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ABSTRACT 

Credibility theory is the name given by American actuaries to 
linear estimation formulae developed to experience-rate insurance 
premiums.  These formulae can be viewed as linear Bayesian Forecasts 
of a conditional mean, exact under certain conditions, and best least- 
squares approximations otherwise.  This paper surveys the recent 
theoretical developments in the actuarial literature, relates these 
results to other linear estimation methods, and describes a variety 
of special models and applications. 



A SURVEY OF CREDIBILITY THEORY 

by 

William S. Jewell 

1. INTRODUCTION 

Credibility theory is the name given by American actuaries to heuristic 

linear estimation formulae developed in the 1920's for insurance rate-making 

problems.  These results and their recent extensions are not only useful in 

practice, but have interesting relationships with other estimating and 

forecasting methods, such as the classical formula for the combination of 

observations due to Gauss, maximum-likelihood estimators, Bayesian esti- 

mation, and linear filter theory.  Credibility forecasts can be viewed as 

linear Bayesian forecasts of a conditional mean, exact under certain con- 

ditions, and best least-squares approximations otherwise. 

Many new theoretical results and special models have appeared in the 

actuarial literature; credibility theory was the theme of a recent actu- 

arial research conference [38].  In this paper, we shall survey these 

results, and relate them to linear estimation results from other fields. 

Other noninsurance application of credibility will also be described. 



2.  THE BASIC CREDIBILITY FORMULA 

In the original insurance experience rating  problem which give rise to 

credibility, we consider a collective  of similar but somewhat heterogeneous 

insurance contracts which are grouped together to "spread the risk."  It is 

assumed that detailed prior statistics are available from this pool; in 

particular, the manual  or collective fair premium,    m =  E{x} , is the 

average value of the risk random variable of interest, x , such as number 

of accidents per year, total dollar claims per unit exposure, etc. 

Now suppose a new insurance contract of unknown risk characteristics 

is underwritten, and assigned to this pool.  At the beginning, the indi- 

vidual fair premium  charged would be just the collective premium m ; how- 

ever, as n years' individual experience data     [x ,x„, ..., x ]  is 

obtained on this risk, it seems reasonable that the individual sample mean, 

x = \  x /n , would tend to reflect more nearly the risk characteristics of 

the individual, except for the large variability in x with small n . 

Using heuristic reasoning on the pooling of data (and considering only 

the number of claims per year), the early actuarial literature argued for 

an experience-rated fair premium  for next year's risk,  x - , of the form 

(2.1) E{x .. | x.,x-, ..., x } Ä (1 - Z)m + Zx , 
n+1   1 I n 

with 

(2.2) Z =  n n + N * 

Z was called the credibility factor', it mixes the manual premium, m 

and the experience premium, x , with increasing "credibility" attached to 

the latter as n increases.  The time constant N was essentially 



determined by trial and error for different types of insurance.  This 

credibility formula was successfully used in American casualty insurance 

rate-making for more than 50 years, with innumerable variation and elabo- 

ration.  A survey, with references, may be found in Longley-Cook [41]; see 

also [22] and [23]. 



3.  THE BAYESIAN APPROACH 

The modern development of credibility theory begins with the 

resurgence of interest in Bayesian ideas in the 1950's, and with the 

works of Bailey [2 ], [ 3 ] and Mayerson [42], who showed that the 

experience-rating problem could be formulated as finding a Bayesian 

conditional mean, as already implied by the notation in (2.1). 

Let each member of the risk collective be characterized by a 

(scalar- or vector-valued) risk parameter    0 ; the heterogeneity of 

the collective is then described by a prior density    u(9) , from which 

each risk draws an independent sample.  Given 9 , the distribution of 

an individual's risk variable for one year, x = x , is given by a 

likelihood density,     p(x | 6) ; on an individual basis, the fair premium 

is 

(3.1) m(6) - E{x | 6} = J*xp(x | 9)dx , 

and the individual variance is 

(3.2) v(6) = l/{x | 6} = /(x - m(0))2p(x | 6)dx . 

The pooled statistics from the collective of risks, however, have 

a mixed collective density    p(x) = Ep(x | 9) , and this implies the 

collective fair premium is: 

(3.3) m - E{x} = Em(6) , 

with total collective variance 

(3.4) v = l/{x} = E + D ; E = Ev(8) ; D - l/m(6) . 

Using standard Bayesian arguments, the exact experience-rated fair 



premium is: 

E{x ...  x.,x., ..., x } = E{m(0)  x..,x0, ..., x } 
n+1 '12       n '  12'   'n 

(3.5) = /m(G) 

n 
n p(x ] e)u(e) 

t=i     
n 
H p(x  I a)u(a)da 

.t=l 

d6 , 

where we have assumed that each successive year's experience is 

independent, for a given (constant)  0 .  The term in square brackets 

is the posterior-to-data density of 6  for this risk. 

