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Abstract

The semiconductor laser diode offers a unique system to investigate nonlinear

dynamics when optical feedback is applied. Although there is extensive research of

laser diodes with optical feedback from normal dielectric mirrors, very little has been

done experimentally to analyze the effects of degenerate phase conjugate feedback

from a BaTiO3 crystal. This research experimentally investigated the dynamics of

a single-mode laser diode with weak phase conjugate feedback using both the self-

pumped and double phase conjugate geometries. The experimental results validated

a mathematical model which numerically evaluates the Lang-Kobayahsi coupled dif-

ferential equations. The model simulated the nonlinear behavior of a laser diode

subject to phase conjugate feedback and produced simulated RF and Fabry-Perot

spectra of the laser output. Model and experimental results showed frequency lock-

ing between the relaxation oscillation and external cavity frequencies and changes

in the relaxation oscillation as a function of cavity length. Resonant behavior in

the feedback strength necessary to undamp the relaxation oscillation frequency as a

function of the cavity length was also captured experimentally and numerically. Val-

idation of the model and experimental results presented in this research significantly

contribute to the understanding of the nonlinear behavior of a laser diode subject to

optical feedback.
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Experimental Investigation of Nonlinear Dynamics in Single Mode

Semiconductor Laser Diodes with Phase Conjugate Feedback

I. Introduction

Injecting feedback into a stable oscillator is well known for causing the oscil-

lator to behave nonlinearly. In particular, a laser diode's response to feedback has

been shown to include highly dynamical and even chaotic behavior in its output. The

process by which this nonlinear behavior evolves in the laser is not well understood

and is the subject of this research. This dissertation examines a semiconductor laser

diode entering into a chaotic state brought about by the application of phase conju-

gate feedback. The investigation was performed both numerically through computer

modeling and experimentally using two different methods of phase conjugate feed-

back; self-pumped and double phase conjugate geometries. This document starts

with a brief discussion of why the Air Force is interested in chaotic laser diodes

with phase conjugate feedback and continues with an in-depth description of the

theory of phase conjugate feedback along with the analysis of nonlinear behavior

used throughout the research. This is followed by a discussion of the computer mod-

els used in the research and experimental descriptions of the two different types of

phase conjugate geometries investigated. The final section reviews the results of the

experimental and model outputs and draws conclusions from the research.

1. 1 Overview

In typical optical systems using laser diodes, the laser is optically isolated from

the rest of the system to prevent feedback from unwanted optical reflections. Optical

feedback, even minute amounts in semiconductor laser diodes, on the order of -40 dB

1



can easily cause the laser to enter into a chaotic state which alters the single mode,

single frequency properties of the laser, thus affecting the precise control of the laser

in typical applications such as coherent communications and compact disc players.

In contrast, the Air Force and other agencies are investigating methods of

exploiting the output of a laser diode intentionally placed in a chaotic state (14)(21).

It is envisioned that the broadband and nearly random, but deterministic, output,

characteristic of a laser in chaos, will provide the framework for a new generation

of secure communications for air-to-air and ground-to-ground networks. It is this

novel application that forms the underlying motivation for this research. A complete

understanding of this dynamical process inside the laser diode and the coupling to its

external cavity providing the optical feedback must be established in order to fully

utilize the chaotic state of a laser diode. Theoretical modeling and experimental

work have been conducted by the Air Force and civilian institutions on laser diodes

intentionally placed in a chaotic state by optical feedback from conventional dielectric

mirrors, commonly referred to as normal feedback (15) or through the use of optical

injection (14). Only recently has work been done to understand the role of phase

conjugate feedback on chaos (26) (2). Research conducted under this effort provides

vital details for understanding the onset of chaos caused by phase conjugate feedback

from the self-pumped and double phase conjugate geometries.

1.2 Introduction to Chaos

What is Chaos? When a system is said to have chaotic behavior, what kind

of behavior does this entail? In terms of a system's response, chaos can be defined

as aperiodic long-term behavior of a system whose deterministic outcome is highly

sensitive to initial conditions (19)(13). In other words, small perturbations to the

initial conditions can cause dramatically different outcomes in a chaotic system.

The field of study of this complex behavior is called nonlinear dynamics where a

nonlinear system is one whose dynamical variables describing the properties of the

2



system (position, velocity, acceleration, population, amplitude, etc.) evolve in a

nonlinear fashion.

For the laser cavity and specifically for the laser diode, chaos can be achieved

by applying optical feedback into the laser cavity. The interference of the interior

optical fields with the delayed externally injected fields causes the laser output to go

through a series of changes which are dependent on the amplitude and phase of the

optical feedback. With extremely small amounts of feedback the laser can overcome

the effects of the feedback and its output remains consistent with a solitary laser.

However, at a critical level of feedback, the stable laser output will change to a

periodic pulsed output and finally to an aperiodic, or chaotic, output. This migration

in the output is easily shown in a bifurcation diagram which plots amplitude or

intensity output against feedback level.

Figure 1 shows a typical bifurcation diagram of a fictitious system. In this

simple example, the output could be the normalized power output of the laser mea-

sured at regular time intervals as the feedback is increased. Initially at low feedback

levels, the laser output is stable with a solitary lasing frequency Uw1. At this point the

feedback is too weak to affect the laser and so the output and the system remains

stable, area A. As the feedback level is increased, a Fold bifurcation occurs and the

laser hops to another external cavity mode. The laser continues to remain stable,

however, it now lases at a slightly different frequency W2. The effect of increasing

the feedback in region B now increases the solitary laser output amplitude shown as

the increasing solid line for area B. Further increases in feedback eventually causing

a Hopf bifurcation to occur and the output amplitude begins to oscillate between

two values as shown in area C. In this region the relaxation oscillation frequency

of the system is undamped and the output is pulsating at this frequency. Further

increasing the feedback causes the output to go through another Hopf bifurcation

creating two additional branches. Additional increases in the feedback cause more

bifurcations as the period of oscillation doubles (commonly called period doubling).

3



Period Doubled
Periodic Output CHAOSOutputCHO

Stable Output, different
lasing frequency, 0 2

-- Hopf
Bifurcation

44 Fold Bifurcation

-- Stable Ouput Region

A Lasing Frequency co

low Feedback Level high

Figure 1. A typical bifurcation diagram showing the sudden abrupt changes in the
behavior of a fictitious system as the feedback is increased. The shaded
area denotes the area of chaotic behavior. The output axis can be any
measurable change in the laser diode system such as output power, bias
voltage, bias current, etc. The letters correspond to spectrums shown in
Figure 2
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Finally, after an infinite number of period doubling bifurcations, the output becomes

chaotic, denoted by the shaded region in area D of Figure 1. The frequencies cre-

ated by the period doubling bifurcations can easily be seen in the system's output

spectrum. Figure 2 shows how the spectrum of this fictitious system changes as the

feedback is increased.

Frequency Spectrums for Various Feedback Levels

in the Bifurcation Diagram

A B
0)1 0

- I

Frequency

C D
(t)2 0)2

-vR-vR/2 0 vR/2 v 1  -VR v 1R/2 o v./2 v.

Figure 2. Frequency spectrum of the fictitious system shown in Figure 1. (A) Stable,
solitary output at wi, (B) New stable lasing frequency W2, (C) Periodic
output where the relaxation frequency has undamped and period doubling,
(D) Chaotic output after an infinite number of period doublings.

In this particular example the process leading to chaos is described as a period-

doubling route because the period of oscillation doubles after each bifurcation. The

period doubling route is common in semiconductor laser diode experiments with

optical feedback and extremely short external cavities (<1 cm). However, other

quasi-periodic routes have also been seen (18). Quasi-periodic behavior describes
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the condition when a second frequency emerges from the Hopf bifurcation and the

ratio of this new frequency to the previous frequency is not rational.

To illustrate a few of the key terms associated with chaos, consider a simple

one-dimensional system dX/dt = f(X). Fixed Points for a system are values X such

that f(X,) = 0. To examine the behavior of the system, we apply a Taylor series

expansion to the equation of motion around the fixed point X = X,

f(x) ff(Xo) + (XXo)dx + o, dX2

1 3 d
3f

+6(X-Xo) dX+.. (1)

where the derivatives have all been evaluated at the fixed point X = X,. If we let

x = X-X, and by definition f(X,) = 0 and keep only the first term of the expansion

(a valid assumption of a well-behaved linear system), Eq. (1) can be rewritten as

f(X) - df X (2)

dX 2

dx _ df(Xo) (3)

dt dX

for which the solution is
X(t) = (O)e (4)

where

A df(X ° ) (5)
dX

is the Lyapunov exponent or characteristic value of the fixed point. It is the Lyapunov

exponent that determines the behavior of the system. For this system, A has three

possible values (13:79):

1. A < 0; The fixed point is a node and attracts nearby trajectories (stable).

2. A > 0; The fixed point is a repellov which repels nearby trajectories (unstable).
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3. A = 0; The fixed point could be a node, repellor or saddle point. It is necessary

to look at both the first and second derivatives of x(t) at the fixed point to

determine which case is applicable. For a node, the second derivative changes

from positive to negative. The opposite occurs for a repellor for A = 0. Saddle

points require the second derivative of x(t) to be the same sign on both sides

of the fixed point.

In two dimensional (and higher) systems, i.e., systems with two or more inde-

pendent variables, the eigenvalues can include a complex conjugate pair of eigenval-

ues A1,2 = R ± iQ, where both R and Q are real. When A is complex, Eq. (4) can

be rewritten to see the effect of the real and imaginary parts of the eigenvalue

x(t) = x(0)eRtlf{e 1 °it} (6)

= x(0)eRt cos(Qt) (7)

We see that the trajectory oscillates at frequency Q and is either damped or amplified,

depending on the sign of R. For R > 0, the trajectory is repelled and is unstable and

when R < 0, the trajectory is attracted to the fixed point and is stable. When the

real part of the eigenvalue is 0, the system becomes purely periodic which results in

a trajectory that forms closed loops, or cycles, around the fixed point. Figure 3 is a

phase plot of a simple harmonic damped oscillator created by plotting x(t) versus the

velocity, dx/dt, to show the behavior of the trajectories when A is complex. Table 1

summarizes the behavior of the system for the different eigenvalue possibilities.

Table 1. Summary of the behavior of trajectories due to different eigenvalues.
Eigenvalue, A Behavior

Real, Negative Stable Node
Real, Positive Unstable Repellor
Complex, Negative real part Spiral, attracting stable focus
Complex, Positive real part Spiral, repelling unstable focus
Complex, Real Part = 0 Limit Cycle

7



t
(a)

t

dx/dt t (b)

x(t)

(c)

Figure 3. Phase plots of trajectories of a simple harmonic damped system which
has a complex conjugate pair of Lyapunov exponents. The fixed point

for this system is shown by a '+' and the direction of increasing time
is shown by the arrow. (a) periodic behavior for a real part = 0, (b)
attracting behavior towards the fixed point when the real part < 0, and
(c) the trajectory repels away from the fixed point out to the limit cycle
or spirals into the limit cycle when the real part > 0
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According to the Poincar-Bendixson Theorem, there are only two possible

outcomes for the trajectory of a two-dimensional system with complex eigenvalues

(13:104):

" The trajectory approaches a fixed point of the system as t -* oc. (Figure 3b)

* The trajectory approaches a limit cycle as t --+ oc. (Figure 3a, c)

The impact of this theorem is that in order to have chaotic behavior, the system

must be of dimension three or higher since the outcome of two-dimensional behavior

is determined by the Poincar-Bendixson theorem (13).

An excellent example of a two dimensional system is the solitary Class B laser

(one without feedback). This system can be modeled as a simple two-level system,

as shown in Figure 4, with the usual pumping rate, Rp, stimulated transition coef-

ficients, B 21 and B 12, and the spontaneous transition rate, A21. The populations of

levels 1 and 2 are NI and N 2, respectively, and P is the number of photons. The set

of coupled differential equations describing the population difference between levels

1 and 2, AN= N 2 - N1 are

dAN -2BANP + 2A 21(N -/AN) (8)

dt
dP - BPAN- YP (9)
dt

where B 1 2 z B 21 = B, NV = (Rp/A 2 1 - 1) N 1 is the unsaturated population of level 2

without stimulated emission (P = 0) and 'y is a net loss of photons in the cavity due

to various loss mechanisms such as absorption and scattering.

At the steady state condition we find that there are two fixed points:

#1: AN=N, P=0

#2: AN=-/B , P=A2 (V/Y-1/B)

9
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Figure 4. Simple two-level laser system showing the pumping Rp to level 2, spon-
taneous emission rate, A21, stimulated emission, B21, and stimulated ab-
sorption, B 12.

and the associated Jacobian matrix for the eigenvalues is

-2A2- BP -2BAN(10

BP BAN -

When the Jacobian is evaluated at fixed point #1, two eignenvalues can be found

A,1 2A 21

A2  BN- y

Since A 2 1 is never negative, the first eigenvalue is always negative. Because we have

no emission from the laser at P = 0, the losses, 7, are greater than the stimulated

10



emission. Thus the second eigenvalue is also always negative for this fixed point.

Since both eigenvalues are negative and real, fixed point #1 is a stable node and

describes the trivial case of the laser operating below threshold. However, as the

laser approaches the threshold condition, A2 becomes less negative and equals zero

precisely at threshold since at this point the gain equals the losses. At this precise

condition, fixed point #1 actually becomes unstable as the laser crosses the threshold

condition. As we shall see, this unstable condition is counteracted by fixed point #2

which becomes stable as the threshold condition is reached and the laser operates in

a continuous-wave (c-w) mode, as will be shown below.

Evaluating the Jacobian at the second fixed point, we find a complex conjugate

pair of eigenvalues

1±~z -- B2- 2  A21( 1  (11)

Taking the Nd-YAG laser system as an example, Table 2 lists typical values for

the parameters. From the table, it is easily shown that (2-y)/(A 2 ) (B/y 1) >

B 2N 2/-y 2 so the eigenvalnes can be simplified to

-RN 2-y (BN\
A± __ A2 1 (12)

For lasing, the gain is always larger than the losses, BNV > 'y, so the term under the

radical is positive. Thus for this case, fixed point #2 is a stable spiral node since

the two eigenvalues have negative real parts and non-zero imaginary parts. Figure 5

shows a graphical view of this fixed point.

Table 2. Examples of typical parameters for a Nd-YAG laser system.
A 21 = 10 - 4 sec - 1

V = 7.33 * 1018 /cm 3

-= 0.99 cm- 1

B 2.7 - 8.8 * 1019 cm 2 / sec

11
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Figure 5. Graphical depiction of the time evolution of the Nd-YAG two-level laser
system showing the spiraling convergence to a limit cycle around fixed
point #2. Initial conditions are BP/A21 = 0.1 and BAN/fy = 1.
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As seen in this figure, the damped periodic behavior towards the steady state

output value is the relaxation oscillations. It is clear from this simple example that

a system with only two degrees of freedom cannot reach chaos since the relaxation

oscillations are always damped and no mechanism exists to cause them to become

undamped. Therefore a third degree of freedom is necessary, such as optical feed-

back, for chaotic behavior to develop as stated previously by the Poincar6-Bendixson

Theorem.

1.3 Phase Conjugating Mirrors (PCM)

To provide the required third degree of freedom, feedback can be applied to a

laser diode by several different methods including electrical modulation of the bias

current and injecting optical feedback into the laser cavity. In particular, for this

research a phase conjugating mirror is used in order to examine the unique effects

of the external cavity formed by the laser diode and the feedback mirror. PCMs

are unique in that they reflect (produce) a phase conjugate beam which retraces

the exact path and phase front of the input beam. Distortions and changes induced

by optics in the path are "un-done" by the conjugate beam as demonstrated by

Figure 6. Therefore at any point along the optical path the phase front of the

conjugate beam is identical to that of the original beam. The two types of PCMs

used in this research are created by a BaTiO3 crystal that is either self pumped or

double pumped. Figure 7 shows a schematic view of the two configurations used.

The self-pumped CAT geometry shown in Figure 7 is the easiest configuration

for establishing a conjugate signal; however, it has the disadvantage of having the

reflectivity depend solely on the intensity of the input beam, S1. So for low feedback

levels, the input beam must also be reduced resulting in the reduction in the strength

of the holographic grating formed in the crystal. But this slight disadvantage is

greatly out-weighed by the fact that this configuration is easy to implement in the

lab and has a large range of incident angles that can produce an adequate conjugate

13
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Figure 6. The reflected beam of a phase conjugate mirror retraces its original path,
self-correcting any distortions caused by optics. The lower trace shows a
beam reflected from a normal dielectric mirror which further distorts the
wave-front after being reflected.
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Figure 7. Two different methods of establishing a phase conjugating mirror used in
this research. (a) Self-pumped CAT geometry. (b) Double-phase conju-
gating mirror (DPCM).

signal. Garret et al showed that a range of incident angles, with respect to the c-axis,

of 150 - 750 can produce reflectivities as high as 40% in BaTiO 3 at a wavelength of

514 nm with the optimum incident angle of 29.1' (8). The CAT geometry also

suffers from a relatively slow rise time for the conjugate signal to reach 90% of its

steady state value. Hengst measured this rise time to vary between <0.5 second to

tens of seconds, depending on the incident intensity and angle of beam S1 (12:22).

However, the onset time to establish the mirror is not critical for this research. An

investigation of the dynamic response time once the mirror is established and its

effect on the laser dynamics forms a part of the present investigation.

The transmission grating double phase conjugate mirror (DPCM) configuration

in Figure 7b offers the advantage of having two phase conjugate signals to use as a

15



feedback signal to the laser diode and has a faster onset time than the CAT geometry.

