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FOREWORD 

The Twentieth Symposium on Naval Hydro- 
dynamics was held in Santa Barbara, California, from 
August 21-26, 1994. This international symposium 
was organized jointly by the Office of Naval 
Research (Mechanics and Energy Conversion S&T 
Division), the National Research Council (Naval 
Studies Board), and the University of California, 
Santa Barbara. In addition to promoting the 
exchange of naval technical research developments 
of common interest to all the countries of the world, 
this biennial symposium encourages both formal and 
informal discussion of the presented papers, and the 
occasion provides an opportunity for direct commu- 
nication among international peers. 

More than 130 participants from 13 countries 
attended the symposium. The attendees represented a 
mix of experiences and expertise: some were newly 
graduated students and others were of established 
international repute. Sixty-six papers were presented 
in twenty topical areas, including ships in a seaway; 
propeller cavitation performance; ship motions under 
way and wave resistance; oscillating propulsors; ship 
motions—nonlinear; cavitation; propeller noise; ships 
in shallow water; cavitation inception and 
supercavitating flows; diffraction and nonlinear drift; 
wave breaking; near-surface turbulence; ship- 
generated vortices; hydrodynamic impact; bubble 
flows; waves; turbulent ship flows; ship viscous 
flows; forced wave motion; and computation of 
viscous propulsor flows. These topical areas were 
chosen because of the recent significant advances 
made in them. Examples of such advances presented 
in the papers include nonlinear motions for ships in 
seaways, the effect of irregular waves on extreme 
ship motions, the effect of three-dimensional 
propeller geometry on cavitation, acoustic radiation 
produced by unsteady propeller cavitation, shallow 

water ship hydrodynamics, numerical experiments 
for breaking waves, direct simulations of free-surface 
turbulent flows, computations of bubble interactions 
with turbulent flows, computations of unsteady 
viscous three-dimensional propeller flows, and near- 
field numerical prediction of turbulent nonlinear free- 
surface flows around ships. 

This brief list illustrates the quality and time- 
liness of the symposium for naval hydrodynamics. 
This occasion for the symposium marked its 
twentieth anniversary. 

During the opening ceremony, the prestigious 
Distinguished Public Service Award was presented to 
Marshall Tulin by RADM Marc Pelaez, USN, Chief 
of Naval Research, on behalf of John Dalton, 
Secretary of the Navy, for a distinguished career and 
achievements that include the founding of this 
symposium series. 

The success of this symposium was the result of 
hard work on the part of many people. The 
Organizing and Paper Selection Committee consisted 
of myself, Dr. Patrick Purtell, and Mr. James Fein 
(Office of Naval Research), Mr. Lee Hunt (National 
Research Council), Prof. Marshall Tulin (University 
of California, Santa Barbara), and Dr. William 
Morgan and Dr. Justin McCarthy (David Taylor 
Model Basin). The contribution of this committee 
was certainly the cornerstone for the success of the 
symposium. However, the administrative preparation 
and execution would not have been possible without 
the support of Mrs. Susan Campbell, Mrs. Mary G. 
Gordon, and the staff of the Naval Studies Board of 
the National Research Council. 

Edwin P. Rood 
Office of Naval Research 
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For his contributions to improving the cjuality of the National Academy of Engineering which has been instrumental in 

providing direction to the naval hydrodynamics community as a whole. Specifically, Professor Tulin's prediction technicpes for 
spray generation and deck wetness, and for dead water effects in stratified waters, have profoundly influenced the conceptual 
designs for future surface ships operating on the high seas and in shallow littoral waters. His design, construction, and 
implementation of a novel wave-and-wind tow tank has educated numerous students with significant impact on national and 
international expertise in naval hydrodynamics. Professor Tulin's dynamic involvement in the procedures and decisions affecting 
naval hydrodynamics research is legendary. He founded the Office of Naval Research Symposium on Naval Hydrodynamics and 
is organizing the 20th symposium. These unique international meetings provide for the exchange of interdiscipUnary research 
results and ideas important for the advancement of naval hydrodynamics. Professor Tulin's dedicated service to naval 
hydrodynamics research has reflected great credit upon himself and his University, and has been invaluable to the naval 
hvdrocryntmics community and the Department of the Navy. 

The prestigious Distinguished Public Service Award presented to Professor Marshall P. Tulin, Director, 
Ocean Engineering Laboratory, University of California-Santa Barbara, by RADM Marc Pelaez, USN, 
Chief of Naval Research, on behalf of John Dalton, Secretary of the Navy, for a distinguished career and 
achievements that include the founding of this symposium series. 
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Professor Marshall P. Tulin, Director, Ocean Engineering Laboratory 
University of Califomia-Santa Barbara. 
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Opening Remarks 



Rear Admiral Marc Pelaez, USN 
Chief of Naval Research 

Chancellor [Henry T.] Yang, thank you for your 
wonderful introduction. There are few things that I 
would fly across country to kick off when I have to 
immediately then fly back, which unfortunately I 
have to do this morning. But the subject of this 
meeting is near and dear to my heart. I feel very 
strongly that this meeting concerns such an important 
area for all of us, all the countries of the world, that I 
wanted to personally give you a few thoughts. Not 
that they will necessarily be as insightful as all the 
papers that will be presented, but I didn't want to 
miss the opportunity, particularly on the occasion of 
this 20th Symposium. 

As the Chief of Naval Research I have a broad 
interest in science and technology across all 
disciplines. As a naval officer, I have a particularly 
warm place in my heart for the field of naval 
hydrodynamics, which I feel deserves particular 
attention. This symposium is unique in the world 
and, as Chancellor Yang mentioned, it has a rich 
history. The technical content and the profes- 
sionalism of the papers presented at this symposium 
are well recognized. In fact, so are the proceedings, 
as they are used throughout our world's educational 
systems in teaching hydrodynamics, and in naval 
architecture and related fields. I think it is appro- 
priate to give a real tip of my hat to Marshall Tulin, 
whose vision provided for this whole symposium. 

Now I will tell you that it's you, the attendees, 
who make this gathering either what it should be or 
what it could be, or else Santa Barbara is just a 
wonderful place to visit and not much would be 
accomplished. I think it will be the former based on 
the people I have seen here. 

I looked over the program yesterday and am 
particularly pleased with the breadth of papers that 
will be presented. But I will contrast that fact with a 
couple of visions, and I will try not to be too 
controversial, although most of my people know that 
they cannot predict what I am going to say when I 
come up to speak. I wrote these notes this morning. 

I will contrast the depth and quality of the papers 
with some discussions I have had with a number of 
professionals in the field who, to varying degrees, 
communicated their views on naval hydrodynamics 
to me prior to my coming to this conference. I will 
give you a few quotations: 

"The last several decades have produced few 
if any CFD [computational fluid dynamics] 
design tools of demonstrated usefulness to the 
ship design process, and this absence particularly 
in the propulsion area has resulted in numerous 
design oversights." 

Naval hydrodynamics is "old and venerable, 
naval architecture being about the most 
conservative of the conservative engineering 
fields." 

"Even though it is well known that the results 
of hull-propeller interaction are of great 
significance for both maneuvering and propulsion 
performance predictions, cultures dictate that they 
be treated separately." 

I think that these are rather condemning statements 
when they are taken together. But that's the sort of 
input I received! 

At the reception I had a very interesting 
discussion with Chancellor Yang. We exchanged 
views on a number of science and technology issues, 
and I believe he captured my thoughts rather 
succinctly when he noted that a danger for many 
researchers is that they become a mile deep and a 
micron wide in their field. In reality they need to be 
a mile deep and a mile wide, and certainly not a mile 
deep and a micron wide. How to achieve that is a 
very basic issue. 

You are here to discuss the state of 
hydrodynamics research a mile deep. I am not going 
to attempt to provide great technical insight in these 
brief opening remarks, particularly in light of the fact 
that Marshall Tulin is up here! I am going to refrain 
from that so that I will not be subject to having to 
defend my views—so that I can speak on a different 
level, if you do not mind. I would like to relate some 
of my views on science and technology, and on the 
community in general, and to do so from the 
perspective of my position. 

Just prior to assuming my current job as the 
Chief of Naval Research I received numerous 
briefings on a broad range of disciplines. The one 
great thing about the office that I have the fortune of 
being in charge of is that it is truly multidisciplinary. 
It covers everything from basic research through 



technology demonstration, and so the potential is 
enormous. 

The thing that struck me about the briefs that I 
received as I was talking to my technical people was 
how narrowly focused everyone was. Very few 
people were able to relate their narrow science or 
technology piece in the broader context of its 
implications to, in our case, the Office of Naval 
Research, and its implications for the future of the 
Navy. But that is exactly what we all need to be able 
to do. We need to be able to be a mile deep and a 
mile wide. 

I found also that the customers for the science 
were not well understood. People were very content 
to sit in their research area, deal in that narrow area, 
and in many cases not relate to their customers. And 
probably they could not say who their customers are. 
The fact of the matter is that they do not speak the 
same language as their customers. In general when 
you are dealing in scientific terms and get into the 
world of the people who have to use what you have 
developed in the long term, you have to somehow 
make the translation so that you both speak the same 
language, so that you can understand common goals 
and objectives. 

Marshall Tulin has been in the business world, 
and he knows that if you do not understand and 
communicate with your customer, you go out of 
business. We in the scientific research communities 
tend to feel that we are somewhat immune from that. 
Some of the recent attacks in this country on the 
research budgets may well be symptomatic of 
concern about this very issue. 

I think that the tendency of researchers is to be 
narrow, to go to the tenth decimal place without 
necessarily a clear articulation of the need to get to 
the tenth decimal place. There are times when that is 
entirely appropriate, and there are other times when it 
is not. We need something we can use practically to 
design new concepts in ships. 

When the first symposium took place in 1956, 
400 to 500 people attended. We have 130 people 
today. So you wonder what has changed in the 
world. Well, I will tell you that in the United States 
Navy in the 1950s, we were making enormous 
changes and experimenting with new concepts. In 
the broadest scale of things, whole new ship 
concepts, whole new ship designs (the Albacore hull, 
for instance) were developed for submarines in the 
1950s, and in my own area of nuclear propulsion, 
considerable changes in experimentation took place. 
That is not what you see happening today. 

So the questions now are, How do we make the 
links, how do we involve the broader technical 

community, how do we engage with the users of our 
science so that we can really make the sorts of strides 
that are necessary? I believe that it is extremely 
important to develop a corporate view of where we 
are headed. 

One of the problems I see is that the rate of 
change of technology is so great that none of us is in 
a position to really pick the winners. We can pick 
some, but it is very difficult for us to determine what 
is really going to make the difference in the future. 

There is a tendency as resources draw down to 
narrow the scope ofthat with which we have to deal. 
In this country—and I do not know if it is true 
internationally, but it probably is, because the trend is 
that way—the bureaucrats tend to develop lists of 
critical technologies to be pursued. 

I am diametrically opposed to that. If we 
circulate a piece of paper in this room and ask each 
person to list the top 10 critical areas in science and 
technology, I guarantee you that the lists will be 
different. My list will not be the same as your list, 
and neither list will be right. 

If I were to ask for a list of critical technologies, 
I think that most people would place "information 
technologies" somewhere on that list. If you were 
not at the Office of Naval Research, your chance of 
finding someone who would list "naval 
hydrodynamics," or even know how to spell it, would 
be very slim. So there is a real danger to us in others 
taking the approach of looking at critical 
technologies, and that is why I am so opposed to it. 
But we do need to develop some common corporate 
view to guide investments. 

I personally believe in a broad science and 
technology base from which to draw. But how does 
one characterize that common view? The thing that I 
have pushed in my organization is the need to 
concentrate on the capability one is trying to achieve. 

What I like to draw on is a little bit of history, to 
challenge my organization. I asked what we are 
working on that is really at the 10 dB level of change 
in, for instance, naval warfare: What is going to 
change the shape, the scope, of the Navy of the future 
by 10 dB? This is a technical way of phrasing a 
question that people can understand. Who really 
believes that they are working on something ofthat 
magnitude? I got no raised hands in response, 
because that is a very difficult concept to discuss. 

If you look back to the mid-1940s, just to put 
this in context, when nuclear issues were all coming 
to a head, there was a vision for nuclear power for 
submarines. I am a nuclear submariner, so I can 
relate to this very well. In the mid-1940s someone 
had a vision that this science, this technology, could 



change the way submarines operated. They 
combined that vision with numerous other things, 
such as Albacore and new hull designs from a 
systems view, and developed nuclear submarine 
technology which in fact did change the face of the 
Navy. I would say that that was definitely at least a 
10 dB change. But it took a vision to bring that all 
together. 

That vision actually drove a whole range of 
science and technology issues. The fact that 
submarines could stay submerged for months at a 
time forced us to deal with how to control the 
atmosphere in a submarine, and how to do a lot of the 
other things. How do you environmentally seal 
people up for many months in a small vessel like that 
and not have any bad effects? 

That sort of vision, wherever it came from, 
however it evolved, became a corporate vision that 
drove whole fields of science and technology. And 
they were not just limited to naval hydrodynamics, 
and they were not just limited to nuclear propulsion. 

My question is, What are we doing to set the 
standard for where we are going in the future? What 
is seen on the horizon that is really going to 
challenge this community that will change things for 
the future? There are a lot of pressures that are new 
today that weren't there 20 years ago, that weren't 
there when this conference started 40 years ago, such 
as environmental pressures, energy resources, and 
many other issues on which the naval hydrodynamics 
community can really have an impact—for example, 
the whole design of ships, both military and 
commercial platforms, that are efficient, that we can 
afford to operate into the next century, that we can 
afford to procure. All of those are issues that your 
community can significantly influence. Besides all 
the mile-deep discussion, there ought to be some 
discussion that can put this technology and this 
science into some sort of common perspective. The 
one thing I encourage you to do, and this is my 
challenge to you, is to think the broader thoughts in 
your field. You are going to find that there are whole 

other disciplines that will contribute to your field, to 
the advancement of your science and technology. 

Last night, I discussed with a young PhD student 
from Caltech the fact that bioengineering was having 
an impact on naval hydrodynamics. It's doing so in 
some very subtle and interesting ways. Tommy 
Huang from David Taylor is currently undertaking a 
new project using a neural net chip that was 
developed by my office. It was developed in 
connection with research in the biological sciences, 
from modeling of the olfactory system, in 
conjunction with the microelectronics community. 
We in the Navy have applied that chip to signal 
processing. Tommy and the people at David Taylor 
under Dr. Bill Morgan are working to use this 
capability, this new technology, to address some of 
the interesting issues of naval hydrodynamics. 

And so you may find yourselves depending on 
somebody who is doing work in a different field and 
helping to develop new approaches to computation 
and thinking. The challenge is not to try to 
understand all those pieces of science. The challenge 
is to think the broader thoughts in your field and be 
able to articulate what the grand challenges are, what 
the capabilities are that we think, if we achieved 
them, would be truly useful in changing the way 
business is conducted. I contend that is what you 
need to do as well as going a mile deep. 

Do whatever you can do to encourage that broad 
thinking, to have that open discussion. I do not think 
that I have to encourage you in this group to speak 
out, because I think that technically all of you will do 
that. From everything I have heard, that is a real 
attribute of this conference. 

Speak out about these other issues, at least over 
lunch or while you are sitting on the beach at that 
wonderful barbecue the organizers have planned. 
Talk about some of these issues, because I think 
that's really where it's at—that's where, as we say in 
this country, the rubber hits the road. It's about how 
you are going to take technology from the research 
area to the applications area and make a difference. 
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1. ABSTRACT 

The present understanding of wave induced motions 
and loads on mono- and multihulls, surface effect 
ships and foilcatamarans are presented. Special 
attention is given to slamming, added resistance in 
waves and finite amplitude ship motions and sea 
loads predictions. Future challenges are addressed. 

2. INTRODUCTION 

The Froude number (Fn) is a simplistic way to 
categorize ships and advanced marine vehicles 
hydrodynamically. For instance a hull is in the 
semi-displacement mode if 0.4<Fn<l.l and is 
planing if Fn>l.l. Displacement vessels correspond 
to Fn<0.4. By high-speed vessels we mean that 
Fn>0.4. Here Fn=U(Lg)"1/2, where U is the ship 
speed, L is the ship length and g is the acceleration 
of gravity. The Froude numbers associated with 
semi-displacement and planing vessels are 
approximate values and other values of Froude 
numbers are used in the literature to define 
displacement and high-speed vessels. High-speed 
vessels can be put into categories like multihulls, 
monohulls, hydrofoils and air cushion supported 
vehicles. We will in particular discuss monohulls, 
catamarans, foilcatamarans and surface effect ships 
(SES). High-speed catamarans and SES used for 
passenger transportation have semi-displacement 
hulls. Their maximum speeds are typically 35 knots 
for the catamaran and 45 knots for the SES. A 
common ship length is about 30-40 m, but there 
exist longer vessels like the 74 m long "Sea-Cat" 
wave-piercing catamaran. Stena Line has designed 
a 120 m long catamaran for car and passenger 
transport. Not all types of advanced marine vehicles 
will be specifically mentioned in the main text. One 
example is the TSL-F, which is a combination of a 
submerged body of revolution equipped with 
hydrofoils and surface piercing struts carrying a 
monohull (Yamanaka et al. [1]). Considerable 
research and development is devoted in Japan to 
TSL-F, foilcatamarans and SES. Research and 
development in Norway is concentrated on 
catamarans, foilcatamarans and SES. The SWATH 

concept is a popular concept in some countries, but 
can often not be categorized as a high-speed vessel. 

Vertical accelerations and relative vertical 
motions between the ship and the waves are 
important seakeeping variables. Accelerations 
determine loads on cargo and equipment and are an 
important reason for seasickness. The relative 
vertical motions can be used to evaluate the 
possibility and damage due to slamming and water 
on deck. 

Rolling may be a problem from an 
operational point of view of fishing vessels, crane 
vessels, passenger ships and naval vessels. For 
smaller ships, rolling in combination with either 
wind, water on deck or motion of the cargo can 
cause the ship to capsize. Another important reason 
for capsizing of smaller ships is breaking waves. 
Following sea can cause different critical capsizing 
situations. lithe wave profile is stationary relative to 
the ship, the ship may be statically unstable in roll 
relative to the waterline defined by the wave profile. 
The ship may also lose its directional stability in 
following waves. This can happen when the 
frequency of encounter between the ship and the 
waves is small. The result is an altered course 
relative to the waves. This situation is called 
"broaching" and is most critical with respect to 
capsizing of ships with small static stability. 

The dynamic stability of high-speed vessels 
both in calm water and in waves is in general poorly 
understood. Cohen and Blount [2] have classified 
phenomena that can happen for monohulls as a 
function of speed. The hydrostatic pressure gets 
smaller importance relative to hydrodynamic 
pressure with increasing ship speed. The rudder, 
cavitation and ventilation phenomena will influence 
the dynamic stability of high-speed vessels. 

Liquid sloshing in tanks may be a problem 
for bulkships, combination ships oil-bulk-ore (OBO), 
liquid natural gas (LNG) carriers and tankers loading 
at offshore terminals. Liquid sloshing can cause high 
local pressures as well as large total forces. Both 



effects may be important in design. 

For larger ships, wave-induced bending 
moments, shear forces and torsional moments are 
important. A general problem area for all high- 
speed vessels is the conflict between small weight 
and sufficient strength. Slamming is of concern in 
local structural design for all high-speed vessels. 
Global wave loads are considered important for 
high-speed catamarans, monohulls and SES when 
the vessel length is larger than 50 m. More specific 
problems are whipping and springing. Whipping is 
transient elastic vibrations of the ship hull girder 
caused for instance by slamming. Springing is 
steady-state elastic global ship vibrations caused by 
the waves. Both linear and nonlinear wave effects 
can affect springing. 

Ship motions and sea loads can influence the 
ship speed significantly due to voluntary and 
involuntary speed reduction. Voluntary speed 
reduction means that the ship master reduces the 
speed due to heavy slamming, water on deck or 
large accelerations. Involuntary speed reduction is 
the result of added resistance of the ship due to 
waves and wind and changes in the propeller 
efficiency due to waves. Seakeeping criteria are 
normally related to slamming, deck wetness, roll 
RMS values and RMS values for vertical 
accelerations. They can be used to determine 
voluntary speed loss and operability of vessels in 
different sea areas. Faltinsen and Svensen [3] have 
pointed out the relatively large variations in 
published criteria. This may lead to quite different 
predictions of voluntary speed reduction. For high- 
speed marine vehicles other criteria are also needed. 
One example is operational limits due to the 
propulsion and engine system in a seaway. The 
seasickness criterion according to ISO 2631/3 is 
common to use for assessment of passenger comfort 
of high-speed vessels. It was recommended by the 
20th ITTC (International Towing Tank Conference 
1993) to be used by its members. 

The 12th ISSC committee on loads gives a 
good review of the progress in solving three- 
dimensional linear problems for wave loads on ships. 
This is a necessary step towards rational numerical 
prediction tools of wave induced motions and loads 
on ships. However I am not convinced that a three- 
dimensional theory always represents an important 
improvement of linear ship motion and load 
predictions. It would have been interesting to know 
more about how good three-dimensional theories are 
in following and quartering sea conditions, where 
strip theories are not satisfactory. Since three- 
dimensional theories may be more sensitive man 
strip theories to complicated geometrical hull 
geometries, it is important to study a broad class of 
realistic hull forms. 

ITTC has strongly advocated that verification, 
validation and uncertainty analysis should be 
associated with all numerical work. This is not so 
common to do. One reason is obviously the 
difficulty in doing so. An attempt was made by 
Faltinsen and Svensen [3]. They presented an 
uncertainty analysis of strip theory programs for 
calculations of wave induced motions of ships 
operating at moderate speed. Due to lack of relevant 
theoretical and experimental work, it was difficult to 
assess the errors due to viscous and nonlinear 
effects. 

3. SURFACE EFFECT SHIPS 

The surface effect ship (SES) is an air cushion 
supported catamaran (see Fig. 1). The air cushion is 
limited by flexible seal systems at bow and stern and 
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In the main text we will discuss linear theory 
for wave induced motions and loads on SES, 
foilcatamarans and high-speed semidisplacement 
monohulls and catamarans. Slamming is extensively 
discussed and challenges in the development of 
rational methods for nonlinear predictions of wave 
induced motions and loads on displacement vessels 
are pointed out. We will not concentrate on linear 
theory for displacement vessels. The load committee 
of the 12th ISSC (International Ship and Offshore 
Structures Congress 1994) conclude that "linear strip 
methods are the workhorse for the prediction of 
hydrodynamic loads for ship structures". By ships 
they mean displacement vessels. 

Fig. 1       Surface effect ship (SES) 

by catamaran hulls. The aft seal is usually a flexible 
bag, consisting of a loop of flexible material open 
against the side hulls with one or two internal webs 
restraining the aft face of the loop into a two- or 
three-loop configuration. The bow seal is usually a 
finger seal, consisting of a row of vertical loops of 
flexible material. There is a fan system that provides 
the excess pressure in the air cushion and lift the 
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vessel and thereby reduces the water resistance. 
Typically the air cushion carries 80% of the weight 
of a high-speed SES. A SES has lower resistance 
than a similar sized catamaran, can achieve a higher 
speed with less power and have better seakeeping 
characteristics in high sea states. A major deficiency 
with the SES concept is the "cobblestone" effect 
that occurs in small sea states. Significant vertical 
accelerations can occur. This can be illustrated by a 
power spectrum of vertical accelerations of a SES 
obtained from full scale measurements (see Fig. 2). 

So«) (ms!)!s 

accelerations of the vessel. This is consistent with 
the full scale measurements that showed smallest 
effect of the frequencies around 5 Hz at the center of 
gravity of the vessel and largest effect at the bow 
and stern part of the vessel. 

The acoustic resonance phenomena has been 
studied by Steen and Faltinsen [5] by using a quasi- 
linear frequency domain-solution. The acoustic 
resonances are excited because the waves change the 
enclosed air cushion volume. There is an important 
interaction between the air flow in the cushion and 
inside the bag. The deformation of the bag will have 
a similar effect on the air cushion as a moving 
piston at the end of a long tube. This have a 
noticeable effect on the resonance frequencies. For 
instance if the SES described in connection with Fig. 
2 had a rigid planing aft seal, the lowest acoustic 
resonance frequency would be about 6 Hz. 

Important damping mechanisms of the 
cobblestone effects are due to the air flow into the 
air cushion through the fans and the air leakage 
underneath the seals and through louvers that are 
part of a ride control system. The damping level is 
low. 

Fig. 2 Power spectrum Sa(f) of vertical 
accelerations in the fore part of a SES of 
length 35 m operating at 44 knots in head 
sea waves with significant wave height 
0.1 m (f = frequency in Hz). 

The length of the vessel is 35 m, the speed is 44 
knots, the significant wave height is 0.1 m and the 
wave heading is head sea. The measurements are 
taken in the bow part of the ship. We note two 
important frequency ranges. One is around 2 Hz and 
the other one is slightly below 5 Hz. The 2 Hz 
frequency is the resonance frequency described by 
Kaplan et al. [4]. According to their analysis the 
dynamic part of the excess pressure in the cushion 
is oscillating with the same amplitude all over the 
cushion. It is caused by compressibility effects of 
the air and excited because the waves change the 
enclosed air cushion volume. Historically most 
attention has been focused on this resonance 
phenomena and ride control systems have been 
designed to increase the damping of those resonance 
oscillations. However, from the figure it is seen that 
the frequencies around 5 Hz can be just as 
important as the frequencies around 2 Hz. An 
important contribution to the resonance behaviour 
around 5 Hz is a one-dimensional longitudinal 
standing acoustic pressure with nodes approximately 
midships. This pressure distribution causes a pitch 
moment   on    the    vessel.    This    excites    pitch 

In reality one would use a ride control system 
to damp out some of the "cobblestone" effect. This 
is done by controlling the air flow out from the 
cushion in such a way that it effectively acts as a 
damping on the system. In order to do that properly 
one needs a simplified but rational mathematical 
method that accounts for the dynamic pressure 
variations in the air cushion in combination with the 
global heave and pitch accelerations of the vessel. 
We will illustrate a possible ride control system 
proposed by S0rensen [6] (see Fig. 3). He used a 

Acceleration 
Louver 

Fig. 3       Ride control system of a SES (S0rensen 
[6]). 

louver system consisting of two vent valves in the 
front of the air cushion. The opening and closing of 
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the vent valves control the air flow from the air 
cushion so that one gets a damping effect on the 
system. There were used three pressure sensors in 
the air cushion and one accelerometer on the vessel 
as part of the ride control system. By properly 
filtering the signals from the measurement units and 
using a mathematical model for the system 
behaviour, the control system can give the correct 
signals to the louver system. The placement of the 
louver system is essential. For instance if the louver 
system is placed midships, it will have a negligible 
effect on the acoustic resonance mentioned above. 
The reason is simply that the acoustic pressure 
component has a small amplitude midships, while it 
has large absolute value at the ends of the cushion. 

connected with the machinery and propulsion loading 
and response in a seaway. Meek-Hansen [9,10] 
presented service experience with a 37 m long SES 
equipped with diesel engines and waterjet 
propulsion. An example with significant wave height 
around 2 m, head sea and 35 knots speed showed 
significant engine load fluctuations at intervals of 3 
to 5 seconds (see Fig. 4). These fluctuations result in 
increased thermal loads in a certain time period, 
caused by a very high fuel/air ratio. These high 
thermal loads combined with high-rated engines and 
reduced engine condition between major overhauls 
may lead to engine breakdowns. 

The mathematical model for the "cobble- 
stone" oscillations described by Steen and Faltinsen 
[5] needs to be validated. Comparisons with full 
scale measurements where the wave spectra have 
been properly measured, are necessary. This include 
effects of directional wave spreading. Qualitative 
comparisons with full scale experiments indicate 
that the predicted response is of the correct order of 
magnitude with well predicted resonance 
frequencies. Comparisons with model tests are 
difficult since resonance periods are approximately 
proportional to the ship length. This implies that 
model tests based on Froude scaling will not 
describe this resonance phenomenon properly. 

Steen and Faltinsen [5] found that the wave 
and motion induced leakage area variations under 
the seals are important for the determination of the 
response magnitude. The deformation of the bag 
was analyzed quasi-statically. An hydroelastic 
analyses of a flexible bag structure bouncing on the 
free surface has been presented by Ulstein and 
Faltinsen [7]. The predicted time derivatives of the 
volume change of the air cushion due to the bag, 
indicate that the analyses of Steen and Faltinsen [5] 
can be improved. A time domain solution is then 
needed. 

Steen and Faltinsen assumed that the incident 
waves pass undisturbed through the air cushion. The 
influence of the change in air cushion volume and 
leakage area due to diffraction of the incoming 
wave system by the presence of side hulls, cushion 
pressure, and bow seal should be studied. 

Steen and Faltinsen used a quasi-steady 
analysis of the fans. Sullivan et al [8] report that 
dynamic fan effects may significantly reduce the 
spatially uniform pressure response in the air 
cushion. 

Another deficiency with the SES concept is 

Fig. 4 Engine load during SES operation. H^ = 
2 m. 100% Engine Load. Water jet 
Propulsion (Meek-Hansen [9,10]). 

Possible   reasons   for 
fluctuations are believed to be 

the   engine   load 

* Exposure of the waterjet inlet to the free air 
* Flow separation in front of and inside the inlet 
* Ventilation and penetration of air from the free 

surface or from entrained air in the boundary 
layer 

The phenomena mentioned above are often 
coupled in a complicated way. As an example, 
separation may be one of the requirements for onset 
of ventilation. Cavitation occurs in connection with 
separation. Under given conditions a cavity will be 
penetrated and filled with air. Separation and 
cavitation are first of all dependent on the pressure 
distribution in and near the waterjet inlet. For a 
given shape this distribution depends mainly on 
speed and thrust (resistance) of the ship. 

Exposure of the waterjet inlet to free air is a 
result of the relative vertical motions of the craft. An 
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operational limit will be related to the probability of 
the relative motion amplitude between the vessel 
and the waves at the waterjet inlet exceeding a 
certain limit. For a SES equipped with flush inlets 
exposure to free air starts to represent a problem for 
small sea states. The reason is the small distance 
between the inlet and the calm water surface inside 
the cushion. 

4. SEMIDISPLACEMENT MONO- AND 
MULTIHULLS 

Details about a theoretical and numerical method 
used to analyze the steady and linear unsteady flow 
about high-speed non-planing mono- and multihulls 
in calm water and waves have been described by 
Faltinsen and Zhao [11,12]. It is assumed that the 
hulls are hydrodynamically independent of each 
other. This is a reasonable assumption at high speed 
as long as the hulls are not too close and the waves 
from one hull do not propagate to the other hull. 
The consequence of this is that one can concentrate 
on the study of monohulls. The method is applicable 
for Froude numbers higher than approximately 0.4. 
A reason is that the method neglects the effect of 
the transverse wave systems generated by the ship. 
It accounts only for the divergent wave systems. 
This can be shown theoretically (Ohkusu and 
Faltinsen [13]). It has also been demonstrated 
numerically by Hoff [14] that the method by 
Faltinsen and Zhao represents a good 
approximation. Hoff used a three-dimensional thin 
ship theory for both the steady flow problem and 
the forced heave and pitch problems. 

For sway, roll and yaw motion there are not 
created any transverse wave systems. This implies 
that the method is also applicable for lower Froude 
numbers in the case of lateral motions. If the hulls 
ends in a trailing edge, it is important for the sway, 
roll and yaw problems to assume a vortex sheet 
leaving from the trailing edge in the downstream 
direction and to consider the ship to be a low 
aspect-ratio lifting surface. 

The problem is formulated in terms of 
potential flow theory. The unsteady motions of the 
ship and the fluid are assumed to be small so that 
the unsteady body boundary and free surface 
conditions can be linearized. The boundary value 
problem is simplified by introducing the slenderness 
parameter e. This expresses the order of magnitude 
of the beam or the draught to the ship length. The 
three-dimensional Laplace equation for the velocity 
potential is approximated by a two-dimensional 
Laplace equation in the cross-sectional plane. The 
Froude number based on the ship length is assumed 

to be 0(1). Non-dimensionalized frequency of 
encounter with respect to the ship length is assumed 
to be 0(e"1/2). The form of the body boundary and 
free surface conditions depend on the order of 
magnitude of the longitudinal component rij of the 
unit normal vector n to the wetted part of the ship 
surface. 

If nj = 0(e), which is normal to assume in 
slender body theory, it leads to the classical 
linearized free-surface conditions with forward 
speed. It means that there are no interactions 
between the unsteady flow and the local steady flow. 
In the case of nl = 0(e) the approach by Faltinsen 
and Zhao is a generalization of Chapmans' [15] 
method. If n] = 0(e1/2), it leads to nonlinear free- 
surface conditions in the steady flow part. In the 
unsteady free-surface and body boundary conditions 
there are interactions with the local steady flow. This 
involves calculating second derivatives of the local 
steady flow velocity potential <|>s. This cause 
problems at sharp corners on the body surface and at 
the intersection between a non-wall sided body 
surface and the free surface. In the body boundary 
conditions the interaction terms with the local steady 
flow occur because the steady flow satisfies the body 
boundary conditions on the mean oscillatory position 
and not the instantaneous position of the ship. 
Faltinsen and Zhao [11] have presented a procedure 
to avoid the numerical problems in evaluating the 
second derivatives of <t>s in the body boundary 
conditions near sharp corners. However, the 
treatment of the intersection between the free surface 
and a non-wall sided body surface needs 
improvement. It may actually have been better to 
also handle the unsteady free surface conditions in a 
non-linear manner. This means one cannot operate in 
the frequency domain. 

Both when nj = 0(e) and nj = 0(e1/2) a 
numerical solution for the flow is found by starting 
at the bow. The free surface conditions are used to 
step the solution in the longitudinal direction of the 
hull. The velocity potential for each cross-section is 
found by a two-dimensional analysis. Transom stern- 
effects are accounted for by assuming that the flow 
leaves the transom stern tangentially in the 
downstream direction so that there is atmospheric 
pressure at the transom stern and the transom stern 
is dry. In a close vicinity upstream of the transom 
stern the prediction method will be in error. The 
reason is that the solution has no information that 
the pressure should change to atmospheric pressure 
at the transom stern. The error in the close vicinity 
of the transom stern, will in particular influence 
pitch moments and the prediction of pitch and steady 
trim angle. A solution satisfying the three- 
dimensional Laplace equation at the transom stern 
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and matches the upstream solution is needed. 

Details about the validation of steady wave 
elevation, wave resistance, added mass and damping 
coefficients for high-speed monohulls are given by 
Faltinsen and Zhao [11]. The numerical results are 
generally in good agreement with experimental 
results. Even if the theory based on nj = 0(E) 

may show better agreement with experiments, it is 
not recommended for routine calculations. One 
reason is numerical difficulties with calculating 
second derivatives of the steady flow velocity 
potential at the intersection between the free surface 
and a non-wall sided body surface. In the further 
discussion of numerical results it is assumed that nj 
= 0(e). Faltinsen and Zhao [12] showed that this 
gave good predictions of heave, pitch and vertical 
accelerations of a high-speed monohull in regular 
head-sea waves. The generalization of the method to 
multihulls is straightforward since the hulls are 
assumed hydrodynamically independent of each 
other. Ohkusu and Faltinsen [13] have used this 
method for high-speed catamarans and shown 
reasonable agreement with experimental values for 
heave and pitch added mass and damping 
coefficients. 

Small deviations in heading may have a noticeable 
influence on the global loads. The effect of the 
autopilot system and the rudder-propulsion system 
on the global loads and sway, yaw and roll are not 
investigated systematically. There is need for good 
numerical modelling of these effects to scale the 
results properly to full scale conditions without 
autopilot system. 

The numerical method by Faltinsen and Zhao 
cannot satisfactorily predict the socalled "deck- 
diving". This occur for instance with a semi- 
displacement catamaran in following regular waves 
at small frequency of encounter. The catamaran can 
come in a position relative to the waves so that the 
fore part of the vessel dives into a wave crest (see 
Fig. 5). If there is not sufficient buoyancy in the fore 
part of the vessel, a critical situation may occur. A 
non-linear quasi-steady theory is needed to predict 
this phenomena. 

Faltinsen et al [16] present numerical and 
experimental results of global wave loads on a 
catamaran at Fn = 0.49. The numerical method is a 
further development of the high-speed theory 
presented by Faltinsen and Zhao [11,12]. "Steady 
state" response is assumed. The global loads are the 
vertical bending moments, vertical shear forces and 
pitch connecting moments on the half part of the 
catamaran obtained by intersecting along the centre 
plane. The agreement between theory and 
experiments is generally satisfactory except for 
vertical shear forces. Motions were also compared. 
The agreement was satisfactory for the heave and 
pitch motion, but not for roll. Roll influences in 
particular vertical shear force and pitch connecting 
moment. However possible experimental sources 
should also be kept in mind. The experiments were 
carried out with a free running model of lenght 3.8 
m in a basin of 80 m length and 50 m breadth. 
Regular incident waves of different wave headings 
were used. Examples of experimental error sources 
are: 

* non-constant wave amplitude along the track 
of the model 

* difficulties in accurate heading control 
* insufficient number of response oscillations 

and transient effects in beam, quartering and 
following seas 

* non-linear effects. 

Fig. 5 Illustration of "deck-diving" of a high- 
speed catamaran in following waves 
(Werenskiold [17]). 

5. FOILCATAMARANS 

Successful building and operation of 
foilcatamarans have been reported from Norway and 
Japan. With a speed of approximately 50 knots 
"Foilcat 2900" (Svenneby and Minsaas, [18]) has a 
couple of fully submerged inverted T-foils forward 
and a full width foil at the stern. Speed Z propeller 
drives are incorporated in the struts of the rear foil. 
"Super Shuttle 400 (Rainbow)" represents a Japanese 
foilcatamaran. It has full width fully submerged 
foils, both at the bow and the stern and it is 
equipped with waterjet propulsion. Both vehicles are 
run by diesel engines and the catamaran hulls are 
lifted out of the water completely, at operating 
speeds. 

The "Foilcat 2900" has a length over all = 
29.25 m, total breadth = 8.36 m, draft = 3.7 m, 
maximum draft reduction when lifting = 1.9 m, span 
of rear foil = 7.79 m, span of front foil 2.50 m, 
weight = 112-120 tons, main engines output = 2 • 
2000 kW, propeller diameter = 1.25 m, number of 
passengers = 160. Details about the foil system are 
shown in Fig. 6. The rear foil carries about 60% of 
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the weight in foilborne condition. The strut of the 
front foils act as rudders and can be turned +/- 25 

BOTTOM VTEW 

I 

I 
SIDE VIEW 

ff 

Fig. 6 Foil configuration on the "Foilcat 2900" 
(Svenneby and Minsaas [18]). 

degrees. Each front foil is equipped with a flap and 
the rear foil with three flaps. Due to the high speed 
it is important to avoid cavitation on the foils and 
the propellers. The tip vortices from the front foils 
can locally cause a large angle of attack of the 
flow on the rear foils. This must be avoided. 
Otherwise cavitation occurs. This has consequences 
for the design of the rear foils. The front foils were 
equipped with winglets. This has both positive 
effect on the lift-drag ratio of the front foils and 
weakens the strength of the tip vortices from the 
front foil. The foils of the foilcatamaran are 
designed so that the catamaran hulls are out of the 
water at high speed in both calm water and small 
sea states. A consequence of this is that a 
foilcatamaran has a much lower resistance than a 
similar sized catamaran at the same speed. When 
the hulls of the foilcatamaran are out of the water, 
the vessel can easily roll over to one side. The 
reason is a small restoring roll moment. To 
counteract this undesired behaviour a ride control 
system is used. By continuously measuring the 
position of the vessel an automatic control system 
changes the flap angles on the foils. In this way 
sufficient restoring roll moment is created. The 
control system is also used to keep a nearly constant 
vertical position of the center of gravity and to 
control the trim angle of the vessel. The foils have 
a very positive effect on the vertical accelerations 
and motions of the vessel. The vertical acceleration 
level is much lower than for similar sized 
catamarans without foils. 

In the design of the foils it is important to 
avoid cavitation and ventilation on the foils. If this 
occurs, an obvious consequence is a significant 
reduction of the lift capacity of the foils. It can also 
create undesired roll and pitch moments on the 
vessel. 

The horizontal wave induced loads on the 
struts are important for structural design. Ultimate 
strength and fatigue of the struts are of concern 
(Moan et al. [19]). 

Falch [20] has presented a numerical method 
that calculates the linear wave induced motions and 
loads on a foilcatamaran. No effects of cavitation 
and ventilation are accounted for. The dynamic loads 
on the foils are found by a linear unsteady lifting 
line approach. The frequency dependency of the 
liftforces is accounted for and is of importance. The 
free surface effect is included by a biplane- 
mirroring. There is no hydrodynamic interaction 
between foils and hull if the hulls are submerged. 
The interaction between struts and foils on one foil- 
strut system is accounted for. The hydrodynamics 
loads on the hulls are evaluated by the procedure 
outlined in the section on mono- and multihulls. 
However, this cause problems when the hull bottom 
is close to the mean free surface so that parts of the 
hull are in and out of the water. A linear theory is 
then no longer applicable to describe the wave 
induced loads on the hulls. A time-domain non-linear 
analysis is then needed. 

The numerical method described by Falch 
[20] needs to be validated against model test results. 
M0rch and Minsaas [21] pointed out the importance 
of accounting for the roll up of a free vortex sheet 
behind a front foil in the numerical study of the 
behaviour of the rear foil. This a nonlinear effect 
which is not considered in the theory by Falch [20]. 
Generation of free surface waves by the foil system 
may also matter. A biplane-mirroring about the free 
surface may be sufficient for the analysis of the front 
foils, but are questionable for the rear foil. Since the 
front foils presented in Fig. 6 have small aspect 
ratios, one may question the applicability of a lifting 
line approach. 

6. SLAMMING 

A proper description of water entry of structures is 
needed in studies of slamming and nonlinear ship 
motions and loads. Physical phenomena that can 
effect slamming pressures are compressibility of the 
water, formation of airpockets and bubbles at the 
interphase between the water and the structure, 
cavitation, flow separation and hydroelasticity. The 
magnitude of the pressure may be sensitive to the 
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structural form, the impact velocity, the ship 
accelerations, the forward speed of the ship and the 
relative orientation between the structure and the 
water surface. When the relative angle between the 
water surface and the body is small, high pressures 
with rapid variations in space and time can occur. 

A common procedure is that hydrodynami- 
cists study slamming pressures and structural 
engineers use the slamming pressures in their 
structural analysis. A much stronger interaction 
between hydrodynamics and structural mechanics 
should be encouraged. It is prediction of stresses 
that is needed in the structural design. Too strong 
emphasize on very high local slamming pressures 
can be misleading from a structure's point of view. 
It may lead to unrealistic structural dimensions, if 
peak pressures obtained from experiments where the 
relative angle between the water surface and body 
is small, are used as spatially uniform static loads in 
local structural design. 

When high slamming pressures are extremely 
localized in space and time, large variations in 
measured maximum pressures can occur in equal 
deterministic sea conditions. Possible reasons are 
small disturbances of the water surface and 
variations in where the water initially hits the 
structure. It has therefore been suggested that 
slamming should not be handled deterministically 
even in deterministic environmental conditions. 
However, if maximum strains are measured instead 
of pressure, it is likely that the variations are small 
in equal deterministic sea conditions. A reason for 
this is that large pressures that are highly localized 
in space and time, do not significantly influence the 
maximum stresses in the structure. This will be 
further discussed later in the text. 

Slamming is often characterized as bottom 
slamming, bow flare slamming and wetdeck 
slamming. By wetdeck is meant the structural part 
connecting two side hulls of a multihull vessel (see 
Fig. 7). We will first discuss water entry of ship 

Longitudinal  stiffener 

Wetdeck 

Wave profile Transverse stiffener 

cross-sections and consider slamming loads on a 
bow flare section, which have been experimentally 
examined by Yamamoto et al [22]. The bow flare 
section was inclined at a constant angle during the 
drop tests to account for, in an approximate way, the 
rolling of the corresponding vessel. This section has 
been numerically studied by Arai and Matsunaga 
[23] and Faltinsen [24]. Arai and Matsunaga [23] 
used the "volume of fluid" method by Nichols and 
Hirt [25]. The method solves the time dependent 
Euler equations by the finite difference method. 
Faltinsen [24] used the boundary element method by 
Zhao and Faltinsen [26]. Incompressible fluid and 
irrotational flow were assumed. They represented the 
velocity potential of the flow by using Green's 
second identity over an instantaneous fluid domain 
Q. that contains parts of the jet flow at the 
intersections between the water surface and the body 
surface. The surface S enclosing Q consists of AB, 
CD, SB, SF and Sre. S„ is a control surface far away 
from the body. AB is shown in Fig. 8. The angle 
between the body surface and AB is 90 deg., while 

Fig. 7       A detail of the wetdeck structure of a 
multihull vessel. 

Fig. 8 Definitions of control surfaces used in 
numerical solution of water entry of a 
wedge by a boundary element method, a 
= deadrise angle. (Zhao and Faltinsen 
[26]) 

the angle between AB and the free surface is close 
to 90 deg. The line AB is in an area where the jet 
starts and where the pressure can be approximated 
by atmospheric pressure. CD is symmetric with AB 
about the z-axis. SB is the wetted body surface 
between the points A and C. SF is the free surface 
outside the points B and D and inside SM. A one- 
dimensional flow is assumed at AB and CD. The 
nonlinear free-surface conditions without gravity are 
used at SF, AB, and CD. The effect of gravity is 
neglected compared with the large fluid 
accelerations. (However, including gravity would not 
cause difficulties). The pressure is set equal to a 
constant atmospheric pressure on the free surface. 
Zhao and Faltinsen concluded that the free surface 
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shape has to be described by at least quadratic 
piecewise functions in areas with high curvature. 
This is needed to satisfactorily satisfy continuity of 

time relative to the experiments. We note from Fig. 
10 that the numerical method predicts well when the 
pressure starts to deviate from atmospheric pressure 

2 
▲ 

 Asymmetric body 

  Symmetric body 

  Original bow flare section inclined 22.5° 

-10.0 0.0 5.0 10.0 

Fig. 9 Cross-section of model used by 
Yamamoto et al. (1985) in their drop 
tests together with two models used in 
numerical solution (Faltinsen [24]). 

■ Measurements 
 Theory (Zhao & Faltinsen) 
• • • Theory (Arai & Matsunaga) 

Fig. 9 shows the tested bowflare section by 
Yamamoto et al. [22] as well as two sections used 
in the numerical studies. These two sections will be 
referred to as the symmetric and the asymmetric 
section. Only the half-part of the model where the 
pressure was recorded was correctly numerically 
modelled. The reason is that the boundary element 
method with the jet flow approximation cannot 
handle cases where the local deadrise angle is larger 
than 90 deg. Flow separation may then occur. 
Viscous effects have to be included to predict flow 
separation from continuously curved surfaces. 

Fig. 10 presents comparisons between 
experimental and numerical values of the pressure 
for the pressure gauges P-2, P-3 and P-4 as a 
function of the time. The asymmetric section in Fig. 
9 is used in the numerical calculations. The vertical 
velocity during the experiments and in the 
numerical simulations are shown in Fig. 10. The 
difference in the numerical and experimental 
velocity in the first part of the time record is of no 
importance. The large retardation (about 3 g) that 
occurs later on is of importance. Since the boundary 
element method by Zhao and Faltinsen is presently 
not able to predict flow separation from the 
knuckles, the numerical simulations are limited in 

Fig. 10 Comparisons between numerical and 
experimental pressure measurements on 
bow flare section. Experiments are drop 
test results by Yamamoto et al. (1985). 
The sections are presented in Figure 9 
(Faltinsen [24]). 

at P-2, P-3 and P-4. In calculating the time, we have 
accounted for the varying velocity and the difference 
in starting time of the experiments and the numerical 
simulations. The magnitude of the pressure is well 
predicted for P-2 and P-3, while the numerical 
predictions are too large for P-4. An error source is 
that the complete cross-section was not correctly 
modelled, but this is not significant (see Faltinsen 
[24]). Arai and Matsunaga [23] have also made 
numerical comparisons with the Yamamoto et al. 
[22] drop test experiments. Their results are also 
presented in Fig. 10 and show good agreement with 
the results by Zhao and Faltinsen. The effect of 
gravity as well as separation from the knuckle was 
incorporated. Due to the satisfactory agreement 
between the numerical and experimental pressures at 
P-2 and P-3 and the theoretical basis of the 
numerical method, it is reasonable to assume that 
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compressibility of the water, creation of air pockets 
and hydroelasticity are not important in this 
particular case. However, these effects may not be 
negligible when the local angle between the body 
surface and the free surface is small. For instance 
an airpocket is entrapped when a wedge with 
knuckles and deadrise angle less than 2-3 degrees is 
entering the free surface (Koehler and 
Kettleborough [27]). This is associated with the air 
flow between the bottom of the structure and the 
water when the air gap is very small. It is believed 
that large pressure gradients in the air flow near the 
knuckles of the wedge is important. The water is 
raised near the knuckles and traps an airpocket. 
Three-dimensional and forward speed effects are 
likely to influence entrapment of air pockets. 

Beukelman [28] presented experimental 
results for three-dimensional models. He showed 
that forward speed has a strong influence on the 
pressure level when the deadrise angle was lower 
than -2 deg.. This forward speed dependence will 
not be taken care of if one uses a strip theory 
approach to evaluate the pressure distribution. It 
may be that the strong speed dependence is 
associated with three-dimensional effects due to the 
air flow between the keel and the water surface. 
This should be further investigated. 

Hayman et al [29] presented results from 
drop tests of a two-dimensional model. One model 
was made of GRP sandwich and had a deadrise 
angle of 30 deg. and the other one was an 
aluminium model with deadrise angle 28.8 deg.. An 
important finding in Hayman et al.'s experiments is 
that the results for the maximum pressure are not 
very dependent on the flexibility of the model. The 
influence of hydroelasticity is expected to be 
important for structural configurations where the 
initial impact loads are large. 

Wetdeck slamming is a case when the local 
deadrise angle is small and where hydroelasticity is 
important. Acoustic effects in the water matter in a 
small initial phase of the impact. Air pockets can be 
entrapped if the wetdeck between stiffeners (see 
Fig. 7) is initially buckled due to fabrication or 
permanent deformations due to previous extreme 
wetdeck slamming. Cavitation can also occur after 
an initial impact phase. The physical mechanism 
causing air pockets during water entry of a wedge 
with knuckles may not apply to a perfectly flat 
wetdeck when the slamming occurs away from the 
ends of the wetdeck. 

Graham [30] presented experimental 
pressures for wetdeck slamming of a SWATH 
model.    The    experimental    maximum    impact 

pressures are presented in Fig. 11 as a function of 
measured impact velocity. Only one pressure gauge 
was used 

P-Pa = 80|v2 

*-V (m/sec) 

Fig. 11 Wetdeck peak pressures p measured 
on a SWATH model as a function of 
the measured impact velocity V. pa = 
atmospheric pressure (Based on 
Graham [30]). 

in the experiments. The pressures show a major 
variation for constant impact velocity. This could be 
expected since the large impact pressures are very 
localized in space and time and depend on where the 
waves initially hit the structure. The results in Fig. 
11 may discourage any deterministic analyses. It is 
tempting to start out with stochastic models and not 
rely on any deterministic model as a part of the 
statistical analysis in different sea states. I have a 
different philosophy when it comes to impact 
problems where large pressures are highly localized 
in space and time. I do not think that these very high 
pressures normally influence the design stresses in 
the structure. The reason is that they last too short 
and are too concentrated in space to cause any 
significant force impulse locally to the structure. 
This was evident in a study by Kvälsvold and 
Faltinsen [31]. They examined wetdeck slamming 
numerically and analytically by including the effect 
of local hydroelasticity. Their method is a further 
development of the work by Meyerhoff [32] who 
examined hydroelastic effects during water entry of 
wedges. Kvälsvold and Faltinsen divided the 
wetdeck slamming problem into three time phases. 
In the initial phase, which lasted very briefly, 
compressibility effects in the water mattered. The 
maximum pressure was the one-dimensional acoustic 
pressure. This is very high but highly localized in 
space. The second time phase lasts a fraction of the 



time it takes for the wetdeck between two transverse 
stiffeners to be wetted. The magnitude of the very 
high pressures occurring at the spray root of the jet 
flow at the intersection between the water surface 
and the wetdeck is not important. It is the hydro- 
dynamic force as a function of time that matters. 
This accelerates the local structural mass of the 
wetdeck elastically and can cause the total relative 
velocity between the wetdeck and the waves to be 
close to zero. This means that the local average 
velocity in space due to elastic deformations is 
opposite and close to the rigid body impact velocity. 
In the third time phase the integrated added mass 
loads due to local elastic deformations tend to 
balance the bending stiffness loads. This time phase 
lasts longest and the maximum stresses in the 
wetdeck occur during -this time phase. 

Kvälsvold and Faltinsen [31] approximated 
the wetdeck locally by a Timoshenko beam model. 
The non-dimensionalized time describing the third 
time phase is t(EI/pLB

5)1/2. Here t is the time, E = 
Youngs modulus, I = area moment of inertia of the 
beam cross-section divided by the distance between 
two longitudinal stiffeners, LB = length between two 
transverse stiffeners, p = mass density of water. A 
proper scaling of the maximum stresses Gmax was 
found to be omax = KolVKpI^E/I)172 where V is 
the rigid body impact velocity. KQ is mainly 
dependent on zna/LB, where zna is the distance in 
the beam cross-sectional area from the neutral axis 
to the point where the maximum bending stress 
occurs. If V is small, the curvature of the waves at 
the initial impact matters. 

The study by Kvälsvold and Faltinsen [31] 
shows that the slamming pressure measured by one 
pressure gauge does not say anything quantitatively 
about the local maximum stresses in the wetdeck. 
One should instead measure strains in combination 
with rigid body impact velocities. We also have to 
know how to scale model test results of maximum 
stresses due to slamming. If the beam model used 
by Kvälsvold and Faltinsen [31] is sufficient, their 
study gives us necessary information on scaling. 

Kvälsvold and Faltinsen [31] show that Omax 

has approximately a linear dependence on the rigid 
body impact velocity V as long as V is not too 
small. The position where the waves initially hit, is 
not of significant importance for 0max. This 
indicates an easy way to find the extreme values of 
(Jmax in a short and long term statistical model. 
However, there is a need to further continue the 
work by Kvälsvold and Faltinsen to include a more 
complete structural model of the wetdeck and to 
experimentally validate the results. Preliminary 
experimental results by Aarsnes [33] of droptests of 

a flat horizontal elastic plate on waves of different 
steepnesses are encouraging. Both the magnitude and 
scaling of the stresses and time are qualitatively in 
agreement with the method by Kvälsvold and 
Faltinsen. However, experimental studies with elastic 
ship models at different Froude numbers are also 
needed for validation. 

The study by Kvälsvold and Faltinsen [31] 
assumes that the forward speed U of the ship only 
influences the global ship motions. If the vertical 
impact velocity V is the same, the slamming 
response is not changed. When U is high, this is 
questionable. The studies by Ulstein and Faltinsen 
[7] are relevant in this connection. They studied 
water entry of a flexible bag. Small V/U-values were 
assumed. The bag behaves hydrodynamically as a 
two-dimensional unsteady planing surface at high 
Froude number. A Kutta condition is needed at the 
trailing edge. A solution is found by combining the 
solution for an unsteady lifting surface in infinite 
fluid with an integral equation for the wetted length. 
The same solution technique can be used for 
wetdeck slamming at high Froude number. A 
difficulty is to know where to apply the Kutta 
condition. However Kvälsvold and Faltinsen 
indicated that the wetted length can be approximated 
by the geometrical intersection between the rigid 
wetdeck and the undisturbed wave. Fig. 12 illustrates 
the differences in the boundary value problems 
solved by Kvälsvold and Faltinsen for large V/U- 
values and by Ulstein and Faltinsen for small V/U- 
values. In both cases the body boundary conditions 
and the free surface conditions are transferred to a 
horizontal line. When V/U is large, the velocity 
potential <)>=0 on the free surface. When V/U is 
small, (()=0 upstream on the free surface (x>c(t)) and 
downstream on the free surface for x<-Ut, where t is 
time. t=0 is the initial time of impact. When 
-Ut<x<0, the free surface condition is d$/dt- 
U3<t>/3x=0 and § is varying with x. No Kutta 
condition is used when V/U is large. When V/U is 
large the wetted length is found from the vertical 
fluid velocities at the free surface on both sides of 
the submerged body. When V/U is small, a 
separation point is fixed at the trailing edge x=0, 
where a Kutta condition is used. The upstream 
wetted part is found from both the horizontal 
velocity U and the vertical fluid velocity. The wetted 
length follows in both cases from a nonlinear 
integral equation which is a generalization of what 
Wagner did for slamming. It is not obvious how to 
combine the solutions for small and large V/U- 
values. 

Since an irregular sea is described 
stochastically, the slamming response in irregular sea 
must also be described stochastically. We have 
already referred to the work by Kvälsvold and 
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Fig. 12 Boundary value problems for two dimensional water impact at small and large values of V/U. Locally 
small deadrise angles assumed. V = vertical rigid body impact velocity, w = vertical velocity due to 
elastic deformations. U = forward speed of the section. <|> = velocity potential due to the body. 
Instantaneous body shape located between 0 and c(t) for small V/U-values and between b(t) and a(t) 
for large V/U-values. t = time variable. 

Faltinsen, which indicates an easy way to find 
extreme values for maximum stresses CTmax during 
wetdeck slamming. This is based on that <Tmax is 
linearly dependent on V and that the statistical 
distribution of V in a short term sea state can be 
approximated by a Rayleigh distribution. 

The conventional way to describe the 
extreme values of slamming pressure on a monohull 
is to assume that the magnitude of the impact 
pressure p can be written as 

Pa 
1 

P*l"*l: 

where pa is atmospheric pressure and k depends on 
the sectional form. |VR| is the amplitude of the 
relative normal velocity to the cross-section and is 
a function of heave, pitch and the undisturbed 
vertical wave velocity. By using that |VR| is 
Rayleigh distributed in a short term sea state and 
combining this with the probability for the ship 
cross-section to be out of the water, the statistical 
distribution follows easily (Faltinsen [34]). This 
procedure does not account for that the relative 
orientation of the section to the wave surface is 

influenced by roll and that the impact pressure can 
be very sensitive to the relative orientation of the 
section. When the slamming pressure is large and 
highly concentrated in space and time, one should 
not use the maximum pressure (see Zhao and 
Faltinsen [26], that presents pressure distribution for 
wedges with deadrise angles between 4° and 81°). 
The average pressure over plate panels on the hull is 
believed to be a more relevant quantity from a 
structural stress point of view. However, this should 
be further studied by studying the structural response 
due to slamming loads. 

There is also a need to study the occurrence 
of slamming. Number of slams is important for 
assessing voluntary speed reduction. The normal way 
to find number of slams involves definition of a 
threshold velocity Vcr Ochi's [35] formula for Vcr 

does not distinguish sufficiently between different 
hull forms. Many high-speed vessels have very 
slender forebodies. Applying the conventional 
criteria for slamming and voluntary speed reduction 
could mean that slamming was predicted to be a 
problem, while it was not in reality. The criteria 
should relate to slamming loads that cause plastic 
deformation over plate panels of the hull. 
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To assess the voluntary speed reduction due 
to slamming means to study the vessel in moderate 
sea conditions, where slamming is a rarely 
occurring event. The Seakeeping Committees of the 
18th and 19th ITTC have pointed out that number 
of slamming events can be too few in model tests 
and lead to wrong conclusions on slamming 
occurrence. 

7. NONLINEAR SHIP MOTIONS AND LOADS 

The committee on loads of the 12th ISSC has given 
a recent state of art review on prediction methods 
for nonlinear ship motions and loads of 
displacement vessels. The simplest type of method 
is a direct extension of strip theory. It assumes that 
vertical nonlinear hydrodynamic loads on a cross- 
section can be extracted from the sum of 
d(A33VR)/dt and an integration of hydrostatic 
pressure and incident wave (Froude-Kriloff) 
pressure over the instantaneous wetted surface 
defined by the ship motions and the incident wave 
elevation. Here A33 is the infinite frequency two- 
dimensional added mass in heave of the cross- 
section as a function of the submergence of the 
cross-section. VR is the relative vertical velocity 
between the ship and the undisturbed waves. The 
problem is solved in the time domain by combining 
linear strip theory with the nonlinear loads described 
above. Irregular waves are described as a 
superposition of regular waves and frequency 
dependent added mass and damping coefficients are 
made frequency independent. Different versions of 
a such a method exist in practical use. The 
procedure can give qualitatively correct trends and 
seems practical in terms of simulation time, but it is 
not rational. 

A more rational procedure would be to use 
a perturbation method with the motion response and 
the incident wave amplitude as small parameters. 
The problem can then be solved in the frequency 
domain. It is obvious that a perturbation method 
must have limited validity when ship cross-sections 
are out of the water or when green water on deck 
occurs. To properly include higher order terms 
beyond second order seems cumbersome. However, 
since added resistance or involuntary speed is of 
most interest in moderate sea conditions, a second 
order theory is useful in this context. Gerritsma and 
Beukelman formula [36] seems to be the most 
popular method for predicting added resistance of 
displacement vessels. The formula is simple and can 
be evaluated based on linear strip theory. The 
method seems reliable in the frequency range where 
ship motions influence added resistance, but the 
results may depend on what strip theory is used. In 

small wave lengths where ship motions are small, 
asymptotic formula presented by Faltinsen et al. 
[37], Sakamoto and Baba [38], Naito et al. [39] give 
better predictions of added resistance of blunt ship 
forms. Faltinsen [40] showed that theoretical 
predictions of added resistance of a fine ship form at 
low wave lengths and Froude numbers up to 0.3 
need to be improved. 

Faltinsen et al [41] have presented a 
theoretical method to predict added resistance in 
waves of high-speed semidisplacement mono- and 
multihulls. It is partly based on a direct pressure 
integration method using expressions from a linear 
unsteady flow analysis in regular waves. The 
problem is solved to second order in wave 
amplitude. The regular wave expressions can be 
combined with a sea spectrum in the normal way to 
obtain mean wave forces or added resistance in a sea 
state (e.g. Faltinsen [34]). Transom stern effects are 
included in the expressions and are of importance. 
The interaction with the local steady flow is 
accounted for in an approximate way. It is 
demonstrated by Faltinsen et al. [41] that the latter 
effect is important for hulls with non-vertical sides 
at the waterline in the bow region. In general, 
comparisons with model tests show satisfactory 
results. The linear theory used in the expressions for 
added resistance does not include interactions 
between the unsteady and the local steady flow. This 
is not consistent with saying that interactions with 
the local steady flow are important in calculating 
added resistance in waves. However, if this should 
have been done consistently, it is likely to lead to 
numerical problems with higher order derivatives of 
the local steady flow velocity potential. The 
interaction with the local steady flow is therefore 
evaluated by a quasisteady approach where the 
steady longitudinal force on the vessel is calculated 
in different oscillatory positions of the ship. The 
expressions are then time-averaged. The difficulties 
in consistently handling the interaction between the 
local steady flow and the unsteady flow, imply that 
one should investigate the possibility of using a time 
domain solution. An obvious drawback will be the 
required CPU-time relative to a frequency domain 
solution. 

The air leakage from the cushion in waves 
has an important effect on the added resistance of 
a SES in waves. The air leakage causes the SES to 
sink and the still water resistance components to 
change. For instance, the altered excess pressure in 
the cushion changes the wave resistance due to the 
air cushion. Further, the increased wetted surface 
area of the hulls changes the frictional and 
wavemaking resistance due to the hulls. In addition, 
there is a contribution to the added resistance in a 
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similar way as described previously for mono- and 
multihulls. This is due to second order nonlinear 
interaction between the dynamic vessel oscillations 
and the incident waves. The air resistance of a SES 
due to wind and the vessel's own speed is also 
important. This is not so much the case for a 
catamaran. Reasons for this are the presence of the 
skirt on a SES and a lower hull resistance on a SES 
relative to a catamaran. A method to predict the 
added resistance in waves of a SES is presented by 
Faltinsen et al. [41]. This is based on finding the 
mean air leakage in waves. The expected value for 
the drop in pressure in the cushion is found by 
using the characteristics for the cushion fans in 
combination with an expression for the expected 
value of the dynamic change of the leakage area. 
The fan characteristics"gives a relation between the 
excess pressure and the volume flow for constant 
fan speed. When the pressure drop in the cushion 
has been found, an estimate of the sinkage is found 
by balancing the weight of the SES with the vertical 
forces due to the excess pressure in the cushion and 
the buoyancy forces on the hulls. Due to the 
increased sinkage of the SES, a change in the still 
water resistance on the hulls occurs. The change in 
the excess pressure in the cushion also changes the 
still water wave resistance due to the cushion 
pressure. The results will, for instance, depend on 
the condition of the skirts and how fan speed is 
controlled. 

Faltinsen et al. [41] presented numerical 
results that showed that the involuntary speed loss 
of a SES would be more severe than for a similar 
sized high-speed catamaran. There exist full scale 
data of qualitative nature confirming that a SES 
may suffer a heavy speed loss in a seaway and that 
the theoretical predictions are realistic. However, 
quantitative agreement based on controlled 
experimental data is needed. 

Even if perturbation methods are useful in 
describing added resistance, they have limited 
applicability in describing wave induced motions 
and loads in severe sea conditions. A rational time 
domain solution is then needed. As a step towards 
this goal the socalled "weak scatter" hypothesis may 
be useful (Pawlowski and Bass [42], Lin and Yue 
[43]). The incident waves are assumed large. The 
waves generated by the ship are assumed small 
relative to the incident waves. The exact body 
boundary conditions below the instantaneous wetted 
surface due to the motions and the incident waves 
are satisfied while the free surface conditions are 
linearized about the incident wave elevation. 

theory for ship motions and sea loads. However, this 
is not trivial due to numerical and physical problems 
at the intersection between the free surface and the 
body surface. It is recommended to start out with a 
two-dimensional analysis of the problem in order to 
have sufficient numerical control and get physical 
insight. A von Karman type of approach where the 
local run-up of water at the body surface is 
neglected, is not generally recommended except for 
cases where the relative angle between the body 
surface and the undisturbed free surface is large. The 
local run-up of water was crucial in the study of the 
bow flare section presented in Fig. 10. The method 
by Zhao and Faltinsen [20] is encouraging for the 
water entry phase. Important features of the method 
are the description of the free surface shapes in areas 
with high curvature and the jet flow approximation 
at the intersections between the free surface and the 
body surface. Special care has to be shown at the 
impact stage. It is not straightforward to handle 
entrapment of air and breakdown into bubbles. 
However due to the short duration of this flow 
phase, it is possible that the effect on global ship 
motions and loads can be neglected. If air 
entrapment is not occurring and a blunt ship cross- 
section hits the free surface, very short time steps 
are needed in the numerical method. This may be 
impractical in a time domain ship motions program. 
A far more simpler and still rational method for 
blunt ship forms with low penetration into the water ; 

is to use the asymptotic method by Cointe [44]. This 
is a further development of Wagner's method [45]. 
It is believed that Cointe's method can represent a 
starting solution for the method by Zhao and 
Faltinsen. It is also necessary to include possible 
separation from knuckles and green water effects. 
However, longitudinal flow effects are likely to be 
important for green water on deck. Grochowalski 
[46] has demonstrated experimentally significant 
effects on ship motions and loads when water rushes 
onto the weather deck and the water is shed again. 

The water exit problem needs to be more 
extensively studied. Greenhow [47] presented 
experimental flow visualizations and numerical 
studies of the water exit of a submerged two- 
dimensional circular section. The method by Vinje 
and Brevig [48] was used. This is a time-domain 
potential flow method where the exact body and free 
surface conditions are satisfied. Thin layers of fluid 
on the upper part of the cylinder and draw-down of 
the free surface at the cylinder were demonstrated 
numerically and experimentally. The sudden 
breaking of the free surface at the lower part of 
cylinder was not possible to simulate. 

Satisfaction    of    nonlinear    free    surface 
conditions is necessary in a rational large amplitude 

All the nonlinear methods mentioned above 
are based on non-separated potential flow. It is well 
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known that viscous effects due to flow separation 
are important in predicting rolling of ships at 
resonance. Faltinsen [24] suggested that viscous 
effects due to flow separation may also be 
significant for large amplitude vertical motions, in 
particular for ships with sharp corners like bilge 
keels. He used a two-dimensional vortex tracking 
method. The vorticity was assumed to be 
concentrated in thin boundary layers and free shear 
layers shed from sharp corners. This method has the 
advantage that it represents a straightforward 
generalization of potential flow boundary element 
methods and is able to accurately describe necessary 
fine details of the flow at a sharp comer. However, 
there are problems with long time simulations since 
the method only converts vorticity and neglects 
diffusion effects. Afte'r some time in oscillatory 
ambient flow there will be a complicated picture of 
free vortex sheets close to the body. They become 
numerically timeconsuming to follow. A vortex-in- 
cell method or full Navier-Stokes solvers will solve 
some of these problems and are necessary in 
describing flow separation from continuously curved 
surfaces. At a certain stage towards a complete 
numerical prediction of wave induced motions and 
loads on ships one has to incorporate rational 
methods for viscous flow predictions. A natural first 
step is to do that in combination with a strip theory 
formulation and include the combined effect of 
wave radiation and flow separation. However, three- 
dimensional effects and ship speed will certainly 
have an influence on the viscous effects. For 
instance lift from the hull, appendages and the 
rudder are important for roll damping at high speed. 

The generation of large amplitude stochastic 
waves in a numerical model represents also a 
challenge. If a wave maker is used in the numerical 
model, intersection problems between the free 
surface and the wave maker occur. If plunging 
breaking waves are generated, the numerical 
solution may break down after the simulation of the 
breaker. Air will be physically mixed with water 
during this phase. 

Nonlinear effects due to wetdeck slamming 
and sloshing in tanks can in some cases be 
combined with a linear description of the exterior 
hydrodynamic loads on the hulls. Zhao and 
Faltinsen [49] used a method like that for wetdeck 
slamming of high-speed catamarans. They showed 
that wetdeck slamming influences the global vertical 
accelerations of the vessel. A rigid wetdeck was 
used. Introduction of local hydroelastic effects will 
reduce the effect on global accelerations of the 
catamaran. 

The load committee of the 12th ISSC has 

reported that some progress in numerical solutions of 
sloshing loads have been made. But knowing that the 
fluid motion can be very violent during resonant 
conditions, extreme care has to be shown in the 
numerical analysis. I think this is a good case where 
verification and validation of numerical methods are 
important. This includes listing of benchmark 
experimental results that numerical methods can be 
compared with. One should encourage numerical 
results to contain error estimates. This is actually of 
special importance for all types of nonlinear 
predictions. 

Since a time-domain solution is time 
consuming, it is necessary to address how long 
simulation time is needed to get good statistical 
estimates of different response variables in a short- 
term sea state. Nonlinear responses may in some 
cases require substantially longer simulation time 
than simulation of linear response variables. For 
instance the nonlinear slow-drift behaviour of a 
turret-moored ship in irregular waves have been 
thoroughly experimentally studied and documented 
through extensive, long-duration model tests within 
the Norwegian FPS2000 research programme 
(Stansberg [50]). The model tests reported by 
Stansberg [50] showed that 18 hours testing duration 
(full scale) in irregular waves was satisfactory for 
proper estimation of the extreme-value behaviour of 
the actual non-Gaussian slow-drift system. This 
corresponds to approximately 700 slow-drift 
oscillations. With only 100 - 200 oscillations, 
corresponding typically to about 3 hours.a proper 
extreme value estimation is more uncertain, although 
rough estimation of a possible non-Gaussian nature 
of the signal may still be done. This may be 
concluded on basis of the experimental statistical 
distributions combined with the study of random 
variability in Stansberg [51], where the extreme 
value variability of nonlinear slow-drift motions is 
shown to be 2 - 3 times larger than for linear 
motions. 

It is not difficult to show that a complete 
nonlinear three-dimensional numerical method with 
viscous effects, will lead to unrealistic CPU-time 
estimates. The challenge must be to simplify the 
important non-linear effect in a rational manner. 

8. CONCLUSIONS 

Wave induced motions and loads on Surface 
Effect Ships (SES), semidisplacement mono- and 
multihulls and foilcatamarans are discussed. 

Acoustic effects in the air cushion of a SES 
are important for vertical "cobblestone" accelerations 
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of a SES. Future work on "cobblestone" oscillations 
should concentrate on the influence of diffraction of 
incident waves by the vessel, the dynamic fan 
characteristics and the interaction between the free 
surface and the elastic behaviour of the aft bag seal. 

The behaviour of the machinery/propulsion 
system of a SES in a seaway needs better 
understanding. 

Better and simplified modelling of transom 
stern effects is needed in approximate high-speed 
theories. 

The wake from front foils of a foilcatamaran 
can cause cavitation of rear foils. The steady and 
unsteady interaction between foil systems and the 
free surface should be studied. 

Slamming analysis should concentrate more 
on structural stresses. Too strong emphasize on very 
high local slamming pressures can be misleading 
from a structure's point of view. Very high local 
slamming pressures are much more sensitive to 
small variations in the environmental description 
and structural configuration than maximum stresses. 

Hydroelasticity is important for wetdeck 
slamming. Wetdeck slamming at high ship speed 
and low impact velocity should be further studied. 

Numerical methods satisfying exact free 
surface and body boundary conditions can give 
satisfactory predictions of bow flare slamming 
loads. 

Prediction methods for added resistance of 
displacement vessels in waves can often give satis- 
factory results except for fine ship forms at low 
wave lengths. The interaction between the unsteady 
and local steady flow can be significant for added 
resistance of high-speed vessels and needs to be 
further studied. Speed loss of a SES in a seaway 
can be large. Prediction methods need to be 
validated by experiments. 

Strip theory is still the workhorse for linear 
motion and sea loads predictions for displacement 
vessels. Practical and rational numerical methods for 
large amplitude motions and loads seem to be 
lacking. It is recommended to focus more on a two- 
dimensional analysis of the problem and include 
important effects of flow separation. The flow at the 
intersection between the free surface and the body 
surface needs to be further studied. Progress in 
analyzing the water entry problem is reported. The 
water exit problem needs more attention. 

Since a rational time domain solution of 
nonlinear ship motions and sea loads is time 
consuming, it is necessary to address how long 
simulation time is needed to get good statistical 
estimates of different response variables in a seaway. 
Some nonlinear responses may require substantially 
longer simulation time than simulation of linear 
response variables. 
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Prediction of the Seakeeping Characteristics of Ships 
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1     Introduction 

Abstract 

This paper summarizes the development of a 
three-dimensional time-domain program for pre- 
dicting the seakeeping characteristics of ships. 
The program is based on the panel method, us- 
ing distributions on the ship hull of singulari- 
ties which satisfy the linear free-surface condition. 
The solution is performed in the time domain, 
using convolution to account for the memory ef- 
fects associated with the free surface. The results 
are presented in terms of impulse-response func- 
tions, which can be used directly to predict the 
time histories of unsteady motions in prescribed 
regular or pseudo-random incident waves, or indi- 
rectly via Fourier transformation to evaluate the 
response of the ship in the frequency domain. The 
method is also useful to determine calm-water 
characteristics such as wave resistance, sinkage, 
and trim, by analyzing the large-time limit of 
problems where the ship is accelerated from rest 
to a constant forward velocity. 

This program, known as TiMIT, is intended for 
general use by naval architects and hydrodynam- 
icists. Typical applications are described for a 
Series 60 hull and for a submarine hull. 

Nomenclature 

The computed and measured quantities shown in 
the figures are nondimensionalized, as indicated 
in the respective captions, in terms of the grav- 
itational acceleration g, fluid density p, incident 
wave amplitude A, ship length L, displaced vol- 
ume V, wetted surface area S, and velocity U. 
All other quantities are defined when they are in- 
troduced. 

At the First Symposium on Naval Hydrodynam- 
ics, in 1956, Georg Weinblum presented a semi- 
nal lecture on the "Contribution of Ship Theory 
to the Seaworthiness Problem." In the published 
record of that lecture [1] a comprehensive list of 
practical problems was enumerated, and various 
theoretical approaches were outlined. The impor- 
tance of understanding and predicting the behav- 
ior of ships in a seaway was self-evident, but the 
extent to which theory and computations could 
be used to address these problems was not so ob- 
vious. Weinblum's lecture served as a stimulus 
and guide for much of the subsequent work in 
this field, which evolved as one of the most active 
research areas in naval hydrodynamics. 

The practical fallout from these activities com- 
menced only after several years of theoretical re- 
search, and with the expanding role of digital 
computers. Within a period of 10-15 years re- 
liable strip theories were in common use through- 
out the world, serving a valuable role to supple- 
ment or replace experiments. Strip theory has 
filled an important niche in ship hydrodynamics. 
It is able to provide useful estimates of the verti- 
cal motions of conventional ships, with relatively 
simple computer programs which can be used rou- 
tinely by practicing naval architects. However, 
the assumption of two-dimensional flow in trans- 
verse planes restricts the validity and applicabil- 
ity of strip theories, and the practical limits of 
this approach are not well understood. 

The development and utilization of fully three- 
dimensional theories and computer programs did 
not enjoy such an early and universal success, 
although much effort has been devoted to an- 
alytical and numerical treatments of the three- 
dimensional ship-motion problem [2]. Various 
three-dimensional approaches have been used in 
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recent years to study seakeeping, involving differ- 
ent numerical procedures and assumptions. Many 
of these approaches have been developed to the 
level of research codes capable of performing use- 
ful analyses for practical seakeeping problems. 
However their complexity is a deterrent to every- 
day use by nonspecialists. 

The state of this field contrasts with that of 
offshore platforms, where three-dimensional pro- 
grams are used routinely to analyze the interac- 
tions of ocean waves with platforms of any prac- 
tical configuration. The usual approach is to as- 
sume a Fourier decomposition of the problem, 
so that a sequence of regular-wave problems is 
solved in the frequency domain, with the complex 
time dependence etut. Most programs used for 
this purpose are based on the boundary-integral 
method where sources and normal dipoles are dis- 
tributed on the submerged surface of the struc- 
ture, and an integral equation for the strength 
of these singularities is derived from the cor- 
responding boundary conditions. Free-surface 
Green functions are used to ensure that the so- 
lution will satisfy the boundary condition on the 
free surface. 

The principal difficulty in extending this ap- 
proach to the seakeeping problem for ships is the 
much more complicated expression for a singu- 
larity which is moving with a constant horizontal 
velocity beneath the free surface. This problem 
can be circumvented by using instead the tran- 
sient Green function in the time domain, and ad- 
vancing each singularity at successive time-steps, 
in much the same manner as was first used by 
Kelvin to predict the classical ship-wave pattern. 

Other advantages of performing the computa- 
tions in the time domain are the facts that the 
equations are real, rather than complex, and that 
(in the approach used here) only the right-hand 
side of the linear system depends on time. 

In addition to these features, which relate pri- 
marily to numerical and computational aspects, 
performing the seakeeping analysis in the time do- 
main offers a wide variety of possible extensions 
and applications which are not readily accommo- 
dated in the frequency domain. These include 
large-amplitude motions in the horizontal plane, 
as in ship maneuvering; using the large-time limit 
to determine the steady-state wave resistance, 
sinkage, and trim; consideration of nonlinear hy- 
drostatic effects and semi-empirical nonlinear roll 
damping; and coupling with nonlinear structural 
analysis programs to analyze wave-induced hy- 
droelastic problems. 

In this paper we describe the development of 
the time-domain panel code TiMIT for analyzing 
seakeeping problems in three dimensions. Our 
objective in this work is to refine and extend 
the numerical methodology and associated com- 
puter program so that important practical prob- 
lems can be analyzed by naval architects, in much 
the same manner as for the parallel design process 
in offshore engineering. In this effort we have ben- 
efited from our experience in the latter field [3], 
and from parallel research reported by our col- 
leagues [4, 5, 6]. The authors also note that the 
present work could not have been completed with- 
out long-term financial support from the Office of 
Naval Research, and this Twentieth Symposium 
on Naval Hydrodynamics is an appropriate op- 
portunity to report on our progress. 

Our approach is based on the assumption of po- 
tential flow, with linearization of both the equa- 
tions of motion and the velocity potential. Brief 
summaries of the theory and numerical tech- 
niques are given in Sections 2 and 3; more de- 
tails can be found in [7] and [8]. In Section 4, 
illustrative examples are presented showing com- 
putations of conventional seakeeping parameters 
for the Series 60 hull. In Section 5, results are 
shown for the important hydrodynamic parame- 
ters affecting a submarine which is moving with 
low velocity near the free surface, both in calm 
water and in waves. Possible future extensions 
and applications are discussed in the concluding 
Section 6. 

2    Theory 

We employ Cartesian coordinates (x,y, z) which 
move with the steady forward velocity U of the 
ship, in the -(-«-direction. The origin is in the 
plane of the free surface, and z is positive up- 
wards. Six degrees of unsteady motion are de- 
fined by the corresponding displacements Xk(t), 
where k — 1,2, ...,6 for surge, sway, heave, roll, 
pitch, and yaw, respectively. 

Assuming the ship is a stable linear system, 
the equations of motion may be written in the 
form [9] 

+ f   dr Kjk(t - T)xk{r) = Xjit) 
J — OO 

i = i 6,  (i) 

fc=l 
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where an overdot indicates differentiation with re- 
spect to time. 

The terms Xj on the right side of (1) are the 
components of the exciting force and moment due 
to the incident wave elevation (,{t), denned at a 
prescribed reference point in the ship-fixed coor- 
dinate system. ('Force' is understood hereafter in 
the generalized sense to include the moment, for 
j = 4,5, 6.) Following [4], the exciting-force com- 
ponents are expressed by means of convolution 
integrals in the form 

Xj(t)=  rdrKjD(t-r;ß)C(r). 
J — oo 

(2) 

Here the kernel, KjD{t;ß), is the diffraction 
impulse-response function: the force on the ship 
in the jth direction due to a uni-directional im- 
pulsive wave elevation with a heading angle of ß. 

The impulsive incident wave is two-dimensional 
(long-crested) and contains all frequencies. (A 
more complete discussion of this function, along 
with an illustration, can be found in [12], Section 
3.5.) For U > 0 and heading angles -f < ß < § 
(following seas) care must be taken in the solution 
of the diffraction problem since the ship is neces- 
sarily in the half of the free surface with non-zero 
wave elevation regardless of how large a negative 
time is chosen for the start of the diffraction solu- 
tion. Moreover the ambiguity of the frequency of 
encounter requires three separate problems to be 
solved, each forced by a different range of wave- 
lengths. 

The hydrodynamic coefficients and the kernel 
of the convolution on the left-hand side of (1) 
comprise the radiation impulse-response function: 
the force on the ship in the jth direction due to 
an impulsive velocity in the k direction, with 
the coefficients ajk, bju, Cjk, accounting for the 
instantaneous forces proportional to the accelera- 
tion, velocity, and displacement, respectively, and 
the memory function Kjj,(t) accounting for the 
free-surface effects which persist after the motion 
occurs. For the radiation problem we use the term 
'memory function' to distinguish this portion of 
the impulse-response function from the instanta- 
neous force components on the first line of (1). 
For the diffraction problem, the memory function 
is equal to the impulse-response function. 

The convolution on the left-hand side of (1) 
could be expressed alternatively in terms of the 
displacements Xk or accelerations xk. With the 
latter choice, (1) is replaced by 

6 

^(Mjk + ajk)xk + bjkZk + (Cjk + cjk)zk 

k = l 

+ f  drLjk{t-T)xk(r)=Xj(t) 
J — oo 

j = l,...,6,    (3) 

The kernels in (1) and (3) are related to each 
other by differentiation [8], specifically: 

Kjk(t) = lfLjk(t) (4) 

The ship's inertia matrix is Mjk, and the first- 
order hydrostatic restoring-force coefficients are 
given by Cjk- 

With the assumptions of linearized potential 
flow, the velocity potential can be expressed in 
the form 

6 

$ = -Ux + $ + J2<f>k + <f>i + <l>s,       (5) 
k=i 

where each term in (5) is a solution of the Laplace 
equation in the fluid domain. In this decomposi- 
tion the first two terms on the right side represent 
the steady velocity potential due to the streaming 
flow, with velocity — U in the z-direction, and the 
steady perturbation of this flow by the ship hull 
with the potential <j>. The remaining terms in (5) 
represent the unsteady motion, including six ra- 
diation potentials <j>k, each corresponding to one 
rigid-body mode of motion, and the diffraction 
potential <pi + <j>s corresponding to the incident 
wave (I) and the scattered disturbance (5) when 
the ship is fixed in its mean position. 

To derive appropriate boundary conditions we 
adopt the Neumann-Kelvin linearization, where 
the assumption is made that each of the poten- 
tials 0 in (5) is a small perturbation of the base 
flow (represented by the potential — Ux). It fol- 
lows that each of the unsteady potentials in (5) 
satisfies the free-surface boundary condition 

dt dx)   <P + 9dz 
on z 0.   (6) 

In this equation <j> is used to represent any of the 
perturbation potentials. On the mean position 
of the body surface, 5&, the following boundary 
conditions are applied: 

n • V</> =U n\ 

n-V(<t>i + <f>s) = 0 

n • V<f>k = nkik + m-kXk- 

(7) 

The generalized unit normal nk is defined by 

(ni,n2,n3) =n (8) 

(714,71.5, rie) = f x n. 
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The steady and the unsteady potentials are cou- 
pled through the presence of the m-terms in the 
body boundary condition, which are 

mk ={0,0,0,0,Un3,-Un2), 

for the Neumann-Kelvin linearization. 
Since the memory functions for different im- 

pulsive motions are related by differentiation, as 
in (4), the specification of the canonical radia- 
tion problems is somewhat arbitrary. Here we 
define Xk(t) to be an impulsive acceleration, i.e. 
sik — S(t), ik = H(t), and a;* = r(t), where 6(t) 
is the Dirac function, H(t) is the Heaviside func- 
tion, and r(t) is the ramp function. With this 
choice the last line of (7) becomes 

n ■ V<j>h — nkH(t) + m,kr(t). (9) 

Appropriate initial conditions must be applied 
on the free surface. For the radiation problems 
these are 

<f)k=<t>kt = 0    on z = 0    for t ->■ 0,        (10) 

and for the diffraction problem 

4>s —* 0    on z = 0    for t —► —oo. (11) 

The linearized pressure associated with each of 
these perturbation potentials is given by 

V- -p(<f>t -u<j>x). (12) 

We apply Green's theorem to <f>t, and integrate 
in time, to obtain an integral equation for the 
unknown potential on the mean position of the 
submerged body surface, Sy. 

2-K<S>    + ffdS (4>G^ - G^<j>n) (13) 

- I  dr I IdS {<j>Grn - G^) 

-— f  dr   [dln-L U{GTT-UGTA 
9 J-co    Jr v 

-GT(<l>r-U4>())   =0. 

Here f is the waterline contour and the Green 
function is G(z;£,t) = G^ + G^\ where 

\r      r') 

GW = 2 /   «fife [1 - cos(y/gki)] ekZ J0{kR) 
Jo 

r
r, } = V(*-i)2 + (y-v)2+ (**<)* 

Z=(z + C) 

R=y/(x-t + Ut)* + (y-r,)*, 

and Jo is the Bessel function of order zero. The 
arguments of the functions appearing in equa- 
tion (13) have been omitted for brevity, but note 
that the temporal argument of the Green func- 
tion in the convolution integrals is retarded [i.e. 
GT = GT(x;£,t - r)]. Equation (13) is valid for 
any point x on the body surface, and the spatial 
integrations are performed in the dummy variable 

C 
The radiation and diffraction potentials are so- 

lutions of (13) with the appropriate body bound- 
ary conditions applied. The steady potential § 
is usually thought of in the context of a separate 
steady-state solution, but here it is convenient to 
consider this potential as the steady-state limit 
of the radiation problem for an impulsive surge 
acceleration. 

Integrating the pressures (12) due to the canon- 
ical radiation and diffraction potentials over 
the hull surface gives the thirty-six radiation 
impulse-response functions, and the six diffrac- 
tion impulse-response functions. These com- 
pletely characterize the hydrodynamic response 
of the ship, translating at a given forward veloc- 
ity, in a uni-directional sea. (Additional diffrac- 
tion impulse-response functions are needed in fol- 
lowing and/or multi-directional seas.) Once these 
canonical problems have been solved, evaluation 
of a design in numerous operating environments 
is straightforward and of relatively small compu- 
tational burden. 

3    Numerical Solution 

The integral equation (13) is discretized spa- 
tially by subdividing the surface 5* into N planar 
quadrilateral (or triangular) panels, on which the 
potential is assumed to be constant. A system 
of N linear equations is generated by collocation, 
satisfying the discretized form of (13) at the panel 
centroids. The integrals over each panel involv- 
ing GW and its normal derivative are performed 
using the algorithms in [10], and the remaining in- 
tegrals are evaluated by the mid-point rule. The 
time-dependent function G'^' and its derivatives 
are evaluated for each pair of panel centroids us- 
ing the algorithms described in [11]. 
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The solution of the diffraction problem for | < 
ß < Tp (head seas) is initiated smoothly at an ap- 
propriate negative time, before there is significant 
wave amplitude in the vicinity of the ship. The 
computation is terminated at a similarly appro- 
priate positive time. For -f < ß < f (following 
seas) the situation is more complicated, as noted 
in Section 2. The exciting force Xj(t) depends 
on the sum of the solution <f>s and the known 
4>j. Details of numerical aspects of the diffraction 
problem are provided in [12]. 

The solution of the radiation problem is facili- 
tated by decomposition into three parts [8]. Two 
time-independent potentials, Afj,(x) and Mk(x), 
correspond to the ra* and m* portions of the body 
boundary condition, respectively, and are solu- 
tions to (13) for t = 0. This leaves a third, time- 
dependent, potential il>k(i), which is a solution to 
the complete equation (13) starting from t = 0. 
The hydrodynamic coefficients ajk, bjk, and Cjk, 
depend only on Mh and Mu, while Ljk depends 
only on ij)k- 

The solution for either <l>s(t) or ipk{t) is carried 
out at a sequence of equal time-steps At. The con- 
volution integrals are evaluated using the trape- 
zoidal rule, with the same At. Since Gt(0) — 0, 
there is no contribution to the convolution on 
the second line of (13) at the upper limit of in- 
tegration (r = t). Thus this convolution only 
involves the values of the potential at preceding 
time-steps, which can be placed on the right-hand 
side of the linear system as known quantities. 
However there is a contribution to the left-hand 
side from the convolution of the waterline integral 
on the third and fourth lines, since Gtt{0) ^ 0. 
Thus there are two left-hand-side matrices, one 
for t = 0 and the other for t > 0, but since these 
are independent of time they only need to be eval- 
uated and factored once. 

The dominant computational burden is the 
evaluation of the convolution integrals at each 
time-step. Since the time-steps are equal and the 
coordinate system is fixed to the translating ship, 
values of G^' (and its derivatives) can be saved 
to avoid redundant computation, but the large 
number of such values (proportional to the prod- 
uct of N2 and the number of time-steps) usually 
requires disk storage with relatively slow access 
time for retrieval. If the storage required exceeds 
the available disk space, the values of G"' must 
be re-computed at each time-step. 

For conventional ships with port-starboard 
symmetry, the potentials can be decomposed into 
symmetric and antisymmetric components to re- 

duce the number of unknowns by a factor of two. 
The left-hand side work and storage is then re- 
duced by a factor of four, and the burden of eval- 
uating the right-hand-side convolution integrals 
is reduced by a factor of two. Since the latter is 
dominant, the overall reduction in computational 
cost is effectively one-half. 

Once the potentials resulting from the impul- 
sive forcing are known, impulse-response func- 
tions for the radiation and diffraction forces are 
computed by integration of the pressure (12) over 
the ship surface using the same discretization as 
above. Impulse-response functions for local quan- 
tities such as the velocity and pressure on the ship 
surface, or in the fluid, may be defined as well. 

The impulse-response functions provide the 
complete hydrodynamic characterization of the 
ship hull and are the basis for subsequent time- 
domain simulation or frequency-domain analysis. 
Further computations made using the impulse- 
response functions entail computational burdens 
which are relatively small. 

The temporal integration of the equations of 
motion (1) is carried out by a fourth-order Runge- 
Kutta scheme. Fourier transforms of the impulse- 
response functions are evaluated by Filon quadra- 
ture. This method is suitable for global quanti- 
ties such as the transformations for added-mass, 
damping, and exciting-force coefficients. If a large 
number of local-quantity impulse-response func- 
tions for velocity and pressure are needed, the 
FFT could be used to accelerate the computa- 
tion. 

3.1    Asymptotic Continuation 

The potential i>k{t) may exhibit large-time be- 
havior which complicates the use of the memory 
function Ljk(t) in convolutions and Fourier trans- 
forms. Depending on the mode of motion, Ljk{t) 
tends to a constant or a linear function of time as 
j-too. This behavior is reduced by one order in 
time by numerical differentiation, to yield Kjk(t), 
as in (4). In the case of modes where Ljk(t) tends 
to a linear function of time, the constant which 
remains in Kjk(t) at large time is evaluated and 
subtracted off. This constant is added to Cjk- 

Computational efficiency dictates that the hy- 
drodynamic problems should be solved over as 
short a time range as possible. However due 
to forward speed, the memory functions dis- 
play a slowly decaying oscillation in time at the 
non-dimensional critical frequency wc = (4.Fn)

-1 

where Fn = U/yfgL is the Froude number. Our 
approach is to truncate the computations as soon 
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as there is sufficient information in each memory 
function to accurately estimate this large-time be- 
havior. We assume, based on the Green func- 
tion, that the large-time oscillation of the mem- 
ory function is of the form 

Kjk(t) ~ a0 + -[<xi cos(uct) + a2 sm(uet)),  (14) 

as t —+ oo. The constants in equation (14) can 
be determined by a least squares fit, so that in- 
tegrations involving Kjk may be divided into two 
ranges: one which terminates at the end of the 
computed time-history, and one which continues 
with the asymptotic form (14). A more precise 
form for the solution, as t —► oo, is given [13] by 

tf~C0 + *(Ci- — + c2-y»<\     (is) 

in which C» and a are parameters depending upon 
the ship geometry and the forward speed. How- 
ever this distinction is unimportant at realistic 

ship speeds [8]. 

3.2    Fourier Transform 

If the ship motion and the incident wave elevation 
are assumed to be time harmonic at the frequency 
of encounter u (xk(t) = fftxkeiut, C(<) = %&"*), 
then as t —► oo the equations of motion can be 
written 

6 

Y, { - ^[Mjk + Ajk{w)} + iu Bjk(u>) 

+Cjk + cjkjxk{u)) = Xj(w).      (16) 

The frequency-dependent coefficients in equa- 
tion (16) are related to the impulse-response func- 
tions through the Fourier transforms 

Ajk(u) = ajk + 3? — 

Bjk(w) = bjk + Si 

di Kjk{t)e 
Jo 

/ dt Kjk(t)t 
Jo 

—iwt 

—iwt 

J ~- ( 

diKjD(i)t (17) 

These integrals are treated as suggested above. 
If the memory function tends to a constant at 
large time, this is subtracted off and added to 
Cij. Then, the contributions to (17) from the com- 
puted range of the memory functions are evalu- 
ated numerically by Filon quadrature. The re- 
maining contributions, associated with the oscil- 
latory terms in (14), are expressed in terms of the 
sine and cosine integrals [8]. 

3.3    Irregular Behavior of Solutions 

For surface ships, discrete numerical solutions of 
the transient integral equation (13) will contain 
non-physical oscillations. At zero forward speed 
these oscillations persist indefinitely in time. The 
Fourier transforms of these solutions display a be- 
havior in the vicinity of the irregular frequencies 
which is nearly identical to what is observed in 
solutions to the corresponding time-harmonic in- 
tegral equation. 

In [8] and [14] arguments are presented to show 
that the continuous transient integral equation is 
free from any irregular behavior, because its so- 
lutions are unique and coincide with the unique 
solutions to the corresponding initial-boundary- 
value problem. These works also put forward 
the conjecture that discretization of the integral 
equation relaxes the satisfaction of the initial con- 
ditions, and consequently is responsible for allow- 
ing the time harmonic (at the irregular frequen- 
cies) solutions to co-exist with the transient ones. 

Figure 1 illustrates the oscillations in the heave- 
heave memory function calculated for a Wigley 
hull at U = 0.0 with 144 panels used to describe 
half of the hull. Note the small oscillations which 
appear to persist indefinitely. In Figure 2, which 
shows the heave-heave damping coefficient com- 
puted from this function, the irregular behavior 
is more distinct in the frequency domain. Also 
shown in Figure 2 is the same damping coeffi- 
cient calculated in the frequency domain using 
the computer program WAMIT [3] with identi- 
cal geometrical input. It is remarkable that the 
erroneous results are practically identical in the 
frequency domain based on these two complimen- 
tary methods. The small differences are proba- 
bly due to the truncation of the memory function 
prior to the numerical Fourier transform. 

At non-zero forward speed, the irregular oscil- 
lations in the solution are of finite duration. After 
a time ti, these oscillations are absent from the 
solution. The time ti is very close to the time 
needed for the ship to travel one ship length after 
the initial impulse. If time is non-dimensionalized 
by the ship length L and the gravitational accel- 
eration g, ti is approximately the inverse of the 
Froude number. Figures 3 and 4 demonstrate this 
behavior in the surge-surge memory function as 
the speed is increased to Fn = 0.2 and Fn = 0.3. 
The value of t\ is indicated on each plot and can 
be identified as approximately the point of tran- 
sition between the irregular frequency contami- 
nated region of the calculation and the large-time 
behavior which is dominated by the critical fre- 
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Figure 1: Impulsive acceleration heave-heave memory function for a Wigley hull at Fn = 0.0, showing 
the irregular behavior in the time domain. L'33 = Lzz/pL3(g/L)*. 
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Figure 2: Heave-heave damping coefficients for a Wigley hull at Fn = 0.0, showing irregular behavior in 
the frequency domain. B'33 — S33/'pVw 
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Figure 3: Impulsive acceleration surge-surge 
memory function for a Wigley hull at Fn = 0.2, 
£i1 = £u/p£8(ff/I)*. 

Figure 5: Impulsive velocity pitch-pitch memory 
function for a Wigley hull at Fn = 0.3. The irreg- 
ular behavior in the time domain is reduced with 
discretization refinement. K'hi = K55/pL5(g/L). 
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Figure 4: Impulsive acceleration surge-surge 
memory function for a Wigley hull at Fn — 0.3, 
L'11 = LlllpL*(g/L)±. 

Figure 6: Pitch-pitch damping coefficients for a 
Wigley hull at Fn = 0.3, showing corresponding 
reduction of irregular behavior in the frequency 
domain. J3£5 = B5s/pVL2(g/L)'. 
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quency oscillations discussed in Section 3.1. This 
compression in time of the oscillation leads to 
a corresponding expansion in the frequency con- 
tent. 

The irregular behavior can be reduced by refin- 
ing the discretization. Figures 5 and 6 show the 
effect of increasing the numbers of panels used to 
discretize the hull in both the time and frequency 
domains (these results are all converged with re- 
spect to the temporal discretization). 

To conclude the discussion of numerical issues 
we draw attention to Figure 7. This figure shows 
the surge-surge memory function for a Wigley 
hull at Fn = 0.1, calculated using 144 panels on 
half of the ship and a non-dimensional time-step 
At — 0.1. The gross features of this function dif- 
fer very little from the zero speed response, and 
at this low speed, truncation at t « 20 would be 
appropriate. If we examine this solution closely 
however, four distinct regions are observed (see 
the expanded view inserted into the same fig- 
ure). In the interval from 0 < t < 5 the great- 
est magnitudes of the transient response occur. 
For 5<i<10(< = 10 being the time required 
to travel one ship length), the irregular oscilla- 
tion can be observed in combination with the 
oscillations at the critical period. In this case 
Te = 2.513, and the lowest irregular wave period 
Ti « 1.1 can be clearly identified. For t > 10 
the solution can be described by the asymptotic 
form (15) with C0 — 0. This region initially dis- 
plays the exponential decay of the dominant sec- 
ond term (10 < t < 25). Subsequently the third 
term becomes dominant (t > 30). (This plot is 
convenient for illustration, but at higher, more 
practical, Froude numbers, the point of transi- 
tion between the dominance of the two asymp- 
totic terms is at very large time.) 

4    The Series 60 Hull 

This Section presents typical calculations which 
can be performed with TiMIT for a surface ship. 
The Series 60, Cb = .7, hull is used for this pur- 
pose since it has been extensively studied analyt- 
ically and experimentally. The computations are 
presented for a range of Froude numbers. 

4.1    First-Order Wave Effects 

Our analysis begins with the motions of the ship 
in waves at zero forward speed. Figures 8 and 
9 show two typical memory functions computed 
using 256 panels on half of the ship and a non- 

dimensional time step At = 0.05. The Fourier 
transform of these functions gives the added-mass 
and damping coefficients shown in Figures 10 and 
11. These quantities are compared to results com- 
puted in the frequency domain with WAMIT [3]. 

The response amplitude operator (RAO), 
which is the ratio of the ship motion amplitude 
to the incident wave amplitude, can be calcu- 
lated by two alternative methods. In the first 
method (identified as "TiMITi" in the figures) 
the Fourier transforms (17) are used to evaluate 
the added mass, damping, and exiting-force in 
the frequency domain, and the equations of mo- 
tion (16) are solved to obtain the RAO's. In the 
second method (identified as "TiMIT2") a time- 
domain simulation is performed using a pseudo- 
random spectrum of incident waves, and the RAO 
is computed as the Fourier transform of the mo- 
tion history, divided by the Fourier transform of 
the incident wave elevation. 

Figures 12 through 15 show the motions of the 
ship, free to heave and pitch in head seas, cal- 
culated using TiMIT and compared to the same 
quantities computed using WAMIT. In Figure 12 
the RAO's computed using both methods are 
compared, and the results are practically identi- 
cal, except at very low frequencies where the finite 
length of the simulation affects the computations. 

Next we investigate the effects of forward speed 
on the ship's motions. Figures 16 and 17 show 
the heave-heave memory function and the heave- 
pitch added-mass coefficient for Froude numbers 
between 0.0 to 0.25. Figures 18 and 19 show the 
effects of increasing speed on the magnitude of 
the RAO in heave and pitch in head seas. 

4.2    Forces in Calm Water 

The steady wave resistance, sinkage force and 
trim moment acting on the ship in otherwise calm 
water can be computed from the steady-state 
limit after an impulsive acceleration in surge to a 
forward speed U. Figure 20 shows a sample time 
history of the wave resistance coefficient after an 
impulsive acceleration to a Froude number of 0.2. 
Figures 21 through 23 show the steady limits of 
the wave resistance, sinkage, and trim at several 
Froude numbers. 

5    The Submarine 

An axisymmetric submarine hull can be described 
by the following formula [15] for the local radius of 
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Figure 7: Impulsive acceleration surge-surge memory function for a Wigley hull at Fn = 0.1, showing 
transition to large-time behavior. L'n = Lu/pL3(g/L)i. Insert vertical scale is magnified and horizontal 

scale is extended. 

a body of revolution as a function of position for- 
ward (77) and aft (ra) of a parallel middle body: 

17 R -m 1/2 

R 1- (18) 

Here R is the radius of the parallel middle body, 
Lfia are the lengths of the hull forward or aft 
of the parallel middle body, and Zf>a is a local 
coordinate which runs from zero at the parallel 
middle body up to Lj or La. For the results pre- 
sented here, the overall length of the submarine is 
taken as unity, with the following values used for 
the parameters in (18): Lf = 0.167, La = 0.389, 
and R - 0.046. 

A paneled representation of this hull is shown 
in Figure 24. The solutions of the canonical po- 
tential problems is carried out in the manner de- 
scribed in Section 3. Note that the waterline in- 
tegral in equation (13) vanishes, and there is no 
irregular behavior (as described in Section 3.3) in 
these solutions because the ship is not surface- 
piercing. 

A single condition has been investigated for this 
hull: Fn = 0.1, head seas, with the depth of sub- 
mergence of the hull centerline equal to the diam- 
eter at the parallel middle body. Three discretiza- 
tions have been used with 64, 144, and 324 panels 
on half of the hull. In all cases, results presented 
for a certain spatial discretization are believed to 
be converged in the temporal discretization. 

5.1    Forces in Calm Water 

Figures 25 and 26 present the calm-water vertical 
force and trim moment respectively. The conver- 
gence of the computations as the number of pan- 
els is increased confirms that the discretization 
with 324 unknowns is adequate for these forces. 
The vertical force is a suction force towards the 
free surface, while the trim moment about mid- 
ships is negative (bow up). The center of buoy- 
ancy of this hull is forward of midships, and the 
trim moment about this point is positive, tending 
to rotate the hull bow-down. 
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Figure   8:    Impulsive   acceleration   heave-heave Figure 10:   Heave-heave added-mass coefficients 
memory function for the Series 60 hull at JP„ = for ^ Series 60 hull at Fn = 0.0, A'33 = A3Z/pV. 
0.0, L'33 = L33/pL3(g/L)?. 
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Figure 9: Impulsive acceleration cross-coupling 
memory functions heave-pitch for the Series 60 
hull at Fn = 0.0, L'{j = Li:j/pL*{g/L)>. 

Figure 11: Heave-pitch cross-coupling damping 
coefficients for the Series 60 hull at Fn = 0.0, 
£35 = B35/pVLu>. 
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Figure 12: Magnitude of the heave RAO for the Figure 14:  Magnitude of the pitch RAO for the 
Series 60 hull at Fn - 0.0 Series 60 hull at Fn = 0.0 
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Figure 13: Phase angle of the heave RAO for the 
Series 60 hull at Fn = 0.0 

Figure 15: Phase angle of the pitch RAO for the 
Series 60 hull at Fn = 0.0 
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Figure 16: Impulsive acceleration heave-heave memory function for the Series 60 hull at various Froude 
numbers, L'3Z = L3z/pLz(g/L)'. 
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Figure 17: Heave-pitch added-mass coefficients for the Series 60 hull at various Froude numbers, A'35 

Azh/pVL. 

39 



0.5 - 

0(oo (L/xy 

Figure 18: Magnitude of the heave RAO for the Series 60 hull at various Froude numbers. 
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Figure 19: Magnitude of the pitch RAO for the Series 60 hull at various Froude numbers. 
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Figure 20: Time history of the unsteady wave 
resistance for the Series 60 hull at Fn = 0.2, Cr = 
-Fm/\ptT*S. 

Figure 22:  Non-dimensional sinkage vs.   Froude 
number for the Series 60 hull. 
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Figure 21: The steady wave resistance coefficient 
for the Series 60 hull at various Froude numbers, 
CT = -Fx/\pU2S. 

Figure 23:    Non-dimensional trim vs.     Froude 
number for the Series 60 hull. 
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5.2    First-Order Wave Effects 

Figure 27 is included to demonstrate the conver- 
gence of the memory functions. The heave-pitch 
memory function £35 is presented since the off- 
diagonal responses converge most slowly. Fig- 
ures 28 and 29 present the heave and pitch RAO's 
for head seas, respectively. 

5.3    Mean Forces in Waves 

The mean second-order forces acting on a sub- 
marine or surface ship are due entirely to time- 
averaged products of first-order quantities at each 
separate frequency of monochromatic wave en- 
counter. In general these mean forces involve 
quadratic products of the radiation and diffrac- 
tion solutions. For simplicity we only consider the 
latter, corresponding to the case where the sub- 
marine's unsteady motions are neglected. In this 
case, since the wetted surface is fixed, the only 
contribution is from the quadratic term in the 
Bernoulli equation, and the mean second-order 
force is 

Fi(u) = ^-JfdS niV(4>i + 4>s) • V(4>i + <t>s). 

(19) 
Here the diffraction potential (<j>i + <j>s) is for a 
steady-state (regular wave) solution, at a speci- 
fied frequency of encounter, the overbar denotes 
the time average over one period, and rii is the 
generalized normal as defined in (8). 

Note that the quadratic nature of the integrand 
in (19) precludes direct analysis in the time do- 
main using an impulsive input, and it is necessary 
in this case to solve the first-order problem sep- 
arately for each frequency of interest. Thus the 
input is a monochromatic incident wave system, 
and the analysis must be continued in time un- 
til a steady state is achieved. A more efficient, 
hybrid approach, which combines the time- and 
frequency-domain analyses, allows the use of the 
impulsive inputs (see Section 6). 

Figure 30 shows the second-order vertical force 
and moment defined in (19), before the time aver- 
age is taken, for an incident wave of X/L — 0.80, 
a Froude number of Fn = 0.1, and for three 
discretizations of the submarine. Note that the 
pitch moment has converged to graphical accu- 
racy while the heave force requires a computa- 
tion at a finer discretization before such a con- 
clusion may be drawn. The mean vertical force is 
positive, corresponding to a suction force attract- 
ing the submarine towards the free surface.  The 

Figure 24: The submarine with 648 panels on the 
entire hull. 

mean moment computed about midships is neg- 
ative, but about the center of buoyancy this mo- 
ment is positive, tending to rotate the hull bow- 
down. The normalization of the mean forces is 
not the same as that for the calm-water forces, 
so a direct comparison is not meaningful; how- 
ever at this low Froude number and in moderate 
sea states, the orders of magnitude of the coeffi- 
cients suggest that the mean second-order forces 
are more important than the calm-water steady 
forces. 

6    Conclusions   and   Recom- 
mendations 

In this paper we have described the development 
of a three-dimensional panel code, intended to an- 
alyze transient (or steady-state) motions of ships 
and submarines in the presence of a free surface, 
and to be suitable for widespread use by naval 
architects and hydrodynamicists. This code per- 
mits the analysis of seakeeping problems, and also 
of problems involving steady motion in calm wa- 
ter. The hydrodynamic theory is consistently lin- 
earized, but nonlinear forces which are readily de- 
scribed can be included directly in the simulation, 
as in the cases of nonlinear hydrostatics and em- 
pirical estimates of viscous roll damping. 

An important advantage of this linear analysis, 
both for computational efficiency and for useful- 
ness to the ship designer, is that the hydrody- 
namic analysis can be carried out for appropriate 
velocity potentials associated with separate com- 
ponents of the overall problem, and for canoni- 
cal inputs defined in terms of impulsive motions 
and impulsive incident waves.   The solution for 
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Figure 25: Convergence of the steady calm-water Figure 27: Convergence of the impulsive acceler- 
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Figure 26: Convergence of the steady calm-water 
trim moment on the submarine at Fn = 0.1, Ct = 
My/\pU2LS. 

Figure 28: Magnitude of the heave RAO for the 
submarine at Fn — 0.1. 
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Figure 29: Magnitude of the pitch RAO for the 
submarine at Fn = 0.1. 
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Figure 30: The mean second-order vertical force 
and moment on the submarine. F- — Fi/pgA2Lh, 
k = 1 for i = 3, k = 2 for i = 5. 

each of the potentials, which is the dominant com- 
putational burden, can be performed once for a 
given hull form and stored for subsequent post- 
processing. Quantities of physical interest can 
then be computed, with relatively little effort, in- 
cluding the impulse-response functions of global 
forces, local pressures, or any other first-order 
hydrodynamic quantity of interest. This infor- 
mation may be used repeatedly in different time- 
domain simulations, or it may be transformed and 
used for analysis in the frequency domain. 

The decoupling of the potential problem from 
the specific tasks of seakeeping analysis has al- 
lowed our efforts to be focused on the former, to 
produce an efficient implementation of the tran- 
sient, forward-speed theory. The subsequent pro- 
cessing tasks of Fourier transformation, computa- 
tion of the RAO, and simulation have been imple- 
mented in the TiMIT suite of programs for con- 
venience. Since we cannot foresee all of the broad 
range of specific applications and simulations to 
which this methodology can be applied, the in- 
tent is to develop the code in a form where it can 
be readily adapted to a variety of applications by 
different users. 

At present the code is capable of performing 
simulations by solving the equations of motion in 
their standard linear form (1). Left for future 
work is the inclusion of nonlinear effects, par- 
ticularly nonlinear hydrostatics and roll damp- 
ing. We anticipate that the former will be ac- 
complished by updating the exact hull position 
in the simulation and computing the hydrostatic 
forces, while the hydrodynamic forces are com- 
puted from the first-order impulse-response func- 
tions. The latter effect may be included using a 
nonlinear roll coefficient, based on empirical data 
or estimates. Another important topic for future 
development is the inclusion of radiation modes 
corresponding to structural deflections and their 
coupling with the structural analysis of the ship 
hull in the time-domain. 

Numerous extensions of the basic solution can 
be envisaged, involving finite-depth effects, ship- 
to-ship interactions, complete second-order mean 
forces in waves, and large-amplitude motions. 

The extension to a fluid of constant finite depth 
is straightforward in principle, but further work is 
required to develop effective algorithms and sub- 
routines for the finite-depth Green function [11]; 
significant progress on this problem has been re- 
ported in [16]. 

The extension to consider certain types of ship- 
to-ship interactions has been reported in [17] in 
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the relatively simple context of low-Froude num- 
ber operations, where free-surface effects are weak 
and bank or bottom topography may be a more 
important factor. 

We have given one example of how mean 
second-order forces can be computed using the 
present code, through time-averaging of the peri- 
odic response in monochromatic waves. A more 
efficient approach may be to use the impulsive 
incident wave to compute impulse-response func- 
tions for all three components of velocity on each 
panel in the time domain, and then Fourier trans- 
form these to evaluate the mean second-order 
force integral in the frequency domain. 

The consideration of large-amplitude motions, 
in conjunction with a linearized free-surface con- 
dition, the body-exact problem, requires a simi- 
lar program architecture to the described first- 
order approach. However the computational bur- 
den is increased in two important ways: (1) the 
Green function evaluations are not re-usable and 
must be recomputed for all previous time at every 
time-step, and (2) simulations must be conducted 
with the complete hydrodynamic problem solved 
at every time-step. The former burden is of some 
concern, but the latter is a serious drawback and 
one must be convinced that this analysis is ap- 
propriate before conducting it. For this reason, 
the body-exact formulation should be considered 
a useful addition to, rather than a substitute for, 
the first-order analysis. 

The development of this program has been mo- 
tivated by the need to supplement, if not replace, 
the much simpler strip theory. In comparing the 
two approaches from a practical standpoint, two 
important issues should be recognized, concern- 
ing (1) the limitations of the strip theory itself, 
and (2) the relatively greater computational and 
human costs of applying the three-dimensional 
panel method. 

The role of strip theory and its limitations is 
a subjective issue, but it may be appropriate to 
state that while a large number of important sea- 
keeping problems can be adequately analyzed us- 
ing strip theory, many other problems require 
a fully three-dimensional approach. These in- 
clude, among others, unconventional ships (e.g. 
SWATH), low-frequency motions (e.g. following 
waves), structural loads, problems such as added- 
resistance where the diffraction solution itself is 
important, and the analogous problem of predict- 
ing second-order forces on submarines. In all 
of these cases the availability of an off-the-shelf 
three-dimensional panel program is an important 

addition to the tool-kit of ship designers and hy- 
drodynamicists. 

With respect to computer time, it is practical 
to use the three-dimensional panel method de- 
scribed here with medium performance worksta- 
tions. The benchmark results presented in Sec- 
tion 4 for the Series 60 hull with 256 unknowns 
(512 panels on the complete hull), carried out 
for 300 time-steps, required 22 cpu hours on the 
entry-level SGI Indigo (MIPS 3000 processor). A 
lesser number of time-steps is actually required 
for engineering work, and so on a medium perfor- 
mance workstation we estimate 1 to 2 cpu hours 
for the analysis of a candidate design. It is impor- 
tant to re-emphasize that the canonical potentials 
provide the complete hydrodynamic characteri- 
zation of a ship hull and so once computed, the 
computationally intensive part of a design evalu- 
ation is over. Neither Fourier transformation to 
obtain frequency-domain results nor the simula- 
tion of hull performance in pseudo-random seas 
are computationally burdensome. Time-domain 
simulations may be computed at a rate which is 
much faster than real time. 

If the Green function evaluations are computed 
once for the entire time range and stored, then 
substantial disk space is required. For the Series 
60 run specified above, the storage of the Green 
function values requires 350 Mbytes. Alterna- 
tively, if disk space is not available, the Green 
function may be evaluated as it is needed which 
will increase the computation time by a factor be- 
tween two and seven, depending on the machine. 

We must note the added human costs of imple- 
menting these more complete and sophisticated 
methods. Like all three-dimensional approaches 
this one requires the effort of producing a geomet- 
ric description of the ship hull. Then, to conduct 
an analysis with TiMIT, there are decisions which 
must be made for the run-time parameters, such 
as time-step size and range; and for the operat- 
ing conditions, such as speed and wave heading. 
The documentation and the organization of in- 
put is intended to mitigate these human costs, 
but the increased analytic capability represented 
by a computer code like TiMIT does not come 
without greater demands on the user. 

The availability of a more complicated theory 
and associated program may seem a daunting 
prospect for users of the relatively simple strip 
theories. Many who heard Weinblum's lecture [1] 
thirty-eight years ago must have had a similar 
reaction to using any theory to predict the sea- 
keeping characteristics of ships. A period of time 
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may be required for users to gain experience and 
confidence in the three-dimensional methodology, 
but this effort will be rewarded both in terms of 
greater confidence in the validity of the results, 
and in the broader range of problems to which 
this methodology can be applied. 
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DISCUSSION 

L. Doctors 
University of New South Wales, Australia 

About ten years ago, when I was experimenting with 
the steady-state Neumann-Kelvin problem from a 
surface ship myself, Prof. John Wehausen (who is the 
chairperson at this session) asked me whether I had 
any proof that a solution to this problem really exists. 
Your presentation today describes the numerical 
solution of the time-domain (unsteady) Neumann- 
Kelvin problem. Would you care to comment on the 
existence of solution? 

My second question relates to the apparently much 
better convergence rate, as the mesh is refined, of the 
moment on the submarine in Figure 30, in contrast to 
the poorer convergence rate for the heave forces. Are 
there any reasons for this? 

AUTHORS' REPLY 

Although it has not been proven, we expect a unique 
solution to exist for the initial-value Neumann-Kelvin 
problem. For the steady-state problem it is not so clear 
because of the lack of initial conditions, but we feel 
that we can avoid this issue by computing steady-state 
quantities as limits of corresponding transient ones. 

The apparently better convergence rate of the second- 
order steady moment compared to the force is a 
plotting artifact. The mean value of the second-order 
steady moment is an order of magnitude less than that 
of the force, but we have plotted them on the same 
axes. 
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Irregular Waves and Their Influence 
on Extreme Ship Motions 

J. De Kat (Maritime Research Institute, The Netherlands) 

ABSTRACT 

This paper examines random waves in relation 
to capsizing and broaching of a steered, intact ship. 
Particular attention is paid to the validity of the 
random Gaussian wave model when simulating 
motions in severe, long-crested seas. 

Wave characteristics investigated are those 
thought to be relevant for extreme ship motions: 
joint distributions of individual wave properties such 
as wavelength and steepness, spatial properties, 
deviations from Gaussianity, and group speed effects 
in astern seas. Where possible, comparisons are 
made between numerical simulations, model tests 
and full scale observations. 

A brief description is given of a numerical 
model to simulate extreme ship motions. With this 
model, a number of capsize and broaching modes 
have been predicted; analysis of these extreme 
events provides details on the physical mechanisms 
involved and on critical wave conditions. 

1. INTRODUCTION 

Intact ships can be considered safe with 
respect to capsizing under most conditions. In 
survival conditions, however, the combination of 
severe waves, loading condition, ship speed and 
heading angle may lead to dangerous situations. 
When an intact ship does capsize, the process can 
take place in a very short time period; particularly in 
the case of high ship speeds this may happen 
without any forewarning, as the randomness of the 
waves can cause the sudden appearance of a critical 
wave or wave group endangering the vessel. 

Twenty years ago Oakley et ed. [1] presented 
the first comprehensive paper on the identification 
and simulation of three capsize modes that may 
occur in severe, astern seas. De Kat and Paulling [2] 
presented  an  extended  time  domain  simulation 

model capable of predicting these and some other 
capsize modes for intact ships. Although ships 
satisfying standard stability criteria will be safe from 
a capsize point of view, little is known about their 
actual margin of safety. This applies especially to 
modern hull forms that have a significantly different 
hull shape compared with traditional hulls. Current 
stability criteria were developed decades ago, when 
ships current at that time provided the physical and 
statistical reference material, i.e., these criteria will 
not necessarily result in the same level of safety for 
modern hull forms as for conventional ships. 

In 1990, a 4-year joint effort was launched by 
five navies (from Australia, Canada, the Netherlands, 
United Kingdom and United States) and MARIN to 
investigate wave-induced capsizing of intact frigates. 
One of the final objectives of the project was to 
arrive at new criteria that reflect the dynamic ship 
behavior in extreme wave conditions, while making 
extensive use of numerical simulations. To achieve 
these goals, activities consisted of: 
• validation and updating of ship motion simulator 
• modeling of wave climate 
• identification of capsize modes and mechanisms 
• development of stability design and operational 

guidelines 
• capsize risk analysis 

This paper focuses on some physical 
considerations of this Dynamic Stability project: 
comparisons between measured and simulated wave 
environment, and some capsize modes that can occur 
in irregular seas. Important properties of irregular 
seaways include limiting significant wave height as 
a function of peak period, joint distributions of 
wavelength and wave steepness, and encountered 
wave group properties. With the help of the 
simulation model developed and available model test 
data, a large number of potential capsize modes have 
been identified. The majority of capsize modes may 
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occur for an intact ship traveling in astern (i.e. 
following to stern quartering) seas, where the risk of 
capsizing increases with increasing speed. The 
project methodology and route toward criteria have 
been presented by De Kat [3] and De Kat et al. [4]. 

2. MODELING OF EXTREME SEA STATES 

One of the key questions of interest is 
whether and to what extent a severe sea state can be 
considered as "Gaussian". The surface elevation of 
such a seaway would follow the Gaussian 
distribution; measurements in low to moderate sea 
states suggest this is indeed the case. This is 
particularly relevant from a theoretical and 
computational point of view, as the common 
representation of the surface by the linear 
superposition of sinusoids with random phases is 
very convenient. For high sea states the situation is 
less clear: even in deep water appreciable crest 
steepening effects will occur, which undoubtedly 
will result in deviations from Gaussianity. 

To investigate the appropriateness of using 
the linear (Gaussian) wave model with random 
phases in ship motion analysis, joint distributions of 
wave surface properties are analyzed for a variety of 
sea states. Only long-crested seas are considered in 
this work. 

2.1. Some extreme sea state properties 

Characteristic steepness 
As has been aptly described by for example 

Pierson [5], storm waves can have an extremely 
nonlinear character. Nonlinearities will become more 
prevalent for sea states with increasing characteristic 
steepness, schar defined as the ratio of significant 
wave height to wavelength associated with the 
spectral peak period, T . Ocean wave measurements 
suggest that the characteristic steepness of a seaway 
tends to be bounded as follows (Le M^haute' and 
Hanes, [6]): 

Hs 
0.02 < — < 0.05 (1) 

Therefore, the maximum steepness is typically 
less than 0.05, and the steepest possible sea state 
occurs when the significant wave height in deep 
water is: 

H s,max 0.05 S  p (2) 

The above maximum wave height is in 
agreement with the survivability envelope for storm 
waves with periods less than 15 s proposed by 
Buckley [7]. For worst annual storms in the North 
Atlantic, the mean and standard deviation of 
characteristic steepness are 0.035 and 0.0037, 
respectively; the Weibull distribution provides an 
excellent fit of wave steepness (De Kat et al., [4]). 
In an absolute sense, the highest Hs measured in the 
Northern Hemisphere is around 17 m, associated 
with a peak period of 18 s. 

Spectral shape 
For fully developed seas, the Bretschneider 

spectrum is traditionally accepted, which is the same 
as the JONSWAP formulation with a peak parameter 
y equal to 1. Recent analysis of extreme North Sea wind 
seas suggests that JONSWAP spectra with y = 1.9 
apply (Torsethaugen, [8]), while Buckley [7] 
suggests 7 = 1.3 based on NOAA buoy data for 
extreme sea states with peak periods exceeding 13 s. 

2.2. Measured and computed joint distributions 

Physical observations and simulations suggest 
that extreme ship motions and capsizing are 
sensitive to both wavelength and wave steepness. 
Under certain conditions, encountered wave group 
properties also can be important. The joint 
distributions of relevant wave parameters will 
provide useful information in this respect. Before 
proceeding, a number of wave parameters are 
defined below. 

Time domain analysis at a fixed point 
Usually wave data are available at a fixed 

point only. Following the convention proposed by 
Myrhaug and Kjeldsen [9], properties of individual 
waves are defined as shown in Fig. 1, based on 
zero-crossing analysis in the time domain. 

2n 

Fig. 1. Definition of individual wave parameters 
(from Myrhaug and Kjeldsen, 1987) 

In this figure, the parameter e represents the 
crest front steepness, (i is a measure of the crest 
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elevation with respect to the wave height H, and X 
indicates the crest front versus back asymmetry (not 
to be confused with wavelength used further on in 
this paper). 

Dahle and Myrhaug [10] make use of the 
joint distributions of crest steepness and wave period 
in capsize risk analysis of small fishing vessels, for 
which wave breaking in steep beam seas is cited as 
the most likely cause of capsizing; here the 
parameter e seems to be suitable for describing 
critical wave conditions. For larger intact ships, 
astern sea conditions tend to be the most onerous 
from the viewpoint of capsizing. The analysis of 
related capsize mechanisms suggests that the onset 
of capsizing may be governed by the wave as a 
whole (crest-to-trough height and spatial 
wavelength). Therefore, overall wave steepness is 
considered as an additional parameter of interest: 

dimensions are 200 x 4 x 3.7 m. Wave elevations 
were measured and computed at 8 equidistant 
locations over a distance associated with the spectral 
mean wave period, along the centerline of the basin 
(200 m full sacle). The mean period is defined by Tj 
= 2jt/ö> = 27an0/m1, where m0 and m} are the zero 
and first order spectral moments. The simulations 
are based on Fourier analysis, where a large number 
of superimposed sinusoidal components with 
uniformly distributed phase angles define the 
seaway. 

To illustrate some results, we will focus on 
the joint probability density functions (joint pdf s) of 
several of the above parameters. If p(x,y) is the joint 
pdf of two continuous variables x and y, integrating 
this function with respect to those two parameters 
will yield unity. The marginal pdf can also be of 
interest; the marginal pdf of x is given by: 

s = ■ 
H (3) 

where H is the crest-to-trough height and X^. is the 
associated wavelength based on the zero-crossing 
period Tz: 

SV 
2jt 

(4) 

Spatial analysis in the time domain 
The motions of a ship will be governed by 

the time-dependent spatial wave surface 
characteristics. Wave profile data can yield 
parameters that are similar to the ones defined 
above. Based on either spatial measurements or 
calculations evaluated over a finite spatial distance 
equal to a characteristic wavelength, the following 
parameters are introduced: H t - crest-to-trough 
wave height, Xspat - wavelength defined by either 
crest-to-crest length or 2 x crest-to-trough length (in 
the absence of two crests), sspat - wave steepness 
defined by HspatAspar espat and uspat - same as e and 
u from above but based on equivalent spatial 
properties. The wave slope was evaluated 
numerically, but will not be treated here. 

Joint probability density functions 
Tank tests and simulations have been carried 

out to model a variety of sea states by increasing the 
significant wave height for a fixed peak period. 
Here we will focus on a fairly steep seaway scaled 
to: Hs = 14.5 m, Tp = 14.7 s, JONSWAP with y = 
2 (schar = 0.043). The tests were carried out at scale 
1  to 50 with 3-hour full scale duration; basin 

p(x) = Jp(x,y)dy (5) 

The joint pdf s obtained for the above case are 
shown for the following wave parameters: Tz and H 
in Fig. 2, E and H in Fig. 3, (i and H in Fig. 4, and 
Xz and s in Fig. 5. The contours in these figures 
show the (dimensional) joint pdf values. The outer 
contour is an indicator of extreme (and rare) events. 
The contour data are obtained by dividing the 
number of samples per bin (of width Ax and height 
Ay) by the total number of observations multiplied 
by AxAy, where the contours are fitted through the 
discrete set of bins. The upper graph of the figures 
represents the marginal pdf of the wave parameter 
on the horizontal axis of the joint pdf plot. Fig. 2 
shows that both in the test and simulation the period 
associated with the highest waves corresponds to 
approximately the mean period, Tj. The 
correspondence between the joint distributions of the 
physical and simulated waves is quite good. In 
contrast, Fig. 3 shows that the simulation model 
underpredicts the crest front steepness of extreme 
waves (as might be expected). Examination of Fig. 
4 suggests that the distribution of the measured 
crest-wave height ratios is almost symmetric. For the 
highest waves, computed crest and trough height are 
approximately the same (|i « 0.5), while there is a 
tendency toward higher crests than troughs in the 
physical tests - this agrees with Fig. 3. Fig. 5 shows 
reasonable correspondence between tests and 
simulations as regards wavelength and overall 
steepness; waves having a length between 100 to 
200 m tend to be the steepest in this sea state. 
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Fig. 2a. Joint pdf of zero-crossing wave period and 
height (model test, Hs = 14 J m, T = 14.7 s). Upper 
graph represents marginal pdf of Tz. 

\^ 
/ 

Fig. 2b. Joint pdf of zero-crossing wave period and 
height (simulation, Hs = 145 m, T = 14.7 s). Upper 
graph represents marginal pdf of Tz. 

Fig. 3a. Joint pdf of crest front steepness and wave 
height (model test, Hs = 14.5 m,T = 14.7 s). Upper 
graph represents marginal pdf of £. 

Fig. 3b. Joint pdf of crest front steepness and wave 
height (simulation, Hs = 14 J m, T - 14.7 s). Upper 
graph represents marginal pdf of £. 
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Fig. 4a. Joint pdf of crest height-wave height ratio 
and wave height (model test, Hs = 145 m, T = 
14.7 s). Upper graph represents marginal pdf of JX. 
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Fig. 4b. Joint pdf of crest height-wave height ratio 
and wave height (simulation, Hs = 145 m, T = 
14.7 s). Upper graph represents marginal pdf of (i. 

Ug-T-2/2-Pi (m) 

Fig. 5a. Joint pdf of wavelength and steepness 
(model test, Hs = 14 J m,T' = 14.7 s). Upper graph 
represents marginal pdf of wavelength. 

Ug-T"2/2'Pi (m) 

Fig. 5b. Joint pdf of wavelength and steepness 
(simulation, Hs = 145 m, T - 14.7 s). Upper graph 
represents marginal pdf of wavelength. 
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and Fig.   6a.   Joint  pdf  of  spatial  wavelength 
steepness (model test, Hs = 14-5 m, T   = 14.7 s) 
Upper graph represents marginal pdf of wavelength 

/-^ 
^y "~^^__ 

Fig. 6b. Joint pdf of spatial wavelength and 
steepness (simulation, Hs = 145 m, T = 14.7 s). 
Upper graph represents marginal pdf of wavelength. 

Although the time-dependent spatial 
characteristics of a wave are not necessarily the 
same as those at a fixed point, their statistical 
distribution properties tend to be quite similar. As an 
example, Fig. 6 shows the measured and computed 
joint distribution of X t and sspat. Due to the finite 
distance covered by the wave gauges (200 m), it is 
not possible to predict wavelengths accurately 
exceeding twice that distance. For wavelengths 
under 400 m, the same general trends apply for 
temporal and spatial analysis, but there are some 
local differences concerning e.g. maximum steepness 
(this may be due partly to the relatively coarse 
resolution in the spatial analysis). There is good 
correspondence between the spatial properties of 
measured and simulated waves. 

One major conclusion is that the joint 
distributions of overall wave properties are 
reasonably well predicted using the Gaussian 
random wave model. Similar observations apply 
even to the steepest sea state considered in the 
experiments (same peak period as in the test case 
above, but with schar = 0.048). For sea states of 
moderate steepness, with schar < 0.03, predicted and 
measured distributions of local crest effects, e.g. e 
and H, are rather close also. 

Miles and Mansard [11] found that wave 
parameters derived from zero-crossing time domain 
analysis at a point were not the same as those 
derived from spatial analysis; furthermore, for 
random waves with schar < 0.03, spatial wave 
profiles were predicted well using the linear, 
Gaussian wave model when compared with wave 
flume data, while for a steeper sea state local 
differences were observed in the crests. 

Crest asymmetry effects 
The analysis from above suggests that for 

steep sea states the Gaussian random wave model 
results in wave crests that are not as asymmetric as 
observed in model tests, particularly for higher 
waves. Fig. 7 illustrates the asymmetry of the 
measured wave profile during the passage of a high 
wave (from the test example above); the crest is 
preceded by a shallow trough and followed by a 
relatively deep trough. Surface elevation skewness 
provides some measure of crest asymmetry; it is 
defined by the third order moment: 

a _E[(C-E[qn (6) 
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Fig. 7. Measured successive spatial wave profiles 
during passage of a high wave (model test, Hs = 
145 m, Tp = 14.7 s, horizontal distance is 200 m). 

where E[Q is the expected value and Or is the 
standard deviation of the wave elevation. The 
skewness for all simulated wave elevations is zero, 
as one would expect for a Gaussian process. The 
skewness of the wave elevation of the above basin 
test is 0.14, indicating the presence of asymmetric 
waves. 

Crest-trough asymmetry can for a large part 
be attributed to second order effects, where waves 
can be regarded as 'weakly nonlinear'. Second order, 
irregular waves have been the subject of recent 
research, particularly in conjunction with offshore 
design applications, where absolute crest height can 
be critical. 

Marthinsen and Winterstein [12] developed a 
mathematical model to estimate skewness and 
kurtosis taking into account both sum frequency and 
difference frequency terms; Stansberg [13] 
estimated skewness and kurtosis as a function of 
characteristic steepness using numerical simulations 
with sum frequency effects in deep water; Taylor 
[14] investigated crest asymmetry using a second 
order model. Pierson [5] takes a step toward 
stochastic nonlinear waves by considering irregular 
waves as the superposition of several higher (third) 
order Stokes-like waves, thereby introducing the 
dependence of phase speed on wave amplitude. 

From the point of view of simulating ship 
motions, the question is to what extent asymmetry 
effects are important. Individual crest properties are 
sensitive to wave steepening effects and tend to have 
a more nonlinear character than overall wave height 
properties. While the shape of the wave profile is 
critical for loads, including slamming, it is not so 
critical for ship motions. One could argue that so 
long as the overall shape of the wave is 
approximately the same, the absolute crest height is 
not a critical parameter. Besides the e-parameter, 
the crest period parameter X (defined in Fig. 1) 
provides another measure of the shape of the crest. 
Fig. 8 shows the marginal pdf of measured and 
computed period parameter X, which suggests that 
the difference between crest front length and length 
of its trailing side are predicted well using the 
random Gaussian model. Also the joint pdf s of X 
from the simulation and test are much more alike 
than is the case for e. 

Field observations 
Full scale wave measurements provide useful 

data for comparison with laboratory experiments. 
To derive statistically reliable joint distributions on 
the basis of ocean wave measurements, long 
duration measurements are needed. More often than 
not one is faced with the problem of nonstationarity 
of the wave process: within 1 hour or less, both 
peak period and significant wave height may vary 
appreciably. 

—————— ■■ - ■ ■ 
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Fig. 8a. Marginal pdf of crest period parameter X 
(model test, Hr - 14 J m, T„ = 14.7 s). s p 

Fig. 8b. Marginal pdf of crest period parameter X 
(simulation, Hs = 145 m, T   = 14.7 s). 
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Long records of stationary data can only be obtained 
in controlled circumstances. One solution is to 
combine many short measurements to derive long- 
term statistics, or for example during the duration of 
a storm to scale the measured wave elevations to a 
common significant wave height. 

In the present work an attempt is made to 
estimate joint distributions from single 30 minute 
measurements in 85 m water depth. The following 
steep sea state serves as an example: Hs = 6.6 m, Tp 

= 9.7 s, s^n = 0.045. The power spectrum is shown 
in Fig. 9. The measured joint distribution of T2 and 
H are shown in Fig. 10, Fig. 11 shows e and H, Fig. 
12 shows \i and H, and Fig. 13 shows \ and s. 
Albeit the short duration, the same general trends 
show up as in the tank tests and simulations. 

WAVE SPECTRUM 

   Mgasurw                                4-^m „ - 6.60 m :        T    -9.70 s 

[\ 

/ 
/ 

J   \ 

Fig. 9. Power spectral density and distribution of 
measured wave elevation in 85 m water depth (H  = 
6.6 m, Tp = 9.7 s) 

This paper does not lay claim to the final 
answer concerning the range of validity of the linear, 
random wave model. Based on the observations 
made thus far, there is at least evidence to state that 
the overall joint wave properties are modeled 
surprisingly well by the Gaussian wave model even 
for steep sea states. Discrepancies appear as regards 
local crest properties; if we disregard wave breaking 
effects, the random wave model may provide a 
reasonable input for modeling ship motions in a 
severe sea state. If extreme ship motion behavior is 
more sensitive to overall wave steepness than to 
individual crest steepness, linear random wave 
theory may be acceptable for simulating extreme 
ship motions even in relatively steep random seas. 
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Fig. 10. Joint pdf of zero-crossing wave period and 
height (85 m water depth, Hs =6.6 m,T- 9.7 s) 
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Fig. 11. Joint pdf of crest front steepness and wave 
height (85 m water depth, Hs = 6.6 m,T   = 9.7 s) 
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Fig. 12. Joint pdf of crest height-wave height ratio 
and wave height (85 m water depth, Hs = 6.6 m, T 
= 9.7 s) 
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This hypothesis may not apply to hull girder 
loads, slamming, or green water effects on deck, 
which tend to be more sensitive to local wave 
characteristics. 

Joint distributions of zero-crossing period and 
height of storm waves analyzed by Sobey [15] show 
similar properties as those derived above from tank 
tests and simulations. Other studies on the validity 
of the Gaussian wave model have concentrated on 
distributions of single parameters, such as wave 
height. Osborne [16], for example, concludes that 
the Gaussian model works reasonably well in 
predicting wave height distributions, while it 
underpredicts probability densities of crest heights; 
again this is attributed to crests behaving in a more 
nonlinear fashion than wave height. 

The occurrence of observed extreme wave 
heights tends to be overpredicted when using the 
Gaussian wave model (i.e., by the Rayleigh 
distribution), see for example Osborne [16] and 
Tayfun [17]. On the other hand, based on a large 
number of ocean wave measurements, Takeda et al. 
[18] state that while the Rayleigh model predicts the 
standard deviation of surface elevation correctly, not 
only the highest 1/100 observed wave crest heights 
are underpredicted but also the 1/100 highest overall 
wave heights can be underpredicted considerably for 
relatively low sea states (mean wave heights of 2 m 
or less); on the average, the Rayleigh model tends to 
overpredict maximum wave height. It should be 
noted that waves of maximum height are not 
necessarily the most critical for extreme ship 
motions. 

2.3. Probability of occurrence of critical waves 

Knowing the joint probability density 
functions of wave period and height from 
simulations or measurements, we can estimate the 
probability of occurrence of waves having a critical 
wavelength and steepness as a function of significant 
wave height and peak period: 

piamkt^^xmax) n (s > scrit) l HS,TJ = s' *pJ 

max max 

J    f p(X,s)dsdX. 
(7) 

^mm scrit 

Fig. 13. Joint pdf of wavelength and steepness (85 
m water depth, H'   = 6.6 m, T'   = 9.7 s) 

If this conditional probability is determined 
for a number of sea states, it could subsequently be 
used to estimate the probability of capsizing in a 
given operating area with known statistical 
distributions of Hs and T , thereby neglecting any 
wave grouping effects. A significant amount of 
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information is available on theoretical and measured 
joint distributions for wave height and period, see for 
example Longuet-Higgins [19], Skrokosz and 
Challenor [20], Tayfun [16]. Rather than using 
theoretical distributions, which tend to be based on 
narrow-bandedness assumptions and neglect spectral 
shape, Sobey [15] advocates the use of long-duration 
simulations employing the linear Gaussian model as 
used above for the sea surface to derive joint 
distributions. Myrhaug and Kjeldsen [9] derived 
fitted joint distributions of crest front steepness and 
wave height based on Weibull parameters; Myrhaug 
and Rue [21] proposed joint distributions for two 
successive waves. 

3. IRREGULAR ASTERN SEAS 

Here we will consider the critical influence of 
group speed in astern seas. Astern (following and 
quartering) seas tend to be most critical with respect 
to capsizing of large ships. The perceived 
characteristics of the irregular seaway change 
drastically for such headings with forward speed; the 
effect on the encounter spectrum is discussed by 
Oakley et al. [1] and De Kat [22], among others. For 
a range of speeds the encounter spectrum collapses, 
i.e., it becomes very narrow-banded and average 
wave group lengths increase; the same applies to 
ship excitation forces and response. Tikka and 
Paulling [23] discuss the influence of forward speed 
on encountered wave group properties and the effect 
on capsizing. 

The group speed is defined as: 

conducted at scale 1 to 50 with a heeled container 
ship in following seas (<|> = 15°, Lpp = 125 m). The 
ship model was partly captive and allowed to heave 
and pitch; the surge force and roll moment were 
measured. Here we will consider two sea states 
represented by Bretschneider spectra: (1) Hs = 4 m, 
and TD = 9 s, and (2) H. = 8 m, TD = 113 s. For sea 
state fl), Cg4) = 7 m/s (13.7 kn),Pand Cg>2 = 5 m/s 
(9.7 kn). For the case with both zero forward speed 
and V = Cg>2, Figs. 14 and 15 show part of the 
measured time series of the roll exciting moment 
and the surge force. 

Fig. 14. Measurements with heeled ship model in 
following seas (MX is the roll excitation moment. 
FX-TOT is the surge excitation moment, zero speed) 

c   =  g 
g.p 2(ü„ 4n 

(8) 

which is the speed at which the main energy of the 
seaway travels. For ship speeds in the neighborhood 
of the group speed, substantial roll excitation of 
extended duration can occur. According to Tikka 
and Paulling [23] the longest encountered wave 
group lengths occur with the highest probability for 
the group speed associated with the mean zero- 
crossing period T2, which is Cg>2 = g/(2co2). 

3.1. Excitation in astern seas 

The effect of forward speed on measured 
encounter spectra of wave elevation and roll moment 
excitation in following seas is discussed by De Kat 
[3]. The following serves as an illustration of the 
time-dependent characteristics of hydrodynamic 
excitation in these conditions. Model tests have been 

Fig. 15. Measurements with heeled ship model in 
following seas (MX is the roll excitation moment, 
FX-TOT is the surge excitation moment, V = Cg2 = 
5 mis) 

These measurements indicate that in irregular 
following seas the total wave excitation forces 
follow the same trend as the encountered wave 
characteristics at one location, i.e., the roll excitation 
can be of a regular nature during the passage of a 
wave group, despite the inherent spatial wave 
irregularities. 

When a ship is subjected to narrow-banded, 
large amplitude roll excitation moments for extended 
time periods related to the length of the encountered 
wave groups, dynamic loss of transverse stability or 
parametric (low cycle) resonance, for example, could 
be the result. A range of operating speeds resulting 
in narrow-banded wave energy would be 
approximately: 
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0.7 C.0 < V.cosy< 1.3C, 
■%p g.p 

(9) 

where y is the heading angle with respect to the 
direction of wave travel (0° = following seas). 

3.2.    Wave grouping and temporal correlation of 
irregular wave surface 

The question remains why the roll excitation 
(and other modes also) can have a regular character 
in spatially irregular and random waves, since the 
wave elevation behavior at one location of the ship 
is not indicative of the encountered time-dependent 
irregular wave profile. 

Closer analysis of wave surface measurements 
carried out at forward speed in following seas 
provides the answer. The model tests mentioned 
above were also carried out without the presence of 
a model to focus purely on wave characteristics. 
Along the length of the imaginary ship (i.e., over a 
distance of 125 m full scale), 9 equidistant wave 
gauges were located to measure the instantaneous 
wave profile. To illustrate encountered wave 
characteristics, we will consider sea state (2) 
encountered at a speed of Cg>2 = 629 m/s = 12 kn 
in following seas. 

Fig. 16 shows the regular character of the 
measured undisturbed wave elevation at three 
locations (signal WAVE9 corresponds to the aft 
perpendicular, WAVE5 to amidships, and WAVE1 
to the forward perpendicular position). 

Fig. 16. Measured wave elevation in following seas 
(model test, Hs = 8.0 m, T' = 113 s; no model, 
WAVE9 corresponds to APP, WAVES to amidship 
and WAV El to FPP location, L =125 m,V =C 
= 6.3 m/s) 

&2 

Let us consider the wave profiles encountered during 
the period where a long wave group slowly 
overtakes the imaginary ship; for example between 
t = 135 s and 275 s, all locations of the vessel 
would be subjected to a relatively regular wave 
elevation of the same order of magnitude. Figs. 17a 

through 17d show successively encountered wave 
profiles during four wave encounters from t = 150 to 
215 s (from left to right in the plots corresponds to 
aft to forward). The striking feature of these figures 
is the repeating nature of the irregular wave surface 
during each wave encounter. In fact, the wave 
profiles repeat themselves, with some modulation, 
during the complete passage of the encountered 
group. The same has been observed at speed V = 
Cg4j. Encountered wave profiles obtained by 
simulations with the linear random wave model 
show the same features. 

Thus, when the wave elevation character at a 
moving point is regular over some finite distance 
and for an extended period of time, the irregular 
surface characteristics (wave profiles) can repeat 
themselves every wave encounter during the 
duration of the group. So although the spatial 
character is irregular and changes during the passage 
of an overtaking wave system, there is a strong 
temporal correlation between successively 
encountered wave profiles at the encounter period 
during the encountered wave group duration. 
Therefore, if an encountered wave group has only a 
few waves of regular appearance at some ship-fixed 
location, the correlation of successive spatial profiles 
will be low; for long duration wave groups, the 
correlation can be high, which will result in a 
regularly repeating irregular wave surface and hence 
in regular excitation forces. 

3.3. Theory for encountered wave surface 

In accordance with the linear random wave 
model used above, let us assume that the irregular 
wave surface, seen in a stationary reference frame, 
can be represented by the Fourier sum of sinusoids: 

T|(x,t) = J^aiCos^jt -kjX +e;) 
i-l 

(10) 

where con = 27m/T (T is the total time duration) and 
8; are uniformly distributed phase angles. Deep 
water is considered, so that k; = co^/g. In terms of 
the complex amplitude function (see e.g. Longuet- 
Higgins, [24]), the surface elevation is: 

T|(x,t) = ReA(x,t)e 1 CO t (11) 

where co is the mean frequency defined by mj/niQ; 
m( 

moment, respectively. Then 
0 and mj are the zero and first order spectral 
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TESTNO   101101 
Fig.  17. 

TESTNO   101101 Fig.  17b 

TESTNO   101101 
TESTNO   101101 Fig.   17d 
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Fig. 17a-d. Measured wave surface profiles in following seas for same conditions as for Fig. 16 during four 
wave encounters (point no. 1 corresponds to APP. no. 9 to FPP, L = 125 m);from t = 135 s to 213 s 
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A^O-Saie1100'-"*-1^6*1 (12) A,(x/.t)-Eale
,Ka--"«),-,iix/*e'1 (20) 

which can be written in terms of the real envelope 
function p as follows: 

A(x,t) = p(x,t)ei*(*'t) (13) 

so that the real and imaginary parts of A(x,t) are: 

pc = pcosi}) = J^ajCosKcOj-^t-kiX+ej] 

' - <14> 
ps = pcosif» =^aisin[(coi-co)t-kix+ei] 

i 
and 

PCO = ff^ (15) 

We are interested in the encountered wave 
properties at nonzero forward speed. Let us consider 
the case of a moving reference frame, which 
translates steadily at speed V along a fixed heading 
y. Here we will focus on following seas (\y = 0), but 
the approach applies to any heading, x' is the 
distance from the origin in the moving reference 
frame along the earth-fixed x-axis. The wave 
envelope at a fixed location is given as follows. 

The wave surface encountered in the moving 
reference frame is given by: 

TleCx'.t) *5^aiCOs((ae>it -k;x' + e;) (16) 
i 

where the encounter frequency for wave component 
i is defined by: 

00ej = °>i _ kjVcos\|/ (17) 

In terms of the encountered group envelope, 
the wave surface elevation can be written as: 

r|e(x ,t) =ReAe(x ,t)e    e (18) 

where coe is the mean encounter frequency defined 
by the spectral moments obtained at a point in the 
moving reference frame: 

m, 
We  = (19) 

mr 

The encountered complex envelope function 

It should be noted that in the case of astern 
seas the wave elevation given by Eq. (16) is not a 
regular Fourier series, because of the non-unique 
frequency mapping from co; to coe; for: 

CO:   < 
(1 +v5) 

2 V cosy 
g (21) 

If the encounter frequencies with the 
individual wave components lie close to the mean 
encounter frequency, Eq. (20) shows that 
encountered wave groups observed at a moving 
point can have long group periods. Group spectra of 
the wave envelope encountered at a point in a 
moving reference frame become significantly 
narrower than at a stationary point, when the speed 
lies in the range of the group speed. 

If cod is the dominant encounter frequency 
during the passage of a wave group, the wave 
surface profile would repeat itself after one wave 
encounter when: 

OTT 

Tie(x',t) =T|e(x/,t + _) (22) 
CO, 

According to Eq. (16), 

TleCx'.t + ^E)- 
CO j, d „ (23) 

^ / 2JCC0-: 
jTaiCos(cueit -kjX + e; + —_—'-) 

i               ' co. 

Hence if conditions were such that coe: = <Bd 

for all frequencies, the same irregular wave profile 
would appear one wave encounter later. Usually this 
condition is not satisfied. In following seas, 
however, and particularly when V lies in the range 
of the group speed, encounter frequencies map to a 
narrow range, so that Eq. (22) may be satisfied 
approximately. In general, if the speed is equal to 
the group speed of a given wave component N, i.e. 
V = g/(2coN), in following seas, then the maximum 
encounter frequency is coejnax = V4coN. This is 
illustrated by the case from Fig. 17 - sea state (2) 
encountered at a speed of V = C ^ = 6.29 m/s. Fig. 
18 shows the measured wave spectrum and the 
computed encounter frequency at speed V = 6.29 
m/s, as well as for V = C„„ = 8.83 m/s. 

is then: 
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Fig. 18. Measured spectral density at fixed location 
(model test, Hs = 8.0 m,T = 113 s), and encounter 
frequencies at two speeds (V = G ^ = 6.29 m/s and 
V = Cgf = 8.83 m/s) 

Fig. 18 shows that in the case of V = 629 
m/s, all wave energy maps to frequencies lying 
between coe = 030 and 0.39 rad/s. For V = 8.83 m/s, 
the energy of the spectral peak lies between 
approximately 026 and 028 rad/s, while for co > 0.8 
rad/s there are wave components that cannot be part 
of dual component, overtaking wave groups with 
regular encounter appearance (all pairs of wave 
components having symmetrical frequency spacing 
with respect to a given 0)N can be considered as two- 
component wave groups traveling at the group speed 
g/(2ü)N), where both components overtake the 
moving reference frame while resulting in a single 
sinusoidal wave elevation encountered at a point in 
that frame moving with speed V = g/(2coN); the 
encounter frequency Cue^ will differ slightly between 
the various two-component groups). 

Defining the encounter frequency difference 
as 8cDe; = (0ej - cod, we can write: 

to. 

co. 
= 1 + 

8co, 
(24) 

CO, 

Assuming that 8coe^ is small for a range of 
frequencies (as it is in the above case), expressions 
like cos(3>+a) where a « 1 can be approximated by: 

cos(4>+a) ~ cos*- asin* (25) 

Then Eq. (23) becomes: 

Tle(x',t+j£) =ile(x',t) + 

E5COe.i   •   , ai-=r-Lsin(a)eit -k;x   +E;) 

i-i      <od 

(26) 

The above shows that when 8coej « cöd for 
components with significant wave energy, the wave 
profile will repeat itself approximately every wave 
encounter, whilst subject to group modulation and 
dispersion effects. When located in the speed range 
indicated by Eq. (9), a ship could experience a 
critical, steep overtaking wave repeatedly, which 
under certain conditions could pose an operational 
hazard. 

It is noteworthy that also here the Gaussian 
random wave model seems adequate in predicting 
the observed temporal correlation of irregular wave 
profiles. Even in the event of steep waves that show 
overtopping, the same phenomenon applies: 
following an overtopping wave in a tank at its mean 
group speed, one will see the recurrence of that 
wave for several wave encounters. Similarly, in an 
adverse current the same wave will appear 
repeatedly after a wave encounter to a stationary 
observer, when the current speed equals the mean 
group speed of the waves running into the current. 

3.4. Joint distribution encountered at forward speed 

While wave properties encountered at a point 
in a moving reference frame can change drastically 
with forward speed, no information is available on 
the statistics of encountered spatial characteristics. 
Fig. 19 shows the joint probability density function 
of spatial wavelength and steepness based on a 3- 
hour duration simulation; the same sea state has 
been taken as in section 22 (Hs = 145 m, Tp = 14.7 
s), and a forward speed at zero heading angle of V 
= C„2 - 8-6 m/s. The encountered joint pdf is very 
similar to the one obtained at a fixed location (Figs. 
5 and 6), so that Eq. (7) may be appropriate in 
estimating the probability of occurrence of critical 
waves based on zero-speed joint pdf s. Obviously, 
the joint pdf of two successive waves in a moving 
reference frame would be different from the joint 
pdf at zero forward speed. 

4. NUMERICAL MODEL FOR EXTREME SHIP 
MOTIONS 

A time domain ship motion simulation tool 
forms an essential part in understanding capsize 
physics. This simulator is frequently checked against 
model test results and the underlying physics are 
subjected to continuous examination. The program 
is foremost a practical engineering tool, which runs 
fast even on a PC; this is a prerequisite in the 
present derivation methodology for design 
guidelines, the development of which requires an 
extensive number of simulations. 
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Fig. 19. Joint pdf of spatial wavelength and 
steepness (simulation, Hs = 145 m, T = 14.7 s) 
encountered at V = C   , = 8.6 mis 

In the present investigations, use is made of 
extended, nonlinear strip theory embodied in the 
computer program FREDYN. Time domain 
simulations can be carried out for a steered ship in 
regular or long-crested irregular waves, and with or 
without the presence of (gusting) wind. In essence, 
the approach consists of superimposing all 
physically relevant force contributions in the coupled 
equations of motion: 

Mx -£Fi(t) (27) 

where M is the 6 x 6 mass matrix including added 
mass and inertia terms (at infinite frequency). The 
right hand side consists of the various force 
components: 
• Froude-Krylov (static and dynamic wave pressure) 
• diffraction 
• convolution integrals of radiation forces 
• viscous forces 
• hull resistance 
• propeller thust 
• rudder lift 
• wind 

Because of the nature of the problem, the 
motions are solved in the time domain for six 

degrees of freedom. The setup is similar to the 
model presented by Hooft and Pieffers [25] and De 
Kat and Paulling [2]. The Froude-Krylov forces are 
evaluated up to the instantaneous free surface at 
each time instant and include hydrostatic effects. 
Linear theory is used in the time domain to estimate 
the diffraction and radiation contributions, where a 
correction is made to the convolution integrals to 
account for large amplitude motions. Viscous effects 
comprise roll damping due to hull and bilge keels, 
wave-induced drag due to orbital velocities, and 
maneuvering forces. 

To illustrate the basic formulation of one 
component, we consider viscous hull forces 
associated with a drift angle at forward speed and 
wave orbital velocities. The resulting sway force is 
composed of a linear and nonlinear part: 

YH = YH,L  + YH,NL 

where 

YHX - YHtL(u,v,ijf,T) 

and 
L 
2 

YH,NL "  jYNL(x,t)dx 
_L 
"2 

(28) 

(29) 

(30) 

u, v and y' are the surge, sway and yaw velocities, 
respectively; 1 is the instantaneous trim angle. The 
local transverse force is 

YNL(x,t) =-ipCD(x,ß(t))T(x,t)vr|vr|       (3D 

where T(x,t) is the local draft, vr is the local relative 
velocity and CD(x,ß(t)) is the local drag coefficient 
estimated from experimental data, depending on 
section shape and drift angle ß: 

ß = arctan(-i) 
u 

vr - v + yx- f|(x) 

(32) 

(33) 

where f|(x) is the local transverse wave orbital 
velocity, averaged over the cross-section. Taking 
moments and integrating YNL(x,t) along the ship 
length will yield the associated roll and yaw 
moment. This yaw moment can become significant 
while running in astern seas, when the wave crest is 
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at the stern and the bow is in the trough region - the 
wave orbital velocities will contribute to a broaching 
moment. 

Propeller and rudder interaction are also 
modeled, including the effect of orbital velocities. 
An autopilot or human navigator keeps the ship on 
course; alternatively, specific maneuvers such as a 
zig-zag test can be simulated. The model is in 
principle applicable to any type of ship; only the 
part related to the linear and nonlinear maneuvering 
forces in FREDYN has been adjusted specifically for 
frigate-type ships. 

The advantage of this partially heuristic 
technique is the ease of adding physical phenomena 
to the model and the ease of computations. A major 
disadvantage is the lack of knowledge and control 
concerning the errors involved. The only way to 
instill confidence in this approach is to validate the 
method with a variety of model test results and full 
scale data. The present numerical model has been 
validated extensively by means of captive and free 
running model tests, as well as some full scale 
measurements. The model tests with various ship 
types comprised a large range of moderate and 
severe waves, including capsize conditions. Besides 
frigates, tests and simulations were also carried out 
with containership models to study parametric 
rolling. 

5. CAPSIZING OF INTACT SHIPS 

5.1. Identification of capsize modes 

Based on the analysis of (few) full scale 
accounts, model tests and numerical simulations, two 
main categories of wave-induced capsizes are 
distinguished: 
♦ single capsize modes in astern to beam seas 
• combined capsize modes in astern seas 

In principle, capsizing can occur at heading 
angles other than astern to beam seas. Parametric 
resonance in head seas has for instance been 
observed experimentally as a cause of capsizing. The 
risk of such events occurring is, however, viewed as 
too small for practical concern. A single capsize 
mode is applicable when one particular phenomenon 
is clearly the cause of the capsize. In many cases, 
capsizing cannot be attributed to one phenomenon 
only, but is often the result of a sequence of 
different events. 

The "conventional" wave-induced capsize 
modes observed for large vessels in astem wave 
conditions comprise: pure loss of stability, low cycle 
resonance   (due   to   parametric   excitation),   and 

broaching due to successive waves. These modes 
were first classified as such by Oakley et al. [1]; 
these and other modes were simulated by De Kat 
and Paulling [2]. The last two items are distinct 
physical (motion) phenomena that may or may not 
lead to capsizing. Other modes of broaching can 
occur at higher ship speeds. Another capsize mode, 
classified as "period bifurcation", has been observed 
experimentally by Kan et al. [26] for a containership 
model in stern quartering sea conditions. 

Capsizing in beam seas can occur because of 
(1) steep, breaking waves, resulting in transverse 
impact loads and/or piling of green water on the side 
of the deck, (2) synchronized roll resonance, or (3) 
conditions resulting in an excessive wave-induced 
roll moment. It should be noted that capsizing due 
to resonance in beam seas has been studied in many 
instances to test theoretical models, but most ships 
will not capsize in such conditions. Small ships, 
such as fishing trawlers, are known to have capsized 
in steep beam sea conditions. 

Water on deck and bulwark submergence can 
have a significant influence on capsizing, both in 
astern and beam seas. These effects can occur in 
conjunction with the modes discussed above; 
experimental and theoretical observations are 
presented by Grochowalski [27]. 

A ship can capsize in a multitude of 
conditions, where several distinct phenomena can 
finally lead to capsizing. For example, a vessel in 
stern quartering seas may first surfride, then broach 
and roll heavily, followed by deck submergence and 
loss of stability in the wave crest after getting back 
on course. Also, a ship may yaw violently, inducing 
large roll motions, followed by dynamic loss of 
stability. Invariably, a ship will in the end capsize in 
the absence of sufficient restoring moment, which 
may be quasi static (loss of righting arm) or 
dynamic (loss of restoring energy). Before capsize 
occurs, the ship should be viewed as a complete six 
degrees of freedom object with some steering 
mechanism. An overview of potential wave-induced 
capsize modes has been presented in [3] and [4]. 

To determine irregular wave conditions 
leading to capsizing, the following approach is used. 
For a given loading condition (with low initial GM), 
calm water speed and heading angle, simulations are 
carried out in many realizations of a selected severe 
sea state: 25 runs of 20 minutes full scale duration 
were performed with randomly selected seeds. This 
process is repeated for various Froude numbers up 
to Fn = 0.4 at some critical heading angles. The 
analysis consists of identifying capsize modes and 
the conditions leading to capsizing and determining 
the influence of the random nature of waves and to 
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what extent these random events can be related to 
more deterministic capsize behavior in regular 
waves. Once sufficient information is available on 
critical waves as a function of speed, heading angle, 
etc., their probability of occurrence may be 
estimated using Eq. (7), for example. 

5.2. Some capsize mechanisms 

A few capsize aspects are discussed below for 
an example frigate with transom stern, L = 125 m 
and low GM (GM/B = 0.05) at a 15 degree heading 
angle in different realizations of the following sea 
state: Hs = 12.8 m, Tp = 14 s. Analysis of the runs 
where capsizing occurs suggests that the mode of 
capsize depends strongly on the ship speed. For 
example, Fn = 0.4 results in broaching and 
capsizing, while Fn = 03 typically results in loss of 
stability in the wave crest. At Fn = 02, those few 
capsize events that do occur are associated with 
dynamic rolling in a critical wave group; here the 
ship speed is close to the group speed, and the ship 
rolls at the encounter frequency with increasing 
amplitudes until after 3 or 4 cycles capsize occurs 
(the phasing is such that during each cycle a wave 
crest is amidships when the largest roll angle is 
reached). The other two capsize modes are described 
in more detail below. 

Broaching at Fn = 0.4 
Many of the simulated broaches look rather 

alike in appearance when judged by overall motion 
behavior, yet closer scrutiny of the time series data 
and wave profiles reveals some fundamental 
differences in the physics involved. Although it is 
not possible to define one •standard' critical wave 
that causes a given broach and capsize, we can 
identify the following 'classes' of broaching for this 
case. 

Mode (1) - Broach due to bow trim: the 
wavelength X is of the order of 1 to 1.5 times the 
ship length when the ship is running down its front 
slope and the spatial wave steepness HAspat exceeds 
0.06; while the crest is at the stern, gradually the 
ship speed increases to approximately the wave's 
phase speed; at the same time, the bow is located in 
the trough region, which leads to a yaw (broaching) 
moment caused by cross-flow drag forces (as in Eq. 
(31)) combined with a yaw moment associated with 
the wave-induced pressure (Froude-Krylov). 
Especially in a relatively short and steep wave the 
bow can be partially buried in the backslope of the 
preceding wave, resulting in decreased directional 
stability. Even though the rudder is hard over, the 
ship   is   forced   broadside   to   the   wave   while 

experiencing a roll moment to the lee side because 
of inertia effects and the wave slope (Froude- 
Krylov) moment. The amount of rudder lift that is 
lost in the wave crest will depend on benefits from 
propeller outflow effects. 

Mode (2) - Broach in steep, long wave: this 
mode is similar to mode (1), but occurs in a longer 
wave (X « 2L to 2.5L); there is no bow submergence 
effect in the trough. As the large steepness remains 
unchanged while the wave overtakes the ship and 
the yaw angle keeps increasing, the inertia and wave 
slope moment force the ship to roll to its lee side. 

Mode (3) - Broach in wave of increasing 
steepness: similar to modes (1) and (2) - it starts as 
in (2), but after the onset of the broach the 
wavelength decreases rapidly while the wave height 
stays approximately the same, so that steepness 
increases drastically and while turning broadside, the 
ship is faced with a steep wave front. 

Mode (4) - Broach followed by stem 
emergence: a steep wave causes the onset of a 
broach; as the ship starts to broach, the wave 
quickly loses its steepness; the roll angle is around 
45 degrees, at which point the restoring moment is 
positive but not very large; while the ship slowly 
lightens, a steep trough suddenly develops under the 
stem; around 20% of the stem is out of the water, 
but as the ship in question has a wide transom (the 
aft body contributes significantly to the overall 
righting moment) the ship capsizes due to loss of 
stability. 

Capsizing due to loss of stability at Fn = 03 
The way in which the ship capsizes under 

these conditions is remarkably different from the 
above broaching cases. The majority of the capsizes 
occur with the wave crest amidships. This mode is 
usually preceded by moderate roll motions and can 
occur suddenly when the encountered wavelength is 
between 0.8L (with WXspat exceeding 0.07) and 2L 
(with HAspat exceeding 0.04). Loss of stability in 
irregular waves can be attributed to several 
mechanisms: (1) dynamic rolling during one cycle 
resulting in a capsize with the wave crest amidship, 
where the crest slowly overtakes the ship resulting 
in the reductionof righting capability over an 
extended period of time, (2) the sudden formation of 
a steep wave trough at the stem, which for a ship 
with a wide aft body results in the sudden loss of 
buoyancy and righting capabilities. Before capsizing 
the ship will roll at the dominant wave encounter 
period, which can be significantly longer than the 
natural roll period. In the present case, the actual 
roll period was about twice the natural roll period 
for small angles. 
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5.3. Determination of critical wave conditions 

For each capsize case, the time-dependent 
spatial wave conditions immediatley prior to capsize 
were examined. The onset of capsizing was found to 
occur in a critical range of wavelengths above a 
certain associated spatial wave steepness. As an 
example, the time series of a Mode (1) broach are 
shown in Fig. 20a; the sequence of the spatial wave 
profiles as of the onset of the final broach is shown 
in Figs. 20b and 20c (the profiles are shown over a 
distance spanning three ship lengths in the direction 
of wave travel, where position No. 16 corresponds 
to the location of midship section at each time 
instant). 
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Fig. 20a. Time series of simulated capsize due to 
broach with bow trim (£c is the wave height at the 
center of gravity. hRUD denotes rudder angle). Test 
conditions: Fn = 0.4. y = 15°. GM/B = 0.05, Hs = 
12.8 m,T   = 13.4 s.JONSWAP withy = 2. 

The onset of broaching and loss of stability in 
irregular waves is shown for the above example in 
Fig. 21 for different wave realizations, indicating the 
critical spatial wavelength and steepness. An 
important conclusion here is that for a given sea 
state a large range of waves with different spatial 
properties can lead to capsizing; the overall capsize 
mode is not sensitive to the wave realization 
process. 
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Fig. 20b. Sequence of spatial wave profiles spanning 
3 ship lengths (L = 125 m) along direction of wave 
travel; first profile corresponds to the onset of the 
broach. 
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Fig. 20c. Sequence of spatial wave profiles spanning 
3 ship lengths (L = 125 m) along direction of wave 
travel; last profile corresponds to actual capsize. 
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Comparison with the behavior in regular 
waves suggests that if the spatial wave 
characteristics (height and length) leading to capsize 
in irregular waves were used to generate a regular 
wave, the ship will typically also capsize; the 
physics involved can be different. By performing the 
same analysis for different sea states, an assessment 
can be made of the critical conditions leading to 
capsize as a function of loading condition, speed, 
heading angle and sea state. Combined with the joint 
distribution of wavelength and steepness, the 
probability of encountering critical conditions can be 
estimated. 
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Fig. 21. Critical spatial wavelength and steepness 
combinations leading to onset of capsize due to 
broaching and due to loss of stability in irregular 
sea state at 15 degrees heading angle. (L = 125 m, 
Hs = 12.8 m, Tp = 13.4 s) 

6. CONCLUSIONS 

This paper presents some physical aspects of 
random waves in relation to capsizing and broaching 
of a steered, intact ship. Particular attention is paid 
to the validity of the random Gaussian wave model 
when simulating motions in severe, long-crested 
seas. 

Wave characteristics investigated are those 
thought to be relevant for extreme ship motions: 
joint distributions of individual wave properties, 
spatial properties, deviations from Gaussianity, and 
group speed effects in astern seas. The results 
suggest that the joint distribution of overall wave 
parameters (such as crest-trough steepness and 
wavelength) is predicted quite well by the Gaussian 
wave model even for steep sea states, when 
compared with measured data. When sailing in 
astern seas at a speed close to the mean group 

speed, wave group lengths increase; it is shown that 
during the duration of an overtaking wave group the 
same, spatially irregular, wave will repeat itself 
every wave encounter - this can lead to large 
amplitude excitation of a regular nature. 

A brief description is given of a numerical 
model to simulate extreme ship motions. With this 
model, a number of capsize and broaching modes 
have been predicted; analysis of these extreme 
events provides details on the physical mechanisms 
involved and on critical wave conditions. Critical 
(spatial) wave conditions leading to a capsize are 
found to be sensitive to the realization of a given 
sea state. 

Work on the above topics continues as part of 
the second phase of the Dynamic Stability project. 
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ABSTRACT 

Nonlinear computations of the free surface 
elevation at the bow region of a frigate model in 
the steady forward motion as well as in heaving 
and pitching oscillations in an incident sinusoidal 
wave are carried out under the slender body ap- 
proximation, which reduces the fluid motion to 
the parabolic type in the longitudinal direction, 
and the boundary value problem becomes two di- 
mensional in the cross flow plane fixed in space. 
The boundary integral equation method is em- 
ployed to find the solution. 

The computation for the steady forward mo- 
tion well simulates the generation of spray and 
the breaking of bow waves. The computation for 
the oscillating ship at forward speed of Froude 
number 0.30 shows the effect of the incident wave 
height. The computation shows that deck wet- 
ness begins at the wave height of if/A = 0.02, 
and the result is in good agreement with the ex- 
perimental observation. 

As a conclusion, the method proposed here 
serves as a useful tool for a prediction of deck 
wetness at large amplitude motion of a ship in 
rough seas. 

1 INTRODUCTION 

Among various problems of seakeeping qual- 
ities of ships, deck wetness or shipping of water 
becomes important especially in high speed op- 
eration in rough seas. It is a governing factor 
for determination of freeboard and the design of 
flare at the bow in ship design practice. The ex- 
isting method of theoretical prediction of seakeep- 
ing qualities depends on the linearized theory of 
the fluid motion around the hull. In practice, hy- 
drodynamic forces on the hull are predicted by 
means of the strip theory. It is generally accepted 

that the ship motion determined from the linear 
equation of the motion with hydrodynamic coef- 
ficients, derived from the linearized theory in two 
dimensions, shows a fairly good prediction for the 
ship behavior among waves, unless in very severe 
conditions. However it is known that some of the 
prediction by means of the linearized theory is 
not necessarily satisfactory in several problems of 
seakeeping characteristics including deck wetness 
and slamming impact. Deck wetness, which is the 
problem of the present interest, is determined by 
the relative height of the deck above the disturbed 
sea surface. The simplest approximation by the 
existing practice is that the wave surface is taken 
as if it were undisturbed by the existence of the 
ship hull [1]. It is clear that this is a too coarse 
assumption, because elevation of the sea surface 
changes due the disturbance by the hull to a con- 
siderable extent, so that the interaction between 
the hull and the free surface should be taken into 
account by the prediction of free surface eleva- 
tion. The heave of the sea surface due to the dis- 
turbance by the hull is called the dynamic swell. 
The existing practice employs the strip theory 
with the linearized theory in two dimensions [2] 
applied to each cross section of the hull. Takaishi 
et al [3] calculated the relative height of the deck 
above the disturbed wave surface of a container 
ship by the above method. Fairly good agree- 
ment was observed between computation and ex- 
periment. Since this is the case of large container 
ship at forward speed of moderate Froude num- 
ber, the ship motion is comparatively mild, and 
the linearized theory seems to work well. However 
the condition is different when the ship is oper- 
ating at high speed in rough seas. Nonlinearity 
becomes remarkable in the fluid motion around 
the hull, and breaking wave or spray is observed 
at the bow, which is likely to have a consider- 
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able effect on shipping water. These phenomena 
are quite nonlinear and there has been no reliable 
method so far to predict deck wetness in such a 
severe condition. 

As the analytical solution is not applicable 
to the nonlinear boundary value problem, which 
appears in the present case, the analysis depends 
on the numerical method in general. Although 
recent development of the computational fluid 
dynamics enables the numerical solution of the 
fully three-dimensional nonlinear free surface flow 
problem, the three-dimensional computation in 
the present problem does not seem practical be- 
cause of large computer time and insufficient ac- 
curacy. The strip theory is the simplest approxi- 
mation in which nonlinear effects can be consid- 
ered. However the strip theory is unable to de- 
scribe the effect of forward speed to the fluid mo- 
tion in rational way. Application of the slender 
body technique to the ship moving through am- 
bient ocean waves provides a rational approach. 
The existing theory of this kind is based on a 
series expansion of the solution with respect to 
two small parameters which are mutually inde- 
pendent [4]. The slenderness ratio of the hull and 
the ratio of wave height to the ship's length are 
taken as the perturbation parameters in general. 
Then the first order solution is determined from 
a set of linear boundary value problems in two 
dimensions in the plane perpendicular to the lon- 
gitudinal axis of the hull. Thus the slender ship 
theory formulated in this way belongs originally 
to the linearized approximation. An implication 
of the two parameter expansion is the condition 
that the amplitude of the vertical motion of the 
hull as well as the free surface elevation is small 
as compared with the dimension of the cross sec- 
tion of the hull, i.e. breadth and draft. However 
the motion amplitude is not necessarily small in 
comparison with the draft, even though the am- 
plitude of oscillation and wave height are both 
small in comparison with the ship's length, which 
is taken as the reference length in the pertur- 
bation scheme. This contradiction is the con- 
sequence of the assumption that the slenderness 
ratio and the amplitude ratio are mutually inde- 
pendent. As a matter of fact, these parameters 
are of the same order, and the separation of two 
variables is not applicable to the present analy- 
sis. Since the slenderness ratio and the ampli- 
tude ratio are of the same order, it is more ra- 
tioal that they are expressed by a common pa- 
rameter. The perturbation expansion with re- 
spect to a single parameter leads to another set of 

boundary value problems, which is different from 
the existing slender ship theory based on the two 
parameter expansion. A great advantage of this 
scheme is that the first order solution allows the 
large amplitude motion in the local scale, even if 
a small amplitude is assumed in the global scale 
based on the ship's length. Different from the 
existing slender ship theory, the boundary value 
problem becomes nonlinear in the new approach. 
This may bring some complication in the solution 
technique. However the remarkable progress of 
the computational fluid dynamics in recent years 
has enabled the solution of fully nonlinear bound- 
ary value problem of the free surface flow to be 
tractable at least in two dimensions. 

As far as the ship has no forward speed, 
the principal idea of the solution is similar to 
the nonlinear strip theory, by which the fluid 
motion at each transverse plane is purely two- 
dimensional and independent each other. When 
the finite forward speed is introduced, however, 
the fluid motion in a transverse plane at one 
cross section is subject to the effect of the fluid 
motion at other cross sections. Then the fluid 
motion around the hull becomes substantially 
three-dimensional. A great advantage of the slen- 
der body technique is that the three-dimensional 
fluid motion is determined by the solution of 
the two-dimensional boundary value problem at 
each cross section even though the fluid motion 
is three-dimensional. Then the numerical solu- 
tion for the nonlinear free surface flow is much 
simplified from the fully three-dimensional solu- 
tion. The numerical method for the solution of 
fully nonlinear free surface problem in two dimen- 
sions, which has been developed recently [5] [6], is 
available in the solution of the three-dimensional 
problem in this manner. 

In order to examine deck wetness, one must 
determine 
1. Vertical movement of the deck, 
2. Height of the free surface at the hull surface. 
The vertical movement of the deck is determined 
from the equation of motion of the hull. Since 
the fluid motion around the hull is nonlinear, the 
hydrodynamic forces and moments are nonlinear 
functions of the ship and the incident wave. Ac- 
cording to experimental data however, the nonlin- 
earity of the hydrodynamic forces and moments 
acting on the hull as a whole is not remarkable 
except in such extreme conditions that bottom 
slamming takes place. It is generally accepted 
that the solution of linear equations of motion 
predicts the ship motion fairly well, if the hy- 
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drodynamic coefficients in the equations are suit- 
ably chosen. Correction may be applied to the 
hydrodynamic coefficients determined by the lin- 
ear strip theory in order to illustrate the non- 
linear effect. The nonlinear slender ship theory 
enables the nonlinear computation of hydrody- 
namic forces and moments. Then the ship motion 
may be determined by integration of the nonlin- 
ear equation of motion, but the numerical work 
will become enormous. In the present work, the 
ship motion is assumed to be given by a simple 
equation. Then the boundary condition on the 
hull surface is given by known functions, and the 
fluid motion around the hull is determined un- 
der given boundary conditions both on the hull 
surface and on the free surface. 

Several problems are encountered in the de- 
velopment of a reliable computation scheme. The 
numerical solution shows instability sometimes. 
Another problem of difficulty is treatment of the 
intersection of the hull surface and the free sur- 
face, when the boundary condition takes different 
form on two boundaries of different kinds. Since 
the level of the point of intersection is the mea- 
sure of deck wetness, determination of it is very 
important in the present problem. Wave break- 
ing and spray are likely to appear on the bow 
region. The computation scheme should be able 
to handle the fluid motion accompanied by wave 
breaking and spray generation. 

In the present work, effort is made to over- 
come the above difficulties in order to find out a 
method of determining the free surface elevation 
at the bow, which governs deck wetness, when 
wave breaking or spray generation is present. The 
aim of this work is to develop a method of pre- 
dicting deck wetness, which is more accurate than 
the existing mothed based on the linearized strip 
theory. 

2 OUTLINE OF THE MATHEMATICAL 
FORMULATION 

Take the cartesian coordinates x, y, z fixed 
in space with the origin in the still water plane, 
with x and y—axes taken horizontally and z—axis 
taken vertically upwards. 

The fluid is assumed as inviscid and incom- 
pressible. Then the fluid motion started from rest 
is irrotational and is specified by the velocity po- 
tential # which satisfies the Laplace equation in 
the space occupied by the fluid. 

[L] $zz + $yy + *zx = 0 (1) 

where subscripts mean the partial derivatives. 
The boundary condition for  # consists of two 

parts. One is the boundary condition on the hull 
surface and the other is on the free surface. 

Fig. 1   Coordinate system. 

As shown in Fig. 1, consider a ship moving 
through a regular train of waves with average for- 
ward speed U in the direction of positive z-axis. 
Take another coordinate system (X, Y, Z) fixed to 
the ship, with X-axis along the longitudinal axis 
of the ship, y-axis athwart ships and Z-axis in 
the upward direction. The incident wave is taken 
to propagate in the x-direction with the profile 
expressed by the equation 

z = Cw = Asin(kx + ut + e0) (2) 

where k = 2TT/A = u2/g, A is the wave length 
and u> is the circular frequency. The ship makes 
oscillations with three degrees of freedom, i.e. 
surge, heave and pitch. The motion of the 
ship is expressed by coordinates of the center of 
gravity (xg, 0,zg)_ in terms of the x,y, z-axes, 
and the pitching angle 9, positive in the bow 
down rotation. The following transformation is 
valid between the coordinate system (x, y, z) and 
(X,Y,Z). 

X = (x - xg) cos 9 - (z - zg) sin 9 

Y = y (3) 

Z = (x - Xg) sin 9 + (z - zg) cos 9 

The geometry of the hull surface is expressed by 
the equation 

Y = F(X,Z) = f(x,z,t) (4) 

The body boundary condition at the hull surface 
SH is 

[H]    ft + #./« + $*fz -$v=0      on SB     (5) 

Writing 

Fx = dF/dX,     Fz = dF/dZ 

one can express (5) in the form 

(-ig cos 9 + zg sin 9 - Z9)Fx 

+{-xg sin 9 - zg cos 9 + X9)FZ 

+ $xfz + $zfz *» = 0 (6) 
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where dots mean time derivatives. 
The free surface condition consists of the 

kinematic and the dynamic conditions. If the free 
surface is expressed by z = C> the kinematic con- 
dition is 

[K]    Ct + **C« + *vCy ~ *« = 0   atz = C      (7) 

The dynamic condition that the pressure is con- 
stant on the free surface is 

[D]   #H-y(*»+.*jj+^)+ffC = 0     atz = C     (8) 

The velocity potential is the sum of the incident 
wave potential <j>w and the disturbance potential 
<j>, such as # = 4>w + i>. We have the condition 

at infinity $ = 4>w at y/x2 + y2 -* oo. If the 
depth of water is infinite, we have the condition 
<pz = 0 at z —> -oo. However these conditions for 
water of infinite stretch may not be convenient 
for numerical solution. Then the width and the 
depth of water are assumed finite in the actual 
computation. 

The solution of the boundary value problem 
defined above is simplified to a great extent by 
application of the slender body theory. The fun- 
damental assumption is that the breadth B and 
the draft d of the ship are both much smaller than 
the length L, B/L < l,d/L < 1. Now let us de- 
fine the slenderness ratio as e = d/L, and assume 
B/d = 0(1). The slender body theory is based 
on a singular perturbation in the near field. 

The formation is efficiently induced by the 
coordinate stretching technique. The governing 
equation is transformed to a system of stretched 
coordinate x', j/', z' such as x = x', y = ey', z = 
ez'. The solution is expanded in ascending pow- 
ers of e, the governing equation is reduced to the 
Laplace equation in two dimensions in the trans- 
verse y,z—plane, 

*«» + $» 0 (9) 

In applying similar techniques to the boundary 
conditions, we assume the following, 

C/i = 0(e),    zg/L = 0(e),    9 = 0(e) 

Then the hull surface condition is transformed to 

™=-[uFx+(ue+zg-xe)Fz][i+F2}-1/2   (io) 

where n is the outward normal of the hull contour 
and we can put X = x - xg. The kinematic and 
dynamic free surface conditions become 

Ct+#yCw-**=0      atz = C (11) 

In the derivation of the above equations, we have 
assumed W\^fd~fg= 0(1), where u\ is the circu- 
lar frequency of encounter, u>\ = w + kll, other- 
wise the free surface condition becomes a trivial 
form. 

Since the velocity potential is decomposed as 

$ = <Plv + 4> (13) 

The boundary condition for the disturbance po- 
tential 4> becomes 

90 
971 

[uFx + [ye + Zg- xfj FZ] 

i/2     d<f>w 
x  1 + Fi 

dn 
(14) 

If the incident wave is not steep, one can write 

dz ~ at ~Cw 

Putting 

v = u9 + zg-xe-iw 

the hull surface condition is written as 

d<f> ̂ = -(UFx + VFx)(l + Fl) ,2\-l/2 

(15) 

(16) 

(17) 

The free surface elevation due to the disturbance 

<i = C-Cv (18) 

Then the kinematic free surface condition can be 
written as 

Cit + <PXiy-<t>z=0   at* = C (19) 

The dynamic condition becomes on the other 
hand 

4>t+\{4>)+4>\)+<l>Äv+9b=Q     atz = C    (20) 

(i and <f> at the free surface are determined by in- 
tegration of (19) and (20) with time with a suit- 
able initial condition. It is more convenient to 
employ the Lagrangian time derivative in order to 
integrate the above equations with time [7]. The 
Lagrangian derivative or the material derivative 
in the two-dimensional j/,z-plane is defined by 

d       d       ,    d       ,   d 
dt     dt       y oy dz 

Then the kinematic condition is written as 

d^ A. onz = ( 

(21) 

(22) 
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while the dynamic condition is written as 

d^ _ 1 (A?  , A?\ ■tzL-gh     at* = C(23) 

Thus the free surface from z = £ and the value 
of 4> on the free surface are determined from (22) 
and (23) respectively, but we must know the val- 
ues of 4>y and 4>z on the free surface before inte- 
grating the above equations. The fluid velocities 
<f>y, <f>z are determined by the solution of the two- 
dimensional Laplace equation 

<Pw + 4>z 0 (24) 

which satisfies both the hull surface condition 
(17) and the free surface conditions (22) (23). 

It should be noted that the condition at in- 
finity, <f> —► 0 as y —> ±oo, is not applied, be- 
cause the solution is valid only in the near field. 
The solution of (24) is generally expressed in the 
form </>j + g(x), where <j>x satisfies the boundary 
condition and vanishes at infinity and g(x) is an 
arbitrary function of x only, which gives some in- 
determinateness to the solution. In order to make 
the solution definite, one has to determine <jr(a;) by 
matching with the far field solution which may be 
obtained in another way. According to the lin- 
earized slender ship theory however, it is proved 
that g(x) becomes negligible under the condition 
w \fd/g = 0(1). Therefore the condition at infin- 
ity holds in the present case. The solution in- 
dicates that the disturbance propagates in the 
direction of negative X only in reference to the 
coordinate system moving with the hull, so that 
the boundary value problem is of the parabolic 
type along the X-axis. Thus the solution is the 
parabolic approximation of the originally elliptic 
problem. 

Fig. 2   A transverse plane fixed in space. 

3 SOLUTION PROCEDURE 

The slender body technique reduces the 
problem to the two-dimensional boundary value 
problem in the plane perpendicular to the longi- 
tudinal axis of the ship as explained in the previ- 
ous section. One must remember that the prob- 
lem is formulated in the coordinate system fixed 
in space rather than the coordinate system mov- 
ing with the ship. Therefore the solution is found 
in the transverse plane fixed in space, and the 
hull is moving relatively to this plane as shown in 
Fig. 2. The cross section of the hull in the plane of 
solution at one instant is different from the cross 
section in the same plane at another instant. 

Take a transverse plane at a certain position 
x = x\ as the plane of solution. The domain in 
this plane occupied by the fluid is bounded by 
the hull cross section !# and the intersection of 
the free surface 7>. The boundary value prob- 
lem is to seek the solution of the two-dimensional 
Laplace equation (24), which satisfies the hull 
surface condition (17) on T# together with the 
free surface conditions (22) (23) on />. The so- 
lution is obtained at each instant on planes at 
various positions x = x\,X2,x$,-- ■. Then the 
three-dimensional flow field is determined. 

The boundary value problem described 
above is solved through two steps. 

[Step 1] 

Assume that the value of <$> on /> is known 
at a certain instant t = t\. The normal velocity 
<pn on /# is given by (17) if the motion of the 
hull is known. Now let us take a closed domain 
circumscribed by /#, /> and a contour i^o taken 
at a great distance surrounding the fluid domain, 
and apply Green's theorem in the domain Q in- 
side this boundary contour. Take a field point P 
inside /? and a source point Q on the boundary 
contour F = rH+fF+^o. Then Green's theorem 
gives 

^M-*ifyfaJ*^\*<25) 

where n is the normal to r in the inward direc- 
tion to ß, and subscripts P,Q mean the values 
at P and Q respectively. If P is a point on T, 
the integral is taken in the sense of the Cauchy 
principal value, and the equation becomes 

<Pn ~26Jr\dn -yQ?+k ,f]ds  (26) 

where 8 = re when the contour has a continu- 
ous tangent.  The normal velocity <j>n = d<p/dn 
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is given on /}/ by the hull surface condition (17) 
while <j> is assumed to be known on !>• If the 
contour i^o is taken at an infinite distance, the 
condition at infinity is valid and the integral along 
Too has no contribution. However it is found that 
rx taken at a finite distance is more conveninet 
for numerical solution. Here we take 2^ com- 
posed of two vertial lines on both sides of the 
hull and a horizontal, line representing the water 
bottom of finite depth, and impose the condition 
<j>„ = 0 on this boundary. The value of <f> on /# 
and Too is unknown, while <f)n on fy is unknown. 
Then a set of simultaneous integral equations for 
these unknowns is derived from (26). The integral 
equation is solved by a numerical method. 

[Step 2] 

The solution of the integral equation ob- 
tained in Step 1 gives the normal velocity d>n on 
i>. Since the velocity potential <f> is assumed 
to be known on If, the tangential velocity on 
Tf is obtained by differentiation of <f> along fjp, 
<j>$ = d<f>/ds. The y and z components of the 
fluid velocity on the free surface are determined 
by 

*y = (*. + *n<iy)/(i + G2
y)

1/2 (27) 

(28) 

The free surface elevation and the velocity poten- 
tial on the free surface at subsequent instants are 
determined by the evolution equations (22) (23) 
respectively. Applying the values of (27) and (28) 
to (22) (23), the increment of (j and 4> in a short 
interval At is given by 

initial point must be defined. The initial point is 
at the intersection of the stem of bow with the 
free surface, and the computation starts at the 
instant when the initial point reaches the control 
plane. The simplest idea for the initial condition 
is that <p = 0 on the undisturbed free surface, 
while the normal velocity on the hull surface is 
given by the hull surface condition. However it is 
found after some trial computation that difficulty 
appears in the numerical solution of Step 1 by this 
type of initial condition because of the singular- 
ity at the intersection of the hull surface and the 
free surface. The initial condition employed here 
is as follows. In the first time interval after the 
initial point, the scale of the hull cross section in 
the control plane is very small, that means large 
Froude number of local fluid motion and the effect 
of gravity does not contribute to the fluid motion 
much. If the ship has a raked stem, the motion 
of the hull contour in the control plane is simi- 
lar to the vertical motion of a sharp wedge, for 
which there is an analytical solution if gravity is 
not present. Here we employ Mackie's solution [8] 
for the entry of a sharp wedge into a free surface 
as the initial condition. According to this theory, 
the velocity potential and the free surface eleva- 
tion, when a wedge of apex angle a enters the free 
surface at the velocity V, are given by 

„2 j_ (z + z'f 
<t> 2* J0 

In 
y2 + (z - z'f 

■ dz' 

ln( 1 + \ 

where y and z are 
normalized by V2t. 

+2j/tan' 
\y 

(32) 

(33) 

normalized by Vt and <p is 

40 = At d(,i/dt 

A<f) = At d<j>/dt 

(29) 

(30) 

These values are calculated with respect to a def- 
inite fluid particle. The position of the particle is 
determined by 

dy    J. dz 

~dt tfV+C,v (31) 

Thus the free surface elevation £ = £„, + Ci and 
the velocity potential on the free surface at the in- 
stant <2 = ti+At are determined, and the bound- 
ary value problem in Step 1 at the time t — t^ is 
fully defined. The step by step, time marching 
procedure of Step 1 through Step 2 determines 
the evolution of the flow field in a control plane 
at a definite position x = x\, say. Since this is an 
initial value problem, the initial condition at an 

' y 

r„ n, 

///////////////si/;////. 