Bailey and Mayerson showed that the exact result (3.5) could be 

rearranged into the credibility form (2.1) for the special prior- 

likelihood combinations:  Beta-Binominal, Gamma-Poisson, Gamma-Exponential, 

and Normal-Normal (known variances), m was calculated by (3.3), and 

N in (2.2) was a function of the hyperparametevs  of the prior, u(6) . 



4.  LEAST-SQUARES 

The next step in the development of credibility was through least- 

squares theory.  Suppose we have a vector-valued random variable x from 

whose observations x. we are trying to predict a scalar random variable 

y through a forecast function f(x) . Assuming we know the joint dis- 

tribution P(y,x) = Pr{y £ y;x <_x)   ,   the classical means of evaluating 

any f is the mean-square error norm; 

(4.1) I = /(y - f(x))2dP(y,x) . 

It is known that the integrable function f  which minimizes (4.1) at 

value I  is the conditional mean: 

(4.2) f°(x) = E{y | x = x} . 

In Bayesian terminology, the conditional mean minimizes quadratic Bayes' 

risk. 

In many cases the exact conditional calculation (3.5) is too difficult 

and an approximate forecast function is sought.  Since completion of the 

square shows that 

I = 1° + /(f°(x) - f(x))2dP(x) , 
(4.3) 

1° = El/{y | £} = l/{y} - l>f°(£) , 

then any approximate forecast f can be evaluated in terms of a least- 

squares fit to the conditional mean over the observation space. 

A typical choice of an approximate forecast is a linear function 

(4.4) f(x) = aQ + I  ajXj , 

where the parameters are adjusted to minimize (4.1) or (4.3). It is well 



known that the optimal value a_  of the vector a = [a. | j ^ 0]  is 

given by the "normal" system of equations 

(4.5) Ca* = b , 

* * 
with a  selected so as to make the optimal linear forecast f 

o 

unbiased, e.g., 

(4.6) Ef*(x) = E{y} ; a* = E{y} - a*'m ; 

t 
and the covariance matrix C and the vectors b and m are: 

(4.7) C = l/{£} ; b = C{£;y} ; m = E{x} . 

The prior variance of the optimal linear forecast is: 

(4.8) l/f*(x) = a*'Ca* = a**b = b'C_1bo = C{f *(£);£} 

giving minimal approximation mean-square error: 

(4.9) I* - 1° = ff°(x) - b'C^b , 

which is smaller, the closer the conditional mean E{y | x}  is to a 

linear form.  In this sense, the optimal linear f (x)  is a best least- 

squares linearized Bayesian approximation. 

In 1967, Bühlmann [4], [5] showed the important result that, for 

the collective model of Section 3, the optimal linear estimator for the ex- 

perience-rated fair premium is exactly the credibility form (2.1), provided 

-j. ~ 
For any two random vectors or scalars y_ and v_ , we define the 
(possibly nonsquare and unsymmetric) covariance matrix: C{\xjv)  = 
E{uv'} - E{y_}E{_v'} , and call C{y_;y_} = l/{y_} , the usual covariance 
matrix of y on itself. 



that the time constant in the credibility factor is chosen as the ratio 

of the components of the collective variance (3.4), i.e., 

(4.10) N = Ev(6)/l/m(6) = E/D . 

This shows that the basic credibility formula is robust, and has 

mean-square error (estimation error variance) 

(4.11) I* = E + (1 - Z)D , 

which shows clearly how increasing experience data improves the estimate. 

The sample mean alone, x , is a poorer estimate because it has 

-1 * I = (1 + n )E , which is always larger than I  .  However, if the 

prior variation,    D = fm(9) , is very large compared to E = Ev(6) 

* 
(a "diffuse prior") then N is very small, and f  and x are 

practically the same. 

Notice the important result 

(4.12) C{y - f*(x);f*(£)} - 0 ; 

that is, any error remaining in the optimal forecast is uncorrelated 

with the predictor. 



5.  EXACT CREDIBILITY 

In 1973, the author showed that the class of likelihood-prior 

families for which the credibility approximation (2.1), (2.2), (4.10) 

was exactly  the Bayesian conditional mean could be extended [25], 

[27]. 

