TZaux to top of A 
return true 

else append top to TZaux 

The algorithm is recursive.   It checks the intersection of the top of A with b, storing the 
non-intersecting residuals in the auxiliary list %aux. If top does not overlap with b, then it 
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is added to the auxiliary list of residuals. When top is matched with 6, the left or right 
residuals may intersect further with the rest of A if they are residuals of b; hence, the 
Merge(•) function is invoked again. The compositions computed in the recursive calls are 
added to the list of composites C. The function returns after joining the auxiliary list of 

residuals to the returned non-overlapping reminder of A. 

Once we are able to merge a mesh to a complete model, model-to-model fusion is achieved 

by the following procedure: 

Algorithm   Merge models A and B 

Input: 
a model A = {ai, • • •, a{] 
a model B = {61,..., bm} 

Output: the fused model M = {mi,..., m„} 

1. 
2. Let M be empty 
3. for every surface mesh 6, € B: 

if ( Merge(&,-, A,C)  ) 
append C to M 

else 
append b{ to M. 

insert list A to top of M 

The models are fused by first merging every element in B with model A, while appending the 
composites and non-intersecting 6,-'s to M. Since a well-defined model contains disjointed 
meshes, two distinct elements of B do not have equal overlaps with A. Hence, after going 
through the whole cycle, whatever is left in list A are the the non-overlapping pieces of the 

first model, which are added to M. 

The results using computed by the merge algorithm are good. The views superimposed 
in Figure 2.8 are fused as shown in Figure 2.16. Both views are now fused into a single 

consistent mesh, ready for color texture mapping. 

2.5    Sensing Strategy Planning 

Most of the sensing strategies appearing in the literature address the automatic exploration 
problem as sequence of next-best-view problems (e.g., [3, 17, 54, 62, 76]). Existing tech- 
niques to solve the next-best-view problem are not ideally suited to our application for two 
reasons. First, solving for the next-best view is a local planning problem, and the result- 
ing sequence of views may yield too many sensing operations.   In our case, each sensing 
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Figure 2.16: Two views are merged into a single consistent mesh. 

operation is expensive; it requires acquiring 3-D and texture data and merging this data 
with the current model. Therefore, it is desirable to keep sensing operations to a minimum. 
Second, sensor localization is not perfect if the measurement device is mounted on a robot 
-odometric errors between successive views may cause misalignments resulting in incorrect 
models. Model construction using measurements from multiple views requires 3-D data to 
be aligned (through a partial matching operation) before merging, but this problem becomes 
more difficult to solve when the number sensing operations grow. 

This remarks led us to address the model building problem in a different way. First, given 
a two-dimensional layout of the environment, we apply an art-gallery algorithm [58] (also 
called museum-guard problem) to compute a small number of positions such that if an 
observer was located at each one of these positions, the observers would collectively see the 
entire 2-D environement. Next, we move the observers along a path passing through each 
of the guard positions; at each position the agents perform a 3-D/texture sensing operation. 
Concurrently, the partial models provided by these operations are combined into a single 
consistent global model. Finally, remaining "holes" in the global model can be filled by 
adding a few local sensing operations using next-best-view techniques. 

In the next subsections we present some of the issues present in our scheme. 

2.5.1    2-D Map Construction 

A viable strategy for automatic model construction is to consider the environment to be a 
2-D workspace.   Although it is reasonable to consider the mobile robot translations to be 
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restricted to a 2-D surfaces, it may not seem appropiate to assume the explored environment 
as planar. But some researchers consider the possibility that a 2-D layout may give a 
good strategy for the full 3-D exploration. The arguments in favor are that for some 3-D 
environments the vertical surface variations might not be crucial, that maybe a 2-D map is 
all what is required (as for navigation purposes), and that certain types of occlusions cannot 

be resolved by a range-finder restricted to a plane anyway. 

The 2-D model must be built in the first place, without preliminary knowledge of the envi- 
ronment. We can acquire a 2-D map by letting the mobile robot navigate in the environment 
and using a simple range sensor projecting a horizontal plane of light (sonars can also be used 
instead of, or in addition to, the range-finder). This form of sensing is fast, so the number 
of sensing operations is not critical, making feasible the use of a next-best-view technique to 

drive the robot around the unknown environment. 

Several strategies had been proposed to solve 2-D exploration. The work in [16, 42] approach 
the problem from a computational geometry perspective. They attack the problem of on-line 
search of polygons. In [42] a type of polygon is introduced for which a (l + ^5)/2-competitive 
search is possible (the worst-case cost - or distance - is at most (1 + >/5)/2 times worse than 
the optimal strategy given complete knowledge of the geometry). In [16] general polygons are 
considered, and an algorithm for the incremental exploration of the workspace is provided. 
Approaches to the problem based exclusively in computational geometry issues give results 
that are clean, precise, and provable, but usually do not consider physical limitations of any 
type and assume perfect sensing. They are important, however, in that they provide an idea 
of the basic geometric problem, and establish bounds of how effectively we can solve it. 

In [39] an algorithm for purposive sensing and motion for 2-D map building is presented. The 
authors consider real sensors (sonars), and collision-avoidance issues. The method consists on 
incrementaly building a topological graph (or roadmap) of the known environment computed 
so far, and updating this graph by connecting local structures extracted from the sensory 
data at each sensing location. The method has the advantage that, from a roadmap, the 
motion planning problem can be readily solved, so the proposed method solves both the 
exploration and the motion planning problem simultaneously. The graph approach results 
in new viewpoints that are reachable by the robot, making unneccesary a separate feasibility 

test. 

2.5.2    Computing Sensing Locations from 2-D Map 

As mentioned before, computing the ideal sensing locations from a 2-D map is closed related 
to the museum-guard problem. Most art-gallery algorithms assume the agents are equipped 
with an omnirectional and infinite-range sensor (assumption that simplifies the complexity 
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Figure 2.17: (a) Incidence contraint for a range-finder. Portions of the wall are seen only if 
I 6 |< T. (b) Complete coverage of even a simple triangle may be unattainable if incidence- 
angle restrictions are considered. The equilateral triangle may be covered by three guards, 
which should be located within the shaded areas. 

of the problem). However, with real sensors, surfaces can be reliably seen only within some 
distance range and under non-grazing incidence angles. Taking such constraints into account 
yields new variants of the art-gallery problems. 

Figure 2.17a shows how an incidence constraint limits the sensing range of the agent. The 
sensor is assumed to have a maximum tolerance of r; i.e., when the incidence angle 9 exceeds 
the value of r the measurement is either unreliable or non-existent. This simple constraint 
already adds some interesting twists to the art gallery problem. 

If an agent attempts to guard the inside of a polygon, corners may not be reachable. If a 
is the angle between two edges at a corner of a polygon, then the corner may be guarded 
only if a > 90° — r (this is a direct consequence of the constraint | 9 |< r). In addition, 
for very large walls, only a section of size 2h tan(r) is observable, where h is the minimum 
distance from the sensor to the wall. Hence, a wall of size / requires at least ceil[//(2/i tan r)] 
observations if the agent is constrained to within a distance h from the wall. 

A remarkable consequence of condition a > 90° — r is that not all triangles are scannable. 
Since the inner angles of a triangle add 180°, then 180° > 270° - 3r which implies that 
r > 30°. That is, if the maximum tolerance is less than 30 degrees, no triangle is scannable. 
If a triangle is scannable, it may even need three guard positions (see Figure 2.17b). 

Our current research is focused on developing practical algorithms to solve the extended 
versions of the museum-guard problem arising in our automatic model construction strategy. 
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2.6    Discussion 

We have described a set of implemented techniques to build a visual model of an environ- 
ment. This model combines 3-D information (a quadrilateral mesh structure) and functions 
mapping color textures onto each quadrilateral mesh. This model can be used for virtual 
fly-through navigation on a graphic workstation, as well as for real navigation by mobile 
robots. A major goal of this research was to generate sparse, but still realistic mesh struc- 
tures and to deal with imperfect localization of the observers. Future research should more 
throughly address the issue of computing motion strategies minimizing the number of sensing 

operations. 
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Chapter 3 

Target Finding 

This chapter presents a detailed description of our progress on the target finding problem, 
which was briefly discussed in Section 1.2.2. The task is to coordinate the motions of one 
or more robots that have omnidirectional vision sensors, to eventually "see" a target that 
is unpredictable, has unknown initial position, and is capable of moving arbitrarily fast. A 
visibility region is associated with each robot, and the goal is to guarantee that the target will 
ultimately lie in at least one visibility region. Both a formal characterization of the general 
problem and several interesting problem instances are presented. A complete algorithm for 
computing the motion strategy of the robots is also presented, and is based on searching a 
finite cell complex that is constructed on the basis of critical information changes. A few 
computed solution strategies are shown. Several bounds on the minimum number of needed 
observers are also discussed. 

3.1    Introduction 

Have you ever searched for someone in a building, possibly exploring the same places multiple 
times, while finally fearing that the person might have moved to a location already explored? 
Have you wondered how many searchers it would take to be able to guarantee that the person 
will eventually be located? This chapter presents a formal study of problems of this type, for 
which the task is to plan a motion strategy that will ensure that a target will eventually be 
"seen" in a workspace that is cluttered with obstacles that prohibit subsets of configurations 
of the searchers and also obstruct their visibility. The only assumption made about the 
target is that its motions are continuous. Obviously, the motion strategy must ensure that 
each portion of the workspace is in view at some point in time; however, the more difficult 
task is to prevent the target from "sneaking" into a region that has already been explored. 
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Several applications can be envisioned for problems and motion strategies of this type. For 
example, suppose a building security system involves a few mobile robots with cameras or 
range sensors that can detect an intruder. Stationary or limited degree-of-freedom camera 
bases could also be installed. A patrolling route can be automatically computed that guar- 
antees that any mobile intruder will eventually be found. To optimize expenses, it would 
also be important to know the minimum number of robots that would be needed. Appli- 
cations are not necessarily limited to adversarial targets. For example, the task might be 
to automatically locate another mobile robot, items in a warehouse or factory that might 
get moved during the search process, or possibly even people in a search/rescue effort. Such 

strategies could be used by automated systems or by human searchers. 

Since the task is to guarantee that the target is found for all possible target motions, worst- 
case analysis will naturally be considered for modeling the target. In the analysis, the 
target will thus be termed an evader, although in an application the actual target might 
not be adversarial. Likewise, the robots that are equipped with vision or range sensing are 
termed pursuers, instead of observers. The pursuers and evader are modeled as points in 
the plane (alternatively general configuration-space representations could be used [46], but 
only 2-D configuration spaces are addressed in this chapter), and only continuous motions 
are permitted. Two interesting research issues follow from this general problem: 1) What 
bounds can be established on the number of pursuers needed to solve the problem, expressed 
in terms of the geometric and topological complexity of the free space? 2) Can a successful 
solution strategy be efficiently computed for a given problem? Our current progress on these 

two topics is discussed in this chapter. 

The general problem is an extension or combination of problems that have been considered 
in several contexts. Pursuit-evasion scenarios have arisen in a variety of applications such 
as air traffic control, military strategy, and trajectory tracking. This has resulted in the 
formal study of general decision problems in which two decision makers have diametrically 
opposing interests. Classical pursuit-evasion games express differential motion models for 
two opponents, and conditions of capture or optimal strategies are sought [38]. For example, 
in the classical Homicidal Chauffeur game, conditions of inevitable collision can be expressed 
in terms of the nonholonomic turning-radius constraints of the pursuer and evader. Although 
interesting decision problems arise through the differential motion models, geometric free- 
space constraints are usually not considered in classical pursuit-evasion games. Once these 
constraints are introduced, the problem inherits the additional complications that arise in 

geometric motion planning. 

A region of capture is often associated with a pursuit-evasion problem, and the "capture" 
for our problem is defined as having the evader lie within a line-of-sight view from a pursuer. 
Several interesting results have been obtained for pursuit-evasion in a graph [55, 61]. How- 
ever, the visibility polygon along with motions in a free space add geometric information that 
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must be utilized, and also leads to connections with the static art gallery problems [58]. In 
the limiting case, art gallery results serve as a loose upper bound on the number of pursuers 
by allowing a covering of the free space by static guards, guaranteeing that any evader will 
be immediately visible. Far fewer guards are needed when they are allowed to move and 
search for an evader; however, the required motion strategies can become complicated. 

3.2    Problem Definition 

The pursuers and evader are modeled as points that translate in a 2-D bounded, Euclidean 
workspace that contains polygonal obstacles. See Figure 3.1 for illustrative examples. Let F 
represent the closure of the collision-free space (referred to as Cmiid in [46]). All pursuer and 
evader positions must lie in F. Let e(t) € F denote the position of the evader at time t > 0. 
It is assumed that e : [0,oo) -> F is a continuous function, and that the evader is capable 
of executing arbitrarily fast motions. The initial position e(0) and the path e are assumed 

unknown to pursuers. 

Let f{t) denote the position of the ith pursuer at time t > 0. Let Y represent a continuous 
path of the ith pursuer of the form Y : [0,oo) -> F. Let 7 denote a motion) strategy, which 
refers to a specification of a continuous path for every pursuer: 7 = {71,...,7 } for N 

pursuers. 

For any point, q € F, let V(q) denote the set of all points in F that are visible from q (i.e., 
the linear segment joining q and any point in V(q) lies in F). A strategy, 7, is a solution 
strategy if for every continuous function e : [0, 00) -»■ F there exists a time t G [0, 00) and 
an i e {1,...,N} such that e(t) € V(Y(t)). This implies that the evader will eventually 
be seen by one or more pursuers, regardless of its path. Let H(F) represent the minimum 
number of pursuers for which there exists a solution strategy for F. 

Two basic problems are considered: 

1. Determine H(F) 

2. For a given F, find a solution strategy, 7, using H{F) pursuers 

3.3    How Many Pursuers are Needed? 

The minimum number of pursuers, H(F), required to find an evader in a given free space 
F generally depends on both the geometry and topology of the free space.   For example, 
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Figure 3.1: The rightmost example requires two pursuers, whereas the others require only 

one. 

H(F)>2 when F is multiply-connected (the evader can always hide behind a hole to avoid 
being seen by a single pursuer). Figure 3.1 shows examples that have subtle differences; 
however, H{F) varies. In [68] a class of simple polygons called "hedgehogs" is identified for 

which a single pursuer suffices. 

We have derived several bounds on H(F) over certain classes of free spaces. It can be shown 
that for any simply-connected free space F with n edges, at worst H(F) = O(lgn), and for 
general free spaces with h holes, at worst H(F) = 0(h + \gn) [31]. To obtain the first result, 
F can be recursively decomposed by placing pursuers on partitioning edges to prevent the 
evader from moving from one portion of F to another. A logarithmic number of pursuers 
can be systematically swept across partition edges to obtain the solution strategy. To obtain 
the second result, a linear number of line segments can be used to connect between holes and 
the exterior edges of F so that any continuous path that is not homotopic to a stationary 
path must cross one of the line segments. One pursuer can be placed on each segment to 
effectively reduce the problem to that of a simply-connected free space. 

Lower bounds can also established which indicate problems that require at least some number 
of pursuers. To construct difficult problem instances, a well-studied problem from graph 
theory can be used. Let Parsons' problem refer to the graph-searching problem presented in 
[55, 61]. The task is to specify the number of pursuers required to find an evader that can 
execute continuous motions along the edges of a graph. Instead of using visibility, capture is 
achieved when one of the pursuers "touches" the evader. We have shown that for any instance 
of Parsons' problem on a planar graph, there exists an equivalent geometric instance [31]. 
The basic idea is to replace each edge in the graph by a thin corridor that has four bends. 
The key difference between the graph problem and the geometric problem is the power of 
visibility, which is essentially removed once four-bend corridors are used. By transforming 
difficult graph instances into geometric instances, it can be shown that exploring a tree of 
corridors of the type shown in Figure 3.2 requires k + 1 pursuers in which k is the height 
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Figure 3.2: A ternary tree of bent corridors requires one pursuer per level (for this example 

H(F) = 4). 

of the tree (thus establishing H(F) = fi(lgn)) [31]. Examples can also be constructed that 

establish H(F) = Ü{y/h + \gn). 

3.4    Computing a Solution Strategy 

3.4.1    General Issues 

In general, one would prefer a complete algorithm, which must compute a solution strategy 
for a given number of pursuers, if such a strategy exists. It is natural to compare the notion 
of completeness for this problem to completeness for the basic motion planning problem 
(i.e., the algorithm will find a collision-free path if such a path exists [13]). One important 
difference, however, is that the minimum number of pursuers is crucial, but does not have a 
correspondence for the basic path planning problem. A variety of simple, heuristic algorithms 
can be developed that require more pursuers than necessary (for example, triangulate the 
workspace, and place a static pursuer in each triangle). By building on some results from 
graph theory, it can be shown that the general problem of determining H{F) for a polygonal 
environment is NP-hard [31]. The solutions can also be quite complicated (we have found 
examples that require clearing the same region Sl(n) times for n edges). 

Because the position of the evader is unknown, one does not have direct access to the state 
at a given time. This motivates the consideration of an information space that identifies 
all unique situations that can occur during the execution of a motion strategy. Let a state 
space, X, be spanned by the coordinates x = {x\.. .,xN ,xe), in which x' for 1 < i < N 
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represents the position of the ith pursuer, and xe represents the position of the evader. Since 
the positions of the pursuers are always known, let Xp denote the subspace of X that is 

spanned by the pursuer positions, xp = (x1,..., x   ). 

It will be useful to analyze a strategy in terms of manipulating the set of possible positions of 
the evader. Any region in F that might contain the evader will be referred to as contaminated, 
otherwise it will be referred to as cleared. Let S C F represent the set of all contaminated 
points in F. Let n = (xp, S) for which xp € Xp and S C F represent an information state. 
The information space is a standard representational tool for problems that have imperfect 
state information, and has been useful in optimal control and dynamic game theory (e.g., 

[2]), and in motion planning [4, 23, 47]. 