Fig. 3  Computational boundary. 

4 NUMERICAL METHOD 

The integral equation in Step 1 is solved by a 
numerical method. The boundary integral equa- 
tion is written in the form 
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where       1 +_ü±^/^U—L_/' 
G(P, Q) = - In [{yp - yQf + (zp - zQ)

2\   (35) »J+i-'jJj »J+i-*jJj 

ri+i 
sGnds (40) 

The numerical boundary is taken as that in Fig. 3. 
On the hull surface contour J#, <j>n is given by 
the boundary condition, and on the free surface 
contour TF, <f> is given by the result of computa- 
tion in Step 2. On the outer boundary, we set 
<p„ = 0. The outer boundary is divided into the 
side wall TV and the water bottom /#. The con- 
dition of the horizontal water bottom is satisfied 
by taking the image with respect to the bottom 
line at z = —h. Hereafter we define I# and if 
by including their image contours. 

The integral equation (34) is written for a 
point P on fji or fw in the form like 

Gds = HP + (       <f>Gnds- I <f>n 
Jr„+rw JrF 

I   <f>„Gds- I   <f>Gnds     (36) 
J rH JrF 

where G = G{P,Q),Gn = dG(P,Q)/dnQ for 
brevity. If the point P is on ff-» the integral equa- 
tion is written in the from 

Gds = f <f>Gnds - f   4>n 
Jr„+rw JrF 

+ /   <f>nGds- /   <pGnds 
JrH JrF 

ir„+rw 

-es (37) 

The right hand sides of the above equations are 
known quantities. The contour is divided by dis- 
crete points with small intervals by straight line 
segments connecting each adjacent point. The 
values of 4> and <j>n are defined at these points, 
and the linear variation of <f> and <pn is assumed 
along each segment. The integral equation is then 
replaced by a set of simultaneous linear algebraic 
equations. The value of 6 in the integral equation 
in this time is the angle interior to the domain Q 
between each contiguous segment. 

The simultaneous algebraic equations can be 
written in the matrix form 

I* 
\\D2)\\{$}}-[[B2 

[Ci]if{*»n 
[C2]J\{#n}/ 

(38) 

where <p, <f>n mean values on /}/ or .ZV, and $, #n 

on Pp. If we write the above equation in the sim- 
pler form 

\Aij}{<pj} = \Bij){<pnj} (39) 

the elements of the matrices are given by 

+ • 

j-Sj-lJj-l 

fj+i_ f 

i+l-sjJj 

■j+l 
Gds- 

j-Sj-lJj-l 

—I 
7+1 
sGds (41) 

We have a system of linear algebraic equations 
with respect to <f>j on TJJ and TV and <pn on 
rp- The unknown values of </> on JTH and Jjy and 
<f> on Tp are determined simply by the matrix 
inversion using the computer. Thus the flow field 
in a certain transverse plane E at a certain instant 
t = ti is completely determined. 

Fig. 4 Intersection point. 

There are several points which need special 
treatment. Since a measure of deck wetness is 
relative height of the wave surface at the hull 
surface, and the point of intersection of the hull 
surface and free surface presents the top of the 
wetted region on the hull surface, it is obvious 
that cautious treatment of the intersection point 
is very important for the prediction of deck wet- 
ness. Several researchers have presented methods 
to treat this point, but some of their methods 
seem to be inaccurate, and some are not suit- 
able in the present problem. The values of <j> 
and <f>„ are defined at nodal points connecting 
adjacent line segments which replace the bound- 
ary contour. Though the potential is unique at 
any nodal point, the normal velocity <f>„ does not 
have a unique value at nodes where the normal 
to the boundary is not unique. In particular, the 
intersection point is a special node at which <f> is 
continuous while <f>n is different on each side be- 
cause of different boundary conditions as shown 
in Fig. 4. Write <j>* for the normal velocity to 
the hull surface and <p~ to the free surface at the 
intersection point. Since <f>* is known and <f>~ 
unknown, (39) can be transformed to 

A-=6iSij+l^J-I?nds-l^I^ds \M {*,} = [Bij] {^.} + [cj {#} (42) 
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where <j>~ € <f>nj. The unknown <f>~ is determined 
from the above equation. 

Another kind of nodal point which needs spe- 
cial treatment is the tip of the spray jet which 
sometimes occurs. The potential is given at this 
point, while the unknown normal velocity at the 
free surface has different values on both sides of 
the jet. Two unknowns at the same nodal point 
require another equation. The method to solve 
this problem involves discontinuous elements in- 
troduced by Brebbia and Dominguez [9] as shown 
in Fig. 5. Instead of the nodal point B connecting 
segments AB and BC, we take a point B' on AB 
and B" on BC. Then $ and <f>n are calculated at 
B' and B". The values of <f>n at B on both sides 
of the jet are obtained by extrapolation. 

Nodal value of <f> or <j>n 

\ 

Fig. 5  Discontinuous elements. 

The next time step is the determination of 
the free surface at the instant slightly later by 
a short time interval At. For each time step, 
the main computations described below are per- 
formed for the determination of the free surface. 
1) Determination of unknowns <f>, $„: Equa- 
tion (42) is rearranged in the form 

[A]{X} = {Y} 

A} = 
[AiU-C,] 
[M]\-C2\ 

(43) 

(44) 

(45) 

{y}= [MMI»} w 
where [Fj] and [F2] are subvectors of [Ct] in (42). 
The right hand side of (43) is a known vector, and 
{X} is determined by the matrix inversion. 
2) Time-stepping: The position of fluid parti- 
cles and values of potential <p, on the free surface 
for the next time at t = t\+At, are determined by 

j/(<1+Zlt)=y(*i)+0!/(*i)4t (47) 

2(t1+4*)^(tiH^z(<i)4f-K,v(«i+4«K„(i1) (48) 

<P(h+At)=<fi(h}^{<j>lHZ)^L-9Ci} £t   (49) 

The fluid velocity 0y,<£z is calculated by (27) 
(28), and the tangential velocity <f>s is expressed 
by a finite difference of <f> using the three point 
Lagrange interpolation. 
3) Smoothing: To depress a sawtooth insta- 
bility of the wave profile, the five-point smooth- 
ing algorithem is used to filter the points which 
are not equally spaced on the free surface, s,- in 
the following formula is the distance between two 
nodal points. 
For the first point (edge point): 

7S-1'- 2 lm-si 
M/o+/0-»i(/o+/3)]+ 

&(/.-«-«-/<)!} %l{n-t)' 

For the second point: 

-r- 1 

(50) 

7ö=^r
J-r{-^-h(/o+/-i)+5-1(/o+/i)]- 

2{m-s\) ls_i+si 

^r-Mfo+f-^ + s-xifo + fz))} (51) 

For the center point: 

fo=U—!—{si(fo+f-i)+s-i(f0+h)}+ 

S-\S\ 

l-Ml-^mrs-^l-'urh)^ (52) 

where £-2 = s_2 + s~i,£ = £2 = »i + S2,m = 
S\ + S2 + S3,11 = Si + S2 + S3 + «4- 
4) Regriding: In some cases, node points on the 
free surface, especially near the hull, are either 
too close to or too far from each other, leading 
to numerical difficulties. The regriding technique 
is a useful way to keep the computation accu- 
rate. If the computed distance is less than dmtn 

or greater than dmax which are the input control 
parameters, the points only near the hull are re- 
distributed by cubic spline or linear interpolation. 

Thus the computation at the next time step 
is repeated by the above procedure 1) through 4). 
Since the ship is moving with forward speed U, 
the hull section moves astern in each time inter- 
val, and reaches the stern at the time L/U after 
the beginning of the above procedure at the bow. 
Therefore the result of computation in one round 
dose not express the time evolution of the free sur- 
face at a definite section of the ship nor the free 
surface elevation in different sections at the same 
instant. In order to complete the computation to 
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obtain the result for every section throughout the 
length of the ship, the same computation proce- 
dures starting from the bow should be repeated 
by shifting the initial instant by the time inter- 
val At = Ax/U, where Ax is the interval of the 
section for which the result is required. 

chosen in such a way that the numerical results 
are obtained at the hull sections with the inter- 
val Ax = L/800. The reliability of the numerial 
results is comfirmed by changing the interval Ax 
and the grid density on the free surface. 

5 NUMERICAL EXAMPLES 

A frigate model shown in Fig. 6 is employed 
for the numerical example. The computation of 
ship motion in regular waves by means of the strip 
method and results of towing tank experiment 
of this model have been published by O'dea and 
Waiden [10]. 

0.5 

:       i I       : 

Fig. 6  Body plan of a frigate model 
(L=4.5Tn>j0=O.496m,<fc=O.163m). 

Numerical computations are carried out in 
two conditions. The first is the steady forward 
motion in still water. The Froude number varies 
from 0.10 to 0.60. We take W = 60B and h = 1.2L 
as the computationl domain. The number and 
intervals of the nodal points distributed on three 
boundaries /}/, Ry and /j? are as follows. 
(1) On /}/: The number of nodes depends on 
the wetted depth of the hull contour, such as 
As = d/20 near the keel and As = d/40 near 
the point of intersection with //•. 
(2) On TV: 15 points are distributed with an 
equal interval. 
(3) On i>: 150 points are distributed from the 
intersection with /}/ in an equal interval As = 
B/100, and other 50 points are distributed along 
the remaining part of the boundary with arith- 
metic intervals. 

The numerical results at the time interval At 
give the free surface profile in the transverse sec- 
tions with intervals Ax = UAt. The time step is 
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Fig. 7 Bow wave breaking for a fixed ship in 
still water at Fn = 0.10, zlt = 0.0085s. 
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Fig. 8  Bow wave breaking for a fixed ship in 
still water at .Fh = 0.15, At = 0.0056s. 

The results of computation are illustrated 
in Fig. 7 through Fig. 13. At low Froude num- 
bers less than 0.2, generation of spray is not ob- 
served, but diverging waves generated at the bow 
are gradually steepened and eventually break at 
the pointed crest, suggesting the white cap. At 
Froude number 0.2, overturning of the wave crest 
is observed, but the spray is not developed yet. 
At Froude number 0.3, generation of spray by the 
overturning free surface is clearly observed. At 
Froude number 0.4, some instability appears on 
the free surface underneath the spray root, which 
may suggest the spilling type of wave breaking 
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Fig. 9  Bow wave breaking for a fixed ship in 
still water at .FH = 0.20, At = 0.0042 s. 

Fig. 12 Bow wave breaking for a fixed ship in 
still water at Fn=0.5Q, At=0.0017 s, 
interval for plotting: 4 cross sections. 
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Fig. 10 Bow wave breaking for a fixed ship in 
still water at fh = 0.30, At-0.0028s, 
interval for plotting: 2 cross sections. 
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Fig. 13 Bow wave breaking for a fixed ship in 
still water at .FH = 0.60, At = 0.0014s, 
interval for plotting: 6 cross sections. 
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Fig. 11 Bow wave breaking for a fixed ship in 
still water at i^ = 0.40, ZU = 0.0021s, 
interval for plotting: 3 cross sections. 

instead of the plunging type. At Froude num- 
ber 0.5, some undulation appears on the free sur- 
face under the spray sheet, and this undulation 
grows up further at Froude number 0.6. This phe- 
nomenon suggests another type of wave breaking. 

The second case is the same ship mak- 
ing heaving and pitching oscillation in sinusoidal 
head sea waves as expressed by Eq.(2) at uniform 
forward speed of Froude number 0.3. The length 
of the incident wave is so chosen as X/L = 1.2, at 
which the maximum amplitude of the oscillations 
is observed in the experiment. The ship motion 
is given by 

Z = ZA s\\\(u>it + kxg + e0 + £l) 

6 = 6A sin(o>1< + kxg + e0 + £2) 
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where u\ = CJ + kU and xg is the x-coordinate 
of the center of gravity referred to the origin at 
F.P.. Values of ZA, 6A, £\ and £2 are taken from 
experimental data of O'dea et al [10]. 

No.l control plane 

Fig. 14 The position of the No.l control plane(a) 
and the expression of the initial phase 
of the incident wave(b). 

The position of the control plane is denned 
by the phase angle of the incident wave on the 
control plane at the instant when the foremost 
point of the bow arrives at this control plane 
as shown in Fig. 14, and the numerical proce- 
dure starts at this instant. If the control plane 
fixed in space is arranged with the interval Axg, 
the phase difference between adjacent planes is 
Aeo = ((JJI/U)AXO- The numerical results for the 
free surface profile are obtained at hull sections 
with the interval Ax = Z-/1000, so the time inter- 
val of the computation is chosen as At = 0.002256 
seconds. The reliability of the numerical results 
is checked by changing the interval Ax and the 
grid density as before. 

Three kinds of the wave steepness (the ratio 
of wave height to wave length) i.e. H/X = 0.02, 
0.03 and 0.04 are chosen for the numerical ex- 
amples. Computations are carried out at control 
planes at en = 0.0, 7r/4, TT/2, 3TT/4, n and 77r/4. 
However the preliminary computation has shown 
that there is no possibility of deck wetness at £n 
greater than TT/2, so that results with en = 0.0, 
7r/4 and IT/2 will be given here. 
1) Results of H/X =0.02 

The evolution of the free surface profile in 
the bow region at the control plane £n = 0.0 is 
shown in Fig. 15. At Section 133(X/i = -0.058) 
of the hull, the level of the free surface exceeds 
the deck height, but water is pushed aside by the 
hull at the deck side. The overturning of the free 

surface results the sheet of spray jet directed out- 
ward, so that there is no shipping water on board 
as far as the vertical movement of the free sur- 
face relative to the deck is upward. At Section 
201(X/L = -0.126) however, the relative motion 
of the free surface turns to downward. Then wa- 
ter once lifted above the deck level is scooped up 
at the deck side, and a small amount of shipping 
water enters on deck as shown in Fig. 16. 
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Fig. 15 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (H/X = 0.02, en=0.0), 
interval for plotting: 2 cross sections. 
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Fig. 16 The magnified portion of water entering 
on deck in Fig. 15. 

The result at the control plane en = T/4 is 
shown in Fig. 17. The overturning free surface 
and the outward spray sheet are similar to the 
former case, but shipping water resulted by the 
relative movement of the free surface as shown in 
Fig. 16 in the former case does not take place in 
this case. Another difference is the appearance of 
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undulation of the free surface beneath the spray 
sheet, which may cause the breaking of free sur- 
face behind this position. 
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Fig. 17 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (if/A = 0.02, e0=7r/4), 
interval for plotting: 4 cross sections. 

The result at the control plane £o = 7r/2 is 
shown in Fig. 18. The behavior of the free surface 
is different from the former cases. As the heave 
of free surface exceeds the deck level at Section 
58 much closer to the stem than in the former 
cases due to deep immergence of the bow, the 
spray appears at the tip of heaved water and turns 
inward over the deck due to outward movement 
of the deck side. Then shipping water on board 
is resulted. 
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Fig. 18 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (H/X = 0.02, £o = 7r/2). 

Computations at the control plane Co   = 
37r/4, 7r and 7ir/4 show no shipping water.   As 

a consequence, one can conclude that deck wet- 
ness begins to take place in the wave height 
H/X = 0.02 at eo = 0.0 and TT/2. This result 
is in agreement with experimental data. 
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Fig. 19 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (fl/A = 0.03, £o = 0.0), 
interval for plotting: 2 cross sections. 
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Fig. 20 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (if/A = 0.03, eo=ir/4). 

2) Results of H/X =0.03 

The behavior of the free surface is quite dif- 
ferent from the former case, because of the greater 
motion of the hull. Heavy deck wetness is re- 
ported in the experiment. The numerical result at 
e0 = 0.0 is shown in Fig. 19. As the bow plunges 
into the wave surface, a mass of water is raised 
up on both sides of the deck in thick spray like 
liquid walls. Water at the top of the wall spreads 
in both directions, forming spray sheets direct- 
ing inward and outward to the hull. The inward 
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spray falls on deck, resulting heavy deck wetness. 
This phenomenon is similar to the collapse of a 
liquid column. 

The result at £o = 7r/4 is shown in Fig. 20. 
After the heaving free surface exceeds the deck 
side, spray directing inward similar to the case 
of Fig. 18 appears at the tip, bringing shipping 
water. A similar behavior of the free surface is 
observed at the hull section closer to the stem at 
e0 = 7r/2 as shown in Fig. 21. 
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Fig. 21 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (H/X = 0.03, £o = 7r/2). 

3) Results of H/X =0.04 
The result at e0 = 0.0 is shown in Fig. 22. 

The free surface phenomenon like the collapse of 
a liquid column is similar to that in Fig. 19, but 
in a much exaggerated form. The spray sheet at 
the top of lifted water is stronger, resulting heavy 
deck wetness. 

Fig. 23 shows the result at £o = n/4. The 
heaved free surface turns inboard as exceeding the 
deck side and brings heavy shipping water in the 
bow region. 

A similar phenomenon appears at the hull 
section closer to the stem at £o = T/2 as shown 
in Fig. 24. 
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According to the experimental observation, 
the bow of the ship is lifted above the wave surface 
almost clear of water at the phase angle greater 
than £o = 7r/2. Then slamming is likely to take 
place at the bow region. The present computation 
scheme is not applicable to this situation. 
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Fig. 22 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (if/A = 0.04, £o=0.0), 
interval for plotting: 2 cross sections 

Fig. 23 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (jff/A = 0.04, £O = TT/4). 
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Fig. 24 Wave elevation for a ship with heaving 
and pitching oscillation in sinusoidal 
head sea waves (H/X = 0.0i, £o = 5f/2). 

Programming of the numerical method and 
testing of the numerical examples were performed 
on an IBM Supercomputer (ES/9000-900). And 
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the final computations were run on a HP Work- 
station machine (Hp9000 Model 715/50). For the 
case of Fig. 15, the CPU time of the HP machine 
was about 9280 seconds. Approximately, 25% of 
the time corresponded to calculating the elements 
of the matrices Eqs.(40) (41), 67% to obtaining 
the solution of Eq.(43), and 8% to regriding and 
smoothing nodal points on the free surface, saving 
data into files and so forth. 

6 CONCLUSIONS 

Nonlinear computations of the free surface 
elevation at the bow region of a frigate model 
in the steady forward motion as well as in the 
heaving and pitching oscillations are carried out 
under the slender body approximation. 

The computation for the steady forward mo- 
tion well simulates the generation of spray and 
the breaking of bow waves. It is found that the 
pattern of breaking wave changes according to in- 
crease of forward speed. 

The computation for the oscillating ship at 
forward speed of Froude number 0.30 shows the 
effect of the incident wave height. At the wave 
height of H/X = 0.02, a mass of water is raised 
above the deck and pushed aside forming spray 
like the plunging breaker. However only a small 
amount of shipping water is observed. At greater 
wave height H/X = 0.03 and 0.04, heavy deck 
wetness is resulted by falling water from the thick 
spray sheet at the lifted free surface over the deck. 
Deck wetness begins at the wave height H/X = 
0.02, and the result is in good agreement with the 
experimental observation. 

Deck wetness does not necessarily take place 
even when the free surface heaves above the deck 
level, as water is pushed aside by the hull surface 
generating outward directing spray. It is found 
that the forward speed and the vertical motion of 
the hull relative to the heaving free surface have 
much influence to the water shipping on deck. 

As a conclusion, the present method serves 
as a useful tool for a more accurate prediction of 
deck wetness at large amplitude motion of a ship 
in rough seas. 
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Effects of Skew and Rake on Cavitation Inception for 
Propeller Blades with Thick Blade Sections 

G. Kuiper (Maritime Research Institute, The Netherlands) 

The Guided Missile Frigate "De Ruyter" of the Royal Netherlands Navy 

ABSTRACT 

Using a design method for unsteady condi- 
tions the effects of skew and .rake on cavitation 
inception are investigated. The type of cavita- 
tion at inception is tip vortex cavitation. The 
effect of a thick blade tip has been shown ear- 
lier. In this paper extreme rake is applied at the 
blade tip, which had a very favorable effect on tip 

vortex inception. This effect is additional to the 
effects of a thick blade tip. The effect of rake is 
greater and also different than that of skew. Full 
scale verification of a new propeller design with 
extreme rake and with a thick blade tip confirms 
the favorable behavior of cavitation inception on 
a raked propeller. 
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NOMENCLATURE 

On 

D 

P 
n 
Vv 
Po 
Kj 

T 
J 
Vs 

R 

description 
P0-Pv 
pn2D2 

Propeller Diameter 
Specific Mass 
Propeller Rotation Rate 
Vapor Pressure 
Undisturbed Local Pressure 
Thrust Coefficient 

unit 

m 
kg/m3 

sec-1 

N/m2 

N/m2 

pn2D4 

Propeller Thrust 
Propeller Advance Ratio -^ 
Ship speed 
Propeller Radius (0.5 D) 

N 

i/sec 

INTRODUCTION 

In a previous paper [1] a design method to 
maximize the inception speed of frigate propellers 
was described. In this method the blade sections 
were adapted to the inflow variations encountered 
in a wake behind the ship. The optimization of 
the blade sections is based on the minimum pres- 
sure at these blade sections and therefore takes 
only sheet and bubble cavitation into account. 

The method was applied to improve the ex- 
isting propeller of a Dutch guided misslile frigate 
Hr. Ms de Ruyter. One effect of the adaptation 
of the blade sections to the wake for this ship was 
a significant increase of the maximum thickness 
of the blade sections. The inception speed for 
sheet and bubble cavitation could easily be kept 
over 25 knots. However, the inception speed of 
a ship is nearly always determined by inception 
of tip vortex cavitation. The application of the 
thicker, new blade sections resulted also in a con- 
siderable increase of the inception speed for tip 
vortex cavitation. Although inception of tip vor- 
tex cavitation and its scaling problems were out- 
side the scope of the design method, the effects 
of the new, thicker blade sections triggered some 
additional investigations on tip vortex inception. 
In this paper the design method as described in 
[1] is applied for alternative designs with extra 
skew and with an extreme rake distribution, to 
investigate the effect of skew and rake on such 
propellers. The final design with rake was manu- 
factured at full scale and investigated behind the 
ship. 

PROPELLER DESIGNS 

In [1] the existing propeller of the frigate was 
improved using the same number of blades, blade 
contour and radial loading distribution.The ex- 
isting propeller was optimized in a wake distri- 
bution, of which the axial velocity distribution 
at 0.7R is shown in Fig. 1.   The resulting pro- 
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X 
a > 
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I.Ü 

0.8 

06 
120 240 360 

Figure 1: Axial Inflow Velocity at 0.7R 

peller with the blade section optimized at 0.8 R 
was designated propeller A. This nomenclature 
will be maintained in this paper. In [1] the ra- 
dial loading distribution was varied to investigate 
the effect on the inception speed. In that con- 
text a loading distribution with unloaded tip and 
hub was used. The propeller with this loading 
distribution was designated propeller B. The un- 
loading of the tip was found to be too extreme, 
so in the final design stage a third radial loading 
distribution was used, together with optimization 
of blade sections at two radii (0.6R and 0.8R). 
The resulting propeller was designated propeller 
D. The loading distributions of these propellers 
are shown in Fig. 2. 

In this paper these propellers will be used to 
investigate the effect of skew and rake. 

Propeller A was used a the reference propeller 
for the application of rake. The rake distribution 
of the existing propeller (Fig. 3), which had been 
maintained for propeller A with the new blade 
sections, was changed into a strongly varying rake 
at the outer radii, as shown in Fig. 4. The idea 
was to decrease the sensitivity of the blade tip 
to axial and tangential velocity variations. This 
results in a cusped blade, with the tip bend back- 
wards (towards the propeller face). The design 
of propeller A was repeated with this rake distri- 
bution, while the radial loading distribution and 
the blade contour of propeller A were maintained. 
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PROPELLER A 
PROPELLER B 
PROPELLER D 

Figure 2: Radial Loading Distributions 

Figure 4: Rake Distribution of Propeller A-rake 

sections the same thickness- and camber distrib- 
ution was used. Only the pitch and the maximum 
camber was adapted to maintain the radial load- 
ing distribution. 

Figure 3: Existing Rake Distribution 

This raked propeller is designated Propeller A- 
rake. 

Propeller B was used a the reference propeller 
for the application of skew. The blade contour, as 
had been used for all other propellers (Fig. 5) had 
a moderate skew. The skew was doubled, result- 
ing in the contour of Fig. 6. The propeller with 
skew is designated propeller B-skevv. The effects 
of skew and rake on the operational curve was 
small, so for all propellers with modified blade 

Figure 5: Existing Blade Contour 

Based on the results with propellers A, B ,A- 
rake and B-skew two final designs were made. 
The design without rake was designated propeller 
D and this propeller had the radial loading dis- 
tribution as given in Fig. 2. A variation on this 
design was the application of rake to this pro- 
peller. Based on experimental results of propeller 
A-rake a smoother rake distribution was chosen, 
as shown in fig. 7. The propeller with this rake 
distribution is designated propeller D-rake. This 
propeller was ultimately chosen for full scale ver- 
ification. 
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Figure 6: Contour of Propeller B-skew 

Figure 7: Rake Distribution of propeller D-rake 

In summary: All propellers except the exist- 
ing propeller on the ship had new blade sections. 
Propellers A,B,A-rake and B-skew had one sec- 
tion type at all radii, based on optimization in the 
wake at 0.8R, propellers D and D-rake had a vari- 
able section shape over the radius, based on opti- 
mum blade sections at 0.6R and 0.8R. An exten- 
sion in the designation of the propeller indicates 
the design parameter that has been changed. 

Radial Interpolation of New Blade Sections 

When more than one blade section is applied 
in a propeller design a radial interpolation has 
to be applied to arrive at intermediate blade sec- 

tions. In the case of propeller D the blade sections 
at 0.6R and 0.8 R are determined. The blade sec- 
tion at 0.6R has been maintained at radii below 
0.6R and the blade section at 0.8R has been main- 
tained outside 0.8R. In between of those radii a 
gradual transition has been made using a weight 
factor for both camber and thickness. 

The Use of ANPRO and PBD10 

When the blade sections have been deter- 
mined using the program of Eppler and Somers, 
their chordwise loading distribution is used for 
the determination of the blade sections. The 
M.I.T. program PBD10 is applied for this pur- 
pose. However, this program calculates the sec- 
tions for shock-free entrance in the mean wake. 
This is not necessarily so for the blade sections, 
certainly not when the wake peak is strong. In 
the case of frigates the difference was negligible, 
however. 

Another complication was that during the 
analysis of the unsteady conditions the MARIN 
lifting surface code ANPRO was used. The po- 
sitioning of the singularities and the wake model 
are slightly different from PBD10, which resulted 
in discrepancies in the calculated radial loading 
distribution. When propeller D was designed us- 
ing PBD10 with a given radial loading distribu- 
tion and ANPRO was used to determine the ra- 
dial loading distribution of the design, the differ- 
ence was as given in Fig. 8. No further corrections 
have been made to correct this difference. 

The Open Water Inception Diagram 

Radius 

Figure 8:   Difference in Calculated Loading be- 
tween ANPRO and PBD10 

Inception curves of all propellers were made 
both in open water condition and in behind con- 
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dition. The comparison can be used to judge the 
sensitivity of the propeller to inflow variations in 
a wake. 

The inception curves in open water were 
made in the Cavitation Tunnel. These inception 
curves will not be given fully in this paper. In- 
stead the width of the cavitation bucket at a cer- 
tain cavitation index <x„ will be given, as illus- 
trated in Fig. 9. 

For a certain propeller the cavitation index 
is mainly determined by the rotation rate of the 
propeller. The corresponding value of KT can be 
controlled by the propeller pitch. For limited vari- 
ations of the pitch the cavitation index will not 
change significantly, so by adjusting the pitch the 
operating condition can be moved horizontally. 
At a certain value an the width of the bucket w 
determines the range of the propeller loading at 
which cavitation free operation is possible. 

the distance 6 between the operating condition 
and the inception curve for bubble cavitation in- 
dicates the speed range available before bubble 
cavitation occurs. 

For comparison with the inception diagram 
in behind condition the value of w from the open 
water diagram will only be given (as AKT)- This 
value will be given at a cavitation index a„—2. 
This value corresponds with a ship speed of ap- 
proximately 23 knots. 

EFFECTS OF SKEW 

The inception curves in behind condition were 
made in the MARIN Depressurized Towing Tank 
at a model scale of 1:15. The inception curves 
from the model are extrapolated to full scale with 
a power of 0.35 for the Reynolds number ratio 
between ship and model, so 

ai(ship) = [Rn(ship)/Rn(model)]°-35an{model) 

Figure 9: Margins in Open Water Inception Dia- 
gram 

When the speed of the ship increases the KT 

value does not increase very much, but the cavi- 
tation index decreases. So the distance h between 
the lowest point of the bucket and the operating 
condition indicates the speed range which is avail- 
able for sheet or tip vortex cavitation. Similarly 

The inception curve of propeller B is shown 
in Fig. 10, the inception diagram of propeller B- 
skew is shown in Fig. 11. 

FACE   SHEET\ TIP VORTEX FACE 
(SCALED UP) 

TIP VORTEX BACK 
(SCALED UP) 

BACK SHEET 

BACK BUBBLES 

0.1 0.2 0.3 0.4 
*T 

Figure 10: Inception Diagram of Propeller B 

In both cases the design point, indicated by a 
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BACK  SHEET 

IACK BUBBLES 

0.1 0.2 0.3 0.4 

Figure 11:   Inception Diagram of Propeller B- 
skew 

B B-skew 
tip vortex 

sheet 
0.2 

0.095 
0.21 
0.13 

Table 1: Width of the Inception Bucket in Open 
Water Condition 

cross, is on the inception curve for back sheet cav- 
itation. (For these propellers the blade section at 
0.8R has been optimized only and this causes that 
the minimum of the bucket for sheet cavitation is 
not at the KT value of the design point.) The ef- 
fect of skew on tip vortex inception is significant, 
especially at low values of a. There skew causes 
a widening of the inception bucket. This is a well 
known effect of skew. The bottom of the bucket 
cannot be determined, because in that case there 
is no cavitation at model scale. It should be kept 
in mind that both propellers B and B-skew have 
thick blade sections. 

The bucket width w in terms of AKT in open 
water conditions is given in Table 1. In open wa- 
ter conditions the effect of skew on tip vortex in- 
ception is smaller, so the change in behind condi- 
tion is caused by the unsteady behavior in a wake. 

The model cavitation pattern in behind con- 
dition at full power is shown in Figs 12 and 13. 

The sheet cavitation which was present at pro- 
peller B has been increased, but more important 
is that its maximum has shifted towards inner 
radii, which has a potential for erosion and dam- 
age. Still, in both cases the amount of sheet cav- 
itation is very acceptable. The downgoing blade 
exhibits some bubble cavitation, which has a very 
fine structure due to the application of roughness 
at the leading edge. Although this is often con- 
sidered harmfull, there are indications that this 
fear is exaggerated [2]. 

EFFECTS OF RAKE 

Figure 12: Cavitation Pattern on Propeller B 

To improve the inception behavior of tip vor- 
tex cavitation further a new development has 
been investigated: the application of extreme 
rake at the tip. The intuitive reasoning behind 
it was that axial and tangential inflow variations 
would result in smaller loading variations at the 
tip. For this application propeller A was used 
as the reference propeller. The bucket of the tip 
vortex of propeller A is more narrow than that of 
Propeller B due to the heavier tip loading. 

The inception diagram of propeller A in be- 
hind condition is given in Fig. 14. The inception 
diagram of Propeller A-rake is given in Fig 15. 
The effect of rake on inception of sheet and bub- 
ble cavitation is small, but the applied rake has 
a similar effect as the skew: it opens the incep- 
tion bucket of the tip vortex. This effect was also 
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Figure 13:   Cavitation Pattern on Propeller B- 
skew 
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- 
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Figure 15: Inception Diagram of Propeller A-rake 

TIP VORTEX   BACK 
(SCALED UP) 

FACE  SHEET 

BACK  SHEET 

BACK   BUBBLES 

0.1 0.2 
KT 

Figure 14: Inception Diagram of Propeller A 

found in open water condition, as is shown in 
more detail in Fig. 16. In terms of the bucket 
width the effect of rake is given in Table 2. 
The cavitation pattern at full power is given in 

Figs 17 and 18. A slight increase of sheet cavita- 
tion at inner radii is visible. It is not sure if the 
patch of sheet cavitation at inner radii in Fig. 18 
is real. In any case the amount of cavitation is 
only minor. 

A A-rake 
tip vortex 

sheet 
0.14 
0.11 

0.15 
0.10 

Table 2: Width of the Inception Bucket in Open 
Water Condition 

During the manufacturing of the model pro- 
pellers it was recognized that the blade tips of the 
raked propeller were not thick at all. The defini- 
tion of the thickness is in axial direction and the 
strong rake makes the blades with the same thick- 
ness in axial direction much thinner when mea- 
sured perpendicular to the blade surface. Since 
the experience on propeller A was that the thick 
blade tip delayed inception of tip vortex cavita- 
tion, a further improvement might be possible 
when the blade thickness (in axial direction) was 
further increased, so that the thickness at the tip 
perpendicular to the blade with and without rake 
was comparable. This was applied in the final de- 
sign. 

CHOICE OF THE FINAL DESIGN 

At this point the increase of inception speed 
based on model tests in the depressurized towing 
tank was as shown in Fig. 19. The reference is the 
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itation with and without Rake 

-:. ^^IH 

^K' 1 """'"v~ '' %<^^Bifl 
^^^^^^^^^^^^H§ 

"1         '"•■■■ 
* ^JRH 

^^F                           ^*T?% ^fl 

4 ^^H ^El£$r' \ 
%ifiSH 

;. Jjj 
f~'faL 

BBS1-*        A JB 8iBtt3Sy51l 2B?a£r" 

V,     TH IS !?■ 
■fc> ',   ■   ~""""~~-.^ 

~"'fli 
Figure 17: Cavitation Pattern on Propeller A 

existing propeller. This improvement was not ob- 
tained without losses in performance. Based on 
model propulsion tests with a cavitating propeller 

Figure 18:   Cavitation Pattern on Propeller A- 
rake 

the expected speed loss for the various propellers 
at maximum power is given in Fig. 20. This will 
be discussed below in more detail      Again the 

Figure 19: Increase of the Inception Speed 

7 T 0.67 

.ill 
A-«*« Now 

Figure 20: Speed Loss at Maximum Power 

reference is the existing propeller. It was de- 
cided to make a final design and test it at full 
scale.   Because the effects of rake were new and 
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unconfirmed, it was decided to design two final 
propellers, with the radial loading distribution as 
given in Fig. 2 for propeller D. These propellers 
were designed with optimized blade sections at 
0.6R and 0.8R, so that the lowest point of the 
inception curve would coincide with the design 
point. One of the propellers was designed with- 
out rake and no skew and was designated pro- 
peller D. The other propeller was designed with a 
strong rake at the tip. To minimize the curvature 
at the tip the rake distribution was made more 
gradual at inner radii, as shown in Fig. 7. This 
propeller was designated propeller D-rake. 

THE FINAL DESIGN 

The inception diagrams of propeller D and 
propeller D-rakeis given in Fig. 21 and 22. The 
optimization of the blade sections at 0.6R and 
0.8R proved to be sufficient to bring the lowest 
point of the bucket for sheet cavitation at the 
operating curve of the ship. This increased the 
margin against sheet cavitation. So in principle 
there is still room for further optimisation of the 
blade sections, by starting the design again with 
a higher estimated inception speed. This has not 
been done, however, because the effect of the tip 
vortex still determined the inception speed. 

TIP VORTEX FACEl 
(SCALE» UP} 

FACE   SHEET 

TIP VORTEX BACH 
(SCALED  UP) 

BACK   SHEET 

J L 
0.1 0.2 0.3 

KT 

Figure 22: Inception Diagram of propeller D-rake 

D D-rake 
tip vortex 

sheet 
0.19 
0.12 

0.21 
0.10 

Table 3: Width of the Inception Bucket in Open 
Water Condition 
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FACE SHEET 
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KT 

Figure 21: Inception Diagram of propeller D 

The effect of the rake while maintaining 
the thickness perpendicular to the blade surface 
proved to be very effective for tip vortex incep- 
tion. The additional thickness was only applied at 
radii larger than 0.9R. The depth of the inception 
curve of propeller D-rake is slightly higher than 
that of propeller D, but the width of the bucket 
is drastically increased (Fig. 22). The increase 
of the bucket width in open water conditions is 
given in Table 3. The open water conditions also 
showed an improvement of the bucket width of 
tip vortex cavitation. The improvement in be- 
hind condition is greater, however, so the main 
effect is due to a better response to the unsteady 
conditions. The raked tip can better handle in- 
flow variations. 

The cavitation patterns at full power for both 
final designs are given in Figs. 23 and 24. On pro- 
peller D the cavitation is mainly bubble cavita- 
tion on the downgoing blade, while there is some 
sheet cavitation behind the struts. On the raked 
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propeller D-rake there is slightly less bubble cav- 
itation, but there is more sheet cavitation in the 
top position. This, however, is not an isolated 
sheet, which has its maximum extent at inner 
radii, but a sheet with its maximum extent at 
the tip. The exit of the sheet (see [2]) is therefore 
in the tip vortex or close to it and the risk of ero- 
sion is less. 

EFFECTS ON PERFORMANCE 
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Figure 23: Cavitation Pattern on Propeller D 

As has already been shown in Figs 19 and 20 
the application of thicker blade sections has an ef- 
fect on the propeller efficiency. This effect is diffi- 
cult to measure at model scale because it is much 
smaller than the effects of laminar flow. The new 
blade sections have the minimum pressure at 80 
percent of the chord and this strongly promotes 
laminar boundary layer flow. This effect has been 
countered by leading edge roughness. Due to the 
considerable amount of laminar flow on the pro- 
pellers the effect of the leading edge roughness on 
the efficiency was also considerable. In Fig. 25 
the effect of application of roughness on the ef- 
ficiency in open water conditions is shown. At 
higher loadings (J < 0.7) the effect is negligible. 
At the design advance ratio of J = 0.9 the drop 
in efficiency can be as large as 7%. The effect 
of leading edge roughness increases rapidly when 
the propeller is unloaded further. Because of the 
strong gradient of the efficiency curve beyond the 
maximum efficiency these differences are not very 

Figure 24:   Cavitation Pattern on Propeller D- 
rake 
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■ Prop A-fOk@ 

- Prop. D 

- Prop D-rake 

- Prop. B-skew 

- Prop. B 

0.8 0.9 
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1.1 

Figure 25: Drop in Open Water Efficiency due to 
Application of Leading Egde Roughness 

accurate or relevant. In assessing the efficiency 
of the vrious designs the data with leading edge 
roughness have always been used. 

The effect of skew on the open water effi- 
ciency is shown in Fig. 26 as r](Bskew) — *l(.B)- In 
this case with thick blade sections skew decreases 
the open water efficiency in the design condition 
(J=0.9) with 2.5(rough) to 3(smooth) percent. 
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Advance ratio J 

Figure 26: Increase of Open Water Efficiency Due 
to Skew 

This is not uncommon for propellers with reg- 
ular blade sections, so the blade sections do not 
change the effect of skew. Again the strong varia- 
tion in efficiency above J = 0.9 has little meaning 
due to the strong gradient of the open water curve 
in that region. 

The effect of rake on the open water efficiency 
is shown in Fig. 27. In the design condition the 

0.8 0.9 

AdvanceRatio J 

main difference between the two is the radial load- 
ing distribution. Propeller D has a slightly un- 
loaded tip compared to propeller A. In this case 
the effect of rake on the efficiency increases with 
decreasing tip loading. If this is a general trend 
remains to be seen and the physical explanation 
is not yet clear either. 

The effects on open water efficiency are also 
found in the propulsion test. A comparison of the 
maximum speed of the final designs together with 
the data of Fig. 20 is shown in Fig. 28.       The 

Figure 28: Speed Loss at Maximum Power 

Figure 27: Increase of Open Water Efficiency Due 
to Rake 

Figure 29: Increase of the Inception Speed 

reference in this case is the existing propeller. So 
both final designs cause a decrease in maximum 
speed of 0.35 knots. The increase in inception 
speed, as shown in Fig. 29 is from 5.2 knots for 
propeller D-rake to 5.9 knots for propeller D. The 
latter number is rather sensitive to scaling effects 
and operational conditions, since the inception 
line of tip vortex face cavitation in Fig. 21 is al- 
most parallel to the operating curve. 

efficiency decreases approx. 1.5% due to the rake. 
This is the case for both the rough and the smooth 
propellers, so it has to do with the trailing vortex 
system and the losses of the wake. Propellers A 
and D show a different trend. The efficiency of 
propeller A decreases at higher loadings (lower J- 
values) due to the application of rake, while this 
effect is smaller or negligible for propeller D. The 

FULL SCALE VERIFICATION 

Although the theoretical inception speed of 
Propeller D was higher than that of Propeller D- 
rake, it was decided to choose propeller D-rake 
for full scale verification. The difference in theo- 
retical inception speed was considered to be less 
important than the increase in bucket width for 
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tip vortex cavitation, as found on propeller D- 
rake. So the blades according to propeller D-rake 
were manufactured and mounted on the existing 
hub, as shown in Fig. 30. Paint lines were drawn 
at 50, 70 and 90 percent of the radius and at 25,50 
and 75 percent of the chord. Because the opening 
angle of the camera was small (15 degrees) each 
chord position and radial position was indicated 
with signs to facilitate orientation of the observa- 
tions. 

*«,' 

Figure 30: Propeller Blades according to Design 
D-rake mounted on the Ship 

Trials were carried out to establish the effect 
on the maximum speed, while cavitation observa- 
tions were made to determine the inception speed. 
The ship was also tested on the sound range, to 
determine the effect of the new propeller on the 
radiated noise level. 

The cavitation observations were used to 
check also the pitch setting of the blades. This 
was done by observing a nonius on the hub of 
each blade. A discrepancy between the recorded 
pitch setting on board and the actual blade pitch 

was observed, which required a correction. The 
pitch setting was also checked by the measured 
power/rpm relation. Even when the pitch mea- 
surement, which is done by measuring the posi- 
tion of the yoke in the hub, is accurate, differ- 
ences between the blades may occur. Although 
these differences are smaller than half a degree, 
their effect on the inception speed is not negligi- 
ble. This seems to be a major source of inaccu- 
racy for inception. 

The Maximum Speed 

The maximum speed with the new propeller 
at the measured mile was half a knot lower than 
predicted from the model tests. The main rea- 
son was that the draft of the ship was 0.25m 
larger than the design draft. In the same condi- 
tions the speed penalty of the new propeller was 
0.5 knot, in agreement with the prediction from 
model tests. 

Inception 

Cavitation inception was observed using a 
camera with 300 times light amplification. This 
made it possible to use a moderate amount of 
stroboscopic light. The camera was mounted in 
a ball bearing, as shown in Fig. 31.The ball bear- 
ing was mounted directly in the hull. The bearing 
can be mounted by a diver using a dome, which 
can be bolted to the hull from outside. Illumina- 
tion of the propeller was done with stroboscopic 
light, which was brought to similar ball bearing 
as used for the camera through fibers. 

Detailed observations were made of inception. 
The type of cavitation occurring at inception is 
shown in Fig. 32. An idea of the size of the cav- 
ity streak can be obtained from the thickness of 
the paint line on the blade in this figure, which 
is 4 cm. The paint line indicates the 50 percent 
chordline at the tip. 

It is important to note that inception took 
place at the blade surface. Although the location 
is in the expected tip vortex, the cavity has the 
appearance of a streak originating from the blade 
surface. 

The measured inception speed could be com- 
pared to that of the existing propeller before mod- 
ification. The prediction was that the new pro- 
peller would increase the inception speed with 5.2 
knots (Fig. 29). The actual increase was between 
•1.5 and 5 knots, except for one blade.  From the 
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Figure 33: Observation of Sheet Cavitation 

Figure 31: Camera in Ball Bearing 
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Figure 32: Inception of Cavitation at the Blade 
Tip 

Figure 34: Composition of Full Scale Cavitation 
at 90 percent of the Maximum Speed 

nonius on the hub it could be observed that this 
deviation was due to a difference in pitch setting. 

Developed Cavitation 

Observations of cavitation at full power were 
also made. An example of an observation of the 
inner side of the sheet cavity is shown in Fig. 33. 
Since the camera had only a small opening angle 
the cavitation picture had to be composed from a 
number of these observations. In general the ob- 
served cavitation was more extensive than indi- 
cated by Fig. 24. The cavitation extent as found 
at 90 percent of the maximum speed is shown 
in Fig. 34. The radial extent of the sheet was 
larger than at model scale,  while distinct bub- 

ble cavitation occurred at midchord. During the 
growth and collaps of the cavity the cavitation 
was very unstable, resulting in rapid variations of 
the chord wise extent of the sheet. 

The allowance of bubble cavitation at high 
speed increases the risk of erosion when the tra- 
ditional criteria are maintained. However,after 
three months of operation, including some peri- 
ods with high speed operations, no trace of ero- 
sion could yet be discovered. This period is too 
short, however, to draw conclusions. 

Noise Radiation 

The radiation of noise has been measured at 
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the same sound range for the existing propeller 
and for the new design. The gain in radiated 
noise by the new propeller is shown in Fig. 35. 
There was also a significant gain at lower speeds 
due to the fact that on the new design no pressure 
side cavitation occurred. This was especially ad- 
vantageous when using a towed array. The high 
resistance of the thicker profiles against variations 
in angle of attack was advantageous in those con- 
ditions. The cavitation on the new design was 
less noisy than on the existing propeller, which 
may be an indication that the erosiveness is not 
excessive either. 

15 | 
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Figure 35: Decrease of Noise Level (octave bands) 
of Propeller D relative to the Existing Propeller 

CONCLUSIONS 

The investigation described in this paper is 
highly experimental. That illustrates the lack 
of control of tip vortex cavitation in the design 
stage. Even the physical parameters involved are 
unclear: the cavitation at inception had the ap- 
pearance of surface spots, which require no spe- 
cial scaling rules for extrapolation, but for the ex- 
trapolation from model to full scale a highly em- 
pirical correction method for inception of vortex 
cavitation was used. Either the type of inception 
at model scale is different from full scale or the 
minimum pressure on the blade surface has some- 
thing to do with the tip vortex and its viscous 
scale effects. So although the correlation between 
prediction and full scale was good, this does not 
mean that the physical phenomena are properly 
understood. 

The experience that a thicker blade tip in- 
creases the inception speed is confirmed when 
rake is applied. The cavitation bucket, of the 
thicker blade tip of propeller D-rake was con- 
siderably wider than that of the thinner tip of 

propeller A-rake. The U-shape of the cavitation 
bucket of propeller D-rake may be related with 
the fact that the minimum pressure occurs on the 
blade surface and not in the core of a trailing vor- 

tex. 

Skew also had a favorable effect on cavitation 
inception and this effect was similar to the effect 
of skew on a blade with conventional sections. It 
should be mentioned that due to the strongly re- 
duced pitch at the tip the increase of the skew 
caused a skew induced rake at the tip. The blade 
tips of the skewed propeller were therefore raked 
forward behind the generator line. This was coun- 
tered again by the application of extreme rake at 
the tip.The effects of skew were smaller than the 

effects of rake. 

The application of extreme rake at the pro- 
peller tip is the main new element in this study, 
and the effects were surprising. Even when the 
blade thickness (perpendicular to the blade) was 
reduced, the effect of rake on inception was still 
favorable. This effect was also found in open 
water conditions. The explanation is still lack- 
ing. Preliminary calculations of the trailing vor- 
tex system have shown that extreme rake delays 
the roll-up of the tip vortex. If this can explain 
the increase of the inception speed in open wa- 
ter conditions remains to be investigated. Since 
inception occurs on the blade surface, viscous ef- 
fects may also play a role, but these effects, in 
relation with the type of cavitation, also remain 
to be investigated.In a wake the effect of rake was 
larger than in open water, so part of the improve- 
ment of a raked tip is in the smaller sensitivity 
to inflow variations. A strongly raked tip can be 
seen as a faired tip plate, which is sometimes used 
to distribute the trailing vorticity at higly loaded 
tips. Such an effect may also occur at the raked 

tip. 

When rake is applied in combination with 
thick blade tips the result was very favorable 
and this favorable behavior was confirmed at full 
scale. The design objective of maximum incep- 
tion speed resulted in an increase of the inception 
speed of approx. 5 knots, with the penalty of a 
decrease of the maximum speed of 0.5 knots. 
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DISCUSSION 

R. Arndt 
St. Anthony Falls Hydraulic Laboratory, USA 

I am curious about the relative amount of tip vortex 
and surface cavitation between model and full scale 
tests. Our work in a water tunnel indicates the relative 
amount of tip and surface cavitation is very sensitive to 
nuclei content. 

2. Could the author comment on the success or failure 
of the scaling of tip vortex inception from the model to 
the full-scale particularly considering the very high 
slope of the inception curves, (see for example figures 
11, 15, and 21) 

3. Were any observations made of the change in flow 
patterns over the raked and the skewed blades? Could 
the author comment on any comparison between 
model and full-scale flows over these more complex 
blade surfaces? 

AUTHOR'S REPLY 

The critical condition of the full-scale propeller is the 
inception condition. In this condition only tip vortex 
inception is present, although the shape of the incipient 
cavitation is a cavity spot. Surface cavitation begins at 
a much higher speed. 

The amount of surface cavitation was larger than found 
at model scale. No sharp distinction between sheet and 
bubble cavitation could be made, however, and at 
midchord indications are that the cavity was mainly 
bubble cavitation. Bubble cavitation is sensitive to the 
nuclei content, and it may be concluded that there were 
abundant nuclei present at full scale, as was expected. 
Apparently the nuclei content of the model test was 
(relatively) lower, although both electrolysis in front of 
the propeller and leading edge roughness at both sides 
of the tip were applied. However, inception of the tip 
vortex, scaled with the simple Reynolds power of 0.35, 
gave a reasonably accurate prediction of the full-scale 
performance. Since inception of tip vortex cavitation 
is sensitive to the nuclei content, it is suspected that 
this exponent contains an element of nuclei content. 

DISCUSSION 

W.Day 
David Taylor Model Basin, USA 

This paper presents a valuable comparison of design 
calculation, towing tank/cavitation tunnel experiments 
and full-scale trial observations. Could the author 
please comment on the following points: 

1. Was any consideration given to the scaling of the 
inflow or wake to the propeller? Was there any 
conclusion from the full-scale trial performance 
concerning the necessity for such scaling? 

The author has made a clear exposition of a systematic 
investigation through full-scale performance 
measurement and for his effort is to be congratulated. 

AUTHOR'S REPLY 

The propeller inflow used for the design of the 
propellers was the nominal inflow distribution. No 
efforts were made to scale the wake distribution. The 
good inception characteristics of the new designs 
indicate that the most important characteristics of the 
wake distribution are properly taken into account. 

The mean wake fraction for the design was derived 
from the extrapolated full-scale thrust, so scale effects 
on the mean wake are taken into account in the design. 
In the extrapolation of the propulsion test data from 
model to full scale, the standard ITTC method for the 
extrapolation of the open water thrust and torque to full 
scale (dKt and dKq) could not be applied due to the 
presence of the leading edge roughness. On the 
smooth propellers the standard ITTC method could not 
be applied either due to excessive regions of laminar 
flow on the blades. New corrections for the open 
water thrust and torque coefficients were applied, 
based on earlier correlation with full scale. This topic 
needs further investigation. 

The success of the scaling method applied for tip 
vortex inception can only be measured by the increase 
of the inception speed at full scale. The prediction of 
the inception speed with the simple power of the 
Reynolds number works remarkably well. The 
determination of the inception speed remains very 
sensitive, however, both at model and full scale. The 
steep slope of the inception lines is one of the reasons 
for that problem. The inception speed of propeller A 
(Fig. 15) can be very high, but the bucket is very 
narrow. In practice the inception speed will therefore 
be much lower, due to slight disturbances such as 
rudder actions, variations in draft, etc.  The steepness 
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of the inception curves is no problem when the bucket 
is wide, as in the case with the final design (Propeller 
D-rake, Fig. 22). The bottom of the tip vortex bucket 
seems to be caused by surface cavitation on the thicker 
tip. The scaling law for vortices still has to be applied, 
however. So the structure of the flow field near the tip 
needs further clarification. 

This applies also to the last question of Dr. Day. 
Observations of the flow pattern on the model 
propeller were made using the well known paint tests. 
However, these observations may reveal something 
about the boundary layer or about separation, but they 
do not show the structure of the flow field in a highly 
vortical region. At full scale only visual observations 
were made. Investigations of the effect of extreme 
rake on the position of the trailing vortices are 
presently being carried out. The most promising way 
to investigate the effects of rake and blade thickness on 
the tip flow seems application "Computational Fluid 
Dynamics." In that case Navier Stokes solvers have to 
be used. Even when the flow structure cannot yet be 
calculated realistically due to, e.g., the turbulence 
model, trends may be derived from such calculations, 
which can be verified experimentally. 

DISCUSSION 

W. Morgan 
David Taylor Model Basin, USA 

This is a very interesting paper and clearly shows the 
advantage of the advanced design methods. I have 
three questions. 

1. Was the decrease in efficiency due more to the 
change in load distribution (decrease in load 
distribution toward the blade tip) than the change in 
rake and skew? 

2. The improvements in cavitation and noise 
performance were significant compared to the initial 
propeller. Was the initial propeller (the propeller 
originally designed for the ship) considered a good 
propeller? 

3. Explain some of the problems of using the "new" 
blade sections. 

AUTHOR'S REPLY 

The propellers A and A-rake had the same radial 
loading distribution, the reduction of the maximum 
speed with 0.1 knot, and thus the loss in efficiency 
(Fig. 28 of the paper), can thus be attributed to the 
rake. This is also the case for propellers D and D-rake, 
where the speed loss was insignificant. So the loss of 
efficiency due to rake was not consistent. Propeller D 
had a slightly reduced tip loading compared to 
propeller A, so the effect of rake may increase with 
increasing tip loading. 

The speed loss due to skew between propellers B and 
B-skew was 0.22 knots. Again, the radial loading 
distributions are the same in both cases, so the effect is 
due to skew. 

The radial loading distribution was input for the 
program PBD10, which calculated the propeller 
geometry. When these propeller geometries were 
calculated with a lifting surface code (ANPRO), the 
effects of skew and rake on the propeller efficiency 
were negligible. So the effect is not fully taken into 
account in the programs. Consequently it is not sure if 
the radial loading distribution was really the same with 
and without rake or skew. The effect of rake on 
efficiency may still be due to variations in radial 
loading distribution. The programs may also fail to 
account for the increased viscous sectional drag of the 
blade sections due to the increased blade area when 
rake is applied. This remains to be investigated. 

The effect of rake and skew can be compared with the 
effect of a change in radial loading distribution by 
comparing propellers A, B, and D. Those are 
propellers without rake or skew, but with different 
radial loading distributions. The tip loading was 
decreased from propeller A to propeller D to propeller 
B. The unloading of the tip of Propeller B is extreme. 
A more common variation is that between propeller A 
and B. So the decrease of efficiency due to tip 
unloading in this case (0.21 knots) is comparable to the 
effect of skew and larger than the effect of rake. It is, 
however, dangerous to generalize these findings. The 
variations in the effects of rake illustrate this. 

The existing propeller on the frigate, which was used 
as a reference, was not the first propeller on this ship. 
The first propeller was a propeller with traditional 
NACA type blade sections. The existing propeller is 
the second design, made ten years later, and it had 
blade sections based on YS920 profiles. These profiles 
have been designed for maximum bucket width using 
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the same Eppler code as used in this program. The 
existing propeller therefore was a good propeller, 
reflecting the state of the art of propeller design. This 
emphasizes the fact that application of new blade 
sections itself does not necessarily lead to large 
improvements. The existing propeller already had 
"new" blade sections, but these were not adapted to the 
incoming wake distribution. This is the essence of the 
new design method. 

The main problem for the new blade sections was that 
at full power bubble cavitation was present. Since the 
rule of thumb is that this type of cavitation is erosive, 
this was a risk. Although no erosion was found yet at 
full scale, the time was too short to be sure that the 
cavitation was not erosive. There are, however, many 
indications that the reputation of bubble cavitation as 
being erosive is not fully justified. This remains to be 
investigated. 

A new aspect of the new blade sections is the 
sensitivity of the cavity length to variations in inflow. 
The flat pressure distribution at inception causes an 
incipient cavity which is a thin long sheet over the 
whole chord. Small variations in inflow can create 
large variations in cavity length. This was indeed 
observed at full scale in specific conditions, where just 
beyond inception the variations in cavity length 
between subsequent revolutions were large. This is a 
variation per revolution, however, and not an 
unsteadiness during one blade passage. So this does 
not necessarily lead to cloud cavitation and erosion. 
the fact that the new propeller was more silent at all 
speeds indicates that no serious problems occur. 

edge. This may cause an additional delay of cavitation 
inception. This is generally not taken into account in 
programs, but it is also not clear if the leading edge 
radius should be measured perpendicular to the flow. 
The major effect of skew seems to be the formation of 
a leading edge vortex and a subsequent change in 
chordwise loading of the blade sections. This is not 
taken into account in lifting surface programs, in which 
the flow is assumed to remain attached to the propeller 
surface. Also the effect of skew on the wake structure 
remains to be investigated. 

Contrary to skew, application of rake while main- 
taining the thickness in the traditional sense (in a 
cylindrical cross section of the blade) decreases the 
thickness perpendicular to the blade. So the increase 
of the inception speed due to rake cannot be due to a 
virtual increase of the leading edge thickness. Again 
the wake structure may be changed. But a plausible 
hypothesis is that the radial velocities in the tip region 
play a role. These velocities are neglected in linear 
theory. 

DISCUSSION 

S. Kinnas 
Massachusetts Institute of Technology, USA 

A likely explanation of the delay of cavitation in the 
case of skewed or raked propeller (for the same 
thickness distribution) may be the increase in leading 
edge radius (normal to the leading edge line). It is a 
well known fact than leading edge radius delays and or 
reduces sheet cavitation. What are the author's 
comments on this? 

AUTHOR'S REPLY 

Skew increases the leading edge radius of the blade 
sections, when measured perpendicular to the leading 
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Cavitation Performance Evaluation of 
Naval Surface Ship Propellers with Standard 

and Advanced Blade Sections 
S. Jessup, W. Berberich, K. Remmers 

(David Taylor Model Basin, USA) 

ABSTRACT 

Model and large scale cavitation performance 
evaluations have been performed for two propellers 
designed for a modern naval surface ship. The first 
propeller incorporated traditional blade sections, 
while the second incorporated new blade sections 
designed to increase cavitation inception speed. 
Model scale cavitation tests were conducted at the 
David Taylor Model Basin's, (CDNSWC), 36" Water 
Tunnel (36"WT) and Large Cavitation Channel 
(LCC). Large scale cavitation viewing tests were also 
performed. Cavitation inception and extent were 
compared to calculated predictions for the various 
types of cavitation: blade surface, root and tip vortex. 

NOMENCLATURE 

C 
CP 

Cpmin 
el 
D 
F 
f 
J 

K- T 

Chord length 
Blade surface pressure coefficient 
(p-p0)/(l/2pV2) 
minimum pressure coefficient 
Blade section lift coefficient 
L/(l/2pVR

2C) 
Propeller diameter 
Maximum blade section camber 
Local blade section camber 
Advance coefficient 
V/(nD) 
thrust coefficient, T/pn2D^ 

P 
Pv 
R 
r 

T 
V 

vR 

VRI 

VT,I 

X 

ACp 

r 
n 
p 
a 

a. 
l 

fluid static pressure 
fluid vapor pressure 
Propeller tip radius 
Propeller local radius 
Propeller blade Reynolds number 
VRC/v @ 0.7R 
blade section maximum thickness 
Effective volume mean average axial 
velocity at propeller plane 
section inflow velocity 
(V2+(27rnr)2)1/2 

First harmonic amplitude of radial 
velocity 
First harmonic amplitude of tangential 
velocity 
Distance from section leading edge along 
chordline 
Cp difference between upper and lower 
surface of blade section 
blade section circulation 
propeller efficiency 
fluid density 
cavitation number 
(p-pv)/(l/2)pV2 

cavitation number at inception 

blade section cavitation index 
(p-pv)/(l/2)PVR

2 

Kinematic viscosity 
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INTRODUCTION 

In recent years, numerous propeller design 
organizations have developed procedures to 
incorporate customized propeller blade sections to 
optimize propeller cavitation performance. Much of 
this work has been developed out of two-dimensional 
foil design procedures, such as work by Shen and 
Eppler (1). A process of adapting the two- 
dimensional foil geometry to the propeller geometry 
has been developed and experimentally evaluated by 
Bailar, Jessup, and Shen (2). Bailar et al. 
demonstrated cavitation inception gains using the 
new blade section design procedure for a limited 
experimental evaluation in the DTMB 36 inch Water 
Tunnel. 

In this paper, a more complete evaluation of a 
standard and new blade section propeller geometry 
will be presented. The propeller design procedure 
will be summarized, and compared for the two 
designs. Model test evaluation will be presented 
utilizing the 36" Water Tunnel (36"WT) and the 
Navy's new Large Cavitation Channel (LCC). The 
quality of the propeller wake inflow simulation is 
critical in predicting the full-scale cavitation 
performance. The LCC provided the capability to 
install the entire wetted hull model within the 3.05 
meter by 3.05 meter by 12.4 meter test section as 
discussed by Etter and Wilson (3). This potentially 
provides the best propeller inflow simulation. 

The configuration evaluated is a twin screw 
surface ship with open shafting and shaft support 
struts. Figure 1 shows starboard side and stern 
profiles of the hull configuration. 

In the LCC, an entire 11 meter long hull model 
was installed into the flat upper surface of the tunnel 
at the approximate water line. In the 36" WT the 
flow was simulated with inclined shafting with shaft 
barrel and support struts properly modeled. 
Propellers of 404 mm (15.9") diameter tested. 

Evaluations discussed will include cavitation 
inception, and extent. Performance is compared 
between the two propellers for typical cavitation 
forms: root, blade surface, and tip vortex cavitation. 
Large scale trial data has been obtained for both 
standard and new section propellers. Both model and 
large scale results are compared with calculated 
predictions utilizing potential based panel methods. 

DESCRIPTION OF PROPELLERS 

The Controllable, Reversible Pitch (CRP) 
propellers are characterized by relatively large hubs 
(0.3R),   and   blade   chord   limits   due   to   the 

requirement of blade passage during pitch reversal 
for backing. Also, balanced skew is incorporated to 
maintain a favorable blade spindle axis moment. 
The blade outlines for the two propellers tested are 
shown in Figure 2. 

Two Dimensional Blade Section Design 

Traditionally, marine propellers have been 
designed incorporating blade section shapes from 
standard families, for example the NACA 66 and 16 
thickness forms and the a=0.8 meanline camber 
form. The section thickness and camber are scaled 
appropriately using modern lifting line and lifting 
surface design procedures. This approach is 
somewhat restrictive since the blade pressure 
distribution will generally retain similarity to the 
original two dimensional profile. 

In recent years procedures have been developed to 
design blade section shapes for arbitrary specified 
blade pressure distributions (2) from custom 
designed two dimensional foil sections using the 
procedure of Shen and Eppler (1). In the present 
study, these procedures were used to design an 
alternative propeller to a standard propeller design 
utilizing NACA 66 (DTMB mod.) thickness and 
a=0.8 meanline forms. 

The design procedure starts with the calculation 
of the blade section operating conditions in the 
specified propeller inflow wake field, section loading 
and propeller submergence depth. This is compared 
against the cavitation bucket diagram for a particular 
2-D foil geometry, as shown in Figure 3. The section 
lift coefficient, CL, and section cavitation index, as, 
are calculated for various positions around the 
propeller disk (4), in this case for cruise and 
maximum speed. The propulsion characteristics for 
this hull result in a significant increase in blade 
section loading (section angle of attack) with 
increasing speed from cruise to full power 
conditions. 

New foil sections were designed to improve the 
cavitation bucket for the standard section propeller; 
to increase the noncavitating region inside the 
bucket about the specified operating range of the 
blade sections. Shown in Figure 3 is the standard 
propeller bucket and a bucket for a newly designed 
section using the Shen and Eppler approach. The 
new foil section incorporated reduced thickness, 
significant aft section loading, and leading edge 
unloading relative to the standard section. Figure 4 
shows the two dimensional foil shapes for 
comparison. The new section foil has significant 
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comparison. The new section foil has significant 
camber near the trailing edge which shows a 
characteristic hook or cupping. Figure 5 shows the 
calculated pressure distribution at the design lift 
coefficient at cruise speed. Clearly seen is the 
leading edge unloading and the trailing edge loading 
of the new section relative to the standard. This 
characteristic results in an avoidance of an upper 
surface suction peak as the angle of attack increases 
with increasing speed. 

Incorporation of Two Dimensional Sections into 
Propeller Geometry 

The new designed section shapes are incorporated 
in propeller geometry using propeller lifting surface 
design procedures. For this case, nine sections were 
independently designed for various radii across the 
blade span. From the two-dimensional pressure 
distributions calculated at the design lift coefficients, 
the chordwise loading is calculated, as the Cp 
difference between the upper and lower surface. A 
sample loading distribution is shown in Figure 6 for 
various propeller radii. Also shown is a standard 0.8 
meanline loading distribution. The loading 
distribution provides input to the lifting surface 
design procedure, PBD-10 of Greeley and Kerwin 
(5). The two dimensional thickness distribution of 
the various radial sections is input into PBD-10, and 
is incorporated directly into the propeller geometry. 
PBD-10 calculates the blade pitch and camber 
distribution to produce the specified input loading 
distribution. The final three-dimensional camber 
distributions vary significantly from the two- 
dimensional camber, as shown in Figure 7. 

A verification of the design process can be made 
by comparing the two-dimensional blade section 
pressure distributions with those calculated for the 
actual propeller geometry at the design condition 
using a potential-based panel method (6,7). Figure 8 
shows this comparison for the new section propeller 
at 0.5R. Generally, correlation is best mid-span on 
the blade, and is not as good at the root and tip 
region due to three dimensional effects. 

CHARACTER OF THE WAKE 

The propeller inflow nonuniformity is due 
primarily to the wake of the shaft and struts and the 
flow inclination relative to the shaft axis. A wake 
survey was conducted on a 23 foot hull model in the 
DTMB tow tank run at 5.6 knots using five hole 
pitot tubes positioned at the propeller disk (without 
the propeller). Figure 9 shows the cross plane vectors 

and the axial velocity contours relative the the 
propeller shaft axis. The dominant upwash due to the 
inclination of the flow relative to the propeller axis 
can be seen. Also, the upwash near the hub is 
augmented by the transverse flow around the 
propeller hub. The axial velocity contours show the 
wake due to the shaft and shaft barrel and the struts. 
The outboard strut wake is visible while the inboard 
strut is masked by the shaft wake. The hull boundary 
layer is only slightly visible at the propeller tip. The 
majority of the propeller disk is in undisturbed flow. 
Complications associated with propeller-hull 
interaction, wake scaling, and blade operation in 
viscous regions is minimal compared to propeller 
operation in a typical merchant ship hull wake. 

MODEL TEST EVALUATIONS 

In the Large Cavitation Channel (LCC) 11 meter 
hull model was mounted into the tunnel test section 
top. A flat ground board was fit around the hull 
model flush with the test section ceiling, positioning 
the hull at the cruise speed trim and pitch. Stern 
view of the installation is shown in Figure 10A. 
Pitot tube wake surveys were conducted at the 
propeller plane for a number of conditions, and 
compared to the tow tank surveys. As reported by 
Jessup et al. (9) the wake surveys conducted in the 
LCC configuration were closer to the tow tank 
results when the hull bilge keels were removed. Also 
surveys showed some improvement in the wake 
simulation over the idealized configuration 
simulating the shaft inclination, shaft barrel and 
struts in DTMB's 36"WT shown in Figure 10B. 

Cavitation performance was measured and 
compared for the two propellers. The types of 
cavitation observed were root, tip vortex and blade 
surface. Most forms of cavitation incepted within a 
range of cavitation numbers, a = 1 to a = 2 
corresponding to medium, cruise speed. To simulate 
the propeller operating conditions, the tunnel 
pressure and velocity were set to establish the 
specified cavitation index, a, where 

a=(p-Pv)/(i/2)pV2 

p   = pressure at propeller shaft 
V   = velocity at the propeller plane 
PY = vapor pressure 
p  = fluid density 
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Also, the propeller loading was simulated by setting 
the propeller rotation speed, n, to match the specified 
thrust loading, at the advance coefficient, 

where, 

J = V/(nD). 

D = propeller diameter 
n = rotation rate, rps 

Inception was determined visually by varying 
rotational speed (J at constant a) and observing the 
inception of the various types of cavitation. Inception 
was called when cavitation was observed on a three 
of the five blades. Tests were performed at a 
Reynolds number around Rn = 4 x 10 6, based on 
blade inflow velocity and chord at 0.7 radius. 
Observations of cavitation extent were performed by 
setting the specified a and J for various hull speeds. 

LARGE SCALE EVALUATIONS 

Large scale tests were conducted with both the 
standard blade section and new section propellers. 
Propeller operation was viewed through ports 
installed in the hull above the port side propeller. 
Video was used to record observations using strobe 
illumination at night and available light during the 
day. Inception observations were made visually with 
increasing hull speed, called when cavitation was 
observed on any of the five blades. The large scale 
propeller Reynolds number was approximately 5 x 
107. 

A remote camera was also used providing a wide 
field of view outside the hull. The camera housing 
with a hemispherical viewing window was extended 
about 150mm below the hull. Pan and tilt control of 
the lens head permitted viewing along the hull at the 
starboard propeller, struts and rudders. 

The overall uncertainty in the observed 
cavitation inception and extent was significantly 
larger that was typical from model tests. The primary 
factors were test condition variability and the limited 
viewing of the entire propeller disk. Only the upper 
half of the propeller disk was observable. View of the 
lower half of the disk was blocked by the propeller 
hub, the nearby blades and the lack of illumination. 
Therefore cavitation inception was biased by 
observations that could be made only within the 
upper part of the propeller disk. These limitations 
were the same for both propeller evaluations, such 
that relative comparisons were more accurate than 
the absolute inception indices. Some observations 

could be made of the starboard propeller during 
daylight viewing. 

Variability in trial conditions produced precision 
and bias errors also influencing the comparisons of 
the two propellers. The sea conditions for the 
standard propeller were ideal with calm seas and no 
wind, while the new section propeller tests were 
conducted in a sea state 2 with 30 knot winds at a 
4% heavier displacement. Only the effect of 
displacement was quantifiable. 

Finally, the cavitation inception precision was 
dependent on the number of the incrementally 
increasing speed runs performed. At best, 1 knot 
increments were typical. 

PREDICTION OF CAVITATION INCEPTION 
AND EXTENT USING PANEL METHOD 

Cavitation inception predictions were performed 
using potential based panel methods. A quasi-steady 
simulation of the unsteady flow was performed using 
the steady panel method, PSF10 of Kerwin et. al. 
(6). A fully unsteady panel calculation was 
performed using PUF10 developed by Kinnas and 
Hsin (7). For both calculations, blades were paneled 
with a 25 cosine spaced chordwise by 30 uniformly 
spaced spanwise distribution for each side of the 
blade. The hub was approximated as cylindrical with 
a parabolic shaped fairwater represented by 64 
panels. The cavitation inception index, aj, was 
determined from Cpmin, the minimum pressure at 
various specified regions of the blade. Thus 
assuming cavitation occurs when vapor pressure, Py, 
is reached, so that, 

CTi= "Cpmin 

The quasi-steady calculations were performed by 
inputting, from wake survey data, circumferential 
average tangential inflow equivalent to the first 
harmonic amplitude of the tangential velocity as 
shown in Figure 11. To simulate the maximum 
loading condition, tangential velocity opposite to the 
direction of propeller rotation was used. To simulate 
the minimum loading condition, tangential velocity 
in the direction of prop rotation was input. The 
unsteady calculation was performed by inputting the 
measured tow tank wake. The quasi-steady approach 
was used during the propeller design phase to 
optimize the spanwise variation in cavitation 
performance and demonstrate the relative 
performance difference between the standard and 
new section propellers. 
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An initial comparison of the calculated pressure 
distributions for the unsteady and quasi-steady 
methods were described by Jessup (8). Inception of 
suction side midspan cavitation correlated well with 
the two methods. At the minimum loading condition, 
the two methods show significant differences at the 
leading edge. This discrepancy was thought to be 
due to the more accurate representation of the wake 
in the unsteady method. The quasi-steady approach 
considers only the wake due to the shaft inclination. 
No attempt is made to represent the strut wake, 
therefore, the quasi-steady approach can not 
accurately predict inception that occurs behind the 
struts. Because of the long computation times of the 
unsteady method, and previous extensive use of the 
quasisteady method all calculations shown in this 
paper were performed with the quasi-steady method. 

Investigations of tip and outer span cavitation 
performance have demonstrated possible 
inaccuracies with the panel method. Calculated 
average spanwise circulation distributions for the 
two propellers, when compared to the original design 
circulations, showed a large underprediction at the 
outer span of the standard propeller as shown in 
Figure 12. Figure 13 shows comparisons of the 2-D 
section pressure distributions and the calculated 
distributions using the panel method. At the inner 
radius, 0.5R, the distributions are similar with some 
decrease in pressure around 0.7C that has been 
attributed to the CRP blade shape and hub effects by 
Yang (9). At 0.8R the distributions deviate 
significantly at the trailing edge. The negative 
loading is believed to be due to effects of the skewed 
shape of the blade panels at the trailing edge. The 
panel shape is controlled by the sweep of the trailing 
edge which is most pronounced with the standard 
propeller as shown in Figure 2. Table 1 shows a 
comparison of the calculated and measured open 
water load performance for the two propellers. The 
standard propeller shows a consistent 
underprediction in propeller thrust. 

PROP K-p 
MEAS. CALC. MEAS CALC 

STD. 0.231 0.216 0.734 0.711 
NEW 0.233 0.227 0.738 0.711 

TABLE   1   OPEN   WATER   PERFORMANCE, 
J=1.27 

Surface representations of the blade pressure 
distributions are shown in Figure 14. The suction 
side pressure surface is shown at the maximum 

loading condition for the standard and new 
propellers at J=1.210 and J=1.225. The standard 
propeller produces a relatively smooth pressure 
surface, because of its incorporation of one section 
shape. The new propeller surface appears "lumpy" 
because of difficulties fairing the blade geometry 
produced from the nine individually designed 
sections. 

The standard propeller has extreme suction peaks 
at the leading and trailing edge at the tip. These are 
believed to be unrepresentative of the real flow and 
may be due to the more extreme tip geometry of the 
standard propeller and related to the trailing edge 
flow problems discussed in the previous section. The 
standard propeller has a midspan suction peak along 
the leading edge, which, near the tip, becomes very 
extreme. The new section propeller also has a 
suction peak at the tip, but it is located midchord, 
and is less extreme. 

Also it has been well recognized that the panel 
methods are presently unable to accurately calculate 
the flow in the tip region. Work by Kinnas (10) and 
Hsin (11) has begun to more accurately address the 
tip flow, but present blade paneling methods appear 
to fail outboard of the 0.95 to 0.98 radius. The most 
accurate region for panel calculations appears to be 
from the hub to 0.95 radius or where the blade sweep 
is not too extreme. 

From these observations it is assumed that there is 
some uncertainty in the panel method prediction 
techniques. Although the trailing edge flow is not 
directly relevant to minimum pressures associated 
with cavitation inception, the trailing edge flow has 
some effect on the leading edge stagnation flow and 
possibly the magnitude of calculated leading edge 
suction peaks. 

Accuracy at the root is somewhat dependent on the 
proper representation of the hub. An idealized 
cylindrical hub model was used to represent the hub 
shown in Figure 2. The effect of this idealization 
along with the effect of structural fillets is assumed 
small. Complete paneling of the exact geometry 
would help quantify their importance. 

BLADE SURFACE CAVITATION INCEPTION 

The most significant gain in cavitation 
performance of the new section propeller over the 
standard propeller was in the inception of blade 
surface suction side leading edge (SSLE) cavitation. 
This was expected from the new section design 
approach described earlier. Figure 15 shows the 
inception results for SSLE cavitation. The operating 
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curve of the propellers are represented by relating a, 
the cavitation index, with propeller advance 
coefficient, J. The inception of suction side leading 
edge cavitation occurs for both propellers in the 
wake of the outboard strut around 0.6 radius. The 
SSLE cavitation on the new section propeller incepts 
at a significantly lower CTJ than the standard 
propeller at both model and large scale. The large 
scale inception of blade surface leading edge 
cavitation for the standard propeller occurred at aj 
somewhat lower that the model test results, again, 
occurring behind the outboard strut. This could 
imply that the large scale strut wake deficit is less 
due to increased Reynolds number. 

For each large scale propeller evaluation, the two 
spots shown indicate, at the higher aj, the condition 
where cavitation was not observed, while the lower 
value corresponds to the next test condition where 
cavitation was visible. This represents an estimate of 
the upper and lower bounds inception, which 
qualitatively includes effects of hindered visibility at 
large scale. 

Also compared are predictions of leading edge 
cavitation using the quasi-steady panel method at the 
maximum load condition. For both propellers the 
calculated slopes of the inception curves match the 
model result well. For both propellers, the panel 
method predicts SSLE cavitation at a aj about 0.1 
lower than model scale results. Both model results 
and predictions fall within the upper and lower 
bounds of the full scale results, except for the model 
scale standard propeller result. Also shown is the 
predicted inception of midchord cavitation on the 
new section propeller at around 0.75 radius. 

Pressure side cavitation, in all cases, occurred 
well outside the operating range of the propellers 
and was not observed at large scale. Figure 16 shows 
pressure side leading edge (PSLE) cavitation 
inception. The new section propeller is closer to the 
operating curve at lower cavitation numbers, as 
would be expected, since some sacrifice in pressure 
side performance was allowed as shown in Figure 3. 
Pressure side cavitation occurred near the blade tip 
when passing between the inboard strut and the top 
of the disk. The panel method at the minimum 
loading condition predicts PSLE inception index 
consistently higher than model results and thus 
would provide a conservative estimate of pressure 
side performance. 

ROOT CAVITATION INCEPTION 

From model test results, root cavitation inception 
performance for the two propellers was similar. The 
new section design only slightly improved the root 
performance, which is primarily controlled by blade 
thickness and propeller planform near the root. 
Figure 17 shows the comparison of the suction side 
root cavitation (SSRT) performance. The model test 
results were very similar for the two propellers and 
are shown as one curve. The panel method 
predictions also showed similar results, but the large 
scale results were quite different. 

It is thought that the standard propeller's large 
scale performance was controlled by modifications 
that were made to the leading edge root area. The 
new propeller may have performed better at large 
scale than predicted because of the unloading of the 
root section due to a significant gap between the 
root trailing edge and the hub. This tendency was 
demonstrated by calculating the maximum load 
condition with no hub modeled. The SSRT 
minimum pressure was improved similarly to large 
scale. Modeling the as-built blade root gap 
accurately is beyond present capability. 

Figure 18 shows the pressure side root cavitation 
performance comparison with mixed correlation. 
The two propellers performed similarly, but the 
model and large scale results were quite different. 
The two propellers were predicted to perform 
differently. The pressure side cavitation generally 
initiated at the leading edge of the root section, and 
was therefore sensitive to variations in leading edge 
root details and the root loading effected by the root- 
hub gap on the new propeller. This region of the 
blade is very difficult to numerically model and 
manufacture and may also explain the variation seen 
in the comparison. 

TIP VORTEX CAVITATION INCEPTION 

Model scale, suction side tip vortex (SSTV) 
cavitation was improved with the new section 
propeller. Improvements were attributed to tip and 
near tip new blade section geometry and tip pitch. 
Reynolds Number scaling was performed using the 
method of McCormick (12). A Reynolds Number 
scaling exponent of 0.4 was used with results shown 
in Figure 19. large scale results showed less 
improvement and higher a for both propellers. 

A number of factors may help to explain these 
results. Large scale determination of inception was 
performed acoustically detecting initially one blade 
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and later multiple blades. Uncertainty was increased 
with two propellers operating and the possibility of 
other cavitation sources being heard. It is believed 
that acoustic detection results in an upper bound on 
the actual CTJ. 

Model scale determination of inception 
unfortunately had to be observed visually. This was 
because of the existence of other cavitation forms. At 
model scale, the procedure is to call inception when 
it is observed on a majority of blades. This may 
result in a CTJ closer to a lower bound of the actual 
value. A proper correlation between the two methods 
has not yet been developed. 

In both the 36" WT and the LCC the tip vortex 
incepted at the bottom of the disk. This location does 
not seem reasonable, since the maximum blade 
loading occurs when the blade is at the outboard side 
of the disk advancing downward. As seen in Figure 
9, there is no apparent wake perturbation at the 
bottom of the disk that would cause increased blade 
loading resulting in SSTV cavitation. 

Until the most recent large scale tests with the 
new propeller, large scale visual observations of tip 
vortex inception occurred at much lower a near the 
top of the propeller disk. That implied very little or 
no scaling required and was contrary to model tests. 
During the last trials conducted, careful observations 
of the starboard propeller with the remote camera 
revealed tip vortex at the bottom of the disk at 
relatively high aj, which correlated approximately 
with acoustic detection. 

Using the prediction tools, some attempt was 
made to explain the inception index and its location 
at the bottom of the disk. From the panel method 
calculations Cpmjn at the tip was correlated with 
the model and full scale test results. For the standard 
propeller the leading edge peaks shown in Figure 
14A produced Cp^ values greater than ten with an 
unreasonable variation with J. The midchord suction 
peaks shown for the new propeller in Figure 14B 
were plotted verses J in Figure 20. The three 
conditions shown are the maximum loading 
condition, where the positive distribution of 
tangential velocity was included with the axial 
inflow, the average condition, where, V-p=0, and a 
condition simulating the lower part of the disk flow 
where the radial inward velocity distribution shown 
in Figure 21 was included with the axial inflow. The 
results show very reasonable trends, matching the 
slope of the model test result. The maximum loading 
condition shows the largest a, followed by the radial 
and uniform inflow cases. For the new propeller, 
the seemingly unreasonable pressure at the tip may 

have significance for predicting inception, perhaps at 
least for relative comparisons. The poor correlation 
with the standard propeller appears related to its 
specific tip geometry producing extreme leading and 
trailing edge pressures. 

CAVITATION EXTENT 

Qualitative comparisons of cavitation extent were 
made for the two propellers at high speed when 
cavitation was more fully developed. Figure 22 
shows the panel method computations for the 
maximum loading condition of the two propellers. 
The horizontal axis of the surface plots is set to the 
operating ex of 1.32 so that any surface pressure 
above the axis would expect to produce cavitation. 

Figure 23 shows the model and large scale 
comparison of the standard propeller at o= 1.32. 
Extensive cavitation from the 0.6 radius to the root is 
shown to be similar model and large scale. The panel 
method calculation shows a similar area where 
cavitation is estimated to occur. The outboard 
leading edge suction peak from the panel calculation 
does not occur either at model or at large scale, 
implicating further a breakdown of the computation 
method in this region on the standard section 
propeller. 

The new propeller, shown in Figure 24, at model 
scale shows no cavitation except at the root and tip. 
The panel calculation in Figure 22, shows a slight 
extent of leading edge cavitation which is also 
observed full scale. But also, at large scale, some 
midchord bubble cavitation can be seen. 

At a slightly lower o= 1.21, Figure 25 shows the 
model and large scale cavitation extent. At model 
scale, blade surface cavitation can be seen as long 
streaks of cavitation which appear very thin at the 
leading edge. This is consistent with the flat pressure 
distribution intended in the design . The extent of 
the cavity is similar to the large scale shown in 
Figure 25B, but a distinct leading edge sheet is 
observed which appears to lap over the bubble 
cavitation occurring downstream of the leading edge. 
At large scale, as a was reduced further, the leading 
edge sheet became longer, eventually extending to 
the trailing edge, but always remaining narrow in 
spanwise extent at the cavity trailing edge. There 
appears to be scaling effects controlling the 
formation of leading edge cavitation on the new 
propeller. The chordwise pressure gradients are very 
small, but at large scale, if even a slight suction peak 
occurs, then a typical sheet cavity is formed, which 
appears as streak cavitation at model scale. The 
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dynamics of large scale cavities may be influencing 
cavity development. 

The panel method calculation shown in Figure 26 
begins to also show the occurrence of midchord 
cavitation starting at 0.7 radius which is consistent 
with its initiation at large scale, but starting at a 
lower than large scale observations by 0.15. 

THRUST BREAKDOWN 

Thrust breakdown experiments were performed 
during model scale tests to determine performance 
lost due to cavitation. The propellers were run up 
through the operating range to full power, initially at 
high tunnel pressure to suppress cavitation, noting 
the measured thrust, torque and tunnel velocity. The 
conditions were repeated at the specified ambient 
pressure, noting again the measured thrust and 
torque with cavitation. Finally the propeller rotation 
speed was increased to regain the thrust lost under 
cavitating conditions. From these results, the loss in 
maximum speed could be determined. 

Thrust lost @ 
max. power 

model scale 
max speed 

large scale 
max speed 

Standard 10%     
new 4% +0.5 kts +0.25kts 

TABLE 2   THRUST BREAKDOWN RESULTS 

Table 2 shows the thrust lost under cavitating 
conditions for the standard and new section 
propellers at maximum power. The reduction in 
cavitation extent at high speed reduced the amount 
of thrust lost for the new section propeller. The 
model scale improvement in thrust breakdown with 
the new section propeller resulted in a 0.5 knot 
increase in maximum speed over the standard 
propeller. At large scale, the gain in maximum speed 
with the new propeller was 0.25 knots. This 
improvement is believed to be a lower bound due to 
the adverse trial conditions for the new section 
propeller. 

CONCLUSIONS 

Incorporation of new blade sections into Naval 
surface ship propellers can significantly improve 
cavitation free operation and reduce thrust 
breakdown. The suppression of root cavitation on 
CRP propellers is limited due to the severe geometric 
restrictions at the root area. 

Potential based panel methods have demonstrated 
usefulness    in    predicting    propeller    cavitation 

inception. Accuracy is sufficient for comparative 
calculations. The prediction of tip vortex cavitation 
inception has shown promise, but accuracy appears 
geometry dependent. 

The discrepancies in model and large scale tip 
vortex cavitation inception are believed to be due to 
visual versus audible detection processes. A 
recalibration of McCormick's scaling law could 
simply be adopted. Further understanding of the 
inception occurrence at the bottom of the disk may 
lead to a more rational approach to the scaling issue. 
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A Surface Vortex Lattice Method for Calculating 
Performances of Non- or Super-Cavitating Propellers 

H. Yamasaki, M. Ikehata 
(Yokohama National University, Japan) 

ABSTRACT 
In this paper, the applications of a panel 

method based on the velocity for the marine pro- 
pellers in non or super - cavitating condition are 
presented. The panel method is called surface 
vortex lattice method and uses the conception of 
the vortex latttice method in the lifting surface 
theory. 

The surface vortex lattice method is pos- 
sible to simulate a lifting body including thick- 
ness or volume effects of propeller blades by dis- 
tributing sources and horse - shoe vortices on 
the surface of the body. The propeller open 
characteristics and pressure distribution on the 
blade concerning to the marine propellers in non- 
or super-cavitating condition and the expansion 
of the cavity of three super-cavitating propllers 
have been calculated by the present method. The 
results of these calculations are in good agree- 
ments with experiment and other theoretical cal- 
culation results. 

NOMENCLATURE 

CP 
h 
K 
M 
N 
Nw 

Q 
Qn 
Q' 

pressure coefficient 
thickness of cavity 
number of propeller blades 
number of chordwise panels 
number of spanwise vortices 
number of dividing trailing vortices 
in the propeller wake 
propeller rotational speed 
normal vector to surface 
strength of source 
strength of n-th interporated source 
strength of source meaning cavity 
radial distance from the origin 
chordwise coordinate from 
leading edge 

Vi 

ßT 
6s 
r 
r 
7 

normal component of velocity 
induced by unit vortex 
inflow velocity at each 
control point 
pitch angle of propeller wake 
spanwise length of a panel 
circulation of spanwise vortex 
circulation vector of spanwise vortex 
density of circulation distribution 
cavitation number 

Subscripts and Superscripts 
B 
C 
c 
F 
G 
h 
i 
m 
n 
Q 

back side index 
cavitation index 
chordwise tangential index 
face side index 
vortices relating the propeller 
hub index 
control point index 
spanwise index 
chordwise index 
source relating the propeller and cavity 

INTRODUCTION 

For last several years, the applications of 
the vortex lattice method to the marine propeller 
have been reported by many researchers and they 
can be reaching to not only the steady and the 
unsteady condition, but also the interaction and 
the cavitation problem now. 

On the other hand, it is necessary to get 
more accurate results of the simulation by nu- 
merical method because of the requirements of 
the high skew and cavitation reduction, etc. of 
the marine propeller recently. As a result, many 
panel methods based on the lifting body theory 
instead of the vortex lattice method done on lift- 
ing surface theory has been used widely. 
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The best point of this method is the 
fact that it is possible to arrange the panels 
faithfully on the body configuration and to cal- 
culate the pressure on the blade more accu- 
rately. Many application examples of various 
panel methods to the marine propeller have been 
reported by many researchers. Ryo(l) used the 
direct method of the boundary element method, 
Koyama(2) solved the integral equation concern- 
ing to only the doublet distribution based on the 
velocity field and Hoshino(3), Kerwin(4) made 
use of Morino method(5) developed in aerody- 
namic field. 

These methods were very powerful tools 
to the complex configuration body but they had 
a weak point to limitation of the wake geometry 
behind the propeller blade. In the marine pro- 
peller, the estimation of the wake geometry is a 
very important point. Ishii(6) reported that not 
only the pressure distribution on the blade but 
also the open characteristics are affected by the 
wake geometry. 

For getting more correct simulation of the 
wake geometry, it is very easy to express it by 
vortex lattices and it'll be able to coincide with 
our physical consideration. Consequently, in case 
of the simulation of the lifting body like the ma- 
rine propeller, making the vortices to distribute 
on the body will be suit to the actual phenomena. 

The methods can be found out in the aero- 
dynamic field. Woodward(7), Maskew(8) and 
Miranda(9) had used the vortex distribution on 
the wing surfaces and they had gotten the excel- 
lent results. However, any report concerning to 
the marine propller by use of the methods have 
never seen because it would be difficult to apply 
to the three dimensional complex configuration 
like the marine propller. 

In this paper, the applicability of the sur- 
face vortex lattice methods is discussed. The 
new method based on the concept that the abun- 
dant technics made in lifting surface theory can 
be used widely and it is easy to extend the vor- 
tex lattice method to the surface vortex lattice 
method. The differences between the VLM and 
the SVLM are the arrangement of the vortices 
and the treatment of the source distribution. Ac- 
cordingly, in even case of the cavitating condi- 
tion, the same manner using in the VLM can be 
applied in the SVLM. 

MATHEMATICAL    MODELING    AND 
DISCRETIZATION 

General Discussion 

When a propeller rotates in steady condi- 
tion, there are generated spanwise and chordwise 
vortices on the real blade surface and trailing vor- 
tices in wake. 

By applying Kerwin's formula(10) based 
on the principle of conservation of circulation, we 
can replace chordwise vortex and trailing vortex 
in terms with only discrete spanwise vortices. 

In the vortex lattice method, the lift- 
ing surface on the mean camber surface of each 
blade is represented by horse-shoe vortices and 
the effects of thickness are done by sources. The 
strength of sources is determined by thin thick- 
ness assumption. 

Now, in this paper, two kinds of the sur- 
face vortex lattice methods can be considered. 
Concerning to one of them, only the vortex lat- 
tices are placed just on the blade surface. In 
another method, not only the vortex lattices are 
distributed but also the sources are done on the 
blade surface. 

Both of the analytical expressions are de- 
rived for the perturbation velocity field induced 
by each horse- shoe vortex (vortex lattice). These 
are deduced to calculate the coefficients of a sys- 
tem of linear equations relating the magnitude 
of the normal velocity at each control point on 
the blade surface to the unknown spanwise vor- 
tex strength. So as to satisfy the boundary con- 
dition at the control points the spanwise vortex 
strengths are determined by solving this system 
of equations by an iterative procedure. 

Numerical Computing Procedure In Non 
- Cavitation Condition 

The boundary condition in non - cavita- 
tion condition is given by the equation. 

Vi-m=0 (1) 

, where V; is the resultant velocity vector and n; 
is the normal vector to the blade surface at the 
i-th control point. The resultant velocity V{ at 
the i-th control point is summation of induced 
velocities by the singularities elements and undis- 
turbed inflow velocity. 

There are two kinds of the surface vortex 
lattice methods by the differences of selection of 
singularities. In this paper, the vortex only and 
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the combination of the vortex and the source dis- 
tribution as the singularities are selected. In case 
of only the vortex distribution, the resultant ve- 
locity Vi is summation of induced velocities by 
the vortex lattices and undisturbed inflow veloc- 

ity. 
Specifically, 

Vi = viG + viv (2) 

,where ViG is the velocity induced by the votri- 
ces relating to the propeller and Viu is the undis- 
turbed inflow at i-th control point. 

On the other hand, in case of taking the 
combination of the vortex and the source distri- 
bution, resultant velocity V is summmation of 
ViG, Viu and induced velocities by source distri- 
bution. 

Vi = viG + Vu + viQ (3) 

,where ViQ is the velocity induced by the source 
distribution. Considering equation (2) and (3), 
equation (1) becomes the following two equations 
respectively for such two kinds of singularities. 

(4) ViQ-rii = —rij-Vfu 

ViG-ni = -ni-{Viu + ViQ) (5) 

We can transform equation (4) with re- 
spect to the strengths of spanwise vortices as un- 
known variables. 

£ 
M     N N„ 

,m=l n=l 

M     N ( N 

m=ln=l I n„=2 

,where 

di = —rii-Vit 

inm (*) = di 

(6) 

(7) 

K        :    number of propeller blades 
M        :    number of spanwise vortex 

elements of a propeller blade 
N :     number of chord wise vortex 

elements of a propeller blade 
Nw      :    number of trailing vortex 

elements of propeller wake 
r„m     :    strength of spanwise vortex 

at (n,m) 
u°        :     normal component of the velocity 

at the i-th control point 
induced by unit ring vortex 

B,F 

normal component of the velocity 
at i-th control point induced by 
unit trailing vortex in wake 
index of back side or face side 
of blade 

The uf°m in the equation (6) means normal in- 
duced velocity at the i-th control point by a ring 
vortex at n-th chordwise and m-th spanwise on 
the back side surface having unit strength. 
The velocity induced by a ring vortex can be cal- 
culated by Biot - Savart law. 

Although there are including two kinds of 
singularities in equation (5), in this paper only 
the vortex strengths are set to unknown variables 
and the source strengths Q are fixed on a value 
as known calculated by the equation (8). 

Qi = -m-Vi (8) 

Accordingly, the equation (6) and equa- 
tion (9) are used in the condition. 

di = -niiViu + ViQ) (9) 

Numerical     Computing     Procedure     in 
Super-Cavitation Condition 

The surface vortex lattice method in the 
super - cavitating condition is considered as the 
extension of the SVLM in the non - cavitating 
condition. 

In the method, the former concept is used 
to a part of the propeller blade and the wake 
without cavitation and new concept is done to 
parts of them with cavitation. However, to make 
easy calculation the following assumptions are 
made concerning to the occurence of the cavi- 
tation. 

1. Cavitation occures on the back surface only. 

2. Cavitation occures from the leading edge on 
the back side and do not occure on the way 
to chordwise direction. 

3. Cavitation in the wake behind the body 
closes itself at the crossing point of two trail- 
ing vortices from the back side and from the 
face side. 

The governing equation in the super - 
cavitating condition is represented by equation 
(5). The differences of concept between non- 
and super- cavitating condition are the boundary 
conditions and selection of singularity elements. 
The boundary conditions are set to two parts. 
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1. Boundary   condition   on   the   blade   sur- 
face(without cavitation) 
On the boundary surface without cavitation, 
the condition is represented by the equation 

Vi ■ rii - 0 (10) 

The unknown variables are only the vortex 
strengths and the source strength Q is given 
by the equation (11). 

Q = viu (ii) 

2. Boundary condition on the cavitation sur- 
face 
On the surface where the cavitation are oc- 
curing, the boundary conditions are divided 
into two parts. One of them is that flow does 
not across the surface and the other condi- 
tion is that the pressure coefficients on the 
body are equal to cavitation number. 
Accordingly, 

nc ■ Vi = 0 

\vc\ = \viu\VT+^v 

(12) 

(13) 

,where nc means a unit normal vector on 
the cavity surface and \VC\ is a chordwise 
tangential velocity. The vortices and the 
sources as two unknown variables are dis- 
tributed on the cavity surface. 

By using these two kinds of boundary 
conditions, the strengths of the vortices and the 
sources distributed on the body or cavitation sur- 
face can be gotten by solving the simultaneous 
equations. However, it is very difficult to solve a 
problem of cavitation because the region of the 
cavity is not defined. 

In this paper, the cavitation occurence on 
the surface of the blade and the wake is simulated 
by the following iterative calculation. 

The iterative procedures are made by two 
parts. The cavity extension is obtained as a first 
approximate estimate at the first step, after that, 
the cavity thickness is done at the second step. 

First step: Determination of the cavity 
extension 

(a). It is assumed that the cavity occures 
on the whole back side surface of the wing or 
blade, and the vortices and the sorces as un- 
known variables are distributed on the cavity 
surface. By using the boundary conditions as 
mentioned above, the simultaneous equations are 
solved and the strengths Q of the source are ob- 
tained. 

(b). The strengths of the sources on the back 
side surface without cavitation are calculated by 
the equation. 

Q'^-rti-Vi (14) 

(c).We can consider that Q obtained at (a) 
is summation of Qt representing blade thickness 
and Q' meaning the cavity thickness and the fol- 
lowing equation is satisfied. 

Q' = Q-QX (15) 

(d).The cavity thickness h is obtained by the 
equations (14) and (16). 

dh       Q' 
de ~ \Vi\ 

(16) 

(e) .Concerning to h, when the thickness at the 
trailing edge of the cavity is a positive value, the 
calculation is moved behind the trailing edge and 
in case of a negative value, the region of the cav- 
ity is shortened to the direction of the leading 
edge. 

After that, the iterative procedure from 
(a) to (d) is repeated many times until the con- 
vergence of the cavity end. 

Second step: Determination of the cavity 
thickness 

After the determination of the cavity ex- 
tension by the iterative procedure (a) to (e), more 
accurate cavity thickness can be obtained by the 
following procedure. At the first step, we have 
gotten the first approximate cavity thickness by 
use of Q' and equation (16). 

(f).The n-th approximate cavity thickness hn 

is added to the boundary surface and the new 
boundary surface is rearranged as the boundary 
surface including the cavity. 

After calculating the n-th source strength 
Qt

n meaning the boundary thickness, the source 
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strength Qn can be obtained by solving the si- 
multaneous equations. 

(g).From Q*„ and Qn at (f), Q'n+1 showing 
the (n+l)-th cavity thickness can be calculated 
by use of the equation(17). 

Q'n+1 =Qn~Qn (17) 

And (n+l)-th approximate thickness of the cav- 
ity hn+i can be made by Q'n+V 

By repeating the procedures (f) and (g), 
and calculating until Q'nis close to zero and 
hi,h2,h.3,... can be obtained. 

Accordingly, we can have the most accu- 
rate cavity thickness after subtracting the blade 
thickness from the convergent boundary surface 
[the cavity thickness(/i1 + /i2 + ^3+, •••, hn)+the 
blade surface]. 

PANEL DIVISION OF PROPELLER 
BLADE AND WAKE MODEL 

Propeller Blade 

The continuous vortex distribution repre- 
senting the blade is replaced with discrete one. 
There are three kinds of arrangements related to 
singularities in three conditions. 

One of them is that the discrete vortices 
are placed at the front of the small panel and the 
control point is taken at the center of the panel 
of chordwise direction. In this arragement, two 
vortices on the back and face surfaces which are 
the closest to the leading edge are placed at a 
distance of a-C from the leading edge as shown 
Fig.l. The C is a chord length and a is 0.01 in 
this calculation. This arrangement is used in the 
case of utilization of only the vortex system. 

Second one is that the discrete vortices 
are placed at the line of a quarter chord of the 
small panel and the control point is taken at the 
point of three-quarter chord like the vortex lat- 
tice method. This arrangement is used in case of 
the combination of the vortex and source system. 

The last one is that the discrete vor- 
tices are placed at the same position to the sec- 
ond arrangement and surface distributed con- 
stant sources are arranged in each small panel 
like Hess & Smith method. This arrangement is 
used in super - cavitating condition. 

We experienced the fact that the singular- 
ity between vortices on the surfaces close to the 
tip as propeller blade is too strong to get good 
accuracy solutions. 

In the present method, to avoid this problem the 
real surface panels satisfying the following ex- 
pression are replaced by lifting surface panels. 

b-<ß 
a 

(18) 

In equation (18) a means distance from spanwise 
vortex to control point on the back side and b 
is distance from spanwise vortex on the opposite 
face side to control point on the back side, ß is 
taken 1.025. 

The back and face surface of a propeller 
blade are divided into NxM panels. 
In the chordwise spacing, same spacing is selected 
and in the spanwise spacing, cosine spacing used 
by Hoshino(3) is adopted. 

rm --^{rt ■¥ rh) --(rt - rh)cosam     (19) 

0 
(2m-l)ir 
2(M+1) 

for 
for m : ,M + 1 

(20) 

, where rm are radial positions of the corner points 
of each panels and r^ is the radius of the boss, 
the rt are radial distances represented by follow- 
ing expression. 

rt = 
(r-rt)(4M + l) 

4M+ 2 
(21) 

Propeller Wake Model 

Fig.2 shows the flow chart for the simu- 
lation of the geometry of the propeller wake by 
iterative procedure. 
In the first step, we calculate the strengths of 
the vortices in the whole system including classi- 
cal wake whose pitch distribution is equal to pro- 
peller's with no consideration of any contraction 
and compute the induced velocity at each end of 
the segments of the discrete propeller wake, in 
order to meve them to new position by using fol- 
lowing expressions. 

P^+1) = P% + Vw-At (22) 

Vw=(Va + Vs,Vr,2wnr+Ve) (23) 
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, where P^ are the coordinates of the ends of the 
discrete wake segments at the N-th time step and 
14, Vr,-Ve are each components of the axial, radial 
and circumferential induced velocity by vortex 
distribution respectively. 

Moreover, the At in the expression (22) 
is determined by the following expression 

At = 
n • Nw 

(24) 

,where n means the number of propeller revolu- 
tion. After the second step, simulations are con- 
tinued by the process as mentioned above untill 
the thrust coefficient at each time step converges. 

Calculation of the Density of Circulation Dis- 
tribution and the Pressure Distribution on the 
Blade 

We have obtained the density of circula- 
tion distribution on i-th control point 

=      ■^■{rnm*nnml\Lnm\ 

+     fn+l.m X «n+l,m/|in + l,: )(25) 

.where 7, is the density of circulation distribu- 
tion, rb

nm is the bound vortex vector at (n,m)-th 
panel, 6 s is the spanwise length of the panel and 
L means spanwise vortex segment vector. 
According to Yuasa(ll), the pressure at i- 
th control point has been calculated by using 
Bernoulli's equation. 

CPB = 1 

CPF 

vf 

V; 

V? 

B -I 

1 — v? r tu 

V-
F2 

1 — 
V? 'tu 

-VB 

vt° l+— 1      2 

~F 
vf 1      2 

(26) 

(27) 

(28) 

(29) 

Calculation    of    Hydrodynamic     Forces, 
Thrust and Torque 

The hydrodynamic force acting on each 
discrete element has been composed of the fol- 
lowing terms. 

1. Pressure acting on a panel on the surface. 

2. Viscous drag at each blade element. 

We can get the viscous drag working at 
each blade element by following equation 

0=1 + 
0.455 

2 58 (3°) C   J     (log10i?e)  ' 

, where tmax is maximum thickness of the each 
blade section and Re is the Reynolds number. 

The thrust and the torque of the propeller 
have been calculated by the summation of each 
components of the above terms. 

RESULTS AND DISCUSSION 

We have some test calculation to make 
sure that the correct results can be gotten in 
simple configuration body like three dimensional 
wing by use of the present method. In case of 
the non - cavitation condition, it is a three di- 
mensional rectangular wing whose results made 
by use of various panel methods were reported 
by Johnson(12). In case of the super - cavi- 
tation condition, we select two kinds of section 
wing which called Newton - Rader and Johnson 
5 terms wing. Concerning to the marine pro- 
peller, three type propellers are selected in non - 
cavitation and two propellers are done in super - 
cavitation condition. 

Non - Cavitation Condition 

Three dimensional rectangular wing 
The wing are divided into 12(chordwise)x 

8(spanwise) panels and the pressure distribution 
on the both surfaces are calculated. 

Fig.3 shows the pressure coefficients ob- 
tained by three methods which are Morino 
method, SVLM used the vortex only and used 
the vortex and source. The results of SVLM 
represented the wing surface by the vortex only 
have not a little difference in comparison with 
other two methods near the leading edge. An- 
other SVLM added the source distribution gives 
results in closer to Morino method. These results 
are reasonable because the displacement thick- 
ness effect is taken to account by source distri- 
bution. We can not find diffrence between two 
SVLM in the region from midchord to the trail- 
ing edge, but the improvement can be found in 
the results of SVLM with vortex and source in 
the vicinity of the leading edge. Accordingly, the 
method used the arrangement of the combination 
of the vortex and source is better than the vortex 
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only. 

Conventional and highly skewed propeller 
We have three type propellers for cal- 

culation by the present method. One of them 
is a conventional propeller(CP), second one is a 
highly skewed propeller(HSP) and the last one 
is DTRC4119. The principle particulars of these 
propellers are tabulated as Table 1. The arrange- 
ments of vortex lattice system of the each three 
propellers are described in Fig.4,Fig.5 and Fig.6. 
All propellers are divided into the same number 
panels which is 12 chordwise and is 10 the span- 
wise. Propeller bosses are not yet included. 

Fig.7 to Fig.9 show the pressure distribu- 
tion on the blade of CP at r/R=0.3,0.7 and 0.8. 
Fig.10 and Fig.ll show that of HSP at r/R=0.7 
and 0.8. These advance coefficients J are set to 
0.66. The results of the direct method of the 
boundary element method made by Ryo are put 
in these figures for the comparison. 

Concerning to the pressure distribution 
at r/R=0.3 of CP shown in Fig.7, it can be con- 
cluded that the two SVLM are different from 
BEM at the whole chordwise positions. The dif- 
ference must be caused by the effect of the hub 
which is included in the results made by Ryo(l) 
but not done in the present method. The re- 
sults of the method using the vortex only have 
large difference among other methods in the re- 
gion near the leading edge for the same reason in 
the case of the rectangular wing. 

In Fig.8 and Fig.9 showing the pressure 
distribution of CP at 0.7 and 0.8 radius, SVLM 
using the vortex and source can be in good agree- 
ment with the experiment and BEM. But SVLM 
using the vortex only is smaller than other results 
near the leading edge. 

Fig.10 and Fig.ll show the pressure co- 
efficients of HSP at r/R=0.7 and r/R=0.8. The 
pressure coefficients obtained by the two SVLM 
are higher than BEM at the whole position, but 
SVLM by vortex and source has improved near 
the leading edge. 

The simulation results of the wake geom- 
etry of CP are shown in Fig.12. The calculated 
results by the present method are compared with 
experiment results done by Ishii(13). The vari- 
able shown in this figure ßr means pitch angle 
of the wake geometry and it can be obtained by 
following equation defined in the reference(13). 

ßT = arctan (Ja + \\ (31) 

As the measuring positions in experiment are 
X/R=0.4 and 1.0, it is best to suit to them. But 
induced velocity is calculated by using only in- 
terpolation of axial direction and not radius di- 
rection. As shown in this figure, calculations are 
little different from experiments, so that the cal- 
culations can simulate the actual phenomena of 
the wake behind propeller faithfully. The pitch of 
wake geometry calculated are greater than geo- 
metric pitch of blade at radius position which are 
between 0.3R and 0.7R. And they are smaller at 
positions which are near 0.2R and greater than 
0.7R. These distributions mean that the effect of 
the wake vortices occuring from the root and the 
tip of the propeller are so strong as to make their 
own geometry to be deformed. 

Fig.13 and Fig.14 show open water char- 
acteristics of CP and HSP, respectively. Calcu- 
lation results agree with experiment results on 
both CP and HSP. But torque coefficients are 
smaller than experiments at high load condition 
in case of two propellers. In order to avoid this 
it will be necessary to consider separated vortex 
model of tip vortex reported by Ishii(6). 

DTRC4H9 
We have selected DTRC4119 for calcu- 

lation as high pitch propeller. As Jessup(14) 
mesured many items concerning to this propeller 
by use of LDV, the results can be compared 
with the present results. Figs.15,16 and 17 show 
pressure distribution on blade of DTRC4119 at 
0.3,0.7 and 0.9 radius respectively in working at 
J=0.833. 

Fig.15 shows that the calculations are a 
little smaller than the experimental results on the 
whole chord because the effect of the hub is not 
considered as mentioned above, and the pressure 
coefficient near the leading edge in case of the 
vortex only are much smaller than other results. 

Concerning to pressure distribution at 0.7 
radius shown in Fig. 16, the calculation of the 
combination of the vortex and source agrees very 
well with to the experiment in the whole chord 
but about at 0.9 radius shown in Fig.17, we can- 
not obtain so good results and they are strange 
distribution. We think that the unreality of this 
distribution were induced by the singularity of 
the close vortices on opposite sides. 

Fig. 18 shows comparison between experi- 
ments and calculations of open water character- 
istics. The thrust coefficients of the calculations 
are in good agreement with the experimental re- 
sults, but the torque coefficient shows the larger 
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differences at the lower advance coefficient. They 
are caused by shortage of frictional resistance 
which are calculated by the expression using that 
of flat plate and by no consideration of separation 
of the tip vortex. 

Fig.19 shows pitch distribution of the pro- 
peller wake calculated by the present iterative 
procedure. The distances from the center line are 
0.328 and 0.95 radius. Both of the calculated dis- 
tributions are similar to the experimental results 
but they are not in good agreement. We think 
that the strength of the tip vortex is not calcu- 
lated correctly or it might be necessary to make 
convergence of not only the open water charac- 
teristics but also wake geometry. 

Super - Cavitation Condition 

We select two super - cavitation wings and 
two super - cavitation propellers whose experi- 
ments are given. Although these numerical cal- 
culations are made by the method as mentioned 
before, in case of the marine propellers, classical 
wake is used and the assumed region where the 
cavity occurs at initial step is not set to the whole 
back side surface but to the experiment data for 
reduction of CPU time. The wing and blade sec- 
tions are shown in Fig.20. The wings are Newton 
- Rad er wing and Johnson 5 terms wing, and pro- 
peller blade sections are SSPA and SRIJ-I. The 
condition of the wings for experiments and cal- 
culations are tabulated in Table 2 and principle 
particulars of the propllers are in Table 3. The 
number of panel division on the surfaces in the 
present calculation is as follows. 

1. Super - cavitation wing 

(a) chordwisexspanwise:12xl2 

(b) length of wake :6x chord 

2. Super - cavitation propeller 

(a) chordwisexspanwise:15x20(SSPA), 
12xl0(SPJJ-H) 

(b) wake(one cycle) :60 

(c) length of wake :two cycles 

The panels of wake are arranged to the di- 
rection of uniform flow with respect to the super 
- cavitation wing and are set to classical wake 
about super- cavitation propeller in the initial 
stage. In case of the wing having a thickness 
at the trailing edge like Johnson 5 terms wing, 
wakes are made of two layers generating from the 

back and the face surfaces but vortex surface on 
the cavity are distributed above the back side of 
the body surface and it is duplicated on the face 
side wake at the end point of the cavity. 

Super - cavitation wing 
Calculation results are represented by hy- 

drodynamic forces, cavity extension and shape. 
Lift coefficients, drag coefficients and cavity ex- 
tension versus change of cry are shown in Fig.21 
to Fig.23 and experiment results of Ship Research 
Institute of Japan and Tokyo University are put 
in figures for comparison. 

As shown Fig.21a, lift coefficients of N- 
R wing calculated by the present method are 
close to the experimental results of SRI and they 
change linearly to ay which are less than 0.6. Al- 
though the experiments take a maximum value at 
0V=O.6 and after that, they are decreasing rad- 
ically, calculations have no peak. At cry = 0.6, 
N-R wing is in super - cavitation condition in 
experiment but as mentioned above, the present 
method cannot correspond to this change of the 
condition. 

The same discussion as the lift coefficients 
can be done about drag coefficients shown in 
Fig.21b. As the experimental data have scatter- 
ing, we cannot make quantity discussion. But it 
may be correct that partial cavitation suddenly 
changes to super cavitation. Such change cannot 
appear in the calculation. 

The cavity extension are shown in Fig. 23a. 
Although the experimental data are given at 
cry < 0.3, considering the change of the hydrody- 
namic forces mentioned above, it is expected that 
the cavity extensions will become less than 1.0 
near ay =0.6. Comparison between the present 
method and experiments shows good agreemwnt 
in the range of ay < 0.3(super - cavitation con- 
dition). 

Fig.22a shows lift coefficients of Johnson 
5 terms wing. 
The lift coefficients are good agreement with ex- 
periments at the cavitation number less than 
0.4, and so we can partially confirm accuracy 
of the present method. But calculations can- 
not simulate correctly the phenomena of exper- 
iments which the lift coefficients suddenly drop 
at av > 0.4. It will be one of future works to 
simulate correctly the transition condition which 
shift from partial cavitation to super - cavitation 
condition. 

Fig.22b shows drag coefficients of John- 
son 5 terms wing. 
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We cannot do exact discussions for scuttering 
of experimental data similar to N-R wing. The 
calculated drag coefficient increases proportion- 
ally to <TV and the gradient of the curve of Cx> 
changes at cry=0.4 where super - cavitation con- 
dition changes to partial cavitation condition. 

Fig.23b shows extension of cavity with re- 
spect to Johnson. 5 terms wing. The calculations 
are a little longer than experiments at the cav- 
ity numbers less than 0.3. Some problem might 
happen in the case that the wing section is cut 
off having a thickness at the trailing edge. 

Super - cavitation propeller 
Results concerning to the two super - cav- 

itation propellers are represented by pressure dis- 
tribution at 0.71 radius, open water characteris- 
tics, and extension of cavity. 

Calculations of pressure distribution on 
the blade at 0.71 radius of SSPA are shown in 
Fig.24. The calculation is made at only design 
point which ov is equal to 0.4 and advance coef- 
ficient J is equal to 1.1. The pressure coefficients 
calculated on the back surface coincide with cav- 
ity number because boundary surface of back side 
are in the cavity. The pressure coefficients of the 
face side go up near the leading edge keep a con- 
stant near the mid-chord and go down near the 
trailing edge. The fluctuation behind the leading 
edge will be improved by using smaller panels. 

The open water characteristics of SSPA 
propeller are shown in Fig.25. Both of thrust 
and torque coefficient of the calculation are 
lower than experiment, especialy diffrence be- 
tween them of torque is larger. This is because 
strengths of the vortices cannot be solved cor- 
rectly. Since the wing sections at 0.7 radius to 
tip of SSPA propeller are very thin and back and 
face surfaces are parallel, it is difficult to get more 
accurate vortex distribution on the blade by the 
present method. For making application of the 
present method to the propellers having sections 
whose thickness is very thin near the leading edge 
and a surface is parallel to another surface, it is 
necessary to arrange smaller panels or use surface 
vortex distribution instead of discrete vortex lat- 
tice. 

Fig.26 and Fig.27 show extension and 
thickness of cavity. 
As shown in Fig.26, the cavity is extending lin- 
early from boss to 0.8 radius and contracting 
from 0.8 radius to tip. The cavity thickness 
distribution along the chord of SSPA propeller 
shown in Fig.27 increases straightly from the 

leading edge to 0.8 chord, takes a maximum value 
in rear of the trailing edge, after that suddenly 
happens to decrease near 1.4 chord and close at 
1.6 chord. 

Results of pressure distribution of SRIJ-II 
are shown in Fig.28. Here are including calcula- 
tion results by SC-VLM in SRI. Although a great 
fluctuation can be seen in the calculations of SC- 
VLM on the face side surface, that of the present 
method is less. But we may suppose that inte- 
grations of the pressure difference between back 
and face surfaces equal to each other. 

Fig.29 shows open water characteristics 
of SRIJ-H propeller. The experimental data are 
given by SRI like SSPA propeller. Conditions of 
calculations are that cavitation number is 0.4 and 
advance coefficients are 0.9, 1.1 and 1.3 among 
which the design point becomes the center of the 
three points. As shown in this figure, both of the 
thrust and torque are a little smaller than the 
experiments. About these differences, it is possi- 
ble to eliminate the differences by considering of 
iterative deformation of the wake. 

Extension and thickness of cavity are 
shown in Fig.30 and Fig.31 respectively. 
The experimental data(extension of cavity) made 
by SRI are put in Fig.30 and results(cavity thick- 
ness) calculated by using SC-VLM in SRI are 
shown in Fig.31. With respect to the extension 
of the cavity shown in Fig.30, calculations are 
longer than experiments from hub to 0.45 radius 
and they are shorter than experiments from 0.45 
radius to the tip. About the cavity thickness 
shown in Fig.31, the calculations by the present 
method are more than SC-VLM at the trailing 
edge and they are closing smoothly at 1.5 chord. 
As this phenomena is caused by a assumption 
that bottom surface of cavity concerning to wake 
is forced to coincide with classical wake generat- 
ing from face side surface, we would get better 
results if an actual wake geometry which were 
made by iterative procedure. 

CONCLUSIONS 

The surface vortex lattice methods have 
been applied to the wings and the marine pro- 
pliers in non- or super- cavitation conditon. As 
results, we have found the following conclusion 
about these methods. 

1. Although the surface vortex lattice method 
with the vortex only distribution has an im- 
portant discrepancy near the leading edge, 
the improved surface vortex lattice method 
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with combination of the vortex and source 
distributions can be applied to even the ma- 
rine propeller having three dimensional com- 
plex configuration in non - cavitation condi- 
tion. 

2. The improved surface vortex lattice method 
can be used to the marine propeller work- 
ing in super - cavitation condition and cal- 
culated results are in good agreement with 
experimental results concernong to lift co- 
efficients. But it is necessary to investigate 
more detail by comparing with some exper- 
imental data about components of drag. 

3. Good results concerning to extension of cav- 
ity can be obtained to both of super - cav- 
itation wings and propellers. As we cannot 
discuss detail of cavity thickness for lack of 
experimental data, we shall have to research 
experimentally as well as theoretically in the 
future. 

4. In the super - cavitation condition, accurate 
results can be gotten by use of the surface 
vortex lattice method but as future work, we 
would like to investigate the following items. 

(a) Improvement for wing having thin and 
parallel surface section 

(b) Geometry of the wake with considera- 
tion of deformation by iterative proce- 
dure in super - cavitation condition 

(c) Simulation of partial cavitation 
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Table 1 Principal Particulars of Pro pellers 

Propeller Type CP HSP DTRC4119 

Diameter (m) 0.300 0.300 0.3048 

Boss ratio 0.2133 0.2133 0.200 

Pitch ratio 0.95(const) 0.944(0.7R) 1.084(0.7R) 

Exp. Area ratio 0.65 0.70 
Angle of rake 6.00 -3.03 0.00(const.) 

B-T ratio 0.0442 0.04961 
Number of blades 5 5 3 

Blade section MAU SRI-B(mod.) NACA66a=.8 

Table 2 Experiments and calculation condition 
wing type velocity(m/s) Reynolds number 

SRI 
(exp.) 

N-R 8.0 1.0 x 10" 
Johnson 8.0 1.0 x 10° 

UT 
(exp.) 

N-R 8.0 1.5 x 10° 
Johnson 6.0 1.1 x 10° 

YNU 
(cal.) 

N-R 8.0 1.0 x 10° 
Johnson 8.0 1.0 x 10° 

Table 3     Principal Particulars of Propellers 
Propeller Type SSPA SRIJ-n 

Diameter (m) 0.2000 0.2000 
Boss ratio 0.1900 0.1900 

Pitch ratio 1.60(0.7R) 1.4695(0.7R) 
Exp.area ratio 0.500 0.641 

Angle of rake 10.0(const.) 10.0(const.) 
Number of blades 3 3 
Blade section SSPA SRJN 
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Fig.2 Flow Chart of Present Calculation 
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DISCUSSION AUTHORS' REPLY 

S. Kinnas 
Massachusetts Institute of Technology, USA 

It would be nice if the authors provide convergence 
tests (both with chordwise and spanwise number of 
panels) of their method (in non-cavitating and 
cavitating flow) as applied to propellers. Despite the 
good comparison of their method with experiments, it 
is important to establish the convergence of their 
method. 

Professor Kinnas has asked for the convergence test on 
Surface Vortex Lattice Method. We provide the 
convergence test that the chordwise and spanwise 
number of panels are changed in non-cavitation 
condition. 

Fig. A shows the results of the thrust and torque 
convergence tests by Surface Vortex Lattice Method. 
As shown in this figure, we could get good results of 
convergence tests for the spanwise and chordwise 
number. 
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Fig.A Convergence of Open Water Characteristics 

(Conventional Propeller) 

135 



Time-Domain Theory of Wave Diffraction for 
Ship Motions with Forward Speed 

Z. Zhou (China Ship Scientific Research Center, China), 
Z. Liang, D. Yishan (Harbin Shipbuilding Engineering Institute, China) 

ABSTRACT 

A diffraction problem for a surface ship trav- 
eling at a constant forward speed in waves is 
studied by time domain analysis. A new 
formulation is proposed for computing wave 
exciting forces, in which diffraction forces are 
described according to the incident wave 

potential and the auxiliary-radiation potential 

corresponding to the motion in the opposite 

direction, therefore the exciting forces in time- 

domain can be given without computing the 
diffraction potential itself, the resulting integral 
equations of the auxiliary-radiation potentials 

need to be solved only once for all incident wave 
frequencies, which saves CPU time greatly and 
results in the time-domain theory can be used in 

ship engineering   for practical purpose. 

This paper also proves mathematically that for 
an arbitrary floating body, the terms of the 

waterline integral in the formula for computing 
diffraction forces will vanish, assuming the fluid 
disturbance due to steady forward motion is not 

small in free-surface condition. Physically the 

terms of waterline integral are the result of inter- 
action between the steady forward motion and 

the unsteady   motion. 

Comparisons are made between the results 

of the time-domain computations, the conven- 
tional frequency-domain   calculations   and that of 

experiments. They validated the accuracy of the 
proposed formulation and demonstrated the 

efficiency of the method. 

It is hoped that the present method may be a 
major step forward in the development of pre- 
diction tools for ship motions and loads with 

forward speed. 

Keywords: wave forces, diffraction, time- 

domain theory 

1. INTRODUCTION 

The accurate   prediction  of ship motions and 
wave loads for ship design is a major purpose   of 
seakeeping    study. Although the flow field and 

resulting motions of a ship (3-D body) advancing 
in   waves    is   a   nonlinear,    three-dimensional 

boundary value problem, for design purpose,  the 
traditional engineering   solution  is to use a strip 
theory, in which the frequency  is assumed   to be 
large and the geometry   of the body to be long 

and slender   so that a solution can be approxi- 
mated by a series of two-dimensional   problems 
in the cross-flow plane. Strip theory gives rather 

accurate   predictions  for slender ships and ships 
moving  at low speed,   however,   since   in strip 
theory, the three-dimensionality    of the flow field 

is neglected   and the forward speed   effects are 

accounted     only   in  a   simplistic   manner    (c.f. 

Zhou.et al,1991), therefore for high speed   ships 
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or for ships and ocean structures of complex 

geometries, the strip theory is not theoretically 

correct for prediction purposes. 

In order to account for the three dimensionality 

of the ship hull geometry,  the three-dimensional 
frequency-domain      panel    method    has    been 

obtained      a    widespread      development.       By 

assuming  motions to be small and harmonic, the 
resulting    boundary-value     problem    is   solved 

using  a singularity distribution  method   on the 

mean body boundary thus reducing the complex 

3-D boundary   problem to the solving of a set of 

Fredholm integral equations   of the second   kind 

on the body surface.  For zero speed   problems, 

this   approach     is   quite   successful     and   has 
become   a standard   tool for the design  of large 
offshore structures.   In the presence    of forward 

speed,    especially    at high  speeds,    the  corre- 

sponding    Neumann-Kelvin   problem   is signifi- 
cantly more difficultto attack due primarily to the 
difficulty and    complexity    of  computing     the 
corresponding    Green   functions.   Thus, despite 

that a number of methods   have been developed 
by a number ofworkers(e.g., Chang, 1977; Inglis 

and Price, 1981; Guevel and Bougis, 1982; Sun, 
et al, 1991; Zhou, et al, 1991), a truly satisfactory 
numerical  solution is not yet available. 

An alternative   approach    to the  frequency- 
domain method   is the time-domain   analysis,   in 
which the solution of the initial-value problem is 
formulated    by   time-domain    approach.     Cum- 
mins(1962) and Ogilvie(1964) first discussed   the 

use of time-domain   analysis   to solve unsteady 
ship motion problems.   In the case   of linearized 

motions (small amplitude) with zero or a constant 

forward speed,   the time-domain   solutions   are 

formally related to the frequency-domain    results 
via Fourier transforms.  Recently there appears   a 

development      of   the    time-domain     method 
because     the   derived   time-dependent     Green 
function retains the same  relatively simple form 

regardless   of the body's velocity. Itis much more 
simple than the corresponding   Green function in 

the   frequency    domain,   yet   it is  capable    of 

describing  arbitrary (large-amplitude)   motions of 

ships  or floating bodies   when the proper free- 

surface  memory effects are included. Beck and 

Liapis(1987) used linear time-domain analysis to 

solve the radiation problem  for arbitrary bodies 
at zero forward speed.   Liapis and  Beck(1985) 
also   gave   results   for the   linearized   radiation 

problem with constant  forward speed.  King, Beck 

and Magee(1988)   studied the general  linearized 
problem  with constant   forward speed.   Lin and 

Yue(1990) extended   the time-domain  approach 

to  arbitrary   large-amplitude    motions    (with a 

linearized   free-surface   condition)   of a surface 

piercing body in a seaway.  They gave numerical 

results   for linearized   radiation   and   diffraction 
problems,    for large-amplitude    forced   motions 

and   free motions   of a floating body  with and 
without   forward   speed,    and   for calm   water 

resistance   and added wave resistance   problems. 

Ferrant(1990),   and  Beck  & Magee(1990)   also 

investigated   the large-amplitude   motions. 

However   most   of the   above    time-domain 

methods   probably   may not become   a practical 

tool for prediction   and   ship  design,   because 

those time-domain methods are time consuming, 
requiring a large powerful high-speed   computer. 
Aswewillsee it, a new time-domain  method that 

saves    computer    time  to  even   less   than   the 
frequency-domain    method   may be developed. 

One possible   way is to separate    the effects  of 
ship  hull geometry   and   ship   speed    from the 

effects   of incident   wave   and   ship   transient 
motions in the integral equations.   For radiation, 
it is possible   to separate    the effect of ship hull 

geometry    from that  of ship   (time-dependant) 

motions   (Liapis and   Beck   1985).  Thus  when 

solving   for hydrodynamic    coefficients   (added 

mass   and   damping   coefficients),   the  integral 
equations    of radiation   potentials    need   to be 
solved only once and for all, independent   of ship 

transient velocities. But, for diffraction problems 
at a constant   forward speed,   it is different and 
becomes    very difficult to separate    the effect of 

ship hull geometry   from that of incident waves. 

Therefore   the   integrals   of potentials    contain 
incident waves. The process   of solving the inte- 
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grals of diffraction potential is repeated every 
time when there is a change of incident wave 

frequency. Therefore, the computation is time 

consuming. 
The above difficulty points to the requirement 

of developing   the new mathematical    model  to 
deal with diffraction problem. In this paper, anew 

mathematical    model of diffraction for a surface 
ship with forward speed   will be presented,    the 
proposed   formulae for computing  wave exciting 
forces    and    diffraction    forces    are    derived. 

According to the new method,  the effect of ship 

hull geometry willbe separated   from the effect of 

incident waves, which will result in a new time- 

domain theory which can save a lot of CPU time. 

2. THEORETICAL FORMULATION 

Assuming that a ship advances with a con- 

stant speed u in waves and undergoes arbitrary 
six-degree-of-freedom motion in water of infinite 
depth. The coordinate system shown in Figure 1 
is fixed to the mean position of the ship at midship 
with the z-axis positive upwards and x positive to 
the bow. The x-y plane is coincident with the calm 

water level. 

Fig. 1 Definition sketch 

It is assumed    that the fluid is incompressible, 

inviscid and   the  flow irrotational.  To set  up a 
linearized  problem   it is assumed    that the fluid 

disturbances    due to the steady   forward motion 

and the unsteady oscillations are small and can 
be separated. In this case, the total velocity 

potential can be written as: 

<f>rO, y, z, o = (-ux + 4>0) + 4>/ + <t>o + <K 

(1) 

Where  the  term -ux + $0(x ,y, z) is the 

potential due to the steady translation of the ship 
and $,, <(> D, <t> R represent all the unsteady effects, 
in which, 4>,isthe incident wave potential, (jipthe 
diffracted wave potential, <j>* the radiation 

potential due to the ship's transient motions. 

The boundary   conditions   on the diffraction 

potential are: 

V2<j>DO,y,z,0 = 0        in    v 

dt       dx)  *D        dz 
on    z = 0 

~dn 
.d±L 

dn 

V4>D->0 

on 

as    z -» -» 

(2) 

Where SH represents    the mean   underwater 

hull surface, S« represents the enclosing surface 
at infinity, and the calm water surface being 

denoted   by-Sf(z = 0). 

Since an initial value problem is being treated 
and  the disturbances    generating   the unsteady 

potentials   originate in the neighborhood    of the 
origin,   the gradient   of the diffraction potential 

must vanish at infinity for finite time. 

v<t>D->o 

dt 
0 on    S„,     i>0 

The initial condition for the diffraction potential 

is 

*D l,.o=0 

dt 
= 0 on    S F 
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The unsteady   pressure   of diffraction in the 

fluid is given by the linearized Bernoulli equation: 

p = -p—-pw V<f>D 

where to is the velocity vector due to the steady 

translation. The wave diffraction forces acting on 

the body are found by integrating  the pressure 

on the instantaneous    underwater   hull surface, 

which is given by 

PokiO — P -rit-ds 
dt 

(u; • x7^D)nkds 
•I    J S H 

fc-l,2,...,6 (3) 

The second  term of Eq.(3) involves derivatives 

of the potential   §D, a quantity which is difficult to 
evaluate.   This gradient  of the potential  may be 
eliminated using the theorem  presented   in Ogil- 
vieand Tuck(1969). 

f  f   ^<t>o 
FDk(t) = -pJ J    — nkds 

+ pj J     <$>Dmkds 

- p 9 $Dnk(lx n) ■ wdl 

fc=l,2,...,6     (4) 

where 

I is the unit vector in the tangential   direction 

along the waterline; n^are components    of gen- 

eralized unit normal, out of fluid domain. 

(n, ,n2, n3) = n 

(n4,ns,/26) = rxn 

r = (x,y,z) 

/ri^are gradients of the steady velocities in the 

normal direction. 

(m4,ms,m6) = -(R'V)(rXu)) 

and iu = V(-ux + <|)o). 

Itshould be noted that for most ship-like forms 

( IX n ) is almost perpendicular to tu and thus the 

line integral is of higher order and may be 

neglected.   Therefore : 

f0*(0 = -pjj   "j/n*ds + pjj   <t)om*ds 

fc=l,2,...,6 (5) 

In order to separate   the effect of incident wave 

from that of the ship hull geometry,  we consider 

radiation  potentials   ty lk, ip 2k and  the auxiliary 

potentials X*~ ^corresponding   to the motion in the 

opposite  direction, these potential satisfy: 

fc=l,2,...,6    in    V V2ii>1(t(p) = 0 

 = nk dn        k 

Vi|jlt(p)-»0 

on    z - 0 

on    S H 

at    S„ 

(6) 

For \p2A, it satisfies: 

V2i|>2fc(p) = 0    fc=l,2... 

V2k(P) = 0        on    z = 0 

6    in     V 

mk 
dn 

Vi|>2t(p)-»0 

on    S H 

at    S„ 

(7) 

For auxiliary radiation potentials  correspond- 
ing to a translation  in the opposite   direction, we 

set: 
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V2xi")(P.t) = 0 fc-l,2,...,6 in V 

— + a — 
dt      dx 

- Q — y bz 
[xr)(p.o-v2t(p)]-o 

on    z = 0 

bn 
on    S H 

Xt    lt-o = 0 

dX 
(-) 

dt 
■|,-o=-6' (z-0) 

(8) 

The  ihifc(p) describes    the   instantaneous 

effect of fluid due to a unit ship displacement,   in 

which, the ship moves instantaneously   from 0 to 

1 in the fc'hmode at t=0. This jump is impulsive, 

so that the velocity is a delta function, 6 (t > 

The   ^2fc(P)     and     Xfc_)   represent     the 

motion of the fluid subsequent    to the initial step 

motion. They may be considered   as composed 

of two components:     The  first results   from a 

change    in body   orientation   due   to the   step 

function, after which the body will have a unit 

displacement   in the fc,h mode. This in turn, in the 

presence   of a steady velocity of translation of the 

ship, results in changes   of fluid velocities on the 

body  surface.   In order for the body boundary 

conditions   remain to be satisfied these changes 

must   be  compensated     out.  Therefore,   -^- is 

required to have the value m kon the body surface 

forallt>0;as m* is the gradient   of the steady 

velocity. The second   component   is the result of 

the impulsive velocity (the ty \ tproblem) inducing 

a disturbance    into the  flow field which  in the 

subsequent   time willpropagate   as a wave motion 

away from the body. Consequently,   xüf )willhave 

to satisfy (for t>0) the free surface condition, and 

the fixed body  surface   condition.   X *~' wiH also 

have to satisfy (at t=0) the initial wave elevation 

condition.  X*"^ gives  the memory   effect of the 

fluid. It is  different   from  the   usual   radiation 

potential in that the u and ip 2* in the free-surface 

condition change from positive to negative signs; 

i.e. as ifsolving a radiation problem in which the 

ship moves in the opposite   direction. 

In order to change the form of diffraction forces 

in Eq.(5), we rewrite the first term of Eq.(5) using 

the body surface condition of\plt and <|>Das 

following: 

ff   !*Zn,äs-ff   '■£%*** 
J Js„ dt     k J JsH dt    dn 

(9) 

Where 

>**>*»    S2h\ds. 
sA  dt    dn 

'\k dndt 

(10) 

By applying Green's identity to Eq.(lO) and 

considering the free-surface condition of T|> J fe we 

obtain: 

dHo 

■~fL dt     dz 

d<bDdy]k 

:r   dt      dZ 

L-V, 

ds 

zdzdt 
ds 

(11) 

where SF is the surface   of xoy plane with the 

surface of the ship's waterplane deducted. 

Rewriting Eq.(ll) according to the boundary 

conditions of ty i fc    and    <j>D: 

dt    bz      g       bt bt 

gJo bx 

d^D(p,x)   dxi'\p.t-T)' 

bx bx 
dx 

gJoC       dx2       ' dx 

d$D(p,X)   d2xi'\pJ-X) 
+ = jctx 

dx dx' 
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1    f..     „      <^2<t>D            2^
2<t>D 

- [(-2U- — + UZ r- 
gJo a*ax       ax2 

y dz J dx 

(2u 
a2xi_)(p.*-t).   2a

2xr} 

a^af 
■ + u 

ax- 

axl"'     aip2k a<j)D 

dz dz       dX 

Changing  the form of following terms : 

g  \    dxäx   dt        dxdt   dX 
2u a fa^axi" 
g dx\ dX    dx 

g V  dx2    dx dX2    dx 

g\_dx\äx    dX dx    dx )    dx\ dx    dx 

r'd$Ddxi~\p,t-x)d^_    /-'_(., d2$D 

Jo   dz dX Jo 'o   dz dX 

f'ai|;2fc(p)a<t>D 

Jo        dz 

This gives 

dX 

dzdX 

dx = -—^-i?D(p,t) 
oz 

A.-fdxff   f^l^.x«-.(p.t.x). 
JQ J   JSf\_    OZ     dX 

a2<t>0 

dzdx 
ds 

'II ^T'MP.Ods dz 

d^Bdxi'\p.t-x-) ■-[[ "fr g J Jsr     Jo dx 

.zir+tfC ±(thtx£)d. 
gJo       J Jsräx\ dx   dx   J 

dx\ dx    dx dx    dx 
ds 

(12) 

The third term of Eq.(12) vanishes   due to the 

initial conditions of 

<t>ß(p,0 and x["'(P.O For the first and 
second terms of Eq.(12), it can be transformed 

into a new expression   by Green's identity. 

d^2t 

dz 

IHI. dz   dx    At Ky '  dzdx 
ds 

dy2t 

s„V   dn on 

dn   dx    Xt   dndx 
ds 

ds 

-IL^^ds+ILH
mADds 

(13) 

Applying Stokes'  theorem   to the fourth and 

fifth terms of Eq.(12) yields: 

i_(r£*££xXr 

>scdx{   dX    dX gJo      J Jsr 

g Jo      J JsFdx\ dx 

-     dx <p dy 
gJo      Jr dx   dx g 

,2 r> 

dx    dX 
ds 

g Jo      JA dx 

>dX^    dxVd^D 

dx    dX dX 
dy 

(14) 

Where I~ = intersection of the mean hull sur- 

face and the plane z=0. The positive sense of the 

line integral is in the counterclockwise   direction. 

The final result for diffraction forces of a sur- 
face ship in time-domain   is : 

a2(t>, ,        f r        dt>, 

is„        onoi. J  Js„ 

f f        d2$, r r        dif, 
FM{t)-pJ J   Vlt—ds-pJ J   VztJKds 

~PId%IIs   X'~>(p,t~X 
)•■ 

l(P.X) 

dndx 
ds 

 dx<¥ dy 
g   Jo       Jr dx    dx 

g   Jo        Jr\  dx 

dX     dX 

dxV    dxVd\ 
dX dx    dX 

dy 

(15) 
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Eq.(15) is the formula of wave diffraction 
forces for a surface ship (an arbitrary 3-D body). 

In the case of a submerged body, Eq.(15) also 

gives its wave diffraction forces while the water 

line integrals vanish. Therefore, the formula of 
wave diffraction forces for a submerged body 

traveling near free-surface becomes a special 

case  ofEq.(15). 

For surface ships which may be considered 

as slender bodies, the water line integral terms 
may also be neglected. Since dy = dZ-sin6, 

and 9 is the angle that dl subtends with ox axis, 

a small quantity of o ( e } where e = B/'L (B is the 

ship width, and Lis the ship length), therefore dy 

isofo(e),and the integrals round the water line 

become quantities of higher order than e2. In the 

case of a slender body, the wave diffraction 
forces of Eq.(15) are given by the following 

expression. 

FotM-P If.. 
Jo        J  Js, 

d2<t» 
cdndt 

ds -p 
//./■ dn 

-ds 

xi'\p.t "O :—i ds 
dndx 

fc=l,2,...,6    (16) 

In fact, the results   of numerical   experiment 
show that the line integral term indeed  is of high 

order. 

The exciting forces acting on the slender ship 
due to incident waves are determined   as follow- 

ing. 

Expressing   Froude-Krylov forces as: 

^/*(0 = -pj J   77n*ds + piis *'mkds 

fc=l,2 6     (17) 

The  total   exciting   forces   are   the   sum   of 
Froude-Krylov  force  and   the  diffraction  force, 

thus, the exciting forces  acting  on the slender 

ship are given by 

dt dt 
ds 

f'^   f f    c->,    ,     ^2<fr/(P."Q_, 
+ >JodXJJs*'iP't-X)     >n>x     dS 

Substituting   Eq.(6) and   (7) into the  above 
equation   yield a new time-domain   expression 

(18)  of wave   exciting   force,   which   shall   be 

referred to as the Dai-Zhou-Zhang expression   in 

our present  and later papers. 

f*(Q-p 
dfd*, 

dt   dn 
■)ds 

-'//.. dn dn 

+ P)0
dXJ)s/'(PJ-^-Jn^-dS 

fc-l,2,...,6     (18) 

Expression    (18)  shows   that  wave   exciting 
forces  of a slender   ship traveling at a forward 

speed   can be calculated   only according   to the 

incident wave potential,  the radiation potentials 
and   the  auxiliary radiation   potentials,   without 

solving the diffraction potential   problem.   It   is 
similar to the Haskind relation at zero speed   in 
frequency-domain.    From (18), the effect of ship 
hull geometry  may be separated    from the effect 
of the  unsteady    incident   wave  history, which 

enable   us  to solve   the  integral   equations    of 

ty|jt>     ^2*-     Xk'\ independent     of incident 
wave frequencies,   and only once,  then for any 
arbitrary   incident   wave   frequency,    the   wave 

exciting forces can be obtained  by the convolu- 
tion integral.   It saves    CPU time greatly.   The 

numerical   results   in this  paper   are   obtained 

through the use of the Dai-Zhou-Zhang  expres- 

sion. 

For an arbitrary floating and advancing  vessel 
in   general,    its   wave    diffraction   forces    are 
expressed    by Eq.(15) which include water line 
integrals.  It may be proved  mathematically   that 
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for an arbitrary floating body, the water-line 

integral terms in Eq.(15) vanish, if the fluid dis- 

turbance due to steady forward motion is not 

small in the free surface condition. Physically, the 
water-line integral terms are the result of inter- 

actions between the steady forward motion and 

the unsteady ship motions. This conclusion may 

be proved by solving the wave diffraction prob- 

lem of a fixed body when swept past by waves 

and current, as follows. 

Assume an arbitrary body (zero speed) to be 

fixed in space and under the action of oncoming 

waves and current. An earth-fixed Cartesian 

coordinate system is chosen with x 0 - y 0 plane 
coincident with the quiescent free surface, and 

z0 positive upward. 

Fig. 23 Definition sketch 

The fluid motions under this condition may be 

described   by a velocity potential 

<t>T = u4>, + (♦, + <t>D) = "<t>s 
+ $ (19) 

Where 4>s is the steady  state potential, §s~x 

at  infinity (S„), 4> is the  unsteady    potential. 

Assuming   <j)s = 0( 1 ), <)>, = §D = o(e), we shall 
retain the terms 0(u)and 0(€)inthe equations, 

and  neglect   high order terms  such   as 0(u2\ 

0(e2),.... 

We impose the nonlinear condition on the free 

surface: 

a2<j>r    a4> 
+ g-— + 2V$r- V 

dt2        dz0 

1 

■7 

(d$T 

dt 

+ -V*T- V(V*r- V4>r)=0 

on    z0 = r\    (20) 

By the above assumption,   the wave elevation 

is : 

1 | d$ (21) 

Expanding  Eq.(20) on the mean  free-surface 

(z0 = 0),and comparing the order of every term, 

the approximation   for the free-surface  condition 

of 4> / + (j> D becomes 

<>2(<t>, + <l>0)   _   „A    „^(<i>/ + <t>c) 
dtl dt 

d2ifs   a2<j)sAa(<j)/ + <t>Z))     *(♦, + ♦„) 

dx2
0     dy0 dt fir- = 0 

dz0 

(20-0)    (22) 

Since for the incoming wave, its free-surface 

condition is already known as 

a2<t>;   _  d2<$>,      2a
2<t>/     d$, 

■ + 2u- 
dxl    9'dz0 dt2 dx0dt 

(20-0) 

Thus the free-surface   condition of cj) 0 is 

d2$D d§D 

a2*,   a2<t>s\a<t>D     a<t>D   D^A 

(23) 

dx%     dy\ dt dzr 

(z0 = 0) (24) 

where P (§,) is a function of incident wave §, 

only, 

/>(<>,)« 2u 
a24>/ W, 

——-v<t> • v — 
dx0dt       Vs        dt 

-" 
fd2$s   a2«|>,V*/     2^*/ 
\dx2

0     dyl 

we express   diffraction forces as 

dt+U   -2 dx% 
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^0,(0 = "Pj J     -jfnJds + Cujjs  ^flm;ds 
In order   to   compute    the   exciting   forces 

expressed   by Eq.(18), the integral equations   of 

y=l,2,...,6         (25) H> lit' V 2* > X*"' should  be given. First of all, we 
introduce a transient free-surface  Green function 

Here m t is as   before,   but  w = V 4> r Defining for an impulsive source below free-surface: 

radiation potentials  tyij,y2/>X/as follows: 
G(pffiqr,-0-(-r--— ]6(f-T) 

V2V1/(P)=V2V2/(P) = 0    7=1,2,...,6    in     V \
F

PI    
r
Pq-J 

Vw(P) = V2/(P) = 0        OR    z = 0 - 
+ H(t-x)G(p,t\q,X) 

*V\,                    dV2l                                          „  = R,,     ——»urn,        OR    Sw an        '       dn           ' (29) 

V\pl/(p) = Vv2/(p)-»0    at    S. where  G is the memory   part of the wave- 

(26) 
making on the free surface, 

and . 

V2X/(P.O = 0        ;=1,2,...,6    in    V 
G(p,t;q,x) 

a2Xy                         *Xy       (d2$s    a2<t>.VX/ 
= z\  Jkäe>nz'K)J0(kR)sm(Jk^(t-T))dk 

—^-2uV<b   • V —-u   —!r+ r   ^ J o 

af2                s        at        {dx2
0     dyljdt 2:<0,     i;<0    (30) 

*Xl            *V2j Where +9T-^-g-,—      (zo-o) dz0          dz0 p = (x,y,z) 

dx, 
— = 0        on    S„ 
an 

<?-(?.n.« 

rJ,-(x-S)2 + (y-r|)2 + (z-02 

Xy 1,-0=0 

r\:- = o-?)2 + (y-Ti)2 + (z + U2 

^Xy,                  *Vij      .             0   . jD<7 

~T7 i-o'-ffT"~    (°n    S') at             az0 i?2 = [(x-?)-u(t-t)]2 + (y-T1)
2 

(27) 

The process   of derivation is the same as that 

of Eq.(15), but noting that — = 0, we obtain the 

diffraction forces in this case   finally as: 

r r        a2«t>, r r        d$, 
F°i^ = o] JSK

v»JnTtds-pJ Js*»7Kds 

r<       r r d24>,(p,x) 
+ p      dx X,(P.«-t)-—r-r—-ds + /(*,) Jo       J Js, dndx 

7=1,2,...,6     (28) 

Where / ((j),) is the term determined   by <j>, 

only. In the above equation, we see that water- 

line integrals vanish, which validates our original 

assumption. 

6(t-x)isthe delta function; H(t- x)isunit 

step function, 
//(t-T) = 0, if t<0; 1, if t>0. 

The Green function represents the potential 
at the field point p and at a time t due to an 
impulsive source (at the point q) suddenly 

created and annihilated at a time x. This source 
acts like an underwater disturbance which gen- 
erates   a wave  system   as  represented    by the 

G(p,t;q, X)term, G0 = ( - ~ - Jis the Rankine 

part of the Green functions. Fixing the field point 

p while moving the source point q, it is easy to 

show that the Green function satisfies the fol- 

lowing initial boundary  value problem: 
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v'c 0 (*<0 

a      a 2  . a£ 
JT^J G+g7T°      (on   Sf) 

-     ac        p 
G ,             = O    —r 

dx \R3 (*-»») 

ci,.t=o (31) 

a_c 
at x.t-o^g 

d     \      l 
W-T.t <^Vr»*  r

P„- U-o 

To obtain a boundary   integral formulation for 

%> l k ( P )>we aPply Green's identity to ip, t ( q ) and 

G0 = I ;       ;   " ,   in   a    fluid   domain    V(x") 
\ pq     PI J 

bounded by 5 = SH + SF + S„+ Sp. A small 
surface S p is built up to exclude the point p. Now, 

consider boundary integral equation at the 
wetted surface of the body. This gives: 

(32) 

The integral equation   forip2/t(p)is found in 

the same way as: 

nfL(^-7-.h^d S

H\' •>«     ' PQ 

(33) 

The    integral     equation      for    determining 

X T} ( P. O» the auxiliary-radiation potential in the 

opposite  direction, is found by applying Green's 

identity      to      (Xk'\q, t)- ^2*(g))      and 

G ( p, f; q, t) Integrating the resulting equation 

with respect   to X, we obtain 

Jo       J JsF+sH on^ 

-O—-iXk')-^2k)]dsq = 0 
OIL q 

(34) 

According to the boundary   and initial condi- 

tions  of Xt"'" Vik> *P2*> the  integral   over the 
free-surface  is 

/>//. 

J_ 
■CT^-(xi"}-ip2*)]ds, 

-// ""««■»■5rfr-FL) ■/ ^sP änq\rpq    rpq.J 

rr  *J>n 
J JSr  an 

G(p,f,q,0)ds. 

gJo       JT        dx g 

,2    /-< ,<") 
7/Mlxl-'^-^ I- 

(35) 
To eliminate the integral over S F, we apply the 

Green's        identity       to       Xt'^Q.O       and 

"//J' , * r_L_^ ds„ 

•2nxi"'(P.0 + 

(36) 

Again we apply the Green's identity to ij;, k ( q ) 

and G(p, i;q, T) 11=0) thus 
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dy lk 
G(p,f;qr,0)——ds. 

dn       q 

dG(p,t;q,0) 
Vit(.7) T- "ds£ 

nk(q)G(p,f,q,0)ds. 

(37) 

Substituting  Eq.(35)-(37) into Eq.(34) yields 

+iUdTJJs/> 
(£?-T)—J^^ds< 

ZngJo       JT i\ 

-G(p,t;q,x) — ]dTi  ' 
<?? 

"   ('.,    I   c-i,        v<3G(p,t;<7,T) 

-k!L*»iq <9C(p,t;q,0) 

3nB 
ds. 

1    f.     /'I' ,   NdC(p,«;qr,T)_, 
r:     dT     I    V2*(7)—^—-—-ds :JI./O       J Js„ dn. 

p     e     S„ (38) 

Eq.(38) is also correct for a submerged body 
by eliminating the line integral terms in the 
equation. 

3. NUMERICAL METHOD 

3.1 Discretization of Integral Equations 

The     integral     equations       of    potentials 

^it(P^2fc(P) and   xT'CP.O,  are   solved 
numerically using the panel  method.   The ship 

hull surface   S H is divided into M quadrilateral 
elements    over  which  the  source   strength   is 

assumed    constant.   This discretization   reduces 

the continuous   singularity distribution to a finite 
number   of unknown   potential   strengths.    The 

integral  equations    are  satisfied   at collocation 

points pt    (i= 1 , 2,..., M) corresponding    to 

the null points of each panel. This gives a system 

of algebraic   equations   which is solved  for the 

unknown potential strengths. 

In general, most ships are symmetrical about 

A:o2plane. Fora symmetrical ship, the equations 
can   be solved   using  only half the number   of 

panels.   It is easy to prove that i|>i*(p),t|>2*(p) 
and Xfc"'(P. 0(k=l,3,5)are symmetrical about 
xozplane for a symmetrical  ship. 

V«(P)=iPtt(p") Z=l,2;    *= 1.3,5 

,(-) xr;(p.o=xrJ(p".o (39) 

Where p = (x, y, z),     p~ = (x,-y, z) 

Equations (32) and (33) may be discretized for 
a symmetrical  ship as: 

M/2 

t=l,2 M/2;     1=1,2;    k=l,3,S    (40) 

where M is the number   of quadrilateral   ele- 
ments, 

,2n+Ki.jjsvp(-±rJ---±:ys Jmt 

M/2 r r ( \       1        1 ]   'N 
(M-I"«(P,)Jj     -" — +— -— Us 

J-> J JsAr"   r<i   rr,   r,-,J 

(41) 
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n, n k> 

=     m, 

if    1=1 

if    1 = 2 

r;;y = U-?)2 + (y + Ti)2 + (z-U2 

r2... = (x-|)2 + (y + T1)
2 + (z + ^)2 

The solution of Eq.(40) involves integrals  of 

potentials   of the type - and of their local deriv- 

atives over each panel for the coefficients Au and 

(ß,fc)j.  They   are   evaluated    by   the   method 

presented   by Hess and Smith(1964). 

The integral equation  ofxi'\P> OinEq.(38) 

contains     memory    terms.    The    solution    of 

X*_)(P>0 is   obtained    by   a   time   stepping 

method.  Assuming  that Xfc~'(P> O satisfies  the 
linear distribution in every time interval, a trape- 

zoidal rule is used   to evaluate   the convolution 

integrals in Eq. (38). At each time step, equation 
(38) is solved  employing   the same   panel   dis- 

cretization that is used to solve H>ijt(p),ty2Jt(P)- 
The system  of equations   which must be solved 

at each time step has the form: 

Y. aijXl~)(Pi<tN) = bk(pl,tN) 
7-1 

i= 1,2,.., M/2;     fc=l,3,5 (42) 

where 

au     =     Au 

M/2 

b*(Pi.<iv) = - £(s, + s2 + s3AO 
/-' 

(43) 

S2 = *it(P;)--2"V2t(Py) 

53= ^[(-i|»2fc(Py)+xi")(Py.*«))C1„ 
n= 1 

+ mk(pj)Gx] 

GA = J75/[c(Pl,prtw)+c(p;.p;.tw)]ds 

G
^ = //5[G(p"Py'£'v"iJ 

♦GCp^p,,^-«,,)]^ 

+ Gtpi'.Py.tjv-OJds 

(44) 

A very important property of the coefficient 

matrix Au in Eq.(42) is that it is independent of 
time. As a result itneeds to be inverted only once 
at the beginning of the time stepping. For a 

sufficiently large number of panels this property 
results in a significant computational advantage 

over the frequency  domain algorithm. 

The right-hand side term b k ( p,, t N ) involves 

integrals of the Green function and its derivatives 
over each quadrilateral. They are evaluated by 
using coordinate mapping and Gauss quadra- 

ture. The arbitrary quadrilateral is first mapped 
into a square. A product Gauss rule is then used 
to evaluate the integral. Over most of the panels 

a 4*4 Gauss   rule is sufficiently accurate. 

In the case  of k=2,4,6, its numerical  model is 

given by Zhou(1992). 

3.2 Evaluation of the Free-surface Transient 

Green Function 
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The numerically more time consuming   task is 

the evaluation   of the  memory   term G and   its 

derivatives which, because of the convolution 

integrals, must be evaluated at a large number 

of times. There has been much effort in recent 

years (e.g. Newman(1990),Beck, et al(1987) and 
Ferrant(1990))   to develop efficient and accurate 

numerical   methods    for calculating   G and   its 

derivatives. A considerable • speed-up was 

obtained by using a tabulation interpolation 

procedure. The numerical evaluation of the 

Green function used in this paper follows the 
development given by Newman(1990) and D.B. 
Huang(1991). 

The memory part G of the Green function can 

be easily put under the following form: 

G = 2-fgr]3/zIm{F(cos&,x)} 

F(COS9,T)=  rV'V^-'^'JoC/tsine) 
Jo 

dk 

(45) 

withcosG = ~{z+ t;)/r,and X = tjg7r\. 

Thus, the only non-trivial term to be evaluated 
during the computation   of the convolution   inte- 
grals is reduced   to the function F and  its first 
derivatives. 

A   method     of   tabulation    interpolation    is 
exploited.  The 2-D domain  described   by cosG 

and x is truncated   at a large value of Xmax, and 

the remaining bounded   domain is mapped   by a 
discrete set of unequal-spaced     points for which 

F and its derivatives are computed   by numerical 

schemes     described     by   Newman(1990).    This 
computations   are performed once for all, and the 

results are stored on permanent   disk files. When 

a simulation has to be performed, the evaluations 
of the memory  part of the Green   function  are 

based   on linear bivariate  interpolations   of the 
stored  data.  Note that the content   of the file is 

read once   for all at the beginning   of the simu- 

lation, so that no disk access   is necessary   during 
the time-stepping   procedure.   The tabulated   part 
of the (cos 0, x) domain is sufficiently extended 

to allow the use of simple large-time asymptotic 

expressions   when X > xmax.xmax is taken as 30 
in this paper.  In a very thin layer near cos 9 = 0 

where the function presents   large oscillations, 
the precision of the interpolation may be insuffi- 

cient   and   we employ   a simple   algorithm   to 

maintain both precision and low Cpu time in this 

portion of the computational   domain. For exam- 

ple, defining C, = /m{ F( cos 0, x)},when Xis 

large, 

r 4 ,.    /   2   fx\  -it2«...   . G | = —-+ .   ——-  -  e sin 
T3    V sineV27 — sin8--8+-rt 

4 2      4 

(46) 

Again defining G * as  the approximation   of 

oscillation term for Gx when cos0 = O, 

« X -JT2C0S8 
G, = -==e sin 

{2 
(47) 

The numerical   results   of G, ( cos 0, x ) and 

G * ( cos 0, X )are close to each other, so that the 

difference G x = G i — G x varies smoothly making 
it suitable for interpolation. Thus we use G 2 

obtained from tabulation interpolation adding the 
G* (cos 0, X) given by Eq.(47) to obtain the 
Green function in the layer near cos 0 = 0. 

In the layer of 0.99 < cos 0 < 1., we return 

back to the original numerical schemes since the 

calculation  in this region is not time consuming. 

The grid in this paper is composed of about 

200 x 1200 points in the rectangular domain 

defined byO < cos0 < 1 .and 0 < X < 30.Forthe 

Green function and its gradients, 3 tables have 
to be stored, resulting in about 3 Mbytes on a 32 
bit computer. 

4. NUMERICAL RESULTS 

Numerical computations have been per- 
formed for diffraction problems with forward 

speeds.   For simplicity we limitourselves  to surge, 
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heave  and pitch modes   in head  seas,   although 

the present  code is capable   of dealing fully the 
six-degrees-of-freedom     modes.   The hull form 

chosen   in this calculation  is a Wigley-type hull 

used   by Gerritsma   in his seakeeping    experi- 

ments.   This is designated    as   the   V sk" hull 

hereafter.   This hull form was chosen   because 

experimental   results are available. The hull has 
a beam-to-length    ratio 2b/L = 0.1, and  draft- 

to-length ratio H/L=0.0625. The half beam  y is 

given by: 

^-(1-X)(1-2)(1 +0.2X) + Z(1-Z4)(1 -X)A 

b 

(48) 

where X = (2x/Z)2, Z = (z/H)' 

Before presenting the numerical results, two 

simplifications have been made. The first is the 
steady flow approximation. From the conclusion 

of Zhang, et al(1992), for a submerged body 
travelling at constant speed near and bellow the 
free-surface, the contribution of the steady per- 
turbation potential (j> Oto the wave exciting forces 
may be neglected in head seas (and in following 
seas for high or low frequency regions), but the 

contribution should be taken into account in 
following seas in the frequency region 
L/K = 0.8- 1.8.The results presented here are 

in head seas, therefore the free stream approxi- 

mation is used. Thus, io = (-u,0,0) and the 
corresponding values of       my       are 

m/ = (0,0,0,un3,-un2). 

The elimination of the steady   perturbation 

velocities greatly eases   the computational    bur- 

den but it does not affect the time-domain  anal- 

ysis procedure. 

The   second    simplifying  assumption     is   to 

neglect  the evaluation  of the line integral terms 
in Eq.(38), because    of their higher  orders   of 

smallness     and    because     of  their   numerical 

uncertainties   in computation. 

For convenience, all quantities in force are 

nondimensionalized by fluid density p, gravita- 

tional acceleration g, and ship length L, wave 

amplitude A, displacement volume V. The panel 

numbers, N, indicated are always for half of the 

body. The time step size, At, is shown in the 

nondimensional form defined as At* = Atyjg/ L 

Inthis paper, N=96,A£=0.25,the number of time 

steps  N T = 100. 

Figures 2-7 show the amplitude and phase  of 
the  wave   exciting   forces   on  the  Wigley hull 
moving at a forward speed   of Fn = 0.2 in head 
seas.     The present   computational    results   are 

referred to as Zhou, and numerical  results from 

the linearized time-domain method developed  at 

the   University of Michigan   are   included   and 
denoted   as "Michigan".The comparisons    to the 

time-domain results of Michigan, strip theory and 

experiments     are   generally    satisfactory.    The 

results of Michigan ,strip theory and experiments 
are   taken   from Lin and   Yue(1990).   In these 
figures, our results are very close to Michigan's 
results  and both  3-D time-domain   calculations 
show   much   better   correlations    to the  experi- 

ments than the strip theory. Comparing with strip 
theory,       the       proposed        Dai-Zhou-Zhang 
expression   may be applied to high speed   ships 

or ships  with complex   geometries.    Comparing 

with the method   of Univ. of Michigan, the Dai- 
Zhou-Zhang  formula may separate   the effect of 

ship hull geometry from that of unsteady   motions 
of incident waves, thus the diffraction forces are 

evaluated   without recourse   to computing   the 

diffraction potential  itself. The resulting  integral 
equations   need   to be solved only once  for any 

incident wave of arbitrary frequency.  This saves 

the Cpu time greatly. The resulting code is very 

fast: about  5-8 minutes  are sufficient for evalu- 
ating the wave exciting forces(k= 1,3,5) of 60 to 

80   frequencies      (N = 96,   A/r=100)   on   an 

ALLIANTFX/40 computer. 
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In the older days, only Froude-Krylov forces 
are taken into account in the prediction of ship 

motions. This is because they lack efficient 

methods to compute the effect of diffraction. 
Figures 8-10 give the Froude-Krylov, diffraction 

and exciting force components for Ws* ship. As 

can be seen that although the Froude-Krylov 

force is the dominant part ini/X ^ 1.5, the order 

of diffraction forces is still enough to affect con- 

siderably the predictions of the total exciting 
force. When L/\> 1.5 the Froude-Krylov and 

diffraction force components are almost of the 

same order, which is a notable property for 
engineers in dealing with "springing" of large 

vessels in the relatively short wave domain. In the 

case of about Z/\=1.0, the diffraction com- 

ponent is still considerably large, which may be 

interesting to ship designers. 

Figures 11-16 show the time history calculated 

from the different components   of wave forces on 
the Wigley hull for a forward speed   of Fn = 0.2. 

The  time   is defined   in nondimensional     form 
t' = t-Ig/L The same   tendency   as in Figures 
8-10 is seen.  The diffraction component   is about 

one-fourth   or one-third   of the   corresponding 
Froude-Krylov force when L/Xis small, but it is 
of considerable    order when  L / ~K is high. The 
difference in phase  is about  180 °. Therefore the 
component   of diffraction must be included when 

computing  exciting forces. 

Figures 17-22 show the memory function 

X*: \p< t~ t)on the ship hull as a function of 
time. Figures 17,19 and 21 are the memory 
functions on the part forward amidships, and 

Figures 18,20 and 22 are those on the aft part. 

Noting when the position of the panel is near the 

free-surface, the memory function X *~} ( P >'~ T) 
does not simply steeply decrease to zero, but 

vibrates. The memory function decays steeply to 
zero as increasing water depths. The slight high 

frequency oscillation appearing on the memory 

function curve near the free surface may be due 

to insufficiency of panel numbers. Presumably a 
further increase in the number of panels and a 

decrease     in the  step   size   may   reduce    them 

further. Furthermore, the memory function on the 
aft part decays more slowly than that on the 

forward part. Itappears that the memory function 

x! '(P> t- T) is sensible to longitudinal posi- 
tions and draft. In Figures 21 and 22, the memory 

function xT'CP»'~ T) decays to a constant 
value which is not zero. This is because the actual 

impulse response function is 

, which decays   to zero, but X *"' ( P > t ~ x ) does 
not. 

The effects of panel numbers, time step size 

Aland the numbers of time steps NT have been 

investigated. Setting the panel number (half of 

the body) N=96,120,192 respectively, the results 

of Froude-Krylov force show that the changes in 

panel numbers have little influence on wave 

forces, the difference is only about 3%. Since 

Froude-Krylov force is a dominant part of the 

wave exciting force, so a conclusion may be 
reached that the wave exciting force is not sen- 

sible to the numbers of panels. An order of 200 
panels for a body should be enough to get 
essential   accuracy   in engineering. 

Although increasing the number of time steps 

N T may result in a more steady time history of 
wave forces, itincreases the storage on disk and 
Cpu time. So, a suitable N T should be deter- 
mined. The numerical results show that 

TVT = 80~100is enough for computing wave 

forces. Increasing the number of time steps N T 

does not increase the accuracy of the compu- 

tation. Maybe the main contribution of the 

memory function Xt"}(P>t~ T) nas already 
been included when TVr = 80~100. 

The requirement for time step size A t is dif- 

ferent in lower and higher frequency domains. In 

the lower frequency region, the time history 

period of wave force is large, which requires a 

suitably large time step A t when in the case of 

fixed N T to get enough numbers of periods of 

wave forces for determining the force amplitude 

and phase. In the higher frequency region, the 

time history period of wave force is short, which 
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requires a suitably small time step A t when in the 

case of fixed N T to get enough numbers of 

numerical results in one period in order to avoid 

missing the maximum point during the deter- 
mining force amplitude and phase. We also 

investigated the effect of varying At. Setting 

A*=0.1,0.15,0.2,0.25, the results show only 
slight differences of wave force in amplitude and 

phase. 

5 CONCLUSION 

1. A diffraction problem   for a surface   ship 

traveling at a constant   forward speed  in waves is 
studied   by a time domain   method.    The basic 
conclusion   from this work is that the proposed 
Dai-Zhou-Zhang expression   seems   to be a good 
method  for computing  wave exciting forces with 
forward speed.   It appears   to be faster and easier 

than the equivalent   frequency-domain    calcula- 

tion and than the other time-domain   methods. 

The diffraction forces are given in terms  of the 
incident   wave   potential   and   of the   auxiliary- 
radiation potentials. Therefore the exciting forces 
in the time-domain   may be calculated   without 

computing    the  diffraction potential   itself. The 
resulting   integral   equations    of the   auxiliary- 
radiation potentials need to be solved only once 
for all incident  wave frequencies,    which saves 
CPU time greatly. In comparisons    with experi- 

ments,  strip theory, and other prediction  meth- 
ods,   the  results   show   that  the accuracy    and 
efficiency    of  the   proposed     Dai-Zhou-Zhang 

expression   is also good. 

2. This paper also showed mathematically that 

for an arbitrary floating body, the waterline inte- 
gral terms in the formula for computing diffraction 
forces may vanish, if the fluid disturbance due to 
steady forward motion is not small on the free- 
surface condition. Physically these waterline 

integral terms are the result of interaction 
between the steady forward motion and the 

unsteady   wave motion. 

3. The numerical results show that the method 

using a tabulation interpolation procedure  for the 

computing   the time-domain   Green   function  is 

efficient.  It saves    Cpu   time  and   retains   the 

numerical accuracy. 

4. The diffraction force is of a certain amount 

in each frequency  that we are interested  in. This 
amount   is enough   to considerably    affect the 

predictions of the total exciting force. Thus, itcan 

not be neglected. 

Variation of panel numbers and time step size 

A t, do affect the results of calculation of wave 

forces, but the influence is slight. Proper selec- 
tion of the two depend on different requirements 

in applications. By chosing a suitable number of 
time steps N T , the tail of memory function 
X i~) ( p, t - X ) may be truncated suitably. 

Numerical results show that N T = 80 ~ lOOand 
At = 0.25 is a good figure for solving wave 

forces, because the main contribution of the 

memory function X T} ( P < t ~ x ) has been 
included. 
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Free Surface Flows without Waves; Applications 
to Fast Ships with Low-Wave Resistance 

M. Tulin, 0. Oshri 
(University of California-Santa Barbara, USA) 

ABSTRACT 

The ideas & theory of Tulin (1976, 1982) 
are utilized here to demonstrate how combining 
vertical force distribution (vertical dipole) & cross 
section squashing (transverse quadrupoles) together 
with buoyancy (sources) provides means for 
substantially reducing the wave resistance of both 
near surface submerged & Wigley type hulls over a 
wide range of Froude numbers. 

The basic tool is a 3D compound 
singularity composed of the above elements in 
proportions optimized at each non-dimensional 
depth. The lifting capacity of the hull is hardly 
changed by the vertical lift distribution which has an 
essentially zero sum. 

Application are made to submerged hulls & 
modified Wigley hulls. The resistance of the 
submerged body, which is very close to the surface, 
is reduced by an order of magnitude over the speed 
range & for the Wigley hull by a factor of 0.2 at 
F=0.35 and 0.3 at F=0.5. 

INTRODUCTION 

Here we extend and use certain theoretical 
results which are about twenty years old, Tulin 
(1976 and 1982), in order to design shapes of either 
zero (two dimensions) or small (three dimensions) 
wave resistance. We utilize the linearized free surface 
condition & distributions of compound singularities; 
the latter define bodies which may be found by 
streamline tracing. Our purpose is to gain further 
understanding of wave-making phenomena & 
hopefully to reveal important principles which may 
be applied in design. The results seem highly 
encouraging. 

In the past, going back to Froude, 
constructive interference between parts of the ship 
hull, notably the bow & stern, has been the main 
tool for resistance minimization. The fundamental 
technique, limited in 2D to F<"il/2%, or 0.399, is 
illustrated in Figure 1. To this may be added the 
constructive interference between a bow bulb & the 
main hull, extensively investigated by Inui (1960). 

In virtually all theoretical studies of wave 
resistance up to the 60's, the ship was envisioned 
as a distribution of volume forming singularities, 
either horizontal dipoles or their equivalent sources. 
An exception is to be found in the interesting work 
by Yim (1962, 1963 & 1966) who actually 
described a wave free ship (of infinite draught) in 
terms of a horizontal distribution of sources and 
sinks along the length of the ship, and two vertical 
distributions of dipoles descending to infinite depths 
from bow and stern. He also described, Yim (1963), 
a wave free singularity of zero volume : a vertical 
dipole and a horizontal quadrupole, of strength 
depending on the Froude number. 

The senior author undertook a general 
theory of wave free compound singularities 
beginning in the late 60's. Starting with two 
dimensional flows he utilized analytic functions & 
the method of images. Recognizing that the free 
surface conditions in their analytic function form 
required both hard and soft image systems, he was 
able to show that at each Froude number two 
separate wave free compound singularities exist 
which are volume forming, see Figures 2 & 3. He 
was then able to extend his method to three 
dimensions where he found the same result, Figure 
4. Notice that the compound singularities, located 
beneath the free surface, include an appropriate 
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image singularity. 
A compound singularity consists of a 

combination of basic singularities (source, dipole, 
quadrupole) centered about a fixed point (or, 
sometimes, a line) in space. Providing that the 
compound singularity contains a source or 
horizontal dipole it is volume forming, as in all 
cases demonstrated by Tulin. In this case it may be 
used to construct real-bodies. Of course, streamline 
tracing must be carried out in order to verify that a 
physically real system has been produced. 

The mechanism of wave free compound 
singularities may be looked at in two different ways: 
i) taken as a whole it satisfies the free surface 
condition without producing waves (this is how 
Tulin originally produced them), or , ii) taken 
separately, each singularity produces waves in the far 
field which cancel when the singularities are 
combined (we use this technique in the present 
paper). 

A great advantage would arise through the 
use of volume forming, wave free, compound 
singularities in the construction of ship shapes, 
since their use does not depend on constructive 
interference. The latter technique, for example, can 
only be used for Froude numbers smaller than the 
last hollow in the resistance curve, F= 0.35, whereas 

the present technique can be used successfully at 
high speeds, even at the last large hump in 
resistance, F~ 0.5. 

Tulin (1974, 1982) denoted his two 
separate wave free systems as Type I and EL In each 
case a vertical force is associated with volume 
forming; these vertical forces arise through vertical 
dipoles (2 & 3D) or vortices (2D). Therefore, the 
generation of particular vertical force distributions 
by the ship hull is the central theme of this work. 
Another theme which emerges (Type II - 3D) is 
volume element deformation or squashing, which 
arise through transverse quadrupoles. 

In the case of bodies comprised of Type I 
wave free singularities, bodies require a negative 
total lift. In the case of slender bodies, this negative 
total lift is to first order equal to the buoyancy of the 
body. The ship of Type I therefore lacks ability to 
carry weight, and would seem useless. The type I 
flows are interesting, however, as they include 
cavity flows beneath a free surface, which are 
therefore wave free, a property earlier noted by 
Fruman (1965). An even earlier antecedent of these 
flows is to be found in the circulatory flow about a 
circular cylinder; Vladimirov (1955) had noted that a 
particular circulation, depending on the Froude 

number, resulted in zero wave resistance. 
Tulin's Type I singularity was later 

rediscovered by Tuck (1989), Tuck & Tulin (1990). 
Based on his results, Mori (1993) has tested a 
submerged body with a hydrofoil wing lifting 
downwards & has reported a net reduction in the 
resistance. 

Tulin's Type II wave free singularity 
requires a vertical force distribution on the hull 
related to the rate of change of the hull area, see 
Figures 3 & 4, involving no net lift on the hull (to 
first order). The net moment due to this dynamic lift 
distribution is also zero for symmetric hulls. In 
addition, the relative changes in hull shape required 
to generate the wave-reducing vertical hull forces are 
proportional to F2 and are therefore not extreme for 
practical ships speeds. Type I singularities, on the 
other hand, require relative changes in hull shape 
proportional to F'2. 

In two dimensions, Type II singularities 
can generate wave free bodies; the shapes can be 
rather remarkable. Examples are given here, see 
Figures 6, 9, 10 and 11. 

The generation of vertical forces is 
represented in singularity theory by vertical dipoles, 
while quadrupoles represent deformation or 
squashing of volume elements. In three dimensions, 
Tulin's Type II wave free singularity involves a 
vertical distribution of transverse quadrupoles 
extending from the volume forming singularity to 
infinite depth. It is only in a such a way that the 
prohibition on wave free finite hulls in 3D, Krein 
(1968), can be avoided. 

In the present work, we replace the line of 
quadrupoles by a single quadrupole at the position of 
the source and dipole. We then optimize the dipole 
and quadrupole strengths, depending on depth and F, 
and study the effectiveness of these compound 
singularities, Type IIA, in generating ship forms of 
small wave resistance, especially for higher speeds. 
Using the above Type IIA singularities, we show 
that the resistance of a near surface submerged body 
may be virtually eliminated at all speeds up to 
F=0.4, & reduced by an order of magnitude up to 
F=0.5, see Figures 17 & 18. The optimization is, 
however, not effective immediately at the water line, 
for a normal ship shape. Nevertheless, a Wigley 
shape is modified to produce an optimized resistance 
reduced by factors of = 0.2 at F=0.35 and = 0.3 at 
F=0.5. Further progress may be achieved through 
better knowledge of the divergent wave system & its 
prediction, since the optimized singularity is limited 
by divergent wave production. 
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EXACT 2D BODIES WITH ZERO WAVE 
RESISTANCE 

We know that wave free bodies result from 
general distributions of Type II singularities along a 
line between x=±Z/2 located both beneath & above 
the free surface. These can be expressed in analytic 
function form. 

In the particular case where the source 
distribution, m(x), decreases linearly along a 
horizontal line located at depth h with source density 
±m at x=±//2, the complex potential for the wave 
free flow is found to be: 

(1) 

Y(z)=  <p + iw=  XlTFz"A 

y,=±h {l 

-z + i2F2z\n 

\(e- \~) 

Ll 2 

m } 
where 

¥■■ A = - 
m 

2^gl 

z = x+j{y-y0).    F = JL- 

The body corresponding to (1) corresponds to 
\jf[x,y) = 0. The velocity field, may be found from 

W(z) = 0; the stagnation points correspond to 

|»F (z)\ = 0. The body shape is found by first finding 

the stagnation points and then the locus of y = 0. 

The case of F=0.35, h/l=l/8, diam./l=l/8 has been 
computed. The body corresponding to the source 
distribution & its positive image alone is shown in 
figure 5, and the wave free body in Figure 6, 
together with the shape of the free surface, Figure 7. 

0 

$-0.2 

 . 
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x/(U2) 
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Figure 6 -    2D wave Free Body; F=0.35. 
The dots are stagnation points. 

Figure 7 -    The free surface above the body in 
Figure 6 

The "horns" at x=±l/2 produce the concentrated 
vertical force required by this system, see Figure 3. 
The negative camber on the remainder of the body 
produces a distributed force of approximately 
constant density, as required (the force density is 
proportional to the gradient in the source density 
distribution). This negative body force is to first 
order canceled by the vertical concentrated force on 
the horns at the bow and stern. 

Viscous separation would, of course, 
prevent the utilization of the horns. They might be 
replaced, however, by small foils with the required 
amount of positive lift, see Figure 8, which is 
schematic. 

1 

__    . 

■ 

-1 -0.5 0 
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Figure 5-    2D Body produced by a linear 
source distribution 

Figure 8 - Schematic of a wave free 2D body 
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The example above, for F=0.35, lies within 
the range where constructive interference may be 
used for elimination of wave resistance, i.e. 
F<0.399. We have attempted to find a wave free 
flow outside this range at a Froude number near the 
peak of the resistance curve, F=0.5. A horned body 
as above, fails at F=0.55 due to crossing of the 
streamlines near the base of the horn, see Figure 9. 

— -^                                                                     —"  
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 "^ v. 
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x/(l/2) 

Figure 10 - 2D Wave Free Body at F=0.35 

Figure 9 -    2D Wave Free body; F=0.55 Figure 11 -  2D Wave Free Body at F=0.49 

For the sake of diversity we have taken a 
different source distribution with finite gradients in 
the source density at the bow and stern : 

m{x) = (x2-l2)x (2) 

The corresponding wave free complex potential, 
found by integration, is : 

The curious example shown in Figure 11 is 
wave free at a significantly higher Froude number 
than is possible utilizing constructive interference. 

The specific examples shown here 
demonstrate the diversity of 2D wave free body 
shapes which may be produced utilizing the present 
method. It would be worthwhile to demonstrate the 
existence of these wave free bodies experimentally. 

(3) 

»=±A 

+10z-6z3 

+J8F2 3(z'-l)'zln[^l|-6z 

where     A = m/ 
24Jgl 

We have calculated, by streamline tracing, two 
shapes at different Froude numbers. Notice that the 
source distribution used, eq (2), has resulted in 
elimination of the "horns". 

3D FLOWS - OPTIMIZED 
SINGULARITIES 

The  3D  Compound  Singularity 
(Concentrated) 

Our purpose is first to find a practical 
compound singularity of minimum wave resistance, 
and then to construct practical hulls. Toward this end 
we replace the infinite line of quadrupoles in the 
wave free singularity by a single quadrupole at the 
location of the source & vertical dipole. Then we 
minimize the wave resistance of the combination 
through appropriate choice of the dipole & 
quadrupole strengths. 

Far Field Formulation 

In order to minimize we use the far field 
amplitude function & the Havelock (1934a, b) 
formulation of the resistance : 
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(10) 

R = HP£]lA{e)fcos\e)d9 (4) 

where A(9) is the usual amplitude function defined 

through the far field representation of the 
displacement, 77, in terms of a spectrum of 

stationary waves : 

(5) 

TJ(JC,Z)= )A{9) cxp[iK0 sec2 (0) 
% 
2 

x [(x-x0)cos(9) + {z-z0)sm(9)]]d9 

where K0 = 8/ji  and 9 is the angle between a 

component wave vector & and the ships's direction. 
The corresponding potential is : 

(6) 

2 

x exp[y^sec2(Ö)]exp[^sec2(6>) 

x [(x-xo)cos(0) + (z-zo)sin(0)]]<*0 

The source singularity of strength M, 
located at depth h possesses the amplitude function : 

(7) 
iKnM 

As (0) = ih»L sec3 (0) exp[-£0/z sec2 (0)] 

and   the  corresponding  dipole  &  quadrupole 
singularities can be found by differentiation : 

0,=-W„; <t>q=M (8) 

with the result in terms of the corresponding 
amplitude functions: 

(9) 

Arf(0) = i^sec5(0)exp[-^sec2(0)] 

A?(o)=:%-sec7(0)sin2(0) 

x exp[-K0hssc2(9)] 

The total amplitude function, AT, is the sum of (7), 

(9), & (10): 

(11) 

Ar(0) = -^[cos2(0)+^-^tan2(0)] 

x sec5(0)exp[-^sec2(0)] 

where as = K\ — \ ßds = K0^; ßq!-K2
0^ 

Optimized Strengths  &  Amplitude 
Functions 

It can been seen from (11) that the dipole 
term, ß^, may be used to cancel the longest 
transverse waves 0-»O, exactly as it does in 2D. 
This will, however, result in strong dipole generated 
divergent waves. These in turn may be offset in part 
by an appropriate quadrupole singularity. The 
quadrupole is eventually too successful in generating 
divergent waves. It is clear that an appropriate 
balance must be found between dipole & quadrupole 
strengths. 

The resistance is minimized for each 
compound singularity by finding the ß's so that 

(using (4) & (11)): 

dR       dR 

<%,     dßq. 
= 0 (12) 

This very lengthy process involves expressing the 
ß's in terms of Whittaker functions of the second 
kind & using appropriate computer programs. The 
minimizing values of each ß are a function of K0h . 
The final results are shown in Figures 12 & 13. 

and, 

162 



K0h 

Figure 12 -  Optimized strength ofdipole 

e=L 

K0h 

Figure 13 -  Optimized strength of quadrupole 

A2 (9) 

40 

10 

compound system 

Iransverse 

0.25 0.5 0.75 
9 

Figure 14 - Amplitude function for a source and 
compound system 
KJi=0.20 

The Wave Resistance of Optimized 
Compound   Singularities 

We   expressed   the   singularity   wave 

resistance, R, in dimensionless form, Rc : 

R=Rn 
U_ 

This resistance is shown in Figure 15. 

(13) 

It can be seen that the optimized system approaches 
a source at the water line, and that the strengths of 
the dipole & quadrupole approach that of the source 
at large depths. 

An example of the resulting amplitude 
function is shown in Figure 14 for Koh=0.20. The 

optimization has traded a reduction in transverse 
waves for a large increase in short divergent waves. 
These waves almost certainly do not exist in practice 
as they are too steep & would in practice break. The 
question exists whether they nevertheless represent a 
real wave resistance. This deserves careful study. In 
the present work, we simply assume that they do. If 
they do not, then the resistance estimates of 
optimized hulls given here are certainly 
conservative. The difference will be heightened near 
the free surface. 

K 

source alone 

compound system 

KJi 
0.025      0.05     0.075       0.1       0.125      0.15      0.175       0.2 

Figure 15 -   Wave resistance for a source 
and the compound system 

With increase in depth the reduction over the source 
resistance is considerable, see Figure 16. 
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K0h 

Figure 16 -  The ratio of the compound wave 
resistance to the source wave 
resistance 

Unfortunately, the contributions of the hull near the 
waterline play a great role in determining the 
resistance. As shown subsequently, the use of 
optimized compound singularities can very 
successfully reduce, even nearly eliminate, the 
resistance of submerged hulls, & less so for normal 
hulls. Nevertheless, even in the latter case, 
substantial reductions may be obtained. 

SUBMERGED  NEAR  SURFACE  HULLS 

Singularity   Distribution 

We shall create hulls by distributing 
compound singularities along a horizontal line of 
length 1 at depth, H. The sources alone represent a 
submerged body of revolution; the dipoles will 
produce a downward camber of the body of 
revolution, symmetrical about midsection & greatest 
there; the quadrupoles will result in squashing of the 
circular body cross section into a shape flattened in 
the vertical plane. The source distribution may be 
varied, but here we use the ellipsoid distribution, 
varying linearly in the horizontal direction. 

Perhaps these optimized hulls will be of 
importance in connection with the design of semi- 
submerged catamaran hulls like the Swath ship. 

Resistance 

The non-dimensionalized wave resistance of 
the hull is : 

RH=R/£-l2U2 

" 2 
(14) 

(15) 

RH= ^«J
2Jsec(0)r 0, 

% 

x exp -2-|sec2(0) 

cos 
sec(0) 

IF2 

- 2F2cos(0)sin 
sec(0) 

IF2 de 

where     £ = % anc* 

7 = l + )3<fasec2(0)-^Jsec4(0)sin2(0) 

The strength of the source distribution determines 0CS 

and the fineness ratio of the equivalent body of 

revolution, D/, where D is the equivalent diameter. 

The relation between as and   ■% is based on the 

ellipsoid in an infinite domain. 
The particular case, 5=1/10, and D/l=VS(as 

= 0.0165) has been calculated as an example & the 
estimated resistance using the appropriate compound 
singularities at each Froude number is shown in 
Figure 17. 

0.00005 

Figure 17 - Submerged Hulls - wave 
resistance. Optimized at 
hA=0.1; D/l=0.125 

Similarly, the resistance curves based on compound 
singularities which, once determined, do not vary 
with Froude number, are shown in Figure 18. 
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optimized at Fr=0.26 

optimized at Fr-0.34 

0.1 0.2 

optimized at Fr=0.5 

0.5 0.6 

Figure 20-   Submerged hull - cross section in 
the vertical plane. F=0.35. 
h/l=0.1; D/l=0.125 

Figure 18 -  Submerged hull - wave 
resistance. Optimized hulls, 
variation with F 
h/l=0.1; dA=0.125 

It is evident that the optimization process has been 
highly successful in reducing the wave resistance of 
the original body of revolution (sources). In fact, the 
resistance is virtually eliminated at Froude numbers 
up to 0.4, & much reduced even at much higher 
speeds. 

Body Shape 

We have obtained a cut of the body 
intersection with the vertical plane using streamline 
tracing based on the compound singularity and its 
appropriate images; therefore we have neglected the 
effect of wave creating images as these are small. 
The appropriate images are : positive for the source 
and the dipole, negative for the transverse 
quadrupole. 

Calculation have been made for F=0.25, 
0.35, and 0.50, & the shapes are shown in Figures 
19-21. 
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Figure 21-   Submerged hull - cross section in 
the vertical plane. F=0.5. 
h/l=0.1; DA=0.125 

It is seen that both the negative camber (dipole 
effect) & squashing (quadrupole effect) increase 
markedly with F in this range. The top of the body 
increasingly approaches the free surface, but remains 
completely submerged, even at the highest speed. 

The vertical flattening of the body 
(reduction in transverse width) which must 
accompany the enlargement of the cross sections 
shown will result in reduction in wave loads, as well 
as wave resistance. The actual cross section shapes 
have not yet been calculated. 

THE      OPTIMIZED 
■ 

-; -0.5 0 

x/(l/2) 

0.5 1 

Figure 19 -  Submerged hull - cross section in 
the vertical plane. F-0.25. 
h/L=0.1; DA=0.125 

SHIP     FORMS; 
WIGLEY HULL 

The Wigley Hull 

In order to study the potential of compound 
singularities for the construction of real ship hulls; 
we begin with the Wigley hull. It is apparent that 
Type HA singularities have the advantage that the 
source distribution may be prescribed in advance & 
the effect of the optimizing dipoles and quadrupoles 
determined thereafter. The vertical Ordinate of the 
normal Wigley hull is : 

r, = (l-C2)(l-f (16) 
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where : t, =2x11; r/ = 2v/B; C,=zlD and 
where B and D are the beam and draft, respectively. 
The corresponding density distribution, e(x,y), is 

according to Michell theory : 

(17) 
1  (B\dr\ _ 1(2? 

"-^7jf-il7j«(-f) 
and the solution for the wave resistance is well 
known, Lunde (1951), Figure 7. 

The  Optimized  Resistance 

Upon distributing the compound 
singularities according to eq (17), the resultant 
amplitude function for the optimized Wigley hull 
may be found : 

(18) 

K0A(e) = -^F-^scC\G) 
K I 

cos 
sec(0) 

2F2 -2F2cos(0) 
J 

x sin 
V 

sec(0) 

2F 
f    D/_ 

9,- 

x exp -J|csec2(e) d£ 

where : 

t   D/  ^ 
= !+&, 

(    DA   \ 

sec2(0) 

-ß« ^ sec2(0)tan2(0) 

and the ß's are given as in Figures 12 & 13. The 
corresponding non-dimensional resistance is : 

(19) 

MGftfTH -m- 2F2 cos(ö) 

x  sin 

x exp 

sec(fl) 

2F 

0 (  D/ } 
> 

<.        J 

£sec2(0) dC de 

As is well known, for a given draft ratio, the 

resistance varies as \WA , while the variation in 

draft is more complicated. In the present example we 
choose the specific beam & draft ratios chosen by 
Lunde (1951). The optimized non-dimensional 
resistance is compared with the basic Michell 
resistance in Figure 22, and their ratios in Figure 
23. The optimized hull will itself change with F. 
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Figure 22 -    Wave resistance, Wigley hull. 
Thin line-Michell. DA=1/16, 
B/l=.094. Thick line-optimized 
Wigley hull. Type HA singularities 
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Figure 23 - Rd : The ratio of the optimized to 
Michell wave resistance. The dot 
represents a further optimization 
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It can be seen that the use of HA compound 
singularities almost eliminates the wave resistance 
up to F=0.2 and reduces it very substantially up to 
F=0.35, the last hollow. The resistance contribution 
of the transverse & divergent waves separately is 
shown in Figures 24 and 25, and it appears that the 
reduction in the divergent wave resistance is 
substantially larger than for the transverse resistance, 
except for the lowest speeds where the reduction is 
almost complete for each wave system. 