Consider the Koopman-Pitman-Darmis exponential family  of likeli- 

hoods in which the sample mean is the only sufficient statistic and 

natural parametrization  is chosen, i.e., 

(  \  ~6x 
(5.1) p(x | 6) = a^;

(g}        (x e X) 

for continuous or discrete measure in a given range X , determined 

by the nonvanishing of a(x) . c(0) is a normalizing factor to make 

f p(x | 6)dx = 1 . 
X 

The natural conjugate prior  corresponding to the likelihood (5.1) 

is 

-n -6x 

(5.2) u(6) = [c(j>)]  e  ,     (9 e 0) d(VV 

defined over a natural parameter space,    0 , for which (5.1) is a density, 

i.e., for all values of 0  for which c(6)  is finite.  Restrictions 

on the hyperparameters  (n ,x ) may be necessary to make (5.2) a density 

as well, i.e., to make the normalization d(n ,x )  finite.  We shall 

henceforth assume n > 0 . 
o 

The advantage of a natural conjugate pair is that the family is 

closed under sampling,  that is, the density of 9 posterior to the data 
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is of the same form as (5.2), with hyperparameter updating: 

n ■*- n + n 
o   o 

(5.3) 

X° * X° + t-1 ^ 

Since m(6) = -c'(e)/c(6) for this family, integration of (5.2) by 

parts gives 

(5.4) Bl(;).söi±e+!o. 
o      o 

c(9)  is analytic in the interior of 0 , and, in most cases of interest, 

vanishes at the boundary as well, making the first term on the RHS of 

(5.4) zero.  The precise regularity conditions under which this happens 

are complex, and are covered in [27]. 

Assuming these conditions are satisfied, (5.3) then implies 

x + I  xt 
(5.5) E{m(6) | xrx2 XQ} = °n + n • 

o 

The final steps, which are similar, show that XQ/no = m , and nQ 

is the time constant N  (4.10) of Bühlmann, thus proving credibility 

is exact for (5.1), (5.2). 

Additional examples beyond those of Bailey and Mayerson are given 

in [25], and the extension to credibility mixing of more general 

statistics for arbitrary exponential families is also demonstrated. 
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6.  MULTIDIMENSIONAL CREDIBILITY 

The previous results are easily extended to prediction of a multi- 

variate conditional mean [23], [26].  Let x be a p-dimensional random 

variable, depending upon a risk parameter 6  through a likelihood 

density p(x | 8) ; a prior density on 6  is assumed known.  For 

t = 1,2, ..., n , we observe n independent realizations, x^  = x_ , 

of this random variable for a fixed 8 .  The problem is to make a 

(vector) forecast f(X)  of the next observation,  ^xn+i I x^ > 

where X is the p x n matrix of data {x  | t = 1,2, ..., n} . 

From the likelihood and the prior, we calculate the vector means: 

(6.1) m(8) = E{x | 6} ; m - Em(8) ; 

and then the two p x p covariance matrices; 

(6.2) E - Et/{x | 8} , 

and 

(6.3) D = l/{m(8)} . 

The total covariance matrix of any x  on itself is E + D , but the 

covariance matrix between any x  and x  (t ±  u)  is just D . 

Assuming that the forecast of each component of x .. is linear 

in all the data X , then the use of least-squares theory gives after 

some algebra the multivariate credibility formula: 

(6.4) E{in+1 I X} * f*(X) = (I " Z)- + Z- ' 

where I is the p x p identity matrix, and x is the vector of 

sample means, 
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The p x p credibility matrix    Z satisfies formulae analogous to the 

one-dimensional result (2.2) : 

(6.5)        Z = n(N + nl)"1 ; (I - Z) = \  (ZN) = ± (NZ) ; 

and the p x p matrix of time constants,    N , is analogous to (4.10) 

(6.6) N = ED_1 

If the eigenvalues of N are {v.} , then those of Z are 

{n/(n + v.)} ; one can show that in the nondegenerate case lim Z = I 
1 n-*>° 

In other words, the initial forecast (no data) is the prior mean m ; 

successive forecasts utilize linear mixtures of alt  sample means in 

varying proportions; but ultimately, each component of the risk is 

estimated only through its own sample mean, as n -> °° .  Specific 

examples are given in [23],  The p x p "preposterior" estimation 

error covariance matrix for the optimal vector forecast in (6.4) is: 

(6.7) ^n+1 " MX)} = E + (I - Z)D 

This is similar to (4.11), but of course only the diagonal elements 

of the LHS of (6.7) were minimized in selecting the optimal coefficients. 

There are also exact multi-dimensional results [26], corresponding 

to Section 5, for the linear multivariate exponential family likelihood'. 

a(x)exp{-e'x} 
(6.8) p(x | 6) =  " c(e) " "  •      (x e X) 
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6  is now a p-dimensional vector in the complete parameter space 6 for 

which the normalization,  c(0) , is finite.  This family has the vector 

sample mean, x , as a sufficient statistic, and has been investigated 

somewhat; however, their natural conjugate priors have been little studied. 