For a fixed strategy, 7, a path in the information space will be obtained by n{t) = 

(71,...,7N,5(i)) in wnicn S(f) can be determined from an initial 5(0) and the trajecto- 

ries' {Yit'W <= [0,t}} for each i G {1,...,JV}. 

We next describe a general mechanism for defining critical information changes. This is 
inspired in part by a standard approach used in motion planning, which is to preserve 
completeness by using a decomposition of the configuration space that is constructed by 
analyzing critical events. The next definition describes an information invariance property, 
which allows the information space to be partitioned into equivalence classes. A connected 
set D C Xp is conservative if Vr? such that xp £ D, and V7 : [t0,ti] -)• D such that 7 
is continuous and 7(*o) = l(U) = *p, then the same information state is obtained. This 
definition implies path invariance within a conservative cell [31]. Just as m the case of 
motion planning algorithms based on critical curves and noncritical regions [46], one can 
only consider sequences of cells in the search for a strategy while maintaining completeness. 

In our case, however, these cells exist in the information space. 

3.4.2    The Complete Algorithm for One Pursuer 

A conservative cell decomposition will be described that is based on critical changes in edge 
visibility. Suppose the pursuer is at a point q G F. Consider the circular sequence of edges in 
the resulting visibility polygon. The edges generally alternate between bordering an obstacle 
and bordering free space. See Figure 3.3. Let each edge that borders free space be referred 
to as a gap edge. Consider associating a binary label with each gap edge. If the portion of 
the free space that borders the gap edge is contaminated, then it is assigned a "1" label; 
otherwise, it is assigned a "0" label indicating that it is clear. Let B{q) denote a binary 
sequence that corresponds to labelings that were assigned from q € F. Note that the set 
of all contaminated points is bounded by a polygon that must contain either edges of F or 
gap edges from the visibility polygon of the pursuer. Thus, the specification of q and B(q) 
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Figure 3.3: Edge labels can be used to encode the information state. 

uniquely characterizes the information state. 

Consider representing the information state using q and B(q), and let pursuer move in a 
continuous, closed-loop path that does not cause gap edges to appear or disappear at any 
time. Each gap edge will continuously change during the motion of the pursuer; however, 
the corresponding gap edge label will not change. The information state cannot change 
unless gap edges appear or disappear. For example, consider the problem shown in Figure 
3.4 which shows a single pursuer that is approaching the end of a corridor. If the closed-loop 
motion on the left is executed, the end of the corridor remains contaminated. This implies 
that although the information state changes during the motion, the original information 
state is obtained upon returning. During the closed-loop motion on the right, the gap edge 
disappears and reappears. In this case, the resulting information state is different. The gap 
label is changed from "1" to "0". 

Hence, a cell decomposition that maintains the same corresponding gap edges will only con- 
tain conservative cells. The idea is to partition the free space into convex cells by identifying 
critical places at which edge visibility changes. A decomposition of this type has been used 
for robot localization in [30, 70], and generates 0(n3) cells in the worst case for a simple 
polygon (which is always true if H(F) = 1). The free space can be sufficiently partitioned 
in our case by extending rays in the three general cases shown in Figure 3.5. Obstacle edges 
are extended in either direction, or both directions if possible. Pairs of vertices are extended 
outward only if both directions are free along the line drawn through the pair of points. 
This precludes the case in which one direction is cannot be extended; although edge visibil- 
ity actually changes for this case, it does not represent a critical change in information. Our 
implementation uses the quad-edge structure from [29] to efficiently maintain the topolog- 
ical ordering of the conservative cells. Figure 3.8.a shows a computed example of the cell 
decomposition. 

The next issue is searching the information space for a solution, which corresponds to spec- 
ifying a sequence of adjacent cells. The solution strategy must take the form of a path that 
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Figure 3.4:   A critical event in the information space can only occur when edge visibility 

changes. 

Figure 3.5: Ray shooting is performed for three general cases to form the edge-visibility cells. 

maps into F. This can be constructed by concatenating linear path segments, in which each 
segment connects the centroids of a consecutive pair of cells in the sequence. 

The cells and their natural adjacency relationships define a finite, planar graph, Gc, referred 
to as the cell graph. Vertices in Gc are generally visited multiple times in a solution sequence 
because of the changing information states. For each vertex in Gc, a point, q € F, in 
the corresponding cell can be identified, and the labels B(q) can be distinct at each visit. 
Initially, the pursuer will be in some position at which all gap labels are "1". The goal is 
to find any sequence of cells in Gc that leave the pursuer at some position at which all gap 

labels are "0". 

A directed information state graph, Gi, can be derived from Gc, for which each vertex is 
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visited at most once during the execution of a solution strategy. For each vertex in Gc, a 
set of vertices are included in G/ for each possible B{q). For example, suppose a vertex in 
Gc represents some cell D, and there are 2 gap edges for B(q) and any q£ D. Four vertices 
will be included in G/ that all correspond to the pursuer at cell D; however, each vertex 
represents a unique possibility for B{q): "00", "01", "10", or "11". Let a vertex in G/ be 

identified by specifying the pair (q, B(q)). 

To complete the construction of G/, the set of edges must be defined. This requires deter- 
mining the appropriate gap labels as the pursuer changes cells. Suppose the pursuer moves 
from qi G A to qj e Dj. For the simple case shown in the lower right of Figure 3.4, assume 
that the gap edge on the left initially has a label of "0" and the gap edge on the right has 
a label of "1". Let the first bit denote the leftmost gap edge label. The first transition is 
from "01" to "0", and the second transition is from "0" to "00". The directed edges in G/ 
are (g„"01") leads to (^,"0"), (%,"0") leads to (^-,"00"). 

In the case of multiple gap edges, correspondences must be determined to correctly compute 
the gap labels. Consider the example shown in Figure 3.6 which illustrates the general cases 
that can occur. A gap edge from V(qi) corresponds to a gap edge from V(q3) if they share a 
vertex, and neither touch the extension of their common cell boundary. This case is shown 
in the upper left of Figure 3.6. In this case the binary label with be preserved when traveling 
directly from qx to q2. The case is more interesting when gap edges touch the extension of 
the cell boundary, as in the lower portion of Figure 3.6. In general, all edges that touch the 
extension below the cell correspond to each other, and all edges that touch the extension 
above the cell separately correspond to each other. Transitions of this type essentially cause 
gap edges to be split or merged. There are two gap edges in the lower portion of Figure 
3.6 while the pursuer is at qx\ however, there is only one gap edge when the pursuer is at 
q2. In the transition from q\ to q2, if the gap edges at qx are labeled "0" and "0", then the 
corresponding gap from q2 will be labeled "0". If either gap edge at qi is labeled "1", then 
the gap edge label from q2 will be "1" (contamination spreads easily). In general, if any 
n gap edges are merged, the corresponding gap edges will receive a "1" label if any of the 
original gap edges contain a "1" label. 

Once the gap edge correspondences have been determined, the information state graph can 
be searched using Dijkstra's algorithm with an edge cost that corresponds to the distance 
traveled in the free space by the pursuer. Unfortunately, the precise complexity of the 
complete algorithm cannot be determined because it is still open whether the problem even 
lies in NP. In the worst-case, examples can be constructed that yield an exponential number 
of information states, but it is not clear whether these information states necessarily have 
to be represented and searched to determine a solution (or to verify a solution). 
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Figure 3.6: The correspondences between gap edges from different neighboring cells can be 
directly determined. The information states are updated when moving between cells by 

using this correspondence. 

3.4.3    Coordinating Multiple Pursuers 

In general, the conservative cell concept can be applied to yield a cell decomposition of 
Xp, which is the 2iV-dimensional space that encodes the positions of the pursuers; however, 
some of the cell boundaries are nonlinear algebraic manifolds. The nonlinear constraints 
significantly increase the implementation difficulty and add numerous cells which decreases 

practical efficiency. 

In Section 3.5 we show some examples that were computed by coordinating multiple pursuers. 
We have developed a decoupled planning approach (losing completeness), which is inspired by 
typical approaches to multiple robot planning problems [46]. Suppose a problem cannot be 
solved by a single pursuer. The first step is to have the pursuer clear as much area as possible 
and stop.  The fixed pursuer's visibility polygon partitions the free space into components 
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that can each by explored as a separate subproblem using the complete algorithm for a single 
pursuer. If each component can be solved by a single pursuer, then only two pursuers are 
needed in total (the same pursuer can be used for each component). In general, this type of 
search can be repeated recursively to coordinate more pursuers, until the problem is solved. 
In many cases, pursuers that are fixed during the clearing of one portion of the free space can 
eventually be moved to assist in another portion, further reducing the number of pursuers. 

3.5    Computed Examples 

3.5.1 Results from the Complete Algorithm 

The complete algorithm was implemented in C++ and executed on an SGI Indigo2 worksta- 
tion with a 200 Mhz MIPS R4400 processor. The computation times and other parameters 
for several examples are listed in Figure 3.7. The implementation uses the quad-edge struc- 
ture from [29] to maintain the topological ordering of the conservative cells. The searching 
strategy is essentially Dijkstra's shortest path algorithm, where the distance is measured 
from the adjacent cell centroids. The solution is computed by traversing from cell centroids 
to cell centroids, causing the computed path for the pursuer to be jagged in most cases. In 
some applications, it might be appropriate to employ smoothing algorithms to the path to 
respect additional problem constraints. 

Figures 3.8-3.12 show several computed examples. Due to a large number of conservative 
cells, Figures 3.10-3.12 are illustrated with the cell decompositions in separate diagrams 
from the solution diagrams. Figure 3.10 shows the hookpin example described in [68]. Note 
that the leftmost pin is recontaminated twice, and the pins are visited in the same order 
as mentioned in [68]. Figure 3.11 is an instance of the sequence described in Section 3.3 
that requires a linear number of recontaminations. The region near the top of the figure is 
recontaminated 3 times. The final example generated a large number of conservative cells, 
which significantly increased computation time. 

3.5.2 Results from the Greedy Algorithm 

The greedy algorithm was implemented in C++ by extending the complete algorithm, and 
was also executed on an SGI Indigo2 workstation with a 200 Mhz MIPS R4400 processor. 
Three computed examples are shown in Figures 3.13-3.15. The total computation times for 
these examples were 0.21, 1.54, and 4.12 seconds, respectively. Figure 3.13 corresponds to 
one of the corridor trees described in Section 3.3. The first pursuer waits at the junction while 
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Problem Edges Nodes in Gc 

(Cells) 
Nodes in G\ 
(Information) 

Precomp. 
Time (sec) 

Searching 
Time (sec) 

Total Time 

Fig. 3.8 28 25 200 0.04 0.02 0.06 

Fig. 3.9 68 130 1727 0.44 0.12 0.56 

Fig. 3.10 46 237 8787 0.53 1.59 2.12 

Fig. 3.11 65 246 18830 0.87 9.86 10.73 

Fig. 3.12 70 888 103049 3.00 _—  
168.63 171.63 

Figure 3.7: Various statistics are shown for the computed examples. 

the second pursuer clears the remaining two components. Figure 3.14 requires two pursuers 
and was solved by halting the first pursuer near the center hole (as shown in Figure 3.14.b) 
while the other pursuer cleared the remaining components.   Figure 3.15 represents a very 
challenging example, which was solved using only two pursuers. We have run other examples 

which required up to four observers. 

3.6    Discussion 

A visibility-based motion planning problem has been identified in this chapter that involves 
searching for an unpredictable target in a workspace that contains obstacles. Several bounds 
on the minimum number of needed pursuers were discussed. A general decomposition concept 
based on information conservative cells was introduced, which led to a efficient, complete 
algorithm for H{F) = 1 that has been implemented and tested. The algorithm was then 
augmented to coordinate multiple pursuers; this extension solves many problems, but does 

not generally yield the optimal number of pursuers. 

Several variations and extensions of the problem are worth exploring. In addition to a 
visibility region, each pursuer can have a region of capture, and the task can be to capture 
the evader using one or more pursuers. Using the current evader model, only connectivity 
issues become critical for determining a solution strategy; however, the problem can be made 
more challenging by strengthening the model to include a bounded velocity, or possibly 
stochastic prediction. The topological issues could become significantly more complex for 
3-D free spaces. Many vision systems have a limited field of view, and our problem can be 
adapted to planning strategies that sweep viewing angles in addition to moving the pursuers. 
Finally, a cost functional could be additionally defined, leading to problems such as finding 

the evader in minimum time. 
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Figure 3.8: A computed solution trajectory is shown in three frames. The black area repre- 
sents the contaminated region, and the white area represents the cleared region. The thick 
curve shows a portion of computed trajectory, which is continued in each frame. The shaded 
region indicates the visibility region at the final time step of the indicated portion of the 
trajectory. The thin lines in the cleared region indicate the cell boundaries. In the final 
snapshot, there is no place remaining where the evader could be hiding. 
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Figure 3.9: Another computed example. 
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Figure 3.10: This difficult example requires two recontaminations of the leftmost corridor. 
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f. 

Figure 3.11:  This example requires three recontaminations, and represents one in the se- 
quence that requires a linear number of recontaminations. 
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b. 

c. 

Figure 3.12: This bad example yields many edge-visibility cells. 
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c. d. 

Figure 3.13: This simply-connected free space requires two pursuers. The first pursuer stops 
at the junction. 
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Figure 3.14: This example requires two pursuers. 
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Figure 3.15: This complicated example was solved with only two pursuers. 
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Chapter 4 

Target Tracking 

This chapter presents our detailed progress on the problem of computing robot motion 
strategies that maintain visibility of a moving target in a cluttered workspace. A brief 
overview of this problem was given in Section 1.2.3. Both motion constraints (as considered 
in standard motion planning) and visibility constraints (as considered in visual tracking) 
must be satisfied. Additional criteria, such as the total distance traveled, can be optimized. 
The general problem is divided into two categories, on the basis of whether the target 
is predictable. For the predictable case, an algorithm that computes optimal, numerical 
solutions is presented. For the more challenging case of a partially-predictable target, two 
on-line algorithms are presented that each attempt to maintain future visibility with limited 
prediction. One strategy maximizes the probability that the target will remain in view in a 
subsequent time step, and the other maximizes the minimum time in which the target could 
escape the visibility region. We additionally discuss issues resulting from our implementation 
and experiments on a mobile robot system. 

4.1    Introduction 

Several applications require persistent monitoring of a moving target by a controllable vision 
system. In applications that involve automated processes that need to be monitored, such 
as in an assembly workcell, parts or subassemblies might need to be verified for accuracy 
or are determined to be in correct configurations. Visual monitoring tasks are also suitable 
for mobile robot applications [10]. In medical applications, one would like to move cameras 
around a surgery site to keep a designated area of interest (key tissue) in continuous sight, 
despite unpredictable motions of potentially obstructing people and instruments, and display 
a smooth sequence of images for the surgeon [48].   In a telepresence or virtual presence 
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application, a vision system can be used in a remote location to automatically track a variety 
of moving objects such as vehicles, people, or other robots. Visual information can also be 
used to track robots or robot features that appear in an image, and be directly integrated 

into a servo loop (e.g., [25, 35, 60]). 

A motion planning problem is considered in this chapter in which a robot carries a camera 
that must maintain visibility of a target. The primary distinction between the problem 
considered in this chapter and standard tracking problems is the introduction of global, 
geometric constraints on both visibility and robot configurations. The following conditions 
are assumed: 1) an observer must maintain visibility of a moving target; 2) the workspace 
contains static obstacles that prohibit certain configurations of both the observer and target; 
3) the workspace also contains static obstacles that occlude the target from the observer; 
4) a (possibly partial) motion model is known for the target. The first condition implies 
that target tracking is the primary interest, and visibility can be defined in a variety of 
ways, depending on the particular problem. The second condition introduces the geometric 
constraints that appear in the standard path planning problem [46]. The third condition 
complicates the tracking problem by prohibiting pairs of observer and target configurations 
at which the observer cannot "see" the target. In many cases an obstacle in the workspace 
will cause both motion and visibility constraints. The fourth condition provides predictive 
information that should be utilized when designing a strategy. For example, the entire 
trajectory of the target might be known, or alternatively, only a velocity bound might be 
known. In addition to the previous four conditions, it may also be important to optimize 
some criteria such as the total distance traveled, energy utilized by the observer, or the 

quality of the visual information. 

Section 4.2 provides a precise formulation of the problem in terms of configuration space 
concepts and system theory concepts. The computation methods presented in this chapter 
are divided into two sections on the basis of target predictability. Section 4.3 presents an 
off-line algorithm that determines optimal, numerical solutions for the case in which the 
target is completely predictable (i.e., the trajectory is known). The case in which the target 
is only partially-predictable is considerably more difficult, and is covered in Section 4.5. For 
this case, two different algorithms are presented that make on-line decisions that attempt 
to maintain future visibility. Both of these algorithms can be used in a real-time applica- 
tion using on-line information, and experimental results using two Nomad 200 robots are 

presented. Conclusions and discussion appear in Section 4.6. 
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4.2    Problem Formulation 

Suppose that an observer and a target exist in a bounded, Euclidean workspace that is 
cluttered with static obstacles. In general, the observer and target can be considered as rigid 
or articulated bodies, with standard configuration-space parameterizations [46]. Let C°jree 

and C\ree denote the free configuration spaces of the observer and target, respectively. Let 
A' = Cjree x Cjree represent the state space. A state simultaneously specifies configurations 
for the observer and target. 

Motion models will next be formulated for the observer and the target. Discrete-time rep- 
resentations will be used to facilitate the expressions when there is uncertainty in target 
prediction; however, continuous-time representations could alternatively be used. Let the 
index k refer to the stage or time step that occurs at time (k — 1)A£, for some fixed, At 
(which specifies the sampling rate). Let q£ and q£ denote specific configurations at stage k, 
for the observer and target, respectively. 

