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1    Introduction 

This is the fifth article of a series [13, 14, 15, 16] devoted to the construction and study of 

the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method. The RKDG method 

is a method devised to numerically solve the initial boundary value problem associated with 

the conservation law 

dtu + divf(u) = 0,        in fi x (0, T), (1.1) 

where Q C Rd and u = (ui, ...,um)4, which is assumed to be hyperbolic, that is, f(tt) 

is assumed to be such that any real combination of the Jacobians X^=1£ifk has m real 

eigenvalues and a complete set of eigenvectors. In this paper, we continue our work in 

[13, 14, 15, 16] and extend (and improve) the RKDG method to the case of multidimensional 

systems. To place this paper under a proper perspective, we first discuss the work done in 

this series of papers and papers by other authors which has been prompted by the remarkable 

compactness and parallelizability of the RKDG method and by its ability to easily handle 

boundary conditions and complicated geometry. 

The original discontinuous Galerkin method was introduced by Reed and Hill [31], and 

analyzed by LeSaint and Raviart [26], Johnson and Pitkaränta [25], Richter [32], and by Pe- 

terson [29]. All these were for the linear equations. Our work was concentrated on treating 

nonlinear equations, which call for different techniques. The first (one-dimensional) RKDG 

method was introduced in [13] by combining the piecewise-linear discontinuous finite ele- 

ments used for the space discretization of one-dimensional conservation laws by Chavent 

and Cockburn [11] with one of the explicit, TVD time discretizations developed by Shu [34], 

and Shu and Osher [35, 36]. The resulting scheme was shown to be formally uniformly 

second-order accurate (a fact confirmed by numerical experiments) and was proven to be 

total variation diminishing in the means (TVDM). Later, in [14], the RKDG schemes were 

defined using a general framework that allowed piecewise polynomials of degree k E N 

approximate solutions.  These fully explicit schemes were proven to be TVBM (total vari- 



ation bounded in the means) and were shown to be formally uniformly (fc + l)-th order 

accurate, facts that were both verified numerically. The extension of the RKDG schemes 

to one-dimensional systems was carried out in [15] and the multidimensional case for the 

scalar conservation law was treated in [16], where it was proven that for some fairly gen- 

eral triangulations, the approximate solution given by the RKDG method satisfies a local 

maximum principle independently of the the degree k. A projection, or generalized "slope 

limiting", was constructed which enforced the above maximum principle without destroying 

the formal accuracy of the method. Theoretical indications that the method is uniformly 

(k + l)-th order-accurate when polynomials of degree k are used were given and numerical 

validation of this claim was presented for piecewise-linear approximations k = 1 in uniform 

grids made of triangles. The case k — 2 was worked out by Hou [23]. An extension of the 

RKDG method to the two-dimensional Euler equations of gas dynamics was carried out in 

[17]; piecewise-linear approximations were used. In this paper, we complete and improve the 

work started in [17]. 

In related work, Atkins and Shu [1] studied an alternative quadrature-free implementation 

of the RKDG method. Bey and Oden [8] used the RKDG method with arbitrary quadrilat- 

erals and piecewise-linear approximate solutions, to solve 2D Euler equations. Jiang and Shu 

[24] proved a cell entropy inequality for the square entropy for arbitrary order of accuracy 

and arbitrary triangulations, without using the nonlinear limiters, for the semidiscrete (con- 

tinuous in time) case. This also implied the L2 stability of the method for nonlinear shocked 

cases. Lowrie, Roe and van Leer [27] studied the discontinuous Galerkin method in space 

and time; see also the related studies previously made by Bar-Yoseph [2] and Bar-Yoseph 

and Elata [3]. 

The important issue of the parallelizability of the RKDG method has been explored by 

several authors. Biswas, Devine, and Flaherty [9] have shown that the RKDG method (with 

a new, interesting limiter) has a "solution parallel efficiency" of 99 % in the NCUBE/2- 

a reflection of the fact that the RKDG method uses only the information of immediate 



neighbors to march in time. These authors have also constructed h- and p-adaptive versions 

of the RKDG method with remarkable results; see also the application to the Euler equation 

of gas dynamics by deCougny et al. [19]. The important issue of "dynamic load balancing," 

essential for adaptive methods, has been addressed by Devine et al. [21], by Ozturan et al. 

[28], and by Devine et al. [20]. 

The effect of the quality of the approximation of curved boundaries on the quality of the 

approximate solution has been explored in a recent paper by Bassi and Rebay [4]; in this 

paper, we only consider computational domains with Lipschitz boundaries. 

Extensions of the method to the compressible Navier Stokes equations and general con- 

vection diffusion equations can be found in BaBsi and Rebay [5] and Cockburn and Shu [18], 

respectively. 