The simplest natural conjugate prior for (6.8), analogous to (5.2), is 

-n 
(6.9) u(6) - [c(6)]  °exp[-e'x ]      (8 e 0) 

where the scalar n  and the vector x  are hyperparameters; we assume 
o -o 

always u(8) vanishes at the boundary of 9 .  Embarrassingly, in this 

case, although (6.4) is exactly the conditional mean,  Z degenerates to 

a diagonal matrix because N = n I , and the forecasts for each component 

of x are independent! 

To remedy this, the author develops in [26] an "enriched" version of 

(6.9), for likelihoods (6.8) in which a(x) will factor into a product 

of p independent components when x is subject to a linear transfor- 

mation.  In this case, enough additional hyperparameters can be introduced 

to make N and Z non-diagonal, and all components of the sample mean 

are used in prediction of any one future value. 

An important extension permits quadratic terms in the exponent of 

(6.8), and leads to the well-known multinormal  likelihood with unknown 

mean and unknown precision.    The usual mean-precision prior is a normal- 

Wishart  distribution, due to Ando and Kaufman [ 1 ]; its "thinness" is well- 

known in the literature, and is similar to the degeneracy described above. 

Through the use of linear transformation, it is possible to extend the 

Ando-Kaufman prior, again giving a full-dimensional credibility formula 

(6.4) for the conditional mean [26].  One also finds the following 

interesting credibility formula for the conditional covariance matrix of 

this enriched multinormal: 
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l/{x J_.   |   X}  =   (I - Z)l/{x} + Z 
—n+1   ' — 

(6.10) 

$lmi (£t-£)(2it-£)'j 

+ (I - Z)(m - x)(m - x)'Z' 

Notice how the sample covariance ultimately dominates. 
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7.  CLASSICAL ESTIMATORS 

We have emphasized the Bayesian role of credibility, either as an 

approximation to a conditional mean, or as an exact result for certain 

priors and likelihoods.  However, there are other interpretations 

of credibility which show its relationship to classical least-squares 

estimators. 

Suppose we rewrite (6.4) for the case in which only one  p- 

dimensional observation x = x  is made: 

(7.1) E{x2 | x1> « (I - Z )m + Z^ , 

with 

(7.2) Z = (I + ED_1) 1 

Rewrite this as: 

(7.3) E{x2 | xx> - m « Z (x - m) , 

and note that Z  can be written as: 

(7.4) Z1  = D(E + D) X  = C{x2 ; j^H 1/(^1 ] X 

In this form, we recognize (7.3) as a well-known exact result, the 

regression  of x. on x  for a joint multinormal distribution of 

{x  ; x } . 

For the second interpretation, write in linear model form'. 



16 

(7.5) xfc = m(e) + üt      (t = 0,1,2, ...) 

where u  is an appropriate error variable,   independent of 6 and 

other errors, and 

(7.6) E{ut) =0 (t = 0,1,2, ...) . 

For t = 1 , we observe x_, = x_ , and this is an estimator of 

E{jL | x } = E{m(6) | x } with error covariance matrix 

(7.7) V{n±}  = El/U^ | 6} - E . 

Now, a prior estimate can be thought of as an initial observation at 

t = 0 , so that the initial credibility estimate x^ = m is also an 

unbiased estimate of m(0)  before the other observations begin. 

Since m is a constant, (7.5) shows that the error covariance of 

this estimate is: 

(7.8) I^UQ} = l/m(6) = D . 

By elementary manipulations: 

(7.9) E{m(9) | XQ = H»x-1> '« (E_1 + D-1)-1^"^ + E~ xj , 

and we recognize that the "two" observations x^ and x^ are 

combined by weighting with their respective precisions,    D   and 

E_1 . This ancient formula for the combination of observations is 

due to Gauss, and is known to be exact for u^ and u_2 independent 

and (multi-) normally distributed.  The preposterior estimation error 
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precision is  the  inverse of   (6.7)  with    Z = Z     , 

(7.10) l/-1{x2 - f*(xx)}  = D"1 + E X   , 

the sum of the two observation precisions.  Similar remarks apply to 

the Bayesian regression model of Section 10; see (10.10) and [34]. 

Notice that credibility formulae are mixtures of a prior mean 

and a classical maximum likelihood estimator.  This is true for a 

large class of identifiable linear models (10.7), and in the exact 

case follows easily from the definition of exponential families. 