0.4 

OJi 

r^ 
/  ' \ 

f 1        / v\ 0.1 

N / 
\\ 

\ 
O.Ub 

^ iry V 
0 1      0 2      0 3 0 4      0 

F 
5      0 6     0 7 0 8 0 V       1 

0.4 

0.35 

0.15 

Figure 24 -    Wave resistance, Wigley hull. 
Transverse waves. 
Thin line - Michell. 
Thick line - compound system 
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Figure 25-     Wave resistance, Wigley hull. 
Divergent waves. 
Thin line - Michell. 
Thick line - compound system 

This last suggestion is borne out by 
calculations of wave resistance vs F for three fixed 
bodies, each optimized at a different F (0.27, 0,35, 
0.5). As can be seen in Figure 26, the resistance of 
the body (F=0.35) is substantially less than that of 

the body (F=0.5) at F=0.5. 
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Figure 26-     Wave resistance, Wigley hull. 
Optimized bodies. 
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In fact, this curve suggests that in every case, the 
optimized body excels at Froude numbers in excess 
of the design value : Body (F=0.27) excels to about 
F=0.41; and body (F=0.35) to about F=0.57. 
Therefore, the optimized resistance shown in Figure 
22 can clearly be improved upon; as an example, the 
dot in Figure 23 shows the resistance ratio at F=0.5 

using the F=0.35 singularities. 
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These curves suggest that the optimization of the 
compound singularities may be further improved 
through consideration of constructive interference as 

an additional factor. 

Figure 27-     Wave resistance, Wigley hull. 
Transverse waves. 
Optimized bodies. 

167 



—    —   F-0.27 

 F=0.35 

 F=0.5 

0.4 

| I I 
i 

1 / 
/ 

i 

/ i 
i 

1 /^ /^ 
i 

/ 1 
i 

I I i 

i 
O.J 

A- VI ~A »^ t 

^t£ 
jjm;t * %*. P'S 

0 1      0 2      0 3      0 4      0 5     0 6     0.7     0.8     0.9       1 

Figure 28- Wave resistance, Wigley hull. 
Transvrese waves. 
Optimized bodies. 

—    —   F=0.27 

 F=0.3S 

 F=0.5 

Divergent  Waves 

The division of the wave resistance for the 
fixed optimized bodies is shown in Figures 27 & 
28. These figures make clear the importance of the 
divergent wave resistance in optimization, especially 
in the hump region. This importance arises from the 
fact that the dipoles we have used to cancel the 
transverse waves produce divergent waves, which 
cannot be completely eliminated by the quadrupoles, 
and which cause increasing resistance at higher 
speeds. At the same time we know that linear theory 
must fail to predict the divergent waves accurately. 
According to ray theory, short waves are only 
produced at the waterline by singularities in the hull 
shape, and notably at the corners represented by the 
bow & the stern. Beyond this clue, a good physical 
understanding of divergent wave origin is lacking 
and is badly needed. For example, is it possible that 
the divergent waves partially originate at the splash 
which is highly visible at the bow of most fine 
ships ? If so, non-linear calculations may be required 
for their analysis. It is clearly an important subject 
especially for the reduction of high speed wave 
resistance, as the present work makes clear. 

Concluding  Remarks 

It has been successfully demonstrated that 
the generation of particular vertical lift distributions 
(vertical dipole) and body squashing (transverse 
quadrupoles) can together result in substantial 
reductions in the wave resistance of both near-surface 
submerged and Wigley type hulls. It is especially 
important that these reductions are achieved at high 
speeds, in the vicinity of the hump speed. 

It has to be recognized that the present 
studies are incomplete in certain respects. In 
particular, the shape of the modified hulls has not 
yet been determined. However, the proposed 
technique, using compound singularities to create 
hull shapes, offers versatile possibilities for creating 
practical, if unusual, hulls. For example, these 
singularities need not be confined to a line in space, 
as in the case of the submerged hull, nor the vertical 
plane, as in the case of the modified Wigley hull. 

Another factor, vital to the optimization, is 
the transverse thinning due to the transverse 
quadrupoles. It is not yet clear how much of the 
reduction in the resistance is due to the reduction in 
body width, accompanied by an increase in draft, & 
how much is due to the vertical lift effect due to the 
dipoles. The importance of the quadrupoles again 
depends on the divergent waves, about which we do 
not yet know enough in reality. 

Nevertheless, the theory & calculations 
presented here would seem to offer a new dimension 
for the study of ship wave resistance and for the 
design of hulls of reduced resistance, especially at 
higher speeds around the hump. 
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Hydrodynamic Design of Thrust Generators 
Based on Oscillating Wings 

K. Rozhdestvensky, V. Ryzhov (St. Petersburg Marine Technical 
University, Russia), A. Kurapov (Cambridge University, United Kingdom) 

Abstract 

The paper discusses some problems of hydrody- 
namic design of different devices, incorporating 
oscillating wing elements. Unconventional propul- 
sors and energy extracting devices are described 
by means of appropriate mathematical models, 
utilizing numerical and asymptotic methods. A 
review is given of the approaches enabling to ac- 
count for the influence of different physical fac- 
tors upon performance of such systems. Results 
obtained by the present authors are compared with 
available theoretical and experimental data. 

Introduction 

The idea of utilization of the thrust generated 
by an oscillating wing has been known long ago 
from the observations of the surrounding nature. 
As far back as the end of the last century many 
qualitative investigations had been conducted of 
the flapping flight. However, it took quite a while 
to pass from the first notions to a scientific for- 
mulation of the problem. By the forties of our 
century two main concepts had been established 
of the hydrodynamic interaction of a lifting body 
in unsteady motion with the fluid. 

One of the hypothesis set forth by V.V. Go- 
lubev [1] was based upon an assumption that 
in the process of oscillations of the wing (at its 
extreme positions) there takes place a discrete 
vortex shedding resulting in formation of the Kar- 
man double vortex street, [2]. Application of the 
momentum conservation theorem with respect to 
the flow with such a vortex structure indicates 
the existence of a thrust force. 

In accordance to another hypothesis the 
mechanism of thrust generation of the oscillating 
wing is analyzed within the assumptions of the 

ideal fluid flow model and on the basis of the un- 
steady wing theory. The approaches advocated 
by A.I. Nekrasov [3], M.D. Khaskind [4] and L.I. 
Sedov [4] employ the principle of substitution of 
the wing and its wake by various "continuous" 
vortex systems. The thrust generation in these 
schemes is ascribed largely to the so called suc- 
tion force, caused by considerable suctions at the 
leading edge of the wing. 

Although the above approaches treated the 
two-dimensional flow case, they and the subse- 
quent works of M. Lighthill [5] and T. Wu [6, 7] 
lay the foundation of the theory of the flapping 
flight. Further on this basic model was extended 
to account for different physical factors. 

At the present time the motivation for deve- 
lopment of relevant mathematical models is con- 
nected with several possible practical applications 
of flapping wings: use of these wings as propul- 
sors [8, 9, 10]; devices of transformation of the 
unsteady flow energy into a useful work and , in 
particular, as the means of transformation of the 
energy of ship rolling into its translatory motion 
[11, 12]; as the working element of pumps of spe- 
cial types, etc. One of characteristic features of 
such devices is the capacity to synthesize different 
functions, for example to serve as the propulsor 
and a control device at the same time. As such 
they can be used as a system of dynamic posi- 
tioning for offshore structures, or as a generator 
of additional thrust and a ship-roll damping de- 
vice, [13, 14]. 

The interest of researchers as regards wing pro- 
pulsors is also connected with the wish to thoro- 
ughly study effective mechanisms of swimming of 
aquatic animals, [15, 16, 17]. Data from obser- 
vations of the natural environment can also be 
used in development of imitating technical devi- 
ces which incorporate some essential characteri- 
stic features of live objects , such as fish and birds. 
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These features have to be reflected in corre- 
sponding mathematical models. 

Numerical and asymptotic methods of the wing 
theory - from the lifting line [18] to the lifting 
surface [19, 20] approaches enabled effective de- 
termination of propulsive characteristics of the 
wing of arbitrary planform and aspect ratio in 
the wide range of relative frequencies of oscillati- 
ons and in presence of the flow boundaries, [21]. 
An appropriate model of the thrust generation in 
extreme ground effect, i.e. in close proximity of 
rigid boundaries, was developed with utilization 
of the matched expansions techniques, [22] .A cer- 
tain progress had been achieved in the theory of 
the optimal flapping wing, which resulted in rec- 
ommendations as to the choice of geometry and 
kinematics, resulting in a maximum thrust or ef- 
ficiency, [7, 18, 23]. Several publications are de- 
dicated to determination of propulsive characte- 
ristics of a wing in a wavy stream , [24, 25, 26]. 
The influence of the free surface gravitational ef- 
fects was considered in [27]. Some simplified 
approaches are known to have been developed 
to predict cavitation and leading edge separa- 
tion of a wing in unsteady flow, [20, 28]. Some 
results are reported of mathematical modelling 
of the influence of elasticity upon characteristics 
of oscillating wings including matters of ratio- 
nal distribution of inertial properties and rigidity, 
[29, 30, 31, 32]. 

Research works referred to above have been 
done mostly within assumptions of linear theory. 
It should be mentioned that there already exist 
nonlinear approaches to mathematical modelling 
of performance of devices based on oscillating 
wing, [33, 34, 35, 36]. The author abstain from 
their review and analysis and leave this for the 
future. 

In parallel with theoretical methods there exist 
some established experimental techniques, avai- 
lable experimental data confirming adequacy of 
developed mathematical models, [17, 25, 37, 38]. 
The measurements of thrust on oscillating wings 
are known to be rather complicated. That is why 
the number of these is limited. Nonetheless, they 
provide a good basis for direct analysis of fac- 
tors influencing propulsive characteristics of the 
wing type thrust generators as well as for esta- 
blishment of the range of validity of relevant mat- 
hematical models. 

There exist some full-size implementations of 
the oscillating wing thrust generators. Such sy- 
stems are installed on surface ships and laun- 
ches, [8, 11] and on small submersibles [9] as the 

main (active) or/and passive propulsors.lt can be 
mentioned that the authors of the present pa- 
per participated in hydrodynamic design and de- 
velopment of the rudder-propulsor system for a 
small human powered submarine of Saint-Peters- 
burg Marine Technical University (MTU), [10]. 

The goal of the present paper is to give an out- 
line of research work on the wing-type thrust ge- 
nerators carried out at MTU and to discuss some 
mathematical models enabling prediction of per- 
formance of such devices. 

General mathematical model of the 
flapping wing propulsor 

Consider a lifting and propulsive system, consi- 
sting of a finite number of flat thin wing of finite 
aspect ratio and arbitrary planform, in a bounded 
flow of ideal incompressible fluid, Fig. 1. 

Figure 1: Wing system and coordinates 

Let fluid density be p the oncoming flow velo- 
city Uo- The boundary can be represented by a 
rigid flat plane or a free surface, these two cases 
corresponding to limiting Froude numbers 0, oo. 
The wing elements can perform harmonic oscil- 
lations or be subject to given deformations with 
frequency w around equilibrium. Adopt assum- 
ption of small perturbations induced by the sy- 
stem, justifying use of a linear unsteady theory 
of lifting surface, [20]. The problem of the flow 
past a propulsor represented by a system of os- 
cillating wings is reduced to solving of a Laplace 
equation for a perturbed flow potential with line- 
arized boundary conditions of the flow tangency 
on wings' surfaces; dynamic and kinematic con- 
ditions on a free vortex sheet and a free surface; 
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condition of decay of perturbations at infinity and 
a Zhukovsky condition at sharp trailing edges. 

The formulated boundary problem can be re- 
duced to solution of a singular integral equation, 
relating nondimensional complex amplitudes of 
the pressure jump [pj(£>0] and the downwash 
a(x, z) upon a lifting surface with a number j 

(1) 
In linear case the generalized downwash a(x,z) 
is a sum of the downwash, induced by the wing 
proper ctj(x,z) and downwash otji(x,z), induced 
by other wing of the system. One can write 

aj(x,z) = ikyc(x,z) + 
dyc{x, 

dx (2) 

where yc(x, z) - form of the wing oscillations; k = 
jf - a relative frequency of oscillations (Strouhal 
number); a - semichord of the wing. 

In case when the propulsor consists of one os- 
cillating wing atji(x, z) = 0. 

Concrete form of the singular kernel Kj(x - 
£, * — C) depends on whether the boundary is a 
rigid plane or a free surface. Singular integrals 
entering the kernel are calculated with the help 
of special interpolation quadrature formula, [20]. 

The equation (1) can be solved by means of 
a collocation method. Representing the ampli- 
tude of the pressure jump in new angular varia- 
bles (/i, <p) as the modified Birnbaum-Prandtl se- 
ries 

\p(^<P)]' la(ip) 
53^am„wrn(/z)sin(n9?)   (3) 

we can reduce the integral equation (1) to a sy- 
stem of linear algebraic equations with respect to 
unknown coefficients amn of the series. The follo- 
wing notations have been introduced in equation 
(3): w0 = (1 — cos p)/siny.;um = smmp, m > 
1;/—span of the wing; a(ip)—current semichord 
of the wing, So — area of the wing. As seen from 
(3), coefficients amn determine the loading dis- 
tribution across the wing and, consequently its 
lifting and propulsive characteristics. The lift Y, 
hydrodynamic moment M, power P spent to sup- 
port the wing oscillations in the fluid can be cal- 
culated by means of the formulae 

Y = pU0
2 I  Re\p]eiktds, 
Js0 

M = -PU2
0a f  Re(\p]eikt(x - ar0)) ds,     (4) 

P = -pU$ J  Re(\p]eikt)Re^(yce
ikt) ds- 

The thrust force T is determined as a sum of the 
suction force S and the projection of the resul- 
tant X of normal hydrodynamic loads upon the 
direction of the wing motion 

S = PU^[ A2 cos(i/„,x)dl, 

X = pU2 [  Re(\p]eikt)Re(^eikt)ds,     (5) 
JSo °x 

where A is the strength of a square root singula- 
rity of the loading at the leading edge h of the 
wing. It can be shown by appropriate stretching 
of coordinates the in immediate vicinity of the le- 
ading edge the flow is close to a two-dimensional 
one in the plane normal to the wing planform 
contour, and the component of the perturbed 
velocity lying in this plane dominates. Evalua- 
tion of behavior of the series (3) near the leading 
edge permitted to find both to find corresponding 
asymptotics of the loading [p] and the strength of 
singularity A, which can be expressed in terms 
of coefficients amn found as a result of numerical 
solution of equation (1). Coefficients of hydro- 
dynamic forces and moments can be expressed 
through coefficients of hydrodynamic derivatives 

Cy = J£(cpqj + Cpqj), 
j 

CM = J2(CM«i + CqM<ii)' (6) 
3 

where g;- independent kinematic parameters, a 
dot corresponds to a derivative with respect to 
time. In case, when a rigid wing participates in 
both heave h and pitch 6 oscillatory motions, the 
kinematic parameters qj can be written as 

h = /i0e:'(i'+Vk);    6 = e0e^
kt+^\       (7) 

where tf>h,<Pe,ho,6o - phase angle shift and oscil- 
lations amplitudes. 

For the purpose of evaluation and analysis of 
propulsive characteristics of the propulsor it is 
convenient to introduce coefficients averaged over 
the period of oscillations 
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r27r/£ r i        k    f   ' 
{cT,cs,cx,cpj = — {CT,Cs,Cx,CP}dt 

(8) 
The efficiency of the oscillating wing propulsor 
can be determined as in   [7] 

■Hi = 
cp 

(9) 

Some results of calculations of propulsive charac- 
teristics versus principal parameters of the pro- 
blem are presented in Fig. 2. 

0.0      1.0      2.0     3.0<504.0 0.0      1.0      2.0     3.0(504.0 

Figure 2: Relative average thrust coefficient for 
heave and pitch of a rectangular wing : A-versus 
aspect ratio (k — 0.2; ipo = ir/2;xo = 0;Aj = 
0.1; rigid wall); B- versus Strouhal number (A = 
5;ip0 = TT/2;X0 = 0; hb = 0.1; rigid wall); C- 
versus shift of phase angle (A = b;k = 0.2; xo = 
0;hi = 0.1; rigid wall); D- versus distance from 
the boundary (A = 5;y>o = ir/2\k = 0.2; x0 = 0; 
1- rigid wall, ht = 0.1; 2-infinite fluid; 3-free 
surface, ht = 0.1) 

Some conclusions can be drawn from analysis 
of these results. 

• Increase of the wing aspect ratio and Stro- 
uhal number leads to augmentation of the 
averaged thrust for purely heave or pitch os- 
cillations and for combined (heave and pitch) 
oscillations as well. 

• In case of combined oscillations within a cer- 
tain range of the amplitudes ratio 6Q — /io/#o 

and phase shift angles tp0 = pe - <fh it is po- 
ssible to gain in thrust as compared with pu- 
rely heave oscillations (cj = crne/cm > 1)- 
It should be mentioned that there exists such 
an amplitudes ratio for which this gain achi- 
eves a maximum. Relative gain grows with 
increase of aspect ratio and decrease of Stro- 
uhal number. There exists an optimal an- 
gle of phase shift between heave and pitch, 
which tends to 7r/2 for k —> 0. 

• In the case of combined oscillations the closer 
is the wing to a rigid boundary the larger is 
the averaged thrust. When the wing oscilla- 
tes near a free surface the thrust is somewhat 
less as compared to an infinite fluid case. 

The results discussed above were obtained 
within assumption of vanishing thickness. In 
the frame of linear theory incorporation of the 
thickness effects can be carried out by means 
of distribution of sources upon projection of the 
wing surface on (x, z) plane with strength propor- 
tional to the z-derivative of the wing thickness 
distribution. The presence of boundaries (rigid 
or free surface) is accounted for by means of the 
mirror image techniques. The contribution of the 
sources distributed on the wing itself to induced 
downwash is zero. Therefore, the downwash on 
the wing due to its thickness is fully determined 
by that of the sources of the "mirror" image of 
the wing. Consideration of some computed re- 
sults obtained by present authors show that when 
the wing approaches a rigid boundary there oc- 
curs an increment of averaged thrust, the magni- 
tude of which depends on the square of relative 
thickness, geometry of the lifting surface and the 
clearance with respect to the boundary. As shown 
by calculations, this increment is very small and 
can be neglected. Obviously, within assumptions 
of the linear theory, thickness effects have zero 
contribution to the thrust for the infinite fluid 
case. 

On the whole, the results calculated for rigid 
wings correlate well with the known experimental 
data, [37, 38]. See Fig. 3 , 4. 

It is practical to consider the propulsive cha- 
racteristics of oscillating wing systems . Quali- 
tatively, these characteristics behave similarly to 
those of oscillating wings. However, an investiga- 
tion of some practical configurations, for example: 
biplane, tandem, "cross", "box" (see Fig. 5) faci- 
litates the process of design of a propulsor with 
improved performance parameters. 

In particular, it can be concluded: 
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Figure 3: Comparison of calculated and experi- 
mental [37] results for average thrust coefficient 
(alternative form) kT = 2T/p(UQ

2 + (uh0)
2)1/2S0 

as a function of parameter Ap = l/2kh0. He- 
ave of a rectangular wing (A = 4, NACA-0015, 
h0 = 0.18): 1- rigid wall,A4 = 0.3; 2- free 
surface, hi = 0.27 Figure 5: Some practical configurations of a wing- 

propulsor 

0.013 

0.003 
0.05      0.06      0.07      0.08      0.09 k 0.10 

Figure 4: Comparison of calculated and experi- 
mental [38] results for average thrust coefficient 
at heave of a rectangular wing in infinite fluid 
(A = 4, NACA-0015, h0 = 0.63) 

• A biplane scheme with wing elements, oscil- 
lating in the counter-phase regime (a case 
analogous to that of a single wing oscillating 
near the ground), provides better propulsive 
performance than a single wing i infinite fluid 
and enables to compensate the "side" force. 

• A tandem scheme with correctly chosen geo- 
metry and kinematics is characterized by a 
minimal energy drop into the wake, and the- 
refore is rather promising as a possible de- 
vice configuration for extraction of energy of 
waves. Calculations show that the tandem 
system can become still more effective with 
increase of the number of elements. 

The analysis of instantaneous characteristics of 
oscillating wing systems allows to make a conclu- 
sion that with increase of the number of elements 

in considered configurations it is possible to es- 
sentially diminish pulsations of thrust during the 
period, thus enhancing stability of the propulsive 
system. 

Asymptotic model of the flow past a 
wing oscillating near a wall or bet- 
ween parallel walls 

As indicated in the previous section, the thrust 
of the oscillating wing propulsor increases near a 
rigid boundary. This fact is confirmed in nume- 
rical study in [39] made on the basis of the met- 
hod of discrete vortices and in the experiments 
of [40] carried out in the towing tank. The la- 
ter author also investigated the case of the wing 
oscillating near parallel walls and found out that 
in this case the increment of thrust due to the 
ground effect becomes still larger. The general 
conclusion stated in [40] was that in presence of 
rigid boundaries both thrust and the efficiency 
of the oscillating wing propulsor increase in com- 
parison with the infinite fluid case. The most 
interesting situation when the average distance 
from the rigid flat boundary is small can be re- 
adily studied through application of the method 
of matched asymptotics expansions [41]. In case 
of small relative clearances h the flow in highly 
constrained region between the wing and rigid 
boundary becomes "almost" two-dimensional in 
the plane parallel to the boundary. Within linear 
theory the 3D Laplace equation degenerates into 
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a 2D Poisson equation, so that the problem is 
governed by the following relationships 

(d*T     ö2rx      dyc     dyc 

(10) 
r = 0    at the leading and side edges,      (11) 

ar 
dx 

dT 
dt 

0    at the leading edge,        (12) 

where T is a jump of velocity potential across the 
wing, yc{x,y,z) is a function, describing instan- 
taneous position of the wing with respect to the 
wall; So- a projection of the wing upon the boun- 
dary plane. In many practical cases the problem 
(10)—(12) can be solved analytically. For the sake 
of saving place we shall confine ourselves to wri- 
ting down the simplest formulae for the averaged 
thrust coefficient CT and ideal efficiency coeffici- 
ent T]i of a heaving flat plate of infinite aspect 
ratio 

0.4 

0.0 
5     k    2.0 

Figure 6: Average thrust coefficient of a rec- 
tangular wing at heave versus Strouhal number, 
hb « 1 

cT = 
h2

0k
2[(2 + k2)2 + k 
8hb(i + k2y 

m 
1/2 + PN • 
2\l + pJ . 1 + (13) 

(2 + P)2J 

where ho is the amplitude of heave oscillations. 
Some results of calculations are given in Fig. 6, 7. 
Fig. 6 illustrates behavior of the averaged thrust 
coefficient versus Strouhal number k for different 
aspect ratios A of a rectangular wing performing 
heave oscillations. 

In Fig. 7 a comparison is presented of the ideal 
efficiency of the flat plate wing of infinite aspect 
ratio versus Strouhal number for the cases of os- 
cillations in close proximity to the rigid boundary 
hb « l,see formula (11), and oscillations in un- 
bounded fluid, [3]. 

Note that in case of pitch oscillations the axis of 
rotation is located at the distance of one quarter 
of chord from the leading edge of the foil. It is 
easy to extend the same approach to the case of a 
wing-boundary system with lateral curvature. As 
an example some results are presented in Fig. 8. 
illustrating dependence of the averaged thrust of 
a heaving circular wing, surrounding the cylinder, 
as function of Strouhal number for different radia 
of the cylinder. 

In case of a wing in oscillations in a narrow 
channel of width H with possible lateral curva- 
ture it can be shown that the above results for 
a wing near one wall should be corrected in the 
following way. 

cTH = CT 
H H 

H-hb 
CPH = Cp H-hb' 

T]H = 1). (14) 

Thus, if a wing propulsor functions in a narrow 
channel both its thrust and required power incre- 
ase by a factor of H/(H — hb) as compared to the 
one wall case, and the ideal efficiency coefficient 
retains its value. 

Note, that applications of wing propulsors os- 
cillating near walls, between parallel walls and in 
narrow tubes include propulsive devices for flat 
bottomed vehicles moving in water, pumps, etc. 

Influence of elasticity upon hydro- 
dynamic characteristics of oscillating 
wings 

Account of the influence of elasticity in design 
of unconventional propulsor is necessitated with 
solution of some practical problems. 

The first of such problems is connected with a 
fact that in real technical systems the rigid wing 
elements can be connected to one another and 
to the drives of control mechanisms by means of 
elastic ties,having a finite number of degrees of 
freedom. 

The second problem, which follows from ana- 
lysis of performance of propulsors of aquatic ani- 
mals ,is the necessity of account for a proper ela- 
sticity of oscillating wing elements.   A rational 
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Figure 7: Comparison of magnitudes of ideal effi- 
ciency for a foil at very small distances from the 
rigid boundary (/i;, << 1) and in infinite fluid,[3] 

choice of inertial and elastic properties of the wing 
can serve to enhance the efficiency of the propul- 
sor. 

A certain practical interest exists in conside- 
ration of the thrust generation in the parameter 
range close to the hydrodynamic resonance (flut- 
ter). Let us consider a simplified mathematical 
model of the flow past a wing with elastic ties, 
providing two degrees of freedom, [26]. Adopting 
assumptions of the linear unsteady lifting surface 
theory, consider a rigid wing, the heave and pitch 
oscillations of which are excited through two ela- 
stic ties (see Fig. 9). 

As a result of hydroelastic interaction of the 
wing with the fluid,the law of oscillations (h, $) 
of the lifting surface will differ from the initial 
law of kinematic excitation (h,9). 

In this case the system of equation of equations, 
describing elastic oscillations of a rigid wing, will 
have the form 

rah + Kh{h — h) + m(x0 — xc)9 = Y, 

je + Ks(e-6) + m(x0-xc)h = M,       (15) 

where m, J are respectively a mass and the mass 
moment of inertia of the wing with respect to 
the axis of rotation; Kh, Ke~ stiffness coefficients 
of elastic ties with respect to heave and pitch; 
XQ and zc-abscissa of the axis of rotation and 
abscissa of the center of gravity of the wing. 

Confining the analysis to that of the nonhomo- 
geneous solution of the system of equations (15), 

0.4 

0.0 

Figure 8: Influence of Strouhal number and ra- 
dius of the infinite length cylinder upon ave- 
rage thrust coefficient of a circular wing in pitch, 
h « 1 

Figure 9: Rigid wing with two elastic ties 

we can obtain such parameters of resulting (for- 
ced) oscillations as amplitudes (ho, #o) and phase 
angle shifts (iph,<p$), which are expressed by me- 
ans coefficients of hydrodynamic derivatives, en- 
tering the expansions of the lift Y and the mo- 
ment M in kinematic parameters, (see (6)). 

As a result of oscillations taking place due to 
kinematic excitation of the system there is reali- 
zed a thrust force, which can be calculated with 
use of the formulae (5). 

In this way we can analyze the influence of 
main parameters of the problem: relative frequ- 
ency k, elasticity parameters wh = u/wh, u>e = 
UJ/U>6 (where Uh = \fKh/m,u)e = -y/fifs/J); 
shifts of phase angles and the amplitudes' ratio 
upon propulsive characteristics of the system. 
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Some of calculated results, obtained on the ba- 
sis of the above stated model, are presented in 
Fig. 10- 13. 
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Figure 10: Comparison of the present theory 
with calculated results of [29] for a given heave; 
Jb = 0.8,/?* = pa3l3/2JX = 6.36;/?** = ma2/J = 
0; x0 - xc = -0.5; w/wft = 0; 0O - 0 
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Figure 11: Influence of a rigid wall upon average 
thrust coefficient at heave; \"2>, rl=1.5,^Co

:::Xc=0 

Analysis of the calculated curves shows that 
for relatively large Strouhal numbers there take 
place resonant maxima of the thrust. The mag- 
nitudes of these maxima increase when the wing 
approaches to the rigid boundary and somewhat 
decrease near the free surface. 

If elastic ties are sufficiently pliable, then with 
variation of Strouhal number the two resonance 

zones can be observed.Each of the elastic ties has 
its own characteristic resonance zone. In Fig. 12 
the left zone corresponds to the resonance in he- 
ave whereas the right zone corresponds to the re- 
sonance in pitch. 

4.0 

0.0 0.5 k 2.5 

Figure  12:    Resonance zones for a rigid wing 
with two elastic ties ( koh  =  2;/?*  = 2; S*  = 
par j2m\ = l;xo 
2,0o = 0; 2 - koe 

- koe = 3, 9Q = 0 

-0.5).    1 - k 09 
= 2,e0/h0 = 0.2, ipo = TT; 3 

With increase of &oh = ^hCi/Uo and koe — 
Ljea/Ua these zones shift to the region of higher 
magnitudes of k. The coefficient of the avera- 
ged power, required to support oscillations of the 
wing , varies according to a similar law. Consi- 
dering the components of the thrust coefficient, 
i.e.cs and ex at resonance regime,it is worthw- 
hile to mention that the resonance in heave takes 
place with a noticeable increase of the suction 
force, so that the thrust is provided mainly due 
to the suction component. 

Practically there exists a necessity in reduction 
of the ratio CS/CT with an overall increase of the 
thrust. This is related to the fact that the mo- 
des with large magnitudes of this ratio often fail 
to be realized due to the leading edge stall. The 
calculations show that it is possible to achieve a 
decrement of the suction force relative contribu- 
tion cs/cf for a wing near a resonance in pitch. 

Fig. 13 show some typical curves of propulsive 
characteristics near resonance for a wing with two 
elastic ties, which is subject to excitation in he- 
ave. 

As can be seen from the Figure, the resonance 
for the components cs and ex of the suction force 
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where ye is the form of induced elastic oscillati- 
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Figure 13: Main propulsion coefficients versus 
elasticity parameter co/ug for a given heave. Rec- 
tangular wing A = 3; k = 0.8; ß* = 2; 6* = 1; x0 = 
xe = -0.2; 6>o = 0 

takes place in different ranges (a maximum of cs 
is reached for u/ug = 0.5 — 0.7, a maximum of ex 
occurs at u/ug = 0.8 — 0.9) The spent power co- 
efficient has a maximum in the zone of maximum 
of the suction force. Then it drops in magnitude 
and ,eventually, becomes smaller than a corre- 
sponding coefficient cp for a wing without elastic 
ties. 

Thus, as a wing reaches a (resonant) maxi- 
mum in suction force there takes place an inc- 
rease in the spent power. So, supposedly, this 
performance mode is unfavorable (or not realiza- 
ble due to the leading edge separation effects). 
The second state of resonance (in ex) for which 
the spent power decreases,i.e. the propulsor ef- 
ficiency increases,can be characterized as quite 
plausible. This phenomenon is confirmed by ava- 
ilable results of observations of aquatic animal 
propulsion,[16]. 

Now, let us pass over to a more general mathe- 
matical model of an elastic wing, represented by 
a thin isotropic plate of variable thickness r(x,z) 
with a known density ps, the Young module E 
and the Poisson coefficient v. 

The wing leading edge can be subject to given 
kinematic excitations (heave and pitch). In this 
case the points of the wing will displace in re- 
sponse to hydroelastic interaction with the fluid 
according to the law 

yc(x,z,t) - [yo + yi(a + x) + ye(x,z)]e'kt,  (16) 

ons. 
When considering the oscillating wing the pro- 

blem of the unsteady lifting surface theory (1) 
should be complemented by the equation of dy- 
namic bending with corresponding boundary con- 
ditions (given oscillations at the rigidly fixed le- 
ading , conditions at other edges with no forces 
applied) 

A(DAye)-(!-«/)( 

d2Dd2 
Vc 

dz2 dx2 

d2Dd2yc        d
2D  82yc 

dx2 dz2        dxdzdxdz 

+ ms^ = l\p(x,z,t)],      (17) 

where D — ET
3
/12(1 - v2) is cylindrical stiffness 

and ms = PST is a surface distribution of mass. 
The solution is carried out by way of repre- 

sentation of the unknown wing ordinates y as a 
double series in terms of a system of fundamental 
functions, satisfying kinematic boundary conditi- 
ons at the leading edge, with subsequent applica- 
tion of the generalized Bubnov-Galerkin techni- 
que. 

In view of a large number of the significant pa- 
rameters of the general problem,complicating the 
analysis of results, we consider a particular case 
of the above stated problem, namely -elastic os- 
cillations of a wing of infinite aspect ratio. This 
simplified model would facilitate qualitative ana- 
lysis of behavior of the system. Within the two- 
dimensional theory a complementing equation of 
dynamic bending of the beam-strip will acquire 
much simpler form 

dx2 D(x) 
dt2 + ms(x) 

d2yc 

dt2 l\p(x,t)}, (18) 

where D(x) - bending stiffness; ms(x) - distribu- 
tion of mass chord wise. 

The equation (18) is complemented by the bo- 
undary conditions at the leading edge for which 
parameters of heave and pitch are prescribed and 
at the trailing edge which is free from loading. 

A distributed loading upon the wing is calcu- 
lated with utilization of the solution given by T. 
Wu,[7]. For the case of an elastic foil with the 
bending stiffness and mass uniformly distributed 
chordwise the form of elastic oscillations y(x) is 
represented by means of expansion in terms of 
orthogonal functions Yn(x) based on the forms of 
the bending oscillations of a prismatic beam-strip 
in vacuum 
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Ve(x) =^2cnYn(x) (19) 

As mentioned previously, the solution of the pro- 
blem is carried out by Bubnov-Galerkin techni- 
que, which permits passage from the system of 
linear differential relationships to the system of li- 
near algebraic equations with respect to the unk- 
nown series coefficients c„. The later system with 
infinite number of unknowns can be solved by the 
reduction method. 

Some calculated results for propulsive cha- 
racteristics of an elastic foil are presented in 
Fig. 14, 15. 

Results of calculations reveal that with varia- 
tion of the elasticity parameter B = pUoa3l/D0 

(where Do is a bending stiffness at the point of 
application of exciting force and moment) there 
are observed some resonant modes (see Fig. 14). 
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Figure 15: Main propulsive coefficients versus 
elasticity parameter B (k = 2; kw = .64; 7 =. 
0.2;90/h0 = 0.b;<po = ir) 
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Figure 14: Resonant character of the incre- 
ase of absolute magnitudes of forms of elastic 
oscillations(/i0 = O;0O = 0; kw = 2; 7 = m/alp = 
0.05) 

These maxima of thrust occurs at sufficien- 
tly high magnitudes of Strouhal number. In the 
state of resonance of a completely elastic wing the 
trends of variation of the thrust components cs 
and ex are different which is similar to the case 
of a rigid wing with two elastic ties. The suction 
force coefficient cs decreases and ex coefficient 
increases. This may imply that in the state of re- 
sonance the predicted propulsive characteristics 
are likely to be realized (see Fig. 15) 

Oscillating wing in wave flow 

To account for the influence of the wave flow upon 
propulsive characteristics of oscillating wing, we 
consider a two-dimensional regular wave of small 
amplitude Aw, propagating along the x-axis. 

Following T.Wu, assume that the propulsor is 
located far enough from the free surface to be 
able to neglect a reverse influence of the wing on 
parameters of fluid motion near a free surface. 
This assumption can hold if the wing oscillates 
at distances from the free surface not exceeding 
the length of two chords. 

Beside, it is assumed that the apparent frequ- 
ency of the wave and the frequency of wing oscil- 
lations coincide. Ratio of the orbital motion ve- 
locity amplitude to the velocity of the oncoming 
flow is assumed to be small. 

The expression for the form of the oncoming 
wave can be written down as follows 

yw = h + -Re A*n6 
,i(u0y+kwx) (20) 

where kw = 2ir/\w is a wave number; Aw-wave 
length; w0- apparent frequency of the wave, re- 
lated to frequency of the wave by equation w0 = 
u„,+kwU0,Uw = y/gkwtanh(gH.), H*- the depth 
of fluid. 

The vertical component of velocity of fluid par- 
ticles in the wave, determining contribution of 
perturbed velocities to the downwash in (x,z) 
plane can be written down as follows 
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v„. iwoe i(ujot — kwx) (21) 

where wo is the amplitude of the vertical com- 
ponent of orbital motion of fluid particles in the 
wave, evaluated at the depth of submergence of 
the wing. 

Thus, the influence of fluid particles in the wave 
upon the wing is accounted for only through con- 
tribution of the induced velocities to a total dow- 
nwash a(x, z), entering the right-hand side of the 
integral equation (1). The further analysis of the 
problem is specified depending on whether the 
wing is rigid, on elastic ties or completely ela- 
stic. Corresponding models of previous sections 
are utilized. 

Let us briefly analyze some specifics of determi- 
nation of propulsive characteristics of oscillating 
wing in a wave stream.It is known, that the power 
required to sustain the wing oscillation in fluid, 
is equal to the work of the thrust force plus ki- 
netic energy E, transmitted by the wing to the 
fluid per unit time.This relationship for characte- 
ristics averaged for the duration of the period of 
oscillations has the form 

Cp — CT + CE- (22) 

One of three possible regimes can be realized in 
the wave stream for a wing which provides a po- 
sitive thrust 

by the thrust per unit time to the power of the 
oncoming wave 

TUp 
pwr (26) 

where Pw is the power of the oncoming wave per 
unit length of the wave front, T-average thrust. 

As an example confirming workability of the 
mathematical model of a wing in wave stream 
a comparison is presented of some calculated re- 
sults with the experimental data[25]. Note that 
in[25] a wing with elastic ties was mounted on a 
carriage of the towing tank . Waves generated in 
the tank, excited oscillatory motions of the wing. 
As a result a thrust force was generated which 
was sufficient to induce motion of both the wing 
and the carriage in direction opposite to that of 
the wave front. For comparisons the calculati- 
ons were carried out for a wing of relatively high 
aspect ratio in order to account for conditions of 
the experiment which aimed at providing a two- 
dimensional flow. In spite of a somewhat con- 
ditional character of the comparison, theoretical 
magnitudes of speed of motion and amplitude of 
oscillations agree with those obtained in the tests 
both qualitatively and quantitatively. In particu- 
lar, it became possible, to predict ( with satisfac- 
tory accuracy) the optimal length of the wave for 
which there occurs a resonance in thrust (speed) 
and amplitudes of oscillations (Fig. 16). 

0 < ?7 < 1,    cp > 0,    cB>0, (23) 

77 >1,     cP > 0,    CE < 0, (24) 

77 < 0,    cP < 0,    cE < 0. (25) 

Omitting the well known regime (23), note that 
two remaining regimes are characterized by the 
energy extraction from the stream. The regime 
(25) is more efficient because to sustain given os- 
cillations the energy has even to be taken away 
from the wing. 

The wing system with elastic ties, placed into 
a wave stream, can initiate the oscillation pro- 
cess without energy supply through control devi- 
ces. Such a system, which ,on one hand, provides 
"depression" of the wave, and, one another hand, 
serves to extract energy from the flow, can be cal- 
led a propulsor of passive type. For all that all 
extracted energy is completely utilized for thrust 
generation, i.e. CT = —Cß,cp = 0. 

It is convenient to characterize the efficiency of 
the above device by means of a special parame- 
ter, representing the ratio of the work performed 
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Figure 16:  Comparison of results of the present 
theory with experimental data, [25] 

Optimal characteristics of a propul- 
sor based on oscillating wings 

As follows from both experiments and calcula- 
tions characteristics of the oscillating wing pro- 
pulsor are closely related to kinematic parame- 
ters, namely: amplitude, phase angles of heave 
and pitch oscillations. Therefore tone of the im- 
portant problems consists in determination of an 
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optimal law of the wing oscillations, providing 
maximum attainable efficiency. 

This conditional optimization problem may be 
formulated in the following way: within a cer- 
tain given class of functions yc(x, z) find the one, 
minimizing the power required to generate a pres- 
cribed thrust 

cp —* mm, 

Cy = CTO- (27) 

There may also be formulated an inverse optimi- 
zation problem 

CT —* max, 

cp = Cpo ■ (28) 

Parameters CTO and cpo in equations (27) and 
(28) define isoperimetric conditions imposed 
upon the coefficients of the averaged thrust and 
power. 

The conditional optimization problem for an 
isolated rigid wing is considered with respect to 
the unknowns: amplitudes of oscillations ho, 6Q 

and phase angles iph, tpe- In case of a system 
comprising several wings the number of design 
parameters of the problem increases in proportion 
to the number of wing in the system. 

The optimization problem may be simplified by 
means of introduction of new independent varia- 
bles ip , representing parameters completely des- 
cribing wing's kinematics. Due to this the form 
of expressions for propulsive coefficients become 
more simple and convenient, and there is no need 
to impose any restrictions upon the new parame- 
ters. 

In view of the fact that each of the considered 
propulsive coefficients can be written down as a 
corresponding quadrature form with respect to 
parameters of motion ip, the problems (27),(28) 
can be written in the following general form 

^Tß(2)^ + £(i)^ + 5(o) = 0] (29) 

where {A™, B&), {A™, B<-% (A™, B™) are 
quadratic, linear and constant terms of corre- 
sponding quadrature forms, rj> — (4>i,..., ipn) is 
the vector of the unknown kinematic parameters 
of the problem. 

The algorithm of optimization is based upon 
classical method of Lagrange multipliers, redu- 
cing (29) to a system of nonlinear equations of 
the second order with respect to the vector of 

unknown kinematic parameters ip and Lagrange 
multiplier A*. 

Using a special linear transformation of coordi- 
nates the above mentioned system can be reduced 
to one nonlinear algebraic equation with respect 
to A*. All stationary solutions of this equation 
can be found through calculation of roots of this 
equation. An additional verification of whether 
the conditions of extremum are fulfilled enables 
to obtain a final set of optimal solutions. Nume- 
rical analysis show that, as a rule, there are left 
two optimal solutions, one of which corresponds 
to a maximum and the other - to the minimum. 

Fig. 17- 20 represent results of calculations of 
optimal characteristics for an isolated rigid wing. 

0.0 4.0   k    5.0 

Figure 17: Optimal shift of phase angle for heave- 
pitch oscillations of a rectangular wing versus 
Strouhal number (A = 2; x0 = 0) 

0.005 

opt 
Figure 18: Optimal ideal efficiency ^ versus 
Strouhal number and the wing planform for cT0 = 
0.01(1- rectangular, A = 2; 2- elliptic, \ - 3.25; 
3-triangular, A = 4, x = 45) 
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Figure 19: Optimal ideal efficiency rj/ versus 
Strouhal number for different number of rectan- 
gular wing elements (A = 2) of the propulsive sy- 
stem for CTO = 0.01(1- isolated wing; 2- biplane; 
3- "box" type wing system) 
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Figure 20: Comparison of the present theory with 
calculated results of [18] for an elliptic wing of the 
aspect ratio A = 8 

An approach to prediction of cavita- 
tion and laminar separation occur- 
rence at the leading edge of the os- 
cillating wing thrust generator 

Theoretically predicted optimal oscillations of the 
wing can be performed with relatively large con- 
tribution of the suction force to the total thrust 
CS/CT- As indicated earlier, in practice such regi- 
mes may not be realized due to the leading edge 
stall. Therefore, trying to obtain an optimal per- 
formance of the wing for a given thrust coefficient 
CT it is necessary to minimize the ratio CS/CT- 

In this connection it is reasonable to introduce 
a certain upper bound for this ratio, i.e. to re- 
quire CS/CT <; Co-  Choice of the constant CQ for 

a concrete regime of the flow can be carried out 
on the basis of some additional limiting factors 
such as separation and cavitation occurrence at 
the leading edge, [20, 41, 42, 43]. As shown in 
the above cited references, it is possible to relate 
the limiting value of the suction force coefficient 
with cavitation number and/or separation crite- 
ria. Using the matched asymptotic techniques 
in case of oscillating thin wings one can obtain 
simple analytical formulae for flow velocity com- 
ponents near the leading edge of a wing, namely 

Vi- 
X» n   yxn + pn/2 Ui± 

(30) V; = -Uosinx, 

p' = l-(^)2-(^')2, 

where Vn, VT - local (inner) velocity components 
in directions normal and tangential to the lea- 
ding edge planform contour ;Xn -the inner stret- 
ched abscissa measured along the normal to the 
leading edge planform contour; p~n = pn/62- stret- 
ched radius of curvature of the leading edge;<5 - 
relative thickness of the wing section; *- local 
sweep angle; U\ and Ui -parameters, characte- 
rizing the local oncoming flow velocity and circu- 
latory flow around the rounded edge respectively. 
Parameters U\ and U2 are determined by means 
of asymptotic matching of solutions in the inner 
and outer regions of the flow. Through these qu- 
antities the far-field characteristics ( geometry of 
the wing , law and parameters of oscillations, di- 
stance from boundaries and distance from them, 
etc.) exhibit themselves near the leading edge. 
Roughly, the cavitation inception can be predic- 
ted by means of the minimum pressures buckets 
(diagrams). In general case the bucket consists 
from its "profile"part and its "edge"branches. 
The "profile "part can be obtained through uti- 
lization of a linear theory of lifting surface. To 
obtain "edge" branches it is convenient to use 
the local solutions describing the flow near the 
rounded leading edge, presented by the formulae 
above. In particular, it is easy to deduce the fol- 
lowing analytical expression for the minimum of 
pressure coefficient on the leading edge 

Pr an = COS2X - Ul 
w mor\2 

Pn 
(31) 

Assuming that cavitation inception takes place 
at a point of the pressure minimum (a = —pmin) 
and accounting for the fact that the local suc- 
tion force coefficient can be expressed through the 
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strength of the leading edge square root velocity 
singularity, it is not difficult to relate cavitation 
number ex with a maximum of instantaneous suc- 
tion force coefficient Cs- For example, in a sim- 
ple case of the two-dimensional flow the following 
formula can obtained 

Js     — 
VPn {Ul-l-a). (32) 

For 
/~imax 

an elliptic foil one can derive from (32) 
«a 7T(52(7/4, for the foil NACA-66012 the 

corresponding coefficient is C™ax « 0.227r<52cr, 
where 6 as above is a relative thickness of the 
foil. 

In Fig. 21 a characteristic minimum pressure 
bucket is shown for the case of heave oscillati- 
ons of a rectangular wing, [43]. In this Figure cy 
stands for the wing pressure coefficient, solid line 
corresponds to calculation of the pressure mini- 
mum with utilization of uniformly valid expres- 
sions for the pressure coefficient obtained by the 
matched asymptotics techniques, dotted line cor- 
responds to results predicted by formula (31). 
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Figure 21: Minimum pressure buckets for he- 
ave oscillations of a rectangular wing A = 3 
with symmetric cross-section profile NACA-0012, 
h0 =0.12. 

Analyzing results for different laws of oscillati- 
ons one can conclude that: 

• For heave oscillations the leading edge pres- 
sure drops (the suction force augments ) with 
increase of Strouhal numbers, which may 
lead to earlier cavitation inception. 

• For pitch oscillations, increasing Strouhal 
number up to a certain magnitude, which de- 

pends on the wing aspect ratio and location 
of the rotation axis, it is possible to post- 
pone cavitation inception. In other words, 
for pitch oscillations it is possible to reduce 
the suction force contribution to the thrust, 
thus simultaneously reducing the possibility 
of occurrence of cavitation. 

As far as relationship between suction force coef- 
ficient and occurrence of separation , it is evident 
from physical viewpoint that the more intensive 
is the circulatory motion of the flow across the le- 
ading edge the more probable becomes separation 
of the viscous fluid flow from the edge. An ap- 
proach to estimate the required relationship qu- 
antitatively can be worked out on the basis of the 
research results, published in [28, 42]. By means 
of straightforward integration of the laminary bo- 
undary layer equations on an osculating parabola, 
which approximates a rounded leading edge it is 
found in these works, that laminar separation oc- 
curs when the aforementioned parameters U2 and 
Ui of the leading edge flow are related to each ot- 
her in the following way 

U2 = k0y/p^Ui, (33) 

where separation parameter ko was determined 
by integration of the momentum thickness equ- 
ation of the laminar boundary layer as 0.921. 
Using more accurate procedure of numerical in- 
tegration of the differential equations of lami- 
nar boundary layer along the osculating parabola 
the separation parameter is known to be 1.1556 
(see [44] and [45] ). In a two-dimensional exam- 
ple, introducing the instantaneous suction force 
coefficient as Cs = 2ir62U2, one can easily obtain 
an upper boundary of the suction force coefficient 
as 

= 2xklpnUl (34) 

It is easy to see from this formula that the ma- 
ximum admissible magnitude of the suction force 
coefficient for which no separation occurs is line- 
arly proportional to the radius of curvature of the 
edge. 

Note that similar estimates can be obtained for 
average values of the suction force coefficient. 

Conclusion 

The present authors have made an attempt to 
give an outline of some research work carried out 
at Saint-Petersburg Marine Technical University 
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with utilization of numerical and asymptotic met- 
hods with the goal to provide a tool for hydrody- 
namic design of the propulsive and lifting systems 
comprising oscillating wings. Some perspective 
of the developments is seen in utilization of non- 
linear approaches. One of these approaches, pro- 
viding account of the influence of the side edge 
local vortex roll-up on thrust is currently being 
developed. 
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Boundary Layer Formation on an Oscillating Hydrofoil 
D. Hart (Massachusetts Institute of Technology, USA) 

Abstract 
Propulsors and control surfaces invariably operate 
in unsteady flow conditions due to asymmetries in 
the inflow or erratic motions of the system. These 
unsteady flows result in a loss of lift, an increase in 
drag and give rise to the early onset of surface and 
trailing vortex cavitation. The reasons for this can 
be observed in the changes in the boundary layer 
profile of the flow around the lifting surface as it 
operates in unsteady conditions. This paper 
presents a quantitative experimental investigation of 
one of the fundamental unsteady flow induced 
effects, the periodic change in angle of attack of a 
lifting surface. Details of the change in the 
boundary layer profile on the suction and pressure 
side of a two-dimensional and a three-dimensional 
hydrofoil are presented as a function of the reduced 
frequency and phase of the foil oscillation. 

Nomenclature 

M 

P 

cc 

- Boundary layer thickness, m 

= Cavitation number = (p - p^/typU,/) 

= Cavitation inception index = (pj - Pv)/C^pU<><,
2) 

= Circulation: ■ 9U-dy, m*ls 

y 
Aa 

m 
A 

/a 
c 

COO 

= Dynamic viscosity, kg/ms 

= Fluid density, kg/m3 

= Hydrofoil angle of attack, degrees 

= Hydrofoil excitation frequency, radls 

= Hydrofoil phase angle, degrees 

= Vorticity = V X Ü, radls 

= Hydrofoil oscillation amplitude, degrees 

= Hydrofoil mean angle of attack, degrees 

= Hydrofoil surface area, m2 

= Aspect ratio = 2s/c 

= Hydrofoil chord length, 0.152m (6in) 

= Theodorsen's lift deficiency factor 

DAC = Dissolved air content, ppm 

dr/dy = Rate of change of bound circulation, m/s 

/ = Excitation frequency, Hz 

Hz = Hertz, s'1 

k = Reduced frequency = (OcJTU^, 

LDV = Laser Doppler Velocimetry 

LTWT= Low Turbulence Water Tunnel 

PDA = Particle Diameter Analyzer 

Po = LTWT test section pressure, kPa 

ppm = Parts-per-million 

Pv = Water vapor pressure, kPa 

Re - Reynolds number = pU^c/jx 

s = Semispan of foil, m 

t = Time, s 

u = Flow velocity in streamwise direction, m/s 

u- = LTWT test section velocity, m/s 

V = Flow velocity in spanwise direction, m/s 

w = Flow velocity perpendicular to foil, m/s 

X = Downstream distance from leading edge, m 

y = Spanwise distance from foil root, m 

z = Distance orthogonal to x-y plane, m 

1 Introduction 
Boundary layer phenomena has been a prominent 
area of research in both hydrodynamics and 
aerodynamics since Prandtl in the early part of this 
century. It is key to our present understanding of 
lift and drag. For this reason, it is an important 
aspect in our understanding of unsteady flow 
phenomena. 

The level to which the boundary layer is disturbed 
by unsteady flow depends on the "depth" of the flow 
interrupted by a propeller or control surface. A 
dimensionless reduced frequency is often used as a 
reference to characterize the relative unsteady 
effects. For a propeller, the reduced frequency is 
the shaft speed times the chord divided by the 
radius and is typically in the range of 0.05 to 0.2. 
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In pump applications and in applications where 
flutter can occur, such as control surfaces and 
appendages, these frequencies can reach much 
higher values; on the order of 5 to 10. 

Unsteady flows are prevalent in most fluid 
applications. It is, therefore, not surprising that the 
study of its effects on the performance of fluid 
machinery has become a subject of much interest. It 
is, however, not a new area of interest The first 
investigations were made in the 1930's. Among the 
best known and more perceptive analyses are those 
by Theodorsen [1935] and von Kärmän and Sears 
[1938], who studied the periodic oscillation of a 
two-dimensional flat plate. Their analyses, 
although based on an inviscid model, has proven to 
be quite accurate at predicting unsteady lift and 
drag behavior. This is not always sufficient, 
however, to characterize the performance of lifting 
surfaces in hydrodynamic applications. In these 
applications, the local or small scale behavior of the 
fluid such as wake rollup and boundary layer 
separation is critical because of its effect on the 
inception of cavitation leading to increased noise 
and erosion as well as loss in lift 

about the foil during a period of oscillation, Figure 
1 [Abramson, Chu, Irick 1967; DeLaurier, Harris 
1981; Hart, Acosta, and Leonard 1990; Katz 1981; 
Koochesfahani 1989; Satyanarayana 1978]. 
Because these oscillations occur about some mean 
flow condition, the net circulation about the lifting 
surface remains unchanged. The result is a series of 
vortices that form in the wake with strength equal 
but opposite to the change in circulation relative to 
the mean circulation about the lifting surface. In 
this way, vorticity is conserved within the flow. 
Experimental studies of the wake of a finite aspect 
lifting surface show that the trailing vortices link to 
each other through the tip vortex region and that in 
these three-dimensional flows, there are two 
vortices which form and wrap on one another 
creating a spanwise vortex pattern similar to that 
formed by oscillating two-dimensional foils, Figure 
2 [Hart, Acosta, and Leonard 1990]. Numerical 
studies such as those by Mook and Dong [1994], 
Chen and Sheu [1989], and Spalart and Leonard 
[1981] have explored the transient behavior of the 
flow near the surface as well as the wake rollup 
behavior of oscillating two-dimensional foils. 
These studies have characterized the vortex rollup 
phenomena as a process initiating near the leading 
edge of the foil which then sheds to form the vortex 
patterns observed in the wake of the experimental 
studies. 

f**r 

.'■'   .-jjliRiV'1 

Initial Starting Vortex Vortex Pair Formed Each 
Cycle 

Figure 1. Wake Formation of a Two 
Dimensional Hydrofoil 
At these very high reduced frequency, the spanwise vortex 
formation are clearly visible in the wake of this two- 
dimensional hydrofoil as it oscillates in pitch. 
(a.m=7°, Aa=±2°, k=7). 

Numerous experimental and numerical studies on 
oscillating airfoils and hydrofoils have 
characterized some of these small scale flow 
behaviors [McCroskey 1982]. Experimental studies 
of two-dimensional and three-dimensional, 
harmonically pitching hydrofoils show the 
formation of complex trailing vortex patterns in the 
wake which develop due to the changing circulation 

Figure 2. Vortex Structure Schematic 
This schematic shows a simplified model of the trailing vortex 
structure in the wake of a finite aspect ratio oscillating 
hydrofoil. During each oscillation cycle a pair of spanwise 
vortices are formed. The net circulation around the pair is 
zero, corresponding to a zero net change in circulation about 
the hydrofoil. These spanwise vortices link to each other by 
wrapping around the tip vortex, which produces periodic 
changes in the circulation of the tip vortex structure. 

The significance these vortex formations have on 
cavitation is not fully understood. It is, however, 
known that unsteady flows, in general, have a 
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strong influence on the inception and formation of 
cavitation on the surface and in the wake of both 
two- and three-dimensional foils [Franc, Michael 
1988; Shen, Gowing 1986; Shen, Peterson 1978, 
1980; Hart, Brennen, and Acosta 1990]. Studies of 
the wake of three-dimensional oscillating hydrofoils 
have shown that cavitation first appears in a region 
where the spanwise vortices in the wake interact 
with the tip vortex formation. Numerical vortex 
studies by Zabusky and Melander [1989] indicate 
that vortices that behave in this manner may 
develop regions of low pressure. It is speculated 
that these regions may be the areas where cavitation 
first initiates. 

Despite these studies, however, there is still little 
known about the behavior of boundary layer 
formations on hydrofoils in unsteady. conditions. 
These unsteady boundary layer formations may 
have a strong influence on the inception of surface 
and wake cavitation. Because of this and because of 
the importance of boundary layer phenomena to our 
present understanding of the performance of lifting 
surfaces in steady flow conditions, it is important to 
understand these formations in unsteady conditions 
if we are to fully understand how unsteady flows 
effect the performance of lifting hydrodynamic 
surfaces. Presented in this paper is an experimental 
investigation of the unsteady boundary layer 
formation near the trailing edge of a two- 
dimensional and a three-dimensional hydrofoil 
oscillating in pitch. While this work is far from 
being an exhaustive study of the subject, it does 
provide a glimpse at the complexities and 
intricacies of this important flow phenomena. 

2 Experimental Approach 

2.1 Facility 

The experiments presented in this paper were 
conducted in the Caltech Low Turbulence Water 
Tunnel (LTWT). The LTWT, described in detail by 
Gates [1977], is a closed-circuit facility with a 16:1 
contraction ratio. It is driven by a UkW (30hp) DC 
motor at velocities up to 10m/s. The tunnel has a 
30cm x 30cm x 250cm rectangular test section 
which is enclosed by ground, polished glass side 
windows and two top and two bottom transparent 
Plexiglas removable windows. The test section 
diverges slightly along the top and bottom, 
compensating for the increase in boundary layer 
thickness from the inlet to the exit. A low 
turbulence level (<0.04%) is maintained over the 
full tunnel velocity range through use of vaned 

turning elbows and a settling chamber containing 
two honeycombs and three turbulence damping 
screens. A AkW (5hp) vacuum pump controls the 
tunnel pressure from HOkPa down to \5kPa. 

Water quality is maintained by filtration and 
deaeration systems. The tunnel is equipped with 
two filtration systems which can be run 
independently or in series: A diatomaceous earth 
system removes particles down to lOjim at a rate of 
approximately 8.0m3 per hour. A filtration bag 
system removes particles down to 5fim at a rate of 
approximately 5.0m3 per hour. The dissolved air 
content of the water (measured by a van Slyke 
Blood Gas Analyzer) is controlled by spraying 
tunnel water inside a vacuum chamber. This 
deaeration system can reduce the dissolved air 
content of the water from ISppm (saturation) down 
to 6ppm in about two hours and down to 3ppm in 
about 6 hours. Deaeration and filtration of the 
tunnel water are done between experiments. No 
noticeable change in water quality occurs during a 
typical experiment 

Velocity and pressure measurements are made 
either with mercury-water manometers or with 
absolute and differential pressure transducers. A 
Zenith Intel-8086 based computer continually 
monitors the tunnel operating parameters during 
tests including the cavitation number. The accuracy 
of these measurements is within 0.5%. 

Motor 
Control 

Synchronizer 
Optical 

Encoder 

Figure 3. Oscillating Hydrofoil Setup 
A 750 zvatt DC motor connected by a four bar linkage 
osculates the hydrofou in pitch in a sinusoidal fashion about 
the 038 chord position. An optical shaft encoder connected to 
the DC motor allows instrumentation to be synchronized to 
the phase of the foü. 
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The experiments presented in this paper were 
conducted using a stainless steel hydrofoil with an 
NACA64A309 asymmetric foil section and 
rounded tip. The hydrofoil has a rectangular 
planform, with an \52cm (6m) chord length, and a 
span of 17.5cm (7m). It was reflection plane 
mounted to the floor of the LTWT test section 
giving it an effective aspect ratio of 2.3. 

The hydrofoil is connected to a 750 watt DC motor 
by a four-bar linkage such that it oscillates nearly 
sinusoidally in pitch about a point near the center of 
pressure, x/c=0.38, Figure 3. Mounting the foil 
near the center of pressure reduced the torsional 
loading on the drive mechanism, allowing the foil 
to be oscillated at frequencies up to 50Hz. A collet 
connecting the oscillation linkage to a coupling 
shaft allows adjustment of the mean angle of attack 
of the foil. In addition, by changing the pivot point 
of the oscillation linkage connection to the motor 
spindle, adjustments of oscillation amplitudes 
ranging from ±1° to ±5° can be made. The 
oscillation rate of the hydrofoil can be adjusted by a 
Sabina DC motor control unit operating under open 
loop control. An optical shaft encoder mounted to 
the DC motor provides a digital signal (1024 
pulses/revolution), used to synchronize flow 
measurements with the phase of the foil. 

Two-dimensional hydrofoil investigations were 
accomplished by removing the tip section of the foil 
and mounting a Plexiglas panel over the top of it. 
The panel was held in place by two Plexiglas struts 
bolted to the top window. Nylon bushings were 
used to adjust the clearance of the panel relative to 
the foil tip. Tip clearance was maintained at a 
distance less than \mm. 

2.2 Measurement of Trailing Edge Flow 
Velocities 

A Dantec Particle Dynamics Analyzer (PDA) was 
configured as a Laser Doppler Velocimeter (LDV) 
to measure velocities at the trailing edge of the foil. 
The Dantec system was used as a single axis 
500mWXDV with separate receiver and transmitter. 
A manual traversing system was built to position 
the LDV to collect data along the span of the foil 
and across the trailing edge. The LDV 
measurements were taken as close as possible to the 
trailing edge of the foil at reduced frequencies of 
£=0.48, 0.96, and 1.92. In each case, the mean 
geometric angle of attack was 5.3° and the 
oscillation amplitude was ±5°. The freestream 
velocity was held constant at 5mls.  Four different 

locations along the span of the finite aspect ratio 
foil were measured: 20% span (just above the test 
section floor boundary layer), 50% span, 80% span 
(just below the tip vortex region), and at the foil tip. 
At each spanwise location and for each frequency, 
streamwise and spanwise velocity data were 
collected at seven different stations across the wake 
of the foil (perpendicular to the freestream - see 
Figure 4). Plots of the velocity data vs. phase at 
each station, such as the one in Figure 5, show a 
clear drop in the freestream velocity each time the 
foil boundary layer sweeps by that location. 

Figure 4. Oscillating Hydrofoil LDV Setup 
The location of the LDV transmitting optics is shown, as well 
as the 28 data stations at the trailing edge of the foil where 
the LDV velocity measurements were taken. 

3 

1.50 

125 

1.00 

0.75 

0.50 

025 

cP 
G ) \A 

-■■« 5 a 

Q 
a 

^ 
i3 
0 
□ 

CP 

0 
c 
n 

90 180 

Hydrofoil Phase, $ 

270 360 

Figure 5. Phase Averaged Measurements of 
the Trailing Edge Flow 
Data collected over several hundred oscillations. The 
sudden drops in velocity are the locations where the 
boundary layer of the oscillating hydrofoil passes through 
the location at which these measurements were taken. The 
angle of attack of the hydrofoil is decreasing as the trailing 
edge passes through the data location at a phase of 90° and 
it is increasing as ü passes through the data location at a 
phase of 180°, accounting for the difference in the two 
velocity drops (Re=l 2x10s, A a =± 5°,k=1.92). 
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3 Data Reduction 

3.1 Determining The Wake Velocity Profile 

The LDV measurements were encoded with the 
phase position of the foil and collected into a file. 
The data were ensemble-averaged and transposed 
into the coordinate frame of the oscillating hydrofoil 
based on the sinusoidal oscillation motion. 
Because the data was ensemble-averaged over 
hundreds of oscillation cycles, it was periodic 
relative to the phase when transposed into the 
coordinate frame of the trailing edge. It could, 
therefore, be accurately fit to a harmonic function in 
time. In this manner, an analytic smooth function 
was generated to replace the discrete data locations 
thus allowing details of the wake flow to be 
analyzed. It should be observed that the data was fit 
only in time and not in space. Thus, the 
characteristics of the boundary layer thickness was 
preserved. The resulting fit outside the boundary 
layer of the foil using a first harmonic function was 
within 0.5% of the original data. Near the core of 
the boundary layer formation, the scatter in the data 
was greater and an error as great as 20% was 
observed between the harmonic function and the 
LDV measurements. This was, however, still well 
within the standard deviation of the experimental 
measurements and did not effect the determination 
of the boundary layer thickness nor did it effect 
measurements of the change in bound circulation. 

3.2 Estimating Unsteady Bound Circulation 

The structure of the wake, the lift, the drag, and the 
unsteady boundary layer formation of an oscillating 
hydrofoil are all functions of the bound circulation 
around the foil and the shed Vorticity. Because of 
the added mass component of the fluid-foil 
interaction it is not possible to simply measure the 
force on the foil and extract the circulation from the 
equation L / s = pU_T as is done in the steady-state 
case. To directly measure the circulation 
experimentally requires taking many simultaneous 
measurements of velocity around the foil. This 
method is impractical because of the enormous 
amounts of data that would have to be collected 
simultaneous with respect to the phase of the foil 
oscillation to accurately resolve the unsteady 
circulation. It is considerably easier to determine 
the change in circulation due to the oscillation of 
the foil. 

We begin with the definition of circulation, 

r = jü-dy 

which by Stokes's theorem can be written 

r = fä-dÄ. 

The Lagrangian time derivative of this 
equation, by the Reynolds Transport Theorem, 
is 

DT    d 
Dt 

da - — [ ä-dA= f dA+ f (OM.-dx. 
dt J* J* dt J*     ' 

■ = 0 

but, by Kelvin's theorem, 
DT_ 
Dt 

so that 

f dA = -\ (n.u.-dx,. 
hdt i*   ' '     * 

However, the Eulerian time derivative of the 
circulation is 

d£__fda   .- 
dt    ** dt 

= {™.dA. 
**dt 

•e, 

1 = -J>^ 
Therefore, 

dT 

Because the flow is essentially irrotational 
outside the boundary layer of the hydrofoil, 
the limits of integration can be taken from the 
boundary layer edges. Thus, the rate of change 
in circulation around the hydrofoil in the 
spanwise direction can be written as 

dt    h    * J      2 
(where 8   is the thickness of the boundary 
layer on the pressure side of the foil, and 5, the 
thickness on the suction side of the foil), since 

dw    du       du assuming co_=- is „   the   flow 
dx    dy      dy 

nearly parallel at the  trailing edge of the 
hydrofoil.       This   equation   can   be   non- 
dimensionlized with respect to the freestream 
velocity of oscillation by writing it as; 

dT. i drsl =7^JN*'- 
2 2 

Up-Us sp        A sp 

ir=ül~d7~~ülhUJUJ,~ ~2u. (i) 

Similarly, the change in streamwise circulation 
along the span of the foil at the trailing edge can be 
expressed, from the fundamental definition of a 
vortex sheet, as 
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—- = *- = (v -vj/t/_ 
ds     U. ds     V '    '' 

(2) 

Thus, the change in circulation about an unsteady 
hydrofoil can be determined by measuring the 
instantaneous velocities at the trailing edge. 

Since the identification of the trailing edge 
velocities depends upon accurately locating the 
boundary layer edge, there is an uncertainty which 
can result in a slight error in calculating the 
circulation in this manner. The velocity profiles 
outside the boundary layer, however, were noted to 
taper off gradually with distance from the foil 
making this a relatively small error (<10%). In 
order to improve the accuracy of the estimated 
velocity jump, for each value of phase <|>, the shape 
of the velocity profile outside the boundary layer on 
each side of the foil was fit to a straight line. The 
velocity jump was then extrapolated through the 
boundary layer to the trailing edge. 

3.3 Comparison Between 2-D Theoretical 
Predictions and Experimental Measurements 

An expression for the rate of change of circulation 
of a two-dimensional foil can be derived from the 
theoretical analyses of Theodorsen [1935] and 
Garrick [1936]. This expression, 

—g-s  \     sp =&27tC0Aacos(cor + e)  (3) 
dt      Ul  dt 

where 
2 c0=—jÄ^m 

and 

0 = -[tan-'K/iO+/:] 
characterizes the relative effects of the reduced 
frequency k on circulation. Here, 

A. = J-Mk(i-a), 

and 

where 
/ +y Y-J 

D D 
and 

£> = (/, +YJ + &-JJ 

Y0, Yj, and J0, 31 are solutions to the Bessel 
functions and — 1 < a ^ 1 is the pitching axis 
relative to the center of the foil where a=-l is at the 
leading edge and a=l is at the trailing edge.. 

C0 and 0 are plotted in Figures 6 and 7 respectively. 
As can be seen in Figure 8, this theoretical 
prediction is quite accurate at predicting the rate of 
change of circulation of the pitching two- 
dimensional hydrofoil. 
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Figure 6. Circulation Rate of Change 
Coefficient 
Graphic description of the magnitude of the circulation rate 
of change for a two-dimensional foil oscillating in pitch 
about the 38% chord position. The loading at first decreases 
as the reduced frequency increases and then increases. 
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Figure 7. Phase Shift in Circulation Rate of 
Change. 
Phase shift due to oscillation of a two-dimensional foil about 
the 38% chord position. The phase shift lags the foil motion 
and then leads approaching 45 degrees as the reduced 
frequency increases. This is due to a shift from a 
predominantly circulatory change in loading of the foil to a 
predominately non-circulatory loading (added mass loading) 
of the foil at high reduced frequencies. 
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Figure 8. Comparison Between Experimental 
Measurements of Change in Circulation with 
Theoretical Prediction. 
Theoretical prediction, based on Theodorsen's analysis, of the 
time rate of change of circulation around a two-dimensional 
foü matches closely with experimental measured time rate of 
change of circulation. 

4 Results 
The multi-dimensionality of the data in space and 
time makes it difficult to present in a fashion which 
can be easily interpreted in two-dimensions. For 
the visualization of the boundary layer formation, it 
is, perhaps, easiest to interpret the data from a gray- 
scaled plot such as shown in Figures 9, 11, 12 and 
14-16. In these figures, the streamwise velocity 
near the trailing edge of the oscillating hydrofoil is 
displayed relative to the freestream velocity using 
shading. Black in these figures represents a zero 
velocity ratio and white represents a velocity ratio of 
1.25. The velocity data is plotted in this manner 
showing its position relative to the hydrofoil trailing 
edge (The distance from the trailing edge 
perpendicular to the freestream flow.) and the phase 
of the hydrofoil at which the velocity was measured. 
The boundary layer appears as a dark region located 
near the center of the plots. The pressure side of the 
foil is shown as negative values of distance from the 
trailing edge relative to the chord length and the 
suction side as positive values. The hydrofoil is at a 
maximum angle of 10° at the 0° phase position, its 
angle of attack decreases to 0° at the 180° phase 
position and then increases back to 10° at the 360° 
phase position. Thus, these figures illustrate the 
relative streamwise velocity in both time and space 
near the trailing edge of the foil. 

4.1 Unsteady 2-D Wake 

Figure 9 shows the streamwise wake velocity of a 
two-dimensional hydrofoil oscillating at a reduced 
frequency of k=1.0. A large velocity difference can 
be observed between the pressure side and the 
suction side of the foil at phase angles of roughly 
90° and 270°. These phase angles are the angles at 

which the greatest rate of angular change occurs in 
the foil's oscillation cycle. Thus, as one would 
expect, the greatest rate of change of circulation 
about the foil occurs in this region of the foil's cycle, 
Figure 10. At the 90° phase position, the velocity 
on the suction side of the foil outside the boundary 
layer is much greater than the velocity outside the 
boundary layer on the pressure side of the foil. 
This corresponds to a large decreasing rate of 
change of circulation. In turn, the velocity on the 
pressure side of the foil at a phase angle of 270° is 
much lower than the velocity on the suction side 
corresponding to a large increasing rate of change 
of circulation. The net change in circulation over 
the entire 360° oscillation is zero as expected since 
the mean angle of attack of the foil is unchanged. 
The reduced velocity region in the wake is apparent 
in this plot as a dark region near the trailing edge. 
This region is, on the average, much larger on the 
suction side of the foil than it is on the pressure 
side. Note that this region grows significantly on 
the suction side of the foil as the angle of attack of 
the foil increases. Some growth in this region is 
also apparent on the pressure side of the foil as the 
angle of attack of the foil decreases. This growth is 
small relative to the growth on the suction side 
during an increasing angle of attack. Proportional 
to the mean thickness of this region, however, the 
increase on the pressure side during decreasing 
angle of attack is roughly the same as the increase 
on the suction side during an increasing angle of 
attack. The average width of the reduced velocity 
region is about 1% of the chord length (15mm) on 
the suction side and 0.1% on the pressure side 
(1.5mm). 

At a lower reduced frequency of k=0.5, Figure 11, 
the average thickness of this reduced velocity region 
grows significantly on the suction side of the foil 
almost doubling to 2% of the chord length. This 
region is relatively unchanged in width except 
between a phase angle of 180 and 300 where it 
drops back to about 1% of the chord length. This is 
the region in which the angle of attack of the 
hydrofoil is increasing in its oscillation cycle. 

At a higher reduced frequency of k=2.0, Figure 12, 
the average thickness of the wake velocity region 
increases also. This region, however, thins to 
almost zero thickness near the 130 phase position 
and then grows to roughly 4.5% of the chord length 
by the 270 phase position as the hydrofoil is 
increasing in angle of attack. 
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Figure 9. Streamwise Velocity at the Trailing 
Edge of a 2-D Hydrofoil Pitching at k=1.0. 
Gray scale plot of the streamwise velocity relative to the 
freestream velocity at the trailing edge of a 2-D pitching 
hydrofoil. The Y axis of this plot shows distances from the 
trailing edge perpendicular to the freestream flow. The 
pressure side of the foil is shown as negative values and the 
suction side as positive values. The hydrofoil is pitching ±5° 
about the 38% chord position at a mean angle of attack of 
5°. The hydrofoil is at its maximum angle of attack of 10° at 
the 0° and 360° phase position and at its minimum angle of 
attack at the 180° phase position. Note the change in the low 
velocity region on the suction side of the foil as the pitch of 
the foil changes. 
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Figure 10. Change in Spanwise Circulation. 
The change in spanwise circulation is shown non- 
dimensionalized with the free stream velocity for reduced 
frequencies of k=0.48, 0.96, and 1.92. The hydrofoil is 

oscillating ± 5° about a mean angle of attack of 5°. The 
hydrofoil is at its maximum angle of attack of 10° at the 90° 
phase position and at the minimum angle of attack, 0°, at the 
270° phase position. The peak change in circulation 
increases linearly with reduced frequency. Note also that the 
phase of the loading of the hydrofoil shifts with increasing 
reduced frequency: 

Figure 11. Streamwise Velocity at the 
Trailing Edge of a 2-D Hydrofoil Pitching at 
k=0.5. 
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Figure 12. Streamwise Velocity at the 
Trailing Edge of a 2-D Hydrofoil Pitching at 
k=2.0. 

4.2 Unsteady 3-D Wake 

The thickness of the wake profile at the trailing 
edge of the finite aspect hydrofoil was found to be 
considerably smaller than that of the two- 
dimensional hydrofoil at the same reduced 
frequency, Figures 14-16. The finite aspect ratio 
hydrofoil generates a streamwise vorticity 
component as well as a spanwise vorticity 
component. The change in this vorticity was found 
to change significantly in both amplitude and phase 
as a function of span, Figure 13. This change in 
amplitude and phase was also evident in the wake 
profiles. Figure 14 shows the wake velocity profile 
near the root of the foil, 20% span. The wake 
region is almost symmetrical about the trailing edge 
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relative to the phase of oscillation. At the mid- 
span of the foil, Figure 15, an increase in the 
thickness of the wake region occurs on the suction 
side at a phase of roughly 180°, just after the angle 
of attack begins to increase. The wake region on 
the pressure side of the foil is almost non-existent at 
this phase. Near the tip of the foil, Figure 16, the 
wake region on the suction side of the foil is larger 
and is located near the 240° phase position. Again, 
the wake region on the pressure side is very small. 
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in Streamwise Figure 13. Change 
Circulation. 
The change in streamwise circulation is shown, non- 
dimensionalized by the freestream velocity, for span 
locations of 20% (near the base of the foil), 50%, and 80% 
(near the tip of the foil). The hydrofoil is oscillating ± 5° 
about a mean angle of attack of 5" at a reduced frequency of 
1.92. The hydrofoil is at its maximum angle of attack of 10° 
at the 90° phase position and at the minimum angle of attack, 
0°, at the 270° phase position. The majority of change in 
streamwise circulation occurs within the last 30% of the span 
of the foil. 
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Figure 15. Streamwise Velocity at the 50% 
Span of a 3-D Hydrofoil Pitching at k=1.0. 
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Figure 14. Streamwise Velocity at the 20% 
Span of a 3-D Hydrofoil Pitching at k=1.0. 

Figure 16. Streamwise Velocity at the 80% 
Span of a 3-D Hydrofoil Pitching at k=2.0. 

5 Discussion 
The technique of ensemble averaging the LDV data 
and utilizing knowledge of temporal periodicity to 
improve spatial resolution allows details of the flow 
to be observed with minimal amounts of data 
compared with more conventional LDV scanning 
techniques. Even so, the data sets required to make 
these measurements are in the megabytes. As in the 
more conventional LDV scanning techniques, the 
accurate placement of the LDV collection point is 
critical to resolving the wake velocity profile. This 
technique, however, utilizes the angular resolution 
of the hydrofoil phase input which is generally far 
greater than the resolution that can be obtained by 
the positioning system of a scanning LDV.    In 
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general, there is a tradeoff between the number of 
positions at which LDV data is collected and the 
resolution of the ensemble-averaged data in time. 
In the present study, seven data locations were 
selected. This value was chosen because of the 
difficulty of accurately positioning the LDV system 
relative to the hydrofoil trailing edge. No attempt 
was made to optimize this value for the particular 
application. Spatial resolutions greater than that 
used are not possible with the present system due to 
the difficulties involved in positioning the laser 
head. The placement at each of the seven data 
locations, however, was accurate to within about 
0.5mm. In practice, the limiting factor for data 
collection locations is the collection volume of the 
LDV and the stability of the LDV relative to the 
hydrofoil. In   most  unsteady   hydrodynamic 
applications, the flow rates are relatively low 
compared to the internal clock resolutions of the 
LDV system. Therefore, improvements in the 
spatial resolution can most often be accomplished 
using this technique. 

In applications allowing greater number of data 
collection locations which overlap with one another 
when transformed into the moving coordinate 
frame, the data can be fit to higher harmonic 
functions allowing higher periodicity events to be 
observed. Like all LDV measurements of this type, 
however, we are limited to analyzing the time 
averaged phenomena. Transient events or semi- 
periodic events can not be resolved. 

The burst in the boundary layer profile observed on 
the suction side of the foil is expected. As the angle 
of attack of the foil increases, an increase in 
circulation occurs. This increase is driven by an 
increased pressure difference from the suction side 
of the foil to the pressure side. The flow across the 
suction side of the foil must, therefore, recover from 
a greater pressure drop. The, the boundary layer 
acts against an increased pressure gradient and 
separation is likely. The data, however, is 
inconclusive as to whether the observed increase in 
wake thickness is due to separation of the boundary 
layer, vortical flow formations transitioning across 
the surface, or simply an increase in the boundary 
layer thickness. Except for the tests conducted at a 
reduced frequency of 2.0, the flow near the trailing 
edge was never observed to reverse directions 
relative to the mean flow. This, however, only 
indicates the condition of the flow at the trailing 
edge and does not negate the possibility that the 

flow separates from the foil a short distance 
upstream. 

It is likely that the increase in the wake region on 
the suction side is not due to the passing of a 
vortical rollup formation since the observed growth 
on the pressure side is minimal in comparison. If 
this region were due to a vortical formation forming 
at the leading edge as the foil oscillated, we would 
expect to see a similar formation on the pressure 
side. A slight increase is observed on the pressure 
side. This increase, however, is only a fraction of 
the size of the formation observed on the suction 
side. Because the data is ensemble-averaged, it is 
possible that a vortical formation forming at the 
leading edge might be lost in the measurements if 
its occurrence was not consistent from cycle to cycle 
of the foil oscillation. Observations of the wake, 
however, indicate that this is not the case. If the 
spanwise vertical formations in the wake are in fact 
initiated at the leading edge as observed in many of 
the numerical models of this flow, then they should 
be very consistent relative to the hydrofoil 
oscillation phase as observed in the experiments. 
The present data is not conclusive in establishing 
the existence or non-existence of this type of 
structure. Details of the velocity profile near the 
surface of the foil might shed light on this matter 
but have not been made at this time. 

6 Conclusions 
Measurements of the boundary layer near the 
trailing edge of a two-dimensional and finite aspect 
ratio pitching hydrofoil have been made. The 
unique phase ensemble averaged LDV technique 
used to make these measurements allowed details of 
the boundary layer structure to be analyzed relative 
to the phase of the foil oscillation. Comparisons 
between the change in circulation about a two- 
dimensional hydrofoil calculated from these 
measurements show good agreement with 
theoretical predictions. 

The boundary layer was observed to be strongly 
dependent on both the reduced frequency of the 
hydrofoil oscillation and the phase of the motion. 
As the reduced frequency was increased, an increase 
was observed in the unsteadiness of the boundary 
layer formation. In addition, a change in phase was 
observed between the foil motion and the boundary 
layer thickness. The phase shift that occurred on 
the two-dimensional hydrofoil was consistent with 
the phase shift in circulation predicted by unsteady 
inviscid flow calculations.   A rapid growth in the 
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boundary layer thickness was observed on the 
suction side of both the two-dimensional and finite 
aspect ratio hydrofoil as the angle of attack of the 
hydrofoil increased. This growth became very 
prominent as the reduced frequency of oscillation 
was increased. A similar trend was observed on the 
pressure side of the hydrofoil as the angle of attack 
of the hydrofoil decreased. The growth on the 
pressure side, however, was observed to be only a 
fraction of that observed on the suction side. The 
boundary layer on the finite aspect hydrofoil was 
observed to be smaller than the boundary layer on 
the two-dimensional foil. The effects of pitching 
oscillation on boundary layer thickness were also 
less prominent on the finite aspect foil. In addition, 
a phase shift in the growth and collapse of the 
boundary layer relative to the motion of the foil was 
observed along the span of the finite aspect 
hydrofoil. There was no clear indication of the 
passing of a vortical rollup structure along the 
surface of the pressure and suction sides of the 
hydrofoil as predicted in many unsteady numerical 
solutions of this flow. This may, however, be the 
result of the ensemble averaging technique used to 
make    the    measurements. More    detailed 
measurements are needed along the chord of the foil 
to resolve these formation which may emanate from 
the leading edge during an oscillation cycle to form 
the classic wake structure observed in flows of these 
types. It is also not apparent from the 
measurements presented in this paper whether or 
not the flow separates from the foil during a 
pitching cycle. Under all test conditions, the flow 
was never observed to reverse directions in both the 
instantaneous measurements made at the trailing 
edge and the ensemble averaged measurements. 
This does not, however, negate the possibility that 
the flow separates upstream of the trailing edge. It 
is believed that the formation of vortical structures 
near the leading edge of the foil and separation of 
the boundary layer due to foil oscillation may be 
significant in the inception and formation of surface 
cavitation in unsteady conditions. Further 
numerical and experimental work is needed to 
understand the significance of these unsteady flow 
effects. 
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Energy-Stable Model Equations for 
Water Waves and Ship Motions 

E. van Daalen (Twente University of Technology, The Netherlands) 

ABSTRACT 

Our primary aim here is to show that the Hamil- 
tonian formulation for nonlinear wave-body inter- 
actions, as presented by van Daalen (1993), can 
be exploited to obtain approximative equations 
describing water waves and ship motions. Such 
equations are then stable in the sense that they 
retain the Hamiltonian structure of the exact non- 
linear equations, thus conserving the total energy 
of the wave-body system. 

NOMENCLATURE 

Symbol Description 
A wave amplitude 
B bottom 
F free surface 

9 gravitational acceleration 
G center of gravity 
n Hamiltonian 

i body inertia 
J action integral 
K kinetic energy 
C Lagrangian 
M body mass 
M generalized mass matrix 
n normal vector 

P Bernoulli pressure 
V potential energy 
f position vector relative to G 
R free surface arclength factor 
S wetted body surface 
t time 
X horizontal coordinate 
XG body position 
xs point on S 

y horizontal coordinate 
z vertical coordinate 

T] free surface elevation 
0G body orientation 
V gradient operator 
V generalized normal vector 
£ generalized body coordinates 
■K canonically conjugate momentum 
S cylindrical vertical surface 
<f> velocity potential 
$ free surface potential 
fi fluid domain 

INTRODUCTION 

For all we know, the first description of the evo- 
lution of water waves in terms of a Hamilto- 
nian density and generalized variables was made 
by Zakharov (1968), who presented the canoni- 
cal equations of motion for an infinite-depth free 
surface potential flow in a homogeneous gravity 
field. Few years later, Broer (1974) independently 
showed that — for a fluid of arbitrary depth — 
the kinematic and dynamic free surface condi- 
tions constitute an infinite-dimensional Hamilto- 
nian system, with the elevation and the free sur- 
face potential as the canonical variables and the 
total energy as the Hamiltonian density. Other 
valuable contributions in this field are due to 
Miles (1977, 1981). 

The first optimal variation principle for water 
waves is due to Luke (1967), who showed that 
the full set of governing equations for the classical 
water-wave problem can be obtained from a sin- 
gle variation principle. The integrated Bernoulli 
pressure plays the role of the Lagrangian density, 
and the velocity potential and the free surface 
elevation are the independent variables. Miloh 
(1984) extended Luke's principle to water waves 
interacting with multiple floating bodies oscillat- 
ing at a common frequency. 
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For many dynamical systems the transition from 
a Lagrangian principle to a Hamiltonian formula- 
tion can easily be made by means of the Legendre 
transformation. The essence is the definition of 
'canonical' momenta which are conjugate to the 
chosen 'canonical' coordinates. The possibility of 
this transition to a Hamiltonian description of the 
fully nonlinear wave-body problem was demon- 
strated by van Daalen, van Groesen and Zand- 
bergen (1993). 

As stated in the abstract, our main goal is to ex- 
ploit this special Hamiltonian structure to obtain 
approximative 'energy-stable' equations for wave- 
body interactions. In sections 1 and 2 the varia- 
tional formulation and the corresponding Hamil- 
tonian description are presented. As a simple ex- 
ample, we show in section 3 that the linearized 
versions of the free surface conditions and the 
hydrodynamic equations of motion for the ship 
describe a Hamiltonian system. Further applica- 
tions to ship-wave interactions will be presented 
at the symposium. 

1. VARIATION PRINCIPLE 

The system under consideration consists of a 
fluid, bounded by the impermeable bottom B 
(which is not necessarily even), the free surface F, 
and the wetted surface 5 of a rigid body, see Fig- 
ure 1. In the horizontal directions x and y, the 
fluid domain is cut off by a cylindrical vertical 
surface S of infinite radius; £ extends from the 
bottom to the free surface. 

The body mass and moments about its princi- 
pal axes of inertia are denoted by M and I = 
{.h,h,h)T respectively. The position of the 
body is specified by the centre of gravity 

xG - (xi,x2,x3) (1) 

corresponding to surge, sway and heave motion, 
and the body orientation by the 'roll-pitch-yaw 
vector' 

eG = (euö2,e3f (2) 

Gravity is acting in negative ^-direction. 

To facilitate notation, the body 'coordinate' £, 
the 'normal' v and the 'mass' matrix M are de- 
fined as 

i = 

and 

and 

XQ 

n 
fx n 

diag (M) = [M, M, M, h,h, I3y 

where 

r — xs — XQ 

(3) 

(4) 

(5) 

(6) 

denotes the position of a point on 5 relative to G, 
see Figure 1. 

Following Luke, the Lagrangian for the fluid is 
given by 

dtt 

n(t) 

i.e. the Bernoulli pressure p integrated over the 
transient fluid domain Q(<); tne fluid density is 
taken as unity. 

The Lagrangian for the body is taken as kinetic 
minus potential energy, i.e. 

£t = tCb — Vb 

where 

£b = -MZZ 

(8) 

(9) 

Figure 1: Definition of fluid domain and floating 
body. Vb = Mge3 ■ £ (10) 
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The Lagrangian for the total system is defined as 
the sum of the two Lagrangians, i.e. 

£, = Cf + Cb 

The proposed variation principle reads 

6J = 0    with    J=  I C,dt 

«i 

<2 

(11) 

(12) 

for all variations in the free surface elevation rj, 
the velocity potential <j>, and the body coordi- 
nate f. These variations are subject to the re- 
strictions that they vanish at times t = t\ and 
t = <2! moreover, the variations in 77 and <j> must 
equal zero on E. 

Then, following the standard procedure in the 
calculus of variations, (7-12) yields 

6J 

}dt -     [ l [ff (6<f>t + V<f>-V64>)dQ 

+     f i  [[p6r)R-ldS\dt 

+     [ I  [[p(6xs-n)ds\dt 

MXG ■ SXG - Mgez ■ SXQ > dt 

I' {(?®eG) seG}dt 

'2 

+ 

= 0 (13) 

where ® defines a component-wise vector-vector 
product (the outcome is also a vector), n is the 
unit normal vector along 9ft D S, and 

Ä(l7)=(l + ^ + »7y) 
1/2 

giving 

<f S = i? dx dy 

(14) 

(15) 

In (13) xs denotes the position of a point on the 
wetted body surface 5; the change in xs due to 
the variations in xa and 9c is given by 

Taking into account the motion of ft (t), we may 
write 

d ffjshdn =  ^JJJstdn 
«(0 rut) 

- ijr)t8<j>R-ldS 
F 

- jj[Ss-ri)HdS      (17) 
5 

The first term on the right-hand side of (17) van- 
ishes due to the restriction 5<f> = 0 at times t = f 1 
and < = <2- 

With Green's first identity we obtain: 

[[fv<f>-V6<t>dn   =     f[<f>n6<f>dS 

n(t) 9" 

-     [ffv2<t>6<f>dn (18) 

n(t) 

Due to the restriction 50 = 0 on E C 9ft, the 
corresponding contribution on the right-hand side 
of (18) vanishes. 

Integration by parts, and using the restrictions 
SXQ = 0 and 66c = 0 at times 2 = <i and t = <2> 
gives 

12 

/ 
MXG ■ <5XG dt = 

(19) 

and 

'2 

/ (f ® öG) • *9G dt = 

<2 

- / (/® 0G) • 69G dt       (20) 

With  (13-20) the proposed variation principle 
reads 

5J = 

8xs = 6XG + S9G X r (16) 

/i  ffp6r1R-ldS+ lf[v2<l>8<j>dn 

n   [F fi(t) 

Wi 
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• 11 II{R4>n-rit)R~l^ds\dt 

■ Jill {4>n-'xsn)64,ds\dt 

<2 

- 11 lf<t>n8<t>dS\dt 
<i   Is 

+ / <J [  IfpndS- Mge3 - MSG 1 ■ 6xG \ dt 

+ /| ( [[p(rxn)dS-r®6G) -S0G \ dt 

0 (21) 

From this it is clear that invariance of J with re- 
spect to a variation in the free surface elevation rj 
yields the dynamic free surface condition: 

P   =    -Ut + ^(V0-W) + ff*j 

0    on    F (22) 

Similarly, invariance of J. with respect to a vari- 
ation in the velocity potential 4> yields the field 
equation: 

V2<ft = 0    in    J2(0 (23) 

the kinematic free surface condition: 

m + Vx4>x + riy<t>y =4>z     on    F (24) 

the 'contact' condition on the wetted body sur- 
face: 

<j>n = xs ■ n    on    5 (25) 

and the impermeability condition on the bottom: 

4>n = 0    on    B (26) 

Finally, invariance of J with respect to variations 
in the body position xa and orientation 6Q yields 
the equations of motion for the body: 

pndS — Mge3    =    MXQ (27) 

ffp(fxn)dS   =    I®6G (28) 

s 

Hence, (12) is a proper variational principle for 
nonlinear water waves in hydrodynamic interac- 
tion with a freely floating body. 

3. HAMILTONIAN FORMULATION 

Taking into account the evolution of the fluid do- 
main and integrating by parts, we may write for- 
mally — see van Daalen et al (1993) — 

£» (>7s, Vs) = KsVs ~ K* (Vs. T») (29) 

with the following choices for the canonical coor- 
dinates and conjugate momenta: 

»7.    =    (jj/,i?»)= (tf.f) 

x,    =    (x/,fÄ) 

=    \$,MZ+ IUi> dS 

(30) 

(31) 

where $ is the restriction of <f> to the free surface: 

i(x,y;t) = <f>(x,y,z = T);t) (32) 

In (31) the integral over S is the well-known 
'Kelvin impulse' contribution of the velocity po- 
tential. 

The Hamiltonian is the total energy: 

n,  = JJj'Qv^-w + ffz) dn 
n(t) 

+    7;M(-(+Mge3-( (33) 

Then, with <f> satisfying the boundary value prob- 
lem (23, 25, 26, 32), we can prove — see also van 
Daalen (1993) — the following theorem: 

Theorem: The equations of motion for gravity 
driven water waves interacting with a body float- 
ing freely in or below the free surface describe an 
infinite-dimensional Hamiltonian system in the 
canonically conjugate variables IT, and r]s and 
with the total energy %, as Hamiltonian: the 
canonical equations 

a' *• 0 -1 \ f 8H,/6TTS 

1 Oil  6n,/6ri, 
(34) 

are equivalent with the nonlinear free surface con- 
ditions (22-24) and the hydrodynamic equations 
of motion (27-28) for the body. 

The proof of this theorem follows directly from 
the next lemma: 
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Lemma:   The variational derivatives of the ki- 

netic fluid energy 

Zf(*,ri) = ffJ\m-V<f>)dn (35) 
n(0 

are given by: 

6.K,    =    Äw(g 

6nK5    =    ^(W.WU, 

—   6$fCf 

(36) 

(37) 

Proof of (36): Keep r\ and f fixed and let (/> 
vary such that its variation 50 corresponds to a 
change 6$. Then the first variation in K,j ($,??) 

reads 

SKj (6$)    =     ///w ■ V6<j> dQ 

n(t) 

■f V -{W<j)6(j))dQ 

n(t) 

f 
n(t) 

V2<f>6<j>dQ. (38) 

With Gauss' divergence theorem and (23, 25, 26, 
32) we obtain 

SKj (6$) = [(W ■ n) dS]2=„ <5$ (39) 

Using dS = Rdx dy, the proof is completed. 

Proof of (37): Now, vary t] and assume that the 
solution <j> of the BVP is correspondingly modified 
for the varied fluid domain. At the modified free 
surface we have to lowest order: 

<j>{n + Sri)    =    <j>(r]) + Sr] 
dz 

(40) 

With the above result the total effect of a varia- 
tion 6TJ in fCj is found to be 

^jI(V0.m=7)j (41) 

and hence, to lowest order 

8nK,j +6$ICf l-^j 

(V0 • W) z=V 
(42) 

from which the second part of the lemma follows. 

3.    LINEARIZED  SHIP-WAVE INTER- 
ACTIONS 

The exact contribution to the kinetic energy due 
to the fluid motion is. given by 

Kj = JJJl-V<t>V4>d£l (43) 

which, using Gauss' theorem, the continuity 
equation (23) and the Neumann conditions (25- 

26) is re-written as 

fC/ = jj\* K dS + JJl-<j> (f • V) dS (44) 
F S 

At the free surface we have 

n: (-rix,-Vy,l) 

R(l) 

and 

dS = R(r]) dxdy 

(45) 

(46) 

Here we consider waves with small amplitude A 
compared to the wavelength and the mean water 
depth. Then, retaining terms up to second order 
(in A) only, we find 

KJKKJ    =    [ß$D($)dxdy 
F 

jjl-4>(z.v)dS (47) + 

where F is the mean waterplane corresponding to 
z — 0 and £>($) = (<t>2)F. Since D is self-adjoint, 
i.e. D = £>*, it follows that 

6*£f=D(*) = (4>,),=0 (48) 

The same holds for the (nonlinear) operator ex- 
pressing <f>n on S in terms of the generalized body 

velocity £. 

With these results we can easily prove that (34), 
with ICj replaced by K,j, is equivalent with the 
linearized free surface conditions 

<f)t = —gr}    and    r\t — <j>z    on    2 = 0 (49) 

and the linearized hydrodynamic equations of 

motion for the ship: 

// 
PLvdS — Mge3 = Ml; (50) 
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where the linearized Bernoulli pressure pt is de- 
fined as 

PL = -(4>t+gz) (51) 

Next, suppose that <f> can be expressed in terms 
of the so-called radiation potentials <j>k, each cor- 
responding to a unit amplitude mode of motion 
of the ship, i.e. put 

Equation (50) can then be re-written to 

where A - (akI), etc., with 

.kl =  [[<f>kv'dS 

and 

and 

b" = If*^ VdS 

-kl =   llgzi/'dS 

(53) 

(54) 

(55) 

(56) 

Clearly, A is the hydrodynamic mass matrix 
and C contains the hydrostatic restoring coeffi- 
cients. The role of the remaining matrix B can 
be understood by noting that 

kkl _ dta kl (57) 

Hence, equation (53) can be put in its simplest 
(canonical) form: 

d/dt\(M+A)i 

-d/dt 
2C*-* 

(58) 

CONCLUSIONS AND FUTURE RE- 
SEARCH 

In this paper we have demonstrated the pos- 
sibility of deriving stable model equations for 
ship-wave interactions from a Hamiltonian for- 
mulation. With an approximation of the kinetic 
fluid energy, we obtained energy-stable equations 
which, indeed, respect the Hamiltonian structure. 

In the near future, we intend to include the fol- 
lowing effects in our formulations: 

• diffraction 

• forward speed effects 

• ship wavemaking and wave resistance 

Further progress will be reported at the sympo- 
sium. 
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Large-Amplitude Motions and 
Wave Loads for Ship Design 

W.-M. Lin, M. Meinhold, N. Salvesen 
(Science Applications International Corp., USA), 

D. Yue (Massachusetts Institute of Technology, USA) 

ABSTRACT 

A new three-dimensional time domain ap- 
proach for the assessment of the large-amplitude 
motions and wave loads of a ship in a seaway is 
presented. In this approach, the body boundary 
condition is satisfied on the instantaneous wetted 
surface of the moving body below the incident 
wave surface, while the free surface boundary con- 
ditions are linearized about the incident wave. 

Results for four ships with different ge- 
ometry features are presented using the new ap- 
proach, as well as simplified versions derived from 
the new approach. The results include linear and 
nonlinear motion and load responses of ships ad- 
vancing in regular and irregular seas. The results 
clearly demonstrate the importance and the mag- 
nitude of nonlinear effects in ship motions and 
wave loads. 

The ongoing development of a fully inte- 
grated computational system for design assess- 
ment of not only the ship motions and wave loads 
but also the structural responses is discussed. The 
necessary steps to fulfill the difficult requirements 
for a practical and complete design support sys- 
tem are also presented. 

INTRODUCTION 

The accurate prediction of large ampli- 
tude nonlinear wave-induced motions, hydrody- 
namic loads, and resulting structural responses is 
of crucial importance in ship design. In addition 
to compromising efficiency and comfort, severe 
motions can limit operability and affect safety, 
while extreme loads may lead to structural failure. 
Furthermore, the importance of accurate predic- 
tions of ship motions, loads, and responses in de- 
sign and safety assessment is increasing with the 
advent of new ship types, innovative designs and 
more demanding operational requirements. 

Naval Ship Needs 

The urgent need for an improved motion 
and load assessment capability within the U.S. 
Navy is demonstrated by the following examples. 

• Innovative Ship Design - When the SWATH 
was first proposed it represented a radically 
new idea in ship design. At that time its ben- 
efits in terms of improved seakeeping were 
known (Salvesen, 1973). Yet the SWATH has 
taken more than twenty years to work its way 
through the design cycle, in large part due 
to an inability to accurately predict hydro- 
dynamic loads. 

• Extrapolations from Current Designs - Cur- 
rent ship design is performed primarily 
through interpolation from known hull forms. 
Extrapolation beyond the historical database 
is risky. The design of the catamaran U.S.S. 
Hayes was an example of an extrapolation 
from known hulls. She experienced severe 
damage from slamming in rough seas in the 
North Sea. 

• Modifications to Existing Ships - The mod- 
ifications to the carrier U.S.S. Midway in- 
cluded the addition of blisters to gain buoy- 
ancy. This resulted in such a severe degrada- 
tion in seakeeping that aircraft landings had 
to be curtailed. 

• Safety - Although during the serviceable life- 
time of a ship only a few encounters with 
highly nonlinear extreme seas are experi- 
enced, it is precisely those encounters that 
dictate safety margins. Recent structural 
damage on several ships of the CG47 and 
CG52 classes have demonstrated the lack of 
an adequate design capability. 
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Commercial Ship Needs 

The same need for predictive capability 
exists outside the naval community. 

• Catastrophic Structural Damages - Between 
January 1990 and September 1991 thirty- 
six bulk carriers suffered severe structural 
damages causing the loss of twenty-one ships 
and two hundred and fifty lives (Grove et al, 
1992). In most of these cases, structural fail- 
ure due to hydrodynamic loads imposed by 
the seaway was the primary cause of casualty. 

• Capsizing of Fishing and Pleasure Craft- In 
the Fastnet Race of 1979 seventy-seven boats 
were capsized and fifteen sailors died in what 
is considered to be the greatest disaster in the 
history of the sport of yachting. Stephens, et 
al, (1981) pointed out that the current design 
practice measured stability by static criteria 
and compensated for dynamic effects through 
safety margins. Their investigation revealed 
that because of the fundamental difference 
between static and dynamic stability "... cer- 
tain factors which result in favorable static 
stability characteristics may actually present 
greater danger when considered in light of a 
dynamic analysis". The same considerations 
apply to powered pleasure craft and fishing 
vessels. 

• Load Line Assessmeni - At the January 1993 
International Maritime Organization (IMO) 
Meeting of the Sub-Committee on Stabil- 
ity, Load Lines and Fishing Vessel Safety - 
37th Session (SLF37) an entirely new ap- 
proach for the future Load Line Convention 
was adopted. Two separate paths will be al- 
lowed in determining the load line. Path one 
utilizes the well established Freeboard Ta- 
ble. Path two is a new Equivalent Level of 
Safety Assessment using accurate computa- 
tional methods for predicting ship responses 
in extreme sea conditions to assess confor- 
mance to safety performance criteria. 

System Requirements 

As can be seen from the previous exam- 
ples, there is a pressing need to expand current 
ship design assessment capabilities for both naval 
and commercial ships. Additional expertise is 
needed in a wide range of disciplines - for exam- 
ple, in structures, hydrodynamics, computational 
methods, and electronic database management. 
It also seems clear that to be effective in design 

practice this new capability must evolve into a 
tightly integrated system so that design assess- 
ments and optimizations can include all factors 
which significantly effect any aspect of the ship's 
performance. 

This paper is organized into two main sec- 
tions. The first addresses the core requirement for 
accurate predictions of ship motions and loads in 
moderate and severe seas. A general overview 
of computational methods for motion and loads 
predictions is immediately followed by an intro- 
duction to the Large Amplitude Motion Program 
(LAMP) system of codes which have been devel- 
oped by the authors for calculations of motion 
and loads in large amplitude waves. A detailed 
discussion of both the accuracy and efficiency of 
the existing codes follows, together with plans for 
code improvements. 

The second section addresses the develop- 
ment of an integrated design assessment system 
and its use in practical design environments and 
applications. The first part of this discussion fo- 
cuses on the progress made thus far in developing 
the Interactive Design Evaluation and Analysis 
System (IDEAS) and presents examples of de- 
sign assessments which are currently performed 
with it. The second part of the discussion cen- 
ters on extensions to the system both in terms of 
added capability for structural responses to im- 
pulse loads such as slamming as well as improve- 
ments in utility for design. The concluding re- 
marks of the paper provide the broad overview of 
future requirements for such systems if they are 
to truly impact the practice of ship design. 

MOTIONS AND LOADS PREDICTIONS 

Fortunately, advances in computational 
ship hydrodynamics over the past decade have re- 
sulted in increasingly capable and accurate com- 
puter codes for the prediction of ship motions 
and loads. The application of these codes has 
been accelerated over the past few years by the 
ever-increasing power of modern computers, so 
that some of these advanced numerical calcula- 
tions may now be done within design time scales. 
As a result of these advances, a new level of com- 
putational capability is now emerging for the pre- 
diction of the nonlinear ship motions and wave 
loads for severe sea conditions. 

Linear Methods 

Traditionally, the ship motion problem 
is formulated in the frequency domain, and lin- 
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Figure 1: Destroyer Hull in Sinusoidal Wave, A = 1.201 and H/X = 0.013. (From Salvesen, 1978) 

earized by assuming that the magnitude of the 
motions and the incident waves are small rela- 
tive to the draft of the ship. The most com- 
monly used linear tools presently available are 
based on the strip-theory originated by Korvin- 
Kroukovsky (1955). These tools were brought 
to the present state of development by a num- 
ber of researchers in the United States, Europe 
and Japan during the mid-1960s. The U.S. Navy 
standard ship motion program, SMP is a typi- 
cal code in common use by designers today. The 
later development of fully three-dimensional lin- 
ear methods has also resulted in several useful 
codes. The most promising ones provide solu- 
tions using either the transient free-surface Green 
function (e.g.: Beck k Magee (1991), Lin k Yue 
(1990), Bingham, et al, (1993)) or the Rank- 
ine source methods (e.g., Nakos k Sclavounos 
(1990)). 

Linear frequency-domain methods have 
been very successful in many respects; for exam- 
ple, in determining sea state operability limita- 
tions for weapon systems on naval vessels (Ken- 
nel, et al, 1985). Such methods have also been 
useful in estimating the wave induced loads for 
large ships (Liu, et al, 1992). However, the lin- 
earity assumption of small motions relative to the 
draft is violated by the bow motions of most ships 
even in moderate head waves. Consider, for ex- 
ample, a typical destroyer hull. The relative bow 
displacement can be as much as four times the 
wave amplitude at Fn = 0.35 (Frank k Salvesen, 
1970). Therefore the bow will exit the surface in 
moderate waves. Figure 1 illustrates the bow mo- 
tions for a destroyer hull in sinusoidal wave with 
A = 1.20L and H/X = 0.013. 

Since it can be expected that a large 
percentage of the waves are much steeper than 
H/\ = 0.013, the assumption of small displace- 
ments at the bow will often be violated. Much 
steeper waves can occur when waves receive en- 
ergy from currents or reflections. For example, 
Smith (1976) points out that off the southeast 
coast of South Africa the rapid Agulhas Current 
can result in waves with H/X =  0.10.    Buck- 

ley (1994) has reported that "the most nonlinear 
waves" in the hurricane Camille wave data had "a 
height to length ratio of about 1/7" {H/X = 0.14). 
Note that for non-breaking waves the maximum 
theoretical value of H/X is 0.14. 

Nonlinear Methods 

Due to the severe limitations of the lin- 
ear ship motion theories, several investigators 
have extended the frequency-domain strip-theory 
approach to large-amplitude time-domain strip- 
theory approaches. In these large-amplitude 
approaches, the nonlinear hydrostatic restoring 
forces and the Froude Krylov forces are calculated 
accurately whereas the hydrodynamic restoring 
and diffraction forces are calculated by some ap- 
proximate extensions of the strip-theories. 

In the United States, such an approach 
has been applied by de Kat and Paulling (1989) 
to predict capsizing with quite some success. In 
particular, for low-frequency following seas their 
method showed very promising results. Outside 
the United States, such methods have had no- 
ticeable success in calculating the nonlinear global 
loads (bending moments and shear forces) (see for 
example, Fujino and Yoon, 1986). Approximate 
methods of this type can be very useful if they 
are applied carefully and with full understanding 
of their limitations. 

The more recent research efforts in the 
United States have been focused on the devel- 
opment of nonlinear methods. These methods 
may be divided into two categories: fully non- 
linear methods and approximate nonlinear meth- 
ods. Typically, fully nonlinear methods address 
the exact free surface condition as well as the ex- 
act nonlinear body boundary conditions, whereas 
approximate nonlinear methods apply certain ap- 
proximations to the nonlinear free surface condi- 
tions. Most of the theories in either category are 
formulated within classical potential flow theory. 
Good examples of the fully nonlinear approach 
are the work of Korsmeyer, et al, (1992), Maskew 
(1991), Cao, et al, (1992), and Yue (1994). The 
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Figure 2: Master Geometry and Panel Distribu- 
tion in both Physical and Computation Domains. 

approximate method of Lin k Yue (1990), and 
Beck k Magee (1991) solve the body-exact prob- 
lem in which the free-surface condition is lin- 
earized. The work of Pawlowski and Bass (1991) 
is another example of an approximate nonlinear 
method. Tulin and Maruo (1992) address the 
nonlinear deck wetness problem with promising 
approximate method based on a 2-1/2-D formu- 
lation. 

It is believed that, the approximate non- 
linear approaches will result in practical and vali- 
dated computational tools which can be run on 
modern advanced workstations within the near 
future. The fully nonlinear methods will require 
advanced supercomputers and for the near future 
will remain research codes serving as validation 
tools of the more approximate methods. 

LARGE AMPLITUDE METHOD 

In 1990, Lin k Yue presented a three- 
dimensional time-domain method to study large- 
amplitude motions and loads of floating bodies 
in waves. In their so-called "body-exact" ap- 
proach, the free-surface boundary conditions are 
linearized and the body boundary condition is 
satisfied exactly on the portion of the instanta- 
neous wetted surface which lies below the undis- 
turbed free surface. The problem is solved using 
a transient free-surface Green function singularity 
distribution. The validity and practical utility of 
this method have been demonstrated by several 
studies including predictions of large-amplitude 
motion coefficients, motion history of a ship ad- 

vancing in an irregular seaway, as well as the effect 
of bow flare on wave loads (see Lin k Yue 1990, 
1992; Lin et a/, 1991, 1992). 

This method was employed for the predic- 
tion of motions and loads of a cruiser hull, CG47, 
in waves (Lin k Meinhold, 1991; Lin k Yue, 
1993). The results were satisfactory for moder- 
ate seas but difficulties were encountered in severe 
seas. The difficulties arise from the fact that the 
body-exact approach models only that portion of 
the hull below the undisturbed free surface. When 
the wave amplitude is large compared to the ship 
draft, this representation becomes inadequate, es- 
pecially near the transom stern. 

New Formulation 

In order to improve the Lin k Yue (1990) 
method and extend its applicability to more 
severe wave conditions, a new large-amplitude 
method has been developed in which both the 
body motions and the incident waves can be large 
(Lin k Yue, 1993). In this new Large-Amplitude 
Motion Program, LAMP, the body boundary con- 
dition is satisfied on the instantaneous wetted sur- 
face below the incident wave profile with the as- 
sumption that the diffracted waves are small com- 
pared to the incident wave and that the incident 
wave slopes are small. At each time step, local 
incident free surface elevations are used to trans- 
form the body geometry into a computational do- 
main with a deformed body and a flat free sur- 
face. By linearizing the free surface boundary 
conditions about this incident wave surface, the 
problem can be solved in the computational do- 
main using linearized free-surface transient Green 
functions. 

Figure 2 shows a typical master geome- 
try and panel distributions in both physical and 
computation domains. The solution procedures 
used for the problem in the computational do- 
main are very similar to those used in the physical 
domain (Lin k Yue, 1993). Both the source for- 
mulation and potential formulation can be used. 
The two main features of this new large-amplitude 
approach are: (i) true hydrodynamic effects for 
the wetted portion of the ship under the incident 
wave surface; and (ii) automatic inclusion of the 
correct hydrostatic and Froude-Krylov forces. 

In oblique or beam seas, forces due to vis- 
cous and lift effects will have a significant effect 
on the motions and loads. LAMP includes an 
option to approximate these effects in the time- 
domain. The viscous and lift effects approximated 
are as shown in Table 1. For each effect, the table 
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Table 1: Viscous and Lift Effects 

Effect Reference Linearity 
Hull Lift Low Aspect Ratio Lifting Theory Linear 

Skeg, Bilge Keel and Foil Lift High Aspect Ratio Lifting Theory Linear 
Hull Eddymaking Tanaka (1960) and Ikeda et al. (1978) Non-Linear 

Bilge Keel Eddymaking Kato (1966) Non-Linear 
Skeg and Foil Eddymaking Hoerner (1958) and Ikeda et al. (1978) Non-Linear 

Hull Skin Friction Kato (1958) Non-Linear 

presents a reference for the calculation method 
and whether it is a linear or non-linear effect. 
These components are determined in a manner 
very similar to that used in the U.S. Navy's SMP 
code (Meyers et al, 1981). However, in the SMP 
code, the forces are calculated in the frequency 
domain, assuming certain averaged magnitudes of 
roll displacement and roll velocity. 

Such an averaged roll damping approach 
is not satisfactory for time domain calculations 
where a primary objective is the accurate calcu- 
lations of the extreme response events. The new 
calculation method uses the formulae from the 
references in Table 1, but uses the current magni- 
tude of roll displacement and roll velocity rather 
than an averaged value. At every time step, the 
time history of roll displacement and roll velocity 
is examined for a peak value, positive or nega- 
tive. These peak values generate parameters for 
the viscous forces until a new peak is found. At 
any given time step, the actual forces depend on 
these parameters and the instantaneous value of 
roll displacement and roll velocity. 

In the present version of LAMP the in- 
cident wave can be represented by a superpo- 
sition of any number of harmonic wave compo- 
nents at any direction relative to the ships head- 
ing. Given a wave spectrum, the program will 
generate automatically an irregular wave repre- 
sentation with random phases and a pre-specified 
spreading function. Irregular wave representa- 
tions for multiple spectra can also be generated. 
The wave field may also be represented by higher- 
order Stokes waves. 

For any given wave representation, LAMP 
will calculate the time-domain six-degree-of- 
freedom coupled motions and the time-domain 
wave-induced global loads, that is the bending 
and torsional moments and shear forces at any 
cross-section along the length of the ship. The 
program also calculates at each time step the hy- 
drodynamic pressure distribution over the instan- 

taneous wetted hull surface below the incident 
wave surface. Furthermore, the added resistance 
in waves as well as the wave resistance can be cal- 
culated. Typically the program is run with the 
ship advancing at a given heading angle and con- 
stant forward speed; however, any path and/or 
speed may be specified. 

The Multi-Level Code System 

A complete computational capability for 
the assessment of ship motions and wave loads 
must be based on a multi-level approach. Such 
a system integrates methods which are based not 
just on one single code or one single level of so- 
phistication, but rather on a system of codes with 
different levels of sophistication. As a general 
rule, the physics underlying the ship/wave inter- 
actions is best understood using comparisons gen- 
erated by incremental increases in complexity - 
a procedure which also moderates computer us- 
age. Analysis tools at the lower levels may employ 
several approximations to attain a short enough 
turnaround time for use in early stages of the 
evaluation process. Examination of results ob- 
tained by the lower level code guides the engineer 
in choosing areas where more accurate theories 
must be used. In other words, the lower level 
codes should be used as a filtering mechanism for 
the selection of more accurate but more compli- 
cated and computationally intensive codes. 

A multi-level system can also effectively 
tie the probabilistic and deterministic approaches 
together providing the missing ingredient of prob- 
abilistic prediction. Statistical data of ship mo- 
tion in given random seas can be obtained by 
using lower level evaluation codes to efficiently 
compute the ships responses to a very wide range 
of deterministic excitations. The severe ship re- 
sponses can be selected from these, to be ex- 
amined with the higher level nonlinear simula- 
tions. Conversely, nonlinear dynamic simulations 
of ships in episodic wave events can be used to 
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Table 2: Computation Methods and Hardware Requirements for the LAMP Code. (Z = 0 and .F(t) are 
Still Water Surface and Incident Wave Surface Respectively) 

Method 

LAMP-4 

LAMP-3 

LAMP-2 

LAMP-1 

Hydrodynamic, Restoring and Froude-Krylov Forces 
Free Surface Boundary Conditions on ^(t) 
3-D Large-Amplitude Hydrodynamics 
Nonlinear Restoring and Froude-Krylov Forces 
Free Surface Boundary Conditions on ^(t) 
2-1/2-D Large-Amplitude Hydrodynamics 
Nonlinear Restoring and Froude-Krylov Forces 
Free Surface Boundary Conditions on Z = 0 
3-D Linear Hydrodynamics 
Nonlinear Restoring and Froude-Krylov Forces 
Free Surface Boundary Conditions on Z = 0 
3-D Linear Hydrodynamics 
Linear Restoring and Froude-Krylov Forces 

Hardware 

Supercomputer 

Workstation 

Workstation 

Workstation 

understand the actual physical mechanisms un- 
derlying the ship responses to these events, such 
as capsizing, and to identify dominant factors of 
vessel stability, which can be used in the statisti- 
cal screening process using the lower level codes. 

Recognizing the need for a fully integrated 
multi-level code system, we have developed the 
Interactive Design, Evaluation and Analysis Sys- 
tem (IDEAS) consisting of a total of five compu- 
tational methods of different levels of sophistica- 
tion. 

LAMP-4:    The large-amplitude 3-D 
nonlinear method 

LAMP-3:    The large-amplitude 2-1/2-D 
nonlinear method 

LAMP-2:    The approximate large-amplitude 
3-D nonlinear method 

LAMP-1:    The linearized 3-D time-domain 
method 

SMP:       The U.S. Navy linear strip-theory 
Ship Motion Program 

The total capability is labeled the IDEAS Ship 
Motion and Wave Load System. The most ad- 
vanced code is the Large Amplitude Motion Pro- 
gram, LAMP-4 discussed in the previous section. 
Three simplified versions of the LAMP-4 code 
have also been developed. The lowest level code 
uses the linear strip theory. 

The LAMP-4 method is the complete 
large-amplitude method where the 3-D potential 
is computed with the linearized free-surface con- 
dition satisfied on the surface of the incident wave. 
Both the hydrodynamic and hydrostatic pressure 
are computed over the instantaneous hull surface 

below the incident wave surface. Large computer 
resources are required for this method. 

The LAMP-3 method is presently under 
development as part of the Cooperative Nor- 
wegian/USA High-Speed Craft Project. The 
method, which includes impact forces, is intended 
originally for planing craft, but is being extended 
to include displacement hull forms. The hydrody- 
namic forces are computed by a 2-1/2-D slender- 
body approximation which includes all of the 
most important nonlinear hydrodynamic effects 
for moderate and high-speed displacement hulls. 

. In the LAMP-2 method, the linear 3-D ap- 
proach is used to compute the hydrodynamic part 
of the pressure forces. An option is available to 
approximate large-amplitude effects by stretching 
the hydrodynamic pressure. However, the hydro- 
static restoring and Froude-Krylov forces are cal- 
culated with the same accuracy as in LAMP-4. 
The reason for developing this simplified method 
is that it drastically reduces the requirements for 
computer resources. 

The LAMP-1 method is the linearized ver- 
sion of the LAMP-4 method. This 3-D time- 
domain method includes a routine for automatic 
generation of the frequency domain results. 

The SMP is the linear strip-theory code 
presently used by the U.S. Navy. It is based on the 
theory developed by Salvesen, Tuck and Faltinsen 
(1970). 

Table 2 shows how the hydrostatic restor- 
ing and Froude-Krylov forces and the hydrody- 
namic (added mass, damping and diffraction) 
forces are calculated for the four different LAMP 
methods. The hardware requirements for the four 
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Table 3: General Dimensions 

LBP B/L D/L CB F. BVL 

Series 60 N/A 0.143 0.057 0.700 0.200 025 
S175 175.0 0.146 0.054 0.572 0275 024 

Series 60, CB = 0.70 

Figure 3: Body Plans for Series 60, CB 

S175 Containership 

0.70 Hull Form and S175 Containership. 

methods are also shown in the Table. Note that 
all of the nonlinear methods, LAMP-2, LAMP- 
3 and LAMP-4 are based on the approach that 
both the motions and the waves may have large 
amplitudes. For all of these three nonlinear meth- 
ods, the restoring and Froude-Krylov forces are 
calculated exactly over the instantaneous wetted 
surface below the incoming wave surface. 

VALIDATION 

An extensive validation study of the 
LAMP code system is presently ongoing. We 
will here present some sample results for two ship 
cases in order to demonstrate that the results ob- 
tained by the new nonlinear motion and load ca- 
pability are generally in good agreement with ex- 
perimental and other theoretical data. The result 
should also serve to demonstrate the importance 
of the nonlinear effects. In particular, it is hoped 
that they will assist in forming a better under- 
standing of the relationship between ship hull ge- 
ometry and the nonlinearity of the responses. 

Result are presented in this section for two 
hull forms, the Series 60, CB = 0.7 parent hull 

and the S175 Containership. The general dimen- 
sions and body plans for these two ships are given 
in Table 3 and Figure 3, respectively. The Se- 
ries 60 hull has mostly wall-sided bow sections 
with small bow flare and a typical old fashioned 
cruiser stern. This ship has very small nonlin- 
ear geometry features. The S175 Containership 
has a moderate U/V-shaped bow with consider- 
able flare and a small bulb. The stern is a typical 
cruiser stern quite similar to the Series 60. 

The Series 60, CB = 0.7 Parent Hull 

All of the results presented for the Series 
60 hull are for regular head waves at Fn = 0.20. 
Figure 4 shows the comparisons between linear 
theories (SMP and LAMP-1) and experimental 
results (Vossers, et al, 1961) for pitch and heave 
displacements and phases. For this particular 
case a reasonably good agreement between strip 
theory (SMP) and experimental results was es- 
tablished more than twenty years ago (Frank and 
Salvesen, 1970). The SMP results are included 
here so that comparisons with a well established 
existing design tool can be made.   It is seen in 
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Figure 4 that the three-dimensional linear theory 
(LAMP-1) also agrees well with the experiments 
in general. Other comparisons between LAMP-1 
and strip theory have also shown close agreement 
for slender hull forms at moderate speeds (Lin & 
Meinhold, 1991). 

Figure 5 shows a similar comparison be- 
tween linear theories and experimental results for 
the vertical midship bending moments. There 
are some noticeable differences between the strip- 
theory results and the LAMP-1 results. However, 
both predict two peaks which in this case do not 
seems to be present in the experimental results. 
Experimental results for other ship cases have 
demonstrated the existence of such double peaks 
(Wahab, 1967). The first peak occurs near the 
frequency where the heave and pitch motions are 
close to maximum. At this frequency, the bending 
moments are dominated by inertia loads. The sec- 
ond peak occurs when the motions are very small 
and therefore seems to be dominated by the hy- 
drodynamic wave excitations. 

A  sample  comparison  between  bending 
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moment results from linear and nonlinear theo- 
ries are shown in Figure 6 for X/L = 1.0. The 
results show small nonlinear effects as would have 
been expected for a hull form with relatively small 
nonlinear geometry features. For the steepest 
wave case, h/X = 0.025, the nonlinear calcula- 
tions (both LAMP-2 and LAMP-4) show about 
14% increase in the sagging bending moment rel- 
ative to the LAMP-1 calculations. It is seen in 
the figure that the hogging bending moments pre- 
dicted by linear and nonlinear theories are in good 
agreement in this case. It is important to note 
here that for this ship LAMP-2 and LAMP-4 re- 
sults are very close. 

The SI75 Containership 

The S175 is one of the few hull forms 
for which there exists substantial experimental 
information about the nonlinear effects. In par- 
ticular, the experimental data include heave and 
pitch data in regular head waves with increas- 
ing wave steepness (O'Dea, et al, 1992). Fig- 
ure 7 shows comparison between nonlinear cal- 
culations (LAMP-2 and LAMP-4) and the ex- 
perimental heave and pitch data for three wave- 
lengths, X/L = 1.0,1.2, and 1.4. It is encourag- 
ing to note that the LAMP-4 results shows very 
much the same nonlinear trend as found in the 
experiments. However, the pitch predictions seem 
to be lower than the experimental values. Simi- 
lar underpredictions were observed near this wave 
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length range for the Series 60, CB - 0.7 hull form. 
Further investigation is required on this aspect. 

Results predicted by LAMP-2 and LAMP- 
4 seem to agree well for pitch motion, whereas the 
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heave motions are overpredicted by LAMP-2. A 
careful assessment has shown that the heave re- 
sults are sensitive to the implementation of the so 
called "m-term" effects associated with forward 
speed (Ogilvie & Tuck, 1969). In LAMP-4, the 
body boundary condition is satisfied on the in- 
stantaneous location of the wetted hull boundary 
under the incident wave surface. Therefore, the 
"m-term" effects are automatically and exactly 
included. In LAMP-2, only simple forward speed 
terms are included. We intend to introduce an 
improved m-term approximation method in the 
LAMP-1 and LAMP-2 code. 

Linear and nonlinear vertical midship 
bending moment results as a function of wave 
height for X/L = 1.2 are presented in Figure 8. 
The calculations show relatively large nonlinear 
effects both for the sagging and hogging moments. 
For the steepest wave case with h/X = 0.03, 
the sagging and hogging moment predicted by 
LAMP-4 are 35% larger and 21% smaller, re- 
spectively, than that predicted by LAMP-1. This 
clearly shows that the nonlinear wave-load effects 
are substantial and that they must be included 
in design assessment. Furthermore, the results in 
Figure 8 show that the nonlinear effect predicted 
by LAMP-2 is somewhat smaller than those pre- 
dicted by LAMP-4, but the trend is very much 
the same. 

Table 4: CPU Time Requirement for Different 
Motion and Load Methods on a Workstation 
and a Supercomputer (LAMP-3 is under devel- 
opment) 

IBM RS6000/550 CRAY-YMP 
Workstation Supercomputer 

SMP 2.5 seconds 0.5 seconds 
LAMP-1 5.0 minutes 1.0 minutes 
LAMP-2 6.0 minute 1.2 minute 
LAMP-3 - - 
LAMP-4 4.0 hours 0.8 hours 

LAMP EFFICIENCY 

Effective use of computer tools such as 
LAMP code depends a great deal on computa- 
tion speed. Table 4 shows the CPU time required 
for a typical one minute real-time ship motion 
simulation on a high-end workstation and on a 
supercomputer. With ever increasing simulation 
capabilities and demands on hydrodynamic codes 
such as LAMP, the overall efficiency and robust- 
ness become crucial factors in the overall success 
and impact of these codes. Recent research has 
made appreciable strides in these respects. We 
highlight two of the more significant developments 
which can both be incorporated into the LAMP 
system. 

High-Order Boundary-Element Method 

Programs such as LAMP use the tradi- 
tional constant-panel method (CPM) approxima- 
tion wherein the boundary geometry is discretized 
into piecewise linear elements within which singu- 
larity strengths are assumed to be constant. CPM 
is in some sense the simplest boundary-element 
discretization possible and leads to simplifications 
in terms of geometry, analyses and code struc- 
ture. It is now known, however, that CPM is 
not computationally optimal and often require 
far too many panels for a given accuracy than 
is suggested from geometric considerations. Fig- 
ure 9 shows typical performance of CPM as com- 
pared to the quadratic (both geometry and sin- 
gularity distribution) boundary-element method 
(QBM) of Xü k Yue (1992). The problem consid- 
ered is the time-domain calculation of the (linear) 
impulse-response function of a heaving sphere us- 
ing transient free-surface Green functions. The 
number of unknowns, N, required for a given ac- 
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Figure 9: QBM vs. CPM for Computing the Im- 
pulse Response Function of a Heaving Hemisphere 

curacy is O(10 ~ 20) times greater for the CPM. 
Even factoring in the increased operation count 
per N for QBM, the overall savings in compu- 
tational time for comparably optimized code can 
be a factor of O(102) or more, depending on the 
required accuracy. 

Another important and possibly 
paramount consideration is the loss of robustness 
of CPM at edges and corners of the boundary, for 
example near the body waterline. In this case, 
it is known that CPM may in fact fail to con- 
verge in terms of the maximum local error (Xii & 
Yue 1992). Such non-uniform convergence is elim- 
inated when QBM is used. The incorporation of 
high-order capabilities such as QBM into LAMP 
is now under way and is expected to significantly 
enhance its utility in routine design and analysis 
simulations. 

Fast (O(N)) Multipole-Expansion Methods 

Even with optimal boundary elements 
and efficient preconditioning and iterative solu- 
tion of the resulting equations, the ultimate fea- 
sibility of boundary element methods for increas- 
ingly larger and more complex problems is lim- 
ited by the 0(N2) operation count where N is 
the total number of (spatial) unknowns. Re- 
cent development of fast multiple-expansion tech- 
niques for boundary-integral methods requiring 
only O(N) computational effort (see, e.g., Ko- 

Table 5: CPU Time Comparison between an 
O(N) Scheme and an 0{N2) Method for Tank 
Sloshing Problem. CPU Times are in Seconds 
and CPU* is Normalized CPU. 

Ik 
SU 

N 
O(N) Scheme Direct Scheme 

CPU (C?\J*)/N CPU (CPU*)/W 
600 7.23 1.0 10.8 1.0 
1350 16.3 1.0 62.3 1.1 
2400 31.7 1.1 321.4 1.8 
3750 55.4 1.2 - - 
5400 71.9 1.1 - - 
7350 103.7 1.2 - - 
9600 143.8 1.2 - - 

rsmeyer, Yue, Nabors k White 1993) has removed 
such limitations for all practical purpose. Ta- 
bles 5 and 6 illustrate the typical efficiency of an 
O(N) scheme (using CPM) as compared to a di- 
rect (0(N2)) method for two 3-D problems - wave 
sloshing in a tank and the Cauchy-Poisson de- 
velopment of an initial disturbance, respectively. 
The cross-over value for the number of unknowns 
is Nc ~ O(102). The computational savings 
(by a factor of N/Nc) for large N (say up to 
N ~ O(104 - 105)) is profound. Another feature 
of these O(N) schemes is their special suitability 
for massively-parallel computers. Our recent ex- 
perience with such a code on the CM-5 suggests 
that an 0(1) time count for moderately large N 
may be feasible. 

SYSTEM DEVELOPMENT 

As discussed in the Introduction, the 
ship design community is now at the threshold 
of acquiring a new generation of hydrodynamic 
design assessment tools of unparalleled accuracy 
and utility. The IDEAS for ship motions and 
wave loads is just one example of such emerg- 
ing capabilities.  The motivation for the IDEAS 
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Table 6: CPU Time Comparison between an 
0(N) Scheme and an 0(N2) Method for the 
Cauchy Poisson Problem. CPU Times are in Sec- 
onds and CPU* is Normalized CPU. 

N 
O(N) Scheme Direct Scheme 

CPU (CPU*)/AT CPU (CPV*)/N* 
400 3.2 1.0 7.3 1.0 
3600 25.6 0.9 632.1 1.0 
10000 79.7 1.0 - - 
14400 120.9 1.0 - - 

concept came from a need for rapid assessment of 
new designs and design changes aided by analy- 
sis of hydrodynamic performance characteristics. 
Although the computational capability for flow 
analysis had been markedly improving for decades 
in both the hydrodynamic and aerodynamic com- 
munities, no means existed for a rapid assessment 
of the effects of configuration changes on mission 
effectiveness in either area. 

The term hydro-numeric design was 
coined at SAIC to characterize a new discipline 
which now integrates geometry manipulation, nu- 
merical hydrodynamic computation and design 
performance assessment (Salvesen, et al, 1985). 
The iterative nature of the design process would 
permit the use of complex, general purpose codes 
in a systematic manner. The proximate goal in 
motivating the IDEAS system happened to come 
from the need to support yacht design for the 
Americas Cup. However, once the methodol- 
ogy was formalized, it was obvious that the exis- 
tence of such a system could have a large impact 
throughout the maritime industry. The design of 
the 12-meter yacht Stars Ic Stripes for the 1987 
Americas Cup races was a textbook example of 
the successful use of direct analysis methods cou- 

pled to explicit performance criteria, in this case, 
the probability of winning the Cup (Oliver, et al, 
1987). The primary lesson learned in that con- 
test was that rapid analysis using state-of-the-art 
CFD codes was absolutely critical to support de- 
sign decisions both in the building phase and for 
last minute design modifications. 

The total IDEAS Ship Motion and Wave 
Load System has been constructed by integrat- 
ing the hydrodynamic codes with geometry mod- 
eling, panelization, visualization and design cri- 
teria evaluation codes running on graphics engi- 
neering workstations. The primary objective with 
IDEAS has been to develop a fully integrated 
hydro-numeric design system with sufficient per- 
formance, accuracy, and ease of use to impact con- 
ceptual and preliminary ship design problems. 

The IDEAS Motion and Load System as 
now configured is shown in Figure 10. This multi- 
level system allows us to build computational 
capability progressively. As new computational 
codes are developed, they can be integrated into 
the system and validated against existing ones. 
It must be kept in mind that codes used at each 
level are limited by different approximations. The 
confidence level at each level needs to be estab- 
lished through model testing and extensive com- 
putations. 

The Geometry and Panelization capabil- 
ity within the motion and load system consists 
of several codes (see Figure 10). Presently the 
two primary codes are the FASTSHIP geometry 
generation code by Design Systems & Services, 
Inc. and the I3G interactive panelization code 
developed the U.S. Air Force. The two example 
codes included as part of the Design Evaluation 
and Assessment capability are the SEP Seakeep- 
ing Evaluation Program developed by the U.S. 
Navy and the ANIMATE code for visualization 
of time-domain ship motions, including the free- 
surface elevations. 

As seen in Figure 10, the hydrodynamic 
codes are grouped within three levels of sophisti- 
cation: 

Level I       Linear Methods 
SMP (strip-theory) 
LAMP-1 (3-D theory) 

Level II      Approximate Large-Ampl. Methods 
LAMP-2 (3-D approximate) 
LAMP-3 (2-1/2-D theory) 

Level III     Complete 3-D Large-Ampl. Method 
LAMP-4 
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Figure 10: The Present IDEAS Ship Motion and Wave Load System 

Consider-the application of the Motion 
and Load System for tanker hull design. In this 
case, the SMP strip-theory code may be used as 
a Level I code and the approximate 3-D LAMP-2 
code as a Level II code. On the other hand, for 
higher-speed naval ships where the inclusion of ac- 
curate prediction of trim and sinkage is important 
the 3-D LAMP-1 code which includes the wave- 
resistance potential would be used as a Level I 
code. The 2-1/2 D LAMP-3 code, which includes 
most of the important higher forward speed ef- 
fects, would be recommended in this case as a 
Level II code. 

Effective use of a computation system 
such as IDEAS for design depends a great deal on 
computation speed of different codes and how to 
use these codes. Table 4 shown previously clearly 
illustrates how computer resource limitations may 
affect the use of various methods in the IDEAS 
system. These numbers also show the need and 
advantages of using lower level codes as filters to 
determine the events for which the higher level 
code can most efficiently be used. 

Coupling to Structural Models 

Both the approximate large-amplitude 
code LAMP-2 and the complete large-amplitude 
code LAMP-4 calculate the hydrodynamic pres- 
sure distributions over the instantaneous wet- 
ted hull surface below the incident wave surface. 
Sample LAMP-2 pressure calculations for the Se- 
ries 60, CB — 0.70 hull advancing in regular head 

Figure 11: Instantaneous Pressure Distributions 
for Series 60, CB = 0.7 Hull Form Advancing in 
Regular Waves 

waves are shown in Figure 11. Interfaces between 
the hydrodynamic pressure data and three dif- 
ferent finite-element codes have been made: the 
MAESTRO code (in collaboration with its devel- 
oper Prof. 0. Hughes of Va. Tech. (Frankline 
k Hughes, 1992)), the NASTRAN code (with the 
American Bureau of Shipping), and the STAGS 

217 



Table 7: General Dimensions 

LBP B/L D/L Cg F„ «A 
CG47 1623 0.103 0.042 0.510 0.260 025 
APL 260.8 0.151 0.042 0.557 0.244 025 

CG47 AEGIS Cruiser APL Containership 

Figure 12: Body Plans for CG47 AEGIS Cruiser and APL Containership 

code (with the Lockheed Missiles and Space Com- 
pany, Inc). 

The integrated LAMP/STAGS system 
has been made an integral part of the ARPA Sim- 
ulation Based Design demonstration system now 
under development by Lockheed, Newport News 
Shipbuilding and SAIC. This hydrodynamic and 
structural code system will serve as a demonstra- 
tion of the use of multi-level, multi-disciplinary 
physics-based code systems within the Simulation 
Based Design approach. 

Design Applications 

To illustrate the application of the IDEAS 
Motion and Load System, two ships were selected. 
These two ships, CG47 AEGIS cruiser and a APL 
Containership, are typical modern hull forms in 
the existing naval and commericial fleets. The 
general dimensions and body plans for the two 
ships are given in Table 7 and Figure 12, respec- 
tively. It is seen in the figure that the CG47 
cruiser has a very fine U-shaped bow with a sonar 
dome and considerable flare.   It has a wide sub- 

merged transom stern. The APL Containership 
is an example of a modern containership. The 
hull shape below the 10 meter waterline is propri- 
etary and is not shown here. Note that the design 
waterline is at 11 meters. The bow has large V- 
shaped flare. The stern has a wide transom which 
is above the calm water level. This ship has large 
nonlinear geometry features both at the bow and 
at the stern which are not captured in any linear 
ship motion theory. Also note that this modern 
containership has quite different bow and stern 
shapes than the much older S175 Containership 
shown in Figure 3. 

The CG47 AEGIS Cruiser 

We shall briefly discuss an earlier appli- 
cation of the motion and load system to the pre- 
diction of the responses of the U.S. Navy AEGIS 
Cruiser advancing at 10 knots in head seas (Lin 
and Meinhold, 1991). A thirty-minute linear wave 
record was generated using a sea spectrum repre- 
senting Sea State 5. 

To run the nonlinear LAMP-4 code for the 
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Figure 13: Profile of CG47 at 10 knots in Large-Amplitude Unidirectional Irregular Head Seas and Time 
Records of Wave Elevations (Ft), and Linear (LAMP-1) and nonlinear (LAMP-4) Predictions of Pitch 
(Deg.) and Vertical Midship Bending Moments (Ton*Ft*104) 

entire thirty minute wave record was not practi- 
cal. (Note that the 1991 version of the LAMP- 
4 code is somewhat different from the LAMP-4 
code presented here.) The linear LAMP-1 code 
was run for the entire wave record to identify 
three short-term wave events where the midship 
bending moments were the largest. The nonlin- 
ear LAMP-4 code was then used to predict the 
nonlinear response for these three/wave events. 

Figure 13 shows the ship advancing in this 
wave field at three closely spaced time steps as 
predicted by LAMP-4. Also presented in the fig- 
ure are the time records of the wave elevations 
for one of the three wave events as well as the 
linear and nonlinear pitch and bending moment 
responses as predicted by LAMP-1 and LAMP-4. 
The maximum wave height in this wave event is 
about 25 ft. As shown in the figure, the maxi- 
mum bending moment predicted by the LAMP-4 
code is substantially larger than that predicted 
by the LAMP-1 code. This difference is believe 
to be mainly due to the very large bow flare of this 
hull form which is reflected in the LAMP-4 cal- 
culations but cannot be included in the LAMP-1 
calculations. 

Furthermore, it is seen in Figure 13 that 
there is practically no difference in the pitch mo- 
tions predicted by the linear and nonlinear codes. 
This is important, since it is usually believed that 
the good agreement between linear-theory heave 
and pitch motions and experiments is an indica- 
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Figure 14: Vertical Midship Bending Moment in 
Regular Waves with L/\= 0.971 as s Function of 
Wave Height for CG47 at Fn = 0.260. Compari- 
son of Linear (LAMP-1) and Nonlinear (LAMP- 
4) Predictions. 

tion that the bending moments are also quite lin- 
ear. The example above indicates that the bend- 
ing moment can be very nonlinear even though 
the motion seems to be linear. 

The bending moment for CG47 in regular 
waves with L/X = 0.971 as a function of wave 
steepness is presented  in  Figure  14.    Both lin- 
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Figure 15: Average One-Tenth Highest Vertical Midship Bending Moments as a Function of Significant 
Wave Height for APL Containership at Fn = 0.244 in Unidirectional Irregular Head Seas. Comparison of 
Linear Theories (LAMP-1) and Nonlinear Theories (LAMP-2). 

ear (LAMP-1) and nonlinear (LAMP-4) results 
are presented. It is seen that for the steepest 
wave condition (h/X = 0.029), the sagging mo- 
ment predicted by LAMP-4 is about 28% higher 
than that predicted by LAMP-1, whereas the non- 
linear hogging moment is only about 6% less than 
the linear prediction. These computations seem 
to demonstrate that for such naval hull forms, the 
accuracy of extreme bending moment predictions 
based on linear superposition methods may be 
substantially less than required for design appli- 
cations. 

The APL Containership 

We are presently in the initial phase of an 
investigation of the nonlinear aspects of the mo- 
tions and loads for the APL Containership shown 
in Figure 12. We are primarily interested in an 
estimate of the magnitude of nonlinear contri- 
butions to the bending moment for operations 
in realistic irregular seas. The averaged one- 
tenth highest vertical midship bending moment 
(5Mi/io) as a function of significant wave height 
(^1/3) are presented in Figure 15. The results are 
for unidirectional head seas generated from ITTC 
one-parameter spectrum. For this initial investi- 
gation, LAMP-2 has been used for the nonlinear 
predictions.    However, it is recognized that the 

LAMP-4 code is required for more accurate pre- 
dictions. 

The results presented in Figure 15 show 
that for significant wave height, hij3 = 6.26 me- 
ter (corresponding to the high range of Sea State 
6), the sagging moment predicted by LAMP-2 
is about 20% higher than that predicted by lin- 
ear theory. The nonlinear hogging moment is 
about 15% lower than that predicted by linear 
theory. Also shown as a reference are the " double- 
amplitude" bending moment divided by 2 as pre- 
dicted by LAMP-2. It is most convenient in 
model test to measure the "double amplitude" 
bending moment values; however, the results pre- 
sented here clearly demonstrate that the doubl- 
amplitude approach has some severe limitations. 

The actual time record of the wave ele- 
vations and the linear and nonlinear heave, pitch, 
and vertical midship bending moment predictions 
are shown in Figure 16, for the hi/3 = 6.26 me- 
ter case. Note that the length of the time record 
presented in the figure corresponds to 7.5 minutes 
in full scale. A substantially larger time sequence 
may be required for a more accurate estimation of 
the BM1/10 values. This again demonstrates the 
importance of the multi-level approach. LAMP- 
2 may be used for the long time sequences and 
then LAMP-4 may only be required for short wave 
records.   This procedure may be used to deter- 
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Figure 16: Time Record of wave Elevation and Linear (LAMP-1, ) and Nonlinear ( ) Predictions 
of heave, Pitch, and Bending Moment for APL Containership at Fn = 0.244 in Unidirectional Irregular 
Head Seas with /11/3 = 6.261 meter. 

mine a correction factor which can be used with 
the statistical values obtained by the LAMP-2 
code. 

We have barely begun the investigation of 
the nonlinear aspects of this APL Containership 
responses. In addition to the wave induced loads, 
we intend to investigate the occurence of slam- 
ming and the nonlinear parametric roll excitation 

problem. In particular, a better understanding of 
the parametric roll problem is of critical impor- 
tance to the shipping companies. 

SYSTEM EXTENSIONS 

The results presented here demonstrate 
that the IDEAS Ship Motion and Wave Load Sys- 
tem has the potential to become a new revolu- 
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Figure 17: The Complete System for Ship Motion, Wave Load and Structural Response Predictions 

tionary tool which will have a major impact on 
ship design; however, substantial additional work 
in several important areas is required before the 
system can meet all the expectations. We shall 
discuss here some of the most critical areas. 

Wave Impact Loads 

The inclusion of-wave impact loads or 
slamming is by far the most important extension. 
Most traditional methods for analyzing slamming 
rely on semi-empirical force estimates rather than 
on accurate prediction of the actual slamming 
pressure distribution. Furthermore, the tradi- 
tional methods address only head-sea cases with 
symmetric slamming. However, the CG47 Cruiser 
problem and several commercial ship problems 
have clearly demonstrated that some of the most 
severe structural failures have been caused by 
asymmetric slamming loads in oblique seas. It 
is important, therefore, that any attempt to re- 
solve the total slamming problem must include 
not only the accurate time-domain simulation of 
the highly nonlinear motions in oblique seas, but 
also the prediction of the asymmetric slamming 
pressures. 

The objective will be to develop advanced 
robust slamming prediction methods and to in- 
tegrate these methods with both the present hy- 
drodynamics and structural codes to produce a 
complete capability which includes all of the im- 
portant components. Figure 17 shows the ma- 
jor components of the total system: (i) ship mo- 

tions and wave-frequency loads; (ii) impact and 
high-frequency response loads; and (iii) structural 
responses. Each of these components will con- 
sist of a multi-level code system. Water-on-deck 
loads are also to be included. The capability will 
be used as a testbed to determine areas where 
improved physics modeling is most critically re- 
quired for improving overall accuracy. 

It is expected that the development of a 
new multi-level computational impact load capa- 
bility will follow the following steps. 

First the experience gained in the cooper- 
ative U.S./Norwegian High-Speed Craft project 
will be incorporated into the LAMP code sys- 
tem. Under the cooperative project, some aspects 
of the fully-nonlinear slamming load prediction 
method developed by Zhao and Faltinsen (1992) 
has been incorporated by Lin (1992) into a new 
method for motion and load SIMulation of PLAN- 
ing hulls (SIMPLAN). 

A nonlinear 2-D slamming simulation ca- 
pability which provides the pressure distribution 
will be further developed into a robust code ap- 
plicable to general naval and commercial ship 
shapes including asymmetric cases. This slam- 
ming pressure code will then be incorporated into 
the LAMP system and will become the first com- 
plete capability for assessing slamming problems 
for ships advancing in realistic head and oblique 
sea conditions. Even though the 2-D approach 
has its limitations, it is believed that it may be 
quite accurate for a large class of naval and com- 
mercial ship problems and at least far superior to 
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the existing semi-empirical force methods. 
The next step will be to integrate into 

the LAMP system the more advanced 2-D and 
3-D slamming pressure methods presently under 
development. This integration may require fur- 
ther developments to produce robust slamming 
codes applicable to general ship geometries. Some 
of the research issues that need to be addressed 
include the treatment of trapped air, hydroelas- 
ticity eifects and water compressibility in certain 
cases. Again the total capability will be used as 
a testbed to determine the accuracy and applica- 
bility of the different slamming methods for ships 
operating in real sea environments. 

We envisage the following multiple-level 
capability in the near future: (i) simple 2-D phe- 
nomenological/empirical models and database for 
global slamming loads; (ii) extended databases 
for local pressure distribution for geometrical 
and operational parameter regimes; (iii) a fully- 
nonlinear 2-D slamming simulation capability 
coupled directly into the 2-1/2-D (LAMP-3) and 
3-D (LAMP-4) body-nonlinear time-domain com- 
putations; (iv) a limited database of 3-D fully- 
nonlinear slamming simulation for global and lo- 
cal loads; (v) incorporation of fully-nonlinear 3-D 
capabilities in the LAMP-4 code. This proposed 
system is based on the following key considera- 
tions: (a) the need for a multiple-level capability 
involving a full range of accuracy/reliability and 
accompanying computational demands applicable 
from preliminary to final design and prototyping; 
(b) the usefulness of simple models for a wide 
range of applications which however are limited 
in validity in specific situations; (c) slams are of- 
ten temporally and spatially very much confined 
in terms of the entire simulation. 

Other Important Improvements 

There are other extensions to the LAMP 
system which are all important; however, here 
they will only be addressed briefly. 

Improved Oblique Seas Calculations 

Accurate oblique- and beam-sea calcula- 
tions are essential for the prediction of, for ex- 
ample, the torsional moments, slamming, violent 
quartering sea motions and capsizing. It is be- 
lieved that the first step is the development of an 
improved time-domain viscous roll damping ap- 
proach. The present method relies on mostly 2-D 
frequency domain empirical data. Our intention 
is to develop an entirely new method based on 

unsteady 3-D RANS calculations. 

Wave Environment Modeling 

The application of the motion and load 
prediction system to design assessment will re- 
quire a well defined approach for specifying the 
wave environment. Different wave-modeling ap- 
proaches may be used for the estimation of the dif- 
ferent responses. For example, in the estimation 
of comfort level, weapon operability and fatigue 
loads, the wave environment can in most cases 
be specified by a sea energy spectrum from which 
long term time-domain wave events can be gener- 
ated by assuming linear super-position of the in- 
dividual wave components. However, predictions 
of the extreme motion, as for example, capsizing 
and the most extreme structural loads will require 
a much better modeling and definition of extreme 
wave events. Also, we will need a method for esti- 
mating the probability of occurrence of the partic- 
ular wave/vessel encounters which results in the 
most critical responses. 

Accuracy and Uncertainty 

The estimation of the accuracy and un- 
certainty is probably one of the most critical ele- 
ments in the application of any prediction method 
in engineering. In particular, in the development 
of new design approaches which are to be based 
on advanced physics codes (e.g. Simulation Based 
Design), a knowledge of the accuracy and uncer- 
tainty is absolutely essential. All aspects of ac- 
curacy and uncertainty must be accounted for in 
estimating the total risk associated with building 
and operating a new construction. 

This is a research topic which goes far be- 
yond the more conventional approach to code val- 
idation. It will require the development of a new 
methodology for tracking all of the uncertainties 
throughout all of the stages in the design. Most 
importantly, the designer needs to know the sen- 
sitivity of the individual errors on the final risk 
factor for the overall design. 

Fully Nonlinear 3-D Capabilities 

Fully-nonlinear 3-D wave-body simula- 
tions are, in some sense, the ultimate capabil- 
ity in motion and load predictions in the con- 
text of free-surface potential flow. Such capabil- 
ities are now becoming available (see Xii & Yue, 
1992, Yue 1994) at least for basic research appli- 
cations.  Figure 18 shows a typical simulation of 
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Figure   18:     Numerical   Simulation  of  Fully- 
Nonlinear Wave Diffraction by Floating Body 

fully-nonlinear wave interactions with a ship-like 
floating body. The nonlinear Lagrangian inner 
computational domain (shown here with 0(2000) 
QBM nodes) is matched to a body-nonlinear 
outer wavefield via a QBM matching boundary 
(with 0(1000) nodes). Such a matching capabil- 
ity leads to a significant reduction in the total 
number of surface unknowns. More importantly, 
since "full" nonlinearity are typically well con- 
fined spatially and temporally, a combined ap- 
proach involving LAMP-like body-nonlinear do- 
mains matched to limited dynamic/moving fully- 
nonlinear regions appears quite feasible. Thus, 
LAMP is a natural platform for these more ad- 
vanced 3-D nonlinear tools as they become prac- 
tically useful. 

System Availability 

The effort required to maintain the total 
Ship Motion and Wave Load and Structural Re- 
sponse System and to serve the entire design and 
regulatory community is quite similar to that re- 
quired to operate an experimental seakeeping fa- 
cility. It is our belief that in order to provide a 
successful national assessment capability, the fi- 
nal total system must be installed at a national 
center. A central location for this system is not 
only of primary interest to the U.S. Navy, but 
also to the U.S. Coast Guard and ABS as well 
as the research, the design, and the shipbuilding 
communities. 

Presently, there does not exist a center 
which has a common focus for academia, indus- 
try, and government agencies within the U.S. mar- 

itime industry. The U.S. Navy Ship Technology 
Center located at the David Taylor Model Basin 
is a start in this direction. This Center was initi- 
ated by ARPA, but currently operating under the 
direction of NAVSEA. The complete Ship Motion 
and Wave Load System presented in this paper is 
to be installed at the Tech Center under an ONR 
contract. It is expected that the Tech Center will 
soon establish a procedure for serving the entire 
naval and maritime community. 

CONCLUDING REMARKS 

From the discussions presented in this pa- 
per it is becoming increasingly clear that the de- 
velopment of a motions, loads, and structural re- 
sponse prediction capability for ships is at a cross- 
roads. On the one hand, hydrodynamics codes 
are now emerging which are capable of providing 
an unparalleled level of efficiency and accuracy in 
calculations for practical design assessment. On 
the other hand, the integration of these codes into 
robust, multidisciplinary tools to aid in design de- 
cisions is just beginning. 

To be most effective, future development 
of the design tools must be tied to specific design 
application areas. As in IDEAS, current empir- 
ical and computational methods must be avail- 
able as low level routines which will continue to 
quickly provide trusted results whenever the re- 
quired level of accuracy is appropriate. Unless 
current design expertise is captured in a man- 
ner that permits flexible and user-friendly access, 
there will not exist a matrix of design knowledge 
within which we can embed the new computa- 
tional capability. By far the best technique for 
ensuring that the relevant body of expertise has 
been included is to develop the system within a 
design environment, tied to a specific design de- 
velopment. 

Once a fairly complete prototype design 
system exists, the system developers and design- 
ers will be in a position to evaluate collaboratively 
the true impact of additional improvements to the 
capability. It is anticipated that a design decision 
support system will permit error estimation and 
risk propagation as well as cost and performance. 
This information is exactly what is required to 
make rational decisions concerning expenditure of 
resources for additional fidelity, speed, or robust- 
ness in the computational codes. 

The effort required to develop these sys- 
tems should not be underestimated. The develop- 
ment of design tools has already begun, but it is 
still in its infancy. A much higher level of robust- 
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ness, efficiency, and integration will be necessary 
to begin to capture existing expertise in a system 
which can be extended to ongoing research re- 
sults. The effort in code validation and accuracy 
estimation alone is daunting. In an era of reduced 
defense budgets, dissipating design expertise, and 
increasingly complex design requirements, there 
may not be a choice. Without such systems, the 
archiving of naval ship design knowledge and the 
competitive re-entry of the U.S. into commercial 
shipbuilding may be extremely difficult. 
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ABSTRACT 

Fully nonlinear water wave problems are 
solved using Euler-Lagrange time stepping methods 
in conjunction with a desingularized approach to 
solve the mixed boundary value problem that arises 
at each time step. In the desingularized approach, 
the singularities generating the flow field are outside 
the fluid domain. This allows the singularity 
distribution to be replaced by isolated Rankine 
sources with the corresponding reduction in 
computational complexity and computer time. 

Examples of the use of the method in two- 
dimensions are given for the exciting forces acting 
on a wedge and the free motions of a box barge. For 
three-dimensions, the added mass and damping of a 
modified Wigley hull in heave and pitch are 
presented. Comparisons with experimental results 
show good agreement. 

INTRODUCTION 

As computational power and numerical 
methods have improved, there has been more and 
more interest in solving fully nonlinear free surface 
problems. Most of this work has assumed that the 
fluid is incompressible and inviscid and that the 
resulting flow is irrotational. These assumptions 
lead to a boundary value problem that is 
significantly easier to solve than the fully nonlinear, 
viscous problem and is the bases for the research 
discussed in this paper. 

Fully nonlinear free surface computations can 
be performed by many different methods. Longuet- 
Higgins and Cokelet (1976) first introduced the 
mixed Euler-Lagrange method for solving two- 
dimensional fully nonlinear water wave problems. 
This is a time stepping procedure that requires two 
major tasks at each time step: the linear field 
equation is solved in an Eulerian frame; then the 
fully nonlinear boundary conditions are used to track 
individual Lagrangian points on the free surface 
to update   their   position   and   potential   values. 

Variations of this method have been applied to a 
wide variety of two- and three-dimensional problems. 
Two-dimensional problems have been investigated 
by Faltinsen (1977), Vinje and Brevig (1981), Baker 
et al. (1982) and more recently Grosenbaugh and 
Yeung (1988), Cointe et al. (1990), Saubestre 
(1990), and Sen (1993). In three dimensions, the 
computations become much more difficult because 
of the large number of unknowns that are required. 
Results have been obtained by a number of 
researchers, including Lin et al. (1984), 
Dommermuth and Yue (1987), Kang and Gong 
(1990), Zhou and Gu (1990), Cao (1991), Cao et al. 
(1990, 1991, 1992), Lee (1992) and Beck et al. 
(1993). 

To successfully implement an Euler- 
Lagrange algorithm requires a stable time stepping 
scheme and a fast and accurate method to solve the 
mixed boundary value problem that results at each 
time step. In our research, the mixed boundary value 
problem is solved using a desingularized boundary 
integral method. The solution is constructed 
by integrating a distribution of fundamental 
singularities over a surface (the integration surface) 
outside the fluid domain. The integral equation for 
the unknown distribution is obtained by satisfying 
the boundary conditions on the surface (the control 
surface) surrounding the fluid domain. By 
distributing the singularities on a surface slightly 
removed from the control surface, the resulting 
kernel in the integral equation is nonsingular (or 
desingularized) and special care is not required to 
evaluate integrals over the panels. Simple numerical 
quadratures can be used to greatly reduce the 
computational effort, particularly by avoiding 
transcendental functions. In fact, we have found that 
for the source distribution method, the distributed 
sources may be replaced by simple isolated Rankine 
sources. Higher order singularities such as dipoles 
can easily be incorporated. Isolated Rankine sources 
also allow the direct computation of the induced 
velocities in the fluid and on its boundaries without 
further numerical integration or differentiation. The 
resulting code does not require any special logic and 
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is easily vectorized. At present, the method is 
0(N2), but by using multipole expansions it could 
be reduced to an 0(N) method. 

A number of researchers have used the 
desingularized approach. Webster (1975) was 
probably the first to apply the technique to panel 
methods. He used triangular patches of linearly 
distributed sources "submerged" within the body 
surface to study the steady flow past an arbitrary 
three-dimensional body. Schultz and Hong (1989) 
showed the effectiveness and accuracy of the 
desingularized method for two-dimensional potential 
flow problems. Cao et al. (1991) investigated 
convergence rates and error limits for simple three- 
dimensional flows including a source-sink pair 
traveling below a free surface. 

The desingularized method has been 
successfully applied to several free surface problems. 
The formation of solitons propagating ahead of a 
disturbance moving in shallow water near the critical 
Froude number have been studied by Cao et al. 
(1993). Bertram et al. (1991) compared the wave 
resistance, lift force and pitch moment acting on a 
submerged spheroid traveling beneath the free surface 
as computed by fully nonlinear methods and by 
linear theory. Using an iterative technique combined 
with the desingularized method, the wave resistance 
for steady forward motion was computed by Jensen 
et al. (1986, 1989) and Raven (1992). The 
desingularized method has been applied to ship 
motion problems by Bertram (1990) and Lee (1992). 
Beck et al. (1993) presents a variety of unsteady 
results with comparisons to other fully nonlinear 
calculations and to experiments. 

In the next section, the desingularized 
approach using isolated Rankine sources to solve 
fully nonlinear marine hydrodynamic problems will 
be discussed. The solution is developed in the time 
domain starting from rest. To determine the 
hydrodynamic forces the time derivative of the 
potential on the body must be known. In contrast to 
the conventional approach of finding this derivative 
using backward differencing, a technique is presented 
to find directly the derivative at the current time step. 
The derivative is found by solving a boundary value 
problem that has the same kernel matrix as the 
boundary value problem for the potential itself and 
consequently does not require a substantially greater 
computational effort. Following the theoretical 
development, numerical methods and results are 
presented for two and three-dimensional problems. 
Comparisons with experimental results are shown 
for the Wigley hull form. 

FULLY  NONLINEAR PROBLEM 
FORMULATION 

Boundary Value Problem 

An ideal, incompressible fluid is assumed 
and surface tension is neglected. The problem is 
started from rest so that the flow remains 
irrotational. This implies the existence of a velocity 
potential such that the fluid velocity is given by its 
gradient and the governing equation in the fluid 
domain is the Laplace equation. 

A coordinate system Oxyz translating in 
the negative x direction relative to a space fixed 
frame is used. The time dependent velocity of 
translation is given by U0(t) . The Oxyz axis 
system is chosen such that the z = 0 plane 
corresponds to the calm water level and z is 
positive upwards. The x-z plane is coincident with 
the centerplane of the vessel. The total velocity 
potential of the flow can then be expressed as 

<5 = U0(t)x + $(x,y,z,t) (1) 

where <}>(x,y,z,t) is the perturbation potential. Both 
<& and $ satisfy the Laplace equation 

V2O = 0 (2) 

Boundary conditions must be applied on all 
surfaces surrounding the fluid domain: the free 
surface (Sp), the body surface (SJJ), the bottom 
(Sg) and the surrounding surface at infinity (SoJ. A 
kinematic body boundary condition is applied on the 
instantaneous position of the body wetted surface: 

3£ 
dn 

= -U0(t)ni+VH-n   on   SH (3) 

where n = (ni,n2, n3> is the unit normal vector 
into the surface (out of the fluid domain ) and VJJ 

is the velocity of a point on the body surface 
including rotational effects relative to the Oxyz 
coordinate system. The subscripts 1,2,3 refer to the 
x, y, and z axis directions respectively. The 
kinematic condition is also applied on the bottom: 

9n 
= -U0(t)ni+VB-n   on   SB (4) 

where VJJ is the velocity of the bottom relative to 
the Oxyz system. For an infinitely deep ocean 
equation (4) reduces to 

V<j> -» 0   as   z —¥ -<*> (5) 
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Finite depth will increase the computational 
time because of the additional unknowns necessary 
to meet the bottom boundary condition but there is 
no increase in computational difficulty. In fact, the 
flatness of the bottom is immaterial. The only 
overhead relative to a flat bottom is an increase in 
the required number of nodes to represent the nonflat 
bottom. 

On the instantaneous free surface both the 
kinematic and dynamic conditions must be satisfied. 
The kinematic condition is 

!^.v,+!-Uo<„! on ST. (6) 

where z = T| (x, y, t) is the free surface elevation. 
The dynamic condition requires that the pressure 
everywhere on the free surface equals the ambient 
pressure, Pa . The ambient pressure is assumed 
known and may be a function of space and time. 
Normally it would be set equal to zero. Using 
Bernoulli's equation, the dynamic condition 
becomes: 

¥ = -gn--vo>^-u0(t)---7  on 

where p is the fluid density and g the gravitational 
acceleration. 

Because we are solving an initial value 
problem with no incident waves, the fluid 
disturbance must vanish at infinity : 

V<|> -H> 0   as   R -»< (8) 

In addition, the initial values of the potential and free 
surface elevation must be specified such that 

<j) = 0     t<0 

ri=0     t<0 

in fluid domain 
(9) 

In the Euler-Lagrange method, a time 
stepping procedure is used in which a boundary value 
problem is solved at each time step. At each step, 
the value of the potential is given on the free surface 
and the value of the normal derivative of the 
potential is known on the body surface and bottom 
surface. After the mixed boundary value problem is 
solved, the free surface potential and elevation are 
updated by integrating with respect to time (or time 
marching) the free surface boundary conditions, 
equations (6) and (7). The body and bottom 
boundary conditions are prescribed for the forced 
motion problem. In the case of a freely floating 
body, the equations of motion must be integrated 
with respect to time in a manner similar to the free 
surface conditions. 

On the free surface, the kinematic condition 
is used to time step the free surface elevation and the 
dynamic condition is used to update the potential. 
Many different approaches are possible to time 
march the free surface boundary conditions. The 
most common is the material node approach used by 
Longuet-Higgins and Cokelet (1976) in which the 
nodes or collocation points follow the individual 
fluid particles. Another technique is to prescribe the 
horizontal movement of the node but allow the node 
to follow the vertical displacement of the free 
surface. The prescribed movement may be zero such 
that the node locations remain fixed in the x-y plane. 
Depending on the problem, one of the techniques 
may be easier to apply than the others. 

It is convenient to rewrite the free surface 
boundary conditions, equations (6) and (7), in terms 
of the time derivative of a point moving with a 
prescribed velocity v relative to the Oxyz 
coordinate system. By adding v • Vr) to both sides 
of (6) and v • V<|> to both sides of (7) and after 
some algebraic manipulation, the kinematic and 
dynamic conditions can be put in the form 

SF<7)        |.|_(v^).v,-uoWf on SF   (10) 

and 

f-w-i^v^.^-5. -u.(0| 
on  Sp 

where 

5      3        „ 
—=—+vV 
8t   at 

(ii) 

(12) 

is the time derivative following the moving node. 

— is similar to the usual material derivative of fluid 
6t 

mechanics except the velocity is the prescribed v 
rather than the fluid velocity. 

If v   is set equal to   U(t),V(t),-^     the 

node follows a prescribed path with velocity (U(t), 
V(t)) in the x-y plane  and  moves vertically  with 

the   free surface.   Setting   v =   0,0, y-   results 

in the x-y locations of the nodes remaining fixed in 
the Oxyz coordinate system. In the material node 
approach, the velocity v is set equal to the fluid 
velocity such that v = U0(t)i + V<t> . 

The form of the free surface boundary 
conditions given by the above equations allows the 
value of the elevation and potential to be stepped 
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forward in time. The left hand sides of equations 
(10) and (11) are the derivatives with respect to time 
of the potential and wave elevation moving with the 
node. The quantities on the right hand side are all 
known at each time step. The spatial gradient of the 
potential can be determined analytically after solving 
the boundary value problem. The difficulty is the 
gradient of the free surface elevation (Vr) in equation 
(10)) that must be evaluated numerically and can lead 
to numerical inaccuracies. However, this term is 
only needed in the prescribed horizontal node 
movement approach. In the material node approach, 
no spatial derivatives of the free surface elevation 
need to be evaluated and this probably explains why 
this is the approach most often used. With material 
nodes one must always be concerned that the nodes 
do not penetrate the body surface between time steps 
since they are unconstrained. In zero forward speed 
problems, material nodes or fixed nodes seem to be 
the most appropriate. In problems with forward 
speed, the material node approach has difficulties 
near the body because nodes tend to pile up near the 
bow and stern stagnation regions. The prescribed 
horizontal node movement approach does not have 
this difficulty since the node movement is 
constrained. An appropriate choice of v is one 
which parallels the body waterline and is close to the 
fluid velocity. In this case, the contribution of the 
VT) term to the right hand side of (10) will be 
small and numerical inaccuracies will be minimized. 
Consequently, fast, simple numerical derivatives can 
be used to evaluate the Vr| term. 

At each time step a mixed boundary value 
problem must be solved: the potential is given on 
the free surface and the normal derivative of the 
potential is known on the body surface and the 
bottom. In terms of a desingularized source 
distribution, the potential at any point in the fluid 
domain is given by 

<|>(x) = JJa(xs)G(x;Xs)dß (13) 
n 

where G(x; xs) is the Rankine source Green 
function and Q is the integration surface outside 
the fluid domain. 

Applying the boundary conditions, the integral 
equations that must be solved to determine the 
unknown source strengths a(xs) are 

JJc(xs)G(xc;xs)dQ = (l)F(xc) (14) 

x, eTH 

<?(xs) gjj- G(xc; xs) dQ = %(xc) (15) 

xcern 

where   xs   =   a point on the integration surface, Q. 
xc   =   a point on the real boundary 
<))p =   the given potential value on the free 

surface at xc 

T^  =   surface on which <j>p is known 
%    =   the given normal velocity on the 

solid boundaries at xc 

Tn  =   surface on which % 1S known 

Hydrodynamic Forces 

The hydrodynamic forces acting on the body 
are found by integrating the pressure over the 
instantaneous wetted surface. The generalized force 
acting on the body in the jth direction is thus given 
by: 

Fj-JJpffj ds (16) 

where  n; is the generalized unit normal into the 

hull defined as 

(ni,n2,n3) = n 

(n4,n5,n6) = rxn 

(17) 

n = unit normal to body surface (out of fluid) 
in body axis system 

r=(x,y,z) 
Oxyz = body axis system 

and j = 1,2,...6 corresponds to the three directions 
and the three rotations about the x,y,z axes 
respectively. The generalized forces in the Oxyz 
system, F:, can be easily determined from Fj   by a 

simple transformation. 
The pressure in the moving coordinate 

system is given by Bernoulli's equation: 

^-f-U0(t)f»-gz-Iv4.V4 
p        dt dx 2 

(18a) 

and 
-£-"•<•>!• ■ gz V<j> • V<j> + v ■ V<|> 

(18b) 
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5d> where —- is the time derivation of the potential 
8t 

following a moving node on the body and v is the 
velocity of the node relative to the Oxyz system. 

Rigid Body Dynamics 

The motions of a body freely floating on 
the free surface are governed by Euler's equations of 
motion that relate the body velocities and 
accelerations to the forces and moments acting on it. 
In six degrees of freedom there are three equations of 
translation and three equations of rotation yielding 
six nonlinear differential equations for the six 
unknowns: the translational velocities of surge, 
sway, heave and the angular velocities of roll, pitch 
and yaw. The six differential equations may be 
found in most elementary textbooks on dynamics. 
They are usually written in terms of the Euler angles 
and are highly nonlinear for large amplitudes of 
motion. 

In the absence of towlines or mooring 
lines, the forces acting on the body are hydrostatic, 
hydrodynamic and gravitational. The gravitational 
forces depend only on the mass of the body and its 
orientation. The hydrostatic and hydrodynamic 
forces depend not only on the orientation but also 
the body velocity and acceleration. These fluid 
forces and moments must be solved simultaneously 
along with the equations of motion. To do this it is 
convenient to use the state variable representation of 
the complete system. 

Hydro- 
dynamic 
problem 

Euler's 
equa- 
tion of 
motion 

^£ = F1(XF,<t»F,XG,VG) (19a) 
dt 

^ = F2(XF,<t)F,XG,VG) (l%) 

dXG 

dt 

IVG 

dt 

vG (20a) 

^ = F3fxF,<l>F,XG,VG,^S-) (20b) 

where   the   state   variables   are   defined   by   the 
generalized vectors: 

XF = 

<t>F = 
xG = 

Vr. = 

location of free surface nodes 
potential of free surface nodes 
location of vessel center of gravity 
in 6-degrees of freedom 
6 components of body velocity at 
center of gravity 

Equations (19a) through (20b) are a system of first- 
order ordinary differential equations with respect to 

time in the state variables XF, cj>F, XG, VG . 
They can be time stepped using conventional 
numerical techniques. For this paper, we use a 
fourth-order Runge-Kutta technique. The first two 
equations (19a, 19b) represent the hydrodynamic 
problem that must be solved at each time step to 
determine the potential and elevation of the free 
surface nodes. The equations of motion of the body 
are symbolized by equations (20a) and (20b). The 
functional relations on the right hand side indicate 
the variables upon which the time derivatives 
depend. 

There are two difficulties associated with 
the time stepping illustrated by equations (19a) - 
(20b).   The first is that the accurate evaluation of 

— or —  that is critical to the computation of the 
St    at 

hydrodynamic forces acting on the body at each time 
step. For forced motions in which the body velocity 
is prescribed, this is not difficult since the body 
motion does not depend on a knowledge of the 
hydrodynamic forces. Consequently, the 
hydrodynamic forces acting on the body can be post- 
processed and a simple central differencing is 

5$ 
St  ' 

In free body motions, the body velocity and 
acceleration are a function of the hydrodynamic 
forces as related through the equations of motion 
(20a) - (20b). The body motions must be 
simultaneously    computed    along    with    the 

.    ,    s<t>     a<t> 
hydrodynamic forces.   This requires that — or 

sufficient to determine 

be known at the present time step. 
8<t> 

technique is to compute    — using 
ot 

St " at 
A conventional 

backward 

differencing, but this can lead to poor estimates of 
the derivative and possible instabilities.   We have 

a<t> developed a technique to compute directly — on the 

body at the present instant of time. Similar 
techniques have been used by other researchers such 
as Vinje and Brevig (1981), Yeung (1982), Kang and 
Gong (1990) and Cointe et al. (1990). 

Since — is harmonic in the fluid domain, 
3t 

it is the solution of an integral equation that has the 
same form as the integral equation that is solved to 
find <(> and T| . In fact, if the fundamental 
singularities are the same for both problems, then 
the influence matrix of the resulting system of linear 
equations is identical for both the <j> problem and the 

— problem.  The only difference is that the right 
3t 

hand side of the system of equations is altered. 

Thus,  to solve for   -^-  directly does not require a 
3t 
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great deal of additional computational effort as long 
as the inverse of the influence matrix is known. 

The   dynamic   free   surface   boundary 

condition (7) gives the value of    —  on the free 
at 

surface.   Once the potential problem is solved, the 

required value of — at each node on the free surface 
9t 

is easily calculated from (7). 
9(t> 

The normal derivative of ~- on the body 
3t 

can be shown to be: 

_a_W 
3nUt 

.^.^.Ä-aia., 

9VH 

at 

(21) 

are     the  velocity  and where  VH and 

acceleration, including rotational terms of the body 
surface at the nodes.   Knowing the velocity and 

a faf 
acceleration of the body fixed coordinates, — — 

can be calculated for each node on the body surface. 
ari> 

Given the Dirichlet condition for — on the free 
3t 

■ ■     r       ^ surface, the Neumann boundary condition for   — 
ot 

on the body surface, and a far-field condition of the 
same type as used in the potential problem, the 

a<b 
mixed boundary value problem for — can be solved 

in the same manner as the potential problem. 
A  second  difficulty   is  that  the  time 

dVr —   in equation  (20b)  is  not derivative of 
dt 

explicitly expressed in terms of the state variables. 
It is possible to develop a solution technique that 

factors out the —— term from the functional form 
dt 

on the right hand side of (20b). This is the approach 
taken by Vinje and Brevig (1981), Kang and Gong 
(1990), and others. For the calculations presented in 
this paper, we use an iterative procedure in which an 

assumed value of 
dVc 

dt 
is used on the right hand 

side of equation (20b) and then iterated until 
convergence. The iterative procedure typically takes 
5 to 10 iterations to converge at each time step. 
For six degrees of freedom this is less computational 
effort than would be necessary in the factorization 
method. 

NUMERICAL  TECHNIQUES 

The details of the numerical techniques 
using the desingularized method to solve the 
boundary value problem at each time step are 
described by Beck et al. (1993). 

Because of the desingularization isolated 
Rankine sources are used and the integrals in 
equations (14) and (15) are replaced by simple 
summation. There is a source associated with each 
node on the boundary. Each source is placed in the 
normal direction from the node at a distance 
proportional to the square root of the local node 
spacing. A domain-decomposition technique is often 
used because the node spacing on the free surface and 
the body surface can be very different which leads to 
ill-conditioning of the influence matrix. In this 
technique, the source strengths above the free surface 
and the source strengths in the body are determined 
separately using an iterative procedure. The 
equations to determine the source strengths can be 
solved using either a direct or an iterative solver. 
For the two-dimensional results presented in the next 
section, a LU decomposition solver is used. In 
three-dimensional problems, an iterative solver, 
GMRES, is used for the free surface sources and the 
direct solver is used for the body sources. 

A fourth-order Runge-Kutta-Fehlberg 
scheme is used for the time stepping of the free 
surface nodes and the state variables in free motion 
problems. For the results presented in the next 
section, material nodes are used for the zero forward 
speed computation. For the Wigley hull 
calculations, we prescribe the path around the hull 
and use the computed fluid velocity in the x-direction 
to move the nodes along this path. As long as the 
prescribed paths are close to the actual streamlines, 
the "semi-material nodes" will not cross the body 
surface and will have characteristics close to the 
actual material nodes. 

It should be noted that for all the results 
presented in the next section, no filtering or 
smoothing was used. For the forward speed 
calculation, the free surface nodes move along a 
prescribed path at each sub-time step and are re- 
gridded after each major time step. The body surface 
nodes are moved at each sub-time step in order to 
keep an even distribution of the nodes over the 
wetted surface of the hull. 

The far field boundary conditions at the edge 
of the computational domain are always a problem. 
At zero forward speed, either the edge of the 
computational domain must be far enough away that 
there is no disturbance or appropriate wall conditions 
must be specified. If not, an indeterminacy can 
develop as encountered by Lee (1992). For most 
zero speed computations adsorbing beaches or wave 
makers are placed along the far field boundaries. 
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For problems with forward speed, upstream 
boundary conditions must be specified. In our 
computations, we impose zero perturbation potential 
and zero free surface slope. Downstream, we drop 
the nodes as they move out of the computational 
domain. On the side edge, we prescribe the nodes to 
move downstream along a straight path and do not 
impose any further condition. This saves 
computational effort, but can lead to wave reflection. 
The wave reflection can be numerically damped by 
ever increasing transverse spacing of the nodes near 
the side edges as was proposed by Lee (1992). 

NUMERICAL   RESULTS 

In this section we present results for a 
variety of cases. Two-dimensional computations are 
shown for the exciting forces acting on a wedge in 
incident waves and the responses of a freely floating 
body in sinusoidal waves. Both steady and unsteady 
results are presented for the three-dimensional 
Wigley hull. The Wigley hull was chosen because 
its mathematical hull form allows the direct 
computation of node locations and unit normals. 
This is important because in fully nonlinear 
computations the nodes move on the hull surface at 
each time step and the mathematical definition 
avoids the need for complex hull surface programs. 
For further results using the desingularized method 
with comparisons to other calculations and 
experiments, reference may be made to Beck et al. 
(1993), Cao et al. (1992), or Lee (1992). 

Exciting  Forces  on  a  Two-Dimensional 
Wedge 

As illustrated in figure 1, the exciting 
forces acting on a two-dimensional wedge due to 
regular waves were computed. The wedge was in the 
middle of a 30 unit long tank with a pneumatic wave 
maker at one end. The wedge has a half-beam of 1, a 
depth of 3 and the incident wavelength is % . 

Figure 2 shows the wave profiles near the 
wedge. The spray plume that develops and causes 
the computations to stop as the incident waves strike 
the wedge is clearly visible. Physically, this spray 
plume has very little effect on the total exciting 
forces since it is thin and at essentially atmospheric 
pressure. To avoid the difficulty, we have used a 
small spray damping region in the vicinity of the 
wedge. The damper is a pressure applied to the free 
surface at each node with the appropriate sign so that 
energy is continuously taken from the system.  For 

figure 2, the damping is equal to 25 —     (J.(x), 

where |J.(x) is the spatial variation of the damping 
and quickly decays with distance from the body/free 
surface intersection.   As can be seen, the spray 

damping causes no significant change in the wave 
profile until later times. At these times the spray 
plume is developing and the reflected waves are 
undoubtedly modified by the presence of the 
damping. 

Figure 3 plots the total energy in the wave 
tank versus time. Two curves are shown: the first 
curve is the work input by the wave maker and the 
second is the wave energy in the tank. As can be 
seen, until the waves reach the spray damping 
region, the input energy and the energy in the 
system agree to within 0.1%. This indicates that 
there is very little numerical damping in the 
desingularized method. After the incident waves 
reach the spray damping region, the two curves 
diverge as expected. 

Figure 4 shows the effect of the spray 
damping on the fully nonlinear exciting forces acting 
on the body. The solid line is for the case without 
damping and it increases without bound at around 
t*=50 due to the numerical instability caused by the 
spray plume. The dash curve is the case with spray 
damping and it continues until the calculations cease 
at t*=70. As can be seen, the damping region has 
very little effect on the exciting forces except at the 
peaks. It appears that the spray damping region is 
an effective means of eliminating the spray plume 
without significantly altering the exciting forces 
acting on the body. 

Two-Dimensional Freely Floating Body in 
Waves 

The motions of a freely floating two- 
dimensional box have been computed. The box has 
a beam (B) of 2, a draft (T) of 1, and a bilge radius of 
.25. The wave tank is 31 units long and 3 units 
deep with a piston type wave maker at one end and 
an adsorbing beach at the other. Two numerical 
schemes have been used for the calculations. In 
both, the desingularized method was used for the 
hydrodynamic calculations at each time step. The 
difference between the two schemes was the method 
used to compute the time derivative of the potential 
on the body. In the first scheme (scheme A), the 
technique presented in equations (7) and (21)  was 

used to compute -^-  at each time step.    The 
3t 

equations of motion, (20a, b), could then be 
integrated to determine the time history of the 
motion. As pointed out previously, the 
hydrodynamic forces also depend on the acceleration 
of the body. An iteration procedure was used in 
which the solution at each time step was determined 
using an assumed body acceleration. The assumed 
acceleration was checked against the computed 
acceleration, if it did not agree to within a prescribed 
error (e), the iteration continued with the assumed 
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Figure 1: Exciting forces acting on a two - dimensional 
wedge due to regular waves 
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Figure 2: Wave profiles near the wedge 
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Figure 3: Total energy in the wave tank versus time 
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Figure 4: Effect of spray damping on fully nonlinear 
exciting forces acting on the body 
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Figure 5: Effect of error tolerance on body motions and hydrodynamic forces (dt - 0.2) 

235 



t/0 

■O.06 
«I 0 

Figure 6: Effect of time step size on body motions and hydrodynamic forces (e = 10 ) 
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Figure 7: Comparisons of body motion and hydrodynamic force computed using the two schemes 
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differencing was used to determine The 

value set equal to the average of the old and new 
values. 

In the second scheme (scheme B), backward 
8$ 

St' 
iteration procedure was then used to determine the 
body accelerations and motions as with the first 
scheme. 

Figure 5 shows the effects of the error 
tolerance in the iteration for body acceleration on the 
sway, heave, and roll motions and their respective 
hydrodynamic forces. As can be seen, an error 
tolerance of 106 (i.e. there is no iteration ) does not 

converge at t*=35 where t*=t^g7r.   A tolerance 

below 10"3 does not change the answers 
significantly. The second order drift of the body is 
clearly visible for the sway motion. The highly 
tuned roll motion is also evident by the very 
sinusoidal response. 

The variation of the response with time 
step size is shown in figure 6. A time step size of 
dt*=1.0 is too large since the results did not 
converge around t*=40. The other three sizes all 
yield essentially the same results. 

A comparison of the results computed by 
the first and second schemes is shown in figure 7. 
The solid line in the figure is the converged result 
computed by the first method with a time step size 
of .2 and an error tolerance of 10"6. As can be seen, 
the backward-differencing results accumulate error. 
The computations using a dt*=.5 diverge after t*=55. 
The other results approach those of scheme A as the 
time step size is decreased. The sway motion is 
most critical, probably because there is no restoring 
force to prevent the motions from drifting. 

Wigley   hull 

The wave resistance and radiation forces due 
to heave and pitch have been computed for a Wigley 
hull form. The Wigley hull is a mathematical form 
with the hull surface defined by the equation: 

2Y (2x*> 1+a2lrJ 
where L 

B 
T 
a2 

model length 
model full beam 
model draft 
coefficient for bow fullness 
0.0, standard hull 
.2 for modified Wigley hull HI 

(22) 

For both the standard hull and the modified hull m, 
L/B=10andB/T=1.6. 

The standard hull has been extensively 
tested for calm water resistance characteristics at 
model tanks around the world. The experimental 

Control Point 

0.1 *Ld Source Point 

Figure 8: Desingularization near the leading 
edge of a Karman - Trefftz airfoiL 

results presented in this paper are taken from 
Noblesse and McCarthy (1983). A series of four 
modified Wigley hulls were tested at Delft 
University of Technology by Gerritsma and Journee. 
Joumee (1992) presents the complete heave and pitch 
results for the added mass and damping, exciting 
forces, and amplitudes and phase angles at a variety 
of Froude numbers and frequencies. For this paper 
comparisons were made with the modified Wigley 
hull m. 

Because of the placement of the 
singularities inside the body, difficulties can arise in 
using the desingularized method for sharp leading 
edges, such as the bow of a ship. To investigate 
this problem, the desingularized method was applied 
to a two-dimensional Karman-Trefftz airfoil in an 
infinite fluid. The exact solution to this problem is 
known analytically. Figure 8 is a sketch of the 
Karman-Trefftz airfoil and the placement of the 
desingularized source points near the leading edge. 
The source points near the leading edge can cross the 
centerline, in which case they are moved back to the 
centerline without changing the x-coordinate. The 
source point corresponding to the leading edge node 
is placed a small distance behind the node; this 
distance is critical in order to obtain accurate results 
near the leading edge. 

Figure 9 plots the tangential velocity on 
the surface of the foil for two different entrance 
angles. The solid line is the numerical results 
using 60 nodes with cosine spacing and the dots are 
the analytic results. As can be seen, the analytic and 
numerical results agree to within 0.1% as long as 
the source associated with the leading edge node is 
desingularized only a small amount. For the large 
entrance angle, the numerical results are accurate 
even for a large (x=.5Ld) placement of the leading 
edge source from the nose. However, for the sharp 
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Desingularized distance at leading and trailing edge = 0.1*Ld 
Entrance half angle = 13.5 degrees 
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Desingularized distance at leading and trailing edge = 0.5*Ld 
Entrance half angle = 13.5 degrees 

Vt 

1.S 2 

Desingularized distance at leading and trailing edge = 0.1*Ld 
Entrance half angle = 45.0 degrees 

Desingularized distance at leading and trailing edge = 0.5*Ld 
Entrance half angle = 45.0 degrees 

Vt 

Figure 9: The effect of desingularized distance on surface tangential velocity (v,) for a Karman-Trefftz airfoil 

Desingularized Distance at Bow 0.1 *Ld 

Beck et al. (1993) 

(no control points at 

the bow) 

Figure 10: Wigley hull double body pressure on the forward half of the body 
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entrance angle, a spike develops as the distance of 
the leading edge source is moved back. The 
agreement over most of the foil is still good. The 
further away that the leading edge source is placed, 
the worse the solution. Also, the narrower the 
entrance angle, the sooner the spike develops. The 
cause of the spike is the strength of the leading edge 
source. This source must be strong enough to 
cancel the free stream velocity at the leading edge 
node which is also the stagnation point. The further 
back this source is placed, the larger its strength has 
to be. This large source strength in turn induces a 
large tangential velocity at the second node. As the 
leading edge source is moved forward, its induced 
tangential velocity at the second node is decreased 
and its required strength is also decreased. The net 
result is that the spike does not develop. The 
narrower the entrance angle, the greater the effect 

The same effect of poor definition of the 
flow near the leading edge can be seen in three- 
dimensions. Figure 10 is a plot of the pressure 
coefficient near the bow of a standard Wigley hull 
double body. The upper plot shows the change in 
pressure distribution due to a change in 
desingularization of the leading edge source from 
.l*Ld to .5*Ld. Reducing the .l*Ld further does not 
change the results. For the .5*Ld case, the spike in 
tangential velocity appears as a dip in pressure 
coefficient. In the lower plot, the .l*Ld result is 
compared to the node placement used by Beck et al. 
(1993) in which no node was put right at the bow. 
As can be seen, the deletion of the bow node 
eliminates the spike in velocity but the stagnation 
pressure peak is also lost. 

The loss of stagnation pressure caused a 
large underprediction of the bow wave in the 
calculations with a free surface. Figure 11 is a plot 
of the wave amplitude along the side of the standard 
Wigley hull as measured at the University of Tokyo 
on a 2.5m model fixed in sinkage and trim (cf. 
Noblesse and McCarthy 1983). Also shown in the 
figure are the results of the numerical calculations 
using the desingularized method. As can be seen, 
the new node and source placement has made a 
significant improvement in the bow wave amplitude 
prediction. The amplitude is larger and the phase 
has been shifted forward more inline with the 
experimental results. 

Due to the new node placement, the 
predicted wave resistance coefficient changed from 
Cw =.00085 found by Beck et al. (1993) to 
Cw=.001. The experiments show a range of values 
centering around .00081. 

Computations have been done for the forced 
heave and pitch motions of the modified Wigley hull 
III. Figure 12 shows the nondimensional surge 
force, heave force and pitch moment as a function of 
time for a forced pitching amplitude of 1.5 degrees. 
The   Froude   number   is .3   and   the oscillation 

0.04 

0.02 

d 0.00 

-0.02 

-0.04 

Experiment 

Present Calculation 

.Beck et al (1993) 

-1.0 -0.5 0.00 
2x/L 

0.5 1.0 

Figure 11: Wave profile along the standard Wigley hull 
(Fr = 0.25, fixed sinkage and trim) 

frequency is uW(L/g)=2.76642. The number of 
nodes on the hull surface was 612 and there were 
3267 nodes on the free surface. The model was 
started from rest and smoothly accelerated up to 

speed.   At t*0 = t0Jy = 14 the pitch motion was 

slowly increased to the final amplitude of 1.5 
degrees. For both the speed and motion, the smooth 
increase was of the form: 

f(t) = f0(t)fl-e"a(t_to)2j-H(t-t0) 

where 

a      =   adjustable constant 
t0     =   time at initial start of motion 
H(t) = heaviside step function 

In the figure, the total force along with its 
five separate components are plotted. The five 
components result from the five terms in the 
pressure equation (18b). The first component and 
largest during the initial start-up, is due to the time 
derivative of the potential following each individual 

node (-P—).   The second term is the linear pressure 
K8t 

due to the forward speed   -pU0(t)-^ .  This is the 

usual linear pressure component in steady forward 
motion problems. It is the dominant component for 
the surge and heave forces. The third is the gravity 
term due to the change in the integration of -pgz 
over the wetted surface. For steady forward speed this 
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Figure 12: Modified Wigley hull III - force components due to pitch excitation 
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term is proportional to the wave elevation squared 
and is small and negative. In unsteady motions, this 
term includes the hydrostatic restoring force and can 
be the largest component. The fourth component 
(-l/2pV<f>-V<|>) is the velocity squared term which is 
also small and negative. The final component 
(pv-VQ) is the correction for the moving nodes. 
The node movement is due to the changing wave 
elevation along the hull that results in the nodes 
being redistributed along the hull section. For 
typical computations this component is relatively 
small; for steady wave resistance this component 
will go to zero as the wave elevation becomes 
constant. 

The starting sequence of first accelerating 
the model up to speed and then starting the unsteady 
motions has been found to minimize the transients 
compared to starting both the forward speed and the 
unsteady motions at t*=0. The acceleration to steady 
forward speed is run first. All the unsteady cases 
then use this as a starting point. Either way the 
computations have to be carried out to t*=28 
However, the unsteady motion calculations need 
only be done from t*=14 to t*=28. If the 
calculations had been started from zero, each 
frequency would have to be run from t*=0 to t*=28. 

Examining the start up phase of t*<14 in 
figure 12, several characteristics that are typical of 
the wave resistance problem can be seen. First, the 
surge force (positive out the stern) is equivalent to 

8* .    , 
the wave resistance. Initially the -p— term is the 

ot 
largest and then decays to zero as the model comes 
up to speed. As the model reaches steady speed, the 
linear term is, as expected, the largest component. 
The component due to the -pgz term and the 
component due to -l/2pV(|>-V<|> are the same order of 
magnitude and both negative. 

There is a fairly large sinkage (or negative 
heave) force acting on the model in steady forward 
motion.   The trim (or pitch) moment starts off as 
bow up, reverses to bow down and then goes to 
approximately  zero.     This  is  consistent with 
experimental measurements on the standard hull that 
found almost no trim angle for a Froude number of 
.3. In the computations, the model could have been 
given the freedom to respond to the sinkage force and 
trim moment, but this is inconsistent with the 
experiments of Journee that were conducted fixed 
about the calm waterline. As with the surge force, 
the biggest component of the heave force is the 

-pU0(t)-^  term. 