When only one conjugate signal is required for feedback, the second beam can be

blocked with a high quality optical isolator placed in one of the input legs. Weiss et

al showed that in BaTiO 3 the ratio of the conjugate intensities is equal to the ratio

of input intensities (28)
IA(out) I(in) (13)
IB(out) IA(in)

If IA(out) is chosen as the feedback signal, this configuration also allows control

of the conjugate return without adjusting the input intensity IA(in). Now the re-

flectivity of the conjugate mirror, RpcM, defined as the ratio of the output intensity

to the input intensity, is proportional to the second input beam, RPCM xc IB(in).

This allows adjustment of the reflectivity without affecting the input beam IA(in).

In addition, this conjugate mirror may also be established using a reflection grating

DPCM configuration. However, current research shows that the reflection grating

configuration is harder to implement, and may not offer the reliable control of the

conjugate signal required for the experiments.

Table 3 summarizes the dependencies of RpcM and the controlling parameters

used in the experiments. For each configuration, the resultant "reflected" E-field can

be described as a modified conjugate of the input field

t*(t) = RpcME*(t) exp{i(wt + ObPcM)} (14)

where E*(t) is the complex conjugate amplitude of the input beam, W is the angular

optical frequency, and OPCM is a phase shift of the conjugate beam relative to the

probe beam. For photorefractive materials, such as BaTiO 3, the conjugate beam is

in-phase with the probe beam, therefore OPCM = 0.

As a starting point for developing the theory, the next chapter review the

derivation of the rate equations describing the laser diode system without feedback.

The phase conjugate term discussed earlier in this section is then applied to the

16



Table 3. Listing of the two different phase conjugate mirrors and their controlling
parameters used in the research.

Mirror Configuration Controlling Parameter Dis/Advantage
CAT RpcM c< S1  Reflectivity values High but

dependent on input beam.
Easy alignment.

DPCM RpcM o IB(in) Reflectivity values Low but
can be varied with constant signal
beam.

solitary rate equations to establish the three coupled, time-delayed, rate equations

necessary for chaotic development. The theory section is then followed by a brief

discussion of the two computer models that numerically integrate the set of nonlinear

equations. The models are then used as a tool to analyze the experimental data. The

remainder of the dissertation encompasses the experimental descriptions, experimen-

tal results and finally, comparisons between the model and analytical predictions and

the experimental results.
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II. Theory of Nonlinear Dynamics for Phase Conjugate Feedback in

Laser Diodes

Semiconductor laser diodes are extremely sensitive to external feedback due to

the low reflectivities of their output mirrors (facets). The low reflectivity allows even

minute amounts of feedback into the gain region of the laser diode which can cause

the diode to enter into a state of chaos. Optical feedback can be established by two

methods, conventional feedback (CF) and phase conjugate feedback (PCF). There

has been extensive research investigating conventional feedback with normal dielec-

tric mirrors both analytically (22)(23) and experimentally (16)(30). In this research,

phase conjugate feedback is used for the study of nonlinear dynamics for its relative

ease of implementation and its unique characteristic phase and frequency locking

of the feedback signal not found in other types of feedback. In contrast to PCF,

CF requires precise alignment and focusing of the feedback beam and vibrations in

any of the optics can induce random phase variations in the feedback beam which

randomly excite various external cavity modes. Published literature on the study

of laser diodes with PCF has focused on either computer models that show chaotic

behavior (11) or experimental observations of chaotic behavior with PCF (17). How-

ever, there is a definite lack of published material that validates computer models,

and analytical approximations, with experimental data. Another unique aspect for

using phase conjugate feedback, is that there is no conjugate feedback counterpart

in electrical or mechanical feedback systems previously studied in chaos.

The theory of phase conjugate feedback begins with a description of the rate

equations for the dynamics inside the laser cavity followed by the inclusion of the

phase conjugate feedback term. Figure 8 shows a diagram of the different components

developed in this section. The laser cavity on the left emits photons into the external

cavity which are then partially retro-reflected back towards the laser cavity from the

phase conjugate mirror. These reflected photons reach the exit facet of the laser with
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Figure 8. Diagram of the optical fields in the laser diode and an external phase

conjugating mirror.
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a portion re-entering the laser cavity and the rest being retro-reflected back into the

external cavity for another round trip. This interface at the laser and external cavity

sets the boundary conditions for how the E-fields interact and how the gain medium

is altered in the laser cavity. The change in optical gain is the mechanism that drives

the laser into chaotic development. Once a complete description of the fields inside

the laser cavity is developed, a linear stability analysis is performed to determine

operating regions and feedback levels where the laser diode may go chaotic.

2.1 Development of Rate Equations Without Feedback

The two rate equations that are of primary concern for laser diodes are the

electron-hole pair number, N(t), and the optical field, f(t). Starting with N(t), Ya-

mada developed an equation which adequately depicts the dynamics of the electron-

hole pairs in the gain region (29):

0N = DV2N +  - -±(N) (15)

19t ed

where N(t) is the number of electron-hole pairs and DV2N accounts for the diffusion

of carriers in the gain medium (D is the diffusion coefficient). Diffusion of carriers can

be considered instantaneous (< 1 ps) on the time scale of the carrier lifetimes which

are typically -1 ns, and therefore can be neglected in the case of semiconductor

laser diodes. The rate equation also includes the addition of carriers in the active

region of length d due to an applied pumping current density, J. The last term,

7Z(N), is the lump sum rate (#/sec) of all loss mechanisms of electron-hole pairs

which include both stimulated and spontaneous emission,

7(N) = R,,(N, P) + N (16)
TN

Here TN is the electron-hole carrier lifetime and accounts for all spontaneous emission

and non-radiative recombinations. The stimulated radiation rate, Rst(N, P), is a
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function of both the electron-hole pair number, N, and the laser cavity photon

number, P. The photon number is a dimensionless quantity and represents the

magnitude of the normalized electric field with the energy of a cavity photon, hw,

such that P = JE12. Furthermore, the loss of a carrier pair, 6N = -1, leads to

the creation of a photon, 6P = +1. Van Tartwijk et al showed that the stimulated

emission rate can be written as (27)

R8t(N, P) = vgg(N)P (17)

where v. is the group velocity of the longitudinal mode inside the laser cavity and

g(N) is the electron-hole dependent gain coefficient. Based on numerical calculations

one can expand the gain coefficient around the threshold value, keeping only the

lowest two terms such that

g(N) = g(Nh) + 0 (N - Nth) +... (18)
aN

where g(Nth) is the threshold gain coefficient and Nth is the number of electron-hole

pairs at threshold (27:101). Since the electron-hole pairs are restricted to remain in

the active region and the injected optical field may extend into the adjacent areas

outside the active region, the resultant optical gain of the laser cavity, gopt, is smaller

than g(N)

gopt = F9 (19)

The confinement factor or filling factor, F, describes the fraction of photons that

interact in the gain region of the laser, 0 < F < 1. Upon substitution of Eqs. (18)

and (19) into Eq. (17), the stimulated emission rate can be rewritten as,

R[t vgg(Nth) + Vg-g(N- Nth) P (20)

S[vggPt(Nth) + (N - Nth) p
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- + i± (N -Nth)] P

where Fo = vggpt(Nth) is the total loss rate of photons in the laser cavity (s -1) or

commonly called the inverse photon lifetime, F', and = vgOg/DN is the differential

gain rate. Substituting R(N) and Rst into Eq. (16) yields the expression for the rate

equation for the electron-hole pairs inside the cavity without feedback,

dN(t) -J N(t) [ + (N(t) - Nth)] E(t)l2  (21)
dt e TN I FO

where E(t) is the amplitude of the complex electric field f(t) = E(t)exp(iwt).

Since we are only concerned about the number of carriers above threshold, we can

substitute AN(t) = N(t) - Nth and let p = (J/e)/(Nth/TN) be the ratio of carriers

created by the pumping current to carriers lost. This transforms the electron-hole

rate equation into

dt = (p -1) NF+AN(t) E 2  (22)
TN TN

Development of a similar rate equation for the E-field in the cavity involves

characterizing the gain and loss mechanisms for the active layer in the laser diode

and examining the frequency dependent refractive index. Table 4 lists the primary

loss mechanisms in the laser cavity that are considered relevant in the literature.

The material loss coefficient, omatz, is derived from the imaginary part of the laser

gain medium susceptibility, X, for the unpumped material and represents photons

lost to absorption into the material without a pumping current applied. The second

loss coefficient, oint, is loss of photons due to scattering, with a being the scattering

cross section. The total absorption loss, Cabs, is the sum of the first two coefficients

plus an additional loss of photons due to absorption from the pumped gain medium.

For convenience, the optical gain coefficient of the laser diode cavity, gopt, is the net

gain coefficient in the semiconductor gain medium which incorporates the effect of
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absorption from the unpumped material and absorption due to pumping:

gopt = - - (X + ) (23)
cn

The mirror loss coefficient in Table 4 is the effect due to the laser facet reflectivities,

R 1 and R 2 , distributed over a complete round trip of the internal laser cavity, 2L.

Table 4. The absorption coefficients (cm- ') in an externally pumped FP-resonator
consisting of an active medium confined between mirrors (27:98). X" and41 are the two elements of the total scalar susceptibility in an isotropic

material due to unpumped background material losses and losses due to
external pumping, respectively.

Material Loss Onat = w4X/cn
Internal Loss aint = /ncco

Absorption Loss aabs " mat + aint + WX //p/cn
Mirror Loss cvm, (1/2L) ln(1/RIR2)

To derive the E-field rate equation, we start with the round trip amplitude

gain threshold condition for lasing

g= R1 R2 exp {-2in L - absL} 1(24)

where g is the round trip amplitude gain in the laser cavity, and n =n(N, W) is the

carrier and frequency dependent refractive index of the laser gain medium. Since

(wn(N, w))/c is carrier and frequency dependent, a linear expansion around the

threshold gives

n nthhth th 1 an
c -- c N(N-Nth)+C(nthWth -)(PW Lth) (25)c c c ON Ca

where Nth, nth, and Wth are the electron-hole number, refractive index and optical

frequency at the laser threshold, respectively. Substituting Eq. (25) into Eq. (24)
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yields

g V ILIR2ep 2 ZXj' Cnht + at n (N -Nth)±+(W -Wth)) L - Obsf

(26)

where n. = nth + WthOnl/Ow is the group refractive index for the longitudinal mode

of the laser cavity. Using the mirror loss term from Table 4, this equation can be

re-written in exponential form

g = exp{-a, L} (27)

" exp { i (nthWth + Wthan(N - Nth) + ng(w -Wth))

" exp{-aabsL}

The absorption coefficient, aabs, can also be written as

Oeabs = Oint + (Xo + X j) (28)
cn

= Cint - Yopt

= aint - Fg(N)

where Eq. (19) was used in the last step. Finally, the round trip amplitude gain is

separated into the product of a frequency independent term, g1, and a frequency

dependent term, 9,, such that g 91g, where

91 = exp { ((Fg(N) -it - om)L - 2i Wth On (N- Nth))} (29)

{ = ep 2 i nthCth L -2ig(w - (30)

At threshold, N = Nth, W = Wth, and g = 1, so the term 2nthwthL/c in Q, must be

an integer multiple of 27r and therefore can be ignored. Also, using Tin = 2Ln 9 /c as
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the cavity round trip time, , can be written as

exp{-i(w - Wth)Tin }

exp:}WthTin}exp{-iWTin} (31)

Recognizing that iw in the Fourier domain for a monochromatic field yields d/dt in

the time domain, this may be rewritten as

9, = exp{iwthTin} exp{-Tind/dt} (32)

Two valid assumptions can be made at this time. The first is that the frequency

of oscillation is close to the threshold value, w Wth, and the second is that the E-

field has a slowly varying amplitude for each round trip inside the laser cavity:

] (t) = f (t) expliw~tht} (33)

The field after one round trip in the gain medium is then

+(t -Fin) - !l91 t(t) - 91 exp{iWthTin} exp {-Tind/dt} t(t) (34)

The derivative in the exponential is expanded as a power series,

ex Ec (_Tznd/dt)n-
ep{f-Tind/dt}Et(t) n=O nI E(t) (35)

n=0

= Z n-7-(t - t]n
n0

- t(t - Tin )

which applies a time shift to the E-field such that

25f(t- Tin) (36)
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From the slowly varying amplitude approximation made earlier, the time shifted

change in the field is small and can be approximated by a first order differential:

d(t)E(t -Tin) -- EM t- Tin dt-(7

By substituting the differential approximation in Eq. (37) into Eq. (36), the E-field

time rate of change now becomes

dE(t) _ 1-

dt = -(I - -1)E(t) (38)

Since the gain, 91, is close to unity during lasing, an exponential series expansion

can be applied to the term (1 - 1/91) such that

1 - 1/1 , (rg(N) - aint- a )L - 2 iWth On (N - Nth) (39)
c ON

This result is substituted into Eq. (38) producing the E-field rate equation

dE(t) 1 [ On
dt (Fg( N) - oint - am) L - 2 iL-c ON-AN(t)j E(t) (40)

Substituting for the full expression for Tin = c/(2Lng) and Eq. (18) for g(N) gives

It(t) 1+ O 2 Wth On t
t -2 ( Ig(Nth) - oint - o,) vg + v, AN(t) -i AN(t) t(t) (41)dt 2 ONng ONI

At the threshold lasing condition, the cavity gain is equal to the sum of the losses in

the cavity, and so the first term in brackets vanishes. Recalling that the differential

gain rate is v v9Og/ON, the E-field rate equation can be simply written as

dE(t) - 1 [ 2iWth an] AN(t)E(t) (42)
t 2 2 N
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Finally, the substitution of cz as the line-width enhancement factor
On

c=-- 2w - P (43)cF Og X

as the ratio of the real and imaginary parts of the pump-induced susceptibility, Xp

and X" respectively, the E-field rate equation can be written as:

dE(t) 1
dt -(1 + ioz)FAN(t)E(t) (44)dt 2

Equations (22) and (44) represent the set of coupled rate equations for the semicon-

ductor laser diode without feedback. It should be noted that these equations are

only valid if the E-field undergoes small variations within a round-trip time (- 2 ps)

of the laser cavity. In the next section the necessary feedback terms are added to

account for the delayed phase conjugate feedback from an externally pumped phase

conjugating mirror.

2.2 Rate Equations with Phase Conjugate Feedback

The phase conjugate term stated earlier can be used directly with a slight

modification to account for the time lag between the E-field leaving the laser cavity,

and re-entering the cavity after being reflected from the PCM,

2Lext (45)
c

where Lext is the length of the external cavity formed by the laser and the PCM.

Adding the phase conjugate term to the rate equations gives the full coupled rate

equations for the E-field and electron-hole number inside the laser diode cavity cou-

pled to an external phase conjugating cavity:

dE(t) = I(I + ic)F AN(t)t(t)+ -t*(t -) exp { i2A - (46)

it 21 +{~PCM +12Aw 2
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dAN(t) Nth AN(t) [F (47)dt - (p-1) -t + ± AN(t) I (7
TN TN - +

where the feedback rate, K, describes the rate (8-1) of coupling reflected photons

back into the laser cavity

K -71(1 -R 2 ) (Rpcm) 1/2 (48)Tin \ R2 ) 48

and rio is a coupling loss term. The frequency change in the conjugate beam due

to nondegenerate pump beams (wp) in a nondegenerate four wave mixing phase

conjugate mirror is Aw = wp - w. Since the degenerate case is used in this research,

Aw = 0, but is kept for generality.

As stated earlier chaotic behavior requires systems to have dimension three or

higher. It is convenient to split the complex E-field rate equation into independent

terms for the normalized amplitude P(t) =t(t) 2 and phase 0(t). The final set of

coupled rate equations with feedback are:

dP(t) rTi
dt = F' N(t)P(t)+2rK PMtP(t - T) COS [O(t - T) + 0(t) + q 3pCM + 2Aw(t -2]

(49)
_ 

a r A N (t ) -  P(t-T) sin [(t -T)+(t)+ pcM+2Aw(t -

dt -2 si2i)
(50)

dAN(t) Nth AN(t) r 2

dt (p -"1) + AN(t)] IP(t) 1 (51)dtTN TNT

2.3 Regions of Laser Operation

The roadmap for investigating the nonlinear dynamics of the coupled rate equa-

tions involves finding the steady state solutions, performing a linear stability analysis

and examining the solutions as the feedback level is increased. The eigenvalues for

the system can either be real or a complex conjugate pair. A real eigenvalue that is

identically = 0 (Fold bifurcation) implies that the overall phase of the laser output is

indeterminate which is typical for feedback with a normal dielectric mirror (normal
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feedback). In normal feedback cases, the phase of the laser is strongly dependent

on the placement of the feedback mirror and small variations in the external cavity

length can cause the phase to vary wildly. When a fold bifurcation occurs the laser

is actually mode hopping from one eigenvalue to another giving the appearance that

the laser is exiting chaos to a stable state. For PCF, a real eigenvalue of A = 0

does not occur. It will be shown later that a laser with PCF will phase lock and be

completely deterministic even for small amounts of feedback. For the situation of a

complex conjugate pair of eigenvalues, a Hopf bifurcation occurs when the real part

is equal to zero as it switches from negative (damped) to positive (undamped). The

imaginary part of the eigenvalue gives the new frequency of oscillation undamping

at this instability which amplitude modulates the lasing frequency.

Table 5. With increasing feedback, the laser output can be categorized into five
different levels of chaotic development.