The observer will be controlled through actions, uk, chosen from some action space U. The 
discrete-time trajectory will be given by a transition equation of the form q°k+1 = f°(q°k, uk), 
which yields a new configuration of the observer for a given current configuration and action. 
Constraints that include nonholonomy and bounded velocity can be modeled using f°. 

The target will be described by a similar transition equation; however, the actions that 
control the target are generally unknown to the observer. Let qjj.+1 = /'(q£,0fc), in which 9k 

represents unknown actions, chosen from some space 0. One important special case, which 
is the subject of Section 4.3, is when the target is predictable. In this case the transition 
equation can be represented as qjj.+1 = /'(ql). 

Together, f° and /' define a state transition equation of the form xk+i = f(xk,uk,9k). 

Recall that each state, xk, represents a pair of configurations, q£ and qjj.. A binary relation 
on these configuration pairs can be defined that declares whether the target is visible to the 
observer. This visibility can be defined in a number of ways. For example, the observer may 
have a 360-degree field of view and the target may be a point in the workspace. In this case, 
the target can be defined to be visible if the line-of-sight to the observer is unobstructed. In 
other examples, the field of view may be limited to some fixed cone, have a limited distance 
range, or the target may be polygonal and must be at least partially in view. Let X0 C X 
represent the visibility subspace, which corresponds to the set of all states for which the 
visibility relation holds. 

Next consider evaluating a state trajectory. Abstractly, the goal is to control the observer 
to ensure that the state remains in X0.   The loss or cost of applying control inputs and 
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Figure 4.1:  The goal is to maintain visibility of a moving target that may or may not be 

predictable. 

obtaining a certain state trajectory can be generally expressed as 

K 

L(xu ..., XA-+I, ui,..., uK) = ]C '*(x*>Uk) + LK+\{^K+I)-, (4.1) 

in which K represents the final time increment for issuing a action and lk(xk,uk) is a loss 
that accumulates in a single time step1. The final state, xK+1 can also be penalized, using 

LK+I- 

A simple, useful form of lk is 

h{xk,uk) 

{ 0    If xk G X0 

1    Otherwise 

(4.2) 

This loss functional measures the amount of time that the target is not visible. One could 
also include a cost for choosing actions that produce motion. This would allow the robot 
motions to be optimized in addition to the time that the target is in view, and is considered 

in Section 4.3. 

The loss functional evaluates a given trajectory. In the case of perfect target predictability, 
the trajectory can be inferred once the actions, {uu...,uK} are specified to control the 
observer. In the case of a partially-predictable target, the loss functional is used to evaluate 
a state-feedback strategy using expected-case or worst-case analysis. These concepts are 

deferred until Section 4.5. 

!An infinite number of stages could also be considered with discounted or average loss-per-stage. 
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4.3    Predictable Targets 

In this section the assumption is made that qj; is known for all k € {1,..., K + 1}. In this 
case, the state transition equation reduces to Xk+i = f(xk,Uk), which implies that the state 
trajectory, {x2, • • •, ^A'+I} is known once Xi and inputs {ui,..., UK} are given. 

For a problem that does not involve optimizing the robot trajectory, motions for the observer 
could be determined by recursively computing visibility and accessibility sets from stage K-\-l 
down to stage 1. Suppose the target and observer are both points. Let 14 denote the subset 
of the free space from which the target is visible. Let A^ denote the set of all locations from 
which the observer could move at stage Ar — 1 and lie in 14 at stage k. At any given stage, 
the observer must lie in 14 H Ak. A feasible trajectory for the observer can be obtained by 
backchaining from the final stage, guaranteeing accessibility and visibility in each step, until 
a set of possible initial states is obtained. 

In the remainder of this section, a method that employs the dynamic programming principle 
to minimize a specific loss functional of the form (4.1) is presented. Although the approach 
shares some similarities with Dijkstra's algorithm on graphs, the principle is applied in the 
present context over a continuous state space and over discrete time. Its use follows directly 
from the differential equations that express the dynamic programming principle in standard 
optimal control [45, 47]. 

4.3.1    Computational Approach 

The computational approach can be organized into four basic steps: 

1. Construct a discretized representation of C°jree x K, in which K = {1,...,A' + 1}. 

2. For each Ar, mark all discretized values of q£ from which the target (at known configu- 
ration q£) is visible. 

3. Within X0 for each stage from K + l to 1 perform dynamic programming computations 
with interpolation. 

4. Extract the optimal sequence, {uj,..., u^}, using cost-to-go representations. 

Step 1: Because the target is predictable and parameterized through the stage index A;, the 
subspace corresponding to Cjree only needs to be considered as opposed to the entire state 
space. The stage index is included because the problem is time-varying. This is similar to the 
use of configuration-time space representations for motion planning among known moving 

67 



obstacles [40, 46]. An array representation of the spaces is constructed, which ultimately 
limits the current approach to observers that have only a few degrees of freedom. In [41], 
it is shown that the Fast Fourier Transform can be used to efficiently obtain a C-space 

representation from the static obstacles and robot geometry. 

Step 2: Since the primary task is to maintain visibility of the target, the acceptable observer 
locations are marked. Using omnidirectional visibility, this can be accomplished efficiently by 
performing scan conversion of a computed visibility polygon that emanates from the target. 
Using a standard sweep algorithm [58], the visibility polygon can be computed in O(nlgn) 
time. If a loss functional is defined that evaluates individual viewpoints then one would 
precompute real-valued costs, as opposed to binary flags. For example, one might indicate 
a preference for a certain distance between the target and observer that is reflected in the 

real-valued costs. 

Step 3: The dynamic programming computations are the most significant portion of the 
computation. For each stage k a cost-to-go function, L*k : X -> Ä, is computed using the 
cost-to-go function of stage k + 1. The cost-to-go function represents the loss or cost that 
will be ultimately accumulated by starting from configuration q£ and choosing the optimal 
action at each stage. Due to the dependencies between the cost-to-go functions, L*K+1 is 
computed initially, and a cost-to-go function is computed for each prior stage until L\ is 
finished. Although the domain of the cost-to-go function is X, computations only need to 
be performed on C°free because the target configuration is fixed for each stage. 

The dynamic programming principle defines the relationship between the cost-to-go func- 

tions: 
L'Jxk) = min{lk{xk,uk) + L*k(xk+i)} , (4-3) 

in which lk is defined in the loss functional (4.1), and xk+i is obtained for each choice of 
uk through the state transition equation, xk+i = f{xk,uk). The difference equation (4.3) 
defines a very local relationship between successive cost-to-go functions, yet the principle of 

optimality ensures that a globally optimal strategy will result. 

One difficulty results from using discretized representations of the continuous dynamic pro- 
gramming principle. The next state, xk+i, will usually not lie exactly at a discretized value. 
Rather than simply looking up Lkl at the nearest quantized value, the value of Lk+i can be 
computed through linear interpolation of the cost-to-go values between all neighbors of x*+1. 
This technique has been used previously in numerical dynamic programming computations; 

related issues are discussed in [45]. 

Step 4: Suppose the cost-to-go functions have been computed. If the qj is fixed, then u* 
can be obtained by using (4.3) for the given initial state, xx. If qj is free, then an optimal 
initial configuration can be obtained by selecting the configuration qj minimizes L\. Once 
u\ has been determined, the next state x2 = /(si,«i) can be inferred. Equation (4.3) can 
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be used again to determine u*2. This process iterates until the final, optimal action u*K is 

obtained. 

The time complexity of the method is linear in the number of actions and in the number 
of stages, but is exponential in the dimension of the observer configuration space. On 
a SPARC 20 workstation the dynamic programming computation time varies from about 
twenty seconds to several minutes, depending on the difficulty of the example and the chosen 

resolutions. 

4.3.2    Computed Examples 

The optimal strategies were computed for several strategies, and the resulting observer tra- 
jectories were simulated. Some of these results are shown in this section to demonstrate the 
method and to illustrate the global aspects of this motion planning problem. In all of the 
examples, the workspace is 2-D with dimensions 100 units by 100 units. All obstacles ob- 
struct both visibility and motion. The target moves at its maximum speed of 3 units/stage. 
The observer is controlled through the simple holonomic model: 

q*+i = q* + «fcA< 
cos(u\) 
sin(ul) 

(4.4) 

in which u\ > 0 represents the speed of the observer, and u\ <E [0, 2TT) represents the direction 

of motion. No dynamics are considered in this model. 

Figure 4.2 shows a simulation of a trajectory that is obtained from the computed optimal 
strategy. The actions u\ = 0 (no motion) and u\ = 3 and u\ € [0,2TT) (motion at a fixed 
speed in some direction) were allowed. The loss functional is of the form h(xk, Uk) = lm + L- 
The term lm is a penalty for motion, and lm = 0 if u\ = 0, otherwise lm = 1. The term /„ 
is a penalty for losing visibility, which is much more important, yielding /„ = 500. There 
are 105 stages for this problem, and the dynamic programming computations took about 
20 seconds on a SPARC 20 workstation. Note that although the target trajectory is quite 
long, the distance traveled by the observer is short. An initial position for the observer 
was automatically selected from which the target was visible during the first portion of the 
trajectory. The observer moves just barely far enough to the lower left, and then finishes by 
remaining in the lower right for the final segment of the target trajectory. 

The example in Figure 4.3 involves the same geometry; however, the loss functional is slightly 
changed to yield /„ = 0 only if the target is both visible and the distance between the target 
and observer lies within 10 and 25 units. Also, the speed, u\, is allowed to vary between 0 
and 3, with a loss, Zm, that proportional to the speed. In this case, the observer must travel a 
greater total distance, yet an optimized trajectory that maintains visibility is still obtained. 
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Figure 4.2: A simulation is shown of the optimal state trajectory for a tracking problem. The 
observer strategy, including the initial position, is chosen to maintain visibility and minimize 
the total distance traveled. The target positions are shown as black circles, and the target 
trajectory starts in the upper left. The observer positions are shown with white circles. The 
line-of-sight is shown between the observer and target at each stage. 

Figure 4.4 shows another example that requires the distance between the target and observer 
to remain within 10 and 25 units. The intial position of the observer is initially specified for 

this problem, and both the observer and target start in the upper right. 

Figure 4.5 shows an example in which the maximum observer speed is 1.5, and the target 
speed is 3.0. There are many visual obstructions, and the observer is able to maintain 
visibility of the target in all but two stages. During this period, the observer moves quickly 

to the right to reacquire the target. 

Finally, Figure 4.6 shows an example that illustrates how the optimized observer trajectory 
can be lengthened due to the visibility constraint. In the example, the target sharply turns 
into a corridor, and the observer is forced to swing out further into the open area to maintain 

visibility. 

4.4    Nearly-Predictably Targets 

Consider a problem in which there are a finite number of goal regions in the environment 
that the target periodically visits. Assume that once a goal has been assigned, the target 
trajectory will be completely predictable. The uncertainty, however, comes about because 
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Figure 4.3: This example differs from the previous one by additionally requiring that the 
observer remains within a specified distance range from the target. 

the observers do not know which goal has been assigned. In this case, the observer knows 
that the target will traverse one of a finite collection of paths, and attempts to maintain 
visibility under all possible choices. For this problem we have designed and implemented an 
algorithm that moves multiple observers to maintain visibility of the target. Each observer 
can vary its motions during execution in response to the actual target trajectory. 

The target is restricted to move along a predefined network of paths, but its decision at 
each node of this network is unpredictable. We have developed a planner which generates 
optimal motion strategy for solutions which require a single observer. The planner is based 
on dynamic programming approach by backchaining solutions from all possible target goal 
configurations to its initial configuration. 

First, the planner divides the workspace into a grid and computes the set of visible grid 
positions to the target at each point along the path. Next, the planner recursively computes 
a set of grid positions for the observers to maintain visibility with the target from its current 
position to all possible final configurations. This set of grid positions is called the trackable 
set. The trackable set is computed by backward chaining from the final target position's 
trackable set. The trackable set of the target's final configuration is the visible set. At each 
time unit, the trackable set is enlarged to account for the observer's maximal movement 
speed. The trackable set from a previous time step is computed by finding the intersection 
of target's visible set and the enlarged trackable set at the next discretized step. At the 
merging of the paths, the trackable set is just the intersection of all enlarged trackable sets 
from the next time step with the current visible set. 
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Figure 4.4: This example shows an optimized observer trajectory that maintains a specified 

distance range, and the initial observer position is fixed. 

This planner will find a motion strategy for one observer if a solution exists. The planner 
is resolution complete for problems that require only one observer. However, for problems 
requiring more than one observer, the planner uses greedy heuristics to make local decisions 
which may turn out to be suboptimal in the total number of observers used. 

4.5    Partially-Predictable Targets 

The problem in Section 4.3 allowed restricting the state space to the observer configuration 
space because of target predictability. In this section it is assumed that only weak informa- 
tion, such as a velocity bound, is known regarding the target. In principle, a dynamic pro- 
gramming approach can be taken to determine optimal strategies for the partially-predictable 
case; however, even for a simple planar problem the state space is four-dimensional. This 
increased complexity motivates the consideration of alternative approaches which can pro- 
vide reasonable behavior by making a tradeoff between computational cost and the quality 
of the solution. Experiments with an on-line algorithm that is presented in this section were 
performed using a mobile robot system that is described in [6]. 
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Figure 4.5: In this example, the target can moves at twice the maximum speed of the 
observer. In the optimal trajectory of the observer, there are only two stages in which the 

target is not visible. 

4.5.1    Optimal Strategies 

The notions of a strategy and of optimality become more interesting if there is uncertainty 
in target prediction. Recall that 6k € 0 refers to an unknown action that can be applied 
to move the target using q*fc+1 = /'(<!* A)- Two alternative interpretations of the unknown 
actions are possible. If the unknown actions are modeled as nondeterministic uncertainty 
(as referred to in [23, 47]), then it is only assumed that 0k G 0 for some specified 0. In this 
case, one would design a strategy that performs the best given the worst-case choices for 
6k. Alternatively, a probabilistic uncertainty model can be used, in which it is additionally 
assumed that p(0k) is given, in which p(-) denotes a probability density function. In this 
case, one could design a strategy that minimizes the loss in the expected sense. 

Because the state trajectory cannot be predicted, a state-feedback strategy is designed, as 
opposed to directly specifying the actions (the actions must respond to on-line changes). 
This represents a standard notion used in optimal control, and used been applied to motion 
planning problems that involve other forms of prediction uncertainty in [47]. Let 7* : X ->• U 
denote a strategy at stage k. Let 7 = {71,72, • • • ,1K} denote a strategy. Let T denote the 

space of possible strategies for the robot. 

For the case of nondeterministic uncertainty, a strategy, 7* € T, can be selected that yields 

the smallest worst-case loss: 

l(xi,7*) = inf L(zi,7) = inf sup L(xi,7,7S) 
7er 7€r7eere 

(4.5) 
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Figure 4.6: This example shows how the observer must swing outward, ultimately following 
a longer path, to maintain visibility of the target. The initial observer position was fixed. 

for all Xl e X, and 7
e represents a choice of 0k for every stage. This indicates that from any 

initial state, the strategy will guarantee the least possible loss given the worst-case actions 
of nature. This concept has been used previously to design controllers based on worst-case 

analysis [1]. 

With probabilistic uncertainty, a strategy, 7* 6 I\ can be chosen that minimizes the expected 

loss: r , . ~\ 
L(xuY) = influx,7) = inf / L(xul,6)p(e)d9 (4.6) 

for all xx e X. This corresponds to selecting a strategy that minimizes the loss in the 
expected sense, as considered in stochastic optimal control theory [7, 44]. 

These expressions capture the general design problem; however, for most practical problems, 
it may be preferable to consider approximate or simplified strategies. Sections 4.5.2 and 
4.5.3 describe two on-line approaches that attempt to optimize local criteria that are related 

to the global task. 

4.5.2    Maximizing the Probability of Future Visibility 

For a given current state, xfc, this approach selects an action uk that will maximize the 
probability that the target will remain in view at stage k + 1. This approach can be viewed 
as a tradeoff that involves limited consideration of future states. An action could alternatively 
be chosen that maximizes the probability that the target will remain visible over the next 
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m states; however, the computational cost could increase dramatically. 

A probabilistic uncertainty model is used for target prediction. Hence, it is assumed that 
p(0) is given, from which a density p(qi+i\xk) can be obtained using the motion model for 
the target. Formally, uk G U is selected to maximize 

P[4+i £ V(q°k+1)} = I   p{xk+l\xk,uk), (4.7) 

in which V(q°) represents the set of target configurations at which the the target is visible 
to the observer at configuration q°. This defines a state-feedback strategy i(xk) = uk. 

Assume that both the observer and the target travel in a planar workspace, and that (4.4) 
represents the observer motion model. The observer has an additional degree of freedom 
that corresponds to the direction that a mounted camera is aimed. Assume that little 
is known about the target other than its maximum speed, ||u'||, and that p(q[+l\xk) is 
a disk of uniform probability density with radius ||u'||, centered at q{. Zero probability 
mass is obtained, however, in regions within the disk that correspond to configuration-space 
obstacles. The causes geometric information to be utilized. 

Because the approach involves a significant tradeoff from optimality, experimental studies 
were performed to assess its utility. We have performed numerous experiments using two 
Nomad 200 mobile robots, one of which is equipped with a vision system (see Figure 4.7). 
A visibility region V(q°) is defined as a cone with apex at the observer and truncated at a 
minimum and maximum distance. 

The planner is integrated into a larger system composed of several modules engaged in 
landmark-based localization, motion and camera control, and image feature tracking. The 
current implementation of the system consists of eight modules: a visual target tracker, a 
landmark detector, the motion planner, a graphic interface, a calibration module, the control 
module, and a low-level control driver. The visual target tracker consists of a simple detec- 
tion algorithm that identifies a pattern placed on top of the robot serving as the target, and 
reports new relative locations of the target every 0.3 sees. The landmark detector samples 
the ceiling every second and reports relative positions, orientation, and identification of any 
landmark within the visual range of the camera. The motion planner receives information 
concerning the target and observer configuration in order to compute the observer new po- 
sition. The control module receives information from the robot encoders, the target tracker, 
and the landmark detector to estimate the configuration of the whole system and guides 
the robot to the positions specified by the planner. The calibration modules computes the 
physical configuration of the cameras onboard the observer. Finally, the graphic interface 
allows the user to interactively supervise and control the experiment. 