At t*=14 the forced pitch motion begins. 
As can be seen, the hydrodynamic forces acting on 
the model quickly build to steady state. For surge, 
the two largest components of the force are still the 

linear terms (-p^ and -pU0(t)-^).   While   not 
ot ox 

obvious because there is not enough time for the 
steady results to settle down completely, there is a 
mean shift between the steady portion (t*<14 ) and 
the unsteady portion of the curve. This mean shift 
is the added resistance due to pitch motion. One of 
the advantages of fully nonlinear calculations is that 
higher order quantities such as added drag are 
automatically accounted for. 

The character of the heave force is similar 
to the surge in that the linear components are the 
most prominent and there is a significant mean shift. 
Again, the mean shift changes due to the unsteady 
motions. There also appears to be a low frequency 
component to the heave force that is a carry over 
from the original start-up. 

As expected, the pitch moment is 
dominated by the -pgz term. This component is a 
combination of the usual linear hydrostatic restoring 
moment and the nonlinear effect caused by the 
varying wetted surface. The other components of the 
force are all relatively small. 

The time histories of the unsteady forces 
and moments, such as those plotted in figure 12, can 
be used to determine the equivalent linear added mass 
and damping coefficients. As shown in Journee 
(1992), the equivalent linear coefficients are found by 
equating the actual unsteady force time history to the 
linear representation of the force using the added 
mass and damping coefficients. Since the time 
histories are not perfectly linear, some care must be 
taken to ensure an equivalent linearization. We have 
found that Fourier series or least square fit of the data 
over several cycles yield the same results. 

Figures 13 and 14 show the added mass and 
damping coefficients as a function of frequency for 
the modified Wigley hull III at a Froude number of 
.3. Figure 13 is for forced heave and figure 14 is for 
forced pitch. The experimental results and the other 
numerical calculations were taken from Journee 
(1992). Our coordinate system leads to cross 
coupling coefficients with the opposite sign of those 
presented in Journee (1992). In order to compare 
with Journee's and others' results, we have plotted in 
figures 13 and 14 the negative of our cross coupling 
coefficients. The strip theory results are computed 
using the modified strip theory coefficients of 
Salvesen et al. (1970) with a close fit method to 
compute the two-dimensional added mass and 
damping. The three-dimensional hybrid results were 
computed using the three-dimensional zero speed 
coefficients calculated by WAMIT and modified for 
forward speed by the Salvesen et al. (1970) forward 
speed corrections. In general, the two linearized 
computations are fairly close indicating that three- 
dimensional effects are not too important for this 
relatively slender model. 
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As can be seen, the fully nonlinear 
computations show much better agreement with 
experiments than either of the linearized 
computations. The added mass and damping due to 
heave (A33 and B33) are both a little low but the 
trends of the curves agree with the trends shown by 
the experiments. The heave damping is over 
predicted by the linearized computations. The pitch 
moments due to heave (A53 and B53) show excellent 
agreement in contrast to the linearized predictions 
that are poor. 

As with the heave, the pitch added mass and 
damping (A55, B55) are underpredicted by the fully 
nonlinear computations relative to the experiments. 
However, for pitch damping the nonlinear 
computations agree with experiments much better 
than the linear theory predictions. For the pitch 
added mass, the nonlinear computations are 
approximately the same as the linear results. The 
reasons for the underpredictions are not known. It is 
expected that the damping predictions would be low 
because viscous effects are neglected. 

The fully nonlinear pitch cross-coupling 
coefficients show very good agreement with 
experiments. It appears that the cross coupling 
coefficients are better predicted than the heave and 
pitch added mass and damping coefficients. 

CONCLUSIONS 

The desingularized method is a fast and 
accurate technique to solve fully nonlinear water 
wave problems. The desingularization allows the 
use of isolated Rankine sources rather than the more 
complex panel distributions. Unlike panel methods 
the free surface and body surface are not discretized 
with panels, thus avoiding the difficulties associated 
with compound curvature. 

Computations for the Wigley hull have 
shown that the fully nonlinear calculations greatly 
improve the predictions of the added mass and 
damping coefficients relative to those of strip theory 
or a hybrid three-dimensional method. Further 
studies for convergence rates and more complex hull 
forms need to be done. 
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DISCUSSION 

Z. Zou 
Universität Hamburg, Germany 

I think your desingularized method corresponds to a 
first-order panel method, or better to say a zero-order 
panel method. I wonder if your method can also be 
used to calculate the higher order derivatives of the 
velocity potential due to the simple isolated sources at 
nodes or collocation points on the body surface? 

AUTHORS' REPLY 

The desingularized method can be used to calculate 
higher order derivatives at any point on the body or in 
the fluid. Once the desingularized source strength is 
known, higher order derivatives can be computed 
analytically. Because of the desingularization all 
velocities and higher order derivatives are continuous 
everywhere on the body surface. 

246 



Observations of Cavitating Flows 
C. Brennen 

(California Institute of Technology, USA) 

ABSTRACT 

This paper will present a review of some of the 
recent advances in our understanding of the dy- 
namics and acoustics of cavitating flows. We focus 
first on the individual events which evolve from 
a single travelling nucleus and describe observa- 
tions of the intricate micro-fluid-mechanics which 
affect both the bubble shape and the subsequent 
emission of noise. These phenomena have impor- 
tant consequences in terms of their implications for 
the scaling of cavitation damage and noise. We 
also present calculations of the interaction between 
the individual traveling bubbles and the irrota- 
tional flow outside of the boundary layer of the 
headform. Comparisons of predicted and experi- 
mentally observed bubble shapes show qualitative 
agreement but further work is neccessary to under- 
stand the details of the interactions between the 
viscous boundary layer and the bubble. 

To model the processes of cavitation inception, 
noise and damage it is neccessary to generate a 
model of the cavitation event rate which can then 
be coupled with the consequences of the individual 
events. In the second part of this paper we describe 
recent efforts to connect the observed event rates 
to the measured distributions of cavitation nuclei 
in the oncoming stream. Such studies neccessarily 
raise questions regarding the nuclei distributions in 
water tunnels and in the ocean and it would seem 
that we still know little of the nuclei population 
dynamics in either context. This is illustrated by 
a few observations of the population dynamics in a 
particular facility. 

The third subject addressed in this paper is the 
question of the noise produced by an individual 
travelling cavitation event. It is shown that the dis- 
tortions in the shape of cavitation bubbles leads to 
acoustic impulses which are about an order of mag- 
nitude smaller than those predicted by the spheri- 
cal bubble dynamics of the Rayleigh-Plesset equa- 
tion.   However, at the higher cavitation numbers, 

the upper bound on the experimental impulses 
scales with speed and size much as one would ex- 
pect from the spherical bubble analysis. Initially, 
as the cavitation number is decreased, the impulse 
increases as expected. But, beyond a certain crit- 
ical cavitation number, the noise again decreases 
in contrast to the expected increase. This phe- 
nomenon is probably caused by two effects, namely 
the interaction between events at the higher event 
densities and the reduction in the impulse due to 
a change in the dominant type of cavitation event. 

From the single event we then move to the larger 
scale structures and the interactions which occur 
when the density of the events becomes large and 
individual bubbles begin to interact. One of the 
more important interaction phenomena which oc- 
cur results from the behaviour of a cloud of cavita- 
tion bubbles. Most previous theoretical studies of 
the dynamics of cavitating clouds have been linear 
or weakly non-linear analyses which have identified 
the natural frequencies and modes of cloud oscil- 
lation but have not, as yet, shown how a cloud 
would behave during the massively non-linear re- 
sponse in a cavitating flow. We present non-linear 
calculations which show the development of an in- 
wardly propagating shock wave during the collapse 
phase of the motion. These observations confirm 
the earlier speculation of M0rch and his co-workers. 

INTRODUCTION 

Recent years have seen a significant advance of 
our understanding of the dynamics and acoustics of 
cavitating flows and the purpose of this paper will 
be to attempt to summarize some of the improve- 
ments in our knowledge of these hydrodynamic and 
acoustic phenomena. 

We begin by describing the effect of the flow on 
a single cavitation "event", the term used to de- 
note the processes which follow when an individ- 
ual cavitating nucleus is convected into a region of 
low pressure. The pioneering observations of single 
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events which were made by Knapp (see, for exam- 
ple, Knapp and Hollander 1948) were followed by 
the analyses of Plesset (1949), Parkin (1952) and 
others who sought to model these observations of 
the growth and collapse of a travelling cavitation 
bubble using Rayleigh's equation for the dynam- 
ics of a spherical bubble (Rayleigh 1917). Parkin 
opined that the lack of agreement between the the- 
ory and his experimental observations was due to 
the neglect of the boundary layer. Rayleigh-Plesset 
models of travelling bubble cavitation which at- 
tempted to incorporate the effects of the bound- 
ary layer followed and included the work of Os- 
hima (1961), Van der Walle (1962), Holl and Ko- 
rnhauser (1970) and Johnson and Hsieh (1966). 
Like Plesset's and Parkin's original models these 
improved versions continued to make two assump- 
tions, namely that the bubbles remain spherical 
(except in the later phase of collapse) and that 
bubbles or events do not interact with one another. 
Most of the present paper will focus on the depar- 
ture from these assumptions which occur in real 
flows and the consequences of these departures in 
so far as damage potential and noise emission are 

concerned. 

Observations of real flows demonstrate that even 
single cavitation bubbles are often far from spher- 
ical. Indeed, they may not even be single bub- 
bles but rather a cloud of smaller bubbles. In re- 
cent years, it has become clear that departure from 
sphericity often occurs as a result of the interac- 
tion of the bubble with the pressure gradients and 
shear forces in the flow. We shall begin by examin- 
ing some of these effects while still assuming that 
the events are sufficiently far apart in space and 
time that they do not interact with one another or 
modify the global liquid flow in any significant way. 

Before describing some of the experimental ob- 
servations of bubble/flow interactions, it is valuable 
to consider the relative sizes of the cavitation bub- 
bles and the viscous boundary layer. In the flow of 
a uniform stream of velocity, U, around an object 
such as a hydrofoil with typical dimension, £, the 
thickness of the laminar boundary layer near the 
minimum pressure point will be given qualitatively 
by 6 « (v£/U)? where v is the kinematic viscosity 
of the liquid. Parenthetically we note that tran- 
sition to turbulence usually occurs downstream of 
the point of minimum pressure and consequently 
the laminar boundary layer thickness is the appro- 
priate dimension for limited cavitation confined to 
the immediate neighbourhood of the low pressure 
region.   Moreover, the asymptotic growth rate of 

a bubble yields a typical maximum bubble radius, 

RM, given by 

RM ~ 2£( — <T — Gpmin) (1) 

where a is the cavitation number defined as 2(poo — 
Pv)/pU2 where p^ and pv are respectively the up- 
stream and vapor pressures and p is the liquid den- 
sity. The coefficient of pressure, Cp, is defined as 
2(p — poo)/pU2 where p is the local pressure in the 
flow and Cpmin denotes the minimum pressure co- 
efficient in the flow. It follows that the ratio of the 
boundary layer thickness to the maximum bubble 
radius, 6/RM, is given approximately by 

S 

RM 

1  (i^y (2) 

Therefore, provided (-<T-Cpm;„) is of the order of 
0.1 or greater, it follows that for the high Reynolds 
numbers, Utfv, which are typical of most of the 
flows in which cavitation is a problem, the bound- 
ary layer is usually much thinner than the typical 
dimension of the bubble. This does not mean the 
boundary layer is unimportant. But we can an- 
ticipate that those parts of the cavitation bubble 
furthest from the solid surface will interact with the 
primarily inviscid flow outside the boundary layer, 
while those parts close to the solid surface will be 
affected by the boundary layer and the shear forces 
associated with it. 

When the frequency of cavitation events in- 
creases in space or time such that they begin to in- 
teract with one another a whole new set of phenom- 
ena may be manifest. They may begin to interact 
hydrodynamically with important consequences for 
both the global flow and the dynamics and acous- 
tics of the individual bubble. For example, clouds 
of cavitating bubbles are often shed from a cavi- 
tating foil and the coherent dynamics of the cloud 
can result in a collapse process which has much 
greater potential for noise production and dam- 
age than the individual bubbles would have act- 
ing independently (see, for example, Soyama et al. 

1992). 

INDIVIDUAL EVENTS 

Some of the early (and classic) observations of 
individual travelling cavitation bubbles by Knapp 
and Hollander (1948), Parkin (1952) and Ellis 
(1952) make mention of the deformation of the 
bubbles by the flow. But the focus of attention 
soon shifted to the easier observations of the dy- 
namics of individual bubbles in quiescent liquid 
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Figure 1: Isobars in the vicinity of the minimum pressure point on the axisymmetric Schiebe headform 
with values of the pressure coefficient, Cp, as indicated. The pressures were obtained from a potential flow 
calculation. The insert shows the headform shape and the area that has been enlarged in the main figure 
(dashed lines). From Schiebe (1972) and Kuhn de Chizelle et al. (1992). 

and it is only recently that investigations of the de- 
formation caused by the flow have resumed. Both 
Knapp and Hollander (1948) and Parkin (1952) ob- 
served that almost all cavitation bubbles are closer 
to hemispherical than spherical and that they ap- 
pear to be separated from the solid surface by a 
thin film of liquid. Such bubbles are clearly evi- 
dent in other photographs of travelling cavitation 
bubbles on a hydrofoil such as those of Blake et al. 
(1977) or Briancon-Marjollet et al. (1990). 

A number of recent research efforts have fo- 
cussed on these bubble/flow interactions includ- 
ing the work of van der Meulen and van Renesse 
(1989) and Briancon-Marjollet et al. (1990). Re- 
cently, Ceccio and Brennen (1991) and Kuhn de 
Chizelle et al. (1992) have made an extended se- 
ries of observations of cavitation bubbles in the 
flow around axisymmetric bodies including stud- 
ies of the scaling of the phenomena. Two ax- 
isymmetric body shapes were used, both of which 
have been employed in previous cavitation investi- 
gations. The first of these was a so-called "Schiebe 
body" (Schiebe 1972). One of the important char- 
acteristics of this shape is that the boundary layer 
does not separate in the region of low pressure 
within which cavitation bubbles occur. The sec- 
ond body had the ITTC headform shape which was 
originally used by Lindgren and Johnsson (1966) 
and exhibits laminar separation within the region 
in which the cavitation bubbles occur. For both 
headforms, the isobars in the neighbourhood of the 

minimum pressure point exhibit a large pressure 
gradient normal to the surface as illustrated by 
the isobars for the Schiebe body shown in figure 
1. This pressure gradient is associated with the 
curvature of the body and therefore the stream- 
lines in the vicinity of the minimum pressure point. 
Consequently, at a given cavitation number, a, the 
region below the vapor pressure which is enclosed 
between the solid surface and the Cp = —<x isobaric 
surface is long and thin compared with the size of 
the headform. Only nuclei which pass through this 
thin volume will cavitate. 

The observations of Ceccio and Brennen (1991) 
at relatively low Reynolds numbers will be de- 
scribed first. Typical photographs of bubbles on 
the 5.08cm diameter Schiebe headform during the 
cycle of bubble growth and collapse are shown in 
figure 2. Simultaneous profile and plan views pro- 
vide a more complete picture of the bubble geome- 
try. In all cases the shape during the initial growth 
phase was that of a spherical cap, the bubble be- 
ing separated from the headform surface by a thin 
layer of liquid of the same order of magnitude as 
the boundary layer thickness. Later developments 
depend on the geometry of the headform and the 
Reynolds number so we begin with the simplest 
case, namely the Schiebe body at relatively low 
Reynolds number. Typical photographs for this 
case are included in figure 2. As the bubble begins 
to enter the region of adverse pressure gradient the 
exterior frontal surface begins to be pushed inward 
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Figure 2: A series of photographs illustrating the growth and collapse of travelling cavitation bubbles in a 
flow around a 5.08cm diameter Schiebe headform at cr = 0.45 and a speed of 9 m/s. Simultaneous profile 
and plan views are presented but each row is, in fact, a different bubble. The flow is from right to left. The 
scale is 4.5 times lifesize. From Ceccio and Brennen (1991). 

causing the profile of the bubble to appear wedge- 
like. Thus the collapse is initiated on the exterior 
frontal surface of the bubble and this often leads to 
the bubble fissioning into forward and aft bubbles 
as seen in figure 2. 

But, two other processes are occuring at the 
same time. First, the streamwise thickness of the 
bubble decreases faster than its spanwise breadth 

(spanwise being defined as the direction parallel to 
the headform surface and normal to the oncom- 
ing stream) so that the largest dimension of the 
bubble is its spanwise breadth. Second, the bub- 
ble acquires significant spanwise vorticity through 
its interactions with the boundary layer during the 
growth phase. Consequently, as the collapse pro- 
ceeds this vorticity is concentrated and the bubble 
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Figure 3: Examples from Ceccio and Brennen (1991) illustrating the instability of the liquid layer under a 
travelling cavitation bubble (for a = 0.45 and a speed of 8.7 m/s). The photographs are 3.8 times lifesize. 

evolves into one (or two or possibly more) cavitat- 
ing vortices with spanwise axes. These vortex bub- 
bles proceed to collapse and seem to rebound as a 
cloud of much smaller bubbles. Often a coherent 
second collapse of this cloud was observed when the 
bubbles were not too scattered by the flow. Ceccio 
and Brennen (1991) (see also Kumar and Brennen 
1993b) conclude that the flow-induced fission prior 
to collapse can have a substantial effect on the noise 
impulse. 

Two additional phenomena were observed on 
the headform which exhibited laminar separation, 
namely the ITTC headform. The first of these was 
the observation that the layer of liquid underneath 
the bubble would become disrupted by some insta- 
bility. As seen in figure 3 this results in a bubbly 
layer of fluid which subsequently gets left behind 
the main bubble. Thus the instability of the liq- 
uid layer leads to another mechanism of bubble fis- 
sion. Because of the physical separation, the bub- 
bly layer would collapse after the main body of the 
bubble. 

The second and perhaps more consequential phe- 
nomenon observed with the ITTC headform only 
occurs with the occasional bubble. Infrequently, 
when a bubble passes the point of laminar sep- 
aration, it triggers the formation of local "at- 
tached cavitation" streaks at the lateral or span- 

wise extremities of the bubble as seen in figure 4. 
Then, as the main bubble proceeds downstream, 
these "streaks" or "tails" of attached cavitation are 
stretched out behind the main bubble, the trailing 
ends of the tails being attached to the solid sur- 
face. Subsequently, the main bubble collapses first 
leaving the "tails" to persist for a fraction longer 
as illustrated by the lower photograph in figure 4. 

The importance of these occasional "events with 
tails" did not become clear until tests were con- 
ducted at much higher Reynolds numbers, with 
larger headforms (up to 50.5cm in diameter) and 
somewhat higher speeds (up to 15 m/s). These 
tests were part of an investigation of the scaling of 
the bubble dynamic phenomena described above 
(Kuhn de Chizelle et al. 1992) which was con- 
ducted in the Large Cavitation Channel (LCC, 
Morgan 1990). One notable observation was the 
presence of a "dimple" on the exterior surface of 
all the individual travelling bubbles; examples of 
this dimple are included in figure 5. They are not 
the precursor to a re-entrant jet for the dimple 
seems to be relatively stable during most of the col- 
lapse process. More importantly, it was observed 
that, at higher Reynolds number, "attached tails" 
occurred even on these Schiebe bodies which did 
not normally exhibit laminar separation. More- 
over, the probability of occurence of attached tails 
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Figure 4: Examples from Ceccio and Brennen (1991) illustrating the attached tails formed behind a travelling 
cavitation bubble (for cr = 0.42 and a speed of 9 m/s). The top two are simultaneous profile and plan views. 
The bottom shows the persistence of the tails after the bubble has collapsed. The photographs are 3.8 times 

lifesize. 

increased as the Reynolds number increased and 
the attached cavitation began to be more exten- 
sive. As the Reynolds number increased further, 
the bubbles would tend to trigger attached cavi- 
ties over the entire wake of the bubble as seen in 
the lower two photographs in figure 5. Moreover 
the attached cavitation would tend to remain for 
a longer period after the main bubble had disap- 
peared. Eventually, at the highest Reynolds num- 
bers tested it appeared that the passage of a single 
bubble was sufficient to trigger a "patch" of at- 
tached cavitation (figure 5, bottom) which would 
persist for an extended period after the bubble had 
long disappeared. We note that Howison et al. 
(1993) have recently examined an inviscid model 
for such patch cavities. 

This progression of events and the changes in the 
probabilities of the different kinds of events with 
Reynolds number imply a rich complexity in the 
micro-fiuidmechanics of cavitation bubbles, much 
of which remains to be understood. Its impor- 
tance lies in the fact that these different types 
of events cause differences in the collapse process 
which, in turn, alters the noise produced (see Kuhn 
de Chizelle et al. 1992) and, in all probability, 
the potential for cavitation damage. For example, 
the events with attached tails were found to pro- 

duce significantly less noise than the events with- 
out tails. Due to the changes in the probabilities of 
occurence of these events with Reynolds number, 
this implies a scaling effect which had not been pre- 
viously recognized. It also suggests some possible 
strategies for the reduction of cavitation noise and 
damage. 

When examined in retrospect, one can identify 
many of these phenomena in earlier photographic 
observations, including the pioneering, high-speed 
movies taken by Knapp. As previously remarked, 
Knapp and Hollander (1948), Parkin (1952) and 
others noted the spherical-cap shape of most trav- 
elling cavitation bubbles. The ITTC experiments 
(Lindgren and Johnsson 1966) emphasized the di- 
versity in the kinds of cavitation events which could 
occur on a given body and later authors attempted 
to identify, understand and classify this spectrum 
of events. For example, Holl and Carroll (1979) 
observed a variety of different types of cavitation 
events on axisymmetric bodies and remarked that 
both travelling and attached cavitation "patches" 
occurred and could be distinguished from travel- 
ling bubble cavitation. A similar study of the dif- 
ferent types of cavitation events was reported by 
Huang (1979) whose "spots" are synonymous with 
"patches". 
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Figure 5: Typical cavitation events from the scaling experiments of Kuhn de Chizelle et al. (1992) showing 
an unattached bubble with "dimple"(upper left), a bubble with attached tails (upper right) and a transient 
bubble-induced patch (middle) all occuring on the 50.8cm diameter Schiebe headform at <r = 0.605 and a 
speed of 15 m/s. The bottom photograph shows a patch on the 25.4cm headform at a - 0.53 and a speed 
of 15 m/s. The flow is from right to left. The top four are shown at 1.3 times lifesize and the bottom at 
1.25 times lifesize. 

MODELLING THE BUBBLE DYNAMICS 

It is clear that the Rayleigh-Plesset analysis of 
a spherical bubble cannot reproduce many of the 
phenomena described in the preceding section. To 
study this further, Kuhn de Chizelle et al. (1994) 
developed an unsteady numerical code which mod- 
els the bubbles using travelling sources and incor- 
porates the distortion caused by the pressure gra- 
dients in the flow around the body. Only the irro- 
tational flow outside of the boundary layer is ad- 
dressed so the interaction of the bubble and the 
boundary layer is not treated by this method. The 

objective was to focus on the interaction of the 
bubble with the irrotational flow and the resulting 
shape of the exterior surface of the bubble. Dif- 
ferent, viscous flow analyses would be needed to 
study the phenomena of the liquid layer instablity 
and the triggering of attached cavitation. 

The basic, simplifying assumption behind the 
model is that the perturbations in the irrotational 
flow caused by the bubble can be fairly accurately 
modelled by a simple travelling source of adjustable 
intensity and position and that, once an image 
source is added to substantially satisfy the bound- 
ary condition on the headform surface, the remain- 
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Figure 6: Comparison between the profiles of bubbles in figure 2 (dashed lines) and the profiles calculated by 
Kuhn de Chizelle et al. (1994) (solid lines) at five different moments during growth and collapse, consecutively 

numbered 1 through 5. The flow is from right to left. The locations of the source and the image source are 

shown by the crosses. 

ing corrections which are required involve small 
modifications of the basic structure of the flow. 
It is, of course, possible to solve the inviscid, ir- 
rotational problem by using a boundary integral 
method in which the surface of the headform and 
the surface of the bubble are divided into bound- 
ary elements. Indeed, Chahine (1992) made some 
preliminary calculations of this kind. However, the 
travelling source method has the advantage of im- 
proved resolution of the bubble dynamics at much 
reduced computational time. The method could 
also be extended to allow studies involving more 
than one bubble so that interaction effects might 
be examined. 

Typical results are presented in figure 6 where 
the bubble profiles from the photographs of figure 
2 are compared with the profiles computed at the 
same five moments in time (labelled 1 to 5) dur- 
ing the bubble evolution. It can be seen that the 
overall size of the bubbles are in good agreement 
with the observations and that there is qualitative 
agreement in the general shape of the bubble as 
well as the way it changes with time. The program 
reproduces the spherical-cap shapes which are sep- 
arated from the headform by a thin liquid layer. 
During the growth phase we note a minor depres- 
sion in the top of the cap which is reminiscent of 
the dimples on the top of the bubbles observed by 
Kuhn de Chizelle et al. (1992) but is not as pro- 
nounced. Later the bubble assumes the wedge-like 
shape similar to the experiments. The computed 
bubbles are not, however, as elongated as those 
observed experimentally, particularly at the higher 

cavitation numbers; the probable reason for this is 
that the shape distortions which can be modelled 
by a single source are limited. Clearly, however, 
dipoles or higher order models for the bubble would 
allow more distorted bubble shapes. 

One of the advantages of such a calculation is 
that it allows computation of the unsteady pres- 
sure field surrounding the bubble. This allows 
evaluation of potential interactions between bub- 
bles. By examining the flow perturbations for dif- 
ferent cavitation numbers, the potential for bub- 
ble/bubble interactions can be evaluated. More- 
over, the present method could readily be ex- 
tended to include a number of simultaneous cav- 
itation events and therefore allow direct evaluation 
of these interactions. 

CAVITATION EVENT RATES 

In order to synthesize the cumulative effects of a 
stream of travelling cavitation bubbles it is necces- 
sary to supplement the details of individual events 
with the rates at which these events occur. In this 
section we shift attention to this other aspect of the 
problem, namely the prediction of the event rate. 

Many investigators have anticipated a relation- 
ship between the cavitation event rate and the 
concentration of cavitation nuclei in the oncom- 
ing stream (see, for example, Schiebe, 1972, Keller, 
1972 and 1974, Keller and Weitendorf, 1976, 
Kuiper, 1978, Gates and Acosta, 1978). At first 
sight this seems like a straightforward problem of 
computing the flux of nuclei into the region for 
which Cp  <   —cr.    However many complications 
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Figure 7: The maximum size, RM, to which a cavitation bubble grows according to the Rayleigh-Plesset 
equation as a function of the original nucleus size, R0, and the cavitation number, cr, in the flow around the 
Schiebe headform with Weber number, pRHU2/S - 28000. 

arise which make this analysis more complex than 
might otherwise appear and we shall discuss some 
of the specific issues below. But these difficul- 
ties do not account for the lack of experimental 
research into the relationship. Rather, the dif- 
ficulties involved in the accurate measurement of 
the incoming nuclei number distribution function, 
N(R), have been responsible for the delay in any 
detailed, quantitative investigation of this compo- 
nent of the problem. By definition, N(R)dR is the 
number of nuclei with size between R and R + dR 
per unit volume. As Billet (1985) remarked in his 
review of nuclei measurement techniques, the only 
reliable method of obtaining N(R) has been the 
extremely time consuming method of surveying a 
reconstruction of an in situ hologram of a small 
volume of tunnel water. However, the time and 
effort required to construct one N(R) distribution 
by this method has seriously limited the scope of 
these investigations. 

The recent development of light, scattering in- 
struments employing phase doppler techniques 
(Saffman et al. 1984, Tanger et al. 1992) has im- 
proved the situation. In our own laboratory we 
have attempted to validate and calibrate a Dantec 
Phase Doppler Anemometer (PDA) instrument by 
taking simultaneous measurements with the PDA 
and a holographic system (Liu et al. 1993a). The 
great advantage of the PDA system is the speed 

with which N(R) can be measured. After valida- 
tion, the PDA system could be used with confi- 
dence for investigations of the nuclei population 
dynamics in a water tunnel and of the aforemen- 
tioned relation between N(R) and the cavitation 
event rate. 

The population dynamics within a facility are 
important because they determine the rate of 
change of N(R) with run time and its depen- 
dence on tunnel velocity, pressure and air content. 
However, the dynamics probably vary considerably 
from one facility to another depending, for exam- 
ple, on whether the facility has a resorber or not. 
Liu et al. (1993a) showed that, in the Low Tur- 
bulence Water Tunnel at Caltech (which does not 
have a resorber), significant variations in N(R) 
commonly occurred during run times of the order 
of several minutes though N(R) would asymptote 
to some steady distribution after about 25 min- 
utes. This "steady state" would not only depend, 
however, upon the tunnel pressure, velocity and air 
content but also on the object in the working sec- 
tion and whether or not it was cavitating. This 
recognition that the nuclei population adjusts to 
the conditions of the experiment, only serves to 
emphasize even more strongly the need to moni- 
tor N(R) in any cavitation experiment. The role 
played by a cavitating body (mounted in the work- 
ing section) in supplying nuclei to the tunnel was 
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further studied by Sato et al. (1993) who examined 
the distributions at various points in the wake be- 
hind a cavitating circular cylinder. In the case ex- 
amined the nuclei population in the wake was sev- 
eral orders of magnitude larger than in the tunnel 
as a whole and the process of mixing and diffusion 
with distance downstream was readily apparent. 
Recently, Watanabe and Prosperetti (1994) have 
investigated some simple models for the nuclei cre- 
ated by cavitation and have compared their results 
with the observations of Sato et al.. Clearly, how- 
ever, more study is required before there is any real 
understanding of the nuclei population dynamics 
either in water tunnel facilities or, for that matter, 

in the ocean (O'Hern et al. 1988). 

If the nuclei number distribution is known or 

measured, then the important question is how that 
determines the cavitation event rate. If the nu- 
clei were to follow the fluid motion without any 
slip and if the bubble was always spherical and al- 
ways small relative to the important dimensions of 
the flow, the problem would be relatively simple. 
For each streamtube passing close to the body in 
which nuclei are likely to grow into macroscopic 
bubbles, one could input the pressure time history 
into the Rayleigh-Plesset equation and, for a range 
of initial nuclei sizes and cavitation numbers, cal- 
culate the resulting cavitation bubble size history. 
Such, of course, was the approach taken in the pi- 
oneering work of Plesset (1949), Parkin (1952) and 
others. An example of such a calculation (taken 
from Ceccio and Brennen, 1991) is shown in figure 
7 which presents results from the integration of the 
Rayleigh-Plesset equation for bubbles in the flow 
around a Schiebe headform. The maximum size 
which the bubbles achieve is plotted as a function 
of the size of the original nucleus for a typical We- 
ber number, pRffU2/S, where U and RH are the 
free stream velocity and headform radius and S is 
the surface tension. Data are plotted for four dif- 
ferent cavitation numbers, cr. Note that the curves 
for a < 0.5 all have abrupt vertical sections at cer- 
tain critical nuclei sizes which correspond to the 
appropriate Blake critical nuclei sizes (Blake 1949, 
Daily and Johnson 1956). Since this decreases with 
decreasing cr an increasing number of smaller nu- 
clei are activated as a is decreased. The calcula- 
tions of figure 7 were carried out using the pres- 
sure distribution on the surface of the headform. 
It is clear from figure 1, that the pressure distribu- 
tions on streamsurfaces further from the headform 
do not have such low pressures and therefore the 
Blake critical radius increases with distance from 

the surface until one reaches a streamline on which 
there are no nuclei large enough to be activated. 
Note also from figure 7 that, whatever their initial 
size, most unstable nuclei grow to roughly the same 
maximum size. This is because both the asymp- 
totic growth rate and the time available for growth 
are relatively independent of the size of the original 
nucleus. 

But there are other complications which occur 
in the actual flow and create more serious prob- 
lems. First, the boundary layer on the headform 
surface will clearly have an effect on the volume 
flux through the low pressure region. Secondly, the 
relative motion between the nuclei and the liquid 
can be important. Johnson and Hsieh (1966) in- 
cluded relative motion in their analysis and identi- 
fied an important phenomenon which occurs when 
the nuclei experience the large fluid accelerations 

in the vicinity of the stagnation point. Specifically 
the nuclei migrate outwards onto streamlines fur- 
ther from the stagnation streamline/body surface 
as a result of the large centripetal accelerations 
near the stagnation point. And the larger the nu- 
clei, the larger this shift so that the flow acts as a 
screen or filter. The larger nuclei which are those 
most likely to cavitate may, in fact, be so displaced 
that they no longer experience tension in the low 
pressure region. Both the boundary layer effect 
and the screening effect are included in the more 
recent, numerical calculations of Meyer, Billet and 
Holl (1992). Liu et al. (1993b) have constructed an 
approximate analytical method of evaluating both 
of these effects. 

Other problems arise because the growing bub- 
ble rapidly reaches a size which is comparable to 
important dimensions such as the height of the iso- 
bar, Cp = — cr, above the headform surface. As a 
result different parts of the bubble surface are ex- 
posed to different pressures and the bubble itself 
changes the local pressure distribution within the 
flow. Then it becomes neccessary to resort to a 
complex procedure such as that described in the 
preceding section in order to calculate the shape 
and growth of the bubble. Such analyses, which 
would take the place of the Rayleigh-Plesset calcu- 
lations, are too complex for inclusion in the present 
event rate analyses at least initially. In place of 
this Liu et al. (1993b) have devised a somewhat 
heuristic treatment of these "finite bubble size" ef- 
fects which involves an altered, effective trajectory 
for the bubbles. 

Figure 8 presents some of the typical results of 
the Liu et al. analysis applied to a 5.08cm Schiebe 
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Figure 8: Left: Typical event rates calculated using an assumed but typical nuclei distribution by the method 
of Liu et al. (1993b) for flow around a 5.08cm Schiebe body at a velocity of 9 m/s. A: Basic method not 
including the additional effects included in other lines. B: As A but including the boundary layer flux effect. 
C: As A but including the bubble screening effect. D: As A but including the surface interference effect. D: 
As A but including only "observable" bubbles larger than 1mm in radius. Right: Comparison of observed 
cavitation event rates (o) on a 5.08cm Schiebe body in the LTWT at a speed of 9 m/s with the anticipated 
event rate based on simultaneously measured nuclei distributions (from Liu and Brennen, 1994). 

body at a tunnel speed of 9 m/s. This shows the 
individual changes in the event rate due to four 
separate effects, namely the boundary layer flux 
effect, the screening effect and the finite size effect 
in the low pressure zone. Also shown is the effect 
of assuming that the observer will only detect bub- 
bles whose maximum radius is greater than 1mm. 
Note that all these effects produce significant al- 
terations in the event rate. Also included in fig- 
ure 8 is a comparison between experimentally mea- 
sured event rates and the prediction of the Liu et 
al. method based on the simultaneously measured 
nuclei distribution. Note that the event rates are in 
rough agreement at the larger cavitation numbers 
but that a progressively increasing discrepancy de- 
velops as the cavitation number decreases and the 
event rate increases. At the lowest cavitation num- 
bers this discrepancy is over one order of magni- 
tude. Liu et al. surmise that this additional effect 
is caused by the interaction between nuclei at low 
cavitation numbers. More explicitly, that many of 
the smaller nuclei in the liquid surrounding a larger 
nuclei are not activated because the growth of the 
larger nuclei generates a sufficient increase in the 

pressure surrounding the smaller nuclei so that the 
latter never become unstable. 

The scaling effects implicit in both the Meyer 
et al. (1992) and Liu et al. (1993b) models pro- 
vide a qualitative explanation of some of the trends 
in the experimental observations such as those of 
Kuhn de Chizelle et al. (1994). This is illustrated 
in figure 9 where data from the LCC experiments 
of Kuhn de Chizelle et al. is presented. Shown on 
the right in figure 9 are results from the Liu et al. 
model for several speeds and headform sizes using 
an assumed but typical nuclei distribution func- 
tion since Kuhn de Chizelle et al. were unable to 
measure the actual distributions in the LCC. Note 
that changes in the headform size are fairly well 
modelled whereas changes with tunnel speed are 
not. The probable explanation is that the changes 
in tunnel pressure needed to create the same cav- 
itation number at different tunnel speeds result in 
major changes in the nuclei population in the fa- 
cility. 

Finally we observe that the prediction of the cav- 
itation inception number is inextricably connected 
with a detailed understanding of the event rate 
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Figure 9: Left: Event rates measured during the scaling experiments of Kuhn de Chizelle et al. (1994) in the 
LCC. Data are shown for three headform diameters (50.8cm = dotted line, 25.4cm = dash-dot line, 5.08cm 
= solid line) at three different tunnel velocities (9m/s = o, 11.5m/s = D, 15m/s = A). Right: Typical 
event rates calculated using an assumed but typical nuclei distribution by the method of Liu et al. (1993b) 
for flow around Schiebe bodies of two different sizes (50.8cm = dashed lines, 5.08cm = solid lines) for three 
different velocities (9m/s = o, 11.5m/s = a, 15m/s = A). These calculations include the boundary layer 
flux effect and the screening effect but not the observable size effect. 

(Billet and Holl 1979). In figures 10 we make a 
qualitative comparison between the inception num- 
ber observed in the LCC experiments of Kuhn de 
Chizelle et al. (1994) and those calculated from 
the model of Liu et al. (1993b) using an assumed 
but typical nuclei distribution function. Both the 
observed and calculated <7; are based on an arbi- 
trarily chosen critical event rate of 50 events per 
second. In comparing the two graphs in figure 10 
we note that the scaling with size is similar while 
the scaling with speed is quite different probably 
for the same reason given in the last paragraph. 

In conclusion, it seems clear that an adequate 
model for the event rate is an essential prerequi- 
site for an understanding of cavitation inception 
(as well as cavitation noise and damage rates). 

SINGLE BUBBLE NOISE 

With a better understanding of the dynamics 
of individual cavitation events we now turn to 
the measurements of the noise produced by those 
events. In doing so we recognize that noise evalua- 

tion provides not only valuable practical informa- 
tion but is also useful as a diagnostic. 

The radiated acoustic pressure, pa, at a large 
distance, 71, from the center of a bubble of volume, 
V(t), will be given by (Blake 1986) 

Pa = 4^^ (3) 

It is clear that the noise pulse generated at bubble 
collapse results from the very large and positive 
values of d2V/dt2 which occur when the bubble is 
close to its minimum size. A good measure of the 
magnitude of the collapse pulse is the acoustic im- 
pulse, /, defined as the area under the pulse or 

-.dt (4) 

where t\ and t-z are times before and after the pulse 
at which pa is zero. It is also useful in the present 
context to define a dimensionless impulse, /*, as 

lGxITl/pUD2 (5) 

where H is now the distance from the cavitation 
event to the point of noise measurement and D 
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Figure 10: Left: Cavitation inception numbers observed in the scaling experiments of Kuhn de Chizelle 
et al. (1994). Data is shown for three different speeds (9m/s = o, 11.5m/s = a, 15m/s = A) and two 
dissolved oxygen contents (30% = solid lines, 80% = dotted lines) based on a critical event rate of 50s K 
Right: Predicted cavitation inception numbers at three different speeds (9m/s = o, 11.5m/s = Q, 15m/s 
- A) based on a critical event rate of 50s-1, an assumed but typical nuclei distribution and two minimum 
observable bubble radii of 1mm (solid lines) and 0.5mm (dotted lines). From Liu et al. (1993b). 

is the headform diameter (D = 2RH). We shall 
compare the experimentally measured values of I* 
from individual events on headforms of different 
size with those from numerical calculations of the 
growth and collapse of bubbles obtained from inte- 
gration of the Rayleigh-Plesset equation. Details of 
these calculations are given in Ceccio and Brennen 
(1991) and Kuhn de Chizelle et al. (1992). For 
present purposes, we note that variations in the 
Weber number, Reynolds number and initial size 
of the nucleus had little effect on the computed 

impulses (within ±10%). 

For a range of experimental cavitation numbers, 
both Ceccio and Brennen (1991) and Kuhn de 
Chizelle et al. (1994) were able to identify within 
the hydrophone output the signal produced by each 
cavitation event and to measure the acoustic im- 
pulses of these events. The average values of the 
largest impulses obtained in this way are plotted 
against cavitation number in figure 11. In viewing 
this data it must be emphasized that there is con- 
siderable variability in the magnitude of the im- 
pulses occurring at a particular operating condi- 
tion. Consequently, the standard deviations cor- 
responding to the averaged I* values of figure 11 

are usually between 25% and 80% of the average 
value. In both sets of experiments the collapse of 
an individual bubble (or event) seems to be charac- 
terized by a fairly well-defined maximum possible 
value of the impulse. However the same conditions 
can also produce impulses which are a fraction of 

this maximum. 

Also shown in figure is a hatched area which 
encompasses the results from the Rayleigh-Plesset 
calculations using the pressure distribution on the 
surface of the headform. Note first that the upper 
envelope of the experimental data for all the head- 
forms and velocities is roughly consistent. How- 
ever, this envelope of maximum values is approx- 
imately one order of magnitude smaller than the 
impulses obtained from the Rayleigh-Plesset cal- 
culations. There are probably two reasons for this. 
First, the actual maximum volume of the bubbles 
is significantly smaller than the maximum volume 
of the Rayleigh-Plesset bubbles as was documented 
by Kuhn de Chizelle et al. (1994). Since the im- 
pulse is correlated with the maximum volume, this 
is clearly one reason for the discrepancy. This ef- 
fect can be accounted for as will shortly be demon- 
strated. A more speculative, second reason for the 
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discrepancy is that the more non-spherical the col- 
lapse, the less noise is produced since a spherical 
collapse produces the maximum focussing of the 
unsteady pressures. The interactions of the bubble 
with the pressure gradients and the boundary layer 
produce deformations in the shape which, in turn, 
alter the noise produced. 

We speculated that the acoustic impulses would 
be better correlated with the maximum bubble vol- 
ume than with the cavitation number. This corre- 
lation has been anticipated by many authors in- 
cluding Fitzpatrick and Strasberg (1956), Hamil- 
ton et al. (1982) and Vogel et al. (1989). For this 
reason Kuhn de Chizelle et al. (1994) replotted the 
impulse data against the maximum cavity volume 
as shown in figure 12. Note that the correspon- 
dence of the upper envelope of the data is improved 
over that of figure 11, confirming again that the up- 
per bound on the impulse correlates strongly with 
the maximum bubble volume. 

The upper envelope on the experimental data in 
figure 12 and of the Rayleigh-Plesset calculations 
are both consistent with a relation of the form 

ß ~~D (6) 

where ß is some proportionality constant. There is 
an explanation for the form of this relation which 
proceeds as follows. From the definitions given in 
equations 3, 4 and 5 one can obtain 

/* 
UD2 

dV\ 
dt A. 

dV 
dt (7) 

If the typical bubble radius at times t\ and £2 is de- 
noted by Rx and the typical pressure coefficient is 
denoted by Cpx then it follows from the Rayleigh- 
Plesset equation (by setting d2V/dt2 = 0 and eval- 
uating dV/dt) that 

I* ss 32TT ^)   (Cps-<r)t (8) 

Numerical calculations of the Rayleigh-Plesset 
equation for a wide range of flows and conditions 
showed that Rx/Rmax ~ 0-62. Moreover calcula- 
tions with the Schiebe headform pressure distribu- 
tion showed that (Cpx - a) oc Rmax/D. Substitut- 
ing these two expressions into equation 8 yields the 
relation 6. 

There is, however, another effect which is present 
in the data of figures 11 and 12. Virtually all of the 
data for a specific headform size and tunnel veloc- 
ity tends first to increase as the cavitation number 

is reduced below the inception value. However, in 
almost all cases, this trend reaches a maximum at 
a particular cavitation number (or bubble volume) 
and begins to decrease with further reduction in a. 
There are two effects which may contribute to this 
phenomenon. First, the noise or impulse may de- 
crease due to the interactions between events as 
they become more numerous with decreasing <x. 
Second, the impulse may decrease due to a change 
in the dominant type of event as a is decreased. 
Kuhn de Chizelle et al. (1994) showed that the im- 
pulses are maximum when the cavities cover about 
20% of the surface area of the headform. This is 
in agreement with the observations of Arakeri and 
Shanmuganathan (1985) who reported that area 
void fractions larger than about 25% resulted in 
significant interactions between the bubbles and a 
reduction in the acoustic noise. In figure 11, the 
locations of the maxima appear to be shifted to- 
wards higher cavitation numbers at the lower ve- 
locities. This trend is consistent with that of Kuhn 
de Chizelle et al. (1994) who found an increase in 
the area void fraction with decreasing velocity at 
the same cavitation numbers. 

There is, however, an additional effect which 
causes the observed decrease in the impulse be- 
low a certain a. Kuhn de Chizelle et al. (1994) 
were able to demonstrate that events with tails are 
more likely to occur as the cavitation number is 
decreased and that such events produce much less 
noise, presumably because the tails cause further 
defocussing of the collapse. 

In summary, we find that the micro-fluid- 
mechanics associated with individual events have 
an important effect on the noise produced by 
each event and that changes in the micro-fluid- 
mechanics with Reynolds number produce previ- 
ously unrecognized scaling effects. However the 
overall trends are consistent with those predicted 
by the Rayleigh-Plesset or Fitzpatrick-Strasberg 
analysis though the maximum acoustic impulses 
are about an order of magnitude smaller than those 
of the spherical bubble analyses. 

CLOUD CAVITATION 

As a final topic we include a few observations 
on one of the most important bubble interaction 
effects. When the frequency of cavitation events 
increases in space or time such that they begin 
to interact with one another a whole new set of 
phenomena may be manifest. They may begin to 
interact hydrodynamically with important conse- 
quences for both the global flow and the dynamics 
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Figure 13: Three frames illustrating the formation, separation and collapse of a cavitation cloud on the 
suction surface of a hydrofoil (0.152m chord) oscillating in pitch with a frequency of 5.8Hz and an amplitude 
of ±5° about a mean incidence angle of 5°. The flow is from left to right, the tunnel velocity is 7.5 m/s and 
the mean cavitation number is 1.1. Photographs by E. McKenney. 
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Figure 14: The dimensionless bubble size distribution in the cloud as a function of the dimensionless cloud ra- 
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Figure 16: The time history of dimensionless bubble size at three different positions in the cloud, r0 = 0, 

r0 = 0.9AO and r0 = A0, where A0 is the radius of the cloud. Parameters as in figure 14. 

and acoustics of the cavitation. In many flows of 
practical interest one observes the periodic forma- 
tion and collapse of a "cloud" of cavitation bubbles. 
The temporal periodicity may occur naturally as a 
result of bubble-filled vortices or it may be the re- 
sponse to a periodic disturbance imposed on the 
flow. Common examples of imposed fluctuations 
are the interaction between rotor and stator blades 
in a pump or turbine and the interaction between a 
ship's propeller and the non-uniform wake created 
by the hull. In many of these cases the coherent 
collapse of the cloud of bubbles can cause more 
intense noise and more potential for damage than 
in a similar non-fluctuating flow. Bark and van 
Berlekom (1978), Shen and Peterson (1978), Bark 
(1985), Franc and Michel (1988) and Kubota et 
al. (1989, 1992) have studied the complicated flow 
patterns involved in the production and collapse 
of a cavitating cloud on an oscillating hydrofoil. 
These studies are exemplified by the photographs 
of figure 13 which show the formation, separation 
and collapse of a cavitation cloud on a hydrofoil 
oscillating in pitch. All of the above mentioned 
studies emphasize that a substantial bang occurs 
as a result of the collapse of the cloud; in figure 13 
this occurred between the middle and right hand 

photographs. 
Much recent interest has focused on the dynam- 

ics and acoustics of finite clouds of cavitation bub- 
bles because of the very destructive effects which 
are observed to occur when such clouds form and 
collapse in a flow (see, for example, Bark and van 
Berlekom 1978, Soyama et al. 1992). Here we ad- 
dress the issue of the modelling of the dynamics of 
cavitation clouds, a subject whose origins can be 

traced to the work of van Wijngaarden (1964) who 
first attempted to model the behavior of a collaps- 
ing layer of bubbly fluid next to a solid wall. Later 
investigators explored numerical methods which in- 
corporate the individual bubbles (Chahine 1982) 
and continuum models which, for example, analyze 
the behavior of shock waves in bubbly liquid (No- 
ordzij and van Wijngaarden 1974) and identify the 
natural frequencies of spherical cloud of bubbles 
(d'Agostino and Brennen 1983). Indeed the litera- 
ture on the linearized dynamics of clouds of bubbles 
is growing rapidly (see, for example, Omta 1987, 
d'Agostino et al. 1988 k 1989, Prosperetti 1988). 
However, apart from some weakly non-linear anal- 
yses (Kumar and Brennen 1991, 1992, 1993b) only 
a few papers have addressed the highly non-linear 
processes involved during the collapse of a cloud 
of bubbles. Chahine and Duraiswami (1992) have 
recently conducted numerical simulations using a 
number of discrete bubbles and demonstrated how 
the bubbles on the periphery of the cloud develop 
inwardly directed re-entrant jets. However, most 
clouds contain many thousands of bubbles and it 
therefore is advantageous to examine the non-linear 

behavior of continuum models. 
Another perspective on the subject of collapsing 

clouds was that introduced by M0rch and his co- 
workers (M0rch 1980 & 1981, Hanson et al. 1981). 
They speculated that the collapse of a cloud of bub- 
bles involves the formation and inward propagation 
of a shock wave and that the geometric focusing of 
this shock at the center of cloud creates the en- 
hancement of the noise and damage potential as- 
sociated with cloud collapse. Most recently Wang 
and Brennen (1994) have used the mixture models 
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employed earlier by d'Agostino et al. (1983, 1988, 
1989) to study the non-linear growth and collapse 
of a spherical cloud of bubbles. A finite cloud of nu- 
clei is subjected to a decrease in the ambient pres- 
sure which causes the cloud to cavitate and then to 
a pressure recovery which causes collapse. Of nec- 
cessity, the solutions are numerical but they clearly 
confirm M0rch's vision of cloud collapse. Some typ- 
ical numerical results are shown in figures 14, 15 
and 16. Figures 14 and 15 illustrate the spatial dis- 
tribution of bubble radius and pressure at several 
moments in time during the beginning of collapse. 
Note the formation and inward propagation of a 
shock wave. The structure of this shock is very 
similar to those in the bubbly flows investigated 
by Noordij and van Wijngaarden (1974); it devel- 
ops a series of rebounds and secondary collapses 
which probably produce a ringing in the radiated 
sound. Note also from figure 15 how the pressure 
pulse increases in amplitude as the shock propa- 
gates inwards. Finally, figure 16 presents the time 
history of bubble size at several Lagrangian loca- 
tions within the cloud and shows how the bubbles 
at the cloud surface (R(A0,t)) collapse first and 
shield the interior so that collapse of the interior 
bubbles is delayed. 

Both experimental and analytical studies of this 
phenomenon are currently being pursued. 

CONCLUDING COMMENTS 

In this paper we have summarized some of the 
recent advances in our understanding of travelling 
bubble cavitation and cloud cavitation. We have 
demonstrated that it is possible to synthesize the 
cavitation from knowledge of the nuclei number 
distribution and the detailed flow field especially 
that in the neighbourhood of the minimum pres- 
sure point. The observations of the dynamics of 
individual bubbles or events clearly display a rich 
variety of fluid mechanical phenomena as the bub- 
bles interact with the largely irrotational flow out- 
side the boundary layer and with the boundary 
layer itself. Many of the observed phenomena re- 
main to be understood, particularly the instability 
of the thin liquid layer underneath the bubble and 
the separation phenomena induced by the passage 
of the bubble. It has been demonstrated that these 
microfluidmechanical effects are important because 
they influence the coherence of the collapse and 
therefore the noise and damage potential which are 
produced. 

We have, of course, omitted any discussion of 
vortex cavitation or attached cavitation, not be- 

cause these are less important but rather because 
the modelling of these forms are less well under- 
stood in terms of their noise producing mechanisms 
and their damage potential. Recent evidence sug- 
gest that vortex cavitation and, perhaps, attached 
cavitation are also affected by the nuclei popula- 
tion and it seems clear that future research should 
explore that relationship. 
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Viscous Effects in Tip Vortex Cavitation and Nucleation 
R. Arndt, B. Maines 

(University of Minnesota, USA) 

ABSTRACT 

This paper is concerned with the physics of 
cavitation in trailing vortices. The research was 
aimed at investigating the interrelated effects of 
vortex structure and bubble dynamics. The 
experimental phase utilizes a series of hydrofoils 
and includes lift and drag measurements, oil flow 
visualization of the boundary layer flow, and 
observation of both cavitation inception and 
desinence in strong and weak water. The complex 
bubble dynamics inherent in the inception process 
have been studied using an improved photographic 
technique. The bubble growth process is strongly 
dependent on the size and number of nuclei in the 
free stream and on the strength of the vortex. 
Numerical simulations indicate that the minimum 
pressure in the vortex is very close to the tip of the 
lifting surface, in agreement with the observation 
that the inception process also occurs very close to 
the tip under most conditions. 

NOMENCLATURE 

a core radius 
b foil half span 

% 

dissolved gas content 
lift coefficient 

CpO'Cpmin pressure coefficient 
c0 foil root chord 
f frequency (Hz) 
K,Kj,K2 constants 
m constant 

P pressure 

P' fluctuating pressure 

Pa acoustic pressure 

Pc critical pressure 

Pv vapor pressure 
Re Reynolds number 
T water tensile strength (N/m2) 
t time 
U,u velocity 

V second time derivative of volume 
r,e,z cylindrical coordinate system 
x,y,z cartesian coordinate system 

a angle of attack 
a0 angle of zero lift 
ß Henry's constant 
r,r0 Circulation 
V Kinematic viscosity 
p density 

°>awais cavitation number 
u vorticity 

INTRODUCTION 

The focus of this paper is on tip vortex 
cavitation. The motivation for this study is discussed 
elsewhere (Arndt and Maines, 1994). This problem 
was first studied in detail by McCormick (1954, 
1962). Subsequently, little further attention was 
given to this topic until recently, when there has 
been a resurgence of interest in the problem. Our 
understanding of the physics has been considerably 
enhanced in the past decade (1983-1993). The 
emphasis of this paper is on the details of the 
inception    process. Both    numerical    and 
experimental results are discussed. In addition, a 
brief discussion of noise and developed cavitation is 
also given, followed by a few suggestions for future 
research. 
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BACKGROUND 

Cavitation Inception 

Following McCormick(1954,1962), Arndt 
and Keller(1992) and Maines and Arndt(1993b), the 
cavitation inception index is given by 

4« 
(1) 

¥* 

where the second and third terms on the right hand 
side of Eq. 1 incorporate the effects of unsteadiness 
and bubble dynamics respectively. K2 is a complex 
function of the pressure field statistics and the 
nuclei size and number (Arndt and Keller,1992, 
Arndt,1993). Arndt and Keller (1992) have pointed 
out that these terms can be estimated by comparing 
cavitation data obtained in water with an adequate 
supply of nuclei (aiw) with cavitation data obtained 
in degassed and pre-pressurized water (ais). Thus 

(2) ±pU2 =   °iw üis 

KJT
2 

1 =   °iw + CP„ (3) 
■pUz 

The effect of flow unsteadiness is not 
understood at this time. A comparison between aiw 

and -C in inferred from velocity measurements by 
Arndt and Keller (1992) suggested the possibility 
that flow unsteadiness could be important, however 
Fruman et al(1994) note that flow unsteadiness is 
generally not an issue for analyzing the inception 
process. Laser doppler measurements of turbulence 
intensity do indicate significant levels in the core 
region, but as noted by Fruman et al (1994), the 
effect of vortex wandering is significant and must be 
taken into account. They concluded that, in fact, 
pressure reductions due to turbulence are 
insignificant close to the tip but can be more 
significant further downstream. As will be discussed 
subsequently, this could be important under certain 
circumstances. 

Green and Acosta (1991) have measured 
pressure and velocity using holographic observation 
of small bubbles injected into the vortex core. 
Their observations are in qualitative agreement with 

the velocity data of Arndt and Keller(1992). Green 
(1991) was also able to use the same technique to 
estimate the magnitude of pressure fluctuations in 
the vortex. His data indicate that the core pressure 
is highly unsteady, p'm/ VipU2 ~ 1.8. 
Unfortunately, these data correspond to distances 
greater than 1 chord length from the tip. This is 
significant. Fruman et al (1992) have made careful 
observations of incipient cavitation in vortices 
trailing from hydrofoils of elliptic planform. Their 
results indicate that the position of the lowest 
pressure in the vortex is located very close to the 
tip of the hydrofoil. This is also in agreement with 
recent numerical calculations made in this study by 
Song and Chen (1993). Thus, both experimental 
and numerical results indicate that the lowest 
pressure occurs in a region very close to the tip 
where the vortex is not completely wrapped up. 

The basic issues in understanding the 
inception process are the viscous effects on vortex 
development, the minimum pressure in the flow and 
the details of the bubble dynamics. Further study 
is necessary to understand in sufficient detail the 
interrelated effects of vortex strength and viscosity 
on vortex structure. The fact that vortices are 
capable of supporting large values of tension is 
related to the issue of bubble dynamics in highly 
vortical flows. Velocity measurements made by 
Arndt et al (1991) indicate that rotational speeds as 
high as 220,000 rpm are possible in their 
experimental setup. This means that radial 
accelerations of the order 105 m/sec2 occur in the 
core region. One objective of the current study is to 
observe the cavitation process in detail. 

Other complex interactions between bubble 
dynamics and viscous effects may also be important. 
For example, Arndt et al (1991) also noted that 
under certain conditions, flow in a laminar 
separation bubble on the surface of a NACA 662 - 
415, a = 0.8 hydrofoil could become supersaturated 
and provide additional nuclei to the flow. This 
results in a complex interrelationship between 
Reynolds number and gas content. Complexities of 
this type make it extremely difficult to infer 
prototype conditions from laboratory experiments. 

Developed Cavitation 

Developed cavitation in a trailing vortex 
has been studied by Souders and Platzer (1981), 
Arakeri, et al (1988) and Higuchi, et al (1989). 
Arndt et al (1991) found that the shape of the 
vortex trajectory does not change over a wide range 
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of sigma, gas content, lift coefficient and Reynolds 
number. The spanwise position of the vortex is 
observed to be asymptotic to the theoretical value 
of z/b = TT/4. Arakeri, et al (1988) were able to 
calculate the core radius as a function of a which 
correlates well with the measurements of Souders 
and Platzer(1981). Using a similar model, Arndt 
and Keller (1992) were able to show that the 
inception process is highly unstable since a fully 
cavitating vortex and a single phase vortex are 
equally likely when the cavitation number is just 
equal to ar They suggested that this may explain 
the fact that the inception process is highly 
intermittent. 

EXPERIMENTAL SET-UP 

Four hydrofoils of elliptic planform with 
aspect ratio 3 but different cross sections were used 
for this study. The hydrofoil sections chosen were 
a NACA 662-415 a=0.8, a modified NACA 4215 
(designated herein as NACA 4215M), a NACA 16- 
020 and a NACA 66-012. Two sets of each foil 
were constructed. The smaller set had a root chord 
c0, of 81 mm and a half span, b, of 95 mm while for 
the larger set c0 = 129.4 mm and b = 152.4 mm. 
The small set was utilized for cavitation testing, 
force measurements and observation of the bubble 
dynamics while the larger set was used for force 
measurements and oil flow visualizations. Only the 
small version of the NACA 66-012 was constructed. 
These complementary studies provide a 
comprehensive view of tip vortex cavitation 
inception. 

Testing has been conducted in three water 
tunnels, two at SAFHL each having a 190 mm 
square cross section (Arndt, et al 1991) and the 
other at the Versuchsanstalt für Wasserbau in 
Obernach, Germany with a 300 mm square cross 
section (Arndt & Keller, 1992). Oil flow 
visualizations were obtained in two wind tunnels, 
one at the Department of Aerospace Engineering at 
the University of Minnesota (Higuchi et al, 1987) 
and the second at SAFHL (originally an air model 
of the HYKAT facility, Wetzel & Arndt, 1991). 

Cavitation inception tests at SAFHL were 
performed by fixing the angle of attack and velocity 
and then slowly lowering the pressure until 
inception was detected visually. This procedure was 
repeated for a range of velocities at each angle of 
attack. Tests were performed in weak water (no 
tensile strength) for all four foils. A series of tests 
in strong water (rupture considerably below vapor 

pressure) were conducted using the 4215M to 
compare with similar data obtained in weak water. 

Oil flow data were obtained using a spray 
of fine droplets of an oil and titanium-oxide 
mixture (Maines & Arndt, 1993b). The wind tunnel 
was run at the test velocity of 56 m/s (Re « 
485,000). This technique highlighted the details of 
the boundary layer flow especially in the tip region. 

Observations of the bubble dynamics were 
obtained using an improved photographic 
technique. Data have been collected over a range of 
lift coefficients, velocities and water quality for two 
different hydrofoils. 

NUMERICAL SIMULATIONS 

Progress in understanding the details of the 
inception process has been hampered by a lack of 
sufficient knowledge about the structure of the tip 
vortex very close to the tip. The detailed 
investigation of Fruman, et al (1992) clearly 
indicated that inception generally occurs very close 
to the tip. This observation is supported by our 
own studies (Maines and Arndt, 1993a). In order 
to provide a framework for our experimental 
research, numerical simulation of the tip vortex 
flow was undertaken with a view toward providing 
guidance for the measurement program and to lay 
the ground work for a detailed numerical 
simulation of the bubble dynamics within the 
viscous vortex core. 

The method relies on a large eddy 
simulation based on the weakly compressible 
hydrodynamic equations developed by Professor 
Song and his co-workers (Song and Chen, 1993). 
Simulation of the flow around the NACA 4215M 
was carried out at a calculated lift coefficient of 
0.72 which is very close to the measured value of 
0.73. Although the minimum pressure in the vortex 
cannot be accurately predicted at present, the 
model does provide useful insight into the overall 
problem. 

Figure 1 is a plot of the calculated vorticity 
iso-contours obtained at a distance x/c0 = 0.6 which 
is well downstream of the point of inception under 
most conditions. It is important to note that the 
vortex is still asymmetric and to also note the 
importance of the wake flow in the roll-up process. 
Using these numerically generated data, the 
circulation can be calculated as both a function of 
radial position from the center of the vortex and 
axial position. The results are shown in Figure 2. 
Here circulation, defined in the usual manner, 
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= jü dz (4) 

and normalized to the theoretical value of ro = 
!/2C[Uc0 is plotted as a function of radial distance, 
r/c0 for various axial positions. The vortex is 
apparently fully rolled up for x/c0 > 0.6 where 
2r/C,Uc0 reaches a maximum value of 1.051. Close 
to the tip this value is found to be only 0.75. This 
is also evident in plots of mean vorticity defined by 

w(r)   = TU) 
2nr2 (5) 

as shown in Figure 3. The lowest pressure in the 
vortex is found to be very close to the tip as shown 
in Figure 4. This is in agreement with our 
cavitation inception observations to be subsequently 
described. It is also interesting to note that the 
growth in core radius is found to be very rapid in 
the development region close to the tip in 
agreement with measurements (Figure 5). In spite 
of the fact that the boundary layer flow on the foil 
surface is not accurately resolved, the tip vortex 
trajectory is accurately predicted as shown in Figure 
6. Arndt, et al (1991) found that the tip vortex 
trajectory is relatively insensitive to Reynolds 
number and lift coefficient, apparently confirming 
the numerical result that the tip vortex trajectory is 
insensitive to the details of the boundary layer flow. 

This simulation must be considered to be 
qualitative in nature, because of problems related to 
spatial resolution. However, this simulation of 
vortex flow does indicate that vortex development 
may be relatively insensitive to the details of the 
boundary layer flow. Viscous diffusion is 
apparently an important factor close to the tip. 
Unfortunately, the minimum pressure in the vortex 
cannot be accurately calculated. Therefore, it is 
still difficult to determine whether the effects of 
flow unsteadiness are important. It should also be 
pointed out that because of the apparent asymmetry 
in the flow, it is difficult to ascertain the accuracy 
of estimates of the minimum pressure that are 
based on velocity measurements made across a 
single radial in the flow (e.g. Arndt, et al, 1991, 

The theoretical value is unity. The discrepancy 
could be due to wall effects which were included in the 
calculation. (The boundary conditions were identical to the 
experimental set-up.) 

Fruman, et al 1992, Arndt and Keller, 1992). To 
date, only Fruman et al have made velocity 
measurements that are close enough to the tip to 
warrant comparison with inception measurements. 

VISCOUS    EFFECTS    ON    CAVITATION 
INCEPTION 

Oil flow visualizations of the boundary 
layer were performed to characterize the differences 
and similarities between the hydrofoils. If 
McCormick's hypothesis concerning the relation 
between the boundary layer thickness and the core 
radius is correct, then comparison at equal lift, and 
thus equal vortex strength should provide insight to 
vortex roll-up. Details of the oil flow analysis were 
previously published in Maines & Arndt (1993b), 
and only the basic features will be summarized for 
clarity. 

The lift and drag were measured for each 
foil over a range of Reynolds numbers at the 
SAFHL and Obernach facilities. Figure 7 shows 
the lift curves as a function of (a - a0) where a0 is 
the angle of zero lift. Note that the 662-415 and 
the 4215M have similar lift curves but the 16-020 
deviates quite dramatically. This unusual behavior 
can be qualitatively related to the separation 
characteristics on the suction side of the foil. These 
differences in boundary layer characteristics are 
clearly indicated in Figure 8 which is a plot of the 
position of the suction side separation line at y/b = 
0.8 versus angle of attack. Both the 662-415 and 
the 16-020 have an aft separation line at low angles. 
The sudden forward translation of the separation 
line corresponds to the suction peak shifting to the 
leading edge. Little chordwise variation of the 
separation line is observed for the 4215M. 
Differences in the boundary layer characteristics are 
also seen on the pressure side as shown in Figure 9. 
The boundary layer on the 4215M separates near 
the leading edge at low angles of attack but shifts 
rearward for increasing angles. Only a slight 
rearward movement of the separation line is seen 
for the other two foils with increasing angle. 

Although the overall boundary layer 
characteristics are quite dissimilar, some similarities 
of the vortex roll-up process near the tip exist. 
This is shown in Figure 10 which contains a series 
of four photographs that are composites of oil flow 
visualization in air and cavitation studies in the 
SAFHL water tunnel for the NACA 663-415 and 
NACA 4215M hydrofoils at comparable lift 
coefficient.      Note   that   there  are  substantial 
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differences in the boundary layer flow on the 
suction side. 

In contrast to the suction side, the 
boundary layer flow on the pressure side of each 
foil has similar characteristics as is shown in Figure 
10b. The oil droplets clearly visualize the vortex 
roll-up process. Measurements of the flow angle at 
the trailing edge of the 66 series foil indicate that 
the flow field turning angle increases from near the 
tip to a maximum turning angle just downstream of 
the separation line at x/c0 = 0.125. At this angle of 
attack, the flow on the 4215M foil remains attached 
to the trailing edge. The maximum flow turning 
angle occurs at x/c0 » 0.07 and then decreases 
downstream of this position. The position of 
maximum turning angle on the 662-415 foil agrees 
with the observations of Maines and Arndt (1993a) 
which indicate that the maximum growth rate of 
bubbles occurs at 0.10 < x/c0 < 0.15. These 
observations were made at a higher Reynolds 
number (Re = 8.3 x 105) but the same lift 
coefficient. Similar results for the NACA 16-020 
foil (see Maines and Arndt, 1993b) agree with the 
observations of Fruman, et al (1992) who have 
observed from velocity measurements near the tip 
of the same foil at the same Reynolds number and 
the same lift coefficient that the tangential velocity 
increases from x/c0 = 0 to a maximum at x/c0 = 
0.125 and then decreases downstream. Hence, all 
three foils have qualitatively similar boundary layer 
characteristics on the pressure side, at least at 
moderate lift coefficients. 

Recent tip vortex inception data (Arndt 
and Dugue, 1992) have shown that the inception 
process can be described by a universal relation as 
suggested by Equation 1 (the effects of flow 
unsteadiness are neglected and the effects of 
tension are absorbed into the definition of a 
defined in terms of pc = pv - T.). Following Keller 
and Eichmann (1989), the critical pressure was 
determined by plotting test section pressure at 
inception, p0, versus Um for various angles. The 
exponent, m = 2.4 was chosen based on achieving 
the best linear correlation between p and U. 
Extrapolation to U = 0 defines pc. Data were 
discarded if hysterisis was present. A typical 
extrapolation is shown in Figure 11. Cavitation 
data for the three foils already discussed as well as 
for the NACA 66-012 are shown in Figure 12. The 
data are restricted to 600,000 < Re < 1,300,000 to 
avoid complexities related to water quality at lower 
velocities (mentioned in the next section). Also 
included in Figure 12 are data from the studies of 
Souders   and   Platzer   (1981)   with   an   elliptic 

hydrofoil  of aspect  ratio  2.55.     At  low  lift 
coefficients, the linear range is closely fitted by 

0, = KCiRe 0.4 (6) 

where 0.045 < K < 0.073. It should be pointed out 
that there was almost no correlation between the 
NACA 16-020 and NACA 662-415, a = 0.8 data 
when comparisons were made on an equal angle of 
attack basis. Only K is variable in Equation 6. The 
Reynolds number exponent of 0.4 appears to be 
"universal". As pointed out by Maines and Arndt 
(1993b), the variations in K can be attributed to 
differences in the constant of proportionality 
between boundary layer thickness and a fractional 
power of Reynolds number. Clearly, the details of 
the boundary layer flow in the tip region must be 
understood more completely before improvements 
can be made in the scaling law. 

WATER QUALITY EFFECTS 

Inception 

The data shown in Figure 12 were obtained 
using weak water with only minor differences 
between pc and pv (refer to the curve for weak 
water in Figure 11). Arndt and Keller (1992) found 
that significant levels of tension are sustainable 
when the number of nuclei are suppressed by pre- 
treatment of the water. An example of their results 
is shown in Figure 13 for the 662-415 foil. Similar 
results are found with the 4215M foil in the 
SAFHL tunnel as shown in Figure 14. Both sets of 
data indicate that the amount of tension, as 
deduced using Equation 2, appears to increase with 
increasing lift coefficient. Unfortunately the trends 
deduced at higher velocities were inconsistent. 
However, very consistent results were obtained 
using the extrapolation procedure shown in Figure 
11. These data were normalized with respect to the 
measured tension using a venturi apparatus 
designed by Dr. Keller (Keller, 1987). Sample 
normalized data are shown in Figure 15. The trend 
shown appears to be very repeatable. Note that 
only at high values of lift coefficient is the apparent 
tension at inception in the vortex comparable to 
that measured by the venturi apparatus. Research 
on this point is still in progress. 
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Desinence 

In reviewing the progress made in 
understanding the cavitation process, it became 
clear that the interrelated effects of bubble 
dynamics and viscous flow phenomena make it 
difficult to interpret cavitation data under varying 
conditions of water quality and with different 
Reynolds numbers. This point is underscored in 
Figure 16. This data set corresponds to "strong" 
water using the NACA 4215M hydrofoil, with 
varying lift coefficients. Arndt, et al (1991) pointed 
out that a significant factor in the substantial 
variation of a; with velocity is due to bubble 
dynamics. Unfortunately, a; is also a function of 
Reynolds number (Arndt and Dugue, 1992). 
Hence, a reliable method for measuring a{ is of 
paramount importance in distinguishing between 
the interrelated effects of bubble dynamics and 
viscous flow phenomena. 

Pauchet, et al (1993) have suggested that 
desinence, defined as the point of detachment of a 
fully cavitating vortex core from the hydrofoil tip 
gave the most consistent results. In order to verify 
this, four different procedures have been evaluated; 
a) inception in "weak" water, b) inception in 
"strong" water, c) desinence in "weak" water, and d) 
desinence in strong water. 

The most consistent results were obtained 
with desinence in "strong" water. As shown in 
Figure 17 the extrapolation procedure always 
indicated that pc was approximately equal to vapor 
pressure. When similar tests were carried out in 
weak water, pc was found to be greater than pv: 

K$Ca (7) 

where K was in the range 0.3 < K < 0.4, and ß is 
Henry's constant. This is in agreement with 
previous results (e.g. Holl et al, 1972). Thus 
desinence tests in water with high gas content 
introduce additional complexities, since nucleation 
can be influenced by gaseous diffusion. 

Based on these studies, desinence in 
degassed water appears to give the most consistent 
results using a based on pc. This is illustrated in 
Figure 18. The desinence data shown here are 
compared with the strong water inception data 
shown in Figure 16. The strong water inception 
data are presented in the form of curves (dotted 
lines) that are the best fit to the data in Figure 16. 
As expected, the two sets of data are asymptotic to 
each other at high velocity. 

There is apparently some mismatch in the 

data at high velocity that was first attributed to 
experimental inaccuracies. However, an alternate 
explanation is as follows. Careful observation of 
cavitation in strong water indicates that inception 
always occurs well downstream of the tip with fully 
developed cavitation progressing rapidly upstream 
after inception. Because the size and number of 
nuclei are considerably smaller than in weak water, 
it is much more likely that entrainment of nuclei 
occurs further downstream in a region where flow 
unsteadiness is more significant. Because of this the 
inception pressure could actually be lower than at 
the tip where inception normally occurs. 

Fig. 18 does illustrate how the combined 
effects of bubble dynamics and Reynolds number 
scaling can be isolated using a specialized desinence 
procedure. 

BUBBLE DYNAMICS 

A study of the bubble dynamics during 
inception in the tip vortex is underway using a new 
technique based on the ideas of Keller (1972) and 
Ceccio and Brennen (1991). The high speed movie 
camera used in Maines & Arndt (1993a) imposed 
several limitations such as low resolution (16mm 
format), a limited maximum framing rate (6000 fps) 
and a variable elapsed time between each successive 
frame. Since the duration of each roll of film was 
only one second, the random nature of cavitation at 
inception made data collection expensive. The new 
system is activated by individual cavitation events 
with equivalent framing rates of up to 100,000/sec. 
Many samples at each stage of growth can then be 
collected and ensemble averaged to describe the 
bubble dynamics. 

The system consists of a laser beam "trip 
wire", photodetector, a threshold/delay circuit, 
strobe lighting, a photodiode (for strobe light flash 
detection), absolute and differential pressure 
transducers, and a standard 35mm camera with 
extension bellows. As a nucleus or bubble enters 
the vortex core and cavitates, it passes through the 
laser beam, scattering light which is collected by the 
photodetector. When the signal of the 
photodetector is greater than a predetermined 
threshold value, the delay circuit is triggered. At 
the end of the delay, the strobe lights are flashed 
and pressure data are recorded. The photodiode 
detects the flash and enables the exact delay time to 
be determined. Each photo is digitized and 
measurements are taken to determine bubble 
position, size, velocity and growth rates.    The 
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resolution of the digitized pictures has a minimum 
of 0.012 mm/pixel and a maximum of 0.022 
mm/pixel corresponding to the magnification of the 
original photo. The estimated relative precision 
error in bubble length is ±0.37% and ±4.0% for 
the bubble diameter. The estimated precision in 
velocity is ± 0.86%. 

Observations have indicated that the bubble 
growth in the tip vortex is non-spherical. Maines & 
Arndt (1993a), described tip vortex cavitation in 
terms of four different phases. A spherical nucleus 
is first drawn into the vortex core, apparently from 
the freestream, and then grows as a spheroidal 
bubble over the foil tip. As the bubble travels 
downstream, growth in the radial direction 
(perpendicular to the vortex axis), is arrested while 
the bubble continues to grow at an almost constant 
rate of change in its length as shown in Figure 19. 
These results are intuitively consistent with the 
strong radial pressure gradient and negligible axial 
pressure gradient found in the vortex. As time 
increases (t > 1.5 msec), both the bubble length 
growth rate and bubble radius decrease. 

A series of photographs depicting the later 
stages of inception is shown in Figure 20. This 
series was obtained using the laser trip wire 
technique and clearly shows the cylindrical bubble 
growth. Each photograph depicts the bubble which 
best describes the average at that particular time. 
The additional bubbles at the right hand side for 
times t = 0.631 msec and 0.673 msec are previous 
events which have not yet exited from the frame. 
Close examination of this series reveals a complex 
growth mechanism not visible in the photographs 
presented in Arndt & Maines (1994) or Maines & 
Arndt (1993a). These recent photographs have 
revealed that the bubble can split at any position 
down stream of the laser trip wire and then 
coalesce back into a single bubble. During the 
measurement of each photo, approximately 29% of 
the pictures were found to contain bubbles which 
had possibly split. Split bubbles were excluded 
from the average. The highest percentage of split 
bubbles occurred in the regions 0.110 < x/c0 < 0.120 
(0.471 msec < t < 0.512 msec), 0.136 < x/c0 < 0.144 
(0.673 msec < t < 0.707 msec), and finally between 
0.228 < x/c0 < 0.235 (1.458 msec < t < 1.499 msec). 
The origin, x/c0 = 0.0, is at the foil tip. Possible 
examples of bubbles which have coalesced can be 
seen in Figure 20 at time delays of 0.391, 0.553, 
0.631, 1.485 and 1.499 milliseconds. The bubble 
seen at t=0.707 msec, appears to be nearly split, 
however close-up examination shows that the 
bubble is still connected. 

As the velocity is increased, some clear 
differences in the bubble growth are observed. 
Figure 21 contains a comparison between bubble 
growth at 6 m/s (Fig. 20), and 10 m/s. The series of 
photographs taken at 10 m/s are at a slightly lower 
cavitation number, i. e. a = 4.4 compared to a = 
4.7 at 6 m/s. Note that both the length and 
diameter of the bubbles are much larger at 10 m/s 
than at 6 m/s at equal downstream positions. For 
the photographs at 10 m/s, the laser trip wire was 
inadvertently positioned so that bubbles which 
entered the vortex from the pressure side were 
responsible for triggering the flash. Notice that in 
all cases the bubble nose is hidden behind the foil 
tip. The bright spot seen at the nose of the bubble 
is actually laser light reflected from the foil surface. 
It is interesting to note that fewer bubbles were 
observed to split at 10 m/s than at 6 m/s. 

Bubble splitting has been suggested as a 
mechanism for noise production. Chahine (1994) 
has shown through numerical calculations that 
bubbles grow cylindrically with a bulbous center 
which then collapses causing the bubble to split. 
Similar bubble shapes and bubble splitting have 
been observed experimentally. Previous work 
(Frizell et al, 1987), indicates that bubble splitting 
is a significant noise source. Even without splitting, 
bubble oscillations can be a significant source of 
sound. Higuchi et al (1989a) have published time 
histories of the pressure oscillations produced by tip 
vortex inception. The frequencies were found to 
vary between 2.5 KHz to 6 KHz depending on the 
test conditions. It was noted that these frequencies 
were too low to be associated with bubble collapse, 
but were comparable to the natural frequencies of 
spherical bubbles of equivalent volume at a partial 
pressure corresponding to the freestream gas 
content. However, no discernable relationship was 
found between frequency and gas content. It was 
also stated that the pressure amplitude far exceeded 
that expected from simple spherical bubble 
oscillations. The present observations indicate that 
the bubble grows cylindrically at almost a constant 
rate with a superimposed oscillation of the total 
volume. 

In order to compare these older results 
with the present observations, preliminary 
calculations of the sound pressure produced by the 
ensemble averaged bubble growth oscillations 
shown in Figure 20 and Figure 21b are plotted in 
Figure 22 ( Figure 21b contains additional points 
not presented). These calculations were made using 
the well known acoustical model for compact 
sources: 
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47tr 
(8) 

where V is the second time derivative of bubble 
volume. As shown in Figure 22, the calculated 
frequency and amplitude using the measured bubble 
oscillation data are approximately 10 KHz to 14 
KHz and 45 Pa at 6 m/s and 300 Pa at 10 m/s. The 
calculated pressure amplitude is approximately half 
(3 dB down) of Higuchi et al's measured value 
while at 10 m/s the amplitude is triple that of 
Higuchi's. The qualitative agreement between the 
calculated and measured noise appear to confirm 
the idea that bubble oscillations may be a 
significant noise source. 

In order to determine whether the primary 
noise mechanism is splitting or simply due to 
bubble oscillations, preliminary noise measurements 
were made using the laser trip wire technique 
described above. A reference point was marked in 
the time histories when a cavitation event was 
initiated. As before, flash delay times could be 
adjusted to allow bubble shape observations at 
different locations within the vortex. Figure 23a 
contains three typical time histories of an acoustic 
event at a freestream velocity of 10 m/s. Time is 
referenced to the laser triggering. Included in the 
plots are the approximate downstream locations 
based on bubble velocities inferred from the 
photographic observations. Figure 24 is a typical 
noise trace over a much longer period of time to 
illustrate the random nature of acoustic events and 
confirm the validity of the laser trip wire technique. 
Although not shown, the amplitude of the sound at 
6 m/s was greatly reduced in agreement with sound 
pressure calculations shown in Figure 22. The visual 
observations clearly indicate that a significant noise 
event is correlated with a bubble oscillation in the 
absence of splitting. These visual observations 
strongly suggest that bubble oscillations are a key 
noise mechanism. Additional research on this point 
is currently underway. 

Additional studies were conducted using 
the NACA 662-415 hydrofoil in filtered and 
unfiltered water over a range of lift coefficients, 
freestream velocities, and dissolved air content. 
Figure 25 shows two photographs of the bubble at 
different lift coefficients. Figure 25a is at CL = 
0.58 while CL = 0.67 for Figure 25b. The bubble 
centroids are at approximately equal downstream 
positions and thus at similar growth stages. Note 
the large change in bubble length.  Figure 26 is a 

plot of the bubble length versus downstream 
position of the bubble centroid, x/c0, for different 
lift coefficients. There is a clear trend of increasing 
bubble length with increasing lift coefficient 
Although not shown, the bubble diameter follows a 
trend similar to that for length with increasing lift 
coefficient. The effects of water quality are seen in 
Figure 27 which compares unfiltered water with 
filtered water at equal dissolved gas contents, lift 
coefficients and freestream velocity. Apparently, 
the unfiltered water contains a larger supply of 
nuclei which reduces the level of tension under 
which cavitation occurs, effectively reducing the rate 
of bubble growth. Thus, preliminary observations 
indicate that there is a complex relationship 
between the bubble growth, vortex strength and 
water quality. 

It is also possible to determine the axial 
velocity conditions in the vortex core during 
inception. It is assumed that the velocity of the 
bubble center should reflect the axial velocity 
conditions in the core. Figure 28 contains a plot of 
the velocity of the bubble centroid normalized with 
respect to the freestream velocity for different lift 
coefficients. An excess axial velocity exists in the 
vortex core which increases with angle of attack. 
These data agree well with unpublished data from 
Maines & Arndt (1993), using the same foil at 
equal conditions. Likewise, the variation of axial 
velocity with lift coefficient is asymptotic to non- 
dimensionalized LDV data collected further 
downstream (Arndt & Keller,1992). The large 
excess axial velocity noted for the second data set at 
CL = 0.67, U = 10 m/s is not unexpected as 
Pauchet et al (1993), have observed core axial 
velocities as high as 2.4U near the tip for elliptic 
planform hydrofoils. Since the velocity is averaged 
from the time the bubble passes the laser trip to 
the photograph, one must also consider that the 
large axial elongation rates of the bubble may 
artificially accelerate the bubble centroid. However, 
Maines & Arndt (1993a), found that at CL = 0.49, 
and U = 10 m/s, each end of the bubble appeared 
to expand with equal but opposite velocities which 
would tend to cause the bubble centroid to follow 
the local fluid velocity. Note also that data at 6 m/s 
in Figure 28, show a rapid change from a large axial 
velocity defect to an excess between 0.09 < x/c0 < 
0.30. A plot of the bubble trajectory as shown in 
Figure 29 indicates that bubbles photographed for 
this series (see Figure 20), initially passed through 
the trip wire outside the vortex core. As the bubble 
spirals toward the vortex axis the velocity increases 
to match the core velocity. Downstream of x/c0 = 

275 



0.30, the bubbles appear to match the trajectory of 
a fully cavitating core. Included in Figure 29 are 
the trajectory data from Maines & Arndt (1993a). 
Although there appears to be an offset, most of the 
bubbles travel directly down the vortex axis 
indicating that cavitation does not significantly 
affect the vortex trajectory. 

FULLY DEVELOPED CAVITATION AND NOISE 

Careful inspection of fully developed 
cavitation shows the evolution of complex 
structures which are not easily modeled analytically. 
Figures 30 and 31 are close-up photographs of fully 
developed cavitation for the NACA 4215M at CL = 
0.45 and Re = 4.8 x 105. In Figure 30, the 
cavitation number was lowered below that of 
inception until a fully cavitating core developed. 
Note the characteristic bulb at the leading edge of 
the cavity. The bulb is located in the region of 
minimum pressure. Further lowering of the 
cavitation index results in an attached cavity 
without a bulb. Figure 31 illustrates a wave-like 
structure at the tip as the cavitation number is 
lowered still further. This phenomenon has also 
been observed in photographs published in Arndt et 
al (1991), for the NACA 662-415 hydrofoil. 

Under some conditions, these complex 
cavitating core structures seem to be correlated with 
a travelling wave that develops on the hollow core 
vortex and radiates a significant level of noise at a 
discrete tone, much like that of a "singing 
propeller", but due to an entirely different 
mechanism. This so-called "singing vortex" was first 
reported by Higuchi et al (1989) but only a cursory 
qualitative study was conducted describing the basic 
phenomenon. Higuchi et al's study was conducted 
with the NACA 662-415 hydrofoil. They reported 
that within a narrow range of angle of attack and 
cavitation number, a discrete tone was generated. 
Within that narrow range of cavitation number the 
frequency of the tone would vary with small changes 
in cavitation number. Limited data indicated that 
the frequency varied linearly with velocity. They 
reported that the phenomenon was associated with 
the braided structure of the fully developed 
cavitating core which pulsated and rotated in 
synchronism with the generated tone. Flow induced 
vibration was discounted since the tonal frequency 
varied continuously with cavitation number. 

In the present study this phenomenon was 
more closely examined by varying the hydrofoil 
cross-section, water quality, angle of attack and 

cavitation number. Preliminary results agree with 
Higuchi et al, but it was found that the tone could 
occur over a much wider range of angle of attack 
and produce tones of higher frequency. 

The phenomenon of the singing vortex can 
be most easily described as an area varying 
travelling wave. Figure 32 shows photographs of a 
cavitating vortex with and without singing. In 
Figure 32a, the cavitation number has been raised 
just enough to suppress the singing. In Figure 32b, 
sigma has been lowered so the vortex begins to sing. 
Note the thickening of the core just downstream of 
the hydrofoil tip. Apparently this wave travels 
downstream with the freestream velocity. 

Singing was easily observed on the 662-415 
but was not observed on the 4215M during a 
preliminary search over a few angles of attack and 
velocities. As previously noted, major differences in 
the boundary layer characteristics exist between the 
two hydrofoils. An aft separation bubble is present 
on the 662-415 suction side up to approximately (a 
- a0) = 12 to 13 degrees. Above this angle, the 
zone of separation is at the leading edge. In 
contrast, separation on the 4215M always occurs 
around x/c0 = 0.20 for all angles. It is interesting 
to note that singing on the 662-415 could not be 
achieved above approximately (a - a0) = 11 
degrees. At this angle of attack, the separation 
bubble has begun shifting toward the leading edge. 
With this in mind, the remainder of the discussion 
pertains to the NACA 662-415 with an aft laminar 
separation bubble. 

In general, higher frequencies occur at 
lower angles of attack when data were collected at 
cavitation numbers just above the onset of surface 
cavitation. It should be noted that for a given angle 
and freestream velocity, a small change in sigma 
around the test condition would vary the tonal 
frequency. A slight increase in sigma would raise 
the frequency while lowering sigma below the test 
point would further decrease the frequency until 
surface cavitation developed. Thus, the conditions 
of each test case were slightly subjective. Still 
photographs were taken for each condition with and 
without vortex singing to measure both the wave 
length of the disturbance and the hollow core 
diameter. The measured Strouhal number defined 
as 

S = fX 
EL 

(9) 

where A is the wave length of the disturbance, was 
measured to be S = 1, which suggests that the 
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disturbance is a simple travelling wave. When the 
relative amplitude of the signal at each condition is 
plotted versus frequency, there appears to be a 
"lock in" at frequencies that are roughly multiples 
of 300 Hz. The reason for this behavior is not 
clear. One assumption is that resonance occurs at 
frequencies corresponding to vibrational modes of 
the hydrofoil. 

Further investigations are required to 
determine the mechanism of noise production. 
Several suggestions have been put forth which 
include lock in with structural natural frequencies, 
viscous dominated effects or surface tension. 
Consider first the lock in phenomenon. Although 
Higuchi et al (1989a) discounted this possibility, 
personal communications with C. C. S. Song 
indicate that a small flow disturbance can induce 
lock in at frequencies slightly higher than the 
structure's natural frequency. 

Lundgren2 (in private communication) has 
proposed a linearized travelling wave disturbance at 
the interface between the fluid and vapor filled core 
of a cavitating vortex. Using perturbation analysis, 
he found that a fully cavitating vortex core is 
receptive to travelling wave disturbances. The high 
wave number asymptote in his theory predicts a 
Strouhal number of unity as noted experimentally. 
Clearly, the relationship between theory and 
experiment needs to be explored further. An 
important issue is that this tone appears to be 
connected with specific viscous flow phenomena on 
the surface of the foil. 

SUMMARY AND CONCLUSIONS 

Cavitation inception has been studied with 
a series of elliptical planform hydrofoils differing 
only in cross section. Correlations were made with 
measured lift, boundary layer characteristics and the 
nuclei content in the water. Significantly different 
boundary layer characteristics were noted on the 
suction side. However, the process of vortex roll-up 
appeared to be similar, which was evident from 
inspection of the boundary layer flow characteristics 
on the pressure side of the foils. Cavitation data 
collected in weak water indicate that an almost 
universal law can be fitted to the data: 

o, = KCiRe 0.4 (10) 

Professor of Aerospace Engineering and Mechanics 
at the University of Minnesota. 

where 0.043 < K < 0.073.  The Reynolds number 
exponent appears to be "universal". It is suggested 
that the variability in K reflects small relative 
differences in boundary layer growth on the surface 
of each hydrofoil. 

Cavitation data, even in weak water, were 
found to be more consistent when a is defined in 
terms of pc rather than p^ In the weak water tests 
pc was often found to be greater than p^ 
Significant levels of tension can be sustained before 
inception in strong water. The amount of tension 
increases with lift coefficient approaching the value 
measured by a venturi cavitation susceptibility 
meter. 

In comparingvarious experimental methods 
to define inception, it was noted that a special 
method of cavitation desinence in degassed water 
appears to give the most consistent results. 
Comparisons of different test techniques have only 
been made at this point with the NACA 4215M 
hydrofoil. Tests with other hydrofoil shapes must 
be made before a general conclusion can be made. 

A new photographic system has been 
developed to investigate the details of the inception 
process. Preliminary results indicate that, in the 
latter stages of the inception process, cylindrical 
shaped bubbles are formed that achieve an 
equilibrium radius that appears to be less than the 
viscous core radius while continuing to grow in 
length at a constant rate. After reaching x/c0 ~ 0.25 
the growth rate of the bubble length appears to 
decrease. The velocity of the bubble's centroid 
roughly reflects that of the local fluid and can 
therefore be used to determine the axial velocity 
conditions in and around the core. Observations 
indicate that cavitation inception occurs both inside 
and outside the vortex core. Nuclei which cavitate 
just outside the core quickly spiral into the vortex 
axis. The presence of cavitation bubbles does not 
significantly affect the vortex trajectory. 
Preliminary results also indicate that larger bubbles 
are created when inception occurs in strong water. 
Larger bubbles are also noted at higher lift 
coefficients. 

Recent experimental evidence indicates that 
bubble splitting is more prevalent than expected. 
Previous research (Frizell et al, 1987), indicates that 
bubble splitting is an important source of sound. 
Even in the absence of bubble splitting, bubble 
oscillations can radiate measurable levels of sound. 
Observations of fully developed cavitation indicate 
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that there are some complex flow patterns close to 
the tip which may also have important implications 
for radiated sound. Preliminary results indicate that 
an additional important noise source is associated 
with a fully cavitating tip vortex. Inviscid wave 
theory appears to provide a basis for analysis. 
However, the noise can only be generated under 
certain viscous flow conditions. 

Numerical calculations, utilizing a large 
eddy simulation technique (LES) have provided 
considerable qualitative information on the details 
of vortex formation. Clearly evident in the 
computations is the interaction between the viscous 
wake and the tip vortex. The vortex is clearly 
asymmetric, indicating that velocity measurements 
made with a single traverse through the vortex can 
be misleading. Clearly, particle image velocimetry 
(PIV) would be a significant aid in further 
understanding of the cavitation process. 
Unfortunately, the numerical model is unable to 
accurately predict the minimum pressure in the 
vortex, due to lack of sufficient spatial resolution 
with the grid currently used. However, the 
numerical model does predict the minimum 
pressure location to be very close to the tip in 
agreement with experimental evidence. 
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Figure 1  Computed vorticity contours at x/c0 = 
0.60 in the tip vortex formed by the 
NACA 4215M hydrofoil at CL = 0.73. 
(Song and Chen, 1993) 

Figure 2 Computed circulation in the tip vortex for 
the NACA 4215M at the same conditions 
as Figure 1. (Song and Chen, 1993) 
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Figure 3 Computed mean vorticity for the NACA 
4215. (Song and Chen, 1993) 

Figure 4 Computed minimum pressure in the tip 
vortex for the 4215M. (Song and Chen, 
1993) 
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Figure 5 Computed core radius versus x/c0 of the 
tip vortex for the 4215M. (Song and 
Chen, 1993) 
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Figure 6 Computed core vortex trajectory for the 
4215M. (Song and Chen, 1993) 
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4.85x10s. (Maines & Arndt, 1993b) 
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Figure 11 Extrapolation to determine the critical 
pressure at cavitation inception. (Arndt 
and Maines, 1994) 

Figure 12 Correlation of cavitation data with 
measured lift for a based on pc (weak 
water). (Maines & Arndt, 1993b) 
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Figure 15 Apparent tension versus lift coefficient. 
(Arndt and Maines, 1994) 
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Figure 16 Cavitation inception data for strong 
water and varying lift coefficient (NACA 
4215M).     (Arndt & Maines, 1994b) 

Figure 17 Extrapolation of strong water desinence 
data to determine pc (NACA 4215M). 
(Arndt & Maines, 1994b) 
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Figure 20 Cylindrical bubble growth during the later stages of inception (NACA 662-415, U0=6 m/s, 
«7=4.7, CL=0.67). (Arndt & Maines, 1994b) 
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Figure 21 Comparison of bubble growth for different freestream velocities. 
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Figure 24 Typical measured sound trace of cavitation inception over a long duration. 
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a) CL = 0.58 

tt&L, 

b) CL = 0.67 

Figure 25 Effect of lift coefficient on bubble 
growth (NACA 662-415, U0 = 10 m/s). 
(Arndt and Maines, 1994) 
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Figure 26 Plot of bubble length for various lift 
coefficients (NACA 662-415, U0 = 10 
m/s). (Arndt and Maines, 1994) 
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Figure 28 Vortex core axial velocity for various lift 
coefficients (NACA 662-415). 

b) Filtered 

Figure 27 Effects of unfiltered and filtered water 
on bubble growth (NACA 662-415, U0 

= 10 m/s). (Maines and Arndt, 1994) 

Figure 29 Comparison of bubble trajectories and 
the shape of a fully cavitating vortex. 
(NACA 662-415) 
(Arndt & Maines, 1994b) 
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Figure 30 Close-up photograph a continuous vortex core and characteristic bulb for the 4215M (Maines 
& Arndt, 1993a). 

Figure 31 Enlargement of wavelike structure for sigma well below inception (NACA 4215M). (Arndt 
and Maines, 1994) 

a) Sigma greater than test condition 
No singing 

b) Sigma at test condition 
Singing Vortex 

Figure 32 Photographs of Developed Tip Vortex Cavitation 
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DISCUSSION 

J. Matusiak 
Helsinki University of Technology, Finland 

My question concerns your model of cloud cavitation. 
What is initial bubble size distribution in the cloud? Is 
it uniform, that is are the bubbles of the same size? 

T. Huang 
David Taylor Model Basin, USA 

The bubble size distribution measurements shown in 
the figure are questionable, especially for diameters 
less than 5 Tm. Please give the detail of comparison 
between the two methods. What distribution did you 
use in your computation? 

S. Banerjee 
University of California, Santa Barbara, USA 

I was struck by the similarity in shape between the 
cavitating bubbles that develop tails and vortex 
structures that one sees near walls—the tails being like 
the quasi-streamwise leg of "horseshoe" or "hockey- 
stick" vortices. Would you care to comment? 

Dr. Huang raises a very good point which I should, 
perhaps, have addressed at greater length. First, let me 
say that Dr. Huang is correct in doubting the validity of 
the nuclei size distribution measurement at the smallest 
diameter (about 5 urn), We were unable to validate the 
PDA for such small nuclei sizes and it may be that the 
PDA is underestimating the number of nuclei in the 
size range below 10 urn). It is possible that this is a 
factor which is contributing to the discrepancy between 
the calculated and observed event rates. However, it is 
important to recall that only nuclei larger than the 
Blake critical radius will become unstable and grow 
into macroscopically observable events. The Blake 
critical radius for the current experiments can be 
observed as the vertical portions of the curves in figure 
7. Note that, at the typical a of 0.5, the critical value 
of RQ/RH is approximately 5 x 10 . Consequently, the 
critical radius for the 5.08 cm headform tests was 
approximately 25 urn. Under these circumstances, it 
would appear that any discrepancies in the nuclei 
number distribution below a radius of 25 urn would 
not contribute to the discrepancy highlighted in figure 
8 (right). However, we are also aware that this is based 
on the spherical bubble analysis which could be 
inaccurate and that small errors could bring the Blake 
critical radius close to the region of uncertainty. 
Perhaps this illustrates, yet again, the need for further 
studies of the relation between the observed and 
anticipated event rates. 

D. Fruman 
ENSTA/GPI, France 

How can you explain the change from traveling 
bubbles to attached patches with increasing Reynolds 
numbers? 

AUTHORS' REPLY 

I would like to thank Professor Matusiak, Dr. Huang, 
Professor Banerjee, and Dr. Fruman for the interest 
and their questions. 

In response to Professor Matusiak's questions, the 
numerical calculations of the growth and collapse of a 
cloud of cavitating bubbles were carried out with an 
initially uniform distribution of bubbles, all of which 
had the same initial size. The method is not restricted 
to these simple choices; rather they seemed the obvious 
initial selections. Of course, as the cloud grows and 
collapses, the bubbles at different radial positions 
within the cloud have a different size. 

As always, Professor Banerjee's comments are most 
insightful. There is, indeed, a marked similarity 
between the "bubbles with tails" and the horseshoe 
vortices that occur in turbulent boundary layers. Of 
course, the scale of the present structure is much larger 
than the present boundary layer. But the vortex 
dynamics which underlie the two structures are very 
similar. As the bubble grows and collapses, it acquires 
circulation or vorticity about a transverse axis. As the 
bubble collapses, this circulation is focused and the 
"rotational" velocity of the bubble intensifies. Indeed, 
toward the end of the first collapse phase, the 
photographs clearly show that the bubble is very much 
like a short vortex (transverse axis parallel with the 
headform surface) with a vapor/gas core. However, 
the vortex lines proceed from the lateral extremities of 
the vortex-bubble down to a point on the headform 
surface. I would speculate further that, under some 
circumstances, perhaps, the strength of these "tail 
vortices" is inadequate for such a vapor/gas core to 
form. Hence, one can imagine a possible explanation 
for the tails. All of this is highly speculative, but is 
motivated by the analogy Professor Banerjee has 
remarked upon. 
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Dr. Fruman's question is an important one to which we 
do not have a complete answer. What we observed in 
the experiments was a change in the probability of 
occurrence of the various events. As we moved to the 
larger head forms, higher speed, and lower cavitation 
numbers, the bubble-induced attached cavitation was 
more likely to be spread over the entire wake of the 
bubble rather than to be confined to the bubble 
extremities. Thus, the traveling bubble induced a 
localized and transient "patch" of cavitation numbers; 
the traveling bubble could therefore cause the 
formation of a patch as it passed over the surface and 
this patch would often remain for some time after the 
initiating bubble had passed. In summary, we 
observed that there exists a continuous spectrum of 
events from traveling bubbles to attached patches and 
that there appeared to be a clear connection between 
the mechanics of formation of all these structures. 
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Bubble Dynamics and Cavitation Inception 
in Non-Uniform Flow Fields 
G. Chahine (Dynaflow, Inc., USA) 

ABSTRACT 

The study of cavitation inception in non-uniform 
flow fields requires complex and sophisticated meth- 
ods. These need to account for the interaction be- 
tween the nuclei and the underlying flow, often in 
the neighborhood of walls, in shear layers, in sepa- 
rated regions, and in turbulent flow fields. This paper 
describes our contributions towards the development 
of techniques for the study of fully 3D bubble/bubble 
and bubble/flow interactions. With the advent of fast 
and affordable computers such techniques have be- 
come more and more practical, and can be effectively 
used as tools for the description of large scale bub- 
ble/vortical flow field interaction simulations. 

INTRODUCTION 

In order to achieve a cavitation free design of a 
submerged body such as a propeller, or to test a 
scale model in a laboratory environment, it is nec- 
essary to establish criteria for cavitation inception 
and to define scaling parameters between models 
and full scale. The traditional cavitation number 
based on the engineering definition of cavitation in- 
ception: a liquid flow experiences cavitation if the 
local pressure drops below the liquid vapor pressure 
is obviously not always adequate. A large number of 
studies over the years have aimed to replace this cri- 
terion with a more adequate one based on spherical 
bubble dynamics, following introduction of the con- 
cept of critical pressure to replace vapor pressure. In 
fact, cavitation very seldom occurs under the format 
of spherical bubble growth and collapse. Cavitation 
inception appears in several forms [1, 2], the most 
recognized being : 

(a) Explosive growth of individual bubbles, 

(b) Sudden   appearance   of  transient   cavities   or 
"flashes" on boundaries, 

(c) Sudden appearance of attached partial cavities, 
or sheet cavities, 

(d) Explosive growth of bubble clouds behind at- 
tached cavities or a vibrating surface. 

(e) Sudden appearance of rotating filaments, or vor- 

tex cavitation. 

Upon further scrutiny, all of these forms can be 
related to the explosive growth of pre-existing nuclei 
in the liquid when subjected to pressure drops gener- 
ated by various forms of local pressure disturbances. 
These are either acoustically imposed pressure varia- 
tions, uniform pressure drops due to local liquid ac- 
celerations, or strongly non-uniform pressure fields 
due to streamwise or transverse large vortical struc- 
tures. The presence of nuclei or weak spots in the 
liquid is therefore, essential for cavitation inception 
to occur. Indeed, a pure liquid free of nuclei can 
sustain very large tensions, in the hundreds of atmo- 
spheres, before a cavity can be generated through 
separation of the liquid molecules. Any fundamen- 
tal analysis of cavitation inception has to start from 
the observation that, any real liquid contains nuclei 
which when subjected to variations in the local ambi- 
ent pressure will respond dynamically by oscillating 
and eventually growing explosively (i.e. cavitate). 

In most real flow conditions which involve non- 
uniform flow fields the conditions leading to cavi- 
tation inception involve subjection of the cavitation 
nuclei not only to significant pressure drops, but also 
to equally significant pressure and/or velocity gradi- 
ents. The spherical model, despite all the help it 
has provided over the years, fails to address these 
conditions because it assumes that the bubble fol- 
lows the flow, and that its size remains smaller than 
the length scales of the pressure and velocity fluctua- 
tions. However, detailed and precise observations of 
flow fields in even the most simplified flow conditions 
(hemispherical body, simple two-dimensional blades, 
linear tip vortices, vortex rings, submerged jets, etc.) 
show that the velocity and pressure fluctuations in 
these flow fields are on the scale of strong eddies 
of the same size as the microbubbles present in the 
liquid.  These observations gain further importance 
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when one notices that all laboratory scale model ex- 
periments are inevitably done under conditions in 
which the eddies and the bubbles are not scaled in 
the same proportions (if bubbles are scaled at all). 
The study of bubble dynamics in non-uniform flow 
fields then stands out as being as fundamental and 
important as spherical bubbles have been for the 
past decades. 

In this paper we describe our efforts towards the 
understanding of this problem and complement our 
contribution at the previous symposium [3]. To do so 
we consider three fundamental problems of relevance 
to real flow field configurations: 1. bubble dynam- 
ics in the boundary layer of a flat wall, 2. bubble 
dynamics in the boundary layer of a head-form, and 
3. Bubble dynamics in a vortical flow field. This 
should enable one to deduce criteria for cavitation 
inception accounting for large bubble deformation 
and splitting. In addition, in the case of the bub- 
ble dynamics in a vortex flow, we present schemes to 
model flow modification by the bubble dynamics. 

SOLUTION METHOD 

One of the numerical methods that has proven to 
be very efficient in solving the types of free bound- 
ary problems associated with bubble dynamics is 
the Boundary Element Method. Several investiga- 
tors [4, 5, 6, 7] used this method in the solution of 
axisymmetric problems of bubble growth and col- 
lapse near boundaries. This method was extended 
to three-dimensional bubble dynamics problems by 
Chahine el al. [8, 9]. We describe here the model, 
then apply it to various cases of bubbles in a vorti- 
cal flow. More analytical methods such as those we 
presented at the previous ONR Symposium [3], give 
very good insight into the dynamics but are limited 
to small bubble/flow field interactions. 

Statement of the problem 

Let us consider the dynamics of bubbles oscillating 
in a non-uniform flow field ("basic flow") of velocity 
V0 that is known (or determined by the problem so- 
lution) and which satisfies the incompressible Navier 
Stokes equations: 

^+V0-VV0 = -ivP0 + z/V2V0 .     (1) 
at p 

Without any additional assumptions, in the 
presence of oscillating bubbles the resulting velocity 
field, given by V, also satisfies the incompressible 
Navier Stokes equation: 

£*v.w = -VP + i/V2V . (2) 

Let us then define the bubble flow velocity and 
pressure variables, Vj and Pi, as follows: 

Vfc=V-V0, Pb = P - Po- (3) 

We now consider the case where, because we are 
interested in cavitation bubbles with high but sub- 
sonic bubble wall velocities, the "bubble flow" field 
is potential. 

V6 = V$6, V2$i = 0, (4) 

We now subtract (1) from (2) accounting for (4) 
to obtain 

V$=Vt x (Vx V0) 

,     d$b     1 *& =  4. _ 
m    2 

vb |2 +v0 • vb + Pi 

(5) 

(6) 

This equation, once integrated, is to replace the 
classical unsteady Bernoulli equation. 

The assumption of potential "bubble flow" may 
imply that no new vorticity can be generated by the 
bubble behavior with the chosen model. However, if 
we allow the basic flow to interact with the bubble 
dynamics and be modified by it in a unrestricted 
and rotational manner, as done later below, we can 
recover generation and modification of vorticity by 
the presence and dynamics of the bubble. 

For the particular cases considered in this paper, 
the following integrations can be made. In the case of 
a flat wall boundary layer flow such that all velocity 
vectors are parallel to the wall, and depend only on 
the distance to the wall, V0 = f(z).ex, where e^ 
is the unit vector in the flow direction, and ez is 
the unit vector in the direction perpendicular to the 
wall, Equation (6) becomes: 

\t = constant in the e„ direction. (7) 

For the case where the basic flow field is composed of 
linear vortices of axis direction, ez, V0 = Vg.ee, with 
Vg the tangential velocity, Equation (6) becomes: 

$ = constant in the e, direction 

Bubble Flow Equations 

(8) 

As stated above, we consider the cases where the 
presence of bubbles in the flow has significant effects, 
that is cases where bubble volume variations are not 
negligible. This implies large but subsonic bubble 
wall velocities. Therefore, we consider a bubble flow 
that is potential. 
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The solution must satisfy initial conditions and 
boundary conditions at infinity, at the bubbles walls 
and at the boundaries of any nearby bodies. At all 
moving or fixed surfaces (such as a bubble surface or 
a nearby boundary) an identity between fluid veloci- 
ties normal to the boundary and the normal velocity 
of the boundary itself is to be satisfied: 

V$6 • n = Vfi (9) 

where n is the local unit vector normal to the bubble 
surface and Vs is the local velocity vector of the 
moving surface. 

The bubble is assumed to contain noncondensi- 
ble gas of partial pressure, Pg, and vapor of the sur- 
rounding liquid of partial pressure, Pv. Vaporization 
of the liquid occurs at a fast enough rate so that the 
vapor pressure may be assumed to remain constant 
throughout the simulation and equal to the equilib- 
rium vapor pressure at the liquid ambient tempera- 
ture. In contrast, since time scales associated with 
gas diffusion are very large, the amount of noncon- 
densible gas inside the bubbles remains constant and 
the gas pressure is assumed to satisfy the polytropic 
relation, 

PgV
k = constant, (10) 

where V is the bubble volume and k the polytropic 
constant, with k = 1 for isothermal behavior and 
k — cp/cv for adiabatic conditions. 

The pressure in the liquid at the bubble sur- 
face, Pi, is obtained at any time from the following 
pressure balance equation: 

PL = Pv + P< 9o Cj, (11) 

where Pgo and V0 are the initial gas pressure and vol- 
ume respectively, j is the surface tension, C is the 
local curvature of the bubble, and V is the instanta- 
neous value of the bubble volume. In the numerical 
procedure Pgo and Vo are given quantities at t = 0. 

3-D Boundary Integral Method 

In order to render possible the simulation of sin- 
gle or multiple bubble behavior in complex geometry 
and flow configurations including the full non-linear 
boundary conditions, a three-dimensional Boundary 
Element Method was developed and implemented 
[8, 9, 10, 11]. This method was chosen because of 
its computational efficiency. By considering only the 
boundaries of the fluid domain it reduces the dimen- 
sion of the problem by one. This method provides 
a solution of the Laplace equation (4) in terms of 
Green's equation, which provides $f anywhere in 

the domain of the fluid (field points P) if the ve- 
locity potential, $j , and its normal derivatives are 
known on the fluid boundaries (points M), 

/ 
-<9$& 1 
dn    IMP 

+ <$>i 
d l 

dn IMPI 
ds n*f, (12) 

where Q is the solid angle under which P sees the 
fluid, fi = Air if P is a point in the fluid; Q. = 2TT if 
P is a point on a smooth surface, and ß < 4TT if P is 
a point at a sharp corner of the surface. 

If the field point is selected to be on the surface 
of any of the bubbles or on the surface of the nearby 
boundaries, then a closed set of equations can be ob- 
tained and used at each time step to solve for values 
of d$b/dn (or $j) assuming that all values of <3>j (or 
d<&b/dn) are known at the preceding step. 

Discretization 

To solve Equation (12) numerically, it is necessary 
to discretize each bubble into panels, perform the 
integration over each panel, and then sum up the 
contributions to complete the integration over the 
entire bubble surface. To do this, the initially spher- 
ical bubbles are discretized into geodesic shapes us- 
ing flat, triangular panels. To evaluate the integrals 
over any particular panel, a linear variation of the 
potential and its normal derivative over this panel 
is assumed. In this manner, both <£& and d^t/dn 
are continuous over the bubble surface, and are ex- 
pressed as a function of the values at the three nodes 
which delimit a particular panel. 

Equation (12) then becomes a set of N equa- 
tions (N is the number of discretization nodes) of 
index i of the type: 

^Aij~dnA = 5Z5i>*»»' -ü^' (13) 

J'=I J' = I 

where  the matrices Aij   and  J5,J   are  the  discrete 
equivalent of the integrals in (12). 

Curvature and tangential velocity computations 

In order to proceed with the computation of the 
bubble dynamics several quantities appearing in the 
above boundary conditions need to be evaluated at 
each time step. The bubble volume presents no par- 
ticular difficulty, while the unit normal vector, the 
local surface curvature, and the local tangential ve- 
locity at the bubble interface need further develop- 
ment. In order to compute the curvature of the bub- 
ble surface, a three-dimensional local bubble surface 
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fit, f(x, y, z) = 0, is first computed. The unit normal 
at a node can then be expressed as: 

V/ 
iv/r (14) 

with the appropriate sign chosen to insure that the 
normals are always.directed towards the fluid. The 
local curvature is then computed using 

C = V-n. (15) 

To obtain the total fluid velocity at any point 
on the surface of the bubble, the tangential veloc- 
ity, Vt, must be computed at each node in addition 
to the normal velocity, V„ = <9$&/<9n n. This is 
also done using a local surface fit to the velocity po- 
tential, $; = h(x,y,z). Taking the gradient of this 
function at the considered node, and eliminating any 
normal component of velocity appearing in this gra- 
dient gives a good approximation for V* : 

Vt = n x (V<£; x n). (16) 

Time stepping 

The basic procedure can then be summarized as 
follows. With the problem initialized and the veloc- 
ity potential known over the surface of the bubble, 
an updated value of d$b/dn can be obtained by per- 
forming the integrations in (12) and solving the cor- 
responding matrix equation (13). D$b/Dt is then 
computed using the "modified" Bernoulli equation 
(7) or (8). Using an appropriate time step all val- 
ues of $6 on the bubble surface can then be updated 
using $i at the preceding time step and, 

D$b 

Dt 

d$b 

dt dn 
n + Vt    •V* (17) 

In the results presented below the time step, 
dt, is based on the ratio between the length of the 
smallest panel side, lmin and the largest node ve- 
locity, Vmax. This choice limits the motion of any 
node to a fraction of the smallest panel side. It has 
the great advantage of constantly adapting the time 
step, by refining it at the end of the collapse - where 
lmin becomes very small and Vmax very large - and 
by increasing it during the slow bubble size varia- 
tion period. New coordinate positions of the nodes 
are then obtained using the displacement: 

dM = ( —^n + Vie, + V0 
on 

dt, ;i8) 

where ix and e< are the unit normal and tangential 
vectors.   This time stepping procedure is repeated 

VIIKW-0 ».0062 11.1123 0.225 0.3U2 

Growth 

Collapse 

Figure 1: Influence of a linear shear velocity on the 
collapse of a bubble near a solid wall. VShear is nor- 
malized with the Rayleigh velocity ^(AP/p). 

throughout the bubble growth and collapse, result- 
ing in a shape history of the bubble. 

The developed code and method were validated 
using comparisons with known results in the litera- 
ture for spherical or axisymmetric bubble configura- 
tions. Convergence of the 2-D and 3-D model were 
then established for cases of interest using increased 
numbers of grid points. Such detailed comparisons 
can be found in [12]. 

BUBBLE COLLAPSE NEAR A FLAT 
WALL IN A SHEAR FLOW 

In most previously published studies of bubble dy- 
namics near solid walls, the wall was considered rigid 
and infinite, and the liquid quiescent in the absence 
of the bubble. The only asymmetry in the problem 
is then due to the presence of the infinite wall, and 
the bubble behaves axisymetrically. In this case, the 
bubble forms a reentering jet perpendicular to the 
plate during the collapse phase. Such a model has 
been extensively used by many authors both for ex- 
perimental and analytical/numerical studies mainly 
aimed at studying erosion due to cavitation bubbles, 
and was justified in the absence of more advanced 
techniques. It is however, obvious that this config- 
uration is rarely encountered in practical cavitating 
flow fields. 

Figure 1 shows the results obtained with a rela- 
tively simple model for the wall flow using our BEM 
code 3DynaFS. The velocity is assumed to vary lin- 
early from a value, V5/lear at a distance ßmar from 
the wall to zero at the wall. The "basic" pressure, 
Pamb, is assumed constant across the shear layer 
and is an input of the problem as is the initial gas 
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pressure inside the bubble, PSo. The bubble cen- 
ter is located at a distance L from the wall. The 
bubble behavior strongly depends on the parameter, 
(■ = Rmax/L, characterizing wall proximity, and on 
a shear parameter, x, ratio between the shear ve- 
locity, Vshear , and a characteristic bubble dynamics 
velocity: X = Vshear/^/AP/p. 

Figure 1 shows selected bubble contours of the 
bubble during its growth and collapse. These are 
cross cuts of the 3-D bubble shapes obtained along 
the plane of symmetry (perpendicular to the wall 
and parallel to the flow direction). The presence of 
shear is clearly apparent during the bubble growth: 
downstream bubble points move away from the ini- 
tial bubble center much faster than upstream points. 
This follows the simple intuitive reasoning that each 
point on the bubble surface moves with a velocity 
composed of the velocity it would have in absence of 

shear plus the local velocity of the "basic flow". For 
instance the farthest upstream bubble points sees 
its undisturbed growth velocities increased by Vshear 
while the farthest downstream point has its velocity 
decreased by Vskear- The opposite is true during the 
collapse phase. As can be seen by comparing the var- 
ious cases of increasing x in Figure 1 "stretching" of 
the bubble in the flow direction increases with the 
shear intensity. 

During the bubble collapse an even more signif- 
icant effect of the presence of shear on the bubble 
dynamics can be seen. The formation and develop- 
ment of the reentering jet seems to be very dramati- 
cally modified. Even when the shear velocity is very 
small, the jet is very much delayed and weakened 
in comparison with the case of the absence of shear. 
Let us note that in the absence of a "basic flow" 
the jet is directed towards the wall, and that in the 
other extreme case, i.e. no wall and uniform flow, 
the reentering jet is directed upstream. For a finite 
value of x one would expect a jet angled towards the 
wall and upstream. 

For increased values of x, the bubble deforma- 
tion and elongation is enhanced during the growth. 
During collapse for small values of x, the re-entering 
jet is deviated for increasing values of x from the per- 
pendicular to the plate. For larger values of x, the 
re-entering jet formation is totally modified and the 
bubble tends to cut itself into two bubbles. In ad- 
dition, an interesting lifting effect is observed. The 
bubble centroid is seen to move further and further 
away from the wall with increasing values of x- This 
is probably due to an interaction between the wall 
shear flow and the bubble rotation. 
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Figure 2: The hemispherical Rankine body shape 
used in the simulations and the corresponding pres- 
sure coefficient, cp, distribution. 

BUBBLE   DYNAMICS   NEAR   A   HEMI- 
SPHERICAL BODY 

Cavitation on hemispherical bodies has been stud- 
ied for a long time. The Schiebe body for instance 
has been used in various laboratories for studying 
cavitation scaling effects. More recently, an exten- 
sive program for the study of cavitation inception for 
various Schiebe body sizes was conducted at Caltech 
and in the Large Cavitation Tunnel (LCC) in Mem- 
phis [13, 14]. Very interesting observations of bubble 
behavior on these headforms were made. These ob- 
servations indicated strong interaction between the 
bubbles and the boundary layer on the headform. 
Large deviations from spherical bubble shapes were 
observed, including bubble splitting and breakup, 
formation of a weak reentering jet during bubble 
growth, and formation of long 'secondary cavitation' 
or a trail behind the bubble. We present in this sec- 
tion a numerical simulation of these effects using the 
methods described above. The objective here is not 
to reproduce all the characteristics of the experimen- 
tal studies, but to observe which characteristics can 
be captured by the present solution method. 

To do so, the flow field around the Schiebe body 
was simulated using a very elongated Rankine oval 
closed body. Figure 2 shows the hemispherical body 
shape and the corresponding pressure distribution 
along the body. One can clearly observe the pres- 
ence of a very sharp pressure drop at the upstream 
body at location x/L — 0.05, followed by a pressure 
rise which is maintained until the downstream loca- 
tion, x/L — .95, where a second symmetric pressure 
drop is present. The "basic flow' for the problem 
here is defined as that clue to the superposition of 
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Figure 3: Simulation of the behavior of a bubble 
near a hemispherical Rankine body shape showing 
formation of indentation and trail. 

Figure 4: Bubble behavior in the boundary layer 
of a cambered lifting surface showing the formation 
of a long trail behind the bubble (from [15]) 

a uniform flow, Voo, and two sources of intensity Q. 
To maintain the body shape for various values of 
the uniform flow velocity, the ratio V^/Q was main- 
tained constant. In order to account for the presence 
of a boundary layer on the body, this inviscid flow 
field was modified arbitrarily in the neighborhood of 
the hemispherical body shape, in such a way that the 
velocity was decreased linearly to zero on the body. 

In the following figures, the selected Rankine 
body had a radius of 4 inches, and a length of 55 
inches. In the simulations we have conducted the 
bubble sizes were varied from 10 to lOOO^m, and the 
flow velocities from 0 to 20 m/s. The cases presented 
here are selected because they reproduce many of the 
characteristics of the experimental observations in 
[13, 14]. Figure 3 shows bubble contours at various 
times, and illustrates clearly several key experimen- 
tal observations: the.formation of an indentation on 
the bubble top while the bubble is being convected 
downstream by the hemispherical body, the forma- 
tion of a wedge shape on the downstream portion of 
the bubble, the lifting of this portion of the bubble 
from the wall, and the formation of a 'trail' behind 
the bubble during its motion. 

The indentation appears due to the opposing 
effects on the upstream bubble portion of the basic 
flow and the bubble growth velocity. This bubble 
portion moves away the least from the initial bubble 
center. With time due to the presence of the shear, 
as in the flat wall case, this bubble region rolls away 
from the body into the flow direction and, then, en- 
counters a pressure rise which enhances the motion 
of the indentation towards the body wall. On the 
other hand,  the bubble points that penetrate the 

simulated 'boundary layer' of the body, find them- 
selves quasi-trapped in that layer. As a result, these 
points lag behind the rest of the bubble and a bub- 
ble 'trail' appears. With the simple model used here, 
this trail differs from that in the experiments by the 
fact that it issues from the center part of the bubble 
and not from its side. This could also be a scaling 
effect, in the sense of differing ratios between the 
bubble and the body sizes. Figure 4 taken from ob- 
servations on a lifting surface [15] shows a trail which 
resembles very much those obtained by the present 
numerical simulations. 

Figure 5 shows the case of a bubble where the 
rolling motion of the bubble points is not strong 
enough for the reentering point to relocate itself 
above the wall. Instead, the indentation occurs early 
on in the downstream portion of the bubble leading 
to a fission of the bubble and the formation of a long 
trail. 

Figure 6 shows the case where fission of the 
front of the bubble is very obvious. This case re- 
sembles very much to the experimental observations, 
and precedes bubble collapse and rebound. 

BUBBLE /VORTEX INTERACTIONS 

A fundamental aspect of cavitation in turbulent 
flows, and in boundary and shear layer flows con- 
cerns the interaction between bubbles and vortices. 
A simple example is that of a 'tip vortex' cavitation 
on propellers and three-dimensional airfoils. The in- 
teraction between bubbles and vortex flows is in fact 
of relevance to several fluid engineering problems in- 
volving submerged jets, flows behind constrictions 
and orifices, in wakes and in separated flow areas. 
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Figure 5: 3-D view of the bubble shape near a 
hemispherical Rankine body shape after formation 

of a trail. 

Figure 6:  Bubble end splitting near a hemispherical 
Rankine body shape. 

Mechanistic Description 

When a bubble approaches a region of high vortic- 
ity in a liquid, it is accelerated towards the center 
of rotation due to the highly asymmetric pressure 
field. On its path the bubble experiences a decreas- 
ing ambient pressure which leads to an increase in 
its volume. Simultaneously, since the non uniformity 
of the pressure field increases with proximity to the 
vortex axis, bubble shape deformation increases. 

Over the last decade several investigators have 
addressed the phenomenon of bubble capture by a 
vortex [16, 18, 19]. These studies made the simplify- 
ing assumption that the bubble, even though able to 
undergo volume changes, remains spherical. In ad- 
dition, the type of interactions they considered was 
one-sided, since they did not consider vortex flow 
modification by the presence and behavior of the 
bubble. More recently we considered a broader ap- 
proach where bubble deformation and motion were 
coupled while neglecting flow field modification by 
the bubble presence [10, 20]. This study showed 
that the pressure gradient across the bubble can lead 
to significant departure from bubble sphericity, and 
led to the suggestion that the deformation and later 
splitting of the bubble during its motion towards the 
vortex center is, in addition to its volume change, a 
main source of noise in tip vortex cavitation. This 
appears to explain the reason for the location of tip 
vortex noise at cavitation inception very close to the 
blade [22], and is in agreement with recent obser- 
vations by [23] about bubble capture in tip vortex 

cavitation. 
One can distinguish three phases in the inter- 

active dynamics of bubbles and vortices: a) bubble 
capture by the vortex, b) interaction between the 
vortex and the bubble, c) dynamics of bubbles elon- 
gated only on the vortex axis. We consider these 
aspects below. 

Order of magnitude considerations 

In order to discuss the problem of bubble capture 
and behavior in a line vortex let us consider a Rank- 
ine vortex flow field. We define T as the vortex line 
circulation, and u$ the only non-zero velocity com- 
ponent. For distances r smaller than Rc, the radius 
of the viscous core, the flow has a solid body rota- 
tion behavior while for distances r larger than Rc the 
flow behaves as an ideal inviscid irrotional vortex: 

27Tfi2' 
r<Rc ug 

r 
27rr' 

r> Rc.  (19) 

For such a flow the pressure field, p(r), is known. Its 
value and the corresponding pressure gradient are 
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given by the following normalized expressions. 

p(F) = 1-Q/r2;        dp/dr = 2fi/f3;        f > 1, 
p(r) = 1 - ft (2 - r2) ;    dp/dr = 2fir;    r < 1 

(20) 
with 

r = r/Rc-    p(r)=p(r)/Poo. (21) 

The parameter , Q, defined as 

0 i (  r 
)2/Po (22) 

characterizes the intensity of the pressure drop due 
to the rotation relative to the ambient pressure, pTO. 

The pressure gradient steepens in the inviscid 
region when the viscous core is approached, achieves 
its maximum at r = 1, and levels off in the viscous 
core close to the vortex axis. In this pressure field, 
the bubble experiences a higher pressure on its right 
side than on its left side, the difference being greater 
the larger the bubble is. Similarly, the bubble is 
'sheared', since fluid particles on the bubble/liquid 
interface experience different velocities. The type of 
shearing action depends on the position of the bub- 
ble relative to the viscous core/inviscid fluid bound- 
ary, Rc. If the bubble is fully immersed in the invis- 
cid region of the flow, fluid particles on its left side 
will experience larger velocities, while if it is fully im- 
mersed in the solid body rotation region of the flow, 
fluid particles on its right side will experience larger 
velocities. The most complex situation is when the 
bubble is partly in the viscous core and partly in the 
inviscid region. 

The degree of bubble shape deviation from 
sphericity is a function of the relative orders of mag- 
nitude of the pressure gradient, the bubble wall ac- 
celeration due to volume change, and surface tension 
forces. An evaluation of the bubble wall acceleration 
can be obtained from a characteristic bubble radius, 
Rb, and from the Rayleigh time, TR, time needed 
for an empty bubble to collapse from its radius Rb 

to 0, under the influence of the pressure outside the 
bubble. If we take for characteristic outside local 
pressure the pressure at r = Rc, the characteristic 
bubble wall acceleration, fgrowth, is : 

7growth\r=Rc  — Poo(l - fy/pRb (23) 

This value is to be compared with the acceler- 
ation force fgradient due to the pressure gradients 
expressed in (20): 

7gradUnt\T = Rc^1Q.p00/pRc, (24) 

The ratio between these two accelerations is: 

7'gradient 

"(growth r=Rc 

2Rb 

Rc 

fi 
1-fi 

(25) 

This expression underlines the importance be- 
tween the ratio of characteristic bubble size Rb, to 
viscous core size Rc . Keeping the surface tension 
parameter the same, the larger the ratio (25) is, the 
more important bubble deformation will be. This 
remark has important implications concerning scale 
effects where Ri, and Rc do not increase in the same 
proportion between model and full scale, since in most 
practical cases bubble distributions and sizes are 
uncontrolled and typically cannot be scaled much, 
while sizes of the vortical regions depend on the se- 
lected geometry and velocity scales. 

The ratio (25) is only an indication of the rel- 
ative importance of bubble growth and slip forces 
at a given position. In fact the relative importance 
of these competing forces changes during the bub- 
ble capture process. For instance, the acceleration 
of the bubble toward the vortex axis increases with 
its proximity to the viscous core while the growth 
rate tends toward a constant value (decreasing pres- 
sure gradient). This indicates that strong deforma- 
tion becomes predominant relative to volume change 
when either the bubble is very close to the axis or 
when Q becomes large. 

Another important physical factor which affects 
bubble shape is the surface tension. A normalized 
value of this pressure can be obtained as a ratio of 
the surface tension pressure and either the pressure 
difference between the inside and the outside of the 
bubble, or the amplitude of the variations of the lo- 
cal pressures (pressure gradients) around the bubble. 
The first number, Wei, is given by: 

We, =Ä»[p.--Poo(l-fi)]/7, (26) 

where p, is the pressure inside the bubble. The sec- 
ond number, We2, is given by: 

We2=Rb(dp/dr)/(7/Rb): 

which can be written for r = Rc 

2fi Rb 
We2~WeiPrlPoo-{l-£l)R 

(27) 

(28) 

For small values of either of these two numbers, 
surface tension forces are predominant and prevent 
bubble distortion and deviation from sphericity. Ex- 
pressions (28) shows that this is possible only if Vl is 
small and if Rb is much smaller than Rc. Therefore, 
as for the discussion on the acceleration forces, one 
should expect larger bubble deformations for strong 
vortex circulations and large bubbles. 
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Bubble capture by a vortex 

Despite several significant contributions to the 
study of bubble capture by a vortex, to our knowl- 
edge no complete approach has yet been undertaken. 
The complexity of the full problem due to bubble de- 
formation during its capture has led the various con- 
tributors to neglect one or several of the factors in 
play, and therefore to only investigate the influence 
of a limited set of parameters. 

The order of magnitude of the bubble capture 
time by the vortex can be easily obtained [16, 17] if 
one considers, the case where the rate of change of 
the bubble volume is negligible relative to the other 
terms. In this case, the distance between the sphere 
center and the vortex center, £(£), is given by: 

C(i) ~ ^/l + (Hi;2 - 3) f < y/l Zt (29) 

where ( is normalized with the initial bubble posi- 

tion, Co; time is normalized with (2-K^/T), and v$0 

is the initial bubble tangential velocity normalized 
by (1727TG). 

The capture time, TCl for a bubble initially at 
rest in the fluid (v$^ — 0) is therefore of the order: 

tc^l-; or 2*g (30) 

In fact, for a sphere, only viscous friction forces 
are responsible for bubble entrainment with the flow. 
The characteristic time of viscous effects, or the time 
needed by the bubble to be entrained by the flow is 

T„ = a2Jv. (31) 

The qualitative nature of the capture depends on the 
relative size between Tc and Tv. 

If Tc ~^> T„ the capture time is too long, viscous 
effects are predominant, and the bubble is entrained 
by the liquid and it swirls around the vortex while 
approaching the center very slowly. 

If Tc <C Tv the opposite situation occurs. Vis- 
cous effects are very slow to take effect and the bub- 
ble is practically sucked into the vortex and moves 
towards its center almost in a purely radial fashion. 

Finally, for Tc « Tu entrainment by the liquid 
and attraction towards the center of the vortex oc- 
cur on the same time scale. Therefore, the bubble 
approaches the axis in a spiral fashion. 

The above reasoning allows one to define a "vio- 
lent capture radius" around the vortex which is bub- 
ble radius dependent. A bubble of radius a0 will 
be sucked in by the vortex if it is within the radial 

distance RCaPture ■ 

R, capture (32) 

This implies for a tip vortex flow field, for in- 
stance, that only nuclei present in a small 'window' 
are rapidly attracted by the vortex and strongly in- 
teract with it, which explains difficulty in observing 
with some precision tip vortex cavitation inception 
events. 

Numerical Results: Large bubble growth 
rate, low surface tension 

As expected from the discussion presented above nu- 
merical simulations using the fully three-dimensional 
numerical code 3DynaFS reveal potential for strong 
bubble deformation during capture by a vortex. The 
numerical results indicate that this is the case for a 
very wide range of bubble sizes and initial values of 
the pressure difference between the inside and the 
outside of the bubble. 

Figure 7 shows bubble behavior in the case 
where the ratio between the pressure inside the bub- 
ble and the ambient pressure is significantly large, 
Pi/poo — 584. This would be the case where the 
bubble in equilibrium in a high ambient pressure en- 
vironment is suddenly subjected to the flow field of 
a vortex, as for instance when a propeller tip vor- 
tex suddenly captures a cavitation bubble [23, 24]. 
In a Cartesian system of coordinates, the bubble is 
initially centered at (0,0,0), and the line vortex is 
parallel to the Z axis, at X = X/Rmax = 2Rmax 

is the maximum size the bubble would have if al- 
lowed to grow under the same pressure difference in 
an infinite medium). The core size is 4Rmax- With 
this geometry the bubble center remains in the plane 
Z = 0. 

Figure la gives a projected view of the bubble in 
the XOY plane at different instants. The observer 
is looking down on the XOY plane from very far 
on the Z axis. The bubble is seen spiraling around 
the vortex axis while approaching it. At the same 
time, due to the presence of the pressure gradient, 
the bubble strongly deforms and a reentering jet is 
formed directed towards the vortex axis, indicating 
the presence of a much larger dynamic pressure on 
the bubble side opposite to the vortex axis. 

Figure 76 shows a projected view of the same 
bubble in the YOZ plane seen from the OX axis. 
Here some moderate elongation of the bubble is ob- 
served along the axis of the vortex as well as a very 
distinct side view of the re-entrant jet. This result is 
totally contrary to the usually held belief that bubbles 
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Figure 7: 3D bubble shapes at various times. Bub- 
ble initially at the origin of coordinate and vor- 
tex at X = 2Rmax. Q = 0.474, p;/Poo = 584.3, 
Rc/Rmax = 4. Projected view a) in the XOY plane; 
b) in the XOZ plane. 

constantly grow during their capture until they reach 
the axis and elongate along it. 

Figure 8 shows in the XOY plane perpendicu- 
lar to the vortex axis the motion of two particular 
points on the bubble, A and B, initially along OY. 
Also shown is the motion of the midpoint, C. While 
C seems to follows a path similar to the classical 
logarithmic spiral, A and B can follow more compli- 
cated paths, even moving away from the vortex axis 
at some point in time for case (6) where the vortex 
axis was initially at X = 1. 

Small growth rate and surface tension 

Figure 9 considers the influence of bubble size 
on bubble behavior during the capture process. In 
all three cases shown in the figure a ratio between 
the pressures inside and outside the bubble equal 
to one is considered, Pi/poo = 1- In all cases, the 
viscous core radius is chosen to be Rc = 2.2 mm, 
while the initial distance between the vortex cen- 
ter and the center of each bubble is chosen to be 
Co — 1.5 Äc = 3.2 mm. The dimensions shown are 
normalized with the initial bubble radius for each 
case. The circulation in the vortex is chosen to cor- 
respond to a practical value for the case of a tip 

Figure 8: Motion of points A and B initially on 
axis OX, and mid point C, versus times. f2 = 0.474, 
Pi/Poo — 584.3, dc/Hmax = 4. Vortex at a) 
X = 2Rmax ; b) X = Rmax- 

vortex behind a foil, such as in the experiments de- 
scribed in [23, 24], T = 0.152 m2/s. Three bubble 
sizes are considered: 10 pm, 100 pan and 1000 p.m. 
As expected, bubble deformation increases with the 
bubble size. The deformation is small for ao=10 pm, 
becomes very significant for ao=100 pm, and is ex- 
tremely important for a„=1000 pm. In all cases, the 
bubbles, while remaining in the inviscid region, are 
seen to be sheared very strongly by the flow. The 
smaller bubbles appear to deform in the expected 
way in a shear flow. The larger bubble case (ao = 1000 
pm) shows extreme bubble elongation and wrapping 
around the viscous core region. 

Figure 9: Bubble contours at various times. 
T = 0.1527m2/s, pi = poo, ac = 2.2mm, vortex 
at X = 3.27?im, with a„ = a) 10/mi, b) 100/<m, c) 
1000/jm. 
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Figure 10: Behavior of 5 bubbles in a vortex line 
flow - Contour shapes at various times. The vor- 
tex line is perpendicular to the page and centered 
on Y = 1.5mm. Rc = 2.2mm, F = 0.1573m2/s- 
Q. = 0.872. All bubbles have a0 = 100 (im. 

Multiple Bubbles 

One of the key question that one needs to address in 
the practical studies of bubble/vortical field interac- 
tion is how does a distribution of bubbles modify the 
flow field. In order to address such a problem the 
program 3DynaFS is being modified for effective 
implementation on a supercomputer. Indeed one of 
the difficulties of such a study is the required large 
number of discretization points which prevents sig- 
nificant runs on typical memory and speed limited 
computers. Some preliminary multibubble interac- 
tions were considered in [27, 26] 

Figure 10 shows the case of a 5-bubble configu- 
ration. This run has the advantage of including both 
vortex/bubble and bubble/bubble interactions. All 
five bubbles are chosen such that in absence of the 
vortex flow field, the pressures inside and outside 
each of them is the same and equal to 0.74 atm, 
Pi/Poo — 1. The viscous core radius and the cir- 
culation are again chosen to be in the same ranges 
as those in the experiments described in [23, 24]. 
The viscous core is chosen to be Rc = 2:2mm, while 
T = 0.1573 m2/s, Q. = 0.872. The initial bubble cen- 
ters are selected to be on OY axis at Y = 0,2,3,4 
and 5 mm. The vortex line is parallel to OX axis 
and is centered on Y = 1.5 mm. As a result, bub- 
bles No. 1, 2 and 3 are initially located in the vis- 
cous core,  while bubbles No.   4 and 5 are located 

Figure 11: 3D bubble shapes in the vortex line flow 
field of Figure 8 before collapse of buble No. 1. View 

from a) OZ axis, b) OX axis. 

in the inviscid flow region. All five bubbles consid- 
ered have an initial radius of 100 fim. Figure 10 
shows contours of the bubbles as they rotate around 
the vortex axis at various times. This figure clearly 
shows the presence of a non-uniform flow field. In- 
deed, Bubble No. 3 which is the closer to the region 
of highest angular velocity of the "basic flow" is seen 
to swirl around the vortex center at the fastest rate, 
while Bubble No. 2, which is the closest to the vor- 
tex center is seen to practically rotate around itself. 
Similarly, the highest shear is seen to occur close to 
the viscous core edge where the pressure gradients 
and their variations are steeper. 

Since all bubbles were chosen to have the same 
initial radius and internal pressure, the natural pe- 
riod of oscillation of each of the selected bubbles in- 
creases with the proximity to the vortex axis. As a 
result, the farthest bubble from the axis, Bubble No. 
5, collapses first while stretching and deforming. 

Figure 11 shows two thee-dimensional views of 
the bubbles before the collapse of bubble No. 1. 
These views enable one to have a better idea of the 
bubble shape deformation and elongation during the 
capture phenomenon. Similar experimented obser- 
vations were seen in [24]. 

Bubble on vortex axis 

Let us consider now the case where the bubble is 
captured by the vortex and placed at its axis. Such 
a problem was considered earlier in [21] for an elon- 
gated bubble. Unfortunately, that study neglected 
an essential element of vortex dynamics:   i.e.    the 
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Figure 12: Comparison between the contours of an 
elongated bubble during its collapse in the absence 
and in the presence of swirl. Initial elongation ratio 
of 3.   poo/Pi = 3.27.   a) No swirl,   b) fi = 0.56. 

-K>cf -Krnax -— "■ 

presence of an azimuthal velocity, and a strong jet 
which initiated at both extreme points of the bub- 
ble along the axis of symmetry was obtained. As 
shown in Figure 12a such a behavior is reproduced 
using the program 2DynaFS when the vortex flow 
field is neglected. However, the opposite effect is 
in general obtained when the rotation in the vortex 
flow is included. Figure 126 illustrates this for par- 
ticular values of fi and the normalized core radius, 

ttc — lie/ f^max • 
In both cases shown in Figures 12a and 126 the 

initial length to radius bubble elongation ratio was 
three. It is clear from the comparison that the swirl 
flow has a conclusive effect on the bubble dynam- 
ics. Bubble surface portions away from the vortex 
axis experience much higher pressures than bubble 
surface portions on and close to the vortex axis, and 
therefore move much faster during the collapse phase 
generating, instead of the sharp jets on the axis as in 
Figure 12a, a constriction in the mid-section of the 
bubble. This generates an hourglass shaped bubble 
which then separates into two tear-shaped bubbles. 

In the following figure 13a-c, various configura- 
tions of initially spherical bubble dynamics are stud- 
ied. The initial internal pressures inside the bubbles 
are taken to be larger than the pressure on the vor- 
tex axis, and the bubbles are left free to adapt to this 
pressure difference. The figures show that the bub- 

Figure 13: Bubble dynamics on the axis of a vor- 
tex line. Left side shows 3D shapes at selected 
times. Right side shows bubble contours at in- 
creasing times. T = 0.005m2/s, R0 = 100/mi. 

a)p;/Poo = 2, Rc/Ro = 1 , b) Pi/poo = 2, Rc/R0 = 1, 
c) Pi/Poo = 1, Rc/Ro = 0.57. 

ble behavior depends significantly for a given value 
of the swirl parameter, fi, on the normalized core ra- 
dius Rc, ratio of Rc to Rmax- In all cases where Rmax 
is larger than Rc it appears that the bubble lends to 
adapt to the vortex tube of radius Rc. This could lead 
to various bubble shapes as shown in the following 
figures ending up with a very elongated bubble with 
a wavy surface for large values of Rmax/Re- 

Figures 13a — c show bubble contours at vari- 
ous times during growth and collapse for increasing 
values of the core radius, Rc, and decreasing values 
of Pi/Poo- Also shown are selected 3D shapes of the 
bubbles at various times. It is apparent from these 
figures, that during the initial phase of the bubble 
growth, radial velocities are large enough to over- 
come centrifugal forces and the bubble first grows 
almost spherically. Later on, the bubble shape starts 
to depart from spherical and to adapt to the pressure 
field. The bubble then elongates along the axis of 
rotation. Once the bubble has exceeded its equilib- 
rium volume, bubble surface portions away from the 
axis - high pressure areas - start to collapse, or to 
return rapidly towards the vortex axis. To the con- 
trary, points near the vortex axis do not experience 
rising pressures during their motion, are not forced 
back towards their initial position, and continue to 
elongate along the axis. As a result, a constriction 
appears in the mid-section of the bubble. The bub- 
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ble can then separate into two or more tear-shaped 
bubbles. It is conjectured that this splitting of the 
bubbles is a main contributor to cavitation inception 
noise. This behavior is very similar to that observed 
for bubble growth and collapse between two plates 
[15], which results in the formation of a vortex line! 

Keeping Q constant while reducing the core size 
Rc has the effect of steepening the radial pressure 
gradient along the bubble surface and increasing the 
rotation speed inside the viscous core. This enhances 
the deviation of the bubble shape from a sphere, and 
increases the centrifugal force on the fluid particles 
closer to the vortex axis. This has the consequence 
of increasing the elongation rate of the bubble and 
results in more and more complex dynamic shapes of 
the elongated bubbles. The bubble can then become 
subdivided into three, four or more satellite bubbles 
during the collapse. The elongated and wavy shapes 
obtained have been observed on cavitation on the 
axis of the vortex formed in a vortex tube [26]. 

Observation of the elongated bubble dimension 
variations with time are very revealing [10, 26]. Nor- 
malizing lengths by Rmax and time by the Rayleigh 
time based on Rmax and the pressure difference be- 
tween Pgo and the pressure on the vortex axis, one 
finds that the bubble length along the rotation axis 
strongly depends on Q. However, the bubble cross- 
section radius closely follows the classical Rayleigh 
model and is very little dependent on fi. Variations 
of Q between 0.1 and 0.94 modify the normalized 
bubble period by less than 10 percent. One should 
notice, however, that bubble period is here defined 
as the time needed for the bubble to subdivide into 
two secondary bubbles. 

More realistic vortex line model 

While the Rankine model is very helpful to study 
the fundamentals of bubble/vortex interactions, it 
does not allow one to capture other features such as 
flow and bubble motion along the axis of rotation. 
In [28] we conducted a study where a Burgers vortex 
line flow field was considered. 

ue 

ur — —Cr,    uz 

_ _r_ 
2irr 

= Cz 

-r2 

!-eXp( W (33) 

where C is a constant, and 6 is the viscous core ra- 
dius. The pressure distribution can then be obtained 
by solving the momentum equation: 

p(r, z, 0 = Poo - 2PC2z2 - 2pC262X2 - B/2X2 + 
B [exp(-;C2) - exp(-2X2)/2] /X2 + 

B[Ei(-X2)-Ei(-2X2)], 
(34) 

5 r 

Figure 14: Bubble dynamics on the axis of a vis- 
cous line vortex. Contour shapes versus time. Basic 
field obtained using a viscous flow solver with vis- 
cous diffusion along x and r. Viscous core size 1mm, 
initial bubble size 100/zm. 

with B = pT/2ir6 and X = r/26. This flow and 
pressure field were used to study bubble dynamics 
on the vortex axis. When the bubble in initially 
centered at the origin of coordinates it has again a 
symmetric behavior. However, a much faster bubble 
elongation with time is then seen, but here again the 
bubble cross section does not exceed the core size. 

Figure 14 show an example of bubble behavior 
in an even more realistic vortex line flow field. In 
this case the flow field of the vortex line is obtained 
by solving the viscous flow field due to an imposed 
Rankine vortex flow plus a uniform axial velocity at 
z — 0. This is to simulate the diffusion of a vortex 
line generated at the tip of a three-dimensional foil. 
The commercial Navier Stokes solver Fidap was then 
used at the Ecole Navale at Brest to obtain the dif- 
fusion of such a flow along the z axis, and included 
an axial flow at x = 0. The resulting flow field was 
then used as a basic flow to study 3-D bubble behav- 
ior using 3DynaFS. In this case pressure gradients 
along the vortex axis are important enough to pro- 
duce a reentering jet along the vortex axis while the 
bubble is entrained along the vortex line by the z 
component of the flow. 

Experimental validation study 

In order to validate the numerical studies on bub- 
ble vortex interactions, a fundamental experiment 
was conducted. This consisted of the controlled ob- 
servation of the interaction between a vortex ring 
and a bubble.   The results of the experiment were 
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then compared with those obtained with 3DynaFS 
described above [25, 26]. The vortex ring was gen- 
erated in a Plexiglas tank using a cylinder equipped 
with a 2.5 cm radius piston. The cylinder had a 
sharp lip exit to enhance the roll up of the fluid vor- 
tex generated at the lip. This results in a vortex 
ring with a diameter slightly larger than that of the 
cylinder. A spark generated bubble was produced 
where desired in the vortex ring flow field. The in- 
teraction between the generated ring and bubble was 
then observed using high speed photography. A trig- 
gering line allowed one to synchronize the departure 
of the piston and the triggering of the spark gener- 
ator using pressure transducers to precisely detect 
the vortex ring motion. 

Both the experimental observations and the nu- 
merical computations showed very similar behaviors. 
The results of these comparisons can be found in 
[25, 26]. Bubble shearing and splitting along the 
flow direction appears common. This can be quali- 
tatively understood by considering the velocity and 
pressure fields around the bubble. The motion of 
each point on the surface of the bubble is the re- 
sult of the combination of the underlying fluid ve- 
locity and of the velocity due to the bubble growth 
or collapse. The effect of the underlying fluid flow is 
usually small during initial bubble growth and later 
bubble collapse phases due to the large bubble wall 
velocity during these phases, but becomes most im- 
portant at the end of the growth where bubble wall 
velocities reach a minimum. For a bubble in a uni- 
form flow, the presence of the underlying flow re- 
flects on the bubble shape during the growth by a 
larger extension of the bubble in the downstream di- 
rection and by a flattening of the bubble shape in 
the upstream direction. Later on due to inertia, the 
downstream bubble part that has extended further 
collapses faster forming a reentering jet directed up- 
stream. 

When the flow is not uniform, a similar phe- 
nomenon occurs but is stronger on one side of the 
bubble than on the other due to the typical asymme- 
try of a shear flow. In addition, the fact that the un- 
derlying shear flow becomes at some point during the 
bubble history stronger than the local bubble wall 
velocity creates the opportunity of a jet generated 
by the underlying flow, which can be opposite to the 
one described above and directed downstream. This 
leads to the formation of a constriction all around 
the bubble with a tendency for bubble splitting. 
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Figure 15: Dynamics of the interaction between a 
cylindrical bubble and a line vortex. T = 0.5 m2/s, 
Pgo =5xl03Pa, Poo = 1.3xl05Pa. a) Bubble radius, 
value of maximum azimuthai velocity ug max, and po- 
sition of Rg max. b) Bubble radius versus time with 
and without viscous interaction. 

FULL VISCOUS INTERACTION BE- 
TWEEN A CYLINDRICAL BUBBLE AND 
A LINE VORTEX 

One weakness of the numerical approach presented 
above is the fact that, while the influence of the flow 
on the bubble was fully accounted for, the modifica- 
tion of the flow by the bubble presence and dynamics 
was restricted to the case where the "bubble flow" 
was potential. In the present section, we will remove 
this restriction in the simple case of the interaction 
between a cylindrical bubble and a line vortex. This 
corresponds to cases where the line vortex has the 
central part of its viscous core gaseous or vaporous. 
Such an analysis is important to determine criteria 
for unstable bubble growth (cavitation inception), 
and to describe how bubble dynamics affects the vis- 
cous flow itself. To do so, we consider the case where 
an axisymmetric elongated bubble of initial radius a0 

is located on the axis of a fully viscous line vortex. 
For illustration, we consider the case where, at t = 0, 
the vortex line is a Rankine vortex. From there on, 
the vortex diffuses with time and interacts fully with 
the bubble. The generated flow satisfies the axisym- 
metric incompressible Navier-Stokes equations. 

Denoting the radius of the bubble as a(t), and 
its time derivative, d (t), the continuity equation 
leads to: 
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ur = a (t) ä (t) jr. (35) 

Replacing ur by its expression in the momentum 
equations one obtains: 

1 /   ..      .2      9\      a2 a I dp 

r \ / rl par 
(36) 

Öw«     a a dug        u« 

Or r 
= f-; 

d (\ d 
dr \r dr 

(ru$)    , (37) 

This set of coupled equations allows one to describe 
both the bubble dynamics and the flow field modifi- 
cation accounting for two-way interaction. 

Method of Solution 

In order to obtain a differential Equation for the bub- 
ble radius variations, similar to the Rayleigh Pies- 
set Equation, Equation (36) is integrated between 
r = a(t) and a very large radial distance, r = Rinj, 
beyond which the vortex flow is assumed to be in- 
viscid (vortex line of circulation T). This leads to an 
integral term containing u|. In order to obtain this 
term, a space and time integration of Equation (37) 
is needed. This is obtained using a Crank-Nicholson 
finite difference integration scheme. To do so, the 
domain of integration is made time independent us- 
ing the variable change, 

s = r/a(t). (38) 

The integration region becomes for all times [1; s-in{], 
with Ri„f(t) — a(t)sinf. Equation 37 becomes: 

Dt 
s a dug 

a    ds 

a dug 

sä ds 
zug + 
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Re a
2, V ds2      s ds      s2 

with 

(39) 

(40) 

Similarly, Equation (36) becomes: 
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with 

(41) 

(42) 

Initial and Boundary Conditions 

The initial conditions considered are as follows. For 
the bubble, 

a(0) = ao, a(0) = 0. (43) 

For the line vortex, the equation at t — 0, is that of a 
Rankine vortex. In addition, the following boundary 
condition is imposed at the bubble interface: 

P(a) = pv+pSo(^)2k-- + 2fi 
v a I a 

ßur{a) 
dr 

(44) 

where /i is the dynamic viscosity, and the gas com- 
pression law is given by: 

(a0\
2k 

(45) 

To close the problem, the following condition is 
imposed on the pressure at the distance, i?!n/ : 

P(Rm() - Poo - 2/> 
2irsinta(t) 

(46) 

Some Preliminary Results 

Figures 15a and 156 illustrate both the bub- 
ble/vortex flow field interaction and a case where 
there is a need to include this full interaction in the 
dynamics. In these two figures, the bubble has an 
initial radius of 1mm, while the viscous core of the 
vortex has an initial radius of 1cm. The initial cir- 
culation in the vortex is 0.5 m2/s, and the initial 
pressure in the bubble is 5xl03Pa, while the am- 
bient pressure is 1.3xl05Pa. Therefore, the bubble 
starts its dynamics by collapsing. Figure 15a shows 
simultaneously three characteristic quantities of the 
problem versus time. The first quantity is the bub- 
ble radius versus time, while the other two quantities 
are the radial position, Rgma.x, of the maximum az- 
imuthal velocity, Mjmax, and the value of this veloc- 
ity. In the previous sections, these two last quantities 
remained constant with time. A very important first 
result very clearly shown in Figure 15a is that both 
the position of Rgm?LX, and the value of ug max, both 
directly depend on the variation of a(t). The vis- 
cous core (of radius Rg max) is seen to decrease with 
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the bubble radius during bubble collapse, and to in- 
crease with the bubble radius during bubble growth. 
This tendency of the viscous core to get displaced 
with the bubble wall, corresponds to intuition, but 
is proven numerically to our knowledge for the first 
time here and in [28]. 

Viscous effects appear more prominently when 
following the bubble dynamics over more than a sin- 
gle period of oscillation. Both maximum values of 
Re max and uemax are seen to decrease with time. 
Through conservation of momentum, the azimuthal 
velocity follows an tendency opposite to the core 
size. As the bubble wall moves inward the viscous 
core shrinks, simultaneously increasing the tangen- 
tial velocity to a maximum when the bubble reaches 
maximum size. As the bubble grows again, the core 
expands and the tangential velocity decelerates to a 
minimum at the maximum bubble radius. When the 
fluid particles are pulled in towards the vortex axis 
they accelerate tangentially. This is similar to the 
phenomenon of vortex stretching . 

Figure 156 shows the importance of the inclu- 
sion of full viscous flow / bubble interaction in the 
dynamics. The figure shows also the case where the 
underlying flow field is forced to remain that of a 
Rankine vortex. In that case, the bubble oscilla- 
tions are repeatable with time, and no viscous decay 
of the amplitude of the oscillations are visible. To 
the contrary when the underlying flow is modified 
through viscous diffusion and interaction with the 
bubble, the bubble radius oscillations decays very 
much after the first collapse, and the flow field char- 
acteristics are modified as described in Figure 15a. 

Figures 16a and 166 show, respectively, the in- 
fluence on the problem dynamics of the initial gas 
pressure inside the bubble, Pgo, and the ratio of ini- 
tial core radius to initial bubble radius, Rc/a0. For 
an initial pressure on the vortex axis of 7xl05Pa, 
Figure 16a shows the dynamics of the bubble and 
the viscous core size when the initial pressure in the 
bubble decreases from 5xl05Pa to 1.5xl05Pa. For 
Pgo = 5xl05Pa the bubble collapse is very weak, 
and the core radius is seen to follow the bubble wall 
oscillations. For all three other smaller values of Pgo 

starting from Pgo =4xl05Pa the bubble collapse is 
strong enough to result in a full collapse of the vis- 
cous core which practically disappears (maximum 
azimuthal velocity at the bubble wall) during the 
later phases of the bubble collapse. This is followed 
by a much stronger rebound of the viscous core than 
the bubble rebound. 

Figure 166 shows a behavior similar to the pre- 
vious figure when the ratio, Rc/a0, increases. Here 
again a strong core collapse and rebound is observed 

rco««our« 
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/ 
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Figure 16: Dynamics of the interaction be- 
tween a cylindrical bubble and a line vortex. 
Paxis =7xl05Pa. a) Influence of the initial bub- 
ble pressure, Pgo, on bubble radius and position of 
Re max- Rc/a<> — 2. b)Influence of Rc/a0 on the bub- 
ble radius and position of Rgmax. Pgo =1.5xl05Pa. 

when the initial distance between the bubble wall 
and the core radius is decreased. 

The case of initial bubble growth instead of col- 
lapse is not shown here because it presents the same 
character as observed in the rebound cases in the 
above figures. 

INTERACTION   BETWEEN 
AND A VORTICAL FLOW 

A   BUBBLE 

In order to extend the methods presented above 
to the more general case of the interaction between 
a bubble and a general rotational field, the BEM 
method was coupled to a vortex element method. 
With this approach the basic vortical flow is repre- 
sented by a distribution of three-dimensional vortex 
elements, and if need be, by the addition of a po- 
tential component. The procedure then is to track 
in time both the bubble free surface motion and the 
vortex elements motion. By doing so, one is able 
to obtain not only the bubble motion and defor- 
mation, but also the vorticity distribution variation 
with time. Modification of the vortical field by the 
presence of the bubbles is thus an outcome of the 
interaction method. 

The above is based on the basic principle that 
any arbitrary basic flow field may be decomposed 
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into a potential part, <j>0, and a rotational part, A : 

u = u^ + uw = V^ + Vx A. (47) 

The rotational part of the velocity uu derives 
from the vector potential A which satisfies 

VJA = -w, (48) 

where w is the vorticity. The velocity is obtained by 
the Biot-Savart law: 

Uu,(x) 
1   f (x - y) x u(y) 

Ait I dy.       (49) 

For numerical simulation, the vorticity field is 
discretized using a desingularized representation of 

vorticity [29, 30, 31]. 

N 

oj(x,0) = Y^Uif6{x-Xi)dVi (50) 
»=o 

where Xi are tne centers of the vortex elements,and 
fi is a spherical rapidly decaying core function or 
mollifier [29], which is chosen to be 

U (r) = 
47T<53 

e   «^ (51) 

following [31]. With the discretized vorticity dis- 
tributed over vortex elements, we may also write 
dV{ = dAi x e?Xi,and hence 

widVi = Tidxi (52) 

where T; is the elementary circulation associated 
with the t'-th line element. By virtue of Kelvin and 
Helmholtz theorems T; remains invariant in time, 
and the elements follow the local velocity field en- 
abling stretching and tilting of the elements. The 
change in the vorticity is represented by a change in 
the line element dxi- The discretized velocity expres- 

yv 
lr(x- Xi) x dXi    fx - Xi 

i = 0 Xi\ 

l-e~r (53) 

The element positions are updated by the velocities 
at their end points 

Xi(t + dt) = Xi(t) + u(Xi,t)dt. (54) 

The  convergence of this  vortex  method  was 
proven in [32].    The procedure is as follows.    For 

Figure 17: Interaction between a bubble and a fi- 
nite thickness line vortex represented by 3D vortex 
elements. Crosscut in the plane of symmetry z=0. 
Note motion of the vortex line points close to the 
bubble deviate significantly from a pure circular mo- 
tion as away from the bubble. 

a given vorticity distribution in the flow field of in- 
terest, a geometric distribution of three-dimensional 
vortex elements is selected. In the examples below a 
Gaussian distribution is selected. The inverse prob- 
lem of (50) is then solved to obtain the values of the 
elementary circulations, Tj, associated with each fi- 
nite line element. With the knowledge of this initial 
vortex element distribution, and the initial bubble 
discretization, one can proceed with the time step- 
ping to solve the problem. The influence of all bub- 
ble panels and all vortex elements on the bubble and 
vortex nodes are computed. This allows determi- 
nation of the new values of the velocity on all the 
bubble nodes. Knowing all values of $j and d$b/dn 
on the boundaries one can deduce the velocity any- 
where, and in particular at all nodes of the vortex 
elements whose position can then be updated using 
(54). 

The case of a finite thickness line vortex was 
considered and represented with 18 vortex lines dis- 
cretized into 3D elements. One can then obtain as 
shown in Figure 17 both the bubble and the vortex 
line deformations. Figure 17 shows the intersection 
at various times during bubble growth and collapse 
between the plane z = 0 and the bubble and the 
vortex elements. This shows both bubble and vortex 
elements motion with time. Note that the motion of 
the vortex line point close to the bubble deviate sig- 
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nificantly from a pure circular motion. Those away 
from it just rotate around the central point due their 
mutual interaction and to the symmetry of the distri- 
bution. Figure 18 shows a 3D snapshot of the bubble 
and vortex line shapes for the example of a bubble 
immersed in the vortical field. Figure 19 shows how 
the vorticity distribution along the OY axis has been 
modified by the dynamics and presence of the bub- 
ble. It is apparent in this case that very significant 
redistribution of the vortex field is possible during 

the bubble motion. 
The above example is shown as an illustration of 

the method being developed. More detailed descrip- 
tions and a more extensive analysis are in prepara- 

tion [33]. 

Figure 18: Interaction between a bubble and a fi- 
nite thickness line vortex represented by 3D vortex 
elements. 3D view at maximum bubble size of the 
bubble and vortex line shapes 

0.05 

0 10 20 
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CONCLUSIONS 

The study of bubble dynamics in non-uniform flow 
fields is complex but essential to any real attempt to 
study bubble dynamics in realistic flow conditions. 
Due to the difficulties involved in both experimental 
and analytical approaches, the trend is to address 
the problems by a two-pronged effort involving nu- 
merical and experimental simulations. This is made 
possible by the development of advanced high speed 
computers which render direct numerical simulations 
possible in reasonable amounts of time. The stud- 
ies presented above addressed various aspects of the 
problem, namely bubble behavior in the vicinity of 
boundaries, bubble capture by a vortex and bubble 
dynamics in a vortical flow field. The most interest- 
ing development is the capability to study the influ- 
ence of the bubble's presence on the vortical field it- 
self. Our attempts in this direction were briefly pre- 
sented and are presently very actively being pursued. 
It is hoped that a matching between a flow solver, at 
least in the vortical region, and a bubble dynamics 
solver such as 2DynaFS or 3DynaFS will enable 
one to describe with some acceptable accuracy the 
full interaction between the bubbles and the vortical 
flow field. This is of great importance since it would 
allow the user to understand the mechanics involved 
thus enabling one to manipulate the phenomena for 
technological advantage in applications such as, in 
ship wakes, bubble drag reduction, or cavitation in- 
ception delay. 

Figure 19: Vorticity distribution modification 
along the OY axis during bubble oscillation in a fi- 
nite thickness line vortex represented by 3D vortex 
elements. 
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DISCUSSION 

T. Huang 
David Taylor Model Basin, USA 

Georges, you have selected a very important area of 
cavitation. Would you please analyze the frequency 
and the noise level of your computation for bubble 
dynamics in a vortex. Thank you very much for your 
excellent work and presentation. 

AUTHOR'S REPLY 

The author appreciates very much the comments of 
Dr. Huang. It is comforting to know that the 
fundamental work that we are conducting responds to 
some of the Navy researchers' questions. Even though 
we have not directly addressed yet the important 
questions of Dr. Huang, the results that we have 
presented in this paper and additional information in 
the referenced publications allow me to give a 
preliminary answer. The dynamics of "splitting" of the 
bubble entrapped in the vortex is controlled mostly by 
the bubble wall motion in the perpendicular plane to 
the vortex axis. The period of one "oscillation" or 
"collapse" in that direction scales well with the 
Rayleigh time based on the pressure on the vortex axis 
and on maximum size of the equivalent spherical 
bubble. As a result, the frequency of the emitted sound 
includes the same major frequencies as the equivalent 
spherical bubble defined above. However, since the 
achieved minimum volume is smaller, the amplitude is 
smaller. From computations of the pressure field 
(using post-processing and the Boundary Element 
Method), the emitted sound is more directive than in 
the spherical bubble case. Thank you again for your 
encouraging remarks. 
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Free Oscillation of a Nonspherical 
Bubble in a Quiescent Fluid 

N. McDougald, G. Leal 
(University of California-Santa Barbara, USA) 

I.   INTRODUCTION 

Theoretical studies of the dynamics of gas 
and vapor bubbles in a liquid have recently undergone 
a strong resurgence of interest. From a physical 
point of view, this is a consequence of the realization 
that time-dependent changes in the bubble volume and 
shape are very often strongly coupled, with 
implications both in understanding bubbles as a 
source of sound, and in understanding possible 
mechanisms for bubble breakup. In fact, the initial 
impetus for much of the work on this topic over the 
past five years was the suggestion, due to Longuet- 
Higgins (1, 2), that a major source of the sound 
produced by breaking waves in the ocean could be the 
entrapment of nonspherical air bubbles, which 
become a strong acoustic source via a transfer of 
energy from the initial deformation of shape to a 
significant oscillation of the bubble volume. 
Further, though bubble breakup at high Reynolds 
number is generally assumed to result from 
deformation caused by velocity or pressure gradients, 
a bubble that oscillates in volume due to a time- 
dependent fluctuation of the ambient pressure may 
also reach the point of breakup due to the generation 
of large shape oscillations via a transfer of energy 
from the volume oscillations. 

Motivated by these, and other, potential 
applications, a number of recent investigators have, 
in fact, tackled the problem of coupling between 
time-dependent changes in bubble shape and volume 
(1, 2, 3, 4, 5, 6, 7). These studies were all based 
upon small amplitude expansions, using a modal 
decomposition of the bubble shape in terms of 
spherical harmonics. In spite of their complexity, 
however, these analyses turn out to be incomplete 
(and even misleading) due to an unfortunate choice of 
a very special family of initial conditions (8). 

In our group, we have followed two 
complimentary paths of investigation: the first, 
based again upon small amplitude perturbations of 
volume and shape (relative to equilibrium) but with 
an added advantage of modern tools and ideas from 
non-linear dynamics; and second, the application of 
numerical methods for the solution of free boundary 
problems to explore larger amplitude effects. 

From our perspective, there are three classes 
of problem that provide a basis to understand 
situations of more direct technological significance: 
(1) The coupling between shape and volume 
oscillations in a quiescent fluid at constant ambient 
pressure; (2) The coupling between shape and volume 
oscillations in a quiescent fluid forced by time- 
dependent ambient pressure fields; and (3) The 
preceding problems in the presence of a mean flow (or 
other mechanism) that produces a nonspherical base 
state. Although the effects of boundaries, or of 
neighboring bubbles, can be very considerable in each 
of these processes, the work carried out in our group 
to date applies to a single bubble in an unbounded 
fluid. 

In the present paper, we first summarize 
some aspects of our recent analytical studies. 
Following this, we introduce the numerical methods 
that have been developed for the solution of bubble 
dynamics problems involving large amplitude 
oscillations of shape and volume. Finally, we 
present numerical results showing our initial studies 
of bubble motions in an inviscid fluid. In the verbal 
version of this paper, we will expand upon these 
results to the extent allowed by our accomplishments 
during the next three months. This work is being 
carried out as part of the PhD dissertation research of 
one of us (9). 
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II. A      SUMMARY      OF      RECENT 
ANALYTICAL   STUDIES 

Over the past several years, we have carried 
out a comprehensive analytic investigation of the 
coupling of small amplitude oscillations of a gas 
bubble in an incompressible, unbounded liquid. In 
this work, we neglect buoyancy effects and assume 
the Reynolds number associated with the bubble 
motions to be large so that viscous effects can either 
be neglected completely, or limited to weak boundary- 
layers confined to the immediate vicinity of the 
bubble surface. Further for simplicity, the bubble is 
assumed to be axisymmetric. Detailed descriptions of 
the work are reported in three recent publications (6, 
8, 10). Here we limit ourselves to a brief synopsis of 
the results. 

The primary tool for analysis is the familiar 
"domain perturbation" technique, pioneered by Joseph 
(11). The bubble shape is specified in terms of 
spherical harmonics. In general terms, for the small 
deformation limit, the coupled dynamics of the 
volume (Po) and shape (Pn) modes correspond to a 
classic nonlinear oscillator system, whose behavior is 
determined largely by proximity to resonance 
conditions. If we denote the natural frequency for 
volume oscillations as COQ, 

2     r 
3Y r/a 

• + 2 

and the natural frequency of the nth shape mode (Pn) 
as con, 

a,;s-L(n + l)(n-l)(n + 2) 
a p 

then exact resonance occurs generally for coo-kcon=0, 
where k is an integer. 1 

If coo-kcon is not small, <ao-kcon>0(e), 
where e denotes the amplitude of shape or volume 
deformations (relative to equilibrium), coupling 
between the shape and volume modes occurs only at 
higher order (i.e. 0(eP) with p>l), and the domain 
perturbation analysis is well-behaved at all orders in 
e. 

On the other hand, for cuo-kcun<0(e), the 
ntn shape mode and the volume mode are in a near- 
resonant (or exact resonant) state, and the coupling 

,th 

Here, T is the interfacial tension, a the undeformed 
radius, p the liquid density, p the ambient pressure 
and y is the ratio of specific heats (Cp/Cv). 

between these modes is stronger, occurring at 0(e). 
In this case, the governing equations at the second- 
order contain secular terms, and the so-called 
solvability conditions required for bounded solutions 
yield dynamical equations for the slowly varying 
amplitudes of the Po and Pn modes at 0(e). The 
details of resonant interactions depend upon k; on 
whether there is a mean deformation of shape via 
either a non-isotropic pressure distribution or a mean 
flow; and the nature of any time dependence of the 
ambient pressure. 

We briefly summarize results for two cases 
that will later by studied at finite amplitude via 
numerical solution of the full nonlinear fluid 
mechanics problem. 

a.   Free Oscillations in a Quiescent Fluid 

First, we consider the oscillation of a bubble 
in a quiescent inviscid fluid, in the presence of a 
constant ambient pressure. This is the problem 
originally studied by Longuet-Higgins (1, 2, 4), and 
eventually revisited by many other authors, including 
the earliest of our own studies, Yang et al (6). 

It is a simple matter to show that there is a 
one-to-two internal resonance between oscillations in 
the bubble volume and the nth shape mode whenever 
coo=2con, and this has been recognized by all 
researchers beginning at least with Longuet-Higgins. 
However, all solutions up to the analysis of Feng and 
Leal (8) showed that the energy associated with an 
initial deformation of shape was always transferred 
completely at large times to oscillations of the 
bubble volume, thus suggesting that an initially 
nonspherical bubble would become a strong source of 
sound. 

In contrast, however, the analysis of Feng 
and Leal (8) shows unequivocally that this inference 
is incorrect, except for a very select set of initial 
conditions at exact resonance. Feng and Leal 
considered the case of 1-2 (coo=2con) resonance, but 
with allowance for a mismatch of 0(e) from exact 
resonance, i.e. 

ü)o-2cDn=ß0e 

where ßo is a so-called "detuning" constant of 0(1). 
In the notation of Feng and Leal, the bubble surface 
is at r=l + efi + 0(e2) where 

f^lKoWe^'+a^We^^P.^j + c.c. 

and x = e 1t. 
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In general, resonant coupling is found to lead to a 
continuous interchange of energy between the 
resonant shape and volume modes on a long time 
scale, O(woe)"1, which appears as a slow modulation 
of the oscillation amplitudes oc^'oCt) and ai>n(T). 

To visualize the predicted behavior, it is 
convenient to reproduce the phase diagram of Feng 
and Leal (8), and this is shown in Figure 1. Since 
the fluid is inviscid, total energy is conserved in the 
exchange of energy between volume and shape 
oscillations, and the solution trajectories for the 
slowly varying amplitude functions oci?o and oci>n 

can thus be drawn on the surface of a sphere, whose 
radius is proportional to the total energy. 
Specifically, in terms of spherical coordinates, the 
amplitude functions can be written in the form 

ao! rcosle^+V) 

an = r sin - e'V 

(volume mode) 

(n* shape mode) 

where ao 
4n-l 

"(Or n pi,0    and 

«n =ai,n^/(4n-l)2co;;/64(n + l)(2n + l) 

A point at the north pole, where 0=0, thus 
represents a purely radial oscillation, whereas a point 
at the south pole is a pure shape oscillation. The 
relative phase of the two resonant modes is 
determined by the azimuthal angle, <(>. 

Solution trajectories for 1-2 resonance 
conditions are sketched in Figure 1 for several values 
of the detuning parameter ßo. Generally, as indicated 
earlier, the trajectories trace closed paths on the sphere 
surface representing an interchange of energy as the 
point moves closer to, or further from the north and 
south poles. Fixed points in Figure 1 correspond to 
oscillations of volume and shape with no change in 
the amplitudes ao and an, and no change in the 
relative phase angle §. 

A key feature of the one-two resonance case 
is that the north pole N, representing purely radial 
oscillations, is always afixed point. When the 
detuning parameter ßo is large, there is only one other 
fixed point, but energy exchange is generally weak in 
any case, and the purely radial oscillation is stable. 
On the other hand, for 0<ßo<ßc, we see from Figure 
1, that there are a total of three fixed points, and a 
homoclinic orbit that emanates from the purely radial 

fixed point at the north pole. This means that the 
purely radial mode is unstable to infinitesimal 
perturbations of shape for this range of ßo values. 
The critical value of ßo is 

(4n-l)cDn 
"1,0 ' 

a l,n 
4(n + l)(2n + l) 

Although the individual amplitude functions depend 
on time, the term in square brackets is constant, and 
thus can be evaluated from the initial amplitudes of 
deformation. 

w 

Figure 1: Phase diagrams for the one-two resonance 
case (a) coordinate orientation, (b) ß>2r, i.e., large 
detuning, (c)ß=0, i.e., no detuning, (d) (kß<2r. 

A point of special interest is that the 
homoclinic orbit for exact resonance, ßo=0, becomes 
the great circle trajectory which passes directly 
through the south pole. Thus, any initial conditions 
which begin on this invariant manifold will end up at 
the north pole for t->°°. Ironically, the initial 
conditions considered by Longuet-Higgins (2), as well 
as the initial conditions of virtually all other 
investigators, can be shown to correspond to various 
points on the invariant great circle. It can be seen 
from Figure 1, however, that the behavior identified 
by these investigators is a very special case, limited 
to the specific set of initial conditions that happen to 
lie on the invariant great circle in the case of exact 
resonance, ßo=0. 
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We may conclude from the results in this 
subsection, that nonspherical bubbles may be a 
significant source of sound, as suggested by previous 
investigators. Further, the interchange of energy that 
occurs between shape and volume modes whenever we 
are in the neighborhood of a resonant point is 
generally continuous in time.   Clearly, the bubble 
response in these conditions (and the associated 
sound) cannot be predicted precisely from Rayleigh- 
Plessant theory. It may be noted, however, that there 
is a large amplification factor in going from a purely 
radial oscillation to a shape mode, while holding the 
total energy constant.  Thus, even when the bubble 
undergoes rather large oscillations of shape at the 
expense of energy from the radial mode, the changes 
in the amplitude of the radial mode with time may 
remain quite modest.   Finally, volume oscillations 
for conditions sufficiently close to resonance are 
unstable, and this may be a route to bubble breakup 
in the absence of gradients in either the ambient 
pressure, or the mean velocity of any external flow. 
We discuss the dynamics of a gas bubble with larger 
amplitude changes of volume or shape in Section IV, 
where we present some selected results of recent 
numerical studies. 

b. The Effect of Mean Shape Deformation 
on Free Oscillations in a Quiescent 
Fluid 

The second case studied in Section IV 
concerns the effects of a mean deformation of shape or 
volume on the bubble dynamics. There are, of 
course, a number of ways by which the shape of a 
bubble may be changed. The simplest is that a 
nonisotropic ambient pressure distribution may cause 
the bubble to deform. Another is that the bubble 
may be deformed by a mean flow of the suspending 
liquid. It is, perhaps, not surprising that these 
various routes to mean deformation can produce quite 
distinct results for the bubble dynamics. 

The general case of a nonisotropic pressure 
distribution at the bubble surface was again treated by 
Feng and Leal (8), following the earlier work by 
Yang et al (6), which focused on exact resonance 
conditions. In this case, resonant interactions were 
found to occur both for (oo=2con and coo=con. 
Further, the mean deformation of shape is found to 
lead to a shift in the natural frequency of shape 
oscillations, with an increased frequency for oblate 
mean shapes and decreased frequency for prolate 
shapes. This frequency shift provides a natural 
mechanism for detuning from exact resonance. 

In the case of 1-2 resonance, the predicted 
behavior is qualitatively similar to that described in 

the preceding subsection, but with the magnitude of 
detuning modified by the shift in frequencies that is 
caused by the mean deformation. 

The phase diagram for 1-1 resonance is 
shown in Figure 2, again reproduced directly from 
Feng and Leal (8). Although the solution trajectories 
for various ß values appear quite similar to those 
shown earlier for the 1-2 resonance case, there are a 
number of fundamental differences. The most 
important is that the north pole, N, is not a fixed 
point in this case for any value of ß. Hence, there 
exists no region of ß space where purely radial 
oscillations can be stable. Instead, an initial 
deformation of volume (from equilibrium) will 
always generate a corresponding shape oscillation. 
Two other features are worth mentioning here. First, 
the coupling coefficients between the shape and 
volume modes, which are zero in the absence of mean 
deformation, increase monotonically if there is an 
increase in the amplitude of the mean deformation— 
thus indicating stronger interactions with increased 
deformation. Second, these same coupling 
coefficients both contain the factor (n-3) in the 
numerator and are thus identically zero when the 
frequency match is between coo and W3. This means 
that resonant coupling is not possible for the n=3 
mode. Perhaps the most important consequence of 
the onset of 1-1 resonance, in addition to the 1-2 
resonance identified earlier, is that the likelihood of 

Figure 2: Phase diagrams for the one-one resonance 
case (a) Coordinate orientation, (b) ß large, i.e., large 
detuning, (c) ß-0, i.e., no detuning, (d) ß intermediate. 

314 



coupling between shape and volume oscillations is 
increased, and hence too the range of conditions where 
we may expect departures from Rayleigh-Plesset 
predictions and/or the onset of conditions for bubble 
breakup. 

It was noted earlier that changes in the 
mechanism for mean deformation will generally lead 
to changes in the characteristic dynamics of bubble 
shape and volume oscillations. Of particular 
consequence for applications is the influence of an 
external mean flow. We have, to date, considered 
only the single case of an axisymmetric extensional 
flow with a dimensionless rate of deformation of 
0(e1/2) (6). Although this is admittedly a special 
case, it shows that the coupling between shape and 
volume oscillations can be stronger in the presence of 
flow than would be true with the same mean shape 
but no flow. This implies that the interaction will 
occur on a much shorter time-scale than is possible in 
the absence of a mean flow. In particular, for the 
steady axisymmetric straining flow, when a>o- 
©2=0(e), resonant interaction between the volume 
and P2 mode appears at 0(e3/2) in the small 
amplitude expansions, and this translates to a time- 
scale, 0(cooe1^2)"1, rather than O(CDOE)"

1
 as in the 

case without flow. Furthermore, in this case, volume 
oscillations lead always to shape oscillations and vice 
versa (i.e. the bubble cannot undergo purely radial 
oscillations). The mechanism by which volume 
oscillations lead to shape oscillations is very 
simple—the bubble shape even at steady-state is a 
function of its size, and this is translated into changes 
of shape at the same frequency as the bubble 
undergoes a time-dependent change of volume. 

c.   Summary 

The analyses summarized in this section 
were all based on the assumption of small amplitude 
changes in the bubble volume or shape relative to its 
equilibrium configuration. Thus, interactions are 
weak, even in the vicinity of resonant conditions, and 
the time-scale over which these interactions lead to 
changes in the bubble motion is correspondingly 
long. For an inviscid fluid, very long time-scale 
phenomena are possible because they are not damped 
by viscous dissipation. For bubbles in real liquids, 
however, the Reynolds number characteristic of 
bubble motions is often quite large, but viscous 
effects are never completely negligible, and it is 
likely that the predicted resonant interactions would 
not be observable at such small deformation 
amplitudes. When the amplitudes of shape or volume 
changes increase, however, the coupling between 
modes becomes stronger, and the time-scales become 
much shorter, thus reducing the importance of 
dissipative effects.   In addition, of course, mode 

coupling will occur for conditions that are further 
from exact resonance, and will generally involve 
multiple shape modes. 

To assess the practical significance of the 
phenomena identified in the small amplitude 
expansions, it is thus critical to study the effects of 
increased amplitude. This can be done, in principle, 
either experimentally, or theoretically by numerical 
solution of problems involving larger deformations 
using modern techniques for free-boundary problems. 
In the present work, and in the remainder of this 
paper, we pursue the latter alternative. It should be 
noted, however, that efforts are also under way to 
utilize levitation techniques developed in the 
microgravity research program at JPL-NAS A, to carry 
out the type of controlled experimental studies that 
are required to obtain quantitative data. 

In the next section, we briefly describe three 
numerical methods that have been used in our group 
for the solution of free-boundary problems. 
Following this, in the last section, we present some 
results focused upon the two classes of problem that 
were described in this section. 

III.    NUMERICAL  METHODS 

Three distinct numerical techniques have 
been developed for the solution of flow problems 
involving finite amplitude oscillations of volume and 
shape for a single bubble in an unbounded, 
incompressible liquid. These are: (1) a spectral code 
which utilizes a modal decomposition of the bubble 
shape in terms of spherical harmonics, and is suitable 
for purely inviscid flows; (2) a boundary-integral 
technique which is suitable for bubbles of arbitrary 
shape in either an inviscid fluid, or under 
circumstances (cf. Lundgren and Mansour (12)) where 
weak viscous effects are confined to a thin region at 
the bubble surface; and (3) a finite-difference code 
using boundary-fitted coordinates that is designed to 
solve free-boundary problems for the full Navier- 
Stokes equations. It can be used for Reynolds 
numbers up to 0(several hundred) at least. 

a.   The Spectral Method 

The spectral method we employ is a slight 
variation of traditional spectral methods as discussed 
in Fletcher (13) and is based on the analytical work 
done for small amplitude oscillations (6, 8, 10). The 
algorithm is very efficient computationally for small 
amplitudes, but as the number of Legendre modes 
which must be retained for an accurate solution 
increases so does the computation time. The method 
we use assumes that the bubble surface can be 
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decomposed into a finite series of Legendre 
polynomials with time dependent coefficients, and 
that the potential function can likewise be represented 
by a series of "decaying" axisymmetric spherical 
harmonics based on Legendre polynomials. By doing 
this we automatically satisfy the governing equation 
for potential flow throughout the domain and are left 
with the time-dependent coefficients of the shape and 
potential functions to satisfy the boundary conditions. 
As with other spectral methods, we make use of the 
orthogonality of Legendre Polynomials and various 
recursion relations relating derivatives to lower order 
polynomials to generate ordinary differential equations 
for the time-dependent coefficients. The result of this 
technique is a system of 2N ordinary differential 
equations where N is the total number of modes kept 
in the Legendre series. These equations are advanced 
in time using a fourth order Runge-Kutta routine to 
give the evolution of the bubble shape and the 
external potential. 

b.   The Boundary Integral Method 

The boundary integral method is well suited 
to the solution of free surface problems as it does not 
require the discretisation of the calculation domain. 
Instead, the solution of the problem is reduced to 
solving a set of equations on the boundary only 
which can be related to the entire domain through 
Green's functions thereby reducing the dimension of 
the system by one.   In our treatment, we consider 
only axisymmetric shapes so our domain is two- 
dimensional and the boundary is represented by a one- 
dimensional curve. This is the main advantage of the 
boundary integral method over finite difference 
techniques.   The boundary integral method is also 
computationally more efficient due partly to the 
reduction of the dimension of the problem, but also 
to the availability of efficient algorithms for the 
required matrix manipulations. The disadvantage of 
this approach is that it requires the velocity field to be 
expressed as a potential thereby preventing the 
inclusion of viscous effects explicitly. It is possible, 
however, to include weak viscous effects if the effect 
of vorticity is confined to a thin region near the 
surface (12).   The boundary integral technique is 
analogous to representing the velocity potential as a 
distribution of point sources along the boundary. Our 
implementation of the scheme follows that of Brebbia 
(14) which treats the method as a special weighted 
residual method. The weighting functions are chosen 
to  satisfy  Laplace's  equation  and in  fact are 
fundamental solutions corresponding to point sources 
on the boundary.    The nature of the singularity 
occurring at each node is therefore known, allowing it 
to be integrated either analytically, if the boundary is 
discretized using simple linear elements, or by an 
appropriate numerical method for more complicated 

segmentation of the interface. In our case we use a 
32-point Gaussian scheme to evaluate the nodal 
integrals and a five-point Gaussian scheme for other 
points along the interface as our elements are 
determined by. a cubic spline interpolation between 
the nodes. The time advancement in the code is done 
using a fourth order Runge-Kutta routine to update 
the position of and the value of the potential at each 
node along the boundary. 

c.   Finite  Difference Method 

The finite difference scheme used for this 
study is essentially that described by Kang and Leal 
(15), but adapted to accommodate the finite 
compressibility of the bubble. This method uses a 
boundary-fitted coordinate transformation, updated at 
each time step, to discretize the domain. Since a 
detailed description is already available in the 
literature, no additional description will be given here. 
One point to note, however, is that we have found 
this technique to be moderately dissipative, and thus 
inaccurate at high Reynolds number (or in the 
inviscid flow limit) for free-oscillation problems (i.e. 
for problems without time-dependent forcing of the 
bubble volume or shape). With forcing, the 
numerical dissipation produces a modest phase-lag. 
but does not have much effect on the amplitudes of 
the bubble motion. 

The results reported below represent the 
initial stages of what is intended to be an extensive 
study. In the work reported here, we consider only 
the inviscid limit, and thus utilize only the spectral 
and boundary integral codes. We have found that 
these produce virtually identical results in all cases. 
For convenience of presentation, we use generalized 
Fourier series decompositions to express the 
calculated shapes via the boundary integral technique 
in terms of Legendre components, P2, P4, etc. 

IV. NUMERICAL   RESULTS 

The results in this section consider the 
problem of free oscillation in a quiescent fluid, and 
free oscillation in the presence of a nonspherical mean 
shape (due to an anisotropic mean pressure). They are 
preliminary, and incomplete in some respects. 

a.   Free Oscillation  in a Quiescent Fluid 

We have seen in section II that the small 
amplitude deformation theory predicts that there is a 
fundamental change in the solution structure at ß=2r, 
i.e. at 
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For deformation amplitudes such' that the right hand 
side is smaller than eßo, the purely spherical solution 
is unstable. In the unstable regime, the interchange 
of energy will become stronger as eßo becomes 
smaller and/or oqo and ai>n become larger. 

In the present brief study, we consider three 
cases with fixed values of ai ;o and ai >n for n=2, and 
various ßo The three cases are listed in Table 1 

Case eoci?o eai,2 (eßo)c 

A 
B 
C 

-.005 
-0.05 
0.1 

0.01 
0.1 
0.1 

0.063 
0.63 
1.22 

together with the critical value of eßo, calculated 
from the preceding equation. 

The first case, A, has sufficiently small 
initial values of ea^o and ecci^ to fall within the 

domain of validity of the small amplitude 
perturbation theory. The critical value of eßo is 
0.063. Calculations were carried out for eßo =10"5, 
10"2, 0.1, 1.0 and 4.0, plus several values in the 
immediate vicinity of the critical value predicted from 
the small perturbation theory. Results for eßo =10"5 

and 0.1 are shown in Figures 3 and 4. In the first 
case, ßo is very close to zero and although the initial 
conditions do not correspond to a point on the 
invariant great circle which passes from N to S in 
Figure lc, the solution trajectory still passes very 
close to the south pole S, and there is almost a 
complete exchange of energy between the Po and P2 
modes. Note that the dimensionless period for one 
complete cycle of this resonant interaction is 
approximately 160. In Figure 4, on the other hand, 
the detuning parameter is eßo=0.1, which exceeds the 
critical value of 0.063, and there is very little 
exchange of energy, and a period that is shorter by 
approximately a factor of 2. In this case, the phase 
diagram is of the type lb, and thus the trajectory 
starting to the left of the north pole (N) with ty=iz 
travels a rather short path around the north pole with 
little energy exchange. The transition in behavior, in 
fact, occurs very near the value of eßo=0.063 
predicted by the small amplitude theory. It is perhaps 

-0.03 

-0.04 

100 
Time 

200 

Figure 3: Amplitudes of the PQ and P2 modes for Case A (Table 1), with eßo=10"5. 
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surprising that the transition in eßo is as sharp as it 
is. With the initial conditions considered here, there 
is a sharp decrease in the degree of interaction at 
eßo=0.063 and almost no interaction beyond 
eßo=0.1. 

The second case, corresponding to row B in 
Table 1, has the initial perturbation amplitudes 
increased by a factor of 10, which also increases the 
predicted critical value of eß0 by approximately ten 
times. Of course, since the amplitudes of 
deformation are now "finite," we should expect some 
deviation in the value of eß0 where the stability 
actually changes compared to the value predicted by 
the small deformation theory. We have considered a 
series of values from eß0=10"5 to eß0=4. The 
predicted critical value is 0.63. We illustrate results 
for eß0=10-5, 0.4,0.5 and 0.6. For eß0=10-5, shown 
in Figure 5, there is a strong exchange of energy as 
expected. However, in this case: (1) the period for 
energy exchange between modes is much shorter (-16 
instead of 160, as expected qualitatively from the 
predicted scaling of the time et, for resonant 
interactions at small amplitudes); (2) the exchange is 
never complete—i.e. the amplitude of the Po (or 
volume) mode always remains nonzero, and the 
corresponding increase in P2 to a maximum of about 
0.35 is smaller than the value 0.4 that one would 
expect via a linear scaling from the previous case; and 

(3) we see the intermittent appearance of the P4 mode 
(there is also some P& and Pg not visible in Figure 
5). The results up to eßo=0.1 are virtually identical 
to those shown above. At eßo=0.4, we can begin to 
see the expected transition (corresponding to ß=2r). 
The initial conditions considered lie outside the 
homoclinic orbit. Hence, initially, for ßo=0, where 
the homoclinic orbit coincides with the great circle 
between N and S, our solution trajectory begins to 
the left of the great circle at <|>=7C (see Figure 1) and 
remains there at all times, thus missing the south 
pole where the maximum amplitude shape mode 
occurs.   As the homoclinic orbit retreats from the 
great circle that it occupies for ßo~0, and shrinks 
toward the fixed point at the north pole (Figure 1), 
the maximum amplitude of the shape mode in our 
solution will at first increase a little as the trajectory 
moves toward S and then decrease monotonically as 
the homoclinic orbit diminishes in size. We see this 
behavior in Figures 6, 7 and 8. At eßo=0.4, there is 
a slight increase in the maximum amplitude of the P2 
mode, but also a much longer period of interaction 
(-30).   At eß o=0.5 there is a decrease in the 
maximum P2, and very much less energy lost from 
the radial Po mode.  The period is still longer, now 
-50. Finally at eßo=0.6, there is almost no change 
in Po, and the amplitude of P2 decreases from the 
initial condition rather than increasing as in previous 

-0.04 

100 
Time 

Figure 4: Amplitudes of the Po and P2 modes for Case A (Table 1), with eßo=0.1. 
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Figure 5: Amplitudes of the PQ, ?I and P4 modes for Case B (Table 1), with eßo=10- 

Figure 6:  Amplitudes of the PQ. PT and P4 modes for Case A (Table 1), with eßo=0.4. 