We are now ready to give a detailed description of the contents of this paper. In Section 2, 

we give a general formulation of the RKDG method for multidimensional systems, including 

the discussion on slope limiters. Section 3 contains the algorithm and implementation details, 

including the numerical fluxes, quadrature rules, degrees of freedom, and slope limiters of 

the RKDG method for both piecewise-linear and piecewise-quadratic approximations in both 

triangular and rectangular elements. In Section 4, we present several test problems for the 

two-dimensional Euler equations of gas dynamics intended to illustrate the effect of the 

degree k and the effect of the use of triangles or rectangles on the accuracy of the method. 

Concluding remarks are given in Section 5. 

2    Algorithm formulation 

To define the RKDG method, we proceed as in [16]. 

2.1     Space discretization 

First, we discretize (1.1) in space using the discontinuous Galerkin method. For each time t E 

[0, T], the approximate solution uh(t) is sought in the finite element space of discontinuous 



functions 

Vh = {vh 6 L°°(fi) :vh\Ke V(K), VK E %}, (2.1) 

where % is a triangulation of the domain Q and V(i(T) is the so-called local space. In this 

paper, V(K) is taken to be Pk, the collection of polynomials of degree k, for k = 1 and 2. 

To determine the approximate solution uh(t), we need the weak formulation of (1.1): 

4- I u(x, t) v{x) dx+Y,   I f(u(x, t)) ■ ne>K v{x) dT - f f(u{x, t)) ■ gradv{x) dx = 0, 
dtJK eedKJe JK 

for any smooth function v(x). Here n£tK denotes the outward unit normal to the edge e. 

We replace the integrals by quadrature rules as follows 

, L, 

f(u{x,t))-netKvh(x)dT   «   £u,f(it(xrf,t))-neiÄ-t>(a:ei)|e|, (2.2) 
Je i=i 

r M 

f(u(x,t))-gpadv(x)dx   f*   ^^(«(.-r^i)) ■ gradv(xKj)\K\. (2.3) 

Then, the flux f(u(x, t)) ■ ne>K is replaced by the numerical flux heiK(x, t), the exact solution 

u is replaced by the approximate solution uh, and the test function v by vh G V(K), resulting 

in the following scheme: 

uh(t = 0)= Pyh K), 

d   f L 

—      uh(x,t)vh(x)dx+ Y,  Y,UJiKK{xeht)v{xei)\e\ 
d'' JK eedK 1=1 

M 
-^uil{uh(xKiit)).&*Avh{xKi)\K\=Qi    VvheV(K),    VK e%.      (2.4) 

3=1 

The operator PVh is, for example, the standard L2-projection into the finite element space 

Vh. 

The value of the numerical flux at the point (x, t), he,K(x, t), where x belongs to the edge 

e of the boundary of the element K, depends on the two values of the approximate solution 

at (x, t). One is the value obtained from the interior of the element K, namely, 

uh(x
intW,t)=     lim    uh(y,t), 

y-*x, yeK 



and the other is the value obtained from the exterior of the element K, namely, 

\imy^Xt y?Kuh(y,t),   otherwise. 

The discrete boundary values, ^h, are the L2-projection of the exact boundary data 7 into 

the finite element space obtained by taking the traces of the elements of Vh into dQ. 

The numerical flux is defined as he>K{x, t) = hetK{uh{xint^K\t),uh(x
ext^K\ t)) where he>K 

is any two-point Lipschitz flux, which is monotone in the scalar case and is an exact or 

approximate Riemann solver in the system case. It is also consistent with f(u) - ne<K, that 

is, 

he,K(u,u) = f(u) -netK, 

and conservative, that is, 

he,K(M*int{K))Mxext{K))) + heMMxint{K,))Mxext{K,))) = 0,K>nK = e. 

An example is the following (local) Lax-Priedrichs flux 

heA*, h)=\ [f («)' ne,K + f (6) • netK - ae,K (b - a)}, (2.5) 

where ae>K is an estimate of the biggest eigenvalue of the Jacobian -^f(uh(x,t)) ■ ne,K for 

(x, t) in a neighborhood of the edge e. 

It is convenient to take the local spaces V(K) to be the space of polynomials of total 

degree smaller or equal to k, Pk(K); in this case, we denote Vh by V*. (Note that this 

choice is possible regardless of the shape of the elements K since the functions in Vh are 

discontinuous.) There are two reasons for this choice. First, if the local space V(K) includes 

Pk(K), it is possible to find (fc+l)-th order accurate approximations in V(K) to any function 

in Wl'k+l(K). Second, if V(K) consists of polynomials only and does not include Pk+1(K), 

it is not possible to find (k + 2)-th order accurate approximations in V(K) to functions in 

Wi,k+2(K)\ see [12]. 