Finally, we note that many articles in the statistical literature 

develop similar "wide-sense conditional expectations" and "parameter 

shrinkage" formulae, [14], [40], [17], [18], [20], [48], [53]; they 

are called "pseudo-Bayes estimators" in filter theory [47], and are 

no doubt being rediscovered in other fields as well.  However, the 

intimate relationship between the Bayesian and the classical appraoch 

is not well appreciated, and there is widespread belief that these 

results are exact only for multinormal distributions, which is not 

true. 
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8.  OTHER CREDIBILITY MODELS 

We now consider some of the many extensions of the credibility 

model developed to deal with specific estimation problems in insurance. 

These models all use least-square approximations, usually exploiting 

the special structure to avoid numerical inversion of the covariance 

matrix in (4.5).  See also the references in [13] and [38]. 

8.1 Other Functions 

The first idea is that least-squares theory also applies to 

functions  of random variables, with appropriate modifications to (4.7). 

Suppose in the basic model of (2.1), (2.2), (4.10), we replace x 

by I(u - x) throughout; here u is some fixed value in the range 

of x , and I is the unit-step function, unity for nonnegative 

arguments, zero otherwise.  Since \  I(u - xt)  counts the number 

of samples not greater than u , and El(u - x) = P(u) , we get a 

credible conditional distribution forecast  [24]: 

(8.1)        P(u | x) « (1 - Z)P(u) + Z \\    I(u - xt)/n 

as a mixture of the prior collective probability,  P(u) , and the 

experienced sample distribution. Z = n/(n + N) , as before, but the 

time constant depends upon u: 

(8.2) N.P(u)[l-P(u)] _± 

l/p(u  e) 

(8.1) is exact only in the simple case of Beta/Bernoulli prior/likelihood. 

If P(u)  is continuous, it gives a mixed function of u which has 
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smaller mean-squared error for every u than using the sample dis- 

tribution alone. 

Clearly, the same idea also applies to estimating moments of x , 

the difficulty being that higher collective moments corresponding to 

(3.3), (3.4) must be known.  In [ 5 ], Bühlmann develops a credibility 

formula for the conditional variance f{x ...  x.,x0, ..., x } 
n+1 '  12       n 

based upon separation into a "variance" part and a "fluctuation" 

part, and using several approximations; see also (6.10). 

Estimating fractiles or order statistics by credibility seems 

difficult; however Buhlmann [ 9 ] shows that one can estimate the 

mass between any two ordered data points of given rank. 

In [11] , de Vylder has studied the optimal form  of the predictand 

to be used in the semi-linear form: 

(8.3) f(x) = a + a  £ g(x ) , 
1 t=l 

for arbitrary likelihood and prior.  The resulting integral equation 

uses the conditional density p(x  | x )  to find the optimal g , 

and seems most useful for discrete x .  [12] 

8.2 Compound Models 

A basic concept in casualty insurance is that the total dollar 

claims in a given exposure period is related to both frequency  and 

severity  of a claim, once it occurs; this leads to a risk random 

variable which is the random sum of other elementary random variables. 

The major contributions are [7], [21], [23], [43], [44]. 
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8.3 Bonus Hunger 

It is a well-known fact that experience rating schemes induce 

a compensating behavior in the insured individual.  For example, 

small claims will not be reported in order to keep future dividend 

payments down; insurance companies often encourage this, even though 

it makes estimation of the true risk more difficult.  [45] examines 

the effect of this "bonus hunger" on credibility plans. 

8.4 IBNR Models 

Many insurance claims take a long time to "develop," that is, 

a claim in year t will incur "losses" in year t,t+l,t+2, ... ; 

the total dollar claim is "incurred but not (fully) reported." 

Thus, at any epoch in time, one has an IBNR triangle  of partially 

developed claims which can be used to estimate the final totals; 

correlations in observations in both the cohort and calender time 

dimensions are likely.  These problems have been approached by Straub 

and Kamreiter using least-squares techniques [39], [49]. 

8.5 Time-Dependent Models 

The analysis of time-dependencies is of great interest.  In the 

general nonstationary case where n + 1 p-dimensional densities, 

p (x  | 6) , (t = 1,2 n+1) , are available, the optimal linear 

predictor requires inversion of an np x np covariance matrix, which 

is hardly satisfactory.  However, if the time-dependency is of separable- 

mean type   [28], that is, for the means: 
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(8.4)     m. (8) - E{x.  | 6} = k.. • r (8) , I±      1'2'   •"' P Lt
        Lt '       it   i     i fc = 1)2j     n+1 

(with arbitrary time dependence of the covariance), then one can show 

that only matrices of order p * p need be inverted. 