319 



0.3 

0.2 

0.1   - 

E < 

-0.1 

-0.2 

-0.3   - 

10 20 30 40 50 60 70 
Time 

Figure 7: Amplitudes of the PQ, P2 and P4 modes for Case A (Table 1), with eßo=0.5. 
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Figure 8: Amplitudes of the P0, P2 and P4 modes for Case A (Table 1), with eß0=0.6. 
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cases. Our experience with many test cases, 
especially at small amplitudes, is that this initial 
decrease in P2 is a signal of the transition in behavior 
corresponding to ß=2r. We see, in this case, that the 
transition occurs for eßo between 0.5 and 0.6. This 
is slightly smaller than the critical value of 0.63, 
predicted by the small deformation theory, 
presumably due to nonlinear effects. 

Finally, two representative results are shown 
in Figures 9 and 10, for even larger perturbation 
amplitudes. As shown in row C of Table 1, the 
predicted critical point is eßo=1.22. We find that for 
eßo=2.0, there is little exchange of energy and the 
bubble oscillation is stable. For eßo=1.0, on the 
other hand, the exchange of energy is strong, and 
there is a rapid onset of higher order shape modes 
which leads to bubble breakup at t~19. It should be 
noted that the same result is obtained at t=19 by both 
the boundary integral and spectral cases, and we are 
convinced that the onset of breakup is real and not a 
numerical artifact. 

One other set of calculations was done, 
holding eßo=-l and £ai;2=0.01, and then varying 
ea^o to seek the condition for instability of the 
small nonspherical perturbation. The solution is 
stable for eai>o=0.02, 0.05 and 0.1, but for 

60:1,0=0.2, there is a very rapid growth of P2 (and 
higher modes) leading to breakup at t~8. The 
transition would be expected to occur at eaio=0.08 
according to the perturbation theory. 

b.   Nonspherical Mean  Shape 

We have seen, in the summary of the 
analytical work, that a bubble with a nonspherical 
mean shape, exhibits both a 1-1 and a 1-2 resonance 
between oscillations of shape and volume, with the 
added feature that the frequency of the shape mode 
depends upon the degree of mean deformation. In the 
brief space available here, we concentrate on the 1-1 
resonance for a>o=co2. We consider only four cases, 
which are listed in Table 2 

Case 
* 

eß0 
ss 

eai,o|t=0 

D 
E 
F 
G 

-0.54 
-0.54 
0 
0 

0.08 
0.04 
0.16 
0.08 

0.05 
0.05 
0.05 
0.05 

where 

coo-co2=eß0 

2 4 6 8 10 12 14 16 18 
Time 

Figure 9: Amplitudes of the PQ, P2 and P4 modes for Case C (Table 1), with eßo=l-0. 
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2 4 6 8 10 12 14 16 
Time 

Figure 10: Amplitudes of the PQ, P2 and P4 modes for Case C (Table 1), with eßo=2.0. 

20 

In these cases the P2 mode is started at its mean 
steady-state value, while the Po (volume) mode is 
initially given the same value eaifo=0.05 in all 
cases. The cases listed above were chosen to give an 

indication of the sensitivity to eßrv and to illustrate 

the effect of changes in the degree of steady-state 
deformation. 

We begin with case D, shown in Figure 11. 
* 

In this case, eß0=-0.54, which is a moderately large 

degree of detuning, yet the interaction between the Po 
and P2 modes is surprisingly strong. The fact is, 
however, that the frequencies do not actually differ by 
as much as one would expect for the specified degree 
of detuning. We believe that this is due to the fact 
that the frequency shift associated with the mean 
deformation actually lessens the degree of detuning. 
Since the mean shape is prolate, the frequency of the 
?2 mode is decreased relative to its value for 
oscillations about the spherical base state, and thus 
CD0-CO2 's cl°ser t0 exact resonance than is indicated 

* 
by the value of eß0. 

The  influence  of the  degree of mean 
deformation is illustrated by comparison of the cases 

* 
D and E, shown in Figure 12, which both have £ßw=- 

0.54, but with a mean deformation that differs by a 
factor of 2. It is evident that the amplitude of the P2 
oscillation, which exists only due to the coupling 
with Po, is decreased with decrease in the mean 
deformation. According to the small deformation 
theory the amplitude of the P2 oscillation should 
decrease in exact proportion to the amplitude of the 
mean deformation (i.e., by a factor of two in this 
case). However, careful comparison of Figures 11 
and 12 shows that the amplitude for the smaller mean 
deformation is decreased by more than a factor of two. 
This is again a consequence of the frequency shift 
associated with mean deformation. The decrease in 
mean deformation means that the frequency shift is 
also reduced, and thus 00-CO2 is actually larger for 

eocj 2 = 0.04 than for ectj 2 = 0.08, even though 
* 

eß0 is the same in the two cases.   Since we are 

farther from resonance in the small deformation case, 
this produces an additional decrease in the strength of 
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0.15 

10 12 
Time 

Figure 11: Amplitudes of the P0, P2 and P4 modes for Case D (Table 2). 
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Figure 12: Amplitudes of the P0, P2 and P4 modes for Case E (Table 2). 
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interaction, and thus also in the amplitude of the P2 
oscillation, beyond the "expected" factor of two. 

Generally, without the deformation-induced 
frequency shift, we would expect the strength of 

•* 
interactions to increase when eß~ is increased from 

-0.54 to 0.  However, if we compare the result for 
s s * 

eotlj2 = 0.08 and eßQ = 0, shown in Figure 13, with 
* 

the corresponding result for eßQ = -0.54 in Figure 11, 

we see that there is actually a small decrease in the 
* 

strength of the interaction for ß0 = 0, as indicated by 

the amplitude of the P2 mode oscillation. With the 

scaling used in these figures, the change from eßn 

from -0.54 to 0 is reflected by an increase in the 
frequency of the Po mode. However, because of the 
deformation-induced frequency shift in the P2 mode, 
this change in the frequency of the PQ mode does not 

produce a match in frequencies as one would expect if 
the mean deformation were not present. Instead, the 
frequency of the P2 mode which was originally 

slightly higher than that of Po (for eßn = -0.54), 

turns out to be slightly lower by almost the same 

amount for eß~ = 0. 

Finally, in case G, Figure 14, we consider a 
case with ß* = 0 and a steady deformation that is 

ss 
much larger, ea12 = 0.16.   Here, the effect of the 

deformation-induced frequency shift is even more 
obvious. Based upon the amplitude of the P2 mode 
in case F, and the expectation from the small 
deformation theory that the strength of the interaction 

should double when we double eo^ 2 , we would 

expect the amplitude in case G to be about twice what 
actually occurs. However, in this case, the decrease 
in the frequency of the P2 mode is much larger, and 
the actual frequency mismatch CO0-CO2 is quite large 
in spite of the fact that ß* = 0. 

0.2 

-0.05 

4 6 8 10 12 14 16 18 
Time 

Figure 13: Amplitudes of the PQ, P2 and P4 modes for Case F (Table 2). 
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Figure 14: Amplitudes of the PQ, P2 and P4 modes for Case G (Table 2). 
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DISCUSSION 

O. Phillips 
The Johns Hopkins University, USA 

Are there any conservation integrals for these coupled 
oscillations that would help in the interpretation of the 
time variations of the modes? Total energy, I presume. 
There may be at least one other. In wave interactions 
there are action partition integrals and I wondered if 
there is something analogous here, at least in the 
weakly non-linear cases. 

shape grow at the expense of radial oscillation remains 
valid. This indicates to us that energy transfer away 
from the radial mode due to resonant interaction with 
shape modes may present at least a partial explanation 
for the overprediction of the acoustic signal produced 
by oscillating bubbles by models which ignore 
variations in bubble shape. 

AUTHORS' REPLY 

The most important conserved quantity in our opinion 
is the total energy of the system. To understand the 
interaction between modes one should consider the 
analytical results of Feng and Leal (8) presented in 
figures 1 and 2 of the paper. The phase diagrams 
presented there show how energy is partitioned 
between the radial and shape modes for small 
amplitude oscillations for both 1-2 and 1-1 resonance 
conditions. In these figures the north pole corresponds 
to purely radial oscillations and the south pole to pure 
shape oscillation. As the trajectories trace closed 
paths around the sphere, the interchange of energy is 
seen as the trajectory draws closer to or further from 
the north and south poles. To see how the trajectories 
on the sphere relate to the amplitude versus time plots 
used to present the numerical results, consider the 
small amplitude result in figure 3. The conditions for 
this case are such that the results from the small 
amplitude theory can be used to predict the response of 
the bubble to an initial disturbance of shape and 
volume. The results in figure 3 correspond to a 
trajectory of the type shown in figure lc which involve 
almost complete energy transfer between modes. At 
time t >0, the trajectory is in the vicinity of the north 
pole. As time progresses the energy is transferred to 
oscillations of the shape mode, in this case P2 , until 
around t=80 when the trajectory passes near the south 
pole and nearly all of the available energy resides in 
the shape oscillation. After t=80 the trajectory moves 
away from the south pole, transferring energy back to 
the volume mode, until approximately t=160 when the 
initial condition is revisited. 

To understand the finite amplitude results we extend 
what we have learned from the small amplitude theory. 
One of the first effects we encounter is that more than 
one shape mode is involved in the near resonant cases. 
However, the general result that the oscillations of 
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Cloud Cavitation on an Oscillating Hydrofoil 
G. Reisman, E. McKenney, C. Brennen 

(California Institute of Technology, USA) 

ABSTRACT 

Cloud cavitation, often formed by the breakdown 
and collapse of a sheet or vortex cavity, is believed 
to be responsible for much of the noise and ero- 
sion damage that occurs under cavitating condi- 
tions. For this paper, cloud cavitation was pro- 
duced through the periodic forcing of the flow by 
an oscillating hydrofoil. The present work exam- 
ines the acoustic signal generated by the collapse of 
cloud cavitation, and compares the results to those 
obtained by studies of single travelling bubble cav- 
itation. In addition, preliminary studies involving 
the use of air injection on the suction surface of 
the hydrofoil explore its mitigating effects on the 
cavitation noise. 

NOMENCLATURE 

c = Chord length of foil (m) 
/ = Acoustic impulse (Pa ■ s) 
I* = Dimensionless acoustic impulse 
k = Reduced frequency = wc/2U 
p — Test section absolute pressure (Pa) 
p = Time averaged pressure (Pa) 
pa = Radiated acoustic pressure (Pa) 
PA = Acoustic pressure intensity (Pa) 
pv — Vapor pressure of water (Pa) 
q = Normalized air flow rate = Q/Ucs 
Q = Volume flow rate of air at test section pressure 

and temperature (m3/sec) 
72. =   Distance   between   noise   source   and   hy- 

drophone (m) 
s = Span of foil (m) 
t = Time (s) 
T — Period of foil oscillation (s) 
U — Tunnel test section velocity (m/s) 
V = Volume of cavitation bubble or cloud (m3) 
a = Instantaneous angle of attack of foil (deg) 
ä = Mean angle of attack of foil (deg) 
p = Fluid density (kg/m3) 
a = Cavitation number = (p — pv)/\pU2 

U! = Foil oscillation frequency (rad/s) 

INTRODUCTION 

In many flows of practical interest one observes the 
periodic formation and collapse of a "cloud" of cav- 
itation bubbles. The cycle may occur naturally as 
a result of the shedding of bubble-filled vortices, or 
it may be the response to a periodic disturbance 
imposed on the flow. Common examples of im- 
posed fluctuations are the interaction between ro- 
tor and stator blades in a pump or turbine and 
the interaction between a ship's propeller and the 
non-uniform wake created by the hull. In many 
of these cases the coherent collapse of the cloud of 
bubbles can cause more intense noise and more po- 
tential for damage than in a similar non-fluctuating 
flow. A number of investigators (Bark and van 
Berlekom [1], Shen and Peterson [2], Bark [3], 
Franc and Michel [4] and Kubota et al. [5, 6]) have 
studied the complicated flow patterns involved in 
the production and collapse of a cavitating cloud 
on a hydrofoil. The present paper represents a con- 
tinuation of these studies. 

Previous studies have shown that, as an attached 
cavity collapses and is shed into the wake, the 
breakup of the cavity often results in the occur- 
rence of cloud cavitation. The structure of such 
clouds appears to contain strong vortices, perhaps 
formed by the shear layer at the surface of the 
collapsing cavity (see Kubota et al. [5], Maeda et 
al. [7]). These clouds then collapse with some vi- 
olence, often causing severe erosion on the surface 
and generating significant amounts of noise (Bark 
and van Berlekom [1], Kato [8], Ye et al. [9]). Fig- 
ure 1 shows two typical examples of cloud cavita- 
tion on the oscillating hydrofoil used in the current 
study. 

One of the present goals was to relate the char- 
acteristics of the acoustic signature of a cavitat- 
ing cloud to the dynamics of the associated col- 
lapse process. The details of the cavity growth 
and collapse and cloud formation are discussed by 
previous authors, including McKenney and Bren- 
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Figure 1: Cloud cavitation on an oscillating hydrofoil. The photograph on the left is without air injection, 
cr = 1.2, k — 0.9, a = 10.3° (a decreasing). The photograph on the right has a normalized air flow rate of 
q = 2.2 x 10-4, with a = 1.2, ifc = 0.8, a = 7.4° (a decreasing). 

nen [10]. Briefly, the cycle begins with the forma- 
tion of travelling bubble cavitation near the lead- 
ing edge of the foil as illustrated in figure 2. As 
the angle of attack increases, the bubbles grow and 
coalesce to form a single sheet cavity attached to 
the leading edge, as seen in figure 13. The down- 
stream edge of this cavity is unstable and soon 
breaks down into a cloud of froth. In many cases 
a "sub-cloud" of the froth is ejected and travels 
downstream separately, with the main sheet cav- 
ity collapsing behind it. This sub-cloud is some- 
times very coherent and may persist well after the 
remains of the sheet cavity have dispersed. The 
sub-cloud is believed to be the major source of the 
cavitation noise and its accompanying erosion. 

As described by McKenney and Brennen [10], 
once the sub-cloud has travelled past the trailing 
edge of the foil there is a brief period in which 
there is no cavitation before the cycle begins again. 
A notable difference between those earlier experi- 
ments and the present work, however, is the hydro- 
foil mean angle of attack. In the previous work, the 
foil angle varied between 0° and 10°. Here, the an- 
gle of attack varies from 4° to 14°, so that even as 
the cloud from one cavitation cycle is dispersing a 
new sheet cavity has already begun to form at the 
leading edge. The photograph in figure 2 illustrates 
this overlap. Other than this, however, it appears 
that the sequence of events in the cavitation cycle 

Figure 2: Between cavitation cycles: the cloud at 
the right is collapsing and beginning to disperse, 
while travelling bubble cavitation can already be 
seen near the leading edge just prior to forming 
a new sheet cavity, a = 1.0, k = 0.8, TAC = 
4 - bppm, a = 7.9° (a increasing). 

is very similar in the current experiments to those 
described previously. 

The present paper will focus on the noise gen- 
erated by the collapse of cavitating clouds and its 
dependence on various parameters.   These results 
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will then be related to the existing knowledge of the 
generation of noise by a single collapsing cavitation 
bubble. Our traditional understanding of single 
bubble noise stems from the work of Fitzpatrick 
and Strasberg [11] and others (see, for example, 
Blake [12]) and is based on the Rayleigh-Plesset 
analysis of the dynamics of a spherical bubble. The 
radiated acoustic pressure, pa, at a large distance, 
7£, from the center of a bubble of volume V(t) is 
given by Blake [12] 

Pa 
d2V 

WR. dt2 

Clearly a large positive noise pulse will be gener- 
ated at the bubble collapse, due to the very large 
and positive values of d2V/dt2 that occur when the 
bubble is close to its minimum size. A good mea- 
sure of the magnitude of the collapse pulse is the 
acoustic impulse, 7, defined as the area under the 
pulse or 

r-t-2 

1=1     Padt 

where t1 and t^ are chosen in a systematic man- 
ner to identify the beginning and end of the pulse. 
It is also useful in the present context to define a 
dimensionless impulse, /*, as 

I* 
pUL2 

where TL is now the distance from the cavitation 
event to the point of noise measurement and L 
is the typical dimension of the flow, taken in the 
present paper to be the chord of the foil. 

Recently, both Ceccio and Brennen [13] and 
Kuhn de Chizelle et al. [14] were able to identify 
from within hydrophone data the acoustic signa- 
tures produced by the collapse of single travelling 
cavitation bubbles. They could thus measure the 
actual acoustic impulses of these events and com- 
pare them with the predictions of the Rayleigh- 
Plesset-Fitzpatrick-Strasberg theory for spherical 
bubbles. In general the measured values are about 
an order of magnitude smaller than the spherical 
bubble theory (see figure 8). The experiments also 
involved studies of the bubble shape distortions 
caused by the flow. Consequently it was possible to 
demonstrate that the reduction in the actual noise 
was correlated with the shape distortion. Crudely, 
one can visualize that a spherical collapse will be 
the most efficient noise-producing process since the 
collapse is focussed at a single point; thus any dis- 
tortion in the sphericity of the bubble is likely to 

defocus the collapse and reduce the noise. In the 
present paper we shall compare the impulses result- 
ing from cloud collapses with those of the above- 
mentioned measurements of single bubble impulses 
in an attempt to learn more about the dynamics 
and acoustics of clouds of bubbles. 

A similar study was performed on acoustic sig- 
nals generated by cloud cavitation (McKenney and 
Brennen [10]), where it was qualitatively shown 
that the major acoustic burst in each cycle seems 
to correspond to the collapse of the cloud cavi- 
tation.   The long-term goal in all these acoustic 
studies is not only to gain an understanding of the 
flow mechanisms that produce the noise, but also 
to develop methods to reduce that noise and the 
erosive damage that generally accompanies it.  It 
has been shown for the case of single bubble cav- 
itation (Brennen [15]) that the presence of a con- 
taminant gas reduces the rate of collapse and in- 
creases the minimum bubble volume.   Thus one 
mitigation strategy is the deliberate injection of 
air to help "cushion" the collapse, thereby reduc- 
ing the noise and damage potential.  Several pre- 
vious investigations have explored this strategy by 
ejecting air from ventilation holes in the suction 
surface of a hydrofoil.   Ukon [16] used air injec- 
tion from the leading edge of a stationary foil and 
found a consistent reduction in the noise in the fre- 
quency range 0.6 to 100kHz. The maximum noise 
reduction achieved was of the order of 20dB. There 
is some suggestion in his data that air flow rates 
above a certain optimal level no longer decrease the 
noise. Arndt et al. [17] performed similar air injec- 
tion tests with a stationary foil and found some 
reduction in the mean square hydrophone signal in 
the 10 to 30Hz band. The reduction was a factor 
of approximately 3 to 5 for small air flow rates, 
but there was little additional effect at higher flow 
rates (see figure 11).   In the present experiments 
we also explore the noise reduction due to air flow 
rate, normalized as q = Q/Ucs. 

EXPERIMENTAL APPARATUS 

The Caltech Low Turbulence Water Tunnel is a 
closed-circuit facility, with a 30.5cm x 30.5cm x 
2.5m test section. It is capable of freestream veloc- 
ities up to 10m/s and can support pressures down 
to 20kPa. A complete description of this facility 
may be found in Gates [18]. The total air content 
(TAC) of the water in the tunnel was measured 
using a Van Slyke apparatus. 
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An NACA 64A309 hydrofoil was reflection-plane 
mounted in the test section, as shown in figure 3 
and described in Hart et al. [19].   The hydrofoil 

Figure 3: Oscillating hydrofoil in the water tunnel 
test section. 

has a rectangular planform with a chord of 15.2cm 
and a span of 17.5cm; it is made of stainless steel 
and polished to a smooth finish. It is connected to 
a 750 watt DC motor by a four-bar linkage such 
that it oscillates nearly sinusoidally in pitch about 
a point near the center of pressure, 0.38c from the 
leading edge. The mean angle of attack and the os- 
cillation amplitude can be adjusted, and the oscil- 
lation frequency may be continuously varied from 0 
to 50Hz. An optical shaft encoder mounted to the 
DC motor provides a digital signal (1024 pulses per 
revolution) which was used to synchronize acoustic 
measurements with the phase of the foil. 

The sound generated by the cavitation on the hy- 
drofoil was recorded using two transducers. A PCB 
model HS113A21 piezo-electric pressure transducer 
(bandwidth 100kHz) was mounted flush with the 
floor of the test section, approximately 5cm down- 
stream of the trailing edge of the foil. In addi- 
tion, a B&K model 8103 hydrophone (bandwidth 
100kHz) was installed in a Lucite box filled with 
water and affixed tightly to the outside of the test 
section. As graphically demonstrated by Bark and 
van Berlekom [1], mounting a hydrophone exter- 
nally in this way significantly degrades the signal. 
Analysis of the current data was used to compare 
results from these two transducers, with the follow- 
ing specific comments: 

• The lucite box mounting approach is a sim- 

ple way to obtain preliminary qualitative in- 
formation. This method was used successfully 
by McKenney and Brennen [10] to correlate 
the cloud cavitation acoustics with high-speed 
motion pictures of the collapse. 

• Acoustic pressure intensities calculated using 
the output from the hydrophone in the box 
were significantly smaller in magnitude than 
those derived from the flush-mounted trans- 
ducer for the same event, generally by a fac- 
tor of 2 or 3. This indicates that the presence 
of the walls of the test section and the lucite 
box has a severely attenuating effect on the 
measured signal. 

• Although the PCB transducer lacks the omni- 
directional capability of the B&K hydrophone, 
the transducer was mounted directly beneath 
the cloud collapse region and thus the radi- 
ated acoustic pressure impinges with normal 
incidence. 

• The PCB transducer produced results with 
greater scatter, but better signal to noise ratio. 
The signal for the external hydrophone was 
significantly adulterated by resonances within 
the box. 

These conclusions are very similar to those reached 
by Bark and van Berlekom [1], and led to the deci- 
sion to focus on the results obtained with the PCB 
(flush-mounted) transducer. 

The output signals from both transducers were 
low pass filtered prior to being recorded by a dig- 
ital data acquisition system. Since the sampling 
rate was approximately 143kHz, the filters were 
set to a cutoff frequency of 70kHz, just below the 
Nyquist frequency. The data acquisition system 
also recorded timing information from the oscilla- 
tion of the foil. 

Still photographs were taken of various stages of 
the cavitation process by using the foil timing to 
trigger strobe lighting at the desired phase of the 
foil oscillation cycle. 

For the air injection studies, four holes were 
drilled in the suction surface of the foil, located at 
the axis of rotation and equally spaced along the 
span. The air flow rate was measured to within a 
12% error by using an orifice flow meter. For the 
current studies, the injection flow rate was kept 
constant at levels which preliminary tests showed 
would produce a finite effect. 
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EXPERIMENTAL PROCEDURES 

Experiments were conducted in the following pa- 
rameter ranges: 

Mean angle of attack, a 9° 
Oscillation amplitude, Aa ±5° 
Reduced frequency, k 0.55 to 0.93 
Cavitation number, a 0.9 to 1.5 
Air content (ppm) 4 to 10 
Normalized air injection, q 0 to 10-3 

Data for about 40 cycles were obtained at each 
condition and in selected cases still photographs 
were taken. Figure 4 shows a typical signal be- 
fore high-pass filtering, along with a curve indi- 
cating the foil instantaneous angle of attack dur- 
ing one oscillation cycle. The origin of the time 
axis corresponds to a = 7.9° where a is increasing. 
The photograph in figure 2 was taken at the ori- 
gin of the time axis in figure 4. Two clear pulses 
at about a = 10° represent the sound produced by 
the cloud collapse in this particular cycle. The mul- 
tiple peaks seen in this signal are characteristic of 
many of the signals obtained in these experiments. 
The presence of multiple peaks may suggest the 
formation of more than one cloud during the col- 
lapse of the main cavity, or it may be the result of 
the rebound and recollapse of a single cloud. 

D 

a. 
> 
a < 

Figure 4: Typical output from the piezo-electric 
transducer. The signal from one oscillation cycle is 
shown together with a sinusoid qualitatively rep- 
resenting the instantaneous angle of attack of the 
foil. Data for a = 1.0, k - 0.8, TAC = 4 - 5ppm. 

The total air content was also measured before 
and after each run. For most of the experiments, 
the TAC was in the range of 8 — lOppm. Then 
the water was deaerated so that the TAC was in 
the range 4 — bppm, and measurements were taken 
again at a few of the previous conditions. 

We now turn to a discussion of the measurements 
of the noise generated by these flows. In the previ- 
ous experiments, the sound level was evaluated by 
calculating the acoustic pressure intensity, which 
was measured over a whole oscillation cycle and 
nondimensionalized as follows: 

PA hU*c 
where   p^ = i rT 

■pfdt 

This is related to the acoustic intensity defined in 
Coates [20] as p\Jpc*, where c* is the speed of 
sound in the fluid. 

For the current experiments, in part to facili- 
tate comparing our results with those of researchers 
studying single travelling bubble acoustics, we cal- 
culated the acoustic impulse by integrating only 
over the distinct peaks in the signal, thus neglect- 
ing low-frequency variations in pressure as well as 
high-frequency but low-amplitude noise. The digi- 
tized signal from a single foil oscillation cycle was 
first high-pass filtered in software with a cutoff fre- 
quency of 50Hz to remove the low frequency pres- 
sure changes due to the foil motion. Choosing the 
limits of integration for the impulse calculations 
proved to be a non-trivial procedure; results may 
depend heavily on irrelevant artifacts in the data if 
the limits are poorly chosen. The method used by 
Kumar [21] and Ceccio [22] was selected, both for 
its robustness and its similarity of application to 
the current data. The beginning of a peak was 
identified by the positive-going signal crossing a 
threshold value of 20kPa. The end of the peak was 
defined as the moment when the signal crossed that 
same threshold value with a negative slope. 

In addition, the spectra of the acoustic signals 
were compared under the different flow conditions. 
Average spectra from approximately 40 individual 
(unfiltered) cycles were acquired as follows: first 
the spectrum from each raw signal was normal- 
ized by the area under that spectrum following the 
method described in Kumar [21], then the normal- 
ized magnitudes at each frequency were averaged 
over all the cycles. 
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ACOUSTIC IMPULSE RESULTS 

The experimental results depicted in figures 5, 6, 
and 7 illustrate the variation of the dimension- 
less impulse, I*, with cavitation number, total 
air content, and reduced frequency. Each data 
point in these figures represents the average of ap- 
proximately 40 cycles and the associated impulses. 
Within the parameter space, significant cycle-to- 
cycle variation was observed in both the physical 
attributes of the cavitation and the resulting im- 
pulse. A measure of this scatter is depicted in fig- 
ure 5 and 6 by vertical bars which represent one 
standard deviation above and below the average 
impulse value. As demonstrated in these two fig- 
ures, the standard deviation ranges from approxi- 
mately 60% of the mean for dimensionless impulses 
greater than 0.4 to 120% of the mean for I* less 
than 0.4. However it is important to observe that 
the repeatability of the mean value was approxi- 
mately ±0.1. 

Figures 5 and 7 show the change in impulse with 
reduced frequency, k, for different cavitation num- 
bers. As expected, the cavitation number, a, and 
reduced frequency, k, have a significant effect on 
the measured impulse, but no simple relationship 
between either of these two parameters and the 
impulse is evident. The highest cavitation num- 
ber, a = 1.5, resulted in the lowest impulse for 
all but one value of k. With the same exception, 
the sound level produced at a = 1.2 exceeded the 
level measured at a = 0.9. This reduction in sound 
level was also readily detectable in the laboratory 
as the cavitation number was lowered from 1.2 to 
0.9. Thus, in general, the noise appears to peak at 
some intermediate a. 

This non-monotonic effect with cavitation num- 
ber differs from that found by McKenney and Bren- 
nen [10], perhaps because the present mean angle 
of attack, a, is larger. This seems to alter the cav- 
itation number at which the noise peaks. In the 
present experiments, it was observed visually dur- 
ing the experiments that for a — 0.9 the sheet cav- 
ity not only covered nearly the entire surface of 
the hydrofoil, but also extended past the trailing 
edge for a large part of the oscillation cycle. At 
the lower ä in the earlier work, however, the sheet 
cavity seldom covered more than about 60% of the 
foil surface. 

Although the total air content (TAC) varied 
from Appm to lOppm during the experiments, it ap- 
peared to have little effect on the noise, as shown 
in figure 6. 
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Figure 5: Effect of cavitation number, <r, on the 
dimensionless impulse, I*. Data shown for a — 
0.9 (♦), a = 1.2 (O), <T = 1.5 (■) with TAC = 7 - 
lOppm. 
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Figure 6: Effect of total air content (TAC) on di- 
mensionless impulse, I*. Data shown for TAC = 
4-5ppm(D), TAC = 8-l0ppm(m) with a = 1.2. 

Figure 7 presents a summary of the results for 
the averaged acoustic impulses and shows the vari- 
ations with reduced frequency, cavitation number, 
and TAC. The results for the air injection exper- 
iments are also included in this figure and will be 
discussed in greater detail later. 

It is interesting to compare the results for the 
acoustic impulse (depicted in figure 7) with previ- 
ous results for single travelling bubbles. Figure 8 
illustrates the approximate relations between the 
cloud cavitation impulses, the impulses observed 
by Kuhn de Chizelle et al. [14] for single travelling 
bubbles, and the impulse magnitudes predicted by 
the Rayleigh-Plesset equation for a spherical bub- 
ble. From this figure, it is evident that the noise 
generated by cloud cavitation is several orders of 
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Figure 7: Summary of dimensionless impulse data 
for cloud cavitation. Data without air injection: 
a = 0.9, TAC = 7 - 8ppm (♦); <r = 1.2, TAC = 
4-bppm(m); a = 1.2, TAC = 8-10ppm(O); <r = 
1.5, TAC = 4 - 5ppm (D); <r = 1.5, 7MC = 
9 — lOppm (■);. Data with air injection: a = 
1.2, TAC = 4 - lOppm (A). 

magnitude larger than the sound level resulting 
from single travelling bubble cavitation. The im- 
pulses generated by some clouds are even greater 
than the theoretical prediction for a single spher- 
ical bubble of the same maximum volume. The 
figure suggests that clouds can be even more ef- 
fective noise sources than single bubbles of the 
same volume. A possible explanation for this is the 
formation of an inwardly propagating shock wave 
within the collapsing cloud as originally suggested 
by M0rch [23] and recently demonstrated theoret- 
ically by Wang and Brennen [24]. 

SPECTRAL ANALYSIS 

Further insight into cloud cavitation noise gener- 
ation can be obtained by Fourier analysis of the 
radiated acoustic pressure. Figures 9 and 10 are 
two typical examples of cloud cavitation spectra. 
Each line in the figure corresponds to a single set 
of parameters and represents an average of approx- 
imately 40 Fourier transforms normalized using the 
method described above. The spectra obtained 
from the current experiments exhibit a characteris- 
tic behavior proportional to /~" over the frequency 
range of 80 - 6000Hz, where 0.7 > n > 0.8. This 
compares reasonably well with the /_1 behavior 
of previous experimental results for single bubbles 
and for steady cavitating flows [15]. 

Figure 9 presents the averaged spectra for each 

10-7 10«    10-5  1G4    10-3   10-2   10-1    10° 

Normalized Maximum Volume, V/L
3 

Figure 8: Acoustic impulse magnitude ranges as a 
function of the maximum bubble or cloud volume, 
for (a) single travelling bubble cavitation (Kuhn de 
Chizelle et al. [14]), (b) the Rayleigh-Plesset spher- 
ical bubble model for the conditions of the afore- 
mentioned experiments, and (c) cloud cavitation 
results from the present experiments. 

of the three cavitation numbers. It is clear that 
there is a significant change in the spectrum with 
cavitation number particularly in the range from 
100Hz to 5kHz. Moreover, the changes in magni- 
tude in this range correspond with previously de- 
scribed changes in the acoustic impulse with cr. 

The large peak in the spectra at 9kHz appears 
for every data set in the entire parameter space. 
When the impulse response of the test section was 
measured, it indicated peaks at approximately 4, 
32, and 64kHz, but the response was flat in the 
frequency range near 9kHz. Since the location and 
relative magnitude of the 9kHz peak shows no ap- 
preciable variation with the various flow parame- 
ters, cavitation noise is an unlikely explanation. 

Another interesting feature of figure 9 is the pres- 
ence of peaks at approximately 3kHz. Unlike those 
at 9kHz, these peaks vary somewhat with cavita- 
tion number. It is possible that these represent the 
frequency of the large radiated pressure pulses as- 
sociated with cloud cavitation, such as those seen 
in figure 4. Figure 10 shows how the frequency 
content of the sound changes with variation in the 
reduced frequency. The spectra are similar, except 
for the three peaks between 2 and 4kHz, whose 
frequency increases with decreasing reduced fre- 
quency. Average spectra were also examined for 
different air contents, but showed little change with 
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Figure 9: Comparison of the normalized spectra of unsteady pressures at three different cavitation numbers: 
a - 1.5 (solid line), a = 1.2 (dotted line), and a = 0.9 (dash-dot line). Data for k = 0.7, TAC = 7- lOppm. 

this parameter. 

AIR INJECTION 

Air injection resulted in a dramatic reduction in the 
sound level. At a sufficiently high air flow rate, the 
periodic "bangs" associated with cloud cavitation 
collapse could no longer be detected either by ear 
or by transducer. Figure 11 illustrates this noise 
reduction as a function of normalized air injection 
flow rate. Data from the current experiments are 
plotted along with results from work by Arndt, et 
al. [17] and Ukon [16]. The ordinates on this figure 
are the ratio of the sound pressure level at a given 
air flow rate to the sound pressure level without air 
injection. In this figure we have used the average 
impulses from the present experiments and the root 
mean squared acoustic pressure for the data from 
Arndt et al. and Ukon. We note that the present 
experimental data showed a very strong correlation 
between the impulse and the RMS acoustic pres- 
sure. 

The experiments performed by Arndt et al. and 

Ukon utilized stationary hydrofoils. Although cav- 
itation clouds can separate periodically from sheet 
cavitation on a stationary foil, the collapse usually 
lacks the intensity of cloud cavitation caused by 
an imposed periodicity. The resulting low ratio of 
cavitation noise to background noise could explain 
the relatively small noise reduction due to air flow 
which is apparent in the data of Arndt et al.. 

In contrast, our observations indicate that the 
impulse could be reduced by a factor greater than 
200 at an air flow rate, q, of approximately 0.001. 
At this flow rate, the periodic cloud cavitation 
noise was completely suppressed, and a further in- 
crease in the air flow rate had no discernible effect. 

The spectral content of the cavitation noise also 
changed with air injection. Figure 12 shows the av- 
erage normalized Fourier spectra for three different 
air flow rates. As the air injection flow rate is in- 
creased, the Fourier magnitudes in the frequency 
range between 100 Hz and 8 kHz decrease relative 
to the high and low frequency content. 

Another effect of air injection was an increase 
in the average size of the sheet cavity. This phe- 
nomenon was previously noted by Ukon [16].  Al- 
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Figure 11: Effect of air flow rate on the radiated noise, normalized by the noise without air injection. Data 
for the current experiments at a = 1.2, k — 0.8, TAC — 5 - lOppm are shown (■), and compared with 
data from Ukon [16] at a = 0.74, a = 6.4°, U = 8m/s (c) and Arndt et al. [17] at a = 0.9, a = 8°, U = 
15 and 7.5m/s (A). 

though the two photographs in figure 13 were taken 
at identical cavitation numbers, reduced frequen- 
cies, and angles of attack, the cavity area is much 
larger in the air injection case. This effect is simply 
due to an increase in the mean pressure in the cav- 
ity and therefore a decrease in the effective cavita- 

tion number. Examination of the still photographs 
also shows that the added air also increases the size 
of the cloud generated when the sheet cavity col- 
lapses, as shown in figure 1. This rules out the pos- 
sibility that the noise reduction is due to suppres- 
sion of the cloud cavitation. Instead, it seems prob- 
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Figure 12: Effect of air injection on the spectral content of the noise for three normalized air flow rates: 
q = 1.3 x 10~4 (solid line), q = 2.4 x 10-4 (dotted line), q = 9.8 x 10-4 (dot-dash line). Data for ifc = 
0.8, TAC - 7 - lOppm. 

able that the bubbles in the cloud contain more air, 
which cushions the collapse and reduces the overall 
sound produced. 

CONCLUSIONS 

This paper has examined the acoustic impulses 
produced by the collapse of clouds of cavitation 
bubbles. The clouds were generated by pitch oscil- 
lations of a finite aspect ratio hydrofoil in a water 
tunnel. The recorded noise was analyzed in sev- 
eral ways. First, large positive noise pulses were 
clearly present in the signal and corresponded to 
the collapse of clouds of bubbles shed by the foil. 
The acoustic impulses associated with these pulses 
were obtained by integration, and the variations 
with cavitation number, air content, and foil os- 
cillation frequency were examined. The impulses 
appear to peak at the intermediate cavitation num- 
ber studied and to be relatively independent of the 
air content. The variations with foil oscillation fre- 
quency are significant but not readily understood. 
We should also note that the impulses are consis- 

tent with, though somewhat larger than, what had 
been expected from the extrapolation of data on 
single bubbles. This suggests the existence of an 
additional mechanism in the cloud collapse that 
augments the noise, such as an inwardly propagat- 
ing shock. 

Spectra of the noise, averaged over more than 
40 cycles, were also examined and exhibited a typ- 
ical/-1 variation with frequency. Significant varia- 
tions in the shape with cavitation number could be 
discerned, however air content and foil oscillation 
frequency produced no such discernible variation. 

Air injection from the suction surface of the foil 
was investigated and produced major reduction in 
the noise similar to the reductions earlier observed 
by Arndt et al. [17] and Ukon [16], though we also 
observed much larger reductions (up to a factor 
of 200) in the acoustic impulses than the reduc- 
tion in RMS noise measured by those previous au- 
thors. Indeed the large pulses seem to be elimi- 
nated, leaving only the incoherent bubble collapse 
noise. Comparison of the photographs of the cav- 
itation suggests that the mechanism for the noise 
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Figure 13: Effect of air injection on cavity size. The photograph on the left is without air injection, the 
photograph on the right has a normalized air flow rate of q — 4.5 x 10-4. Both photographs were taken at 
<7 = 1.2, ifc = 0.8, a = 12.8°. 

reduction is an increase in the air contained in the 
bubbles which comprise the cloud. It also seems 
that air flow rates above a certain level produce no 
further reduction in the sound. 

ACKNOWLEDGEMENTS 

We wish to acknowledge our debt to Y.-C. Wang, J. 
Ando, F. d'Auria, T. Waniewski, R. and V. Zenit, 
and Z. Liu for help in conducting the experiments. 
Joe Fontana's machine shop assistance was greatly 
appreciated as well. The authors are grateful for 
the support of the Office of Naval Research under 
grant number N00014-91-J-1295. 

References 

[1] Bark, G. and van Berlekom, W. B. (1978). Ex- 
perimental investigations of cavitation noise. 
Proc. 12th ONR Symp. on Naval Hydrody- 
namics, pp. 470-493. 

[2] Shen, Y. and Peterson, F. B. (1978). Unsteady 
cavitation on an oscillating hydrofoil. Proc. 
12th ONR Symp. on Naval Hydrodynamics, 
pp. 362-384. 

[3] Bark, G. (1985). Developments of distortions 
in sheet cavitation on hydrofoils. Proc. ASME 
Int. Symp. on Jets and Cavities, pp. 215-225. 

[4] Franc, J. P. and Michel, J. M. (1988). Un- 
steady attached cavitation on an oscillating 
hydrofoil. /. Fluid Mech., Vol. 193, pp. 171- 
189. 

[5] Kubota, A., Kato, H., Yamaguchi, H., and 
Maeda, M. (1989). Unsteady structure mea- 
surement of cloud cavitation on a foil section 
using conditional sampling. /. Fluids Eng., 
Vol. Ill, pp. 204-210. 

[6] Kubota, A., Kato, H., and Yamaguchi, H. 
(1992). A new modelling of cavitating flows 
- a numerical study of unsteady cavitation on 
a hydrofoil section. /. Fluid Mech., Vol. 240, 
pp. 59-96. 

[7] Maeda, M., Yamaguchi, H., and Kato, H. 
(1991). Laser holography measurement of 
bubble population in cavitation cloud on a foil 
section. Proc. ASME Symp. on Cavitation, 
Vol. 116, pp. 67-75. 

[8] Kato, H. (1985). On the structure of cavity: 
New insight into the cavity flow: A summary 
of the keynote speech. Proc. of the ASME Int. 
Symp. on Jets and Cavities, Vol. 31, pp. 13- 
19. 

338 



[9] Ye, Y. P., Kato, EL, and Maeda, M. (1989). 
On correlation of cavitation erosion and noise 
on a foil section. Int. Workshop on Cavitation, 
pp. 68-75, Wuxi, Jiangsu, China. 

[10] McKenney, E. A. and Brennen, C. E. (1994). 
On the dynamics and acoustics of cloud cavi- 
tation on an oscillating hydrofoil. Proc. ASME 
Symp. on Cavitation and Gas-Liquid Flow in 
Fluid Machinery and Devices. 

[11] Fitzpatrick, H. M. and Strasberg, M. (1956). 
Hydrodynamic sources of sound. Proc. First 
ONR Symp. on Naval Hydrodynamics, pp. 
241-280. 

[12] Blake, W. K. (1986). Mechanics of flow- 
induced sound and vibration. Academic Press. 

[13] Ceccio, S. L. and Brennen, C. E. (1991). Ob- 
servations of the dynamics and acoustics of 
travelling bubble cavitation. /. Fluid Mech., 
Vol. 233, pp. 633-660. 

[14] Kuhn de Chizelle, Y., Ceccio, S. L., and Bren- 
nen, C. E. Observations, scaling and mod- 
elling of travelling bubble cavitation. Submit- 
ted for publication., 1994. 

[15] Brennen, C. E. (1994). Cavitation and Bubble 
Dynamics. Oxford University Press. 

[16] Ukon, Y. (1986); Cavitation characteristics of 
a finite swept wing and cavitation noise re- 
duction due to air injection. Proc. of the Int. 
Symp. on Propeller and Cavitation, pp. 383— 
390. 

[17] Arndt, R. E. A., Ellis, C. R., and Paul, S. 
(1993). Preliminary investigation of the use 
of air injection to mitigate cavitation erosion. 
Proc. ASME Symp. on Bubble Noise and Cav- 
itation Erosion in Fluid Systems, Vol. 176, pp. 
105-116. 

[18] Gates, E. M. (1977). The Influence of 
Freestream Turbulence, Freestream Nuclei 
Populations, and a Drag-Reducing Polymer 
on Cavitation Inception on Two Axisymmet- 
ric Bodies. PhD thesis, Cal. Inst. of Tech. 

[19] Hart, D. P., Brennen, C. E., and Acosta, A. J. 
(1990). Observations of cavitation on a three- 
dimensional oscillating hydrofoil. ASME Cav- 
itation and Multiphase Flow Forum, Vol. 98, 
pp. 49-52. 

[20] Coates, R. F.W. (1989). Underwater Acoustic 
Systems. John Wiley k, Sons, Inc. 

[21] Kumar, S. (1991). Some Theoretical and Ex- 
perimental Studies of Cavitation Noise. PhD 
thesis, Cal. Inst. of Tech. 

[22] Ceccio, S. L. (1990). Observations of the 
Dynamics and Acoustics of Travelling Bubble 
Cavitation. PhD thesis, Cal. Inst. of Tech. 

[23] M0rch, K. A. (1980). On the collapse of 
cavity cluster in flow cavitation. Proc. First 
Int. Conf. on Cavitation and Inhomogeneities 
in Underwater Acoustics, Vol. 4, pp. 95-100. 
Springer Series in Electrophysics. 

[24] Wang, Y.-C. and Brennen, C. E. (1994). 
Shock wave development in the collapse of a 
cloud of bubbles. ASME Cavitation and Mul- 
tiphase Flow Forum, Vol. 153. 

339 



DISCUSSION 

M. Su 
Naval Research Laboratory, USA 

Do you measure the bubble size spectra for the bubble 
cloud resulting from the break-up of the vortex sheet 
on an oscillating hydrofoil? Since you are interested in 
the sound generation from this process, the 
measurement of the bubble size distribution may help 
in physical interpretation of the spectra of the pressure 
fluctuation. 

The densely populated coherent cavitation clouds 
produced during our experiment resulted in acoustic 
impulses which were more than three orders of 
magnitude greater than the impulses generated by 
traveling bubble cavitation. Thus, we conclude that 
bubble interaction is an essential mechanism of the 
cloud cavitation noise generation process. 

Furthermore, our high-speed movies indicate that the 
detachment of the bubble clouds from the sheet cavity 
occurs as the sheet cavity volume is increasing. The 
dynamics of this detachment process are highly 
complex and poorly understood. 

J. Matusiak 
Helsinki University of Technology, Finland 

Two years ago at the 19th SNH I presented a simple 
analytical method of evaluating cloud cavitation in 
relation to the unsteadiness of sheet cavitation, i.e., 
break-off. The structure of the cloud, that is bubbles, 
total volume, and size distribution is evaluated. 
Numerical simulation of their collapse yields broad- 
band pressure. Are you aware of this method? Have 
you experimental evidence on the form and size of the 
bubbles that you observed in your experiment? 

Finally, as previously noted, the size distribution of the 
bubbles in our clouds is not known at the present time. 
Therefore, we can neither confirm nor deny the 
validity of the bubble size distribution function used by 
Dr. Matusiak. 

AUTHORS' REPLY 

We thank Dr. Su and Professor Matusiak for then- 
interest in our work. In response to Dr. Su's question, 
the bubble size distribution was not measured in our 
experiments. As Dr. Su knows from his careful work 
on the bubbles produced by breaking waves, such 
measurements are not easily made even under the best 
of circumstances. Furthermore, when the distribution 
is a rapidly changing function of both time and 
position, as it is in the present case, it presents a 
difficult experimental challenge. We can only 
comment that such measurements would be very 
valuable in adding to our understanding of the 
phenomenon. 

Professor Matusiak's analytical model of traveling 
bubbles shed from the trailing edge of an attached 
sheet cavity has resulted in a possible method of 
predicting the noise generated by this type of 
cavitation. However, our experiments have shown that 
in the more extreme case of cloud cavitation, several 
qualitative features of the bubble shedding and 
collapse process must be incorporated into any model 
of the dynamics. 
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An Experimental Investigation of the Mechanism 
and the Pressure of Counter-Rotating Vortices 

on a CPP at the Off-Design Condition 
N. Okamura, R. Fujino, T. Tanaka 

(Ishikawajima-Harima Heavy Industries Co., Ltd., Japan) 

ABSTRACT 

High frequency pressure fluctuations induced 
by propeller tip vortices caused a structural vib- 
ration problem on a new ship equipped with twin, 
highly skewed, controllable pitch propellers 
(CPPs). The vibration occurred at low ship speeds 
corresponding to an off-design condition. The 
acceleration spectrum of the vibration exhibited 
high broadband levels between the 4th and 10th 
harmonics of blade passing frequency. 

A model propeller experiment result showed 
that a pair of counter-rotating vortices was 
generated on each blade and burst at the condition 
corresponding to the ship vibration. The bursting 
vortices cavitated and radiated intense fluctuating 
pressures of high frequencies(between 3rd and 11th 
harmonics of blade passing frequency). Flow 
visualization indicated that the counter-rotating 
vortices were generated by a long leading edge 
separation bubble rolled up on the blade. 

From the experimental investigations and a 
vortex motion analysis based on a two-dimensional 
vortex theory, the pair vortex bursting was 
considered to be caused by vortex divergence from 
strong mutual vortex motions. 

Air injection into the cavitating vortices was 
examined for reducing the pressures in the model 
experiment. The result showed that air reduced 
effectively the pressures on the model and on the 
ship. 

NOMENCLATURE 

CT 
D 
G 

Ki, K2 
KP 

KT 

Propeller tip clearance 
Propeller diameter 
Acceleration of gravity or 
Non-dimensional circulation 
Strength of vortex 
Pressure coefficient(P/pn2D2 

Thrust coefficient(T/pn2D<) 

L Distance between vortex centers 
n Propeller revolution 
P Single amplitude of pressure 
Ps Static pressure 
Pu Vapour pressure of water 
R Propeller radius 
T Propeller thrust 
X Distance of the vortex centroid 

of the vortices for a vortex pair 
P Density of water 
<7n Cavitation number((Ps-Pu)/pn2D2) 
Ü Angular velocity 

from one 

INTRODUCTION 

High frequency vibration of the structure 
above propellers was experienced with a new ship 
equipped with twin, highly skewed, controllable 
pitch propellers(CPPs). This vibration occurred at 
low ship speeds corresponding to an off-design 
condition. The vibration acceleration showed a 
broadband type of spectrum with high levels at 
higher frequencies around 4th to 10th harmonic of 
the blade passing frequency. On the other hand, the 
ship hull vibrated mainly at the blade passing 
frequency at the high ship speeds of the design 
condition. 

A detailed investigation into the cause of 
this high frequency vibration showed that the 
mechanical excitation from the main engines, the 
reduction gears, etc. were not the case but 
propeller induced pressures were very suspicious. 

This kind of high frequency vibrations 
excited by highly skewed propellers were also 
reported with some other ships[1-3] but only one 
report[3] is related to the off-design conditions 
of CPP. Furthermore, the mechanism of such high 
frequency pressure generation has not been fully 
understood yet. 

In order to clarify the cause of this high 
frequency vibration and establish countermeasures 
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for reducing the ship vibration, we have conducted 
experimental investigations with a model propeller 
at a cavitation tunnel and with the full scale ship 
together with propeller lifting surface 
calculations. Cavitation observations and pressure 
measurements were carried" out at the model 
experiment along with flow visualizations of 
propeller vortices and blade surface streamlines. 
Structural vibration at an aft part of the ship was 
measured in the full scale experiment. By the 
experimental investigation and lifting surface 
calculation, it was found that the high frequency 
pressures were caused by the cavitation of a pair 
of bursting and counter-rotating vortices shed fros 
each propeller blade. Also air injection into the 
vortices was found to be effective to reduce the 
pressure. 

This paper presents the experimental data of 
the full scale ship and the model propeller. The 
generation mechanism of counter-rotating vortices 
and a hypothesis of bursting for a pair of vortices 
are described in this paper along with the air 
injection effect on the fluctuating pressure. 

FÜLL SCALE EXPERIMENT 

The particulars of the ship are as shown in 
Table 1. The ship was carefully designed to reduce 
the vibration by using elastic supports of the 
main engines, highly skewed propellers, etc. 
Although the ship vibration was very small at the 
design condition, the aft part of the ship vibrated 
at high frequencies at the off-desip condition of 
low ship speeds. The maximum spectral components of 
the vibration acceleration against ship speeds were 
shown in Fig.l. Here the ship speed was controlled 
by changing the blade pitch angle with holding the 
propeller revolution constant except for the normal 
design condition. The vibration was measured at a 
1st deck floor above the starboard propeller as 
shown in Fig.2. 

Table 1. Main particulars of the ship 

Length overalld) 175 

Breadth lolded(i) 24.0 

Draft design(n) 6.5 

BHP(netric) 9420 x 2 

Propeller 
Type x No. 
Diaieter(m) 
Expanded area ratio 
Nimber of blades 
Skew anglefdeg.) 

CPP x 2sets 
4.SO 
0.572 
4 
31 

0.1 

Ü 
V 
< 

0.05 

'    1    '    1    '    1 

Propller 
Mark  resolution 

1      1      ' 

Air 
Injection 

0      124rpi without 
D      lOSrpi without 
A       108rp« with 

V f/BF=6.5 

0 10 20 

Ship speed(knots) 

Fig.l Vibration acceleration vs. ship speed 

No. 4 DK 

Vibration 
measurement   c^ 
location cd 

Fig.2 Measurement location of ship vibration 
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0.06 

4   6   8 

Frequency/BF 

tip region, indicating the usefulness of air. This 
air injection was applied to the ship based on the 
study by model experiment, which will be 
explained later in the section titled "Results of 
model experiment." The numbers at marks of each 
curve in Fig.l show the frequencies divided by the 
blade passing frequency. These numbers indicate 
that the vibrations are dominated at high 
frequencies from about 4th to 10th harmonic of the 
blade passing frequency and the frequencies are 
distributed between the harmonics. 

Fig.3 shows the vibration spectra at 124- 
rpm/6knots(propeller revolution/ship speed) and 
108rpm/6knots. As seen in this figure, the spectra 
exhibit high broadband energy at higher frequen- 
cies. The spectra differ from the discrete spectrum 
usually observed at the desip condition, where 
the blade passing frequency and a few higher 
harmonics are usually dominant. Also in this 
figure, there is a spectrum for the vibration at 
108rpm/6knots after the introduction of air 
injection. This result shows the effectiveness of 
air injection. 

Before starting the model experiments, a 
detailed investigation into the cause of the 
vibration was carried out from the mechanical 
excitation view point. The result showed that the 
mechanical excitation from the main engines, the 
reduction gears, etc. were not the case but 
propeller induced pressures were very suspicious 
and remained to be investigated. 

MODEL PROPELLER EXPERIMENT 

The purposes of model propeller experiment 
were to: 

(l)attempt to reproduce the phenomena causing 
the high frequency propeller excitation, 

(2)identify the  cause of the vibration 
excitation, and 

(3)evaluate countermeasures for vibration 
reduction. 

Fig.3 The spectra of ship vibration 
(A) 124rpm/6knots without air 
(B) 108rpm/6knots without air 
(C) 108rpm/6knots with air, 
BF:blade passing frequency 

The upper curve in Fig.l represents the 
vibrations at 124rpm of the propeller revolution, 
which had been a revolution number designed 
initially. Later we decreased this revolution to 
108rpm for reducing the vibration. The results of 
this revolution decrease are shown in the middle 
curve in Fig.l but the levels were still high. The 
lowest curve in Fig.l shows the vibration after the 
introduction of air injection into the propeller 

Experimental techniques 

Test facility and apparatus 

The model propeller experiment was conducted 
in IHI cavitation tunnel[4] with 600mm square 
measuring section. The apparatus of the model 
experiment is as shown in Fig.4. A mesh screen 
simulated the model ship wake of starboard side 
that was measured in a towing tank. A flat plate 
representing the ship hull was set horizontally 
above the propeller keeping the propeller tip 
clearance ratio CT/D=0.260(CT:tip clearance, D: 
propeller diameter) same with the actual ship. 
Pressure gauges were mounted flush on that plate 
for recording the propeller induced pressures. 
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Compressed air 

Mesh screen     Injection tube 

4T 

Fluorescent ink 

1- 
Plate representing ship's hull 

7 

Model propeller 

Fig.4 Apparatus of model propeller experiment 

A small tube(outer diaieteMmm) upstream of the 
propeller was used for injecting fluorescent ink in 
order to visualize vortical flow around the propel- 
ler together with stroboscopic lighting. The tube 
was also used for injecting air into the propeller 
tip region in order to investigate the effect of 
air on propeller-induced pressure reduction. 

Model propeller and test condition 

The particulars of the lodel propeller is 
described in Fig.5. The model propeller was 
operated in the simulated wake with identical 
thrust coefficient (KT) and cavitation number(<rn) of 
the full scale propeller. Here <r„ is defined by the 
static pressure at propeller shaft center. Table 2 
shows the model propeller test conditions, which 
correspond to 124rpm/6knots of the off-design 
condition and 138rpi/22knots of the design 
condition of the actual ship. 

Results of model experiments 

Propeller cavitation 

Figs.6 and 7 show the photographs and the 
sketches respectively of propeller cavitation at 
each condition. As seen in those figures, the 
cavities were unusual at 6knots, whereas they were 
typical at 22knots. The characteristic features of 
the cavities at 6knots are summarized as follows. 

(1)A pair of cavitating vortices is shed froi 
each propeller blade tip and forms a pair of 
helical trailing vortices in the down stream 
of propeller. The pattern of the pair vortex 

Expanded blade 

Diaieter(n) 250.0 

Pitch ratio(0.7R) 1.207 

Expanded area ratio 0.572 

Boss ratio 0.240 

Nmber of blades 4 

Skew angle(deg.) 31 

Fig.5 Particulars of the model propeller 
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Table 2. Model propeller test condition Propeller induced pressure fluctuation 

Case 

Model  propeller Ship 

KT <7n n 
(rps)' 

Vs 
(knots) 

n 
(rpi) 

1 0.016 3.01 17.0 6.0 124 

2 0.180 2.35 19.7 22.0 138 

Ki :Thmst coefficient 
<7n: Cavitation nuiber 
n rPropeller revolution 
Vs:Ship speed 

cavitation does not change so much with the 
propeller rotation angle. 

(2)Each of the pair vortices appears to rotate 
in the opposite direction around each vortex 
center. 

(3)Both pitches of the helical pair vortices 
are small. 

(4)0ne of the pair vortex cavities starts from 
the face side leading edge of about 0.7R(R: 
propeller radius) and extends toward the 
blade tip along the leading edge, whereas the 
other appears first around the blade tip. 

(5)The vortex cavities burst short after 
departing from the blade. 

(6)After shedding from the tip, the pair 
vortices move a little outward apart from 
the propeller center. 

The spectra of pressures measured on the plate 
just above the propeller were as shown in Fig.8. 
The spectrum at 22knots condition shows a typical 
pattern of propeller induced pressure where the 
blade passing frequency and a few higher harmonics 
are dominant. In contrast, the pressure at 6knots 
condition has a broadband type of spectrum having 
high levels at higher frequencies(between about 3rd 
and 11th harmonics), which resembles the 
corresponding ship vibration spectrum at 6knots 
(Fig.3(A)). These results tend to confirm that the 
high frequency ship vibration in question at the 
off-design condition may have been caused by the 
pair vortex cavitation. 

Visualization of vortical flows 

From the cavitation observations and pressure 
measurements, the high frequency vibration of 
concern at the off-design condition was found to 
be closely related with the special type of tip 
vortices. In order to investigate the vortex 
structure and the generation mechanism of such 
vortices, we conducted experiments of vortical flow 
visualization. 

Fig.9 shows the photographs of the vortex 
flows visualized by injecting fluorescent ink from 
a small tube upstream of the propeller. Just the 

(A) 

lip! 

m 
H&5& 

•:<?<• 

(B) 

Fig.6 Photographs of model propeller cavitation 
(A) 6knots condition / Face 
(B) 22knots condition / Back 
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Vortex A 
(B) 

Top 

(C) 

Face cavitation 

c 
.£ 
o 
it 
o 
Ü 

0.015 

0.010 

0.005 

Bottom 

1000 2000 

Frequency (Hz) 

Fig.8 Pressure spectra of model propeller 
(A) 6knots condition without air 
(B) 22knots condition without air 
(C) 6knots condition with air 
BF:Blade passing frequency 

Fig.7 Sketches of model propeller cavitation 
(A) 6knots condition / Face 
(B) Typical cavitation pattern at 6knots 
(C) 22knots condition / Back 
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(A) 

(B) 

Fig.9 Photographs of visualized vortical flows 
(A) 6knots condition 
(B) 22knots condition 

Plane of 
visualization       Ink injection 

Helica 
tip vortices 

Inflow 

Circulation 

Fig.10 Schematic showing how to visualize vortical 
flows by fluorescent ink(22knots condition) 

cavitation number in the cavitation simulation 
conditions was increased by increasing the tunnel 
static pressure at this visualization test. This 
pressure increase is to diminish the cavity and 
visualize just the vortical flows not affected by 
cavitation. As seen in these photographs, there is 
a pair of counter-rotating vortices around a blade 
tip at 6knots condition. On the other hand, four 
adjacent tip vortices of usual type with same 
rotational direction are observed at 22knots 
condition. Looking the downstream of the vortices 
at 6knots, there is a wide area where the injected 
ink was diffused and this diffused region is very 
similar to the bursting vortex cavitation region 
(Fig.6(A)). For understanding how to visualize by 
ink, a schematic explaining the tip vortex 
visualization at 22knots is depicted in Fig.10. 

Fig.11 demonstrates the hard copies of 
successive video pictures showing the process of 
the pair vortex formation at 6knots. From a 
detailed analysis of the video pictures and as seen 
partly in Fig.11, it was found: 

(l)one of the pair vortices(left one in Fig.11, 
hereafter called as "vortex A")rolled up 
around the outer leading edge on the face 
side, 

(2)as the blade rotated, the second vortex 
(right one in Fig.ll, hereafter called as 
"vortex B") appeared near the blade tip and 
then a pair of counter-rotating vortices 
drifted away into the propeller wake, and 

(3)the pair vortices are counter-rotating 
(vortex A anticlockwise and vortex B clockwise 
in Fig.ll). 

To confirm that the visualized vortices are 
same with the cavitating vortices observed at the 
cavitation simulation test, the tunnel static 
pressure was decreased at the flow visualization 
test with keeping ink injection. This test showed 
that a pair of helical vortex cavities appeared and 
stretched through the visualized vortex centers as 
the static pressure decreased. This result means 
the visualized vortices by ink are the same ones 
observed at the cavitation simulation test. 

Visualization of blade surface floas 

From the vortex flow visualization, it is found 
that one of the pair vortices rolled up around face 
side leading edge of the blade. This kind of 
rolled-up vortex is usually closely related with 
leading edge flow separation as reported[5-6]. 
Therefore flow patters on the blade surfaces were 
visualized by using an oil film technique. 

Fig.12 shows the sketches and the photographs 
of the oil flow patterns at 6knots condition. These 
flow patterns show the mean flow patterns for the 
whole propeller rotation angles because the oil 
film patters were obtained after running of the 

347 



Fig.11 Video picture hard copies showing the 
process of counter-rotating pair vortex 
formation at 6knots condition. The numbers 
show the order of tiie process. 

Leading edge roughness 

.9 

(A) 

Fig.12 Photographs and sketches of oil flow 
patterns at 6knots condition 
(A) Back side without leading edge roughness 
(B) Face side with leading edge roughness 
(C) Face side without leading edge roughness 

(0 
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Air injection 

Reattachment line: Ao 

Secondary separation line : Si 

Face side 

Primary separation 

line: So 

Secondary 

separation line: Si 

Fig.13 Schematic of the structure of leading edge 
separation at 6knots condition 

When bursting vortex type of tip cavitation 
occurred, a broadband type of pressure spectrum 
having high levels at higher frequencies was 
induced sometimes with highly skewed propellers if 
the propeller loading was high[l] or low[present 
paper]. This kind of high frequency pressure is 
considered to be induced by violent collapse of 
bursting vortex cavitation. In such cases, air 
injection into the bursting vortex region had been 
useful for reducing the high pressures at least in 
model experiment^,12]. This pressure reduction was 
considered to be due to the cushioning effect of 
air. 

We also examined the air injection to decrease 
the large amplitude pressures at high frequencies 
at 6knots condition in the model experiment. The 
result is shown in Fig.8 compared with the pressure 
without air injection. As seen, the pressures at 
high frequencies have been reduced much, whereas 
the blade rate component increased a little but was 
not an unacceptable one. 

PROPELLER LIFTING SURFACE CALCULATION 

The circulation distributions of the propeller 
in the wake and in the mean wake at the off-design 
condition were calculated by using an unsteady 
lifting surface program, PUF-3A developed by MIT. 
As a result, the circulations at 124rpm/6knots were 
found to be negative at outer radii and positive at 
inner radii as shown in Fig.14. In this figure, the 
circulation r is normalized as 

propeller for 5 minutes or so. From these flow 
patterns it is recognized that there is a long 
leading edge separation in the outer radius region 
starting from around 0.7R. This leading edge 
separation tended to shrink a little but did not 
change so much by leading edge roughness introduced 
as a turbulent stimulator. Therefore the scale 
effect of this separation seemed to be little. 

By repeating different kinds of oil painting 
at the oil film test such as point painting, line 
painting and different colour painting on each 
blade side, we could make out the structure of the 
leading edge separation as schematically 
illustrated in Fig.13. As seen in Fig.13, the flow 
on the blade separated at the back side leading 
edge(primary separation line Se) and reattached on 
the face side apart from the leading edge 
(reattachment line Aa) forming a large separation 
bubble. Inside of this separation bubble, there was 
a secondary separation bubble the separation line 
of which is expressed as "secondary separation line 
Si" in Fig.13. 

2TTRW 

where, 

W = yVs2 + (0.7x27rnR)2 

(1) 

(2) 

and Vs is ship speed. The five curves in this 
figure show the circulations at 4 angular positions 
of the blade in the wake and at an angular position 
in the mean wake, respectively. It seems that 
the negative loading at outer radii(approximately 
r>0.75R) is due to the excess low pitch at this 
condition along with the higher propeller 
revolution ,and responsible for the long leading 
edge separation. 

DISCUSSION 

From the results of model and full scale 
experiments along with propeller lifting surface 
calculations, the following facts have become clear 
regarding the high frequency vibration in question 
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The cause of the vibration 
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Fig.14 Radial distributions of circulation at 
6knots condition calculated by PUF-3A 

at the off-design condition. 
(l)The mechanical excitation froi the main 

engines and so on are not responsible for the 
vibration. 

(2)The model propeller experiment at the off- 
design condition showed the existence of a 
pair of bursting vortices that was shed from 
each blade tip and cavitating. 

(3)The spectrum of pressure induced by the model 
propeller at the off-desip condition is of 
broadband type and siiilar in form to the 
ship vibration acceleration of concern. 

(4)Air injection into the propeller tip region 
effectively reduced the propeller induced 
pressures at the model expedient and also 
decreased the ship vibration of concern. 

(5)The pair vortices of the model propeller 
were counter-rotating with each other and one 
of them was observed to be formed by rolling 
up of a long leading edge separation on the 
blade face side. 

(6)The circulation  at the outer radii 
corresponding to the location of long leading 
edge separation had negative values according 
to the lifting surface calculation. 

Based on the above facts, here we discussed 
the cause of the vibration, the generation 
mechanism of the counter-rotating pair vortices, a 
hypothesis of the bursting of counter-rotating 
vortices, etc. 

From the above facts (1) through (3), the 
vibration in question was considered to be caused 
by high frequency, high amplitude pressures induced 
by bursting cavitation of counter-rotating tip 
vortices from propellers. This consideration was 
confined by the above fact (4). This is because 
the air injection was confirmed by the model test 
to reduce effectively the exciting pressures and 
this air injection applied to the actual ship 
decreased sufficiently the ship vibration of 
concern. 

The generation mechanism of counter-rotating tip 
vortices 

From the above fact(5), one of the pair 
vortices(vortex A) was associated with rolling up 
of a long leading edge separation on the face side 
of blade. On the other hand, the origin of the 
second vortex(vortex B) was not obvious. But by 
comparing precisely the leading edge separation 
structure(Fig.l3) with the vortex flow(Fig.ll) and 
the vortex cavitation(Figs.6, 7), the followings 
are found: 

(l)the vortical flow and the vortex cavitation 
of vortex B begin to appear at a location of 
the blade tip, 

(2)this location corresponds to the shedding 
point of the secondary separation bubble if 
the secondary separation bubble rolled up, 

From these findings, it is suggested that the 
secondary separation bubble rolled up and formed 
the vortex B. Also a schematic showing the counter- 
rotating vortex structure can be drawn as depicted 
in Fig.15. 

Besides the vortices rolled up from long 
leading edge separation bubbles, there exists the 
other kind of vortices around a propeller — 
lifting surface vortices. For the radial 
circulation distribution having negative values at 
outer radii as already shown in Fig.14, the 
horseshoe vortex system can be expressed 
schematically as shown in Fig.16. In this horseshoe 
vortex system, the vortex a and d are the root 
vortex and the tip vortex respectively. Also the 
other two vortices(b,c) may be possible around the 
mid-span(r=ri in Fig.15) because the circulation 
changes the value at r=n from positive to 
negative. But the vortex b and c may not roll up as 
depicted in fig.5 because those vortices locate not 
at the tip nor the root but at the middle of the 
span. 

From comparative investigations of the 
visualized vortices(Figs.11,13) and the horseshoe 
vortex systei(Fig.l6), it can be said the 
followings. 
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(A) 

Vortex : B 

Fig.15 Schematic showing the structure of counter- 
rotating pair vortices 

(A) General view 
(B) Side view when cut at S-S 

Negative 
circulation.^/" 

Positive 
circulation 

Vortex : d   Vortex : c 

Vortex : b 

Vortex : a 

Fig.16 Horseshoe vortex system for 6knots condition 

(l)The lifting surface tip vortex d is not the 
vortex B of the visualized counter-rotating 
vortices because of their opposite rotational 
directions. Therefore the vortex B must be 
the rolled-up vortex from the secondary 
separation bubble. 

(2)The tip vortex d of lifting surface might be 
merged into the vortex A because the vortex d 
rotates in the same direction with the vortex 
A. But the bulk of the vortex A is considered 
to be composed of the rolled-up vortex from 
the primary separation bubble at the leading 
edge because the flow visualizations showed 
clearly that the vortex rolled up not at the 
blade tip but along the leading edge. 

A hypothesis of counter-rotating vortex bursting 

Our investigations showed that the counter- 
rotating pair vortices burst and cavitated 
radiating high frequency, high amplitude pressures. 
Also the pair vortices were associated with long 
leading edge separations. 

Looking for other examples associated with the 
rolling-up vortices from leading edge separation, 
there are some reports with marine propellers 
[5,7,8], with airplane fans[6,9] and with delta 
wings[10,11]. The others to be referred are the 
reports regarding propeller tip vortex bursting 
[1,12] and regarding high frequency, high amplitude 
propeller induced pressures[l-3]. 

Reviewing the reference papers[5-ll], it is 
known that the leading edge separation occurred at 
moderate to high angles of attack will roll up into 
a concentrated vortex if the leading edge was swept 
or skewed. Our case also corresponds to this 
condition because the propeller had a leading edge 
separation on each blade and was highly skewed, 
except that the separation of our case occurred on 
the face side at negative angles of attack. 

As for the propeller induced pressures, 
Hadler et al.[l], Brubakk et al.[2] and English[12] 
showed examples of high frequency, high amplitude 
pressures induced by bursting tip vortex cavitation 
not at off-design conditions but at design 
conditions. The reasons of vortex bursting for 
those cases are not necessarily made clear. 

As far as reading those reports, there is 
nothing showing the case of counter-rotating pair 
vortices as we experienced. Just the reference 
[3] shows some data and calculations of high 
frequency, high amplitude pressures at an off- 
design condition of a CPP. But there is nothing 
saying counter-rotating vortices nor tip vortex 
bursting. Seeing precisely the pictures of 
propeller cavitation in the paper[3], we can 
recognize a pair of trailing tip vortices on each 
blade, which seems very similar to the counter- 
rotating pair vortices we experienced. This 

351 



suggests that the high frequency pressures at the 
off-design condition of the CPP in the paper[3] 
would be generated by the saie reason as in our 
case. 

In considering the bursting of counter- 
rotating vortices, we investigated the mutual 
motion of a pair of counter-rotating vortices based 
on a two-dimensional vortex theory[13]. If two 
vortex filaments of strength ki and fa located in 
the fluid apart from each other's center by L(see 
Fig.17), the vortices rotate by the mutual 
induction with same angular velocity a around the 
centroid of the vortices. The centroid is a point 
where the resultant induced velocity is zero, and 
locates on the line connecting the vortex centers 
apart from vortex ki by X as defined, 

X = 
K2L 

K1+K2 
(3). 

The angular velocity a is expressed by, 

K1+K2 

L2 
(4). 

If ki is positive, fa  negative and |Ki |>|K21 as the 
case observed with the counter-rotating vortices we 
experienced, each vortex rotates around the 
centroid with a different rotation radius 
(Fig.17(A)). If such vortices were shed into a 
uniform flow, the vortex tracks will take the form 

Centroid 

Track of Track of 
Vortex K2   Vortex K, 

Fig.17 Tracks of two vortices shed into a uniform 
flow when Ki is positive, fo negative and 
|Ki|>|k| 
(A) Top view 
(B) Side View 

as shown in Fig.l7(B). These tracks are very 
similar to those of the cavities of counter- 
rotating pair vortices observed at the cavitation 
test(Figs.6, 7). 

Once the distance between the vortex centers 
became very small by some fluctuations of propeller 
wake or so, the angular velocity increases very 
much as calculated by equation (4), which can give 
the vortices very strong disturbances. Looking 
precisely the video tapes, we could find that this 
kind of interacting, strong, spiral motions of 
vortices. Upon suffering such disturbances, the 
vortices can be diverged. This vortex divergence 
might be the reason of vortex bursting for the 
counter-rotating pair vortices. This reason — 
vortex divergence — corresponds to one of the 
three conditions of vortex bursting that Hadler 
suggested[l]. 

Seeing the equation (4), this kind of vortex 
bursting is possible also when the pair vortices 
are co-rotating. This suggests that the vortex 
bursting for highly skewed propellers at such high 
loading as when the leading edge separation 
occurs, might be the case. This is because at 
such a condition there could be a pair of co- 
rotating vortices. In this case, one of the co- 
rotating vortices should be the lifting surface tip 
vortex and the other the rolled-up vortex froi a 
primary leading edge separation bubble. The co- 
rotation of these vortices can be understood if 
considered the vortex structure and the vortex 
system referring Fig.13 and Fig.16. 

Zsoldos and Devenport[14] investigated 
experimentally interacting wing-tip vortex pairs, 
in which they showed the results of two cases i.e. 
co-rotating and counter-rotating vortex pairs with 
same strength of each component vortex. As for the 
co-rotating vortex pair, they indicated broadband 
flow turbulences were developed at the merging 
process of vortices, which supports above our 
hypothesis — vortex divergence caused by 
interacting vortex motions. In the case of counter- 
rotating vortex pair, as expected also from the 
vortex theory, each vortex moved together laterally 
without spiral motions and so there happened no 
vortex merging nor turbulence increase. If the 
vortex strengths had been unequal, vortex spiral 
motions and vortex divergences might have happened. 

Issues associated with highly skewed propellers 

The highly skewed propellers have a potential 
problem associated with leading edge separation as 
seen in this paper in spite of the advantages such 
as low vibration excitation, low noise radiation, 
etc. The issue is high frequency pressure 
induction due to vortex cavitation associated with 
leading edge separation. Also the rolled-up vortex 
from leading edge separation changes the pressure 
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distribution on propeller blade and the propeller 
performance^,8]. 

Although the propellers with less skew lay 
cause leading edge separations, the separations 
will not roll up because of the less sweep of the 
blade leading edges. 

To design properly a highly skewed propeller, 
it is necessary to estimate the leading edge 
separation vortex. 

CONCLUSION 

High frequency ship vibration occurred on a 
new ship with twin CPPs at the off-design 
condition. Model propeller experiments and full 
scale vibration measurements revealed the cause of 
the vibration. From these experimental 
investigations, the following conclusions can be 
drawn. 

1. The ship vibration spectrum was broadband in 
nature having high spectral levels at higher 
frequencies between about 4th and 10th harmonics of 
the blade passing frequency. 

2. The vibration was caused by exciting 
pressures from cavitating tip vortices, which were 
counter-rotating pair vortices shed from each 
propeller blade tip. 

3. The counter-rotating pair vortices were 
bursting and the cavitation of the bursting 
vortices was responsible for the higher frequency, 
high amplitude pressures. 

4. At the off-desip condition, a long leading 
edge separation on the face side occurred at outer 
radii of the propeller blade. The separation bubble 
(primary separation bubble) accompanied with a 
secondary separation bubble in it. It was observed 
that the two separation bubbles rolled up into two 
concentrated vortices forming the counter-rotating 
pair vortices. The skew or sweep of blade leading 
edge was considered to be responsible for the 
rolling-up of the leading edge separation bubbles. 

5. The bursting of the counter-rotating vortices 
supposed to be caused by vortex divergence, which 
was induced by strong spiral motions of vortices 
due to mutual inductions. 

6. Air injection into the bursting vortices was 
examined during the model experiment and 
successfully applied to the actual ship. 

The use of highly skewed propellers may result 
in the type of vibration problems that we have 
encountered if not properly designed considering 
leading edge separation. It is needed a design 
method for highly skewed propellers considered 
properly the leading edge separation. The CFD 
technique may be useful for developing such a 
design method. Also it is necessary to verify the 
hypothesis regarding the bursting of counter- 
rotating vortices. 
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Pressure Field Analysis of a Propeller with 
Unsteady Loading and Sheet Cavitation 

W. van Gent (Maritime Research Institute, The Netherlands) 

ABSTRACT 

Hydrodynamic pressure fluctuations in the free 
space around a propeller are described theoretically 
from a consolidating point of view. The effects of 
propeller blade loading, thickness and dynamic sheet 
cavitation are formulated and their types as 
quadrupoles, dipoles and monopoles revealed. 

A method to calculate the dynamic behaviour 
of sheet cavitation is presented. The choice of the 
method has been reasoned by the need to get insight in 
the relation between the non-uniform wake structure 
and the non-linear cavity volume variations; a most 
complete description of the cavity shape is not pursued. 

Combination of unsteady lifting surface theory 
and the model for dynamic sheet cavitation leads to a 
system of differential equations for the cavity shape 
parameters under influence of the varying conditions on 
a propeller blade in a wake. Its solution gives the non- 
linear, dynamic behaviour of the sheet cavitation 
volume as a function of time, including volume velocity 
and acceleration as well as the time derivative of the 
velocity potential. The latter derivative gives the 
dominant contribution to propeller induced pressure 
fluctuations in the blade frequency range on the ship 
hull and to low frequency noise. 

Typical calculation results of dynamic 
cavitation behaviour, part of a complete hydrodynamic 
propeller analysis are shown. 

NOMENCLATURE 

a    = ellipse major axis divided by c, 
b   = ellipse minor axis divided by c, 
c   = chordlength of blade section, 
D   = diameter of propeller, 
D, = distance between field point and 

point of integration (on propeller), 
D~'       = monopole spatial function, 
Dls_,      = chordwise oriented dipole function, 
Dln'!      = normal oriented dipole function, 

N 

P 
PP 
P, 
Pi 

Du;'     = chordwise oriented quadrupole function, 
E   = flow deformation tensor, 
F0 = collected non-linear, dynamic terms, n = 0, 
F2 = collected non-linear, dynamic terms, n = 2, 
/    = chordwise position of midcavity, 
n   = index for pressure requirement, 
n   = normal direction on surface or blade; 

on surface S into volume V, 
on blade from pressure to suction side, 

= rotation rate of propeller, 
= hydrodynamic pressure, 
= pressure side blade pressure, 
= suction side blade pressure, 
= field pressure contributions, i = 1,2,3,4,5, 

pD = Dynamic pressure term on cavity, 
p,  = Interaction pressure term on cavity, 
ps = Static pressure term on cavity, 
p_ = pressure of environment, 

= cavity cross-sectional area, 
= radial coordinate, 
= chordwise direction, 
= surface bounding volume, 
= time, 
= blade profile coordinate (thickness), 
= pressure side profile coordinate, 
= suction side profile coordinate, 
= velocity (vector), 
= volume, 

Vrj= relative velocity of undisturbed fluid to 
propeller blade (in chordwise direction), 

V„= resultant velocity of fluid flow relative 
to blade, 

w   = vorticity (vector), 
a   = factor for 3-D effects in cylindrical cavity 

approximation, 
= bound vorticity, 
= circulation, 
= elliptical coordinate, 
= rake angle, 
= fluid dynamic viscosity, 
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= circle quadrature factor, 
= fluid mass density, 
= dimensionless pressure term, 
= cavity thickness, 
= velocity potential. 

INTRODUCTION 

Cavity dynamics 

Unsteadiness of cavitation often enhances 
propeller induced vibration to a level which is unac- 
ceptable from the comfort, structural and functional 
integrity points of view. Therefore understanding and 
quantification of the effects from cavitation are of 
interest for propeller design and hull vibration analysis. 
The first methods dealing with the unsteadiness of 
propeller cavitation in a ship wake field are quasi- 
steady approaches, in which a steady shape of 
cavitation is calculated for each blade position. From 
the sequence of steady shapes, found for a complete 
revolution, the cavity volume and the cavity growth 
velocity and acceleration are derived as functions of 
time. The unsteady pressure field is related to these 
functions. These methods can supply reasonable esti- 
mates for the lowest frequency of vibration excitation 
on the hull, viz. the blade passage frequency. For 
higher frequencies these methods suffer from the 
shortcoming that no dynamic feature of the cavity itself 
is involved; only the wake non-uniformity is transferred 
into a time dependent pressure field. 

Advanced approaches, under development now, 
address the problem of the propeller with unsteady 
cavitation in a wake field with boundary elements 
methods. The velocity potential is used as a base and 
the kinematic and dynamic boundary conditions can be 
formulated 3-dimensional, nonlinear and time-depend- 
ent, see Fine and Kinnas (1)]. The cavity planform and 
shape have to be found by iteration. The cavity growth 
velocity forms part of the solution as this quantity is 
implied in the equations to be solved, Kinnas and Fine 
(2). The cavity growth acceleration, however, has to be 
obtained by numerical differentation of the final 
solution. 

In between the first methods on one side and 
the advanced approaches on the other side, there is for 
practical reasons an option to address directly the cavity 
growth acceleration. One reason is the fact that this 
quantity dominates in the fluctuating pressure field and 
it is desirable to calculate it directly, i.e. avoiding 
numerical differentation. Another reason is that, espec- 
ially at lower frequencies, there is no need to know all 
the details of the cavity geometry; mainly the volume 
and its time derivatives are of interest. The option can 

be realized by describing the cavity shape with only a 
few parameters. Then the boundary conditions on the 
cavity can be brought into an analytical form containing 
these parameters and also the environmental parameters 
of the propeller blade in the wake. This leads to a set 
of second order differential equations for the cavity 
shape parameters. 

Such a method is dealt with in this paper; it is 
considered useful in investigating practically the effect 
of wake field structure on the frequencies of the 
pressure fluctuations around a propeller. 

Pressure fluctuations 

The phenomena leading to pressure fluctu- 
ations in the free space around a propeller comprise the 
thickness of the blades and the hydrodynamic loading 
as well as dynamic sheet cavitation on the rotating 
blades. The fluid flow is considered incompressible in 
the description; no acoustic effects will be revealed 
therefore. Propeller load variations and dynamic sheet 
cavitation are related to the presence of a wake field, 
however, here we will consider them as given quantities 
and leave the wake out of consideration. Direct effects 
of viscosity are disregarded, but the existence of a 
propeller trailing vortex system is observed. Potential 
flow theory then suffices to describe most of the flow 
phenomena. The presence of the ship hull is ignored, 
hence the main flow is simple (uniform and in axial 
direction), no boundary effects on the pressure field are 
considered. Therefore the calculated pressures are 
nominated as free space pressures. 

As said already, the magnitude of the loading 
and the intensity of the dynamic cavitation are assumed 
to be known. They have to be obtained from additional 
and more detailed theoretical models like a lifting 
surface theory and a theoretical model for the 
cavitation. The present model for pressure fluctuations 
is a necessary supplement to such models as general 
models covering all the effects mentioned are not 
available or not yet practical. 

As the various contributions to the pressure 
field are related to phenomena of different kinds, there 
is a need to approach them from the same point of 
view in order to obtain a correct composition. This is 
one of the objectives of the present study. 

BASIC EQUATIONS 

For scalar quantities, like the pressure, an 
important general relation holds, which is purely based 
on mathematical considerations. When such a quantity 
pip has at least continuous spatial derivatives of order 
two, it follows from Green's representation theorem 
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that at a point in a volume V : 

Aid 
(1) 

Dj is the magnitude of the position vector of the integra 
tion point relative to the point considered in the left 
hand side of (1). The left hand side of (1) stands for 
the instantaneous pressure in a point considered in free 
space away from the propeller. It does not matter 
whether this point moves or does not move. We choose 
for convenience's sake to consider a fixed point while 
the propeller translates in and rotates about the direc- 
tion of its axis. Also the bounding surfaces move with 
the propeller. 

In the three terms on the right hand side of (1) 
we need to consider the hydrodynamical and the 
geometrical aspects. First we deal with the hydrody- 
namic relationships which connect the pressure, orp/p, 
to the incompressible flow phenomena. Most general is 
the equation of motion which is written in the following 
convenient form (see Serrin (3): 

.& + (V-X*) + Jiv2v     (2) 

dt p 
V(ü + ±v2) ,2\   = 

From (2), which contains the first spatial derivative of 
the pressure, also the second derivative can be derived. 
Application of the divergence operator to (2) leads for 
incompressible flow to: 

v2(£ IV2) = v 
2 

(v x iv) 

which can be transformed into: 

Vz(£) = i(w • w) - {E ■ E) 

(3) 

(4) 

It is noted that in this relation the time derivative and 
the kinematic viscosity do not appear. Nevertheless it 
is generally valid for unsteady and for viscous flow. 

A general relation that contains the pressure 
itself is not available, but the equation of Bernoulli can 
be used in potential flow regions where viscosity is 
negligible and without vorticity. This will be done in 
the next section for the flow around the propeller 
blades, It is advantageous to describe that flow in a 
reference system which rotates and translates with the 
propeller. 

We conclude this section by noting that the 
above equations do not describe the pressure and 
velocity in the flow expliciüy. A numerical solution of 
eq.(2) is required, satisfying kinematical and dynamical 
boundary conditions and covering for the potential flow 
the solution of the Laplace equation. Eq.(l) would then 

be satisfied identically by an exact solution and be of 
no further use. However, without a complete numerical 
solution of the equations, eq.(l) is very useful. This is 
because firsüy the terms on the right hand side of 
eq.(l) can partly be determined from known boundary 
conditions, which govern the numerical solutions, hence 
there is no need to obtain these solutions. Secondly we 
can work with approximate representations of the flow 
phenomena like velocity potentials for propeller thick- 
ness and cavitation and like vortex distributions for 
propeller loading. In such a practical situation eq.(l) is 
a useful tool to investigate the composition of partial 
contributions and to indicate the omitted interactions. 

Propeller Relative Flow 

Now in case of a propeller the flow is an onset 
fluid motion relative to the blades, created by the 
propeller screw motion and a flow disturbance created 
by the fact that the blades have thickness, camber and 
pitch, deviating from helicoidal surfaces and cavitation. 
The disturbance flow is considered as potential flow. 
This flow usually is known, say the time and space 
derivatives of the potential, to an observer moving with 
the blades. We need to know, however, the time 
derivative to a not moving observer and therefore we 
have to find the relation between both. 

For unsteady potential flow, which relates the 
pressure to the velocity field, this equation reads: 

p     a*     1 
p      dt      2 

constant (5) 

which follows from (2) with the following definition of 
the fluid velocity field in relation to a potential: 

+ V<|> (6) 

The time derivative of the potential at a fixed point in 
space, as it occurs in (5), is related by: 

<?*  = <b   + V ,<b (7) 
dt *,+ y**< 

The constant in (5) does not contribute to the first 
integral, which can be proved exactly. The effects of 
static height pressure from (2) and (5) in the first and 
second integrals exactly recover the static pressure at 
the point under consideration; there is no dynamic 
effect involved and therefore these terms are further left 
out of consideration. 

For potential flow it follows then from equa- 
tion (2) that: 

(n ■v£) = 
d_ 

dn 
a<t> 
dt 

1   2 

2 
(8) 

Substitution of equations (4,5,6,7,8) into (1) finally 
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results into the following: 

P 

JJ      8n Dt 

JJ        Di  dn 

|(w-w) -(E-E) 

(9) 

In the two surface integrals of (9) we distinguish 
impulsive and convective tenns which are linear in the 
velocity potential derivatives and tenns which are non- 
linear in the velocities. If the flow disturbance is small 
compared with the relative motion of the propeller we 
can linearize by disregarding the mentioned non-linear 
terms. For a further evaluation of the linear terms we 
have to investigate the behaviour of the integrands on 
the bounding surfaces, i.e. the flow boundary condi- 
tions. This is worked out in the next section; here we 
make some general remarks looking back to equation 
(1). 

The hydrodynamic part of the integrand in the 
first integral of (1) is simply the pressure related to 
unsteady lift and equal to zero at the cavitation. It is 
practical experience that at the operational condition of 
propellers most often the steady thrust and hence the 
steady lift force on the blades is not influenced by 
cavitation. On this observation we base the assumption 
that the first integral of (1) is dominated by the lifting 
pressures and that the effect of cavitation is small. 
Therefore in the next section it is approximated by the 
case of the non-cavitating blade. 

The integrand of the second integral in (1) and 
in (9) is related to the acceleration of the cavity sur- 
face. Here the effect of cavitation is dominating over 
the effect of the blade itself; this is further revealed in 
the next section where the kinematic boundary condi- 
tion is considered. 

The third integral in (1) and in (9) is non- 
linear in derivatives velocity viz. voracity and deforma- 
tion. The vorticity term is of special interest as it is a 
base to investigate contributions from the propeller 
trailing vortex system, from interaction between the 
vorticity in the ship wake field and the trailing vortex 
system and from the socalled propeller-hull vortex. 
These effects will not be investigated here, however, as 
formally the third integral can completely be disre- 
garded in case of linearization. 

In addition to linearization the practical and 
simplifying observation is made that the closed integra- 
tion surfaces in the first and second integral are the 
surfaces of propeller blades with small thickness to 
chord ratios. The integration is built up of spanwise and 

chordwise directions. The normal vectors n on the 
pressure side and on the suction side will be approxi- 
mated by the vector normal to the chord, pointing from 
pressure side to suction side. The positions relative to 
the point considered, Dv are approximated by the 
chordwise position instead of the positions at both 
sides. These considerations finally result into the 
following expression for the pressure of one blade: 

4*£ = 

J rrvz r-J 

1   d 

*'-zrJ*tZ&-4>*r-*f' 
where the superscripts p and s indicate pressure side 
and suction side values respectively. The difference in 
spanwise and radial directions for a raked propeller is 
accounted for by the cosine of the rake angle K. Inspec- 
tion of the terms of (10) reveals that far away from the 
propeller the linear pressure effects vanish. 

In this section we have derived an expression 
for the pressure field in terms of properties of the 
velocity potential of the flow around the propeller 
blades. Typical for the derivation is that we do not start 
with the general assumption of potential flow for the 
whole field. Instead the starting point is a general 
expression for the pressure field in which the adequate 
properties of the flow field are introduced. Conclusions 
from this section are: 
- the approximation of the pressure field around a 
cavitating propeller based on linear effects of the 
disturbance created by the propeller leads to contribu- 
tions in terms of the velocity potential of the flow 
around the blades; 
- contributions from the trailing vortex system are non- 
linear effects of the disturbance, hence in a linearized 
approach they can be ignored; 
- through linearization with reference to the relative 
propeller velocity, the general pressure field expression 
is reduced to the surface integrals over the propeller 
blades. Apparently the structures of the flow in the 
wake and of the flow in the vicinity of the point of 
observation is irrelevant. 

CONTRIBUTIONS TO THE PRESSURE FIELD 

The various terms in (10) need further attention in 
order to relate them to the details of propeller geometry 
(thickness), loading (lift) and sheet cavitation. 

Blade loading 

This contribution comes from the first integral of (10), 
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which is woiked out here for the non-cavitating case. In 
terms of pressure distribution this integral can be 
rewritten as: 

h = ±f.JL-fds 
p 47t"' COS KJ 

P'-P" 
dn D1 

(11) 

where the pressure difference between suction side and 
pressure side is the lift distribution over the propeller 
blade. It is a distribution of dipoles with their axes in 
the opposite direction of the lift. Lifting surface models 
provide the lift distribution on the propeller in a wake. 
An alternative formulation is in terms of bound vor- 
acity and circulation. The velocity potential terms in 
(10) can be rewritten as: 

I.e. 

(12) 

where y = the local value of the bound voracity on the 
blade and in which the integration is from the leading 
edge up to the chordwise point s. If we approximate the 
blade with a lifting line, we can take the local circula- 
tion T for the integrated voracity and the lifting line at 
the midchord position. Then the pressure contribution 
from blade loading becomes: 

Pi 

P 
_    1   f   ^ 

4-IT! J rr>s 471J COS K 2    * 
*^r -?-(-?-) 

dn Dj 

(13) 

The relative magnitude of the two terms in square 
brackets depends on the wake field. In many practical 
cases the second term will dominate. 

Blade cavitation and displacement 

These contributions come from the second integral of 
(10). The integrand can be transformed by using the 
kinematical boundary condition at the blade or cavity 
surface. This condition is in linearized form: 

-   d, 
♦„-* *ds 

[T + 7] (14) 

It is recalled that the superscripts p and s are used to 
indicate pressure side and suction side values respect- 
ively and that n indicates the direction from pressure 
side to suction side. Then, with the aid of expression 
(7) the partial derivatives of the velocity potential in 
(10) can be rewritten as: 

d>   = t + V   —i 
■'" ""ds 

<j>     = Ai + v   —[T  + 7] 
■"*      ds m' -" 

(15) 

"A2* 

+ iv»>+VJ i[i'+ ** (16) 

In (16) we distinguish contributions from cavity growth 
acceleration, cavity growth velocity, cavity thickness 
and blade thickness, which are written out below in 
complete expressions. It is observed that the difference 
between V„, and Vm can be ignored in view of the 
linearization and the former is used from here. 

Cavity growth acceleration 

This contribution comes from the first term in (16). In 
complete form (see (10)) it becomes: 

Pi 

P An- 

dr 
J COS K-' Dj 

(17) 

It behaves like a monopole and is the dominating 
contribution from cavitation. 

Cavity growth velocity 

This contribution comes from the second term in (16). 
The complete form (see (10)) becomes after partial 
integration: 

El 
P 4TT-'       COS K"' 

Udr 
ds Dt 

This contribution behaves like a dipole with its axis in 
chordwise direction. 

Cavity and blade thicknesses 

As indicated already (16) also contains the displacement 
effects of cavity and blade thicknesses. Integrating 
twice partially in chordwise direction leads to the 
following contributions.The complete contribution from 
the cavity thickness is: 

h - ^fdr^Lfds [f ♦ ,*] 4(-L) (19) 
p       4T:-'     cos K

J ds   7J, 

The complete contribution from the blade thickness is: 

El 
P 

1 ^rdrJjtLfdsT^i-) (20) 

from which we obtain: 

AnJ     cos K
J 

The various contributions to the pressure field are 
usually presented in dimensionless form: 

K   =  1  (21) 
"      p N2 D2 

We collect the various contributions now and rewrite 
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them in teims of dimensionless combinations of para- 
meters: 

K=-P 
«& 

pN2D- 

5       (22) 

:   gitJ  cosK    ND  J    c   t\ 

where: 

*1   +  *2   =  O2  (I+1> D'D'll 

*3   = 

D      c   c 
C T 

D    V. 
D*Dll 

rel 

C  T ZM> -l 
(23) 

rre/ 

k5- + E^ *DZ 

The various spatial derivatives of the distance D, 
between points on the hull and points on the propeller 
are indicated as follows: 
monopoles 

-l = J_ 
*i 

(24) 

dipoles 

K = 
& Z>, 

quadrupoles 

D l.» 

^ = 

ds2 D/ 

dn Dy 

(25) 

(26) 

These quantities can be worked out analytically in any 
coordinate system for the geometry and time dependent 
blade position; their numerical calculation does not 
offer any difficulty. In the Appendix the analytical 
expressions are given. 

In this section we have demonstrated the 
derivation of various contributions to the propeller 
induced pressure field from one single master equation, 
viz. eq.(10). Such a derivation is not available in the 
literature; for a comparison of theoretical prediction 
methods it may be useful as a common reference. The 
choice made in the section "Basic Equations" to con- 
sider the pressure in a point fixed in space while the 
propeller motion is translational and rotational relative 
to the fluid, leads to simple expressions for the contri- 
butions. They can be compared with expressions found 
in the literature, see e.g. Breslin and Andersen (4). The 
simplicity is obtained by partial integration of the 
chordwise distributions of the cavity growth velocity 
and the cavity and blade thicknesses. 

In summary the contributions are: 
- monopoles for the cavity growth acceleration, 
- chordwise directed dipoles for the cavity growth 

velocity, 
- normal directed dipoles for the blade loading and 
- chordwise directed quadrupoles for the cavity and 
blade thicknesses. 

DYNAMICS OF SHEET CAVITATTON 

General model features 

Global aspects of dynamic sheet cavitation are 
described theoretically. First aim is to obtain a robust 
model for the response of the cavity to the varying 
conditions on a propeller blade rotating in a wake field. 
Of subsequent importance is the accuracy of the shape 
of the cavity; it should be reasonably realistic. A 
principal feature of the method is that the cavity shape 
is described with a small number of parameters. Mutual 
relations between the parameters are fixed but their 
numerical values are free. In this paper a semi-eUiptical 
shape is assumed for the chordwise cross-sections, 
following Stem and Vorus (5). This choice fixes the 
relation between the semi-axis, while their magnitude 
still has to be determined. Other choices can be made, 
however. 

A second feature is that the velocity potential 
describing the fluid flow is separated in a dynamic part 
and a quasi-steady part (5). In the dynamic boundary 
condition at the cavity surface, i.e. the requirement of 
constant pressure, then terms for dynamic effects, 
quasi-steady effects and interaction between these can 
be distinguished. The restricted number of free parame- 
ters allow only an approximate satisfaction of this 
condition. Therefore an approach is taken to minimize 
the square of the deviation from constant pressure (5). 
This leads via the dynamic terms to a set of non-linear 
second-order ordinary differential equations with time 
as independent variable. Dependent dynamic variables 
are the cavity shape parameters, while the equations are 
controlled by the terms which depend on the quasi- 
steady conditions on the propeller blade. The quasi- 
steady terms can be obtained numerically by available 
means for flows with fixed boundaries. 

Numerical solution of the set of equations 
directly produces the values of the dynamic parameters 
and their time derivatives, up to and including the 
required order, for the pressure field calculation. 
Therefore the method seems to be advantageous to 
meet the aim mentioned above. 

Method equations 

The method and elaborations of Stern and 
Vorus (5) are followed; an overview thereof is given 
also by Stern (5). Investigations of the method at 
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MARIN hitherto are reported by Salvati (7); giving 
special attention to the effects of viscosity and of 
surface tension. Tn this paper these effects are disre- 
garded, while a modified version of the set of dynamic 
equations is used and different quasi-steady flow types 
are considered in the application. The description below 
is kept brief; derivations and details of the method are 
not repeated. 

The velocity potential of the flow is composed 
of a dynamic and a static part 

*= 4>B  + *5 (2?) 

which is generally permitted provided that the boundary 
conditions can be satisfied. Of special interest is the 
pressure condition at the cavity surface. From the 
equation of Bernoulli, see (5) and (6), it follows that: 

P = PD 
+ Pr + Ps = ° (28) 

where we distinguish respectively the .Dynamic pressure 
terms, the /hteraction pressure terms and the Static 
pressure terms: 

PD = Pftg) d4>p 
p dt 

p(<j>D,<bs)_  _ 3^ 

dt 

P 
Pi 

P 

Ps 

P 

P 

Pi*;) 

(29) 

p 
-y2(v<j>5)-(V(j)s) 

The approximation used by Stern and Vorus (5) to 
satisfy (28) is obtained by assuming that the cavity 
sheet has semi-elliptical chordwise cross-sections. This 
leads to the requirements that 

/ (PD +Pi +^j) cos(rni) JT| =0 (30) 

n = 0, 1, 2 
where the integration variable is the elliptic coordinate 
in the range between the cavity leading and trailing 
edges. 

The computational efforts for the solution of 
(28.29,30) are largely reduced by using slightly differ- 
ent environments for the semi-elliptical cavities under 
the dynamic conditions respectively the static condi- 
tions. This is depicted in Figure 1, where in the top 
picture the cavity is placed on a flat wall, while in the 
bottom picture the cavity is placed on a profile section. 
The situation with the cavity on a flat wall is used for 
an analytical calculation of the Dynamic pressure terms 
and the Interaction pressure terms of (29). The situation 
with the cavity on the profile section is used in a 
numerical calculation of the Static pressure terms of 
(29).The difference in flow situation means that the 
effect of the kinematical boundary conditions at the 
wetted surfaces is different. It is assumed that this is 

acceptable in connection with the aims of the modelling 
and with the assumption of an elliptic cavity. 

■n      / elliptical 
coordinate 

Figure 1 : Semi-elliptic cavity conditions. 

In this way, as will be worked out in the following 
section, we find that the Dynamic pressure terms lead 
to second order time derivatives of the cavity volume 
and to non-linear terms in the first order time deriva- 
tives. The Interaction pressure terms lead to linear first 
order time derivatives and represent hydrodynamic 
damping. The Static pressure terms take fully into 
account the quasi-steady pressure distribution on the 
cavity shape on the profile section in a wake. Thus we 
obtain a non-linear system of equations in which the 
highest order time derivative, required for the calcula- 
tion of the pressure field of a propeller, occurs. 

Cavity model equations 

The cavity volume on one blade is dealt with in 
chordwise strips, hence the chordwise cross-sectional 
areas are considered further for which hold: 

ab 

a - —(bä+ab) 
2 

q = —(bä-<-2äb+ab) 

(31) 

The requirements (4) derived from the dynamic bound- 
ary condition in the previous section are rewritten in 
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dimensionless foim. By defining for n = 0,1,2, while m 
= 1 for n = 0 and m = 2 for n = 1,2: 

OS0  =   -fPi,COS(llT|)*l 

W   _   m 

'I ■ j" /7;    COS(7IT)) dtl (32) 

*o 

for the dynamic, interaction and static pressures terms 
we can write for the pressure requirements (30): 

o? * o » + a,w = 0 <33> 

Dealing first with the dynamic pressure terms in the 
same way as in the literature (5) leads to: 

!(M + lab + aß) =   -F0 + os
ro + o/0) 

■26f   =   4M  + o^ + a^ 

(34) 

=   -F2 + of + of> y2(ö5-feä) 
where non-linear terms on the right hand sides are 
collected in: 

ba2+abz 

a + b 

bji 
+    —I 

(35) 

= (d-6)(ab + bä) + 2kl2 

2 a + b a 

The factor a in the first equation of (34) has been 
introduced to account for the far field 3-D effects on 
the near field 2-D description of the (cylindrical) cavity. 
It is determined from: 

1 = ln[ 
(a+b) /2 

ASPECT RATIO 
;] (36) 

where the aspect ratio is taken for the practical case of 
the propeller blade. It yields a value for a between 
minus 1.0 and 0.0. 

Next we deal with the interaction terms. The 
velocity potentials which are used in the interaction 
pressure terms, corresponding to the top picture in Fig.l 
are for the static flow of an elliptic cylinder in uniform 
flow and for the dynamic flow of an expanding and 
moving elliptic cylinder in a fluid at rest Both can be 
formulated analytically, see Milne-Thomson (8) and 
Stern and Vorus (5). The evaluation of the middle 
expression of (32) can be carried out straightforwardly 
and results into: 

,(0) _ 

,0) _ 

.W - 

2 b . — a 
a 

2 ,,.   is     ab-bä (a * a) < 
a+b 

? bä 

(37) 

a+b 

The left hand side of the first equation of (34) contains 
the second time derivative of the cavity cross-sectional 
area as given in (31). By addition and subtraction of the 
first and the third equation in (34) we can obtain separ- 
ate equations for both the semi-axes of the cavity 
ellipse. The second equation of (34) for the chordwise 
position of the cavity is not used. Instead the condition 
is used that the leading edge of the cavity remains 
attached to the chordwise point where the pressure is 
minimum at inception. This reduces the number of 
degrees of freedom. The equations describing the 
dynamical system can finally be written in adequate 
form; the main equation governing the cross-sectional 
area is: 

4 = 
na F0 + f[of + o/>>] (38) 

which has to be used in combination with either. 

M«l«-a*-Fa+[o,B + o®]     (39) 

or: 
1 (2) 4 -ab + F2 -[or + o-; ,P) ]     (40) 

This set of equations demonstrate the dependency of 
the cavity parameters on the non-linear effects, the 
interaction effects and the static pressure distributions. 
In (38) it is seen that the cavity cross-sectional area 
depends on the pressure integrals of lowest order which 
is natural. In (39) and (40) the behaviour of the ellipse 
axes is seen. The first couple of terms on the right hand 
side of these equations let the axes follow the cross- 
section in equal proportions, i.e. the axes ratio remains 
constant. The remaining terms have opposite signs and 
will cause oscillations of the cavity cross-section at a 
constant area value. 

Finally the calculation of the static pressure 
terms has to be considered. In this case the flow 
situation as shown in the bottom picture of Figure 1 is 
used. The elliptic cavity thickness distribution is added 
to the propeller blade section profile. The calculation of 
the static pressure distribution is carried out by a 
conformal mapping procedure, which is a part of the 
complete propeller analysis program. 
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PROPELLER ANALYSIS NUMERICAL RESULTS 

The potential flow around the propeller blade 
with cavitation is built up from various parts. First the 
flow related to the (noncavitating) propeller blade 
loading in the wake field is calculated by means of 
unsteady lifting surface theory (9). The calculations are 
carried out in the frequency domain. The mean and 
periodic blade section loadings are obtained as 
chordwise distributions for a number of harmonics of 
the shaft rotation frequency. The number of harmonics 
is taken sufficiently to represent the effects of the non- 
uniform wake. The chordwise loading distributions for 
each section, which are composed of a number of base 
distributions, are transformed into effective two-dimen- 
sional angles of attack and camber lines of the blade 
section profiles (10). This section camber differs from 
the geometrical camber of the lifting surface and is 
called the effective camber. As a result of the lifting 
surface calculation the latter camber distribution is 
available for each radial position and each blade 
position, hence as a function of time. 

Second the effective camber line is combined 
with local blade thickness to obtain a twodimensional 
(wetted) foil section. At any required instant of time a 
cavity shape is added to this section geometry; the 
static potential flow around this geometry is calculated 
by means of a conformal mapping method. This results 
in a pressure distribution on the foil section with a 
cavity shape. The pressure distribution includes the 
static and dynamic effects of the propeller blade 
thickness and loading in the wake, but excludes the 
dynamical behaviour of the cavitation. It is called the 
quasi-static cavity pressure. 

Third the potential flow related to the dynamic 
behaviour of the sheet cavity is considered. For each 
blade section to be analyzed a solution, in the time 
domain, is obtained of the set of differential equations 
derived in the previous section. The coupling between 
the lifting surface model and the dynamic cavity model 
goes through the static pressure terms (third equation in 
(32)). 

In this approach the problems of unsteady 
loading and unsteady cavitation are solved separately 
and coupled by the, quasi-steady, pressure distribution 
on the blade sections. The objectives are to obtain a 
method for prediction, in the low-frequency range, of 
the dynamic pressure field around a cavitating propeller 
including non-linear effects and without numerical 
differentation of the velocity potential and other quan- 
tities. A drawback may be that the description of the 
cavity shape is sectionwise and only with a few para- 
meters per section. 

Typical results have been obtained from an 
analysis of a 4-bladed propeller, diameter = 6.0 m, of 
a container vessel. The wake field is dominated by a 
symmetric peak in the axial velocity distribution 
ranging from - 45 to + 45 degrees in the top region 
while the depth is half the ship speed. The effective 
angle of attack variations of the outer blade sections are 
about 1 degree. 

In Figure 2 the acceleration and the velocity of 
the cavity growth and the cavity volume are shown in 
the top, middle and bottom pictures respectively. The 
four full lines in each picture correspond to four radial 
positions, as indicated, and show the cross-sectional 
properties. On the scale on the left hand side the quan- 
tities are give in non-dimensional form, where the 
chordlength is the length scale and the reduced fre- 
quency the inverse time scale. The rectangular dots give 
the cavity growth, acceleration and velocity, and the 
cavity volume for a complete blade. The scales on the 
right hand side give the physical values. So we can see 
in the bottom picture that the maximum volume is 
about 0.032 m3 at a blade position of about 35 degrees 
through the top. 

The acceleration curves in the top picture of 
Figure 2 are not smooth but exhibit small peaks. This 
is caused by the discretization of the blade section 
contour, described in a number of chordwise points, 
which are closely spaced near the leading edge and 
more widely towards the trailing edge of the profile. In 
the conformal mapping procedure for the calculation of 
the pressure distribution, the positions of the cavity 
endpoints are interpolated on the given set of chordwise 
points. Apparently a finer discretization of the blade 
section contour can improve the smoothness of the 
acceleration curves. The solution of the system of 
differential equations was obtained with time steps 
corresponding to 1 degree of the angular blade move- 
ment. The dots for the cavity volume per blade are 
given at intervals of 5 degrees, but intermediate values 
are also available. 

The results in Figure 2 correspond to calcula- 
tions for a fixed ratio of the elliptic cavity axes, viz. a 
: b = 40 : 2. Hence oscillations of the cavity axes' 
lengths at a constant cavity volume have been sup- 
pressed. The choice of the fixed ratio a : b is of influ- 
ence on the volume variations, so in general this value 
has to be left free and is to be found from a solution of 
the complete set of differntial equations. The additional 
terms in these equations which control the constant 
volume oscillations make the solution much more sen- 
sitive to inaccuracies in the calculation of the pressure 
distribution and to the initial conditions. In some cases 
the cavitation becomes intermittent as desinence occurs 

363 



u 
u 
< 

o 
a 
o 
z o 

B w 
«? 
to 
t/> 

O 

e 

0.03 Al   k 
0.02 Ipli1 

- 
0.01 r 
0.00 

-0.01 

m!Twsi r^\ 

4.02 
V\     0.95 

„ - 

-0.03 

-0.M _    CROSS-SECTION r= 0.80 
m \ \ f\^ 

fhJ 0.90 - 

4.05 

¥ 

0.85 

-50 50 
BLADE POSITION [degrees] 

. CAVITY GROWTH ACCELERATION 

100 

40 

20 

? 

< 
E 

0     8 
< 

-20 o 
0 

-40 

§ 
-60 

150 

o 
ei 
O 
Z o 
p u 
w 
to 
to 
to 

0.03 

0.02    - 

0.01 

Q    -O.02    - 

-0.03 

■  m ™ ■ 

^^O^                  0.95 
\V\    0.90 

CROSS-SECTION 
0.85\\\\ 

=    0.80               \\\ 

1J 

-50 50 
BLADE POSITION [degrees] 

. CAVITY GROWTH VELOCITY 

100 

0.5 

0 
-0.5   5 

-1.5 
150 

0.035 

Z 
0 
p u 
a 
CO 

tö 
to 
O 
ei 
u 

BLADE POSITION [degrees] 

__ CAVITY VOLUME 

Figure 2 : Dynamic Cavitation Volume Properties for a : b = 40 : 2. 
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due to collaps of the cavity thickness. The effect of the 
cavity thickness ratio can be seen from a comparison of 
the results in Figure 3 with those of Figure 2. The con- 
ditions are identical, only the cavity is thinner in Figure 
3, viz. a : b = 40 : 2. The overall difference is that 
cavitation occurs over a larger interval and that the 
cavity volume is larger. The maximum volume is about 
0.11 m3 at a blade position of 50 degrees. 

At the radial positions r = 0.90 and 0.95 the 
cavity lengths become nearly equal to the chordlengths. 
As supercavitation is not covered by the theoretical 
model, an artificial measure is taken to control the 
occurrence of cavity length larger than 80 percent of 
the chord. For the part of the cavity beyond this 
percentage the pressure is taken equal to the stagnation 
pressure. This enhances the deceleration of the cavity 
growth as can be seen in the top picture of Figure 3, 
where for r = 0.90 and 0.95 strong negative values are 
shown. 

CONCLUDING REMARKS 

In this paper some aspects of the theoretical prediction 
of the time-dependent pressure field around a ship 
propeller are considered. Detailed conclusions are given 
in the various sections. Here we observe the main 
features. 
- The derivation of the expression for the pressure field 
from basic flow equations demonstrates that the as- 
sumption of potential flow has only to be made for the 
flow in the vicinity of the propeller blades. 
- In a linearized approach, where the propeller induced 
velocities are smaller than the blade motion velocities, 
there is no reason to compute contibutions to the 
pressure field from the trailing vortex system. 
- The consolidated pressure field contributions, derived 
from one master equation, are monopoles, dipoles and 
quadrupoles. 
- In the model for the dynamics of sheet cavitation 
along the lines set out by Stern and Vorus, it is con- 
sidered essential that the relation between dynamic flow 
potential and cavity shape is maintained in analytical 
form. The solution of the system of equations of this 
model predicts directly the dominating contribution to 
the propeller pressure field, i.e. the second time deriva- 
tive of the cavity volume. 
- Numerical results for the propeller of a container 
vessel show qualitatively realistic values. Further 
parametric investigations are required to establish the 
method. In case the elliptic cavity shape is found to be 
insufficient realistic, other analytical shapes could be 
used but along the same method. 
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APPENDIX defined as: 

Distance Related Quantities 

In this Appendix the distance between points 
on the propeller and in the free field and the relevant 
spatial derivatives are worked out analytically. A 
Cartesian coordinate system is used with: 
* x-axis in forward, propeller translation, direction; 
* y-axis from starboard to port side of the ship hull; 
* z-axis vertically upward. 

Also a cylindrical system is used of which the 
x-axis is along the center of the propeller shaft forward 
and the angular position is measured from the z-axis in 
the direction of, right-handed, propeller rotation. In the 
Cartesian respectively the cylindrical system the follow- 
ing notations are used: 

Cartesian I cylindrical 

*o' y» *b»   I  *v °' °' 

for the reference point on the shaft, 

x ,y , z ,   |   x, r, y, 

for a point on the propeller blade and 

V W   I   XP'R' € 

for a point in the field or on the hull. 

The relations between blade point and refer- 
ence point are: 

em 
x = jc„-rsinK-P—- - s sin ß 

Y = Yo 

Yo 

2TT 

8    - - cos P 
m r 

= 2 7t N t 

where 
Yo = the angular blade position of the blade refer- 

ence fine, dependent of 
t =        time and 
N =       propeller rotation rate, while 
Gm = midchord skew angle re blade reference line 

(positive back) 
K =       rake angle (positive back) 
P =      local blade pitch 
ß =      local pitch angle 
s = chordwise distance re midchord (leading edge 

negative). 

It is noted that the angular position of the field point is 

e = arctan(—-) 
ZP 

Unit vectors in chordwise direction and normal direc- 
tion are defined as: 

s - (-sin P, -cos p) 
n - (+cos ß, -sin p) 

The distance between a blade point and a point in free 
space is: 

D, = ^/Ct-Xp)2 + Rz + r2 - 2Rr cos(v-e) 

and its spatial derivatives are: 
dDi      -   ™          • n aDi      cosP 3£,i —i = s • VD, = -suiß— ~^— 
ds 1 dx r    dy 

Ei 
D, 

3D.      _   ^n             „3D,      sinpSD,          D3 1 = n ■ VD, = +cosP—-i - —-  =  
dn 

where 

dx 8y D, 

D2 = +(x-;cp)sinP + R cosP sin(y -e) 

D3 = -(x-Xp)cosß + R sinP sin(Y -e) 

The spatial first derivatives of the inverse distance then 
follow: 

s ■ VD,      D2 

^ = D7 * ■ H> 
'I* 

J.(±) 
dn D{ 

n • VD, 

D 

Finally the spatial second derivative of the inverse dis- 
tance is considered: 

d 
'!,» 44> = f (D'"> ay2 D,        ds 

D 
oi '

d-Ei 
ds 

3D,D2 

3D, 

which can be worked out with: 

3D,      _ .     3D2 
—2  = s ■ VD, = -sinp —- 
3s dx 

cosß 6D, 

aY 
D, 

DA 
R. 

into: 

-(sinß)2 - -(cosß)2cos(Y-e) 
r 

Dll = DJD\ + 3D2 / D\ 

All these distance related quantities can be computed 
numerically for a given propeller blade geometry. 

367 



Hydrodynamics of a Body Moving 
over a Mud Layer 
G. Zilman, T. Miloh 

(Tel-Aviv University, Israel) 

ABSTRACT 

A ship is immersed in a layer of clean frictionless 
water overlaying a layer of fluid mud. The paper 
is centered on the following subjects: 

• wave resistance of a ship moving with con- 
stant velocity; 

• added masses and damping coefficients of a 
ship cross-section undergoing periodic oscil- 
lations with a prescribed frequency. 

The Navier-Stokes equations, modeling the fluid 
mud, and the boundary conditions are linearized. 
The ship surface is replaced by wave sources, and 
the corresponding Green functions are derived. 
For evaluating the wave resistance (3-D problem) 
the mud layer is assumed to be shallow. In com- 
puting the added masses and damping coefficients 
(2-D problem) a mud layer of finite depth is con- 
sidered. 

Numerical results are presented for a parabolic 
strut, a body of revolution and a circular cylin- 
der. It is demonstrated that the presence of a 
mud layer has a pronounced effect on the wave 
resistance, as well as on added masses and damp- 
ing coefficient in a certain range of densimetric 
Froude numbers and frequencies of oscillation. 

NOMENCLATURE 
a^-added mass 
&,tjfc-damping coefficient 
5-beam of the ship 
2?i2-fluid domain of the upper and lower layers 

/e^ft-densimetric Fnh2 = U/-Jegh2, FRlt 

Froude numbers 
^-acceleration of gravity 
/ii?2~depth of the upper and lower layers respec- 
tively 
h = l/(y/h1 + l/h2) 

T, &y)-wave number vector 

= Uh 

L-length of the ship 
n-outward normal of the body surface into the 
fluid 
Pi,2_dynamic pressure in the upper and lower lay- 
ers 
r(x,t/)-neld point 
r/, = /i2//ii-depth ratio 
.R^-wave resistance 
S-body surface 
T-draft of the ship 
U(£/x, Uy, ÜTj)-vector of ship linear velocity 
V2(«2i V2, «^-vector of fluid velocity in the low- 
er layer 
7 = pi//?2-density ratio 
C-interfacial wave elevation 
e = 1 —7 
j/-kinematic viscosity of fluid mud 
pi-density of water 
P2_density of fluid mud 
cr(x, z)-equation of ship surface 
r = io2/g 
^2-velocity potential in the upper and lower lay- 
ers 
Q-angular velocity of ship's cross-section in roll 
motion 
w-frequency of oscillation 

INTRODUCTION 

In many applications of marine hydrodynamic- 
s and for practical purposes it is convenient and 
customary to define water of finite-depth as a 
water layer bounded by a free surface and a rigid 
bottom. It is well known that the presence of 
a rigid sea or river bottom may drastically affect 
the wave resistance, motion, maneuverability and 
squat of a ship.   It can be said that the general 
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theoretical approach for evaluating the wave re- 
sistance of a ship navigating in finite-depth wa- 
ter has been outlined and summarized in several 
monographs such as Havelock [1], Kostyukov [2], 
Newman [3], Sretenskii [4], Wehausen [5], and in 
numerous papers, including, for instance Kirsh[6], 
Tuck [8], Lea and Feldman [9], and Mei [10]. 

We do not intend to discuss here the various 
theoretical methods for calculating the wave re- 
sistance in finite-depth water, as well as the agree- 
ment between the theoretical and experimental 
results. Neither we wish to enter into a lengthy 
discussion regarding fundamental questions such 
as the nonlinear phenomena of wave formation, 
the role of the viscous wake and even the precise 
definition of the wave resistance in a real fluid. 
The main goal of the present paper is to examine 
the effect of a non-rigid bed, since the rigidity of 
the sea bottom can not always be taken for grant- 
ed. Very often the bottom of a harbor or the bed 
of a navigation channel are covered by mud or, in 
other words, by a thin layer of a dense mixture 
of water and particles of sand, clay, kaolinite, be- 
tonit, etc. 

The effects of a silt-covered sea bed on the 
damping of sea waves are documented in a 
large body of theoretical and experimental works 
which, as a matter of fact, are related to certain 
coastal engineering problems, e.g., Dalrymple and 
Liu [11], Gade [12], Foda, Hunt and Chou [16], 
Hsiao and Shemdin [13], MacPherson [14] and 
Mei [15]. However, it is rather remarkable that 
the hydrodynamic forces acting on a body moving 
above a silt-covered bottom, to our best knowl- 
edge, have been considered only in the pioneering 
experimental work of Sellmeijer and Oortmerssen 
[17]. They gave a strong experimental evidence 
that the proximity of the ship bottom to the mud 
layer causes a pronounced effect on ship resis- 
tance and maneuvering characteristics. Such an 
effect is related to the dead-water phenomenon, 
which was investigated for a deep inviscid low- 
er layer by Sretenskii [4], Miloh and Tulin [18], 
Sabuncu [19], Tulin and Miloh [20], and for invis- 
cid lower layer of constant depth by Miloh, Tulin 
and Zilman [21], and Uspenskii [22]. 

The induced flow in the upper and lower lay- 
ers involves a rich variety of physical phenomena 
of both viscous and inviscid nature. However, 
the influence of the rheological properties of the 
bottom material on the wave resistance have not 
been considered to date neither theoretically nor 
experimentally. We note that for a Newtonian 
mud flow the kinematic viscosity can be as large 

as 104 times that of pure water. For example, 
typical values of mud viscosity for the Rotterdam 
port range from 10~3 rn2/s to 10~2 m2/s [17], 
while for the Mississippi River, [12] and [13] re- 
ported values as high as i/=(0.6-0.9) m2/s. Thus, 
it can be expected, that the wave resistance at- 
tenuation due to the relatively large viscosity of 
the mud layer can be rather significant. 

The maximum draught of large ships has been 
always limited by the bottom depth of a harbor 
or a dredged navigation channel [23]. In nautical 
practice, the requirements placed on the under- 
keel clearance are usually chosen with the view 
to prevent actual ship grounding. Thus, the re- 
sulting amplitudes of heave and pitch ship motion 
in shallow entrance channels are crucial parame- 
ters, frequently defining the minimal permissible 
clearance between the ship keel and the channel 
bottom. 

The governing differential equations of ship mo- 
tion incorporate added masses and damping coef- 
ficients which strongly depend on the water depth 
and the frequency of the body oscillations, as 
noted, for example, by Newman [3], Ursell [24], 
Haskind [26], Yu and Ursell [27], Kim [28], Say- 
er [29], Lewandowski [30], and Yeung and Vaid- 
hyanathan [31]. In this context, the influence of 
the water viscosity on the inertial coefficients can 
be also essential, but only in the low-frequency 
range ( Yeung and Ananthakrishnan [32], Yeung 
and Wu [33]). That is the reason why in the 
present investigation we consider the upper wa- 
ter layer as an inviscid fluid. 

As already noted, except for [17], there are no 
theoretical and experimental works which consid- 
er the influence of the nonrigid bottom on ship 
hydrodynamic characteristics. According to [17], 
the added mass of a ship in sway motion depends 
mainly on the clearance between the ship bot- 
tom and the rigid bed, but not on the underlying 
mud depth and its features. It should be not- 
ed that this result relates to the horizontal os- 
cillations of a body with a comparatively smal- 
1 frequency, which is typical for planar-motion 
mechanisms (PMM). Usually the frequencies in 
heave and pitch ship motion are considerable larg- 
er than the frequencies of sway and yaw provided 
by PMM. Thus, it is not clear whether the exper- 
imental conditions of [17] are actually relevant to 
the problem of ship motion in sway and heave 
with relatively high frequencies. 

In the sequel we present: 

• a theory of wave resistance for a ship moving 
over a mud covered bottom; 
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• a method for evaluating added masses and 
damping coefficients of a ship section oscil- 
lating over a movable bottom; 

• numerical results displaying the influence of 
a mud covered bottom on the hydrodynami- 
cal forces acting on a ship. 

1    WAVE RESISTANCE 

1.1     General Assumptions 

Herein two superposed fluid layers are defined by 
their corresponding depth, density and kinematic 
viscosity. Strictly speaking, one should note, that 
the mixing of such layers is inevitable, especially 
after disturbing the "mud-water" interface by a 
moving ship. However, in practical terms, the as- 
sumption of immiscibility of the layers is strongly 
supported by the results of field tests, conducted 
by Sellmeijer and Oortmerssen [17], who found 
that: 

"The density measurements showed 
that neither the density of the mud layer 
nor the density of the water on the top of 
the layer changed during the passage of 
the VLCC. After passage, the interface 
between mud and water was still intac- 
t; despite the small keel clearance, the 
mud was not disturbed." 

To render the problem more tractable we also 
assume that the influence of viscosity of the up- 
per layer on the wave formation is negligible. In 
the absence of viscous stresses, the fluid motion is 
irrotational and the velocity potential <f>i(x,y, z) 
is a harmonic function.    Concerning the lower 
layer, it should be stressed that the rheological 
properties of a mud layer are still far from be- 
ing understood [16] and, for instance, a variety 
of mud mathematical models, such as Newtonian 
fluid [11], [12], Bingham-plastic continuum [15], 
viscoelastic fluid [13], [14] have been suggested in 
the past. 

Following [11], [12] we envisage the Newtoni- 
an viscous fluid as a sufficiently proper model for 
the intended purposes. Later in this paper we 
assume that the boundary layer on the ship bot- 
tom does not plough the interface, which allows 
us to consider the mud flow as laminar. Actual- 
ly, under such circumstances the Reynolds num- 
ber for the lower layer can be defined as follows: 
Rem = umhilv, where um is the typical mud 
velocity, induced by ship motion. The criterion 
for transition from laminar to turbulent flow is 
Rem > 2000 — 3000. The maximum characteristic 

speed U of a ship navigating in confined shallow 
water is usually less than 10 knots. In practice 
the depth of the mud layer does not exceed 2.0 to 
4.0 m. Outside the ship boundary layer um <C U, 
and so, due to the large mud viscosity one can 
presume that the mud motion remains laminar 
since the transition criteria is satisfied. 

According to the experimental [17] and theo- 
retical [21] data, the most pronounced effect of 
the mud layer on the wave drag, occurs at ship's 
speeds close to the critical velocity 

Obviously, for such comparatively low speeds (of 
the order of few knots), the conventional wave re- 
sistance induced by the free surface of the upper 
layer, is negligibly small. It allows us to consider 
the free surface as a horizontal rigid plate (the so- 
called rigid-lid approximation) which yields the 
sufficient for the intended purposes accuracy. An- 
other important assumption, made in order to 
simplify the consequent analysis, is based on the 
fact that generally /i2 << L, which enables us 
to introduce the small parameter 6 = (hz/L)2. 
In turn, it allows us to employ a rational shallow- 
water approach by expanding the unknown values 
in asymptotic series in terms of 8. 

Finally, it should be mentioned that the inves- 
tigation, described below, is implemented within 
the realm of linear water-wave theory. 

1.2    Mathematical Formulation 

We select a Cartesian coordinate system attached 
to the moving body in such a manner that the x 
and y-axis are situated on the undisturbed inter- 
face and the z-axis is directed upward. 

>z 

____ifm_ —=Z^^_    u 
_-.—""                     * 

1^ 
O                                                 X 

llllllllliiiiiiiiiiiii lilllllll 
Fig. 1 Coordinate system 

The ship moves with a constant velocity U in the 
direction of the positive z-axis so that its sur- 
face y — ±a(x,z) does not intersect the inter- 
face "water-mud".   For the sake of convenience, 
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we consider a correspondent unsteady problem in 
some inertial coordinate system which coincides 
with the moving system at some initial time, say 
at t = 0, and use the notation: 

dt dx 

The upper layer is considered to be in viscid, in- 
compressible, homogeneous and irrotational, and, 
thus, the potential cf>i(x,y,z) is governed by the 
Laplace equation: 

A^1(ar,y)z) = 0 (in   V,). (1) 

The flow in the lower layer is governed by the 
linearized Navier-Stokes equations: 

V2t = Vp2-g + z/AV2, 
Pi 

V • V2 = 0. 

(2) 

(3) 

1.2.1      Boundary Conditions 

The boundary condition on the free surface (the 
rigid-lid approximation) can be expressed as: 

>u = 0 (on   z - hi). (4) 

The boundary condition of impermeability on the 
body surface is: 

dn 
Un (on S) 

Strictly speaking, for two inviscid layers the 
boundary conditions in V\ are not completed 
without additional requirements providing the u- 
niqueness of the solution (1). The imposed con- 
ditions can be expressed in different mathemati- 
cal forms. One of them is based on introducing 
artificial dissipative forces with an infinitesimal 
dissipative-coefficient /z0 = +0, which in some re- 
spect, relates to the actual infinitesimal fluid vis- 
cosity as [la ~ T/I>. That is why we do not impose 
additional restriction on the potential at infinity, 
since the fluid mud viscosity provides the dissi- 
pation of wave energy in the upper layer and the 
elimination of the so-called free waves. 

Due to the assumed linearity of the problem, 
the following kinematic and dynamic boundary 
conditions can be applied on the undisturbed in- 
terface, at z = 0. The kinematic condition implies 
that a fluid particle initially on the interface will 
always remain there: 

The vertical and horizontal velocities at the inter- 
face must also be continuous, but a discontinuity 
in the horizontal velocities is also acceptable be- 
cause we have assumed the water to be a perfect 
fluid. Thus, only the continuity of the vertical 
velocities have to be enforced here: 

w>2 = <t>\z     ( on z = 0). (6) 

At the interface between the water and the com- 
pliant bed the normal and tangential stress com- 
ponents must be also continuous. Since the upper 
layer is assumed to be inviscid, the shear stress in 
the lower layer just at the interface must be zero. 
This can be written as: 

Piv{u2z + w2x) = 0      ( on z = 0),        (7) 

P2v{v2z + w2y) = 0    ( on z = 0).        (8) 

The normal stress is here expressed as 

- Pi = -P2 + Ipivwiz     (on    z-C),     (9) 

where the pressure p\ is determined by Bernoulli's 
relationship as: 

Pi = -Piht + 9Pi(hi - z) (10) 

On the rigid bed at z = — h2 the horizontal and 
vertical velocities must be zero: 

V2 = 0     (onr= -h2). ;n) 

1.2.2      Shallow Water Approximation For 
the Lower Layer 

Let us next invoke the assumptions of the 
shallow-water theory with respect to the lower 
layer. It is equivalent to hypothesizing that the 
pressure p2 is hydrostatic, the vertical componen- 
t w and its derivatives with respect to (x,y) are 
small in comparison with the horizontal velocity 
components u,v and that 

«222 >■ U2xx',     «2zz > ^2yy;      V2zz >■ V2xx- 

Within the context of perturbation theory with 
respect to the small parameter 6 = (/i2/I/)

2, the 
Navier-Stokes equations and the boundary condi- 
tions (7) and (8) can be reduced to: 

w2t = 
Pi' 

-p2x + vu2zz, 

= Ct on  z 0). (5) 
V2t = P2y +M2zz, 

92 
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P2z -P29, 

u2z = v2z=Q     ( on z = 0), (12) 

u2 = v2 = 0     (on- z = -h2). (13) 

The above system of PDE's is not sufficient to 
render a unique solution, since we have only two 
equations for the three unknown functions u2, v2 

and C Accounting in the perturbation procedure 
terms for the first degree in 6, from (3) and (6) we 
can obtain the required additional relationship. 
Thus, by taking into account (9) and (10), we 
finally have: 

v-2t - -egCx + 7<f>ux + vu^z, (14) 

V2t - -egCy + 7<}>Uy + W2zz, (15) 

,0 

<t = <f>°u=-        (u2x + v2y)dz,       (16) 
J-h2 

where <f>1 = (f>i(x,y,0) and <f>°u = <f>lz(x,y,0). 

1.3    The Green Function For the 
Upper Layer 

Applying the Fourier transform 

FT\f(x,y)] = f(kx,ky) = j" f(x,y)e-ikTdxdy, 
J — CO 

to (14)—(16) and (5), we obtain a second-order or- 
dinary differential equation for the unknown vec- 
tor s(z) = [v,2(z),v2(z)\. 

■ W U _. 
szz + i s = Lk, 

s{-h2) = 0;   s,(0) = 0, 

where 
E: 

e9   io 
kxU2 1,+ykJl 

The solution of this equation expresses the un- 
known functions ü, v in terms of the boundary 
values <j>° and <j>\z as follows: 

i ,        coshaz . _, .,_. 
s = — (1 r-r- £k, (17) 

kx cosh an2 

where 

a = [1 -  sgn(fcr)] 
\kx\U 

2v   ' 

To formulate the boundary-value problem for the 
potential <j>i we use the Fourier transform of (16) 

which together with (17) yields the following re- 
lationship: 

A$u - B<£i = 0     ( on z = 0),        (18) 

where 

A=l-W~-TJ->     B = 7k*h2ß, 

and 

ß = l 
tanh ah2 

ah2 

Equation (18) together with the Fourier transfor- 
m of (1) 

4>u-k24>! = 0     (in Vx), (19) 

and the free-surface condition 

<j>iz = 0     ( on z = hx) (20) 

completely define the boundary-value problem for 
the Fourier transform of the corresponding Green 
function. 

Consider next the fundamental solution of (1) 
in the following form: 

111 
Ez{x-x0,y-yo,z,z0)= - — [- + — + G], (21) 

47T    r      7*1 

where 

r = y/p2 + {z - z0)
2;   r1 = ^/p2 + (z + z0-2hl)

2, 

p2 = (x - x0f + (y- y0)
2 

and G is a harmonic function satisfying the 
boundary condition on the interface and on the 
free surface. According to (20) we have, 

G = M cosh k(z — hi). 

Recalling that 

FT[ 
^/x2 + y2 + z2 

2T 

= Te -k\z\ 

and substituting the Fourier transform of (21) 
into (18), we obtain the formula for the Green 
function which, after invoking the inverse Fourier 
transform in polar coordinates, finally yields: 

£3 = - — (Gs+Gr 4x 
(22) 

/here, for z  = h — z and z0 — h — z0, we define: 

GS = G+ + G- (23) 
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ot= E 

cr= E 

^pi + (z' + zQ-2nhl)
2' 

x/p
2 + (z' -^0-2n/ll)

2' 

Gr = - 
7*7 - rcos^ede r^-e^dk. 

7 J-* Jo  D{k,e) 
(24) 

For the functions appearing in (24) the following 
notations are used: 

A(k) = ka (k) —y— , 
smn kh\ 

X=(x- x0) cos 6 + (y - yQ) sin 9, 

where 

D = cos26-Ci2(k){l-n), 

1 tanhi/ii 

*•  ' _ Fjf^T ' ta,nhkh1 + ykh2' 
(25) 

For the particular cases (y —► oo and /12 -* 0) the 
interface also turns into a rigid plate. Therefore, 
Gr —»• 0 and, obviously, the potential is repre- 
sented by the infinite sum (23). It is also worth 
mentioning that as v —► +0, formula (22) reduces 
to the limiting case of two inviscid layers [21]. 

1.4    Evaluation of Wave Resistance 

The general formula for the velocity potential 
generated by the moving body is given by 

<j>i -    q(x0,yo,zo)S3(x- x0,y -yo,z,z0)dS , 

(26) 
where q(xo,yo, zo) denotes the source distribution 
on 5. We express the wave resistance of a body 
moving in the upper layer in terms of the Krein- 
Kostyukov formula [2], i.e.: 

Rw = ~Pi  / q(x,y,z) 
dK(x,y,z) 

dx 
dS,      (27) 

where 

K = -— / q(x0,y0,z0)GrdS.        (28) 
4?r JS 

It should be noted that the term Gs does not 
contribute to (27) since 

-Q-GS(X, x0;y, y0;z, z0) = - — Gs(x0, x; y0,y; z0, z) 

and, consequently, the corresponding integration 
in (27) reduces to zero. The substitution of (24) 
into (27) yields the following formula for the wave 
resistance: 

2     fT/2 

n2e9  Jo Jo 

r°° k2c2\H{k,9)\2hdkd6 

(^e-ci+^y+zr 
(29) 

where £i = Re(/xc2), £2 = Irrige2) and H(k, 6) 
denotes the Köchin function: 

H(k,e)= I q
coshk^-hlKik^cose+ysineUs. 

Js       smakhi 
(30) 

1.4.1      Inviscid Lower Layer 

For zero viscosity \fi\ ~ y/v —► +0 formula (29) 
can be transformed by employing the following 
formal relationship: 

lim 
6 _8(k-k0) 

Kx.rP+o (cos2 9 - c? + £02 + e2 |c,-*2(*o)l' 

where 6(x) denotes the delta-function, 

da2 

Cik (ko) 
dk K—fCo 

and k0(9) is the root of the equation: 

cos2 6 -c2(k0)- 0. 

Thus, the inner integration of (29) is essential on- 
ly for k = k0. By changing the integration vari- 
able from 6 to A = k0(9), we have: 

Rw — 
JPiU2   r°° 
2ireg 

/•OO 

/   4(\)\H(\)f 
\2dX 

V7! - Ci2(X) 
(31) 

Here the Köchin function is the same as in (30), 
but with the following new notations: 

cos# = Ci\      sin# = v 1 — C{2. 

The lower limit of the integral (31) is defined as 
follows: 

0 if    ^>1 
A° _ ^    root of Ci

2(A) -1 = 0    if   FRI < 1 
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It should be noted that formula (31) is valid for 
both shallow and finite-depth lower layers . The 
only difference is that for a lower layer of finite 
depth the corresponding formula (25) should be 
written in the following form [21]: 

Ci\k) = 
1 

F2 rRh2 

tanh khi tanh kh2 

(tanh khi + 7tann kh2)kh2 

(32) 

1.4.2      Unbounded Upper Layer 

Within the context of the present investigation it 
is instructive to verify the validity of the shallow- 
water approximation by using (31). The shallow- 
water assumption relates only to the lower layer, 
thus, it is expedient to neglect the influence of the 
free surface and to consider the limit h\ —* 00. 
Under such circumstances the wave resistance is 
a result of wave-making phenomena only on the 
interface. It should be noted in addition, that 
the hydrodynamics of a submersible moving near 
a silt-covered bottom, has an independent theo- 
retical and practical interest. For an unbounded 
upper layer, the Köchin function is given by, 

H{\,6) j q{x,y,z} — \z+i\(x cos 8+y sin 0) JC 

In order to demonstrate the procedure for evalu- 
ating the wave resistance, let us consider a triaxial 
ellipsoid with semi-axes ae > be > ce moving in 
such a manner that the distance between its lon- 
gitudinal axis and the plane of the undisturbed 
interface is z/, ■ Following Köchin [34], we express 
the function H as: 

Ti     <">^3/2„ «, „ 2iUcose J3/2(\g)  _Az 

where Jz/2{x) is the Bessel function, 
(33) 

Q = yae
2 cos92 + b2 cos#2 — ce

2, 

A0 = aebec, 
f°°        du 

JO      Uay/UaUbUc 

and ua — a2 + u, Ub = be + u, uc = c2 + u. 
This yields the following expression for the wave 
resistance: 

p     r\ 6m
ji/2(*g) d\_ 

J\o Q V1 ~ °i   (A) 
(34) 

Here g = g/at and 

_ 16x2pi£/26e%
2fe2 

aw~{2-A0)
2      ae      • 

In addition, for a lower layer of finite depth 

d2(k) 
1       ta.nh.(kh2)/kh2 

Ffth      1+7 tanh kh2 ' 

whereas for a shallow lower layer 

1 1 
d2(k) - _2 

(35) 

(36) 
F2

Rh2    l + jkh2 

1.4.3      Shallow Upper Layer 

It can be rigorously shown that formulas (31) and 
(34) always yield bounded positive values for the 
wave resistance. As already mentioned, the shal- 
low water approach is equivalent to approximat- 
ing the integrand (31) in terms of an asymptotic 
series with respect to kh2. The series is truncated 
after the first term of the expansion of ta.nhkh2- 
However, if we assume that the upper layer is also 
shallow and accordingly replace tanh kh\ by khi, 
then the formula for the wave resistance will be 
incorrect. Indeed, for this case (32) yields that 

lim 
tanh khi — khi 

cKk) = 4 = -=5- 
F2 

Rh 

and 

Rw — 
IPiU7 

2if€ghl y| 

c»0 / 

1 - c?0 Jo 
\H(X)\2dX. 

Thus, at the critical densimetric Froude num- 
ber FRT = 1, the wave-drag formula contains a 
square-root singularity. Certainly, it can be said, 
that the practical use of this result is very restrict- 
ed. However, it clearly shows that at the vicinity 
of the critical Froude number the variation of the 
wave drag curve exhibits a very sharp peak and 
a fast decay for FR^ > 1. The other importan- 
t result is that the ultimate influence of the free 
surface on the wave resistance strongly depends 
not only on the ratio h2/L but also on the ratio 

hr/L. 

1.5    Numerical Results 
Herein we present some typical results of calcu- 
lations for two particular bodies. The first is a 
triaxial ellipsoid, 

y = cr(x, z) = ±be^/l-x
2/a2-z2/c2

e, 

374 



and the other is a parabolic strut: 

*(x,z) = ±^(l-4x2/L2)    (for   -T<z<0). 

The dimensions of both forms are presented in 
Table 1. 

Table 1. Particulars of ships 

Viscous lower layer: hj —► oo 

Body of revolution 
ae 

50 m 
be            ce            zh 

5m        5m         7m 
Parabolic strut 

L 
220 m 

B           T           Ai 
33.8m    13.5m    16.8m 

Fig.2 shows the variation of the wave resistance 
coefficient 

Cx = 2Rw/(p1U
2S) 

versus the densimeter Froude number for a body 
of revolution moving above an inviscid lower lay- 
er. The computation were done by employing 
formulas (35) (finite-depth) and (36) (shallow- 
water). 

Nonviscous lower layer: hj —► oo 

FRh, = U/Vegh2 

Fig. 2 Wave resistance coefficient of a body 
of revolution: 7=0.833 

0.8 0.9 1 1.1 
FRH2 = U/s/egh2 

1.2 

Fig. 3 Wave resistance coefficient of a body 
of revolution: 1*2=3 m, 7=0.833 

xlO3 

Cx 

Viscous lower layer: hj —<■ oo 

1 1 1  

viscosity v (m2/s) 
+0-10-6 

10" 
io-3 

lO"2 

10-1 

^^^••••••••••—•••—————— 

0.9 1 1.1 1.2 
FRK3 = U/^egh2 

Fig. 4 Wave resistance coefficient of a body 
of revolution: Ii2=2m, 7=0.833 

It can be seen that the corresponding agree- 
ment between these two approaches, is quite well 
at least as far as the wave resistance is concerned. 
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It is a clear indication that the shallow-water ap- 
proach can also serve as a quite accurate approx- 
imation for analyzing the case, of a viscous low- 
er layer. Fig.3 and Fig.4 depict the wave resis- 
tance coefficient for the same body of revolution 
computed by using formula (29) and the Köchin 
function (33). They display a drastic influence of 
the mud viscosity on the wave resistance which 
results in a considerable reduction of the typical 
sharp peak at the vicinity of the critical Froude 
number FR-^ « FRH2 « 1. 

The wave resistance of a parabolic ship was 
computed by invoking the MichelPs thin-ship for- 
mula. Thus, the integration in the Köchin func- 
tion was performed over the wetted area of the 
ship centerplane whereas the source distribution 
was determined by the formula q = —2Uax(x, z). 
Fig. 5 illustrates the influence of the viscosity of 
the mud layer on the wave resistance coefficien- 

t for a parabolic strut. It can be seen, that the 
presence of the viscous lower layer significantly 
affects the wave resistance. These results are in 
full qualitative agreement with the experimental 
data reported in [17]. Thus, the influence of the 
mud viscosity on the wave resistance may be quite 
considerable. 

Viscous lower layer: hj=16.8m 

"i r 
.2, 

2    THE ADDED MASSES 
AND DAMPING 
COEFFICIENTS 

2.1    Mathematical Formulation 

In present work we employ the geometric slender- 
ness of a ship, which enables to invoke the strip 
theory and to consider the flow in each transverse 
ship section only in two dimensions and indepen- 
dently of the forward speed. 

Thus, we study the problem of a ship cross- 
section which is partially immersed in a layer of 
water overlaying a viscous fluid of greater density 
and bounded below by a horizontal rigid plane. 
The body undergoes a forced periodic motion 
with a prescribed frequency u. 

1.2 

Fig. 6. Coordinate system. 

The velocity potentials, velocities and all time- 
depending functions can be expressed as: 

f(y,z,t) = Re[f(y,z)e-iut]. 

For an inviscid upper layer the velocity field can 
be expressed as a gradient of a potential function 
^i(j/izi*) satisfying the two-dimensional Laplace 
equation: 

4>\yy + <t>lzz — 0. 

For the lower layer we propose to model the mud 
as an incompressible viscous medium governed 
by the linearized Navier-Stokes equations and the 
continuity equation [35]: 

02yy + <§>2zz = 0, 

ip2t = Hfoyy + fazz), 

Fig. 5 Wave resistance coefficient of a 
parabolic strut: h2=2.5m, 7=0.7 "2y + w2z = 0, 
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where the components of field velocities v2, w2 

are splited into a potential and rotational part as 
follows: 

V2 = fay + faz]     W2 = faz - i>2y ■ 

The pressure in both layers can be determined 
solely from the potential parts by using the rela- 
tionships 

Pj = -Pj<t>jt ~ Pj9z    0' = 1» 2). 

The potential fa is subject to the linearized 
boundary condition on the free-surface according 

to: 

fatt+9faz =0    (on z = hx). 

On the interface the shear-stress condition (8) be- 

comes 

Ifayz + fazz ~ 1p2yy =0      (on   Z = 0).        (37) 

In terms of the velocity potential and the stream 
function the kinematic and dynamic boundary 
conditions on the interface (6) and (9) can be 

rewritten as: 

Ct = faz - i>2y = faz     (on z - 0),        (38) 

Thus, the problem is reduced to three similar 
boundary-value problems for the Kirchhoff poten- 
tials, 

« = *, ,43, 

If both layers are inviscid, in order to make the so- 
lution determinate the partial potentials have to 
satisfy an appropriate radiation condition. How- 
ever, even an infinitesimal viscosity of the fluid 
mud v = +0 also provides the unique solution 
of the present boundary-value problem. Finally, 
the added masses and damping coefficients are 
defined by the well known formula [3], [26]: 

akk -—bkk = -pi        4>\kkds{y,z)   k = 2,3,4, 
*W JdD 

(44) 

where ds(y, z) is the line element of dD which 
denotes the boundary of the submerged portion 
of the ship cross-section. 

2.2    Boundary Integral Equation 

Recalling that the considered method is applica- 
ble to all types of motion, it is convenient to drop 
tacitly the corresponding subscripts. 

The body surface is represented by a layer of 
wave-sources distributed over dD 

p2(fat+gC)+2p2VW2z = Pi{fat+g()   (on z = 0) 
(39) 

On the rigid bed of finite depth z = —hi, the 
no-slip boundary conditions (11) are: 

V2 - fay + 4>2z = 0    (on z = -h2),       (40) 

U>2 foz -ip2y=0    (on z = -h2).       (41) 

The final condition to be applied on the contour 
of the body is: 

dfa(y^z,t) = (y2A2 + y3A3 + y4A4)e-^i (42) 

where U2 = Uy,U3 = UZ,U± = ft, A2 = cos(n,y), 
A3 = cos(n,z) and A4 = ycos(n,z) — zcos(n,y). 
The assumption of linearity allows us to represent 
the potential as a sum of three modes correspond- 
ing to ship motion in sway (k = 2), heave (k = 3) 
and roll (k = 4) respectively: 

4 

fa(y,z,t) = e-^J2u^i(y^)- 
k = 2 

fa(y,z,t)= / q(yo,z0)£2(y,yo;z,zo;t)ds(y0,z0), 
JdD 

(45) 

where 

£2 = 

- — icot 

2?r 
1, (y - yo)2 + (z - *Q)

2
 , r ■ 

2    (y-yo)2 + (z + z0y       ' 
(46) 

This representation together with the boundary 
condition (43), yield the following well known 
Fredholm integral equation of the second kind for 
the source density distribution; 

<i{y,z) + /   ?(2/o, 
JdD 

,d£2(y,y0,z1z0) 
zo) 5 ds 

on 
(47) 

Discretization techniques of various degrees of so- 
phistication may be used to solve this equation. 
Here we choose to approximate the section con- 
tour by a number of N straight segments, and 
to replace the contour integral by an appropriate 
quadrature. The integral equation then reduces 
to a complex system of linear algebraic equations 
in the form of 

{^}{^} = {A;}   i,i = 1,2, ,N, 
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where i,j denote the specific segment. The corre- 
sponding elements of the complex N x N matrix 
{A} are: 

on        2 

where V denotes the length of the jth linear seg- 
ment and 8li is a Kronecker delta. It should be 
noted that for such a discretization the function 
£■2 and its derivatives have to be evaluated at 
the center of the jth segment. This requirement 
is imposed by the singular behavior of the kernel 
of the integral equation (47) and provides the cor- 
rect limit of the quadrature to the principal-value 
integral as TV —> oo. Once the numerical solution 
of this equation is found, the added masses and 
damping coefficients can be directly computed by 
employing the corresponding quadratures in the 
right-hand side of (44) and (45). 

2.3    The Green Function For a 
Pulsating Source 

Let us next invoke the Fourier transform 

/oo 

f(y)e-^dy (48) 
-oo 

and look for a solution of the problem in terms 
of the potential <fo(2/, z) and the stream function 
ip2(y, z) in the following form: 

<j>2 — A cosh kz + B sinh kz, 

ip2 = C cosh Iz + D sinh Iz, 

where / = y/W—iu/ü. The boundary condi- 
tions (40) and (41) on the rigid bed, the shear- 
stress condition (37) and the kinematic condition- 
s on the interface (38) allow to express the un- 
known constants A, B, C, D and, consequently, 

- o 
the functions <f>2, i>2 and £ in terms of <f>i    — 
<fi(y,0). By substituting them into (39) we ob- 
tain the following interfacial boundary condition: 

afaz + bfa = 0     (on  z = 0), (49) 

where b = iuif, 

eg      iv 
a = — + 

7 , , c(2)c(2) 1    mi + m2 + m3Sl 'b. 
^(2)C(2) u*   Lük   kc^'sY1 - icy>s\ -(2)c(2)   ' 

= {2k2 J/I/);    mi = 4k2lm; 

and 

S(
k
j) = sinhkhj-  C{

k
j) = coshkhj,   (j = l,2) 

5;
(2) = sinh lh2;    C,(2) = cosh lh2. 

The above interfacial condition, the boundary 
condition on the free surface 

4u -T$X = 0    (on z = hi), (50) 

and the governing equation 

Kz-k24>i = 0, (51) 

enable us to define the corresponding Green func- 
tion. Applying the Fourier transform (48) to the 
fundamental solution (46) we have: 

Mk, z) = iJile-W*-*051 - e-l*<*+*')l] + G(k, z). 
1*1 

The substitution of this representation into (49) 
and (50) renders the following boundary condi- 
tions: 

Gz -rG = 27r/i     (on z = hx) 

aGz + bG=2wf2    (on z = 0), 

where 

and 

/1=e-lfclfc'(l + jIj)smh(|*|*o) 

-z0\k\ 

m2 - -l(4k2 + m2);    m3 = k{Akzll + 

h = ~ae 

We seek a solution of (51) in the form: 

G(k, z) = Mi cosh kz + M2 sinh kz, 

where the unknowns Mi and M2 can be deter- 
mined from the boundary conditions on the free- 
surface and the interface. Thus, the expression 
for the Green function can be written as: 

_   [°°ai cosh kz + a2 sinh kz ik(v-Vo)dk 

(52) 
where 

a^akfi-ikC^-TSi1^, 

a2 = -bfi + [kS^ - rC^/2, 

D(k, V) = ak[kSi1} - rC^] - b[kC^ - rSi^l 
(53) 
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An alternative form of the potential <f>i(y,z) can 
be obtained by including the logarithmic term of 
(46) in the integral representation (52) for 
(z - z0) >0, yielding: 

<f>i{y,z) 

where 

J—t 

N(k, z, z0)exp[ik(y - y0)] 

D(k,u) k 
dk, 

(54) 

N(k,z,z0) = N1(k,z)N2(k,z0), 

Ni(k,z) = [kcoshk(hi - z) - rsinhfc(/ii - z)], 

and 

N2(k,z0) = [ak coshkzo — 6sinh£.zo]- 

For the case of an in viscid lower layer, the equa- 

tion 
D(ib,+0) = 0 (55) 

reduces to the classical dispersion relation [35], 
which has two positive real roots and an infinite 
number of purely imaginary roots. If the low- 
er layer viscosity is finite the dispersion relation 
yields a set of complex roots 

rn = rrn +irin n = 1,2, ••• 

in the complex upper half-plane k = k + ik . The 
real part of 1*1,2 represents the real wave number 
which is related to the far-field wave length and 
its positive imaginary component determines the 
spatial damping rate. The imaginary parts of the 
roots 7-3, T4, • • • define the near-field disturbances 
and their real parts determine the corresponding 
damping rate. Thus, the two roots r^ and the 
infinite number of roots r3, r4, • • ■ are located in 
the upper half-plane as depicted in Fig.7. 

For illustration, we show in Fig. 8 the imag- 
inary part of the nondimensional wave number 
r»i = niy/ghi/uj , while Fig.9 displays the real 
part of the same wavenumber rrl = rri\fghl/w. 

[                       r3   • 
ri                      \ o            \ 0                          , 

O k 

0    0.2 0.4 0.6 0.8    1    1.2  1.4  1.6  1.8 
T h\ 

Fig. 8 Dimensionless imaginary part of the 
first root: 7=0.833, i/=1.0m2/s, h2/h1=0.4 

Fig. 9 Dimensionless real part of the first 
root: 7=0.833, i/=1.0m2/s, h2/h1=0.4 

We are now in a position to perform the integra- 
tion path in (54) by taking it from —oo to oo along 
the real axis and an infinite semicircle located in 
the upper half-plane (Fig.7). The positive imagi- 
nary parts of complex roots provide an exponen- 
tial decay of the integrand, and thus, the integral 
along the semicircle vanishes. Therefore, the in- 
tegral (54) can be written as a sum of residues of 
the integrand as follows: 

i(y,z) 

where 

Fig. 7 Location of roots in the complex 
plane. 

27rj Y^ jV(rn^!^o)c-rinly-</0|+i>-^ly-yol 

(56) 

,     dD(k,v). 
Dk{rn,v) = ———|fc=r„. 

The resulting function is a regular potential func- 
tion of (y — y0,z, zo) except at the singular point 
(y = Vo,z = zo). Note that for v > 0 the terms 
of the series (56) decrease exponentially, and for- 
mula (56) can be used without the restrictive as- 
sumption of (z — zo) > 0. 
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2.4    Numerical Results and Discus- 
sion 

The computations were performed for a circu- 
lar cylinder of radius R = ß/2 = T =9m, 
for different ratios 7, r^ and kinematic viscosi- 
ties of the fluid mud. In Fig.10 and Fig.11 we 
present a plot of the nondimensional parame- 

ter C = —Re[^iz(j/,z,0)/(fa;Cc)]i where (c is the 
amplitude of the cylinder heave motion. Thus, 
C(y> ^i,0) represents the nondimensional wave el- 
evation on the free-surface and ^(y, 0,0) is the 
wave elevation on the interface at t=Q. It is 
seen that the two wave systems propagate with 
the same period but with different wavelengths. 
The surface-wave mode corresponds to the small- 

er root rrl and has a larger wavelength. It is 
worth mentioning, that the interfacial wave can 
be hardly observed or detected on the free surface. 
This effect is again closely related to the dead- 
water phenomena where an oscillating body gen- 
erates waves on the interface, which are almost 
imperceptible on the free surface. Nevertheless, 
for some conditions, the resulting effect of the in- 
ternal waves on the hydrodynamical forces acting 
on the body can be rather significant. 

Inviscid lower layer 

z/hi 

0.8 

0.6 

0.4 

0.2 

Inviscid lower layer 

T 

'XAAAAAAAAA/V 

MAAAAA/WW 
-0.2 

0 5        10       15       20       25       30 
y/R 

Fig. 10 Nondimensional vertical displacement 
of a fluid particle in the upper layer : 

R/h1=0.9, h2/h1=0.4, rR=0.2 

Fig. 11 Nondimensional vertical displacement 
of a fluid particle in the upper layer : 

R/hjisO.O, h2/hx=0.4, rR=0.6 

For instance, Fig.12 and Fig.13, display a strong 
dependence of the nondimensional added masses 
and damping coefficients 

Ö33 = 2a33/xp1Ä
2; 633 = 2b33/irp1wR2; 

on the density ratio and frequency of oscillation. 

Inviscid lower layer 

033 

0     0.2    0.4    0.6    0.8     1     1.2    1.4 
co2R/g 

Fig. 12 Added mass coefficient for heave 
motion: R/h1=0.9, h2/h1=0.4 
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Inviscid lower layer Inviscid lower layer 

0     0.2    0.4    0.6    0.8     1     1.2    1.4 

Fig. 13 Damping coefficient for heave motion: 
R/h1=0.9, h2/h1=0.4 

Comparing Fig.10 and Fig. 11 against Fig.12 
we can see that the most appreciable decrease in 
the added masses occurs when the amplitude of 
the interfacial wave reaches a maximum. 

Fig.14 and Fig.15 demonstrate that the heave 
added masses drastically depend on the depths 
ratio r/j = hi/hi, whereas the dependence of the 
heave damping coefficient is less pronounced, but 
nevertheless, quite recognizable. 

Inviscid lower layer 
033 

1.25 

1 

0.75 

0.5 

0.25 

0 

1         1         1         1         1         1         1 

\ y*^*'^         0.0 — 
- \^_x                     0.1 —- 

v-^                  0.2 — 
0.3 -*-_ 
0.4 -— 

1    1    1    1    1    1    1 

0     0.2    0.4    0.6    0.8      1      1.2    1.4 
"2R/g 

Fig. 14 Added mass coefficient for heave 
motion: R/h1=0.9,7=0.833 

0     0.2   0.4   0.6    0.8     1     1.2    1.4 
^R/g 

Fig. 15 Damping coefficient for heave motion: 
^^=0.9,7=0.833 

It is also instructive to consider here the lim- 
iting cases where the two-layer model renders a 
one layer model, i.e: 

1. v 

2. 7- 

3. 7- 

00; 

0; 

1 and v ■ +0. 

In cases 1 and 2 the interface may be replaced by 
a rigid lid and the depth of the single fluid layer 
is simply h\. In case 3 the depth of the single 
layer is h\ + hi. For these conditions the present 
solution can be compared against the theoretical 
results of Yu and Ursell [27], and Sayer [29] (single 
layer models). Fig.16 and Fig.17 represent such a 
comparison for the added mass in heave and the 
corresponding wave amplitude ratio AH (the ratio 
between the asymptotic wave amplitude at large 
distance from the body and the linear amplitude 
of the body oscillation). 

Single layer model 
Ö33 

0.75 

0.5 

0.25 

Computed values   o 
Sayer [29]  

0       0.5       1       1.5       2       2.5       3 
u2R/g 

Fig. 16 Added mass coefficient: R/h^=0.5 

381 



Single layer model 

0       0.5 

Computed values    o 
Yu and Ursell [27] — 

1        1.5      .2 
u2R/g 

2.5 

Fig. 17 Amplitude ratio: R/h1=0.5 

Viscous lower layer 

0     0.2   0.4    0.6    0.8 
u>2R/g 

1.2    1.4 

Fig. 19 Damping coefficient: 
7=0.833, R/h1=0.9, h2/h1=0.4 

It can be clearly seen from these curves that ex- 
cept for a narrow range of irregular frequencies, 
the agreement is quite good. 

Fig.18 and.Fig.19 display the dependence of the 
added mass and damping coefficient of a heaving 
cylinder on the viscosity of the lower layer. The 
evaluation of the corresponding Green function 
and its derivatives were done by invoking the in- 
tegral representation (52). 

Viscous lower layer 
Ö33 

0     0.2    0.4    0.6    0.8     1      1.2    1.4 
u2R/g 

Fig. 18 Added mass coefficient: 
7=0.833, R/h1=0.9, h2/h1=0.4 

Based on these figures one can conclude that even 
a relatively large viscosity j/=0.10 m2/s has a neg- 
ligible effect on the inertial coefficients. 

2.5    Conclusions 

The following brief conclusions may be drawn 
from the present theoretical investigation: 

• The dead-water phenomenon is shown to ex- 
ist for a body moving with a constant speed 
over a shallow mud layer as well as for a body 
undergoing periodic oscillations over a mud 
layer of finite depth. 

• For a ship moving over a shallow layer of flu- 
id mud with a relatively low speed U ~ ve/i, 
the induced wave resistance is mainly affect- 
ed by the internal waves propagating on the 
"mud-water" interface. The maximum value 
of the wave resistance occurs at the vicini- 
ty of the critical densimetric Froude number 

• For realistic values of the mud viscosity, i.e. 
for j/=10-1 to 10-3m2/s, a considerable re- 
duction in the wave resistance peak is at- 
tained. 

• The added masses and damping coefficients 
of a heaving cylinder depend significantly on 
the frequency of oscillations u, the density 
ratio pi/p2, the underkeel clearance and on 
the depth ratio r^ = /ii//i2- 
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• The added masses and damping coefficients 
weakly depend on the mud viscosity with- 
in the range of interest 0 < v <0.1 m2/s. 
Hence, for many practical purposes it is 
quite reasonable to evaluate the inertial co- 
efficients by employing the model of two su- 
perposed in viscid fluid layers of finite depth. 
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DISCUSSION 

X. Chen 
University of Stuttgart, Germany 

Chen, X.-N. & Sharma, S. D. 1994b "Bottom viscous 
boundary layer effects on ship wave resistance in 2-D 
and 3-D cases," unpublished manuscript. 

S. Sharma 
Mercator University, Germany 

This is a very interesting paper with much practical 
relevance for inland and shallow water navigation 
since river bottoms are usually soft and muddy. We 
would like to comment on the reduction of wave 
resistance at near critical speeds due to viscosity of the 
bottom layer as found by the authors. A few year ago 
Thill (1991) and Miebach (1992) independently 
carried out wave pattern analysis of a Series 60 
hullform in shallow water by the longitudinal and 
transverse cut method, respectively, in the Duisburg 
Towing Tank (VBD). Both found that the derived 
wave pattern resistance was very much smaller than 
the wave resistance estimated from a form-factor 
analysis of the measured total resistance. It was 
suspected that this could be related to the damping of 
wave orbital motion by friction on the tank bottom. 
Searching for a theorectical explanation, we derived 2- 
D and 3-D Green functions for a source in steady 
translation under a free surface over water of finite 
depth, including the effect of a linearized viscous 
boundary layer on the bottom, and calculated the wave 
resistance for certain configurations of a submerged 
source-sink pair. Two significant effects were found: 
(1) Wave damping in the wake of intensity increasing 
with decreasing speed and (2) Drastic wave resistance 
reduction near the cricial speed compared to the 
inviscid case. Both effects will cause the wave pattern 
analysis to underpredict the wave resistance in shallow 
water. The second effect agrees qualitatively with 
your results. But the problem treated by you is, of 
course, more general. 

Thill, C. 1991 "Längschnittmethoden für die Analyse 
des Schiffswellensystems unter Berücksichtigung 
endlicher Wassertiefe," Diploma Thesis, RWTH 
Aachen. 

Miebach, R. 1992 "Analyse des Wellenbildes eines 
Schiffes in flachem Wasser mit Hilfe der 
Querschnittsmethode," Diploma Thesis, RWTH 
Aachen. 

Chen, X.-N. & Sharma, S. D. 1994a "Study of shallow 
water effects on ship wave resistance in 2-D case," Z, 
angew. Math. Mech. 74 (1994) 5, T431-T433. 
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Nonlinear Theory of Asymmetric Motion of 
a Slender Ship in a Shallow Channel 
X. Chen (University of Stuttgart, Germany), 
S. Sharma (Mercator University, Germany) 

ABSTRACT 

A nonlinear theory, based on the technique of 
matched asymptotic expansions, is developed for the 
general problem of asymmetric motion of a ship 
moving in a shallow channel at sub-, trans- and 
supercritical speeds. Nonlinear shallow water wave 
theory is applied in the far-field; an improved slender 
body theory, in the near-field. The numerical task is 
reduced to the solution of a time-developing 
boundary-value problem of a modified Kadomtsev- 
Petviashvili equation. Numerical examples are 
worked out for a ship either in oblique motion along 
the channel centerline or in off-center motion 
without drift angle. The calculated longitudinal 
force, sinkage, trim, lateral force and yaw moment 
are presented systematically as functions of depth 
Froude number, wall separation and drift angle and 
compared with their measured values from towing 
tank model experiments; reasonable agreement is 
found. Several counter-intuitive new phenomena are 
observed. Calculated wave patterns, containing 
upstream solitons at near-critical speeds, are 
visualized. 

NOMENCLATURE 

Dimensional variables carry a superscript *, 
others are nondimensional. 

all 

A  typical wave amplitude 
b0 beam at midship 

C{X,T)-C*/r* dynamic blockage coefficient of 
instantaneous submerged cross section 
C0(x) static blockage coefficient of stillwater 
submerged cross section 
c=c*/h* under-keel clearance 
CB = V*/{I* b*0 d") block coefficient of hull 

CP = V*/{I* S*0 ) longitudinal prismatic coefficient 

Cr blockage coefficient for rectangular cross section 

d* draft of ship 
F=(FxJFyfz) hydrodynamic force on the hull 

F = F*/(p*g*Cp S*/*) nondimensional force 
F$ longitudinal force 
Fj lateral force 

H=H Ih   local water depth incl. wave elevation 
h* water depth in stillwater 
g* = 9.80665/«/.^acceleration due to gravity 
L typical wave length 
/ ship length (between perpendiculars) 
M=(Mx,MyMz) hydrodynamic moment on the 
hull 

M = M*/(p*g*Cp S*/* ) nondimensional moment 
Mj yaw moment 
n=(nx,ny,nz) hull outward normal unit vector 
r=(x,y,z) position vector 
ro = ySl near-field transverse reference length 

S(x)=S*(x)/S* static area of stillwater submerged 
cross section 
S(x,r) dynamic area of instantaneous submerged 
cross section 
S0 cross sectional area at midship 
Sw wetted surface area of the hull in motion 
Sw wetted surface area of the hull at rest 
&SW/SW0 wetted surface area increment 
s = s 11 sinkage 

t = t ^eg*h* /h* nondimensional time 

U = Fnh=U*/^g'h*   depth Froude number 

U  (dimensional) speed of ship 
V0 displacement 

v4s = <py cross flow velocity in v-direction 
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V*Js ^V'/e^g'h*   cross flow velocity in  y- 
direction 
w* width of the channel 
Oxyz coordinate system aligned to motion direction 
Oxyz coordinate system obtained by rotating Oxyz 
around z by drift angle a 
a drift angle (angle of attack) 
A<p = (p\    0+ - q>\    0_ potential jump across x axis 

V* = (d/dx* ,d/dy* ,d/dz*) 3-D vector operator 

£ = A*/h* small parameter for wave nonlinearity 
hv* separation distance of the ship from the wall 
\i = h*/L* small parameter for wave dispersion 

p  water density 
6 trim angle, bow-up positive 

<&(x,y,z,t) = ^>\x,y,z,t)/(h'^eg'h*) disturbance 
velocity potential 
<&0(x,y,t) = O|z=0 bottom velocity potential 
<p depth-averaged potential 
T = et slow time variable 

£ = £*/(eh*) elevation of free surface 

INTRODUCTION 

The trend of increasing ship size and speed 
makes restricted water hydrodynamics more 
important and difficult. The huge ship size makes 
the available water depth or restricted channel width 
relatively shallow and narrow, respectively. The high 
ship speed makes the free surface flow essentially 
nonlinear. In this paper we are concerned with the 
asymmetric problem of a slender ship moving 
uniformly in a straight rectangular shallow water 
channel parallel to the wall, either off-center or with 
a small drift angle, at subcritical, critical and 
supercritical speeds. This is originally a three- 
dimensional, nonlinear, unsteady problem, which we 
attempt to solve by the classical nonlinear shallow 
water wave theory upto a practical application stage. 

It is well-known that shallow water wave 
equations are analogous to two-dimensional 
compressible flow equations, see Tuck (1978). The 
depth Froude number in hydrodynamics plays the 
same role as Mach number in aerodynamics, and the 
speed of shallow water waves is equivalent to the 
speed of sound. So a ship traveling in shallow water 
is somehow similar to a 2-D airfoil in compressible 
fluid. Tuck (1966) developed a linear technique of 
matched asymptotic expansions for a slender ship in 
shallow water, obtained zero wave resistance in the 
subcritical speed range and non-zero values at 
supercritical speeds, that is, exactly in agreement 
with the aerodynamic result. He also obtained good 

results for sinkage and trim in the off-critical range, 
which explain quite well the squat phenomenon in 
shallow water as described by, e.g., Graff, Kracht & 
Weinblum (1964). Of course, this linear model fails 
in the near-critical range. Some success in this gap 
was achieved by Lea & Feldman (1972) by use of an 
established transonic-flow numerical method for the 
transcritical motion of ships in shallow water. Later 
on, Mei (1976) extended this work to include 
dispersive effects in the near-critical range, but still 
for the time-independent steady-state problem. 

Just this dispersive effect which exists in 
shallow water waves, but not in sound waves, 
brings about a particularly interesting nonlinear 
phenomenon, namely, that a ship in uniform motion 
in a shallow channel generates periodic solitary 
waves propagating upstream. Actually, it had been 
observed long ago in towing tank experiments, e.g., 
by Thews & Landweber (1935,1936), Helm (1940), 
Kinoshita (1946), Graff (1962), Graff, Kracht & 
Weinblum (1964), etc. Recently revived interest and 
a theoretical understanding stem from the work by 
Wu &Wu (1982), who numerically solved one- 
dimensional Boussinesq equations to study a pressure 
patch moving on the free surface at a near-critical 
speed and found upstream solitons emitted 
periodically. Since then various investigations have 
been made, e.g., Huang, Sibul & Wehausen (1983), 
Ertekin, Webster & Wehausen (1984, 1986), Wu 
(1987) and so on. Here we restrict ourselves to the 
problem of a ship in shallow water. 

Mei (1986), using matched asymptotic 
expansions, derived an inhomogeneous Korteweg & 
de Vries (KdV) equation for a slender ship moving 
at near-critical speed in shallow water and 
theoretically demonstrated solitons propagating 
upstream. Mei & Choi (1987) further developed this 
theory to calculate hydrodynamic forces on the ship, 
but only crude agreement with experiments was 
obtained because this theory cannot predict the two- 
dimensional waves around a real ship and in its 
wake. So Choi & Mei (1989) improved their theory 
by using a Kadomtsev & Petviashvili (KP) equation 
in the far field to take account of the 2-D effect. 
More numerical results were reported in Choi, Bai, 
Kim & Cho (1990) with another finite element 
method. Chen & Sharma (1992) pursued this method 
further and refined the slender body theory in the 
near-field by taking account of local wave elevation 
and longitudinal disturbance velocity. This amounts 
to including two non-negligible higher order effects: 
(1) interaction between waves generated at different 
cross-sections and (2) influence of longitudinal 
perturbation velocity on the linearized hull boundary 
condition. The KP equation in the far-field was 
solved numerically by an efficient finite difference 
method, namely, the fractional step algorithm with 
Crank-Nicolson-like schemes in each half step. Very 
good agreement with experiments was achieved in 
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wave resistance, sinkage, and trim for several ship 
models. Furthermore, Chen & Sharma (1994a) 
derived a KP equation from Boussinesq equations by 
keeping a higher nonlinearity in the lateral direction, 
making it valid for a wider speed range. It was 
shown that this modified KP equation has the same 
accuracy as Boussinesq and its linear stationary 
dispersion relation is even better than that of 
Boussinesq in the subcritical and transcritical ranges. 
More numerical results from this modified KP 
equation for a ship in a wider speed range are reported 
in Chen & Sharma (1994b) and compared with the 
model experiments of Graff et al. (1964) on the 
Taylor Standard Series as well as our own on a 
Series 60 hull. 

Here we extend our theory and calculations 
to the asymmetric case of a ship moving parallel to 
the channel axis but either off-center or at a drift 
angle. This problem is probably of greater relevance 
to ship maneuvering than to propulsion. Most of the 
previous work on ship maneuvering and similar 
problems in restricted shallow water, e.g., Norrbin 
(1974), Beck (1977), Yeung & Hwang (1977), 
Yeung (1978), Hess (1978), Yeung & Tan (1980), 
Kleinau (1981), Kijima & Yasukawa (1984) and 
Davis (1986) ignored free-surface effects as 
unimportant. This was justified firstly because at 
sufficiently low speeds wave generation by the ship 
itself is not hydrodynamically significant; in other 
words, the Froude number is so small that the free 
surface may be replaced by an ideal rigid wall. 
Secondly, because the asymmetric flow around the 
ship hull with its 3-D geometry or configuration in 
a complex environment already made the problem 
quite difficult and some simplification was required. 
It can be shown by matched asymptotics that the 
asymmetric ship motion problem with a rigid free 
surface or linear/nonlinear shallow water waves, i.e., 
involving a cross flow through the clearance under 
the keel, is exactly or approximately equivalent to 
that of a porous two-dimensional airfoil moving in 
an incompressible or compressible linear/nonlinear 
fluid, respectively. If we consider such a motion at a 
high enough speed, the interaction of cross flow and 
the waves generated by the ship becomes significant 
and the whole flow becomes quite complicated. 
Asymmetry may even aggravate nonlinearity and 
instationarity, which are the two salient features in 
shallow   water.   We   shall  encounter  certain 
phenomena that simply contradict our intuition. 

The asymmetric flow around the ship is 
governed by a modified KP equation in the far-field 
asymptotically matched with an improved slender- 
body theory in the near-field. A suitable Kutta 
condition at the ship stem and continuity of velocity 
across the wake are imposed. The numerical task is 
then reduced to the solution of a time-developing 
boundary-value problem. Examples are worked out 
for either oblique ship motion at small drift angles 

along channel centerline or non-drifting off-center 
motion parallel to channel sidewalk Calculated 
longitudinal force, sinkage, trim, wetted surface area 
increment, lateral force and yaw moment are 
presented systematically as functions of depth 
Froude number, wall separation and drift angle, as 
well as compared with measurements in the towing 
tank. 

GENERAL PROBLEM FORMULATION 

/.///.//?////// 

Fig. 1 Schematic of the problem. 

We consider a slender ship, free to heave 
and pitch, moving at constant velocity parallel to 
the axis of a straight rectangular shallow water 
channel, not necessarily along the channel 
centerline, with or without a small drift angle. The 
flow is assumed to be incompressible and 
irrotational. Moreover, we limit ourselves to the 
long-term asymptotic flow without any time- 
dependent forcing effects, i.e., to the autonomous 
system, although finally we can easily see that this 
theory holds valid also for the radiation problem of a 
ship under slow-oscillation except in the rolling 
mode as well as for the diffraction problem of a ship 
in incident waves of sufficiently low encounter 
frequency. We start with dimensional variables 
marked by asterisks '*' and later change to unmarked 
nondimensional variables. A Cartesian coordinate 
system Ox*y*z* moving at the same speed as the 
ship is used with origin 0 located in the midship 
section, Ox* along the direction of motion, plane 
Ox*y* on the quiet free surface, and z* positive 
upward, see Nomenclature and Fig. 1. The flow is 
then exactly governed by the Laplace equation in the 
fluid domain, 

O*^. +0*^»+<&*„.,» =0, -h* <z" <C,   (1) 
by the kinematic and dynamic conditions on the free 
surface, 

C - u'C*+<•£•+<*vC*y=«v. z* = C, (2) 
o;.-C/X«+|W|2/2 + /z* = 0, z* = C\ (3) 

and by the boundary conditions on the ship hull, 
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F(x*,y\z*,t*) = 0, (4) 
on the horizontal channel bottom, 

*;.=o,    z*=-h\ (5) 
and on the vertical channel sidewalls, 

<D*, = 0,        y*=-(l-A)w*, Xw\ (6) 
It is assumed that the fluid is initially at rest, so the 
initial condition is 

VV = 0,     C* = 0, /*=0, (7) 
and for finite time the radiation condition is 

VV->0,     **->±oo. (8) 
But this radiation condition must be modified in the 
actual numerical computation, specially for the 
downstream boundary, because the computational 
domain must remain finite. 

Moreover, in asymmetric motion the ship, 
particularly with a sharp stern in a real fluid, 
generates circulation around itself and experiences a 
lift force. Associated with it is a vortex wake shed 
behind the ship. The Kutta condition at the after end 
and continuity conditions across the wake are 
necessary. Because the ship can be seen as a very- 
small-aspect-ratio foil, it is in general insufficient 
for a 3-D flow to construct a Kutta condition only at 
the trailing edge. However, for the ship in shallow 
water and very small drift angle the entire free-vortex 
sheet can be assumed to be shed from the ship stern 
since vertical flow is hampered by the channel 
bottom and the vortices otherwise produced at the 
keel are forced along the length of the ship. Perhaps, 
the shallow water wave theory can only accept a 2-D 
Kutta condition at the stern. In the wake the detailed 
flow is complicated. In the unsteady case the 
longitudinal velocity of the outer potential flow may 
be discontinuous across the wake, while the 
transverse velocity and pressure are continuous, 
which can be exploited to determine the 
discontinuity of the potential across the wake line. 
But for the asymptotic steady or very slowly varying 
flow, the starting vortex produced initially runs 
downstream far away from the ship, so that the 
longitudinal velocity is also continuous; 
consequently, only a constant cross-jump of the 
potential exists along the entire wake line until 
infinity. 

The pressure p is expressed by Bernoulli's 
equation, 

p=-p (*,„-£/«IV+|V* I /2 + gz ).    (9) 

The resulting forces and moments acting on the ship 
are found by pressure integration on the hull: 
F*=-J5 p*ndS*,   M*=-J5 p\r*xn)dS*. (10) 

SCALE ANALYSIS AND MATCHED 
ASYMPTOTICS 

We analyze the problem by the technique of 
matched asymptotic expansions. A key step in it is 
scale analysis, i.e., selection of small parameters and 
suitable scales for all variables. As the ship 
considered here is slender, a slendemess parameter is 
defined as 

a=/■;//• «©a), /•;=#. (ii) 
Assuming the waves generated by the ship to be 
weakly nonlinear and long compared with water 
depth, we have 
£ = A*/h*, p = h*/L*, 0(e) = 0(ß2)« 0(1). (12) 

We select here e=p.2, which only means assigning 
the same order to dispersion and nonlinearity of 
waves, but not a quantitative restriction at all, 
because the theory can automatically adjust both 
effects; actually, it does not change the dimensional 
description of me shallow water wave theory at all. 

Using the concept of matched asymptotics, 
we now divide the flow region into two parts, 
namely, near-field and far-field, which mean the 
fields near to and far from the ship, respectively. In 
the near-field the typical length scale for transverse 
directions v* and z* is r* and for the longitudinal 
direction x* it is /*, while in the far-field the typical 
length scale for the horizontal directions x* and y* 
is L* and for the vertical direction z* it is h*. Since 
r* «L* the ship location is seen as a line-cut in the 
far-field. The time scale, which is the same in both 
fields and suitably of the order of the period of the 
waves, should be very long since we are seeking the 
long-term asymptotic state. Based on these scales, 
we can separately formulate the problems with 
multiple-scale expansions for each field and then 
match them with each other asymptotically in space. 
It is expected that the original three-dimensional 
problem can be recast into two two-dimensional 
problems in the horizontal plane and the vertical 
cross-section plane in the far-field and near-field, 
respectively. 

NONLINEAR SHALLOW WATER WAVE 
THEORY IN THE FAR-FIELD 

Based on the shallow water wave 
assumption, we can normalize the variables in the 
far-field as 

C 
£ = -*-!-,    * = ,  

«* Jeh'-Jg'h* 
,   (x,y) = —sr(x ,y ), 

h 

_z_      _ 4et*^gh*        __p__ 
z —   *,   t — *        ,   p       ***. 

h h p g h 
By a Taylor expansion of disturbance velocity from 

(13) 

389 



0        2, v-   •   -/ " o 4, 

In terms of the depth-averaged potential, 

the bottom to the free surface, 3-D Laplace equation 
(1) and horizontal bottom condition (5) yield 

2 

O = O0 --|(z +1)2 V2<D0 + ^(z +1)4V2V200. (14) 

rms of the ( 

«p = ^r = «I»o-^(l + £0'Vz«I.o+0(£z), (15) 
1 + eC 3! 

or inversely 

Oo=<p + i(l + £O2VV0(£2), (15') 
6 

and substituting expression (14) into the free surface 
kinematic and dynamic conditions (2) and (3), we 
obtain the Boussinesq equations, 

Ct-U£x + V»[(l + eOV<p] = 0, (16) 

<pt - U<px + j£|V«p|2 + C = § y\<P, - U<px),   (17) 

and the expression for pressure in terms of wave 
elevation, 

p = e£-z + l[(l+eC)2-(l + z)2]V2t + 0(e2),W) 

where V2 is 2-D Laplace operator. Substituting C, 
from (17) into (16), considering the flow varies even 
more slowly, i.e., r = et, and neglecting higher-order 
terms than O(s), we get 

eU2 

2eU(pXT+(l-Uz)<pxx + (l + eU(px)<pyy + -—((pxxxx 

*lpTJ 
= 0. (19) 

2     vr*/*   • — rxyYy 

In fact, the above equation is precise to same order as 
Boussinesq equations (16) and (17). Discussion on 
stationary dispersion relation of its linearized form 
given by Chen & Sharma (1994a) shows that the 
term (p^y will make the dispersion relation differ 
more from the exact one of linear finite depth theory 
than without it in the subcritical and transcritical 
speed ranges. Hence, it is believed that the equation 
without (p^ will produce better results than that 
with it. So we choose the following equation as the 
governing equation in the far-field, 

, eU2 

lEUt?^ + (1 - U2 )?„ + (1 + eUf^Vyy + -—<pxxxx 

3sU (20) 2 -((p2)x + 2sU(pxy(py=0, 

which is still of KP-type, i.e., two-dimensional 
KdV-type. The channel sidewall boundary condition 
(6) becomes 

q,y=0,   y = -(\-X)4ew*lh\X4ew*lh\ (21) 
The elevation of free surface is expressed as 

C=t/«p,-^-^N|2-fv2^. 

IMPROVED   SLENDER   BODY   THEORY 
IN THE NEAR-FIELD 

If the ship moves with a drift angle a, we 
must set up a new near-field coordinate system 
Oxyz, whose axis Ox is in the ship centerplane, 
see Fig. 1. It is related with Ox*y*z* as 
x* =x* cosa+y* since,    y* = y* cosa-x sina, 

zW, (23) 
where the drift angle a may be of order 0(5). Upon 
introducing the nomalizarion in the near-field, 
x = x // ,y = y /r0,z = z jr0 , Q(x,y,t) = Q /r0 , 

a(i,y,z,0 = *'/(ViA*VsV), (24) 
we get approximately from (1-5), 

yy       zz x 

«^ =0(eS), 

= -eS2{l*lh*?<pxx, (25) 

5 = C. (26) 

F.cb. + p„q>, 
y   y     z   z ^^-FX(U - £«p±=0), F = 0,(27) 

4efh 
<j>.=0, 5 = -*'//•;. (28) 

In (25) and (27) we have used in advance the 
matching condition of longitudinal velocity. There 
is a formal solution for the linear inhomogeneous 
equation (25) with linear inhomogeneous boundary 
conditions (26-28), 

_* 
/^(tZ-fi^    0)¥i(x,y,z) <D = 

4ith* 
*\2 -eSA(l /hY%(x,y,z) 

+ c4-V(Jc,T)Y3(Jc,y,f) + /0(5,T), 
h 

(29) 

where V(x,i;) is the fluid velocity of cross-flow in 
y -direction and f0 a constant solution, both of 
which will be determined by matching with the far- 
field solution, ^ and <P2 are particular solutions, 
and ¥3 a homogeneous one, all of the Laplace 
equation, governed, respectively, by 

%yy + ^1H = 0, 

F^19+F^=FX,   onF = 0,- (30) 

Vtf = 0, on z = fand - h* lr* 

FJ^2J + F^ai = 0,   onF = 0, ■ (31) 

*P2f = 0, on z = fand - h* lr* 

^3yy + *3K 
- 0, 

^ + ^=0,   onF = 0,\ 

*¥3i = 0, on z - fand - h* lr*. 

(32) 
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We need not find their exact solutions if we 
can obtain their asymptotic nature in order to match 
the near-field solution with the far-field one. By 
applying the law of mass conservation to a 
transverse fluid element surrounded by the hull 
surface, free surface, channel bottom and two vertical 
control planes located far away from the ship, we 
have 

lim [ -j=7»-,: 
y-»±~    V£< n 

S0 cosa „ ,TT -* Fx(U-E(p: x\y- ._0)%y(x,y,z) 

-e82(f/h')2y2'y(x,y,z)} 

= + r*3cosa d rs 

2s[efh*2(l + £C0){dx 

rn      dx 

[S(x,T)(U - eu0)] 

(33) 

4:\kx,T)(U- eu0) 

where u0 = <px\y=0 and Co = C\y=0- Further, for the 

homogeneous cross flow, Newman (1969) has given 
the asymptotic solution, 

l\m% = y±C(x,z), (34) 
y —»±oo 

where C(x,x) is called the blockage coefficient of a 
cross section of the hull. It can be generally 
calculated by a boundary element method or 
analytically for a few special cases, e.g., see Taylor 
(1973). Substituting (32) and (33) into (28) yields 

r    a» ro3\y\cosa 

Ä Z&fhn(\ + eC0)[dx 

+eK\y\^-\ + £r-^V(x,T)[y±C(x,r)) + f0.  (35) 
r0      dx J       h 

Thus we get our near-field solution, which is an 
improvement over the classical one in the sense that 
it includes the effects of longitudinal disturbance 
velocity and of local wave elevation around the ship. 

MATCHING CONDITIONS, KUTTA 
CONDITION AND CLOSURE OF THE 
PROBLEM OF KP EQUATION 

The location of the ship is seen as a line- 
cut in the far-field view. We anticipate that the 
matching conditions will yield a boundary condition 
there for the KP equation (20). 

According to the principle of matched 
asymptotics, i.e., the inner expansion of the far-field 
must be equal to the outer expansion of the near- 
field, we now establish the matching conditions, 
taking account of the slight rotation of Oxyz from 
Oxyz due to the drift angle, 

a 
cosa (px 

4et 
ly->0 

<t> XI*. 

(36) 

(37) 

dq> 
dy 

-^ 
S„ cos a 

,=o* 2   £3/2/Y(l + £C) 

dx 
[s(Jc,t)(J7-eii0)] + VeV(*,T),        (38) 

«PLO- -4 y-*0" 
= 2e^V(x,T)C(x,r),   (39) 

h 

<_»o*+<-o-=2/«<i'T>- ly-»0 

We select 

£3/2=. 

I'h' 

(40) 

(41) 

in order to normalize the coefficient of (38). V in 
(38) is the velocity in y-direction, which is related 
with V as, 

Vcosa + £"3/2(C/-£M0)sina = V. (42) 
So, substituting (42) and (39) into (38), we obtain 
the final boundary condition of the modified KP 
equation (20) at the ship location (the cut at y=0): 

~dy~ 
= +■ 

cos2 a 

>=o* 2 l + eC0 dx 
^[s(x,r)(U - eu0) 

pLo--d >-»0" tana 
cosa2C(Jc,T)£ 18 

(U-eue).      (43) 

In addition to the normal velocity matching 
condition serving as the boundary condition of the 
KP equation, the longitudinal velocity and wave 
elevation matching conditions (37) and (36), which 
have been used earlier in the formulation of the near- 
field, i.e., equations (25), (27) and (33), also play an 
important role by introducing the interaction of 
disturbance flow at different cross sections into the 
near-field solution. In fact, the final matching 
condition (43) includes such interaction effects. 

The dynamic instantaneous submerged 
cross-sectional area S(x,r) should include the effects 
of running sinkage, trim and local wave elevation. If 
the ship sidewalls are nearly vertical and sinkage, 
trim and wave elevation are relatively small, the 
required cross-sectional area can be expressed 
approximately as 

h*h* 
S(x,-c) = S(x) + -^-b{x)x 

I 
■(j(T)-JC0(T))+ £&&*) (44) 

The instantaneous blockage coefficients 
should also include the above effects, thus requiring 
recalculation at every time step. Since individual 
runs of the applicable computer code, based on a 2-D 
boundary element method, at each step would be a 
time consuming task, we could tabulate in advance a 
series of values for different water levels and under- 
keel clearances for each cross-section and then 
simply interpolate for the current water level and 
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clearance at every time step while running the main 
program. If the under-keel clearance is not too large, 
yet another economy is possible. We only need to 
calculate the static blockage coefficients for the hull 
at rest, if we assume that the change with 
submergence is proportional to that for a 
corresponding rectangular cross section, for which 
analytic solutions of high order in small clearance 
are available, e.g., by Taylor (1973). Hence, 

C(JC,T) = C0(x,r) x Cr(H,c)/Cr(H0,c0), (45) 
where 

Cr(H,c) = ^^(c"1 -1) + ?KH(\- log4C) + 

2h*  .2i 281A^c4+0(c6)>      (46) 

2>itr, 
-C- + 

90TZT„ 

c = [h* -d* -l\s-6x)]/(h* + eC0h*),    (47) 

H = l + eC„ (48) 

and H0 = \, c0 =1 -d*/h. In the following 
numerical examples, we use the latter approach (45) 
for estimating the dynamic blockage coefficients 
since the clearances are not large in these cases. 