Moreover, if Vh includes Vk, the approximation to divf (u) provided by the above space 

discretization is (k + l)-th accurate for sufficiently smooth u, provided that the quadrature 



rules for the edges of the elements, (2.2), are exact for polynomials of degree 2fc +1, and the 

quadrature rules for the interior of the elements, (2.3), are exact for polynomials of degree 

2k, see [16], Proposition 2.1. It is thus reasonable to expect that the resulting scheme gives 

an (k + l)-th order accurate approximation when the exact solution is smooth enough. 

For the choice Vh = Vh° and quadrature rules over the edges exact for constants, the 

resulting scheme is nothing but a finite volume, monotone scheme in the scalar case. Thus, 

the discretization by the Discontinuous Galerkin method can be considered as a high-order 

accurate extension of finite volume, monotone schemes. 

2.2    Time discretization 

The equations defining the approximate solution can be rewritten in ODE form as ftuh = 

Lh{uh)ih) after inverting the "mass" matrix. Since the functions of Vh are discontinuous, the 

"mass" matrix is block-diagonal and the blocks, whose orders are equal to the dimensions 

of the local spaces V(K), can be easily inverted by hand. If a locally orthogonal basis is 

chosen, the mass matrix is diagonal. 

If we are using a finite element space Vh included in Vjf, we would like to discretize in 

time the above system of ODEs with a method that is at least (k + l)-th order accurate. 

To do that, we use the TVD Runge Kutta time discretization introduced in [34, 35]. Thus, 

if {in}£L0 is a partition of [0,T] and At" = tn+1 - tn,n = 0,..., N - 1, our time-marching 

algorithm reads as follows: 

• Setu°h= i\K); 

• For n = 0,..., N — 1 compute u£+1 as follows: 

1. set uh
0) = v%; 

2. for i = 1,..., k + 1 compute the intermediate functions: 



n+1 ffc+1) 3. set un
h^ = < 

Note that this method is very easy to code since only a subroutine defining Lh(uh, jh{t)) 

is needed. In this paper, we use the second order and third order accurate Runge-Kutta time 

discretizations listed below in Table 2.1, for piecewise linear P1 and piecewise quadratic P2 

finite element approximations, respectively. 

Table 2.1 

Parameters of some practical Runge-Kutta time discretizations 

order ctu ßil di m&x{ßu/aa} 

2 1 
1 l 
2 2 

1 0 
1 

1 

3 

1 
3 1 
4 4 
1   0   2 
3  U  3 

1 

00* 

0 

1 
1 
2 

1 

2.3    The local slope limiting 

In the case in which piecewise-constant approximations are considered, that is, when Vh = 

Vh, the artificial viscosity that the numerical flux introduces in the scheme, due to unwind- 

ing, is enough to render the scheme stable. However, when the local spaces are richer, the 

stabilizing influence of the numerical fluxes is not enough to guarantee the absence of spu- 

rious oscillations. To enhance the stability of the method and eliminate possible spurious 

oscillations in the approximate solution, a local slope limiting operator Mlh is introduced in 

the time-marching algorithm as follows: 

• Setu°h = AUhPVh(u0); 

• For n = 0,..., N - 1 compute v%+1 as follows: 

1. set u (°) - „,n 
h U h> 



2. for i = 1,..., k + 1 compute the intermediate functions: 

u« = An, J£arf +/3aAtnLh(n?)7h(t
n + ^Af))}; 

3. set^1^1'. 

Theoretical studies of the operator An, can be found in [14] for the one dimensional case, 

and in [16] for the multidimensional case. Guided by these results, we use in this paper very 

simple, practical, and effective slope limiting operators AUh. To compute AUhuh, we rely on 

the assumption that spurious oscillations are present in uh only if they are present in its P1 

part u\, which is its L2-projection into the space of piecewise linear functions V£. Thus, if 

they are not present in u\, i.e., if 

then we assume that they are not present in uh and hence do not do any limiting: 

AUhuh = uh. 

On the other hand, if spurious oscillations are present in the P1 part of the solution u\, i.e., 

if 

ul^Anhul, 

then we chop off the higher order part of the numerical solution, and limit the remaining P1 

part: 

AUhuh = AUhu\. 

In this way, in order to define Aü^ for arbitrary space Vh, we only need to actually define it 

for piecewise linear functions V,1. The exact way to do that, both for the triangular elements 

and for the rectangular elements, will be discussed in the next section. 

3    Algorithm and implementation details 

In this section we give the algorithm and implementation details, including numerical fluxes, 

quadrature rules, degrees of freedom, fluxes, and limiters of the RKDG method for both 



piecewise-linear and piecewise-quadratic approximations in both triangular and rectangular 

elements. 

3.1    Fluxes 

For the numerical flux needed in (2.4), we use the simple Lax-Friedrichs flux (2.5): 

he,K{a, b) = - [f (a) ■ ne,K + f (6) ■ ne<K - ae,K (b -a)]. 