Another modeling approach is to consider that the risk parameter 

is itself changing over time even though the likelihood is stationary 

for a given 8 .  Thus, by specifying some joint prior u(8.. ,8„, ..., 

8 , ...)  for the risk parameter in successive time periods, the 

evolutionary mechanism  of the risk process is completely determined 

[28]. A special case of interest is the one-dimensional random shock 

model of Gerber and Jones [15], [16], [29] in which the evolutionary 

mechanism provides a sequence of mutually independent scale and location 

shifts {k , s } to the location parameters of the risk variables, 

so that: 

(8.5)  E{it | et,kt,st} - mt(6t) = Vt-l^t-l* 
+ st '  (t = 1>2> '••) 

where 0.  and {k ,s  I u = t,t+l, ...} are mutually independent, 
t       u u 

Forecasts for successive time periods follow a simple recursive cal- 

culation scheme; in many cases where the moments of k , s  are 

stable, the credibility weights are ultimately of geometric form. 

In [29], the author explores in detail the "good" forms of C 

and b in (4.5) which lead to forecasts in either closed or recursive 

form. 

8.6 Conditional Distributions 

An obvious criticism of the multi-dimensional formula (6.4) 

is that in estimating the future value of a selected component, say 
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x   . , all  of the remaining data is used in a linear approximation. 
s,n+l 

If one could easily calculate the s conditional density 

p (x  I x ;6) , (x~ is x.  without x„.)  then one could use just a rs st  -t      —t     —t st 

one-dimensional linear approximation in terms of  [x -,x _> •••> XSIJ » 

now, however, the mean and variance components of this conditional 

density are quite complex, and are time-varying in the sense that differ- 

ent value of x  must be substituted. A complete development is 

given in [28]. As might be expected, simplification occurs only if 

the conditional mean is of separable type. 

An important special model of this type has been analyzed by 

Bühlmann and Straub [6], [10], in which jL  is the claim rate  (total 

portfolio $ claims per unit volume of business) , and x2t *s fc^e 

given volume of business in year t .  By elementary assumptions: 

(8.6)   E{xlt | x2t;6} = mQ(e) ; l/{£u | x2t;9} = v0(6)/x2t , 

where mn(6) and vn(6) are moments associated with a single unit 

vo lume. The credibility forecast is bilinear in x
lt
x2t  (total $ 

claims) and x„  (volume) and uses the latter as operational time 

for credibility, rather than n . 

8.7 Minimax Credibility 

The use of other than quadratic error norms seems mathematically 

intractable in approximating unknown conditional means. An interesting 

model by Buhlmann and Marazzi [ 8] adapts the point of view that Nature 

(who picks m , D , and E) is playing a game against the actuary; 

the resulting strategies depend strongly on the assumptions about the 

regions of play open to Nature. 
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9.  COLLATERAL DATA AND HIERARCHIAL MODELS 

Suppose that the different dimensions of x refer to p different 

individual risks, each with a different risk parameter, 0. , 

(i = 1,2, ..., p) , independently  distributed according to the same prior 

density, u(6) .  In this case, it is easy to see that E , D , and Z of 

Section 6 are diagonal, and in predicting E{x   - | X}  for the s  risk, 

the experience data {x  | (i ^ s)  (t = 1,2, ..., n)}  from the other 

members of the cohort is not used.  In other words, the one-dimensional 

form (2.1), mixing m and the s  component of x. , is optimal. 

This result is disturbing to many practitioners, who feel that data 

from other risks in the same portfolio contains valuable collateral infor- 

mation.  Similar arguments are advanced about the use of cohort data in the 

otherwise unrelated "empirical Bayes" approach. 

Bühlmann and Straub [6 ], [10], [50] approach this problem by using a 

homogeneous  linear least-squares forecast, in which a =0 in (4.4), and 

the {a. | j ^ 0} are selected so as to minimize (4.1), but constrained so 

that the forecast is still unbiased.  In the simplest credibility model 

(2.1), the collective prior mean, m , is then replaced by the estimator: 

(9.1) m(X) = ±    I    J    x.t , 
i=l t=l 

the grand sample mean  of all  cohort data. This also eliminates the problem 

of estimating m , but not that of estimating N .  It also gives a larger 

mean-square error than (4.11). 
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In [30], the author constructs a heirarchial model, in which the 

insurance company and all risks in its portfolio are characterized by an 

additional hyperparameter $   , with a hyperprior distribution over the 

universe of all such collectives.  <j> is the "quality" of this particular 

portfolio. 

Assume each individual risk  (i = 1,2, ..., p) has first and second 

moments 

(9.2) m(e1,*) = E{i±t | 6±,<p> ; v(e±,*) = i/{iit | e^«.} . 

Prior information now consists of an universal mean  over all collectives, 

(9.3) M = EEm(0,4>) 

and three  components of universal variance'. 