Level I Initial reduction of laser linewidth
Level II Relaxation oscillations become undamped
Level III Excitation of external cavity modes
Level IV Significant broadening of laser linewidth, Chaos
Level V Linewidth narrows and remains narrow for further increases in feedback

The main focus of this research is the dynamics of the laser leading up to, but

not entering, chaotic activity. It has been widely accepted that a chaotic system

can be categorized into five characteristic levels of chaotic development. The first

of these levels, Level I, is identified by an initial reduction in the laser linewidth,

which typically occurs with feedback levels < 0.1% of the laser output. As the

optical feedback in increased, Level II is reached when relaxation oscillations become

undamped and begin to appear in the frequency spectrum. Further increases in the

feedback causes the laser to enter Level III and are marked by the excitation of

external cavity modes. At Level IV, sometimes called coherence collapse or chaos,

the laser linewidth broadens significantly from a few MHz to several GHz. Finally,

Level V is reached when the laser exits out of chaos with a reduced linewidth, similar
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to Level I. Level V is different from Level I in that it needs extremely strong feedback

levels and usually requires the exit facet of the diode to be anti-reflection (AR)

coated to increase the coupling of the feedback beam into the laser cavity. Table 5

summarizes the five levels. In this research Levels I, II, and III are investigated in

detail.

30



III. Mathematical Analysis

The three coupled time-delayed differential equations presented at the end of

the previous chapter are extremely difficult to analyze analytically. This chapter

discusses the mathematical techniques and approximations that are used to find

solutions to the equations. The analytical approximations made in this chapter

will be revisited in the discussion of the experimental results in order to check the

validity of the approximations. In addition to the analytical tools presented here,

two computer models that numerically evaluate the three coupled equations are

introduced in the next chapter.

3.1 Scaling

To perform numerical analysis and computer modeling on the three coupled

nonlinear Eqs. (49)-(51), it is beneficial to carry out a scaling to non-dimensionalize

the equations. The scaling used in this research is the same as Gavrielides et al (9)

which gives:

Time normalization to the photon life time: s= t/Tp

Feedback normalization: q/= Tp

Carrier decay time normalization: T= TNI/P

Field normalization: A = E/VF

Carrier Normalization: N1= lFrANT

The resulting equations with the new normalized parameters are:

da = aN+ a(s- T) COS [0(S - T) + 0(s) + ¢pCM + 2Aw(s - T/2)] (52)
ds

de a(s -)d-s asT - sin [q(s - T) + 0(s) + OPCM + 2Aw(s - T/2)] (53)
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T d = P - N- (1 + 2N)a 2  (54)
ds

where A(s) = a(s)e'O(s), T has been normalized with Tp and P = (p - 1)Nth is the

amount of pumping above threshold. For the experiments, the totally degenerate

condition Aw = 0 is used but Aw is retained here for generality.

3.2 Steady State Solutions

A common technique for examining the behavior of the system is to look in

the steady state where all derivatives can be set to zero and examine the solutions

and the behavior of the system. Substituting the steady state values for a, N and 05:

a=a, N=N8  O=wt+O, (55)

where a,, -N and 0, are all constants and Ci is the angular frequency of the laser

measured relative to the solitary frequency w, yields the solution

C = AW (56)

= 0 for degenerate PCF.

This simple equation indicates that the relative frequency CD is identical to the fre-

quency difference between the pump beam and the solitary laser. In other words, it

shows that the laser locks to the frequency of the pump beam of the phase conjuga-

tor. This condition offers a unique ability of the PCM to adjust the lasing frequency

through adjustments of the pump frequency. A similar adjustment of the laser fre-

quency with normal feedback is not possible. In addition to the frequency locking

condition given above, we also have

= -qv 1 ±a 2 sin(d + arctan(a)) (57)
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where t9  20, + cPCM. This solution imposes phase locking of the laser. Notice

that this solution is independent of T which is also a major change from the case of

the normal mirror. For a normal mirror the phase is a strong function of the delay

time T and therefore minor changes in the external cavity length can adversely affect

the phase. By using phase conjugation, the T dependence is eliminated and Eq. (57)

requires the phase of the laser to lock to a constant value set by the conjugate mirror

JPCM, the material parameter a, and the feedback strength 7. From this equation,

it is clear that the solution for 79 only exists for JC1 < (nv1+ o2), where only

the positive slope is stable. This equality describes the fold bifurcation line in the

(n, c2) plane. Figure 9 shows the graphical solution to Eq. (57) and the saddle-node

bifurcation lines dividing the space into three regions. Points below the straight

lines fall into the region of periodic solutions which have been associated with four-

wave mixing (FWM) solutions. Solutions above the bifurcation lines are the phase

and frequency locked solutions given by Eq. (57). The relevant parameters and a

MathCad' template for the figure can be found in Appendix A.

Taking into account the restrictions given by the inequality, the solutions for

are:

-arctan(a) - arcsin ( a) +2n7 n =0,1,2,... (58)

for the nodes, and

V -arctan(oz)-arcsin( 2 ) +(2n+l)r n=0,1,2,... (59)

for the saddles. These solutions are also shown graphically in Figure 9a.

In addition, the steady state electron-hole number and photon number are

= - cos9 (60)

1MathCad is a registered trademark of MathSoft

33



5

5'
0 2 4 6 8

W(a)

0.01 I I

Fold Bifurcation

Line
0 PL

0\

FWM FWM

-0.02 -0.01 0 0.01 0.02

AdI

(b)

Figure 9. (a) Graphical solution of Eq. (57) showing the stable (x) and unstable
(0) solutions. (b) For a given solution of (1, c), the fold bifurcation lines
can be found as a function of feedback, q}. PL is the phase locked region
and the area below the fold bifurcation line represents unstable periodic
solutions.
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The numerator in Eq. (61) represents the net rate of electron-holes between pumping,

P, and the steady state population difference N8 . The denominator is related to the

stimulated emission gain given in Eq. (21) for emission of photons due to stimulated

emission. The effect of the feedback is to change the threshold gain rate of the laser,

G= 1 - 27 cos '9, with the sign of cos'0 being the dominant factor. In particular, the

threshold gain is reduced for 101 < -/2 with the strongest reduction occurring when

0 = 0 or Aw - ,a. This condition is unique to non-degenerate phase conjugation

where the difference between the pump and probe frequencies can be adjusted to

meet the Aw = -,oa requirement. For example, given typical values of 7 = 0.012

and a = 4, a separation of the pump and probe frequencies by 1.836 GHz would

produce the lowest threshold gain, G = 1-2n. Thus, operating at this point, the laser

with a non-degenerate phase conjugate mirror would extract the optimum gain from

lasing medium since the gain threshold is reduced to the minimum level. Of course,

this also implies that for other phase conjugate configurations where Aw 0 -77a, and

particularly for the degenerate case, Aw = 0, the phase of the laser will not operate

at the point of lowest threshold gain, but rather at a point yielding the smallest line

width (1)(17)(20).

3.3 Steady State Stability

It was stated earlier that the steady state solutions to the coupled nonlinear

equations were independent of T for the phase conjugate case. Although the steady

state solutions may be independent of the external cavity, the stability of these so-

lutions could depend on T. To investigate the sensitivity of the steady state solution

to small perturbations, a linear stability analysis can be performed on the rate equa-

tions by linearizing around their steady state values and assuming a time dependence

of the form exp(sw). The result is a secular determinant equation whose solutions,
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D(s) = 0, yields the time dependent behavior of the perturbation:

D(s) = [Ts + (1 + 2a')][s2 + 2,scos+ +2(l - e- 2s)]

+ 2(P + 9 cos 9)[s + ?7v + & cos(i + arctan(a))(1 + -ST)] (62)

From the fold bifurcation lines in Figure 9, it is easily identified that the fold bifurca-

tion for the totally degenerate case occurs for zero feedback, 7 = 0. Since this point

offers no additional information, it is the Hopf bifurcation point that is of interest

for the dynamics of the laser for degenerate phase conjugate feedback. At the Hopf

point, the real part of the complex pair of roots of Eq. (62) passes from negative to

positive values and is set to zero. Substituting s = iQ into Eq. (62) and separating

the real and imaginary parts gives two equations for the feedback level 7, and the

frequency Q of the resulting periodic solution

1±+279 ' 7(,cs~T 2
-Q[27Q cos V + n2 sin 2QT] + 61 2P cos[72(I - cos2QT) _ Q2 ] +

2c(7' + q cos 9 )r7 v1 + a2 cos(O9 + arctan(a))(1 + cos QT) = 0 (63)

and

I + 7o [2n2 cos 0 + 72 sin 2QT] + Q[72(1 - cos 2QT)- Q2] +I1 - 277 cos 0q

2E(7' + cost9)[Q - 7 1 ± a2 cos(O + arctan(a)) sin QT] =0 (64)

where 6 1/T. At this point these two equations must be solved with a nonlinear

root finder to find exact solutions, or approximations must be made so that analytical

solutions can be found.

Nonlinear behavior of systems at the Hopf bifurcation point provides insight

into the magnitude of Q and n. Typically the frequency emerging out of the Hopf

bifurcation is close to the relaxation frequency of the system or one of its harmonics.

In addition, from the behavior of Eqs. (63) and (64) the combination of QT- must be
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0(1). Furthermore, n is typically small and is 0(,). This leads to an appropriate

scaling of

S=C1/2{ a -= C-1/20 =cE (65)

where u, 0, and E are all 0(1). Substitution into Eq. (63) and (64) leads to a

solution for the feedback and frequency at the Hopf point in the limit as C --> 0 (9)

77H c + -P)+ 0(6 3 / 2 )  (66)
2[v'I + 2 cos(9 + arctan(a)) cos 2( '27)/2) - cos 0]

and

= 1 (1 + 27P) v'1 - 2 cos( --- arctan(a)) sin(v 2-)) + o /2)

4[VI + a 2 cos(V + arctan(a)) cos 2 (,/-2- /2) - cos /]

(67)

where the lowest order in c is the most dominant term and QH is the relaxation

frequency that emerges from the Hopf bifurcation.

Gavrielides pointed out that this perturbation expansion leading to Eqs. (66)

and (67) fails when cos( 27-O/2) approaches 0 which occurs at the resonant points

of QT = (2n + 1)7" or
-- n+I n = 0, 1,2,... (68)

Wdext 2

Equation (68) is the condition for frequency locking between the relaxation oscillation

and external cavity frequency wext with the locking ratio being (n+). Equations (67)

and (68) also show that when the Hopf frequency equals the solitary relaxation

frequency of the laser, Q H = WR, the external cavity length (T) falls in the middle of

the locking region for adjacent n.

An additional simplification that can be used is the case of a - oc. This

condition has been extensively examined and is well understood with externally
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injected laser systems and offers a more compact form for 'OH and QH:

7H =±2 (69)
27 2 cos 2 (wO(6

and
QH = WR (1- 1+2PWR tan WR)) (70)

2P (WR_(0

where WOR = (2'P)/T is the scaled relaxation frequency of the solitary laser. These

two equations provide a look into the behavior of both 'OH and QH as the external

cavity length is varied. Figure 10 shows both functions over a range of Lext =

18-28 cm. The unbounded behavior of the functions is due to the lack of a loss

mechanism in the system and the fact that these equations are only valid in the non-

resonance lengths. The measured resonant peaks from the experimental data will be

bounded by inherent loss mechanisms and most likely will have lower magnitudes.

Nonetheless, the general behavior provides an excellent preview of the expected

behavior for 77H and QH.

The analytical techniques and approximations presented in this chapter offer

one method of analyzing the set of three nonlinear equations. The next chapter dis-

cusses the computer models which numerically evaluate the equations to find steady

state solutions. The computer models have been developed to simulate the develop-

ment of chaotic behavior of the laser diode and are used interpret the experimental

data.
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Figure 10. Plots of Eqs. (69) and (70) showing the resonance in T7H and H for
typical experimental external cavity lengths.
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IV. Computer Modeling of the Phase Conjugate Feedback

The previous chapter provided insight into the necessity of using computer

modeling to examine the nonlinear behavior of time-delayed coupled differential

equations. Computer modeling provides an alternative to analytical solutions with-

out making approximations, other than the basic assumptions leading to Eqs. (52)-

(54). This chapter contains a brief discussion of the two models used in support of

this research. The models were developed by the Nonlinear Optics Center, Phillips

Laboratory, Kirtland Air Force Base, New Mexico.

4.1 Bifurcation Model

The LKCONBI2.C model integrates the Lang-Kobayashi (L-K) phase conju-

gate equations to produce a listing of data points which can be plotted to form

bifurcation diagrams. A copy of the C-source code is included in Appendix B. In-

puts to the model include external cavity length, beginning and ending values of

feedback, laser pumping above threshold, linewidth enhancement parameter, and

lifetime ratio T. The scaling used in the model is the same as presented in Section

3.1.

One minor change to the original LKCONBIF.C program was made to move

the user input parameters to a separate input file. This was done primarily to avoid

compiling the source code for multiple changes in the input parameters and to incor-

porate additional non-scaled experimental parameters such as measured relaxation

oscillation frequency and external cavity length. A listing of all the input parameters

is shown in Table 6.

The LKCONBI2 program actually contains two separate models: the evalua-

tion of the full L-K rate equations presented in Eqs. (52)-(54) and the evaluation of

the Phillips Laboratory's phase equation (3). The user may select, via an input pa-

rameter, which model to evaluate. Both operate the same throughout the program,
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Table 6. Input parameters contained in a separate ASCii file for the LKCONBI2
model.

Variable Name [Purpose

BEGIN Beginning integration time
END Ending integration time
EXTIME Time when steady-state begins
NPOINTS Number of point to use in integration
KMAX Integration resolution magnifier
HTAMIN Minimum feedback level
HTAMAX Maximum feedback level
HTASTEP Number of steps between max and min feedback
pi Pumping level above threshold
alpha Linewidth enhancement factor
extlength Unscaled external cavity length (cm)
delta Scaled frequency offset from solitary laser
phipcm Phase shift due to PCM
photon-life Unscaled photon lifetime (sec)
carrier-life Unscaled carrier lifetime (sec)
model 1=full-up equations, 0=phase equation
Y Gain saturation term

except for the equation(s) used in the integration routine. For simplicity, the full

rate equation option will be discussed below.

The model begins by dividing the full range of feedback specified by the

user into feedback steps, (HTAMAX-HTAMIN)/HTASTEP. Increasing the value

of HTASTEP provides more detail in the bifurcation diagrams but also increases the

run-time of the model. Typical values of HTASTEP are 50 to 100. Small values

of HTASTEP are not recommended since bifurcation points could be missed with

too large a step size. For each step of the feedback parameter, a time series of the

system is reconstructed using a fourth-order Runge-Kutta integration routine on

the set of normalized differential equations, Eqs. (52) - (54). The delayed values of

the amplitude, phase and carrier number needed by the equations are handled by

establishing a circular stack in memory, whose length is four times the normalized

external cavity round-trip delay, T. An index into the stack is used to retrieve the
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proper values and the stack is initialized with zeros so that the feedback does not

take effect until at least one round trip in time T has been completed. The factor

of four in the stack size is to account for the fourth-order integration routine which

needs a delayed value for each integration step.

Extrema of the amplitude are not saved until the user-established steady state

time, EXTIME, has elapsed. This allows transients in the time series to diminish

and steady state conditions recorded. During the steady state condition, when a

peak in the amplitude has occurred, the feedback rate, time, amplitude and phase

of the laser output are recorded in the data file. These points can then be plotted

using a separate plotting program to create bifurcation diagrams. Figure 11 shows

two examples of bifurcation diagrams plotting the output amplitude extrema versus

feedback level. The relevant parameters for these plots are T = 316.1, a = 4, and

P = 3.0.

External cavity lengths can be divided into two regimes based on the value of

the external cavity and relaxation frequencies. An external cavity is labeled as being

short when v11 xt > VR while long cavities have Vext < UR. Each external cavity regime

has separate characteristics which are also found into the computer models. Figure 11

shows a computed bifurcation diagram for the short cavity (a) and long cavity (b).

The main differences between the short and long regimes occurs at the Hopf points.

In the short cavity, the bifurcation at the Hopf points is distinct indicating that only

one frequency is emerging at a time. This distinction is due in part to the fact that

the external cavity frequency is greater than the relaxation oscillation frequency and

requires a higher r to undamp. The frequencies that emerge at additional Hopf points

are related to the first Hopf point through a period doubling or quasi-periodicity of

the relaxation frequency that has already undamped. On the other hand, the Hopf

bifurcations in the long cavity, beyond the first bifurcation, are more obscured. A

spectral analysis using the LKCON2.C model described in the next section shows

that the external cavity frequency has undamped which is quickly followed by several
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Figure 11. Bifurcation diagrams created using the LKCONBIF.C model. (a) Short
external cavity with T =16, ext-length =1.0 cm, (b) Long external
cavity with rT 640, ext-length =40 cm.
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harmonics. This process then develops immediately into a chaotic state shown in

the bifurcation diagram.

A direct one-to-one comparison between the bifurcation model and experimen-

tal data was not intended in this research. To produce a bifurcation plot experi-

mentally, a data acquisition system to record the amplitude time series of the laser

output would require sampling the laser amplitude at a minimum of twice the re-

laxation oscillation frequency. For the laser at hand, yR P- 3.7 GHz at low power,

so a sampling frequency of 8 GHz would be required. The data acquisition system

available for the experiments had a time series measurement limit of 500 MHz and

therefore, most of the experimental data consisted of RF and optical spectra.

Although the experimental equipment could not meet the fast sampling re-

quirements to generate bifurcation diagrams, the LKCONBI2.C model was still use-

ful in providing insight to bifurcation points and the type of route to chaos due to

various changes to experimental parameters. The most effective tool for comparing

theoretical and experimental data was the spectrum model discussed in the next

section.