The numerical viscosity constant ae>K should be an estimate of the biggest eigenvalue of the 

Jacobian -jj${uh(x,t)) ■ n£;K for (x,t) in a neighborhood of the edge e. For the triangular 

elements, we have used the local Lax-Friedrichs recipe: 

• Take aeyK to 
De the larger one of the largest eigenvahie (in absolute value) of -^i{uK) ■ 

n^K and that of -j^f(uK') ■ ne>K, where UK and üK< are the means of the numerical 

solution in the elements K and K' sharing the edge e. 

For the rectangular elements, we have used both the local Lax-Friedrichs recipe (in Ex- 

amples 4.1 and 4.2) and the global Lax-Friedrichs recipe (in Example 4.3): 

• Take a£tK to be the largest of the largest eigenvalue (in absolute value) of Jj^f (üK" ) -n^K, 

where üK» is the mean of the numerical solution in the element K", which runs over 

all elements on the same line (horizontally or vertically, depending on the direction of 

ne>K) with K and K' sharing the edge e. 

Usually, the global Lax-Friedrichs recipe is more dissipative, but is more robust, than 

the local Lax-Friedrichs recipe, especially for problems involving low velocities and low den- 

sity/pressure near wall boundaries. There are recipes in between the two, such as taking the 

maximum over several neighboring elements in obtaining ae<K, but we have not used them 

in this paper. 



3.2    Quadrature rules 

According to the analysis, the quadrature rules for the edges of the elements, (2.2), must 

be exact for polynomials of degree 2k + 1, and the quadrature rules for the interior of the 

elements, (2.3), must be exact for polynomials of degree 2k, if Pk methods are used. Here we 

discuss the quadrature points used for Pl and P2 in the triangular and rectangular element 

cases. 

3.2.1    The rectangular elements 

For the edge integral, we use the following two point Gaussian rule 

j\(X)dX*9   --^)+g   ±Y (3.1) 

for the P1 case, and the following three point Gaussian rule 

/>)<*-;; [*(-')+sQ] + >>> (3.2) 

for the P2 case, suitably scaled to the relevant intervals. 

For the interior of the elements, we could use a tensor product of (3.1), with 4 quadrature 

points, for the P1 case. But to save cost, we "recycle" the values of the fluxes at the element 

boundaries, and only add one new quadrature point in the middle of the element. The 

quadrature rule is thus: 

J_ J_ g(x,y)dxdy   tu   - ■1'ii)+3 -l'~h)+9 -^•-I)+* 73'"1 

For the P2 case, we use a tensor product of (3.2), with 9 quadrature points. 

3.2.2    The triangular elements 

For the edge integral, we use the same two point or three point Gaussian quadratiires as in 

the rectangular case, (3.1) and (3.2), for the F1 and P2 cases, respectively. 

10 



For the interior integrals (2.3), we use the three mid-point rule 

[ g(x,y)dxdy ta — ^(m*), 
JK 3    i=l 

where m; are the mid-points of the edges, for the P1 case. For the P2 case, we use a 7 point 

quadrature rule which is exact for polynomials of degree 5 over triangles, given in Table A.4, 

on page 343 of [10]. 

3.3    Basis and degrees of freedom 

We emphasize that the choice of basis and degrees of freedom does not affect the algorithm, 

as it is completely determined by the choice of function space V(h) in (2.1), the numerical 

fluxes in (2.4), the quadrature rules, the slope limiting, and the time discretization. However, 

a suitable choice of basis and degrees of freedom may simplify the implementation and 

calculation. 

3.3.1    The rectangular elements 

For the P1 case, we use the following expression for the approximate solution uh(x,y,t) 

inside the rectangular element [xH_i ,xi+i] x [yj_i,yj+i]: 

uh(x, y, t) = u(t) + ux{t)4>i{x) + uy(t)tpj(y) (3.3) 

where 

*<*) = |^,        «»> = |^. (3-4) 

and 

AxH = xi+i- Xi_ i, AVj = yj+x - Vj_ i. 

The degrees of freedoms, to be evolved in time, are then 

u(t),  ux(t),  uy(t). 

Here we have omitted the subscripts ij these degrees of freedom should have, to indicate 

that they belong to the element ij which is [x^ijX^i] x [yj_i,yj+i]. 

11 



Notice that the basis functions 

are orthogonal, hence the local mass matrix is diagonal: 

M = AXiAyjdiag[l,-,-y 

For the P2 case, the expression for the approximate solution uh{x, y, t) inside the rectan- 

gular element [xt i,xi+±] X [^ i,yj+i] is: 

uh(x, y, t)   -   u(t) + ux(t)4>i(x) + Uy(t)ipj(y) + u^^x^^y) 

+uxx(t) (tf (*) ~ I) + uyy(t) (Vj(») - I) , (3-5) 

where <f>i(x) and ipj(y) are defined by (3.4). The degrees of freedoms, to be evolved in time, 

are 

Ü(t),       UX(t),       Uy(t),       UXy(t),       UXX(t),       Uyy(t). 