We have also studied the observer behavior in a variety of simulated environments. A 
sequence of frames from one such simulation is shown in Figure 4.8. 
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Figure 4.7: Two Nomad 200 robots are used for the experiments. One is equipped with a 

camera that is mounted on a rotary base. 

Performance can generally be improved by incorporating additional information into the 
prediction. For example, the current heading of the target can be utilized to provide more 
realistic expressions of p(qi+1|*fc)- A dynamic model of the target could be utilized to 

improve prediction for on-line strategies. 

For nonreactive targets the motion prediction problem is completely independent from the 
motion planning one. The target future position distribution may be computed numerically 
and in some cases analytically. We have studied both approaches for the case of a Cartesian 
target, in which independent actuators drive the target along different orthogonal motions. 
We assume that the target decides a new acceleration action every time r, which wil be 
the target's sampling rate (not to be confused with A«, the planner's scope) The values 
of acceleration will be selected from a set A, which is the acceleration possibility set. We 
presuppose that the acceleration values at each step are i.i.d. random variables. 

Typically the planner scope At is larger than the target sampling rate r, hence we are inter- 
ested in predicting the probable target locations after n = At/r steps given a measurement 
of the target configuration at stage k. The prediction is then used to compute the observer 
location that maximizes the probability of observation at stage k + 1. If n is small and A is 
a finite and countable set then the distribution may be computed numerically by evaluating 
the possible sequences of actions, computing the resultant final configurations, and storing 

the associated probabilities in a data structure. 

If the size of A is m (the number of alternatives) then after n steps there are m" possible 
target configurations, so the search space is exponential. However, the discretized equations 
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Figure 4.8: A sample execution is shown of the on-line planner. The black disk is the 

observer. 

of motion can be formulated in such way that most of the operations can be precomputed. 
Execution can also be improved by detecting equivalent sequences of actions in order to 

transform the search tree into a lattice. 

For n large enough (> 30) the resultant distribution can be proved to be Gaussian. If 
the possible accelerations are i.i.d. with mean \i and variance a2, then the location of the 
cartesian target after n steps given an initial position and velocity x0 and v0 is described 
by xn = x0 + rirvo + Sv + Sa, with Sv being a Gaussian distribution of mean ^At(At - r)fi 
and variance |A<T(A< - r)(2A< - r)cr2, and Sa a Gaussian with mean \MT^ and variance 
-Atr3cr2. Currently our efforts concerning target modeling are aimed toward the study of 
the effect of how obstacles distort the probability distribution of the target motions under 

this model. 

4.5.3    Maximizing the Minimum Time to Escape 

This section describes an alternative on-line approach that uses nondeterministic uncertainty 
and worst-case analysis as opposed to probabilistic analysis. Assume that the target has a 
maximum speed, ||v*||. Let d(xk), denote the distance from q' to the nearest boundary of 
V(q°). The minimum time to escape, tesc, represents the smallest interval of time within 
which the target could escape if the observer remains at q°. Clearly, tesc < ||u*||d(xfe). 

Assume that V(q°) is a truncated cone, as in Section 4.5.2. The on-line strategy is to select 
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an action uk = lk{xk) that maximizes tesc. This corresponds to preparing for the worst- 
case motions of the target. Typically, At « teac, which implies that the strategy effectively 
considers target actions that are several stages into the future. This strategy appears to 
be an improvement over maximizing the probability of future visibility; however, it is still 
not a globally optimal solution. We are currently in the process of experimenting with this 

strategy to evaluate its performance. 

4.6    Discussion 

A research problem that involves maintaining visibility of a moving target has been identi- 
fied and formally characterized. Workspace geometry introduces standard motion planning 
difficulties into the visual tracking problem. For the case of predictable targets, an algo- 
rithm was presented that provides numerical, optimal solutions for problems that have a 
low-dimensional observer configuration space. For the case of partially-predictable targets, 
optimal strategies were characterized, and two on-line strategies were presented. The strat- 
egy that maximizes the probability of future visibility has been tested in experimentation 
and simulation, and the strategy that maximizes the minimum time to escape is currently 

being evaluated. 

Several interesting extensions and variations can be considered in future investigations. In 
future investigations it may become useful to consider approximation algorithms that can 
provide a solution that is within some bound of optimal. For example, one could randomly 
select and connect points in the freespace for high-dimensional problems with the possibility 
of stating performance bounds probabilistically, as in [5]. Many interesting possibilities exist 
for coordinating multiple observers and/or multiple targets. For example, several observers 
may be able to track a faster-moving target by making decisions to "cover" disparate regions 
of the cluttered environment. Another issue that could be addressed is imperfect information 
regarding the current configuration of the target. In practice, the target information is 
derived from image data, which loses information due to projections, noise, and quantization. 
It has been assumed in this chapter that the target motions do not depend on observer 
configurations. One could alternatively consider a reactive target that attempts to avoid 
being observed. Finally, the intentions of the target could be speculated (probabilistically) 
by the observer. For example, the target might make deliveries to one of several locations 
periodically. The observer can infer the route once the intention is known (or narrowed to 
few possibilities), and a significantly improved strategy can be computed. 
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Chapter 5 

Implementation of an Autonomous 
Observer Prototype 

5.1    Introduction 

This chapter describes the implementation of an autonomous observer prototype. Our goal 
was to develop a system that provides a human user with intuitive, high-level control over 
a mobile robot which autonomously plans and executes motions to visually track a moving 
target (see Figure 5.1.a). The user receives real-time feedback, such as a graphical display 
of the positions of the observer and target overlaid on a map of the environment. 

The system implementation brings together concepts and algorithms from computer vision, 
motion planning, and computer graphics in order to create a robust, useful, and integrated 
system. One important aspect of the system is that vision, often viewed merely as a mech- 
anism for aiding robot navigation, itself becomes the central objective of the system. 

The chapter is organized as follows. In Section 5.2 we present the overall design of the system 
and the roles of its different components. In Section 5.3 we describe an implementation of 
each component of the autonomous observer prototype. In Section 5.4 we describe the 
system's central module (main system controller). In Section 5.5 we describe our initial 
experiments with the autonomous observer. Finally, in Section 5.6 we draw conclusions 
from our experiments and discuss possible directions for new implementations. 
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Figure 5.1: (a) Interaction between a user and the intelligent observer; (b) The components 

of the 10 system. 

5.2    Overall Design 

The complete system consists of five major modules: landmark detection, target tracking, 
motion planning, user interface, and motion control. The relationships between these mod- 
ules and the actual robot are shown in Figure 5.1-b. Each module is briefly described below. 

5.2.1    Landmark Detection 

As the observer moves around in its environment it must keep track of its current position. 
Our approach to this problem involves placing artificial landmarks throughout the environ- 
ment. Many researchers have studied the use of landmarks in robot navigation (for examples 
see [34, 43, 49, 51]). Landmark detection is explained in detail in Appendix B. 

In our system, the positions of the landmarks are provided as part of a map given to the 
observer Each landmark induces a landmark region, within which the landmark is visible 
to the robot The robot localizes itself by visually detecting landmarks and determining its 
position relative to them. Since the success of the robot depends on this self-localization, 
the vision algorithms used to detect the landmarks must be fast, accurate, and robust. 
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5.2.2    Pattern-tracking in an Image Sequence 

The central task of the autonomous observer is to observe moving objects (or targets). There 
are two main requirements: first, that the observer recognizes when a new target enters its 
field of view; and second, that the observer is capable of tracking the desired target as it 
moves. Since the robot must respond to the movement of objects, all tracking must happen 
in real time. In general, target motions may be almost totally unconstrained, and the targets 
themselves may be non-rigid and of unknown shape. In order to handle such targets, we can 
apply real-time versions of tracking algorithms such as those described in [37]. Currently, 
however, we use a simplified approach as detailed in Section 5.3. Pattern-tracking in image 
sequences is developed at greater length in Appendix C. 

5.2.3    Motion Planning 

The autonomous observer goal is to keep in view a moving target. Since the target motion 
is not known in advance, we must employ an on-line algorithm to perform tracking. In order 
to maintain a view of the target we must avoid occlusions due to obstacles and, as in the 
traditional motion planning, we must also avoid collisions with them. Any given obstacle 
may obstruct the robot's view, or its motion, or both. 

The implemented tacking algorithm is an on-line scheme based in maximizing the probability 
of future visibility. This approach is one of the on-line schemes proposed and described in 
detail in Chapter 4.5.2. 

5.2.4    User Interface 

One simple way of providing feedback to the user is to display live video from the robot's 
camera. There are, however, several drawbacks to this approach. First, it makes no use of the 
higher-level representation kept by the autonomous observer. Second, it limits the viewpoint 
to that of the robot's camera. Third, we would like to avoid "information overload" in cases 
where there are multiple cameras and/or observers. Finally, full-motion video requires high 
transmission bandwidth; this problem is especially important when the user is far away from 
the observer. 

Instead, the user is presented with a synthetic reconstruction of the environment in which 
the observer is operating. This reconstruction can be either a two-dimensional overhead 
view or a three-dimensional view from an arbitrary vantage point. This module relies on an 
appropriate geometric model of the environment as well as information about the positions 
of the observer and the target. 
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Assuming that the environment is largely static, only a small amount of new information is 
required to update a scene, alleviating the bandwidth problem. This also allows us to fuse 

input from multiple cameras into a single, unified view. 

5.2.5    Motion Controller 

The motion controller takes the role of the top-level supervisor in the autonomous observer 
system (see Figure 5.Lb). It coordinates communication with the other components and 
produces appropriate low-level commands to control the physical robot. In addition, it 
periodically updates the current estimate of the robot's position based on feedback from the 
landmark detector and the odometric information from the robot. When appropriate, it also 
requests a new goal point from the motion planner. Finally, is sends updated information 

to the user interface. 

The whole system is composed of a number of different processes, each of which has its 
own characteristic cycle time. Because of this, the motion controller must communicate 
asynchronously with the other processes, using new information as it becomes available. 
The exception is communication with the path planner, which follows a transaction-based 
model: the controller requests new a goal once it has achieved the previous one. The Motion 

Controller is presented in detail later in this chapter. 

5.3    Implementation 

Each component has been implemented as a separate Unix process. The communication 
between processes uses standard TCP/IP protocols, making it possible to run them on 
different machines to increase performance. In fact, during our experiments we ran the 
landmark detector, the target and the motion controller on a Pentium 90 computer on-board 
the robot. The motion planner runs on a Sun SPARCstation 20, while the user interface can 
runs on a number of different machines. The implementation of each process is detailed 

below. 

5.3.1    Landmark Detection 

As discussed earlier, we rely on artifical landmarks to localize the robot. Our landmarks, 
shown in Figure 5.7.a, are placed on the ceiling at known positions throughout the robot s 
workspace. Each landmark consists of a black square with a 4 x 4 pattern of smaller squares 
inside of it. The detection algorithm first identifies edge pixels in the image (using a variant 
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of the algorithm presented in [15]), and then looks for edge chains that are consistent with the 
boundary of a square. When such a chain is found, the corners are detected and then lines are 
fitted to the pixels which make up each edge. The slopes of these lines yield the orientation 
of the landmark; their intersection points locate the landmark's corners. Once the landmark 
is localized, the positions of the inner squares are computed and their intensities are read 
from the image using bilinear interpolation. These intensities are grouped into "black" and 
"white" subgroups to determine the 16 binary values they represent. Four of these values 
are used to disambiguate the landmark's orientation, and the others encode the landmark's 
unique ID. 

The landmark detector uses 256 x 243 grayscale images as input. The robot does not need 
to relocalize at a high frequency rate -it is enough to correct every few seconds or so. In 
order to save computational resources on-board the robot, landmark localization is done at 
a rate of 0.2 seconds. The algorithm is very accurate: the translational error has zero mean 
and a standard deviation of 0.75 inches, while the rotational error has also zero mean and 
has a standard deviation of 0.5 degrees. 

5.3.2    Target tracking 

This component is used by the observer to detect and track a moving target. Currently the 
target consists of a number of black, vertical bars on a white cylindrical "hat" which sits 
on top of the target robot (see Figure 5.7.c). The tracking algorithm detects these bars in 
each image and, given the camera parameters and the physical size of the bars, computes 
the target's location relative to the camera. 

The tracking system operates at approximately 5 frames per second using 256 x 243 grayscale 
images as input. For each frame, it determines the angle 6 and distance r to the center of 
the target. Typically the target can be detected at distances ranging from 2 feet to 9 feet 
from the camera. Experimentation shows that 9 is accurate to within ±1 degree, and r 
is accurate to within ±4 inches. However, changes in the image size of just one pixel can 
lead to changes of almost an inch when the target is far away. This noise may constitute a 
problem when the enire system executes, so some noise filtering is appropiate. 

5.3.3    Motion planning 

Our implemented solution to the on-line view planning problem is deliberately simple so 
that planning time is reasonable. The planner is given a polygonal map of the workspace, as 
well as bounds VR and vj on the maximum velocities of the observer and target, respectively. 
These velocities are given in terms of distance per planning cycle. 
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The workspace is represented by a 117 x 59 grid, with a resolution of about 6 inches per unit. 
Obstacles are represented by polygons. Many of the steps required to compute a motion plan 
are precomputed when this module is first invoked. Planning time takes less than 1 msec in 
a Sun SPARCstation 20, with about 66 seconds of precomputation. 

5.3.4 User interface 

In our initial system we have adopted a simple, two-dimensional user interface as shown in 
Figure 5.7.b. Physical obstacles are shown in black and configuration space obstacles are 
dark gray. The positions of the observer (R) and target (T) are updated in real time. In 

addition, the visibility region of the observer is shown in light gray. 

The entire system can be executed from the World Wide Web.   For detail go to the au- 

tonomous observer status page: 
http://robotics.Stanford.EDU/users/io 
and the execution page: 
http: //robot ics. Stanford. EDU/~dlin. 

5.3.5 Motion control 

As mentioned before, this module not only controls the motion of the robot, but it also 
coordinates communication between all of the other modules. In a sense it is the top-level 
supervisory process for the whole system. It also attempts to compensate the lack of an 
omnidirectional camera for target tracking by controlling the turret rotation so as to keep 
the observer's camera pointed toward the pattern on the target. 

The motion controller is explained in detail in the next section. 

5.4    Motion Controller 

The motion controller is the central module in the target tracking subsystem of the au- 
tonomous observer. It serves as the communication hub of the other modules and generates 
velocity commands to move the robot according to the goals specified by the planner. As 
shown in Figure 5.2, the controller connects as a client to the vision and motion planning 

modules, while acting as a server for the remote user interface. 

The networking role played by the motion controller is incidental to one of its key purposes, 
which is the fusion of the information generated by the distinct programs into a consistent 
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estimation of the system state. The motion controller computes and updates estimates of 
the observer and target positions with the information ensuing from landmark observations, 
odometry, and observations of the target. State information is sent to the motion planner 
(which requires it to compute new goal configurations for the observer), and to any external 
client which may be connected to the system. Since of all system modules the motion 
controller is the one which integrates all the information into a consistent view of the state, 
it is also natural that this module acts as the external communication interface to any 
possible clients (such as the graphical interface program). 

The second principal task of the main controller is to constantly issue velocity commands to 
the three robot actuators (translation, steering, and turret rotation), in order to move the 
robot smoothly according to the evolution of the system state and the goals generated by 
the motion planner. Translation and steering are actuated in order to satisfy the goals given 
by the planner, while the turret is controlled so as to keep the camera oriented to the target 
by using the readings from the visual tracking module as feedback. 

The main challenge in designing the control laws for the actuator motions is the presence of 
communication delays between the system components. Due to the asynchronous nature of 
networking, these delays are not periodic, a characteristic which complicates feedback design. 

In this appendix we present the formulation of the kinematic and target error models, which 
leads to the design of a set of control laws that can be easily tuned based on knowledge of the 
system architecture, thus making "trial and error" adjustments unnecessary or minimum. 
This characteristic is very useful in a modular system, where each part may be enhanced 

independently of the rest. 

5.4.1    Description of the Kinematic and Target Error Models 

The kinematic and target error models are key elements of a good tracking system. The 
kinematic model allows us to efficiently operate the robot with velocity commands taking 
into consideration delays in the network, information from landmarks and encoders, and 
the kinematic limitations of the robot. The target error model is useful to reconstruct the 
position of the target given the information provided by the vision module; information 
which, due to the inherent complexity of any vision system, is already outdated when a 

frame processing is completed. 

The kinematic error model is relevant to the controller, while the target error model is 
relevant to the controller and to any other module which uses the target position in its 
calculations (such as the case of the planner module). Hopefully the models described here 
will prove useful in other implementations of the 10 besides our own, especially the kinematic 
model, which might lead to the design of more efficient control laws. 
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Figure 5.2: Architecture of the Target-Tracking System 

The Kinematic Model 

Communication between modules is asynchronous, and there is no guaranteed bandwidth 
for any specific socket in the system. The time lag found in the system's closed loop is in 
general not constant, as it depends on the network load. Since the communication between 
modules is asynchronous, communication delays cannot be neglected. Figure 5.3 shows a 
reasonable model of how the sequence of commands and state information requests is carried 

out. 

The robot itself has a low-level motion control program running in a DMC-630 board. The 
DMC-630 sets the robot's axis positions and/or speeds with a set of speeds and/or acceler- 
ations specified by the user. That is, if a translation command X is issued with a specified 
speed Ve and acceleration Ac, the DMC will try generate a velocity profile like the one shown 
in Figure 5.4a, where the area under the curve is the desired translation X. Similarity, if a 
desired velocity command Vcm is issued, the DMC will try to generate a profile similar to 

the one shown in Figure 5.4b. 