4.2 Spectrum Model

The second computer model is the LKCON2.C program whose C-source code

is listed in Appendix C. This model is used to create RF and FM spectra, which

can be compared to the RF spectrum analyzer and Fabry-Perot (F-P) outputs. The

majority of the model is similar to the LKCONBI2.C program except that a single

value for the feedback parameter is used and the number of points used in the

integration routine, NPOINTS, is increased to provide a larger bandwidth in the

FFT algorithm. The original Phillips Laboratory LKCON.C program was modified

in a similar fashion as the LKCONBIF.C model to move the user input parameters

to a separate ASCii file to simplify multiple runs of the model with different input

parameters. The user input parameters are the same as those listed in Table 6 with
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the addition of an extra term, inject, which is the feedback level where the spectra

are to be calculated.

From the bifurcation diagram, the user can choose a value of the feedback to

use in the LKCON2.C model. Once the integration of the nonlinear equations is

complete for the feedback level, two FFTs are applied to the reconstructed time se-

ries. The first one is applied to the amplitude of the signal and gives the expected RF

spectrum. The second FFT is applied to the phase term and gives the FM spectrum.

Both are output in separate data files, FOURIERRF.DAT and FOURIERFM.DAT,

respectively. The computed time series data is also recorded in the LKCON.DAT file.

Figure 12 is an example of the RF and FM outputs of the LKCON2.C model. The

bifurcation map is the same as Figure lib and the spectra have been calculated for a

feedback rate of qinject = 0.0065. The RF spectrum shown in Figure 12b represents

the external cavity frequencies and higher harmonics. This spectrum also shows

peak spacings of 185 MHz and 375 MHz due to a quasi-periodicity of the external

cavity frequency. Spectra similar to Figure 12b will be compared with spectra from

the RF spectrum analyzer during the experimental portion of this research. The

FM spectrum in Figure 12c shows the relaxation oscillation frequency at ± 4.7 GHz

along with modulations from the RF surrounding yR and the DC component. This

type of spectrum is representative of the Fabry-Perot output in the experiments. In

a latter section, the model outputs and experimental spectra are compared using RF

and FM spectra for numerous external cavity lengths.

As with the bifurcation model, this model behaves differently in the short and

long cavity regimes. For short cavities where v,,t > VR, the spectra are consistent

with period doubling routes to chaos. The dominant frequency in this case is the

relaxation oscillation which quickly undamps and period doubles with increasing

feedback. The external cavity frequency has little effect on the chaotic development

since the feedback level required to undamp v,,,t is significantly higher than the

relaxation oscillation. At these large levels of feedback, the relaxation oscillation
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Figure 12. (a) Bifurcation diagram from Figure 11b. (b) RF spectrum of the bi-
furcation diagram in using the LKCON2.C model with a feedback rate
of Q7inject = 0.0065. The fundamental t ext is at 180 MHz, with spacings
at 185 and 375 MHz. (c) FM spectrum for the same feedback rate. VR
appears at ± 4.7 GHz along with modulations from the RF.
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has already period-doubled many times and the laser begins to operate in Level IV,

chaos. Although the short cavity region could not be directly tested experimentally,

the conclusions drawn on the behavior of the model are consistent with theory and

experiments using short cavities with normal dielectric mirrors and direct optical

injection (24).

In the long cavity regime where Vext < VR, the model as described earlier

runs into a difficulty in predicting the external cavity frequency and mode spacing.

The result is an external cavity frequency that ranges from half the experimental

value of v,,,t for the lower end of the long cavities to one-fourth vejt for very long

cavities. This problem was investigated and found to be caused by a fundamental

limitation of the model which did not include gain saturation of the laser. The model

was corrected to include a Gain Saturation term, Y, which yields results that more

closely agree with experimental data. The specifics of the changes made to the model

are discussed in Section 6.1.

The LKCON2.C model can also be used to predict the steady state behavior

of the laser and phase conjugate feedback system as a function of the external cavity

length. Figures 13-15 show model predictions of the dependency of the external

cavity frequency, relaxation oscillation and locking ratio as functions of external

cavity length. These plots will be compared with experimental results to validate

the performance of the model, as shown in Chapter VI. It is clear from these figures

that the model output is representative of the trends introduced by the analytic

approximations in the previous chapter.
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a function of the external cavity length. The theoretical c/(2L) line is
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V. Experimental Descriptions and Results

The experimental portion of this research can be divided into three groups of

testing. The first set of experiments characterized the solitary laser without feed-

back to document the operating characteristics of the Spectra Diode Laser (SDL)

5412 laser diode. In the second group of experiments, weak feedback from the CAT

phase conjugate mirror geometry was applied to the laser. Measurements of the laser

output due to the effects from the conjugate feedback were conducted by varying

the feedback power, laser bias, and external cavity length. The final group of exper-

iments used the double phase conjugate mirror (DPCM) geometry as the feedback

mechanism and performed similar tests as with the CAT mirror for comparison.

Each group of experiments is discussed in detail along with the results. This chapter

is followed by an analysis of the comparison between model and experimental data.

5.1 Solitary Laser Characterization

Before feedback experiments were conducted, it was necessary to measure some

key characteristics of the solitary laser to see the effects due to chaos. The parameters

measured in these simple experiments without feedback included lasing threshold,

light-current output, nominal wavelength, and linewidth. The equipment and con-

figuration used in this test are shown in Figure 16.

The lasing threshold was established by increasing the laser's bias current from

zero mA and collecting output power measurements just after the microscope ob-

jective (MO) collimating lens. Power measurements were taken using a Newport

815 power meter and the lasing threshold was extrapolated from the point in the

light-current curve where the power output suddenly increases. After threshold, the

bias current was further increased in steps to its maximum value of 85 mA so that

the efficiency or slope of the light-current line could be found. Figure 17 shows the
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Figure 16. Experimental setups to measure the solitary laser parameters.

light-current data for the solitary laser. The extrapolated threshold current is found

to be 14.92 mA with a slope efficiency of 0.93 mW/mA.

In a similar experiment, a 0.6 m monochromator and optical multichannel

analyzer (OMA) combination was used to measure the center wavelength and de-

termine if the laser was truly single mode as the bias current was varied from just

past threshold to approximately three times threshold. As shown in Figure 16, at

the same time the OMA was measuring the center wavelength, a F-P was used to

measure the linewidth and quantify the amount of noise on the laser waveform. The

main source of noise was due to current and temperature fluctuations from the power
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Figure 17. Solitary laser light-curve data. The lasing threshold is found to be about
15 mA with a slope of .93 mW/mA.
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Table 7. Summary of the solitary laser characteristics.
Lasing threshold 14.92 mA
Light-Curve Slope 0.93 mW/mA
Nominal center wavelength (40 mA bias) 804.9 nm
Change in wavelength vs bias 0.03 nm/mA
Nominal Linewidth 135 MHz

supply which led to temporal linewidth fluctuations in the F-P display. Figures 18-

20 show OMA scans of the solitary laser biased at 30, 40 and 50 mA. At a bias of 30

mA, Figure 18, the OMA shows a nominal center wavelength of 804.4 nm but also

some weak peaks surrounding the main lobe. Although this small structure is not

contributing a significant amount of power to the solitary laser output, it was found

in later feedback experiments that these other modes become undamped. The F-P

spectrum shown in Figure 21 with the laser biased at 30 mA also depicts frequencies

other than the main lobe at -1.5 and -2.2 GHz. Increasing the bias current to 40

mA, Figure 19, reduces second order modes and the laser operates single mode with

a center line of 804.9 nm and a nominal linewidth of 135 MHz. At a bias current of

50 mA, Figure 20, the laser is still single mode with a center wavelength 805.1 nm.

Because of the uncertainty of single mode operation for laser bias currents below

40 mA, the feedback experiments described in the next several sections were con-

ducted at biases of 40 and 45 mA, or 2.6x and 3x threshold. Table 7 summarizes

the characteristics of the solitary laser.

5.2 Self-Pumped Phase Conjugate Feedback

Figure 22 shows the experimental setup for investigating the laser dynamics

using the CAT geometry as the feedback mirror. The major components of this

configuration were a SDL 5412 single mode laser diode (LD) and the self-pumped

phase conjugate mirror created by a 2400 ppm Rh-doped BaTiO 3 crystal. The laser

output was collimated using a 20X (8 mm focal length) microscope objective then

immediately split with a 50/50 BK-7 non-polarizing beam splitter (BS). The reflected
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Figure 18. Optical spectrum of the solitary laser at bias current 30 mA. The center wave-
length is 804.4 nm with small peaks surrounding the main lobe. These small
peaks are easily excited with feedback causing the laser to operate multi-mode.
Operating the laser with a bias current > 40 mA ensures a single mode output.
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Figure 19. Optical spectrum of the solitary laser at bias current 40 mA.
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Figure 20. Optical spectrum of the solitary laser at bias current 50 mA.
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Figure 21. Fabry-Perot output of the solitary laser biased at 30 mA. The linewidth of the
laser line is measured to be 130 MHz. The center lobe of the scan is rough due
to low frequency noise in the power supply and temperature instabilities in the
T-E cooler. The smaller peaks at -1.5 GHz and -2.2 GHz are other frequencies
that exist at low bias currents.
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Figure 22. Diagram of the setup used in the CAT experiments
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light from the beamsplitter was passed through an anamorphic prism pair (APP)

to re-shape the beam into a circular form which was well suited for the apertures

in the diagnostic equipment. An optical isolator (01), -41 dB, was used to prevent

any back reflections from the diagnostic equipment from re-entering the laser diode

thus establishing an unwanted external cavity. To examine the laser output for RF

frequencies, an Electro-Optics Technology (EOT) amplified p-n junction diode (PIN

diode), frequency response > 800 MHz, was used with a Hewlett-Packard (H-P) RF

Spectrum analyzer which had a frequency cut-off of 1.8 GHz. Two Fabry-Perots

(F-P) were available to examine frequencies beyond the 1.8 GHz cut-off of the RF

spectrum analyzer. One F-P had an 8 GHz FSR and Finesse > 200, the second

with a 6 GHz FSR and Finesse > 10000. The former proved to be more useful in

examining the optical spectrum of the laser diode since multiple F-P modes could

not be completely eliminated in the latter. The final piece of diagnostic equipment

was the 0.6 meter monochromator/OMA which was used to verify that single mode

operation was maintained during the experiments.

For the beam going to the crystal, a half-wave plate (HW) was used to rotate

the nearly linearly polarized laser output to coexist with the extraordinary direction

in the crystal which is the favored orientation for generating a phase conjugate signal.

In later experiments, the half-wave plate was eliminated to reduce the number of

optical elements in the external cavity so that shorter external cavity lengths could

be obtained. This did not have an adverse effect on the conjugate mirror since the

diode output is greater than 95% linearly polarized and the laser is orientated so

its primary polarization is in the extraordinary direction for the BaTiO 3 crystal.

A series of neutral density filters and a variable neutral density filter were used to

control the amount of feedback and a 50 mm focal length lens (Li) was used to focus

the beam loosely into the crystal. The phase conjugate return beam was sampled

with a Newport 815 power meter to measure the average power returned to the laser

from the external cavity mirror and a second EOT photodiode could also be used in
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place of the Newport meter so that the RF spectrum of the return signal could be

analyzed.

5.2.1 Single Mode Operation with Phase Conjugate Feedback. The primary

purpose for this experiment was to verify that the laser remained in single-mode

operation during the onset of chaos. If the laser did not remain single-mode then the

assumption of a single-mode laser would have to be corrected and the coupled set of

nonlinear Eqs. (49)-(51) would have to be modified to include multi-modes. As was

mentioned in an earlier section, the OMA and F-P scans showed possible multi-mode

operation of the solitary laser at laser current bias levels of 30 mA. Although the

multiple modes in the solitary laser spectrum at that bias level did not contribute

significant power to the laser output, applying feedback had a dramatic affect on

these small amplitude modes causing them to significantly increase in amplitude.

As mentioned earlier, the feedback experiments must be conducted with the laser

operating in a single mode so an appropriate bias level to maintain single mode

operation was required.

The OMA was used to monitor the laser output as the feedback was increased

from zero [LW until the laser began to show signs of the relaxation oscillation and

external cavity frequencies undamping. Figure 23 shows outputs of the OMA with

the laser biased at 30 and 40 mA with weak phase conjugate feedback. For 30

mA, a second mode appears at 804.6 nm for extremely weak feedback, < 0.002 %

of the laser output, even before the relaxation oscillation frequency was detected.

Additional peaks, as shown in the figure, appear at 804.7 and 804.9 nm for weak

to moderate feedback. The inset in the figure is the RF spectrum taken at the

same time as the OMA scan which shows Vext = 225 MHz and higher harmonics

have become undamped. When the laser is biased at 40 mA, the laser remains

single mode during the onset to chaos. Figure 23b shows the OMA scan when the

laser is biased at 40 mA with moderate feedback (> 0.01%). The inset shows the

strong RF peaks corresponding to Vext and higher harmonics. Additional increases
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Figure 23. OMA scans during the onset of chaos. (a) The laser is biased at 30
mA and the feedback was set so that the relaxation and external cavity
frequencies were undamped. Multiple laser modes have started to lase
due to the feedback. (b) The laser is biased at 40 mA and the feedback
is increased to place the laser near the chaotic state. Even at this strong
feedback, the laser remains single mode.
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in the feedback from that shown in the figure resulted in a broadband RF structure

(chaotic behavior). Therefore, at the time of the scans shown in the figure, the laser

was operating just below the chaotic region which covers the full range of feedback

levels investigated in this research. Hence, laser bias currents above 40 mA were

suitable for the additional feedback experiments and ensured single mode operation

during weak to moderate feedback levels.

5.2.2 CAT Phase Conjugate Mirror Time Response. Part of the charac-

terization of the onset of chaos for the CAT mirror configuration was to measure the

speed of the crystal as a phase conjugate mirror. This would determine if a fourth

coupled differential equation depicting the time response of the reflectivity of the

PCM was necessary to describe the nonlinear behavior of the laser diode completely.

The time dependent behavior of the mirror reflectivity would manifest itself in a

dK/dt equation. The theory leading up to the set of coupled nonlinear equations,

Eqs. (49)-(51), has assumed that the PCM performs almost instantaneously, so r, is

considered a constant.

The context of speed of the PCM is different than the onset, or build-up time

of the mirror. The onset is the time needed by the crystal to create a conjugate

signal once the crystal is illuminated. In BaTiO3 and other photorefractives, the

holographic grating constituting the PCM is established by photoionization of im-

purities creating charge carriers. These charge carriers then migrate in the crystal

material and are trapped in the dark regions of the light intensity pattern. This

sets up a space-charge electric field which in turn modulates the refractive index of

the crystal through the Pockels effect. Since the whole process of establishing the

holographic index grating relies on the migration of charge carriers in the crystal, the

fundamental time limit for the onset of the grating is on the order of 2 ms for BaTiO3

(31:102). However, once the holographic grating has been established, the speed at

which the mirror reacts to small changes in the input beam is the real question at

hand. The development of chaotic behavior in the laser diode introduces numer-
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ous high frequencies in its output resulting from the undamping of the relaxation

oscillations (several GHz) and external cavity frequencies (several MHz).

These questions were answered in a series of experiments that compared the

frequency content and delay of the feedback signal from the CAT phase conjugate

mirror configuration to a feedback signal from a normal dielectric mirror. Figure 22

shows the experimental setup for the CAT phase conjugate mirror. Fast PIN diodes

were used to sample the direct laser output and the feedback signals. The output

signal from the PIN diodes was displayed on a RF signal analyzer and a 500 MHz

oscilloscope. In both cases the feedback was adjusted so that the relaxation oscilla-

tion and the external cavity frequencies became slightly undamped so that the laser

would not enter the chaotic regime. Furthermore, the intensities of the beams enter-

ing the PIN diodes were balanced with a variable neutral density (ND) filter placed

in front of the diode sampling the direct laser output so the signal amplitudes could

be quantitatively compared. To compare the signal wave-forms, significantly long

external cavities (> 30 cm) were chosen so that the fundamental cavity frequency

would be well below the bandwidth limit of the 500 MHz oscilloscope.

Figure 24 shows two traces from the RF signal analyzer for the feedback from

a normal mirror and the laser output. The decrease in magnitude of the peaks

above 800 MHz is due to the decrease in sensitivity of the PIN diodes used in the

experiment. It can be clearly seen in this figure that the frequency content of both

the normal feedback and laser output signals are the same. The external cavity mode

of 230 MHz (Lert = 65 cm) and higher harmonics are easily identified in both signals,

indicating that amplitude modulation from the onset of chaotic activity in the laser

is contained in both the laser output and the normal feedback signal. For a normal

dielectric mirror, this response is expected since these mirrors can be considered to

react instantaneously and have a fiat broadband RF response.

The time delay between the two PIN diode detectors is shown in Figure 25 as

a correlation between the two signals. The correlation trace shows that the feedback
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Figure 24. RF spectra of the feedback signal from a normal mirror (above) and the
laser output (below). Both signals contain the same frequency informa-
tion indicating that there is no filtering being done by the normal mirror.
The speed of a normal mirror can be considered instantaneous.
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signal (middle trace) is highly correlated with the original laser output (top trace)

at a point when the feedback waveform is delayed by 11 ns. The calculated path

difference (both optical and electrical) between the two traces is 10.9 ns indicating

that all delays have been properly accounted.

.Laser Output

A liifVA Signal

IiA i'P ~ " ~ Normal Mirror
TI i -,.k T i"F  Feedback Signal

A PP IP! II -4 L

.................. Correlation

Signal

At= 11 nS

Figure 25. The correlation between the two PIN diodes sampling the laser output
and normal feedback signal shows a peak at a delay of 11 ns. This delay
corresponds exactly to the optical and electrical path differences between
the two detectors.