Again the basis functions 

1 1 
•1, Mx), ipjiy), &(.x)V>j(y), 0?(o;)--, 4>](y)-^ 

are orthogonal, hence the local mass matrix is diagonal: 

A     A      ,      (    1114    4\ M = AxAyjdiag[l,-,-,-,-1-). 

3.3.2    The triangular elements 

For the P1 case, we use the following expression for the approximate solution uh(x,y,t) 

inside the triangle K: 
3 

uh(x,y,t) =^Ui{t)ipi{x,y) 

where the degrees of freedom Ui(t) are values of the numerical solution at the midpoints of 

edges, and the basis function <fi(x,y) is the linear function which takes the value 1 at the 

12 



mid-point rrii of the 2-th edge, and the value 0 at the mid-points of the two other edges. The 

mass matrix is diagonal 

For the P2 case, we use the following expression for the approximate solution uh(x,y,t) 

inside the triangle K: 
6 

uh(x, y, t) = Y,Ui(t)£i(x, y) 

where the degrees of freedom, Ui(t), are values of the numerical solution at the three mid- 

points of edges and the three vertices. The basis function &(.£, y), is the quadratic function 

which takes the value 1 at the point i of the six points mentioned above (the three midpoints 

of edges and the three vertices), and the value 0 at the remaining five points. The mass 

matrix this time is not diagonal. 

3.4    Limiting 

We construct slope limiting operators ALU on piecewise linear functions uh in such a way 

that the following properties are satisfied: 

1. Accuracy: if uh is linear then AUhUh = uh. 

2. Conservation of mass: for every element K of the triangulation Th, we have: 

/ Mlhuh = / uh. 
JK JK 

3. Slope limiting: on each element K of Th) the gradient of AUhuh is not bigger than 

that of Uh- 

The actual form of the slope limiting operators is closely related to that of the slope 

limiting operators studied in [14] and [16]. 

13 



3.4.1    The rectangular elements 

The limiting is performed on ux and uy in (3.3), using the differences of the means. For a 

scalar equation, ux would be limited (replaced) by 

m (ux, ui+ij - Uij,Uij - Ui_xj) (3.6) 

where the function m is the TVB corrected minmod function [33, 14] defined by 

/ au if |ai| < MAi2; .     , 
miai, ...,am) = <      / \       ,u (.o-i) v    '    '     '      y m(ai, ...,am),   otherwise 

with the minmod function m defined by 

. _ j s mini |oj|,   if s = sign(ai) = ... = sign(am); 
m{au...,am) - | ^ otherwise 

The TVB correction is needed to avoid unnecessary limiting near smooth extrema, where the 

quantity ux or «^ is on the order of 0(Ax2) or 0(Ay2). For an estimate of the TVB constant 

M in terms of the second derivatives of the function, see [14]. Usually, the numerical results 

are not sensitive to the choice of M in a large range. In all the calculations in this paper we 

take M to be 50. 

Similarly, uy is limited (replaced) by 

m(uy, Uiij+i - Uij, u^ - uitj i). 

with a change of Ax to Ay in (3.7). 

For systems, we perform the limiting in the local characteristic variables.  To limit the 

vector ux in the element ij, we proceed as follows: 

• Find the matrix R and its inverse Ä"1, which diagonalize the Jacobian evaluated at 

the mean in the element ij in the z-direction: 

ou 

where A is a diagonal matrix containing the eigenvalues of the Jacobian. Notice that 

the columns of R are the right eigenvectors of dfl^ and the rows of i?_1 are the left 

eigenvectors. 

14 



Figure 3.1: Illustration of limiting. 

• Transform all quantities needed for limiting, i.e., the three vectors uxij, üi+ij—Uij and 

üij — üj_i j, to the characteristic fields. This is achieved by left multiplying these three 

vectors by Ä-1. 

• Apply the scalar limiter (3.6) to each of the components of the transformed vectors. 

• The result is transformed back to the original space by left multiplying R on the left. 

3.4.2    The triangular elements 

To construct the slope limiting operators for triangular elements, we proceed as follows. We 

start by making a simple observation. Consider the triangles in Figure 3.1, where mi is the 

mid-point of the edge on the boundary of K0 and fc; denotes the barycenter of the triangle 

Kt for i = 0,1,2,3. 