In our system the motion of the robot is done by issuing velocity commands. The main 
advantages of this approach are smooth motions and the fact that motion is regulated ac- 
cording to our best estimate of the state. By having motion based on velocity commands 
the DMC acts as a slave servo, and the commands are calculated in the controller module 
using our current estimate of the state given all of our sources of information. On the other 
hand, motion based on position commands depends on the DMC generating a profile like 
the one shown in Figure 5.4a, which is executed based exclusively on odometric information 
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Figure 5.3: Sequence of commands and state information requests. 

from the encoders. In this later case we have a single control loop instead of the master-slave 
configuration of the velocity command approach. The master-slave configuration enables us 
to compenaste for delays in communication, and to use better estimates of the state than 
what is possible by exclusively relying on the encoders. 

Figure 5.5a shows an ideal velocity profile executed by the robot under different velocity 
commands with the same specified acceleration Ac. Since the DMC cannot entirely eliminate 
the robot's dynamics, the real profile looks more like the one shown in Figure 5.5b. For our 
purposes, however, it is sufficient to assume that the profile approximates the ideal case. 

The base of the kinematic model is the following: Assume an initial velocity and position 
X0 and V0, and an velocity command Vcm- Then, for 0 < t < T, with T = {Vcm - V0)/Ac, 

X = X0 + V0t + 
A£ 

and for the case t > T, 

X — X0 + Vcmt ~~ 
(Vcm ~ Vo) 

2/L 

Referring to Figure 5.3, given position Xk, speed 14, the prevously (and delayed) velocity 
command Vg\, the next position for 0 < tk < T with T = (Vg!\ - Vk)/Ac is 

Xk+i = Xk + Vktk + 
Actk 
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Figure 5.4: Velocity profiles for translation (a) and velocity commands (6). 
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and for the case tk > T the next position is 

Xk+1 = Xk + VRU 

where tk = Ak + Sk + Rk + Bk + Ck. 

Similarity, the measured position Xk can be computed. For 0 < rk < T 

Xk = Xk + Vkrk + -ys 

and for the case Tk > T the measurement is 

Xk=Xk + Vk™rk 
2Ar 

where rk = Ak + Sk. 

Using some intuition about the robot's operation, note that in a continuous operation the 
velocity commands are not very different from previous ones. That is, the speed increments 
V£m _ Vk are not very large. Thus, by increasing the value of the acceleration Ac, the 
value of T may be made smaller than Ak + Sk in most cases, and of course smaller than 
Ak + Sk + Rk + Bk + Ck. Under this assumption the kinematic model becomes 

Afc+i = Afc + vk_xik — 2A ' 
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Figure 5.5: Ideal and real velocity profiles under velocity commands. 

Xk = Xk + Vk-\Tk - 
(vgj - KY 

2Ar 

where r^ = Ak + Sk, and tk = Ak + Sk + Rk + Bk + Cfc- 

Controlling Xk is equivalent to controlling Xk- Our goal is to send the measurement Xk to 
zero (sending it to an arbitrary value implies interpreting Xk and Xk as the position error 
and its measurement, so the approach is still general). So the next step is to manipulate the 
above two equation to obtain a single equation in terms of the measurement Xk- With some 
algebra the following equation may be derived: 

xk+1 = xk + vk™(tk-Tk) + vrn+i-{k 2Ac 
+} ■ 

This last equation is the kinematic model of the robot. 

Finding a control law is a compromise between complexity and performance. A simple 
proportional controller is extremely easy to implement but the closed-loop response will 
be greatly deteriorated by the delays present in the network. Without any other sort of 
compensation, the proportional controller will be oscillatory or unstable if the gain is high, 
and very slow if the gain is low. 

With the kinematic model is possible to design a better control law. A preliminary approach, 
which works well enough in practice, is to assume that all variables change with "smooth- 
ness". That is, Tk « Tjt+i, tk ~ tk+i, and the difference between successive command signals 
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is small compared with Ac. An additional assumption is the fact that usually {Tk/tk) « 1. 
If the conditions of the system are such that the above assumptions constitute reasonable 

approximations, then it can be shown that a control law of the form 

tk 

will yield an approximate closed-loop response according to 

Xk+i -Xk + KXk.i = 0, 

which is a simple second order system, and K may be adjusted to match a particular type 
of response. In particular, if the response is to be as fast as possible without any overshoot, 
then A' = 0.25 will yield a pair of repeated poles at 0.5. A higher value will split the repeated 
pole into a complex pair (adding oscillations), while a lower will have a slower response. The 
estimation of tk may be as simple as using the measurement of U-i as the estimate of the 
next delay (not recommended), something more elaborate such as the average over all the 
previuos values of tk (good approach), or using a weighted average to implement a forgetting 
factor so the most current measurements have more weight in the estimation (recommended 

approach). 

Of course more sophisticated controllers are possible, but for the sake of brevity which shall 
omit their description. The advantage of having the kinematic model is that now we are 
able to design motion control schemes more suitable to our distributed architecture. Our 

experiments with new controllers will certainly continue. 

The Target Error Model 

The location of the target is obtained by a vision module that must capture a frame, identify 
the target, compute distance and angle, and send the information to the motion controller. 
Since this process is quite involved, the information sent to the controller is already outdated 
once it is received. The question is how to reconstruct a good measurement based on this. 

In Figure 5.6 a simple diagram of the robot and target relative positions is shown. We 
will assume that all motions consist on pure rotations at this stage, as translation can be 

regarded as a subsequent problem. 

Our objective is to find e(t), which the angle between the camera line of sight and the 
target. We assume that the vision module computes a new target position every T seconds 
on the average, and that the controller cycle is considerably shorter than this. Under this 
assumption, the controller receives new information as soon as it is ready, and any extra 

delay is neglible compared with T. This can be expressed as 

e(t) = e(t - T). 
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camera line 
■' of sight 

Figure 5.6: Observer and target rotations. 

Given that at time t - T the error is changing with speed k(t - T), then the estimate e(t) of 
the error at time t can be approximated as 

t{t)   «   e{t-T) + T-t(T-t), (5.1) 

«   e(t) + T-c(T-t). (5.2) 

Then, approximating the derivative of the error with a backward difference we obtain the 

following: 

e(t - T) - e(t - 2T) 
e(t - T) 

m 

T 
c(t -T)- e(t - 2T) 

T 
2e{t) - e(t - T). 

(5.3) 

(5.4) 

(5.5) 

So the estimate of the target error is based on the current and the previous measurements. 
In general, the error model may be postulated as 

m 

e(i) « £>.e(* - iT). 
t=0 

The above equation is used when new measurements are obtained, and T must be regarded 
as the time between successive samples. Although in general T is not constant, we assume 
that successive intervals are approximately the same (locally contant). The error model was 
derived for a single instance between samples; since the final equation is independent of T, 
it can be applied to any successive pair (or set) of measurements. 
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The time between samples depends on the speed of the vision module. The control loops 
executes at a faster rate and, in general, data is not ready when it is requested In this 
case some prediction about the target error must be done, as the target is moving between 

samples. 

We need to estimate the target angular velocity at the same time we estimate the error. We 
will assume that this estimate remains valid until the next sample; i.e we are making the 
assumption that speed is constant between samples. Let St be the time passed since the 
last controller cycle, * the current time, u the angular velocity of the target, and a(t) the 
position of the turret at time t (which is measurable). From the scheme shown in Figure 5.6, 

e{t) = c(t - St) + LoSt - [a{t) - a(t - St)]. 

Using estimates I and ü in the above equation, we arrive at 

l[i) = e(t - St) + ü>6t - [a(t) - a(t - St)}, (5-6) 

which states how the error estimate is corrected every controller cycle if no new information 

is received from the vision system. 

The estimation of Ü is done whenever new information is received from the vision module. 

This is simply 

e(t-T)-6(t-2T) (5J) 

«   e(t)-e(t-T) + a(t-T)-a(t-2T). (5-8) 

The steps to estimate the target angle with respect to the line of sight of the camara are the 

following: 

1. Check if new information is available from the vision module. 

2 If new information is available, given the two most recent observations, and the mea- 
sured time between them, estimate Co and c according to equations (5.5) and (5.8). 

3 If no new information is ready, then correct the estimate I according to equation 5.6. 
This requires a measurement of the change in the turret position during the previous 
controller execution cycle, the time spent in such cycle, and the most recent estimate 

of tu 

The estimate of distance is not critical in our system, so we may in principle use the raw mea- 
surements provided by the vision module. However, a minor correction that yields consid- 
erable improvement in distance estimation is obtained by subtracting the distance traversed 
by the robot since the last controller execution cycle to the current distance estimate. 
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Figure 5.7: (a) A sample ceiling landmark, (b) The view presented to the user, (c) A view 

of the 10 tracking a second robot. 

5.5    Experimental Setup 

This section describes our experiments with the autonomous observer prototype. Our experi- 
mentation has two goals: first, to validate the utility and robustness of the chosen algorithms 
for each of the various system components; and second, to demonstrate the feasibility of in- 

tegrating all of the components into a unified system. 

Our experiments took place in our laboratory, a fairly typical office environment. As obsta- 
cles we used desks, chairs, and large cardboard boxes. A map, as required by the motion 
planner, was constructed by approximating the obstacles by polygons; this map is shown in 

Figure 5.7.a. 

The observer itself is a NOMAD-200 robot with an on-board Pentium-based computer. It is 
equipped with an upward-pointing camera for landmark detection and a forward-pointing 
camera for target tracking. Both cameras are mounted rigidly to the robot's turret, which 
can rotate independently of its drive wheels. This allows the turret (along with the tracking 
camera) to rotate based on the motions of the target without affecting the motion of the 

robot. 

As a target, we used a second NOMAD-200 equipped with a special "hat" required by our 
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simplified tracking algorithm, as described above. The target was moved under joystick 
control by a human operator. Figure 5.7.c shows a view of both the target and the observer. 

As stated above, the purpose of our experiments was to verify each of the components in the 
system, as well as to show that they could be successfully integrated. We have been able to 
quantify the performance of the individual of components. Furthermore, the system can be 
successfully integrated: the observer was consistently able to visually track the target and 

keep it in view in the presence of obstacles. 

The most important conclusion of our experimentation is that, even though each of the 
components which makes up the system may periodically fail, the overall system is robust 
in the face of those failures. For example, the target tracker or landmark detector may 
periodically give an inaccurate result, but these errors are tolerable since they are random 
variables with zero mean and a relatively small variance. In addition, the sampling rate is 
high relative to the reaction time of the control system, so sporadic sensing failures do not 

significantly alter transient responses of the system. 

5.6    Discussion 

In this chapter we have described the high-level design and implementation of an autonomous 
observer. We have also described our initial prototype as well as early experiments with the 
system as a whole. Up to this point, our time has been spent designing an integrated system, 
not in refining and optimazing the individual components. Our continuing experimental work 
focuses on two types of extensions: First, those which increase the generality and robustness 
of current components; and second, those which add new functionality to the concept of the 

overall autonomous observer system. 

In terms of improving upon the current components, we have the following goals. First, 
we are working on ways to remove the discretization in our planning implementation by 
developing new visibility algorithms more directly related to the view planning problem. 
Second, we are working on ways to allow the planner to look farther ahead in time when 
it considers possible target moves. Third, we are working to implement a more general 
pattern-tracking mechanism which removes the need for a special visual cue on the target. 

In terms of adding functionality to the system, we are working on several extensions. First, 
we plan to add the automatic 3D model construction component, a subsystem that has 
already been tested individually. The model would then be used to reconstruct a view for 
the user. Second, we plan to extend the view planner to deal with multiple observers which 
can cooperate to track a single target. Finally, we will also consider the case of multiple 
targets and the problem of dynamically assigning observers to these targets. 
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Appendix A 

Landmark-Based Navigation 

A.l    Introduction 

The problem of reliable navigation is among the most pervasive in all of mobile robotics. 
For a robot to be truly mobile, it must be able to repeatably move from point to point while 
keeping track of its current location with respect to its environment and robustly recognizing 
when it achieves its goals. Although this problem has received considerable attention, many 
existing systems often lack flexibility, reliability, or both. Computational cost is also an 
issue. The main problem is that of dealing with uncertainty, which refers to the statistical 
distribution of errors in both control and sensing. 

We have chosen to use simple, artificial landmarks as a means of limiting the control and 
sensing uncertainty in the robot's environment. We claim that such landmarks require only 
a small amount of environmental engineering, and that they make it possible to build a very 
flexible and robust navigation system. The notion of a landmark is not new and its role in 
robot navigation has been previously discussed in several papers, including [34, 43, 51, &9]. 
Here we use this notion in a more formal and systematic way. 

Section 2 defines a navigation problem which embeds enough assumptions to make motion 
planning polynomial. Section 3 describes how the required assumptions can be enforced in 
the real world using simple, artificial landmarks. Section 4 reports on experiments performed 
to validate our algorithms and to verify that the engineering costs were reasonable. 
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A.2    The Navigation Problem 

In this section we describe a motion-planning problem which, using the assumptions enforced 
by landmarks, admits a polynomial-time solution. We then discuss ways in which a planner 

can be used as part of a landmark-based navigation system. 

Problem statement: We represent the mobile robot as a point moving in a plane among 
obstacles which are represented as generalized polygons (regions bounded by straight edges 
and circular arcs). Conveniently, this corresponds exactly to the case of an omnidirectional 
circular robot moving among generalized polygonal obstacles if we shrink the robot to its 

centerpoint and grow all of the obstacles by its radius. 

We let W denote the free space in which the robot can move, called the workspace. The 
navigation problem is to find and execute a motion that causes the robot to move from some 
initial region (a subset of W) to some goal region (another subset of W). 

Although we assume (for the purposes of planning only) that the geometry of W is perfectly 
known, we allow for some uncertainty in both robot control and sensing. We model control 
uncertainty by assuming that control error is bounded by some angle 6 < TT/2. This means 
that when the robot is commanded to move in a direction d, it will actually move in some 
unknown direction <f, but d' will differ from d by less than 9. We model sensing uncertainty 
by defining a region U such that, if the robot's actual position is q, then its sensed position 
lies within U(q). For example, U(q) may be a disk centered around the point q. 

So far, we have not made any assumptions that let us bound sensing and control uncertainty. 
Without such assumptions, problems very similar to this one have been proven hard in [12, 

57]. 

The role of landmarks: To make the problem computationally tractable, we will intro- 
duce the notion of landmark regions (see [50]). Each such region is denoted by U and is 
a subset of W. We define landmark regions such that sensing and control uncertainty are 

bounded within them as follows: 

1. A robot entering landmark region U will reliably sense that it is within I,-, although 

it will not know precisely where it is within L,-. 

2. Once in L,, a robot can reliably navigate into a predefined subset of Lt, called the 
landmark region's kernel. The robot will not know exactly where within the kernel it 

is located. 
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Intuitively, a landmark region is some subset of the workspace from which a robot can sense 
some distinctive feature (a landmark). It can then use this sensing to localize itself within 
some smaller region (the kernel). Outside of landmark regions we assume nothing about the 
sensing uncertainty; in fact, we do not even assume that useful sensing exists. Note that if 
this is not the case, then sensing outside of landmark regions could be used to reduce the 

control error 9. 

One important property of landmark regions as defined here is that they do not require perfect 
control or sensing anywhere in the workspace. They do, however, define a set of states which 
the robot must be able to reliably recognize. Previous work [14, 21, 24, 22] yields substantial 
evidence that planning is exponential when state identification is not straightforward (e.g., 
when it relies on sensing history). Landmark regions and their kernels provide a predefined 
set of pertinent states which are directly identifiable by a robot's sensors. 

Work described in [50] shows that, using only the assumption of landmark regions as defined 
above, it is possible to build a motion planner that is sound and complete yet runs in 
polynomial time. Using such a planner in an on-line fashion makes it possible to plan 
motions from a given initial state to a desired goal state which are guaranteed to be reliably 

executed. 

Validating landmark placement: Two problems arise when placing landmarks into a 
particular workspace. First, one must determine how many landmarks are needed. Second, 
one must determine where these landmarks should be placed such that the robot will be able 
to perform any foreseeable task. 

A planner such as the one described in [50] may be used to evaluate a given placement 
of landmarks. While planning paths between landmark regions, the planner makes sure 
that each landmark region is reachable from any other by some set of motions which are 
guaranteed to be reliable. Failures to find plans in some areas of the workspace suggest that 
new landmarks must be created in those areas. 

In some cases it may be preferable to use only a weak motion planner (or none at all) during 
execution. Such a planner is not guaranteed to produce totally reliable plans, but these plans 
are öfter faster to execute. Even without reliable plans, navigation can be made reliable if 
enough landmarks are used and they are placed appropriately. Here an evaluation tool is 
extremely useful since it allows the verification of a landmark arrangement without requiring 

trial-and-error experimentation. 
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A. 3    Landmarks 

In the formulation of the navigation problem we make assumptions that bound the sensing 
and control error within certain parts of the workspace. In this section, we describe how we 
use landmarks to engineer the environment to enforce these assumptions. These landmarks 
are the "distinctive features" that induce landmark regions where the robot can use sensory 

data to localize itself with bounded error. 

In our work we have chosen to place artificial landmarks into the environment, rather than 
relying on natural landmarks such as walls or corners. The main motivations for this are 
speed and reliability: we can specifically design artificial landmarks that can be quickly and 
reliably sensed and which are also "low-cost" in that they do not require much engineering 
of the environment. Without placing our own landmarks into the environment, we would 
be faced with the much more difficult task of detecting whatever assortment of features 
happened to be present already, and there would be no guarantee that these landmarks 

would be sufficient to complete any particular task. 

In general, a landmark must be designed so that a sensing system can achieve three key 

functions: 

1. Detection The robot must be able to quickly determine whether or not there is any 

landmark in its field-of-view. 