Figure 26 shows a similar RF spectrum for the case of the CAT PCM for an

external cavity of 87 cm. The small overall magnitude of the two traces is a result

of the lower intensity necessary by the CAT PCM to undamp the external cavity
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frequency. Since the phase conjugate feedback couples easier into the laser cavity

than the normal mirror, significantly lower feedback levels were used to prevent

the laser from going fully chaotic. Therefore the ND filter in front of the laser

output detector was increased to balance the two signals for comparison purposes.

Regardless of the absolute magnitude of the two signals, it is easily seen that the

PCM feedback signal also contains the fundamental external cavity frequency plus

several harmonics. Figure 27 shows the correlation (bottom trace) between the direct

laser output (top trace) and the CAT phase conjugate signal (middle trace). As was

shown for the normal dielectric mirror, the two signals have a strong correlation

peak corresponding to the path differences between the two PIN detectors. In other

words, the CAT PCM feedback signal contains the RF frequency information and

correlates well with the direct laser output and therefore, performs on the order of

the normal dielectric mirror.

5.2.3 External Cavity Length and Frequency Dependency. One of the

easiest parameters to change in the set of nonlinear equations is the time delay

due to the position of the feedback mirror in the external cavity. According to the

analysis of Auyeung et al, the mode structure of the external cavity bounded by a

PCM depends on whether the PCM is established by degenerate or non-degenerate

four-wave nonlinear interaction (4). For the degenerate case, such as the self-pumped

CAT and DPCM configurations used in this research, the external cavity will support

a frequency spacing of c/(2Lext). This is obtained by requiring a single-round trip

self-consistent solution for the complex radius of curvature of the wavefront. This

spacing is also the same for a cavity bounded by a normal mirror. In contrast, for a

non-generate PCM the field must take two round trips in the external cavity in order

to satisfy the self-consistent solution, thus the mode spacing for the non-degenerate

PCM becomes c/(4Lext). This change from the non-degenerate case results from a

frequency shift in the conjugate beam and passing through the PCM a second time

cancels this effect. The non-degenerate PCM was not investigated in this research.

67



.. . . .. .. .. . . . .. . . .. . . . .. . . .. ;. . .. . , . .............. ........ ;. .......

Conjugate Mirror Feedback Signal "

,, . -. ... ........... .... ....... ..............i ...... ...... ...... ...... .. ............... ............
v =171 MHz

V 2V 3V 4V 5V

... . .. . . . . ... . . .. . . . .. .. . . . .. . . .. . . . .. . . . . . . .. . . . . Z . . . . . . . . . . . . . . . . . . .. ..

... .: . . .

.. Direct Laser Output Signal

1 div = 180 MHz

Figure 26. RF spectra of the feedback signal from the CAT PCM mirror and the
laser output. Both signals contain the same frequency information indi-
cating that there is no filtering being done by the CAT mirror.

68



Laser Output
Signal

...[Conjugate Mirror
, .. .I--II , , I FeedbackSigal

-

At= 12 nS

Figure 27. Correlation function of the CAT PCM signal with the direct laser output

The graphs in Figures 28 and 29 show the effect of the external cavity frequency,

V,,t, by varying the external cavity length using the CAT phase conjugate mirror

and a normal mirror. Each graph shows the theoretical limit of next = c/(2Lext) for

the degenerate PCM and normal mirror, where Lext is the optical path measured

from the edge of the laser facet to the entrance face of the crystal.

5.2.4 External Cavity Resonance and Frequency Locking. Based on the

mathematical analysis presented in Section 3.3, resonance enhancement in the feed-

back levels for the first Hopf bifurcation was expected as the external cavity length

was extended. The external cavity was scanned using a micrometer translation
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Figure 28. Plot of experimentally measured external cavity frequency using a de-
generate CAT PCM. The solid line represents the theoretical value of
c/(2Lext) for a cavity bounded by a degenerate phase conjugate mirror.
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Figure 29. Plot of experimentally measured external cavity frequencies versus cavity
length using a normal mirror. The solid line represents the theoretical
value of c/(2Lezt) for an external cavity with a normal mirror.
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stage and a Klinger translation stage. The micrometer stage was restricted by a 2

cm throw which caused a slight error in the measurement by resetting the stage for

subsequent scans. This problem was corrected by replacing the micrometer with a

Klinger translation stage which had a significantly larger throw. Figure 30 shows

the experimental equipment used to investigate the cavity resonance using the CAT

geometry. The cavity was extended over 8 cm, in 1 mm increments, to capture at

least two resonance cycles predicted by Eq. (66). The Hopf point was determined by

monitoring the F-P display and recording the feedback power when the relaxation

frequency appeared. The phase conjugate feedback was then allowed to grow until

the external cavity frequency could be recorded.

Figure 31 shows the results of the data collection. The top curve, which cor-

responds to the right vertical axis, plots the ratio of the relaxation frequency to the

external cavity frequency, VR/Verrt. The stair stepping nature of the curve indicates

frequency locking of VR, with the plateaus corresponding to integer values 6, 7, and

8. The lower part of the curve shows the power of the feedback signal at the first

Hopf bifurcation when yR becomes undamped. Resonances can be seen for cavity

lengths of 22.8 and 26.2 cm with the width of the locking region being 3.4 cm. The

peak shown at 20.2 cm is the trailing edge of an earlier peak.

The mechanism allowing the integer steps in the ratio of the two frequencies

is the change in UR. The lower half of Figure 32 presents the variation in VR and

compares it to the locking ratio presented in the previous figure. The solitary laser

relaxation oscillation frequency of 3.7 GHz falls midway between the maximum and

minimum values. At the points of transition to a higher integer ratio, vR will attain

its maximum value and AVR = 500 MHz over the full locking range.

5.2.5 Verification of the Conjugate Signal. As mentioned in Section 5.2.3,

the mode spacing for the degenerate PCM and the normal cavity is the same c/(2Lext)

relationship. Since the mode spacing is the same, verification of a phase conjugate
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Figure 30. Experimental setup used to capture the feedback resonance peaks and
frequency locking from the CAT PCM. The Klinger translation stage was
used to extend the cavity in a span of 8 cm in 1 mm increments.
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Figure 31. Experimental data showing the frequency locking (top curve, right axis)
of the external cavity and relaxation frequencies from the CAT PCM.
The bottom curve shows the resonance of the feedback power at the first

Hopf bifurcation.
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Figure 32. Experimental data showing the frequency locking (top curve, right axis)
of the external cavity and relaxation frequencies from the CAT PCM.
The bottom curve shows the changes in the relaxation oscillation as the
external cavity is varied. The solitary relaxation frequency of 3.7 GHz
falls halfway between the maximum and minimum values.
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signal was necessary to rule out the possibility that the feedback beam for the CAT

mirror might contain a normal reflection component, possibly from total internal

reflection inside the crystal. Therefore, several experiments were conducted to test

the validity of the phase conjugate signal using the commonly accepted method of

image reconstruction through a phase distorting medium in the optical path (6).

To capture the image of the conjugate beam, a BeamCode camera replaced the

Newport meter sampling the conjugate beam. The camera was also placed in the

beam entering the crystal to record the profile of the original beam. Figure 33 shows

the contour profile of the original beam entering the crystal. The vertical fringes

Figure 33. Profile of the beam entering the BaTiO 3 crystal.

shown in the figure are a result of interference effects from several ND filters placed

in front of the camera. The basic profile of the unaltered beam is a 2-D gaussian,

with the horizontal direction having the smaller waist.

Figure 34 shows the conjugate return profile for several levels of feedback. In

(a), the relaxation frequency has begun to undamp and the conjugate begins to

76



(a) (b)

(c) ..

Figure 34. Phase conjugate intensity profiles captured using BeamCode as chaos
develops. (a) Relaxation oscillations are undamped, (b) external cavity
frequency undamped, (c) several external cavity frequencies undamped,
(d) full chaos behavior.
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build around the central portion of the beam profile. The reconstruction of just the

central portion of the original profile is a consequence of the low feedback power

needed to undamp the relaxation oscillation. With the self-pumped geometry, low

feedback power is generated by low input intensity to the BaTiO3 crystal, hence

only the most intense portions of the image profile (central portion) are efficiently

conjugated. Increasing the feedback until the external cavity mode appears, the

conjugate profile shown in (b) continues to grow around the central portion of the

profile. Image (c) shows the beam profile as the feedback is increased to the level

where several harmonics of the external cavity frequency appear. When full chaos

in the laser output is reached, (d), the conjugate signal is well defined and resembles

the original beam. This profile clearly shows the full reconstruction of the original

image.

The same sequence of events was repeated with a normal cavity for comparison.

Figure 35 shows the beam profiles corresponding to the events of the relaxation

oscillations undamped (a), external cavity frequency undamped (b), and full chaos

in the laser output (c). As expected, the full beam profile is clearly visible in all

cases since the normal mirror has a fiat intensity response to its input beam. The

only difference between the images in the figure is the overall intensity of the return

beam entering the camera, which increases from (a) to (c).

Using a piece of plastic as a phase distorting medium, the two tests were

repeated. Figure 36 shows a comparison of the conjugate and normal feedback

profiles. In both cases the images shown were taken when the relaxation and external

cavity frequencies have undamped. It was also noted that the phase conjugate mirror

with the distorter required about the same amount of feedback power to achieve the

undamping of the two frequencies as compared to the PCM without the distorter.

In contrast, the normal mirror required over 50% more feedback power to achieve

the same result.
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Figure 35. Normal mirror profiles captured using BeamCode as chaos develops. (a)
Relaxation oscillations are undamped, (b) external cavity frequency has
undamped, (c) full chaos..
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Figure 36. Phase conjugate signal (a) and normal signal (b) with a phase distorting
medium placed in the beam entering the BaTiO3 crystal. In both cases
the relaxation and external cavity frequencies have undamped.
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The changes in feedback power for the normal mirror is easily attributed to

scattering of photons off the distorting medium. Coupling into the laser is reduced

since the phase front is badly distorted, therefore, more feedback power is required

to overcome the losses in the external cavity. The behavior of the conjugate signal

demonstrates that the PCM is producing a conjugate beam which feeds back the

same amount of power even with the distorting medium in the beam path.

5.3 Double Phase Conjugate Mirror Measurements

Most of the tests described in Section 5.2 for the CAT geometry were dupli-

cated with the double phase conjugate mirror (DPCM). Figure 37 shows the basic

experimental setup used to conduct the tests. The mirror was constructed using the

transmission grating DPCM with input angles of 1200 degrees, with respect to the

+c-axis. A variety of input angles were tried, most arrangements produced little

or no feedback. It appeared that 120' was the most optimal choice of angle. Even

at this setting, the maximum amount of feedback was small compared to the CAT

geometry. As a result, full chaotic behavior was never achieved with the DPCM,

although sufficient feedback was obtained to operate in Levels 1, 11 and III. Due to

complexities of the DPCM geometry, the external cavity was not varied as exten-

sively as the CAT geometry, but was varied enough to verify the trends shown in

the CAT external cavity experiment.

The experimental results of the conjugate feedback of the DPCM configuration

show similar behavior to the CAT PCM. Figure 38 shows the external cavity mode

spacing as a function of the round trip external cavity length. Measurement of the

cavity length is slightly different than the CAT PCM geometry since the DPCM is

an asymmetric cavity. For the DPCM, photons from one beam are scattered off the

holographic grating in the direction of the other input beam's conjugate signal, as

was shown in Figure 7. Therefore, the external cavity is in a ring formation as the

photons traverse through the BaTiO 3 crystal, retracing the opposite input beam's
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Figure 37. Experimental configuration used in the double phase conjugate mirror
experiments.
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phase front. This is different from the CAT geometry where the input and conjugate

beams share the same path. Hence the round trip external cavity length of 2Lxt as

measured in the CAT PCM experiments now becomes Lring, where Lrzng is the total

optical path length of the beam leaving the laser, passing through the crystal and

then re-entering the laser. So for the degenerate DPCM, the theoretical external

cavity frequency spacing is restated as c/Lring, as shown in Figure 38.

700.0

600.0

~" c/Lring
500.0

n 400.0

. 300.0

200.0

100.0

0.0 I I I I
60 70 80 90 100 110

External Ring Cavity Length (cm)

Figure 38. Plot of experimentally measured external cavity frequencies versus cavity
length using a DPCM mirror. The solid line represents the theoretical
mode spacing value of c/Lring for a degenerate PCM.

The RF response of the DPCM was also tested in a similar manner to the CAT

and normal mirror tests presented earlier. Figure 39 shows the two RF spectra of
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Figure 39. RF spectra of the feedback signal from the DPCM mirror and the laser
output. Both signals contain the same frequency information indicating
that there is no filtering being done by the DPCM mirror

the DPCM conjugate beam and the direct laser output. Since the conjugate levels

were extremely low, the ND filter in front of the PIN diode sampling the laser output

was removed to identify the RF signals clearly. Consequently, no comparison can be

made between the amplitudes of the two spectra shown in the figure. However, the

spectra do show the primary peak of v,,,t = 350 MHz which corresponds to Lring =

85.7 cm. A second weak peak in the DPCM spectrum can also be seen at 2Vet = 700

MHz. No other peaks can be seen, but the sensitivity of the detector dramatically

decreases for frequencies > 800 MHz, which would explain the lack of peaks beyond
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2 Vext. The direct laser output spectrum shows this dramatic decrease in sensitivity

for v = 1400 MHz.

The next chapter takes the raw experimental data and makes a comparison

against the predictions of the analytical solutions and computer models discussed in

Chapters III and IV.
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VI. Experimental and Modeling Results

The culmination of this research was to provide insight into the processes of

chaotic development in laser diodes with phase conjugate feedback and the validation

of a computer model that could accurately predict this nonlinear behavior. This

chapter explains the improvement made to the LKCON2.C model and compares the

experimental data with the model outputs.

6.1 Gain Saturation Improvement

As mentioned in Section 4.2, an inaccuracy was identified with the original

computer model for long external cavities. In this region, the model's prediction

of the external cavity frequency quickly diverged from experimental data. The re-

sult for long cavities (Lext ;-z 15-30 cm) was an external cavity frequency spacing

that was underestimated by as much as one-fourth of the measured experimental

frequency spacing. The same deficiency may also exist for short cavities; however,

at short cavity lengths, the dominant route to chaos is through period doubling of

the relaxation oscillation which is seen in the model. Simulations with short cavi-

ties show that the period doubling of the relaxation oscillation may actually mask

the incorrect external cavity frequency since Level IV behavior is reached before the

external cavity frequency undamps. Since no experimental data had been collected

for Lxt < 15 cm, validation of the external cavity frequency spacing below 15 cm

was not possible.

The original computer model was based on an underlying assumption in the set

of coupled nonlinear equations that the gain coefficient presented in Eq. (18) varied

linearly with AN. This first order linear approximation was an insufficient estimate

of the gain coefficient. A more realistic representation requires the inclusion of a

small signal gain saturation term Y to limit the effect of the electron hole number

on the photon number as shown below.
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The inclusion of the gain saturation term only affects da/ds and dN/ds pre-

sented in Eqs. (52)-(54). The corrected set of nonlinear equations used in the

LKCON2.C model are

da 1 2 N + 1 11] - j (71)
ds 2 [ 1+ YP(a2 - 1) j

+ qa(S - T) cos(0(8 - 'T) + O(S) - q 3pcm - 2Aw(s - T/2))

and
TdN = P - _ (1 + 2N) 2 (72)

ds V/1+ Y(a 2 - 1)

where Y is the dimensionless small signal gain saturation term (Y > 0). Setting

Y = 0.0 recovers the original set of equations. Notice that for Y > 0, the amplitude of

the field reduces the magnitude of the stimulated gain term included in N. Increasing

the value of Y causes the stimulated gain to saturate more quickly.

Simpson et al measured the small signal gain term to be Y = 0.017 in a solitary

laser diode similar to the SDL 5412 laser diode used in our experiments (24). It was

found through comparison of the model and experimental data that a value of Y =

0.017 was adequate for the SDL 5412. Even though it was beyond the scope of this

research to specifically measure the small signal gain term, the excellent agreement

between the computer model results and experimental data confirms that the value

of Y = 0.017 is reasonable.

With the gain saturation term added to the model a comparison between ex-

perimental data and model predictions can be accomplished. The next several sec-

tions present the analysis of the model and experimental data for the external cavity

frequency spacing, changes in relaxation oscillation, locking ratio and feedback res-

onance. A qualitative comparison between the bifurcation map and experimental

data is discussed in the last section.
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6.2 External Cavity

Figure 40 shows the experimental (closed diamonds) and model data (dotted

line) for the external cavity frequency as a function of the external cavity length in

the range Lext = 20-27 cm. Also shown in the figure is the v = c/(2Lext) line which

800
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S 400

;> 300
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0 I I I I I I

20 21 22 23 24 25 26 27
P =2.0

= 4.0 External Cavity Length (cm)

T=316.85
Y=0.017

Figure 40. Comparison between the model (open diamond) and experimental (dot-
ted line) data for the external cavity frequency, v6xt, as a function of the
external cavity length, Lext.

is the theoretical mode spacing for degenerate phase conjugate feedback discussed by

Auyeung et al. As shown in the figure, there is excellent overall agreement between

the experimental and model results. The maximum difference between these two

data sets is on the order of 25 MHz which is outside the 3 MHz resolution of the

spectrum analyzer. The additional error between the data sets is attributed to the
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limited accuracy of the FFT in the model (± 20 MHz) and to a lesser extent, to an

error in measuring the experimental external cavity (± 2 mm).