Since we have that 

mx - &o = oil (&i - fco) + «2 (&2 - fco), 

for some nonnegative coefficients cti, a2 which depend only on mi and the geometry, we can 

write, for any linear function Uh, 

uh{mi) - uh(b0) = CKI (uh(bi) - uh(b0)) + a2 {uh(b2) - uh(b0)), 

15 



and since 

we have that 

uKi = 7777 /   uh = uh(k),        i = 0,1, 2, 3, 
\Ki\ JKi 

Uh mi, KQ) = uh(m{) - uKa = ai (uKl - uKo) + a2 {uK2 - uKn) = Au(mi, K0) 

Now, we are ready to describe the slope limiting. Let us consider a piecewise linear function 

Uh, and let m*, i = 1, 2,3 be the three mid-points of the edges of the triangle K0. We then 

can write, for (x,y) G KQ, 

3 

I uh(x,y) = J2uh(™-i)ipi(x,y) = uKu + J2üh(mi, K0)(pi(x,y). 
3 

To compute AUhuh, we first compute the quantities 

Ai = m(üh(mi, Ko),vAu(rni, KQ)), 

where m is the TVB modified minmod function defined in (3.7), and v > 1. We take y = 1.5 

in our numerical runs. Then, if YH=\ ^ = °' we simply set 

AUhuh{x, y) = uK„ + J2 Ai <pi(>, y). 
i=l 

If X)f=i Ai ^ 0, we compute 

pos = ^ max(0, Ai),        ne# = ]P max(0, — Ai), 
3 

and set 

Then, we define 

where 

0+ = min   1,—   ,        ö_=min   1,-— 
pos I neg 

Mihuh{x, y) = uKu + Y,Ai Vi^. V)i 

Äi = 9+ max(0, Ai) - 0~ max(0, -Ai). 
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It is very easy to see that this slope limiting operator satisfies the three properties listed 

above. 

For systems, we perform the limiting in the local characteristic variables. To limit Aj, we 

proceed as in the rectangular case, the only difference being that we work with the following 

Jacobian 
d  ,._    .      rrii-bo 

du \rrii - b0\ 

4    Numerical Results 

In this section we present several numerical results obtained with the P1 and P2 (second 

and third order accurate) RKDG methods with either rectangular or triangular elements. 

These are standard test problems for Eiiler equations of compressible gas dynamics. 

Example 4.1. Double Mach reflection of a strong shock. This problem was studied exten- 

sively in Woodward and Colella [37] and later by many others. We use exactly the same 

setup as in [37], namely, a Mach 10 shock initially making a 60° angle with a reflecting wall. 

The undisturbed air ahead of the shock has a density of 1.4 and a pressure of 1. 

We use rectangular elements for this problem. The computational domain is [0,4] x [0,1], 

as in [37]. The reflecting wall lies at the bottom of the computational domain for \<x <A. 

Initially a right-moving Mach 10 shock is positioned at x = \,y = 0 and makes a 60° angle 

with the z-axis. For the bottom boundary, the exact post-shock condition is imposed for 

the part from x = 0 to x = \, to mimic an angled wedge. Reflective boundary condition is 

used for the rest. At the top boundary of our computational domain, the flow values are set 

to describe the exact motion of the Mach 10 shock. Inflow/outflow boundary conditions are 

used for the left and right boundaries. The results at t = 0.2 are shown. As in [37], only the 

results in [0,3] x [0,1] are displayed. 

Four different uniform meshes are used: 240 x 60 elements {Ax = Ay = ^); 480 x 120 

elements {Ax = Ay = ^); 960 x 240 elements {Ax = Ay = ^j); and 1920 x 480 elements 

{Ax = Ay = ^IQ).  The density is plotted in Figure 4.1 for the P1 case and in Figure 4.2 
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for the P2 case. In all the plots, we use 30 contours equally distributed from p = 1.3965 to 

p = 22.682. 

It is not easy to observe any significant difference between the P1 and P2 results in these 

pictures. However, if we show a "blowed up" portion around the double Mach region, in 

Figure 4.3, we can see that P2 with Ax = Ay = 2]0 has qualitatively the same resolution 

as P1 with Ax = Ay = -^ for the fine details of the complicated structure in this region. 

Notice that this detailed structure is of physical interest and was studied before with an 

adaptive grid calculation in [7]. P2 with Ax = Ay = -^ gives a much better resolution for 

these structures than P1 with the same number of elements. 

The conclusion here is that, if one is interested in such fine structures, then one can use 

the third order scheme P2 with only half of the mesh points in each direction as in P1. This 

translates to a reduction of a factor of 8 in space-time cells for 2D time dependent problems, 

and will more than off-set the increase of cost per cell and the smaller CFL number by using 

the higher order P2 method (the cpu saving for this problem is around a factor of 2.1 in our 

implementation). This saving will be even more significant for 3D. 

The optimal strategy, of course, is to use adaptivity and concentrate cells around the 

interesting region, and/or change the order of the scheme in different regions. 