2. Localization The robot must be able to accurately determine its position in the 

workspace relative to the landmark. 

3 Recognition The robot must be able to differentiate between the different landmarks 
in the workspace. Once a landmark is identified, the robot can localize itself relative 

to the workspace if the landmark's position is known. 

It is important to note that there are several different scenarios in which landmarks are 
useful. Consider, for example, an office delivery task: here, landmarks would be useful not 
only for navigation but also to mark objects to be delivered. As another example, consider 
the task of automatic map generation: known landmarks could define fixed reference points 
during the map-building process. Upon detecting a previously-unknown landmark, the robot 
could use those reference points to localize the new landmark with a high degree of accuracy. 

We have experimented with two types of landmarks. The first is mounted on the ceiling and 
detected with an upward-looking camera. The second is detected with a forward-looking 
pair of cameras and can be placed on walls or any other "eye-level" surfaces. For each case 
we describe the methods used to achieve the three basic functions outlined above. 
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Figure A.l: A sample ceiling landmark 

A.3.1    Ceiling Landmarks 

Figure A.l shows a sample of one of our ceiling-based landmarks. The landmark pattern 
consists of a black square with a 4 x 4 pattern of smaller squares inside of it. The orientation 
of the landmark is done by detecting the bounding box of the pattern. The slopes of the 
edges determine the orientation of the landmark, while their intersections locate the corners. 
Once the landmark is localized, the positions of the inner squares are computed and their 
intensities are read. These intensities are grouped into "black" and "white" subgroups to 
determine the 16 binary values they represent. Four of these values are used to disambiguate 
the landmark's orientation, and the remaining 12 encode the landmark's unique ID (giving 
212 = 4096 possible distinct landmarks). The landmarks are placed at well-known positions 
in the workspace. 

Detection: While moving, the robot continually captures images with its upward-pointing 
camera. Each image is grayscale with a resolution of 256 x 243 pixels. As a first step, the 
image is binarized using a global threshold which is determined based on a histogram of 
the intensity levels in the image. The detection algorithm then identifies edge pixels in the 
image using a variant of the algorithm presented in [15], and extracts edge chains that are 
consistent with the boundary of a square. When such a chain is found, the corners are 
detected and lines are fitted to the pixels which make up each edge. Slope information is 
available after the line-fit step, and the orientation of the landmark can be then computed. 
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Localization: A landmark's position relative to the robot has three parameters: x, y, and 
0. In our case, x and y are computed by finding the center of the landmark in the image and 
then mapping those values into the workspace coordinate system using the parameters of the 
robot's camera. The value of 0 is computed by using the slopes extracted in the detection 

phase. 

Recognition: Given the location and orientation of the landmark in the image, we cal- 
culate the expected positions of its 12 identifying tiles. The intensities are read from the 
image using bilinear interpolation. Accuracy may be increased by sampling several pixels 
from each tile. An error-correcting encoding could also be used, but this has not proven 

necessary in our experiments. 

Analysis: We designed the landmarks so that the detection algorithm could be as simple 
as possible. Because it is so simple, it is also fast; the entire algorithm runs in less than 15 
milliseconds on a desktop workstation. The time required to detect a landmark is important 
because it affects the speed at which the robot can move. If the robot moves too far during 
the time between the acquisition of subsequent frames, there will be a section of ceiling 
which is not captured in either frame. Landmarks in this area will not be detected, causing 

navigation to fail. 

Each landmark induces a circular region C in the workspace from which the pattern is 
guaranteed to be visible. However, since sensing is not instantaneous, the robot may pass 
through C on a path nearly tangent to its boundary and miss the landmark pattern because 
it is busy processing a previous image. This leads us to define a landmark region L concentric 
to C and c smaller in radius. The value t is derived from the velocity of the robot and the 
time required to process an image. In this way we guarantee that if the robot travels along 
a path tangent to L it will always acquire an image while within C. 

We have performed many experiments with these landmarks under normal office conditions. 
Our landmarks had a size of 12 x 12 inches and were placed 9-11 feet above the camera. 
Detection and identification have proven to be totally reliable provided that landmarks are 
placed appropriately to insure that lighting conditions are relatively consistent when the 

robot is viewing the various landmarks. 

The algorithm is very accurate: the translational error has zero mean and a standard de- 
viation of 0.75 inches, while the rotational error has also zero mean and has a standard 
deviation of 0.5 degrees. These results are limited by the image resolution and the time 

spent on image analysis. 
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Figure A.2: The parameters x, y, and <j> which describe the landmark's position relative to 
the robot 

A.3.2    Wall Landmarks 

Physically, the landmarks we use on walls are nearly identical to those we use on the ceiling. 
This time, however, it uses a stereo pair of forward-looking cameras. 

To recognize wall landmarks we use an algorithm based on moment invariants. In [33], Hu 
proposed the use of geometric moments of binary patterns to extract a set of coefficients 
which could be used to recognize those patterns. Reiss showed in [65] that these descriptors 
are invariant under general affine transformations. This invariance is important in our appli- 
cation, since the robot-mounted cameras may be at any distance from the plane containing 
the landmark, and at any angle relative to that plane. 

Detection: Our algorithm first detects the edges in each image using a common operator 
such as those described in [56]. It then extracts chains of edge pixels. If there is a landmark 
pattern in the image, its boundary will be found in this manner. It then computes estimates 
of various moments from each set of boundary pixels, as described in [18]. Comparing these 
estimates with the expected values determines whether or not a landmark has been detected. 

Localization: In this case there are also three parameters that describe the landmark's 
location relative to the robot: x, y, and <f> (see Figure A.2). We first locate the center-of-mass 
of the landmark in each camera image and compute x and y using stereo correspondence. 
Next, we compute <j> by analyzing the moments to reconstruct the affine transformation 
between the image plane and the landmark plane. 
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Recognition: As in the ceiling-based case, given the results of localization we are able 
to predict the locations in the image of the landmark's 12 tiles, and directly sample their 

values. 

Analysis: The speed of this algorithm compares well with the algorithm used to detect 
ceiling landmarks. We have conducted many experiments to determine the algorithm's 
accuracy in terms of robot localization. The distance from the robot to the landmark is 
recovered with an error of less than 10%. The orientation of the landmark plane relative to 

the image plane is measured with an error of less than 15 degrees. 

One benefit of wall-based landmarks is the ability to sense them from a relatively large area. 
Using our current hardware, we can recognize landmark patterns at distances of up to 20 
feet. The accurate measurement of the landmark's orientation, however, is possible only at 

distances up to 14 feet. 

A.3.3    Comparison of Landmarks 

We have considered various types of landmarks, but have found the two presented above to 
be the most useful. In this section, we discuss the general tradeoffs between ceiling- and 

wall-mounted landmarks. 

We have found that ceiling-based landmarks are especially useful in navigation tasks. The 
placement of ceiling landmarks and the position of the robot have the same degrees of 
freedom; this means that the image of a landmark are simply and directly related to the 
position of the robot. Although the area in which a landmark is visible might be small, 
its shape is well-understood and sensing error does not vary appreciably within that region. 
The localization uncertainty is small and easily characterizable. 

One difficulty with ceiling-based landmarks lies in finding appropriate placements for them. 
This is especially true outdoors, where ceilings are uncommon. In addition, our algorithms 
are sensitive to drastic brightness differences within images, so we cannot place landmarks 
close to the overhead flourescent lights in our lab. More sophisticated algorithms would solve 
this problem, but have proven to be intolerably slow on our robots. Also, placing landmarks 
over uneven floors results in significantly skewed images and, therefore, bad localization 

results. 

Wall-based landmarks, however, have a complementary set of advantages and disadvantages. 
First of all, they are more general than ceiling-based landmarks in that they can be used 
to mark arbitrary objects in the robot's environment. One example is a delivery task; 
deliverable objects could each be labelled with a unique landmark. They are also generally 
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Figure A.3: The workspace for experiments with ceiling landmarks 

visible from a relatively large area, which in many cases could mean that fewer landmarks 
are required. 

One problem with wall-based landmarks is that, because the algorithms used to detect them 
can make fewer assumptions, they also tend to be less accurate. The impact of this can be 
reduced, though, if the robot is allowed to track the landmark over time, keeping the pattern 
in sight and using it as a "beacon" to guide it to its destination. Another potential problem 
is that other objects in the workspace—such as chairs, desks, and moving people—tend to 
occasionally occlude wall-based landmarks. This makes it difficult to reliably describe the 
area from which such a landmark should be expected to be visible. In the case of ceiling 
landmarks, such unforeseen obstructions are far less likely. 

A.4    Experimental Results 

All of our experiments were performed with a NOMAD-200 mobile robot from Nomadic Tech- 
nologies, Inc. It consists of a nonholonomic, zero-turning-radius base which supports an 
independently-rotating turret. On-board computation is provided by an Pentium-based com- 
puter running at 90 MHz, which was used to run all of the image-processing and navigation 
software. 

Experiments with ceiling landmarks: In this first set of experiments we combined the 
planner presented in [50] with the ceiling landmarks described above. The landmarks induce 
landmark regions Li which—along with descriptions of the workspace W, initial region X, 
and goal region Q—are the inputs to the planner. Each landmark induced a landmark region 
with a diameter of 16 inches. 

The experiments were performed in our laboratory space, which is an office-like environment 
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with rooms, hallways, and a typical selection of furniture. Figure A.3 depicts a subset of 
that space consisting of a large room and a narrow hallway. Obstacles (walls, tables, chairs, 
a trash can, and an idle robot) are shown in black. Landmark patterns are depicted in gray. 
To provide a sense of scale, the robot is shown in white at the same scale; it has a diameter 

of 24 inches. 

Experimentation showed that our complete navigation system is extremely reliable. The 
system is consistently able to navigate from landmark region to landmark region for the 
entire battery life of the robot (approximately one hour). The system has also been used 
with similar success in a second office environment with different carpeting and lighting. 

Experiments with wall landmarks: This set of experiments took place in a 3000-square- 
foot warehouse. Mobile partitions were used to create an office-like layout with fourteen 
rooms and several hallways. In contrast to the experiments described above, here we did not 
use landmarks as a basis for planning and navigation but for two entirely different tasks. 

In the first case, the robot's task was to explore the environment and look for landmarks. 
Landmarks it found were added to an internal geometric map of the environment. During 
this time, the robot planned its exploration by simply searching a graph which represented 

a topological map of the workspace. 

Once a map had been generated, the second task was to find and deliver1 objects. Each 
object was assumed to have been marked with a unique landmark. When provided with 
a target object and a goal position, the robot used its previously-built map to move close 
to the target object. Once it was in range, it used the object's landmark as a beacon and 
approached the object accurately. It then moved to the goal landmark in a similar fashion. 

Once again, these experiments validated the robustness of our approach. The robot con- 
sistently mapped the landmarks with enough accuracy to then carry out the delivery task 

successfully. 

lOur robot has no way to pick up objects, so delivery consisted of moving near an object, identifying it, 
and then moving to the goal location. 
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Appendix B 

Range Image Acquisition 

B.l     Laser Range-Finder Model 

The mobile platform we used for our experiments in model construction is a Nomad 200 
robot from Nomadic Technologies. The robot is equipped with a laser range-finder sensor, 
which consists in a solid state laser, a CCD camera, and a signal processing card named the 
Sensus 500 board. The range-finder operates under the principle of triangulation, the laser 
projecting a plane of light perpendicular to the CCD retina. An schematic view of the sensor 
is shown in Figure B.la, and a photograph of the actual configuration on top the robot is 

shown in Figure B.lb. 

The CCD camera is equipped with a red filter, which ideally blocks all light frequencies 
except the laser fundamental frequency. The Sensus 500 board detects the pixel of highest 
intensity values in each row in the image. One row is called a scanline, and the collection of 
all the intensity peaks for each scanline is called a scan profile. In order to make sure that 
the intensity peak for one scanline is not a spurious event, the peak is counted only if its 
intensity is above a certain threshold and if the width of the peak is below a tolerance. This 
processing is done by hardware on the Sensus 500 card. 

In the end, the data coming out of the card consists of an array of 486 elements (the number of 
rows in the CCD), containing the column numbers of those pixels with the highest intensity 
value for each row, or a value of -1 in case no peak could be confidently detected. This 
array, which we call A, defines a scan profile. A collection (Ak)l=i defines a sweep, which is 
the result of rotating the turret supporting the range finder. The calibration and modeling 
problem consists in translating the integer values in A into actual physical distances. 
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Figure B 1: (a) A schematic view of the range-finder sensor. (6) A picture of the actual sensor 

oriented horizontally so as to scan vertically (the middle camera is for color acquisition). 

B.l.l    Projection Model 

Figure B 2 shows the laser-camera configuration from a viewpoint parallel to the laser plane 
of light The laser is projected from left to right, and we define this direction the direction 
of increasing x. We define the direction into the picture as the direction of increasing y. The 
CCD camera is placed at an orientation perpendicular to the plane of light, with its top in 
the direction of y. The camera's reference plane is oriented at an angle a with respect to x, 
and its line of sight intersects at a distance h from the point A. This intersection will be the 
origin of the axis x. The origin of the axis y will be the center of the plane of light. 

A point (x,y) is transformed into reference C (a frame parallel to the camera reference) 

according to 
(B.l) 

Vc 

i cos a, 

y- 
(B.2) 

The frame C is at a distance z = (x + h) sin a from the camera reference F. Hence, a point 

(x,y) is transformed to the camera reference as 
cos a    x 

Xf    =    /- 

yj f 

sin a x + h 
i     y 

(B.3) 

(B.4) 
sin a x + n 

where / is the focal radius of the camera. Finally, the frame F is transformed to pixel values 

according to 

Xp   =   kxxf + cx, (B-5) 

yP   =   kyy/ + cyi (B-6) 
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Laser Model 

Figure B.2: Laser-camera configuration of the range-finder. F is the camera reference, and 
C is a local reference parallel to F. The origin 0 is set at the intersection of the camera 

line-of-sight with the laser plane. 

where kx,ky,cx,cy are some constants. The lumped model will be 

1   sin a 
p hd-\- dx 

+ cx, with d 

VP 

kxf cos a 

y ■, .      !   • + Cy, with 0 
hb + bx kyj 

sin a 

(B.7) 

(B.8) 

which expresses the pixel values in terms of the physical coordinates (x,y).   The converse 

operation is given by 

dh(xv — cx) 
x   = - r, 

y = 
6/i(yp - Cy) 

1 - d(xp - cx) 

(B.9) 

(B.10) 

B.1.2    Noise 

It is interesting to note that the main uncertainty present in the sensing process is during 
the detection of the pixel with highest intensity value for each row in the image. That is, 
for row yp the sensor returns a peak position at xp(yp) = round[xp(yp) + w], where xp(yp) is 
the real column location of the peak at row yp, and u a random variable of mean zero and 
variance a2 (here is assumed that the noise is not dependent in the row number). Hence, a 
scan profile is a sequence of pixel points (xj,(y;),yj,)^0 

wnich is uniformly increasing in yp 

(unit increments), with random (noisy) column quantities x'p. When the pixel information 
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is converted into physical distances by equations (B.9) and (B.10), then both x and y coor- 
dinates are corrupted by noise, since both depend on xp. Furthermore, none of the physical 

coordinates are necessarily monotonically increasing. 

However, if we define the coordinates u and ip as 

x 
v   — 

x -f h"1 
(B.ll) 

* =   y (B.i2) 
x + h 

then equations (B.7) and (B.8) imply that 

v   =   d(xp-cx), (B.13) 

*      =     KVp-Cy). (B-14) 

Thus, given a sequence of pixel points (x'p(y'p), y^o which is uniformly increasing in yp, 
then (*>„ </>,)" o wil1 be uniformly increasing in xj>. Furthemore, if xp is the noisy component 
of a pixel pair, then u will be the only noisy component of the pair (*>,</>). 

Coordinate u can be roughly interpeted as a re-scaling of the physical quantity x. Coordinate 
</>, on the other hand, can be loosely related to tangent of the angular element of a polar 

coordinate pair. 

B.1.3    Calibration 

The model described in the previous subsection requires identification of five parameters. Of 
these, one can be indirectly obtained accurately, while the others must be estimated using a 

calibration procedure. 

First, let us consider h. Although it is difficult to establish the intersection between the 
camera line of sight and the laser plane of light, measuring the angle a and the distance 
hcosa is relatively easy. Given the dimensions of the system, the errors carried from not 
establishing the camera center precisely are not significant. With a minimum of care, it is 
possible to obtain an estimate of h of reasonable confidence. 

The parameters cx,Cy,b,d cannot be measured directly. Some preliminary experiment is 
required. Our experiment consisted in orienting the range-finder vertically, such that the 
plane of light is parallel to an horizontal optic table (see Figure B.3a). On the optic table, 
the sharp corner of a box was placed at regular intervals, spanning the table at evenly spaced 
grid locations. The range-finder was oriented so its x and y axes (from Figure B.2) were 
aligned with the grid in the optic table. At each grid position, a scan profile was acquired 
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Figure B.3: (a) Calibration table, samples are taken at uniform intervals, (c) Calibration 
grid, (c) Pixel values of the calibration samples. 

and the pixel coordinates corresponding to the box's corner were identified. At the end of 
the acquistion process, we ended up with an array of points evenly spaced in the physical 
coordinates (x, y) and a collection of pixel values associated to them. The grid (with arbitrary 
origin), and its pixel equivalent, is shown in Figure B.3b and B.3c. 

The projective model tells us that physical locations along constant values of x are trans- 
formed onto a lines of constant values of xp. However, lines of constant y are not transformed 
to lines of constant of yp. From Figure B.3b we can see graphically how the warping takes 
place. It is apparent that lines of constant y transform to radial rays projecting into some 
sort of center. 