Despite the small differences between the experimental and model data sets,

there still remains an overall downward shift of the frequencies relative to the c/(2Lxt)

line. The downward shift in the frequency data cannot be attributed to a frequency

bias of the RF spectrum analyzer. The analyzer was tested by splitting the soli-

tary laser output and up-shifting one of the beam's frequency by 48 MHz using an

acousto-optic modulator. The two beams were then recombined onto the PIN diode

detector and the beat signal between the two laser beams was displayed on the RF

spectrum analyzer. The manufacturer's specification for the instrument is a display

resolution < 3 MHz over the full span (DC-1.8 GHz) of the analyzer. The 48 MHz

beat signal was detected well within this specification.

In addition, a horizontal translation of the experimental and model data to

coincide with the c/(2Lext) line is not reasonable. Although a cavity length mea-

surement error of ± 2 mm does exist, this error is well below the >3 cm translation

needed to move the experimental data onto the c/(2Lxt) line. The most reasonable

explanation for the overall downward shift of both the experimental and computer

model data is the presence of other non-linear processes, such as gain saturation,

that have not been included in Auyeung's analysis. The development of the c/(2Lext)

line was based on the self-consistent solution of the radius of curvature of the laser

beam in a simple cavity formed between the phase conjugate mirror and the gain

medium. No other processes or limitations on the lasing medium or the phase conju-

gate mirror were considered. Furthermore, this downward shift in v,,,t was also seen

in the experimental results from the DPCM and to a lesser degree in the normal

mirror experiments. This suggests the shift is strictly a laser and external cavity

phenomenon and is independent of the feedback method.
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6.3 Relaxation Oscillation and Locking Ratio

Figure 41 shows the comparison of the raw experimental data and the LK-

CON2.C model for changes in the relaxation oscillation as the external cavity length

is varied. The relevant model parameters are listed at the bottom of the figure. Both

curves have the same ALxt = 3.5 cm between successive transitions, as well as AVR

= 500 MHz as the max-min transition of the relaxation oscillation. The general

features of the experimental data seem to be captured by the model curve. However,

it is apparent from the figure that there seems to be a shift of the model data both

in frequency and external cavity length relative to the experimental data.

Earlier in Section 3.3 it was shown that the Hopf frequency, QH, emerging out

of the first Hopf bifurcation varied around the solitary relaxation value. As shown

in Figure 41, this corresponds to a VR = 4.28 GHz for the model and 3.72 GHz for

the experimental data. As a cross-check, the solitary relaxation frequency can also

be extracted from the span between adjacent transitions. Since the span between

resonant transitions is 27, an expected value for the experimental yR using Eq. (68)

is calculated to be:
c

yR - 4.28 GHz (73)

This is obviously different than the measured value of vR = 3.72 GHz. Figure 42

shows a diagram of the F-P display for an arbitrary cavity length. From the display,

it is not possible to determine which frequency is to be associated with adjacent F-P

cavity modes. Since the FSR of the F-P is 8 GHz, the natural association is to assume

that the two frequencies displayed are at 3.72 GHz. However, the model provides

insight into the proper interpretation of the F-P display, which is overlapping modes

with frequencies at 4.28 GHz. Therefore the data must be reinterpreted with a

solitary relaxation frequency of 4.28 GHz, which also agrees with the calculated

value based on the span between resonant transitions.
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Figure 41. Comparison between experimental and LKCON2.C model data for the
changes in the relaxation oscillation frequency.
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3.72 GHz

L-3.72 GHz

4.28 GHz

Figure 42. Diagram of a F-P display showing an 8 GHz FSR between adjacent F-P
modes and two frequencies. From the F-P display it is not possible to
determine if the two frequencies are at 3.72 GHz or 4.28 GHz.
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The reinterpretation of the experimental data accounts for the vertical shift

between the computer model and the experimental data. To address the horizontal

differences, we need to apply the approximation of a --+ oc made in Section 3.3.

It was shown that this approximation simplifies the equations for the relaxation

frequency emerging out of the first Hopf bifurcation. Accordingly, the a parameter

in the model was increased to a relatively high value of 10. The effect of the increase

in a was to shift the model data horizontally along Lext so that the transition points

at 22.7 and 26.2 cm match. In effect, the increase in a reduces the dependency of

Eq. (67) on the cos(d) term in the denominator and hence transitions in QR (or VR)

will occur when Q- = (2n + 1)7r. Increasing c beyond a value of 10 in the model has

no significant contribution to the shift in the data since the denominator of Eq. (67)

goes as arctan(a). Figure 43 shows the result of incorporating both the increase

of a in the model data and the reinterpreted experimental values. The excellent

agreement between the two curves is evident in the figure.

Figure 44 shows the integer values of the locking ratio for the experimental and

model data. The locking ratio values for the model data have been calculated using

the a = 10 model data and the ratios for the experimental data have been calculated

using the relaxation frequencies shown in Figure 43. As shown in Figure 44, the graph

of the experimental data has a whole integer trend with values of 7, 8, and 9 over the

range of Lezt = 20-28 cm while the model data has half-integer values of 6.5, 7.5 and

8.5 over the same range. Earlier in the external cavity frequency comparison, the

experimental data had been shown to be on the order of 25 MHz below the model

data. This small difference is significant enough to increase the locking ratio of the

experimental data by a half-integer. Re-scaling the experimental data to coincide

with the model trend would lower the experimental locking ratio values by a half

integer. Therefore, the disparity in the locking ratios is attributed to the small, but

consistent, differences in the external cavity frequency between the model and the

experimental data.
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Figure 43. Comparison between experimental and model data for the changes in
the relaxation oscillation frequency using the increased value of oz in the
model and reinterpretation of the experimentally measured yR.
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Figure 44. Comparison between experimental (dotted line) and model (open dia-
mond) data for the locking ratio.
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6.4 Feedback Resonance

The last comparison to be discussed is between the experimental external cav-

ity resonance data and Eq. (69) describing n7H using the approximation a -- oc.

Figure 45 compares the measured experimental and model results for external cavity

lengths of 20-28 cm. The experimental phase conjugate feedback power was nor-

malized using Eq. (48) for ,. The laser cavity coupling efficiency in Eq. (48) was

assumed to be il, 1 and a value for the laser facet reflectivity, R 2 = 0.3, was chosen

based on manufacturer specifications. The resultant value for K was then rescaled

using the scaling presented in Section 3.1 to convert the experimentally measured

feedback power into the dimensionless parameter n.

The significant attribute of this figure is the overall fit of the periodicity be-

tween the data sets. Qualitatively, Eq. (69) accurately captures the general trend

of the data. Again, the 3.5 cm peak-to-peak resonance spacing in the experimental

data suggests a calculated yR 4.28 GHz. The model representation shown in the

figure was calculated using VR 4.28 GHz which yields an excellent fit to the data.

This value for the relaxation frequency also agrees with the value established earlier

in Section 6.3 when the LKCON2.C model outputs for the relaxation frequency were

compared to the experimental values. For comparison, using a relaxation oscillation

value yR = 3.72 GHz in Eq. (69) yields a resonance spacing of 4 cm, which was orig-

inally shown in Figure 10 when the equation for 'nH was first introduced. A curve

fit to the experimental data with a resonance spacing of 4 cm is poor since only one

peak can be matched with that spacing.

A notable conclusion from this graph is that the experimental data, the LK-

CON2.C model, and the approximate solution for 'nH given in Eq. (69) all agree over

this range. Since Eq. (69) offers a convenient and compact form to investigate cavity

resonance behavior, a validating test would be to apply the external cavity plot to

a second set of data and look for resonance point matches. As mentioned in the

experimental descriptions, external cavity resonance data were also taken indepen-
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Figure 45. Comparison between the experimental cavity resonance data taken with

the Klinger translation stage and Eq. (69).
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dently using a manual translation stage which only had a 2 cm throw. Figure 46

plots the translation stage data against Eq. (69) for the ranges 25-27 cm and 28-30

cm which accurately shows the correlation between the experimental data and the

approximate solution.

6.5 Bifurcation Diagram

The direct experimental construction of a bifurcation diagram, depicting the

extreme values of the laser output amplitude versus feedback rate, was not possible

due to data acquisition equipment limitations. However, a qualitative comparison

between experimental data and the LKCONBI2.C model was accomplished and used

throughout the experimental work. The comparison uses experimental RF and F-P

spectra to identify key events in the model bifurcation map, such as relaxation

oscillation undamping, the external cavity frequency appearing and total chaos. The

experimental feedback power associated with these spectral events can then be used

to locate the position in the model bifurcation map. This procedure was also used

in reverse where model predictions could be used to forecast expected experimental

values at least to within an order of magnitude.

Figure 47 shows the model bifurcation map for L,,t = 20 cm. The diamonds

overlaid on top are the locations of the key events found in the experimental spectra.

The phase conjugate feedback power has been normalized in a similar manner as

described in the previous section so that the feedback power is now displayed as n.

Table 8 lists the values of the key events for the experimental and model data. The

emergence of the external cavity frequency at ?model = 0.0065 is difficult to see in the

map due to the limited resolution of the graphic, but was confirmed by examining

the model RF spectrum. No attempt was made to calibrate the sensitivity of the

F-P or spectrum analyzer instruments, therefore, exact pinpointing of the bifurcation

points in the experimental data is not reasonable. Nonetheless, there is a general

agreement between the experimental data and the LKCONBI2.C model.
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Figure 46. Plot of experimental cavity resonance data taken with the manual mi-
crometer translation stage.
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Figure 47. Bifurcation map created by the LKCONBI2.C model for Lext =20
cm overlaid with points from the experimentally observed bifurcations
(closed diamonds). The experimental bifurcation points were obtained
by watching the RF or F-P spectra and noting the conjugate feedback
power as frequencies emerged.
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Table 8. Identification of key bifurcation events shown in Figure 47.
Key Event 7 model n exp

Relaxation Oscillation Emerges 0.0051 0.0063
External Cavity Frequency Emerges 0.0065 0.008
Full Chaos 0.013 0.014

This simple comparison is obviously not a complete validation of the LK-

CONBI2.C computer model. Nevertheless it demonstrates good qualitative agree-

ment between predicted results and experimental data. In order to evaluate the

model quantitatively, experimental reconstruction of the bifurcation maps is essen-

tial.
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VII. Conclusions and Recommendations

Presented in this research is an examination of the nonlinear response of a

laser diode subject to weak degenerate phase conjugate feedback. The development

of chaos in the laser diode was investigated through numerical computer modeling

to predict the laser output spectra and through experimental verification of the

computer models using a BaTiO3 crystal as the phase conjugate feedback mirror.

Two methods of establishing the PCM were used in the experiments to compare

the feedback effects due to self-pumping the BaTiO 3 crystal and by double phase

conjugation.

It was shown that a phase conjugate mirror in either the self-pumped or double

pumped configuration with BaTiO has a frequency response sufficient to reflect the

RF external cavity frequencies contained in the laser output. Although BaTiO3

is inherently a slow crystal in forming the holographic grating needed to establish

the phase conjugate mirror, once the grating is established it can support small

perturbations in the laser output as the laser evolves into a chaotic state. Hence

the BaTiO3 PCM performs as "fast" as a normal dielectric mirror. In addition, the

feedback parameter , that couples the external cavity delay into the rate equation for

the laser photon number can be modeled accurately as a time independent parameter.

The experimental data also verified model results using variations of the ex-

ternal cavity as the control variable. Through the use of experimental data it was

clear that the model needed to be modified to include gain saturation of the laser

medium to show accurately the dependency of the external cavity frequency on the

length of the external cavity. Without including gain saturation, model predictions

of v ,t for long external cavities grossly underestimated values obtained experimen-

tally. Therefore, the electron-hole gain coefficient, initially assumed to vary linearly

with AN, actually has a more complex dependency. Furthermore, the inclusion of

the gain saturation on the electron-hole population corrected the model for other
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effects such as frequency locking between the relaxation oscillation and external cav-

ity frequency, changes in the relaxation oscillation frequency, and feedback resonance

of the external cavity. These phenomena were all verified experimentally using the

self-pumped phase conjugate geometry.

The experimental and analytical results presented in this document provide

valuable insight into areas of future research. As discussed earlier, there is excel-

lent agreement between model predictions and experimental data for the case of

degenerate phase conjugate feedback. The investigation of the onset of chaos from

non-degenerate phase conjugate feedback would be most advantageous for a more

robust computer model. Non-degenerate phase conjugate feedback can produce ef-

fects on the laser not possible with degenerate feedback or feedback from a normal

dielectric mirror. The fold bifurcation, external cavity mode spacing of 4 Lext and

locking of the laser frequency to the pump frequency are all unique areas that need

experimental verification for the models.

Moreover, it was discussed earlier that the LKCON2.C model was the only

model verified experimentally due to the limitation of the data acquisition capacity

in the experimental equipment. The LKCONBI2.C bifurcation model should also

be experimentally verified for completeness. This will require a data acquisition sys-

tem to include an ultra-fast photodiode with a cut-off frequency > 8 GHz and a

matching analog-to-digital (A/D) digitizer to record the amplitude time series for

the bifurcation map. Also, an RF spectrum analyzer with at least a 6 GHz band-

width is recommended to capture the external cavity frequency and the relaxation

oscillation frequency in the same spectrum. This would allow comparison of the

amplitudes of the two frequencies in addition to pinpointing the level of feedback

when each frequency emerges while minimizing relative scale errors associated with

separate equipment. These bifurcation points could not be adequately identified in

the current experimental equipment since only v,,t was collected in the RF spec-

tra. Although there was excellent agreement in the frequency content between the

103



RF and F-P spectra, the sensitivity and resolution of the F-P are less than the RF

spectrum analyzer.

Two additional areas for proposed research include the experimental investi-

gation of short cavities (Vext > VR) and the experimental determination of the small

signal gain parameter. The investigation of short cavities poses a challenge to en-

gineer optics into an external cavity with lengths shorter than 5 cm. These short

external cavities can also further validate the fast response of the PCM by driving the

external cavity frequency higher than the relaxation oscillation. If indeed the phase

conjugate return beam contains the same frequency content as the laser output, even

for short cavities, then the BaTiO3 PCM behaves nearly instantaneously.

One of the conclusions drawn from this research is that the small gain satu-

ration term plays an important role in modeling nonlinear behavior due to phase

conjugate feedback. The value of the gain saturation term used in this research was

based on previous work by Simpson et al on a similar laser diode. A recommended

area of future research is to investigate the gain saturation process in a single mode

laser diode to fully understand the nonlinear effects on the gain due to feedback and

improve the computer models.

In conclusion, the data presented in this research has increased the under-

standing of the onset of deterministic chaos in a semiconductor laser diode with

phase conjugate feedback. As the theory and computer models describing nonlin-

ear behavior matures, eventual control of the chaotic laser will be practical. Being

able to control the output of a chaotic laser opens real possibilities for encoding

and encrypting information in the chaos which could transition a once undesirable

condition into a useful product.
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Appendix A. MathCad Templates

MathCad template to examine the frequency and feedback rate at the Hopf bifurcation point
"Cap Omega" is the dimensionless frequency emerging from the Bifurcation
and "omega" is the scaled frequency in GHz. "Eta is the dimensionless feedback rate at the
Hopf point.

Constant Parameters:

Pumping: P -2.0 Speed of Light (cm/sec): c = 3-1010

Alpha: x -=4.0 Photon Lifetime (sec): c p 4.166.10- 12

Carrier Lifetime (sec): r N 1.32'10-9

Step Size of L increment: AL - .01

Max L: Lmax 31 Min L: Lmin s20

L max L min3
Number of steps taken: N - AL N = 1. 103

External Cavity Length (cm): L -L min, L min + AL.. L max

Array Index for saving: i :0..N 1 j:-0.. 1

Other Definitions:
"C "N  c(L) -2L

N T 0 atan(x) c(L p
Xp

Solitary Relaxation Frequency: 0) R 2 2T --.R =4.292"109 Hz
(dimensionless) p-

2
cos(O + atan(ac)).cos -2"L)
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0.2

20 22 24 26 28 30 32
L

For the condition that alpha tends to infinity:

( I I1+-P _)____L

0) H(L 2O R cR-tan\\ 2

4

3-
20 22 24 26 28 30 32

Feedback rate at the Hopf Point:

nj H(L) := /. E( Ic+s2(P))
2. os(O atan())o( 2 L
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0.1 I3,

11 H(L) 0.05

0
20 22 24 26 28 30 32

L

Using the assumption that alpha tends to infinity, "Eta" reduces to:

I( += 2P 1RT 2

2-cos(' 2"(

0.2

0.15

0.1

0.05

20 22 24 26 28 30 32

Now save the eta values:

ETA. 0 := Lmin+I AL-i ETAj 1 I i11(L min + AL.)