Like a 3-D low aspect-ratio foil, the ship at 
drift angle or in other asymmetric flow will generate 
a circulation around itself, which produces a lift 
force. Hence, we must impose a suitable Kutta 
condition at the stern. Actually, we only need to 
capture the equivalent effect by imposing a Kutta 
condition for the far-field equation instead of 
bothering to examine the complicated stern flow in 
the near-field. It is the condition of equality of 
longitudinal velocity on both sides of the ship at the 
stern, 
A9x = <Px\y**-<Px\y=0-=0> at the stern. (49) 

Since (39) holds originally for the 2-D case, it fails 
at the two ends of ship where 3-D effects are evident. 
At the bow, it is not too bad, because the jump A<p 
is automatically zero in the uniform inflow. But at 
the stern, since Ap * 0 and C -»0 , equation (39) 

yields the unrealistic result V -> °°. So we must let 
V in (38) be determined by the Kutta condition 
rather than by (39) at the stern. 

In essentially unsteady flow also the 
longitudinal velocities are discontinuous across the 
wake, i.e., on the negative *-axis behind the ship. 
The boundary condition there can be posed by the 
mass and momentum conservation law. In our 
asymptotic problem, however, the strong starting 
vortex generated by the initial acceleration from rest 
will have already wandered far away from the ship. It 
is, therefore, reasonable to assume a constant 
potential jump, across the entire length of the wake, 
of value identical to that at the stern without 
significant  discontinuity  of the  longitudinal 

velocity. This implies that all velocity components 
are continuous in the wake region. 

Now the initial-boundary value problem of 
the KP equation (20) is completely closed with zero 
initial condition, boundary conditions (43) on the 
ship centerplane, Kutta condition (49) at the ship 
stern, and normal condition (21) on the channel 
sidewall. 

Here it is useful to establish connections 
with previous versions of the theory. By neglecting 
terms <px<pyy and y^Wy and letting U = l + ae in 
equation (20), it is reduced to a KP equation that was 
used by Choi & Mei (1989), as also by Chen & 
Sharma (1992) with slightly different coefficients. 
Further, neglecting higher orders in the matching 
condition, i.e., keeping only first order symmetric 
terms in equation (43), we get the classical linear 

result ©J     + =+(l/2yJsUSx   that was used by Ty\y^o± 

Choi & Mei (1989) for the symmetric case. 
Our KP-type equation (20) with its 

boundary conditions is solved numerically by a 
finite difference method using an implicit fractional 
step algorithm, as explained in Chen & Sharma 
(1992). 

HYDRODYNAMIC FORCES AND 
MOMENTS AS WELL AS TRIM AND 
SINKAGE 

The pressure on the ship hull can be 
expressed approximately as 

p = eC0-z + 0(e2). (50) 
Hence, the wave resistance (negative longitudinal 
force) is given by 

* , * 

x    PgCpSJ      lCp
]s~y 

J-i/2        d r .v IC, dx 

b„h    ,. db.,* 
-^T-ECO—- }dx + —=■ 

S!      ° dx 25, 

fi/2 „2 db , *-, 
(51) 

1/2'" dX 

For a ship free to heave and pitch the sinkage s and 
trim 8 are determined by equilibrium of forces in the 
vertical direction and of moments about the y-axis, 
respectively. Neglecting the inertial force and 
moment in view of very slow ship motion in these 
two degrees of freedom, we have two linear algebraic 
equations for the two unknowns s and G, 

ÜuJZo +±T(s-x9)Mx)dx = 0, 
eh 

.* 
\112 [Co+-^r(s-x6)Mx)xdx = 0. 
-in-'"   eh 

They are easy to solve. 

(52) 

392 



For the lateral force and yaw moment, we 
cannot use the mean pressure expression (50). 
Instead, we apply a formula derived by Lighthill 
(1960) for a fish as slender body and also described in 
Newman (1977): 

-^r = -{—r-U -T7*)\Vb(x ,t )m%{x ), (53) 
dx at dx   L J 

where Ü* and V&* originally are x* and y" 
components of velocity of each section relative to 
the still fluid and rnyy is the lateral added mass. For 
a two-dimensional body there is an exact relationship 
between the lateral added mass and the blockage 
coefficient (Newman 1969 (3.4) and Taylor 1973), 

my)=-p*S* + 2p*h*C\ (54) 
In our cases, the fluid pass around each cross section 
at velocity   V*,   so  relatively   V6*=-V    and 

Ü* ~U*. Further, the flow changes very slowly, so 
the time derivatives in equation (53) can be 
neglected. Thus it becomes 

*-*   d-\v\-S* + 2h*C*)\        (55) 
aF5 _   . . 

ax* dx' 
Substituting the dimensional form of (39), i.e., 

2V*C* = A<p*=ip*\.   n+-?>1.   „.,        (56) 

into (55) yields 

f£ = V^^[-vV + *>*]. (57) dx dx  L J 

Integrating the above force density over the ship 
length, we have 

*;=Tlk=pwvLw,2'  (58) 
-i n dx 

Mi =   J   -^-^ dx 
-I'll  * 

/'/2 

-F//-/2 

(59) +pV   j (-V*S* + A*Ap*)<fi*. 
-/'/2 

Finally, using the definitions introduced in the 
Nomenclature the nondimensional forms of 
equations (58) and (59) are found: 

Fi=- 
PgCpSJ       CpSJ 

■leUh** A ,, 
 ;VrA%=-l/2' (60) 

M;=- 

p 

M; 
,* ,*2 ~*     P^ f Z~r 

pgcps0i 

J (-e3/2f/-^l/5 + Vic/-%^A<p)dx.   (61) 
Cpl CpS0l 

112 

J 
-1/2 

RESULTS   AND   DISCUSSION 

The examples selected for calculation 
correspond exactly to the conditions of our recent 
model experiments in the Duisburg Shallow Water 
Towing Tank. A Series 60, block coefficient 
CB = 0.594, hull of length  /* = 4.689 m, beam 

b* = 0.6252 m and draft d* - 0.25 m was towed in 
a channel of width M>*= 9.81m and water depth 
h* =0.5 m. So e=0.16044 according to equation 
(41). The horizontal force, yaw moment, sinkage and 
trim were measured using appropriate guages. The 
experimental wave resistance was derived by 
subtracting from the total measured resistance an 
estimated viscous resistance being equal to the 
frictional resistance according to the ITTC 1957 
correlation line times a form factor l+k=1.175. 

Blockage   Coefficients 

A computer code based on a 2-D boundary 
element method similar to Taylor (1973) was used 
to calculate static blockage coefficients of 41 cross- 
sections of the hull in stillwater. These results are 
presented in Fig. 2. The dynamic blockage 
coefficients at each time step were calculated by 
(45). 

Fig. 2 Numerical blockage coefficient distribution 
for Series 60 (Cß=0.6) hull at h'/d" =2. 

Off-Center Motion 

This is the case of a ship moving without 
drift angle and parallel to the channel axis but off- 
center. In the ideal fluid regime, it is equivalent to 
one of two possible twin-hull configurations 
moving symmetrically in a channel of twice the 
width. The calculated longitudinal force, sinkage, 
trim, wetted surface area increment, lateral force and 
yaw moment as functions of depth Froude number 
are shown along with their measured values in Fig. 
3 and 4 for two values of wall separation X=0.1 and 
0.2, respectively. Fig. 5 shows only their average 
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values as functions of X at three speeds £/=0.7, 1.0 
and 1.3. We see that the calculated results match 
every trend of the experiments and show good 
quantitative agreement. The calculated wave patterns 
at these three speeds are visualized by density plots 
in Fig. 6; details around the ship, by contour plots 
in Fig. 7. 

We observe the following three interesting 
new phenomena in calculations as well as 
measurements. 

Suction and Repulsion  by the Sidewall 

It is well known, e.g., see Hess (1978) or 
Davis & Geer (1982), that a vertical sidewall exerts 
an attractive force on the ship, which increaces as 
the separation decreases, if the free surface is treated 
as a rigid plane. This is because the flow between 
the ship and the wall is faster than that on the open 
side, hence, the pressure is lower. Decreasing wall 
separation makes the flow faster and, therefore, the 
attractive force larger. 

By contrast, we have found in our 
calculations and measurements that at transcritical 
and supercritical speeds in some off-center positions 
not too close to the wall, the ship experiences a 
repulsive lateral force (see Fig. 5 d). It is not 
difficult to understand if the waves generated by the 
ship are taken into account. Since the wave crests 
inside are higher than those outside, they will exert a 
repulsion. Thus we have two opposite effects 
competing with each other. At lower speeds the 
wave effect is weak and the original bank suction is 
dominant. But at higher speeds the wave effect 
prevails and the force becomes repulsive, provided 
the wall separation is not too small. 

Wave  Resistance  Reduction 

The wave resistance is not always the 
smallest in symmetric centerline motion. 
Sometimes at supercritical speeds, the wave 
resistance in off-center motion is significantly 
smaller than in the symmetric centerline case. The 
effect depends on where the shock-like bow-wave 
after reflection from the near wall hits the ship along 
its length. If it hits the afterbody, the positive 
pressure produced there tends to push the ship 
forward. But if the separation is sufficiently small, 
the reflected bow wave strikes the forebody creating 
an even higher wave elevation and associated wave 
resistance. 

Instationarity 

The asymmetric off-center motion 
aggravates the instationarity of the flow in the 
soliton-generating transcritical speed range. From 
Fig. 12 we can see that the variation of lateral force 

and yaw moment at £/=1.2 is slow but terribly 
strong and the sign changes periodically. The same 
thing was observed in the experiment. So this speed 
range is dangerous for ship operation. 

Oblique  Motion 

Now we turn to our other case of 
asymmetric motion, i.e., a ship moving with a 
small drift angle but along the cnterline of the 
channel. The longitudinal force, sinkage, trim, 
wetted surface area increment, lateral force and yaw 
moment as functions of depth Froude number are 
shown along with their measured values in Fig. 8 
for a=4°. Fig. 9 shows only the average values as 
functions of drift angle a, at three speeds £7=0.7,1.0 
and 1.3. We see that the calculated longitudinal 
force, sinkage and trim agree quantitatively with the 
measured values and that they are almost independent 
of drift angle in the calculation. However, the 
experiment shows some dependence on drift angle at 
transcritical and supercritical speeds. 

The calculated lateral force and yaw moment 
agree well with measurements upto£7=0.8. Beyond 
this point the measured lateral force increases 
abruptly to a large value while the yaw moment falls 
from a finite value to almost zero. But the calculated 
values show no such trends, they increase 
monotonically. The calculated lateral force and yaw 
moment is closely proportional to drift angle at all 
speeds, but the measured values behave so only upto 
£7=0.8. The wave patterns at these three speeds are 
visualized by density plots in Fig. 10; details around 
the ship, by contour plots in Fig. 11. Fig. 13 shows 
the time history of the lateral force and yaw moment 
at four speeds. 

The experimental phenomenon of the yaw 
moment jumping downward is believed to be due to 
flow separation. Beyond £/=0.8 the waves generated 
become relatively steep which may cause the 
separation to occur earlier. Let us suppose the flow 
separation has occurred somewhere along the 
afterbody. Then there is a deadwater area behind the 
cross flow and the effective blockage coefficient 
there becomes large presumably. The lateral force 
there becomes correspondingly large. Consequently, 
the center of force moves from the forebody to 
midships. As a numerical experiment we can 
artificially multiply the blockage coefficient in 
equation (45) by a factor fc given by 

_ Jl, x > 0, 
c~jl-2*,   ic<0, 

and redo the numerical calculations. It is found that 
the lateral force and yaw moment are really 
influenced by the factor as expected, i.e., they jump 
upward and downward, respectively. 
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Fig 3 Calculated versus measured longitudinal force, sinkage, trim, wetted surface area increment, lateral force 

and yaw moment as functions of speed for Series 60 (CB=0.6) model in off-center motion at h /d =2 and 
Jl=0 1- dots denote the calculated average values, vertical bars represent the range of temporal vanatxon from 
minimum to maximum in the calculations, and crosses mark measured mean values. 
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Fig. 4 Calculated versus measured longitudinal force, sinkage, trim, wetted surface area increment, lateral force 

and yaw moment as functions of speed for Series 60 (CB=0.6) model in off-center motion at h*/d*=2 and 
h=02; dots, vertical bars and crosses as in Fig.3. 
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(a) (C) 

Fig. 6 Density plots of three typical calculated wave patterns of Series 60 (Cß=0.6) ship in off-center (X=0.1) 

motion at subcritical, critical and supercritical speeds with h*/d*=2: (a) Kelvin-like wave pattern at U=0.7 and 
t=8 with t, in plot range (-1,1); (b) Havelock-like wave pattern and upstream solitons at t/=l and t=16 with £ in 
plot range (-2.5,2.5); (c) Mach -shock-wave-like pattern at £/=1.3 and t=8 with C in plot range (-3,3). 
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Fig. 7 Contour plots to visualize details near the ship in the three wave patterns of Fig. 6, where 10 contour lines 
are used to subdivide each plot range uniformly. 
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Fig. 8 Calculated versus measured longitudinal force, sinkage, trim, wetted surface area increment, lateral force 
and yaw moment as functions of speed for Series 60 (CB=0.6) model in oblique motion along tank centerhne at 

drift angle a=4° and h*/d" =2; dots, vertical bars and crosses as in Fig. 3. 
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Fig. 9 Calculated versus measured longitudinal 
force, sinkage, trim, lateral force and yaw moment 
as functions of drift angle a for Series 60 (Cß=0.6) 
model in oblique motion along tank centerline at 
three speeds: £/=0.7, 1.0, and 1.3 with h*/d*=2, 
where dots connected by solid lines denote calculated 
average values and marks "+", "#" and "@" stand 
for measured mean values at U=0.7, 1.0 and 
1.3,.respectively. 
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(a) (b) tc) 

Fig. 10 Density plots of three typical calculated wave patterns of Series 60 (Cß=0.6) ship in oblique motion 
(a=-4°) along tank centerline at subcritical, critical and supercritical speeds with h*/c?=2: (a) Kelvin-like wave 
pattern at £/=0.7 and x=8 with tj in plot range (-1,1); (b) Havelock-like wave pattern and upstream solitons at 
£7=1 and x=16 with £ in plot range (-2.5,2.5); (c) Mach -shock-wave-like pattern at £7=1.3 and x=8 with C in 
plot range (-3,3). 
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Fig. 11 Contour plots to visualize details near the ship in the three wave patterns of Fig. 10, where 10 contour 
lines are used to subdivide each plot range uniformly. 
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DISCUSSION AUTHORS' REPLY 

J.L.H. Marchal 
University of Liege, Belgium 

I have one comment about the conclusion concerning 
the suction and repulsion of the ship by the sidewall. 
Important studies have been realized in my department 
between 1970 an 1974 about the movement of ship in 
shallow-water channel parallel to the axis but off- 
center. We have observed in our towing tank that the 
flow characteristics on one side of the ship are almost 
independent of those on the other side. So, you can 
observe for example a typical critical or supercritical 
flow between the channel bank and the ship; mean- 
while on the other board the flow remains in the 
subcritical ranges. These different situations on each 
board of the ship induce transversal forces which can 
be repulsive or attractive depending on the distance 
between the ship and the bank, on the speed range and 
on the blockage coefficient. Repulsion by the sidewall 
is not mainly a question of wave crests effects. For 
more details, please read my paper presented at the 
PIANC Congress of Leningrad in 1977. 

As maneuverability is concerned, it is mainly a 
problem of relative flow speeds on each board of the 
ship depending on the blockage coefficients. 

You are absolutely right. We actually applied our 
Kutta condition a little ahead of the rear end of the 
waterline, i.e., at the physical location of the sharp 
vertical edge in the Series 60 hullform, where the 
blockage coefficient C(x) is significantly nonzero. The 
rearmost panel in our model contributes to the 
longitudinal and vertical forces but not to the side 
force. 

AUTHORS' REPLY 

Thank you for your very interesting observations. 
Since our mathematical model allows for different 
free-surface elevations and different longitudinal 
velocities on the two sides of the hull, we believe that 
the possibility of the flow being locally subcritical on 
one side and supercritical on the other is automatically 
included. 

DISCUSSION 

R. Beck 
University of Michigan, USA 

You seem to apply a Kutta condition at the stern for 
asymmetric blows. You also show the blockage 
coefficient going to zero at the stern. These two 
conditions are incompatible since a zero blockage 
coefficient implies there is no trailing edge. A sharp 
trailing edge is necessary to apply a Kutta condition. 
How do the authors apply both C(x) = o and Kutta 
conditions at the stern? 
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Linear and Nonlinear Calculations of the Free Surface 
Potential Flow Around Ships in Shallow Water 

K. Kim, Y. Choi (Daewoo Shipbuilding and Heavy Machinery, Ltd., 
Korea), C. Jansson, (Chalmers University of Technology, Sweden), 

L. Larsson (Flowtech International AB, Sweden) 

ABSTRACT 

In the present paper, the shallow 
water effect on the free surface potential 
flow around ships is numerically 
investigated. The numerical methods 
developed are linear and nonlinear 
Rankine source panel methods. Rankine 
sources are distributed on the hull and 
part of the free surface and a symmetry 
condition is applied to simulate the 
bottom. The hull and the wavy free 
surface are discretized by parabolic, 
quadrilateral panels with a bi -linear 
distribution of sources. 

An exact hull boundary condition is 
satisfied in both methods, but different 
free surface boundary conditions are 
used. The linear method is developed 
based on double model approximation and 
thus the free surface condition is 
linearized with respect to the flow with 
an undisturbed surface. In the nonlinear 
method the exact free surfece boundary 
conditions are approached in an iterative 
process, where in each iteration a 
condition, linearized about the previous 
solution, is satisfied on the previously 
calculated wavy surface. The process 
starts with the free surface as a rigid lid 
and stops when the change in wave 
height between two iterations is below a 
given value. There is no need to 
distribute sources on the bottom, which is 
considered the horizontal symmetry plane 
of the problem. 

The methods have been applied for a 
number of test cases including the Wigley 
hull, the Series 60 CB =0.60 hull and a 
twin hull for varying depth Froude 
numbers. Typical shallow water effects, 
such as the widening of the Kelvin angle 
and the sharp increase in wave resistance 
when approaching the critical Froude 

number are well predicted. In the paper 
detailed comparisons with recent 
measurements for the Series 60 CB=0.6 
hull and twin hull cases in the Duisburg 
and SSPA towing tank are made for the 
wave resistance, wave pattern, sinkage, 
trim and pressure distribution on the hull. 
Good agreement is demonstrated. 

NOMENCLATURE 

£7c Ship speed 
V Flow velocity with components 

( <CJC $y, <bz) 

g Acceleration of gravity 
L Length of ship 
T Draught of ship 
H Depth of water 

Fn Froude number 
FnH Depth Froude number 

a Kelvin wave angle 
CB Block coefficient 

4> Total velocity potential 
$ Double model flow velocity 

potential 
a Source strength 

CP Pressure coefficient 
h=z(x,y) Wave elevation 

INTRODUCTION 

There is an appreciable change in 
potential flow when ship is passing from 
deep to shallow water. The first effect of 
the shallow water is the changes in 
resistance. The resistance of a ship is 
quite sensitive to the effects of shallow 
water. When a ship moves with a 
constant speed(U-) on the water surface, 
the resistance increases as the depth(H) 
of water decreases up to the critical depth 
and    decreases    again    as    H    decreases 
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further. Often most of the change in 
resistance is due to the change in wave 
pattern. The wave pattern in deep water 
( V < < ygH) consists of a double set of 
waves, the transverse and diverging 
waves as shown in Fig. 1, the wave 
pattern being contained between the 
straight lines making an angle a of 19 
deg 28 min on each side of the line 
of motion of the point. As water depth 
decreases, the angle ct increases and 
reaches 90 deg as V approaches VgH. 
When V exceeds VgiJ, a begins to 
decrease again. The wave pattern now 
consists only of diverging waves. 

The effect upon resistance due to 
these changes in wave pattern in shallow 
water has attracted the interest of 
scientists for many years. Since 
HavelockQ] studied the effects of shallow 
water on the wave resistance and wave 
pattern for a point pressure impulse 
travelling over a free water surface in 
1908, a number of different approximate 
methods have been proposed to 
investigate the hydrodynamic 
characteristics of ship in shallow water. 
Havelock[2], Schliching[3], Sretensky[4] 
proposed different approaches to obtain 
an appropriate formula for the ship 
resistance in shallow water. Kinoshita[5] 
extended Havelock's theory to satisfy 
the bottom boundary condition more 
exactly and Inui[6] further developed the 
theory to solve the channel problem. 
Kirsch[7] utilized linearized wave theory 
and Bai[8] used localized Finite Element 
Method to carry out calculations of wave 
making resistance for simplified hull form 
in various water depths and channel 
widths. Mueller[9] and Millward[10] 
carried out experiments and theoretical 
calculations based on linearized wave 
theory to investigate the effect of 
shallow water on the resistance of ship. 

More recently the Rankine source 
panel method based on linear wave 
theory [11] has been applied to compute 
the wave resistance of ships in shallow 
water. Yasukawa[12] developed a first 
order panel method based on Dawson's 
approach for the linear free surface 
condition. The bottom boundary condition 
is satisfied exactly by covering part of 
the bottom surface with Rankine sources. 
Lee[13] improved the solution efficiency 
over Yasukawa's work by choosing the 
Green function to be the sum of the 
Rankine source and its image with 
respect to the bottom surface. Similary a 
symmetry condition is applied at the 
bottom surface in the present method to 
simulate   the   shallow   water   effect   in   a 

purely numerical way. The present linear 
method has been tested for a water jet 
catamaran to predict the effect of shallow 
water on wave pattern and wave 
resistance. Good agreement with the 
measurements made by SSPA is obtained. 

An attempt to investigate the 
nonlinear free surface problem in shallow 
water was made by Ni[14] and Kim[15]. 
In the present paper, a further attempt to 
improve the accuracy has been made by 
taking account of the nonlinear effects in 
the free surface boundary condition. The 
solution of the wavy potential, which 
satisfies the exact boundary condition on 
the hull and the free surface, is obtained 
through iterations and in each iteration 
the free surface boundary condition is 
linearized, based on the small perturbation 
principle, about the previous solution. The 
iteration starts from the linear solution. 
In each iteration the hull and free surface 
panels are adjusted according to the new 
wavy surface and the sources are moved 
accordingly to simulate kinematic and 
dynamic boundary condition more exactly. 
Upon convergence - a converged solution 
is usually obtained after 6 to 10 iterations 
- the nonlinear terms go to zero and the 
solution is exact with respect to the 
boundary conditions. The method is a 
generalization of the potential flow 
module of the code SfflPFLOW[16], partly 
developed by the first author[17]. 

The present method has been applied 
to compute the hydrodynamic 
characteristics in shallow water for the 
Wigley hull and Series 60 hull with block 
coefficient 0.6. The importance of 
nonlinearity is discussed in some detail 
with relation to the effect of shallow 
water on wave pattern and wave 
resistance. Comparisons are made with 
experiment. 

MATHEMATICAL FORMULATION 

A ship, piercing the free surface, is 
assumed to be fixed in a uniform onset 
flow of velocity Um and the flow is 
considered inviscid, irrotational and 
incompressible. Then the flow field 
around the ship may be described by a 
velocity potential <t>, which is generated 
by a certain distribution of sources on a 
surface S and by the uniform onset flow 
in the X direction(see Fig. 2). 

UX,Y,Z)   =   j r
a

(
iq)

Q) dS +  U~X,   (1) 

where   o(q)  is the source density on 
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the surface element dS and r(p,q) is the 
distance from the point q to the field 
point p(X,Y,Z) where the potential is 
being evaluated. 

The potential  <t>   given in   Eq. (1) is 
governed by the Laplace equation 

V 0 =   0     in the fluid domain. (2) 

This is an elliptic partial differential 
equation which requires boundary 
conditions at all boundaries of the 
computational domain. These boundaries 
for the shallow water problem are the 
hull, the free water surface and sea 
bottom. 

The hull boundary condition simply 
expresses the fact that the flow must be 
tangential to the hull surface, i. e. the 
normal component of the velocity must be 
zero: 

on   the hull. (3) 

In equation (3) and below the 
subscript n indicates differentiation in the 
normal direction. The same rule applies to 
the X. Y, Z directions. 

At the free surface Z = h(X,Y) the 
flow must be tangential. Thus 

Oofe 0, (on Z = h) (4) 

where the subscript fs stands for the 
free surface. This surface is ,however, 
unknown to begin with. A second 
boundary condition is therefore required. 
This expresses the fact that the pressure 
is constant on the surface: 

constant.       (on Z = h) (5) 

Taking the dot product of the normal 
vector to free surface and the velocity 
vector, Eq.(4) may be writtern as 

Di(o,h.) = <bxhx+$yhy-$, = 0, (on Z = h)     (6) 

while   (5)   may   be   expressed   using 
the Bernoulli equation as 

D2(o,h) = gh+^-(V$- V$-£/2o>) = 0. 

(on Z = h)   (7) 

The kinematic boundary condition on 
the sea bottom is 

0     at the bottom surface. (8) 

In the infinite depth case, this 
equation is replaced by the condition that 
the disturbance due to body must vanish, 
l. e. 

V0    =    Uo as Z - - (9) 

There is also a further condition to 
be required, i. e. waves uptream of the 
ship shall be prevented. 

NUMERICAL METHOD 

The exact problem defined by 
equations (l)-(9) is nonlinear, since the 
free surface boundary conditions (6) and 
(7) are nonlinear and should be exactly 
satisfied on the wavy surface Z = h(X,Y), 
which is unknown, and must be computed 
as a part of the solution. Thus, numerical 
methods, which have been applied to 
solve the problem, usually entail some 
kind of linearization procedure. 

In the classical linearized wave 
theory, which has been the basis for the 
work in this area for the major part of 
the century, the free surface boundary 
condition is linearized about the 
undisturbed flow. All disturbances due to 
the ship must then be small, and the 
computed ships have to be very slender. 
This is not a good approximation for 
ships of normal fullness. A better 
approach based on double model linearized 
theory was proposed by Dawsontll]. In 
the double model linearized theory an 
exact boundary condition is satisfied on 
the hull and bottom surface, while on the 
free surface the boundary condition is 
linearized with respect to the double 
model solution. This solution can be 
found by specifying the free surface as a 
symmetry plane, i. e. to use a double 
model, made up of the underwater part 
plus its image in the undisturbed water 
surface. 

For the deep water case, the double 
model linearized theory has been applied 
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frequently to predict the wave pattern and 
ship wave resistance. Successful 
predictions have been made for many 
practical applications, however, the 
accuracy for the shallow water case is 
relatively poor. The most significant 
inaccuracy can be found in the prediction 
of the wave patterns near the bow and 
stern region. The poor resolution may 
result partially from the fact that the 
waves in shallow water are very steep, so 
the double model approximation may not 
be valid. Another important fact is that 
the wave pattern near the bow and stern 
region is strongly influenced by the 
nonlinear terms and the linearized free 
surface condition can not simulate the 
exact boundary condition properely. 

An attempt to improve the accuracy 
has been made in the present paper by 
taking the nonlinear effects into account 
in the free surface boundary condition. In 
contrast to the linear wave theory, in the 
present nonlinear method an exact 
boundary condition is satisfied both on 
the wetted hull surface and the wavy free 
surface. A single model with higher order 
panels both on the hull and free surface 
is used and the bottom surface is 
assumed to be a symmetry plane to 
simulate the shallow water effect as 
shown in Fig. 3. The influence of real 
hull panel as well as its image panel with 
respect to the bottom surface is taken 
into account on the computation of the 
velocity influence coefficient. 

Introducing     small     perturbations ( 
5o, 8ft    )   with   respect   to   the   known 

solutions( o°, ft   ) 

ou  + 5o 

ft = ft   + 5ft 
(10) 

the nonlinear form of the free 
surface boundary conditions(6) and (7) 
can be linearized with respect to the 
known solution in a first order Tayor 
series expansion and the following 
relations may be derived from (6) and (7), 
see [17] 

Di(a.h) =  Di(a°,h°) +   -~-Di(a,h°)aL 

+ -|^-.Di(o0,ft)5ft 

+    ($„^ + *y^?-*»)5Ä   =    0        (11) 

Dz(o,h) =  D2(o°,h°) +   -j^-D2(a,h0)ho 

+   -jj^D2(o\h)hh 

=   (1 +  -j(M»+*j0j*+***»))8fc 

-2(*,80 + *y80y + *^0,)) + /i = 0 (12) 

<S>xhx + $yhy-<b7   +      0x5/2*+ 0yS/}y 

The partial increment of Dl and D2 
should be found in such a way that a 
new velocity potential 0 = $ +5$ 
induced by introducing small 
perturbations 5a and 6ft should satisfy 
Eqs (6) and (7) on the new surface 
ft = ft0 + 5 ft. It is a fundamental 
assumption of the present method that the 
perturbations of source( 5o) and wave 
elevation( 6ft) are small in certain senses. 
In a Taylor series, higher order terms in 
these quantities then become very small 
and can be neglected in each iteration . 
As pointed above these go to zero upon 
convergence. 

Here the superscript, o, corresponds 
to the known solution. In the first 
iteration this may be either the double 
model solution or single model solution. 
Both possibilities have been tested and 
the difference in the results was not 
noticeable. 

The nonlinear wave resistance 
theory goes further than the double model 
linearization. Rather than terminating the 
calculations after obtaining the linear 
solution, the process is repeated in an 
iterative scheme always linearizing about 
the previous solution, and applying the 
boundary condition on the wavy surface 
Z=h(X,Y) just obtained. The principle is 
explained in Fig. 4. The iteration starts 
from the linear solution. In each iteration 
the hull and the free surface panels are 
adjusted according to the new wavy 
surface and the sources are moved 
accordingly to simulate the boundary 
condition more exactly. In the new 
solution the kinematic and dynamic 
boundary conditions are satisfied 
simultaneously, i. e. the new source 
strength as well as the new wave 
elevation are obtained at the same time. 
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In the limit this procedure is exact, since 
the nonlinear terms neglected go to zero 
when the difference between two iteration 
goes to zero. Usually 6-10 iterations are 
required for convergence. 

RESULTS 

To investigate the shallow water 
effect on wave resistance and wave 
pattern around the hull, the method 
presented has been tested for the Wigley 
hull, the Series 60 Cs=0.6 hull and a 66 
m water jet catamaran. The first _ two 
cases are computed using the nonlinear 
method while the linear method is used 
for   the   catamaran   case. The   free 
surface source panels are lifted one 
typical panel dimension above the free 
surface in the nonlinear computations 
since this has shown to improve the 
predicted wave length and to stabilize the 
iterative procedure. Higher order panels 
are used both on the hull and on the free 
surface. The free surface is in the first 
two cases covered by panels from three 
quarters a ship length upstream to one 
ship length downstream of the ship. The 
transverse extension of the free surface 
is 1.25 ship lengths. For the catamaran 
case the free surface is extended to one 
ship length upstream and to 0.9 ship 
lengths in the transverse direction. A 
numerical operator is used in the 
computation of the streamwise and 
transverse derivative of the free surface 
velocities. The streamwise derivatives are 
computed using a four point upstream 
operator and the transverse derivatives 
are computed using a central difference 
operator. 

The numerical calculations were 
performed in the model free condition, i. 
e. the model can vary its vertical position 
and trim during the computation in the 
same way as the free-running model 
self-adjusts the position to achieve 
dynamic equilibrium during the 
experiment. Such a calculation has to be 
carried out iteratively. In each nonlinear 
iteration the sinking force and trimming 
moment are obtained from the computed 
pressure distribution on the hull. 
Thereafter the hull is repositioned in such 
a way that the force and moment _ are 
balanced. The wave resistance is obtained 
from higher order pressure integration 
over the hull surface. 

The principal particulars of the 
Wigley hull and the Series 60 CB=0.6 
hull are summarized in Table 1, and the 
test conditions in the study of the shallow 
water effect on  wave  resistance  for the 

Wigley hull and Series 60   CB = 0.6 hull 
are listed in Table 2 and 3. 

The Wigley Hull 

The shallow water free surface flow 
around the Wigley hull moving with a 
constant ship speed of Fn=0.316 is 
computed for six different water depths, 
ranging from subcritical depth(H/T=6.4, 
4.8, 3.2. 2.4 and 2.0) to supercritical 
depth(H/T=1.4) including critical 
depth(H/T=1.6). Numerical computations 
for nonlinear iteration are carried out first 
without any relaxation. The panel 
representation for the Wigley hull with 
180 effective panels on the hull surface 
and 2640 square panels on the free 
surface is shown in Fig 5. 

The convergence history of the 
computed wave profile is presented in Fig 
6a for infinite water depth. The iteration 
procedure started from the linear wave 
and converged very quickly only after 3 
to 4 iterations. The converged wave 
profile is plotted in Fig. 6b and compared 
with the measurements(dotted line) and 
linear wave profile(solid line). No great 
difference can be observed between the 
two computed wave profiles and both 
wave profiles give fairly good prediction. 
The nonlinear effect does not seem to be 
very significant when the water depth is 
very large(H/T = °°). As water depth 
decreases to the critical depth, however, 
the difference becomes larger and the 
expected steeper bow and stern waves 
are generated as shown in Fig. 6c. This 
indicates that the second order nonlinear 
effect seems very significant for shallow 
water case although the hull is quite 
slender. 

A similar trend can be observed for 
the convergence history of computed 
wave resistance as shown in Fig. 7. The 
iteration precedure converges after 8 to 
12 iterations for all test cases. The 
converged wave resistance coefficient 
versus water depth Froude no. is 
presented in Fig 8. The wave resistance 
increases rapidly when the water depth 
approaches the critical depth. The wave 
resistance reaches its maximum not at the 
critical speed(.Fnff=1.0) but at a slightly 
faster speed( FnH=1.067). 

Fig 9 shows the wave profile at the 
centerline and on the hull surface for 
different water depths. The amplitude 
and wave length become larger and 
longer as water depth decreases. 
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Wave patterns generated by the free 
running Wigley hull for five different 
water depths at Fn = 0.316 are presented 
in Fig 10. The predicted wave pattern in 
deep water is given in Fig 10a and 
compared with the measured one[18]. As 
can be seen in figure 10a, diverging 
waves radiating from the bow together 
with transverse waves following behind 
the stern of ship are well predicted and 
look very similar to the measured wave 
pattern given in Fig 10b. The predicted 
wave angle is 17 deg 20 min which is 
very similar to the measured one 
(approximatly 17.5 degree). This good 
agreement is partly due to the fact that 
the wave angle is measured in local fields 
where Kelvin wave is not fully developed. 
For values of H/T larger than about 2.4, 
a similar wave pattern can be observed in 
Fig 10c. As H/T decreases below this 
value the angle a increases and reaches 
its maximum as FnH approaches 1.0 (Fig 
lOe). At this critical condition, all the 
wave making effect is concentrated in a 
single crest at bow and very pronounced 
wave crests are created at stern. 

The Series 60   Cs=0.6 Hull 

Calculations were performed for the 
Series 60 CB=0.6 hull at relative depths 
H/T=20.0, 3.2, 2.0, 1.5 and 1.2. The panel 
representation with 2980 effective panel 
elements are presented in Fig 11. The 
computations were carried out using an 
under relaxation of 0.5 on the source 
strength. Detailed comparisons with 
recent measurements in the BSHC[19] 
and Duisburg[21] towing tanks are made 
for the wave resistance, wave pattern, 
sinkage and pressure distribution on the 
hull. 

Converged solutions were obtained 
for all test cases. The convergence 
history for nonlinear iterations and 
sinkage & trim iterations are presented in 
Figs 12 and 13. Usually 6 to 10 
iterations for wave resistance calculation 
and 5 to 6 iterations for sinkage & trim 
calculation are required. A similar trend 
can be observed for the convergence 
history of the calculated wave profiles in 
Fig. 14 at different depth Froude numbers 
(a) Fn=0.350, H/T=3.2, (b) Fn=0.250, 
H/T=2.0 and (c) Fn=0.200, H/T=1.2 
respectively. 

The computed wave pattern for 
Fn=0.316 in deep water is shown in Fig. 
15 and the wave profile is compared to 
the experimental results [22] at 4 
longitudinal cuts  in Figs   16a  -  d where 

the thick lines are experiments. The 
figures show a good correspondence 
between the computed and measured 
profiles except far downstream for the 
cuts close to the hull. The difference 
downstream of the hull is probably due to 
viscous effects in the wake of the hull. 

The computed wave pattern 
resistance coefficients are compared with 
the linear calculations and measurements 
made by Lazarov & Angelov[19] in Fig. 
17 at relative depths (a) H/T=20.0, (b) 
H/T=2.0 and (c) H/T=1.5 respectively. 
These measured values are obtained 
from the longitudinal cut wave analysis 
method for a 4.768 M model. The wave 
profile is measured in one longitudinal 
section parallel to the direction of motion 
at a distance Y/L=0.45 from the center 
plane. As can be seen from the figures, 
the present calculations show fairly good 
agreement with measurements and 
significant improvement over the linear 
method[19] is achived for all test cases. 
As expected the agreement between 
calculations and measurements is very 
good at H/T=20.0, but the disagreement 
increases with decreasing water depth. 
For water depth H/T=1.5, the computed 
resistance curve shows the same trend as 
the measurements, but the curve is 
shifted to higher velocities. A probable 
reason for this is that viscous effect, 
which is neglected in the present 
calculation, seems to be more important in 
shallow water than in deep water. But no 
clear-cut conclusion can be drawn. 

In Figs. 18-22 detailed comparisons 
with measurements in the Duisburg 
towing tank are made for sinkage, wave 
patterns and pressure distribution around 
a free running model with a constant 
speed of Fn = 0.175 in shallow water, 
H/T = 3.2, 2.0 and 1.2. 

The computed sinkage at the center 
of flotation are compared with the 
measurements made for two geosim 
models with different length(LWL) of 
4.768 m(M1413) and 6.198 m(M1400) in 
Fig. 18. Most striking feature in the 
measurements is that there is a large 
difference between the sinkage of the two 
models. Very good correspondence 
between the computed and one of the 
measured values is obtained for H/T = 
3.2 and 2.0, but for H/T = 1.2 the 
sinkage is a little bit underpredicted. 

The computed wave pattern is 
shown in Fig. 19 and compared with the 
experimental results along the hull. 
Remarkable changes in the wave pattern 
can be observed in the measurements and 
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the typical shallow water effects of a 
widening of the Kelvin angle and of bow 
impounding - midship trough - stern 
impounding of wave profiles are fairly 
well predicted. The change of wave 
pattern is a consequence of the strong 
pressure changes around the hull caused 
by the restricted water depth. The 
pressure contour plot given in Fig. 20 
explains the reason for the deep waves 
generated beside midship body in shallow 
water. The pressure gradient along the 
waterline is much steeper in H/T=1.2 
than in H/T=2.0 as shown in Fig. 21. 
The deeper wave trough around the 
midship for H/T=1.2 is caused by the 
lower pressure developed there; the 
minimum Cp value being -0.414 compared 
to -0.215 for H/T=2.0. Another 
interesting point is that the equal 
pressure lines for H/T=1.2 are more 
vertical. This may imply that the flow 
tends to pass around the hull rather than 
below it. This is confirmed in the velocity 
vector plot given in Fig. 22. 

Water Jet Catamaran 

To investigate the ability to predict 
multihull cases and the effect of shallow 
water, linear calculations were carried out 
for a 66 m water jet catamaran, which 
had been tested in deep and shallow 
water in a speed range from 15 to 40 
konts. In the shallow water case the 
depth was 10 m and the critical speed 
19.3 knots, corresponding to a Froude 
number based on LWL of 0.41. For 
proprietry reasons no quantitative values 
can be given for this case. 

Wave contours for 19.3 knots, deep 
and shallow water, are given in Figs 23 
and 24. This Froude number is close to 
the critical one and there is a large 
difference between the wave patterns. In 
general, much steeper waves are 
generated in the shallow water case and 
the direction of the wave crests is close 
to 90 degrees, as expected. 

The predicted wave resistance in 
deep water is computed with the 
measured residuary resistance based on 
ITTC-57 method in Fig 25. Fair 
agreement is noted. Since the lowest 
speed corresponds to a Froude number of 
only 0.32 the transom condition is 
probably violated there. Fair agreement is 
also noted between the measured and 
predicted trim angles, as can be seen in 
Fig. 26, and the same is true for the 
sinkage. 

In    Fig.    27    the    change   in    wave 

resistance(residuary resistance) due to the 
shallow water is presented. As expected, 
there is a peak in resistance close to the 
critical speed. What is more unexpected is 
the drop in resistance for the higher 
speeds, compared to the deep water case. 
The magnitude of the change in wave 
resistance is well predicted except close 
to the peak where the effect of shallow 
water is underpredicted. The speed where 
the peak occurs is however well 
predicted. Also the trim change is well 
predicted, as appears from Fig. 28. 

CONCLUSIONS 

The shallow water effect on the free 
surface potential flow around ships is 
numerically investigated by linear and 
nonlinear Rankine source panel methods. 
Rankine sources are distributed on the 
hull and part of the free surface and a 
symmetry condition is applied to simulate 
the bottom. An exact hull boundary 
condition is satisfied in both methods, but 
different free      surface      boundary 
conditions are used. In the linear method 
the free surface condition is linearized 
with respect to double model flow while 
in the nonlinear method the exact free 
surfece boundary conditions are 
approached in an iterative process. 

The present methods have been 
tested for the Wigley hull, the Series 60 
CB =0.6 hull and a water jet catamaran 

for varying depth Froude numbers. 
Detailed comparisons with recent 
measurements for the Series 60 and 
catamaran cases in the Duisburg and 
SSPA are made. Typical shallow water 
effects, such as the widening of the 
Kelvin angle and the sharp increase in 
wave resistance when approaching the 
critical Froude number are well predicted. 
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Table 1 Main Parameters of the Wigley 
Hull and the Series 60 Cs=0.6 
Hull 

Wigley Hull Series 60 Hull 

B/Lpp 0.100 0.1333 

T/Lpp 0.0625 0.0625 

B/T 16.0 2.50 

CB 0.444 0.600 
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Table 2   Test Codition in the Study of 
the Shallow Water Effect on 
Wave Resistance for the Wigley 
HulK L/T=16, B/T=1.6 ) 

1 2 3 4 5 6 7 

H/T 6.4 4.8 3.2 2.4 2.0 1.6 1.4 

FnH 0.45 0.50 0.58 0.71 0.89 1.00 1.07 

Table 3   Test Condition in the Study of 
the Shallow Water Effect on 
Wave Resistance and Wave 
Pattern for the Series 60, 
CB = 0.60 Hull 

H/T Ship Speed in Fn (FHH) 

1.2 
0.125(0.494),  0.150(0.593) 
0.175(0.698),  0.200(0.791) 

1.5 
0.200(0.653),  0.210(0.686) 
0.220(0.719),  0.230(0.751) 
0.240(0.784) 

2.0 
0.150(0.459),  0.175(0.541) 
0.200(0.613),  0.225(0.689) 
0.240(0.735),  0.250(0.766) 

3.2 
0.200(0.484),  0.250(0.605) 
0.300(0.726),  0.350(0.848) 

20.0 
0.150(0.134),  0.200(0.179) 
0.250(0.223),  0.300(0.268) 

416 



a = 19° 28" 

V 
gh 

0.40 

V 
gh 

0.99 

V 
gh 

1.4 

a = 78° 

a = 45° 

1st   REFL 

Fig. 3   Definition Sketch of Numerical 
treatment   of Shallow Water Effect 

Fig. 4   Nonlinear Free Surface Iteration 

/LS-0.75 

Fig.l   Effect of Shallow Water on Wave 
Pattern[20] 

■A 72.0 

Fig.2   Coordinate System 
Fig. 5   Typical Panel Arrangement for the 

Wigley Hull 

417 



WAVE 

CX10-   i) 

• n'0 

■ Ä 
/ v 

\ •" 
"""•H*. J \ 

i 
F p AP 

0.00000  0.30000  0.60000  0.90000  1.20000  1.50000 

Fig. 6a Convergence History of the 
Computed Wave Profiles 
at Fn=0.316 for the Wigley Hull 
in Deep Water 

0.00000  0.30000  0.60000  0.90000  1.S0O00  1.50000 

Fig. 6b Computed and Measured Wave 
Profiles at Fn=0.316 for the Wigley 
Hull in Deep Water. 

2.50 

2.00 

O 1.50 - 
# 
Ü 1.00 

0.50 

0.00 

H/T=1 -6 

*=*= »    •■* * * *» 

—-*       H/T=2.0 
—*        H/T=2.4 

i i i i i i i i I i i i i i i i i i i i i i i i i i i i I i i i i i i i i i l 

5 10 15 20 
iteration  no. 

Fig. 7 Convergence History of the 
Computed Wave Resistance 
at Fn=0.316,   the Wigley Hull 

20.00 -i 

15.00 

# 10.00 - 

o 
5.00 

0.00 -) 1 1 1 1 1 1 1 i 1 1 1 1 1—i 
0.0        1.0       2.0       3.0       4.0       5.0       6.0       7.0 

H/T 

Fig. 8   Effect of Shallow Water on Wave 
Resistance for the Wigley Hull 
(Fn=0.316) 

0.00000  0.30000  0.60000  0.90000  1.20000  1.50000 

Fig. 6c Convergence History of the 
Computed Wave Profiles 
at Fn=0.316 for the Wigley Hull 
in Critical Depth of Water. 

-0.20000 

0.00000  0.30000  0.60000  0.90000  1.20000  1.50000 

Fig. 9   Comparison of the Calculated Wave 
Profiles in Deep Water and 
Shallow Water for the Wigley Hull 

418 



(a) Computed Wave Pattern 
in deep water 

(e) Computed Wave Pattern 
at H/T = 1.6 

WAVE COMtoiin "r Winter Moori.<?» 

t-, • 1500      K-l'l? 

Jin- o in     B^-oio 

(b) Measured Wave Pattern 
in deep Water Experiment!. 18] 

(c) Computed Wave Pattern 
at H/T=2.4 

(f) Computed Wave Pattern 
at H/T = 1.4 

Fig. 10 Wave Pattern Changes due to 
Decrease of Water Depth 
at Fn=0.316, the Wigley Hull 

X/U=-0.T5 

A 

(d) Computed Wave Pattern 
at H/T = 2.0 

Fig. 11   Panel Arrangement for the Series 
60, CB=0.6 Hull 

419 



6.40 

5.60 : 

4.80 

„    4.00 
O 
- 3.20 d 

O 2.40 

1.60 

0.80 - 

Fn-0.35 

0.00 

Fn=0.30 

Fn=0.20 
-"   Fn=0.25 

3        4        5        6        7 
Iteration  No. 

10 

1.00 

0.80 

S-0.60 
_J 

S.o.« 
o 

m 0.20 

0.00 

Fn=0.20 

Fn=0.25 

Fn=0.30 

-• « • • •    Fn=0.35 

6      7      8      9     10    11 
iteration  no. 

(a) H/T - 3.2 (a) H/T = 3.2 

o 

1.20 -i 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 

P=*= 
Fn=0.15 j* Ö Fn=1TT75* 

Fn=0.25 

 &     Fn=0.225 

Fn=0.20 

2        3       4       5        6        7 
Iteration   No. 

10      11 

0.60 

0.50 

) 
:o.4o 
L 
L 

'0.30 
a 

en 
D0.20 
c 

<"0.10 

0.00 

Fn=0.15 

Fn=0.175 

Fn-0.2 

Fn-0.225 

Fn=0.25 

6       7       8       9       10 
iteration  no. 

(b) H/T = 2.0 (b) H/T = 2.0 

0./2 - 

0.64 z 

0.56 z 

0.48 z 

O 0.40 z 

% 0.32 z 
u          : 

0.24 - 

\\    / 

QfflfiOP Fn=0.15 
oaaas Fn=0.175 
4A£A£ Fn=0.18 
ooooo Fn-0.19 
-t±±±d- Fn=0.20 

0.16 : 

0.08 : ^E ̂  »—I trr-1      V    -I » 

0.00 : 
I                   I                   I i         i i       i       i        i       i 

4        5        6        7 
Iteration   No. 

10 

0.80 

0.70 

"0 0.60 

Q.0.50 
a. 

\J_0.40 

cno.30 o 
C0.20 
in 

0.10 

o.oo 

Fn=0.125 

Fn=0.15 

Fn-0.175 

Fn=0.2 

7       8       9       10 
iteration  no. 

(c) H/T = 1.2 

Fig. 12   Convergence History of Wave 
Pattern Resistance for the Series 
60,   CB=0.6 Hull 

(c) H/T = 1.2 

Fig. 13 Convergence History of Sinkage 
for the Series 60   CB = 0.6 Hull 

420 



-0.15000 

iViülw^^v^l^SKäsA 

5^[ // v. 

Wfflf{0y 

0.00000  0.25000  0.50000  0.75000  1.00000  1.25000 

(a) H/T = 3.2 

-0.05000 

O.OOOOO  0.25000  O.SO0O0  0.75000  1.00000  1.25000 

(b) H/T = 2.0 

0.00000      0.25000      0.50000      0.75000      1.00000       1.25000 

(c) H/T = 1.2 

Fig. 14 Convergence History for Wave 
Profiles, the Series 60   CB = 0.6 
Hull 

Fig. 15 Computed Wave Patterns at 
Fn=0.316 for Infinite Depth 
of Water 

(a) y/L = 0.0755 

(b) y/L = 0.1083 

421 



Cw'10* 

8.00 - 

5.00 
Boppg measurement : model  173 
poogo present calculation 
»»*«* linear theory(19) 

(c) y/L = 0.1739 (b) H/T = 2.0 

(d) y/L = 0.2067 

Fig. 16 Comparison between Computed 
and Measured Wave Profiles at 
Fn=0.316 for the Series 60 
Cs=0.6 Hull in Deep Water 

0.12       0.14       0.18       0.16       0J80       0.2Z       0.2*       0X6       0.28 

Fn 

(c) H/T = 1.5 

Fig. 17 Wave Pattern Resistance, the 
Series 60, CB=0.6 Hull 

CWP'IO' 

6.00 : 

a a goo measurement : model  173 
oooo present calculation 

««»»« linear theory(19) 

8.00 

7.00 

r,     8-°° o 

* 50° : 
5 *.oo - 
\ 
g"3.00 

C 
W 2.00 :_ 

1.00 : 

oaoap m«a#uremflnt : M1400 
■3J3J2fiE> measurement : M1413 
4AAA* present calculation 

TTTTTTTTTTTTTTTTTTl 

Fn 

"0.10        0.12       0.1*       0.16        0.18       0.20       0.22       0.2*       0.26 

Fn 

(a) H/T = 20.0 (a) H/T = 3.2 

422 



8.00 - 

7.00 -m 

6.00 : 
n 
O 

,5.00 

_l 
5+.00 - 
\ 
<?3.00: 

& 2.00 

1.00 - 

 ) measurement : M1400 
QOOOP measurement : M1413 

> present calculation 

IIT|IIIIIIIII|'" niiii|"iiiuirrTTiniiii|ri 
O'AB 

(b) H/T = 2.0 

8.00 i 

7.00 

6.00 
o 
»5.00 

_I 

34.00 

g"3.00 

.£ 
i" 2.00 -| 

1.00 : 

OQQflO meaaurement : M1400 
gonop measurement : M1413 

» present calculation 

■n TU 1 111 [in 111 n 111 u L 11111111 
°-000.08 Olli 0Ü2  0.U   '"Olle 0.18 0.20 0.22 

Fn 

(c) H/r = 1.2 

Fig. 18 Computed and Measured Sinkage 
for the Series 60 CB=0.6   Hull 

~t\%oL 

stern 

As 

(b) H/T = 1.2 

Fig. 19 Comparison between Computed 
Wave Patterns(top-half) and the 
Measurements(bottom-half) at 
Fn=0.175 for the Series 60 CB=0.6 
Hull 

(a) front view 
H/T=2.0(right), H/T=1.2(left) 

(a) H/T = 2.0 

(b) bottom view 
H/T=2.0(bottom), H/T=1.2(top) 

Fig. 20 Pressure contours at Fn=0.175 
for the Series 60   CB=0.6 Hull 

423 



0.30000 

0.15000 

PRES 

0.00000 

-0.15000- 

-0.30000- 

-0.45000- 

o.ooooo o.aoooo 0.40000 0.60000 O.BOOOO 1.00000 

Fig. 21 Pressure Gradient along Design 
Load Waterline 

K 

H/T = 2.( '              / 

H 'T = l.z\ 

F P A P 

Fig. 24 Wave Pattern at 20 Knots, 10 m 
Water Depth. 

H/T=1.2 H/T=2.0 

Fig. 22 Velocity Vector Plot 

' 

^ 

15.0 20.0 25.0 30.0 35.0 *0.0 
V  [KNOTS] 

Fig. 25 Computed Wave Resistance in 
Deep Water. Symbols represent 
calculations. 

Fig. 23 Wave Pattern at 20 knots, Deep 
Water, Water Jet Catamaran 

I 

/ / \        — 

li.O 20.0 25.0 30.0 35.0 40.0 
V  [KNOTS] 

Fig. 26 Trim in Deep Water 

424 



1 
15.0 20.0 25.0 30.0    *    35.0 40.0 

V  [KNOTS] 

Fig. 27 Change in Wave Resistance at 
10m Water Depth 

m^ i 

15.0        20.0 25.0 30.0 35.0 »0  0 
V [KNOTS] 

Fig. 28 Change in Trim at 10 m Water 
Depth 

425 



DISCUSSION 

H. Choi 
Seoul National University, Korea 

When a ship moves near the critical speed in shallow 
water, it has long been observed experimentally and 
numerically that the wave field is hardly steady and 
there are wave components propagating upstream. I 
am curious to know how you obtained steady solutions 
and how you carried out wave pattern analysis. 

Z. Zou 
Universität Hamburg, Germany 

nonlinear wave field by a ship moving with a near 
critical speed in a horizontally unbounded domain. In 
our preliminary study, we assumed that the flow is 
steady and consider only steady state solutions because 
it requires much less computation time. The present 
study demonstrates that converged solutions are 
always obtained through iterations for all test cases, 
and typical shallow water effects, such as the widening 
of the Kelvin angle and the sharp increase in wave 
resistance when approaching the critical speed, are 
well predicted. But this does not mean that the 
problem we are solving is necessarily steady. A more 
rigorous study should be pursued. It may be 
interesting to make an unsteady computation using the 
same code to see the importance of unsteadiness. 

For ships traveling in shallow water and free to sink 
and trim, the hull may touch or nearly touch the 
bottom on some conditions so that the iteration will 
certainly break down or become difficult to converge. 
Did you encounter any problem in this respect in your 
computation? 

K. Nakatake 
Kyushu University, Japan 

In reply to the questions raised by Dr. Zou: We have 
not encountered the difficulty mentioned by Dr. Zou, 
but we realize it could cause problems for smaller gaps 
between the hull and the sea bottom. 

Professor Nakatake suggests that we check the method 
by computing the wave pattern for a point doublet. 
The point doublet could be an interesting test case, but 
it would call for some changes to the code, which can 
only handle physical bodies, so we have not yet tried it. 

Several years ago, we tried to obtain the wave patterns 
shown in Fig. 1 using a Rankine source method for a 
point doublet. But we could not. Did you check your 
method for that case? 

AUTHORS' REPLY 

First of all, we would like to thank all discussants for 
their thoughtful remarks and comments. 

We agree with Professor Choi's comment that a ship 
moving with a near critical speed generates a series of 
upstream advancing waves periodically and there also 
have been many reports on observations in nature of 
propagating upstream waves in a shallow water 
channel and towing tank. However, it is not quite 
certain yet that the forward running solitary waves are 
experimentally discernible when a ship is moving in a 
horizontally "unbounded" fluid domain. As far as the 
current authors know, only a few investigations have 
been made so far for the problem and it is still an open 
question whether it is a steady or an unsteady problem. 

To better understand the related physical phenomena, 
this study was initiated, and thus the purpose of the 
present study is to investigate the generation of a 
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Observations of the Influence of Nuclei Content on the 
Inception and Form of Attached Captation 

C. Li, S. Ceccio (University of Michigan, USA) 

ABSTRACT 

The inception and form of 
attached cavitation can be 
significantly effected by the presence 
of traveling bubbles. Traveling 
bubbles may induce transient 
regions of incipient attached 
cavitation. Furthermore, traveling 
bubbles may sweep away regions of 
developed attached cavitation. The 
number and size of traveling bubbles 
which will occur in a flow is strongly 
dependent on the freestream nuclei 
distribution. Consequently, 
bubble/attached cavity interactions 
provide a mechanism whereby the 
freestream nuclei distribution can 
significantly influence the inception 
and form of attached cavitation. 
Experiments were performed on a 
rectangular planform hydrofoil to 
investigate this phenomena. 
Individual cavitation nuclei were 
created in the flow via a focused laser 
beam to create individual traveling 
bubbles. These     bubbles     were 
observed as they interacted with the 
flow near the foil and as they 
interacted with developed attached 
cavitation present at the foil 
midcord. Tripping was used to 
stimulate turbulent transition in the 
boundary layer, and the interaction 
of the travelling bubbles differed for 
the smooth and tripped conditions. 
The differences in how the travelling 
bubbles interact with the boundary 
layer  and  the  attached  cavitation  can 

be    related    to    the    state    of   the 
boundary   layer. 

NOMENCLATURE 

c 
Po 
Pv 
q 
Rec 

Res 

Uo 
a 
8 

v 
P 
a 

hydrofoil  cord  length 
freestream   static   pressure 
water  vapor  pressure 
dynamic head,  1/2 pUo^ 
Reynolds number based on 
hydrofoil cord, U0c/v 
Reynolds number based on 
streamwise distance from  the 
hydrofoil leading edge, U0s/v 
streamwise distance from the 
hydrofoil  leading  edge 
freestream   velocity 
hydrofoil  attack angle 
laminar boundary layer 
thickness for a flat plate, 
5 sRes"

1/2 

water  kinematic   viscosity 
water   density 
cavitation   number, 
(Po- Pv)/q 

INTRODUCTION 

Cavitation researchers have 
long recognized the important 
influence the freestream nuclei 
content has on the overall cavitation 
process. Traveling bubble cavitation 
is directly related to the flux of nuclei 
into a low pressure region (Ceccio 
and Brennen (1991)), and the 
process of vortex cavitation 
inception   is   strongly   influenced   by 
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the freestream nuclei distribution 
(Maines and Arndt (1993)). The 
global cavitation patterns found on 
propellers and pumps can be greatly 
modified by changes in the nuclei 
spectrum (Kuiper (1979), Gindroz 
and Billet (1993)). In these studies, 
the inception and form of attached 
cavitation has also been influenced 
by changes in the nuclei spectrum. 
Kodoma, Tamiya, Take, and Kato 
(1979) demonstrated that attached 
cavitation on an axisymmetric 
headform could be transformed into 
a bubbly cloud given the presence of 
enough freestream nuclei, and 
Briancon-Marjollet, Franc, and Michel 
(1990) documented such interactions 
for flow over a hydrofoil. As the form 
of the attached cavitation changes, so 
too does the acoustic emission from 
the cavity (Shen, Gowing, and Ceccio 
(1994)). Furthermore, modification 
of the global cavitation pattern will 
effect the performance of cavitating 
devices   (Arndt   (1981)). 

The inception and form of 
attached cavities are related to the 
underlying viscous flow near the 
cavitating surface. Inception of 
attached cavities may occur when a 
single critical nucleus is swept into a 
low pressure region near the flow 
surface. In     another    inception 
process, an unstable nucleus may be 
present on the mechanical flow 
boundary, and this nucleus will grow 
into an attached vapor cavity. This 
cavity will alter the surrounding flow, 
and, if the new flow permits, the 
cavity will be stable. Once a stable 
cavity is formed, no other nuclei are 
needed to preserve it. Consequently, 
changes in the freestream nuclei 
content are expected to have a weak 
influence on the inception and form 
of attached   cavities. 

However, the global pattern of 
attached cavitation is altered by 
changes in the freestream nuclei 
distribution. Briancon-Marjollet, 
Franc, and Michel (1990) have 
observed a mechanism which can 
explain   this   phenomenon:    traveling 

cavitation bubbles will interact with 
attached cavities. These bubbles can 
create local attached cavities (Ceccio 
and Brennen (1991) and Kuhn de 
Chizelle, Ceccio, and Brennen (1994)) 
or may sweep away portions of 
otherwise stable cavities. In this 
study, we further explore the 
phenomenon of bubble/attached 
cavity interaction. In the present 
study, we explore the detailed 
interaction of travelling bubbles with 
the underlying viscous flow and 
developed   attached   cavitation. 

EXPERIMENTAL SETUP 

The experiments described 
below were consisted of several 
elements. A detailed description of 
the apparatus is provided in Tassin, 
Li, Ceccio and Bemal (1994). An 
abbreviated description is provided 
here of the blow down water tunnel, 
the test model, and the nucleus 
production    apparatus. 

Blow-down     Cavitation     Tunnel 

The experiments were 
conducted in the University of 
Michigan Cavitation and Multiphase 
Flow Laboratory's Blow Down Water 
Tunnel (BDWT). The BDWT consists 
of two 400 gallon (1.51 m^) tanks, a 
square contraction and test section, a 
diffuser, and connecting eight inch 
pipe. A series of control valves can 
connect either tank with a 600 gallon 
(2.27 m3) vacuum receiver and/or 
an air pressure receiver charged to 
100 psi. The upstream contraction 
has an area ratio of 4.4, and the test 
section is rectangular with 
dimensions 3 x 3 x 16.5 inches (7.62 
x 7.62 x 41.9 cm). Operation of the 
tunnel follows the following steps. 
Water is moved into the upstream 
tank with the application of a small 
pressure difference across the two 
water free surfaces in both tanks. 
Approximately 400 gallons (1.15 m^) 
of  water   is   moved   into   the   upper 
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tank, where the water is allowed to 
settle. Flow is induced in the test 
section by applying a positive 
pressure difference between the two 
tanks. The test section velocity is 
determined by this pressure 
difference, and the test section 
pressure is determined by the 
average absolute pressure above each 
free    surface. A    digital     data 
acquisition system continually 
monitors the test section absolute 
pressure, the air pressure in the 
upstream and downstream tanks, and 
the water level in the downstream 
tank. The system can be run with 
either open or closed loop control, but 
most of the operation occurs with 
open loop control. A one component 
DANTEC 9055 Laser Doppler 
Velocimeter is used to monitor the 
freestream velocity. The BDWT can 
operate with a wide range of 
freestream velocity and pressure. 
The maximum test section velocity is 
8.5 ft/s (approximately 25 m/s), and 
the maximum tunnel pressure is 100 
psi (690 kPa), the minimum tunnel 
pressure is vacuum. Run times of 
approximately 10 to 20 seconds are 
possible with relatively constant test 
section velocity and pressure (within 
5%). 

Fresh water from the potable 
supply was used during the 
experiment. The water was filtered 
before transfer to the tunnel. The air 
content of the water was modified by 
applying a vacuum over the water 
free surface for a period of several 
hours. In this way, both the 
dissolved and free gas could be 
removed. The nuclei content of the 
water was controlled by controlling 
the time the water was permitted to 
settle between runs. All tests were 
conducted at room temperature 
(nominally 22 C). 

Test    Models 

A rectangular planform 
hydrofoil   was   employed   as   a   test 

models. The hydrofoil had a NACA 
63iA012 cross section with a cord of 
3.26 inches (82.8 mm) and a span of 
3 inches (76.2 mm). The hydrofoils 
were constructed out of brass, and 
the surfaces were highly polished. 
The foil mount permitted variation in 
attack angle from -7 to 7 degrees. 
Test section blockage at 0 degree 
angle of attack was 13% and at 7 
degrees was 19%. The unmounted 
end of the hydrofoil was rounded to 
reduce the influence of side-wall 
cavitation on the visualization of the 
cavitating flow near the mid-span of 
the foil. 

For some experiments, 
tripping was applied to the leading 
edge of the hydrofoils in order to 
stimulate transition to turbulence in 
the boundary layer of the flow over 
the suction side of the hydrofoil 
(Arakeri and Acosta (1973) and 
Huang (1984)). Care must be taken 
to prevent the roughness elements 
from cavitating themselves. A 
technique which proved successful 
was the application and of a thin 
strip of "Scotch" tape to the leading 
edge of the hydrofoil. The tape has a 
thickness of 0.002 inches (50 
micrometers). No cavitation was 
observed  near the  tape  strip. 

Nucleus     Production     Apparatus 

In order to examine the 
process of bubble/cavity interactions, 
it was desirable to control the 
occurrence of the traveling bubbles. 
All freestream nuclei could be 
effectively removed, as described 
above. A Nd-YAG laser was then 
used to create a single nucleus near 
the leading edge of the hydrofoil. 
The frequency doubled beam of the 
Nd-YAG laser (532 um) was focused 
to the desired point in the flow 
through a high energy optical port. 
The laser was pulsed once, creating 
either a single or several small nuclei. 
Usually, the largest, nucleus will 
cavitate,   creating   a   single   traveling 
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bubble. The     command     which 
triggers the laser can then be used to 
trigger other data acquisition 
equipment. Still photographs were 
taken with a 35 mm Nikon MF 
camera, and high speed video images 
of up to 6000 frames per second were 
acquired with a Kodak Ektapro 1000 
video  tape  recorder. 

RESULTS 

Presented below are 
observations made of the cavitating 
flow on the suction side of the test 
hydrofoil at 0 attack angle. It was 
observed that the phenomena 
described below were not sensitive to 
small variation in attack angle (a = +/- 
4 degrees). The thickness of the foil 
reduced the effects of the leading 
edge radius on the flow (such as 
leading edge boundary layer 
separation). The freestream velocity 
for these tests was Uo = 15 m/s, 
leading to a cord Reynolds number of 
Rec = 1.2xl06. Previous studies 
have shown that flows over similar 
foils are transitional with the 
boundary layer remaining laminar, 
and a laminar separation often will 
take place at or downstream of the 
point of maximum thickness (Franc 
and Michel (1985)). Leading edge 
roughness can stimulate turbulent 
transition of the boundary layer and 
was employed for that purpose in this 
study. The   experiments   conducted 
with the polished foil will be denoted 
as "smooth," and those with the 
tripping applied at the leading edge 
will be denoted as  "tripped." 

Inception     of     attached     cavities 
without     traveling     bubbles 

When the cavitation number 
is lower than the attached cavitation 
inception number, stable attached 
cavities may form on the suction side 
of the smooth hydrofoil. Stable 
cavities will occur when the active 
nuclei  density  of the  freestream  flow 

is small. By deaerating the water 
prior to the blow-down process, a low 
nuclei density can be achieved, and 
under these conditions, stable 
attached cavities will form near the 
midcord of the hydrofoil (Figure 1) 
In the streamwise direction, the 
surface of the attached cavity is a 
smooth steady laminar interface near 
the cavity detachment point. The 
interface then becomes wavy, and the 
further downstream regions are 
turbulent. In   spanwise   direction, 
the attached cavities form "finger- 
like" structures which are closely 
spaced together, but separated by 
what appears to be a thin flow of 
water. 

The inception of attached 
cavities on the smooth foil was 
observed to occur in the following 
manner: once a small area of attached 
cavitation occurs on the hydrofoil 
surface, the cavity would spread 
rapidly spanwise to form a stable 
attached     sheet. The    inception 
process was observed to take 
approximately 50 - 60 milli-seconds. 
Meanwhile, as can be seen in Figure 
2, the interfacial patterns, including 
streamwise laminar, wavy, and 
turbulent regions, and spanwise 
finger-structures are all established 
as   the   cavity   grows. The   first, 
incipient area of attached cavities 
formed via two different 
mechanisms. First, cavities began 
near the boundaries of the test 
section near the edges of the 
hydrofoils. Second, stable cavities 
formed from the incipient "tails" 
generated by the traveling bubbles, 
which will be discussed below. In 
this latter mechanism, traveling 
bubbles were observed to directly 
influence the inception of attached 
cavitation. 

Figure 3 shows a series of 
video images of the attached cavity 
interface near the location of cavity 
separation. A time sequence is 
shown with time intervals of 1 
millisecond,   and  the  spanwise  motion 
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Figure 1- A stable attached cavity. The water of the BDWT was allowed to settle, 
allowing small bubbles to rise to the free surface. No travelling bubbles were 
observed during the run.    U0 = 15 m/s, a = 0.28, a = 0°. Image is scaled 1.60:1 

O 
ft. 

Figure 2- The inception of an attached cavity. This cavity was not created by the 
passage of a travelling bubble. U0 = 14 m/s, a = 0.40, a = 0°. Image is scaled 
1.60:1 
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Figure   3-    A time series of close-up images of the cavity interface near the point 
of cavity separation.    The time between each image is  1 millisecond.    Some of the 
cavity  "fingers"  move  in  the  spanwise direction.     U0 = 15 m/s, a = 0.28, a = 0°. 
Image  is  scaled  2.60:1 
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of    the    interfacial     structures     is 
evident. 

Inception of attached 
cavitation did not occur on the 
tripped foil. This observation is 
consistent with those of Arakeri and 
Acosta (1973) and Huang (1984). In 
these studies, the effect of tripping 
was to eliminate the occurrence of 
attached cavitation on transitional 
axisymmetric bodies. By stimulating 
the transition to turbulence in the 
boundary layer, a laminar separation 
bubble which had occurred on the 
headform was eliminated, and 
attached cavitation was suppressed. 
A similar mechanism is most likely 
responsible for the suppression of 
attached cavitation on the hydrofoil 
observed in  this  study. 

Bubble      interactions      with      the 
attached     cavity 

It has been observed that high 
nuclei density in the freestream flow 
can suppress the formation of the 
stable attached cavities (Kodoma et 
al. (1979) and Briancon-Marjollet et 
al. (1990)). Instead, only traveling 
bubbles are observed to occur. To 
explore this phenomenon, we 
examined the interaction of a single 
bubble with a stable attached cavity. 
A pulsed laser was used to induce a 
single nucleus near the leading edge 
of the hydrofoil, slightly above the 
hydrofoil surface. Firing the pulsed 
laser creates an active nucleus which 
soon explodes into a traveling 
bubble. The bubble reaches a 
maximum volume before it reaches 
the leading edge of the stable sheet 
attached cavity further downstream. 
Photos, as well as the high speed 
videos, were taken to examine the 
details of the bubble/attached cavity 
interaction. 

The interaction process 
occurred in the following steps. The 
bubble will approach the cavity 
leading edge and flow over the cavity, 
as shown in Figure 4. When the 
traveling bubble  is  above  the  leading 

edge of the attached cavity, the 
detachments and the laminar regions 
of the attached cavity are clearly seen 
through the bubble. Thus the bubble 
does not sweep the attached cavities 
by directly suppressing them. 
Instead, the suppression of the 
attached cavities occurs downstream 
of traveling bubble. Note, the 
attached cavities begin to disappear 
after the traveling bubble has 
passed. Two interesting phenomena 
were observed during this process. 
First, the suppressed region of the 
attached cavities looks like a "fork" 
pointing downstream, with 
approximately the same width of the 
bubble. The bubble does not sweep 
away the entire cavity it passes over. 
Secondly, the edges of the remaining 
attached cavities remains to be very 
sharp. The laminar region of the 
remaining cavity appears not to be 
influenced by the nearby suppressed 
cavity   region. As   the   traveling 
bubble moves downstream, the 
sweeping action proceeds upstream 
of it. However, the cavity upstream 
of the bubble begins to reform by 
spreading spanwise, similar to the 
inception of the attached cavities. 
This closing process takes 
approximately 4-8 milli-seconds. 
Figure 5 presents a series of close-up 
images showing the sweeping 
process. Each image was taken in 
time steps of 333 microseconds. A 
travelling bubbles can be seen 
approaching the cavity interface on 
the let side of the image. The bubble 
passes over the cavity, the cavity is 
swept away, and the cavity re-closes. 
Figure 6 presents another view of the 
sweeping   process. 

A close-up side-view of the 
travelling bubble as is nears the 
attached cavity interface reveals 
several features of the flow. Figure 7 
shows three images. The top image 
shows a travelling bubble wholly 
above the surface of the foil, and a 
thin film of liquid 1.0 mm in 
thickness separates the bubble from 
the   surface   of   the   hydrofoil.      The 

432 



■liii 

T5 

o 

■•**£": 

„:äXs~M?m 

Figure   4-  A  series  of images  showing the sweeping process.     A travelling bubble 
passes  over  the stable cavity.     After it passes,  a region of the attached cavity is 
swept away leaving a "fork" like region.  UQ = 15 m/s, a = 0.28, a •= 0° in the first 
three images,  a = 6° in the last image. Image is scaled 1.60:1 
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Figure 5- A time series of images showing the sweeping process. The time 
between each image is 333 microseconds. A travelling bubble is seen 
approaching the attached cavity and sweeping away a portion of the cavity. The 
cavity then re-closes.    U0 = 15 m/s, a = 0.28, a = 0°. Image is scaled  1.15:1 
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Figure 6- A time series of images showing the sweeping process. The time 
between each image is 333 microseconds. A travelling bubble is seen 
approaching the attached cavity and sweeping away a portion of the cavity. The 
cavity then recloses.    U0 = 15 m/s, a = 0.28, a = 0°. Image is scaled  1.50:1 
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Figure 7- Three close-up images of travelling bubbles as they pass over the foil. 
The separation point of the attached cavity can be seen on the left. The top 
bubble is wholly above the hydrofoil surface, but the other bubbles are much 
closer to the surface.    A small bubble begins to generate a "tail." Uo = 15 m/s, a = 
0.28, a =0°. Image is scaled 5.60:1 
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leading edge of the attached cavity 
can be seen on the right of the image, 
and its thickness is approximately 
350 micrometers. In this instance, 
the bubble may pass over the cavity 
interface, and it is possible that this 
bubble would not interact with the 
cavity. In the second and third 
image, the travelling bubble is much 
closer to the surface, and the film of 
fluid takes on a "wedge" shape. The 
trailing edge of the bubble seems to 
touch the foil surface; any fluid film 
in this region is less than 200 
micrometers mm. As shown in these 
image, the bubble can initially travel 
over the attached cavity without 
directly interacting with it until the 
trailing edge of the bubble passes 
over the cavity. 

The sweeping process will 
repeat itself as travelling bubbles 
continue to pass over the attached 
cavity. Indeed, if enough nuclei are 
present, the traveling bubbles will 
prevent the formation of a stable 
cavity. Instead, the surface of the foil 
will be covered only by traveling 
bubbles. Figure    8    shows    the 
cavitation pattern on the hydrofoil 
under conditions of few and many 
freestream nuclei. For both cases, the 
freestream velocity and pressure are 
the same. With few nuclei present, a 
stable attached cavity forms. With 
many active nuclei in the freestream, 
traveling bubbles will form and 
sweep away the cavity. 

Inception     of    bubble     "tails" 

The exploding and collapsing 
processes of the traveling bubbles 
can be easily observed when the 
cavitation number is slightly higher 
than the attached cavitation 
inception number. For both the 
smooth and the tripped cases, stable 
attached cavities did not develop, 
and  only  traveling  bubbles  occurred. 

The active nuclei explode into 
traveling bubbles shortly after the 
leading edge of the hydrofoil, and 
these  bubbles   collapse   near   the   foil 

trailing edge downstream. Both 
exploding and collapsing processes 
are extremely rapid, occurring within 
a fraction of a milli-second. For the 
smooth hydrofoil, bubbles grow close 
to the hydrofoil surface and they 
form semi-spherical "cap shapes" 
with the flat side against the 
hydrofoil surface. Many of these 
bubbles produce "tails," wedge 
shape, attached cavities on either 
spanwise edge of the bubble, as 
shown in Figure 9. The traveling 
bubbles then collapse downstream, 
while the "tails" attached cavities 
remain, as shown in Figure 10. If the 
cavitation number is higher than the 
attached cavitation inception 
number, these incipient attached 
cavities will soon disappear. This 
phenomena has been observed in 
previous studies (i.e. van der Meulin 
(1980) and Kuhn de Chizelle, Ceccio, 
and Brennen (1994)). Furthermore, 
not all travelling bubbles will 
generate tails, as seen in Figure 9. 
Figure 11 presents a time series of 
video images showing the passage, of 
three travelling bubbles on the 
smooth headform. The first two 
travel along the headform surface 
and do not generate any tails. The 
fourth bubble does generate a tail 
which continues to grow after the 
bubble has passed downstream. 
Ultimately, the attached cavity will 
disappear. Figure 7 also shows the 
inception of a "tail" behind a small 
travelling bubble. In this case, the 
travelling bubble rides close to the 
hydrofoil surface. The appearance of 
travelling cavitation on the tripped 
hydrofoil differs from that described 
above. While some of the travelling 
bubbles pass without creating any 
tails, many more are seen to 
degenerate into local patches of 
attached    cavitation. Figure     12 
presents a time series of video 
images for this case, with each image 
taken after a time interval of 500 
microseconds. 
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Figure 8- Cavitation as it occurs on the hydrofoil for the case of few and many 
nuclei present in the freestream. With the occurrence of travelling bubbles, the 
stable attached cavity is swept away and cannot reform.   Uo = 15 m/s, a = 0.28, a = 
0°. Image is scaled 1.60:1 

O 

Figure 9- A travelling bubble which 
has induced an upstream region of 
cavitation. Note the other bubble 
which has not generated a "tail." U0 

= 14 m/s, a = 0.40, a = 0°. Image is 
scaled   1.60:1 

Figure     10-    The   remnant   of   an 
induced     attached     cavity. The 
travelling bubble which created this 
"tail" has collapsed. Ultimately, this 
region of cavitation will be swept 
away. U0 = 14 m/s, a = 0.40, a = 0°. 
Image  is  scaled   1.60:1 
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Figure 11- A time series of images showing the creation of a bubble "tail" by a 
travelling bubble. In this case, the hydrofoil is smooth. The time between each 
image is 333 microseconds.    U0 = 15 m/s, o = 0.28, a = 0°. Image is scaled 0.98:1 
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Figure   12- A time series of images showing the creation of a bubble "tail" by a 
travelling  bubble.     In  this  case,   the  boundary  layer  of the  hydrofoil  has  been 
tripped.     The time between each image is  333  microseconds.     U0 = 15 m/s, o = 
0.28, a = 0°. Image is scaled  1.15:1 
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CONCLUSIONS 

The inception of attached 
cavitation near the midcord of the 
hydrofoil is most likely associated 
with separation of a laminar 
boundary layer in this region. This 
observation is supported by the fact 
that the midcord cavitation was 
suppressed by the application of a 
tripping strip near the leading edge 
of the foil. Consequently, it is 
reasonable to conclude that the 
boundary layer on the smooth foil is 
transitional, and the boundary layer 
on the tripped foil is turbulent. The 
differences in how the travelling 
bubbles interact with the boundary 
layer and the attached cavitation can 
be related to the state of the 
boundary   layer. 

Travelling bubbles were seen 
to interact with attached cavitation in 
the smooth foil. Several mechanisms 
for this interaction were proposed by 
Briancon-Marjollet, Franc, and Michel 
(1990), with emphasis given to the 
interaction of bubbles with the 
attached cavity through the local 
generation of turbulence in the 
region upstream of the passing 
bubble. This hypothesis was support 
by experimental observations 
disturbed dye streaks close to the foil 
surface upstream of some travelling 
bubbles. The idea that travelling 
bubbles stimulate local turbulent 
transition in the boundary layer is 
also consistent with the observations 
of the present study. Travelling 
bubbles which sweep away attached 
cavitation travel very close to the 
hydrofoil surface, as shown in Figure 
7. The     minimum     thickness 
measured of the fluid film under the 
trailing edge of the bubble is 
approximately 200 micrometers. 
The thickness of a laminar boundary 
layer near the midcord of the foil is 
approximately given by 8, the 
thickness of a boundary layer formed 
over a plat plate. For the flow over 
the smooth foil, 5 is approximately 
250   micrometers.     Thus,   the  trailing 

edges of the such travelling bubbles 
can certainly interact with and 
disturb the boundary layer, possibly 
by "squeezing" the thin film of fluid 
over which the bubble flows. The 
squeezing process may then cause 
local turbulent transition of the 
boundary layer. A transient 
turbulent region may then grow 
behind the bubble. It is this local 
turbulent region which will cause the 
local suppression of the attached 
cavitation. Travelling bubbles which 
flow above the hydrofoil surface, as 
shown in Figure 7, do not interact 
with the boundary layer and thus 
ride over the attached cavity and do 
not disturb it. 

The creation of a local 
turbulent spot may also lead to the 
formation of a transient attached 
cavity behind the bubble. As shown 
in Figure 9, travelling bubbles induce 
local attached cavitation in regions of 
the foil upstream of the stable 
attached cavitation formation point. 
These cavities do not persist. It is 
known that the pressure fluctuations 
in a turbulent boundary layer can be 
on the order of 20% of the dynamic 
pressure, q (Huang and Peterson 
(1976)). Such pressure fluctuations 
may cause the inception of local 
attached cavitation if sub-critical 
surface nuclei are activated. Another 
inception mechanism would employ 
the travelling bubble as a 
macroscopic     nucleus. Pressure 
fluctuations in the turbulent 
boundary layer may be strong 
enough to induce local regions of 
tension in the boundary layer. The 
nearby cavitation bubble can then 
"grow into" these regions of tension, 
creating an incipient cavity. The 
travelling bubble will continue to be 
convected by the flow. Ultimately, 
the cavity will be swept away, and the 
laminar boundary layer reforms. 
Unless another turbulent spot is 
induces, the flow will remain attached 
and   laminar. 

This   mechanism   is   enhanced 
if   the   boundary    layer    is    already 
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Figure   13- Cavitation events as they occur on a 25.4 cm diameter Schiebe body. 
U0 = 15 m/s, a = 0.53. Image is scaled 2.91:1 

■ 

Figure   14-  Cavitation events as they occur on  a 50.8 cm diameter Schiebe body. 
U0 = 15 m/s, a = 0.60. Image is scaled 1.38:1 
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turbulent. In the case of the tripped 
foil, the probability that a bubble will 
induce an incipient cavity in much 
higher. Experiments conducted with 
the tripped foil shown that travelling 
bubbles of almost any size will form 
local patches, as shown in Figure 12. 
These incipient attached cavities 
often engulf the original bubble 
which formed them. The cavities also 
do not persist indefinitely but are 
swept away. 

These observations can be 
compared to those of Kuhn de 
Chizelle, Ceccio, and Brennen (1994). 
In this study, cavitation on three 
axisymmetric Schiebe headforms of 
diameter 2.54 cm, 25.4 cm, and 50.8 
cm were examined. Examples of 
individual cavitation events which 
occurred on the 25.4 cm and 50.8 cm 
diameter bodies are shown in Figures 
13 and 14. Travelling bubbles which 
occurred on the 2.54 cm diameter 
body almost never were accompanied 
by tails. Alternately, travelling 
bubbles on the 25.4 cm body 
frequently developed tails, and often 
degenerated into local patch 
cavitation, and travelling bubbles on 
the 50.8 inch diameter body almost 
always developed tails and frequently 
degenerated into local patch cavities. 
In the present study, cavitation event 
occurring on the tripped foil are 
similar to those which occurred on 
the two larger axisymmetric bodies. 
Bubble cavitation on the untripped 
hydrofoil was on average more 
similar to that of the small diameter 
axisymmetric    body. Thus,    the 
observed difference in the travelling 
cavitation events on the three 
headforms of the Kuhn de Chizelle, 
Ceccio, and Brennen (1994) study 
may be related to the state of the 
boundary layer in the cavitating 
region. Note also in Figure 14 that 
the attached cavity sweeping was also 
observed to occur on the larger 
headforms. 

The inception of attached 
cavitation can be significantly 
influenced     by     the    presence    of 

traveling bubble cavitation. The 
formation of traveling bubbles, in 
turn, will depend strongly on 
freestream nuclei distribution. 
Consequently, the inception and 
formation of attached cavitation can 
be affected by the freestream nuclei 
distribution. The acoustic emission 
if individual cavitation bubbles is 
significantly reduced if the bubble 
strongly interacts with the boundary 
layer to form incipient attached 
cavitation (Kuhn de Chizelle, Ceccio, 
and     Brennen     (1994)). Thus, 
phenomena described here may lead 
to scale effects in the cavitation 
testing relating to both the type of 
cavitation present and the noise it 
produces. Furthermore, injection of 
air in and around regions of attached 
cavitation has been implemented in 
practical engineering designs to 
mitigate processes which lead to 
damage and noise. Bubble/attached 
cavity interactions like those 
observed here may occur as air is 
injected near attached cavities. We 
are continuing our study of this 
phenomenon to improve our 
understanding of the underlying 
physical mechanisms responsible for 
these   interactions. 
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Nonlinear Analysis of Viscous Flow 
Around Cavitating Hydrofoils 

S. Kinnas, S. Mishima, W. Brewer 
(Massachusetts Institute of Technology, USA) 

ABSTRACT 

The flow around partially or super-cavitating 
hydrofoils is treated with a viscous/inviscid inter- 
active method. The inviscid cavity flow model 
is based on a fully non-linear boundary element 
method, in which the boundary conditions are ap- 
plied on the exact cavity surface. The viscous flow 
model is based on boundary layer theory applied 
on the compound foil, consisting of the union of 
the cavity and hydrofoil surface. The friction co- 
efficient is forced to zero everywhere on the cavity. 
The cavity detachment point is determined from a 
criterion applied on the viscous flow on the hydro- 
foil upstream of the cavity. The effect of Reynolds 
number on the predicted cavity extent and volume 
for given cavitation number is studied when the 
angle of attack is kept fixed or when the lift co- 
efficient is kept fixed. Finally, the equivalent cav- 
itation number is proposed as a way of including 
the effects of viscosity in three-dimensions. 

1   INTRODUCTION 

A general potential-based boundary element 
method has been developed for the non-linear 
analysis of the inviscid cavitating flow around 
hydrofoils or propeller blades. The flow around 
partially or super-cavitating hydrofoils in two 
or three dimensions was addressed first. For 
given cavity extent (length) [11] or cavitation 
number[13, 6], the cavity shape, not known a pri- 
ori, was determined in an iterative manner until 
the dynamic and the kinematic boundary condi- 
tions were both satisfied on the cavity boundary. 
The most important finding in [11, 13] was the 
fact that the iterative process for finding the cav- 
ity surface was converging much quicker than in 

previously developed velocity-based boundary el- 
ement methods. In particular, it was found that 
even the cavity solution from the first iteration, 
in which the cavity panels were located on the 
hydrofoil surface underneath the cavity, was very 
close to the fully non-linear converged solution. 
The method was finally extended to include the 
analysis of time-varying cavitating flows around 
propeller blades [12], [5]. 

The boundary element method has been 
found to be a computationally efficient,' robust 
and versatile tool for the inviscid analysis of cav- 
itating flows around arbitrary geometries in two 
or three dimensions. Nevertheless, the method 
has the following shortcomings: (a) it only treats 
the inviscid flow around the foil and cavity, (b) 
it treats the cavity detachment point as an input 
parameter, and (c) it assumes the cavity to be 
followed by a zero (or given) thickness wake. 

In the present paper, a method is presented 
to take into account all of the above. The method 
couples the existing inviscid flow solution to a 
boundary layer solution [4]. It was first applied 
for the analysis of the fully wetted flow around 
hydrofoils [4] as well as propeller blades [8]. Ini- 
tially, the method was applied on partially cavi- 
tating hydrofoils [19] by making the "thin" cav- 
ity assumption. Now the method is extended to 
treat the flow around partially cavitating hydro- 
foils in fully non-linear theory, as well as the flow 
around super-cavitating hydrofoils. The method 
is applied on several hydrofoil geometries and the 
effect of Reynolds number on the cavity solution 
is investigated. Finally, a way of incorporating 
the effects of viscosity in three dimensions, via 
the equivalent cavitation number is proposed. 
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Figure 1: Partially cavitating hydrofoil in inviscid 
non-linear theory. Definition of main parameters. 
Panel arrangement on the cavity and foil is also 
shown for N = 80. 

Figure 2: Super-cavitating hydrofoil in inviscid 
non-linear theory. Definition of main parameters. 
Panel arrangement on the cavity and foil shown 
for JV = 80. 

2   INVISCID CAVITY MODEL 

Consider a partially or super-cavitating hy- 
drofoil, shown in Figures 1 and 2, respectively, 
subject to an incoming flow [/<» with an ambient 
pressure p,». The vapor pressure, corresponding 
to the temperature in the fluid, is equal to pv, and 
the fluid density is equal to p. The main geometric 
parameters for the foil and cavity are defined in 
Figures 1 and 2. The cavitation number is defined 
as usual: 

■Pv 
ETJ2 
2 ^oo 

(1) 

In inviscid flow, the velocity flow field q is 
defined in terms of the perturbation potential, 6: 

q = Urx> + V6 (2) 

The perturbation potential, 6p, at any point 
P in the flowfield, may be expressed in terms of 
its values on the cavity and foil surface, 5, and 
on the trailing wake surface, W, by using Green's 
third identitv 1: 

f \„86       8G] ,„      f   A       8G 
edp = /    G^- - 6—   dS - /   A6wir Js [on        on J Jw on 

dS 

(3) 
where e = 1/2 when P € S U W and e — 1 when 
P £ S U W. G is the Green's function in un- 
bounded flow, defined as the potential of a unit 
strength source in either two or three dimensions: 

1 Green's identity is identical to that for non-cavitating 
flows in which case S is the surface of the hydrofoil. 

G2-D     = 

G3-D     = 

2TT 
-InR 

4T:R 

(4) 

(5) 

where R is the distance between point P and the 
point of integration over S or W in equation (3). 
To determine 6 on the foil and cavity surface we 
must invert the Fredholm integral equation of the 
second kind, resulting from applying equation (3) 
for P € S. The following boundary conditions 
need to be applied: 

• kinematic boundary condition on the non- 
cavitating (also called fully wetted) part of 
the foil: 

dn 
= -Uoo   n (6) 

with n being the unit normal vector on the 
foil surface 

dvnamic boundary condition on the cavity: 

= UooVT+a (7) 

where qc is the fluid velocity vector on the 
cavitv surface. In the case of two dimensions: 

86 
\qe\ = -£+Uoo-s = UooVT+0        (8) 

where s is the unit vector tangent to the cav- 
itv surface. 
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• pressure condition at cavity termination: 

I9(r = U00VT+^[l-f(x)]        (9) 

Where qtT is the velocity vector over a transi- 
tion region of length A at the end of the cavity 
and / is an algebraic, function of the chord- 
wise distance x [13]. This corresponds to a 
pressure recovery cavity termination model 
[15]. In the case of super-cavitating flows we 
apply the "end parabola" model [5], which is 
a variation of the Riabouchinsky "end plate" 

model. 

• closure condition at the end of the cavity. 

• Kutta condition at the foil trailing edge. 

In solving equation (3), the wetted foil and 
cavity surface are discretized into N (N x M in 3- 
D) linear (quadrilateral in 3-D) panels. Initially, a 
double cosine spacing was employed over the cav- 
ity and the fully wetted part of the foil [11]. A new 
panel arrangement, called the "blended" spacing 
(see Appendix A for details), is being used in this 
work. In addition to being more versatile, the 
present arrangement has been found to improve 
the rate of convergence of the cavity solution as 
well as that of the calculated forces. 

Over each panel, the source strength (propor- 
tional to d<j>ldn) and the dipole strength (propor- 
tional to d>) are assumed to be constant. The po- 
tential jump in the wake, A<^VK, is taken to be 
equal to the difference of the potentials at the 
trailing edge panels on the same strip [16]. On 
each panel representing the fully wetted foil, the 
source strengths are known and given by equa- 
tion (6) but the dipole strengths are unknown. 
On each panel representing the cavity, the dipole 
strengths are known and given by equations (7) 
or (9) but the source strengths are unknown. The 
unknown dipole or source strengths are deter- 
mined by applying equation (3) on all panels and 
by inverting the resulting system of linear equa- 
tions. 

In applying the conditions mentioned previ- 
ously, the surface of the cavity must be known. 
The procedure for determining the location of the 

cavity surface is given next: 

In two-dimensions 

The cavity surface is defined by the location 
of the cavity detachment point ID, the location of 
the cavity end point I (also defined as the cavity 
length), and the cavity ordinates between these 

points. As already mentioned in the introduction, 
the location of the cavity detachment is assumed 
to be known in the inviscid cavity model. Thus 
the two-dimensional cavitating hydrofoil analysis 
can be formulated in terms of the following prob- 

lems: 

• For given I and ID find the corresponding a 

• For given a and ID find 7 

In both these problems, described in detail 
in [11] and [13], the cavity shape is determined in 
an iterative manner. In brief, the cavity surface is 
updated until the kinematic boundary condition is 
satisfied on the cavity (in addition to the dynamic 

condition mentioned earlier): 

qc ■ n = 0 ;   on the cavity (10) 

The first iteration for the cavity shape is taken to 

be: 

• the foil surface under the cavity, for partially 
cavitating hydrofoils 

• the cavity shape from linear theory, for super- 
cavitating hydrofoils 

The iterative process has been found to con- 
verge quickly to the final cavity shape [11], [13]. 
In particular, even the first iteration has been 
found to produce a cavity shape which is remark- 
ably close to the converged fully non-linear cavity 
shape. 

In three-dimensions 

The characteristics of the method in three- 
dimensions may be summarized as follows: 

• It only carries the first iteration, thus utiliz- 
ing the same panelling to that of fully wetted 
flows. 

• It finds the cavity planform for given capta- 
tion number and for given cavity detachment 
in an iterative manner, until the thickness of 
the cavity at its trailing edge is equal to zero 
everywhere along the span. 

• It includes, in an iterative manner, the cross- 
flow terms in applying equation (7). 

• It is able to handle arbitrary cavity plan- 
forms on a fixed grid. This became possible 
with the introduction of the split panel tech- 
nique [13]. This technique enabled us to treat 
panels which were intersected by the trailing 
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,S1 + l2H.. + H.(1-H)]»f 
=   2CD-H ■*Cf (14) 

Figure   3:     Non-cavitating   hydrofoil   with   its 
boundary layer displacement thickness. 

edge of the cavity as one, rather than two 
parts (i.e. the cavitating and the fully wet- 
ted part). 

• It utilizes a unified formulation and numerical 
implementation for partial cavitation, super- 
cavitation, as well as mixed partial/super- 
cavitation [6]. 

3    VISCOUS FULLY-WETTED 
FLOW MODEL 

3.1    Boundary Layer Equations 

Consider a non-cavitating 2-D hydrofoil in 
uniform inflow Uoo, as shown in Figure 3. The 
viscous flow is assumed to be confined within a 
thin boundary layer on the foil and wake surface. 
The effect of viscosity on the inviscid flow is ac- 
counted via the "blowing sources", <x, which are 
defined as: 

d(Ue6*) 
ds (11) 

where Ue is the velocity at the "edge" of the 
boundary layer, 8* is the displacement thickness 
and s is the arc-length along the foil or wake sur- 
face. For given Ue distribution, the boundary 
layer parameters are determined from the follow- 
ing equations [20], [17], [4]: 

1. The momentum integral equation: 

£+<*+<t 2 = ^        (12) 

where 9 is the momentum thickness, H = 
6* /B is the momentum shape factor, and Cf 
is the friction coefficient. In the wake of the 
foil the following condition is enforced: 

Cf = 0 ;   in the wake (13) 

2. The kinetic energy integral equation: 

3. A third equation which is different for lami- 
nar or turbulent flow: 

(15) 

• for laminar flow: 

dn        dn   dRe$ 

ds      dReg   ds 

where n is the amplitude of the most 
amplified Tollmien-Schlichting wave. 

• for turbulent flow: 

+ 26 x 

where CT is the maximum shear stress 
coefficient. 

The variables H*, H**, CD, CTBQ, Hk and 
Reg are defined in [4]. The necessary number of 
equations which interrelate these variables among 
themselves as well as with the unknowns are also 
given in [4]. 

In laminar flow, equations (12), (14) and (15) 
are solved with respect to the three unknowns: 6*, 
6 and n. In turbulent flow, equations (12), (14) 
and (16) are solved with respect to the unknowns: 
6*, 6 and CT. The transition from laminar to 
turbulent flow is defined when n becomes equal 
to a specified critical value: räcr;< ■ The option for 
specifying the transition point on either side of 
the hydrofoil is also available. 

3.2      Viscous/Inviscid   Flow   Cou- 
pling 

The presence of the blowing sources will mod- 
ify Green's formula, equation (3), when applied on 
the foil surface, as follows 2: 

2  ~Js 

QQ 
G(-U00-n)ds-6v-^- ds 

■ /  A^Äs + /      öGds    (17) 
Jw on Jsuw 

2 A discretized version of this equation was first given 

in [8]. 
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where 6V is the perturbation potential along the 
foil surface, modified due to viscotis effects. No- 
tice that the blowing sources are placed on the 
foil surface. <j>v satisfies the following (kinematic) 
boundary condition on the foil: 

dn 
-17 oo • n + a (18) 

Equation (17) may be written in the following 
compact form: 

A<t>v = B{-U00-n} + Ca (19) 

where the linear operators A, B and C are defined 

*'> = i+Is
fdids+LAfwdids 

(20) 

(21) 

(22) 

B{f} 

C{g} 

I fGds 
Js 

I gGds 
SuW 

with / being a continuous function of the arc- 
length along the foil surface and g being a con- 
tinuous function of the arc-length along the foil 
and wake surface. Afw is equal to the jump in / 
at the foil trailing edge, between the pressure and 
suction side. 

The perturbation potential 6V may be found 
from inverting equation (19): 

hv = A~ iß{-C700-n} + ^-1 oC{ä)     (23) 

where A 1 is the inverse operator of A. Equation 
(23) may also be written as: 

+ A~1oC{&} (24) 

where 4>lnv is the perturbation potential in invis- 
cid flow, given from: 

<bl A-'oBi-Uco-n} (25) 

The magnitude of the total velocity at the 
edge of the boundary layer, Ue, can then be de- 
termined from: 

8SV 

Ue = Ueo-s+^- = Ur + V{c}        (26) 
os 

with s being the unit vector tangent to the foil or 
wake surface. U'e

nv is the magnitude of the total 
velocity on the foil or wake surface in inviscid flow: 

dd>inv 

The operator V is defined as: 

X> = 
d_ 

ds 
oA'1 oC 

(27) 

(28) 

Using equation (11), equation (26) may be 
written as: 

Ue = Ulnv + T> 
d(Ue8*) 

ds 

or 

Ue = Utnv + 6{Ue6*} 

with the operator £ defined as: 

£ = T>o 
d_ 

ds 

(29) 

(30) 

(31) 

Equation (30) provides the actual mechanism 
for coupling the viscous with the inviscid solution. 
This equation must be solved together with the 
boundary layer equations (12), (14) and (15) or 
(16). The boundary layer equations are solved 
first, with Ue = U™", and the 6* distribution on 
the foil and its wake is determined. Equation (30) 
is then solved with respect to Ue. The updated Ue 

is then used in solving the boundary layer equa- 
tions once more. This process is repeated until 
convergence of the solution. 

In solving the previously mentioned equa- 
tions, the foil and its wake are discretized with Ar 

and Nw linear panels, respectively. The bound- 
ary layer variables 6*, 0, CT (or n), and the edge 
velocity Ue are defined at the edges of each panel. 
Green's formula, equation (17), is discretized by 
assuming constant source and dipole distributions 
over each panel [9, 14]. The blowing source, a, on 
each panel is also assumed to be constant with its 
value given from [8]: 

Am 
As 

(32) 

with m defined as the mass defect: m — UeS*. 
Am is the difference between the m's at the edge 
of the panel and As is the arc-length of the foil 
between the edges of the panel. 

The operators A, B and C are discretized into 
the influence coefficient matrices with dimensions 
A7 x iV, N x iV and N x N + Nw, respectively [8]. 
The operator [d/ds] is discretized into [A/As]. 
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Figure 4:   Partially cavitating hydrofoil with its 
boundary layer displacement thickness. 

Figure 5: Hydrofoil and cavity surface on which 
inviscid and boundary layer flow equations are ap- 
plied - "Thin" cavity approach. 

4    VISCOUS CAVITY MODEL 

4.1   Partially Cavitating Hydrofoil 

Consider now a partially cavitating hydrofoil 
in viscous flow, as shown in Figure 4. The viscous 
flow in the vicinity of the cavity is assumed to be 
confined to a thin boundary layer. The-two phase 
flow in the vicinity of the cavity is ignored, and the 
fluid/vapor interface is treated as a constant pres- 
sure free-streamline. We present two approaches 
of formulating the viscous cavity model. 

"Thin" cavity approach 

In this case both the cavity and the boundary 
layer thickness are assumed to be '"small". The 
panels representing the cavity are assumed to be 
located on the foil surface underneath the cavity, 
as shown in Figure 5. This is implemented in [19] 
by defining the cavity sources &c as follows: 

d(Ueh) 

ds 
(33) 

with h being the cavity thickness, defined normal 
to the foil surface. Notice the similarity of equa- 
tion (33) with equation (11). The effects of cavity 
thickness are thus readily incorporated into equa- 
tion (30) as follows: 

Ue = V™ + £{Ue8* + Ueh} (34) 

In other words, equation (34) makes no distinction 
between the cavity and the displacement thick- 
ness. 

The dynamic boundary condition, equation 
(7), is implemented by requiring: 

Figure 6: Hydrofoil and cavity surface on which 
inviscid and boundary layer flow equations are ap- 
plied - Non-linear cavity approach. 

Ue — UooVl + a ;   on the cavity       (35) 

The boundary layer equations are now solved 
together with equations (34) and (35). It is as- 
sumed that no frictional forces can be sustained 
at the interface between the fluid and the vapor, 
i.e: 

Cf = 0 ;   on the cavity (36) 

A cavity termination model, similar to that 
described in Section 1, is applied. Cavity clo- 
sure (h — 0) is imposed at the cavity trailing 
edge. An iterative algorithm (based on Newton- 
Raphson method) for solving the boundary layer 
and the cavity equations, is given in [19]. 

Non-linear cavity approach 

In this case the cavity thickness is not as- 
sumed to be "small" compared to the foil thick- 
ness. The boundary layer displacement thick- 
ness though, is still assumed to be "small". The 
boundary conditions are now applied on the "non- 
linear" cavity and foil surface, shown in Figure 6. 
The "non-linear" cavity shape has resulted from 
the inviscid non-linear cavity theory, described in 
Section 2. The boundary layer equations now are 
integrated along the non-linear cavity and foil sur- 
face. 

Equation (30) will now be modified to: 

JJNL = jjinv,NL + £NL{lJNLg*} (3?) 

where the superscript NL corresponds to the 
"compound" foil, defined from the union of the 
original foil and the non-linear cavity surface. The 
velocity on the cavity will be given as: 

jjinv,NL = Uooy/l+ainv (38) 

where ainv is the cavitation number resulting 
from non-linear inviscid cavity theory, for given 
ID and I. 
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Figure 7: Pressure distribution on foil and cavity 
resulting from inviscid and viscous solution. The 
cavity resulting from inviscid non-linear model 
and the corresponding boundary layer displace- 
ment thickness are also shown. Definition of "vis- 
cous" cavitation number, av. 

Applying the boundary layer equations on 
the compound foil, with C/ = 0 on the cavity, will 
result in the displacement thickness and pressure3 

distributions, shown in Figure 7*. It may be seen 
on this figure that the assumption of "small" dis- 
placement thickness is still valid. Notice that 
the "viscous" — Cp distribution on the cavity is 
lower than the inviscid (for which — Cp = a'nv). 
Also notice that the viscous solution has per- 
turbed "somewhat" the dynamic boundary con- 
dition, which requires the pressure distribution to 
be constant on the cavity. We define the cavita- 
tion number in the presence of viscosity (for ID 

and 1 fixed) from: 

av = max[—Cp] (39) 

where C" is the pressure coefficient in the presence 

3The pressure coefficient Cp is defined as: Cp — 2(p - 
Poo)/(PUl,). 

4 The Reynolds number Re is denned as: Re ■ U^c 

of viscosity. This definition is also shown in Figure 
7. 

Even though the viscous pressure distribu- 
tion shown in Figure 7 is "nearly" constant, it is 
still desired to "estimate" the error in cavitation 
number and cavity shape by ignoring the variation 
in pressure along the cavity. This is accomplished 
as follows: 

If 4>C0T is the "correct" perturbation poten- 
tial which satisfies the "exact" dynamic bound- 
ary condition in viscous flow, equation (8), on the 
cavity, then : 

d4>c 

ds 
+ Uoo ■ sNL = UooVl + <?cor        (40) 

where the superscript "cor" corresponds to the 
"correct" solution, defined in the previous para- 
graph. 

On the wetted foil, the following condition 
will be satisfied: 

d<bcor 

dn 
-Uoo -n + cr NL (41) 

Equations (40) and (41) take the same form 
as equations (8) and (6) by adding the blowing 
source &NL to —Uoo ■ n. We thus treat the "cor- 
rection" problem as a cavity problem (applied on 
the compound foil)5 and determine <f>cor and crcor. 
The new value of dd>cor/dn on the cavity is also 
determined. The cavity shape then needs to be 
corrected by hcor, defined normal to the original 
cavity shape. If ncor is the unit vector normal to 
the correct cavity shape, the following kinematic 
boundarv condition must be satisfied: 

{V6C0r + Uoo}-nc0r = aNL ;   on the cavity (42) 

The normal vector, to first order in hcor, will 
be given from [11]: 

ncor=nNL_dh_sNL 
as 

(43) 

Combining equations (42) and (43) gives the 
following differential equation for hC0T: 

EWl + ccor[l - /(*)] 
dhc 

ds 
dScor 

dn 
+ Uoo   n NL        ~NL (44) 

6 The effect of the blowing sources in the wake needs 
also to be included in the right-hand side of the resulting 
equations. 
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Figure 8: Non-linear cavity shape resulting from 
present method and "corrected" to satisfy the 
"exact" dynamic boundary condition. The cor- 
responding pressure distributions are also shown. 
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Figure 9: Cavity shapes predicted from thin and 
non-linear (present) cavity viscous models, for 
given cavitation number. Foil geometry and flow 
conditions produce a thin cavity in comparison to 

the foil thickness. 

Integrating equation (44) we find hcor and 
the "correct" cavity shape given on Figure 8. 
The "correct" cavity pressure distribution is also 
given. Comparing the "correct" to the original 
cavity shape and cavitation number, we notice 
that the error is relatively small. This correction 
will be omitted from all subsequent results. 

Cavity shapes, predicted by the present 
"non-linear" and the "thin" cavity formulation, 
for given cavitation number, are shown in Fig- 
ures 9 and 10. As expected the results from the 
two methods are close to each other for cavities 
which are indeed thin when compared to the foil 
thickness. For cavities whose thickness is of the 
same order as the foil thickness, the "thin" cavity 
method overpredicts the cavity shape extent and 
size appreciably, as shown in Figure 10. 

Cavity detachment 

It is well known that the location of the cav- 
ity detachment point may affect (sometimes sub- 
stantially) the predicted cavity extent and vol- 
ume. Detaching the cavity at the leading edge 
of a round nose hydrofoil may often lead to non- 

0.2 
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0.1 

x/c=0.05, NACA66 
yc^O.02, NACA a=0.8 
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ln/c=0.005 
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Non-linear cavity model 
Thin cavity model 
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Figure 10: Cavity shapes predicted from thin 
and non-linear (present) cavity viscous models, 
for given cavitation number. Foil geometry and 
flow conditions produce a cavity with thickness 
which is comparable to the foil thickness. 
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physical solutions, i.e. cavities which intersect the 
foil. One such case is shown in Figure 11. The 
smooth detachment condition 6[18, 3] requires the 
slope and the curvature of the cavity at detach- 
ment to be equal to that of the foil. This con- 
dition ensures that the cavity does not intersect 
the foil at the leading edge and, at the same time, 
that the pressures on the wetted foil, upstream 
of the cavity, are larger than the cavity pressure. 
This condition is equivalent to requiring the slope 
of the pressure distribution with respect to the 
foil arc-length at the cavity leading edge to be 
equal to zero [2, 10]. Such a case is shown in 
Figure 12. The smooth detachment point (SDP) 
in this case was determined by applying the in- 
viscid cavity model and by varying ID until the 
resulting pressure distribution had a zero slope 
at the leading edge of the cavity. Detaching the 
cavity upstream of the SDP will produce a cav- 

ity which intersects the foil. Detaching the cavity 
downstream of the SDP will produce pressures up- 
stream of the cavity which are smaller than cavity 
pressure. However, it is widely known that in re- 
ality the cavity detachment is well downstream of 
the SDP. In addition, pressures smaller than the 
cavity pressure have been measured on the wetted 
flow upstream of the cavity detachment. A semi- 
empirical cavity detachment criterion for cavitat- 
ing headforms was introduced by Arakeri [1]. This 
criterion was later extended by Franc & Michel 
[7] in the case of cavitating hydrofoils. In brief, 
they found that for hydrofoils, the cavity detach- 
ment occurs immediately downstream of a lami- 
nar separation point (LSP). Laminar separation 
occurs when H = 6*/6 = 4 [20]. We thus apply 
the present viscous method for different detach- 
ment points until the boundary layer calculation 
shows laminar separation just ahead of the cavity 
leading edge. The pressure distribution for cav- 
ity detachment at laminar separation is shown on 
Figure 13. Finally, the effect of the cavity detach- 
ment point on the solution is shown on Figures 
14 and 15. The importance of having the "right" 
cavity detachment point on the cavity prediction 
is apparent from these figures. 

Sensitivity of cavity model on A, N 

The numerics of the inviscid cavity model 
have been validated extensively in [11] and [13]. 
The numerics of the viscous fully wetted model 
have been validated in [8]. In this work, the sen- 
sitivity of the results from applying the present 
combined inviscid/viscous cavity flow model is 
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0.0 ; 
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yc=0.02, NACA a=0.8 

o-3(teg | 

0.0 0-5 x/c 1.0 

Figure 11: Cavity and foil surface at the leading 
edge. Cavity detachment at the LE. 

Figure 12:  Pressure distribution on the foil and 
cavity. Smooth cavity detachment (ID = 0.0012). 

6 Also called the Villat-Brillouin condition. 

Figure 13: Pressure distribution on the foil and 
cavity. Cavity detachment set at laminar separa- 

tion point (ID — 0.01). 
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Figure 14: Effect of cavity detachment point on 
cavitation number. 
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Figure 15:  Effect of cavity detachment point on 
cavity volume. 
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0.000 
0.0        0.2        0.4   X/C0.6        0.8        1.0 

Figure 16: Effect of A on boundary layer displace- 
ment thickness distribution. 

studied. In Figure 16, the effect of the length of 
the cavity termination model A on the predicted 
8* distribution on the suction side of the foil and 
cavity is shown. Notice that the predicted 6* is 
practically the same everywhere on the cavity and 
foil, except in the vicinity of the cavity trailing 
edge. The effect of A on the predicted solution is 
also shown on Table 1. It is again evident from 
this table that the results are practically indepen- 
dent of A. This is a very fortunate characteristic 
of our method, since otherwise we would have to 
somehow determine A from theory and/or exper- 
iment. 

Finally, the convergence of the viscous cav- 
ity solution with number of panels N is given on 
Table 2. 

Results 

Results from applying the present method 
on partially cavitating hydrofoils are presented in 
this section. The hydrofoils consist of combina- 
tions of modified NACA6Q thickness form and 
NACA a — 0.8 camber form. The viscous cal- 
culations are performed for Re = 2 x 106 and 
Re = 2 x 107 which are representative Reynolds 
numbers for model and full-scale marine propeller 
applications, respectively. Figures 17 and 18 show 
the cavity length and volume versus cavity cavita- 
tion number, in inviscid and viscous flow. Notice 
that the cavity extent and size decrease substan- 
tially with decreasing Re. The cavity shapes for 
a = 1 are shown in Figure 19. Notice the reduc- 
tion in the lift coefficient, CL, with decreasing Re. 
This reduction reflects the change in the pressure 
distribution, shown in Figure 7. 
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Re=2x10' 

0.04 0.05 0.06 a/0  0.07 0.08 

Figure 17: Cavity length versus cavitation num- 
ber. Predicted by the inviscid and the present 
viscous method for two Reynolds numbers; T/C — 
0.04, f0/c = 0.02, a = 4°. 

Re=2x107 

0.025 r 

0.005 

0.000 
0.04 0.05 0.06 CC/G 0.07 0.08 

Figure 18: Cavity volume versus cavitation num- 
ber. Predicted by the inviscid and the present 
viscous method for two Reynolds numbers; T/C = 
0.04, /o/c = 0.02, a = 4°. 

X a V/c2 cL cD 
0.05 0.754 0.00247 0.558 0.0119 

0.1 0.755 0.00244 0.560 0.0119 

0.2 0.758 0.00238 0.561 0.0118 

0.3 0.761 0.00231 0.561 0.0118 

Table 1: Effect of A on viscous cavity solution: 
a, V/c\ CL and CD\ l/c = 0.3, NACA66{T/C = 
0.07), NACAa = 0.8(//e = 0.02), a = 3°, Re = 

2 x 106, N = 200 

N a V/c2 cL CD 

100 0.776 0.00250 0.566 0.0113 

150 0.767 0.00245 0.564 0.0118 

200 0.755 0.00244 0.560 0.0119 

Table 2: Convergence of viscous cavity solution 
(a, V/c2, Ci and CD) with number of panels. 
Partially cavitating hydrofoil; same foil geometry 

as in Table 1. 

Another way of showing the effect of Re on 
cavity extent and size is by keeping the cavitation 
number as well as the lift coefficient constant. In 
this way, a direct comparison of the predicted cav- 
ity length and volume in inviscid or viscous flow 
for given flow conditions {a) and design require- 
ments (lift coefficient, CL, or thrust coefficient in 
the case of propellers) can be made. In Figures 
20, 21, 22 and, 23, contour plots of constant a 
and CL are drawn on the l/c vs. a and V/c2 vs. 
a space. In this manner, someone can look at 
the crossings of the same values of a and CL for 
different Re. 

The corresponding cavity lengths and vol- 
umes as well as the angle of attack (required to 
produce the same lift) can be found and compared 
for different Re. From these contour plots, it may 
be seen that the cavity volume and length decrease 
with decreasing Re for fixed a and CL- This is the 
reverse trend from that shown in Figures 17 and 
18 where the cavity volume and length increase 
with decreasing Re for fixed a and a. The pre- 
dicted cavity shapes with fixed a and CL and for 
different Re are shown in Figure 24. 
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Figure 19: Cavity shapes predicted by the inviscid 
and the present viscous method for two Reynolds 
numbers. All hydrofoil sections are at a = 4° and 
<r = 1.0. The corresponding lift coefficients are 
shown next to each foil; r/c = 0.04, /0/c = 0.02. 
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Figure 20: Contour plots of constant lift coeffi- 
cient and cavitation number versus cavity length 
and angle of attack. Predicted by the present 
method for inviscid flow (top), Re = 2 x 107 (mid- 
dle) and Re = 2 x 106 (bottom); NACA66(T/C = 
0.04), NACA a = 0.8(/„/c = 0.02). 
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Figure 21: Contour plots of constant lift coeffi- 
cient and cavitation number versus cavity volume 
and angle of attack. Predicted by the present 
method for inviscid flow (top), Re. = 2 x 107 (mid- 
dle) and Re = 2 x 106 (bottom); NACA66(T/C = 
0.04), NACA a = 0.8(/o/c = 0.02). 

Inviscid 

3      oc     4 5 

Re=2x107 

0.6 'o 
I       V<5> 

/   ^ 

\ / ^ 
7\o 
/ X* 

0.4 ^ X 
«b/' , <?A . N%/\ 

0.2 V 

a    4 

Re=2x10f 

l/c 
0.6 

0.4 

0.2 

<
<

10
6_

 

\;<5> 

o7          \A r°* 
1  '^ X<fÄ 

7       \ x^y xj^ 
a    4 

Figure 22: Contour plots of constant lift coeffi- 
cient and cavitation number versus cavity length 
and angle of attack. Predicted by the present 
method for inviscid flow (top), Re — 2 x 107 (mid- 
dle) and Re = 2 x 106 (bottom); NACA66(T/C = 
0.07), NACA a = 0.8(/o/c = 0.02). 
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Figure 23: Contour plots of constant lift coeffi- 
cient and cavitation number versus cavity volume 
and angle of attack. Predicted by the present 
method for inviscid flow (top), Re - 2 x 107 (mid- 
dle) and Re = 2 x 106 (bottom); NACAQ6{T/C = 
0.07), NACA a = 0.8(/o/c = 0.02). 
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Figure 24: Cavity shapes predicted by the inviscid 
and the present viscous method for two Reynolds 
numbers. All hydrofoil sections are at CL = 0.6 
and a = 0.8. The corresponding angles of at- 
tack are shown next to each foil. NACA6Q(T/C = 
0.07), NACA a = 0.8(/o/c = 0.02). 
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4.2    Super-Cavitating Hydrofoil 

0=0 

Figure 25:    Super-cavitating hydrofoil with its 
boundary displacement thickness. 

Consider a super-cavitating hydrofoil in vis- 
cous flow, as shown in Figure 25. In a similar man- 
ner, as in the case of partial cavitation, we first 
solve the inviscid cavity flow in non-linear theory 
[11]. We then apply the boundary layer equations 
on the compound foil, confined by the pressure 
side of the hydrofoil and the cavity boundary. A 
zero friction condition is applied everywhere on 
the cavity, as shown in Figure 25. 

Results from applying this method are shown 
in Figure 26. The resulting boundary layer dis- 
placement thickness is shown at the top of the 
figure. The pressure distributions in inviscid and 
viscous flow are also shown. Notice that viscosity 
has a very small effect on the pressure distribu- 
tion. The reader is reminded that this was not 
the case for partial cavitation, as may be seen in 
Figure 7. In other words, for super-cavitation, the 
cavitation number in viscous flow for given cavity 
length, I, is practically identical to that in inviscid 
flow. The friction coefficient, C/, on the pressure 
side of the foil and cavity, is also shown at the 
bottom part of Figure 26. 

The lift and drag on the hydrofoil are eval- 
uated by integrating the pressure forces acting 
on all sides of the hydrofoil (the constant cav- 
ity pressure is applied on the cavitating sides of 
the hydrofoil) as well as the frictional forces act- 
ing on the wetted side of the hydrofoil. The con- 
vergence of the cavity solution and the predicted 
forces with number of panels is given on Table 3. 

Finally the predicted a, CL, and CD VS. / 
curves are shown in Figures 27 and 28, for a 
super-cavitating section at two angles of attack 
in inviscid flow and for two Reynolds numbers7. 
The super-cavitating section is a combination of 
a NACA 4digit camber form (with the maximum 

0.2 r 

0.0 

-0.4 

5.0 r 

<1000 

2.5 

0.0 

viscous 
inviscid 

2       x/c      3 

C,=0 

x/c 

Figure 26: Super-cavitating hydrofoil in inviscid 
and viscous flow at Re — 2 x 107. Cavity shape 
and boundary layer displacement thickness (top); 
pressure distributions (middle); and friction coef- 
ficient on the pressure side of the foil and cavity 
(bottom). All predicted by the present method. 

Based on /. 
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Figure 27: Cavity length, lift and drag coefficient 
versus cavitation number for a super-cavitating 
hydrofoil at a = 1.5°, in inviscid and viscous flow; 
predicted by the present method. 
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Figure 28: Cavity length, lift and drag coefficient 
versus cavitation number for a super-cavitating 
hydrofoil at a = 3°, in inviscid and viscous flow; 
predicted by the present method. 
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introduced as a way of including the effects of vis- 
cosity in the case of cavitating flows in three di- 

N a V/c2 cL cD 

100 0.145 0.365 0.282 0.0219 

160 0.146 0.364 0.287 0.0223 

200 0.146 0.363 0.292 0.0231 

mensions. 

Table 3: Convergence of viscous cavity solution 
(a, V/c2, Ci and CD) with number of panels. 
Super-cavitating hydrofoil; T/C = 0.045, f0/c = 
0.015, p = 0.85, a = 3°. 

camber f0 at x = p) and a linear thickness form. 
The effect of viscosity on lift coefficient is shown 

to be very small. 

4.3    The "equivalent" a 

As already mentioned in Section 4.1, during 
the design of a hydrofoil or propeller the cavi- 
tation number and the lift (thrust) requirements 
must remain fixed. However, as was shown in Fig- 
ures 20 to 23, inviscid theory would underpredict 
the extent and size of cavities. By using these 
figures, someone can find the "equivalent" a in 
inviscid theory, which for the same lift coefficient 
would produce the same cavity volume (or length) 
as viscous theory for the given Ct and the original 
value of a. 

The equivalent a, in the case of finite span 
hydrofoils or propellers, may be estimated by ap- 
plying the 2-D theory on the local section geom- 
etry and lift coefficient at which the maximum 
extent of cavitation appears. 

5    CONCLUSIONS 

The viscous flow around cavitating hydrofoils 
was addressed by coupling an inviscid non-linear 
cavity model with a boundary layer solver. The 
cavity detachment point is set where laminar sep- 
aration occurs just upstream of the cavity. In the 
case of partial cavitation, it was found that invis- 
cid cavity theory: (a) overpredicts the cavity ex- 
tent and volume for fixed cavitation number and 
angle of attack and, (b) underpredicts the cav- 
ity extent and volume for fixed cavitation number 
and lift coefficient. In the case of super-cavitation, 
the effect of viscosity on the predicted cavitation 
number for given cavity extent, was found to be 
negligible. The equivalent cavitation number was 

Future efforts will include: (a) systematic 

validation of the results of the present method 
with experiments and, (b) direct application of 
the method in three dimensions. 
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A    The Blended Spacing 

When employing the inviscid cavity model, 
already described in Section 2, a panel arrange- 
ment is desired in which: (a) the number of pan- 
els at the foil and cavity leading edge is indepen- 
dent of the total number of panels; (b) the cavity 
detachment point and the cavity end are panel 
boundaries and (c) there is smooth transition of 
the panel size in the vicinity of the cavity start 
and end. Originally [11], two cosine spacings were 
used between the foil leading edge and the cavity 
end and between the cavity end and the foil trail- 
ing edge. This arrangement (called double cosine 
spacing) though, does not satisfy all of the desired 
requirements. In the process of introducing a new 
spacing the following problem must be addressed 
first: 
Define a sequence of N intervals, Ax;; i = 
1,...,N, between x — a and x = b > a which 
"blends nicely'7 to given intervals at the two ends 
(Azi and Axfj). To accomplish this we first make 
the following definitions: 

       b — a 
Ax =  

N 
(45) 

«m-% (46) 

4_ Axi 

Ax 
(47) 

B     AXN (48) 
Ax 

The progression f(i: N) must then satisfy the 

conditions: 

f(i;N) = A (49) 

f(N; N) = B (50) 

E?f(i;N) = N (51) 

We define the following progressions, both of 
which automaticallv satisfy conditions (49) and 

(50): 
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N-i     „ i - 1      rAN ~ 00' ~ !) 
v       '        ft —1        ft - 1 (A - l)2 

(52) 

/(«; A) = A 
N - 
ft - 

-P 
)2 + B( 

VA- 
1N 

)•♦ 

TT   ^ -0' »(«■- -i)2 

(ft -1)4 (53) 

The coefficients I<i and üf2 are then deter- 
mined from satisfying condition (51). It can be 
shown, after lengthy algebra, that: 

Ki = 
6(jy -1) 
(ft-2)   [ 

1 
A + B 

(54) 

and: 

K2 = 
30(A - l)2 

(A3 

N - 1 

4A72 + 6A 

2ft - 1 
4) 

(A + B) (55) 

We call the blended spacings defined from 
equations (52) and (53) linear and parabolic, re- 
spectively 8. For both spacings there is a critical 
number of panels, beyond which the method re- 
sults into f(i;N) < 0, i.e. negative intervals. 

The blended grid, in the case of partial cavi- 
tation, is then defined as follows 9: 

• for 0 < x < ID' ftrLE panels with half-cosine 
spacing. 

• for ID < x < I: ftc panels with parabolic 
blended spacing; the left end interval is set 
equal to the right end interval of the previous 
spacing, and the right end interval is set equal 
to Ax^£.. 

• for I < x < 1: ft7FW panels with parabolic 
blended spacing; the left end interval is equal 
to Azj^ and the right end interval is equal 
to AzfJ. 

Where NH = N/2, ftc - ft~H x I - NLE and 
NFW = N~H — Ac — NLE with A7 being the total 
number of panels. NLE is defined from: 

A LE ftl 
ID 

PLE 
(56) 

8 They become linear and quadratic functions of i for 
A'i = 0 and A'2 = 0. 

9 The given number of panels refers to each side of the 
foil. 

0.02    x/c        0.04 

Figure 29: Arrangement of panels at the leading 
edge of a partially cavitating hydrofoil. Double 
cosine spacing (top) and blended spacing (bot- 
tom). The total number of panels is equal to 100 
in both cases. 

with NR being a fixed number of panels for 
0 < x < PLE with PIE being the leading edge 
radius. In our current spacing we have selected: 

3 and Ax£F = A TE 
,FW bTE 1/JVj H- 

The panel arrangements in the vicinity of 
the leading edge, resulting from the original dou- 
ble cosine and the proposed blended spacing, are 
shown in Figure 29. Notice the finer resolution in 
the case of the blended spacing. 

The convergence of the results with num- 
ber of panels, from applying the inviscid cavity 
model on the two grids is shown in Figures 30 
and 31. Notice that the cavity solution and the 
foil forces converge faster when the blended grid 
is employed. The improvement of the convergence 
by using the blended grid appears to be more pro- 
nounced in the calculation of drag, as expected, 
due to the higher panel resolution at the lead- 
ing edge. The blended spacing has been found to 
improve the convergence of the presented viscous 
cavitv model as well. 
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Figure 30: Convergence of the cavity solution pre- 
dicted by the present method for two different 
panel arrangements; T/C = 0.04, f0/c = 0.02, 
a = 3°, l/c = 0.35, lD/c = 0.008. 
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Figure 31: Convergence of the forces predicted 
by the present method for two different panel ar- 
rangements; same hydrofoil geometry as in the 
previous figure. 
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Artificial Variation Problems Method for 
Three-Dimensional Lifting Cavity Flows 

A. Achkinadze, G. Fridman 
(Marine Technical University of St. Petersburg, Russia) 

ABSTRACT. 

The artificial variation problem (AVP) 
method is discussed to analysis of nonlinear 
three-dimensional cavity flow problems based on 
variational approach together with mathemati- 
cal programming methods. AVP method allows 
to substitute the differential or integral equation 
(system of equations) problem by the equivalent 
variation problem for the same unknown functi- 
ons, which bring minimum value to the certain 
artificial functional. This artificial functional can 
be not connected with any physical characteri- 
stics of described object and minimisation of this 
functional can be not connected with optimisa- 
tion process for these characteristics. 

INTRODUCTION. 

During last 125 years of theoretical and 
99 years of experimental investigations of deve- 
loped lifting cavity flows a lot of mathematical 
models and corresponding numerical methods for 
their realisation have been proposed . There are 
two directions of development of such mathema- 
tical models: 

• the first one is connected with taking into 
account additional certain properties of the 
flow, such as gravitational, viscous, capil- 
lary, unsteady, three-dimensional effects etc. 

• the second one provides more closely utilisa- 
tion of modern numerical approaches, such 
as voracity and source lattice method, panel 
methods, mathematical programming met- 
hods etc. 

The value of investigations in this fields 
depends on theoretical and engineering problems 

which could be covered by new approaches or 
valuable improvement of numerical algorithms. 
The artificial variation problems method propo- 
sed by authors in this paper belongs to the se- 
cond group of methods which enable to treat and 
to successfully solve three-dimensional lifting ca- 
vity flow problems. In assumptions of "ideal" ca- 
vitation [1] (without effects of viscous and capil- 
lary) by using method we can construct effective 
algorithm to determine flow coefficient (lift, drag, 
etc.) and cavity volume and planform for both 
open and closed cavity closure models. Usually 
the detachment curve is founded from Brillouin- 
Villat condition or fixed previously. For example, 
such method is used in [2]. 

The problem under considerations was 
treated by lot of methods (see [3-9]). In all 
these papers it was emphasized that there are 
many difficulties (especially for non zero cavi- 
tation number) standing before when one con- 
structs the process of successive approximations 
in order to determine cavity planform. The ap- 
proach proposed by authors lets us overcome 
mentioned obstacles and beside this in the frame 
of linear theory and open cavity closure model gi- 
ves an unique opportunity to solve the problems 
of optimal design of supercavitating profiles [10], 
wings of arbitrary planform [11,12] and blades of 
supercavitating propellers [13]. In these papers 
it was used the coincidence of minimized functio- 
nal of artificial and natural, "physical" variation 
problems. The method has some interesting per- 
spective even for unsteady cavity flow problems 
[14]. 

From mathematical point of view artifi- 
cial variation problem (AVP) method is approxi- 
mate method for integral equations solution with 
unknown area of integrate. The traditional state- 
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ment of lifting cavity flow problem when all bo- 
undary conditions (dynamic and kinematics con- 
ditions on the cavity and wetted surface and 
detachment and cavity closure conditions) writ- 
ten as equations is replaced by "artificial vari- 
ation" statement which formulated as a system 
of inequalities with artificial minimized functio- 
nal. When this functional takes its minimum va- 
lue which is equal to zero, solutions of traditional 
and variation problems coincide. The collocation 
and mathematical programming methods can be 
used for numerical realisation of proposed appro- 
ach. 

Author are understanding the term 
"mathematical programming" as a field of ap- 
plied mathematics which is studying the algo- 
rithms for solutions of finite systems of linear 
or nonlinear equalities and inequalities (restricti- 
ons) under the condition that this solution brings 
minimum (or maximum) to the certain objec- 
tive function. In contrast to classical calculus 
of variations and Lagrange multipliers method, 
proposed approach based on AVP method ope- 
rates with both equalities and inequalities and 
at the same time determines an actual minimum 
(not only stationary point) even on the boundary 
of the region of integrate under consideration. 
These advantages enable to build the artißcial 
minimize functional starting only from formal re- 
asons that its minimum value lies on the boun- 
dary of the region and not from any energy or 
other physical reasons which need in the strong 
smooth of functions. 

Mathematical programming problems 
are simplified in two cases: 

- linear programming (optimization) 
with linear restrictions and objective funtional; 

- quadratic programming (optimization) 
with linear restrictions and second order objec- 
tive functional. 
These variants will be cover in all examples in 
this paper. 

First investigations which applied desc- 
ribed AVP method [10,11,12] were executed in 
assumptions of the linear theory and open ca- 
vity closure model and therefore the linear pro- 
gramming was used. At the present paper AVP 
method was correctly extended and adopted to 
the both open and closed cavity closure models. 
Authors do not compare cavity closure models 
between themself (such research was carried out, 
for example, in [15]) because of AVP method is 
universal for the set of closure models. 

We emphasise that the statement of the 

problem under consideration in this paper was 
formulated (see below) for more global assum- 
ptions then assumptions of the linear theory [16]. 
It was assumed only that the cavity thickness in 
comparison with the mean chord of the wing is 
small. As for other geometric flow parameters 
(including the thickness of the lifting surface and 
the incidence angle) they have a wide range of 
variations. 

The AVP method for three-dimensional 
lifting cavity flow problems was numerically reali- 
zated in this paper by means of the panel method 
(note that recently the panel method successfully 
is used for the propeller problems [17,18]) and 
numerical lifting surface method. The cavitating 
wing thickness is modeling by source distribution 
on the base surface (that is exactly as for linear 
theory). But nevertheless even in this case AVP 
method is very effective and it gives numerical 
results which are in good agreement with expe- 
rimental data. All these facts let us claim that 
AVP method is perspective and powerful met- 
hod. 

VARIATION AND TRADITIONAL STA- 
TEMENTS OF THE THREE-DIMENSI- 
ONAL LIFTING CAVITY FLOW PRO- 
BLEM. 

Partially Cavitating Flows. Generalized 
Cavity Closure Model With "Reflector". 

The problem to be considered in the pre- 
sent paper is the flow past a cavitating wing of 
finite (not small) thickness with given surface S. 
The surface S is smooth anywhere besides the 
preassigned curve Iß which is the trailing edge 
of the wing. At the same time curve Iß is the 
beginning of the surface Sw - the vortex wake 
surface which runs to the infinity after the wing. 
The surfaces of the cavities is Scav ■ Symbol h 
denotes the cavity thickness measured in normal 
direction of 5. Let us assume that the origin 
of the system of Cartesian coordinates (x,y, z) 
is placed on the Iß. The velocity vector 1^, of 
the uniform stream is parallel with the X-axis. 
The problem under consideration is formulated 
for the three-dimensional irrotational (outside of 
surfaces S and Sw) flow of an ideal incompres- 
sible fluid without gravity. The function of the 
flow potential is 

$ = VooX + if (1) 
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where <p is the function of the perturbation velo- 
city potential. 

The traditional statement of the pro- 
blem includes conditions for the desires harmonic 
function <p is as follows: 
a) kinematics tangency condition on rigid wetted 
boundaries defined as S\Scav 
b) dynamic (constant) pressure or Vy boundary 
conditions on the surfaces of all formed cavities 

c) conditions at infinity for velocity t^» and static 
pressure p^. 

At the same time it is necessary to de- 
termine shapes of vortex wake surface Sw, cavity 
planforms Scav and the height of the imaginary 
closure plate hci (for closed cavity closure mo- 
dels). The placement of this plate is unknown as 
well as the cavity surface. For given geometric 
parameters of the lifting surface S, the vapour 
pressure inside the cavity peav and the fluid den- 
sity p the problem can be mathematically forma- 
lize as follows: 

<9V     d2v>     „ r 
Ox* + JT + ^T = °   outside of s u Sw  (2) 

d2? 
dz2 

dip 
dn 

= — Foo • n    on the S\SC, 

dtp -     -> 
"E7 = -Voo • /    on the Hcj 
ol 

p+ — p~ = 0   on the Sw 

d<p+      d<p~ 
-z ^— = 0    on the Sw 
on an 

|Vy?| < oo    on the Iß 

Vtp —+ 0    as i-t —oo 

P — Pcav = 0    on the Scav 

P ~ Pcav > 0    on the S\Ss
cav 

h > 0    on the Scav 

h = 0    on the S\Ss
cav 

(3a) 

(36) 

(4a) 

(46) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

where 
Scav and Sfav are the surface of all cavities on 
the wing and the projection of this surface onto 
the surface of the wing S respectively; 
Hd is the surface of the imaginary plate ("reflec- 
tor") which closes the cavity volume, the height 
of this plate is equal to hcr, 
"+" and "—" denote the limiting values of pa- 
rameters on the upper and lower sides of the 
semi-infinite wake surface Sw which begins on 

the curve lg, the trailing edge of the cavitating 
wing; 
n and / are the local system of coordinates for 
any transverse wing section; at the same time 
/ denotes the arc coordinate of a point on the 
surface of a mentioned wing section (see Figure 

!)■ 

Let us explain conditions (3a), (3b) and 
(8)—(10). All these conditions are the consequ- 
ence of assumptions of the "ideal cavitation" and 
the accepted partially cavity closure model with 
closure plate Hci which is normal to the wing sur- 
face S. On the surface Hc\ the constant pressure 
condition is not fulfilled. Conditions (7), (8) and 
(9), (10) are the three-dimensional analogue of 
the first and second Brillouin conditions respec- 
tively for two-dimensional cavity flows [19,20]. 

Figure 1: Flow pattern past a cavitating wing. 
Generalized cavity closure model with "reflec- 
tor". 

The cavity behaviour in the detachment 
and closure regions for three-dimensional flow is 
coincides in the main with behaviour for two- 
dimensional flow. This fact can be proved by 
using, in particularly, the method of Matched 
Asymptotic Expansions (MAE) [21,22]. The sa- 
tisfaction of Brillouin conditions guarantees the 
smooth cavity detachment. The curve where ca- 
vity surface Scav joins with closure plate Hc\ 
(Hci is perpendicular to the surface S) is the 
curve where the cavity curvature is equal to in- 
finity. At the same time the curve where clo- 
sure plate joins with the surface of the wing 
S is the line of stagnation points. The propo- 
sed three-dimensional model of partially cavita- 
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ting is three-dimensional analogue of the two- 
dimensional Riabouchinsky cavity closure model 
(model with "reflector", [20,23]). The AVP met- 
hod does not set any restrictions on the num- 
ber of cavities. For example, first cavity could 
replace on the suction side and the other one on 
the pressure side of the wing. 

The variation approach to the statement 
of the boundary problem (2)—(10) under conside- 
ration consists of the generalization of boundary 
conditions on Sca„ in order to exclude this sur- 
face from respective expressions. As a consequ- 
ence we receive a set of appropriate solutions of 
new generalized variation problem. In order to 
select the solution of the initial problem the cer- 
tain minimized artificial functional F is used. 

Surfaces 5 and Scav are replaced in con- 
ditions of the variation statement by new surface 
Sh- This surface is apart with distance h{l,z) 
from the surface 5. The value of h(l, z) is mea- 
sured in normal direction to the 5 and is posi- 
tive as Sh lies outside of 5. It should be menti- 
oned that h(l,z), strictly speaking, is not a ca- 
vity thickness. Assume that h"h denotes the outer 
normal to the surface Sh ■ All boundary conditi- 
ons, both kinematics and dynamic, are fulfilled 
on the Sh, not on the unknown wetted part of 
the surface S and on the Scav • 

The variation statement of the boundary 
problem under consideration formulated in term 
of Sh is as follows: 

S + 0 + ^ = °    °»*fccfÄ      (11) 
dip         - 

ö— = -V<x> ■ nh    on the Sh 
onh 

(12a) 

dip         -     - 
-KT = -Voo • /    on the Hc\ (126) 

p+ — p~ = 0   on the Sw (13a) 

dip       dip~ 
-= 7,— =0    on the Sw 
on        on 

(136) 

|Vy?| < oo    on the /# (14) 

Vip -*0    as x —* —oo (15) 

P - Pcav > 0    on the Sh (16) 

h > 0    on the Sh (17) 

h = 0    on the  Iß (18) 

F=  if (p-Pcav)h(l,z)ds-> min      (19) 

where F is the artificial minimized functional. 

Unknown quantities are the function of 
the perturbation velocity potential <p, surfaces 
Sw and Sh and function h(l,z). The quantities 
Poo, Pcav, V&> and wing surface 5 are given in 
advance. 

It should be mentionned that the boun- 
dary problem (11)—(19) is not mixed in contrast 
to (2)-(10) problem. 

Let us prove that traditional (2)—(10) 
and variation (11)—(19) problems are equivalent, 
i.e. their solutions, if they exist, are coincide. 

First, the artificial minimized functional 
F has no negative values for any values of func- 
tions p and h(l, z) which satisfy conditions (16) 
and (17). 

F>0 (20) 

This is really true because of the functi- 
onal F is the integral of the product of two non 
negative multipliers (left part of expressions (16) 
and (17) respectively). That is why we called F 
artificial functional. The property of having fixed 
sign of the functional F was reached by using of 
conditions-inequalities. 

Second, from (20) and (19) we get that 

minF = 0 (21) 

Note that we assume that the solution 
of the variation problem (11)—(19) exists and the 
minimum value of the functional F can be re- 
ached. Below we shall prove that if the solution 
of the variation problem (11)—(19) does not exist 
then the traditional problem (2)—(10) has no so- 
lution too. 

Third, from (21) we get that desired so- 
lution satisfies the following equality 

F = J J (j>-Pcav)h(I,z)ds = 0        (22) 

Therefore surface Sh includes only two 
subdomains Si and 52 where following conditi- 
ons fulfill: 

p> Pc 

h > 0 on the surface Si C Sh    (23a) 

h = 0 on the surface 52 C Sh    (236) 

It is obvious that Si = Scav and 52 = 
S\SCav At the same time the condition (12a) 
includes the condition (3a), i.e. kinematics tan- 
gency condition on the surface S\Scav because of 
on this part the surface Sh coincide with 5 due 

469 



to h — 0 as p — pcav > 0. Thus all conditions 
of the traditional problems fulfilled when F — 0 
and therefore varational problem (11)—(19) does 
not lose any solutions of the traditional problem 
(2)-(10). 

At the same time the set of admissible 
solutions does not extend because of condition 
F = 0 leads only to subregions S\ and S^- Let 
us assume the contrary, namely that condition 
(10) is disturbed, i.e. h > 0 on the wetted part 
S\Scav where p—pcav > 0. Then in this region we 
obtain that (p — pcav) h > 0 and expression (22) 
can not reach the zero value. Therefore there is 
no solution which is correspond to the minimum 
value of functional (21). This is contradiction. 

Below we formulate a set of explaining 
remarks to the aforementioned approach. 

Remark 1. The condition (19) of the va- 
riation problem F —> min could be replaced by 
F = 0 and we obtain the system of equalities 
and inequalities. However going over a finite sy- 
stem from boundary problem by collocation met- 
hod we should not strictly satisfy the condition 
F = 0 due to calculation errors. Therefore the 
desired solution could be lost. Minimized condi- 
tion F —► min is more convenient in spite of the 
fact that it is necessary to solve the optimization 
problem. 

Remark 2. The Euler integral shows the 
relation between pressure p and the function of 
the perturbation velocity potential <p [1] 

P 
P 

(W)2 

-Va 
dip 

1 "H ox 
(24) 

where p is the fluid density. 

Remark 3. Due to conditions (7) and (9) 
AVP method can take into consideration the sub- 
regions where cavity thickness is equal to zero. 
They are isobaric regions with p = pcav; h = 0. 

Remark 4- The proposed variation sta- 
tement of the problem differs from classical vari- 
ation principles. Namely, the set of restrictions 
includes inequalities and the minimum value of 
the objective function is situated on the boun- 
dary, not inside of the region. Therefore classical 
differential sufficient condition of decision pro- 
blem could not applied. 

Remark 5. Aforementioned approach 
was formulated in the assumptions of nonlinear 
theory in order to use the panel method (pertur- 
bation potential method). On each iteration's 
loop of successive approximations the simplified 

mathematical programming problem is solved. 
Simplification consists of assumption of small va- 
lues of h. Then boundary conditions are projec- 
ted from the surface Sh to the wing surface S. 
The normal closure plate Ec\ degenerates into 
the curve lc\ on S where after linearization vorti- 
city and source distributions have a square root 
singularity 1 /y/\l-hi\- Thus for the small va- 
lues of hci the surface Sh must be replaced by S 
in the statement of the problem (11)—(19). The 
condition (12b) modifies to h = hci = 0 on lci and 
corresponds to the closed cavity closure model. 

Also other simplify assumptions could be 
used, for example, we should neglect the term 
of (24) (Vy>)2/2 or should assume for vorticity 
distribution: 

dh 
W 

(25) 

Remark 6. The variation statement 
(11)—(19) could be extended for the regime of 
the supercavitating flow. To this end the condi- 
tion (18) is excluded and a corresponding part of 
vortex wake surface Sw is added into the new 
surface Sh- Certainly, the shape of Sw must 
be approximately given on each iteration's loop 
of successive approximations process. Then the 
surface Sh must be arbitrarily extensive to inc- 
lude the desired three-dimensional cavity surface 
Scav ■ The sufficiently choice of such surface Sh 
is always provided when poo > pCav (cavitation 
number a > 0). 

Remark 7. The proposed three- 
dimensional extended closed cavity closure model 
with "reflector" leads to the additional problem 
connected with both partially and supercavita- 
ting regimes which could simultaneously realize 
on the wing. The displacement of the closure 
plate Hci near and especially on the trailing edge 
of the cavitating wing IB leads to unlikely jump 
of lift and drag coefficients and cavity surface. 
That is why in the next chapter authors propose 
an another cavity closure model with wake. 

Partially Cavitating Flows.     Generalized 
Cavity Closure Model With Wake. 

The flow pattern acquires the form as 
shown on Figure 2. The boundary of the cavity 
has smooth curvature on both detachment and 
closure curves. The closure cavity curve joins 
with semi-infinite body of thickness h = const. 
Any section of this body forms the equidistant 
curve with surfaces S and Sw respectively. The 
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wake thickness at infinity is equal to h and the 
cavity closure condition for closed model does not 
fulfil. Thus the three-dimensional cavity closure 
model with equidistant partitions is used. Two- 
dimensional problem with analogous closure mo- 
del was treated in [15,23,24]. 

Figure 2: Flow pattern past a cavitating wing. 
Generalized cavity closure model with wake. 

In order that state this problem it is ne- 
cessary to take into consideration the additional 
semi-infinite wake region Sq which is situated af- 
ter the cavity volume at the distance h(l, z) from 
wing S and wake Sw surfaces. On the other hand 
we could exclude the closure plate Hc\. Thus the 
statement of the corresponding problem is as fol- 
lows: 

A^ = 0    outside of S U Sw U Sq U Scav    (26) 

dtp 
fa=-v°°-n   on the S\(Scav U Sq)    (27a) 

dtp -     _ 
a— = — Voo ■ nh    on the Sq 

p+ -p- 

dtp+     dtp' 

■ 0   on the Sw 

0    on the Sw 
dn        dn 

|Vy?| < oo    on the Iß 

Vtp ->0    as x —* -oo 

P - Pcav = 0    on the Scav 

P ~ Pcav > 0   on the (S U Sq)\Scav 

dh 

dl > 0    on the Scav 

(276) 

(28a) 

(286) 

(29) 

(30) 

(31) 

(32) 

(33) 

dh 
0   on the (SuSq)\S; '5 

cav (34) 

where Sq is equidistant surface to S U Sw ■ 
The n/, denotes the outer normal to the 

surface Sh ■ The arc coordinate / for any wing sec- 
tion is counted from arbitrary point A outside of 
caviities (see figure 2) in the upstream direction 
independently from where the cavity is situated 
(on both pressure or suction side). The condi- 
tion (33) indicates that the cavity thickness is 
monotone nondecreasing function. We shall ac- 
cept that the curve where the cavity thickness 
reaches its largest value (for any wing section) is 
the cavity closure curve. The equidistant surface 
Sq begins from this curve. 

It should be mentioned that in assumpti- 
ons of this model there are no any disturbances 
of the curvature of the cavity boundary. Conse- 
quently the proposed model with wake could be 
extended and applied for both partially and su- 
percavitating flow regimes which are simultaneo- 
usly realize on the wing without any difficulties. 

The analogous procedure of the passage 
to the variation statement of the problem was 
described in the previous section of the paper for 
the model with "reflector". It must be mentioned 
that the surface Sh in the expressions below is the 
surface which is lies at the distance h(l, z) over 
the surfaces S U Sw ■ 

The variation statement is as follows: 

d2<p     d2tp     d2tp 

~d£ + W + 'd£ = 0 outsideof5*   <35) 
dtp 

—Voo ■ Hh    on the Sh 
dnh 

p+ — p~ = 0    on the Sw 

dtp+      dtp~ 
—z — = 0    on the Sw 
on        dn 

\Vip\ < oo    on the /g 

Vy> —► 0    as x —»■ —oo 

P — Pcav > 0    on the Sh 

dh 

dl 
> 0    on the Sh 

on the point A for any wing section 

h = 0 

F* = (P - Pcav) -TjT ds -* min 

(36) 

(37a) 

(376) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
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The function of the perturbation velo- 
city potential <p, surfaces Sw and Sh are unk- 
nown quantities which bring minimum value to 
the artificial functional F*. The quantities p<x>, 
Pcav, K» and wing surface S are given in ad- 
vance. It would be easy to see that minimized 
artificial functionals (19) and (43) for two three- 
dimensional cavity closure models differ one from 
other only in functions h(l, z) and dh/dl respec- 
tively. 

The proof of the equivalence between 
traditional (26)-(34) and variation (35)-(43) sta- 
tements of the problem is analogous to the proof 
for the model with "reflector". We would like to 
repeat only our argument on the contrary for this 
model. Let us take that the condition (34) was 
disturbed and dh/dl > 0 on the part of Sq or S 
where p —pcav > 0. Then the integral in the part 
of (43) does not reach its minimum (zero) value 
and therefore such a solution is not appropriate. 

All remarks which were made in the pre- 
vious section of the paper remain after obvious 
corrections for the model with wake. It should 
be mentioned that after linearization there are no 
singularities of source distribution function at the 
end of the cavity and proposed approach could 
be applied for both partially and supercavitating 
flow regimes which are simultaneously realize on 
the wing. 

In order that illustrate the advantages of 
AVP method let us solve the problem under con- 
sideration (closure model with wake) using as- 
sumptions of the linear theory. 

NUMERICAL REALIZATION OF THE 
ARTIFICIAL VARIATION PROBLEM. 

Linearization of the Artificial Variation 
Problem for the Closure Model With 
Wake. 

At small magnitudes of the lifting flow 
parameters (such as incidence, wing and cavity 
thickness and curvature, etc.) the problem under 
consideration could be linearized ([12,16,25]). To 
this end the certain base surface SBS lying on the 
(zz)-plane is accepted. This surface is bounded 
by the leading edge of the wing and by two paral- 
lel rays starting from wing's tips to the upstream 
directions. The kinematics tangency condition is 
projected onto the surface SBS and the function 
dp/dn replaces by d<p/dy 

The Euler integral (24) after lineariza- 
tion shows the relation between the pressure p 
and the function tp 

l = ^-vj^ (44) 
p       p ox 

The dynamic boundary condition could 
also be projected onto the surface SBS which at 
the same time partially coincides with the wake 
surface Sw- After mentionned simplifications 
the linear artificial variation problem with clo- 
sure model with wake is as follows: 

^ + ^f + ^ = 0   outside of SBS    (45) 
ox2      dy2      dz2 

dy M^T + ^r)    onthe SBS   (46a) dx 

dy        °°   dx 

dx 

dh~ 

dx 
)    onthe SBs   (466) 

dT 
dz 

d<p+     dip 
on the SBS n Sw   (47a) 

dz        dz 

r(z) = <p+ - ip-    on the SBS n Sw     (476) 

V^7 —> 0    as i-t —oo 

1  d<p± a 
2 Vco   dx   ~ 

dh± 

> 0   on the SBS 

dx 
> 0    on the SBS 

(48) 

(49) 

(50) 

on the point A for any wing section; 

h£ = 0 (51) 

+ 

F"-IL{ 

SLA 

a       1   gy+   dh+ 

2      V«,   dx '   dx     S+ 

1  d<p   ,dh 
) -jj— as —* mm   (52) 

Voo  dx      dx 

<x> 0 (53) 

where SBS is the two-sided surface; "+" and "—" 
denote the limiting values of functions on the up- 
per and lower sides of the base surface SBS and 
a is cavitation number. 

Vortex wake sheets lie on the surface 
SBS DSw due to assumptions of the linear theory 
[1,17]. Function T(z) denotes the value of cir- 
culation on any closed contour around the wing 
section with transverse coordinate z. This value 
does not depend on coordinates of the point of in- 
tersection of mentioned contour with the surface 
SBS CISW , i.e. free vortex sheet runs in upstream 
direction (direction of x-axis and K»). If the ca- 
vity appears only on the suction side ("+") of 
the lifting surface then the second term in the 
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expression (52) vanishes. Note that in this case 
the appropriate surface SßS could be of finite 
area. It must cover the surface Scav. Some ad- 
ditional aspects of this problem were formulated 
in [12,26]. 

proximated by polygonal functions. Caring out 
the discretization we get the quadratic program- 
ming problem [27] with linear restrictions and se- 
cond order objective functional. This functional 
could be linearized and then we obtain: 
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Figure 3:   Lift coefficient of cavitating wing of 
rectangular planform without spoiler. 
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Figure 4: The correction factor CL3D/CL2D for 
a cavitating wing of rectangular planform. 

The method of integral equations and 
collocation method were applied to solution of 
artificial variation problem (45)—(53). The vorti- 
city j(x, z) and source q(x, z) distribution are ap- 

i dip 

i dip- 
7 + 

+ • go) ds —* min (54) 
V^dx 

where 
So denotes projection of wing surface onto the 
surface SBS', 

symbol = indicates that i*1,** « F** due to ne- 
glected nonlinear term with vortex sheet induc- 
tion dip" /dy 

II 1  d<p* 

+ Voo dy 
7 ds; 

4>* is the perturbation potential of free vortex 
lying on the surface of SBS H SW\ 

qcav denotes the source distribution which mode- 
ling the cavity; 
5o denotes the source distribution which mode- 
ling the wing thickness; 
7 denotes the vorticity distribution. 

The linear programming problem with 
minimized functional (54) was treated by sim- 
plex method. The next section contains some 
numerical results for cavitating wing of arbitrary 
planform. It should be mentioned that propo- 
sed approach allows to use powerful additional 
methods to increase the precision of calculations 
in linear theory assumptions. For example, at 
this investigation authors used nonlinear edges 
and apex corrections for cases of sharp and ro- 
unded leading edge of a cavitating lifting surface 
and for trailing edge equipped with a spoiler of 
small a length e and arbitrary inclination angle ß 
[28]. This methodology of nonlinear local soluti- 
ons in singularly perturbed three-dimensional lif- 
ting cavity flows was studied in papers [28,29,30] 
on the base of the method of matched asymptotic 
expansions (MAE), [21,22]. 

Numerical Results. 

The cavitating wings of rectangular and 
elliptic planform are presented as examples of nu- 
merical calculations [28,29]. Figure 3 shows the 
three-dimensional lift coefficient CL versus ca- 
vitation number a for rectangular flat plate of 

473 



c L3D . 

1.2 - 

0.2 --' 

EQ.  64  [31 
EXPERIMENT [3] 
PRESENT PAPER 

ae/a=1.0 

10        12        14        16        18       20       22   Oc(deg) 

Figure 5: Lift coefficientof cavitating wing of el- 
liptic planform, aspect ratio A = 3 

aspect ratio A = 6 and rectangular slender we- 
dge of A = 2 with angle of divergence 0 = 4.28°. 
This numerical results are in good correspon- 
dence with the experimental data [8] and lifting 
line theory results [31]. 

The effect of the aspect ratio on the cor- 
rection factor CLZD/CL2D is shown in Figure 4. 
In the same figure the correction factors obtained 
by the lifting-line theory by Nishiyama and by a 
lifting-surface theory by Nishiyama k. Miamoto 
are shown for comparison, [32] 

Figure 5 shows the results of [3] com- 
pared with present calculation for the surface of 
elliptic planform for aspect ratio A = 3 . 

The curves for CL and Lift/Drag ratio 
coefficient versus spoiler length are shown in Fi- 
gure 6 for rectangular plate of finite span with 
spoiler at the trailing edge. 

Singularities in the flow domain (on the 
leading edge and trailing edge equipped with a 
spoiler due to linearization of the problem) lead 
to the numerical results for lift and drag coeffi- 
cients which are about 10-15% more than expe- 
rimental data. Nonlinear edges corrections allow 
to reduce this difference to 3-5%. 

CONCLUSION. 

1. The AVP method is an effective in- 
strument for solution of three-dimensional lifting 
cavity flow problem in assumptions of linear and 
(in a perspective) nonlinear theory. 

CL30/0( 
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CLM>/« 
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X=4 

0.00       O02       O040^06       0.08       E/OL 

Figure 6: Lift coefficient and Lift/Drag ratio of 
a cavitating wing of rectangular planform with 
spoiler at the trailing edge. 

2. Proposed approach could be applied 
to unsteady cavity problem and a problem with 
a number of cavities both on the pressure and 
suction side of lifting surface. 

3. The approach advocated by the 
authors can be used for some other free sur- 
face lifting flow problems, for example three- 
dimensional planing flow problem, etc. 

The authors are thankful to Professor 
Kirill Rozhdestvensky for his invaluable com- 
ments and discussions. 
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Three-Dimensional Nonlinear Diffraction 
Around a Fixed Structure 

A. DiMascio, M. Landrini, F. Lalli, U. Bulgarelli 
(Istituto Nazionale per Studi ed Esperienze di Architettura Navale, Italy) 

ABSTRACT 

The computation of diffraction effects on a submerged 
obstacle in wavy flow is presented. The problem is 
analysed by means of both a linearized and a fully 
nonlinear mathematical model. The numerical solu- 
tion is obtained by an integral representation of the 
perturbation velocity potential, coupled with an ex- 
plicit time-marching algorithm that updates the wave 
elevation and the potential at the free surface. 

The diffraction caused by a submerged cylinder 
and by a shoal was computed and the results were 
compared with the available experimental data. 

NOMENCLATURE 

P = (x,y,z) space vector position 

t time 

u(P,t) velocity vector 

*{P,t) velocity potential 

D flow domain 

dO obstacle boundary 

dB bottom 

S free surface 

So incident wave free surface 

T(x,j/,<) free surface elevation 

*(P,t) incident wave potential 

$(P,t) perturbation potential 

v(x,y,t) incident wave heigth 

i){x,y,t) perturbation wave heigth 

9 acceleration of gravity 

P pressure 

N number of panels on the ob- 
stacle 

M number  of point sources 
above the free surface 

G(P,P*) Green function 

a(P) source density at P 

°i constant source density on 
the j-th panel 

dOj j-th panel on the obstacle sur- 
face 

döj mirror image of dOj 

Pk location of the k-th point 
source above the free surface 

h mirror image of Pk 

At time step 

X wave length 

k wave number 

T wave period 

H Ipeak       ' trough 

hm minimum depth 

h.M maximum depth 

Uoo stream velocity 

2d doublet immersion 

477 



INTRODUCTION 

The computation of hydrodynamic loads on offshore 
structures has always received considerable attention 
by ocean engineers. A good estimation of the forces 
acting on bodies whose characteristic dimensions are 
much smaller than the length of the incident wave can 
be obtained by the classical Morison approch, where 
all the effects related to the disturbance caused by the 
structures on the wave field are neglected. Diffraction 
forces become important when the typical dimension 
of the body is comparable with the wave length. An- 
alytical or asymptotical solutions have been given for 
the linearized radiation-diffraction problem in partic- 
ular limiting cases, whereas various numerical tech- 
niques have been developed for arbitrary geometries. 
Nevertheless, the propagation of waves with large 
steepness can be properly described only when tak- 
ing into account the nonlinear behaviour of the free 
surface; a numerical technique for handling such non- 
linearities can be found in [1]. The need to include 
nonlinear terms when calculating the wave loading on 
marine structures is also well established, as there are 
many important phenomena that cannot be predicted 
by a linear theory. Namely, second order effects are 
responsible of non-zero mean forces [2] and play an 
important role in the stability analysis [3]. Nonlin- 
ear effects may also be important in the hydroelastic 
problem [4]. 

In the present work, the nonlinear diffraction of a 
Stokes wave train due to a fixed submerged obstacle 
is numerically studied. For computational purpouses, 
the velocity potential is split into the sum of an in- 
cident wave term and a perturbation potential. This 
splitting avoids the difficulties related to the gener- 
ation of the incident wave train (by means of a nu- 
merical wakemaker) and simplifies the damping of 
the outgoing signals at the boundary of the truncated 
computational domain. 

The numerical solution of the boundary value prob- 
lem is based on an integral representation of the per- 
turbation velocity potential, whereas a time-marching 
Eulerian algorithm is used to update the potential and 
the elevation of the free surface. 

The analysis has been carried on for two test cases 
for which experimental data are available. In the first 
case [10] the interaction between an incident wave 
train and a submerged vertical cylinder is considered 
and the computed hydrodynamic forces are compared 
with the measured ones. Next, we have turned our 

attention to the wave pattern near a circular shoal 
subject to a Stokes wave; the numerically prediction 
is discussed in comparison with the experimental data 
reported in [11]. The computed wave profiles mirror 
the experimental ones in a satisfactory way in both 
tests. 

MATHEMATICAL MODEL 

The problem under investigation is the wavy flow 
of an inviscid fluid past a submerged obstacle. The 
flow being supposed incompressible and irrotational, 
the velocity vector u(P,t) can be expressed as the 
gradient of a potential <&(P, t) 

u(P,t) = V<D(P,i) (1) 

where P = (x,y,z) is the space vector position and t 
is the time. The potential (harmonic in space) satisfies 

„^    a2*    P® , a2* 
dx2      dy2      dz1 (2) 

D being the domain whose boundaries are the free 
surface of the water, the bottom of the sea and the 
surface of the obstacle (see fig.l). 

D 
dB 

Figure 1: Geometry of the problem 

The boundary conditions for this problem are: 

1. zero normal flow onto the surface dO of the ob- 
stacle O and the bottom dB 

dn 
0       on   dOudB (3) 
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2. zero pressure at the free surface S, that, in terms 
of potential, reads 

The perturbation 4>, on the bases of eqs.(2,7, 
3,4,5,8), has to be harmonic in D 

^ + iv$-V$ + 5r = 0      on   S     (4) 
at      2 

Y = T(x, y, t) being the free surface height and 
g the acceleration of gravity; 

3. the kinematic boundary condition for Y 

V20 = O      in   D (9) 

and must satisfy the boundary conditions 

*±=J±       on   dOudB (10) 
dn an 

 1- 1 T—  = -7T" 0n      *      P) 9<      dx ox      ay ay       az 

Finally, the values of <£> and Y must be assigned at 
t = 0 

at     2 

-^-^V0-V0-<77, 

on   5 

(ID 

4»(P,0) = 4(P) 

Nonlinear Formulation 

^,»,0)= ?(*,»)     (6) 

For computational purpouses it is convenient to split 
the potential 4> into the sum of two functions: 

<b = <j> + <i> (7) 

where <f> is an assigned potential and <f> is the per- 
turbation induced by the submerged obstacle. In the 
following <j> is the potential of a permanent wave that 
satisfies, for any t, 

v^ = o 

9n 

92      9x dx      dy dy      dz 

in D 

on 9£ 

on So 

on So 

(8) 

»7 being the elavation of the unperturbed free surface 
So in absence of the obstacle; in all the simulations 
performed, a 2D Stokes wave was choosen as a par- 
ticular solution of the problem (8). This wave may 
be computed with high accuracy by standard methods 
[5]. 

9T?     £* 9ji     9*97? _ 
dt      dx dx      dy dy 

9*      dt)      93> dn 9$ dr\ 
~dz~~~di~"ox"dx dy dy 

on   S    (12) 

where 

rj(x, y, t) = Y(x, y, t) - »j(x,y, <) (13) 

Finally, initial conditions have to be assigned for 
4> and 77. In the computations performed, we have 
imposed 

0(P,O)=O       7?(x,j,,0) = 0 (14) 

Although rather unrealistic (these initial conditions 
mimic a problem in which the obstacle suddenly ap- 
pears at t = 0), conditions (14) were choosen because 
of theirs simplicity and for the lack of more detailed 
information about experiments. 

The forces and moments acting on the obstacle are 
computed by integrating the pressure p on its surface. 
The pressure is given by the Bernoulli theorem 

P = -(^ + |v*.V* + ff*) (15) 
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Linear Formulation 

When the wave amplitude is small enough, the squares 
of the potential derivatives can be neglected, and the 
free surface boundary conditions can be enforced on 
the undisturbed water plane z = 0. These approxi- 
mations lead to the following linear problem: 

1. the incident wave potential <j> is the solution of 
the problem 

vV = o D 

0 on z = 0 

dn      d<f> 
~di~Tz 

on 2=0 

d-*=0 on dB 

(16) 

dn 

2. the perturbation potential 4> satisfies 

NUMERICAL MODEL 

The solution <j> of both the linear and the nonlinear 
problem formulated in the previous section can be 
expressed as 

UP) =  f   a{P')G(P,P*)dSm 

JOD 

(22) 

G(P, P*) being the Green function for the Laplacian 
in the 3D space, while a is the simple layer potential 
strength on the fluid domain boundary. 

In the numerical approximation, the surface of the 
obstacle dO is divided into N quadrilateral panels, 
on which the source distribution has been supposed 
piecewise constant [6]. On S, the integral (22) has 
been approximated by a distribution of M sources 
placed at a fixed distance above the free surface (i.e. 
the desingularized formulation suggested in [7] has 
been used). Finally, the presence of the bottom is 
taken into account by means of the method of images. 

The abovementioned numerical representation of 
the perturbation potential can be summarized in the 
formula 

V2} =0       in   D (17) 

d± = JA       on   dBUdO        (18) 
dn dn 

dj>_ 
dt 

+ grj=0       on   2 = 0 (19) 

07/ 90 
Hi ~ ~dz 

on    2 = 0 (20) 

The initial conditions remain the same as in the 
nonlinear problem. 

The pressure is computed from the linear counter- 
part of the Bernoulli theorem 

'~i£+£+" (21) 

HP) = 

Y<Tj\t    G(P,P*)dS'+[    G(P,P*)dS' 
JTt      [Jaoj Jsöj 

M 

+ Y,**[G(P,Pk) + G(P,Pk) 
<s=l 

(23) 

where dOj is the j-th panel on the surface of the 
obstacle, <TJ is the (constant) source density on it, 
dÖj is the mirror image of dOj with respect to the 
bottom, Pk is the position of the k-th source above the 
free surface, dj is the source strenght at Pk, and Pk is 
the image of Pk (see fig. 2). 

Once the potential 4> is expressed as in (23), afourth 
order Runge-Kutta scheme is used to update the so- 
lution from tn to tn +M = tn+1. Each intermediate 
stage of the Runge-Kutta algorithm is computed as 
follows: 

• given the potential 4> and its derivatives on dOllS 
at the previous stage, the kinematic boundary 
condition (12) and the dynamic boundary condi- 
tion (11) (or (20) and (19) in the linear case) are 
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do. 

'■■■■ •••' döj 

•Pk 

Figure 2: Location of image source points and image 
panels 

used to update the free surface elevation and the 
potential on 5; 

• the new values of <j> in the M collocation points 
on the free surface, and the Neumann boundary 
condition at the N collocation points on the body 
surface, expressed by means of (23), give rise to 
N + M linear conditions relating the N + M 
unknowns <TJ and ch. The resulting linear sys- 
tem is solved by factorization of the coefficient 
matrix; 

• the new values of CTJ and äk give the values of 
4> and its derivatives on dO U S for the next 
Runge-Kutta stage. 

The pressure on the obstacle is computed from (15) 
or (21). In these formulae, the gradient of 4> on dB has 
already been computed, while the time derivative of 
the perturbation potential is still unknown. This term 
can be evaluated either by means of finite difference 
approximation or, with higher accuracy, by noticing 
[8] that d^/dt is again an harmonic function that 
satisfies the boundary condition 

n \dt ) dn\dt) 
on    dB (24) 

while its values on S are given by the kinematic 
boundary condition (12) or (20). This means that, 
if a discrete integral representation similar to (23) is 
used for d<j>/dt, one has to solve a linear system of 
equation in N+M unknown whose coefficient matrix 

is the same of the linear system written for 4> (which 
is already factorized and stored), while the right-hand 
side can be easily computed from the known values 
of <j> and <t>. 

NUMERICAL RESULTS 

In this section, some numerical experiments are re- 
ported. In the first one the algorithm is checked 
by means of an available analitycal solution. In 
particular the evolution of the wave field due to a 
submerged doublet of intensity 0.0625 in a uniform 
stream (Froudenumber V^I^JWi - 0.5656 and sub- 
mergence za = 1) is computed till the steady state is 
reached. The converged numerical solution is shown 
in figure 3 together with the analitical one [9]; such 
an exact solution is available for the linear problem 
and the numerical method was checked only for the 
corresponding linearized model. The computation is 
performed by using 2400 sources above the free sur- 
face (approximately 22 sources wavelength) while the 
time step was 0.025zd/Ux. The steady contour lines 
of the wave height, obtained in about 1000 time steps, 
agree well with the exact solution. 

Both the linear and the nonlinear model are then ap- 
plied to the typical wave body interaction problem of 
a vertical submerged cylinder subject to an incident 
wave train; the measured forces acting on the body 
[10] are compared with the numerical predictions. In 
the computations shown in the following, the cylin- 
der was placed in the middle of the computational free 
surface, 4 wavelengths long in the direction of wave 
propagation and 3.0 wavelengths wide in the trans- 
verse direction; due to the symmetry of the problem 
only half of the boundary domain is discretized with 
420 panels on the body surface and 20 x 64 point 
sources above the free surface. The integration time 
step was 1/20 of the incident wave period T. Fig- 
ure 6 reports the nondimensional ratios of the loads on 
the cylinder to the wave amplitude as functions of the 
nondimensional wave number. The results refer to the 
linear simulation (solid lines) for three different ratios 
of the cylinder submergence over the depth of the wa- 
ter hm /hM, equal to 0.3,0.2 and 0.1 respectively (see 
figure 4). In the same figure the broken lines show 
the forces acting on the cylinder subject to an oscil- 
lating flow proportional to exp(fcz) sin(fcx - lid/T); 
in this approximation the velocity field satisfies the 
body boundary condition whereas at the free surface, 
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V^§p 

Figure 3: Asymptotic numerical solution (top) vs. exact solution (bottom) for a doublet of intensity 0.0625 at a 
Froude number Uoo/y/ißd = 0.5656, zd = 1 being the submergence of the doublet. Wave elevation contours 
T = -0.18,.. .,0.18(0.012). Solid line: positive values; dots: negative values. 

\lH 

dB 

" h     \-     ^' 
2 = 0 

h-M 

Figure 4: Diffraction induced by a submerged cylin- 
der: sketch of the problem 

neglecting the disturbance due to the body, no con- 
dition is enforced (infinite depth approximation). As 
expected, the difference between the two solutions is 
relevant only when hm JKM approaches zero, while 
for increasing values the results are closer and closer. 

Though the numerical predictions agree well with 
the measures, the experimental data obtained at sev- 
eral wave amplitudes and fixed wavenumber exhibit a 
dependence of the forces on the height of the incidence 

train. However, as noticed in [10] "... no systematic 
trend has been identified in the scatter of variation 
with wave height, and it seems probable that this is a 
measure of the degree of experimental error". Such 
a hypothesys seems to be confirmed by the results 
shown in figure 7, where the nonlinear computation 
performed at the three different wave amplitudes for 
the case hm/hM = 0.2 substantially lies on the linear 
curve. 

Of course, nonlinear effects are expected to domi- 
nate when the submergence decreases. In the exper- 
iments reported in [10] was observed that the main 
consequence of nonlinear interaction is a significant 
increase in wave steepness rather than a wave ampli- 
tude growth. Such a behaviour leads, for small sub- 
mergence, to local wave breaking phenomena, that 
cannot be simulated with the Eulerian description of 
the free surface motion adopted in the present work. 

More attention is focused on wave profiles rather 
than on forces in the last problem studied. The diffrac- 
tion/refraction induced by a shoal of simple shape was 
analysed and the results were compared with data from 
a hydraulic model experiment [11]. A sketch of the 
experiment is shown in figure 9. The geometry of the 
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Figure 5: Diffraction due to a submerged cylinder: sample grid. 
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Figure 6: Diffraction due to a submerged cylinder; linear computation. Left to right: hm/hM = 0.3,0.2,0.1. Top to 
bottom- nondimensionalstreamwise force, vertical force and capsizing moment on the cylinder vs. nondimensional 
wave number. Experimental data: H/a = 0.17(A), H/a = 0.22(G), H/a = 0.33(c). Numerical results: solid 
line (with diffraction) and broken line (infinite depth approximation), a: cylinder radius, H: incident wave height, 
k wave number, p: density of the fluid, g acceleration of gravity. 
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Figure 7: Diffraction due to a submerged cylinder, nonlinear computation, case hm/h,M = 0.2. Solid line: linear 
computation; symbols: nonlinear computation H/a = 0.17(A), H/a = 0.22(D), H/a — O.33(o). 

bottom is given by (see figure 8) 

2= < 

hM x2 + i>R2 

(25) 

hM, hm being the maximum and minimum depth, re- 
spectively, and R is the radial extension of the shoal; 
in the experiment R/X — 2, KM/X = 0.375 and 
hm/X = 0.125, where A is the wave length. 

In the computation, the shoal was discretized with 
224 panels, and 32 x 64 sources were arranged above 
the free surface (6x11 wavelengths wide). The in- 
cident wave was chosen with a steepness kH = 0.1. 
The propagation of the disturbance due to the pres- 
ence of the shoal can be observed in the figure 10 
which reports the istantanueos contour levels of fj. 
The wave pattern is more accurately analysed in the 
next figure 11, where the computed amplitude H is 
shown for both the linear and the nonlinear model. 
In the same figure the symbols show the maximum 

z = 0 

Figure 8: Diffraction induced by a submerged cylin- 
der: sketch of the problem 

and minimum wave amplitude measured in the ex- 
periment at each station. In this case, near the shoal, 
the nonlinear model seems to give a better prediction 
of the wave height than the linear one (see figure 11 
case x/X = 2.). Far from the obstacle, as observed in 
the previous problem, both predictions lie within the 
range of experimental data. 
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Figure 9: Diffraction due to a shoal: sample grid. 

CONCLUDING REMARKS 

Some preliminary results on the computation of wave 
diffraction have been discussed. Two sample experi- 
ments were considered in validating the model. In 
the analysis reported above both the forces acting 
on a submerged obstacle and the wave profiles were 
compared with the measured ones. It was found that 
the differences between the linear and the nonlinear 
model were of the same order of magnitude as the 
experimental uncertainties, at least in the range of pa- 
rameters considered. The problem deserves a more 
detailed analysis in the case of steep incident waves 
or free surface piercing bodies. 
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Wave-Drift Forces on Ships in Cross-Flow Conditions 
R. Huijsmans (Maritime Research Institute, The Netherlands), 

L. Sierevogel (Delfth University of Technology, The Netherlands) 

Abstract 

In this paper the theory and applications will be 
discussed of a moored vessel oscillating in waves 
in the presence of a weak current. The theory is 
based on the extension of the small forward speed 
formulation of a translating oscillating source.The 
corresponding integral equations are derived for a 
sourcedistribution over the mean wetted surface 
of the vessel.The effect of the disturbance of the 
vessel to the stationary potential is covered by 
an integration of this effect over the free surface. 
The results of calculations based on this small for- 
ward speed expansion is validated against results 
of model test experiments. Also calculation on 
a restrained sphere were performed to correlate 
the results of our computations with those from 
Zhao et al [25] and Grue et al.[19] These model 
test experiments cover situations such as a ves- 
sel floating in waves and current from head-on to 
bow quatering conditions.The model tests were 
executed in the wave and current laboratory of 
MARIN. The results of model test show that a 
reasonable correlation is obtained for the current 
angles 180 and 135 degrees. 

1    Introduction 

Wave drift forces on moored floating bodies can 
be considerably influenced by the effect of steady 
current. Current speeds up to 2 m/s may lead 
to an increase of 100 % of the wave drift forces. 
The effect of the current also describes a part of 
the low frequency reaction force on the ship. Es- 
pecially in the surge direction were by nature the 
damping of the ship is low we see a large con- 
tribution of this wave drift damping to the total 
damping of the mooring system. The descrip- 
tion of the existance of this wave drift damping 
effect was discussed by Wichers et al [14]. In a 
later paper he also elucidated the physical under- 

standing of this phenomena [24]. The description 
of this effect mathematically, has been studied 
nowadays by a number of authors (huijsmans [10] 
and Huysmans et al [11] and Hermans [7], Zhao 
and Faltinsen [25] ,Nossen Grue and Palm [19] 
Newman [18] Emmerhof et al [2]) Also the ef- 
fect of shallow can be incorporated nowadays in 
nearly in same way the deep water theory was de- 
rived.(For details see Grue et al [4] We assume 
that potential theory can be applied and viscos- 
ity effects will be neglected.The floating body re- 
sponds to monochromatic incoming waves from 
arbitrary direction while the current speed need 
not to be head on. The problem is solved to 
leading order in the wave amplitude and forward 
speed using boundary integral equations.The first 
order wave exciting forces are calculated both us- 
ing haskind relations as well as from the solution 
of the diffraction problem with forward speed. 

From the impulse balance consideration the 
expression of the wave drift forces are de- 
rived.Essentially this formulation was also devel- 
oped by hermans [7] and Grue [3] .From the for- 
ward speed dependency of the wave drift forces 
the wave drift damping coefficient can be calcu- 
lated numerically. 

Nowadays also time domain type of tech- 
niques based on rankine sources exist which solve 
the 3-d linearized hydrodynamic problem with 
forward speed.(see Prins et all[22]) Although 
they still require a large computational effort the 
progress made in this area is quite surprising. In 
section 2 the boundary value problem is presented 
and in section 3 the solution for the forward speed 
problem is formulated .In section 4 the wave drift 
forces are considered. In section 5 the results of 
model tests are discussed and presented together 
with results from computation. 
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2 The     Boundary    value 
problem 

2.1 Mathematical formulation 

To compute the hydrodynamic forces, we need an 
expression for the potential. In this chapter the 
velocity potential is split into a steady and a non- 
steady part. Also the integral equation (and the 
free surface condition) for the potential is derived. 
In the first section the velocity potential is pre- 
sented and the non-steady part of this potential 
is described. The second section deals with the 
boundary condition on the free surface, the third 
section deals with the body boundary conditions. 
The last section gives the general equations for 
the steady potential. 

2.2 The potential function 

In this section the velocity potential is described 
and the time dependent part is split into a 
diffracted and radiated part. 

The following restrictions apply: 

• The fluid is an ideal fluid, there is no viscos- 
ity 

• The fluid is incompressible and homogeneous 

• The fluid has an irrotational motion 

• There is a gravity force field g 

• The depth h is supposed to be infinite 

The fluid velocity u is expressed by the gradient 
of a velocity potential $. 

u(x,t) = V<£(z,t) (1) 

Because the fluid is incompressible and homo- 
geneous and the fluid density p is constant V - 
u — O.The potential function $ satisfies Laplace's 
equation in the fluid domain. 

V2$ = 0 (2) 

The total velocity potential function will be split 
into a steady and a non-steady part. 

§(*,t;U) = Ux + ${x;U) + 4>(x,t;U)        (3) 

In this equation U is the incoming imperturbed 
velocity field, obtained by considering a coordi- 
nated system fixed to a ship moving under a drift 

Figure 1: System of Axis 

angle a. 

The time dependent part of the potential ^ con- 
sist of an incoming diffracted potential ^>n and 
radiated wave potential 4>R time harmonic with 
frequency w, where w is the frequency in the co- 
ordinate system fixed to the ship or encounter 
frequency. 
The radiation potential due to the motions of the 
body may be written: 

6 

4R(X, t; U) = e-"" J2 fc&te U) (4) 
i=i 

where (j is the amplitude of motion in the jth 
mode and <f>j is the corresponding potential. 

The diffraction potential <j>£> will be split into a 
diffracted wave potential <j>j and an incident plane 
wave potential 4>o due to the incoming waves. We 
will assume the incident waves are regular. 

4>D(*,i;U) (<£o(x; U) + <j>7{x; U®) 

with     <j>o(x;U)      = £hle
ko[*+ixcosß+iSs™ß] 

wo 
(6) 

with (a the amplitude of the incoming wave in 
direction ß.    The frequency and wave number, 

Wo respectively fco = — = TI 
are in *ne earth 

fixed coordinate system. The relation between 
the earth and ship fixed frequency w0 and w is as 
follows: 

wo = w — koU cos(/3 — a) (7) 

2.3    The boundary condition on the 
free surface 

The vertical elevation of any point on the free sur- 
face may be defined by a function z — ({x,y,t). 
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Newman[l6, chapter 6] shows that the effects of 
the free surface must be expressed in terms of ap- 
propriate boundary conditions on this surface. In 
this section the free surface condition is derived. 

The Green's function will be treated in the next 
section. In chapter 3.6 equations (12) and (13) 
will be used to derive a source and vortex distri- 
bution. 

The kinematic boundary condition can be de- 
rived most readily by requiring that the substan- 
tial derivative of the quantity z — C, vanish on the 
free surface. 

Dt 
0 (8) 

We have a dynamic and kinematic boundary con- 
dition on the free surface. 

g( + §t + \ V$ • V$ = const. 

$z - §x(y ~ $y(y ~ Ct = 0 
at z = ((x,y,t) 

(9) 

To expand the boundary condition from the free 
surface to the plane z = 0, we use Taylor series 
expansions of the potential and its derivatives. 
After insertion of the linearizations the free sur- 
face condition now becomes: 

4>u + 94>z + 2U4>xt + 2V^ • Vfa + 4>t$xx + $yy) 

+{u + ~4>x) ■ {u + $x)4>xx + +2{u +!>x)!>y4>Xy + 

+4>y<t>
y<i>yy + (2U<t>xy + 4>J>xy + '^y^yy)4>y + 

+ßxl>xx + 2U$XX + ~$xyty)4>x = o(4>2)      (10) 

We assume cj>(x, t; U) to be oscillatory (See section 
2.2). 

4>{x,t;U)    =    4>D+4>R = 

<£(*; U)e (11) 

The free surface condition is now written as: 

-u2<j,-2iuU<i>x+U2cl>xx+g<l>z = D(U;$){<f>} at z = 0 

where D(U; <ft) is a linear differential operator act- 
ing on <f> as denned in equation (10). 
We apply Green's theorem to a problem in D, in- 
side S and to the problem in De outside S where 
S is the ship's hull. The potential function in- 
side S obeys condition (12) with D = 0, while the 
Green's function fulfills the homogeneous adjoint 
free surface condition. 

-w2G + 2iw!7Ge + [/-2G^ + ffGe = 0      (13) 

2.4    The body boundary conditions 

In this section the body boundary conditions are 
derived. These body boundary conditions are 
used in the right hand side in the source strength 
and potential expressions in chapter 3.6. 

The body boundary conditions for the un- 
known radiation and diffraction potential are 
(Newman[17]): 

dn 

—iwrij + Um,j 
 d<t>o 

dn 

1,. 
7 

(14) 

with 

the normal vector n    j = 1, 2, 3 

the vector x x n j = 4, 5, 6 
(15) 

and 

m=-(n-V)(V(x + x)) 3 = 1,2,3 

^' = -(n ■ V) (x x V(x + x))    j = 4, 5, 6 

with x - ± 

The normal derivatives of each radiation poten- 
tial consists of a part that represents the normal 
velocity at the mean position of the body and a 
part that shows the change in the local steady 
field due to the motion of the body. 
The my-terms are written in terms of the deriva- 
tives of the steady potential and the normal vec- 
tor. The my-terms consist of second derivatives 
of the steady potential. 

Computing these terms is a difficult problem be- 
cause we divide the vessel into square panels with 
a constant source strength. In our numerical 
scheme we compute the second derivatives using 
carefull numerical differentiations. 

2.5    The steady potential 

This section gives the conditions of the steady 
potential, which are used by Hess and Smith[9]. 

(16) 
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The steady part of the velocity potential is given 
by Ux + <f>{x; U), where Ux is the ambient uni- 
form current and 4>(x; U) = Ux is the steady dis- 
turbance due to the body. The steady potential 
fulfills the body boundary condition. 

dn 
7ii on S (17) 

To compute the body boundary condition we 
need an expression for the derivatives of the 
steady potential.In principle one of the deriva- 
tive can be circumvented if one uses stokes the- 
orm and a Morino formulation for the velocity 
potential.However in our case we have estimated 
the derivative of the steady velocity by numerical 
differentiation. 

3    Solution   of  the   forward 
speed problem 

3.1    The Green's function 

To solve the free surface condition (equation 
(13)), we have to compute the Green's function. 
When we have a good expression for the Green's 
function we can compute the source and the po- 
tential distributions. 
The first section of this chapter1 gives the asymp- 
totic expansion of the Green's function. In the 
second section the zero-order Green's function tpo 
is treated. The third section gives a way to com- 
pute the first-order Green's function ifii: a trans- 
formation in the complex plane. The fourth sec- 
tion deals with the non-uniformity of the first- 
order Green's function. 

3.2     The  expansion  of the Green's 
function 

In this section we present an asymptotic expan- 
sion of the Green's function. The Green's func- 
tion has the form: 

G{x,(;U) = --+--i){x,i-U) (18) 
— T        T\ — 

where r — \x — £| and r± — \x — £'|. 
£'   is   the   image   of  £   with   respect   to   the 
free   surface.      This   means   with   £ = (£, i?, C), 

ri = (x-02 + (y-T))2 + (z + C)2. ~ 

The Green's function has to be satisfied the con- 
ditions on by the velocity potential $(z, y, z, t): 

1. V2$   =   0,     z   <  0,     (x,y,z)   #   (£,17,0 
(Laplace's equation) 

2. $«(3, y, 0, i) + g$z (x, y, 0, t) = 0 (linear free 
surface condition), 
with x — x — Ut and m(t) = mcos u>t 

^^+^0(35, !/,*,*), 3. $(x, y,z,t) 
<t>o  harmonic everywhere in z < 0 

4. limz__oo V$ = 0   for all x, y, t (no flux on 
the sea-floor) 

5. limß_oo V$ = 0 for all i, 

R2 = (x-02 + (y-r,)2 

6. *(*, y, 0, 0) = *t(x, y, 0, 0) = 0 

The Green's function follows from the source 
function presented in Wehausen and Laitone[13]. 
In the case r < \, where r = —. the function 
V"(5i i\ V) is written as follows: 

•0fe £;#") = — [*&[  dk F(6, k){19) 
~ T Jo JLx 

+^£ f  d6 f  dk F{6, k) 

where 

m k) ~ gk-(u, + kUcoSey 
(20) 

These contours are chosen in such a way that 
when R —► 00 then tj) —* 0, so the 'radiation' 
conditions are satisfied. The radiated waves are 
outgoing and the Kelvin pattern is behind the 
ship. 
We only take r < ^, because with that speed and 
wave frequency the vessel will not overtake the 
reflected waves, r is a non-dimensional parame- 
ter defined as T = — a 

The values k{ are the poles of F(6, k). 
A careful analysis of the asymptotic behaviour of 
V'fei £; U) f°r small values of U leads to a regular 
and an irregular part. 

1>(*,i\ U) = i>o{x,C) + T^I(S,£) + ... + &(*,£) + 
U2 - 

'The subscripts o and \ in this section are the terms 
of the asymptotic expansion and not the modes of motion 
as in the preceeding section 

-i>i(*, £) + ••• 
y 

In Hermans and Huijsmans[8] it is shown that due 
to the highly oscillatory behaviour the influence 

(21) 
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of ip may be neglected in our first-order correc- 
tion for small values of r. 

The behaviour of ki and £3 gives rise to a regular 
perturbation series with respect to r. In contrast, 
fe2 and k4 originates a highly oscillating contribu- 
tion which gives rise to a non-uniform expansion. 
However, the position of the last two poles moves 
to infinity, therefore it can be treated separately. 
If r —* 0 the contours L\ and L2 become the same 
With K = s£ follows: 

9 

+    KRY0{KR)} 

8 

(22) M*,0 = 2 /   -r J0(kR)dk 
J L    k — K, 

t k2ek(z+0 
^i(x,()=iicos0,J J1{kR)dk (23) 

where      9' = arctan ^5?  1 or m an other way 
R cos 9' = x — £ . 

3.3    The   zero-order   Green's  func- 
tion -00 

In this section the zero-order Green's function of 
the asymptotic expansion is reiterated. 

The equation (22) for Vo can be split into the 
residue and the principal value integral 

I- J fc=K 

r fcefc(*+0 
2-PV    — J0[kR)dk = 

JL   K-K 

= 27ri/ce'c(z+0 JQ{KR) + 

2-PV    — J0{kR)dk 
J L     k — K 

(24) 

The negative zero-order Green's function, with- 
out or with the Rankine singularity —-is com- 
puted in the algorithm Fingreen, derived by 
Newman[15]. 

3.4    The  first-order   Green's   func- 
tion V'I 

In this section the expressions to compute ^1 are 
given. 

cos 9'       — 
Jo     («' 

k2Ki(kR) 
i2-k2)2 

[2Kä cos k(z+Q + (~k2 + K2) sin k(z+()] dk 

(25) 

A quick way to compute these Greens functions 
is derived by Huijsmans and Hermans [12] and by 
Grue [3] 

3.5    The uniform expansion of the 
Green's function 

The expression for V>j makes clear that ^1 has a 
non-uniform behaviour for large R. This means 
that also tj> = V"o + T^I behaves in a non-uniform 
way. In this section we are trying to write ifi as 
an uniform asymptotic expansion. 
A large R means we handle with large vessels, the 
size of the vessel becomes large with respect to r, 
TÄ=0(1). 
If the size of the ship is order one with respect to 
T it is sufficient to use the Green's function (equa- 
tion (18)), with ip = V'o+'rV'ii but to use equation 
(20) for ip gives a non-uniform expression for large 
R. In our computational model we disregard the 
non uniform effect of tpi with respect to R , we 
confine ourselves to the correction of ^1 in the re- 
gion were R « O..It is however possible to reduce 
the effect of non uniform asymptotic expansion to 
larger value of R ( see [11] ) 

3.5.1     The far-field 

We first compute the wave residue of equation 
(20) and secondly we apply the method of sta- 
tionary phase. 
As said at the end of section 3.2 &2 and k4 can be 
neglected, so L\ and £2 become the same, with 
one pole h\. One is able to derive that, with the 
notation x = Rcos9 and y = 22 sin 0 (R is the 
distance from the origin),    follows: 

tf (*> & U) = 2if  g{9) [e'^'C) + e,KW)] d9 

(26) 
We now apply the method of stationary phase to 
the integrals with respect to 9 [23]. 
After some algebra we see that equation (26) now 
becomes for all 9: 

MV>i} =  -47TCOSö'eK(2+c)/c[(l + #e(z+C)) Ji(KR) 

+    KRJ0(KR)} i>(^4'U) 
' 1 M«) 
\h(i,9)e 
it 

z+iR-\/l-4r2sm2e 

(27) 
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with the amplitude 

— \     K 

-* i (S)[C+«'{(- cosä-2rsin3 0)+ii)(- sin 04-2T COS § sine)] 

(28) 

with 

*i(fl) = *c(l + 2r cos fl) + 0(T
2
)        (29) 

In figure 2 the amplitudes of ip and the far-field 
approximation of ip(= FFV>) are given. 

Figure 2: Amplitudes of tp 

3.6 Expansion of the potential 

In this chapter the expansion of the potential is 
derived, using the integral formulation (the free 
surface condition, equation (12)) and the Green's 
function of chapter 3. 
The first section treats the way Hermans and 
Huijsmans[8] derived the potential with the help 
of the source strength. The last section deals with 
the amplitude of the potential for the far-field. 

3.7 The potential using the source 
strength 

In this section the way Hermans and Huijsmans[8] 
derived the potential is treated. First the source 
strength is computed by using the free surface 
conditions. An expansion of source strength is 
derived. With the source strength we are able to 
compute an expansion of the potential. 