Some further manipulations of the model equations can describe analytically how a uniform 
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grid is warped. From equations (B.7) and (B.8): 

h 

x + h 

x + hb 

1 - d(xp 

which imply that 

VP     
cy 

yd 

hb 

1 

1 + cx 

cx)i 

yd 

hbXp- 

(B.15) 

(B.16) 

(B.17) 

This last equation tells us that lines of constant y are transformed into lines of slope 
-(yd)/{hb) in the pixel coordinates. Furthermore, equations (B.15) and (B.16) tell us that 

if x -> co, then xp -» \jd + cx and yp ->■ cy. 

So the first step in our calibration procedure consists in estimating the line parameters for 
each ray shown in Figure B.3b, which can be done with a standard least-squares procedure. 
Given r number of rows in the grid, we will end up with (mi,..., mr) and (cu ..., cr) as the 

line parameters of the r rays. 

We do not know the values of y in the grid, but their spacing. Given two different horizontal 
grid locations %,y„ with known spacing 8i3 = Vj - y,-, we can combine the equations of the 

two corresponding rays. This results in 

VP   = 
Sijd 

~hb 

1 
-, +ca .a 

8ijd 

~hbXp' 

VP =    (CJ - Ci) + (rrij - mi)xp, 

(B.18) 

(B.19) 

which imply that (m3 - mt) = ßSi3, with ß = d/(bh). Given that we have r rows, we can 
combine r(r - l)/2 distinct pairs of rays. Let A = [£,•], Vi,j such that i = 1,... ,r - 1, 
j = i,...,r; similarily define Sm = K - rm]. Then, the least square estimate of ß is given 

by ß = (A'A)-1 A'Sm. We thus obtain the estimation of d/(bh). 

We can also estimate the intersection coordinates of all the rays. If two distinct rays intersect 

at (xc, yc), equations 

Vc 

Vc 

—     TTljXp ~T" Cj, 

=     Tfl{Xp T Ct'5 

imply that 

(d - Cj) 

(nrijCi — rriiCj) 

(rrij - m,i)xc, 

(rrij - m,i)yc. 

(B.20) 

(B.21) 

(B.22) 

(B.23) 
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Again, using all possible distinct pairs of equations we may obtain up to r(r —1)/2 conditions 
to estimate xc and yc using least squares. Once the intersection center is estimated, cx-\-l/d fa 
xc and cy fa yc. 

Given estimates for cy, cx + l/d, and d/(bh), we can find the individual estimates if we are 
able to find a fourth independent estimation. This can be done from equation (B.15): 

yP(*,y) = I-TT + 
C
V (B-24) o x + n 

For constant values of x = x-k (one column in the grid), and distinct values of y, we obtain 

yp{xk,yj) =   bxk+h~^~cy> 

yP{Xk,yi) =    bXk'+h+cyi (B2r)) 

->  yp(xk,yj)-yP(xk,yi)  =     ij^-, 

"yp{xk',J,1') = bxk+h' 

Now, taking different values of x (different columns in the grid), and combining pairs of 
equations: 

M,(t,0   =      'MlL-MLiL. (B.26) 

This last equation takes the difference at two distinct x locations in the grid of the ratio 
between the spacing in y and the spacing in pixel rows (Sy(j,i)/5yp(xk;j,i)), and relates it 
with the spacing in x. Given all the possible combination between differences in y with 
differences in x, we can get a number of conditions roughly equal to 1/4 of the square of the 
total number of points in the grid. We use these conditions to estimate b using least squares. 

Due to noise in the measurements, it is convenient to try an approach similar to the one 
used to estimate d/(bh) before using equation (B.26). In order to estimate d/(bh), we first 
fitted line rays to each group of pixels originated from the same row in the grid; with the 
line parameters of these rays we computed our estimation. Similarily, in order to compute 
the estimate b using equation (B.26), we may first fit a line to each group of pixels coming 
from the same column in the grid. These lines should be vertical lines, given our proposed 
experimental setup. Afterwards, we find the intersections of these lines with the rays previ- 
ously computed, and the intersection points should be the "pixel" values used to compute 
the differences in equation (B.26). Figure B.4 shows an example of the resultant line-fits. 

The calibration procedure is summarized as follows: 

1. Mount a setup such as the one shown in Figure B.3. Measure the distance h cos a and 
the angle a in order to indirectly measure h (see Figure B.2). Define a uniform grid 
and take measurements with the range-finder at each grid location. 
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Line-fitting step of range-finder calibration 
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Figure B.4: Line-fitting step of the calibration procedure.  Diagonal rays intersect at point 
(cx + 1/d, Cy), the pixel equivalent of objects located an infinite distance ahead of the sensor. 

2. Group the pixels according to the rows in the grid they originated from. Fit lines rays 
to each of the groups. These lines should appear as radial rays projecting into a center 

at the right of the image (see Figure B.4). 

3. Compute the estimate of d/(bh) by least squares, using the conditions generated by 
equation (B.19). Similarily, compute estimates of (xe,yc) by least squares using equa- 
tions (B.22) and (B.23); then cx + 1/d » xc and cy « yc. 

4. Group the pixels according to the columns in the grid they originated from. Fit lines 
to each of the groups. These lines are practically vertical (see Figure B.4). 

5. Compute the estimate of 6 by least squares, using the conditions generated by equa- 
tion (B.26). Use the intersections of the lines computed in the previous step with 
the rays computed in the second as the pixel values used to calculate the differences 

required by the equation. 

6. Given the estimate of b, obtain the approximations to d, cx, and cy. The model is now 

complete. 

Note that the laser is calibrated according to the origin defined in the previous subsection (see 
Figure B.2). Values of y are centered with the sensor, but the origin of x is not necessarily 
the sensor. Its is very easy, however, to shift the origin of x by adding an offset. If d0 is the 
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distance to the sensor for an arbitrary grid point, and x0 the actual measurement produced 
by the calibrated model, then the offset (dm — x0) will place the origin at the sensor. 

B.2    Fast Piecewise Linear Approximation 
of Scan Profiles 

As explained in Chapter 2.2.1, the input to the second and final stage of the profile segmen- 
tation process consists of data points grouped into clusters (see Figure 2.3). Each cluster 
describes a continuous portions of the curve r(0), which if taken as a whole is not necessarily 
continuous function (see Figure 2.4). We now want to represent a cluster of points {/9t-,z,} 
as succession of segments, which is our choice of geometric primitives. 

Fitting a sequence of segments to a data set can be seen as a problem of piecewise linear 
approximation. Algorithms to solve this problem are well studied, and given an appropriate 
domain parition they are relatively straightforward to implement. The problem arises when 
we are required to automatically determine the ideal domain partition given an error bound. 
Translated into our context, we desire to determine the location of the minimum number 
of segments that approximate our set of points {/?,, z,-} within some error tolerance. The 
optimal solution cannot, in general, be obtained in linear time. But we are interested in 
computing good approximations within this time bound. 

We present two alternatives that solve this problem in linear time. The first one is suc- 
cessive pivoting, which is an intuitive approach that is easy to implement, and does not 
require knowledge of the sensor's inner workings. It is likely to fail, however, with very noisy 
measurements or with scanned surfaces that are not close to the sensor (noise dispersion 
increases with the distance to the sensor). The second approach is segmentation with Cheby- 
shev pre-smoothing, which first transforms the data set into a more favorable coordinate 
system (a step that requires knowledge about the physics of the sensor), then fits the set 
with the weighted sum of the first n Chebyshev polynomials, and finally uses this continuous 
approximation as a noise-free representation of the surface being segmented. The Chebyshev 
smoothing approach is more robust to noise in the measurement process. 

B.2.1    Successive Pivoting 

One problematic characteristic of the data set {/>,, z,} is that both elements in each coordinate 
pair contain noise (see Appendix B.1.2). This implies that, although perfect sensing produces 
a sequence of points monotically increasing in z, the real measurement sequence is not always 
increasing in z nor uniformly spaced. The pivoting approach tries to circumvent this problem 
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Figure B.5: The point-to-line distances change when the endpoint goes from pk to pk+i. 

by exploiting the fact that the data was nevertheless extracted in a particular order, and 
by assuming that noise levels are such that the measurements {Pi, zt} are within a tolerable 

distance from the actual curve p(z) 

Lets suppose that, in general, we have a sucession of points (p,)£o in Ud space. These points 
are noisy measurements of a curve C, and were acquired in an orderly fashion along the 
curve's arc. We select the point p0 as the pivot, and define new segments successively by 
joining the pivot with points Pl,p2, - • •• At step k, we compute the squared distances from 
each point (pup2, ■ •. ,p*-i) to the line defined by the pair {p0,pk), and average the quantities 

to obtain an error measure £k: 

e* k 
(Pi',P0.k (B.27) 

where p0 k is the segment defined by the pair (po,pk), and df(Pi;p0,k) is the squared distance 
from point Pi to the line defined by the pair (po,P*). If the computed error is above a 
threshold, we store p0,fc as an identified segment, and repeat the procedure with pk as the 
new pivot. We repeat the algorithm until there are no more points to process. 

In order to extract the segments in 0{dcm) time, we need ways of computing the error £fc+i 
in 0{dc) operations given the information used to compute & (see Figure B.5). With some 

vector algebra we can show that this is possible. 

Let {pk)a be the oth component of the vector pk € $d. Assume the pivot is p0, and define 
Sf{pk) as the distance from point Pi to the line p0,k.  This quantity is expressed in vector 
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notation as: 

SUP* Pi -Po 
{Pi ~ Po) ■ (Pk - Po) 

Pk -Po 

S(Pi-Po)«- 
a=l La=l 

(Pi -Po)a(Pk ~Po)c 

Pk -Po 

Let ca = (pk - po)a/ I Pk - Po |, then 

snPk) = EU-<£]<*■-*>£ 
a=l 

d    a-1 

~2 HZ! ^^(pi - p0)a{pi - Po)ß- 
a-2 ß=l 

Define the accumulators 

fc-i 

Sa,ß{k - 1)   =    -—- 53(p,- - po>o,(pv - PO)/J, then 

&   =    E[1-Ca]5a,a(fc-1)-2X:EC^5Q,/3(A;-1). 
a=l a=2/3=l 

(B.28) 

(B.29) 

(B.30) 

(B.31) 

(B.32) 

Hence, given the computation fo £&, we can compute £/t+i by recomputing the constants 
Ci, c2,..., Cd (which can be done in 0(d) operations), and by updating the d(d — l)/2 accu- 
mulators according to 

k — I 1 
Sa,ß(k)     =      —r—Sa,ß{k - 1) + r(Pk ~ Po)a(Pk - Po)ß, 

Vo   =   1,2, ...,rf, and ß > a, 

which leads to the computation of each successive error in 0(d2) operations. 

(B.33) 

Algorithm for Successive Pivoting 

Overall, the pivoting algorithm requires 0(d2m) steps, meaning the process is linear in the 
number of data points. In our application, segmenting the curve p(z) is always a problem 
in two dimensions, so the algorithm can be assumed to be 0(m). The pivoting procedure is 
summarized as follows: 
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Algorithm Fit a chain of segments to a list of points 

Input: 
a list of measurement points L = (p)™0> 
an error tolerance r 

Output: a list of segments S = (s)j 
1.     Select the first element in list C as the pivot. Let k = 1. 
2      Define the line pok.   Compute the error & with equation (B.32), 

with ca = (pk - Po)a/ \Pk-po |, and the accumulators updated 
according to equation (B.33).   If & < r increase A; by one and 
repeat the step, else add the segment (po,pk) to the list <S and 

continue. 
3.     Remove all elements up to k -1 from list C. If the list is not empty 

repeat the algorithm from step one, else the algorithm has reached 

termination. 

B.2.2    Segmentation with Chebyshev Pre-Smoothing 

As explained earlier, both elements in each coordinate pair (pt,z,) contains noise, and the 
sequence is not uniformly increasing in either of them. We could expect from the sensor ge- 
ometry that a polar coordinate selection (r„ 0,-) will result in a sequence of points of monoton- 
ically increasing and noise-free 0. This is approximately true, which means is false m general. 
The correct approach is to select coordinates C and v defined as (see Appendix B.1.2): 

and (B.34) 

(B.35) 

v   — 

c = 
p- Po + h' 

z 

p - p0 + h 

where p0 is the sensor calibration offset and A is a model parameter (see Appendix B.l.l). 
This coordinate pair is associated to pixel positions (x„,yp) of the sensor CCD camera by 

v   =   d(xp - cx), and (B.36) 

C   =   Hyp-cy). (B.37) 

The main uncertainty present in the sensing process is during the detection of the pixel with 
highest intensity value for each row in the image. That is, for row yp the sensor returns a 
peak position at xp(yp) = round[xp(yp) + u,], where xp(yp) is the true column location of he 
peak at row yp, and « is a random variable of mean zero and variance <r2. Element xp is the 
only noisy component of the pixel pair, hence ( is noise free. Furthermore, for successive 

scanlines the value of yp changes unarily, hence C is uniformly increasing. 
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The objective now is to fit an nth degree polynomial to the data sequence (Ct,^)£Li- The 
resulting polynomial Pn{u) is intended to approximate the continuous curve u(Q. A very 
good approximation can be obtained in 0(nm) time by using orthogonal polynomial repre- 
sentations. Posteriorly, this continuous approximation is used as a noise-free representation 

of the surface being segmented. 

Chebyshev Polynomials 

The Chebyshev polynomial of degree n is defined as Tn(x) = cos(narccos x)1. T0(x) = 1 
and Ti(ar) = x, and the polynomials of higher degree can be computed using the recursion 
Tn+1{x) = 2xT„(x) - Tn_i(a;). The polynomial Tn(x) has n zeros in the interval [-1,1], 
located at x = cos(?|^17r) for k = 1,... ,n. 

Chebyshev polynomials are orthogonal in the interval [-1,1] under a weight y/\ - x2: 

/ -1    y/T^ 

0       i#j 
TT/2   i = j?0   . (B.38) 
■K i-j = 0 

Chebyshev polynomials satisfy a discrete orthogonal relation as well. If xk{k = 1,..., m) are 

the m zeros of Tm(x), then for i,j <m 

in 

k=\ 

f 0        i^j 
m/2   i = j?0   . (B.39) 
m       i = j = 0 

Given an arbitrary function y = /(x) in the interval [-1,1], and the xk{k = 1,... ,m) zeros 

of Tm(x), then 

e   =   ±Z(fM-Pn{xk))3 (B.40) 
1 fc=i 

is minimized when 

Pn{x)     =     ^^(X)-^,   With (B.41) 
3=0 l 

c\     m 

c> = £E»riW» (B-42) 

^his equation looks trigonometric, but in fact yields a polynomial. 
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for n < m - 1. The value of e is zero when n + 1 = m, which means the data {xk,yk) is 
interpolated. For values of n + 1< m the data is /iWed with a regression that minimizes the 
sum of squared approximation errors at the xk nodes. It is clear from the equations that the 

approximation is computed in 0(nm) operations. 

One interesting property of function approximation with Chebyshev polynomials is the econ- 
omization property. Given the approximation Pn(x) = 0.5co + CiT^x) + ... + cnTn(x) that 
minimizes e, the truncation Pn-y(x) = 0.5co + cxTx{x) + ... + c^T^x) is the polynomial 
of degree n - 1 that minimizes the same measure. Finally, the Chebyshev approximation 
is nearly equal to the minimax polynomial, which is the one that has the minimizes the 

maximum deviation from the true function y = /(x). 

Approximation of C(u) 

Given the succession (C^n we want the polynomial of degree n < m - 1 such that the 
sum of squared residuals (Pn(£) - »>? is minimized. This polynomial, if expressed as the 
weighted sum of the first n Chebyshev funtions, can be computed m 0(nm) operations if 
the approximation nodes are the roots of the mth Chebyshev polynomial. In order to satisfy 
this last condition we are going to transform the uniformly spaced (C,-)£=i into the m roots 

(x.-)r=i°fTm(X). 
Granted that the roots of Tm(X) are given by Xi = COS(^TT), the transformation 

Xi cos 
C.-Ci      i 
Cm - Ci      2m 

■K , Vi = l,. ,m, (B.43) 

maps C, into Xi for every i = 1,... ,m. It is indeed possible to transform uniform approxi- 
mation nodes into the ones generated by the roots of Tm(x)- 

Notice that equation (B.42) does not requires the roots of Tm(X) explicitly, only the values 
of the function evaluated at these points (which we have already). The existence of the 
transformation of (£)r=i into (X,-)£i is required for evaluation of the function at points 
between the approximation nodes. 

Economization 

The next step is the economization of the approximation Pn(X)- From equation (B.36), we 
see that if the peak detection process contains noise of variance a2, then v will have standard 
deviation | d ■ a |. By the Chebyshev's theorem in probability theory, for any probability 
distribution, 75% of the samples will fall within a distance of two standard deviations. So a 
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reasonable economization criterion is to select the degree / < n that mantains a proportion 
0.75 < p < 1.0 of the evaluations P/(x«) within an error of | 2d-a |. One should never require 
the approximation to be within an error of less than | d ■ a |, as this is the highest possible 
precision given the randomness inherent to the sensing process; if we force the approximation 
below this error we will interpolate the data, thus failing to smooth out noise. 

Segmentation of Pj[%(C)] 

Once we compute Pi{x)i we want to fit a chain of segments to the succession (£,-, P;(x;))£Ln 

where Xi 1S tne ?th root °f Pm(x)- The proposed procedure is as follows: 

1. Let .7 = 1, and k — 2. 

2. If k = m terminate the procedure, else fit a line y = m( + c to (Q, Pi(xi))i=j and 
compute 

Zj,k = ,n?ax   ] y-Pi[x(Q] I • 

3. If £j,/fc < T (where r is some tolerance), then increment k by one and repeat the previous 
step. If not continue. 

4. Store line (m, c) in list <S, and make j = k and k = k + 1. Go back to step 2. 

The idea behind the procedure is to successively fit a line to a set of points, and break the 
line whenever the approximation ceases to be a good one. The tolerance r should be selected 
as a proportion of | d |, which is the minimum detectable change in u given a resolution of 
one pixel (see equation (B.36)). 