Example 4.2. Flow past a forward facing step. This problem was again studied extensively 

in Woodward and Colella [37] and later by many others. The setup of the problem is the 

following: a right going Mach 3 uniform flow enters a wind tunnel of 1 unit wide and 3 

units long. The step is 0.2 units high and is located 0.6 units from the left-hand end of 

the tunnel. The problem is initialized by a uniform, right-going Mach 3 flow. Reflective 

boundary conditions are applied along the walls of the tunnel and in-fiow and out-flow 

boundary conditions are applied at the entrance (left-hand end) and the exit (right-hand 

end), respectively. The results at t = 4 are shown. 

The corner of the step is a singularity, which we study carefully in our numerical experi- 

ments. Unlike in [37] and in many other papers, we do not modify our scheme near the corner 
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Rectangles P1, A x = A y = 1/60 

Rectangles P1, A x = A y = 1 /120 

Rectangles P1, A x = A y = 1/240 

Rectangles P1, A x = A y = 1/480 

Figure 4.1: Double Mach reflection problem. Second order F1 results. Density p. 30 equally 
spaced contour lines from p = 1.3965 to p = 22.682. Mesh refinement study. Prom top to 
bottom: Ax = Ay = ^  I|5, ^, and ^. 
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Rectangles P2, A x = A y = 1/60 

Rectangles P2, A x = A y = 1 /120 

Rectangles P2, A x = A y = 1/240 

Rectangles P2, A x = A y = 1/480 

Figure 4.2: Double Mach reflection problem. Third order P2 results. Density p. 30 eqiially 
spaced contour lines from p = 1.3965 to p = 22.682. Mesh refinement study. Prom top to 
bottom: Ax = Ay = ±, ±, ±, and ^ 
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Figure 4.3: Double Mach reflection problem. Blowed-up region around the double Mach 
stems. Density p. Third order P2 with Ax = Ay = -^ (top); second order P1 with 
Ax = Ay = 4§ö (middle); and third order P2 with Ax = Ay = -^ (bottom). 
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in any way. It is well known that this leads to an erroneous entropy layer at the downstream 

bottom wall, as well as a spurious Mach stem at the bottom wall. However, these artifacts 

decrease when the mesh is refined. In Figure 4.4, second order P1 results using rectangular 

elements are shown, for a mesh refinement study using Ax = Ay = ±, ±, ^, and ^ as 

element sizes. We can clearly see the improved resolution (especially at the upper slip line 

from the triple point) and decreased artifacts caused by the corner, with decreased element 

sizes. In Figure 4.5, third order P2 results using the same sequence of elements are shown. 

Comparing with the P1 results in Figure 4.4, we can see that the resolution is improved, 

especially for the slip line issued from the triple point. 

In order to verify that the erroneous entropy layer at the downstream bottom wall and the 

spurious Mach stem at the bottom wall are both artifacts caused by the poor resolution of 

the comer singularity, we use our triangle code to locally refine near the corner progressively. 

A sequence of such triangulation is shown in Figure 4.6, where a is the ratio between the 

typical size of the triangles near the corner and that elsewhere. The resolution of the meshes 

away from the corner is roughly equal to a rectangular element case of Ax = Ay = ^, i.e., 

the top pictures in Figures 4.4 and 4.5. The density results using P1 and these triangulations 

are shown in Figure 4.7, those using P2 are shown in Figure 4.8. We can see that, with more 

triangles concentrated near the corner, the artifacts gradually decrease. Notice that there is 

a strong spurious entropy production near the corner, which pollutes the flow downstream. 

This is more apparent when the entropy is plotted (pictures not shown to save space). With 

progressive refinement near the comer, this spurious entropy production decreases. 

These are the only triangular element runs we present in this paper. We can see that 

the triangular elements can give results of the same resolution quality as the rectangular 

case, with roughly the same mesh density, for both P1 and P2. We do observe, however, 

that a positivity correction procedure is needed for the triangular element runs for this case. 

During the projection of the linear part, we check whether the density and the total energy 

are negative at the three mid-points of the edges of K.   If they are, further limiting is 
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performed to bring them to 10-10 in a conservative way. 

Example 4.3. Shock passing a backward facing corner (diffraction). This example has been 

used in [22] and [30], see also the experimental results in [6]. The setup of the problem is the 

following: the computational domain is the union of [0,1] x [6,11] and [1,13] x [0,11]; the 

initial condition is a pure right moving shock of Mach = 5.09, initially located at x = 0.5 

and 6 < y < 11, moving into an undisturbed air ahead of the shock with a density of 1.4 

and a pressure of 1. The boundary conditions are inflow at x = 0,6 < y < 11, outflow at 

x = 13,0 < y < 11, reflective at 0 < x < l,y = 6 and at x = 1, 0 < y < 6, and Neumann 

at 1 < x < 13, y = 0 and at 0 < x < 13, y = 11. No special treatment is done at the corner 

which is a singularity of the solution. The density at t = 2.3 is presented in Figiire 4.9 for 

the P1 case and in Figure 4.10 for the P2 case. Rectangular meshes are used, with four 

different mesh sizes Ax = Ay = ^ ^ ^, and ^, respectively. 