Combining the formulation inside and outside the 

ship, equations (12) and (13), we may obtain a 
description of the potential function defined out- 
side S by means of the source and vortex distri- 
bution. A derivation of this formulation is found 
in Brardfl]. 

-—[   -r(OG(*,t)dsv + 
9    JWL 

9 JWL L       dZ 

- {at-rtd) + a>T7T(i)} G(x,£)] di} + 
u2 r 

+—/     an<r(t)G(z,£)dri + 
9 JWL 

+—[[   G(z,t)D{4>}dS( = 4ir4(z) (30) 
9 J JFS 

where at = cos(0x,t), a? = cos(0x,T) , an — 
cos(0x,ra) 
where n is the normal and t the tangent to the 
waterline and T = t x n the bi-normal. 

It is clear that with the choice f(£) the integral 
along the waterline gives no contribution up to 
order U. The source distribution we obtain this 
way is not a proper distribution, because it ex- 
presses the function ^ in a source distribution 
along the free surface with a strength propor- 
tional to derivatives of the same function <j>. How- 
ever, this formulation is linear in U and more over 
the integrand tends to zero rapidly for increasing 
distance R. So finally we arrive at the formula- 
tion: 

-[[ *(i)G(x,£)dS( + — f     ana(£)G(x, flAj + 
J Js 9 JWL 

+—f f   G{x,t)D{<t>}dSz=4T<j>(x) (31) 
9 J JFS 

Using the body boundary conditions, which are 
worked out in equation (14), at the mean position 
of the hull 

84>(x) 

dn 
= V<ß-n = V(x)   at x £ S (32) 

and taking -^- of equation (31) 

dG&i)ds 
dnr 

f 

+- Z72 

JWL 

dG(x,Q 

+- 
9 JWL 

d-q + 

f I     -5— G(x, ()D{cf>}dSc = 4TTV(X)   at x G 5 
J JFS °nx 

(33) 

492 



The normal derivative -^-  means the normal 
derivative in x = (z, y, z). 
We consider small values of U, because r = — < 

9 
^. The source strength and potential function can 
be expanded as follows: 

Tj{£,U)    =    <r;o(0+^i(£) + <%2)(34) 

4j{*,V)    =    cj>j0{x) + Tcf,n{x) + 0(T
2
) (35) 

D{(j)} is the linear differential operator acting on 
cj) as denned in equation (10). The quadratic 
terms in <j> are neglected. So D{cf>} is 2V<£V$ + 
<j>{(j>xx + 4>yy)- We now can write equation (33), 
at x G S, for j = 1,..., 7: 

r r dGn(x,£) 

(36) 
and 

-II. 
•II, 

s
a>0®-d^x-

dst + 

IFS 
änx 

4>jo(Xxx + X,»)] <*Sf + ^V-ife) (37) 

where G0(x,£) = —7+7-—V'ofe £)> with ipQ is the 
zero speed pulsating wave sources, and Vj(x; U) — 
Vjo(x) + TVJI{X) + 0(T

2
) as in equation (14). 

Vj0{x)    -    <   _a^       ._ 
I. dn J —  ' 

Vjite) 
&mj    j = l,...,6 
0 3 = 7 

(38) 

(39) 

The subscripts jo a&d ji mean respectively the 
zero- and first-order expansion in the jth. mode 
of motion. 
We have to take care that w does not become 
too small, because then the factor -^ becomes too 
large. A small u makes the first-order term be- 
comes much larger than the zero-order term. In 
that case we are trying to make an asymptotic 
expansion for small r as well as small ui. 

The potential function equation (35) now be- 
comes: 

4M    =    ~JJ crj0(t)G0(x,i)dS(     (40) 

4>ji(*)    =    -^JJ <rjo(£)i>i{*4)dS( 

^lls<rji(£)Go(x,£)dS( 

^-JJ   Go(a,0 [2VXV^o+ 

</>jo{Xxx+Xyy)]dS( (41) 

So when we compute <r;0 and trji with the equa- 
tions (36) and (37), we can compute t/>jo and 4j\ 
with the equations (40) and (41). 

The problem we get with this method is that 
we have to compute the second derivative of the 
steady potential in equation (37). In section 2.5 
this problem is treated. 

3.8    The amplitude distributions of 
the potentials 

In this section the far-field potential is described. 
We define Hj the amplitude of this potential. 
We need this amplitude to compute the forces 
in chapter 3.9. The sum of the Ej's is used to 
compute the wave drift forces. 

Far away from the body, we have a radiation 
condition stating that <f>j must have as outgoing 
waves: 

*i jSj(e)e       L 
l-4r2sm2fl 

forj = l,...,7 

(42) 
The far-field approximations for the Green's func- 
tions are given in equation (27). 

with the amplitude 

1 *i(0) 

it 

z+iR^: l-4r2sin29 

Hi>e) = J-k1(e) 
V   ^ 

Jfci(e)[C+t'£(-cose-2rsin2e)+t'?7(- sin9+2T cos 9sinB)]+ii 

with 

fc1(ö) = /c(l-|-2rcosö) + C»(r2)        (43) 

The function H results from the asymptotic ex- 
pansion of the far-field potentials in equation 
(31). 

4TT^(X)    =    -jJ<r{{)G{x,i)dSt + 

+ir[[    <*(*,£) [2VXVfc+ 
J JFS 

<f>j{Xxx+Xyy)]dS/: 
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So the amplitude H of the potentials becomes 

+S//   MC,«)[2VXV^+ 

with h(£, 6) as in equation (28). 

(44) 

We need the sum of the Hj's to compute the drift 

forces. We define: 

6 

H{6) - H7 + iu J2 S{j)Cj (45) 

3.9 The wave forces 

Once the velocity potential is known, we are able 
to compute the hydrodynamic forces using pres- 

sure integration. 
In the first section we derive the added mass and 
the damping by computing the reaction forces. 
The second section gives the wave forces, com- 
puted by direct pressure integration and by the 
Haskind relation. We also compute the motion 
due to this forces. In the third section we com- 
pute the mean drift forces. The forces and mo- 
tions are computed for a half-immersed sphere for 
verification with the results of Nossen et al   [19]. 

3.10 The linearized wave exciting 
forces and the motions 

In this section we compute the exciting forces 
by direct pressure integration (Hermans and 
Huijsmans[8]) and by the Haskind relation 
(Nossen et al.[20]). At the end we compute the 
motions due to this forces. 

The exciting forces will be the forces due to the 
incident and the diffracted waves. 

Xk    =    Fk0(x) + Fk7{x) 

=    -        Po(x) -nkdS- 

(46) 

■ / / P7(x) • nkdS 

The pressure due to the incident waves will be 
computed by integrating the incident wave po- 
tential 4>Q (equation (6)). 
In Hermans and Huijsmans[8] a way to compute 
first order wave forces is described. The method 
is based on a direct pressure integration of the 

first order pressure. 
As shown in the preceeding section the diffracted 
wave force leads to: 

^fc70 

FkTl 

=   —ipu) I I 4>70 ' nkds 

=   -ip.JJs [, '71 
9 fd<f>7o(x) 

+     Vx(30-V*TO(£, <))]•»*<*«      (47) 

In section 3.7 is shown that it is impossible to 
expand VY(X;U). SO an and fao depends of the 
speed U. 

Nossen et al.[20] used Tuck's theorem to compute 
the first-order wave forces 

Xk    =    P        [-"" {fa + fa) 

+    U{V{X + x)V{<t>o + fa))]-nkdS = 

=   P/ / (0o + fa)[-iunk - Umk]dS 

=   PJj"(00 + fa)^^dS (48) 
with k — 1,..., 6 and <£(-r) the reverse-flow po- 

tential. 
Applying Green's theorem and the free surface 
conditions we can write: 

Xk    = 

+    2irp 

•1L. 
irp /     fa<j>k~ 

L d«4 T)      A-r) dfa 

dy 

dS 

(49) 

Using the far-field approximations ofcj)(~T' (equa- 
tion (42)) with the reverse-flow, so r becomes —r, 
and the incident waves potential (equation (6)) 

follows: 

(a 
Xk = -ipg- 

WQ 

Jo 
k[~T) y/l - 4r2 sin2 0 - k0 cos(6> - ß) 

k0 + k[-r) 

+2TcosO)-VR-H<<-r\6)- 

e,-(ioCos(8-)8)+fc<-TVl-4rssin2e)K^ (50) 

with k^^ and 5"(_r) as in the equations (29) re- 
spectively (44) with the reverse-flow. 
Using the method of stationary phase, the excit- 
ing forces can be computed the following way: 

Xk 
Pg(a     /27T (l-TCOS/3) • 

wo   V ^o 

Hl~T){ß + Tr+2rsinß) ■ e~"T (51) 
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Or 

Xk 
pgCa     /25T,,        - „. 
 A/7—(1 — 2rcos/3) • 

w    V «o 

•H'fc"r)(/3 + 'r+2rsin/3)-e-i? (52) 

the motions of a half-immersed sphere of radius 
a in head waves . 

The following plots show the effect of speed on the 
first-order wave forces of a half-immersed sphere 
of radius a in head waves. In these examples the 
speed is u = 0.4 7ns-1, so the Froude number 
FT = -2- = 0.04 for u and FT = 0.08 for 2«. 

The results agree with Nossen[20]. 

«    14 01 « 
Q. 

x 

OB 

0.6 

-VA. 

A G?                 «L,      "  

tf '?                  L*e 

m'y" 
P ..:.._2u 

-*-u 
•e -u 
-»■0 1" 

0.2   0.4   0.6   UU)UUIE112J)22 

koa 

Figure 3: The surge exciting forces. 
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Figure 4: The heave exciting forces. 

The motion due to the first-order wave forces will 
be computed: 

(m+a(w))x(u) + b(u)x(u) + cx(w) = X(u)  (53) 

with m the mass of the body. 

The following plots show the effect of speed on 

Figure 5: The surge motion. 

'\o   02   0.4   0.6   0.B   10    12    14   "16    18    2.0   22   24 

koa 

Figure 6: The heave motion. 

3.11     The wave drift forces 

In an earlier paper Huijsmans[10] used the expres- 
sion of Pinkster[21] (pressure integration tech- 
nique) to compute the wave drift forces , This ex- 
pression contains derivatives of the velocity over 
the body surface which were cumbersome to com- 
pute. At this moment we are mainly interested in 
the constant component of the wave drift forces. 
In Hermans [6] (also by Grue [3] ) a method is 
described that leads to results that are possibly 
more accurate numerically,since they do not re- 
quire a numerical differentiation of the water ve- 
locity over the wetted surface of the body.  The 
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mean drift force F is given by 

F = —    I     (pn + pvv ■ n)dS (54) 
J JSoo 

where the line above means time-average. 

Grue and Palm[5] derived nearly the same ex- 
pression for the drift forces as Hermans [6]. They 
not only use the Bernoulli equation, but also con- 
servation of mass. Fx consists of two parts. The 

first one Fx , the sway force, behaves like R~?t 

while the second term Fx , the wave drift force, 

behaves like iZ-1. 
(55) 

FW    =    Ad— -Re{ff*(/r)e?} cos ß + 0(r2) 

[2-x 
p(?)    =    -PK        \H{e)\2[zos6-2Tsir? e}d6 

4   Jo 

+0(r2) (56) 

We also have two terms for Fy. 

(57) 

FW    =    Ad— .Re{jTG3*)e^} sin/3 + 0(r2) 

p(2)    =    -£.K |Jff(ö)|2[sin0-l-2rsinöcos(9]dö 
4   Jo 

ith 

+0(7 

A   = 

(58) 

piV 
0. 2w0 

H*    —     the complex conjugate of H 

ß*    =   ß-2rsmß 

(59) 

The following plots show the effect of speed on 
the drift forces of a half-immersed sphere of ra- 
dius a in head waves. In these examples the 
speed is it = 0.4ms-1, so the Froude number 
Fr = -Ä- = 0.04 for u and FT = 0.08 for 2u. 

Nossen[20] gives only the drift forces on the 
restrained sphere. The plot is the same as 
Nossen[20] has in his report. 
We also give the drift forces on a free floating 
sphere. The effect of the stationary potential is 
small, but can not be neglected, so both figures 
are presented. 

Figure 7: Drift forces on a restrained Sphere 

0.+  OS  OS   tO   12   14   16   IB   2.0  22  2.4  26 

koa 

Figure 8: Free floating Spere without <$>, 

Figure 9: Free floating Spere with 4>, 
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Results of Model tests 

In order to validate the results of our computa- 
tions model test experiments. The tests com- 
prised experiments in regular waves on a 200 
kDWT tanker in both head on current and bow 
quatering current.The tanker was loaded at a 40 
the fully loaded draft. Particulars of the 200 
kDWT tanker is shown in next table. 

Particulars of the set-up are shown below. 
The spring in the mooring system were chosen 

such that no influence on the first order motion 
was to be expected. In the case the current was 
bow quatering only co-parallel waves were tested. 
In the head on current case the wave direction 
was 180 degrees (head on ) and 210 degrees (bow 
quatering). The force signals as measured were 
evaluated with respect to their mean force. The 
current force as measured without the presence 
of the waves was used to correct the mean wave 
drift force . The resulting mean forces were tabu- 
lated as RAO for the wave drift forces. From the 
tests also the motions RAO's were obtained. An- 
other way of establishing the wave drift damping 
coefficients is by doing an extinction test in a reg- 
ular wave.This approach however is only practical 
for the head on current and wave situation.In the 
next graph the wave drift damping coefficients are 
displayed obtained from these extinction tests. 
From the definition of the wave drift damping co- 
efficient it follows: 

resignation Symbol Uf* 
Loading condition 

40%T 100 %T 

Langth twtwMn pwpeodiaXars LPP m 310.00 310.00 

Braadtn B m ■47.17 47.17 

Depth O m -29.-70 23.70 

Oaft «wn k*«l T m 7.56 18.90 

W«Mvu S m* t3.90 22.80 

Ocsplaotmtm volum« V m1 88.9S6 234.994 

Oat« o( buoyancy aft FPP (St. 20) LCS m 144.54 148.64 

Cant« of ortvfty «bow kaal KG m 13.32 13.32 

Tnnsvrm matacantric haight GM m 13.94 5.78 

long*wSnat rartus Of gyration in *<r *» m 62.15 77.47 

TrannwM OKSUS of gyration In air *. m 15.30 14.77 

Yaw racks of gyration In air *. m 83.90 79.30 

Nitural fol period h wstef T« c 10.1 H.4 

Figure 10: Particulars of 200 kDWT tanker 

Bx 

pu^o _ pU=0 

Based on the theoretically obtained coefficients 
of the wave drift forces at zero speed and the ex- 
perimentally determined coefficients of the wave 
drift damping we obtain an estimate for the wave 
driftforces at forward speed. 

pUjto . F?=°-Bx„d*U 

The resulting estimates are displayed in figure 12 
together with the results from computations and 
measurements. 

/////////// Soft  ISring system /////////// 

Modfl  ZOO fcOWT  t*i 

/mm !WI/)M/ 

Figure 11: Set Up of Test 
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4.1    Comparison 
Theory-Exp eriments 

From the model tests wave drift RAO function 
are obtained and plotted together with the results 
from computations in the following figures. 

Fx Head Current and Waves 

|   "5 

£ -10 

.if -15 

-20 

Uc=1.2m/! 

0.2 0.4 0.6 0.8 

Wave freq. in rad/sec 

A Estimated Fx ■ Fx Measured 

— Fxcalc. - FxCalcUc=0 

1 1.2 

Figure 12: Head waves in 1.2 m/s head on current 
speed 

Fy in Head Current 150 Deg Waves 

I 40 Uc=1.2fli/s 

Uc=0.m/s 

02 0.4 0.6 0.8 
Wave freq. in rad/sec 

* Fy V-0     — Fy Calc    ♦ Fy Meas. 

Figure 14:   Fy Bow quatering waves in 1.2 m/s 
head on current speed 

Fy 150 Deg Waves and Current 
80 

E 60 

£ 40 

>.20 

Uc=1.2m/: 

Uc=0.m/s 

0.2 0.4 0.6 0.8 
Wave freq. in rad/sec 

1 1.2 

A Fy Calc Uc=0 — Fy Calc • Fy Meas | 

Fx Head Current 150 Deg. Waves 

-10 

-15 

,Uc=0.m/s 

Uc=1.2m/s 

0.4 0.6 0.8 
Wave freq. in rad/sec 

■ Fx Calc. ft Fx m«as. D Fx Calc Uo«0. 

Figure 13:   Fx Bow quatering waves in 1.2 m/s 
head on current speed 

Figure 15:   Fx Bow quatering waves in 1.2 m/s 
current speed co—parallel 

Fx 150 Deg Waves and Current 

cj    -5 
E 

ß -10 

x 
u- -15 

-20 

Uc=#.m/s 

Uc=1.2m/s 

0.2 0.4 0.6 0.8 
Wave freq. in rad/sec 

1 1.2 

T Fx Meas. -FxCalc B Fx Calc Uc=0. 

Figure 16:   Fy Bow quatering waves in 1.2 m/s 
current speed co-parallel 
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5     Discussion References 

The purpose of this paper is to give an expression 
for the first- and second-order wave forces a float- 
ing body with moderate speed. In examining the 
results of computations and the results of model 
tests we observe that due to the limited water- 
depth shallow water effects influence the compar- 
ison of the wave drift force RAO's at the longer 
wave lengths.The computational model is essen- 
tially a deep water formulation whereas the the 
model tests were executed at a water level of 
82.5 m . Also one sees an interesting phenomena 
that the surge wave drift forces are very sensi- 
tive to variations in current speed .Whereas the 
sway drift forces do not seem to be that sensi- 
tive for current speed variations under investiga- 
tion. The estimated wave drift force for 1.2m/s 
head on wave and current case from the wave drift 
damping coefficients lie well within the accuracy 
bandwith of the measured wave drift forces. 

The following items are worth to be reiterated: 

• The first-order Green's function will be com- 
puted with the expression of derivatives of 
the zero-order Green's function. This re- 
duces the CPU-time a lot with respect to the 
full forward speed formulations. 

• The non-uniformity of the Green's function 
is solved as follows: We only use the asymp- 
totic expansion at a finite distance from the 
source point. When \KR\ > 1 the second- 
order Green's function gets a non-uniform 
behaviour, but the far-field Green's function 
can be described by the zero-order Green's 

function V'o- So when \KR\ > 1 we can say 

that Vi « 0. 

• The expression of the drift forces seems to be 
acceptable. From the results of experiments 
and computations on the 200 kDWT tanker 
we observe a shift of the wave drift trans- 
fer function when the current angle changes 
from 180 degrees to 210 degrees. The shift 
corresponds to the wo — we shift. How- 
ever considering a linear transformation of 
the wave drift forces with speed, the level of 
the RAO of the wave drift force should also 
be shifted to 85 % of the 180 degrees current 
angle case.Since this not observed in both 
the results from experiments and computa- 
tion one is lead to conclude that the lacking 
15 % is due to the interaction of the current 
with the wave drift forces. 
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Time-Domain Calculations of the Second-Order Drift 
Force on a Tanker in Current and Waves 

H. Prins, A. Hermans 
(Delft University of Technology, The Netherlands) 

ABSTRACT 
In this paper we solve the time-dependent 

linear equations which describe the interaction 
between a tanker and current and waves. The 
current is taken into account by means of the 
double-body potential. Our algorithm is based 
upon combining the time-dependent boundary 
conditions and the Laplace equation, and inte- 
grating the resulting equation in time. The algo- 
rithm is stable for every time-step and velocity of 
the ship. Results are presented for the hydrody- 
namic coefficients and drift forces. The hydrody- 
namic coefficients agree well with results found af- 
ter transforming the equations into the frequency 
domain. Drift forces and moments have been cal- 
culated for both head and following waves. 

Roman Symbols : 
c local phase velocity 
D deck of the hull 

Fi first-order force 

F2 second-order force 
Fn Froude number 

9 gravitational acceleration 
G Green's function 
H hull surface 
k wave number 
My first-order moment 

M2 second-order moment 
n normal vector, pointing out of the 

fluid domain 

P pressure 
t time 
U undisturbed horizontal velocity of 

the fluid 
x, y, z coordinate system fixed to the ship 
X translational motion 
z4 z-coordinate of buoyancy point 
zg z-coordinate of point of gravity 

Greek Symbols : 
a displacement vector 
ß angle of incidence of the waves 
A volume displacement 
C, total wave height 
Ca wave height due to the incoming wave 
£r relative wave height 
p density of the fluid 
<f>, <f> unsteady potential 
<f>n normal derivative of the unsteady 

potential 
<f>inc potential due to the incoming wave 
<j)m potential due to the movement of the 

hull 
<j>d potential due to the diffracted wave 
<j> steady potential 
<f>dh double body potential 
$ total potential 
w frequency of encounter 
w0 orbital frequency 
Q rotational motion 

INTRODUCTION 
In the last decade numerous authors have 

attempted to solve the unsteady ship-motion prob- 
lem. This problem is very important in predicting 
the behaviour of a ship in real sea-keeping, which 
includes the interaction between waves and veloc- 
ity of the ship. 
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Most of the studies were done using the 
frequency domain rather than the physical time 
domain. Unfortunately, this restricts the theo- 
ries to harmonic functions. This is not realistic, 
of course, for sea waves are not harmonic, espe- 
cially not in the neighbourhood of a ship. There- 
fore we have studied the problem in the time do- 
main. The major disadvantage, however, is the 
long computing time needed to solve the time- 
dependent problem. Fortunately this computing 
time decreases every year with the introduction of 
faster computers. So in the future this disadvan- 
tage will not be of importance any more. There- 
fore we have made a first step in the direction of 
solving the time-dependent ship-wave problem. 

Recently, we studied both a two dimen- 
sional problem [6], and a three-dimensional prob- 
lem [7]. The algorithm developed for these prob- 
lems is both stable and accurate. In this algo- 
rithm the free-surface condition and the Laplace 
equation are integrated simultaneously in order to 
overcome instabilities at the free-surface. The re- 
sults of both studies agreed very well with results 
found by Zhao [11], Pinkster [4] and Nossen [3]. 
Now this algorithm will be used studying the re- 
alistic three-dimensional problem of a commercial 
tanker. 

The time-dependent three-dimensional 
problem has also been studied by Nakos [2]. How- 
ever, we have severe objections against his way of 
integrating the free-surface, as stated in Prins [7]. 
Furthermore we will not only present hydrody- 
namic coefficients, but also drift forces acting on 
the object. For the case of non-zero forward speed 
the drift forces have not been shown in literature 
before. 

In this paper, we will first describe the 
mathematical formulation of the problem. Then 
the algorithm is summarised and numerical re- 
sults will be given. Finally a comparison will 
be made with literature and conclusions will be 
drawn. 

MATHEMATICAL MODEL 
The mathematical formulation given be- 

low is analogue to the one given in Prins [7], but 
now including rotational motion of the hull. 

We consider a tanker floating in water of 
finite depth. A uniform current with velocity U 
is directed in the positive x-direction; regular in- 
coming waves are traveling in the water-surface 
in a direction which makes an angle ß with the 

positive x-direction, see Fig. 1. The coordinate 
system is chosen in such a way that the undis- 
turbed free surface coincides with the plane z = 0 
and the center of gravity of the hull is on the z- 
axis, with z pointing upwards. The hull is free 
to move in all directions and to rotate round the 
main axes. 

U 

Figure 1: Aerial view of the geometry 

We assume the fluid to be incompress- 
ible and we neglect the effect of viscosity. If we 
assume the flow to be irrotational, we can intro- 
duce a velocity potential $, which has to satisfy 
the Laplace equation 

V2$ = 0 (1) 

At the free surface we combine the well-known 
dynamic and kinematic boundary conditions to 
get 

52$ + 2V$ • V^J + ^V$ ■ V (V* ■ V$ 
dt2 8t 

OZ 
at    z = C       (2) 

where the wave elevation £ follows from 

<—. 
V$ + 

~dt 
at    z — C 

On the ship hull we have the condition that the 
normal velocity of the fluid should match the nor- 
mal velocity of the ship: 

dn 
Vn 

at instantaneous position 
of ship hull (3) 

To ensure uniqueness of the solution we have to 
impose a radiation condition which will be speci- 
fied later on. 
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The velocity potential that satisfies these 
equations, consists of a steady and an unsteady 
part; so we split it up as 

*0M) = ${x) + <t>{x,t) 

Steady Potential 

In order to calculate the unsteady poten- 
tial we have to know the steady potential. Com- 
putation of the steady potential can be carried 
out by means of a Dawson approach, see for in- 
stance Raven [8]. But the major contribution to 
the second-order drift forces can be calculated by 
using the double-body potential instead of the 
complete steady potential. This approximation 
is valid only if the steady waves generated by the 
body are small compared to the incoming waves. 

The double-body potential of a tanker is 
not known analytically and has to be calculated 
separately. This is done by using the solver for 
the time-dependent equations, but now with time 
independent boundary conditions. The double- 
body potential then follows from a matrix equa- 
tion, which has to be solved only once. For more 
details about the solver, see the section Numerical 
Algorithm. 

Unsteady Potential 

The unsteady potential consists of all 
time-dependent parts of the total potential and 
is therefore composed of the incoming wave, the 
diffracted wave and the potential due to the move- 
ment of the ship. So we decompose the unsteady 
potential as 

<f>(x, t) = &nc(x, t) + 4>d{x, t) + 4>m(x, t) (4) 

If we linearize the free-surface condition (2) for 
<j>(x, t) by assuming <j> to be small compared to <j>, 
which in its turn is small, we get 

d2j>      ~j  -dt    (dH    d*4>\d4> 

derivative of the normal derivative of </>, 
which causes some extra numerical difficulties, see 
also Nakos [2]. Therefore the terms of ö (U2) are 
left out for the moment. 1 

The linearized version of the body bound- 
ary condition (3) becomes 

d<f>     da a<p     oa   _ /_   -\ -— 
_ = _.„_*.(B.V)Vrf 

+n • {V4> ■ v) a (6) 

with a the displacement vector of the ship, given 
by 

a = X + Q x x 

and n the normal pointing out of the fluid do- 
main, see Timman [9]. 

Unlike the fluid domain our computa- 
tional domain cannot be infinite, so we have to 
introduce artificial boundaries and proper bound- 
ary conditions. These conditions include the ra- 
diation condition. We choose this condition such 
that it absorbs the outgoing diffracted waves, but 
reflects on the outside the non-physical waves, in- 
troduced by the mathematical model. Generally, 
two waves travel forward and two travel back- 
wards. So at each element of the boundary two 
waves have to be absorbed. This would lead to 
a second-order partial-differential equation as a 
boundary condition. However, the wave veloc- 
ity of the second wave is low, so that it will not 
reach the boundary, reflect and disturb the cal- 
culation within the simulated time. Thus this 
slow-traveling wave is neglected in the radiation 
condition. 

To derive such an absorbing radiation 
condition we used the Green's function satisfying 
the boundary condition at the free surface, for in- 
stance given by Wehausen and Laitone [10]. The 
asymptotic behaviour of this function for large r 
gives rise to the following condition: 

1   ^,^=0 

c(j) dt      dr (7) 

at    z — 0 (5) with 

In our study of a two-dimensional problem, we 
included the terms of ö (U2). Including them 
here, however, would cause us to calculate higher 
derivatives of <j> at the free surface. This would 
require a very fine mesh which would increase 
the computation time considerably. Furthermore, 
they  would give  rise  to  a second-order   time 

C(T) = 
*(7) 

1In Prins [7] a different free-surface condition is given, 
due to typographical errors. However, the results pre- 
sented there have been calculated using the above formula. 
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where £(7) is the local wavenumber. See Prins [7] 
for more details on the derivation of this condi- 
tion. Unless the current velocity U is zero, condi- 
tion (7) is different for every point on the bound- 
ary and it is based on the local wave velocity. The 
asymptotic analysis of the Green's function would 

4> give rise to an additional term —. However, nu- 
2r 

merical experiments showed that this term was 
negligibly small. 

At the bottom we have 

dn 
= 0 

To be able to apply this condition close to the 
body, for instance in relatively shallow water, we 
mirrored the computational domain in the bot- 
tom and used the symmetry following from the 
above condition. This has the big advantage that 
the number of elements in the mesh does not vary 
with the depth of the fluid domain. 

Movement Of The Ship 

Because the tanker is free to move in all 
six possible directions, both the force and the mo- 
ment are needed to calculate the linear movement 
of the hull. This first-order force is given by 

Fi 

H 
dt 

+ V<j>-V<j>\ nds 

where <f> is the potential due to the incoming and 
the diffracted wave, as the motion of the ship is 
yet unknown. For the moment we have 

Mi 
dt 

+ V<f> ■ V<j>) x x nds 

H 

If we do not consider incoming waves but forced 
oscillation of the ship, we can calculate the added 
mass and damping coefficients by fitting the force 
and moment to the acceleration and the velocity: 

Fu = Bi 
dxj 

This expression gives the force in direction i due 
to a motion in direction j. Note that there is no 
summation over the index j. For the moment an 
equivalent formula holds. 

The movement of the ship can then be 
calculated by solving the following set of differen- 
tial equations: 

ö2y        82Y        BY        - 
Ml>F + A-W+BlH+CY 

= ?u       » = 1, ..,6       (8) 

with YT = {X1,X2,Xz,Ül,Q,2,Q2,). The mass 
matrix M is diagonal and consists of the mass 
and the relevant moments of inertia. F is the 
force or the moment, whatever is appropriate. 
The non-zero elements of C are 

C*33 

D 

C35 = C53 xdA 

= pg j dA 

-P9J. 
D 

C44 = P9 (zb - zg)V + pg / y2dA 

D 

C55 = pg{zb -zg)V + pg     x2dA 

with D the deck of the hull. 

Drift Force and Moment 

Now that equation (8) enables us to cal- 
culate the movement of the ship, we can solve the 
equations for the total unsteady potential. Then 
the averaged second-order force and moment can 
be calculated by the formulas as derived in the 
appendix: 

<*> = 
Q x    M 

82X 
dt2 

pa ■ V (-j?- + V4> ■ V<f> ) ndA 

j |/> |v<?i| ndA + J -pgtfndl 
H wl 

(9) 

M2 ) = Ü x [I 
82Q 
dt2 

— 02^3^4 
Q1Q3C55 

0 

/pa.v( — / pa ■ V 

H 
dt 

+ \7(j> ■ V4>) (x x n) dA 

-I: 
H 

-p\V<j> (x x n) dA 

+ Jl-pgeT{Sxn)dl (10) 
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Here £r is the linearized relative wave-height, which 
can be calculated by using Bernoulli's equation 
and the displacement of the hull. 

NUMERICAL ALGORITHM 

To solve the problem described above, we 
use the same method as was used in Prins [6]. 
This method will be summarised below. 

First we introduce the Green's function 
of the Laplacian in three dimensions: 

(«>-ii 1 

el 
(11) 

Then the problem can be reformulated into an 
integral equation with boundary conditions, us- 
ing Green's second theorem. We discretize this 
integral equation by dividing the boundary into 
polygons, either quadrangles or triangles, and as- 
suming the quantities to be constant on such an 
polygon. The collocation points are the centres of 
these polygons and the integral over such an ele- 
ment is calculated according to Fang [1] 2. Thus 
we arrive at a set of linear equations which can 
be written as: 

[AW) = [B]4n{t) (12) 

with [A] and [B] matrices built up by the Green's 
function and its derivative, and <j>n a vector con- 
taining the normal derivatives of <p. Due to the 
bottom boundary condition the mirrored ele- 
ments have exactly the same potentials as the el- 
ements themselves. Therefore the contribution of 
a mirrored element has been added to that of the 
corresponding element. 

To obtain a stable algorithm we elim- 

inate — by substituting the boundary condi- 
an 

tions (5), (6) and   (7) into (12), and integrate 
the resulting matrix equation in time. In this re- 
spect our algorithm differs from the one Nakos [2] 
uses: we do not integrate the free surface condi- 
tion separately, but first substitute this condition 
into the discretized version of the Laplace equa- 
tion and then integrate the resulting equation in 
time. This has been done in order to overcome 
instabilities which arise from the fact that the 
free-surface condition itself has eigenvalues with 
positive real part. This means that the integra- 
tion of this condition is unstable for every time- 
stepping scheme, because the analytical solution 

is exponentially increasing. Combining the free- 
surface condition with the Laplace operator, these 
eigenvalues are transformed into eigenvalues with 
non-positive real part. The fact that Nakos still 
obtains sinusoidal waves is due to the numerical 
damping of his time-stepping scheme. This im- 
poses restrictions on his time step and his mesh. 
Our algorithm, however, is stable for every time 
step and mesh. 

The second-order time derivative has been 
discretized by a second-order difference and the 
first-order time derivative by its usual backwards 
second-order difference scheme. The spatial deriv- 
atives on both the hull and the free surface have 
been discretized by second-order difference 
schemes. Especially on the hull this has to be 
done very carefully. In our program the local 
curvature of the hull has been taken into account. 
This improves the accuracy of the derivatives con- 
siderably. 

Thus discretising both time and space 
derivatives leads to the following overall matrix 
equation: 

[Ai]<fii+l = [A2]4n + [A3}<t>i-i+ 

[A4]<£'-2 + /7+l (13) 

2The paper by Fang contains some erroneous signs. 
These were corrected in our calculations. 

with / a time-dependent vector, result- 
ing from the body boundary condition. With the 
condition that the fluid is initially undisturbed, 

a r 
i.e. <j> = 0 and — = 0, this system can be solved. 

at 

RESULTS 

The numerical algorithm presented in the 
previous section has been used to calculate the 
second-order drift forces and all other relevant 
quantities, such as added mass and damping coef- 
ficients and movements of the hull. We used a 200 
kDWT tanker (particulars given in Table 1), sail- 
ing in relatively shallow water: the water depth is 
1.2 times the draught. We calculated our results 
for three different speeds: Fn = 0, Fn = .004 
and Fn = .008 ( 0, 0.5 and 1.0 knots). 

The mesh on the hull consisted of 676 ele- 
ments, see Fig 2. The free surface was discretized 
using the waterline shape of the hull, and was 
built up out of 20 non equi-distantial rings. Each 
ring was subdivided into 104 elements, the num- 
ber of waterline elements on the hull. The arti- 
ficial boundary was taken to be 2 wave lengths 
away from the hull. 
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The time integration was carried out over 
a time interval of 8 periods according to the fre- 
quency of encounter. On this interval 400 time 
steps were taken. The equations of motion were 
integrated using the implicit method of Crank- 
Nicholson. 

the hull. 

Table 1: Particulars of 200 kDWT tanker 

Designation Unit 
Length m 338.90 
Breadth m 47.31 
Draught m 18.90 
Displacement A m3 233523.5 
Centre of buoyancy m 9.18 
below waterline 
Centre of gravity below m 5.58 
waterline 
Moment of inertia roll kgm2 5.77* 107 

Moment of inertia pitch kgm2 1.43* 10s 

Moment of inertia yaw kgm2 1.49* 109 

Our results were obtained by a direct 
pressure integration over the hull. To be able to 
differentiate the potential accurately, we have to 
keep in mind the existence of stagnation points, 
especially in cross-flow conditions. If we would 
neglect the existence of these points, we would 
have to approximate the gradient of the poten- 
tial by using one-sided difference schemes. Us- 
ing these points, however, increases the accuracy 
of our differentiation considerably. They can be 
taken into account by extrapolating the poten- 
tial over the free surface and using this extrap- 
olated point when discretising the derivatives on 

with 

As incoming potential we used 

9Ca      ,   .     ,   Ncosh(fc(z + h)) 
Inc =   C0S(W* - kx)      \ 

u) cosh{kh) 

-J1 + 2kUu + g t<mh(kh) = 0 

This potential does not satisfy the free-surface 
condition; this is corrected in the diffracted wave. 

In Fig. 3 through Fig. 8 are given the 
added mass and damping coefficients in surge mo- 
tion. These coefficients are fairly independent of 
the forward speed, except perhaps for A31 and 
B31. Fig. 9 through Fig. 14 show the coefficients 
for heave motion. Only the coupling coefficients 
seem to depend on the speed. Comparison of 
Fig. 5 and Fig. 9 shows that the symmetry re- 
lation holds. However, for lower frequencies this 
relation seems to be violated in the case of the 
damping coefficients. From the weird behaviour 
of B13 we may conclude that this coefficients lacks 
accuracy in this frequency range. The same seems 
to be true for £53. Note that the coupled forces 
and moments are much smaller than the force 
in the direction of the motion. Therefore it is 
very difficult to calculate these coefficients accu- 
rately. The coefficients in pitch motion are shown 
in Fig. 15 through Fig. 20. The symmetry relation 
is fulfilled very well, except for B35, as mentioned 
before. 

Figure 2: Panel-division on the hull and the first rings on the free surface 
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Fig. 21 shows the horizontal drift force 
in head waves for the three velocities: 0,5 and 10 
knots. With increasing speed, the maximal value 
of the drift force becomes considerably higher. 
This is mainly due to the blunt bow of the tanker. 
At middle frequencies the drift force seems to 
have some parts which are independent of the 
speeds. This may be due to the accuracy of the 
results. At higher frequencies, the curves seem 
to part, as was expected from asymptotical anal- 
ysis. The zero-speed drift force agrees very well 
with the results shown by Pinkster [5]. Fig. 22 
gives the vertical drift force. The forward speed 
has no influence on this drift force. This is prob- 
ably due to the smooth shape of the bow in the 
z-direction. The same seems to hold for the pitch 
moment, shown in Fig. 23. 

Finally, Fig. 24 through Fig. 26 show the 
drift forces and moment in following waves. For 
Fn = .008 the horizontal drift force seems to be 
unrealistic for low frequencies. The same can be 
observed from Fig 25. This is probably due to 
lack of accuracy at these low frequencies. Note 
that the vertical drift forces are approximately 
the same for head and following waves. Obvi- 
ously the shape of the bow and stern resemble 
each other in the z-direction. This is not true for 
the x-direction, as can be seen from Fig. 21 and 
Fig. 24. 

Our method also enables us to calculate 
drift forces and moments for other headings. 
However, problems arise for the roll motion 
caused by the inaccurate approximation of the 
roll damping coefficient. This is a well-known 
problem, which is a defect of potential theory, see 
Pinkster [5]. Therefore, results for these headings 
are not presented. 

CONCLUSIONS 
In this paper we tackled the time-depend- 

ent ship-wave problem. A numerical algorithm 
has been used which has been developed by Prins 
[6]. This algorithm is stable for every velocity 
and for every time step. We presented calcula- 
tions for the added coefficients and drift forces 
for different values of the forward speed and dif- 
ferent headings. 

A disadvantage of our method lies in the 
fact that our absorbing boundary condition can 
only deal with harmonic waves. This forces us 
to calculate the interesting coefficients for several 
frequencies. This can be overcome by means of re- 
tardation functions, which will be a subject of re- 

search in the near future, or by using a frequency- 
independent condition. 
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APPENDIX 
In this appendix we will sketch the deriv- 

ation of the formulas for the drift force and mo- 
ment. 

The force acting on the hull is given by 

/ 
H 

pndS 

with H the instantaneous position of the wetted 
part of the hull. Because we do not know the 
actual position of the hull nor the shape of the 
wetted part, we split the integral into an inte- 
gral over the averaged wetted surface at the av- 
eraged position and an integral over the oscilla- 
tory wetted surface at the averaged position (see 
Pinkster [4]). The integrand should then be ex- 
pressed in a Taylor-series around the averaged po- 
sition of the hull: 

PH = PHo + (X + fi x x) ■ Vp#0 + 

i{(X + Qx£)v}2pH0+- 

and 

ft = n<0> + Q x n<°> 

Here we assumed that the motion of the hull is 
small. 

Now we expand all quantities into a per- 
turbation series: 

PH0 = p^ + ep^ + SpW + Oie3) 

X = eXW + e2XW+0{c3) 

S = c&V + c2c£V + 0(t3) 

x = zW + ea^xx^ + e^xxW 

+0(f3) 
ft    =    nW + eö^xn^ + e^xn^ 

+0{iz) 

Substituting these series and using Bernoulli's 
equation for the pressure on the hull, we find 
Archimedes' Law for the zeroth order of t. The 
first order gives the exciting force and the restor- 
ing coefficients as used in (8). The second order 
in e yields 

Q1Q3C35 

V<£ • V^ ) ftdA 

wl 

dl     (14) 

where the last term is due to the oscillatory wet- 
ted surface. Here £r is the relative wave height 
and is given by 

<r = C - X3 - (fil2/ - Q2z) 

Note that the subscript of Ho has been dropped 
for convenience. 

Applying the same method to the drift 
moment we find for the zeroth order that the 
buoyancy point should be on the z-axis. The 
first order gives the excitation moments and the 
restoring coefficients. Finally, the second order 
gives rise to 

M2) = ß x    I 

'd<(> 

d2Q 
m2 

—Q2S43C44 
Q1Q3C55 

0 

• / pa - V ( ^ + V<f> ■ V(j> ) (x x ft) dA 

■Iv V<f> (x x ft) dA 

H 

+ J \pg£ (* * ft) dl (15) 
wl 
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Figure 3: Added mass in surge for Fn — 0( ), 
Fn =  .004 (— )andFn= .008 (—) 

Figure 6:   Coupled added damping in surge for 
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Figure   7:    Coupled  added   mass  in  surge  for 
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Figure 8:   Coupled added damping in surge for 
Fn  =  0 ( ), Fn  =   .004 (--) and Fn = .008 

(—) 

509 



-0.02 

-0.04 

-0.06 

-0.08 

A 13 

pA 

-B33 
pAui 

W\/f 
Figure  9:    Coupled  added  mass  in  heave for 
Fn = 0 ( ), Fn =  .004 (---) and Fn = .008 

(—) 

Figure 12: Added damping in heave for Fn = 0 
( ), Fn =  .004 (—) and Fn = .008 (—) 

-0.01 

-0.02 

-0.03 

-0.04 

■5l3 

. pAui 

IT 
w,/ — 

Figure 10: Coupled added damping in heave for 
Fn = 0 ( ), Fn =  .004 (---) and Fn = .008 

(—) 

-0.04 

Figure  13:    Coupled added  mass in heave for 
Fn = 0 ( ), Fn =  .004 (--) and Fn = .008 

(—) 

4.5, ^33 

3.5 

2.5 

WV7 

Figure 11:   Added mass in heave for Fn    =    0 
( ), Fn  =   .004 (—) and Fn = .008 (—) 

-0.02 

-0.04 

-0.06 

-0.08 
B53 

pAu> 

-0.1 

Figure 14: Coupled added damping in heave for 
Fn  =  0 ( ), Fn =   .004 (---) and Fn = .008 

(—) 

510 



0.1 

0.08 

0.06 

0.04 

0.02 

pA 

Figure  15:    Coupled added  mass in pitch for 
Fn = 0 ( ), Fn =  .004 (—) and Fn = .008 
(—) 

o 

-0.02 

-0.04 

-0.06 

-0.08 

-0.1 

B 35 

pAu 

6 

"^1 
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Fn = 0 ( ), Fn =  .004 (—) and Fn = .008 
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Figure 24: Horizontal drift force in following 
waves for Fn = 0 (—), Fn = .004 (---) and 
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Figure 22: Vertical drift force in head waves for 
Fn = 0 ( ), Fn  =   .004 (—) and Fn = .008 
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Figure 25: Vertical drift force in following waves 
for Fn = 0 ( ), Fn   =   .004 (---) and Fn = 
.008 (—) 

Figure 23: Pitch drift moment in head waves for 
Fn = 0 ( ), Fn  =   .004 (—) and Fn = .008 
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Figure 26: Pitch drift moment in following waves 
for Fn = 0 ( ), Fn   =   .004 (---) and Fn - 
.008 (—) 
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The Structure of Extreme Ocean Waves 
O. Phillips (Johns Hopkins University, USA) 

Abstract 

This paper reviews recent work on the 
expected and measured profiles in space and time 
of extreme wave events in storm seas. It has been 
shown theoretically that asymptotically, in a 
Gaussian sea, the space-time profile of the sea 
surface near a high crest or a deep trough, 
normalized by the height or depth of the extremum 
approaches the space-time autocorrelation function 
of the sea surface as a whole. At a fixed spatial 
position (for example, at a tower or, 
approximately, at a moored buoy) the data reduces 
to a time series, and at a fixed instant 
(approximated by Scanning Radar Altimeter 
measurements) to a 'contour map' of the 
instantaneous sea surface. Various measurements 
made during the Surface Wave Dynamics 
Experiment (SWADE), from a North Sea tower 
and from an array of wave gages in the 
Mediterranean confirm special cases of the result. 
The space-time autocovariance, the Fourier 
transform of the wavenumber-frequency spectrum 
is of course not universal in form, so that extreme 
wave configurations differ among different storms 
and different current patterns which refract the 
waves. A number of examples are given to 
illustrate the range of extreme configurations 
found to date. 

Notation 

£ = Surface displacement 
x,t = Spatial location and time of occurrence of 

extremum 
r,t = horizontal distance and time interval from 

extremum 
a = <C2> 
p = space-time autocorrelation function of £ 
7= numerical parameter, formally large. 
<> = ensemble average 

Introduction 

Extreme or rogue waves are a hazard to 

those who venture upon the sea, whether in ships 
or on stationary platforms. According to a listing 
prepared by Penton Marine Salvaging Company of 
South Africa and kindly made available to me by 
Professor Marius Gerber of the University of 
Stellenbosch, during the decade 1982-91, there 
were 24 damaging events off the south-east coast 
of South Africa to oil tankers with a combined 
deadweight tonnage of over 5-2x10" tonnes. A 
number of these involved bows stove in or carried 
away. In the design of marine platforms, a 
primary consideration is the height of extreme 
waves that can be expected within the lifetime of 
the structure. Time series of surface elevation are 
routinely taken on many of these platforms, though 
the directional distribution of the wave field is also 
important in determining the applied stress 
distribution on the structure. An upper limit in 
magnitude is probably given by the uni-directional 
limit. 

These waves are frequently described by 
eyewitnesses as 'coming out of nowhere.' This of 
course does not imply that they spring up from an 
almost-calm sea—the extreme waves of interest 
are those in an already rough sea whose height 
may be two or more times the average wave height 
in the storm. The phrase 'coming our of nowhere' 
presumably means that the development of an 
extreme wave configuration is rapid and its 
lifetime short, possibly only a few wave periods. 
This suggests that they are formed by local 
transient phase coincidences in superimposed high 
energy packets of long waves. Abnormally high 
crests are usually described by eyewitnesses—they 
can be seen from afar—but abnormally deep 
troughs are probably more dangerous to shipping. 
The loss of forward buoyancy causes a ship to 
pitch bow-down as it drives forward into the far 
side of the trough, and not just the hull but the 
deck may be stove in. 

Waves generated in a storm are refracted 
by currents and for appropriate coincidence of 
wave frequency and direction with current speed 
and direction, they can be focussed into a 
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relatively small area, with consequently higher 
local wave energy density and incidence of 
extreme events. Radiation stress interactions with 
currents can give further augmentation. The 
Agulhas current off eastern South Africa is 
notorious in the regard, as is the "North Wall' of the 
Gulf Stream north of Cape Hatteras, where it% 
leaves the coast. Extensive work has been done by 
Professor Gerber on ray tracing of waves from 
storms moving north-east against the Agulhas 
current, though little has been published in the 
technical literature; he shows that concentrations 
of energy density by a factor of 4 are by no means 
unusual. 

In the sections following, the simple 
theoretical approximation connecting the mean 
configuration of the sea surface surrounding high 
crests or deep troughs to the space-time 
autocorrelation function of the field as a whole, 
will be discussed. Time series of surface 
displacements measured at a fixed point illustrate 
the simplest form of the result. It was indeed 
suspected to be true by Boccotti (1) as early as 
1983 following a numerical analysis of sets of 
North Sea wave data. Apparently independently, 
Tromans et al. (2) proposed the same relation as a 
basis for design of off-shore structures, the so- 
called New Wave methodology. A sample of such 
measurements, using single and multiple point 
sensors will be described briefly and the two- 
dimensional Scanning Radar Altimeter 
measurements in a little more detail. These 
illustrate the range of extreme configurations 
found to date and their association with wave 
spectral characteristics. 

Theoretical Results 

The task of calculating the expected 
profile in space-time of the sea surface 
surrounding an extremum (high crest or deep 
trough) is straight-forward in principle but 
extraordinarily complicated in practice, involving 
multidimensional integrals and inversion of large 
algebraic matrices. The calculation is one of 
conditional probabilities: In a Gaussian wave 
field, what is the expected surface displacement at 
the point x+r and time t+x subject to the conditions 
that define a high crest (say) at (x,t), namely £(x,t) 

> ya where y is large, £(x,t) = 0, £< 0, Cx = Cy = 
0, and^xxCyy - (Cxy)2>0- Near the crest of a 
very high wave, there may be a multitude of 
gravity-capillary waves and so a cluster of local 
high maxima (and high minima) but these are 
irrelevant to our considerations and are in fact 
filtered out by most measurement techniques. It is 
consequently convenient to remove these from the 
calculation by local averaging or filtering, or the 

more formal narrow spectrum approximation used 
by Longuet-Higgins, (3). 

The analyses of Boccotti (4) and Jonathan 
et al. (5) were concerned with the one-dimensional 
case of a simple time series, and they considered 
only the first two of the conditions above. 
Boccotti conjectured the extension to the full 
three-dimensional problem in (x,t), again without 
regard to the last of these conditions. The ignoring 
of the second derivative conditions (which 
discriminate between local high maxima and 
minima) does seem to have a similar effect as a 
narrow spectrum approximation since clusters of 
microextrema near a single wave crest provide an 
ensemble of realizations of the rough surface for 
the averaging, rather than (in a narrow spectrum 
approximation) a single realization of the 
smoothed surface surrounding the high crest. 

An even simpler approach, capable of 
providing directly a solution to the 3-D (x,t) 
problem, is given by Phillips et al. (6). Rather man 
seeking the precise points where realizations of 
£(x,t) attain maxima, they consider those regions 
where, simply £ > ya where (formally) y is a 
number large compared with unity. For a given y, 
at any instant those regions consist of isolated 
'islands' each containing at least one maximum 
higher than yo\ and as y increases, the islands 
shrink, converging towards the maxima and then 
disappearing. Our interest is in large values of y 
where the islands are rare, small and isolated, and 
the question is posed thus: Given that at x,t, say, 
£>ya where y is large, what is the expected value 
of C (x+r,t+x), the surface displacement at 
neighbouring points and instants, and what is the 
standard deviation about this expected value? 
Averages over clusters of point microextrema with 
£> ya are replaced by averages over the 'islands,' a 
kind of conditional local smoothing. 

This, now, is a very simple calculation 
whose details are given by Phillips et al. (6). 
Briefly.if Cl=C(^,t) andC2=C(x+r, t+x), the 
theorem of conditional probability, the distribution 
of £2 given that £i>ya is 

p(C2lCl^Y<T) = 
P(C2,Ci^Ycr)/p(Ci>ya)    (l) 

with the usual notation. Ifp(Cl,C2) is the two 
point probability density function, 

p(C2,Ciäya)= rP(CiC2)dCi 
Jay 

and if the process is assumed to be Gaussian, the 
conditional probability is found from (1), from 
which the expected configuration of £2 follows. 
It is found that 

L=yap(r,x)[f(y)]-1 (2) 

where 
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p(r,x)=<C1C2>/<Ci2> 
is the autocorrelation function for the wave field as 
a whole and f(y) is an integral which asymptotes 
upwards to unity as y increases. In particular, 
when r=0, t=0, the autocorrelation function 
p(0,0) = 1 and the average height of those waves 
higher than ya is yaffCy)]"1, a bit higher than 
yc. Consequently, (2) can be written as 

<C(x+r,t+T)>=<Cx,t)>?>YOp(r,t)    (3) 

which gives the mean configuration surrounding 
high crests in terms of the autocorrelation function. 
The mean configuration of deep troughs is given 
by the same expression, with sign reversals. 

The variance among realizations about 
the expected configuration can also be calculated. 
Near the extrema, where p=l, the variance is 
y2a2, which is small, so that there is relatively 
little variation in crest configuration from one 
extremum to another. Far from the crest, as 
r-»», p-»0 and the variance approaches a2, that 
of the wave field as a whole. Phillips et al (6) give 
a formal calculation of the one-dimensional (time 
series) case under the narrow spectrum 
approximation which shows that, at least in this 
simplest case, the approximate results are accurate 
to relative order y2. 

Except for the notion that surface waves 
generally interact weakly and consequently by the 
Central Limit Theorem, the probability distribution 
in a multicomponent sea should be close to 
Gaussian, these results contain no kinematics or 
dynamics. The free surface non-linearity leading 
to somewhat sharper crests and shallower troughs 
distorts the Gaussian towards a Gram-Charlier 
distribution, as demonstrated observationally by 
Kinsman (7) and theoretically by Longuet-Higgins 
(8). While equation (3) remains precisely accurate 
when r=0, t=0, one would expect the non- 
linearities to make the averaged configuration of 
high crests to be somewhat sharper than given by 
(3). We have, however, been unable to detect this 
effect in our comparisons. The fact that the results 
of the approximate theory are, in essence, purely 
statistical implies that they are applicable to other 
multi-dimensional Gaussian processes as well, but 
these will not be pursued here. 

Measurements of Extreme Waves. 

During the winter 1990-91, in the Surface 
Wave Dynamics Experiment (SWADE) many time 
series of wave surface displacements were 
obtained from National Data Center buoys under a 
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Figure 1. Temporal autocorrelation functions and average surface displacements before and after crests 
higher than 2-5o\ Data from SWADE. 
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variety of conditions. On 26 October 1990, an 
intense storm moved up the U.S mid-Atlantic coast 
and data obtained as time series illustrated the 
rather surprising accuracy of the result (3) in the 
special case r=0 (Phillips et al.. 6). Figure 1 
provides a representative example. It is derived 
from four sets of data, each ninety minutes long, 
chosen to represent reasonably steady wind and 
wave conditions during the storm. The continuous 
curves represent the temporal autocorrelation 
functions calculated from the entire data in each 
set, and the dotted and dot-dash curves represent 
mean surface displacements before and after the 
arrival of crests higher than 2-5o\ scaled according 
to equation (3). It is apparent that the three curves 
coincide very well for at least 1-5 wave periods on 
either side of the high crests, becoming more 
irregular beyond. Similar results have been 
obtained from offshore platforms by members of 
Shell Research Rijswijk, The Netherlands, as 
kindly communicated to me by Dr. Philip 
Jonathan, and have led to the adoption of the 
temporal autocorrelation function as a design wave 
for offshore platforms (the so-called New Wave 
methodology, Tromans et al., 2). 

The response of ships to extreme wave 
events is dependent on the space-time history 
surrounding the extremum, and for this directional 
information on the wave field is crucial. During 
the intensive measurement periods of SWADE, 
many fine sequences of data were obtained by Dr. 
Edward J. Walsh of NASA Goddard and his 
colleagues that enable us (a) to calculate the spatial 
autocorrelation function, in effect at one instant, 
x=0, p(r,0) over a swath of the sea surface; (b) to 

pick out the highest crests in the swath and average 
the sea surface heights at surrounding points 
relative to the crests and (c) test the usefulness of 
equation (3) as a predictor of spatial configurations 
of extreme events. These data were obtained by 
the Scanning Radar Altimeter (SRA) described by 
Parsons and Walsh (9) and are discussed by 
Phillips, Gu and Walsh (10). The SRA provides, 
in essence, a contour map of the sea surface along 
the swath, digitized at height increments of 10cm, 
the swath width being proportional to aircraft 
altitude. The portions of data analysed to date 
show considerable variations in extreme wave 
configurations under different storm conditions 
and configurations of currents, associated with 
differences in local wave directional spectra and 
autocorrelation functions. Two examples will be 
described briefly. 

The first dataset was acquired at about 
1730 LST on the afternoon of 4 March 1991 in the 
vicinity of 37.6°N, 73.3°W, about 150km offshore 
from Wallops Island, VA and close to NDBC 
meteorological buoy 44015 (Discus E). During the 
previous 3 days, the wind had been generally from 
the south over the mid-Atlantic seaboard, but for 
7h prior to the measurement had been backing 
towards the west and dropping from 13-15m s"* to 
4-8m s"1. The significant wave height at Discus E 
was 5-5 m at the overflight time. 

Wave spectral characteristics at Discus E 
are shown in Figure 2. The directional frequency 
spectrum has a strong maximum at about 0.9Hz 
from 190°—a longcrested swell from the south— 
with higher frequencies tending towards the wind 
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Figure 2. Directional-frequency and frequency spectra at buoy 44015,1700 LST on 4 March. The directions 
are those from which waves propagate. Contours represent 0.01,0.05,0.1,0.2,0.6 and 0.8 of the peak. 
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direction, from 260°. The frequency spectrum is a 
simple textbook example—the wave field appears 
to be an uncomplicated, unidirectional, well- 
developed long fetch wave field. 

The measured spatial autocorrelation 
function of surface displacement is shown in 
Figure 3. The configuration is long-crested 

(00     <"> 

Figure 4. Mean surface configurations 
surrounding high crests in the swath of 4 March, 
(a) crests higher than 2c, (c) crests higher than 3c. 

Figure 3. The spatial autocorrelation function for 
the entire SRA data swath, 4 March. 

with a dominant wavelength of about 250m. The 
discontinuity in slope at r=0 can be interpreted as a 
consequence of the algebraic form of an 
equilibrium range spectral asymptote of k"4 or 
k*3"5 in the wave-number spectrum for scales 
somewhat larger than the sampling intervals (2.1m 
across track and 14.2m along). 

The data were then scanned to identify 
points at which £>yc f°r selected values of y, and 
ensemble averages were constructed of the surface 
displacements at distances r from the high points 
identified. A couple of results are shown in Figure 
4. Near the peak, the configurations are very 
similar (they overlay almost precisely) and the 
general form of the autocorrelation function of 
Figure 3 is apparent in the ensemble-averaged 
wave configurations of Figure 4. In the lower part 
of the Figure, y=3, and there are fewer higher 
crests available to form the average, so that the 
noise level is higher especially in the skirts. The 
theory becomes more accurate as y increases, but 
the statistics deteriorate! 

A contrasting situation was encountered 
the following day, on 5 March. Overnight, a cold 
air outbreak had occurred and by afternoon the 
local winds were from the north-west generating a 
fetch-limited wind sea superimposed on the still- 
dominant swell from the south. Dataset 5B was 
taken 400km offshore, near 36.3°N, 72.5°W, a 
little south and east of the Gulf Stream. 
Unfortunately there were no buoys in the vicinity 
but the directional frequency spectrum, calculated 
from the SRA swath is shown in Figure 5a. There 
is an inherent 180° ambiguity in these spectra but 
the meteorology clearly requires a low frequency 
swell generally from the south, together with 
higher frequency wind waves from N-NW. These 
'real' spectral contributions are indicated by the 
unbroken lines of Figure 5a. A remarkable 
property of this spectrum is the wide directional 
spread (120° -240°) of the energetic 0.1Hz swells, 
not found at other locations, which is apparently a 
consequence of refraction of swells, incident at a 
glancing angle upon the Gulf Stream further to the 
south. 

The autocorrelation function of the 
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wave field is shown in Figure 5 in various 
perspectives—it is evidently almost conical in 
form with outlying oscillations, long crested but of 
much smaller amplitude. If this almost conical 
form does represent the configuration of extreme 
crests, it presumably has the characteristics of a 
standing wave formed from wave groups travelling 

in almost opposite directions, in contrast with the 
progressive waves of Figure 4. 

Figure 6 shows the mean configuration 
surrounding crests in the dataset 5B, and indeed it 
does mirror accurately the spatial autocorrelation 
function of Figure 5. 

Figure 6. Mean surface configurations surrounding extrema in dataset 5B. (a) Crests higher than 2a, (b) 
Troughs deeper than 2a. 

Figure 6b shows the mean surface configuration 
surrounding troughs deeper than 2a. The 
minimum is out of sight but extends to -1 and 
presumably drops almost vertically as in a standing 
wave. To a helmsman in a rough sea, this may 
look like a black hole into which his boat may fall. 

Towards a Design Wave Group 

The most direct application of these 
results is the goal of defining an extreme wave 
group in space-time, or an ensemble of them, for 
ship design purposes—the question is then: What 
hull forms can best survive encounters with them? 
The problem for off-shore platforms is simpler 
since most of the information is contained in time 
series, and the variations in form of wave 
frequency spectra and autocorrelation functions are 
less than among wave-number spectra and spatial 
autocorrelation functions from different storm 
systems. Indeed, the 'New Wave' design 
methodology is being developed for immediate 
application to platform design, as mentioned 
earlier. 

If the two-dimensional configuration of 
the surface is defined at the instant of extremum, 
and if one assumes that all wave components are 
travelling within an angular range of 180°, the 

prior and subsequent surface configurations can be 
found to a good approximation by integration in 
time. Boccotti (4) has used model spectra to 
illustrate this, but it would be clearly preferable to 
define the extreme events in terms of the spatial 
autocorrelation functions in storms of various 
types and locations with respect to major current 
systems. We are proceeding with this, to develop 
as many cases as are available for analysis. 

Calculation of the time history involves 
taking the Fourier transform of the instantaneous 
extreme configuration, propagating the 
components at appropriate speeds and directions, 
followed by re-synthesis. One problem, 
exemplified in Figures 4 and 5, is that the swaths 
available do not define the shape or extent of the 
skirts of the wave shape in the transverse direction. 
From the purely mathematical point of view, there 
is nothing to be done about this—the cross-track 
spectral resolution is much worse than that along 
track. However, there are some physical 
conditions which provide integral constraints on 
the autocorrelation function, and so constrain its 
extrapolation beyond the measured swath. For 
example, the fact that the two-dimensional 
spectrum is zero at the origin (we are not interested 
in global-scale waves!) implies that the integral of 
p(r) over the surface vanishes. If we can assume 
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The Transition to Turbulence in a Spilling Breaker 
J. Duncan, V. Philomin, H. Qiao 

(University of Maryland, USA) 

Abstract 

The transition from laminar to turbulent flow in 
mechanically generated, gentle spilling breaking 
water waves is examined experimentally through 
surface profile measurements. It is found that as 
the wave steepens a bulge forms on the forward 
face of the wave near the crest and capillary waves 
form on the water surface ahead of the 'toe' of the 
bulge (see Fig. 1). This behavior is found to be in 
qualitative agreement with the theory of Longuet- 
Higgins [1]. The toe of the bulge then moves 
rapidly down the forward face of the wave and 
a train of large-amplitude waves with short wave- 
length grows rapidly on the surface of the bulge. 
These waves quickly break down into a random, 
rapidly evolving pattern indicating that the flow 
has become turbulent. The effect of the scale 
of the breaker on the breaking process described 
above is explored by using Froude-scaled wave- 
maker motions at average frequencies of 1.14,1.26 
and 1.42 Hz. 

1    INTRODUCTION 

Breaking waves in large, deep bodies of water are 
usually classified as spilling rather than plung- 
ing breakers. Depending on the history of the 
wind conditions and the fetch, a range of waves 
in the wind wave spectrum can break includ- 
ing the dominant wave as well as some of the 
shortest waves. These latter breaking events are 
frequently called microscale breakers [2]. When 
longer waves break, the time scale, which is prob- 
ably some fraction of the wave period, is large and 
the surface evolution can be observed fairly well 
by a casual observer. As the breaker forms, the 

flow becomes turbulent in a small region around 
the crest. The mechanism that leads to this small 
turbulent region is not well understood though 
some investigators have hypothesized that it is 
initiated by a small curl at the crest [3]. After 
formation, the turbulent region seems to fall down 
the forward face of the wave gathering fluid as it 
travels. Air is usually entrained as long waves 
break and a whitecap is observed on the water 
surface. 

When waves with lengths less than a meter or 
so break, the time scale is short and casual ob- 
servations from a fixed reference frame do not re- 
veal many details about the breaking process. It 
appears as though the wave crest suddenly be- 
comes turbulent and the breaking process stops 
as quickly as it began. Because the kinetic en- 
ergy of these short waves is relatively small, they 
usually do not entrain air bubbles and therefore 
the telltail white cap is not observed. A mech- 
anism that leads to the formation of these short 
wavelength spilling breakers has been proposed 
by Longuet-Higgins and his co-authors [1, 4, 5]. 
This mechanism is initiated by an instability that 
causes a bulge to form on the forward face of the 
crest of a steep gravity wave (see schematic in 
Fig. 1). Capillary waves then form just below the 
'toe' of the bulge where there is a sharp concave 
(upward) curvature. It is theorized that, in waves 
of short length, the vorticity shed by the viscous 
boundary layer of these capillary waves creates 
a vortical region in the crest of the gravity wave 
(Longuet-Higgins[6]). This vortical region then 
separates from the underlying flow and becomes 
turbulent. 

In the present work, preliminary measurements 
from   an   experimental   investigation   of  short- 
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Figure 1:   Schematic of the incipient breaking 
wave shape as proposed by Longuet-Higgins [1]. 

wavelength, gentle spilling breaking waves are 
presented. The measurements consist of wave 
profiles from high-speed movies (500 frames per 
second) taken in a reference frame moving with 
the wave crest. These movies reveal many fea- 
tures of the surface evolution that cannot be 
seen with the naked eye in a laboratory reference 
frame. Photographs from this investigation have 
been published in two recent articles, see refer- 
ences [7] and [8]. 

This paper is organized in four sections. In the 
following section (2), the experimental techniques 
are presented. The results are then presented and 
discussed in Section 3. Finally, in Section 4, the 
conclusions of the study are given. 

2    EXPERIMENTAL 
TECHNIQUES 

The experiments were performed in a tank that 
is 14.8 m long, 1.22 m wide and 1.0 m deep. The 
waves were generated mechanically by a vertically 
oscillating wedge that spans the width of the tank 
at one end. The side of the wedge closest to the 
end wall of the tank is vertical and the opposite 
side of the wedge is inclined at an angle of 30° 
from vertical. The wavemaker is driven by a ball- 
screw and linear-bearing mechanism that is in 
turn driven by a servo-motor. A computer-based 
feedback control system is used with a position 
sensor and a tachometer to provide precise con- 
trol of the motion of the wedge. An instrument 
carriage that is driven by a towing wire and a 
separate servo-motor travels above the tank. The 
carriage rides on hydrostatic oil bearings rather 
than wheels; this produces a very low mechani- 

cal vibration level. The carriage is controlled by 
the same computer that controls the wavemaker. 
By trial and error, a set of carriage motion pa- 
rameters was determined such that the carriage 
moved along the tank with the crest of the break- 
ing wave. 

The breaking waves were generated by a 
method similar to that described in Rapp and 
Melville [9]. In this method, a packet of waves 
with varying frequency is generated in a manner 
such that the packet converges as it travels along 
the tank. This convergence causes the amplitudes 
of the remaining waves in the packet to increase. 
Eventually, a breaking wave is formed if the initial 
wave amplitudes are large enough. Linear deep- 
water wave theory is used to compute a suitable 
motion for the wavemaker though the resulting 
wave motion is highly nonlinear when the packet 
converges. The wave packet consists of the sum 
of N sinusoidal components and the wavemaker 
motion to produce these waves is given by 

N 

zw = w{t)A^2cos(xb(-r - b) - Wit).      (1) 
i=i c 

where w is a window function which is described 
below, A is an adjustable constant, xi, is the hor- 
izontal position of the breaking event (by linear 
theory) measured from the back of the wedge, t 
is time, &,• and Ui are, respectively, the wavenum- 
ber, and frequency of each of the i = 1 to N wave 
components, and c is the average of the group 
velocities (0.5ui/ki) of the N components. The 
frequencies are equally spaced, LJJ+I = Ui 4- Au>, 
where Au is a constant. The window function 
was chosen to give the wedge zero motion at times 
when the summation of components resulted in 
only a very small motion: 

w(t)    =    0.25(tanh(/3u>(i-ii)) + l)     (2) 

(l-tanh(ßü(t-t2))), 

where ß is a constant that determines the rise 
rate of the window function, chosen as 5.0, and 
Q is the average of the N frequencies u>,. The 
window function is nearly equal to 1.0 for most 
of the time between t — t\ and t = t2 and is 
zero at other times. The times h and t2 were 
chosen to allow the lowest and highest frequency 
components (i = 1 and i = N, respectively) to be 
generated and to travel to position x&. 

The wave profiles were measured from individ- 
ual frames of a 16-mm movie taken at 500 frames 
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Figure 2: Schematic showing plan view of instru- 
ment carriage and optical system used to photo- 
graph the breaking waves. 

per second in a reference frame nearly fixed with 
respect to the wave crest. The experimental set- 
up is shown schematically in Figure 2. The cam- 
era is mounted on the carriage and views the wave 
from the side looking down from above the wa- 
ter surface with an angle of about 5° from the 
horizontal. A laser light sheet shines vertically 
down and is aligned with the centerline of the 
tank. Fluorescene dye is mixed with the water 
to a concentration of about 5 ppm. The dye in 
the light sheet glows and forms the light source 
for the pictures. The photographs clearly show 
the wave profile along the centerline of the tank 
where the light sheet enters the water. Two light- 
emitting diodes are attached to the carriage and 
positioned so that they appear in the upper left 
and right corners of the photographs. These dots 
are used to align successive images of the film. 
The dots are nearly horizontal and are 10.22 cm 
apart (see Figure 3). 

The selected frames from the movie are digi- 
tized and stored for analysis. The profile of the 
wave is found by descending each column of pix- 
els and finding the pixel where the light inten- 
sity increases above a preset threshold. The first 
bright pixel in each column below the images of 
the diodes is taken as the water surface. Using 
the centroids of the diodes and their know loca- 
tion above the mean water level, the wave profile 
is then reconstructed from the image data. 

Figure 3: Schematic showing side view of wave 
with optical system used to create the light sheet. 
The water is mixed with fluorescent dye so that a 
glowing line is created along the centerline of the 
tank where the sheet enters the water. 

In the experiments described herein, breaking 
waves were generated from wedge motions with 
three different average frequencies (/ = 1.14, 
1.26, and 1.42 Hz, where / = ü>/(2ir)). The wa- 
ter depth in the tank was the same in all cases 
(0.86 m); however, all other parameters of the 
generation process were Froude scaled. These 
Froude scaled parameters include the number of 
wave components, N = 32; the frequency in- 
crement, ALJ/ü = 0.0208; the amplitude factor 
in the wedge motion, A/X = 0.00124 (where 
Ä = 2ng/ü2 and g is gravitational accelera- 
tion); the time duration of the window function, 
(t2 - ti)2.0n/L> = 8.00; and the distance to the 
breaking event by linear theory, Xt, = 6.0Ä. The 
mean position of the wedge was such that the ver- 
tical distance (hw) between the lowest point of 
the wedge and the mean free surface was 0.397A. 
The carriage speeds were 1.047, 0.978 and 0.927 
m/sec for the Q = 1.14, 1.26, and 1.42 Hz waves, 
respectively. 

In Froude scaling the wave generation process, 
the effects of surface tension and viscosity on the 
wave motion are not scaled. Surface tension ef- 
fects scale according to the Weber number, 

\W 
afü4, (3) 

while viscous effects are scaled according to the 
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inverse of the Reynolds number. 

A2 a vu3. 
u 

(4) 

Thus, with the above mentioned frequencies the 
influence of surface tension will increase by a fac- 
tor of 2.41 and the influence of viscosity will in- 
crease by a factor of 1.93 as the frequency in- 
creases. It should be pointed out that surface 
tension and viscosity not only effect the break- 
ing process itself, but also the propagation of the 
waves from the wavemaker to the breaking point 
and to some extent the generation process. 

The role of surfactants in this phenomenon is 
presently under investigation. During the experi- 
ments reported herein the surface of the tank was 
skimmed periodically but the surface tension was 
not measured. It is reasonable to assume that 
naturally occurring surfactants were present dur- 
ing the experiments. However, the phenomena 
described above were observed on numerous oc- 
casions. Since it is unlikely that the surfactant 
level was always the same, it is assumed that, 
though the details of the phenomena are proba- 
bly affected by surfactants, the basic phenomenon 
occurs for a fairly wide range of surfactant levels. 
Recently, the surface tension in the tank has been 
measured with a Wilhelmy plate apparatus [10] 
about 30 minutes after skimming. The surface 
tension was in the range of 52 to 60 dynes/cm2. 

3    RESULTS AND 
DISCUSSION 

Four photographs of the wave with / = 1.42 
Hz [8] are shown in Figures 4 to 7. These pho- 
tographs were taken with a 35-mm camera at dif- 
ferent times in the breaking process. They are 
from four separate realizations of breaking waves 
produced by the same wedge motion. In the first 
photograph, the bulge can be seen developing on 
the forward face of the wave. Wavy light rays 
can be seen in the foreground of the picture ex- 
tending down from the water surface ahead of 
the toe of the bulge. These light rays originate 
from capillary waves on the water surface ahead 
of the toe in the following manner. As the light 
sheet enters the water at the centerline of the 
tank, the light sheet is focused or defocused by 
the curved water surface. Thus, under the crests 
of capillary waves, which have downward curva- 
ture, rays of high-intensity light illuminate the 

dye and the light from the dye is stronger than 
average in these rays. Under the troughs, which 
have an upward curvature, rays of low intensity 
light are found. If observed from under water, the 
bright and dark rays would be straight. However, 
the camera views the wave from above the water 
surface and so observes the light rays, which are 
from the capillary waves at the centerline of the 
tank, through the capillary waves on the water 
surface between the camera and the centerline of 
the tank. Thus, the light rays in the foreground of 
the photograph appear wavy rather than straight. 
The shape of the wave with the bulge and the cap- 
illary waves are in qualitative agreement with the 
theory of Longuet-Higgins [1]. The second pho- 
tograph in the sequence, Figure 5, shows a simi- 
lar wave shape but the bulge is much more pro- 
nounced and the toe of the bulge is much sharper. 
The first capillary wave ahead of the toe is now 
large enough in amplitude to be visible in the 
wave profile. Since the surface slopes and curva- 
tures are much larger in this photograph, the un- 
derwater light rays form caustics and it is difficult 
to interpret the foreground of the photographs. 
In Figure 6 the toe of the bulge is further down 
the face of the wave and large ripples appear on 
the bulge. A short time later, Figure 7, the water 
surface has a random appearance, indicating that 
the flow has become turbulent. 

Profiles taken from frames of the high-speed 
movies at various times during the breaking pro- 
cess for the three breaking waves with / = 1.14, 
1.26, and 1.42 Hz are presented in Figures 8, 9, 
and 10, respectively. The wave is moving from 
left to right relative to still water. Each profile 
is offset vertically by a fixed amount for clarity 
of presentation. The top profile is in the cor- 
rect position relative to the undisturbed water 
level (z = 0). The sequence proceeds in time 
from the top profile to the bottom profile and the 
time intervals between the first and last profiles 
are given in the caption of each figure. The pro- 
files were selected to show important features of 
the breaking events and so the time interval be- 
tween profiles is not uniform. The vertical (z) 
and horizontal (x) scales in the photographs are 
nondimensionalized by A0, where A0 = p/(2?r/ )• 
Thus, given the Froude-scaled manner in which 
the waves were generated (assuming that shallow 
water effects are not important), the wave shapes 
in the figures would be identical in the absence of 
viscous and surface tension effects. Each sequence 
starts with a smooth profile showing an asymmet- 
ric wave with a bulge on the forward face of the 
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Figure 4: A photograph of a breaking wave / = 
1.42 Hz. Initial formation of the bulge and capil- 
lary waves upstream of the toe of the bulge. The 
wave is moving from left to right relative to still 
water. 

Figure 6: A photograph of a breaking wave / = 
1.42 Hz. The toe of the bulge is further down the 
forward face of the wave and a train of ripples 
grows on the bulge. The wave is moving from left 
to right relative to still water. 

Figure 5: A photograph of a breaking wave / = 
1.42 Hz. The bulge is well defined and the cap- 
illary wave just ahead of the toe is visible in the 
wave profile. The wave is moving from left to 
right relative to still water. 

crest. The capillary waves are too small to be 
visible in the wave height profiles but are present 
in all three waves. Thus, at the point of incipient 
breaking, all three waves look qualitatively like 
the predictions of Longuet-Higgins [1]. After a 
short time, the bulge becomes more pronounced. 
As this happens, the toe of the bulge remains rel- 
atively stationary and becomes sharper. The toe- 

Figure 7: A photograph of a breaking wave / = 
1.42 Hz. The surface has become disorganized 
indicating that the flow has become turbulent. 
The wave is moving from left to right relative to 
still water. 

of the bulge is then seen to move rapidly down 
the forward face of the wave and as this happens 
ripples form over the surface of the bulge. The 
ripples are well defined in the next to the last 
profiles in Figures 8 and 9. They are still visible, 
but less well defined in Figure 10. In the final pro- 
file in each case, the water surface over the bulge 
has a random appearance in the movies and the 
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Figure 8: Profiles of the breaker with / = 1.14 
Hz. The top profile is in the correct position on 
the axes (z = 0 is the mean water level), but the 
lower profiles have been displaced vertically for 
clarity. Time increases from the top profile to the 
bottom profile. The time interval between the 
first and last profiles is 0.11 seconds. 

Figure 9: Profiles of the breaker with / = 1.26 
Hz. The top profile is in the correct position on 
the axes (z = 0 is the mean water level), but the 
lower profiles have been displaced vertically for 
clarity. Time increases from the top profile to the 
bottom profile. The time interval between the 
first and last profiles is 0.114 seconds. 

flow is apparently turbulent. In examining several 
movies for each frequency, it was found that the 
ripples were present in every case but the extent 
to which they developed into a well defined wave 
train before the surface became random varied 
from realization to realization. 

Several quantitative measurements were made 
from the image sequences in order to compare the 
three breaking waves. A schematic defining the 
measured quantities is given in Figure 11. The 
first measurement is the height of the crest ver- 
sus time and is shown for all three waves in Figure 
12. The origin of the time axis is the point in the 
movie where the toe of the bulge is first visible. 
This origin is somewhat imprecise so one should 
keep in mind when comparing one wave frequency 
to another that the curves can be shifted slightly 
in the horizontal direction. Note that in all three 
cases the height of the wave is relatively constant 
throughout the breaking process. The vertical 
axis of the figure is nondimensionalized by A0 so, 
if viscosity and surface tension were not factors 
in the wave generation, propagation and breaking 
process, one would expect the waves to have iden- 
tical scaled heights. This is not the case; there is 
a monotonic increase in the scaled wave height 

0.08 

0.06- 

o 

N 

0.04 

0.08 

Figure 10: Profiles of the breaker with / = 1.42 
Hz. The top profile is in the correct position on 
the axes (z = 0 is the mean water level), but the 
lower profiles have been displaced vertically for 
clarity. Time increases from the top profile to the 
bottom profile. The time interval between the 
first and last profiles is 0.118 seconds 
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Undisturbed water level 

Figure 11: Schematic showing definitions of vari- 
ous quantities measured from the wave profiles. 

as the frequency / decreases and the difference 
between the smallest and larges scaled height is 
about 5%. Note that from the first measurements 
to the last where the wave crest appears to be 
turbulent, the elapsed time is about 0.15To. For 
the 1.42 Hz wave this is about 0.1 seconds. In a 
laboratory reference frame with the wave moving 
past the observer, the duration of 0.1 seconds is 
much too short for careful visual observation of 
the breaking behavior. 

The second geometrical measurement that is of 
interest is the length from the crest of the wave to 
the toe of the bulge. Curves of this quantity di- 
vided by Ao are given in Figure 13 as a function of 
t/To- All three curves show a region of relatively 
constant length for early time (while the bulge is 
forming) followed by a region of increasing length 
as the toe moves down the wave face. The data 
for the 1.14 Hz and the 1.26 Hz waves are rel- 
atively similar, but the length from the crest to 
the toe is about 100% larger for the 1.42 Hz wave. 
Figure 14 is a plot of the vertical height from the 
crest to the toe of the bulge versus time and this 
plot shows very similar data to that in Figure 12. 

The slope of the smooth water surface just 
ahead of the toe of the bulge is shown as a func- 
tion of t/T0 in Figure 15. In all three cases, the 
slope decreases with time. This is due to the fact 
that the toe is moving down the smooth wave 
face which has a slight upward curvature and 
remains relatively constant in shape during the 
short breaking process (see Figures 8, 9 and 10). 

0.00 
0.00 0.05      0.10      0.15      0.20      0.25 

Time/T, 0 

Figure 12: Height of breakers (Zcrest/\o) verses 
time (t/T0): • ü = 7.16 s"\ ■ Q = 7.92 s"\ A 
Q = 8.92 s-1. 
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Figure 13: Distance from the crest of the wave to 
the toe of the bulge, (L/A0) verses time (t/To): • 
Q = 7.16 s"\ ■ ü = 7.92 s~\ 4w = 8.92 s"1. 
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Time/TQ 

Figure 14: Height from the toe to the crest 
{Z„est - Ztoe/Xo) verses time (t/T0): • Q = 7.16 
s_1, ■ ü = 7.92 s-\ A w = 8.92 s"1. 
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Figure 15: Slope of the smooth wave face ahead 
of the toe (6) verses time (t/T0): • w = 7.16 s"\ 

■ Q = 7.92 s_1, A ü = 8.92 s-1. 

4    CONCLUSIONS 

High-speed movies of gentle spilling breaking wa- 
ter waves with characteristic frequecies of 1.14, 
1.26, and 1.42 Hz have revealed some new as- 
pects of the mechanism by which these waves cre- 
ate turbulence. As the waves steepen, a bulge 
forms on the forward face in a manner predicted 
by Longuet-Higgins and his co-authors [1, 4, 5]. 
As the bulge forms the leading edge or toe of the 
bulge at first remains stationary, but then moves 
rapidly down the forward face of the wave. As it 
travels, ripples grow on the surface of the bulge 
and these ripples eventually break down into a 
random, quickly evolving shape, indicating that 
the underlying flow has become turbulent. It is 
theorized [7] that the ripples are a manifestation 
of unstable waves on a shear layer that is devel- 
oped between the fluid in the bulge as it falls 
down the forward face of the wave and the under- 
lying flow which is moving in the upslope direc- 
tion. The three waves were generated in a Froude- 
scaled manner; however, it was found that the 
shapes of the breakers did not scale well with con- 
stant Froude number. In particular, it was found 
that the scaled length of the bulge (L2irf2/g) was 
about two times longer for the highest frequency 
wave when compared to the other two waves. 

References 

[1] M. S. Longuet-Higgins, "The crest instability 
of steep gravity waves or How do short waves 
break?" Symposium on the Air-Sea Inter- 
face, Marseilles, France, June 24-30, (1993). 

[2] M. L. Banner and D. H. Peregrine, "Wave 
breaking in deep water," Ann. Rev. Fluid 
Mech. Vol. 25, pp. 373, (1993). 

[3] A. L. New, P. Mclver and D. H. Peregrine, 
"Computations of overturning waves," J. 
Fluid Mech. Vol. 150, pp. 233, (1985). 

[4] M. S. Longuet-Higgins and R. P. Cleaver, 
"Crest Instabilities of Gravity Waves. I. The 
inner solution.," J. Fluid Mech. Vol. 258 pp. 
115, (1994). 

[5] M. S. Longuet-Higgins, R. P. Cleaver, 
M. J. H. Fox "Crest Instabilities of Gravity 
Waves. II.," J. Fluid Mech. Vol. 259 pp. 333, 
(1994). 

[6] M. S. Longuet-Higgins, "Capillary rollers 
and bores," J. Fluid Mech. Vol. 240, 659, 
(1992). 

[7] J. H. Duncan, V. Philomin, M. Behres and J. 
Kimmel, "The Formation of Spilling Break- 
ing Water Waves," Physics of Fluids, Vol. 6, 
No. 8, pp. 2558-2560, (1994). 

[8] "Gallery of Fluid Motion," Special section in 
Physics of Fluids, Vol. 6, No. 9 (1994). 

[9] R. Rapp and W. K. Melville, "Labora- 
tory measurements of deep water breaking 
waves," Phil. Trans. R. Soc. London Ser. A, 
Vol. 331, pp. 735 (1990). 

[10] C. A. Miller and P. Neogi, Interfacial Phe- 
nomena, Marcel Dekker, Inc., New York 
(1985). 

The authors gratefully acknowledge the sup- 
port of the Office of Naval Research under con- 
tract N00014-90-J-1977. 

528 



DISCUSSION 

K.Mori 
Hiroshima University, Japan 

In the conclusion of your presentation, you concluded 
that the fluid particle on the surface moves forward. 
How did you observe this forward moving? Although 
my experience is limited to the steady breaker, we 
observed the flow direction by making use of tufts to 
find no such forward flows. 

AUTHORS' REPLY 

In order to measure the flow field in our unsteady 
spilling breakers we are using particle image 
velocimetry techniques. These measurements are 
presently underway. As a preliminary qualitative 
method for obtaining the flow field, we used a high- 
speed movie camera to photograph the motion of 
particles in the flow. These movies, which were not 
shown in the presentation, indicate that in the reference 
frame moving with the wave crest the flow near the 
surface in the forward face of the crest moves forward 
and down the face of the wave during the transition 
from laminar to turbulent flow. We hope to present 
extensive measurements of this flow in the near future. 
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The Vortical Structure of a Near-Breaking 
Gravity-Capillary Wave 

D. Dommermuth, R. Mui 
(Science Applications International Corp., USA) 

Abstract 

A two-dimensional numerical simulation of a 
near-breaking 5cm gravity-capillary wave is 
performed. The free-surface boundary layer 
is resolved at the full-scale Reynolds, Froude, 
and Weber numbers. Seventeen million grid 
points are used to resolve the flow to within 
1.2 x 10-3cm. A robust numerical algorithm 
is developed  to simulate flows with com- 
plex boundary-conditions and topologies in- 
cluding the effects of kinks.   The numerical 
method is used to investigate the formation 
of parasitic capillary waves on the front face 
of a gravity-capillary wave.    The parasitic 
capillary waves shed vorticity that induces 
surface currents that exceed fifteen percent 
of the phase velocity of the gravity-capillary 
wave when the steepness of the parasitic cap- 
illary waves is approximately 0.5 and the to- 
tal wave steepness is 0.8. A mean surface cur- 
rent develops in the direction of the wave's 
propagation, and it is concentrated on the 
front face of the gravity-capillary wave. This 
current enhances mixing,  and remnants of 
this surface current are probably present in 
post-breaking waves. Regions of high vortic- 
ity occur on the back sides of the troughs 
of the parasitic capillary waves.    The vor- 
ticity separates from the free surface in re- 
gions where the wave-induced velocities are 
exceeded by the vorticity-induced velocities. 
The rate of energy dissipation of the gravity- 
capillary wave with parasitic capillaries rid- 
ing on top is seventeen times greater than 
that of the gravity-capillary wave alone. 

1    INTRODUCTION 

The analyses of Longuet-Higgins, et al (1993 
& 1994) show that the crest of a steep grav- 
ity wave is unstable. A toe forms on the 
forward face of the wave, just slightly for- 
ward of the crest. The formation of the toe 
may represent the initial stage of a spilling 
breaking wave. The high curvature near the 
toe is a source for the generation of parasitic 
capillary waves. The formation of parasitic 
capillary waves were first measured by Cox 
(1958). Longuet-Higgins (1963) has devel- 
oped a theory that is based on the assump- 
tion that the parasitic capillary waves are 
steady in a frame of reference moving with 
the carrier wave. The numerical simulations 
of Dommermuth (1994b) show that the rip- 
ples actually undergo a nonlinear recurrence. 

Okuda, et al (1977) and Ebuchi, et al 
(1987) observe that a strong vortical region 
forms in the crest of steep wind-generated 
waves in the neighborhood of the parasitic 
capillary waves. Based on a boundary-layer 
theory, Longuet-Higgins (1992) argues that 
the source of the vortical region, which he 
calls a vortical roller, is the parasitic capillary 
waves. Longuet-Higgins shows that the peak 
vorticity values occur slightly aft of a capil- 
lary wave's trough. A mean flux of vorticity 
is induced by capillary waves. Based on mo- 
mentum arguments, he calculates that the re- 
sulting surface currents that would form be- 
neath steep parasitic capillary waves can ap- 
proach the phase speed of a gravity-capillary 
wave. The experiments of Duncan, et al 
(1994) confirm that as a gravity wave steep- 
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ens, a toe forms on the forward face near the 
crest. Capillary waves form ahead of the toe. 
On the bulge of fluid that forms behind the 
toe, Duncan, et al (1994) observe that large 
amplitude disturbances form. They conjec- 
ture that the disturbances are formed by an 
unstable interaction of the free surface with 
a shear layer beneath the bulge. 

Based on an earlier investigation of vor- 
tex tubes interacting with a free surface (see 
Dommermuth, 1993), we make extensions to 
our theory that enable us to resolve the free- 
surface boundary layer beneath very steep 
gravity-capillary waves. We use this new ca- 
pability to investigate the vortical structure 
of a 5cm near-breaking wave. 

2    Mathematical 
Formulation 

2.1    Field Equations 

Let u = u(x, z, t) = (u, w) represent the two- 
dimensional velocity field as a function of 
time. Applying Helmholtz's theorem gives: 

Ü=V<f> + U , (1) 

where 4>{x, z, t) is a velocity potential which 
describes the irrotational flow and 
Z7(x, z, t) = (U, W) is a solenoidal field which 
describes the vortical flow such that: 

V2<£   =   0 

V-U   =   0 

(2) 

(3) 

Since <f> satisfies Laplace's equation and the 
divergence of the rotational field It is cho- 
sen zero, the total velocity field u conserves 
mass. Note that U may contain a portion of 
the irrotational field depending on how the 
boundary conditions are defined. 

Based on this Helmholtz decomposition of 
the velocity field, define the total pressure II 

in terms of a rotational pressure P and an 
irrotational pressure as follows: 

*=p-%-\**-**-hx-  (4) 

Here, the pressure terms are normalized by 
pU* where Uc is the characteristic velocity 
and p is the density. Fr

2 = U^/gLc is the 
Froude number and Le is the characteristic 
length. The vertical coordinate z is positive 
upward, and the origin is located at the mean 
free surface. Substituting these decomposi- 
tions (1 & 4) into the Navier-Stokes equations 
gives: 

DU 

+(Z7-V)V^ = -VF + ^-V
2
Z7,      (5) 

^l + ((z7-v + v^).v)z7 

Re 

where D/Dt = d/dt + V • V is a substantial 
time derivative, V = (Xt, Zt) accounts for the 
motion of the interior flow due to the surface 
waves, Re = UcLc/v is the Reynolds number, 
and v is the kinematic viscosity. 

The field equations and the boundary con- 
ditions for the velocity field are used to de- 
duce the rotational pressure in the fluid and 
the behavior of the rotational pressure near 
the boundaries. The divergence of the mo- 
mentum equations (5) used in combination 
with the mass-conservation equations (2 & 3) 
are used to derive a Poisson equation for the 
rotational pressure. This equation expressed 
in indicial notation (Ui = (17, W) k V; = 
(Xt, Zt)) is as follows: 

ax,-     axi  axj      oxi axjdxi 

Similarly, the momentum equations are also 
used to prescribe the normal derivative of the 
rotational pressure on the boundaries of the 
fluid. Thus, according to the divergence the- 
orem, the rotational pressure is subject to the 
following solvability condition: 
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Js dn Jv 
dUj 
dxi 'dxi'dxj     dxi dxjdxi 

(7) 

where V is a volume of fluid, 5 is the sur- 
face bounding the volume, and n is the unit 
outward-pointing normal on that surface. 

+ -J-(nzn,(W2 + <M + nxnz{Wx + Uz + 2<f>X2) 
Re 

1 TJxx 
+nTnx(Us + 0XX)) = -Pa + \yen+ ^2)3/2  ' 

(11) 

2.2    Exact   Free-Surface   Boundary 
Conditions 

Let the free-surface elevation be given by z = 
r/(x.y,t). Then the unit normal to the free 
surface is 

n = 
^l + r,l + l 

(8) 

The Helmholtz decomposition of the ve- 
locity field requires one additional boundary 
condition to be prescribed on the free surface. 
We impose that the rotational velocity is zero 
on the free surface: 

U-n = Q . (9) 

This constraint means that the evolution 
of the free-surface elevation is entirely pre- 
scribed in terms of the free-surface elevation 
itself and the velocity potential as follows: 

-QT + Vxtx ~ 4>z = 0 , (10) 

where each term is evaluated on the free 
surface, z = rj. If the normal derivative of 
the potential is chosen zero (<f>n = 0) on all 
boundaries other than the free surface, then 
the mean free-surface elevation is conserved 
according to the above kinematic condition 
(10) and an application of Green's theorem. 

In addition to the two kinematic condi- 
tions (9 & 10), also two stress conditions must 
be satisfied on the free surface. The normal 
stress condition is 

where d/dt = d/dt + r)t<t>x is a substantial 
time derivative, Pa is the atmospheric pres- 
sure, We = pU^Le/T is the Weber number, 
T is the surface tension, and (nx, nz) are the 
xz-components of the unit normal. 

For a clean free surface,  the tangential 
stress condition is 

{Uz + WS + 24>xz){nznz - nxnx) 

+2{UX -Wz + cj>xx - 4>zz)nxnz = 0.    (12) 

2.3    Energy Conservation 

The vector product of the total velocity and 
the momentum equations, integrated over the 
fluid volume, gives a formula for the con- 
servation of energy. The transport theorem, 
in conjunction with the divergence theorem, 
may be used to simplify the resulting equa- 
tion. Upon substitution of the exact free- 
surface boundary conditions, the following 
formula is derived: 

d ( f UiU      If      , ,     1     f    2 

__2_ r      d<f>   d2<j>   _± [    d2<t>   Mi 
~ Re JS, Ui dXj dXidXj       Re Jv ÖXidXj ÖXj 

dUj   

dxi' dxj ' -iJM+^    ™ 
where Sj is the free surface and S0 is the 
projection of the free surface onto the xy- 
plane.   The first term (dEuu/dt) represents 
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the change in kinetic energy of the vortical 
portion of the flow integrated over the mate- 
rial volume of the fluid (V). The second and 
third terms (dE^/dt k dEvr,/dt) represent 
the changes in the kinetic and potential ener- 

"* gies of the waves. The fourth term (dEs/dt) 
is the superficial energy due to surface ex- 
tension. The first term on the right-hand 
side (dWpa/dt) represents the power input 
by atmospheric forcing. The last few terms 
(dW„/dt) represent the power expended by 
viscous stresses. This term can be expressed 
as a function of the total velocity: 

dW„ 
dt 2ReJvKdxj 

dui t duj 
dxi )

2 

which shows by virtue of the quadratic term 
that dWu/dt will result in a net decrease in 
energy. Note that the work due to stresses 
on all other boundaries other than the free 
surface is assumed to be zero. 

3    NUMERICAL   FORMU- 
LATION 

The momentum equations (5), kinematic 
condition (10), and the normal stress condi- 
tion (11) are integrated with respect to time 
using a third-order Runge-Kutta scheme. 
Each stage of the Runge-Kutta scheme is for- 
mulated to inhibit the accumulation of errors 
in the divergence of the rotational flow field. 
The rotational pressure is used to project the 
rotational velocity onto a solenoidal field (3 & 
6) with zero normal velocity on the free sur- 
face (9). Laplace's equation for the potential 
(2) and Poisson's equation for the rotational 
pressure (6) are solved at each stage of the 
Runge-Kutta scheme, and a solvability con- 
dition is enforced for the rotational pressure. 
A multigrid solution scheme is used to solve 
the three-dimensional elliptic equations. Pe- 
riodic boundary conditions are used on the 
sides of the domain and a free-slip boundary 
condition is used on the bottom.   The nu- 

merical algorithm is implemented on a CM-5 
parallel computer. 

3.1    Gridding 

Figure 1 illustrates the fully-staggered grid 
that is used in the numerical simulations. 
The solenoidal velocities (U, W) and the rota- 
tional pressure (P) are staggered relative to 
each other. The grid spacing is evenly spaced 
along the horizontal and vertical directions. 
As a reference point, the position of the grid 
points for the velocity potential are provided 
below: 

Xitk   =   Ax i 
ziM   =   TH-Az(k-l)  , (14) 

where * = l, IM AX and k = 1,KMAX 
are the indices along respectively the x- and 
z—axes. T]i is the free-surface elevation at x = 
Ax i. The grid spacings are Ax = L/IMAX 
and Az = D/(KMAX - 1), where L is the 
length and D is the depth. Based on this 
mapping, the velocity of the grid points below 
the free surface is V,-^ = (0, drji/dt), which is 
independent of the depth. 

3.2    The TAME algorithm 

The numerical simulation of near-breaking 
waves at full scale is difficult because the 
wave steepness is order one, and the various 
length and time scales are disparate. The 
free-surface boundary layer is difficult to re- 
solve because it is very thin relative to the 
wavelength and the wave amplitude. Numer- 
ical methods are also difficult to apply near 
the toe of a spilling breaker, where the kink 
in the geometry adversely affects the accu- 
racy. The free-surface boundary conditions 
are difficult to impose even without kinks, es- 
pecially the tangential-stress condition (12). 

Based on earlier investigations of waves in- 
teracting with turbulence, we developed ca- 
pabilities for simulating wave steepnesses up 
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to c « 0.6 (see Dommermuth, 1993, 1994a, k 
1994b, Dommermuth & Novikov 1993, and 
Dommermuth, Novikov, k Mui 1994). The 
parametric mapping techniques that we used 
in those studies are difficult to apply to near- 
breaking waves. Parametric mappings are 
sensitive to grid irregularities such as kinks 
and to grid stretching, which is sometimes re- 
quired to resolve boundary layers. For waves 
that are very steep, the elliptic equations as- 
sociated with parametric mappings are diffi- 
cult to solve because they lose diagonal domi- 
nance. The tangential free-surface stress con- 
dition is especially difficult to impose using 
a parametric mapping because the normal 
derivatives of two velocity components (three 
in 3-D) are required given only one boundary 
condition (two in 3-D). A desirable feature of 
parametric mappings is that finite-difference 
discretizations work well on parallel comput- 
ers. 

The numerical simulation of near-breaking 
waves required the development of a new 
numerical algorithm that we call Taylor's 
Accurate Method of Evaluation (TAME). 
TAME uses Taylor series expansions to eval- 
uate functions and their derivatives directly 
in physical space. The TAME algorithm 
can have second- or higher-order accuracy, 
even on unstructured grids. The accuracy 
of the TAME algorithm is not sensitive to 
grid irregularities, grid stretching, or grid 
coarsening. TAME permits the evaluation 
of nonanalytic functions, and it can incorpo- 
rate boundary conditions that are arbitrarily 
complex. Some examples of TAME's capabil- 
ities are illustrated in Figure 2. TAME can 
be used to calculate derivatives, to perform 
interpolation, extrapolation, and smoothing, 
to provide upwind biasing, and to enforce 
boundary conditions. 

3.3    A TAME Laplacian 

The stencil that is used to evaluate a TAME 
Laplacian is illustrated in Figure 3. The 
Laplacian operator is required in the Laplace 

equation for the velocity potential (2), the 
viscous diffusion terms (5), and the Poisson 
equation for the vortical pressure (6). 

As an example of TAME's implementation, 
consider the Taylor-series expansion of the 
velocity potential: 

+ Aü; 

6 
Ax.-Az,- 

Ä + Ax,- Azt- 
XXX 

2 

4°> 

Ax,-4 

Az,* 
6 

Ax,-3Azj m 
+ 

24 
xxxz 

3 

6 

24   ™ZZ2Z  ' 
(15) 

where <f>W is the value of 4> at the Taylor- 
expansion point, 4& are the values at neigh- 
boring points, and Axi = s(,) - x(0) and 
Az{ = zW - z(°) are offsets in the horizon- 
tal and vertical directions, respectively. 

On the nine-point stencil that is illus- 
trated in Figure 3, second-order approxima- 

tions to 4?\ <t>?\ 4°\ 4°\ and 4°> are 
obtained by selectively solving for terms in 
the Taylor-series expansion as illustrated in 
Figure 4. If the velocity potential, i.e. <jfc\ 
is known, then this procedure provides its 
derivatives, including the Laplacian, at all of 
the grid points. If, however, the solution to 
a boundary-value problem, is required, then 
the Laplace operator must be expressed in 
terms of the neighbors of 4>^'- 

where the coefficients, c,, are derived by in- 
verting the equations in Figure 4. This sten- 
cil for the interior points of the velocity po- 
tential is supplemented with other stencils 
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near the boundaries to impose either Dirich- 
let, Neumann, or mixed boundary condi- 
tions. The resulting boundary-value problem 
is amenable to iterative solution procedures 
because the the diagonal and the off-diagonal 
terms are multiplied by the same coefficients, 
which promotes diagonal dominance. 

The TAME algorithm requires Gaussian 
elimination with partial pivoting to be per- 
formed at each grid point. This operation 
is performed in parallel on the CM-5 com- 
puter. An additional gain in efficiency could 
be realized by building a special computer 
chip to solve the TAME low-order systems- 
of-equations1. 

3.4    A TAME treatment of the free 
surface 

The TAME algorithm has been devel- 
oped primarily to treat the tangential- 
stress boundary condition on the free sur- 
face (see Equation 12). Figure 5 illus- 
trates the stencil that is required to eval- 
uate the viscous diffusion terms with the 
tangential-stress condition imposed. Ten 
samples of the U—velocity grid and eleven 
samples of the W—velocity grid are re- 
quired for second-order accuracy on a curved 
free surface. (Note that U^\ which ap- 
pears in the stress condition, is not on the 
C/-velocity grid.) U™, U^3\ ...,U^ and 
WMtWW,...,Wl10) are expanded about 
the locations of the points £/(°) and W^, 
respectively, as shown in Equation 15. The 
tangential-stress boundary condition is also 
expanded in a Taylor series about the same 
two points: 

(£/(°) + AziUW + AnC#> + • • • + Wj°>)(n* - n\) 
+2(C/i°» + AXlUi°J + AztUg + ■■■- W^)nxnz 

= -24°;(n2
z - n\) - 2(4°i - *#)»«»i  . 

The Taylor-series terms that are eliminated 
for both tf(°> and W^ include the x-, z-, 

*Dr. Edwin P. Rood, private communication. 

XX — , xz-, zz—, XXX — , xxz—, xzz—, zzz—, 
and xxzz—derivatives. This leads to twenty 
independent equations for derivatives of U^ 
and W^ near the free surface. The diffusion 
terms are evaluated as (UxJ + UzZ )/Re and 

(WJR + WJS^/Re, and they are then inserted 
into the Navier-Stokes equations (5). The 
points that are in the interior of the fluid are 
evaluated using the nine-point stencil that we 
have discussed in the previous section. 

3.5    Numerical accuracy 

The second-order accuracy of every TAME 
subroutine is tested by prescribing as input 
a quantity that has a known solution. The 
accuracy and the convergence rates of the el- 
liptic solvers are also tested using known so- 
lutions. For a 4096 x 4097 grid, the ellip- 
tic solvers converge to machine accuracy us- 
ing only sixteen iterations of V-cycle multi- 
grid and ten iterations of a damped Jacobi 
smoother per V-cycle. Once the TAME tools 
have been validated, they are assembled to 
simulate free-surface waves. The final assem- 
bled code is tested using exact Stokes waves 
as initial conditions. 

4    NUMERICAL RESULTS 

4.1    The initial conditions 

We consider the formation of parasitic cap- 
illary waves on the front face of a gravity- 
capillary wave. Let the characteristic length 
and velocity be denoted by Lc = A and Uc = 
y/gX, where A is the length of the gravity- 
capillary wave and g is gravity. Then the 
Froude, Weber, and Reynolds numbers are 
Fr = 1, We = pg\2/<r, and Re = g^X^/u, 
where p is the fluid density, a is the sur- 
face tension, and v is the kinematic viscosity. 
For our numerical simulation of a 5cm wave, 
Fr = 1, We = 331, and Re = 35,000. The 
two-dimensional numerical simulation is ini- 
tialized using an exact solution for a gravity 
wave, and the parasitic capillaries are gener- 
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ated from rest due to a parametric resonance. 

The initial steepness of the gravity wave 
is 0.2827, and the mean depth is equal 
to the length. We initially use an invis- 
cid boundary-layer formulation (see Dom- 
mermuth, 1994b), and then we switch to 
full Navier-Stokes solutions after the para- 
sitic capillary waves have reached their max- 
imum steepness at time t = 6.4. A moderate 
resolution Navier-Stokes solution is used at 
first, and we then switch to a higher resolu- 
tion Navier-Stokes solution at time t = 6.6 
to establish convergence. The inviscid for- 
mulation enabled us to take larger time steps 
with a lower resolution than is possible with 
the fully-resolved Navier-Stokes formulation. 
We use 512 x 513 grid points for the inviscid 
simulation and 2048 x 2049 and 4096 x 4097 
grid points for the viscous simulations. The 
time step of the inviscid simulation is At = 
4.0 x 10~3, and the time steps of the vis- 
cous simulations are At = 4.0 x 10~4 and 
At = 1.5 x 10~4. Low-pass filtering of the 
free-surface elevation and the velocity poten- 
tial permits larger time steps to be taken than 
is possible without low-pass filtering. The 
free-surface elevation and the velocity poten- 
tial from the inviscid formulation are used as 
initial conditions for the Navier-Stokes for- 
mulation. The vortical portion of the flow 
develops from rest. 

Based on a boundary-layer thickness S2 = 
2/{Rea), where a2 = 2TT is the wave fre- 
quency, the resolutions of the boundary layer 
in the Navier-Stokes simulations are ten and 
twenty grid points. We are currently devel- 
oping a capability that would permit even 
higher resolution of the free-surface boundary 
layer by using grid stretching. The present 
capability, with no grid stretching, is useful 
for investigating the erTects of turbulence on 
the onset of wave breaking. 

The calculation of sixteen hundred time 
steps of the inviscid boundary-layer formu- 
lation with 512 x 513 grid points required 
six hours on the 256-node partition on the 
CM-5 at the University of Minnesota Army 

High Performance Computing Research Cen- 
ter. The calculation of five hundred time 
steps of the Navier-Stokes formulation with 
2048 x 2049 grid points required twenty-two 
hours on the 256-node CM-5 at the Naval Re- 
search, Laboratory. Twenty time steps of the 
4096 x 4097 simulation required ninety min- 
utes on the NRL machine. 

4.2    The vortical structure 

Figure 6 illustrates the formation of ripples 
on a 5cm gravity-capillary wave. Parts (a) 
and (b) show the initial free-surface elevation 
and slope. Parts (c) and (d) show the the 
same quantities at time t = 6.603. The x-axis 
has been periodically extended to double the 
horizontal extent of the computational do- 
main. The wave is propagating from right 
to left. 

The initial wave steepness is approximately 
e « 0.3. When the parasitic capillary waves 
form, the steepness increases to e « 0.8. The 
formation of parasitic capillary waves leads 
to a significant increase in the rate of wave 
energy dissipation. Based on Equation 13, 
the rate of wave energy dissipation is 

dEw _ dEjut,  i  dE, 

dt dt 
+ vv 

dt 
+ dE3 

dt 

where Ew is the total wave energy, E^ is the 
wave kinetic energy, Evv is the wave potential 
energy, and E3 is the wave superficial energy. 

According to the linearized theory of Lamb 
(1932), 

dE, at --«£«.0-0). 

where k = 27r is the wavenumber of the 
gravity-capillary wave. Based on the present 
numerical results, dEw/dt is seventeen times 
greater with parasitic capillary waves than 
without them. This result agrees with that 
of Longuet-Higgins (1962), who estimated an 
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order of magnitude increase for a 6cm carrier 
wave. 

Figure 7 shows various quantities on the 
free surface at time t = 6.603 including: 
(a) the free-surface elevation, (b) the vor- 
ticity, (c) the tangential component of the 
solenoidal velocity field, (d) the tangential 
component of the potential velocity field, (e) 
the tangential component of the total veloc- 
ity field, and (f) the normal component of the 
total velocity field. The normal component of 
the total velocity field is equal to the normal 
component of the potential velocity field be- 
cause the normal component of the solenoidal 
velocity field is zero. The dashed horizontal 
curves are moving 401-point averages. The 
dashed vertical lines indicate the locations of 
the minima of the surface vorticity. The di- 
rection of the tangent (t) is in the direction 
of wave propagation. 

The extrema of the vorticity occur slightly 
aft of the wave troughs of the parasitic cap- 
illary waves, which agrees with the capillary- 
wave boundary-layer theory of Longuet- 
Higgins (1992). The extreme minima in vor- 
ticity occur behind the troughs because the 
wavy portion (V^) of the flow sweeps the 
vorticity back and up against the troughs. 
Figure 7d shows that the wave-induced tan- 
gential velocities are positive in the troughs, 
in the opposite direction of wave propaga- 
tion. Figure 7f shows that normal velocity 
is positive behind the troughs, i.e. upward on 
the right-hand sides of the troughs. These 
two components of velocity push the vortic- 
ity back and up against the troughs of the 
parasitic capillary waves. 

At the wave crest, Longuet-Higgins had ar- 
gued that the surface currents induced by the 
vortical roller are in the direction of wave 
propagation. In Figure 7c, our numerical 
simulations show that the surface currents in- 
duced by the vorticity are down the face of 
the wave. At the crest of the gravity-capillary 
wave (see Figure 7c for 0.55 < x < 0.65), 
our numerical simulations show that the vor- 
ticity induces a very weak current that is in 

the opposite direction of wave propagation, 
which disagrees with Figure 12 in Longuet- 
Higgins' paper. Compared to the magnitude 
of the vorticity that occurs near the troughs 
of the parasitic capillary waves, the vortic- 
ity in the crest of the gravity-capillary wave 
is very weak, and its sign is the opposite of 
what Longuet-Higgins indicates in his Fig- 
ure 12. We conjecture that a strong vortical 
roller with a sign that corresponds to the re- 
sults of Longuet-Higgins and the wind-wave 
experiments of Ebuchi, et al (1987), could 
form under the action of wind, but without 
wind there is no strong vortical roller at the 
crest of a gravity-capillary wave. 

The mean vorticity on the front face of the 
wave is negative as illustrated by the dashed 
curve in Figure 7b. The negative mean vor- 
ticity gives a mean tangential velocity that is 
down the face of the gravity-capillary wave. 
The mean surface current down the face is 
observed in Figure 7c. We conjecture that as 
the wave steepens and the vorticity becomes 
stronger, the tangential velocity that is in- 
duced by the vortical portion (U • t ) of the 
flow may cancel the tangential velocity that 
is induced by the wavy portion of the flow 
(V<f> ■ t ). We observe that Ü -1 is ninety 
degrees out-of-phase with V<£ • t. Although 
£/-f oscillates, it is almost completely negative 
and has a mean negative value. V<j> • t oscil- 
lates positive and negative about the positive 
mean value that is induced by the gravity- 
capillary wave. 

Figure 7c shows that the tangential veloc- 
ity induced by the vortical portion of the flow 
is negative, in the direction of wave propaga- 
tion. For very steep waves, U • t will be di- 
rectly downward in the troughs of the para- 
sitic capillary waves and V<j>-t will be upward. 
If the magnitude of U ■ f exceeds V<£ • t, a vor- 
tex will be swept down into the fluid. Figure 
7e shows that U-ireduces V0-Fat the troughs 
and increases it at the crests of the parasitic 
capillary waves. Once the vortex is outside 
the boundary layer, the potential portion of 
the flow will sweep it back toward the crest 
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of the gravity-capillary wave. 

The mean surface currents that are in- 
duced by vorticity are represented by the 
dashed lines in Figure 7c. Remnants of the 
surface currents are probably present even af- 
ter the wave spills. Since Ü • f is down into 
the fluid when the parasitic capillary waves 
are very steep, it contributes to the transfer 
of energy, momentum, heat, and gases into 
the bulk of the fluid and the mixing of the 
upper few centimeters of the marine layer. 

The enhanced mixing is evident in the ex- 
periments of Duncan, et al (1994). Their ex- 
periments show fluorescent dye being ejected 
below the parasitic capillary waves (see their 
Figure 3e). The number of eruptions of green 
dye correspond to the number of parasitic 
capillary waves. The shape of the outer en- 
velop of the eruptions is similar to the envelop 
of the surface vorticity in our Figure 7b. 

Duncan, et al (1994) conjectured that an 
instability occurs on a shear layer that is lo- 
cated between two layers of fluid. In a layer of 
fluid that is immediately below the parasitic 
capillary waves, the flow appears to be mov- 
ing down the face in the experiments^ This 
layer of fluid would correspond to U • t in our 
numerical simulations. In a slightly deeper 
layer, the flow is moving up the face of the 
wave. This deeper layer of fluid corresponds 
to V<t> • t. We differ with Duncan, et al, how- 
ever, in that we believe that the flow sepa- 
rates near the troughs of the parasitic capil- 
lary waves. This mechanism differs from the 
shear-layer instability of Duncan, et al. Fig- 
ure 8 summarizes our results. 

Figure 9 compares the free-surface vortic- 
ity as predicted by numerics to theory. The 
theory is based on Longuet-Higgins' (1992) 
analysis of capillary rollers and bores. For a 
steady progressive wave, the surface vorticity 
(u>3) is proportional to the surface curvature 
(K) and the tangential velocity {q): 

u3 = -2nq , 

where for our two-dimensional simulation: 

K     = 
(l + ^)3/2 

,   =    &L + U + c0)nz-&- + W)nx 
' dx dz 

c0 = y/äjk is the phase velocity, which we 
estimate using linear theory: 

2      fc3       k 

a is the wave frequency and k = 27r is the 
wavenumber of the gravity-capillary wave. 

In deriving the preceding equations, we 
have assumed that the gravity-capillary wave 
is steady. In fact, the envelop of the par- 
asitic capillary waves undergoes a nonlin- 
ear recurrence as shown by Dommermuth 
(1994b). Despite this assumption and the lin- 
earized approximation for the phase velocity, 
the numerical predictions agree remarkably 
well with theory as shown in Figure 9. Note 
that the utility of Longuet-Higgins' theory is 
limited because the total tangential velocity 
must be known on the surface, not just the 
potential-flow velocity. 

Figure 10 shows the structure of the vor- 
ticity that is below the first parasitic cap- 
illary wave. The x- and z-axes have the 
same scale. The depth below the free surface 
is five boundary-layer thicknesses based on a 
boundary-layer thickness S2 = 2/(Recr). The 
vorticity is separating from the free surface 
where the total tangential velocity {U-t+V(j>- 
t) is changing sign. This is the point where 
the surface current starts to move down the 
face of the gravity-capillary wave. 

5    CONCLUSIONS 

Parasitic capillary waves form on the front 
face of steep gravity-capillary waves. Regions 
of high vorticity are located near the troughs 
of the parasitic capillary waves. The vortic- 
ity induces strong surface currents. For very 
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steep parasitic capillary waves (t > 1), the 
surface currents can become so strong that 
the flow separates and injects vorticity into 
the fluid below the troughs of the parasitic 
capillary waves. This injection of vorticity 
convects energy, momentum, heat, and air 
bubbles below the free surface. We specu- 

late that the microbreaking event that is de- 
scribed in this paper models the small-scale 

details of much larger spilling breaking waves. 
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Figure 1: The fully-staggered grid. 

(a) Grid irregularities (c) Grid coarsening 

(b) Grid stretching (d) Unstructured gridding 

Figure 2: TAME capabilities. 
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Figure 3: Nine-point stencil for the evaluation of the Laplacian. 
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Figure 4: System of equations for the evaluation of the Laplacian. 
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Figure 6: Formation of ripples on a 5cm gravity-capillary wave. 
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DISCUSSION 

P. Ananthakrishnan 
Florida Atlantic University, USA 

I would like to commend the authors for their fine 
efforts to solve the problem of spilling waves. This 
problem has become one of immense scientific 
interest, especially in view of the recent findings of 
Longuet-Higgins (e.g., J. Fluid Meek, 1992) and 
experimental observations of Duncan et al. (Phys. of 
Fluids, 1994). 

In the present work, the authors have used an "inviscid 
boundary-layer formulation" for the most part of the 
simulation (from t = 0 to t = 6.4, see Section 4.1). Full 
Navier-Stokes equations were considered only for a 
rather small duration of time (from t = 6.4 to t « 6.6) 
toward the end of the simulation after the capillary 
waves have reached their maximum steepness. I 
would like to know if there is any particular reason or 
basis for using such an ad hoc procedure in the 
simulation. Had your TAME algorithm for full 
Navier-Stokes equations been used right from the 
initial time t = 0,1 wonder whether the corresponding 
results pertaining to the evolution of parasitic 
capillaries, free-surface vorticity, etc. would resemble 
those obtained in the present paper. Would the authors 
comment on this aspect of the simulation carried out in 
this work? 

AUTHORS' REPLY 

will enable the direct calculation of short-wave length 
spilling breakers through the breaking event and 
including the generation and evolution of the resulting 
turbulent flow field. I have a few comments on the 
present paper concerning mostly the qualitative 
comparisons made to my own experimental results. 
The comparisons are dangerous primarily because of 
the rather large difference in wave-length between the 
calcualtions (k = 5 cm) and the experiments (about 77 
cm). The capillary waves found in the experiments are 
located upstream of the toe of the bulge that forms on 
the forward face of the wave. These capillary waves 
had quite short wavelengths (about 2 mm). In the 
numerical calculations the capillary waves cover the 
entire forward face of the wave. I suspect that these 
differences in the capillary waves are due to the 
differences in the lengths of the waves under 
consideration. Do the authors concur with this 
suspicion? What is the likelihood that the authors will 
be able to do computations with wavelengths 
comparable to the experiments? 

AUTHORS' REPLY 

Yes, the differences in the wavelengths between your 
laboratory measurements and our numerical 
simulations affect the generation of the capillary 
waves. Using our present formulation, we can 
simulate longer wavelengths up to 10 cm. If we 
modify our formulation, we could perform a local 
analysis that may enable us to simulate much longer 
waves, up to a meter. 

The formation of the capillary waves is primarily 
inviscid, so we do not expect the formation of the 
vortical layer to be sensitive to the initial conditions. 
We used the boundary-layer formation because it is an 
accurate and efficient method for generating capillary 
waves. The accuracy of the approximation is 
demonstrated by the prediction of the dissipation rate, 
which agreed with the exact formulation. 

DISCUSSION 

J. Duncan 
University of Maryland, USA 

The calculations in this paper are an important step 
toward the numerical simulation of breaking water 
waves which has in the past been treated as a potential 
flow and only calculated up to the point of incipient 
breaking.   It seems to me that the authors' methods 
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DISCUSSION 

M. Longuet-Higgins 
University of California at San Diego, USA 

To obtain these results the authors have overcome 
great numerical difficulties. However, in comparing 
numerical calculations with previous laboratory 
experiments and with theory it is important to 
remember that the vorticity field is likely to depend 
critically on two parameters: 

1. The slope parameter ak of the parasitic capillary 
waves. From the boundary-layer theory one expects 
that the mean vorticity will vary roughly as ak2. In the 
experiments of Okuda et al. (1977) and Duncan et al. 
(1994) it appears that at the toe of the instability the 
surface slope is almost vertical, making ak of order 2. 
In the numerical calculations ak was only 0.8. 

2. The Reynolds number, based on the radius of 
curvature r at the crest of the gravity-capillary wave 
(which determines the scale of the instability) and the 
phase-speed U=(gX)112. For gravity-waves, if the 
shape is held constant, the Reynolds number varies as 
Xm. In the experiments of Okuda et al. (1977) X was 
about 10 cm in those of Duncan et al. (1994) X was of 
order 100 cm. In the present numerical calculations X 
was only 5 cm. Therefore numerical calculations at 
larger wavelengths (or Reynolds number) are much to 
be desired. The theory of capillary rollers (Longuet- 
Higgins, 1992) assumed a large Reynolds number. 

Of great interest are the longer capillary waves ("Type 
2") which appear above the toe of the crest instability, 
in the experiments of Duncan et al. (1994). These 
quickly grow in amplitude and then collapse into 
turbulence. The idea that they are due to unstable 
shear waves on the shearing flow produced by vorticity 
shed from the parasitic ("Type 1") capillaries has been 
developed in a recent paper by Longuet-Higgins (Ref. 
1). There it is shown that the linear rates of growth are 
in accord with a model for the instability of a shear 
flow having a free surface (Ref. 2). A simple model 
for the nonlinear stages of growth is also given in Ref. 
1 and it is shown that the wavelength of the Type 2 
instabilities is about four times that of the Type 1 
instabilities. Further numerical experiments would 
help to validate these predictions. 

Minor comment. On p. 9, bottom of column 1, the 
relation there given is exact, not approximate. In this 
sense it is hardly true to say (p. 9, column 2) that the 

utility of the theory is limited; rather it is the method of 
numerical computation. 

Lastly, this reviewer would find it helpful if the authors 
could plot the velocity vectors, both in the 
computational frame of reference, and in a frame 
moving with approximately the mean speed of the 
separated flow. The latter would help one to visualize 
the eddying motion in the shear layer. 

References 

1 Longuet-Higgins, M.S., "Shear instability in spilling 
breakers," Proc. R. Soc. Lond. A446 (8 Aug. 1994), 
pp. 399-409. 

2Stern, M.E. and Adam, Y.A, "Capillary waves 
generated by a shear current in water," Mem. Soc. R. 
Liege, 6 (1974), pp. 179-185. 

AUTHORS' REPLY 

Our most recent research is focused on developing 
techniques for simulating steeper waves at higher 
Reynolds numbers. New results for a wave steepness 
of 1.25 and a wavelength of 5 cm do not differ 
significantly from the results reported in our paper. 
However, we plan to simulate waves that are near 
over-turning with wave steepnesses well above one. 
For these steeper waves, we expect the flow to separate 
beneath the parasitic capillary waves. In regard to 
simulating longer waves and higher Reynolds 
numbers, we plan to resolve the boundary layer of a 
near-breaking 10 cm gravity-capillary wave. Based on 
our normalization, this would correspond to a 
Reynolds number of Re = 99,000. The boundary-layer 
thickness is 5 = 0.028 cm. To resolve this boundary 
layer, we will use grid stretching. The numerical 
simulation of higher Reynolds numbers is required to 
investigate how diffusion affects the shedding of 
vorticity beneath the parasitic capillary waves and the 
accumulation of vorticity in the crest of the gravity- 
capillary wave. 

Based on the analyses of Professor Longuet-Higgins, 
the experiments of Professor Duncan including 
observations of his most recent videos, and our own 
numerical simulations, we suggest that there are at 
least two possible mechanisms that describe the onset 
of spilling when wind is not present. The initial stage 
of the first type of spilling breaking wave is 
characterized by the formation of a toe near the crest. 
Professor   Longuet-Higgins'   modeling   of  the   toe 
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indicates that a shear instability may lead to rapid 
growth of long capillary waves behind the toe (see his 
reference in his discussion). Professor Longuet- 
Higgins provides supporting evidence based on 
laboratory experiments of Professor Duncan's group. 
As pointed out by Professor Longuet-Higgins in his 
discussion, this particular interpretation of the 
experiments requires further numerical investigation to 
prove that the capillary waves are generated by a shear 
instability as opposed to some other process, such as 
the generation of parasitic capillary waves. The 
numerical simulations will also quantify how 
capillarity, which is not modeled in Professor Longuet- 
Higgins' analysis, affects the initial formation of the 
toe (Longuet-Higgins et al, 1993 & 1994). We 
believe that a second type of spilling breaker bypasses 
the formation of a toe and proceeds directly to the 
formation of parasitic capillary waves. The parasitic 
capillary waves become so steep that the flow 
separates beneath them and vorticity is convected back 
toward the crest of the gravity-capillary wave. As the 
steepness of the parasitic capillary waves increases 
even further, bubbles of air are pinched off. Based on 
the most recent videos of Professor Duncan, this 
mechanism appears to be possible even at very long 
carrier wavelengths in excess of one meter. This 
second mechanism for the formation of a spilling 
breaker has not been investigated in the laboratory at 
the short wavelengths that we are simulating 
numerically. 

Professor Longuet-Higgins' minor comment about his 
formula for the surface vorticity references a poorly 
worded section of our paper. We meant to convey that 
his theory is limited to steady flows and is as 
numerically intensive as our theory. Professor 
Longuet-Higgins' formula requires the total velocity 
field (irrotational and rotational) to predict the surface 
vorticity and, thus, requires the solution to the full 
Navier-Stokes equations. However, if the solution to 
the full Navier-Stokes equation is known, the surface 
vorticity can be predicted directly from the velocity 
field. Nevertheless, we used Professor Longuet- 
Higgins theory to confirm the accuracy of our 
numerical simulations. In addition, his theory is useful 
in providing estimates of surface vorticity when only 
the solution to the potential portion of the flow is 
known. We also note that certain types of laboratory 
measurements of steady flows may benefit from the 
application of Professor Longuet-Higgins' formula. 

Figures 1 and 2 show the velocity fields that are 
induced by the potential and vortical portions of the 
flow, respectively. The wave is propagating from right 

to left. The tops of the figures correspond to the free 
surface, and the figures are four boundary-layer 
thicknesses deep. The frame of reference is moving 
with the wave in Figure 1 and it is fixed in Figure 2. 
The streamlines are parallel to the free surface in 
Figure 1 because the flow is nearly steady. In Figure 
2, the streamlines are parallel to the free surface 
because the component of the vortical flow that is 
normal to the free surface is zero by construction. 

In Figure 2, there are three strong vortices. The first 
vortex is located beneath the trough of the first 
parasitic capillary wave. The second vortex is behind 
the trough, and the third vortex is located beneath the 
crest of the gravity-capillary wave. For a longer wave 
than we have simulated, Professor Longuet-Higgins 
had predicted that vorticity diffused from beneath the 
parasitic capillary waves would lead to the formation 
of a vortical roller in the crest of gravity-capillary with 
a different sign than what is observed in Figure 2 
(Longuet-Higgins, 1992). His predictions are based on 
laminar-flow analysis with no flow separation. We 
conjecture that wind stress or flow separation could 
lead to the formation of a vortical roller that would 
have the same sign as what is observed in laboratory 
studies of wind-wave generation, but in the absence of 
wind and if the flow has not separated, then the sign of 
the vorticity is as illustrated in Figure 2. 

DISCUSSION 

W. Schultz 
University of Michigan, USA 

This was a very nice paper. Some questions? 

1. To what extent is the formation of the parasitic 
capillary waves affected by vorticity? 

2. How important is the velocity decomposition to the 
success of your computations? And the choice of the 
extra boundary condition (9), is that critical? 

3. (X,, Z,) must be nodel velocities, right? 

4. Fig 6a and 6b don't seem to correspond. 

5. AK=1.25or2? 
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AUTHORS' REPLY 

Thank you. 

1. The initial formation of parasitic capillary waves 
is an inviscid process. The parasitic capillary waves 
form when their phase speed matches the local water- 
particle velocity of a sufficiently steep carrier-wave. 
For parasitic capillary waves that are very steep, the 
flow could separate beneath their troughs. The flow 
separation is a viscous phenomenon. 

2. Any numerical errors that occur in the vortical 
portion of the flow do not adversely affect the wavy 
portion of the flow. As a result, our velocity 
decomposition enables us to calculate the wavy portion 
of flow with greater accuracy than is possible when no 
decomposition is used, especially when the free- 
surface boundary-layer is not resolved well. 

3. Yes, (A"„ ZJ are nodal velocities. 

4. The slope of a steep wave is not a pure sinusoid. 
This explains why the slope plot in Figure 6a does not 
appear to match the elevation plot in Figure 6b. 

5. Unsteady capillary waves can attain steepnesses 
that are well beyond Stokes limiting steepness for pure 
gravity waves (ak » 0.44). 

DISCUSSION 

R. Street 
Stanford University, USA 

Am I correct in summarizing that the advantage of 
massively parallel processor computers in handling the 
TAME algorithm is that you can disperse the Taylor 
calculations across a large number of processors and 
hence get all the independent evaluations at the grid 
points accomplished essentially simultaneously? 

AUTHORS' REPLY 

Yes, we distribute the TAME system-of-equations over 
all of the processors. On small parallel computers, the 
TAME scheme can be evaluated in parts. It is also 
possible to reduce the number of TAME operations by 
matching a TAME layer of grid points to a 
conventional finite-difference approximation. This 
technique, for example, could be used to impose 
complex boundary conditions on a curved boundary. 
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Wave Groups, Wave-Wake Interaction, and Wave 
Breaking:  Results of Numerical Experiments 

Y. Yao, P. Wang, M. Tulin 
(University of California-Santa Barbara, USA) 

ABSTRACT 

A variety of wave breaking phenomena 
including the detailed morphology of breaking have 
been studied in numerical experiments carried out in 
a numerical wave tank, called LONGTANK, developed 
by the authors at the Ocean Engineering Laboratory 
at UCSB. Wave trains up to 100 waves in length 
may be calculated in the exact inviscid theory, and 
with high resolution. Experiments have been made 
on the modulational instability of almost 
monochromatic waves, on subsequent strong wave 
group formation, and on the deformation and 
breaking of waves in wave groups. Two types of 
breakers, differing mainly in scale, have been 
observed. Breaker shapes and splash have been 
studied in detail through to impact of the jet on the 
front face of the wave. Here, new experiments are 
reported on the interaction and breaking of the short 
waves near the crests of the longer waves. 
Magnifications in crest orbital velocities of weak 
short waves over 4 fold have been found on the 
crests of long waves of moderate steepness, leading 
to early breaking. A criterion for breaking is found 
to be satisfied in all experiments conducted to date: a 
wave will proceed to deform and break when and 
only when the crest orbital velocity associated with 
the wave's motion exceeds dco/dk, including 
corrections for steepness. 

INTRODUCTION 

As time passes, the importance of non-linear 
processes in ocean waves and in the free surface flow 
about ships becomes more and more apparent. Some 
major examples are: bow wave formation and 
breaking on wave resistance and wake vorticity 
generation; wave energy dissipation due to wind- 
wave breaking and its effect on spectral form and on 
energy downshifting; wave group formation and 
waveform deformation, and its effect on extreme 
wave heights and crest height at sea; the effect of 

wave steepening and breaking on remote sensing of 
the sea surface. 

The possibility to study non-linear processes 
all the way through to breaking using inviscid 
computational methods, opens up the prospect of 
numerical experiments, which can be designed to 
explore wave phenomena far beyond the reach of 
analytical methods. In these numerical experiments, 
breaking and other strongly nonlinear wave 
processes can be studied in great detail and in a very 
controlled manner. We have been conducting such 
numerical experiments for over two years. 

In a previous paper (Wang, et al, 1994), we 
have reported on earlier numerical simulations of the 
progress of unstable, deep water wave trains (a 
central wave and two resonant side bands), evolving 
toward strong group formation, deformation, and 
breaking. These simulations have been carried out 
using LONGTANK, a 2D fully non-linear numerical 
wave tank, based on a multi-subdomain modification 
of the Boundary Element Method. This multi- 
subdomain approach makes LONGTANK highly 
efficient, especially when simulating long time 
wave evolutions in space and allows for high 
resolution; a schematic of LONGTANK is shown as 
Figure 1. Figures 2-5 show the results of typical 
numerical experiments. Our computing approach 
also allows us to continue the calculation when the 
breaking jet touches the front face as if it doesn't see 
the water, Figure 6, or makes it possible to simulate 
the jet impact up to initiation of the water splash, 
Tulin et al (1994), Figure 7. These numerical 
experiments were designed to provide quantitative 
information on the mechanism of wave breaking and 
morphology of breaking waves. The success of the 
simulation is borne out by comparison of the results 
of tank experiments with numerical experiments, see 
Figure 4. 

It has been typically observed, for 
sufficiently large initial wave steepness (ak > 0.14), 
that following wave group formation, strong 
deformation of the wave form occurs, the trough and 
crest both rise, there occurs a rapid increase in the 
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horizontal particle velocity at the wave crest, the 
front face steepens, cumulating in the formation of a 
jet; this breaking process coincides with the passage 
of a wave through the peak of the modulated wave 
group, as observed in the ocean, see Figures 1 & 2. 
A feature of the wave deformation is that the energy 
density in the front quadrant of the crest at the group 
peak becomes remarkably large compared to the 
density in the back quadrant of the same crest 

In this paper we discuss the morphology of 
breakers forming in wave groups, and the resulting 
dissipation and voracity generation. In addition we 
report on the interaction between long and short 
waves, as simulated in LONGTANK, and particularly 
on the pronounced amplification of the short wave 
on the crest of the longer wave, and the subsequent 
breaking of the former. 

An important result of the wave interaction 
simulation is to confirm the criterion for breaking 
which we had previously discovered in the case of 
breaking in wave groups. According to this 
criterion, waves will inevitably deform and proceed 
to breaking after and only after the orbital velocity at 
the crest of the wave reaches a value equal to dco/dk, 
including steepness corrections to the latter. 

Finally, we review the implications of 
LONGTANK simulations for the prediction of 
extreme waves and extreme wave heights. 

WAVE BREAKING in WAVE GROUPS 

Breakers  and Splash 

An example of the formation of a breaker in 
a wave group is shown in Figure 2. The precise 
breaker shapes vary somewhat from case to case, 
depending on the exact conditions within the group. 
So far, two general types of breakers have been 
observed in LONGTANK simulations, Figure 3; one 
with a stronger fore-aft asymmetry, producing a 
larger breaker which reaches roughly halfway down 
the front face, and which we call "plunging"; the 
other with almost symmetrical front and back faces 
and a small jet (no surface tension is included) 
reaching less than a quarter of the distance down the 
front face, and which might be categorized as a 
"spilling" breaker. Both of these breakers are 
characterized by an initial jet formation when the 
particle velocity at the crest exceeds the phase speed, 
and by the growth of a thin jet which falls in a 
ballistic trajectory, as we have confirmed, Tulin et 
al (1994). 

For the plunging breakers observed in 
LONGTANK, the duration from front face steepening 
to initial splash is about 14% of a wave period, 
compared to 10% for the spilling breaker. 

The calculation of the motion much beyond 
splash requires  further efforts, even without 

invoking the breakdown of the flow there to 
turbulence. However, it is possible to continue the 
calculation as if the jet does not see the free surface, 
see Figure 6. The case shown in here is about 8% of 
a wave period after initial jet impact, Figure 5 (b), 
and corresponds roughly to the condition that the 
initial splash has been overrun by the wave crest and 
is being ingested. In fact, we have not observed 
breakdown of the jet till 16% of a wave period after 
initial splash, which indicates that breaking can in 
principle continue well beyond the initiation of the 
splash, in agreement with experimental observations 
of both Bonmarin (1989, Figure 15) and Tallent et 
al (1990, Figures 3 & 5). 

The initial stage of jet closure and splash can 
also be simulated, although the computing difficulty 
rises after impact and as a vortex sheet is created at 
the contact surface. A preliminary result is shown in 
Figure 7, and it is similar to the experimental 
observations of solitary plunging breakers in 
shallow water by Tallent et al (1990), Figure 8. 

Dissipation   and  Vorticity   Generation 

Up to the stages calculated in Figures 6 and 
7, the small jets already contain about 13% and 10% 
of the initial wave energy, and 16% and 12% of the 
horizontal momentum contained in a single 
wavelength of the initial wave. This demonstrates 
the significance of breaking as a source of 
conversion of wave energy and momentum into 
turbulence and surface drift. The excess of 
momentum loss over energy dissipation is clearly 
demonstrated, which will cause frequency 
downshifting, as we have shown analytically. 

As the jet impacts, it encloses a cavity, and 
at this instant, a circulation T is created. To the 
extent that the air escapes or is broken down into 
smaller entrained bubbles, this circulation becomes 
converted into vorticity distributed within the 
breaker and its eventual residue in the water. The jet 
itself propagates downward after impact, creating an 
upward splash, eddies and turbulence, as indicated in 
Figure 8. 

The vorticity created at cavity formation can 
be estimated from the present calculations. Figure 7 
shows the tangential velocity along the boundary of 
the new cavity and at the common interface near the 
tip of the jet. The circulation, T, has been calculated 
in this case to yield a value of 0.038Xcp (clock 
wise). To evaluate the influence of this generated 
vorticity on the following waves, we assume that 
the vorticity (Q) corresponding to T, is uniformly 
distributed in the area S, under the wave crest and 
lying above the mean water level ( S = aX/jt ). 
Therefore ß = I7S « 0.12 cp/a * [0.12/(ak)] co, 
where co is the wave frequency and k is the wave 
number. For linear deep water waves, with 
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amplitude a and wave frequency to, the strain rate, 
3u/3x, at the wave crest is (ak)co. Therefore for a 
wave with a steepness (ak) = 02, the strain rate due 
to the breaker voracity, ß, is three times larger than 
that from the potential wave itself. As rough as this 
calculation is, it indicates the probable importance 
of the breaker vorticity in effecting the behavior of 
the following waves. Breaking wave experiments, 
Kolanai and Tulin (1993) support this suspicion. 

An important effect of the breaker scar will 
be to generate weak currents in the water, such as are 
also generated due to the orbital velocity of longer 
waves. Therefore we have undertaken a numerical 
simulation of the interaction between short and long 
waves, leading to amplification, deformation and 
breaking of the shorter waves near the crest of the 
longer wave. Very strong non-linear effects occur for 
waves of small steepness, as small as ak=0.1. 

BREAKING   in   a   LONG-SHORT  WAVE 
SYSTEM 

Introduction 

Asymptotic theory exists for the estimation 
of the behavior of a short wave passing through a 
moving current pattern (i.e. the longer wave ), see 
Phillips (1977). This theory predicts that under 
certain circumstances the propagation of the short 
waves is blocked and their energy is greatly 
enhanced. This blockage condition was not realized 
in the systems we have studied, which are more 
pertinent to shorter wind waves riding on swell. 

The above mentioned theory does show that 
the steepening of the short waves is essentially in 
phase with the elevation of the longer wave; this 
effect has also been measured experimentally, 
Phillips (1992). We have observed the same effect 

What we have discovered here, in addition, 
however, is that remarkable magnifications of the 
short wave crest orbital velocities can be generated 
(many fold in magnitude!) near the crests of 
relatively weak long waves. These seem to be 
associated with a deformation of the upper portion of 
the short wave, which very much "sharpens" the 
crest. Existing theory gives no hint of such effects. 
These large magnifications of crest orbital velocities 
lead to very early breaking of short waves. As a 
result, short waves may be suppressed by longer 
waves through which they ride, an effect which has 
been observed. 

The   Numerical  Experiments 

A series of LONGTANK simulations have 
been carried out to study wave breaking in a long- 
short wave system. A wave train of shorter wave 

length is first generated by a plunger wavemaker. 
When seven waves have propagated away down the 
tank, the wavemaker stops generating short waves. 
Immediately afterwards, the wavemaker decreases its 
frequency by half; therefore longer waves are 
generated which travel faster and eventually catch up 
with the short waves. The wavemaker stroke follows 
a cosine increase in the first periods of both short 
and long wave generation and a cosine decrease in 
the last period of short wave generation. In total, 
fourteen cases have been run in the LONGTANK, see 
Table 1. 

Table 1: Short-Long Wave Interaction 
Experiments Utilizing LONGTANK 

Case     Xj/H  tyH   ty^s  q/cs     (ak)s      (ak)i    Break at 

4lT 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 

TT 
1.8 3.3     1.8 

UJET 
0.185 0.026 

0.052 
0.080 
0.084 
0.086 
0.093 

"3195 Ts 
33.65 Ts 
31.50 Ts 
31.35 Ts 
31.25 Ts 
28.13 Ts 
24.90 Ts 

5.1 
5.2 
5.3 

0.65    1.8 0.15 
0.135 
0.12 

0.135 25.70 Ts 
28.50 Ts 
34.60 Ts 

6.1 
6.2 
6.3 
6.4* 

0.65 1.8 0.15 
0.135 
0.12 
0.1 

0.15 25.50 Ts 
25.60 Ts 
25.90 Ts 

7.4 0.65 1.8 0.1 0.165 32.60 Ts 

no breaking occurs as far as 40 Ts 

It is normal for the leading wave in a 
propagating group to break prior to the other waves 
in the group and that happens here at 33.95 Ts for 
Case 4.0. The weakest long waves, Cases 4.1-4.4, 
propagate their way through the group from the rear, 
eventually reaching the front wave and causing it to 
break earlier, Figure 9 gives an example (Case 4.1). 
This effect flattens, and then for Case 4.5, the third 
short wave (from the back of the group) is caused to 
break. 

Figure 10 shows an example of small short 
waves, (ak)s = 0.1, riding on long waves of medium 
steepness, (ak)j = 0.165, Case 7.4. It is seen that 
near the crests of the long waves there are strong 
interactions between the long and short waves. 
These interactions sharpen the short waves and 
finally result in breaking. 

It seems apparent in a long-short wave 
system that it is the short wave which breaks due to 
the mutual interaction. Therefore we have subtracted 
the long wave from the combined wave in order to 
see the interactive effect on the short wave and to 
compare the "reconstructed" short wave with its 
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original steepness and form. Figure 11 shows the 
reconstructed short wave in comparison with the 
original short wave, together with the pure long 
wave, Case 5.1. The short wave which is on the 
crest of the long wave has been pushed forward, its 
wavelength has decreased, its crest has been 
sharpened and the height substantially increased, it 
steepens, it deforms and breaks. 

The strong interaction between these waves, 
usually begins when the long wave crest catches the 
short wave crest, as shown in Figure 12 (Case 4.3). 
The strength of the interaction depends on both the 
short wave and long wave steepnesses. Figure 12(a) 
shows that two short waves near the long wave 
crests are steepening and shortening simultaneously, 
but breaking does not occur during this stage 
because the horizontal particle velocity at the short 
wave crest is insufficient to meet the breaking 
criterion, as we discuss later. In Figure 12 (b), 
another steeper long wave crest catches the front 
wave in the short wavetrain, which is usually 
steeper than its following wave, and in this case 
breaking eventually occurs. 

The  Breaking   Criterion 

In our previous study of wave breaking in 
groups (Wang et al, 1994), we have found a 
criterion for the inception of wave breaking: 
deformation and breaking occur when and only when 
the horizontal particle velocity reaches the local 
group speed (dco/dk), where the dispersion relation 
has been used corrected to third order. When this 
criterion is reached, breaking will occur within a 
quarter of a wave period. This criterion has been 
strongly supported by these previous LONGTANK 
simulations both in deep and shallow water. We 
have also done a thorough data analysis of all the 
cases listed in Table 1, and the generalized criterion 
is again confirmed without any exceptions. Figure 
13 shows all of the data from the LONGTANK 
simulations. Again, these clearly show that the 
horizontal particle velocity at the wave crest rather 
than the wave steepness determines whether breaking 
occurs or not. In cases of long-short wave 
interaction we have deduced the orbital velocities of 
the effected short wave by subtracting the original 
orbital velocities of the long wave from the total 
(i.e. reconstruction of the short wave). We have also 
used the local steepness of the effected short wave in 
calculating dco/dk. 

The experiment of Phillips (1992) shows 
that the existence of the long wave will cause short 
wind waves to break near the crests of long waves 
just as observed here. In all the breaking cases in 
Table 1, wave breaking occurs at or a little bit off 
the long wave crest. We have mentioned that the 
short wave tends to be speeded up and thereby 

pushed forward on the top of the long wave crest. 
Therefore, when the long wave crest passes the short 
wave crest, there exists a relatively short time 
interval during which the short wave is effected 
strongly. During those interaction times, sooner or 
later, whenever the horizontal velocity of the effected 
short wave achieves the value of (dco/dk), then the 
short wave quickly breaks. 

Examples are shown in Figure 14, where the 
horizontal particle velocities, u, are shown for 
several cases in Series 5 and 6. From left to right, 
the short wave is the same but the long wave 
steepness is increased; from top to bottom, the short 
wave steepness is decreased and the long wave 
remains the same. For Series 5, (ak)!=0.135, the 
short wave with lower steepness takes a longer 
interaction time to break. For Series 6, (ak)] = 0.15, 
short waves of steepnesses from 0.15 to 0.12 break 
at almost the same time and at almost the same 
downtank distance, but there do exist small 
differences: in Case 6.1 the short wave breaks just 
before the long wave crest arrives; in Case 6.2 the 
short wave breaks almost on the long wave crest, 
taking a little longer interaction time; and in the 
Case 6.3 the short wave breaks immediately after the 
long wave crest has passed. 

Notice the remarkable magnification of the 
horizontal particle velocity at its peak, earlier 
mentioned. It is this magnification which results in 
the sensitivity of short wave breaking to the longer 
waves. As an example, in the case of the weakest 
short wave, (ak)0 = 0.1, its orbital velocity near the 
long wave crest has been magnified by a factor of 4 
(for a crest which doesn't break) and 4.6 (just prior 
to deformation and breaking). These two waves are 
denoted as A and B, respectively, in Figures 15 (a) 
&(b) 

EXTREME WAVE and CREST HEIGHT 

Based on earlier calculations (Wang et al, 
1994), we have made very favorable comparisons of 
the predicted breaking steepness in wave groups with 
tank experimental data of Su and Green (1986), but 
limited to relatively moderate initial wave steepness 
((ak)o>0.14). 

A major purpose in carrying out the long- 
short wave numerical experiments has been to see 
how weak current fields precipitate the breaking of 
waves of initially low steepness, and these 
experiments have been successful, as a wave of 
initial steepness 0.1 has been caused to break. The 
results of the numerical experiments reported here 
are shown in Figure 16 as Series 4-7. They further 
extend the verification of Su's curve, except at the 
lowest steepness; more experiments seem required. 
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These results are of interest for understanding 
the largest ocean waves, for they show that strong 
wave grouping or interactions with current or swell 
can increase wave height significantly, by as much 
as a factor of 2, see Figure 17 (a). The effect of the 
deformation of the wave during the breaking process 
is shown by the difference between the breaking and 
nonbreaking curves. 

When waves deform in the process of 
breaking, the trough and crest both rise. As a 
results, the crest height becomes magnified between 
the time when deformation begins and when 
breaking actually occurs. This is a very significant 
effect as shown in Figure 17(b). The average ratio of 
crest height to wave height at breaking has been 
found to be 0.78 in LONGTANK experiments, in 
agreement with the tank data of Kjeldsen (1990) and 
Bonmarin (1989), confirming the numerical 
experiments. Therefore the maximum wave crest 
height can be as large as 1.5 or 1.6 times the initial 
wave height. 

The range of steepnesses for which breaking 
ensues in LONGTANK numerical experiments is 
shown in Figure 15 by the cross-hatched area. It is 
compared to experiments conducted in a number of 
tanks. There is a considerable overlap in the 
LONGTANK and laboratory tank data. The higher 
steepnesses in the laboratory are waves which easily 
break according to our simulations and which we do 
not normally consider. The challenge for both the 
laboratory and LONGTANK is to produce breaking 
waves at the small steepness observed in the ocean 
by Holthuijsen and Herbers (1986) and which are 
considered typical of the ocean. The slope of then- 
data is indicated by the dashed line, although their 
heights and periods are far off scale. The fact that 
both laboratory and LONGTANK data have not yet 
reached the low steepness of average ocean breaking 
waves, would seem to indicate that some additional 
mechanisms may be present in the ocean, which we 
have not yet considered. The rather startling 
effectiveness of wave interactions in promoting the 
breaking of shorter waves on the crests of longer 
waves does suggest possibilities, deserving further 
study. 

the most important discovery made in LONGTANK is 
that a seemingly precise criterion for the inception 
of breaking exists: a wave will proceed to deform 
and break when and only when the crest orbital 
velocity associated with the wave's motion exceeds 
dco/dk, including corrections for steepness. The 
deformation- process is irreversible and involves a 
rise in both trough and crest and in front face 
steepening. The wave deformation process 
culminates in the formation of a small jet at the 
crest which extends, forming a thin jet which 
overflows in a ballistic trajectory, carrying wave 
energy and momentum with it. This jet impacts on 
the front surface of the wave creating a splash up, 
turbulences and foam. At the moment of jet impact, 
a substantial circulation is created around the newly 
formed cavity which eventually translates into 
vorticity and turbulence. Quantitative information 
on the inviscid stages of this process have been 
obtained in these numerical experiments including 
estimates of energy and momentum loss, and 
vorticity creation. 

The mechanism of wave breaking in wave 
groups has been explored and ocean observations on 
breaking near the peak of the wave group 
modulation have been confirmed. The transfer of 
wave energy into the front quadrant of the wave 
during passage up to the modulation peak, Tulin and 
Li (1992), has also been shown. 

The passage of trains of long waves through 
trains of short waves has been shown to result in 
short wave steepening very near the crest of the 
longer waves and a remarkable increases in the crest 
orbital velocity associated with the short wave 
leading to early breaking. 

The amplification of waves due to wave 
grouping and to wave-wave interaction has 
implications for wave loadings due to ocean waves. 
These experiments show that maximum wave 
heights can reach levels twice their normal values 
due to non-linear effects and that maximum crest 
amplitudes can reach values of 1.5 to 1.6 times the 
normal wave height. These maximum values are 
reached for breaking waves, although extreme non- 
breaking waves also show large and significant 
magnification. 

CONCLUSIONS 

Numerical experiments with LONGTANK 
demonstrate the feasibility of reproducing non-linear 
wave phenomena through to breaking with high 
resolution and in very good agreement with the 
limited laboratory data available. 

These numerical experiments have revealed 
important quantitative information on the 
mechanism of breaking in wave groups and on the 
interaction between long and short waves. Certainly 
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Figure 1: Wave train generated by a wavemaker in a numerical wave tank - LONGTANK 
(schematic) 
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Figure 2: LONGTANK simulations of modulauonal instability leading to strong grouping. 
The wavemaker is at the left 
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Figure 3 : Jet formation and a spilling breaker. 
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Figure 4 : Waveforms near breaking. On the left from Bonmarin (1985), (ak)0 - 0.25. 
On the right from LONGTANK simulations, (ak)0 = 0.22, Case 2.1a. 
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-0.1 
13.8 14.0 14.2 14.4 14.6 

Figure 5 : Examples of two typical breaker types, "spilling" (upper) and "plunging" (lower). 
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Figure 6 : Plunging breaker computed as if the breaker does not see the surface. This demonstrates 
the continuation of breaking after impact, as seen in photographs (Figure 8). 
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Figure 7 : Jet slightly after impact A vortex sheet has formed at the contact surface 
and a large circulation has been created around the cavity. 

3 

\\ w\\ if 

Figure 8 : Stages of breaking, after photographs by Tallert el al (1990). Compare lower box 2 
with Figure 7. 
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Figure 9 : A group of short waves is overcome from behind by a group of very long waves. 
Case 4.1: Cj/c, = 1.8; (ak): = 0.026; (ak), = 0.185. Breaking is precipitated at the dot 
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XAL 

Figure 10 : Weak short waves breaking at the crest of a moderately steep longer wave. 
Case 7.4 : c/c, = 2; (nk\ = 0.165; (ak), = 0.10. 
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Figure 11: Case 5.1 of short-long wave interaction. The reconstructed short wave( ), 
shown below, is compared with the short wave train without interaction (—). The 
composite wave(—), shown above, is compared with the long wave without 
interaction ( ). Note the speeding up and sharpening of the reconstructed short 
wave at the long wave crest 

-0.05 t- 

Figure 12 : Case 4.3 of short-long wave interaction. B breaks behind the crest of A. Notice 
again the sharpening of B. The reconstructed short wave (•—), shown below, is 
compared with the short wave train without interaction (- -). The composite wave 
(—), shown above, is compared with the long wave without interaction (--). 
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Figure 13: The ratio (crest particle velocity)/(wave group velocity), Uc/cg, vs. ajc,). 
The horizontal line demarcates waves which did not proceed to breaking 
from those which did. The value of Uc is determined just prior to wave 
deformation and jet formation in the case of the breaking waves. 

Figure 14 : In these cases, particle velocities are magnified strongly when the short wave 
reaches the vicinity of the long wave crest. This precipitates breaking; it is not the 
consequence of breaking. (•••), the reconstructed short wave; (—), the composite 

wave; (- -) the long wave without interaction. 
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Figure 15: Particle velocities for a reconstructed shortwave of initial steepness, (ak), = 0.1. 
Note the remarkable magnification of the reconstructed orbital velocites, eventually 
precipitating breaking in (b). (—), the reconstructed short wave; (- -) the short wave 
train without interaction wave; (•••) the long wave without interaction. 
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Figure 16: Steepness at Breaking (a^ vs. initial steepness (i^). 

565 



. ' ■ . 
2.0 — X 

0 
X 

*x x (a)        ~ 

1.5 

: 

X x   x 

0 Is 
o° 
8 

X 
X 

! X
 

i  
   

 i 
   

  i
   

   
1  

   
 i 

   
  ■

   
   

i 

1.0 

■       1 

*  *    i 

o 
X. 
\ 

. 1 
1 1 

' - 

1.5 X (b)    - 

• 0 
* XX 

X    X 
X 

0 
X 

- 

1.0 - 8 
0 o 

0 

*x 
8 
0 
0 

X                      — 

x   x 
X 

0.5 1 ,   i , — 

E 1 n — 

o.: 0.2 0.3 0.1 0.2 0.3 

a0^o 
aOko 

Figure 17 : Maximum wave heights, H,,,, maximum wave crests, A,,,, divided by initial 
wave height, H0, vs. initial wave steepness. From LONGTANK experiments, 
(x), breaking waves; (o), steep non-breaking waves. 
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Figure 18 : Comparison of breaking wave height of LONGTANK experiments (shadowed region) 
with short tank experiments ( +, Duncan,1981;   A, Ochi and Tsai, 1983; 
o, Ramberg and Griffin, 1986; •, Bonmarin,1989 ) and ocean data (- - - North Sea) 
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DISCUSSION 

J. Duncan 
University of Maryland, USA 

The authors are to be congratulated for extending the 
state of the art in simulating breaking waves with 
boundary element flows and for increasing our 
understanding of the physics of breaking water 
waves. I am particularly intrigued by the result that 
the wave evolves to breaking within a quarter of the 
wave period if the horizontal particle velocity, u, 
exceeds dw/dk. From the data in Figure 13, it 
appears that u = dw/dk is a reliable breaking 
criterion. I realize that this criterion has emerged 
from many numerical experiments rather than a 
theoretical analysis. But, I would like to know if the 
authors have any physical arguments to explain why 
the horizontal particle velocity is such a good 
predictor of incipient breaking and why the group 
velocity plays such an important role in this criterion. 

AUTHORS' REPLY 

We have by now made analytical considerations of 
the criteria utilizing exact equations, and we have 
made many numerical studies of the kinematical 
behavior of surface particles near breaking. The 
analytical studies show that the velocity history of 
particles on the surface just upstream of the wave 
peak near the envelope peak change their nature 
depending on the sign of (w = dw/dk). The work will 
be published. 
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Kinematic and Dynamic Evolution of Deep 
Water Breaking Waves 

O. Griffin, R. Peltzer, H. Wang (Naval Research Laboratory, USA), 
W. Schultz (University of Michigan, USA) 

Abstract 

Spectral and piecewise-linear algorithms for two- 
dimensional potential flow were developed and used 
by Schultz, et al. (1994) to compare the onset of 
breaking for various means of energy input to the 
wave system. The computations show that certain 
wave-breaking criteria (potential energy or the more 
classical peak-to-peak wave height) are a function of 
the rate of energy input. Steep plunging waves occur 
when energy input rates are large. As the energy input 
rates become smaller there is a smooth transition to 
smaller spilling waves. The various energy input 
methods show similar breaking trends in the limit as 
the energy input rate becomes small—waves break 
when the potential energy becomes approximately 52 
percent of the energy for the most energetic Stokes 
wave, with the formation of a singularity immed- 
iately before the crest. Experiments were performed 
in an NRL wave channel to exploit the dispersive 
properties of unsteady surface waves. The exper- 
iments have resulted in a highly resolved archive of 
breaking events ranging from wave steepening and 
incipient breaking, to spilling, and to plunging. 
The potential energy density, the crest front steep- 
ness, and other geometric properties of an incipient 
breaker vary only moderately about mean values for 
the range of these NRL experiments. These 
experiments provide some guidance to understanding 
the pivotal role played by wave breaking in the 
formation of radar 'sea spikes' on the ocean surface. 

INTRODUCTION 

The physical complexities of wave breaking in 
deep water are widely recognized, but still are not 
well understood after many years of study. Breaking 
waves are generally classified into two types: 
plunging, in which the forward face of the breaker 
overturns violently into the slope of the preceding 
wave; and spilling, in which the breaking and 
white-capping develop more gentry from an 
instability near the wave crest The fluid dynamics 
of deep water breaking, especially the outstanding 

theoretical issues and new measurement approaches, 
were assessed most recently by Longuet-Higgins 
(1988) and by Banner and Peregrine (1993). A 
related symposium evaluated the current state of 
knowledge for all aspects of wave breaking in order 
to stimulate further research in critical areas (Banner 
and Grimshaw, 1992). 

Breaking waves are universally present over the 
ocean surface, and they play important roles in both 
the microwave and acoustic scattering processes at the 
surface (Kerman, 1988; Melville, et al., 1988). A 
thorough study of the physical processes associated 
with microwave backscattering from wind-generated 
waves up to the onset of breaking was performed 
recently by Ebuchi, et al. (1993). The observation of 
"sea spikes", or short duration events of increased 
scattering in the surface radar signature at low grazing 
angles of a few degrees, is attributed to the presence 
of steep and breaking waves (Wetzel, 1990; Trizna, 
et al., 1991). Similar scattering events at larger 
incidence angles away from grazing have been 
described by Jessup, et al. (1991a, 1991b). But there 
is some controversy and considerable discussion 
among specialists over the scattering mechanisms and 
conditions that produce the spike-like features. 
However, the steepness of the wave near the crest but 
prior to breaking is thought to play a leading role in 
the scattering process (Loewen and Melville, 1991). 

Bright regions of enhanced surface scattering 
caused by breaking waves are highly observable in 
many visual and synthetic aperture radar (SAR) 
images of surface ship wakes which have been 
remotely sensed from air and space over the past 
fifteen years (Munk, et al., 1987; Reed, et al., 
1990; Griffin, et al., 1992). 

BACKGROUND 

The fundamental experiments for studying two- 
dimensional wave breaking (apart from that induced 
by wind-wave interaction) fall into three main 
categories:   (1)  the  focusing of essentially  two- 
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dimensional waves in the lateral direction (Ramberg 
and Griffin 1987, Van Dora and Pazan 1975); (2) the 
towing of a submerged object such as a hydrofoil to 
produce steady breakers (Duncan, 1981, 1983); and 
(3) the focusing of variable length waves from a 
modulated wavemaker or wave source to produce 
unsteady breakers (Dommermuth, et al., 1988; 
Duncan, et al., 1987; Rapp and Melville 1990; 
Peltzer, et al., 1993) or the overturning of an irregular 
wave train (Ochi and Tsai, 1983; Bonmarin, 1989) 
to produce unsteady breakers. 

The most comprehensive laboratory study of 
unsteady deep-water breaking thus far is the work of 
Rapp and Melville (1990). The dispersive character 
of deep-water waves was used to focus a wave packet 
to generate a single unsteady breaking event at a 
controlled location in the wave channel. Losses of 
excess momentum and energy flux during breaking 
within a wave group ranged from 10 percent for 
spilling breakers to 25 percent for plunging breakers. 
Rapp and Melville found that the growth rate of the 
waves prior to breaking was an important factor in 
predicting breaking. This had been found previously 
by Van Dom and Pazan (1975) and to a lesser extent 
by Ramberg, et al. (1985, 1987) in their convergent 
channel experiments. 

Several of these experimental studies propose a 
wave-breaking criterion based on peak4o-peak (crest- 
to-trough) wave height. However, the validity of a 
standard or global criterion has been questioned 
(Melville and Rapp 1988), in part because peak-to- 
peak wave heights vary significantly during breaking 
and often decrease just before breaking. Clearly, no 
breaking criteria can be simple and precise. Schultz, 
et al. (1994) opt for a simple potential energy 
criterion in hopes that it can be more universally 
applied, although experimentally or computationally 
determined criteria are a function of many parameters. 
Extensive discussions of breaking criteria based on 
wave height are given in Ochi and Tsai (1983), 
Huang, et al. (1986), Xu, et al. (1986), Bonmarin 
(1989), and in Dawson, et al. (1991). Breaking 
criteria based on crest acceleration are discussed by 
Longuet-Higgins (1985) and Srokosz (1986). 
Experimental determination of the onset of breaking 
is difficult without detailed velocity measurements at 
the crest (Melville and Rapp, 1988; Van Dorn and 
Pazan, 1975), which are usually not available and are 
difficult to obtain. 

Computational studies of breaking waves usually 
form the waves by applying a point pressure 
disturbance (Longuet-Higgins and Cokelet, 1976) or 
obtain breaking conditions simply from having 
sufficiently energetic initial conditions (Vinje and 
Brevig, 1981). While many algorithms have been 
developed that simulate breaking waves, Schultz, et 
al. (1994) were first to systematically study incipient 

breaking. For example, wave breaking caused by a 
modulated wavemaker has been verified compu- 
tationally by Dommermuth, et al. (1988), but these 
computations were so expensive that only one 
experimental event was verified. In addition, 
previous computations tend to show plunging waves 
instead of the more commonly observed spilling 
breakers that regularly occur on the ocean surface. 

Recently Schultz, et al. (1994) computationally 
examined the steepening and breaking of deep water 
waves generated by the experimental methods cited 
above. Only spatially periodic computations were 
used, so an ad hoc energy input term was deduced for 
the convergent wave channel. Although the periodic 
boundary conditions precluded studying the 
wavemaker problem, the effect of wave modulation 
was examined using a larger computational region 
(more than one primary wavelength) as in Dold and 
Peregrine (1986). The effect of beach reflections was 
modeled by putting a small standing wave 
component in the initial conditions. To crudely 
model waves produced by submerged hydrofoils a 
periodic array of simple submerged dipoles was used. 

There are difficulties in interpreting the differ- 
ences caused by the computational spatial periodicity 
as compared to temporal periodicity in many exper- 
iments. Also, experiments continue after breaking 
occurs, while the time-marching computations must 
stop at the first occurrence of breaking unless an ad 
hoc condition models the turbulence and air 
entrainment. Schultz, et al. show that accurate 
spectral computations break down sooner, indicating 
the possible formation of a singularity and evidence 
of the failure of potential theory before the wave crest 
approaches the forward face. 

Recent measurements of the limiting wave height 
at breaking under various laboratory conditions are 
summarized in Table 1 and Fig. 1. Laboratory 
measurements of the limiting heights of regular deep 
water waves by Ochi and Tsai (1983), Ramberg and 
Griffin (1987), and Bonmarin (1989), have shown 
that the onset of breaking occurs at heights which are 
appreciably less than Stokes' theoretical limiting 
value. The present NRL experiments, as well as 
those of Bonmarin (1989), Rapp and Melville 
(1990), and Dawson, et al. (1991), show that the 
onset of breaking in unsteady wave groups or packets 
occurs at still lower local wave heights. The 
reduced wave heights at breaking from these 
experiments are represented in Table 1 by the 
corresponding values of the breaking coefficient or 
effective steepness a' that are listed there. A mean 
value of a' =0.019 was obtained by Xu, et al. (1986) 
from their wave channel experiments, for their so- 
called dominant form of wind-induced incipient 
breaking. 
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RECENT COMPUTATIONAL ADVANCES 

Although formal analytical techniques have been 
developed for small-amplitude gravity waves, the 
evolution of unsteady and steep waves must be 
solved numerically. The most efficient of the algo- 
rithms are based on boundary integral techniques. 
Even then, the algorithms can be time consuming. 
Hence, no thorough and complete parametric study 
has been performed on gravity waves. Usually, to 
reduce the computational effort, the problem domain 
is kept as small as possible by applying periodic 
boundary conditions. Schultz, et al. (1994) adopted 
this restriction also. Computations with many 
fundamental wavelengths inside the periodic domain 
have been made by Dold and Peregrine (1986), and 
the nonperiodic, fully nonlinear wavemaker problem 
has been computed by Dommermuth, et al. (1988). 
Casual observations of breaking waves show that 
they are not spatially periodic. Here we only present 
example results for the periodic problem, although by 
using a large spatial period the model can approx- 
imate results on an infinite domain. 

The boundary integral numerical schemes for 
irrotational flow problems can be broken into three 
general approaches based on Green's functions 
(Longuet-Higgins and Cokelet, 1976; Vanden- 
Broeck, 1980), vortex dynamics (Baker, Meiron and 
Orszag, 1982), or the Cauchy integral theorem for 
complex potentials (Vinje and Brevig, 1981). The 
three techniques give equivalent results (Mclver and 
Peregrine, 1981). Work by Dold and Peregrine 
(1984) has shown that algorithms based on the 
Cauchy integral theorem can be up to 50 times faster 
than Green's function algorithms and 10 times faster 
than those using vortex methods. Lin, et al. (1985) 
use the Cauchy formulation when solving two- 
dimensional problems and revert to the Green's 
function algorithm for axisymmetric problems. The 
efficiency of the complex algebra is significant. 

A numerical wave channel simulation was devel- 
oped recently by Wang, et al. (1993). Distances 
down the channel of 10^ wavelengths were achieved 
based upon an efficient method of matrix diagonal- 
izatioa The length of the computational domain 
permits the study of nonlinear sideband growth, wave 
deformation, and energy redistribution. The compu- 
ted shapes of the waveforms at breaking are in good 
agreement with the photographs of Bonmarin and 
Ramamonjiarisoa (1985) and the wave profiles 
measured at breaking by Ramberg and Griffin (1987). 

The present computations employ two algorithms 
based on the Cauchy integral theorem. The first is an 
improvement of a piecewise-linear algorithm of Vinje 
and Brevig (1981) as described in Schultz and Hong 
(1989). The second is a spectral technique similar to 
that proposed by Roberts (1983) and is described in 

Huh (1991). Both methods are discussed because the 
first method, although less accurate and more compu- 
tationally intensive, is also more robust. Extensive 
comparisons are given by Schultz, et al. (1994). 

In both methods, the physical domain is mapped 
to an approximate unit circle using a conformal 
transformation. This ehminates the periodic boun- 
dary conditions and sharp computational comers 
used by Vinje and Brevig (1981). All derivatives are 
taken in the conformed space—the piecewise-linear 
method uses three-point central differences while the 
spectral method takes derivatives in the spectral space 
of the conformed representation. The algebraic 
system that results from discretizing the integral 
equation is iterativery solved for both methods using 
a generalized minimum residual method (GMRES). 
Time marching fourth-order Runge-Kutta-GUl or 
predictor-corrector methods with an automatic 
adjustment of step size were both used, with the 
predictor-corrector method showing better compu- 
tational efficiency, especially for the higher-accuracy 
computations. Schultz, et al. (1994) chose the 
LSODA package from Lawrence Lrvermore to march 
intime. 

COMPUTATIONAL RESULTS 

A first example based on the recent work of 
Schultz, et al. (1994) is to look briefly at gravity 
waves of permanent form, and suppress the 
Benjamin-Feir instability by applying periodic 
boundary conditions that do not allow subharmonic 
disturbances (Longuet-Higgins, 1978). The initial 
conditions for the time-marching code were obtained 
from the iterative method of Schwartz and Vanden- 
Broek (1979), applied in the absence of surface 
tension effects. The wave steepness fymax - ymin)/2n 
was equal to 0.1 and 0.115, respectively for the two 
cases. These computed waves require special care in 
the choice of the error criteria for the time marching 
and the iterative solver because the amplitude is 
approaching the Stokes limit of fymax - ymin)^^ ~ 
0.14. 

The spectral computation conserved energy and 
mass to within one part in 109. Comparably the 
piecewise linear computation was within one part in 
104 for the first wave and within one part in 103 for 
the steeper second wave. These waves do not exist 
experimentally because in reality they are subject to 
the Benjamin-Feir instability which is suppressed in 
the computed waves by the periodic boundary 
conditions. 

Numerical simulations were performed for many 
values of the nondimensional amplitude a to 
determine the initial conditions that cause breaking 
or spilling. The amplitude a is really the steepness 
afc, scaled as in Schultz, et al., where *=1.   It was 
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found that waves spill for a slightly larger than 0.27 
but will progress indefinitely for o<0.26. Typical 
computations use #=60 or 80 for the number of 
nodes and A t =0.1 or 0.05 for the time step. These 
results are somewhat sensitive to the initial 
conditions in that using a three-term Stokes wave 
height initial condition, such as 

y = a sin x + 1/2 a2 sin 2x 
+ 3/8 a3 sin 3x, (1) 

does not apply as large a perturbation to the steady 
form, and, hence the breaking is suppressed to 
slightly higher amplitudes. 

Since the total energy is constant throughout 
an entire numerical simulation as well as an inviscid 
experiment (up to breaking), it would appear to be an 
ideal criterion to determine breaking. Unfortunately, 
without a carefully calibrated and instrumented 
wavemaker or the ability to measure the velocity 
everywhere in the flow field, the total energy cannot 
be measured. Instead, a steepness criterion wave 
height/wavelength has been used most commonly . 
Figure 2(a) shows that such a criterion varies widely 
in time for the two cases with initial conditions of 
a=0.27 and 0.28. The nonbreaking wave peak-to- 
peak height becomes higher than the value at a 
previous time for a wave that breaks. Hence, the 
height for a nonbreaking wave can exceed that of a 
wave that is breaking. The computations show that 
the wave breaks at less than the maximum peak-to- 
peak height There is experimental evidence for this 
as well (Melville and Rapp, 1988). 

However, the potential energy, although not 
constant in time, is approximately half the conserved 
total energy. Hence, it is much less variable than the 
peak-to-peak values and still can easily be determined 
from wave probe data. Figure 2(b) demonstrates that 
the computed RMS wave heights (or potential 
energies) for these same two initial conditions are 
more distinct. That is, the RMS height of the 
breaking wave with initial condition a=0.28 does 
not fall below the peaks of the nonbreaking wave 
with initial condition a=0.27, in contrast to the 
fymax -y min ) data- This indicates that the potential 
energy may be a better criterion to determine whether 
an evolving wave will break. The computations 
also show that breaking does not occur at the peak of 
the potential energy. This can be anticipated since 
the increased fluid velocities near the crest increase 
the kinetic energy at the expense of the potential 
energy. 

The potential energy at breaking is about 52 to 
54 percent of the potential energy of the highest 
Stokes wave computed by Cokelet (1977). These 
percentages are approximately one percent higher 
when compared to the limiting  Stokes wave, which 

has the 120 degree crest angle but is slightly less 
energetic. 

The computational wave data are determined at 
the same instant of time for the results of Fig. 2(a), 
while experimental measurements using one wave 
probe are measured at one location over a temporal 
period Figures 2(a) and 2(b) also compare spectral 
and piecewise-linear computations. The piecewise- 
linear computations proceed further before breaking 
down, but as these computations are refined, they 
approach the spectral computations and do not Ml 
earlier when more stringent error requirements are 
applied. Additional discussion of these compu- 
tations is given by Schultz, et al. (1994). 

NRL EXPERIMENTS 

Experiments were performed in an NRL wave 
channel to exploit the dispersive properties of 
unsteady surface waves in order to produce an exten- 
sive matrix of breaking events over an ensemble of 
controlled wave packet properties. These exper- 
iments were performed in the channel 30 m long, 1.2 
m wide and 1 m deep, that is shown in Fig. 3. The 
channel as shown here is configured to perform not 
only the breaking wave experiments discussed here, 
but also wind field and surface radar backseatter 
measurements as well. Packets of waves were 
generated by a hydraulicaUy-actuated paddle driven 
under computer control. The method of wave packet 
generation employed here represents a refinement of 
the chirp pulse generation technique for focusing the 
wave energy at a particular location in the channel. 

Two examples of the wave generator inputs for 
the experiments are shown in Fig. 4. Only the 
amplitude and duration of the wave packet of twelve 
waves with a gaussian envelope were varied during 
the present experiments. The overall periods of the 
packet varied from 13 to 16 seconds, and the initial 
packet amplitudes from 0.09 to 0.25 m, in order to 
span a suitable range of breaking conditions. A 
typical arrangement of the wave gauges in the channel 
is sketched in Fig. 5(a). The experiments were 
performed to study the spatial and temporal evolution 
of kinematic properties such as wave asymmetry 
and front steepness, and dynamic properties such as 
potential energy or momentum flux. 

The breaking conditions ranged from incipient 
breaking or gently spilling, to intermediate (white- 
capping), and to fully plunging (overturning). The 
temporal histories of the waves were measured using 
an array of seven conductivity gauges, and the waves' 
spatial evolution was recorded for eventual digital 
image processing using a high resolution (SVHS) 
video camera and recording system. 
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WAVE EVOLUTION 

The evolution of a typical wave packet in the 
NRL wave channel is plotted in Fig. 5(b) for an 
initial condition which produces an incipient breaker. 
Each of the time histories plotted is the average of 
three independent realizations. The initial steepness 
(at gauge Gl) of the wave which eventually breaks 
within the packet is aJco=0.23S. The local 
amplitude a0 at this wave gauge is taken as half the 
wave height H, a good approximation as shown in 
Fig. 5(b), and the wave number is k0=2n/1, the local 
wavelength. The frequency factor FF34 refers to the 
packet (see Fig. 4) with the nominally largest period 
of the breaking wave of about 1.2 seconds. The 
evolution of the initially gaussian packet to a short, 
sharply peaked breaking wave train is evident as the 
downstream location of breaking (gauges G2, G6 at 
kjc =20.54) is reached. All of the events invest- 
igated in these experiments were limited to the first 
occurence of breaking in the packet, prior to any 
secondary breaking that was to follow. 

The change in form of the steepest wave in the 
packet near breaking can be observed in the sequence 
of wave profiles shown in Fig. 6, again for the 
condition given by FF34. The profiles are individual 
frames that are 'grabbed' from the video recordings. 
The round wave still resembles the profile of a steep, 
symmetric Stokes wave. The increases in the 
steepness and asymmetry of the crest region which 
accompany the progression in severity of breaking are 
observable as the process evolves from a steep but 
non-breaking wave just before the incipient stage, to 
a spilling breaker, then to an intermediate level of 
breaking, and finally, to a fully plunging or 
overturning breaker, the onset of rippling and white 
water or bubbly flow at the crest appears at the 
incipient stage of breaking. Then a region of 
increasing agitation and flow complexity near the 
crest is formed as the breaking progresses through the 
intermediate stages toward full plunging or 
overturning. It is this progression which is discussed 
here in terms of the geometry or steepness and energy 
properties of the wave packet 

POTENTIAL ENERGY 

The potential energy per unit of surface area v, 
averaged over the wavelength / is 

epl = 
2vk2 h-2   N 

—Yn; (3) 

-i?p. (2) 

where p is the water density, g is the gravitational 
acceleration, n is the wave amplitude, and x is the 
direction of wave propagation. This equation can be 
expressed in the non- dimensional form 

where the n; are the N individual data points in the 
wave gauge record. 

The spatial evolution of the potential energy per 
unit surfece area, averaged over a wavelength (period), 
is plotted in Fig. 7(a) for the same wave/packet 
(FF=34). The potential energies span a range of 
initial conditions from steep, but non-breaking 
{ajc0= 0.224), to incipient breaking or spilling 
(00*0=0.238), to intermediate (a^c0= 0.247), and to 
fully plunging (aoko=0.24& and 0.255). The initial 
steepnesses for the packets FF37 and FF42 in Figs. 
7(b) and 7(c) are somewhat greater. This variation is 
principally due to the range of the initial steepnesses 
aji0 at gauge Gl, which could be controlled only to 
a limited extent. This was because the first gauge Gl 
was at a fixed physical location relative to the wave 
generator, and gauges G2 to G7 were moved as the 
location of breaking changed for the different packets 
with different aoVs- 

Two key features of the breaking event are present 
in these experiments. First, the potential energy at 
breaking increases as the progression in seventy 
proceeds from spilling to fully plunging and 
overturning. And as the wave packet evolves along 
the channel, the spatial rate of change of the potential 
energy varies markedly with the severity of the 
breaking. The latter effect corresponds directly to the 
transformation of potential energy to kinetic energy 
and vice versa as the level of the breaking changes, 
and as the initial conditions of the wave packet are 
changed 

For the packet FF34, there is an overall decrease 
in potential energy epl as the packet travels from 
gauge G3 (Äo*=19.07) towards the onset of breaking 
at gauges G2, G6 (V=20.54). This decrease in 
potential energy prior to breaking over approximately 
0.5 m in along-channel distance accompanies a 
corresponding increase in kinetic energy while the 
total energy remains constant (except for small losses 
to boundary friction , etc.) in the finite-area wave 
channel. Rapp and Melville (1990) showed that 
such losses are minimal by comparison to the total 
energy of a similar packet. Much the same behavior 
is observed for the packet FF37. 

However, the packet FF42 with the smallest 
breaking wave period (see Fig. 4) exhibits a different 
evolutionary history as shown in Fig. 7(c). The 
incipient breaking packet with aJco=0.219 shows 
only a very small change in potential energy as k^ 
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increases from 9.05 to 11.3 (gauge G3 to gauges 
G2,G6). The potential energies of the intermediate 
and lightly plunging packets with 0^=0.294 and 
0.298 initially remain nearly constant and only 
decrease over the short distance from k^t= 10.55 
(gauge G5) to 11.3 (gauges G2,G6). The potential 
energy of the packet which evolves to a fully 
plunging event first increases up to k^lb.55, then 
decreases. Thus the evolutionary histories of the 
various breaking waves are dependent on the initial 
properties of the packet in terms of frequency content 
and initial amplitude or steepness. 

Typical potential energies of the individual waves 
that break within the packet are ep/=O.0319 (spilling) 
and ep/=0.0469 (plunging) for FF34, and ep/=0.0443 
and 0.0709 respectively under the same nominal 
conditions for FF42. Only relative (local/Initial) 
measurements of the evolution of the potential energy 
or momentum flux along the channel were made by 
Rapp and Melville (1985, 1990). To the extent that 
comparisons are possible their results are 
qualitatively similar to our measurements of epl that 
are shown here in Fig. 7. 

Approximately 75 to 90 percent of the total 
potential energy is concentrated in the crest region at 
breaking with the proportion of the crest potential 
energy becoming consistently smaller for plunging 
breakers than for spilling breakers. The potential 
energies of an evolving steep, unsteady wave train as 
computed by Schultz, et al. (1994) and measured in 
these NRL experiments are approximately half (52 to 
54 percent) the potential energy of the highest 
symmetric Stokes wave, as computed by Cokelet 
(1977). 

WAVE ASYMMETRY AND STEEPNESS 

Several geometric properties which characterize 
the wave asymmetry and steepness have been 
identified by Kjeldsen and Myrhaug (1978), 
Bonmarin (1989), and Kjeldsen (1990) as giving 
important and unique evidence of the evolution of 
the breaking process. The degree of asymmetry of 
the crest is expressed by horizontal and vertical 
asymmetry factors suggested by Bonmarin and 
Kjeldsen, i.e. u and X, and the steepness is 
expressed at the front and rear of the wave crest, i.e. e 
and 5 as defined in Fig. 8. The crest front steepness 
e, the ratio of the crest amplitude ymax to the 
distance Fj from the crest to the previous zero level 
crossing, arguably is the most important of the four 
cited there. 

The crest front steepnesses measured with the 
wave gauge array for the series FF34 and 42 are 
plotted in Fig. 9. The initial a^'s for each 
breaking wave/packet are the same as in Fig. 7. The 
smallest initial steepness corresponds to a steep but 

non-breaking wave packet This is followed by an 
incipient or spilling breaker, an intermediate breaker, 
and two plunging breakers as before. The measured 
e's in these experiments are in excellent agreement 
with the limited results of Bonmarin (1989) and 
Rapp and Melville (1990) for incipient spilling and 
plunging breakers. But the present experiments, as 
summarized in Fig. 9, give a more detailed history of 
the crest region evolution than any previous 
experiment. The maximum crest front steepnesses 
for a plunging breaker in Fig. 9 are e=0.56 at FF34 
and e= 0.60 at FF42. For the NRL data set overall 
the largest plunging steepness is e=0.62 for the wave 
packet denoted by FF37. 

The vertical asymmetry X=F2/F] provides 
another measure of the deformation of the crest region 
as breaking is approached. The evolution of X for 
the series FF34 and 42 is plotted in Fig. 10. Again 
the initial steepness conditions are as described 
above. All of the waves are essentially symmetric 
about the crest, or X ~1, at the first wave gauge.For 
the non-breaking wave and the spilling (incipient) 
breaker the vertical asymmetry varies only moderately 
and decreases slightly as the location of breaking in 
the channel (gauges G2,G6) is approached. As the 
intermediate stage of breaking is approached, the 
wave profile about the crest becomes decidedly 
asymmetrical. When the plunging condition is 
reached the profile becomes still more asymmetric 
with the ratio F2/F1 approaching 2 just before 
breaking for the series FF34. The horizontal 
asymmetry /x, the ratio of the crest amplitude to the 
full wave height, changes only slightly as the 
breaking evolves from the incipient stage towards 
fully plunging (0.72</z<0.80) for these NRL exper- 
iments. Most of the increase in the wave steepness 
just prior to breaking results from the reduced length 
of the region forward of the crest, i.e. the crest front 

Much the same progression in asymmetry as the 
crest region increases in steepness can be observed 
from the video images in Fig. 6. Both the round and 
steep waves are quite symmetric about the crest 
while the spilling breaker gives some evidence of the 
onset of asymmetry. As the plunging stage of 
breaking is reached, the vertical asymmetry from the 
images qualitatively matches well with the com- 
parable wave gauge measurements. The results in 
Fig. 10 indicate that the geometry of the wave 
evolution towards breaking depends on the amplitude 
and frequency make-up of the wave packets as 
denoted by FF34 and 42. The other wave packet 
series show this same dependence as well. 

For these NRL experiments the vertical asym- 
metry X ranged from about 0.9 to 1.8. Longuet- 
Higgins and Cokelet (1978) computed a value X 
=1.83 for a plunging breaker. From his wave packet 
experiments Kjeldsen (1990) found that 0.9 <X <2.2, 
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while Bonmarin (1989) measured the range of 1.2<X 
<2.1. 

ANALYSIS OF UNSTEADY BREAKING 

For the analysis of a nonstationary localized 
phenomenon such as wave breaking, it is of interest 
to use techniques other than the traditional, global 
Fourier transform. This transform is most approp- 
riate for signals which are periodic and stationary, but 
it is unsuitable for analyzing transient phenomena 
such as the unsteady evolution of a wave packet up to 
breaking. Instead, the Hubert transform is used to 
obtain a detailed analysis of the time-varying ampli- 
tude and frequency behavior of the breaking wave 
(Long, 1994). While detailed geometric properties 
have been studied extensively as in this paper, 
analysis of the frequency content of the wave near 
breaking has received only limited attention 

The Hubert transform y(t) is a convolution of the 
wave signal y(t) and the time windowing function 
l/(7r t) over the entire duration of the signal. It is 
written as 

r   y(u)   , y(t) =       •yv ;  du (4) 

In conjunction with the original signal, the Hubert 
transform is used to give the instantaneous envelope 
signal A(t), the phase signal Q(t), and the frequency 
fO (t), as follows 

A(t)={?(t)+f(t))V2 

6(0= tan 

/o(') 
2TT (

m%) 

(5) 

The Hubert transforms of the measured wave data 
were obtained by using the MATLAB software 
package. Each of the time histories is an average of 
three independent realizations, and a total of seven 
wave packets were analyzed These represent a subset 
of the ten cases considered for the FF34 and FF42 
series in Fig. 9, omitting the intermediate wave in 
both series and the less severe plunging wave of 
FF34. 

Figure 11 shows a time history of the wave 
elevation of these seven cases of 501 data points each 
corresponding to 2.5 sec on either side of the 
maximum elevation as measured at gauge G2 (where 
t-tmcarG). It should be emphasized that the Hubert 
transforms were obtained for the entire measured time 

history which ranged from a minimum of 1,441 
points to a maximum of 2,811 points. This figure 
clearly shows the differences in general amplitudes 
and periods between different waves in a given series 
and between the two series. The figure also generally 
confirms a wave period of approximately 1.16 sec for 
FF34 and 0.84 sec for FF42, as in Fig. 4. 

A somewhat different and more concise view is 
obtained by plotting the instantaneous Hubert 
amplitude Aft) for the seven cases, as shown in Fig. 
12. In addition to the differences between individual 
waves and series of waves, the figure clearly shows 
the asymmetry between the front and rear faces of the 
wave. The asymmetry is more pronounced for the 
steeper FF42 waves. 

In order to provide a more precise view of the 
wave breaking process, the time variation of the 
instantaneous Hubert frequencies fo is shown in 
Figs. 13, 14 and 15. Figure 13 shows fo for the 
seven cases in the narrow region -0.3 < t-tmax < 0.3. 
This more closely focuses on the breaking wave 
region. The most dramatic variation in frequency 
occurs in the region -0.K t-tmax < 0.1, with a more 
gentle variation outside of this region. The 
maximum frequencies are approximately 1.35 and 1.5 
Hz for the round waves, 1.75 Hz for both spilling 
waves, and 2.5, 3.4, 3.8 Hz for the three plunging 
waves. This figure also shows more clearly the 
difference between the two plunging waves for FF42. 

Figure 14 shows a more global view of the 
evolution of the the breaking wave process. The 
figure shows the values of/o for gauges G3, G4, G5, 
and G2 in the interval -0.5< t-tmax < 0.5 for the 
plunging (omitting the least severe case for FF42), 
spilling, and round waves for FF34 and FF42. The 
figure shows that the evolution process is quali- 
tatively similar for corresponding waves in both 
series. The frequency behavior is nearly constant 
with gauge location for the round waves, shows 
slight growth for the two spilling waves, and sharp 
growth for the two plunging waves, with the FF42 
case showing the most severe growth. The trend is 
similar to the variation of crest front steepness with 
gauge location shown in Figs. 9(a) and (b). 

It is also of interest to investigate the energy 
content of a segment of the wave around the breaking 
point as a function of frequency. Since the 
phenomenon is nonstationary, the shape of the 
function depends on the length of record which is 
chosen. Here, the length is chosen for the interval 
-5.5 < t-tmax < 5.5, which corresponds 
approximately to the interval of significant wave 
activity at gauge G2, as shown in Fig. 5. A Hubert 
energy density spectrum EffffoO may be numerically 
constructed by summing the Hubert energy A2 dt/2 
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contained in each frequency bin centered around fa, 
/=1,2,...,NB-1,NB, and dividing the result by the 
width of the frequency bin. The choice of Nß is 
governed by the conflicting requirements of choosing 
as large a value as possible to get a detailed 
definition of the shape of Eff and the opposing need 
to minimize the number of bins to obtain, stable 
energy estimates. 

Figure 15 shows Eff for Nß=14, with 12 of the 
bins equally spaced between 0.1 and 2.5 Hz, and the 
remaining two bins to account for fo < 0.1 and fo > 
2.5 Hz, respectively. Taking the typical number of 
samples in a bin, Ns, equal to 1,100/14=79, the 
normalized standard error of the energy estimate in a 
typical bin is approximately given by 0=1/ (Ns)1/2 

=0.11. Within a given run series, Eff is highest for 
the plunging waves and lowest for the round waves at 
frequencies less than approximately 1.0 Hz. The 
round waves and steep waves have the highest energy 
at intermediate frequencies. Only the plunging waves 
have significant energy for frequencies greater than 
1.8 Hz. 

ADDITIONAL COMPARISONS 

The potential energy epl, the crest front steepness 
e , and the horizontal asymmetry u measured at the 
incipient stage of breaking and beyond this condition 
are summarized in Figs. 16, 17 and 18, for several 
experimental runs which cover the range in Table 2. 
The incipient breaker properties are the first cases 
plotted for each run in these figures. Four wave 
packets which range from incipient to plunging are 
shown for Runs 34, 37, 39, 41 and 42. There is a 
distinct increase in the potential energy and crest 
front steepness as the breaking levels increase from 
incipient or spilling, to intermediate, and to plung- 
ing. The dependence on initial steepness is evident 
from the results in Figs. 16 and 17. 

The horizontal asymmetry, the crest front 
steepness and the average potential energy density of 
an incipent breaker vary only moderately about their 
mean values (u = 0.772, e=0.299, epl =0.0346) for 
the nine wave packet series listed in Table 2. The 
present experiments are in good agreement with the 
recent numerical simulations of the same breaker 
properties p, e and epl by Schultz, et al. (1994), as 
well as the range of e at incipient breaking from the 
experiments of Rapp and Melville (1990). Kjeldsen 
(1990) cites a value of p=0.77 at the onset of 
breaking in a wave group from his laboratory 
experiments, again in good agreement with the 
present experiments. Bonmarin (1989) found that n 
ranged from 0.69 to 0.77 for spilling vs. plunging 
breakers. For the NRL experiments shown in Fig. 
18 the horizontal asymmetry ranged from fi = 0.72 to 
0.80 depending on the severity of the breaking. 

Table 3 gives the average of the crest front 
steepness e, and the RMS of the average of the 
incipient breaking waves from Table 2. The RMS 
value proves to be a more reliable and consistent 
criterion than a steepness criterion for breaking 
inception (Schultz, et al., 1994) This is especially 
beneficial for the wave packet criterion because the 
RMS wave height can be predicted more directly and 
accurately than the wave steepness from simple group 
velocity considerations. These are not spatially 
periodic waves, and so a measure of breaking 
inception not based on wavelength is desirable — 
especially when the number of waves in a packet 
changes instantaneously as in this NRL example. 
The potential energy per unit surface area appears 
more consistent than the steepness in this regard, but 
the potential energy or its RMS value in this 
example uses the local wavenumber measured at the 
breaking location (from the results in Table 2) for 
nondimensional scaling. 

CONCLUDING REMARKS 

Recent computations by Schultz, et al. (1994) 
demonstrate that the potential energy of surface 
gravity waves is a better measure of the onset of 
breaking for steep nonlinear waves than either the 
wave height or wave slope. The computed wave 
height or steepness appears to have more erratic 
variations in time than the potential energy. 

There is some experimental evidence that the 
square root of the potential energy (the RMS wave 
height) is better than the peak-to-peak wave height (or 
steepness) criteria in predicting an incipient breaking 
event. This is indicated by a smaller percentage 
variation of individual wave channel breaking events 
as compared to an average measure of the breaking. 