WRITEPRN( eta) :ETA
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Constants: c 310 , p = 1-10 12

Laser Parameters: Measured Relaxation Freq: V r = 3.7210 9

Scaled Relaxation Freq: ( r = 2..it-v r.1 p r 0.02337

Alpha: a: 4

Pumping Term: P 2

External Cavity Length (cm): L ext - 3.0

2.L ext
Scaled External Cavity Length: - : ------ - =200ctp

Calculated External Cavity Frequency: v ext -4-Le V ext 2.5 109

Range of values for omega: o = .02, .019...02

Fold bifurcation Lines l((O)
which show the amount 1 2

of feedback, eta:

0.006

0.004 -

I((O)

0.002 -

-0.02 -0.01 0 0.01 0.02

0)
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Graphical Solution to frequency and phase lock equation:

Range of values for Theta: 0 := 0,. 1..8c

Let eta =1 :I

Phase lock equation: (0(0) :=-Tl I1 -s a2.sin(0 +i atan(cx))

5

CO(O) 0

0 2 4 6 8
0
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Appendix B. LKCONBI2. C Source Code
/* -lkconbi2.c ------------------------------------
/*---Performs bifurcations for the---Lang Kobayashi-------

/*--model of semiconductor equations with --------------- */
/* ---- conjugate feedback ---------------------------------

/* and gain saturation
/*--This is a code for delay-differential equations ------*
/* ---- with the appropriate scalings perfomed --------------
/* - 10 Aug 95 -----------------------------

/*--- Original LICONBI.C program developed by

/* -Dr Gavrielides Phillips Laboratory

/* Modified by G. Hengst 5 Dec 96 to read in */
/* default parameters so that the codes does not */
/* have to be re-compiled on every constant change */
/* Modified by G. Hengst 22 Apr 97 */
/* to include gain saturation effects */

#include <math.h>

#include <stdio.h>

#include <malloc.h>

/* ****** this section is now read in from LKCONBIF.CFG file */

/* #define BEGIN 0.0 */
/* #define END 500.0 */ /* 500.0 */
/* #define EXTIME 400.0 */ /* 400.0 */
/* #define NPOINTS 16000 */ /* 16000 */
/* #define KMAX 1 */

/* #define HTAMIN 0.00018 */ /* .00003 .0017 */
/* #define HTAMAX .001 */ /* .001 .0006 */
/* #define HTASTEP 100 */

/* #define tao 1428.57 */ /* 4000.0 */

/* #define pi 2.33 */ /* .75 */
/* #define alfa 4.0 */ /* 10.0 */
/* #define taoex 1095.23 */ /* 49.67 132.460/2.0 */
/* #define delta 0.0 */

/* #define phipcm 0.0 */
/* #define model 1 */ /* model=O phase equation */

/* model=l full model */
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float BEGIN, END, Y, EXTIME;
int NPOINTS, KMAX;
float HTAMIN, HTAMAX, Y;

int HTASTEP;

float tao, pi, alfa, taoex, delta, phipcm, extlength;

float carrierlife, photon-life;
int model, usernd;

void rkdumbo;

void rk4();
float *vector(;
void freevectoro;
void nrerror();

float **matrix(;

void freematrixo;

int initstack();

int writestackO;
float ranl();

float **stack,*save;
float lastde=O.O,taupi;

FILE *outfile;
FILE *cfgfile;
int nstack,iseed=-872581;

struct given {
int dim;

float out;
} data;

/* main(argc,argv) */
main(void)

/*int argc;
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char *argv[1; *

void derivso;
void exit();
float *ystar;

register mnt i;
float h,tau,tpi;

mnt dimen,j;

/* This section has been commented out since

the default output file is LKCONBIF.DAT

if (argc != 2)
printf("Usage: Program OutputFile

Now exiting system... .\n"

exit(1)

if ((outfilefopen(argv[1] ,"a+t"))==NULL
outfile=fopen(argv[1] ,"at")

/* Input default values for constants from LKCONBIF.CFG *

cfgfile = fopen("lkconbif.cfg", "ir");

/* open the config file for reading *

if (cfgfile ==NULL){
printf("LKONBIF.CFG file not found.... .terminating \nil);

abort();

I
fscanf(cfgfile, "f,&BEGIN);
fscanf(cfgfile, "Yf,&END);
fscanf(cfgfile, "f,&EXTIME);
fscanf(cfgfile, "%0i", &NPOINTS);
fscanf(cfgfile, "i,&MAX);
fscanf(cfgfile, "f,&HTAMTN);
fscanf(cfgfile, "f,&HTAMAX);
fscanf(cfgfile, "%il", &HTASTEP);
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/*fscanf(cfgfile, "Yf", &tao); *

fscanf(cfgfile, "%f", &pi);

fscanf(cfgfile, "f,&alfa);

fscanf(cfgfile, "f,&ext-length);

fscanf(cfgfile, "f,&delta);

fscanf(cfgfile, "f,&phipcm);

fscanf(cfgfile, "%0e", &photon-life);

fscanf(cfgfile, "e,&carrier-life);

fscanf(cfgfile, "i,&model);

fscanf(cfgfile, "%f"t, &Y);

fscanf(cfgfile, "%i", &usernd);

tao = carrier-life/photon-life;

taoex = (2.0 * ext-length)/(3.OelO *photon life);

printf("\n BEGIN: 0 f",BEGIN )

printf("\n END: %f",END );

printf('\n EXTIME: %f",EXTIME )

printf("\n NPOINTS: %Ai", NPOINTS);

printf("\n KMAX: %i",KMAX );

printf("\n HTAMTN: %f", HTAMIN )

printf("\n HTAMAX: %f", HTAMAX);

printf("\n HTASTEP: Yi",HTASTEP )

printf("\n tao: %f",tao )
printf("\n pi: %0f ,pi )
printf("\n aif a: %f", aif a

printf("\n taoex: %f",taoex )

printf("\n delta: 7f",delta);

printf("\n phipcm: %f", phipcm);

printf("\n photon-life: %Ae", photon-life);

printf("\n carrier-life: %Ae", carrier-life);

printf('\n Y: %/f", Y);

printf('\n model: %i", model);

printf('\n Random: %i \n", usernd);

if (NPOINTS == )

printf("Values not properly read into program.... .terminating \n")

abort();

I

outfile = fopen('lkconbif .dat", "w");
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data. dim=4;

if(model0=) tau=taoex*sqrt(2.0*pi/tao);

if(model==l) tau=taoex*sqrt(2.0*pi/tao);

printf("\n tau: %0f \n", tau);

dimen=4;

taupitau;
tpi=4.O*atan(1 .0);

1* However final printed time is in units of tp *

h=(END-BEGTN)/(NPOINTS*KMAX);
nstack=init-stack(tau,h,dimen);

ystarvector(1 ,data.dim);

save~vector(l, data. dim);

/* ----------------------------------------------------
*---- ----- initial conditions ------------------------

ystar[11=0.10; /*9.8; .000645217;*/
ystar[2]=0.1; /* 9.8; 0.0; *
ystar[3]=0.01; /*0.0; -.014136; *
ystar [4 =0. 0;
/*--------------------------------------------------

/------------------- rkdumb-----------------------

/*---------------------------------------------------

for(i1 ; i<=HTASTEP; i++){

data. out=HTAMIN+(float) (i-1)*

(HTAMAX-(HTAMIN))/((float) (HTASTEP-1));
rkdumb(ystar,data.dim,BEGIN,END,NPONTS*KMAX,derivs);

for(j=1; j<=data.dim;j++) ystar[jl=save~j];

if(usernd == )

if (modelO) {
ystar[1]=6.0*(1.0-2.0*ranl(&iseed));
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ystar [21=2. 0*tpi*ranl (&iseed);

ystar [3]=6 .0*(1. 0-2. 0*ranl (&iseed));

I
if (model==1) {
ystar[11=2. 5*ranl (&iseed);
ystar[21=4.0*tpi*ranl(&iseed);

ystar [31 =2 .5*(1. 0-2 .0*ranl (&iseed));

I
/*printf("yl=%f y2=70f y3=%f", ystar[1], ystar[2], ystar[3]) ;*/

I
printf("Iteration # completed is now %Ad \n",i);

/* if(i==1) break; *
I

fclose(outfile);
free-vector(save,1,data.dim);

free-vector(ystar,1,data.dim);
free-matrix(stack,1,dimen,1,nstack+1);

I

#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)

#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(TM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

float ranl(long *idum)

int j;
long k;
static long iy=0;

static long ivENTAB];
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float temp;

if (*idum <= 0 11 !iy){

if (-(*idum) < 1) *idum=1;

else *idum = -(*idum);
for (j=NTAB+7;j>=0;j--){

k=(*idum) /TQ;
*idumlIA* (*idum-k*IQ) -IR*k;
if (*idum <0) *idum += IM;

if (j < NTAB) iv[j] = *idum;

iyiv[O];

k=(*idum) /TQ;
*jdumlIA* (*idum-k*TQ) -TR*k;
if (*idum < 0) *idum += IM;

jiy/NDTV;

iy=iv[j];
iv[j] = *idum;

if ((temp=AM*iy) > RNMX) return RNMX;

else return temp;

}udfI
#undef IA

#undef AM

#undef AM
#undef IQ

#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX

void rkdumb(vstart,nvar,xl,x2,nstep,derivs)
int nvar,nstep;
float vstart[] ,xl,x2;
void (*derivs)();
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int i,k;
float x,h,s;
float *v,*vout,*dv,*vectoro;
float wplus ,wminus ,amp, laste ,ampi;
void rk4() ,nrerror(),free-vector();

v=vector(1 ,nvar);
voutvector(1 ,nvar);

dv=vector(1,nvar);

for (i=l;i<=nvar;i++){
v [ill=vstart Ei]

x=xl;
h=(x2-xl)/nstep;

for (k=1;k<=nstep;k++){
derivs(x,v,dv);
rk4(v,dv,nvar,x,h,vout,derivs);
if (x+h == x)

nrerror("Step size too small in routine RKDUMB");

x +=h
s=(k+1) %KMAX;
for (i1l;i<=nvar;i++){

vlilhvout~i];

/* if('s)
fprintf(outfile,"%f %Af %f 7f\n",x,v[1] ,v[2] ,v[31); *

I
for(i=1;i<=nvar;i++) save[il=v[i];
freevector(dv,l,nvar);
free-vector(vout,1,nvar);
free-vector(v, 1,nvar);

} * - - - - - - - - - - - - - - -- - - - - - - - - - - - - - -

/* ------------------------- rk4 ------------------------------------

void rk4(y,dydx,n,x,h,yout,derivs)
float yE] ,dydx[1 ,x,h,yout[];
mnt n;
void (*derivs)O);
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int i;

float xh,hh,h6,*dym,*dyt,*yt,*vectoro;

dym=vector(1,n);

dyt=vector(1 ,n);
ytvector(1,n);

hhh*0.5;

h6=h/6.0;

xh=x+hh;
for (i1l;i<=n;i++) ytli]=y~il+hh*dydx[i];
derivs(xh,yt,dyt);

for (i=1;i<=n;i++) yt~ily[i]+hh*dyt[i];
derivs(xh,yt,dym);

for (i=1;i<=n;i++){

yt [ii y Li]+h*dym [i]
dym Ei] += dytEi];

derivs (x+h,yt ,dyt);
for (i1l;i<=n;i++)

yout Li] ~y i]+h6* (dydx [ii +dyt Li]+2. 0*dym [ii);
free_vector(yt,1,n);
free-vector(dyt,1,n);
free-vector(dym,1,n);

} * - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

/-------------- derivs---------------------------------

void derivs(t,y,dy)
float t,y[],dy[];

int i;
float hta,eps,fix,zz,tpi,gain;
i=write-stack(y);

hta=data. out;
epssqrt(tao/(2.0*pi));
tpi=4.0*atan(1 .0);

fix=stack [2] Lii+y [2]-phipcm-2*delta* (t-taupi/2 .0);
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fixfix-2.0*tpi*(float) (int) (fix/(2.0*tpi));

if (modell) {
dy [1]=0.5* ((2.O*y [3] +eps) *gain-eps) *y[11 +

eps*hta*stack [1][i]*cos(fix);

dy[2]= alfa*y[3]-eps*hta*(stack[l] [i]/y[1])*sin(fix);

dy[3]= (pi-(y[3]/eps)-pi*(1.0+(2.0*y[3]/eps))*
gain*y[1]*y[l])/(2.0*pi);

zz=(y[Ell -1.0);
I

if (mode 1==0) {
dy[1]=y[3]+hta*alfa*cos(fix)/sqrt(2*(pi/taa));
dy[E21]y[3] ;

dy[3]=-y[1]-(1+2*pi)*yE3]/sqrt(2*pi*tao);
dy[4]=y[2];
zz=y[1];

I

if (model0=) {
if((t>=EXTIME)&&(lastde>=0.0)&&(dy[11<0O.0)) fprintf(outfile,
"yof %/f %f\n", data.out*alfa/(sqrt(2.0*pi/tao)), zz*alfa, t);

if((t>=EXTIME)&&(lastde<=0.0)&&(dy[1]>=0.0)) fprintf(autfile,
"I%f %f Yf\n", data.out*alfa/(sqrt(2.0*pi/tao)), zz*alfa, t);

fflush(outfile);
lastdedy E1];
I

if (modell) {
if((t>=EXTTME)&&(lastde>0O.0)&&(dy[1]<=0.0)) fprintf(outfile,

II~f %f 0
Af\n", data.out, zz,t)

if((t>=EXTIME)&&(lastde<=0.0)&&(dy[11>=0.0)) fprintf(outfile,
II~f %f %f\n", data.out, zz, t);

fflush(autfile);
lastdedy[1];
I

/* ---- Outputs phase -------------------
/*if((t>=EXTIME)&&(lastde>0.0)&&(dy[2<0O.0))
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fprintf(outfile,"%f %f 0
Af\n",

data.out*alfa/(sqrt(2*pi/tao)),y[2] ,t);

if ((t>=EXTIME)&&(lastde<0 .0)&&(dy [21 >=0 .0))
fprintf(outfile,'Xf %of %f\n",

data.out*alfa/(sqrt(2*pi/tao)) ,y[2] ,t);

fflush(outfile);
lastdedy [2] 1

return;

I
/*---- --- current ------------------------

int init_stack(t,step,dim)
float t,step;
int dim;

int i,j;
nstack=(int) (4. 0*t/step);
stack=matrix(1 ,dim,l1,nstack+l);

for(i1 ; i<=dim; i++)
for(jl;j<=nstack;j++) stack~i][jII=0.0;

return nstack;

I

mnt write-stack(x)
float x[];

static int j=1;
stack Ell [jI x[Ell]
stack E2] [j I xE21];
if(j==nstack) j0O;

return j;

/*----------------------------------------------*

void nrerror(error-text)
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char error-text [501;
{
void exit();

printf("Numerical recipes run-time error.. .\n");

printf("%s\n",errortext);

printf("...now exiting to system \n");

exit(1);

}

float *vector(nl,nh)

int nl,nh;

/* Allocates a float vector with range nl... nh */
{

float *v;

v=(float *)malloc((unsigned) (nh-nl+l)*sizeof(float));

if(!v) nrerror("allocation failure in vectoro");

return v-nl;

}

void free-vector(v,nl,nh)

float *v;

int nlnh;

/* Frees a float vector allocated by vector() */

{
free((char*) (v+nl));

}

float **matrix(nrl,nrh,ncl,nch)

int nrl,nrh,ncl,nch;

{
int i;

float **m;

/* Allocate pointers to rows */

m=(float **)malloc((unsigned) (nrh-nrl+l)*sizeof(float*));

if(!m) nrerror("Allocation failure 1 in matrix");

m-=nrl;

/* Allocate rows and set pointers to them */
for(i=nrl;i<=nrh;i++) {

m[i]=(float *)malloc((unsigned) (nch-ncl+l)*sizeof(float));

if(!m[il) nrerror("allocation failure 2 in matrix");

m[il-=ncl;
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}

/* Return pointer to array of pointers to rows
return m;
}

void free-matrix(m,nrl,nrh,ncl,nch)

float **m;

int nrl,nrh,ncl,nch;

/* Frees a matrix allocated with matrix() */
{
int i;
for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));

free((char*) (m+nrl));

}
/* ---------------------------------------------
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Appendix C. LKCON2. C Source Code
/* -lkcon2.c ------------------------------------
/*---Intergrates the conjugate Lang Kobayashi -------------
/*--model of semiconductor equations. ----------------------

1* including the effects of gain saturation */
/*--This is a code for delay-differential equations ------

/* ---- with the appropriate scalings perfomed --------------
* ------------- 10 Aug 95 -----------------------------

/*--- Original LICON.C program developed by */
/* -Dr Gavrielides Phillips Laboratory

/, ************* modified on 6 Dec 96 by Gordon T. Hengst */
/* constants moved to a config file so that the code does not */
/* have to be re-compiled for every constant change. */
/* modified on 22 April 97 to include the effects of gain */

/* saturation

#include <math.h>
#include <stdio.h>

#include <malloc.h>

/*These #define statements are

replaced with variable statements */
/* #define BEGIN 0.0 */

/* #define END 500.0 */ /*2000.0 */
/* #define EXTIME 400.0 */ /*985.0*/

/* #define NPOINTS 32768 */
/* #define KMAX 1 */
/* #define HTAMIN .00018 */ /*.0017 */
/* #define HTAMAX .001 */ /*.0006 */
/* #define HTASTEP 100 */

/* #define inject .0006425 */
/* #define tao 1428.57 */

/* #define pi 2.33 */

/* #define alfa 4.0 */

/* #define taoex 1095.23 */ /*132.46*/
/* #define delta 0.0 */

/* +delta is injection below the slave frequency */
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/* #define phipcm 0.0 */

/* #define model 1 */ /* model=0 phase equation */
/* model=1 full model */

float BEGIN, END, EXTIME;

int NPOINTS, KMAX;
float HTAMIN, HTAMAX;

int HTASTEP;
float inject, tao, pi, alfa, taoex, delta, phipcm, Y;

int model, usernd;

void rkdumbo;

void rk4();
float *vector();

void free-vector();
void nrerroro;

float **matrix);

void freematrixo;

int initstacko;
int writestacko;

float ranl();

void fourl();

float **y=O,*xx=O;

float **stack,*save;

float lastde=O.O,taupi,time2,photon-life,
carrierlifeextlength,dir2;

FILE *outfile,*fourrf,*fourfm;

FILE *cfgfile;

int nstack,iseed=-872581,inti;

struct given {
int dim;

float out;
} data;

124



main(void)

{
void derivs();

void exit();

float *ystar;

register int i;

float h,tau,time,SCALE, tpi;

int dimen,j,n;