We remark that it is easy to get negative density and/or pressure for this problem. In 

both our Pl and P2 runs, we found it necessary to perform a positivity correction procedure. 

For the Pl case, we check, for each element, whether the density, as a linear function, is 

too close to zero in the element. Specifically, using the notation of (3.3), we check if 

iii.1 

U—    \UX\   —\Uy\<    -U, 

and, if yes, the slopes ux and uy are reduced by a factor 

factor = - -—: j—r. 

The same correction procedure is performed on the total energy. We do not modify the two 

momenta. 

For the P2 case, a somewhat stronger positivity correction procedure is needed. We 

check, for each element, whether the density or the total energy is too close to zero. Using 

the notation of (3.5), we check if 

2 
U — \UX\ - Kl - \Uxy\ - öG^xzl + Ki/I)  < 0, 
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Rectangles P1, A x = A y =1/40 

f/? 
ji«|gg$£^ ä^. 

^<yjä. 

/   (Z^gS^ \ 

— J. ^r 

1.5 2.Q 2.5 

Rectangles P1, A x = A y =1/160 

1.5 2.0 2.5 

Rectangles P1, Ax = Ay =1/320 

Rectangles P1 AX: = Ay =1/80 
) /   IJ^^— 

^7?DT 
Irr 

Figure 4.4: Forward facing step problem.  Second order P1 results.   Density p.  30 equally 
spaced contour lines from p = 0.090338 to p = 6.2365. Mesh refinement study. From top to 
bottom: Ax = Ay = ^, ^, T^T, and — 40'   80'   160' 320" 
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Rectangles P2, A x = A y = 1/40 

0.5 1.0 1.6 2.0 ZS 3.0 

Rectangles P2, Ax = Ay= 1/80 

1.6 2.0 2.5 

Rectangles P2, A x = A y = 1/160 : Jllffif 
\(T 

. 

Rectangles P2, A x = A y = 1/320 

Figure 4.5: Forward facing step problem. Third order P2 results. Density p. 30 equally 
spaced contour lines from p = 0.090338 to p = 6.2365. Mesh refinement study. From top to 
bottom: Az = Ay = ^, ^, ^ and ^. 
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Figure 4.6: Forward facing step problem. The triangulations used for results in Figures 4.7 
and 4.8. a is the ratio between the typical size of the triangles near the corner and that 
elsewhere. 
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Triangles P1, c = 1/1 

Triangles P1, a = 1/2 

Triangles P1, o = 1/4 
UUIUUIA111 

Triangles P1, o = 1/8 
IKIUikUlLU I (, t 

Figiire 4.7: Forward facing step problem. Second order F1 results. Density p. 30 equally 
spaced contour lines from p = 0.090338 to p = 6.2365. Triangle code. Progressive refinement 
near the corner, using the triangulations shown in Figure 4.6. 
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Triangles P2, a = 1/1 
\ i >i>\! / i it i < \ i i   !—]—/^%X'"L  *- -. 

Triangles P2, a = 1/2 

ÜP^::;:':>T / Uli) )        I 

Triangles P2,c = 1/4 

Triangles P2,c = 1/8 

Figure 4.8: Forward facing step problem. Third order P2 results. Density p. 30 equally 
spaced contour lines from p = 0.090338 to p = 6.2365. Triangle code. Progressive refinement 
near the corner, using the triangulations shown in Figure 4.6. 
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for either the density or the total energy, and, if yes, all the degrees of freedom except the 

mean 

l^x)    U'y 5    U'xy ?    ™xxi    ^lyy > 

of all the components (density, two momenta, and total energy), are reduced by a factor, 

which is the smaller of the two quantities 

u 

Y^x]   \   \^y\   i   I'U'xyl "T £\\'U'xx\ T" \^yy\) 

computed from the density and the total energy. 

We remark that the positivity correction procedures described above are conservative 

and do not degrade the formal accuracy of the schemes. 

5    Concluding Remarks 

We have presented the algorithm formulation and practical implementation issues of the 

RKDG (Runge-Kutta discontinuous Galerkin) methods, for multidimensional systems and 

in particular for the compressible Euler equations of gas dynamics. Numerical results are 

shown. We conclude in particular that for detailed features in the flow, such as the structure 

near the triple Mach stem in the double Mach reflection problem, a higher order method 

gives better cpu performance than a lower order one, to obtain the same resolution. We also 

conclude that triangular elements and rectangular elements perform in a similar way. 
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