(9.4) F = EEv(9,4>) ; G = El/m(6,4>) ; H = l/Em(9,4>) . 

(In the above expressions, the inner operation is on 6 , with <f> fixed, 

and the outer operation is on ^ .)  F and G correspond to the two terms 

in (3.4), averaged over all possible collectives, while H is a new term, 

corresponding to inter-portfolio variation.    Presumably, one could easily 

estimate M , F , G , and H from a nationwide bank of experience data 

from different insurance companies.  In predicting x   - , we now have to 

"learn" simultaneously about both 6  and <f> , and all collateral data 

from the portfolio will be used since all risks have the same <f> . 

The optimal estimator then consists of three terms: 

n 
(9.5) E{xg n+1 | X} = (1 - Z)[(l - Zc)M + Zcm(X)] + Z  £  (x^/n) . 
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The individual credibility factor,    Z , is given by (2.2), but in place of 

(4.10), N = F/G . 

The term in square brackets represents the best current estimate of 

the fair premium for "our" collective; it mixes the universal mean, M 

with the grand sample mean (9.1), using a collective credibility factor 

(9.6) Z =  2*5- 

> 

Jc  F + nG + npH ' 

Note that Z < 1 as n ->■ °° ; that is, m(X)  is not  ultimately "fully 

credible" for the fair premium of "our" collective; this is because we have 

only a finite sample of {6.} for a fixed $   . 

If H -*■ 0 , (9.2) reduces to the usual credibility formula.  Buhlmann 

and Straub's result can be seen as a limiting case in which H -> °° ; that 

is, we have a "diffuse (hyper-) prior" on <j> , and inter-portfolio vari- 

ations are very large. 
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10.  BAYESIAN REGRESSION MODELS 

A very general mathematical structure which contains all of the 

previous models is the linear  (regression) model 

(10.1) i - Hß + u , 

where jr and _u are n x 1 random vectors of observable output variables 

and unobservable error variables,  respectively, H is a known n x p 

design matrix,  and J_ is a p x 1 random vector of unknown regression 

parameters;  we assume that a prior joint density of (ß_,u) is known - 

Given an observation y_ = y , the problem is to draw posterior-to-data 

inferences about |i_ , or about future values of y_ for some (possibly) 

different design matrix; this is a problem in Bayesian regression.    A 

complete Bayesian regression analysis is very difficult, usually requiring 

restrictive distributional assumptions or complicated algebraic manipulations 

(see, e.g. [54]). 

However, the linearized approach of credibility theory can be very 

useful if the goal is to update only mean values of J3_ or v_ ; prepos- 

terior error covariances can also be determined. 

Let the prior knowledge of (3.,u} be summarized in the mean vectors: 

(10.2) Eil)  = b ; E{u | |} = 0  (for all 3) ; 

and the covariance matrices: 

(10.3) Vil)  = A ; EV{£.| ß} = l/{u} = E ; 

of order p x p and n x n , respectively. We define also alternate- 

dimension versions of the covariances: 

(10.4) D = HAH' ; e = (H'E_1H)"1 ; 
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which are n x n and P x p , respectively.  Even if E is positive 

definite (most applications have E diagonal, i.e., "homoscedastic errors," 

or "white noise"), e may not exist in many models of interest because 

H is not of rank max (p,n) . 

There are two versions of the credibility forecast of the mean para- 

meter values f.(v_) « E{£_ | y_} .  In the first version: 

(10.5) fXy_) = (I - ZH)b + Z£ , 

where I is the p x p unit matrix, and Z is a p x n credibility matrix 

(10.6) Z = AH»(E + D)"1 

This clearly exists if, say,  E is positive definite, and H contains 

only nonnegative elements; an n x n inversion is required, even if E 

is known, hence this form is suitable for limited-observation experiments 

where n < p . 

In the second version: 

(10.7) f (y_) = (I - z)b + z§(y_) , 

where ß(y)  is the classical (generalized) least-squares estimator of ß_ 

(10.8) jkyj) = eH'E"1^ = (H,E"1H)"1H'E~1y , 

and z is a p x p credibility matrix: 

(10.9) z = (I + EA-1)"1 = A(I + e~1A)~1e"1 

This matrix is analogous to the usual multidimensional credibility 

matrix (6.5) with "one" sample, and show clearly the mixing of the prior 
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mean and the classical estimator. Moreover, in many applications n > p , 

and (10.9) shows that only one p x p inversion is required to find _f(v_) , 

if E~  is known, greatly reducing the computational labor.  On the other 

hand, to find §_(y_) explicitly,  we require that e exist, which leads to 

the classic problem of "identiflability," and the requirement that 

rank (H) = p . 