/* -------------------------------------------------

fourrf=fopen("fourierrf.dat","wt");

if(fourrf==NULL) {
printf("fourierrf.dat file has not been opened");

exit (1);
}

fourfm=fopen("fourierfm.dat","wt");

if(fourfm==NULL) {
printf("fourierfm.dat file has not been opened");

exit (1);
}

/* *** Input default values from configuration file */

cfgfile = fopen("lkcon.cfg","r");

/* open the config file for reading */

if (cfgfile == NULL){

printf("LKCON.CFG file not found ... terminating \n");

abort();

}
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fscanf(cfgfile, "U~", &BEGIN);
fscanf(cfgfile, "7fll, &END);
fscanf(cfgfile, "Uf", &EXTIME);

fscanf(cfgfile, "%ill, &NPOTNTS);
fscanf(cfgfile, "iMAX);

fscanf(cfgfile, "f,&HTAMTN);
fscanf(cfgfile, "f,&HTAMAX);
fscanf(cfgfile, "i,&HTASTEP);
fscanf(cfgfile, 11%f", &inject);

/*fscanf(cfgfile, "Y.f", &tao); *

fscanf(cfgfile, "1%fl", &pi);
fscanf(cfgfile, "f,&alfa);
fscanf(cfgfile, )7f,&extjlength);
fscanf(cfgfile, "%fP, &delta);
fscanf(cfgfile, 11%f", &phipcm);
fscanf(cfgfile, "W'e, &Photon-life);
fscanf(cfgfile, "%0e", &carrier-life);

fscanf(cfgfile, "U"', &Model);
fscanf(cfgfile, 11%f", WY;
fscanf(cfgfile, "%ill, &usernd);

tao = carrier-life/photon-life;
taoex = (2*ext-length)/(3e10 photon-life);

printf("\n BEGIN: Yf",BEGTN )
printf("\n END: %Pf,END );
printf("\n EXTIME: Yf",EXTIME )
printf("\n NPOINTS: Yi",NPOINTS )
printf("\n KMAX: Yi",KMAX );
printf("\n HTAMIN: %P", HTAMIN )
printf("\n HTAMAX: %fP, HTAMAX);
printf("\n HTASTEP: YOi),HTASTEP )
printf("\n inject: %Pf, inject);
printf('\n tao: %f',tao )
printf('\n pi: 0Afl,pi );
printf("\n alfa: %f",alfa )
printf('\n taoex: %f",taoex )
printf('\n delta: %f",delta )
printf("\n phipcm: %P", phipom);
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printf("\n photon-life: Xe", photon-life);

printf("\n carrier-life: %e", carrier-life);

printf("\n Y: %/f", Y);
printf("\n model: %i", model);

printf("\n Random: %i \n", usernd);

time2 = 1.0/photon-life;

if (NPOTNTS == 0) {
printf("Values not properly read into program ... terminating \n");
abort 0;

outfile = fopen("lkcon.dat", "wt");

data. dim=4;
if(model0=) tau=taoex*sqrt(2.0*pi/tao);
if(modell) tau=taoex*sqrt(2.0*pi/tao);

printf("\n taul: Xf \n", taul);

dimen=4;

taupitau;
tpi=4.0*atan(1.0);

/* However final printed time is in units of tp *

/*---------------------------------------------*

h=(END-BEGIN) /(NPOINTS*KMAX);
nstack=init-stack(tau,h,dimen);
ystarvector(1 ,data.dim);

savevector(1,data.dim);
xx=vector(1 ,NPOINTS+1);
y=matrix(1,data.dim,1,NPOINTS+1);

/--------initial conditions --------------------- *
/* ---------------------------------------------------
if(usernd 0=){ /* use constant values *

ystar[11= 0.52667; 1*9.8; .000645217;*/
ystar[2]= 1.300658; /* 9.8; 0.0; *
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ystar[31= -0.265671; /*0.0; -. 014136; *
ystar [4] =00;

I
if(usernd =1){

ystar[11 2.5*ranl(&iseed);
ystar[2] = 4.0*tpi*ranl(&iseed);

ystar[3] = 2.5*(1.0-2.0*ranl(&iseed));

I
/* ---------------------------------------------------- *
/* ------------------------------ rkdumb-------------------------*

data. outinj ect;
rkdumb(ystar,data.dim,BEGN,END,NPOTNTS*KMAX,derivs);

/*----------------------------------------------------------

/*--Use this part of code only to catch isolated solutions --------

for(i=1 ;i<=HTASTEP; i++) {
data. out=HTAMIN+(float) (i-1)*

(HTAMAX-(HTAMTN))/((float) (HTASTEP-1));

intii;
data. out=HTAMIN;
ystar [1] ranl (&iseed);

ystar [2]=2. 0*tpi*ranl (&iseed);
ystar [3]=1 .0-2. 0*ranl (&iseed);
printf('ysl=%f ys2=%f ys3=%f\n",

ystar [11,ystar [21 ,ystar [3]);
rkdumb(ystar,data.dim,BEGIN,END,NPOINTS*KMAX,derivs);

save[2]=save[2]-2.0*tpi*(int)(save[2]/(2.0*tpi));
for(j=1;j<=data.dim;j++) ystar~jlsave[j];
ystar[11=ranl(&iseed);
ystar [21=2 .0*tpi*ranl (&iseed);
ystar [31=1 .0-2. 0*ranl (&iseed);
printf("Iteration # completed is now dn,)

if(i=1l) break;

/* ------------------------------------------------------

if(model==0) SCALE=sqrt(tao/(2.0*pi));
if(modell) SCALEsqrt(tao/(2.0*pi));

for(i1 ; i<=NPOINTS ;i++)
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fprintf(outfile,"%f %Af %/f %/f\n",

xx[i]*SCALE, y[ll [ill,y[21 [i] ,y[3] [ii);

time= (xx [1001] -xx[1000] )*SCALE/time2;

/* ---- Fourier Transform of the Amplitude -------------
free-vector(xx,,NPOINTS+1);
xx=vector(1 ,2*NPOINTS+2);
if(model==l) {

for (i=l;i<=2*NPOTNTS-1;ii+2) xx[il~y[1] [(i+1)/2];

for(i=2;i<=2*NPOTNTS;ii+2) xx[i]=0.0;

I
if(model==0){

for (i=l;i<=2*NPOINTS-1;ii+2) xx~i]=1.0+y[1l][(i+1)/21;

for(i=2;i<=2*NPOINTS;ii+2) xx[i1=0.0;

I
fourl(xx,NPOINTS,1);
for(i=NPOINTS+1;i<=2*NPOINTS-l;ii+2) fprintf(fourrf,"%f 0Af\n',

(float) (-(2*NPOINTS+1-i)/2)/((float) (NPOINTS)*time),
(xx~i]*xx~i]+xx[i+1]*xx[i+1])/((float)NPOINTS));

for(i=1;i<=NPOINTS-1;ii+2) fprintf(fourrf, "%f Yf\n",
(float) ((i-1)/2)/((float) (NPOTNTS)*time),

(xx Li]*xx [ii+xx [i+1] *xx [i+] ) / ((float)NPOINTS));
fclose(fourrf);

/*---- Fourrier Transform of the FM spectrum ---------

if(model==1) f
for(i= ; i<=2*NPOINTS- ; i=i+2)

xx~i]=y[1l[(i+1)/211*cos(y[2][(i+1)/2]);
for(i=2;i<=2*NPOINTS;ii+2) xxli]=y[1] [i/2]*sin(y[2] [i/2]);

I
if(modelO){

for(i=1 ;i<=2*NPOINTS- ; i=i+2)

xx~i]=(1.0+y[1][E(i+1)/2])*cos(y[2] [(i+1)/2]);

for(i=2;i<=2*NPOINTS;ii+2) xx~i]=(1.0+y[1] [i/2])*sin(y[2] Ei/2]);

I
fourl(xx,NPOINTS,1);

for(i=NPOINTS+1 ;i(=2*NPOINTS- ; i=i+2)

fprintf(fourfm, "%/f %f\n",
(float) (-(2*NPOINTS+1-i)/2)/((float) (NPOINTS)*time),
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(xx[i]*xx[il+xx[i+lI*xx[i+11)/((float)NPOINTS));
for(i=1; i<=NPOTNTS-1 ;i=i+2) fprintf(fourfm," 0 f %f\n"

(float) ((i-1)/2)/((float) (NPOINTS)*time),

(xx[i]*xx[i]+xx[i+1]*xx[i+1])/((float)NPOTNTS));
fclose(fourfm);

fclose(outfile);
free-vector(save,1,data.dim);

free-vector(ystar,1, data. dim);
free-matrix(stack,1,dimen,1,nstack+1);

I

#define SWAP(a,b) tempr=(a) ; (a)=(b) ;(b)=tempr

void fourl(data,nn,isign)
float data[];
mnt nn,isign;

mnt n,mmax,m,j,istep,i;
double wtemp,wr,wpr,wpi,wi,theta;
float tempr,tempi;
nnn«1l;
j=1;

for(i4l;i<n;i+=2){
ifQj>i) f

SWAP (dataEj] , data i])
SWAP(data~j+1] ,data[i+1]);

while(m>=2 && j>m){

mmax=2;
while(n>mmax){

istep=2*mmax;
theta=6.28318530717959/(isign*mmax);
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wtemp=sin(0 .5*theta);

wpr=-2 .0*wtemp*wtemp;
wpisin(theta);

wr=1.0;

wi=0.0;
for(m=1;m<mmax;m+=2){

for(i=m;i<=n;i+=istep){
j =i+mmax;

temprwr*data[jl -wi*data[j+1];
tempi=wr*data[j+1] +wi*data[j];
dataEj]I =data Ei] -tempr;

data~j+1] =data~i+1] -tempi;
data [i] +tempr;

data [i+1] +=tempi;

I
wr= (wtemp=wr) *wpr-wi*wpi+wr;
wiwi*wpr+wtemp*wpi+wi;

I
mmax~istep;

I

#define IA 16807
#tdefine TM 2147483647
#define AM (1.0/TM)

#define IQ 127773
#define TR 2836
#define NTAB 32
#define NDTV (1+(TM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

float ranl(long *idum)

int j;
long k;
static long iy=0;
static long ivENTAB];
float temp;
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if (*idum <= 0 11 !iy) {
if (-(*idum) < 1) *iduml;

else *idum = -(*idum);

for (j=NTAB+7;j>0O;j--){
k=(*idum) /TQ;
*idum=TA* (*idum-k*IQ) -IR*k;
if (*idum < 0) *idum += IM;

if (j < NTAB) iv[j] = *idum;

iyiv[0];

*idumlIA* (*idum-k*TQ) -IR*k;

if (*idum < 0) *idum += IM;

jiy/NDTV;
iyiv [j]
iv[j] = *idum;

if ((temp=AM*iy) > RNMX) return RNMX;
else return temp;

}udfI
#undef TA
#undef TM

#undef AM

#undef TQ

#undef NTAB
#undef NDTV

#undef EPS
#undef RNMX

void rkdumb(vstart,nvar,xl,x2,nstep,derivs)
mnt nvar,nstep;
float vstart[] ,xl,x2;
void (*derivs)Q);

mnt i,k;
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float x,h,s;
float *v,*vout,*dv,*vectoro;
float wplus ,wminus ,amp, laste ,amp 1;

void rk4O),nrerroro,free-vectoro;

v=vector(1 ,nvar);

vout=vector(1,nvar);

dv=vector(1,nvar);
for (i1l;i<=nvar;i++){

v [il =vstart [ii;

I
xxl;
h= (x2-xl) Instep;

for (k=l;k<=nstep;k++){

derivs(x,v,dv);
rk4(v,dv,nvar,x,h,vout,derivs);
if (x+h == x)

nrerror("Step size too small in routine RKDUMB");
x += h;

s=(k+l)0 KMAX;

if(!s) xx[1+(k/KMAX)]=x;
for (i=1;i<=nvar;i++){

v~i] =vout [i];
if(!s) y[i] [1+(k/KMAX)]=vout i];
I

/* if(!s) fprintf(outfile,t01f %f %f %Af\n",

x,v[EllvE2] ,v[3]) ;
if(( !s)&&(x>EXTTME)) fprintf(outfile,"%d 0Af\n",

inti,dir2);
fflush(outfile) ;*/

I
for(i=1;i<=nvar;i++) save[il=v[i];
free_vector(dv,1,nvar);
free_vector(vout,1,nvar);

free-vector(v,1,nvar);

} * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

/* ---------------------- 4------------------------------------
/--------------------- --------------------------------

void rk4(y,dydx,n,x,h,yout,derivs)
float yE] ,dydx[] ,x,h,yout[];
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int n;
void (*derivs)O);

int i;
float xh,hh,h6,*dym,*dyt,*yt,*vectoro;

dym=vector(1,n);

dytvector(1 ,n);
ytvector(1,n);
hh=h*0.5;
h6=h/6.0;

xh=x+hh;-

for (i1l;i<=n;i++) yt[i]=y[i]+hh*dydx[i];
derivs(xh,yt ,dyt);

for (i=l;i<=n;i++) yt[ily[i]+hh*dyt[il;
derivs(xh,yt ,dym);
for (i=l;i<=n;i++){

yt [ii =y [ii +h*dym Li];
dym~il += dyt[i];

derivs(x+h,yt,dyt);
for (i1l;i<=n;i++)

yout [i] y [ii+h6* (dydx [ii +dyt [ii +2. 0*dym Li]);
free-vector(yt,1,n);
free-vector(dyt,1,n);

free-vector(dym,l1,n);

} * - - - - - - - - - - - - - - - - - - - - - - - - - - - -

/*-------------------------- es---------------------- *

/* --------------------------------------------------
void derivs(t,y,dy)
float t,y[],dy[];

mnt i;
float hta,eps,fix,zz,tpi, gain;

i=write-stack(y);

hta=data. out;

tpi=4.0*atan(1 .0);
eps=sqrt(tao/(2.0*pi));
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gainl1.0/sqrt(1.O+Y*pi*(y[1]*y[1]-1.0));

fix=stack [21 il+y[2]-phipcm-2*delta*(t-taupi/2.0);

fix=fix-2.0*tpi*(float)(int)(fix/(2.0*tpi));

if(model==1){

dy [11=0.5* ((2. O*y 3] +eps) *gain-eps)*yE11+

eps*hta*stack [11 i] *cos (fix);

dy[2] = alfa*y [3] -eps*hta* (stack [1] ii /y [1])*sin(f ix);

dy[3]= (pi-(y[3]/eps)-pi*(1.0+(2.0*y[3]/eps))*
gain*y El] *y iEll/(2.0O*pi);

zz=(y[1] -1.0);
I

if (mode 1==0) {
fix=stack[2] [i]+y[2]-phipcm-2*delta*(t-taupi/2.0);

fix=fix-2.0*tpi*(float)(int)(fix/(2.0*tpi));

dy[1]=y[3]+hta*alfa*cos(fix)/sqrt(2*pi/tao);
dyE21=y[E31 ;
dy[3]=-y[1]-(1+2*pi)*y[3]/sqrt(2*pi*tao);

dy[4]=y[2];
zzy E1];
I

dir2=dy [21;

/*if((t>=EXTIME)&&(lastde>=0.0)&&(dy[1](0O.0))

fprintf(outfile,"%f %Af 70f\n",

data.out*alfa/(sqrt(2*pi/tao)) ,zz,t);

if ((t>=EXTIME)&&(lastde<0 .0)&&(dy [11>=0 .0))

fprintf(outfile," 0 f %f %f\n",

data.out*alfa/(sqrt(2*pi/tao)) ,zz,t);

fflush(outfile); *

lastdedy E1];

return;

I
/*------------ current-------------------

/* -------------------------------------------------
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int initstack(t,step,dim)
float t,step;

int dim;

int i,j;

stack=matrix(1 ,dim, 1,nstack+1);

for(i1 ; i<=dim; i++)
for(j1l;j<=nstack;j++) stack[i] [j]=0.0;

return nstack;

I

int write-stack(x)
float x[];

static mnt j=1;
stack~l] [j]=x[1];
stack [2] [j]=x[2];
if(j==nstack) j=0;

return j;

void nrerror(error-text)
char error-text [501;
f
void exit();
printf ("Numerical recipes run-time error... .\n");
printf("%s\n" ,error text);

printf(".. .now exiting to system \n9)
exit(1);
I

float *vector(nl,nh)
mnt nl,nh;
/* Allocates a float vector with range ... .nh *
f
float *v;

v=(float *)malloc((unsigned) (nh-nl+1)*sizeof(float));
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if(!v) nrerror("allocation failure in vector()");

return v-ni;

I

void free..yector(v,nl,nh)

float *v;

int nl,nh;
/* Frees a float vector allocated by vectoro)*

f
free((char*) (v+nl));

I

float **matrix(nrl,nrh,ncl,nch)
mnt nrl,nrh,ncl,nch;
f
int i;
float **m;

/* Allocate pointers to rows *
m=(float **)malloc((unsigned) (nrh-nrl+1)*sizeof(float*));

if(!m) nrerror("Allocation failure 1 in matrix");

m-=nrl;

/* Allocate rows and set pointers to them *
for(i=nrl;i<=nrh;i++) f

m~i]=(float *)malloc((unsigned) (nch-ncl+1)*sizeof(float));

if(!m~i]) nrerror("allocation failure 2 in matrix");
m~i]-=ncl;

/* Return pointer to array of pointers to rows *
return m;

I

void free-matrix(m,nrl ,nrh,ncl ,nch)

float **m;
mnt nrl,nrh,ncl,nch;
/* Frees a matrix allocated with matrix()o

mnt i;-
for(i=nrh;i>=nrl;i--) free((char*) (m~i]+ncl));
free((char*) (m+nrl));

I
/* ------------------------------------------------------
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