In order to execute the procedure in linear time we must fit a line to (£,-, P/(x;))?=j in constant 

time given the calculations of the fit to (&■, P((x,))f=/- This is indeed possible by the use of 
accumulators. Let 

sM(j,*) = Etf*7(x.-), (B.44) 
< = 7 

then the polynomial yn(() = Cn+iC" + ■ • • + ci tnat minimizes the sum of squared residuals 

[y»(£0 - pi(Xi)}2 for i = j,j + 1,..., k is given by 

Cl 

Cn+l 

k-j + l     Si,o(j,fc) 
Siß(j, k)     S2,o{j, k) 

Sn,o(j, k) 
Sn+i,o\j, k) 

5„,o(j,fc)      Sn+l,o{j,k)     •••       S-2nß(j,k) 

-1 

. 5„,i(j,A;) 

(B.45) 
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The optimal polynomial fit for i = j, j + 1,.. •, k + 1 is the same as above, with the accumu- 

lators updated as follows: 

SM(j,fc + l)   =   5M(j.fc) + C£fi^(x*+i)- (B-46) 

So for a line, these last set of equations imply that successive fits can be computed in 0(c) 

time given the previous one. 

There is a problem when computing &,*, which in general takes 0(k - j + 1) calculations. 

The way around this is to locally approximate the function P/[x(C)l bY nttm§ the last r 

points to a quadratic function a3(
2 + a2( + a,. The approximation for the error is given in 

closed form by 

e.k   = min | a3(
2 + (a2 - m)( + ax |, where (B.47) 

Clow — Ck-r+1,     C* — _^Z'     Chigh = S,k   , 

and m and c are the parameters of the line y = m( + c that best fit (£, P;(Xi))tr We use 

estimate |jfc to determine a new breaking point in the line construction. Equation (B.45) 
imply that'the quadratic fit can also be updated in constant time. This approximation of 
£ k is justified by the fact that if the current constructed line is kept close to the function 
PJ(£) within interval \j,k], then a local quadratic approximation over the reduced interval 
[fc _ r + l, k] is even closer, meaning £,-,* is almost equal to the true value. 

Algorithm for Segmentation with Chebyshev Pre-Smoothing 

It has been shown by this point that our proposed segmentation procedure of Pi[x{Q] can 
be obtained with 0(m) operations. Given a selection of n, the function P„[x(C)] (later 

economized into a polynomial of degree / < n) can be computed in 0{nm) time by using 
Chebyshev polynomials. Hence, the entire segmentation of a scan profile can be accomplished 
in 0{nm) operations, which is linear in the number of data points. Segmentation with 

Chebyshev pre-smoothing is summarized as follows: 
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Algorithm Fit a chain of segments to a list of points 

Input: 
a list of pixel points L = (xp,yp)™0, 
the sensor model parameters {b,d,h,cx,cy} (see Appendix B.l.l), 
a constant integer n -the maximum degree of the polynomial fit, 
the variance a2 of the peak detection process in the sensor, 
an economization proportion factor 0.75 < p < 1.0, 
the segmentation precision r ~| d |, 
a window size r -the scope of the local quadratic estimation 

Output: a list of line paramters S = (m, c)j 
1. Compute (C»,^)^ fr°m {

X
P,VP)?=O according to equations (B.36) 

and (B.37). Compute the approximation nodes Xi — cos(^Tn) 
for i = 1,..., m ( the zeros of the mth Chebyshev polynomial). 

2. Compute the polynomial approximation v = Pn[x(Q] Wl^ equa- 
tions (B.41) and (B.42). Use transformation (B.43) if internodal 
evaluations of the function are required. 

3. Compute the economization P/[x(C)] DY selecting the minimum 
value of / that keeps a proportion p of the evaluations Pi(xi) within 
an error of | 2d • a \. 

4. Initialize j = 1, and k = 2. 
5. If k = m terminate the algorithm, else fit a line y = m( + c to 

(&, Pi(Xi))i=j using equations (B.45) and (B.46) to compute the 
linear fit and the local quadratic approximation of scope r. Use 
equation (B.47) to approximate £,■,*. If £,,£ < r then increment k 
by one and repeat the previous step. If not continue. 

6. Store line (m, c) in list <S, and make j = k and k = k + 1. Go back 
to step 5. 
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Appendix C 

Pattern-Tracking in an Image 
Sequence 

This appendix presents a method to track moving non-rigid objects, with emphasis primarily 
placed on the vision aspects. The algorithm was implemented and some basic experiments 
were performed with a stationary camera. It is hoped that these techniques can be further 
developed and eventually incorporated into the autonomous observer. 

The method is based on a comparison between a model and an image, and the comparison 
function employed is the partial Hausdorff distance. The model and the image are bitmaps 
extracted from a sequence of gray-level images. The target's motion in the image is decom- 
posed into two parts: a two-dimensional motion, corresponding to the change in the target's 
position in the image space, and a two-dimensional shape change, corresponding to a new 

aspect (viewing direction) of the target. 

C.l     Introduction 

The target tracking problem has received a good deal of attention in the computer vision 
community over the last years. Several techniques have been reported in the literature, and 
a variety of features have been proposed to perform the tracking. 

Some methods attempt to track 3-D objects by using multiple views [28]. Others use contours 
as features to perform the tracking [8, 27, 66]. Some contour methods use curve characteriza- 
tion [64] and active contours [20] to handle object deformations. Other approaches use either 
color information [79] to facilitate the tracking, or a combination of regions computed by 
color segmentation and contours [78]. Finally, some techniques identify motions by detecting 
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variations of some global characteristic of the image such as texture or statistical invariants 
[67]. 

We developed a method based on a comparison between a model and image. The model 
and the image are bitmaps extracted from a sequence of gray levels images using a edge 
detector similar to [15]. The input data are handled as an array of binary elements, where 
the characteristic pixels (nonzero points) belonging to edges in the model and image are not 
required to be concatenated. The partial Hausdorff distance is used in order to measure the 
resemblance of the image with the model [36]. 

C.2    The Target Tracking Method 

This appendix describes a method to track moving non-rigid objects. The method is based 
on the assumption that the motion of a non-rigid object in three dimensional space can be 
characterized using a two-dimensional representation. 

The target's motion in a two-dimensional representation (image) can be decomposed into 
two parts: 

• A two-dimensional motion in the image, corresponding to the change in the target's 
position in the image space. 

• A two-dimensional shape change, corresponding to a new aspect of the target. 

The tracking is done using a comparison between an image and a model. It is possible to 
represent the model and the image with two binary arrays, where the (i,j) element in each 
array is 1 if it corresponds to an edge, or 0 otherwise. Figure C.la shows the original gray 
level image, and Figures C.lb and C.lc show the edges of both the image and model. 

To reduce the number of operations, and consequently the time of computation, it is neces- 
sary only to search the model in a region contiguous with the target position in the previous 
frame of the sequence. This assumes a bound on the target's speed that guarantees that the 
target's new position lies inside the region of examination. We also assume a known initial 
target position, and that the shape of an object does not change significantly between two 
successive frames of an image sequence. 

C.3    Comparing the Image with the Model 

To measure the resemblance of an image with the model we use the partial Hausdorff distance. 
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Figure C.l: (a) Original gray-level image. (6) Edges of original image, (c) Edges of model. 

Given two sets of points P and Q, the Hausdorff distance is denned as (see [36]) 

H(P,Q) = max(h{P,Q),h(Q,P)) 

where 
h(P,Q) = max min || p - q 

v peP  q€Q 
(C.l) 

and || . || is some norm for measuring the distance between two points p and q. The function 
h(P,Q) (distance from set P to Q) is a measure of the degree in which each point in P is 
near to some point in Q. A small value of h(P, Q) implies that every point in P is close to a 
point in Q. The Hausdorff distance is the maximum among h(P, Q) and h(Q, P). Thus the 
Hausdorff distance measures the degree to which each point of P is near some point Q and 

vice versa. 

By computing the Hausdorff distance in this way we obtain the most mismatched point 
between the two compared shapes; consequently, it is very sensitive to the presence of any 
outlying points. For that reason it is often appropriate to use a more general rank order 
measure, which replaces the maximization operation with a rank operation. This measure 

(partial distance) is defined as: 

hk = Kl\pvam\\p-q (C.2) 

where K*Pf{p) denotes the K~th ranked value of f(p) over the set P. That is, if we consider 
the points in P to be in sequence ordered by their values f(pi) < ... < f(pn), the K 
element in this sequence, f{pK), is the K~th ranked value.  For example, the n.th ranked 
value is the maximum (the largest element in the sequence), and the n/2-th ranked value 

is the median. 
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One interesting property of the Hausdorff distance and the "partial distance" is the asym- 
metry inherent in the computation. The fact that every point of P (or subset of P) is near 
some point of Q says nothing about whether every point of Q (or subset of Q) is near some 
point of P. In other words, hkl(P, Q) and hk2(Q, P) can attain very different values. In fact 
each one of the two values give different information. 

The term hki(P,Q) is the unidirectional partial distance from the model to the image, and 
hk2{Q, P) the unidirectional partial distance from the image to the model, where P = Mt is 
the model and Q = It is the image or region of the image given in at t time of one sequence. 
The maximum of these two values defines the partial Hausdorff distance. 

C.4    Finding the Model 

The first task is to define the position of the model Mt in the next image It+i of the sequence. 
The search of the model in the image (or image's region) is done in some selected direction. 

The minimum value of hki(Mt,It+i) identifies the best "position" of Mt in It+U under the 
action of some group of translations G. It is possible also to identify the set of translations of 
Mt such that hkl(Mt, It+i) is no larger than some value r; in this case there may be multiple 
translations that have essentially the same quality. However, rather than computing the 
single translation that gives the minimum distance or the set of translations, such that its 
corresponding hki is no larger than r, it is possible to find the first translation, such that its 
associated hki is no larger than r, for one search direction given. 

Although the first translation which the associated hki(Mt, It+i) is less than r, it is not 
necessarily the best one. When r is small, the translation should be quite good. Besides 
in the updating of the model (in order to renew the shape's change of the model), it is 
also possible to correct its position, thus reducing the induced error. This is better then 
computing the set of all valuable translations; hence, the computing time is significantly 

less. 

In order to compute the term 
mm \\p-q 

of (C.2), it is necessary to compute the distance from any position i, j in the image Q to 
the nearest nonzero point in this image. As the model is superimposed on the image, it 
computes the minimal distance between the model points (nonzero pixels) to the points in 
the image (also nonzero pixels). This distance has been referred to as a distance transform, 
because it gives the distance from any point p to the nearest point in a set of source points 
Q. It has also been called the Voronoi distance of Q by analogy to Voronoi diagrams, which 
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specify the locations equidistant from two or more points of a given set. 

C.4.1    The Voronoi Distance Dq(i,j) 

There are many methods of computing the Voronoi distance or an approximation of it [9], 
[19]. We use an algorithm similar to [59], which produces distance transform values that are 

exact up to machine precision with respect to some norm of the distance. 

This algorithm first processes each row independently. For each row of Q(i,j), it calculates 
the distance to the nearest pixel in the row; for each (ij) it finds At such that Q(i+Ai,j) ^ 0 
or Q(i - AiJ) ^ 0 and that Ai is the minimum nonnegative value for which this is true. It 
then computes the distances to the nearest pixel in each column in the same mode. 

To reduce the number of operations, the distance to the nearest point for a given position 
(i,j) is computed by comparing the distances of the possibles point candidates, just in the 
zone determined for the minimum value between the distance to the nearest pixel in the row, 
and the distance to the nearest pixel in the column. A look-up table that depends on the 
distance-norm is used to compute the value of the distances. 

C.4.2    Two Techniques that Decrease the Computation Time of 
the Partial Hausdorff Distance 

The computation of the partial Hausdorff distance as a function of translation can take a 
significant amount of time to run because it considers every possible translation of the model 

until it is finds one for which hk <T. 

The first technique consists of computing the number of points m of the model, which are 
at distance hk > r for a given translation; n is the total number of points in the model. If 
m > n- k-th, it is not necessary to continue scanning the model, in view of the fact that 
it is not possible to have k-th to a distance hk < r; consequently, we can finish the analysis 

for that translation. 

One second technique relies on the order in which the space of possible translations are 
scanned. Assume that the order is a row at a time in the increasing i direction, to superimpose 
the model on the image. Let D'q(+i)(i,j) be the distance in the increasing direction i to the 
nearest location where the Voronoi distance is Dq(i,j) < r. We can use Dq{+i){i,j) to 
determinate how far we would have to move in the increasing t direction to find a place 
where Dq(i,j) < T. The model will translate at this location when m > n - k-th (see [37] 

for more details). 
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Figure C.2: Evolution of model updates. 

C.5    Updating the Model 

Having found the first translation g such that hki < r, we now have to build the new 
model Mt+i by determining which pixels of the image It+i are part of this new model. 
Figures C.2a, C.2b, and C.2c show different model updates. 

The model is updated by using the distance hk2(h+i,g(Mt)) as a criterion for selecting the 
subset of images points It+i that belong to Mt+i. The new model is defined by: 

Mt+1 = {qe It=l I hk2(It+ug(Mt)) < 5}, (C.3) 

where g{Mt) is the model in the time t under the action of the translation g, and S controls 
the degree to which the method is able to track objects that change shape. In practice this 
is done by dilating g{Mt) by an amount 8 in each direction (columns and rows). 6 = 0 will 
cause the tracker to lose an object after several frames, even if the object does not actually 
change due to noise; on the contrary S too large could 'tracking' the background. 

To allow for models that might be changing in size, this size is increased whenever there are 
a significant number of nonzero pixels near the boundary, and is decreased in the contrary 
case. The model's position is improved according to the position where the model's boundary 
was defined. 

The initial model must be computed with a different method because there is no previous 
model. The user specifies a rectangle in the frame that contains the model (see Figure C.3), 
and one image of the background is taken without the model. 

All of the points belong to the background image, and those not in the model are eliminated 
to obtain a initial model without noise. It is assumed that the camera does not move between 
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Figure C.3: Initial model 

the two images. 

With this initial model the tracking is begun, iteratively finding the new position of the 
target and updating the model. The tracking of the model is successful if 

fcl >fM\hkl(Mt,It+i) <r (C.4) 

and 
k2>fI\hk2(Iw,g(Mt))<8, (C5) 

in which fM is a fraction of the number total of points of the model Mt and // is a fraction 
of image's point of It+i superimposed to g{Mt). 

C.6    Extensions over the General Method 

The target tracking method presented in this appendix is based in the one introduced in [37] 
and [36]. This section enumerates some of the extensions over the general method. 

• Only a small region of the image is examined to obtain the new target position, as op- 
posed to the entire image. In this way the computation time is decreased significantly. 
The idea behind a local exploration of the image is that if the execution of the code is 
quick enough, the new target position will then lie within a vicinity of the previous one. 
We are trading the capacity to find the target in the whole image in order to increase 
the speed of computation of the new position and shape of the model. In this way the 
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robustness of the method is increased to handle target deformations, since it is less 
likely that the shape of the model changes significantly in a small 5t. In addition, this 
technique allows the program to report the target's location to any external systems 
with a higher frequency (for an application see [6]). 

Instead of computing the set of translations of Mt, such that hki(Mt, It+i) is no larger 
than some value T, we are finding simply the first translation whose hki(Mt, h+i) is less 
than T. This strategy decreases the computational time. However, this technique could 
cause an accumulation of error that induces a tracking drift in a direction opposite to 
the search. It is possible to avoid drifting by resizing the target bounding box once 
its new position is computed, and by reducing the tolerance of the model and image 
mismatch. 

In order to compute the Voronoi distance Dq(i,j), we use an algorithm which produces 
distance transform values that are exact up to machine precision. The algorithm 
structure is the same for any distance metric D[(xi,yi), (2:2,2/2)] that is a function of 
the relative values of the pairs (£1,2:2) and (yi, j/2), is nondecreasing in \x\ — 2:2|, and 
nondecreasing in \yx — y2\ (e.g., city block, chess-board and Euclidean distances). 

C.7    Conclusion and Future Work 

In this appendix we have described a target tracking method that basically consists of a 
comparison between an image and a model. The comparison function employed is the partial 
Hausdorff distance. Several techniques that decrease computation time were presented. 

The basic ideas of our implementation are the following: 

• The image of a solid object moving in space can be decomposed into two components: 
two-dimensional motion and a two-dimensional deformation. 

• The search of the target is done only in a vicinity of the image near to the previous 
target location, instead of the entire space image. 

• We find the first translation for which unidirectional Hausdorff distance hki(Mt, It+i) 
is satisfied. 

This method was implemented in C and C++, and the code is capable of processing a frame 
in about 0.3 seconds. Processing includes smoothing, edge detection, target localization, and 
model updating for a video image of (160 x 120 pixels) on a SPARC 20. The sequences in 
Figures C.4 show the evolution of the model for a series of gray-level images. 
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Figure C.4: Evolution of the model for a sequence of gray-level images. 
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Figure C.5: Some intermediate results of a real-time target tracking experiment. 

Figure C.5 shows the results of one of our tests. The sequence is composed by different 
snapshots of a target tracking experiment executed in real time. The images correspond to 
the tracking of a person's head, which is enclosed in each image with bounding box. 

In terms of adding functionality to the system, there are several possible extensions: 

First: we are extending the algorithm in order to handle different models (different views) 
of a single target. The objective is to improve robustness toward changes in shape, and to 

allow target recovery in case of loss. 

Second: we plan to study image preprocessors that would enhance those image features that 

are appropriate to our method. 

Third: currently the user specifies the location and size of the feature in the initial frame to 
specify the model to track. We would like to explore the possibility of an automatic feature 
identification system. This system should use several attributes of the image (such as color, 

texture, shape) to select the initial model. 
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