The preposterior covariance of the parameter estimation error can be 

shown to be: 

(10.10)  Vil  - f (£)} = (I - ZH)A = (I - z)A = (A_1 + E"1)"1 . 

Cf. (7.10). 

Hachemeister [19] and Taylor [51] were the first to give special 

versions of (10.7), (10.8) in credibility terminology. Many other results 

and interpretations can be found in [34]. 

However there are numerous nonBayesian versions of the above formulae 

in earlier statistical literature [46], [52].  Priority for these formulae 

probably belongs in the communications theory literature, where generalized 

least-squares and "pseudo-Bayes" estimators have been used in linear 

(Wiener-Kalman-Bucy) filters  for many years, (see, e.g. [47], pp. 182-4); 

specialized jargon of this field has no doubt delayed recognition of the 

simularities between approaches. Also, filter theory emphasizes dynamic 

regression models, with recursive calculation of successive forecasts to 

reduce computational labor. An example of this approach for simple trends 

in regression parameters is given in [33]. 
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11.  OTHER APPLICATIONS 

In closing, we describe several noninsurance applications of credibili- 

ty theory. 

11.1 Sampling Schemes 

Classical statistics treats in great detail the analysis of variance 

for complex sampling schemes.  However, in many real applications, one has 

also a prior estimate of the quantity being measured, and the experimental 

observations should be combined optimally with this prior knowledge.  [37] 

explores this idea for various nested sampling schemes; as might be expected 

from Section 7, the prior mean value is combined with the classical estimators 

in a manner proportional to their relative precisions. 

11.2 Material Accountability Systems 

The rapid proliferation of nuclear material has induced development of 

statistical material accountability systems to monitor and "safeguard" the 

production, storage, and shipment processes.  The basic tool is a material 

balance equation, which should balance out to zero if the material un- 

accounted for  is also zero; however, there are very difficult instrumentation 

problems in measuring radioactive materials, and this balance can only be 

estimated statistically.  [32] describes a simple batch material balance 

closure problem.  More general dynamic multi-stage problems can be tackled 

using the formulae of Section 10. 

11.3 Instrument Calibration and Measurement and Inverse Regression 

An instrument can be characterized by the simple linear model 
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(11.1) y = ßQ + ßlX + u . 

In calibration,  relatively precise standard inputs    x-i.x», ••• are given 

to an uncalibrated instrument, resulting in outputs    y,,y2> •••  which 

contain observation errors    u .u,, .... We generally have some 

joint prior information about the instrument parameters     (3Q,ß1) , and 

this is updated using the calibration data. 

In measurement,  we place a partially known quantity xQ as input 

(with some prior on its value), and observe y_ = yQ ; the problem is then 

to make an inverse regression  to estimate x~ . 

Clearly, the general Bayesian formulation is to find 

E{xQ | y0;(x1,y1);(x2,y2); ...} .  In [31], we show that the use of credibili- 

ty breaks the estimation into two natural stages:  (1) a credibility esti- 

mation of  (3n»3-.)  using the standards; (2) a linearized inverse regression 

using the new parameter estimates. 

11.4 Network Flows 

Many road traffic, telecommunication, and accounting processes can be 

modeled as flows over networks;   the basic equation is Kirchoff's conservation 

law, in which the design matrix H of Section 10 is the node-arc incidence 

matrix.  In one formulation, there is prior knowledge about arc flows and 

their prior precisions (usually highly correlated because they arise from 

origin/destination "path" flows); the problem is to make a few boundary or 

selected-arc flow measurements, and to infer the new arc flows.  This prob- 

lem is highly "unidentifiable" in the classic sense because the rank of H 

is one less than the number of nodes; however, the theory in (10.5) and 

(10.6) still applies [35]. 
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11.5 Life Testing 

The usual manner of inferring lifetime distributions in reliability 

studies is to place a large number of components, N , on a test stand, and 

run them for a fixed time T until C = C(T) < < N of the components have 

failed.  Assuming prior knowledge about the distribution parameters, the 

problem is to make a posterior-to-test inference using C completed life- 

times     [x. = x. | i = 1,2, ..., C] and N - C incomplete  lifetimes 

[x. > T | i = C+l.C+2 N] . 

[36] examines the proportional hazard  lifetime distribution: 

(11.2) Pr {x > x | 6} = exp {-6Q(x)} , 

where Q is a known prototype failure function,  and 9 has a Gamma prior; 

it is shown that the Bayesian estimate of 9   from this test is exactly a 

credibility mixture of the prior estimate of 8   together with a new 

maximum likelihood estimator: 

(11.3) £ I    Q(x.) + (|- I)Q(T) , 
i=l 

which generalizes the well-known total-time-on-test  statistic. 
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