The NRL experiments show that the initiation of 
unsteady breaking in a deep water wave group or 
packet depends on the initial packet conditions. 
Likewise, the evolution of the breaking wave's 
potential energy, and its crest steepness and asym- 
metry properties prior to breaking also are dependent 
on these conditions. But the potential energy den- 
sity, the crest front steepness, and the horizontal 
asymmetry of an incipient spilling breaker vary only 
moderately about their mean values over the extent of 
these experiments. These properties of the wave thus 
may represent valid local indicators of the inception 
of breaking. The computed and measured potential 
energies at breaking here are approximately half that 
of the highest steady, symmetric Stokes (theoretical) 
wave. 

These experiments demonstrate that the onset of 
breaking in a finite group or packet of waves 
consistently occurs at amplitudes (steepnesses) much 
lower than those measured for a train of regular 
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waves. Thus, global wave steepness criteria for the 
onset of breaking cannot be applied in general, and 
their use should be approached with some caution. 
This point also was noted by Xu, et al. (1986) from 
their study of laboratory wind-generated breaking, 
and by Rapp and Melville (1990) from their 
laboratory experiments with unsteady wave packets. 

The onset of breaking depends on the energy 
input rate to the wave system, with the smallest 
values occurring when the energy input rate is small 
and spilling breakers are expected. A smooth 
transition to plunging breakers occurs (as conjectured 
by Longuet-Higgins and Cokelet, 1976) for higher 
waves that can be formed by a larger energy input 
rate. The dependence on the energy input rate further 
explains the scatter of breaking criteria derived from 
earlier experiments. 

The Hubert transform provides a promising 
alternative to the traditional global Fourier transform 
for the analysis of nonstationary local phenomena 
such as unsteady wave breaking. This method was 
applied to the results from the NRL wave channel 
experiments and gives a new perspective on the time 
varying evolution of a wave packet towards breaking. 
The instantaneous Hubert amplitude clearly focuses 
on the asymmetry between the front and rear faces of 
the wave, and shows the pronounced asymmetry 
present in the steepest wave packets. The spatial 
evolution of the Hubert frequency of the packet 
towards breaking in the wave channel shows nearly 
constant behavior for the steep but non-breaking 
waves, slight growth for spilling breakers, and a 
progression to sharp growth for fully plunging 
breakers. The trend is similar to the variation in crest 
front steepness obtained directly from the array of 
wave gauges. These initial results using the Hubert 
transform approach agree well with the more 
traditional measurements of the wave properties near 
breaking that are employed in this study. 

Kjeldsen (1990) proposed that the crest front 
steepness gives a unique geometrical measure of the 
wave evolution as breaking is approached, and the 
results of the present experiments bear this out. 
Indeed it may be the most important wave properly 
from the standpoint of radar scattering. Loewen and 
Melville (1991) have proposed that a large portion of 
the radar backscatter from the wave precedes the onset 
of visible breaking. Then the geometric properties of 
the wave just prior to breaking dominate the 
scattering process. Wetzel (1990) also stresses the 
importance of some as yet undetermined properties of 
the local steepness geometry to the surface radar 
scattering. The present results tend to support these 
several propositions, but further work is warranted. 
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Fig. 1 Laboratory measurements of the limiting 
height H of deep water waves as a function of the 
period parameter gT^. The legend for the experi- 
mental data in the figure is given in Table 1. 
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Table 1 
Limiting Height of Deep Water Breaking Waves 

Mean Values of the Breaking Coefficient o=H/gfi 

Authors 

Stokes (theoretical limit) 
Ochi and Tsai (1983) 
Ramberg and Griffin (1987) 
Bonmarin (1989) 

Rapp and Melville (1990) 
Present NRL experiments 

Legend 
(Figure 1) 

Breaker Type 
Plunging                         Spilling 

0.027 
A 0.020 — 
0 
• 0.022 (2) 

0.020 (3) 

0.021 (1) 
0.021 (4) 
0.020 (5) 

Enclosed 
Area 0.018-0.021 (2) 

0.017-0.021 (4) 
0.017-0.018(4) 

(1) Spilling and Lightly Plunging; (2) Typical Plunging; (3) Plunging; 
(4) Typical Spilling; (5) Spilling; from Bonmarin (1989) 

0.75 0.200 

0.195   - 

CO 
2 
05 

0.190 

0.55   - 

0.50 0.1B5 

Fig. 2      (a) Peak-to-peak wave heights for a=0.27 
and 0.28.     Spectral, N=Z2, ;    piecewise- 
linear, N=32, — ;    piecewise-linear, Af=64, 
    (b)  RMS wave amplitudes for the same 
two initial conditions. 
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Radar Parameters 

Wave Maker 

Wind 

X-b«nd (9.54 GHz) 
Incidence angle: 80 deg 
Pulse width: 3.5 ns 
PRF: 1000 Hz 
Sampling time: 1.25 ns 
Height above water: 0.5 m 

*"•*•*-' "—T" 
Wind 
Wive 

' A. ■■Radar 

t&*~ ■??!& 

SHIP 

4ft 

-Fetch: 33ft" 

-Radar: 62" 

-Tank Length: 100 ft- 

Fig. 3 Layout of the NRL deep water wave 
channel.   The figure is a private communication 
(1994) from Dr. Farid Askari of NRL. 
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Fig. 4 Wave generator input signals for the 
gaussian wave packet employed in the NRL exper- 
iments. The two examples shown are for the packet 
conditions FF34 and 42. 

Time, (sec*100) 

Fig. 5 (a) A line diagram of the relative locations 
of the wave gauges in the NRL wave channel, (b) 
Evolution of a wave packet measurement time history 
in the channel for initial wave paddle conditions 
which produce an incipient breaker. Frequency factor 
of the wave packet, FF34 (see Fig. 4 and Table 2). 
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ROUND 

STEEP 

SPILL 

BREAK 

PLUNGE 

Fig. 6 Still video frames of a sequence of labor- 
atory deep water wave profiles ranging in levels of 
steepness and breaking from round, to steep (near 
incipient), to spilling, to intermediate, and to 
plunging. Frequency of the wave packet, FF34. 
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(a) The frequency factor of the wave packet, FF34; 

17.86    18.54    19.22     19.9     28.99 
kox 

(b)    Frequency factor,  FF37, wave breaking at 
and the wave breaking takes place at ^x=20.54.     V^19-90-   Initial steepness, a^:   • 0.251, + 
Initial steepness, a^:    •  0.224, +   0.238, ■      0.273, ■ 0.294, ▲ 0.304, T 0.306. 
0.247, ▲ 0.255, T0.248. 

9.8      10.55     11.3     20.98 
kox 

(c) Frequency factor, FF42; wave breaking at 
Äp^llJO. Initial steepness, a^: • 0.249, + 
0.279, ■ 0.294, ▲ 0.298, T 0.302. 

Fig. 7 Spatial evolution of the average potential 
energy per unit surface area, scaled by 2 k2, with 
distance along the wave channel, scaled by the 
wavenumber k0 (at gauge Gl). 

^        •'max  '    »'mix     * mln' 

A = F2/F, 
c = ym„ / Fi 

<5 = y    / F, J max * 2 

Fig. 8 Definition of the asymmetry and steepness 
properties of a steep, nonlinear wave. The wave- 
length is chosen equal to 2TI for convenience in this 
sketch, in following the convention of Schultz, et al. 
(1994). 
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(a) Initial conditions as in Fig. 7(a). 
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(b) Initial conditions as in Fig. 7(c). 

Fig. 9 Spatial evolution of the crest front 
steepness e with distance along the wave channel. 
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(a) Initial conditions as in Fig. 7(a). 
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(b) Initial conditions as in Fig. 7(c). 

Fig.   10 Spatial   evolution  of the  vertical 
asymmetry X   with distance along the wave channel. 
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Fig. 11       The time history of the local wave ele- 
vation at gauge G2, the location of breaking. 
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Fig. 14 The evolution of the Hubert frequency at 
gauges G3. G4, G5 and G2. The gauge locations are 
given in Fig. 5(a). 
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Fig. 15       The Hubert energy density spectrum at 
gauge G2. 
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Table 2 
Incipent Breaking of a Gaussian Wave Packet 

FF Initial Horizontal Crest Front Potential 
Steepness Asymmetry Steepness Energy 

«A u £ epl 

34/8.7 0.238 0.736 0.333 0.0328 

35/8.2 0.196 0.785 0.257 0.0287 

36/7.7 0.230 0.766 0.362 0.0344 

37/7.4 0.273 0.780 0.365 0.0309 

38/6.8 0.231 0.752 0.293 0.0454 

39/6.4 0.231 0.788 0.286 0.0296 

40/6.2 0.237 0.786 0.260 0.0344 

41/5.8 0.217 0.753 0.253 0.0322 

42/5.6 0.279 0.802 0.282 0.0430 

Mean 0.772 0.299 0.0346 

Expt1 

Conro2 

0.23-0.26 — 0.28-0.35 - 
0.28 0.72 0.40 0.0382 

1 From Rapp and Melville (1990), breaking wave packet (six measurements). 
2 From Schultz, et al. (1994), initially steep, uniform wave train. 
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Fig. 16        The potential energy epl   at breaking, 
measured during nine wave channel run series (see 
Table 2),   as a function of the initial wave packet 
steepness. Legend for the data series:   • FF34, 
O FF35, ■ FF36, ▲ FF37, T FF38, I FF39, 
+  FF40, * FF41, □ FF42. 
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aoko 

Fig. 17 The crest front steepness e at breaking, 
measured during nine wave channel run series, as a 
function of the initial wave packet steepness. The 
legend for the data is the same as in Fig. 16. 
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Fig. 18 The horizontal asymmetry u at breaking, 
measured during nine wave channel run series, as a 
function of the initial wave packet steepness. The 
legend for the data is the same as in Fig. 16. 

Table 3 
Properties of Incipient Breaking Wave Packets 

Experimental Mean 
Experimental Standard Deviation (percent) 
Prediction by Schultz, et al. (1994) 
Prediction/Experiment Comparison (percent) 

£ RMS 
0.299 0.186 
13.8 7.6 

0.40 0.195 
25 5 
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Physical Processes of the Local Air-Sea 
Interactions—Current Understanding 

and Outstanding Questions 
Y. Toba (Tohoku University, Japan) 

ABSTRACT 

Overall similarity laws of wind waves as 
expressed by the 3/2-power law, and their possible 
applications to naval hydrodynamics are presented. 
For windsea generation area, the significant wave 
height can be given as a joint function of the wind 
speed and the significant wave period, and the 
steepness is also given as a function of the wave 
age. For sea areas where swells are present, these 
give the maximum values. Then as outstanding 
questions related, physical processes pertinent to the 
similarity laws, especially the friction velocity 
proportionality appearing in those expressions, are 
critically discussed from the point of view of 
experimental observations. Finally, also in relation 
to the similarity laws, a review is given on better 
parameterisations of breaking of wind waves, 
production of air bubbles and sea-water droplets by 
breaking waves. 

INTRODUCTION 

This paper is a kind of review with some 
new propositions. We do not intend to give a 
comprehensive review of the past works on physical 
processes at the air-sea interface, but focus, based on 
experimental observations, on local wind-windsea 
interaction processes at pure (swell free) windsea 
fields, in which overall similarity laws with the 
friction-velocity  (w*) proportionality manifest 
themselves. 

After a description of the overall similarity 
laws is given, their possible application to some 
aspects of the ocean wave statistics follows. Then a 
critical discussion is presented on outstanding 
questions with respect to elementary processes 
pertinent to this wind-windsea equilibrium. This 
overall situation with a »-proportionality does not 
seem to have been derived purely theoretically, and it 
is supposed that it is a result of strongly nonlinear 
self-adjustment processes of wind and windsea 

including wave breaking, with perturbations of 
waves, temporal local shear flows and turbulence 
with ordered motions, forming a continuum of the 
local air and water turbulent boundary layers. 

In the last part are given recent studies in 
our group about parameterisations of breaking of 
wind waves, air-bubble entrainment in water, and 
sea-water droplet formation into the air. 

OVERALL SIMILARITY LAWS OF WIND 
WAVES AND ITS POSSIBLE APPLICATION 
TO NAVAL HYDRODYNAMICS 

Similarity Laws of Wind Waves - The 3/2- 
power Law 

The wind waves have randomness spatially 
as well as temporarily. Nevertheless there are well- 
defined regularities statistically. Among them there 
are the 3/2-power law and the form of wind-wave 
energy spectra consistent with this law. 

The 3/2-power law of wind waves as a 
macroscopic similarity law, which expresses the 
statistical state of windsea field in the generation area 
free of swells, is expressed by 

H* = BT*3/2, B = 0.062 (1) 

where H* = gHs/u*2, T* = gTs/u; g is the 
acceleration of gravity, «* the friction velocity of 
air, Hs the significant wave height, Ts the 
significant wave period, and B is an empirical 
constant (I). An alternative expression in a 
dimensional form is 

Hs = B(gu*)1/2TS
3/2 (2) 

This form is interpreted as claiming that Hs 

and Ts cannot be independent of each other 
statistically, but there is a quasi-equilibrium state 
where Hs and Ts are strongly combined with each 
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other by the action of the wind which is represented 
by «* (the concept of wind waves in quasi- 
equilibrium with the wind). Naturally the empirical 
constant B shows a fluctuation with the variation of 
the wind, within an order of +20% (2). Physical 
processes involved in this quasi-equilibrium between 
the wind and windsea with intrinsic fluctuation will 
be discussed in the next section. 

The one-dimensional form of wind wave 
spectra in the high-frequency side, which is 
consistent with Eq. (1), and which is assumed to 
have a self-similarity form, is expressed by 

(j>((j) = asg*u* (T4,   a> Op (3) 

where 0fcr) is the energy density, g* the expanded 
acceleration of gravity to include the effect of surface 
tension, and a is the peak angular frequency of wind 
waves Q, 4). In wind waves actually observed, we 
can see this form of spectra in some main part of the 
high frequency side called the equilibrium range. 
The value of the coefficient As seems to range 
between (6-12) x 10"2 (e.g., 4), and as will be 
discussed in the next section, fluctuates in response 
to the wind fluctuation. 

Application to Naval Hydrodynamics - Wave 
Steepness, Joint Distribution of Wave Heights, 
Wave Periods and Winds 

Equation (1) corresponds to a situation that, 
as a kind of equilibrium state of wind waves under 
the action of the wind, the steepness is statistically 
limited. This relation is expressed by 

-«^•(srVHsrr<4) 
lit 

where ks is the significant wave-number and Cs is 
the phase speed of significant wave (5). The C/M*, 
the wave age of significant waves, in the second 
term appears as the consequence of an averaged local 
wind drift, of which the velocity is very large in the 
windward face of each individual waves and small or 
even of negative value on the lee side for small 
waves. Figure 1 shows Eq.(4) with some 
observation data. This relation can be used for 
conditions of growing windsea fields effectively free 
of swells. 

The joint distribution of wave periods and 
amplitudes have been intensively studied (e.g., & 2)- 
However, the 3/2-power law (1) claims that the 
distribution of wave heights should be better 
expressed by a combination of wave periods with u*, 
or the wind speed UJO, at least under growing 
windsea conditions, since Eq. (1) is conceptually 
expressed as 

f(Hs, Ts, u*) = 0 (5) 

In conditions where lower frequency swells 
superpose, this relation is to give the upper limit of 
Hs. If the wind suddenly becomes week, the data 
points come on a special region of the non- 
dimensional H*-T* diagram as expressed in Fig. 2, 
and Fig. 3 is a schematic explanation (cited from £). 

If we use the maximum wind speed values 
within, say, the past six hours, the upper limit of 

i—i—i—r- 

Cs  /u* 

-i i 1_ J i_ 
10 15 20 25 

Fig. 1. Steepness of significant waves as a function of wave age. Closed symbols are from 
tower stations, and open from a laboratory. Cited from (5). 
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Hs will very well be given as a combined function 
of u* and Ts. Figure 2 is thus considered as a better 
expression of combined probability density of Hs 

and Ts, incorporating u*. 
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Fig. 2. The H*-T* diagram of data from an Ocean 
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Fig. 3. Schematic picture of the scattering of data 
points on the H*-T* diagram (Fig. 2), according 
to three categories. Cited from (£). 

OUTSTANDING QUESTIONS IN RELATION 
TO ELEMENTARY PROCESSES FOR THE 
WIND-WINDSEA EQUILIBRIUM 

General Description of the Local 
Microphysical Processes 

Microphysical processes at the air-water 
interface are characterized by the air-flow separation, 
reattachment of the high-shear layer of the air flow at 
the windward face of the waves causing a high 
tangential stress toward the crests, which in turn 
gives rise to the high vorticity region under the 

high vorticity 
region 

burst 

air 
entrainment 

ordered motion in water 

Fig. 4. A schematic picture of the microphysical processes at the air-water interface. 
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crest, and breaking of wind waves (e.g., 2,10). 
Wind waves are accompanied by ordered 

motions in water as well as in the air-flow above the 
wind waves (H, 12). Figure 4 summarize these 
microphysical processes at the air-water interface 
schematically. 

Although this schematic picture is for 
young waves in a laboratory, the actual windsea field 
is of a continuous energy spectrum, which contains 
the high frequency part well expressed by this 
picture. 

Energy   Input   and   Dissipation   by   Wave 
Breaking 

In the derivation of the u »-proportionality 
of Eq. (3), Phillips (4J invoked experimental 
observations by Plant (12) and Mitsuyasu and Honda 
(14). suggesting that the rate of spectral energy input 
from the wind Sw is proportional to (u*/C)2. This 
expression also include u * or the wave age. 
Mitsuyasu and Honda reported that this form was 
equally applicable to the case of water containing 
surfactant which made the wave surface smooth (14). 
In this case the effect of physical roughness of the 
water surface to the air flow is automatically 
included in the changed u*. 

The aspects of the energy input from the air 
flow vary according to the wave situation. 
Mitsuyasu and Kusaba (15) reported by an 
experiment that the energy input to rough wave 
surfaces was 40-50 percent larger than the case of 
smooth wave surfaces, though the energy input for 
wave components was of the same order of 
magnitude. It seems to indicate that a larger value of 
energy entered to the rough surface causes much 
larger energy dissipation. 

In fact, Hatori et al. (16). reported, by an 
experiment on the evolution of regular waves under 
the action of the wind, that the momentum retention 
rate, or the part of momentum which was retained as 
the momentum of regular wave component to the 
total momentum transferred from the wind to the 
water, reached about 50 percent. These values are 
much larger than the average value of the retention 
rate, which was reported to be at most 6 percent for 
very young wind waves (17). Hatori et al. (16) 
observed a few negative 50 percent values, and by 
visual observations they attributed these to 
dissipation due to wave breaking. A similar 
conclusion were also derived by independent 
experiments by Mitsuyasu (18) and Melville and 
Rapp (12). 

In many theoretical works (e.g., 20_, 21). 
energy input from the air to waves was estimated for 
air flows over component waves, though the air-flow 
separation and wave breaking are attributes of 
individual waves.  In wave modeling studies (e.g., 

22), the absolute values of energy dissipation was 
estimated as a residual between observed growth (not 
instantaneous, but steady) of waves and the sum of 
energy input and theoretical weakly nonlinear wave 
interactions. In these cases the absolute values of 
the three terms of source functions (input, wave 
interactions and dissipation) are assumed to be of the 
same order of magnitude with one another. 
However, the above-mentioned experimental 
observations suggest that the absolute values of the 
energy input and dissipation are much larger than 
usually assumed. 

Also, as shown in Fig. 5, energy spectra for 
growing windsea follow very closely the form of Eq. 
(3), although the microscopic perturbations are 
conspicuous. In view of these, it is very plausible 
that all of the source function terms are much larger 

ö (rod s"') 

Fig. 5. An example of time series of wind-wave 
spectra obtained at an oceanographic tower 
station. The ordinate is the spectral density 
normalized by asgu*cr4. The shaded ares 
represent local over-saturation. Cited from (34). 
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than usually assumed by wave modelers: much 
energy enters from the air to windsea, and much 
energy is being lost by wave breaking, and the wave 
interactions are much more effective by strongly 
non-linear processes. We will further consider this 
issue from a different point of view in the next 
section. 

Origin of the «»-Proportionality 

In Eq. (3) was given the windsea spectral 
form at the equilibrium range, which was consistent 
with Eq. (1). This also has the w «-proportionality. 
In the system of gravity wave interactions, Zakharov 
and Filonenko (23) showed that there is a wave 
spectral form proportional to o-4. However, it 
seems that there has been no purely theoretical 
derivation of the proportionality of the spectral level 
to u*. 

The air and water boundary layers are 
coupled by approximate continuation of the vertical 
momentum flux which is represented by the air 
friction velocity «*, since the portion of the 
momentum retained as the wave momentum among 
the total momentum transferred from the air to the 
water is few percent (12). Thus a* is the 
characteristic velocity for the coupled air and water 
boundary layers. 

If we express turbulent velocities in the air 
and water boundary layers by ua and uw, route mean 
squares of these are proportional to «* (24. 25. 2£, 
12). Wind waves are coupled with this u*, and the 
3/2-power law Eq. (1) represents such a situation 
(27). 

Equation (1) is also equivalent to the 
proportionality of the Stokes drift velocity uo of 
individual waves (with wave height H and period 7) 
of windsea, to «*: 

uo [ = 27t?H2/gT3l = 27t3 B2u* (6) 

Combining the turbulent intensities of the air and 
water boundary layers, we have (12,22), 

u* <x (ua
2)m « (uw

2)m pc u*w oc uo    (7) 

Considering these observations, it is natural 
to suppose that the origin of the ««-proportionality 
is combined phenomena of the wave modulation, the 
action of the local stresses of the air flow over 
instantaneous individual-wave forms, and thus arisen 
very local shear flow at the individual wave surfaces. 
It is conjectured that the «»-proportionality is 
eventually performed by wave breaking either 
incipient or visible, related to these strongly 
nonlinear processes. This is the concept of breaking 
adjustment of wind waves (27). 

Then, what determines the values of B in 
Eq. (1) or as in Eq. (3)? Or what does actually 
control the limit of wave steepness under the action 
of the wind? These questions are also issues to be 
solved. 

To answer these questions, further 
elucidation of elementary processes which are 
relevant to the strongly nonlinear processes, 
including wind stress structure related to air flow 
separation, reattachment, the recirculation under the 
crest, wave modulation and wave breaking, in 
addition to purely water-wave processes such as 
capillary rollers, bores and crest instabilities as 
studied by Longuet-Higgins (2g, 22). Close studies 
by experiment and theory on strongly nonlinear 
interactions including wave breaking, such as 
reported by Turin and Li (3J1) will be an important 
direction. 

If we approach these questions from 
microphysical aspects, we might immediately face a 
tall wall by virtue of complication of the 
phenomenon. And if we want to approach it from a 
more macroscopic aspects, we might have to retreat 
to the level of some integral constraint such as the 
continuity of momentum fluxes. 

The approach from the integral constraint 
may still be important. For example, there are 
ordered motions in the turbulent boundary layers 
(e.g., 2-L ID- However, in order to satisfy the 
constant flux of momentum, ordered motions 
themselves should perform a kind of self-adjustment 
so that the average velocity profile satisfies the 
logarithmic law. 

Eqs. (1), (3), (4), (6) and (7) are all 
consistent with one another. However, which is the 
most fundamental for the quasi-equilibrium state 
between wind and windsea to be established? It is 
the outstanding question to be solved. 

Perturbation in Wind-Windsea Equilibrium 
and CD Variation 

In relation to those questions, delicate 
fluctuation around these local equilibrium conditions 
occurs in processes for wind waves to adjust 
themselves to gustiness, as the fluctuation of as. 
At the same time, this delicate variation corresponds 
to a large fluctuation of the aerodynamic roughness 
parameter zo of the sea surface, which in turn 
corresponds to the variation of the drag coefficient 
CD. 

The same data with Fig. 5 can be used to 
discuss the detailed structure of wind stress variation 
(2, 22,13_). Figure 6 shows a time series obtained 
at the Shirahama Oceanographic Tower Station of 
Kyoto University (34). It is clearly seen that over- 
and under-saturation of the level of the equilibrium 
range of windsea occurs in relation to gustiness with 
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Fig. 6. An example showing that over- and under- 
saturation of the level of equilibrium rage of 
windsea occurs in relation to the short time 
scale u »-fluctuation. Cited from Q4). 
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Fig. 7. Sea surface roughness parameter zo varies in 
concert with the over- and under-saturation. The 
original data are same with those of Fig. 6. 
Cited from (22). 
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short-time scale «* fluctuation. Figure 7 (33) 
shows that zo varies in concert with this over- and 
under-saturation. 

As a physical interpretation, we can 
conjecture as follows. First there is a strong 
constraint for the water waves to satisfy, such as the 
spectral form proportional to c~*. As stated above, 
although there is a u* -proportionality for a steady 
state, the level of wind-wave spectra cannot follow 
gustiness instantaneously, since the total energy of 
windsea field is already large. Thus, if the wind has 
increased, the energy level of windsea becomes 
under-saturation, and the energy near the spectral 
peak flows down to the higher frequency part (Fig. 
8), and at the same time, the steepness of waves at 
the very high frequency part becomes larger to 
absorb energy from the air more effectively, and feed 
it to the equilibrium-range waves. This situation 
corresponds to increased values of zo- If the wind 
becomes weak, the spectral level at the equilibrium 
range becomes over-saturation, the energy in the 
equilibrium range near the spectral peak goes up to 
the peak wave for the spectral peak to become 
steeper (Fig. 8), and at the very high frequency range 

capillary waves diminish and the water surface 
becomes more smooth, in order for the energy at the 
equilibrium range to go up to the very high 
frequency region and to go to dissipation. The latter 
effect makes zo of the drag coefficient small for this 
negative gust. This situation is illustrated in Fig. 9. 

It is thus interpreted that the fluctuation of 
zo, which is related to gustiness, is directly 
connected with the question of the origin of the «*- 
proportionality, possibly representing the 
mechanisms for the u*-proportionality to be kept 
more effectively. 

PARAMETERISATION OF BREAKING 
WAVES, BUBBLE AND DROPLET 
FORMATION 

Reynolds Number for Breaking Windsea 

We may consider several forms of parameter 
which may represent the overall conditions for 
breaking of windsea. One of them is expressed by 

RB = u*Ls/v = u*2/v<jp (8) 

increasing u* 
(under-saturation) 

Fig. 9. A schematic picture of the response of 
windsea spectra to gustiness. Arrows indicate 
the direction of energy transfer. 

where v is the kinematic viscosity of the air, <yp is 
the angular frequency of the peak of the windsea 
spectra (25). The parameter of Eq. (8) can be 
considered as a kind of Reynolds number, if we 
consider Ls = 2nu */ap as a length scale at the 
surface of waves, or the distance for a water particle 
moving with a speed of u* within the significant 
wave period. 
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Fig. 10. Rate of breaking crests among individual 
waves traveling through a fixed point, A, plotted 
against Rg- The straight line is a 45 degree line. 
Cited from (3_5_). 
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The straight line is a 45 degree line. Cited from 
(25). 

concentration of sea water droplets in the air 
boundary layer above the windsea can also be scaled 
well by this number. 

In Eq. (8) ap is the measure representing 
the wind-wave conditions, and so in cases of sea 
conditions where dominant swells are present, we 
should use ap for the wind-wave part of the wave 
spectrum. 

The value of a is one-dimensional wave 
breaking conditions by definition. However, if we 
assume similarity in two dimensional individual 
wave forms, it is easily understood that the a value 
is converted to the whitecap coverage value which is 
a two dimensional matter. Furthermore, looking at 
Fig. 12, it is at least expected that this number 
might also represent, to some extent, the three- 
dimensional conditions of breaking of windsea fields, 
though this issue has not been tested. 

D class 5 (2.75<log m<3.25) 
O class 6 (3.25<log m<3.75) 
A class 7 (3.75<log m<4.25) 
V class 8 (4.25<log m) 

U.Vl/CTp 

Fig. 12. A normalized concentration of sea water 
droplets plotted against RB. The straight line is 
a 45 degree line. Cited from (36). 

This number was proposed as a useful 
parameter representing overall conditions of the air- 
sea boundary processes. It can scale percentage a of 
individual wind-wave crests which are passing at a 
fixed point of the sea surface (say at the site of a 
wave gauge) with entraining air bubbles. Figure 10 
shows that data in a wind-wave tank and from the sea 
collapse very well by this number. Figure 11 shows 
that this number can also scale well the percentage 
of whitecap coverage. Figure 12 (3_fi) shows that the 
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Fig. 13. Normalized vertical distribution of 
turbulent intensities (a) and Reynolds stress (b) 
under laboratory wind waves. Cited from (12). 
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A similar form of parameter as Eq. (8) is 
used to scale the average time between bursts in 
turbulent channel flows (il). In this case the 
boundary is a solid wall, and the phenomena are 
quite different. However, since wave breaking is a 
downward burst (IPJ, the similarity seems 
interesting. 

It may be worthwhile to note that a useful 
expression of the production rate of sea water 
droplets at the windsea surface, and the concentration 
of these droplets near the sea surface, are available 
(3©. 

Approximate Limit of the Depth of Bubble 
Entrainment 

In Yoshikawa et al. (12), vertical 
distributions of turbulent intensities and Reynolds 
stress under laboratory wind waves were normalized 
by using ap, standard deviation of the surface 
displacement Tp, and the wave length of the spectral 
peak wave Xp, as shown in Fig. 13. 

Considering that the steepness of wind 
waves is a function of the wave age as expressed by 
Eq. (4), if we normalize the ordinate of Fig. 13 by 
using Hs, or the significant wave height, instead of 
Xp, then we reach a conclusion that a limit of the 
depth where downward burst reaches is about 5HS. 
This value is very well coincident with a flow 
visualization study of forced convection 
accompanying wind waves (Photo 2 of 28), and with 
the depth of bubble clouds measured by an acoustic 
technique by Thorpe (22). 
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ABSTRACT 

The characteristics of coherent structures on 
the free surface of a channel flow are discussed. The 
term coherent is used to define organized motions 
on the free surface that persist in time. Experiments 
were conducted in a horizontal channel of cross- 
section 32 cm. x 10 cm and 450 cm long in the 
Reynolds number range of 1800 to 9000, where the 
Reynolds number was calculated based on the depth 
of flow and the tree-surface velocity. The results so 
far indicate that the persistent structures on the free 
surface can be classified as upwellings, downdrafts 
and attached vortices. Upwellings and downdrafts 
are related to the bursts originating in the sheared 
region at the channel bottom and the vortices are 
generated at the edges of the upwellings. The 
population density and the persistence time of the 
various structures were measured for different flow 
conditions. The resulting data seems to favor 
mixed scaling for normalization Direct numerical 
simulations of the channel flow at a Reynolds 
number of about 2500 suggests that the high shear 
rate at the edges of the upwellings on the surface 
cause instabilities which grow into vortices. The 
most interesting structures from the viewpoint of 
free - surface turbulence, decaying far from the 
region in which it is generated, are the vortices. 
Direct numerical simulations indicate that they 
form a quasi-two-dimensional region near the free 
surface with interaction and pairing that lead to 
upcascading of energy at lower wave numbers. 

NOMENCLATURE 

d = flow depth 
U = free surface speed 
Re = Reynolds Number 
tp = weighted avg. persistence time 
tj = persistence time observed 
Nj = number of vortices having persistence tj. 

INTRODUCTION 

Hydrodynamics at a gas-liquid interface 
(free surface) is important in many engineering 
applications and in geophysics. The transfer of 
gases , for example, oxygen and carbon dioxide at 
the surfaces of water bodies is of obvious 
significance to environmental engineering related to 
oxidation ponds, reaeration of rivers etc. It is 
important to understand the nature of turbulence 
near the free surface to get a correct estimate of the 
mass and heat transfer across the interface. The 
mass transfer due to turbulence generated just below 
the free surface on the liquid side of the interface in 
a channel flow was discussed by [ 1 ]. Turbulence 
measurement close to the free surface has been 
carried out by [ 2 ], [ 3 ] and by [ 4 ] amongst 
others. This paper will be confined to the 
discussion of the macro characteristics of the 
organized structures at the free surface in a channel 
flow viz., their size, population and persistence in 
time. A major motivation for this work is to 
understand what happens to turbulence near a free - 
surface. We are particularly interested in features 
that may arise from interactions with large 
subsurface structures, such as upwellings. The 
work has many possible implications. For 
example it may, amongst other applications, shed 
light on the origin of the large spiral structures seen 
in the oceans (size of the order of tens of 
kilometers) as observed in satellite photographs. 
These have also been termed 'modons' by 
geophysicists. 

EXPERIMENTAL   SETUP 

Figure - 1 shows a sketch of the 
experimental setup. The arrangement consists of a 
horizontal channel 450 cm long with a cross 
section of 32 cm x 10 cm, and a controlled traverse 
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with a camera for taking time exposed photographs. 
The measurements were taken in the central 10 cm 
of the channel to minimize edge effects. The 
channel is made of steel plate 2 mm thick with a 
glass section of 50 cm for flow visualization from 
the sides. The flow characteristics in the channel 
are well documented in [ 5 ]. The results reported 
here are from processing the pictures taken of the 
free surface from the top. We are in the process of 
documenting the simultaneous visualization of the 
flow from the top and from the side, so as to get 
more information on the connection between the 
dynamics in the boundary layer close to the channel 
wall and the coherent structures seen at the free 
surface. Some work in this regard has been reported 
earlier by [4]. 

The free surface flow was visualized by 
sprinkling hollow glass microballoons on the 
surface and taking time exposed still photographs 
by a camera moving at a speed close to the speed of 
the free surface. The camera used was a Nikon 
2000 with a 60 mm macrolens. This camera could 
take pictures at a maximum rate of 2.5 frames/ sec 
i.e., the minimum time interval between two 
consecutive pictures was 0.4 seconds. The direction 
of movement of the particles was determined by 
structuring the illuminating light. The field of 
view was illuminated by a constant light source ( 
an ordinary light bulb of 50 watts) with a flashlight 
(Sunpack 383) triggering just before the camera 
shutter closed. The result was a streakline with a 
bright dot at its head. The camera shutter operation 
and the flashlight were synchronized by in-house 
-fabricated TTL electronic circuitry. 

The light sources, camera and the control 
circuit were mounted on a belt driven traverse 
(Daedal 204000) which has a repeatability of 0.1 
mm. The driving motor for the traverse was 
Compumotor SI35 controlled by a Compumotor 
driver and 4 axis Compumotor indexer (AT6400) in 
an IBM PC. 

The experiments were performed for 
different flow depths keeping the Reynolds number 
of the flow, based on flow depth and the free surface 
speed, approximately constant at 2800. The free 
surface speed was computed by placing a few 
styrofoam beads on the free surface and taking a 
time exposed picture (1/4 - 1/8 seconds) when these 
beads passed through the field of view of the 
stationary camera. The free surface velocity was 
computed from these streaklines. 

The visualization was effected by 
sprinkling microballoons on the surface and 
following them at approximately the same speed as 
the free surface.   Pictures were taken starting a 

distance of about 60 times the water depth, from the 
channel entrance, till about lm before the end of the 
channel. This gave a clear distance of about 2 to 
2.5m for taking pictures. The channel bottom was 
painted black to aid in visualizing the 
microballoons on the surface. 

Figure 2 shows sample pictures of the free 
surface visualization with glass microballoons. 
The particle streaks in each frame correspond to a 
time of 0.4. The bright dot on the head of the 
streaks was placed 0.04 seconds before the end of 
the streak. The camera shutter was kept open for 
0.4 seconds and the rewinding motor took another 
0.4 seconds to advance the film. Hence, the time 
interval between two consecutive pictures was 0.4 
seconds. These pictures also serve to illustrate the 
various kinds of coherent structures found on the 
free surface. Referring to Figure 2a, attached 
vortices are shown by closed streamlines and 
upwellings are seen as the relatively particle - free 
areas. The particles, as shown by the streaklines, 
flow into these areas from one side and flow out of 
these at the opposite side. These are the classical 
"splat - like" fluid packets (also called surface 
renewal structures [ 3 ]) which is formed due to the 
ejections in the boundary layer. These energetic 
ejections reach the free - surface, move with it for 
some time, and then move back into the bulk of the 
fluid flow. Also, to be noticed in the right hand 
bottom corner of Figure 2b is the region in the 
picture from where all streaklines are directed 
outward, giving it a source - like (star shaped ) 
pattern. It would seem that these result from less 
energetic fluid packets from the boundary layer 
approaching the free surface. These ejections 
probably never reach the surface, but the volume of 
fluid displaced due to their approach towards the 
surface results in this net movement of fluid 
outward at the surface. 

In the following sections, the population, 
size, growth, decay and persistence of these 
structures will be discussed with an emphasis on 
the features related to the attached vortices. 

Experimental   Conditions 

The experiments described here were 
performed at a fixed Reynolds number, while the 
depth of flow and the rate of flow ( i.e., the free 
surface velocity ) were varied. The various 
parameters are listed in Table 1. The primary aim 
of this set of experiments was to see the effect of 
variation in depth on the characteristics of the 
persistent structures at the free surface. Other set of 
experiments with constant depth and variable free 
surface velocity is under way and the results should 
be available soon to understand the effect of surface 
speed on the coherent structures. 
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The Reynolds number of the flow was kept between 
2600 to 2700. The reason for selecting this 
Reynolds number was to be in the range in which 
direct numerical simulations of channel flows have 
been carried out. 

Table 1 
Flow conditions 

EXP. No. d(cm) U (cm/s ) Re 
1 1.5 18.2 2722 
2 1.9 14.1 2680 
3 2.0 13.4 2680 
4 2.4 11.0 2640 
5 3.4 7.7 2620 

Figures 3a to 3f show the characteristic 
flow field at the free surface for each of the flow 
conditions (Figure 3b is the flow visualization for 
the depth of 1.7 cm, although , this flow condition 
has not been analyzed quantitatively ). A gradual 
change from a panorama combining many vortices 
and upwellings to a relatively quiet condition, with 
a noticeable increase in the size of the vortices, is 
observed going from a depth of flow of 1.5 cm to 
that of 3.4 cm. 

Based on a large number of photographs 
taken for each case (nearly 100 for each flow 
condition ), the following sections describe the 
properties of the various components of the flow 
field at the free surface. 

Origin   and    Qualitative    Behaviour   of 
Attached  Vortices 

The origin of the upwellings (or the 
surface renewal eddies) lies in the boundary layer 
close to the channel wall ( [ 3 ], [ 4 ]). Here we 
will concentrate on the origin of attached vortices. 
Figure 4 shows a series of photographs illustrating 
the role of upwellings in the inception of attached 
vortices and the subsequent development of these 
rotational structures. The sequence of photographs 
shows the parallel development of two pairs of anti 
- rotational vortices. 

Figure 4a shows a small dark patch from 
which the microballoons are moving away. This is 
the upwelling formed due to the energetic bursts 
originating in the wall layer approaching the free 
surface and impinging on it. In the next two 
pictures the upwelling is more apparent at the free 
surface and an inception of rotational motion in 
opposite directions at the edge of the upwelling 
attached to the free surface may be seen. By the 
fourth picture frame the two anti rotational motions 

are seen to have developed into well formed pair of 
vortices rotating in opposite directions. 

This sequence of events is typical in the 
generation of vortices. In general, an upwelling 
was observed to generate one or more pair(s) of 
counter - rotating vortices in the time it stays at the 
free surface. 

The sequence of pictures in Figure 5 
shows the annihilation of an attached vortex by a 
new upwelling. The well developed rotational 
motion seen in Figure 5a starts getting distorted by 
Figure 5c and is completely destroyed by 5e. In 
general, this was observed to be the main 
mechanism behind annihilation of vortices, 
especially for the flows of relatively lower depths. 
The other mechanisms observed were : interaction 
between two neighbouring vortices and, to a lesser 
extent, viscous dissipation of rotational motion. 
The last mechanism was found to be more 
important for higher depths of flow where the 
vortices have a long enough lifespan, as will be 
discussed later. 

Figure 6.1 shows a pair of already formed 
counter - rotating vortices at the edge of an 
upwelling. The vortex rotating in the counter - 
clockwise direction is joined by another 
counterclockwise vortex, which can be seen well in 
Figure 6.4.. In the interval of the subsequent two 
pictures, the vortex rotating clocwise is seen to be 
absorbed due to its interaction with the 
neighbouring anti-clockwise vortex. This is again 
a very common phenomenon observed in 
visualizations. In some rare cases two vortices of 
opposite rotational motion were seen to merge to 
form a vortex of magnitude approximately equal to 
the difference in the magnitude of their vorticities. 
Merging of two vortices rotating in the same 
direction was observed frequently. In many 
instances, two vortices that have merged together, 
were seen to re-emerge as separate vortices at a later 
time. The reasons for this are not clear. 

Quantitative   Characteristics 

Figure 7 shows a histogram of the number 
of vortices occurring in different size ranges. The 
plots are shown for different depths of flow. A 
comparison of these plots shows that the number of 
large vortices increases monotonically as the flow 
depth increases, however, the number of smaller 
vortices first increases until the flow depth of 1.9 
cm and then decreases . The peak in the histogram 
shifts from within the range 0 - 200 (mm2) to the 
range of 200 - 400 (mm2) as the depth increases to 
3.4 cm. 

600 



Figure 8 shows the average number of 
vortices and upwellings in the investigation area of 
size 16 cm x 10 cm. The average number was 
calculated from a set of runs, where each run 
consisted of following the flow and taking 
continuous photographs, which varied from 25 for 
the highest depth to about 10 for the lowest depth. 
100 pictures in all were taken for each flow 
condition. The average number for each type of 
structure was first computed for each run and the 
final average value was then computed for the set of 
runs. 

Figure 8a shows the average number of all 
vortices in the field of view (16 cm x 10 cm) as a 
function of the depth. Figure 8b shows the average 
number of upwellings for different depths. Both, 
the number of upwellings reaching the free surface, 
and the number of attached vortices observed, 
decrease as the depth increases. The data seems to 
suggest that the effect of flow depth can be divided 
into two regimes. At lower depths the number of 
structures reaching the free surface appear to 
decrease linearly as the depth increases, whereas the 
change is much more rapid as the depth is increased 
further. A direct correlation between the number of 
upwellings and the number of vortices suggests that 
the upwellings provide the main mechanism behind 
the generation of vortices. 

Figures 8c and 8d show the average 
number of "new" vortices and average number of 
upwellings on the free surface. "New" means the 
structures that were generated during the span of 
time in which the photographs were taken i.e., all 
the structures that were seen to reach the surface or 
be generated after the measurement process started. 
The variation in the number of new upwellings 
with respect to depth shows the same trend as that 
for the total number of upwellings. However, the 
rate of decrease in the average number of new 
vortices at higher depths seems to be more rapid as 
compared to that of the average number of all 
vortices. 

A monotonic decrease in the number of 
coherent structures on the free surface can be 
attributed to the fact that fewer of the bursts 
originating in the viscous sublayer reach the free 
surface as the depth of flow increases. The 
difference in the behaviour of the average number of 
all vortices as compared to that of new vortices can 
be explained as follows. The total number of 
vortices at any time on the free surface is a function 
of the number of new vortices generated and the 
duration for which these vortices survive ( called 
the "persistence" time from now on). Hence, for 
low depths, although the number of vortices 
generated from an upwelling is higher, a large 

number of these newly generated vortices are short- 
lived because they appear to be annihilated by 
upwellings, giving a close correspondence between 
the equilibrium number (avg. number of vortices) 
and the number of new vortices. As the flow depth 
increases, the new vortices are more sheltered from 
the happenings in the boundary layer, resulting in a 
higher persistence time. As a results the 
equilibrium concentration of the vortices on the 
surface will decrease less rapidly as compared to the 
average number of new vortices generated. 

Persistence 

Figure 9 shows the histograms of the 
number of vortices in various intervals of duration 
of time given by a particular range. It can be seen 
that the fraction of vortices that have high 
persistence increases as the depth of flow increases. 
Based on these histograms a weighted average time 
of persistence is calculated for each case as follows 

tj^StjNi/ENi 

Figure 9 shows the plot of weighted 
average persistence time for the attached vortices for 
various depths. Also, shown on the topmost plot 
of this figure is the average distance of persistence 
for each case, computed by multiplying the 
persistence time with the free surface speed. Figure 
9(c) particularly shows the two regions of high rate 
of increase in persistence. It could be suggested 
from this graph that the life span of a newly 
generated vortex on the free surface increases faster 
than the decrease in the free surface speed (which 
decreases linearly with depth for constant Reynolds 
number) after a certain threshold depth of flow. 

Direct Numerical  Simulation 

The direct numerical simulations have 
been performed using a pseudo spectral technique to 
clarify the behavior of turbulence near free surfaces 
in open channel flows. This method has been 
extensively used by many researchers to investigate 
the nature of turbulence in simple geometries (see 
for example [6]) and has become a standard method. 
The free surface is treated as a rigid slip wall, i.e. 
the liquid behaves as if it has very large surface 
tension. In the simulations considered here, the 
shear Reynolds number based on the depth of the 
channel, the friction velocity at the no-slip wall and 
the kinetic viscosity is 171. In the streamwise and 
spanwise direction, 32 and 64 Fourier modes are 
used respectively. In the wall-normal direction, 65 
Chebyshev modes are used. The length, scaled by 
half depth of the channel, of the computational 
domain is 4n x 2n x 2. This has been found (see 
[7]) to give sufficient resolution to capture all 
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essential features of the turbulent flow at this 
Reynolds number, which is about 2500 based on 
hydraulic diameter. 

For fully developed channel flow, the three 
main types of structures observed in the 
experiments, i.e. upwelling, downdraftand attached 
vortices, are also realized in the direct numerical 
simulation. Figure 11 shows the streamlines on the 
free surface. The grey scale background indicates the 
surface-normal fluctuating velocity. The darker 
regions represent that the normal velocity is 
upwards which indicate upwellings, while the 
lighter regions are where the normal velocity is 
downwards which indicate downdrafts. It is seen that 
the streamlines converge in the regions of downdraft 
and diverge in the regions of upwelling. This is 
consistent with the experimental results observed in 
Figure 2. 

Figure 12 shows the spatial structure of 
the attached vortices. The streamlines are on the free 
surface. The structures hanging beneath the vortices 
are the isosurfaces of the fluctuating static pressure 
of a low value which is used here as a scalar 
identifier of vortices. The region shown in the plot 
is a layer about 20 wall units below the free 
surface. One can see that the attached vortices are 
dominantly surface-normal. 

The formation and evolution of attached 
vortices can be clearly observed by flow 
visualizations using the data base from direct 
numerical simulation. Figure 13 shows an 
instantaneous realization of a flow pattern on the 
free surface. A vortex is growing up at the edge of a 
upwelling, while another vortex formed early is 
being annihilated at the other side of upwelling. It 
is suggested that instablity of regions with high 
curvature at the edge of vortices induce the 
generation of vortices. The formation of the 
attached vortices can be further investigated by 
looking at the vortical structure beneath the free 
surface. Figure 14 shows isosurface of vorticities 
under an upwelling and vortices. In this figure, the 
structure of "dough nut" shape beneath the 
upwelling is the isosurface of the magnitude of the 
surface-parallel components of vorticity. The 
structures under the attached vortices are the 
isosurfaces of the surface-normal component of 
vorticity. It is suggested that the burst generated at 
the wall region carries fluid with high vorticity. As 
it reaching the free surface, it becomes an 
upwelling, and the surface-parallel vorticities have 
to reconnect with the surface to form attached 
vortices which carry surface-normal vorticity. This 
reconnection process is very similar to the cases 
studied in [8] where a pair of vortex tubes interact 
with a free surface and the normal connections of 

cross-axis vorticity with the free surface gives 
whirls. 

The numerical simulations are also used to 
verify the conjecture that turbulence close to the 
free surface is essentially two-dimensional. This is 
done by changing the no-slip condition on the 
bottom wall to a free-slip condition. The turbulence 
generation mechanism is hence removed and 
turbulence undergoes a decaying process. The flow 
pattern in the surface region evolves into one with a 
number of surface-normal vortices which pair and 
merge. The back scattering of kinetic energy is 
observed. This shows that the energy is absorbed 
into isolated vortices which decay slowly. It is 
suggested that within region about 40 wall units 
below the free surface, the turbulence can be 
essentially considered as two-dimensional. 

CONCLUSIONS 

Through flow visualization of the free 
surface in a channel flow it is suggested that the 
interaction between the free surface and the ejections 
from the shear region near the channel bed provides 
the main mechanism behind the generation of 
attached vortices. It is also the main source of 
destruction of these vortices, other than viscous 
dissipation. The number of coherent structures at 
the free surface, and their persistence (both in time 
and the distance travelled) are directly related to the 
depth of flow at a fixed Reynolds number. 

Direct numerical simulation of the channel 
flow at relatively low Reynolds number provides a 
good understanding of the process of vortex 
generation at the free surface and the nature of 
turbulence in the thin shear region beneath the free 
surface. 
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FIGURE  CAPTIONS 

Figure 1: Sketch of the experimental setup. 

Figure 2: Coherent structures at the free surface in 
a channel flow, visualized by sprinkling hollow 
glass microballoons on the interface, (a) attached 
vortices and "splatjike" structures (upwellings). (b) 
source-like area from which all streaklines are 
moving away. 

Figure 3 : Typical flow field at the free-surface for 
different flow conditions, (a) depth = 1.5 cm (b) 
depth = 1.7 cm (quantitative results for this case are 
not available now) (c) depth = 1.9 cm (d) depth = 
2.0 cm (e) depth = 2.4 cm (f) depth = 3.4 cm. The 
Reynolds number for the flows were between 2600 
-2700. 

Figure 4 : Inception and growth of a pair of 
counter-rotating vortices from the interaction of an 
upwelling with the free-surface. The consecutive 
frames are 0.4 sees, apart in time. 

Figure 5 : Annihilation of an attached vortex by an 
upwelling impinging on the interface. 

Figure 6 : Dissipation of two surface vortices due 
to mutual interaction. 

Figure 7 : Histogram of the number of vortices in 
different ranges of size. 

Figure 8 : (a) Average number of all vortices in the 
investigation area ( 16 cm x 10 cm ) in one 
sequence of photographs, (b) Average number of all 
upwellings in the investigation area, (c) Average 
number of "new" vortices, (d) Average number of 
"new" upwellings. 

Figure 9 : Histogram of the number of vortices in 
different ranges of life span. 

Figure 10 : (a) Weighted mean of persistence time 
of the attached vortices for different depths of flow 
and constant Reynolds number, (b) Free surface 
speed for different depths, (c) Average distance of 
persistence of attached vortices at differents depths 
of flow. 

Figure 11. Streamlines on the free surface. Bright 
regions indicate the downwards fluctuating normal 
velocity. Dark regions indicate the upwards 
fluctuating normal velocity. 

Figure 12. The streamlines on the free surface and 
the isosurface of low static pressure in a layer about 
20 wall units below the free surface. The low- 
pressure isosurface is used here as an indicator of 
the attached vortices. 

Figure 13. A close-up view of a portion of 
streamlines on the free surface showing the 
formation and annihilation of vortices due to a 
upwelling reaching the free surface. 

Figure 14. A three-dimensional view of the vortical 
structure beneath an upwelling. The structure with 
"doughnut" shape under the upwelling is the 
isosurface of the surface-parallel component of 
vorticity. The structures under the vortices are the 
isosurface of the surface-normal component of 
vorticity. 
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DISCUSSION 

M. Graham 
Imperial College, UK 

It seems to me that this flow is essentially a stress-free 
surface damped turbulence, assuming, as I think would 
be the case, that vortical motion of the free surface is 
small so that the free surface boundary condition is 
effectively w=0. If so it would be interesting to 
compare the present and future results of these 
experiments with the theoretical and experimental 
results for homogeneous (grid generated) turbulence 
adjacent to shear free boundaries. 
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Dynamics of a Turbulent Jet Interacting 
with a Free Surface 

N. Mangiavacchi, R. Gundlapalli, R. Akhavan 
(University of Michigan, USA) 

ABSTRACT 

The structure and dynamics of turbu- 
lence in the presence of a free surface has been 
investigated by direct numerical simulations of a 
low Froude number, temporally growing, round 
turbulent jet which is issued below and paral- 
lel to a clean free surface. The free surface is 
found to affect the dynamics of turbulence within 
a 'surface layer' of thickness on the order of one 
lateral Taylor microscale (or 1/4 of the local ver- 
tical jet half-width). Within this layer, the ver- 
tical velocity fluctuations are inhibited and the 
turbulence kinetic energy is redistributed to the 
horizontal components. Analysis of energy and 
transfer spectra within the jet show the presence 
of a nearly two-dimensional turbulent state in 
the 'surface layer' characterized by a net reverse 
transfer of energy to the large scales and the 
presence of two distinct k~5/3 and k~3 subranges 
in the energy spectra. Two classes of organized 
vortical structures could be identified within the 
'surface layer' of the jet; (i) vortex tubes with 
axis parallel to the free surface oriented along the 
direction of the mean flow strain field and, (ii) 
vortex tubes with axis normal to the free-surface 
connected to the free-surface. The former are 
subject to three-dimensional dynamics and the 
usual cascade of energy to the small scales. The 
self-induced lateral motion of these vortices un- 
der the influence of their images leads to a large- 
scale secondary flow (the surface current), which 
is the origin of the significantly higher spreading 
rates of the jet in the lateral direction compared 
to its spreading rates in the normal direction. 
The second class of structures are connected to 
the free surface and form long-lasting isolated 
vortex tubes which grow with time and occasion- 
ally merge. The lack of strong vortex stretching 

in these structures in the vicinity of the free sur- 
face leads to their longevity and the establish- 
ment of a nearly two-dimensional turbulent state 
within the 'surface layer'. 

NOMENCLATURE 

k wave number 
/ length scale of an eddy 
H depth of initial jet centerline 

below the free surface 
R0 initial half-radius of the jet 
U0 centerline velocity at t=0 
Ue(t) velocity at location of initial 

jet centerline at time t 

g acceleration due to gravity 
w vorticity vector 
Ü velocity vector 
c passive scalar concentration 

c mapped coordinate in Chebyshev 
domain 

A longitudinal integral scale 
Lx length of domain in axial direction 

Ly lateral distance from initial jet 
centerline to the point where 
velocity is .5Uc(t) 

Lz vertical distance from initial jet 
centerline to the point where 
velocity is .5Uc(t) 

h free surface elevation 

h longitudinal Taylor microscale 
Xg lateral Taylor microscale 
Zl/2 jet half-width in vertical direction 

S/l/2 jet half-width in lateral direction 

•Rl/2 jet half-radius 
u', v', w' velocity fluctuations in axial, 

transverse and vertical directions 
T(k,z) kinetic energy transfer spectra 
T(k) three-dimensional transfer spectrum 
E(k) kinetic energy spectrum 
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INTRODUCTION 

Free surface turbulent flows occur in 
many areas of engineering ranging from indus- 
trial mixing processes to environmental flows to 
problems of naval hydrodynamics and oceanic 
sciences. Nevertheless, of the extensive litera- 
ture devoted to turbulent flows surprisingly little 
concerns the dynamics of free surface turbulent 
flows. 

There are two main ways in which the 
dynamics of turbulence near a free surface dif- 
fers from that near a solid boundary; 
(i) The free surface is free to move in the verti- 
cal direction. Therefore, when a turbulent eddy 
impinges on a free surface, part of its kinetic en- 
ergy can be converted into the potential energy 
of surface waves. These waves, in turn, can travel 
downstream and affect the dynamics of turbu- 
lence in other parts of the flow. At high Froude 
numbers, this coupling between the energetics of 
turbulence and surface waves can be significant. 
At low Froude numbers, which is the focus of 
the present study, the wave amplitudes are suffi- 
ciently small for waves not to play an important 
role in the dynamics of turbulence. The free sur- 
face, in this case, acts as a barrier to vertical 
motion redistributing the vertical kinetic energy 
of turbulence into horizontal motion, 
(ii) At the free surface, the no slip boundary 
condition on the tangential components of veloc- 
ity encountered in wall flows is replaced by the 
requirement that the instantaneous shear stress 
must balance the surface gradients of the surface 
tension and the shear-stress on the air side of the 
free surface. For a clean surface with negligible 
wind velocities, this condition means that the 
mean and fluctuating components of the shear 
stress must vanish at the free surface. 
When a turbulent velocity field approaches a 
free surface, its spectrum of eddies have to ad- 
just to the above boundary conditions. These 
conditions were used by Hunt (1,2) to develop 
a theory for the structure of turbulence in the 
vicinity of a free surface in the limit of negli- 
gible surface deformation. The turbulence away 
from the surface was assumed to be homogeneous 
and isotropic. The theory treats the turbulence 
structure within the surface-infiuenced-layer as 
a superposition of the original homogeneous tur- 
bulence plus an irrotational velocity field, driven 
by a source distribution at the surface, such that 
the vertical velocity fluctuations at the free sur- 

face vanish. The free surface is, therefore, as- 
sumed to have a purely kinematical effect repre- 
sented by the formation of an image eddy when- 
ever an eddy of scale I appears within a distance 
£ of the free surface. The image eddy inhibits 
the movement of the original eddy towards the 
free surface and induces an additional tangential 
velocity at the surface such that the kinetic en- 
ergy of turbulence is conserved. Aside from these 
kinematical effects, the dynamics of turbulence is 
assumed to proceed in the usual manner. In par- 
ticular, the three-dimensional cascade of energy 
towards the small scales is assumed to be present 
near the free surface and the high wavenumber 
components of all three velocity components are 
assumed to conform to the universal k~hl3 Kol- 
mogorov spectrum. 

The predictions of Hunt's (1,2) theory 
were found to be in general qualitative agree- 
ment with experimental measurements of spectra 
and profiles of turbulence intensities in a free- 
surface grid-stirred tank by Brumley and Jirka 
(3). Nevertheless, these measurements reveal im- 
portant dynamical effects which are not properly 
accounted for by the purely kinematical theory 
of Hunt. In particular, the experimental data 
show a higher concentration of turbulence energy 
at the low wavenumbers in the horizontal veloc- 
ity components near the free surface than that 
predicted by Hunt's(l,2) theory. Measurements 
also show the surface-induced anisotropy in the 
velocity fluctuations to extend to high wavenum- 
bers, well into the inertial subrange, as the free 
surface is approached; in contrast to Hunt's the- 
ory which assumes no anisotropy at the high 
wavenumbers even near the free surface. Indeed, 
closer examination of the one-dimensional energy 
spectra in the experiments of Brumley and Jirka 
(3) shows the presence of two distinct subranges 
in the spectra of horizontal velocity components 
within the surface-influenced-layer; a k~5/3 sub- 
range at intermediate wavenumbers and a k~3 

subrange at high wavenumbers. At large dis- 
tances away from the free surface, the k~3 range 
disappears. 

Similar trends can also be observed in 
the experimental measurements of Swean et al. 
(4) in turbulent planar free-surface jets. Close 
examination of the one-dimensional energy spec- 
tra of horizontal velocity components within the 
surface layer in these experiments also shows the 
presence of two distinct subranges; a k~5/3 range 
at intermediate wavenumbers and a A:-3 range at 
high wavenumbers. Furthermore, the data indi- 
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cate a trend for pile-up of energy in the horizon- 
tal velocity components near the surface as the 
jet moves downstream. The authors attribute 
this pile-up of energy to the presence of slowly 
dissipating, vertically oriented, coherent vortex 
tubes which connect normal to the free surface. 

These connected vortex tubes, which 
have also been observed in a number of other ex- 
perimental studies of free-surface flows (Madnia 
and Bernal(5), Sarpkayaand Suthon(6) , Gharib 
et al. (7), Dommermouth (8)), are indeed a ma- 
jor distinguishing feature of free surface turbu- 
lence from wall-bounded or free turbulent shear 
flows. At low Froude numbers, these vortices 
are not subject to significant stretching in the 
immediate vicinity of the free surface. There- 
fore, the cascade of energy to the small scales 
within such vortices is inhibited, leading to their 
longevity and the establishment of a nearly two- 
dimensional turbulent state in the immediate 
vicinity of the free surface. These vortex tubes, 
however, are not the only admissible class of 
vortical structures in the vicinity of a free sur- 
face. Another class might consist of vortex tubes 
which are oriented parallel to the free surface. In 
contrast to the former structures, these vortices 
are subject to strong vortex stretching and the 
usual cascade of energy to the small scales. Thus 
the overall dynamics of turbulence near the free 
surface is the result of a delicate balance between 
the dynamics of these two classes of structures. 

The objective of the present study is to 
provide a better understanding of the dynam- 
ics of turbulence near a free surface, in par- 
ticular with regards to the importance of two- 
dimensionality within the surface-influenced- 
layer and implications for the development of 
accurate subgrid-scale models for LES of free- 
surface turbulence. The studies are based on 
results from direct numerical simulations of a 
temporally growing submerged round jet which 
is issued parallel to a clean free surface. This 
flow exhibits many of the features of ship wakes 
and because of its inherent simplicity has served 
as a prototype flow in a number of experimen- 
tal studies of free-surface turbulence (Madnia & 
Bernal(5), Anthony et al.(9) , Liepmann (10), 
Walker et al. (Ü)) in the recent years. 

NUMERICAL METHODS 

We investigate the evolution and dy- 
namics of a temporally growing round jet which 
is issued parallel to a clean free surface at a depth 

2 

2Äf, 

Rt 

3- 

3- 
ff = 2flo 

Fig. 1 Schematic of the jet and the coordinate sys- 

tem. 

of one jet diameter below the surface (H = 2R0)- 

A schematic of the jet and of the coordinate sys- 

tem used in this study is shown in Figure 1. 
The initial laminar jet had a Reynolds 

number, Rea = 2R<fa; 0f 4000 based on initial 

jet diameter and centerline velocity and a Froude 
number, FT —    Y°   , of 0.25. This Froude num- 

ber is small enough to allow the use of linearized 
free-surface boundary conditions in the simula- 
tions, thus resulting in significant savings in the 
required computational resources. 

The evolution of the jet is tracked in 
a Cartesian coordinate system by solving the 
Navier-Stokes equations 

du 
= V. X u> • VTT + (1) 

dt      ~ Re 

subject to the incompressibility constraint 

V • Ü = 0 (2) 

where w = V x ü is the vorticity and T — 
p + -j^y + || ü |2 is the dynamic pressure head. 
These equations were combined to obtain a sec- 
ond order equation for the normal component 
of vorticity and a fourth order equation for the 
normal component of velocity 

du3. 

dV2w 
dt 

k ■ V x (5 x w) + i/V2<3* (3) 

= -k- V x V x (u x 3) + vV*w     (4) 

In addition, to provide direct compar- 
isons with experimental flow visualization stud- 
ies, a passive scalar with a Schmidt number of 0.7 
was also imposed on the initial jet profile and its 
evolution was tracked by solving the scalar trans- 
port equation 

1     ~2 (5) dc      _„ 
dt       ' Re.Sc 

V2c 
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axisymmetnc _ 

helical(m=l). 

Fig. 2 Growth rates of axisym metric and helical 

modes in the initial laminar profile as a function of the 

disturbance wavenumber. 

The computations were performed using stan- 
dard pseudospectral methods (Canuto et al. 
(12)) employing Fourier series in the streamwise 
(x) direction and mapped Chebyshev polynomi- 
als in the spanwise (y) and normal (z) directions. 
Two algebraic mappings 

y 
Ro 

AC 
(l_C4)l/4 (6) 

and 

(7) 
z   _B{l-Q1/2 

Ro (i + C)1/2 

were used to map the —oo < y/R0 < oo and 
0 < z/R0 < oo physical domain to the — 1 < 
C < 1 domain of Chebyshev polynomials. The 
scale factors A = 5.0 and B = 9.6 were chosen 
to produce a nearly uniform distribution of grid 
points in the central portion of the jet and a more 
concentrated distribution of grid points near the 
free surface. 

Initial conditions for the runs were spec- 
ified as a laminar jet with a blunt velocity profile 
(see Figure 1) 

U/Uo = 0.5{1 + tanh[6.25(l - r/R)]}        (8) 

on which a divergence-free, random noise distur- 
bance field given by 

u'(x) =Vx (*(x) • I(T)) (9) 

was superimposed. Here $ is a three- 
dimensional isotropic random disturbance field 
(Rogallo (13)) whose spectral components were 
chosen to give <§ an energy spectrum 

E*(k) = ( 
1 + it2 A2 ) (10) 

The experimental data of Wygnanski and Fiedler 
(14) were used to specify the value of A = 0A5Ro 

and the profile of I(r) = exp(-1.9r2/-R„)- The 
initial disturbance field had an energy of 10-4 

relative to that of the mean flow. The passive 
scalar field was initialized with a profile identi- 
cal to that of the mean flow (equation 8). No 
disturbances were imposed on the passive scalar. 

Periodic boundary conditions were im- 
posed in the homogeneous (x) direction. The 
assumed periodicity length was chosen to be 
Lx/R0 = 16ir/a, where a = 2.85 corresponds 
to the wavenumber of the least stable (axisym- 
metric) eigenmode of the initial laminar profile. 
As shown in Figure 2, both axisymmetric and he- 
lical modes are nearly equally amplified at this 
wavenumber. The periodicity length of l&it/a 
was chosen to accommodate not only the devel- 
opment of the fundamental mode, but also two 
successive subharmonics. Based on available ex- 
perimental data on two-point longitudinal corre- 
lation lengths in round turbulent jets (Wygnan- 
ski and Fiedler, (14)) this domain is also large 
enough to ensure that the two-point statistics 
of the fully-developed turbulent jet are uncor- 
related at a separation of one half the domain 
length in the streamwise direction. The flow was 
assumed to be quiescent (u = 0) at large dis- 
tances away from the jet (y = ±oo and z — oo), 
while at the free surface (z = 0) the linearized 
free-surface boundary conditions were imposed 

(11) 

(12) 

(13) 

dh dh 
«*T- + ox 

dh 
V— = w 

ay 

duiz 

H7~ 0 

d2w 
dz* 

d2w 
~ dx2 

d2w 
+ dy* 

P+TT2 = -57-£T (14) _   2  dw 

FT
2
 ~ Re dz 

where h is the surface elevation. 
Time advancement was carried out by 

a semi-implicit full-step time-stepping scheme 
(Orszag and Patera (15)), involving explicit eval- 
uation of the convective terms using a second- 
order Adams-Bashforth scheme and implicit 
evaluation of the viscous terms using a Crank- 
Nicholson scheme. The fourth order equation 
for w was solved by decoupling it into two sec- 
ond order Poisson operators and imposing the 
boundary conditions (13) and (14) using an an- 
alytical Green's function approach (Domaradzki 
(16)). The second free-surface boundary condi- 
tion for w was obtained from equation (14) by us- 
ing the normal component of the Navier-Stokes 
equations 

d w d f ,_     _.      d ~  ,_     _. 

d2r      d2x     —.idw 
-\ 1 1- V — 

dx2      dy2 dz 
(15) 
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The resulting second-order Poisson operators 
were inverted using a collocation/diagonalization 
technique (Haidvogel and Zang (17), Halden- 
wang et al. (18)). Each Poisson solve requires 
0(NX - NY ■ NZ2 + NX ■ NY2 - NZ) opera- 
tions, roughly twice as many operations as in a 
Fourier/Fourier/Chebyshev code. These meth- 
ods lend themselves to high efficiency parallel 
implementation on medium-grained distributed- 
memory parallel processors. The only operation 
that requires communication is the evaluation 
of the multi-dimensional FFT's, which can be 
computed using a transpose algorithm. The de- 
tails of the parallel implementation is described 
in Mangiavacchi and Akhavan (19). 

Simulations were carried out with a res- 
olution of 128 x 129 x 129 de-aliased modes in the 
streamwise, spanwise and normal directions on a 
partition of the SDSC 400-node Intel Paragon. 
The final fully-developed turbulent jet had a a 
turbulent Reynolds number of Re\} « 75 based 
on longitudinal Taylor microscale (Re\9 « 55). 
The resulting grid spacing in the final turbulent 
jet was on the order of 3 Kolmogorov scales in 
the central portions of the jet. 

RESULTS 

Evolution of the Jet 

The overall evolution of the free-surface 
jet with time is shown in Figure 3a. The growth 
of the jet is tracked by following the time his- 
tories of the jet half-widths yi/2(t) and zi/2(t) 
in the lateral and vertical directions, defined as 
the distance between the location of the maxi- 
mum average streamwise velocity and the loca- 
tions along horizontal and vertical planes where 
the average velocity has dropped to half the max- 
imum value. Also shown in Figure 3a are the 
time histories of the maximum average stream- 
wise jet velocity, Um(t), and the ratio of the jet 

Reynolds number, Re2l/2 = m^1/3, to the ini- 
tial Reynolds number, Re0 = &•&*■. These re- 
sults should be compared with those shown in 
Figure 3b which show the evolution of a free jet 
with identical initial conditions evolving in an 
infinite medium without the influence of a free 
surface. The interval between 0 < tU0/Ro < 15 
represents the growth and saturation of the ini- 
tial disturbance fields in both jets. During this 
period, the sharp shear layers at the edges of 
the jet grow by viscous diffusion and the jet be- 
comes less blunt.   Nevertheless, since an invis- 

(b) 

t'./t'. • 

Re/Re. i 

self-similar solution . 

fij/S. = 0MW(tU./R. - ».5)"J 

VJV. = 3.2137(lf./Ä. - S.3)-""' 

/ 

It» 

R. 

Fig. 3 (a) Evolution of the free surface jet half-widths 
in the transverse, 2/1/2 (*), and vertical, zi/2(t) direc- 
tions; the jet maximum average velocity, Um(t); and 
the jet Reynolds number, ReZl/2(t) = UmZ^^/v, (b) 
Evolution of the jet half-radius, Ri/2(t)', jet centerline 
velocity, Um{t); and jet Reynolds number, ReRl/i(t) = 
UmRi/2/v, in an equivalent free jet with identical ini- 
tial conditions. 

cid core continues to exist at the center of the 
jet, the jet half-width and the centerline velocity 
are not affected. The time W0/R0 ~ 15 signi- 
fies the start of the first vortex pairing in the 
jet, after which the jet experiences rapid tran- 
sition to small-scale turbulence. By a time of 
tU0/R0 ~ 30, the jet has become fully turbulent. 
In the case of the free-surface jet, this time also 
represents the start of the interaction of the jet 
with the free surface. As seen in Figure 3, the 
evolution of the free-surface jet is dramatically 
different from that of the free jet beyond this 
point. While the free jet gradually approaches 
a self-similar fully-developed turbulent state, the 
free-surface jet experiences a rapid rise in its ver- 
tical jet half-width upon first interaction with 
the free surface at tU0/R0 ~ 30 which is accom- 
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panied by a simultaneous decline in the lateral 
jet half-width. These trends are reversed later 
on (beyond tU0/R0 ~ 60) when the free-surface 
jet begins to approach a self-similar state. In 
the final fully-developed turbulent free-surface 
jet (tUo/Ro > 85) the lateral jet half-width is 
nearly twice the half-width in the vertical direc- 
tion. Similar trends have been observed in exper- 
imental studies of spatially-growing free-surface 
jets (Madnia and Bemal (5), Anthony and Will- 
marth (20)). 

Figure 4(a,b) shows the evolution of the 
vorticity and passive-scalar fields in the free- 
surface jet. The initial structures formed from 
the saturation of the most linearly unstable 
modes are in the form of axisymmetric vortex 
rings. Subsequent evolution of these structures 
involves the instability of these vortex rings to 
azimuthal perturbations, the development of he- 
lical modes and pairings between various vortical 
structures. Traces of all these effects can be ob- 
served in the structure of the vorticity and pas- 
sive scalar fields at tU0/R0 — 15. In particular, 
the structure of the vorticity field (Figure 4a) 
shows the influence of an azimuthal mode with 
m = ±5, the development of asymmetry due 
to the presence of a helical mode with m = 1 
and symmetric as well as asymmetric pairings 
between the various vortical structures. The az- 
imuthal instabilities rapidly lead to the forma- 
tion of braid streamwise vortex tubes, which are 
strengthened during the vortex pairings and re- 
sult in rapid transition to small-scale turbulence. 
By Wo/Ro — 30 the jet is already fully turbu- 
lent. The development of the jet beyond this 
time is strongly influenced by the presence of the 
free surface. Among other effects, the interaction 
with the free surface leads to significantly higher 
spreading rates of the jet in the lateral direction 
in a shallow layer near the free surface. This 
phenomenon, which has also been observed in 
a number of experimental studies of free-surface 
jets (Madnia and Bernal (5), Anthony et al. (9), 
Anthony and Willmarth (20)), is clearly evident 
in the structure of passive scalar and vorticity 
fields at Wo/R0 = 100. 

Turbulence Statistics 

The time evolution of the mean turbu- 
lence statistics in the free-surface jet is shown in 
Figures 5 and 6. Profiles of the mean stream- 
wise velocity, the turbulence intensities and the 
Reynolds shear stresses are presented along hor- 

izontal (Figure 5) and vertical (Figure 6) planes 
passing through the (ym = 0, zm) location of the 
maximum mean streamwise velocity in the jet. 
Note that while the lateral location of the max- 
imum mean streamwise velocity always remains 
in the center-plane (plane y = 0) of the original 
jet, the vertical z = zm location of this maxi- 
mum begins to shift towards the free surface as 
the jet begins to interact with the free-surface 
beginning at tU0/R0 ~ 30. The maximum ve- 
locity reaches the free surface at tU0/R0 ~ 40 
and remains there during the remainder of the 
evolution of the jet (Figure 5a). 

At early times (tUo/R0 = 15) the turbu- 
lence statistics in the free-surface jet are indistin- 
guishable from that which would be obtained in 
a free jet. The asymmetry in the turbulence in- 
tensities observed at these early times in Figures 
5b-d and 6b-d is due to the dominance of axisym- 
metric disturbances in the early stages of the evo- 
lution of the jet. The jet begins to interact with 
the free surface at tU0/R0 ~ 30, shortly after 
experiencing transition to turbulence. The pres- 
ence of the free surface inhibits the vertical ve- 
locity fluctuations (V u;'2) within a thin 'surface 
layer' in the immediate vicinity of the free sur- 
face (see Figure 5d). Within this layer, the ver- 
tical turbulence kinetic energy is re-distributed 

to the kinetic energy of horizontal (Vu'2, vV ) 
motion and the turbulent fluctuations attain a 
strongly anisotropic character. The thickness of 
this 'surface layer' is estimated to be on the or- 
der of one lateral Taylor microscale (or 1/4 of 
the local vertical jet half-width in the present 
jet). The presence of the free surface also leads 
to significantly higher lateral spreading rates of 
the jet and lateral jet half-widths within the 'sur- 
face layer' compared to the spreading rates and 
jet half-widths in the vertical direction as seen 
in Figure 3. 

The statistics shown in Figures 5 and 6 
are in good qualitative agreement with experi- 
mental measurements in round and planar free- 
surface turbulent jets (Walker et al.(ll)), An- 
thony and Willmarth (20). The trend for the 
point of maximum velocity to shift towards the 
free-surface is also seen in experimental data. 
The statistics during the initial evolution of the 
free surface-jet agree well with experimental data 
at downstream locations | = 16,32. Experimen- 
tal data at further downstream locations that 
correspond to later times in our simulation are 
not available for comparison. 
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Vorticity Magnitude 
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Fig. 4a Evolution of the vorticity field in the free-surface jet. The structures have been visualized by 
iso-surfaces of   .".  = 2.5. 
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Passive Scalar 
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Fig. 4b Evolution of the passive scalar concentration field in the free-surface jet. The structures have 
been visualized by iso-surfaces of —— = 0.5. 
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Fig 5.  Profiles of (a) mean velocity, (b)-(d) turbu- 

lent intensities, and (e) the Reynolds shear stress 
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Fig 6.  Profiles of (a) mean velocity, (b)-(d) turbu- 
lent intensities, and (e) the Reynolds shear stress 

in the plane z = zm.    ,   ^A = 15; , 

30; , 60; - • - • -, 100; e°xperimental data 

of Anthony et al.  (20); O, § = 32; Walker et al. 
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Turbulence Spectra 

The conversion of the vertical kinetic 
energy of turbulence into the kinetic energy of 
horizontal motion within the 'surface layer' of 
the jet leads to the establishment of a strongly 
anisotropic, nearly two-dimensional turbulent 
state within this layer. To gain a better under- 
standing of the dynamics of turbulence within 
this layer, we next examine the spectra of ki- 
netic energy and kinetic energy transfer in the 
jet. 

Figure 7 shows the one-dimensional 
spectra of the turbulent velocity fluctuations in 
the jet at tU0/R0 — 100 at various depths below 
the free surface. At large depths (z/R0 > 2.0) 
the turbulence is seen to have an isotropic char- 
acter, manifested in Figure 7 by a collapse of the 
curves of one-dimensional spectra for the three 
components of velocity. As the free surface is 
approached, the low wavenumber components of 
the vertical velocity fluctuation is suppressed and 
the kinetic energy of these fluctuations is trans- 
ferred into the horizontal (particularly stream- 
wise) components of velocity. This anisotropy 
in the velocity fluctuations extends into progres- 
sively smaller scales, well into the inertial and 
dissipative ranges of turbulence, as the free sur- 
face is approached. 

The behavior observed in Figure 7 is 
qualitatively consistent with that predicted by 
Hunt's (1,2) theory, in which the free surface 
is assumed to affect a turbulent eddy of size i 
only when the eddy is within a distance I of the 
free surface. The primary effect of the free sur- 
face being the creation of an image eddy which 
suppresses the vertical velocity fluctuations at 
the surface and inhibits further movement of the 
original eddy towards the free surface. Thus 
the effect of the free surface is expected to be 
first felt at the lowest wavenumber components 
of the velocity and to then gradually extend to 
the high wavenumbers, consistent with the form 
of the spectra in the jet. Nevertheless, the re- 
sults shown in Figure 7 also reveal important dy- 
namical effects which are not properly accounted 
for in Hunt's (1,2) theory. In particular, Hunt's 
theory assumes the high wavenumber compo- 
nents of all three components of velocity to be 
isotropic and to conform to the universal k~5'3 

Kolmogorov spectrum even at the free surface. 
In contrast, Figure 7 shows the anisotropy in the 
velocity fluctuations to extend to the smallest 

wavenumbers at the free surface. Furthermore, 
these results indicate the presence of two distinct 
subranges in the energy spectra; a k~5/3 sub- 
range at intermediate wavenumbers and a k~3 

subrange at high wavenumbers. These two sub- 
ranges are typical of 'two-dimensional' turbu- 
lence and suggest that the dynamics of turbu- 
lence in the 'surface layer' may indeed follow the 
governing laws of two-dimensional turbulence. 
Similar trends can also be observed in the ex- 
perimental measurements of the energy spectra 
in planar free surface turbulent jets by Swean et 
al. (4) and in the free surface grid-stirred tank 
of Brumley and Jirka (3). 

To investigate the two-dimensional char- 
acter of turbulence within the 'surface layer' in 
further detail, we next examine the kinetic en- 
ergy transfer spectra in the jet. Figure 8(a- 
e) shows the spectra of kinetic energy transfer 
T(k, z) to a wavenumber k = (kx, ky) located on 
a horizontal plane at a depth z/R0 from the free 
surface. The transfer T(k, z) is defined as 

T{k,z) = -   ]P   Real{ü''a(kx,ky,z)Na(kx,ky,z)} 
*-l<|k|<Jc+i 

(16) 
where u'Q(kx,ky,z) is the complex conjugate of 
the planar Fourier transform of the component 
of the disturbance velocity in the plane z and 
Na(kx,ky,z) is the planar Fourier transform of 
the nonlinear terms in the Navier-Stokes equa- 
tions arising from the turbulent fluctuations in 
the same plane. Note that T(k,z) is different 
from the three-dimensional transfer spectrum, 
T(k), defined as 

T(k) = -      J2      Äea/{t»*';(k)#a(k)}        (17) 

which is commonly used in the study of three- 
dimensional turbulent flows. Indeed, T(k, z) can 
be viewed as a projection of T(k) onto a hor- 
izontal plane z. Figure 8f shows a comparison 
between the volume average of T(k, z) in the 
jet and the volume average of the true three- 
dimensional transfer T(k). The similarity be- 
tween the two curves indicates that the dynamics 
of both quantities is similar. 

The transfer spectra shown in Figure 8 
demonstrate that on the average in the jet (Fig- 
ure 8f) and at large depths from the free surface 
(Figures 8d, 8e) the dynamics of turbulence fol- 
lows the rules of three-dimensional turbulence 
and is dominated by a net forward transfer of en- 
ergy from the large scales of turbulent motion to 
the small scales.  However, as the free surface is 
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N x face turbulent flows. This makes the modeling of 
such flows substantially different from the well- 
studied examples of wall-bounded or free-shear 
flows. 

Turbulence Structure 

ß) 

Wmmmi ■^0^0^^^^^W^^^0^^^^f^^^^^$^'. 

Fig. 9 Close-up view of the near-surface structures 

in the fully developed turbulent jet at ^ — 100 show- 

ing (a) vortex tubes terminating normal to the surface 

leading to surface depressions, and (b) vortical struc- 

tures parallel to the surface aligned with the direction 

of mean flow strain field. 

approached (Figures 8a) the turbulence attains 
a two-dimensional character and its energetics is 
dominated by a net reverse transfer of energy to 
the large scales. Translated to an effective eddy 
viscosity, this means that the eddy viscosity has 
to be negative near the free surface. In the inter- 
mediate locations (Figure 8b, 8c), the overall dy- 
namics of turbulence is determined by a delicate 
balance between the three-dimensional dynamics 
of the deep turbulence and the two-dimensional 
dynamics of turbulence in the immediate vicinity 
of the free surface. 

This transition to 'two-dimensional'tur- 
bulence in the immediate vicinity of the free sur- 
face has to be accurately captured in any turbu- 
lence model used for the prediction of free sur- 

To investigate the origin of these phe- 
nomena, we next investigate the structure of tur- 
bulence in the vicinity of the free-surface. Fig- 
ure 9 (a,b) shows the structure of the high in- 
tensity vorticity field in the free-surface jet at 
tUo/Ro — 100. Two classes of organized vortical 
structures can be identified near the free-surface; 
(i) vortex tubes with axis parallel to the free sur- 
face oriented along the direction of the mean flow 
strain field and, (ii) vortex tubes with axis nor- 
mal to the free surface connected to the surface. 

The signature of both of these structures 
can be clearly seen in the top view of the free 
surface shown in Figure 10. 

Fig. 10      Shadowgraph of the surface at ^ = 100. 

The parallel vortex tubes experience 
three-dimensional dynamics and the usual cas- 
cade of energy to the small scales. The self- 
induced lateral motion of these structures under 
the influence of their image leads to a large-scale 
mean secondary flow (see Figure 11) known as 
the surface current. This motion is the origin of 
the significantly higher lateral spreading rates of 
the jet compared to its spreading rates in the ver- 
tical direction. The downward motion induced 
by the image vortices prevents this class of struc- 
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tures from approaching the immediate vicinity of 
the free surface. 

and is dominated by a net reverse transfer of 
energy to the large scales. These effects should 
be incorporated into any turbulence models in- 
tended for the prediction of free surface turbulent 
flows. 
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Generated by Turbulent Shear Flow 
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ABSTRACT 

A preliminary analysis of free- 
surface wave generation by a turbulent shear- 
flow existing prior beneath the free-surface is 
carried out by means of direct numerical 
simulation. The initial state of simulation is 
inherited from the direct numerical 
simulation results of turbulent open-channel 
flow. The simulation is started by releasing 
the solid boundary into the free surface 
boundary. The nonlinear evolutions of free- 
surface waves as well as the flow structure 
beneath the free-surface are studied. 

INTRODUCTION 

A free-surface shear flow, is a typical 
phenomenon for wind-wave, ship wake and 
wave breaking, etc., and is significantly 
important in the fields of environmental 
science, remote sensing, ship hydrodynamics, 
chemical engineering and the other industrial 
production processing. The difficulties to 
treat this problem come from the existence of 
nonlinear free-surface, turbulent shear-flow 
and their interaction. 

In principal, the free-surface shear- 
flow can be divided into two categories. One 
is due to the gas/liquid interaction such as 
the wind-wave generation problem. The 
other is due to the shear-flow or turbulent 
impinging from the liquid side such as the 
wakes of hydro-foil and ship, and the 
turbulent jet or plume beneath the free- 
surface. The present work is to study a three- 
dimensional mathematical model of turbulent 
shear-flow existing prior beneath the free- 
surface which lays in the latter category. 

There are two simple models 
considered so far for this kind of model. One 
is the roll-up of a submerged vortex sheet 
close to the free-surface studied by 
Tryggvason (1988) and Yu & Tryggvason 
(1990). The other is a linear problem of two- 
dimensional shear-flow/surface interaction 
by Triantafyllou & Dimas (1989). In their 
extensive study, Dimas & Triantafyllou 
(1994) considered a shear-flow beneath the 
free-surface at infinite Reynolds number. 
They started their two-dimensional Euler 
computation with a shear-flow profile 
measured by Mattingly & Criminale (1972), 
superimposed a perturbation having the form 
of fastest growing linear instability model of 
the shear-flow (Triantafyllou & Dimas, 
1989). However, the picture of flow structure 
they described is essentially two- 
dimensional, which is now widely known to 
be different from the three-dimensional case. 

For the three-dimensional case, some 
important progresses have also been made in 
the field of gas/liquid interaction when the 
amplitude of free-surface wave is infinitely 
small. The phenomena beneath the free- 
surface are found somehow similar to those of 
wall turbulent boundary layer in terms of 
turbulent "streak" structure or "burst" 
mechanism (Komori, Murakami & Ueda, 
1989; Lam & Banerjee, 1991). The free- 
surface is treated as a linear/free-slip 
boundary in the most of theoretical and 
numerical studies. 

Komori, Nagaoka & Murakami (1993) 
mentioned that the transfer mechanism in the 
turbulent flow structure beneath the free- 
surface may be more similar to that of 
"Langmuir circulation". Langmuir circulation 
is the problem of wind-wave interaction 
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problem, well known for its vortidty structure 
parallel to the mean flow beneath the ocean 
surface and its formation of free-surface wave 
streaks associated with the longitudinal 
vorticity (Leibovich, 1977). This kind of 
organized vorticity structure is considered as 
the characteristics of three-dimensional 
structure beneath the sheared free-surface. 

When the amplitude of free-surface 
wave is definite, both the nonlinear evolution 
of free-surface and the turbulent/surface- 
wave interaction are still unknown in many 
aspects. As pointed out by Sarpkaya (1993), 
it is difficult to find out a distinct turbulent 
structure in the vicinity of free-surface 
beneath since some basic features such as the 
wave modulation by turbulence are basically 
nonlinear and difficult for analysis. 
Therefore, it is undoubtedly useful to 
formulate a mathematical model and to 
implement a numerical experiment based on 
the time-dependent Navier-Stokes system 
subject to the complete, nonlinear free-surface 
conditions. This work is based on this kind of 
consideration. 

This work investigates the nonlinear 
evolution of free-surface waves generated by 
the turbulent shear-flow. The initial state of 
simulation is fully developed turbulent shear- 
flow in an open-channel. A similar model 
has been studied by Leighton & McHugh 
(1993). They superimposed a linear surface- 
wave upon the turbulent open-channel flow. 
In this work, a different conception is 
considered. At the beginning of the 
simulation, the solid boundary of the 
turbulent open-channel flow is released into 
the free-surface, leaving a strong turbulent 
shear-flow beneath the free-surface. The 
physical phenomenon is similar to the wake 
of turbulent jet, of free-surface flow sheared 
by wind or a flat horizontal plate. 

This paper consists of two parts. In 
the first part, a highly accurate, conservative 
and multi-grid finite-volume solution method 
is developed. The time-dependent Navier- 
Stokes equations in the Arbitrary-Lagrange- 
Euler (ALE) description are discretized into a 
fully conservative finite-volume formulation 
in the framework of a non-staggered, free- 
surface boundary-fitted coordinate system. A 
fifth-order upwind-biased flux-difference 
splitting scheme is facilitated for the 
nonlinear convection term.       The solution 

procedure is based on the MAC algoritm. The 
Poisson equation is solved by means of a fast 
multigrid Gauss-Seidel/LU decomposition 
iteration method. This method is validated 
in the numerical analysis of a solitary wave 
propagation in a shallow channel by 
comparison with the previous studies. 

In the second part, at first, a direct 
numerical simulation of turbulent flow in an 
open-channel is carried out. The simulated 
results are compared with the previous 
studies. Secondly, when the turbulent flow in 
an open-channel rearches a statistically 
stationary state, the solid boundary is 
released into the free-surface and the pressure 
gradient in the streamwise direction is turned 
off. The nonlinear evolutions of free-surface 
wave generated by the existing turbulent 
shear-flow as well as the flow structure 
beneath the free-surface are analyzed and 
discussed. 

NUMERICAL METHOD 

Formulation and Solution Method 

The governing equations are 
formulated in so-called "partial 
transformation" in a framework of free- 
surface boundary-fitted coordinate system. 
The variables are collocated at the center of 
the cell in the computational domain. The 
continuity equation and the time-dependent 
Navier-Stokes equations in the Arbitrary- 
Lagrange-Euler (ALE) description for the 
incompressible flow are written as follows. 

div(u) = Or (l) 

— + div Uu-v)H]= 
dt U       ' 

-grad(P) + div -l-{gradu +{graduf) 
[Re 

(2) 
where u is the velocity and P is the dynamic 
pressure defined as follows. 

P=t+xl 
&       F2n , (3) 

p is the pressure, g is the density of fluid, 
and x3 is the vertical coordinate in direction 
with the free-surface elevation. The 
Reynolds number Re and Froude number Fn are 
defined as follows. 

UpH 
v   , (4a) Re 
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VJH, (4b) 
where U0is the reference velocity and H is 
the depth of the physical region in this 
paper, g is the gravitational acceleration 
and v is the molecular viscosity, v is the 
moving velocity of the free-surface boundary- 
fitted coordinate system and is defined 
implicitly in the following ALE inviscid flux 
formulation. 

The ALE inviscid flux can be written 
in the following form. 

FU[s'.u-dYL)qJuJ.dvL)q 
V dt I      \        dt I   , (5) 

where q is the arbitrary velocity component, 
y is the volume flux (mass flux) in; sweep, Sf 
is the surface vector of the cell in; sweep and 
P is the ALE inviscid flux for q in ;* sweep. 
The moving velocity v is represented by the 
time derivative of volume flux V1 which is 
defined by the movement of the surface vector 
SJ as shown in Fig.l. Therefore the 
relationship between the moving velocity and 
the time derivative of V1 is as follows 
(Rosenfeld & Kwak, 1991). 

S*-v = wi 
dt  . (6) 

The convection term is spatially 
discretized by a fifth-order upwind-biased 
flux-difference splitting scheme based on the 
flux-difference splitting method by Sawada 
et al.(1987) as follows. 

2 
where 

F?  i = if 

-I \ 7 

2 

ÜIJ) 
u!+i 

<7M 

U =UJ dV> 
dt , 

(7) 

(8) 

and^' + j and^' + j are defined as follows. 

<7i + r = Qi + &i fyi-1 + ®2 &fr.l 
2 2 2 

+ <P3 öqi + i+ *4" <5(?, + 3 
2 2, (9a) 

9< + l+ =   ty'+l " #4  &7,-5   - 4>* &;.3 
2 2 2 

- *2+ äq;A- 0i+ öqi + i 
2 2, (9b) 

where 

** + ±s**i-*t (10) 

4>j"= 0l =--2_ 
60, (11a) 

*2=*2+= — 
60, 

60, 
(j>4- = <*>;=--3. 

(11b) 

(He) 

60. (lid) 
When the geometries of physical domain and 
flow are smooth, the above flux-difference 
splitting scheme is identical to the finite- 
difference scheme by Rai & Moin (1991). 

The solution procedure is based on the 
fractional step method of the MAC 
algorithm. Time integration is implemented 
by a second-order Adames-Bashforth/Crank- 
Nicholson scheme. The mass flux U} is 
defined at the cell surface of respective ;' 
sweep, contrasted with the velocity 
component defined at the center of computing 
cell. Therefore the continuity equation can be 
formulated in terms of the mass flux as 
follows. 

£t/'' = 0 
; (12) 

The mass flux is defined as follows. 
U1 = S'-fX Gk(a)k\- SJ'-Atgrad{P) 

(13) 
where a is defined at the center of computing 
cell as the summation of the convection term 
and the diffusion term in Navier-Stokes 
equation. Gk is the interpolation operator 
with respect to the position k. Therefore the 
first term means an interpolation of a from the 
cell center to the cell surface. A fourth-order 
interpolation is employed in the present 
study. At is the time interval. By inserting 
Eq.(13) into Eq.(12), the Poisson equation is 
defined as follows. 

At% Sj-grad{P) = £ sM2(i(a)*) 
; /        U /. 

(14) 
The mass flux employed in the ALE inviscid 
flux of Eq.(5) is identical to that defined in 
Eq.(13). It is obvious that the divergence-free 
is inevitably important for raising the 
accuracy of high-order scheme in the 
convection term. 

It is necessary to introduce a fast 
solution method for the pressure equation in a 
time-dependent Navier-Stokes simulation for 
turbulent flow since the pressure solution 
takes almost 80% CPU time of the 
computation in the MAC-type fractional step 
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method (Rosenfeld & Kwak, 1993). In this 
study, the Poisson equation is solved by a V- 
cycle multigrid technique applying to the 
Gauss-Seidel linear LU-decomposition 
iteration method. The basic multigrid 
method employed here is the so-called 
"correction scheme" for the linear Poisson 
equation, based on the method by Ghia et 
al.(1988). A V-cycle structure is used with 
two iterations at each multigrid stage. The 
test computation (not shown here) showed 
this method accelerated the computation at a 
speed of almost several hundred times. 

Free-surface Condition 

The nonlinear kinematic condition and 
dynamic condition at the exact wave 
elevation are applied at the free-surface in 
this study. In principle, the kinematic 
condition mantains the mass balance, while 
the dynamic condition corresponds to the 
momentum balance at the free-surface. 

In the present study, the following 
kinematic condition in the Eulerian manner is 
used. 

at       dx1       dx2     f (is) 

where the free-surface elevation 77 is in x 
12       1 

direction of a flow field (u, r)= ((u , u , u), 
(x1, x2, x3)). The fourth-order centered finite- 
difference scheme is used for the spatial 
derivatives. The   time   integration   is 
implemented in Euler-implicit manner by a 
predictor-corrector iterative method. The 
iteration is required to converge to machinery 
accuracy since the free-surface turbulent 
motions is studied in the present study. 
Usually less than 10 iterations are required 
for this procedure. A 5-point smoothing 
formula by Longuet-Higgins & Cokelet (1976) 
is introduced to prevent the free-surface 
configuration from the numerical spurious 
oscillation. 

For simplicity, there is no surfacants 
acting at the free-surface in the present study. 
The dynamic condition employed in the 
present study is written in the following 
equation, which contains one along the 
normal direction of the deformed free-surface 
and two along the tangential directions. 

-PS']nini +-J-—r 1 
Re 

du 

dx'    dx7 w* 
(16) 

where n=[nj} i=l, 2, 3) is the normal vector of 
the deformed free-surface. % is the surface 
curvature and Wb is the Weber number defined 
as follows. 

wh=ü__ (17) 

where o is the surface tension of fluid. The 
two tangential-free conditions are applied in 
the diffusion term of Navier-Stokes 
formulation and the normal condition is 
employed in the solution of Poisson equation. 

Other Boundary Conditions 

This work treats three cases of 
physical phenomena. They are 1) solitary 
wave propagation in shallow channel; 2) 
turbulent open-channel flow and 3) free- 
surface wave generation by turbulent shear- 
flow beneath the free-surface. The common 
conditions for these three-dimensional 
simulations are the periodic conditions in 
both the streamwise direction and the 
spanwise direction. The differences are 
boundary conditions in vertical direction. 

In the case of solitary wave 
propagation, the upper boundary is the free- 
surface. The lower boundary is the solid 
boundary so that no-slip velocity condition 
and zero-pressure gradient condition are 
applied. In the case of turbulent open- 
channel flow, the upper boundary is the solid 
boundary. The lower is the symmetric 
boundary so that free-slip velocity condition 
and zero-pressure gradient condition are 
applied. In the case of free-surface wave 
generation by turbulent shear-flow, the upper 
is the free-surface. The lower is the 
symmetric boundary. 

SOLITARY   WAVE   PROPAGATION   IN 
SHALLOW  CHANNEL 

Condition of Simulation 

A solitary wave travelling in a 
rectangular channel of uniform depth 
initially studied by Russell in 1837, is 
numerically analyzed in order to validate the 
numerical method presented in this paper, 
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subject to the nonlinear, complete free-surface 
conditions. Laiton's approximation of a 
solitary wave is employed in the present 
study (Laiton, 1960). The initial velocity 
and free surface elevation are defined as 
follows (Ramaswamy, 1990). 

u1 = Ao sech2 0o, (18a) 
u2 = 0, (18b) 

u3 = V3Ao x3 sech2 <PQ tank *o,   (18c) 

h = 1 + Ao sech2 <t>0, (18d) 

where 

^) = lf3Ä7(x1-c0 
2  , (19a) 

c = Vl+Ao. (19b) 
All the variables are nondimensionalized by 
the depth H and the reference velocity 

Uo = VgH. Therefore Froude number is at 1.0. 
For comparison with the previous study 
(Tang, Patel & Landweber, 1990), A0is set at 
0.2, and the physical domain is 30 long, % 
wide and 1 deep. A 65 (streamwise) x 5 
(spanwise) x 33 (vertical) grid is employed for 
the quais-three-dimensional computation 
domain. In the present study, three cases at 
Reynolds number 50, 500 and 50000 are 
computed. 

Simulated Results 

Fig. 2 shows the wave evolution of 
free-surface configuration at the different 
Reynolds number. Compared with almost the 
same study by Tang et al.(1990), the free- 
surface wave dampings due to the boundary 
layer at the bottom are quite well revealed 
except the small wavy profile at the leeward 
of the solitary wave. The reason of this is 
due to the periodic condition in the 
streamwise direction in the computation since 
the wavelength of solitary wave is basically 
infinite. An alternative study by Hino (1991) 
using a finite-volume method with the 
periodic condition also showed the same 
small wavy profile at the leeward. Tang et 
al.(1990) set both the upstream and 
downstream of the physical domain as the 
open boundary with zero-gradient condition. 
This effect of periodic condition for wave 
problem reminds that the cutoff of dominant 
wavelength by the periodic condition will 
raise some numerical spurious waves. 
Therefore, in the computation with periodic 

condition the Taylor Froude number Fx should 
be no more than unit,   i.e., 

FA = JZa_<i.o 
V^X , (20) 

where X is the cut-off wavelength of periodic 
physical domain. This condition corresponds 
to that the wavelength of simulated wave 
should be shorter than the cut-off wavelength 
of periodic physical domain. This result will 
be useful for the computation of wave problem 
with periodic condition. 

Fig.3 shows the comparisons of the 
computed attenuations of wave crest height 
with the theoretical approximation of 
Keulegan (1948) and Mei (1983). The wave 
crests at Re= 50 and 50000 show less damping 
than those of Tang et al.(1990) but at 
Reynolds number 500 show more. It is 
thought that the viscous damping by the 
bottom boundary layer is not so large as shown 
by Tang et al.(1990) at Re= 50000. Therefore 
the present study may show a better 
numerical result. 

TURBULENT OPEN CHANNEL FLOW 

Condition of Simulation 

A number of direct simulations of the 
turbulent open channel flow have been carried 
out for the investigation of the turbulent 
structure both near the wall and beneath the 
flat free-surface (Lam & Benerjee, 1992; 
Handler at al., 1993). In the most studies in 
this field, the spectral method (Kim et 
al.,1987) is used. This is because the spectral 
method shows the most realistic spectra over 
wide range of Fourier space. However, it is 
difficult for the spectral method to apply to 
the turbulence with complex geometry. In 
contrast with the spectral method, the finite- 
difference method can not reveal the wide 
spectral property of flow due to the finite 
difference approximation but is feasible for 
the simulation of turbulence with complex 
geometry (Rai & Moin, 1991). 

In the present study, a direct 
simulation of open-channel flow is carried out 
for two purposes. At first, a fully developed 
turbulence open-channel is required as the 
initial state for the free-surface wave 
generation by turbulent shear-flow beneath 
the free-surface.   Secondly, at the same time, 
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a finite-volume solution method is then 
validated to answer the question that if the 
present method is capable for the simulation 
of turbulent flow with the dynamic free- 
surface. 

Due to the limitations of the memory 
and CPU time on the computer, a rather 
coarse grid is facilitated here for the 
simulation. In the present study, a 33 
(streamwise) x 33 (spanwise) x 65 (vertical) 
grid for a physical domain of (2JC X % x 1 )is 
introduced for the Reynolds number Rt= 171, 
based on the channel depth H and the wall 
fractional velocity u,.. This Reynolds number 
corresponds to the Reynolds number Re defined 
in Eq.(4a) at 3100, where U0 is the mean 
velocity at the center plane of the channel. 
The smallest grid used so far by spectral 
method for the open channel flow in the same 
dimension is that of Lam & Banerjee (1992), in 
which a 32x64x65 grid is used. For the finite- 
difference method for the simulation of a 
channel flow, the smallest one ever known is 
that of Rai & Moin (1991), in which a 
64x64x65 grid is used (they called coarse grid 
case). Handler at al. (1993) used a 64x64x65 
grid for a lower RT at 134 in their spectral 
simulation of a turbulent open channel flow. 

A laminar velocity profile and 5% 
random disturbance of mean-flow are given as 
the initial state. The computation is 
implemented with a pressure gradient 
balancing the shear force at the wall. 

Simulated Results 

Fig. 4 and 5 show the time evolutions 
of total kinematic energy and enstrophy in 
the channel, respectively. The flow state 
becomes statistically stationary after 
dimensionless time T (tuT/H) = 30. Fig. 6 
shows the total kinematic energy spectrum in 
the streamwise direction in the open channel, 
where ka is the wave number in x1 direction. 
It indicates that the present finite-volume 
method is capable of revealing the spectral 
property of a turbulent flow. 

Fig. 7 shows the velocity profile 
compared with the Spalding universal wall- 
law. There is small discrepancy between the 
computed velocity profile with the 
Nikuradze log-law, although the velocity 
gradient in the log-law region is good.   Lam & 

Banerjee (1992) discussed in details about the 
velocity profile in the open channel. The 
velocity profile seems to have strong 
relationship with the rms velocity 
fluctuation profile. Fig. 8 shows the 
comparisons between the computed rms 
velocity fluctuations with the computational 
data of Lam & Banerjee (1992), the 
experimental data of Komori et al.(1982) and 
Rashidi & Banerjee (1988). The computed 
velocity fluctuations show the reasonable 
results near the interface plane ("free- 
surface") compared with the experimental 
data (Komori et al, 1982; Rashidi & Banerjee, 
1988). However, near the wall region, there 
is a discrepancy betweent the present 
computation with that of Lam & Banerjee 
(1992). The vertical velocity fluctuation is 
underestimated in the present study while 
the streamwise counterpart is overestimated. 
The total turbulent kinematic energy is 
comparable with that of Lam & Banerjee 
(1992). This may be because that the grid 
points in the spanwise direction in the present 
study are too small to capture the whole 
turbulent flow structure near the wall. Fig.9 
is the instantaneous streamwise velocity 
fluctuation near the wall at x3+=1.5, showing 
the turbulent streaks structure near the solid 
wall. The averaged distance between the 
streaks is almost about 100 in viscous unit 
dimension, agreeing well with the other 
studies (Handler et al., 1993). 

As a summary, although this 
simulation is carried out by a finite-volume 
method with a rather coarse grid, the basic 
features of turbulent open-channel flow are 
well revealed in terms of turbulent spectral 
property and turbulent intensity profile as 
well as the turbulent streaks structure near 
the wall. Therefore, it indicates that the 
present method is capable for the simulation 
of a turbulent flow. 

FREE-SURFACE WAVE INDUCED BY 
TURBULENT SHEAR-FLOW 

Condition of Simulation 

A direct numerical simulation is 
carried out for the analysis of free-surface 
wave generation by a turbulent shear-flow 
existing prior beneath the free-surface. The 
initial state of simulation is inherited from 
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the direct numerical simulation results of 
turbulent open-channel flow described above. 
The simulation is started by releasing the 
solid boundary into the free surface boundary. 
The same dimensions of physical domain 
with the same grid points as the turbulent 
open-channel are employed. 

For the numerical simulation of free- 
surface turbulent flow, there are two problems 
beside the numerical scheme. One is the 
resolution problem and the other is the size of 
physical domain problem. For a certain low 
Reynolds number, these two problems have 
been well discussed (Kim et al., 1987). 
However, for the free-surface turbulent flow 
involving the Froude number, these two 
problems are still open questions. It is 
unknown that in a direct simulation, how 
wide the region of wave number of the free- 
surface wave should be resolved at the certain 
Reynolds number and Froude number. Maybe 
this question is not meaningful since the 
phenomenon is not so simple as the turbulence 
in a channel. Under certain condition, the 
wave will break at any wave number, or will 
disperse by the capillary force or will 
dissipate by the viscous force. But as a 
practical problem, with a grid of certain 
resolution in a certain physical domain with 
periodic condition, neither the waves of very 
large wave number nor the waves of very 
small wave number can be resolved. That is, 
the wave number resolved satisfies the 
following relation. 

1 < JL_ < aN 
Fl (21) 

where FA is the Taylor Froude number, X is 
the cut-off wavelength of periodic physical 
domain and N is the grid number. The left 
side means that no longer wave (small wave 
number) than the physical domain can be 
revealed really where the right hand side 
means no too short wave (large wave number) 
can be resolved because of the grid resolution 
limitation (a is the measure of the resolution 
for waves). In the present study, a numerical 
case of k= 1% and N=33, Fn= 0.7 (H=l) is 
tested.   Therefore, 

2       . (22) 
In the turbulent channel flow, the 

largest scale of turbulence is considered to be 
sufficiently  captured  within the  physical 

domain. However, for the free-surface 
turbulent flow, what is the largest 
wavelength generated by a certain turbulent 
flow is dependent on the Froude number. For a 
unit Froude number, K= Ix is considered as the 
smallest size for the wave generation by 
turbulence. 

Simulated Results 

Fig. 10 shows the prospect of the free- 
surface wave at T= 3.488 after releasing the 
solid boundary into the free-surface boundary. 
Fig.ll shows the contour plots of the free- 
surface wave induced by the turbulent shear- 
flow at T= 2.000 and 3.488. The free-surface 
seem to consist of the waves with a lot of 
wavelength. Compared with T= 2.000, the 
waves at T= 3.488 show more ordered 
formation. 

A spectral analysis for the free- 
surface waves is carried out. Fig.12 is the 
directional wave spectrum : (a) x1-direction 
and (b) x2 - direction. There are distinct 
Fourier harmonicas over the unit wave number 
region. The spectra near the largest wave 
number show a little bit aliasing feature, 
especially in the x^directional spectrum. 
Therefore, the grid resolution may be not so 
sufficient for the free-surface wave at the 
Froude number considered here. The 
numerical verification is under investigation 
at this time. 

Fig.13 shows the time evolution of the 
Fourier harmonicas in the wave spectrum : (a) 
x1-direction and (b) x2 - direction. Except the 
fourth harmonica, the lower-order 
harmonicas vary in time, indicating there are 
strong wave modulations associated with 
turbulence/surface wave interaction and 
wave/wave interaction. 

Fig.14 shows the iso-surface contour of 
the instantaneous longitudinal velocity 
fluctuation beneath the free-surface. The red 
is the value at +0.05 and the blue is at -0.05. 
A distinct organized flow structure parallel to 
the mean flow direction appears beneath the 
free-surface wave. The wavelength of the 
structure in spanwise direction almost equals 
to the physical domain length in that 
direction. Therefore, it is necessary to further 
study the size of the physical domain in the 
spanwise direction to investigate the parallel 
flow structure beneath the free-surface. 
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CONCLUDING REMARKS 

A highly accurate, conservative and 
multi-grid finite-volume solution method is 
developed and validated in the numerical 
analysis of a solitary wave propagation in a 
shallow channel and in the direct numerical 
simulation of an open-channel flow. That 
means the present numerical method is 
capable of simulating both the nonlinear free- 
surface waves and the turbulent flow. 

A preliminary analysis of the free- 
surface wave generated by the turbulent 
shear-flow existing prior is carried out by 
means of direct numerical simulation. The 
simulation shows some interesting features of 
wave motion such as the wave modulation by 
turbulence/wave interaction and wave/wave 
interaction. The flow structure parallel to 
the streamwise direction beneath the free- 
surface is recognized. Several problems with 
respect to the direct numerical simulation of 
the free-surface turbulence phenomenon are 
raised and discussed. As the result, both the 
grid resolution for the waves at the 
corresponding Froude number and the physical 
domain of the simulation are required to be 
verified in the further investigation. 

This work is sponsored by the 
Promotion Organization of Ship Research of 
JAPAN, 93REDAS No.10. 
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Fig. 1 Arbitrary-Lagrange-Euler volume flux change by the movement of surface vector 
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Fig. 2 Time evolution of wave profile at different Reynolds numbers 
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Wave induced by turbulent shear flow R= 3100, F» 0.7 (33x33x65) T» 3.488 

Fig.10        Prospect of free-surface wave induced by turbulent shear-flow (Fn= 0.7, T= 3.488) 
The length in the x^direction is twice the length of the computational domain 
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Fig. 11 Contour plot of free-surface wave induced by turbulent shear-flow (F„= 0.7) 
The length in both direction is twice the length of the computational domain 
interval 0.002H. 
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Flow Structure Around a Surface-Piercing Blunt Body 
E. Pogozelski, J. Katz (Johns Hopkins University, USA), 

T. Huang (David Taylor Model Basin, USA) 

ABSTRACT 

The flow structure around a surface 
piercing, symmetric, two dimensional body is 
investigated in this paper. The focus is on 
phenomena around the bow that generate bubbly 
wakes. The experiments were performed in a towing 
tank and included velocity measurements using PIV 
and video photography above and below the surface. 
The development of a bow wave, that becomes larger 
and increasingly unstable with increasing Froude 
number, is demonstrated. When this wave breaks, a 
spilling breaker for the present case, it causes 
generation of some bubbles. However, the primary 
and distinctly different source of bubbles is located 
just downstream of the bow wave, at the point where 
the water level starts increasing again. The influx 
towards the model seems to impinge on the body, 
which causes splashing and generation of a bubbly 
wake. The process becomes evident at Froude 
numbers exceeding 0.15, and its severity increases 
with the Froude number. Velocity distributions and 
surface contours of water elevation demonstrate the 
mechanisms involved. 

INTRODUCTION 

Very little is known about the flow 
structure around surface piercing bodies, in spite of 
their significance to naval hydrodynamics. The 
primary reason is the complexity of this flow, which 
involves interaction of a free surface and the 
associated waves with a boundary layer, which is 
sometimes separated. Consequently, most existing 
numerical solutions of the flow around ships involve 
considerable simplifications. Classical models 
include assumptions of a slender body and inviscid 
flow, which were originated by Michell (1), 
developed by Tuck (23), and adopted for bow flows 
by Ogilvie (4). All are quite inaccurate near the bow 

region. More sophisticated quasi-analytical models, 
such as Dawson (5), still involve linearized free 
surface conditions that only satisfy the boundary 
conditions at the ship wall (see also a survey by 
Chapman (6)). Relatively recent attempts to 
implement complete Reynolds averaged Navier 
Stokes codes, such as Hino (7), provide promising 
results as far as gross flow phenomena (mean 
pressure distribution, etc.) are concerned, but suffer 
from typical problems associated with turbulence 
modeling, particularly near the free surface. There is 
also very limited experimental data on this flow, in 
part due to technical difficulties in performing 
measurements near the surface. Existing results, 
such as Fry and Kim (8), indicate that this three 
dimensional flow involves interaction of a boundary 
layer with non-linear bow waves and formation of 
large scale vortices. The presence of surface waves 
near the body can cause unsteady flow separation, 
resulting in an unsteady wake. Combined mean 
velocity and surface wave measurements were 
performed by Toda et al.(9) and Longo et al.(lO). 

As an added complexity, most bow flows 
cause generation of bubbly wakes, which together 
with the overall wake of the ship can be clearly 
identified over a large distance. Dominating 
contributors, as well as a means to control the 
formation of this bubbly wake, are not completely 
understood, and are the main subject of the research 
described in this paper. Our first objective is to 
identify primary mechanisms for generation of 
bubbles in the bow region. To simplify our 
problem we started with a surface piercing, two 
dimensional body and performed qualitative and 
quantitative observations of the flow and formation 
of bubbles in its bow region. As the results in this 
paper show, a bubbly wake is generated as the bow 
wave breaks (a spilling breaker in the present case). 
However, the primary source is located just 
downstream of the bow wave, where an influx of 
water towards the body impinges on it, causing 
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splashing and entrainment of bubbles. A description 
of the experimental setup and measurement 
techniques are provided in the next section. The 
chapters that follow contain experimental evidence 
for the mechanism of bubble generation, detailed 
description of the flow structure, and a discussion of 
the effect of Froud number on these phenomena. 

EXPERIMENTAL  SETUP 

The experiments were performed in the 140 
ft. towing tank located at the David Taylor Model 
Basin, CD/NSWC. This basin is 152 cm deep, 305 
cm wide, and 4270 cm (140 feet) long. As shown in 
Figure 1, the test model is a two dimansional, .9144 
meter (3 ft) chord, .305 meters (1 ft) wide, and 1.83 
meters (6 ft) high (of which 90% was submerged), 
symmetric, sharp nosed foil. The nose and tail 
regions have different contours, in order to enable 
generation of two flow fields with the same body (by 
towing it backwards). Experiments were performed 
at zero incidence and at Froude numbers, Fr, based 
on body length, ranging between 0.051 and 0.51. 
The corresponding Reynolds numbers were 1.39x10^ 
and 1.39x10", respectively. The experiments 
included velocity measurements using Particle Image 
Velocimetry (PIV), mapping of the surface contour 
(the approach will be described shortly), and video 
photography above and below the surface. 

Details of the PIV setup and procedures, as 
well as the auto-correlation analysis technique used 
to compute the velocities, may be found in Dong et 
al. (11) and Fu et al. (12). Briefly (see Figure 1), 
the light source was a 15 watt copper-vapor laser, 
whose beam was expanded to a 6 millimeter thick 
sheet. The flow was seeded with 50mm, neutrally 
buoyant, fluorescent particles, that were distributed 
in the water prior to each run. The vertical light 
sheet had to be oriented 25° from the cross plane so 
that the submerged camera would not be in the 
model's path. Pictures were recorded on Kodak T- 
Max P3200 B&W film, using a submerged 35 mm 
movie camera. Most images were recorded at a rate 
of 10 frames per second, beginning upstream of the 
nose and continuing downstream of the body into its 
wake. The laser was pulsed 3 times, with a 10 
millisecond delay between consecutive pulses, while 
exposing a single frame. 

The images were digitized with a Nikon 
LS3500 scanner at magnifications of 8 pixels/mm of 
flow (x/c =.21) and 16 pixels/mm of flow (x/c=.32, 
x/c=.62). During analysis, using the auto- 
correlation method, the typical window size was 
64x64 pixels, and there was 50% ovelap between 
neighboring windows.  Based on the particle density 

and typical dispalcement between traces, it is 
estimated that the relative error in velocity 
measurements is less than 3.5%. Most of the PIV 
data presented in this paper were recorded at Fr 
=0.153 (Re=4.18x10^). This conditions was 
selected since the phenomena of interest were clearly 
evident (as qualitative data at higher Fr confirm), but 
variations in surface elevation were small enough to 
allow clear view of the entire flow field. 

The surface contour was measured using the 
intersection of the light sheet with the surface. The 
images were recorded with a submerged video 
camera, digitized and automatically analyzed. 
Qualitative observations below and above the surface 
were performed using a video camera. 

RESULTS 

A series of video images that illustrate the 
various phenomena involved are presented in Figure 
2. The first three images (Figures 2a, 2b, 2c) are 
side views of the leading edge of the model, showing 
the increase in surface elevation with increasing Fr. 
The formation of capillary waves is also clearly 
evident. At Fr > 0.35 these waves break, creating 
what appears to be a spilling breaker over the entire 
crest of the wave, as is demonstrated with a top view 
in Figure 2d. Images of the side of the model 
(Figures 2e, 2f, 2g) also show the bow waves 
generated upstream of the leading edge of the model. 
However, they also demonstrate that the primary and 
distinctly different source of bubbles is located 
further downstream, close to the point of maximum 
thickness on the model. Clear traces of this bubbly 
wake start appearing at Fr>0.15, just downstream of 
the point of minimum water surface elevation near 
the body. As the Froude number is increased this 
wake becomes wider, but the starting point still 
remains downstream of the bow wave. For example, 
at Fr=0.25 (figure 20, the crest of the bow still 
involves only capillary waves, and the bubbly wake 
appears close to the point of maximum thickness on 
the body. The picture is similar, but more severe at 
Fr=0.35 (Figure 2g). Video images recorded 
underwater (see a sample in Figure 7) confirmed the 
observations made above the surface. They also 
show that the origin of the wake is associated with 
an inrush of flow towards the surface, impingement 
and splashing. The phenomenon was similar, but 
increasingly more violent, with increasing Froude 
numbers. 

We now focus on the flow at a mild state 
(Fr=0.15, free stream velocity of .457 m/sec). 
Figure 3 is a map of the surface contour. At this 
state, changes in the water elevation vary between 
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0.46" above the ambient level at the leading edge of 
the model to -0.75" at x/c=.30. The origin of the 
bubbles is located close to x/c=0.42, which is just 
downstream of the point of minimum water 
elevation. 

Selected PIV data that illustrate the entire 
process are presented in Figures 4-6. The first vector 
map shows the cross flow (inclined at 25°) at 
x/c=0.21, where the decreasing water elevation and 
widening of the model cause an outward motion. At 
x/c=0.32, close to the point of maximum thickness 
of the body, there is hardly any cross flow, except 
for the corner of the water surface and the model 
(note that the vector map focuses on this corner at a 
larger scale). Here there is still some outward flow, 
but the vertical component of the velocity is 
reversed, as the surface elevation near the body starts 
increasing.  Further downstream, at x/c=0.62, the 
trend is reversed as the body starts narrowing and the 
surface elevation keeps on increasing, causing the 
flow to turn towards the body. Note that the vertical 
component of the velocity is larger close to the 
corner of the body and the surface. Splashing and 
generation of bubbles is clearly associated with this 
upward motion. The connection is demonstrated in 
Figure 7 by a video image recorded by an underwater 
camera at a slightly higher velocity £Fr=.2), The 
image clearly shows the upward vertical motion of 
particles close to the corner, and the resulting 
splashing on the body surface. As shown in Figure 
2d, at Fr=0.15 (the same as the PIV data), the inward 
rush already causes some bubbling. It also causes 
generation of a series of standing capillary waves, 
that extend from the model backward at an angle of 
about 25°. 

CONCLUSIONS 

Video photography and PIV data are used to 
demonstrate a mechanism of bubble generation near 
the surface of a symmetric, two dimensional, surface 
piercing body. The development of a bow wave, 
that becomes larger and increasingly unstable with 
increasing Froude number, is demonstrated. When 
this wave breaks at Fr=0.35, a spilling breaker in the 
present case, it causes generation of some bubbles. 
However, the primary and distinctly different source 
of bubbles is located just downstream of the bow 
wave, in the region where the water level starts 
increasing. The associated influx towards the model 
seems to impinge on the body, which results in 
splashing and generation of a bubbly wake. The 
process becomes evident at Froude numbers 
exceeding 0.15, and its severety increases with the 
Froude number. We are in the process of 
investigating this phenomenon further.  Issues that 

will be addressed in future work include 
understanding of the flow involved, the effect of 
model shape (especially close to the point of influx 
towards the surface) and bluntness, viscous effects 
including separation (that does not occur near the 
point of bubbly wake generation), etc. We hope that 
PIV data in a horizontal plane will be instrumental 
in providing key answers. 
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Figure 2a, b.c. Video images recorded above the 
surface. a,b, and c are side views of the leading 
edge, a) Fr=0.05; b) Fr=0.15; c) Fr=0.25. 
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d) 0 

e) g) 

Figure 2d,e,f,g. Video images recorded above the 
surface, d) a top view of the bow region at Fr=3.5; 
e,f,g are views of the side of the model at e) Fr=0.15; 
f) Fr=0.25; g) Fr=0.35. 
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Figure 7: A video image at Fr=0.2 and x/c=0.44, 
showing the upward influx of water and resulting 
bubbly wake. 
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Numerical Prediction of the Effect of 
Forward Speed on Roll Damping 

Y. Al-Hukail, P. Bearman, M. Downie (University of 
Newcastle upon Tyne, United Kingdom), J. Graham, 

Y. Zhao (Imperial College, United Kingdom) 

ABSTRACT 

Two vortex based methods are described for 
predicting roll damping of a floating hull in 
forward motion. 

The first method uses the slender ship and low 
Froude number, rigid free surface approximations 
and leads to the prediction of the additional roll 
damping due to vortex shedding. This is assumed 
to emanate from the bilges, appendages or other 
specified lines along the hull and is represented by 
a concentrated vortex model. Results are 
presented for a representative deep displacement 
hull with rectangular cross-section, undergoing a 
range of combinations of roll and forward speed, 
including the extreme cases of roll at zero forward 
speed and forward speed alone without roll. 

The second method matches a local vortex 
shedding model to an outer irrotational flow field 
given by a wave diffraction panel computation, 
extending earlier work without forward speed (1). 
The wave panel method is second order following 
(2) for small values of the parameter Oco/g where 
0 is the mean forward speed and co is the roll 
frequency. Results for a rectangular floating 
barge hull and for a semi-submersible hull at the 
free surface are presented. 

NOMENCLATURE 

a    Wave height, radius of spherical body (m) 
A   Roll response amplitude (radians) 
b    Hull beam 
by   Damping force coefficient 
B, Bv Roll damping coefficients, due to vortex 

shedding 
CD Drag coefficient 
d    Hull draught 

— i 
F    Froude number, U/(gL): 

Fv Force due to vortex shedding/m length 
G, G°, G1 Greens function for a pulsating source 

(zero and first order) 
g    Gravitational acceleration 
k    Wave number 
L    Hull length 
M   Rollmoment 
(ni;n2,n3) Outward normal (114 ns no components 

ofxxn) 
Rc Height of roll centre above mean free surface 
Sß, SF Body surface, free surface 
t     time, -j    _ 

D/Dt Convective derivative T- + U 
roll period (2rc/co) °l T 

Ü 
Ve 

dxi 

Mean forward speed 
Velocity of edge in cross-flow plane 

xi,X2X3 Coordinate axes fixed in the mean body 
position origin at the mean free surface 
(axial, transverse, upwards). 

X2,X3 Coordinates of vortex in cross-flow plane 
T    Vortex circulation 
"Hi   Amplitudes of body motion (i = 1 ... 6) 
A    Period parameter UT / L 
p    Water density 
i    Expansion parameter Uco / g 
O, <)>, <{>0, (j)1 Velocity potential, disturbance 

potential, zero, first order components 
©   Radian frequency 

INTRODUCTION 

Hydrodynamic damping arises on ship and 
other floating hulls due to potential flow effects, 
and in particular to wave radiation, separated 
flow (vortex shedding) effects and skin friction. 
At practical scales the effect of skin friction is 
usually small enough to be neglected in 
comparison with the first two sources of damping 
which exert pressure fields on the hull. In the case 
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of roll damping the wave radiation contribution 
may also be quite small and damping due to flow 
separation may be the major component. In many 
cases it is important to include both the wave field 
and the effects of vortex shedding. Hulls may also 
be specifically equipped with appendages such as 
bilge keels or fins in order to enhance the damping 
through vortex action. 

Experimental work to measure and predict 
damping (3) has been carried out often with the 
aim of quantifying the damping due to different 
mechanisms or different components of the hull. 
Particular attention has been given to the effect of 
bilge radius and bilge keels (4, 5). Reference (6) 
shows, from experimental data, how the various 
components of the roll damping of a ship hull vary 
with forward speed (Froude number) and with roll 
frequency. The main component of the damping 
coefficient showing a continuous increase with 
Froude number is the 'lift' effect on the hull. This 
component grows linearly from zero at zero 
forward speed while eddy making components 
from for example bilge keels show negligible 
change with forward speed. 

In the case of zero forward speed, the effects 
of eddy shedding have been incorporated in 
prediction methods both empirically and on the 
basis of a model of the vortex shedding (7, 8, 9). 
A computational method based on the work of (9) 
using an inviscid model of the separated flow field 
combined with a first order panel method for the 
wave field has been evaluated against 
experimental tests of rolling barge hulls and 
results are reported in (10) and (11). Early results 
showed good agreement for hulls with sharp right 
angle bilges or with bilge keels, but not for hulls 
with rounded bilges for which prediction of 
separation is more difficult. However use of a 
viscous model for the separated flow at a rounded 
bilge has significantly improved the agreement in 
that case even though the Reynolds number of the 
computation and experiment were not matched. 

In order to incorporate the free surface wave 
field into computations of hydrodynamic damping 
in the presence of forward speed account must be 
taken of the change in the free surface boundary 
condition due to forward speed. For slender hulls 
travelling in the axial direction a change in the 
wave encounter frequency is sufficient. For non- 
slender flow fields the spatial variation of the 
quadratic velocity interaction over the free surface 
requires a special treatment, such as panelling, of 
the free surface near the body. Solutions of this 
problem for the slow drift wave field have been 
given in (2, 12, 13. 14). 

The present paper presents two approaches to 
the computation of the viscous (eddy making) 
component of roll damping of a hull in steady 
motion. In the first case a slender hull in steady 
forward motion is assumed and the potential flow 
field of the hull is computed by the strip theory 
approach. The free surface is assumed to be rigid 
(technically a low Froude number assumption) 
and a concentrated vortex is assumed for the bilge 
vortices. Continuity of vorticity is maintained 
through the cross-flow strips. The vortex model, 
which is developed from a steady flow model for 
slender wings (15) is applicable to a ship in steady 
forward speed alone (without roll or other 
oscillations), for roll motion in the absence of 
forward speed or for a combination of both. A 
dimensionless period parameter A equal to 
forward speed x roll period / hull length is used to 
designate these cases. 

The second approach extends to the forward 
speed case the earlier work (9, 1) which combined 
a local vortex solution with a panel method for the 
wave induced flow. In this case the method for 
slow drift motion (2) in which the wave potential 
is expanded in powers of a Froude number based 
on forward velocity and frequency (x = Uco/g) is 
used for the computation of the wave field to 
which is added the above concentrated vortex 
model for the separated flow. 

SEPARATED FLOW ON A SLENDER SHIP 
HULL 

For the calculation of vortex shedding from a 
slender ship we make the following 
approximations: 

(1) The free surface can be treated as a rigid 'lid'. 
This implies a low Froude number, 
particularly for the cross flow associated with 
the unsteady motion. 

(2) b/L«l so that a strip theory approach can be 
used. 

(3) The flow can be treated as inviscid with 
separation specified empirically. In the 
present case a ship hull having rectangular 
sections, as in Figure 1, is assumed. Vortex 
shedding in this case takes place from the 
sharp bilges. 

(4) Infinite depth water. 

With these assumptions the potential <|> for the 
flow field in coordinates fixed in the hull satisfies 

0 = Uxj +<j)(x1;x2,x3) (1) 
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^+Ü = o 
3x,2 3x3^ 
30 = 0     onx3=0 (free surface) 

30 

(2) 

(3) 

■n2 +T_1-n3 =   - U .rij + 

8x3 

30     30 
3n    3x2   

L     3x3 

(Rc-x3)Ti4n2+x2T|4n3 

on the body surface (4) 
0—» 0,     X2,X3 —> °° 

0 here is the cross-flow potential induced partly by 
the interaction of the mean velocity D with the 
change of hull cross section in the direction of 
forward motion (xi) and partly by the roll motion 
of the hull assumed to be about a roll centre at a 
height Re above the mean free surface. Hence 
sway is incorporated into this definition of roll. 

Fig. 1 Hull divided into strips and geometry of 
cross-section in roll (axes fixed in fluid) 

These slender body equations allow a locally 
two-dimensional solution to be obtained for 0 at 
each cross-section of the hull with 0 only 
depending on xi through the boundary conditions. 

It is now assumed that the flow separates from 
the sharp bilges of the hull under conditions for 

which a flow around and off the edge occurs. 
Under some conditions a flow onto a salient edge 
can occur and in that case shedding may be 
suppressed (see 16). Flow separation from bilges 
and sharp edges in slender and/or oscillatory flow 
tends to generate a vortex sheet which rolls up 
(Figure 2 showing here also previously shed 
vortices reflected in the free surface) and is shed 
as a concentrated cylinder of vorticity. The 
simplest model of this type of flow is that 
consisting of a single concentrated potential 
vortex filament representing the whole spiral 
proposed originally for a slender wing by Brown 
and Michael (15). The same model has been 
shown to apply to unsteady two dimensional flow 
(16) following the analogy between steady slender 
flow and unsteady two-dimensional flow in the 
cross-flow plane for 

Fig. 2 Flow visualisation in the third cycle of 
roll motion from start up A = 0 

which the derivative U-—   is replaced by the 
3x, 

time derivative 
_3_ 
3t' 

More sophisticated 

representations of vortex shedding use either an 
array of point or filament vortices to represent the 
sheets of vorticity, or higher order integrals along 
the sheets or full Navier-Stokes simulations. 
Comparisons show that for a right angled edge the 
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concentrated vortex model overestimates the 
vortex strength by about 10% compared to more 
accurate representations. 

The complete model consists of the 
concentrated vortex filament together with a 
feeding sheet joining it to the edge from which it 
has been shed in order to preserve continuity of 
vorticity, since all the vorticity must originate at 
the body surface. The strength of the vortex and 
its position are then found by satisfying one scalar 
and one vector equation in each cross-flow plane. 
The first is the Kutta-Joukowski condition that the 
separation stream-surface leaves the body at an 
empirically determined separation line, in this 
case the sharp edge of the bilge. This is not an 
exact representation of a separating vortex sheet 
since it gives a full stagnation point in the cross- 
flow plane. The second is that the two components 
of force in the cross flow plane on the system of 
vortex and feeding sheet are respectively zero. 
This is a condensation of the requirement of zero 
pressure difference across the vortex sheet and is 
known as the Force condition. 

In the general case of slender three- 
dimensional flow coupled with oscillations in roll 
in the cross-flow plane the convective derivative 

-\         g 
is — + U—-.In that case the shed vortex must 

dt        8xj 
satisfy (Kutta Joukowski) 

n3 
9(j> 

dx-. 
n      ^   -vf 

■n2äx7-u n      i._n2—i 
dxj dxj 

(Rc-x3)r|4n3-x2Ti4n2       (5) 

evaluated at the separation line (x2e(xi), X3e(xi), 
and (Force) 

[7 i +0JL 
dt 9xj 

ii ♦ *i ^ ydt oxij 

(r(x2-x2e))=r 

(r(x3-x3e))=r 

_3<j>_ 

ax2 

_dj>_ 

dx3 

(6) 

T(xi,t) is the strength of the vortex located at 
X2<xi,t), X3(x!,t). The velocities on the right 
hand side of (6) are components of the finite part 
of the velocity field at the vortex location. Since 
the vortex is a potential vortex without a core 
there is also a singular component to the velocity 
at this location. 

0 .$*>* SSs. 

f\ % 

mm 
% 

Nv 

Fig3 

M .' £ 
1 i ■  a 

Equivalent twisted hulls for combined 
roll motion and forward speed. 

The set of equations (1) - (5) are solved in the 
cross-flow plane (X2, X3) by transforming the flow 
region into a half-plane by means of a Schwartz- 
Christoffel transformation. The vortices appear as 
point vortices in the half-plane with corresponding 
images in order to satisfy the boundary conditions 
at the transformed hull and free surface. Equation 
(6) links the cross-flow planes through the 
evolution of vortices shed from the hull. This 
equation is solved by forward integration along 
the characteristics (xj - Ut). The effect of the roll 
motion is then converted into equivalent twist 
distributions along the hull (Figure 3). The cross- 
flow geometry (hull and waterplane) changes at 
each phase of the roll cycle and strictly therefore a 
new transformation is required for each section at 
each step. In order to reduce the cost of this the 
boundary conditions are evaluated on the mean 
hull free-surface geometry assuming that the roll 
amplitude is small (Figure 4). The roll motion of 
the hull and the interaction of its changing cross- 
section with the forward speed are represented by 
source distributions on the boundary and some 
care is required to avoid shed vortices crossing the 
free surface. 
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Fig.4 Schematic of rolling hull cross-section 
with boundary conditions approximated 
on mean hull position. 

Since the simplified model used to represent 
the shed vortices does not represent the sheet in 
detail it is not capable of determining the moment 
at which a vortex sheet starts a new roll up. This 
process which leads to the formation of a new 
vortex structure and the shedding (severing from 
its edge) of the previously formed structure, 
occurs due to oscillatory motion of a shedding 
edge or equivalently if the geometry of the hull 
causes sufficient change of edge direction with 
respect to the forward motion direction. An 
example of the latter is the effect of hull 
broadening followed by hull taper. However the 
moment at which a new vortex forms is not 
simply determined and does not coincide with 
reversal of the relative incident cross flow at the 
edge because of induced velocity effects. Various 
criteria have been used to designate the moment of 
shedding in the present model. The simplest is 
when the rate of circulation growth Dr/Dt 
changes sign, i.e. when vorticity of opposite sign 
starts to be shed. 

Oscillatory flows lead to pairs of vortices of 
opposite sign being shed which tend to convect 
away from the hull. There is some evidence that 
vortex pairing occurs when the vortices have 
nearly equal strength, the subsequent convected 
paths being then straight relative to the fluid. For 

this reason a shedding criteria used for most of the 
computations was based on equality of strength 
(Tb = -ra, where r*b has been identified as 
forming a pair with ra), rather than solely on 
Dr/Dt = 0. Finite core size (desingularisation of 
the vortex velocity field) was also used to prevent 
excessive vortex convection velocities, 
particularly when close to a boundary. These are 
detailed in (17). 

By removing the shedding criterion altogether 
a new vortex may be shed every integration step 
(or at pre-determined steps) and in this way a 
traditional multiple discrete vortex solution is 
computed. This approach was only carried out in 
some cases, because of the greater computational 
cost 

The pressure distribution and hence the 
hydrodynamic forces on the hull are calculated 
from Bernoulli's equation. In earlier work to 
compute the roll damping of a barge without 
forward motion (9) forces were calculated from 
the (classical) linearised form of Bernoulli's 
equation for small disturbances, proportional here 
to the roll amplitude. In the present case in order 
to investigate the accuracy of linearisation, both 
the linearised form and the full equation retaining 
the quadratic velocity terms were computed and 
the results compared. 

Fig J   Time history of roll moment T = 6.67s, 
tu = 0.2rad, Rc = 0, b/d = 2.0,  
linearised pressure eqn., full 
pressure eqn. 
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RESULTS FOR A ROLLING HULL IN 
FORWARD MOTION 

First of all tests were carried out for a rolling 
rectangular section barge without forward motion, 
A = 0, and the results compared with those of 
reference 9. Figure 5 shows a time history of the 
rolling moment due to vortex shedding computed 
from both the linearised and full pressure 
equations, for a moderate roll amplitude of 0.2 
radians. Roll damping coefficients were evaluated 
from these time histories and averaged over three 
roll cycles. Tests using larger numbers of cycles 
showed that averaging over 3 gave accuracies to 
10%. Typical results (Figure 6) show how the 
significance of the non-linear terms grows rapidly 
with amplitude of roll. From a number of these 
comparisons the contribution of the non-linear 
pressure component to the coefficient of roll 

damping is estimated to grow as (ORJ > hence 

neglect of this term is only justified at very small 
amplitudes. Figure 7 shows the results for 
different roll centres compared with those of the 
earlier work (9). All the methods using the 
linearised pressure equation agree well whereas 
the non-linearised results show differences 
between the different methods of determining the 
time of the vortex shedding. The multi-vortex 
solution (A) is closest to that of (9) which also 
used a multi-vortex representation but in addition 
matched this 'universal' edge solution to the outer 
potential flow around the barge. 

By/pcoTUb4 

2.0  T 

Full pressure equation, concentrated 
vortex, multivortex 

-I 
linearised pressure equation, concen- 
trated vortex, multivortex, (9) 

-0.2 0 0.2 

Roll centre (Rc/d) 

Fig.7   Variation of roll damping coefficient 
with roll centre —•—   Ref. 9 

Bv/pooil4b4 

Fig.6 Variation of roll damping coefficient 
with roll amplitude. —Q— linearised, 
—•— Full, —•— Difference, 
geometry as in Fig.5. 

Fig.8   Hull in steady (5°) leeway, 
visualisation. 

Vortex 

At the other extreme the method can be used 
to simulate flow about a ship hull in forward 
motion when the period of transverse motion has 
become infinite (i.e. A = °°). An example of the 
vortex behaviour in such a case (a hull with 
steady leeway) is shown in Figure 8. This 
problem has previously been studied (18) using 
the same type of flow model and is relevant to 
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the interaction of hull vortices with propellers 
and rudder during ship manoeuvring. 

The computational model has been developed 
to compute roll damping for general cases of 
forward speed (A = 0.5, 1.0 and 2.0). In the 
present case it has been applied to the deep 
draught block hull shown in Figure 1 and 
described in (18). An example of the vortex field 
for A =1 is shown in Figure 9. The pictures 
show a sequence at 60° intervals through the roll 
cycle and it can be seen that a combination of 
hull vortices as in steady leeway and vortex 
pairing as in roll without forward speed occurs. 

Fig.9   Rolling hull in forward motion A = 1.0, 
60° intervals through cycle. 

The distribution of hydrodynamic forces along 
the hull generally indicate a greater contribution 
to roll damping from the bow end than from the 
stern and very little from the midships of the 
naked hull. These may be integrated to give 
overall damping coefficients as shown in Figure 
10 plotted against Froude number. In this figure 
the damping force is shown computed from the 
full pressure equation and from the linearised 
version Also shown are results from (4) for a 
different hull shape with rounded bilges for which 
the damping is lower. It is noticeable that both 
these results and those computed using the present 
linearised model for small roll amplitudes show 
very little increase in damping with Froude 

number. That this should be so when the forces 
induced by vortex shedding are computed linearly 
can be shown directly from the concentrated 
vortex model applied to a single shedding edge. 

Fig.10 Variation of roll damping coefficient 
with forward speed. fj4 = 0.2rad, Rc = 
0, ca(b/2g)1/2 = 0.5   full eqn., 
 linear, (4). 

Generalising the result given in (16) to the case 
of a single right angled edge performing 
oscillatory motion about some roll axis parallel to 
the edge, with a steady axial velocity U 
superimposed, leads to a solution during the first 
part cycle for the vortex induced force on the 
edge: 

Fv(Xl,t) = pKiV^+IV=-"Ä£v,"% 

-iv. -4/5 
dt 

Eve
9/5tf C7) 

where K is a constant, s = max(0, t-x\/ U) and Ve 

is the velocity of the edge due to roll in the cross- 
flow plane. Only the last term depends on 
forward speed and can be shown to be small and 
negative, due to the reduction in the effectiveness 
of downstream portions of the edge by the vortex 
coming from the upstream portion of the edge. 
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The non-linear (velocity) contribution to the 
vortex damping appears to give an approximately 
linear increase in damping coefficient with Froude 
number. The same effect is seen in the 'lift' 
contribution from (6) and it is conjectured that this 
increase is associated with lift' on the hull 

EFFECT OF SMALL FORWARD SPEED ON 
DAMPING INCLUDING WAVE-MAKING. 

Computations have also been carried out to 
combine the effect of vortex shedding from the 
bilges of a hull with the effect of free surface 
waves and forward speed. In this case it is 
computationally expensive to carry out a complete 
time domain vortex shedding analysis for the 
whole hull for each incident wave or hull motion 
case. The more efficient approach described in (9) 
has therefore been adopted. A single vortex time 
history calculation is carried out for the 
representative edge geometry in the cross- 
sectional plane, in this case a right angle edge and 
the results of that are matched to an outer 
potential flow computation for the wave field of 
the body. Matching means that the inner flow 
field due to vortex shedding at the edge, 
calculated locally and scaled correctly, cancels 
the singularity in the outer potential flow at all 
edges deemed to be vortex shedding edges of 
the hull. This approach is described in detail in 
(9) and (1) and leads to the component of the 
vortex force at the fundamental frequency of the 
body motion or waves being added in the form of 
a coefficient to the force arising from the outer 
potential flow field. This method implies several 
assumptions which may be only partially justified: 

(1) The amplitude of motion of the hull or waves 
is small and the important edges from which 
vortices are shed are long, so that the vortex 
formation and shedding process may be 
simulated on a strip theory basis in which the 
only important geometrical feature of the hull 
is the edge. 

(2) The convection of vortices far from the edge 
and possible interactions with other parts of 
the hull or the free surface have negligible 
effect on the vortex force. 

(3) The dominant component of the resulting 
vortex force is at the body or wave frequency. 

Assumption (2) in particular can be questioned 
since the vortices undoubtedly do interact quite 
often with the free surface or other parts of the 
hull, as observed in (19) and also Figure 3. 

In the present case the effect of forward speed 
is included in the analysis. This affects both the 
outer potential flow analysis for the wave field as 
well as the vortex shedding from the edges. 

For the potential flow analysis the method of 
(2) has been followed in which the potential is 
expanded as a series 

0 = Ux1+<t>s+<j>0 + x<|>'+. . . 

in terms of the parameter x = Uco/g = 27tf;2/A 
which is here assumed to be small. The steady 
flow field is given by a panel computation for the 
potential steady <|)s neglecting effects of the 
boundary layers or wake of the hull. <J>° contains 
all the components of the wave potential which 
are zero order in x but first order in the motion 
amplitude. This satisfies the linearised free surface 
boundary condition and the only effect of forward 
speed is to change the frequency where incident 
waves are concerned to the wave encounter 
frequency. <j>° is computed by a standard panel 
method, (f)1 is the higher order component which 
results from the interaction between the steady 
flow field potential <t>sand<|>0. The potentials 4>0 

and <j>i satisfy the Green's function equations: 

-2^°+kK^kG°Q^       (8) 

1       re 1 dG 

-2i jjs   ^(v^.V^+lG^ViV)* 

3G1 

ds 

for each component $j of the potential. G = G° + 
x G' + ... is the expansion of the Green's function 
for a moving pulsating source, and Vj is the 

gradient operator SB   is the 
^dxj dx2 j 

surface of the body and the free surface (Sp) 
integral requires panelling over part of Sp in the 
neighbourhood of the body. 

A program to compute the potential flow field 
was written and tested against results published in 
(13) and (14). Good agreement was obtained 
provided sufficient attention was given to the 
number and distribution of the panels on the body 
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and the free surface. Figure 11 shows a 
comparison for the force components D13 and D31 
on a half immersed sphere at F = 0.08. 

bij/pa2(ga)2 

co2a/g 
■ ■ 1 1 

(a) 

Vpa2(ga)2 
0.25 

ora/g 

(b) 

Fig.ll Force coefficients bi3 and b3i, (a) from 
ref. 2, (b) present results 

The effect of forward speed on the vortex 
shedding from the bilge edges was analysed using 
the result given earlier in equation (7) from which 
a factor was obtained for the change in vortex 
force due to roll motion as a function of forward 
speed, to be matched to the outer potential 
solution as before. 

The combined analysis therefore generates 
terms of 0(T| and T|T) for the potential part of the 
solution and 0(T|

2
) as shown by eqn.7 for the 

vortex part. Inclusion of the OO12) vortex 
contribution when the 0(T|2) potential contri- 
bution is neglected appears inconsistent but is 
justified by the large size of the latter term for 
certain motions such as roll as was the case in the 
absence of forward speed. 

The analysis has first been applied to a freely 
floating rectangular barge hull in beam waves 
shown for one side of the plane of symmetry in 
Figure 12. The barge was 82 m long by 27 m 
wide by 2.75 m draught. Two calculations were 
carried out with 184 and 544 panels respectively 
on the half body and 600 panels on the free 
surface. It was assumed that vortex shedding only 
occurred from the edges (bilges) parallel to the 
direction of forward motion. Figure 13 shows 
results for roll response in the absence of forward 
motion (184 body panels) and Figure 14 the two 
computations with forward motion. Roll response 
was computed by including the response equations 
and performing an iterated solution for each 
frequency as detailed in (1). In each case the solid 
line shows the result for wave damping alone and 
the dashed line includes the effect of vortex 
damping which is the dominant component for 
this motion and greatly reduces the roll response. 

Comparison of the results show only a small 
effect of the number of body panels on the 
damping and as for the earlier ship hull 
computations very little effect of forward speed 
(admittedly itself small in this case). 

Computations have also been carried out for a 
rectangular pontoon hull, typical of a semi- 
submersible, in forced sway motion at the free 
surface with and without small forward speed. The 
results of the computation for the sway drag 
coefficient are compared with the results of 
experimental tests described in (11). They are as 
follows: 

w/(g0 1/2 ri2/b CD CD 
computed measured 

0 0.88 0.16 0.22 0.36 
0 0.88 0.32 0.44 0.58 
0.013 0.88 0.16 0.25 0.55 
0.013 0.88 0.32 0.38 0.62 

The above method being an extension of (9) 
computes the vortex force, which dominates in 
these cases, from the linearised pressure equation 
and as shown earlier this may account for the 
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Fig.12 Panelling of barge hull and free surface 
(one side of plane of symmetry) 

significant underprediction of the drag coefficients 
above for finite amplitudes. It is however also 
possible that with a method as above which uses 
piecewise constant potential over the panels, 
rather than sources or linear potential, that 
significant errors are introduced in the estimation 
of the strength of the singularity in velocity at the 
edge which drives the vortex shedding. This 
question is still under investigation. 

CONCLUSIONS 

Computations have been carried out to predict 
the effect of forward speed on roll damping of 
ship and other hulls including the effect of vortex 
shedding from the bilge edges. Two models have 
been used, one with a rigid lid approximation for 
the free surface and the other including wave 
effects up to 0(T|x). The models demonstrate 
methods of incorporating vortex separation effects 
into hull response calculations without resorting to 
full three dimensional Navier Stokes 
computations. The results show that for edges 
parallel to the forward speed direction, typical of 
bilges and bilge keels there is very little increase 
in damping due to forward speed computed from 
the linearised pressure equation. If the quadratic 
velocity terms are included an approximately 
linear increase in damping coefficient with Froude 
number is found. 
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Fig. 13 Roll response of barge at zero forward 
speed (A = 0)    potential flow 
only, including vortex damping. 
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Fig. 14 Roll response of barge with forward 
speed (1 m/s)  potential flow only, 
 including vortex damping (a) 544 
panels on 1/2 body, (b) 184 panels on 
1/2 body, both with 600 panels on 1/2 
free surface. 
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DISCUSSION 

S. Kinnas 
Massachusetts Institute of Technology, USA 

Could the authors comment on the validity of slender 
body theory, especially at the transition range of the 
geometry from "delta wing", like at the bow to 
"cylindrical body", like at midsection? 

AUTHORS' REPLY 

Slender body theory is quite satisfactory in the 
transition range between the bow and mid-hull 
sections, provided the transition is gradual. It is not, 
however, very satisfactory at the bow where rapid 
changes of geometry occur and this will introduce 
some error in this region. 
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The Influence of Vorticity upon Estimation of 
Manoeuvring Derivatives 

G. Hearn, D. Clarke (University of Newcastle upon 
Tyne, United Kingdom), H. Chan, A. Incecik, 

K. Varyani (University of Glasgow, United Kingdom) 

ABSTRACT 

The main purpose of this research was to 
find an explanation for a disagreement between 
the measured longitudinal distribution of lateral 
forces and those predictions based upon slender 
body theory, for a manoeuvring ship. Consid- 
ering a number of possible causes for the noted 
differences it was considered that the presence of 
trailing vortices at the stern was the most likely 
explanation. Two courses of action were under- 
taken. Firstly, it was demonstrated that the hull 
forms for which the lateral force prediction and 
the measurements differed, did in fact generate 
trailing vortices. The strength and position of 
these vortices was then measured. Secondly, a 
theoretical procedure was derived, which allowed 
the influence of the vortices to be included in the 
slender body predictions of the hull derivatives. 
It was found for the two hull forms considered, 
that the forces generated by the trailing vortices 
were of the correct magnitude to account for the 
previously noted discrepancy between the calcu- 
lated and measured lateral forces. 

INTRODUCTION 

The provision of adequate manoeuvra- 
bility is of paramount importance for the safe 
navigation of a ship. Recently, the adoption of 
IMO Resolution A.751 (18) in November 1993 [l] 
has further increased the importance of manoeu- 
vrability, since it requires that certain aspects of 
manoeuvrability are consciously addressed dur- 
ing the design of a ship. The requirements cover 
turning, yaw checking and stopping ability, giv- 
ing criteria which must be satisfied. 

The ability to estimate   these required 
elements of ship manoeuvrability   is dependent 

upon having an accurate mathematical model 
of the manoeuvring ship. This mathematical 
model is in turn totally dependent upon the ma- 
noeuvring coefficients or hydrodynamic deriva- 
tives contained within it. The problem of ma- 
noeuvring simulation is then reduced to one of 
being able to estimate or calculate the hydrody- 
namic derivatives with sufficient accuracy, and 
without resorting to captive model tests. 

However, there is no complete theoreti- 
cal method, which would allow the calculation of 
the hydrodynamic forces and moments acting on 
an arbitrary shaped body in a real fluid. In an 
ideal inviscid fluid, forces and moments gener- 
ally act upon the body only in accelerated flow, 
with one exception, a moment due to sway ve- 
locity. This moment became known as the Munk 
Moment, due to his pioneering work on airship 
aerodynamics. 

The success or failure of any calculation 
procedure for hydrodynamic derivatives is very 
much dependent upon the geometry of the body 
under investigation. With aircraft and missiles, 
the presence of wings and fins require the addi- 
tion of circulation potentials, in order to satisfy 
the various trailing edge Kutta conditions. These 
additional potentials tend to dominate the flow 
and allow acceptable calculation of the forces and 

moments. 

In the case of slender bodies, non-zero 
steady flow forces are achieved by considering 
that the body terminates with a blunt base, from 
which the flow separates. This separated flow 
forms a stream surface behind the body, with 
the same cross-section as the base. The forces 
and moments may be calculated from the nose 
of the slender body, up to the location of the 
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base.   Successful results have been obtained for 
slender missiles with and without tail fins. 

It was previously assumed by Clarke [2] 
that the slender-body strip method, developed 
by Bryson [3] for missiles, could be adapted to 
the case of a surface ship. The method requires a 
knowledge of the zero-frequency horizontal added 
mass coefficients at each two-dimensional cross- 
section along the length of the ship's hull. These 
added mass coefficients are readily determined 
from a knowledge of the ship's body sections by 
means of conformal mapping. Clarke [2] was able 
to integrate various functions of the added mass 
coefficients along the hull to obtain longitudinal 
distributions of the linear derivatives Y^,N'V,Y^ 

and N'r. 

To verify these calculations, Clarke [2] 
also obtained measurements of the longitudinal 
distribution of hydrodynamic force and moment, 
using a segmented model on a rotating arm. The 
data provided a direct comparison of the exper- 
imentally measured derivative distribution, with 
that calculated using the horizontal added mass 
distribution along the hull. 

In general, the theoretical and the mea- 
sured derivative distributions agreed very well, 
from the bow to a location about two-thirds of 
the length towards the stern. Aft of that loca- 
tion, the calculated and measured distributions 
progressively diverged. This discrepancy could 
have been due to several neglected phenomena, 
such as boundary layer growth, free surface ef- 
fects, wave making, or a violation of the slender- 
body assumptions. 

However, the most plausible explanation 
was that the effects of bilge vortices, which pass 
along the stern part of the ship, had been ne- 
glected. In order to test this hypothesis a com- 
bined theoretical and experimental study was un- 

dertaken. 

Using the same hull forms as the pre- 
vious segmented model experiments [2,4], new 
models were tested, and measurements of the 
vorticity in two transverse planes near the stern 
of each model were obtained. Flow visualisation 
using a miniature video camera and dye trac- 
ers clearly showed the starting points of the vor- 
tices and their rearward growth. Knowing the 
nature, strength and position of the vortices, it 

was then possible to evaluate the forces and mo- 
ments which they would generate on the stern of 

the two hull forms. 

The calculation of the vortex generated 
forces was accomplished by considering the im- 
pulse of a pair of counter rotating vortices, one on 
either side of the stern. The rate of change of the 
impulse with sway velocity, allowed an additional 
coefficient for each body section to be deduced, 
which was simply additive to the added mass 
coefficient arising from the slender-body theory. 
The previously mentioned expressions for the lin- 
ear derivatives could then be easily modified to 
include vortex effects. 

In this way the force and moment distri- 
butions along the two hull forms, which included 
vortex effects, were calculated. Comparison with 
the earlier segmented model results showed that 
the previous discrepancies in the stern region had 
been accounted for. The examples shown in the 
paper are for the sway force derivative F„'. Al- 
though it is felt that it has been shown that 
vortex effects must be included in any reliable 
derivative estimation procedure, the problem re- 
mains that in the general case the nature of the 
vortices is unknown. In this exercise the vortex 
strength and position have been determined ex- 
perimentally, whereas in future a relatively sim- 
ple means of estimating the vortex properties 
would be required. It has been shown that in 
some cases an accurate knowledge of the vortex 
positions is not necessary, whereas the vortex 
strength is very important. It is felt that this 
work has shown the necessity and importance of 
including vortex effects, without recourse to com- 
plicated CFD techniques, which may have ob- 
scured the simple relationships which have been 
derived here. 

EARLIER TREATMENT OF SLENDER- 
BODY METHOD 

In a previously developed method, Clarke 
[2] showed how the linear derivatives F„',JV^,Fr' 
and N, could be determined using a slender-body 
strip method originally developed by Bryson [3] 
for similar studies with missiles. The method de- 
pended upon a knowledge of the zero-frequency 
horizontal added mass coefficients for the body 
sections of the hull form under consideration. 
These added mass coefficients CH were defined 
as the ratio of the added mass of the particular 
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section to that of a circular section of the same 
draught. They were determined by a conformal 
mapping of the body section onto a circle in an- 

other complex plane. 

This transformation could be expressed 

as an infinite Laurent Series 

Oi       03 
x = a H 1—0 + (1) 

if the body section is initially in the x-plane and 
the cirlce is in the cr-plane. It should be noted 
here that, the coordinate system has forced the 
definition of a complex number to be x = y + 
iz. The coefficients an define the transformation, 
and may be determined by considering equiva- 
lent Lewis sections, by Schwarz-Christoffel meth- 
ods, or by numerical methods. The required 
added mass coefficient was shown by Summers 
[5] to depend only upon the residue at infinity, 
which is the coefficient ai, so that 
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Figure 1.   British Bombardier Segmented 
Model. Longitudinal Variation of Yv' and CH- 

Second Order Fit, Pure Sway Results Only. 

CH = ^(2(r* «a)-f) 
7T 

(2) 

where T is the draught of the body section and 
S is twice the sectional area. The term r is the 
radius of the circle in the transformed cr-plane. 
By considering the forces generated on the hull 
in each cross-flow plane along the body, Clarke 
[2] was able to show that the linear derivatives 
were given by the following expressions 

Y/ = n CH 
J 5 

2 r 

CHX' 

CHX' 

- /    CHdX' 

is 
2 r 

CHX'* 
B rB 

S       JS 

fB 
I    CHX dX     , 

Js 
(3) 

where L is the hull length between perpendicu- 
lars and X' is the non-dimensional distance X/L 
of each body section from midships. The limits 
of integration being denoted by B and S, for the 
bow and stem sections respectively. 
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Figure 2. Mariner Segmented Model. 
Longitudinal Variation of Yv' and CH- 

Second Order Fit, Pure Sway Results Only. 

In order to examine the validity of the 
expressions given in Equation (3), Clarke [2] and 
Burcher [4] carried out detailed tests on mod- 
els of a tanker form, British Bombardier, and a 
Mariner form respectively. In these tests, car- 
ried out on a rotating arm, the models were lat- 
erally divided into nine and eleven segments re- 
spectively. The use of two sets of mounting rails 
allowed the forces generated on each segment to 
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be measured, for various values of drift angle and 
yaw rate. By analysis of these results it was pos- 
sible to extract from the data, longitudinal dis- 
tributions of the linear derivatives, from the bow, 
to the rear section of each segment in the models. 
These derivative distributions were then directly 
comparable to those calculated using Equation 

(3) for each model. 

By returning to the original model tank 
records for the two segmented models [2,4], the 
data analysis has been repeated recently [6], and 
the fitting process revised to give error bounds 
on the derivative values. These revised data are 
shown in Figures 1 and 2 for the British Bom- 
bardier and Mariner hull forms respectively. A 
second-order fit was found to be statistically more 
appropriate, rather than the third-order fit, used 
originally by Clarke [2]. Also shown in Figures 
1 and 2, are the derivative distributions calcu- 
lated using Equation (3). Again, in this case 
the necessary added mass values have been re- 
calculated, using a numerical conformal mapping 
scheme. This process involves the determination 
of the transformation coefficients, an in Equation 
(l), by a function minimisation process, which 
successively minimises the sum of squares of er- 
rors between the coordinates of the body section 
given by the current an values and those of the 

described section. 

It can be seen in Figures 1 and 2, that 
for the distribution of the derivative YJ, the the- 
oretical solid lines agree fairly well with the ex- 
perimental segmented model results. However, 
there are some important differences at the stern 
of both models, in that the measured derivatives 
are significantly larger than those predicted from 
the slender-body theory. Clearly it is the value 
of the derivative YJ at the stern, which is the 
required value for use in any manoeuvring sim- 
ulation studies. There are smaller differences in 
the bow regions, which are thought to be due to 
a break down in the 2-dimensional cross-flow as- 
sumptions of the slender body theory. In the case 
of the Mariner model however, the sinusoidal na- 
ture of the errors between the measured and cal- 
culated derivative distribution is thought to be 
due to surface elevation in the bow wave profile. 
It should be noted that the larger error bounds 
in the case of the Mariner are due to there being 
fewer experimental points in that case. 

Returning to the differences at the stern 

of both models, the most plausible explanation 
was that the possible presence of trailing bilge 
vortices had been neglected by the slender-body 
theory. To test this hypothesis, a combined the- 
oretical and experimental approach was devised. 

The experimental model tests were car- 
ried out to establish the existence of trailing vor- 
tices on the two models. Then, having shown 
that they did exist, to measure their vorticity 
distribution in several cross-flow planes at the 
stern. This would also provide information on 
their location and starting point. 

The theoretical approach taken here de- 
veloped a method of calculating the forces gen- 
erated on the stern sections of the models, using 
vortex impulse techniques. These forces are of 
course additional to those already present from 
the pure slender body calculation and the vortex 
induced forces should represent the differences 

between the measured and calculated derivative 
values at the stern of the models, as shown in 
Figures 1 and 2. However the theoretical vor- 
tex calculations would have to rely upon the ex- 
perimental tests to provide the vortex strengths 
and locations. This two-pronged approach is de- 
scribed in the following sections. 

EXTENSION OF STRIP THEORY TO 
INCLUDE VORTICES 

In this section a method of accounting 
for the stern vortices will be described, which is 
consistent with the irrotational flow strip method 
developed by Clarke [2]. 

As a necessary precursor to this develop- 
ment, Hearn and Clarke [7] showed that the trail- 
ing vortices generated forces on the sterns were 
of the correct order of magnitude. However, they 
used the simple concept of a tail interference fac- 
tor, as used in missile aerodynamics, where fins 
project from a circular section body. In the fol- 
lowing, a more general approach is introduced 
using conformal mapping, where any arbitrary 
section may be considered. 

As in the traditional strip method anal- 
ysis, a body section is considered to be a dou- 
ble body mirrored in the undisturbed free sur- 
face. A schematic view of the ship and the co- 
ordinate system is shown irf Figure 3a. It is as- 
summed that any vortices which pass down the 
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body, having been shed upstream of the shaded 
(y,z) plane, will pass through the (y,z) plane, 
exterior to that two-dimensional cross-section, 
and will appear as two-dimensional vortices in 

that plane. 

When the ship is moving forward with 
velocity U and with no sway or yaw, then pairs 
of shed vortices, together with their images above 
the water line and internal to the body cross sec- 
tion, will give rise to impulses in the (y, z) plane. 
However, the total impulse I will be identical 
to zero, as illustrated in Figure 3b for any single 
pair of symmetrically located port and starboard 

vortices. 

If the ship is subjected to yaw and sway 
motion, the situation is quite different. As shown 
in Figure 3c, the vortices around the cross-section 
are all displaced from their original locations, 
and their total impulse is no longer identical to 
zero. A finite impulse / results, which is taken to 
be proportional to the total sway velocity V of 
the cross-section, and dependent on the distance 
X of the cross-section from the midship point, so 

that 

(y,z) PI-ANC 

Figure 3a. Schematic View of Double Body. 

-»V 

0/- X ° 
i     1 

0\ 
V 0 0/ 
GK r   ° 

i 

dl(X) 
av (4) 

where V = v+rX, with v being the sway velocity 
and r the yaw rate of the ship. 

The time rate of change of the impulse 
will give rise to a sway force per unit length on 
the body, given by 

dY_ 
dX 

d      dX  d \fdl .       „. 
¥t + ^äx){-av{v+rX) (5) 

using the generalised differential operator, due to 
the moving cross-flow plane, and noting that the 
impulse I is still a function of X. 

Carrying out the differentiation implied 
in Equation (5), and non-dimensionalising in the 

conventional manner, gives 

(b)V = 0, 1 = 0. (c)V*0, 1*0. 

Figure 3b & c. Arrangement of Vortices 
in (y,z) Plane. 

dY'        0->dI'   ^0-'Y'dI' 

-2v' 

- 2r'r 

-2r' 

(6) 

a far 
dX' \dV 

a far 
ax' \av 
ar 
av 

Now, defining a vortex influence coeffi- 

cient IH as 

IH = 
i     ar 

\{T/L)2dV'    ' (7) 
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we can integrate Equation (6) along the length of 
the hull to give the sway force, due to the vortices 
on the underwater part of the double body as, 

-'{WI°,"x'dX'f' 
+*(i)7/^MJX'-»' 

The moment acting on the hull due to 

the vortices is simply 

rB      AY' 
N'=  /    X' — dX' 

Js       dX> (9) 

The form of Equations (8) and (9) is 
identical to the form of the Equations developed 
by Clarke [2], for the hull in simple irrotational 
flow. In that case though, the added mass co- 
efficient CH appears, rather than the vortex in- 
fluence coefficient IH. However the forces and 
moments due to the irrotational flow without 
vortices, and those due to the presence of the 
vortices may be added together to give the to- 
tal forces and moments. This amounts to using 
the term (CH + IH), in Equations (8) and (9), 
rather than the term IH- This fact may be de- 
duced more rigourously by considering that the 
complex potentials of the flows in the two cross- 
flow planes may be added by superposition, one 
cross-flow plane giving rise to the added mass co- 
efficient CH and the other containing the vortices 
giving rise to the vortex influence coefficient IH- 
Following Clarke [2], expressions for the linear 
velocity derivatives may be deduced from Equa- 
tions (8) and (9) which incorporate the vortex 

effects as 

i; 

(10) 

s 
iß 

F«' = 7r(l)    [C" + IH] 
K = *Q2[(cH + iH)x'} 

-J   {CH + lH)dX' 

Yp' = ir(!)2[(tf*+ /»)*'" 

N^7r(j)2[(CH+IH)X'2 

- j\cH + IH)X'dX' 

The above expressions in Equation (10) 
may be seen to be analogous to those of Equa- 

tion (3), but now include the extra term J#, the 
vortex influence coefficient. In the evaluation of 
the derivative expressions, the horizontal added 
mass coefficients CH are determined by confor- 
mal mapping, and with a knowledge of the vortex 
strength and location, the vortex influence coef- 
ficient for each section may be determined from 
the same mapping function. Furthermore, any 
number of vortices or a distribution of vorticity 
may be treated'in the same manner using super- 

position. 

Returning to Equation (7) the vortex in- 
fluence coefficient IH may be modified to reflect 
the rate of change of impulse with lateral dis- 
placement y' of the two-dimensional cross-section 

as follows 

iM 
1       81' dy' 

\{T/L)28y'dV 
(U) 

where dl'/dy' is the impulse position derivative 
and dy'/dV is the position sway derivative. 

The impulse position derivative may be 
easily obtained for a semi-circular hull cross sec- 
tion, by considering a pair of counter-rotating 
vortices outside the section, together with then- 
images at the reciprocal points inside the section 
and the mirror images above the water line. 

It has been shown by Clarke and Hearn 
[6] that the impulse position derivative may be 

expressed as 
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dv'        \LJ dy' 

ST'r's'ri' 
»(/'(*)) in o 

(12) 

where the external vortices of strength V are at 
points (?',»?') and (-?',»?') in the circle cr-plane, 
whose radius is r'. Since the transformation be- 
tween the real ship section plane and the circle 
plane is defined as 

o = f{x)    , 

then the vortex locations in the real z-plane are 
(y',z') and (—y',z'), from the relationships 

?' = *(/(*)) 

V' = »(/(*))        . 

recalling that in this work, the coordinate system 
has forced the definition of a complex number to 

be x = y + iz. 

By means of a transformation of the form 
given in Equation (l), the impulse position deriva- 
tive denned in Equation (12) may be calculated 
for any hull section, for any vortex location and 
for unit vortex circulation. 

Contours of equal impulse position deriva- 
tive have been plotted in Figures 4 and 5 for body 
sections near the sterns of the British Bombardier 
and the Mariner respectively. Knowledge of the 
vortex locations in those cross-flow planes would 
allow the appropriate values of the impulse posi- 
tion derivative to be obtained from Figures 4 and 
5. Similar figures may be drawn for any body 
section using the transformation appropriate to 
that section. 

The position sway derivative may be de- 
duced by assuming that the vortices shed from a 
longitudinal hull location X'0 move away from the 
hull, and at very small drift angles, it is propor- 
tional to the drift velocity. In particular, Clarke 
and Hearn [6] have shown that 
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In the case of pure yaw motion, a similar argu- 
ment may be used to show that 

dv 
(14) 

In order to investigate the differences be- 
tween the measured and calculated YJ distribu- 
tions shown in Figures 1 and 2, the vortex start- 
ing locations, strengths and positions must be 
found from experiment. This will allow the vor- 
tex influence coefficient IH to be calculated for 
use in Equation (10), using Equations (11), (12) 
and (13). These experiments are described in the 

following section. 

EXPERIMENTAL PROGRAMME 

Here we present summary details of the 
models investigated, the apparatus used and the 
measurements undertaken. The British Bom- 
bardier and Mariner hull forms were selected for 
the experimental investigation, since extensive 
measured lateral force and yaw moment data were 
available from experiments carried out at Haslar 
[2,4]. In this programme a model length of 2.5m 
was selected to minimise the effect of tank block- 
age, corresponding to scale factors of 1/88.39 and 
1/64.37 for the British Bombardier and Mariner 
hull forms respectively. The principal particulars 
of the ship models are given in Table 1. During 
the experiments the models were restrained in 

heave and pitch [8,9]. 

TABLE 1 

PRINCIP AL  PARTICULARS  OF   SHI1 

MODELS 
British Mariner 

Bombardier 

L 221 m 160.9 m 

B 29.6 m 23.2 m 

TF 12.5 m 6.9 m 

TM 12.5 m 7.5 m 

TA 12.5 m 8.1 m 

A 67805 tonnes 17070 tonnes 

XCG 3.1 m -3.8 m 

U 15.62 kts 20.0 kts 

A 1/88.39 1/64.37 

Fn 
0.173 0.259 

The total sway force and yaw moment 
acting on the models were measured by strain 
gauges attached to the two aluminium bars which 
connected the ship model to the towing carriage. 

The pressure distribution over the wet- 
ted body surface of the Mariner model was mea- 
sured at 380 locations, using diaphragm-type pres- 
sure gauges. A vortex meter having a 10mm di- 
ameter rotor with four unpitched blades was used 
to provide measurements of the vortex circula- 
tion T at different stations along the hull. Views 
of the vortex patterns were taken by an under- 
water video camera. The vortices were traced by 
injecting a dye agent through convenient pres- 
sure tappings on the hull surface. In order to re- 
duce diffusion of the dye tracer, the models were 
towed at a low speed and the flow rate of the dye 

was carefully controlled. 

The sway force and yaw moment mea- 

surements confirmed the earlier measurements 
[2,4] and ensured that the models built at Glas- 
gow University had the same hydrodynamic char- 
acteristics as those originally tested at Haslar. 
The results of sway force measurements for both 
models, together with the earlier measurements 
at Haslar, are shown in Figures 6 and 7. In the 
case of the Mariner model the lateral force val- 
ues were cross checked by integrating the pres- 
sure measurements for drift angles of 2° and 4° 

[8,9]. 

The theory developed in the preceding 
section assumes that vortices of known strength 
and position exist. Confirmation of the existence 
of vortices being shed by the towed models of the 
British Bombardier and Mariner is thus an es- 
sential part of the justification of the presented 
theory. Initially this was investigated for zero 
or small drift angles. The distribution of vortic- 
ity was determined by direct vorticity measure- 
ments at 64 points on a predefined matrix either 
side of the model centre plane at selected sec- 
tions. The vortex position measured at the two 
stations for the British Bombardier and Mariner 
models and the starting point of the stern vor- 
tices as observed from underwater visualisation 
[9] are shown in Figures 8 and 9 rexpectively. 
Also shown are the loci of vortices on the pro- 
file and waterplane views of the two hull forms. 
These positions were determined from flow vi- 
sualisation, together with vortex measurements. 
These measurements confirm that stern vortices 
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exist around both the British Bombardier and 
Mariner models at zero drift angle. The circu- 
lation values T given in Figures 10 and 11 are 
obtained from the following equation. 

// 
$dA (15) 

where: 

f = Vorticity (rad/s) =2XQX2TT 

fi = Rotation frequency (Hz) 
dA = Differential area element. 

The integral given in Equation (15) was 
calculated using a Simpson's quadrature method. 
From an examination of the vortex contours given 
in Figures 10 and 11 it is suggested that the up- 
per vortex core may shed from the bow region 
of the ship, whilst the lower core may shed from 
the stern region. The circulation values for zero 
drift angle are shown in Figure 12 to match well 
with those measured for different ship hull forms 
by Tanaka et. al. [10], who expressed the circu- 
lation values as a function of a non-dimensional 
area coefficient Cw{0) = AB/LB, where AB is 
the area of the flat of bottom. The measured 
pressure distributions were used to validate the 
global force and vortex measurements. 

The experimental programme included 
vortex measurements and flow visualisation with 
small drift angles and currently the theory is be- 
ing extended to incorporate the effects of vortices 
on longitudinal variation of lateral force and yaw 
moment. In parallel with this, further experi- 
ments and detailed analysis of vortex measure- 
ments are being carried out to investigate the 
distributions of bow and stern vortices. 

CALCULATION OF VORTEX EFFECTS 
ON SWAY FORCE DERIVATIVE 

The vorticity contours measured on the 
models of the British Bombardier and Mariner 
shown in Figures 10 and 11, and from Equation 
(15), it has also been shown that the total circu- 
lation T' is in good agreement with the experi- 
ments of Tanaka et. al. [10], as shown in Figure 
12. One of the major objectives of this work was 
to calculate the vortex influence coefficient Ig , as 
given in Equation (11). Contours of the quantity 
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ar y/T 

n(T/L)2V dy' 

are shown in Figures 4 and 5, so that by selecting 
a value of the above parameter from the contour 
plots, at the coordinates appropriate to the vor- 
tex centroids shown in Figures 10 and 11, the 
impulse position derivative dl'/dy' may be sim- 
ply calculated. Since the vortex starting points 
are shown in Figures 8 and 9, then Equation (13) 
may be used to calculate a value of the position 
sway derivative dy'/dV. From Equation (11) 
the vortex influence coefficient may be deduced 
at the two locations at the stern of the models 
where the vorticity was measured. 

However, an alternative approach to the 
calculation of In, at the locations where the vor- 
ticity contours have been measured, may be car- 
ried out by considering that every element of vor- 
ticity represents a separate line vortex. 

Writing Equation (15) as T = / / $dydz 
and by normalising the coordinates by dividing 
by the draught T as shown in Figures 10 and 
11, we can obtain an expression for the non- 
dimensionalised circulation I" = V/UT which is 

r' = lor 
u //(£MIM?) ■  (16> 

where the factor 10 has been inserted to give a 
convenient order of magnitude to the vorticity. 

Then from Equation (11) we can write 

1H 
1 31'   ,6V 

\{T/L)2T'dy'    8V 
—    , (17) 

dy' 
dV 

and on substituting Equation (16) into Equation 
(17) we get 

1 81' 
H ~     K(T/L)

2
T' 8y' 

(18) 
Now Equation (18) reflects the procedure de- 
scribed above, where the impulse position deriva- 
tive dl'/dy' is taken at the centroids of the mea- 
sured vorticty. However, if we wish to consider 
every element of vorticty as a separate line vor- 
tex, then it must be multiplied by its correspond- 
ing impulse position derivative at the same loca- 
tion, prior to evaluating the double integral. 
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Accordingly Equation (18) may be re-written as 

'—f{ ar 
7r(r/i)2r' dy' 

10 «$)«*)}% 
(19) 

The integral inside the curly brackets was deter- 
mined by taking the vorticity at every grid point 
in Figures 10 and 11, and multiplying it by the 
impulse position derivative at the corresponding 
grid point in Figures 4 and 5. The resulting val- 
ues have then been plotted as contours in Fig- 
ures 13 and 14, where the volume under the sur- 
face defined by the contours is equal to the term 
within the curly brackets in Equation (19). 

A knowledge of the vortex starting point 
X'0, from the experiments, allows the position 
sway derivative dy'/dV to be evaluated using 

Equation (13). 

The procedure described above was car- 
ried out at two stations on both models, giving 
rise to a value of the vortex influence coefficient 
IH at each of those stations. This coefficient IH 

could then be summed with the added mass coef- 
ficient CH at the same station, which according 
to Equation (10), gives rise to the value of the 
sway force velocity derivative Y„' at the same lo- 
cation. The two values of the normalised deriva- 
tive -YJ/TT{T/L)

2
 are shown for each model con- 

sidered, in Figures 15 and 16, and denoted by a 
star symbol. The triangle symbols denote values 
of (CH + IH) at intermediate points which have 
been deduced using the assumption that the vor- 
tex strength increases according to a square law, 
from the vortex starting location X'0 up to the 
value measured in the experiments at the for- 
ward measurement station. It can be seen in 
Figures 15 and 16, that the calculated derivative 
Y„/n(T/L)2 agrees very well with those mea- 
sured in the original segmented model tests [2,4]. 

In any general case, successful estima- 
tion of the sway force velocity derivative is de- 
pendent upon the ability to estimate the vor- 
tex position and strength. It should be noted 
in Figure 4 that there are areas of the cross- 
section plane where the value of the impulse posi- 
tion derivative is fairly constant. These locations 
happen to be where the vortices would probably 
occur in practice, suggesting that in some cases 
the vortex location does not need to be known 
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with great accuracy. However it should be noted 
that the vortex influence coefficient as defined in 
Equation (17), for instance, is directly propor- 
tional to the circulation V. 

Since the type of model experiments de- 
scribed here cannot be repeated for every case 
under consideration, a simple means of estimat- 
ing the vortex characteristics will need to be the 

subject of future studies. 
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CONCLUDING REMARKS 

It has been shown by means of a com- 
bined theoretical and experimental study, that 
the discrepancies found in earlier studies [2], be- 
tween experimentally measured derivative distri- 
butions and those due to calculation using a slen- 
der body strip method, were due to the neglect 
of the trailing vortices generated by the bilge cor- 
ners of the hull forms. Experimental tests estab- 
lished the existence of the vortices and went on 
to measure their starting points, their strength 
and their locations as they passed down the hull. 

The theoretical studies have extended the 
earlier slender-body strip method to include vor- 
tex effects, by considering the rate of change of 
the impulse of pairs of vortices, which could then 
be treated either discretely or as a distribution of 
vorticity. Combining the theoretical and exper- 
imental studies allowed the derivative estimates 
to be successfully corrected, so that they agreed 
very well with the measurements of the original 

segmented model tests. 

Having demonstrated the importance of 
the trailing vortices, future work must be di- 
rected towards a simple means of estimating the 
nature of the vortices in order to allow other hull 
forms to be considered. 
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Turbulence in Trailing Vortex Pairs 
W. Devenport, J. Zsoldos, C. Vogel 

(Virginia Polytechnic Institute and State University, USA) 

ABSTRACT 

The turbulence structure associated with a 
pair of counter-rotating trailing vortices is examined 
through analysis of a large experimental database. 
The vortices were generated by two rectangular 
NACA 0012 half wings placed tip to tip, separated 
by 0.25 chordlengths (c). The database consists 
primarily of detailed 3-component hot-wire velocity 
records measured in planes 10 and 30 chordlengths 
(c) downstream of the wing leading edges for a 
chord Reynolds number of 260,000. 

The data reveal much about the turbulence 
structure of the vortex cores, the surrounding spiral 
wakes, and their interaction. The wakes dominate 
turbulence structure outside the core regions. The 
drift of the vortex pair and the secondary flow they 
generate stretches and distorts the wakes, causes 
them to merge and separate again. While these 
events cause substantial changes in the organization 
and structure the wake-like character of the 
turbulence is never lost. 

The interaction between the vortex cores, in 
addition to producing Crow instability, appears to be 
a crucial player in their decay. Specifically, the 
interaction seems to stimulate turbulence production 
in the vicinity of the otherwise laminar cores, 
accelerating their growth. This previously unobserved 
mechanism provides a possible physical explanation 
of the two-stages of vortex decay seen in the far 
wakes of lifting vehicles. 

INTRODUCTION 

Interactions of counter-rotating vortices 
generated by lifting surfaces are commonly seen in 
the far wakes of aircraft and marine vehicles. 
Perhaps the most well-known interaction is Crow1 

instability. Crow showed that a pair of infinite line 
vortices of opposite sign with finite cores are 
unstable to sinusoidal disturbances of specific 
wavelength along planes that lie at 45° to that 
joining the vortices. There have been numerous 
observations of full-scale aircraft wakes2"4 and 
laboratory-scale flows5"8 confirming Crow's theory. 
Crow instability is the primary mechanism causing 
the dissipation and break-up of a counter-rotating 
vortex pair. As the amplitude of Crow instability 
grows, it starts to become non-linear. Ultimately, at 
low background turbulence levels, the vortex cores 
link together and a series of ring vortices is formed. 
At higher turbulence levels, vortex bursting may 
diffuse the cores before linking can occur4,7,8. 

Crow instability and its consequences are of 
course only one part of the interaction between 
counter-rotating vortices. We would expect the 
straining field imposed by the vortices upon each 
other to substantially modify their mean flow and 
turbulence structure, especially when the ratio of 
core radius to vortex separation is significant. 
Quantitative velocity measurements on interacting 
trailing vortex pairs are rare, however, and there 
have been no studies in which the cross-sectional 
structure of such a flow has been examined in any 
significant detail. Surveys of the near-wakes of 
lifting wings9"11 (where counter-rotating vortex 
interactions are insignificant) suggest that this 
structure may be fairly complex because of the 
wakes that surround and connect the vortex cores. 
Core axial and tangential velocity profiles have been 
measured in the far wakes of aircraft and wind- 
tunnel models by a number of authors10,12"17. These 
measurements were aimed at understanding the decay 
of the individual vortex cores, however, without 
reference to possible interactions between them. A 
relevant observation made in several of these studies, 
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is that the cores appear to undergo a two-stage 
decay. Over the first 30 to 100 spanlengths 
downstream of the generating wing the cores appear 
not to grow and their strength remains constant18 - 
this is referred to as the plateau region. Decay then 
begins; core radius and peak tangential velocity 
varying as the square root of streamwise distance. 
No satisfactory physical explanations have been 
advanced to explain the onset of decay, but because 
of the large streamwise distance before decay begins, 
interaction between the tip vortices seems a 
possibility. 

The measurement of trailing-vortices is not 
without its problems. Vortices tend to wander (i.e. 
their core location is a function of time) and be 
sensitive to probe interference. Wandering causes a 
fixed probe to greatly overestimate turbulence 
stresses in regions where there are significant mean 
velocity gradients. In severe cases it also 
substantially smooths mean velocity profiles. Baker 
et al.19 conducted experiments on a trailing vortex 
generated by a rectangular wing in a water tunnel 
using laser Doppler velocimetry. They argued that 
vortex meandering decreased the maximum 
tangential velocities by 30% and increased the 
measured core radius by a factor of 2.2. Baker et al. 
attributed the wandering to freestream turbulence. 
Chigier and Corsiglia20 and Corsiglia et al.17 

conducted triple hot-wire measurements on a trailing 
vortex in the NASA Ames 40x60 wind tunnel. They 
observed a spanwise meandering of about ± 2 
chordlengths. As a result mean-velocity 
measurements made with a fixed hot-wire probe 
underestimated the peak tangential velocity by as 
much as 50%. Recently, Devenport at al.11 have 
studied theoretically some effects of wandering on 
core velocity measurements. They derive simple 
expressions for the true core radius r, and peak 
tangential velocity vej in terms of values measured 
in the presence of wandering rJm and vBlm ; . 

r, = r^l-2ec o2/rj 

VB1 =V81mrlm/rl 

T 
In 

(1) 

where a = 1.25643. They also develop a method for 
estimating the r.m.s. amplitude of wandering motions 
c from single-point turbulence measurements. They 
show that, as long as the wandering is not too 
severe, its effects on mean-velocity field 
measurements can be reversed. 

Probe interference problems in single-wing 
vortices have been reported by Orloff21, Gasparek22 

and Mason and Marchman23. Orloff and Gasparek 

found that the trajectory of the vortex moved when 
a small diameter probe was inserted into the core. 
Mason and Marchman also found that a probe 
changed the vortex trajectory but only if it was 
pitched or yawed relative to the free stream 
direction. Stifle and Panton24 examined the effects of 
passing a moving wire through the core of a single 
vortex produced by a delta wing. They found that 
disturbances introduced into the vortex core 
propagated both upstream and downstream with 
smaller disturbances produced by a slower moving 
wire. 

The overall objective of the present 
investigation is to improve the understanding of 
turbulence in trailing vortex pairs and thus make 
them easier to predict. Detailed three-component 
velocity, turbulence and spectral measurements made 
in both co- and counter-rotating trailing vortex pairs 
have already been presented25,26. In this paper we 
analyze in more depth those measurements made in 
the counter-rotating vortex pair, making use of recent 
observations of an isolated trailing vortex generated 
under similar conditions. The new analysis reveals 
much about the turbulence structure of the vortex 
cores, the surrounding spiral wakes, and their 
interaction. 

CONFIGURATION 

The measurements were taken in the 
Virginia Tech Stability Wind Tunnel. Its test section 
(figure 1) has a square cross section 1.83mxl.83m 
and a length of 7.33m. Flow in the empty section is 
closely uniform with a turbulence intensity of less 
than .05% at 20m/s27. 

The vortex pair was generated using two 
identical half-wings mounted tip to tip. Both had a 
rectangular planform and NACA 0012 section with 
a chordlength c of 0.203m. Both were equipped with 
effective boundary-layer trips26. The wings, 
introduced from opposite walls of the test section, 
were mounted with their quarter chord lines collinear 
and perpendicular to the freestream. A tip separation 
of 0.25c was used and the angle of attack of both 
wings was fixed at 5°. 

This configuration is a compromise between 
vortex age and Reynolds number. To obtain 
significant interaction between a counter-rotating 
vortex pair, they must be allowed to develop over a 
streamwise distance equal to many times the distance 
separating them. Given the length of most wind- 
tunnel test sections this means that, if the vortices 
are generated from opposing 'tips of the same wing, 
only a very small wing can be used and Reynolds 
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numbers will be correspondingly low. With two 
wings placed tip to tip, however, significant 
interaction can be generated without sacrificing 
Reynolds number. 

RESULTS AND DISCUSSION 

The cartesian coordinate system (x,y,z) 
(u,v,w) shown in figure 1 will be used in discussing 
results. Most results have been normalized on the 
wing chord c of 0.203m and the free-stream velocity 
U„j. Measurements were made at a chord Reynolds 
number Rec = UreJe/v of 260,000, corresponding to a 
free-stream velocity of about 20m/s. 

Velocity and turbulence measurements were 
made using a miniature 4-sensor hot-wire probe 
calibrated directly for flow angle25,26. Hot-wires were 
used in preference to laser Doppler anemometry 
since the latter is not-well suited to the measurement 
of velocity spectra (essential if vortex wandering and 
turbulence are to be distinguished) and would be 
expected to encounter seeding problems in the core. 
However, with hot-wire anemometry it is essential to 
establish that there is no significant probe 
interference. This was done through a series of 
helium bubble flow visualizations, presented by 
Zsoldos and Devenport25-26. These clearly showed no 
influence of the probe on the core at the 
measurement point even with the probe moving 
through the core. 

Measurements were made in two cross- 
sectional planes at x/c = 10 and 30. About 900 
points were measured in each plane in nominally 
polar grids centered on the cores. At each point 
614400 simultaneous samples of the three velocity 
components were recorded at a rate of 30 kHz 
(sufficient to calculate a detailed low-uncertainty 
spectrum) over a total sampling time of about 2 
minutes. The detailed nature of the data set makes it 
suitable for many kinds of analysis. We present 
Reynolds averaged statistics, spectral results and 
high-pass filtered statistics, the latter providing a 
view of the turbulence structure in the core regions 
without the obscuring effects of wandering. Typical 
uncertainties in Reynolds averaged statistics are 
listed in table 1. 

Measurements at x/c  = 10 
Figure 2a reveals the overall flow structure 

at x/c = 10 in terms of contours of axial normal 

stress «* /^ref . Figure 3 shows flow structure in the 
core regions in terms of mean cross-flow velocity 
vectors, contours of mean axial velocity U/Urep mean 

streamwise vorticity (£>j:/UnJ, axial normal stress 

^Wref , cross-flow normal stress sum (V^+w"2)/^ 
and turbulence kinetic energy production, normalized 
on Uref and c. We plot the sum of the cross-flow 
normal stresses since it is invariant to rotation in the 
cross-flow plane. 

Having drifted under their mutual induction, 
the vortices are centered atz/c=-0.66 atx/c=10. The 
cores have also moved apart from 0.25c at the wing 
tips to 0.45c here. This movement, also observed in 
helium-bubble flow visualizations25 is a consequence 
of the Betz's conservation laws30,31 governing the 
inviscid roll-up of each vortex. Specifically, the 
centroid of the vorticity distribution shed by each 
wing must remain fixed during the roll-up. Since the 
centroid is inboard of the tip the vortex cores are 
initially seen to move apart. 

The circulating velocity fields produced by 
the vortices are clearly visible in the mean-velocity 
vectors (figure 3a). These combine to produce a 
strong upwash between the cores and a relatively 
weak downwash to either side. Carried with this flow 
are the wing wakes, seen most clearly in the 
turbulence-stress contours (figures 2a, 3d and e). 
These pass upward between the vortices, where they 
merge, and then roll into spirals around each core. 
Physically it seems that the spiral sections of wake 
must have passed between the vortices before merger 
began. These pictures therefore probably show the 
initial stages of merger, i.e. the beginnings of the 
viscous interaction between the vortices. 

In addition to merger the wakes suffer 
lateral stretching, rates of shear strain and strong 
lateral curvature, all of which appear to have a 
significant influence on their turbulence structure. 
Lateral stretching is produced by the upward motion 
of the vortices and the acceleration of the flow 
between them. Rates of shear strain are imposed not 
only by the rotational velocity fields of the vortices 
but also by streamwise vorticity embedded within the 
wakes themselves. (Some of this vorticity is clearly 
visible in figure 3b). This vorticity, representing the 
un-rolled-up portions of the vortex sheets shed by 
each wing, should increase in strength as the vortex 
cores are approached. Rates of shear strain would 
tend to suppress large-scale turbulent structures and 
thus reduce turbulence levels in the wakes. 

In the region immediately below the vortices 
(z/o-0.4) the wakes are being stretched and 
consequently thinned by the upward motion of the 
vortex pair. The wake thickness, measured between 

the   rf2lurtf = 5xl0"5 contours, is about 0.2c here, 
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compared to 0.33c in the near two-dimensional (2D) 
portions of the wakes shed much further from the 
wing tips26. Stretching, of course, also influences the 
turbulence structure, increasing dissipation but also 
intensifying coherent turbulent structures aligned 
with the stretching direction. Turbulence normal 
stresses and velocity autospectra presented by 
Zsoldos and Devenport26, in terms of the wake 
aligned velocity components K,V„,V, (figure 2a), show 
these effects. Approaching the vortices from below, 

peak levels of v^ fall due to the increased 
dissipation, becoming a factor of 3 smaller than in 

the 2D portion of the wake. Peak levels of uß and 

v^j, being more closely associated with spanwise 
coherent structures, change little from their 2D 
values, however. At the same time velocity spectra 
show an intensification of the peak associated with 
the passage frequency of large scale wake structures, 
but a suppression of spectral levels at other 
frequencies. 

Moving between the vortex cores the wakes 

merge   and    overall    levels    of     "l^nf     and 

(v'2+wö)/l7^ increase by as much as a factor of 
two, creating local maxima. Stretching, which is at 
its greatest here, appears to be at least partly 
responsible for these effects. The strongest evidence 
for this is the tremendous anisotropy of the 
turbulence structure in this region. Figure 4 shows 
normal-stress profiles measured along a z-wise 
profile coincident with the  plane of symmetry. 

Passing between the vortex centers u and v , 
being associated with spanwise wake structures 
intensified by stretching, increase to maxima. By 

contrast w^is as low as l/7th of va. The dominance 

of v is also felt in the turbulence production in this 
zone (figure 3f). This is strongly positive below the 
line joining the vortex centers (z/c=-0.66) but is 

actually negative above. The reason is that v dV]dy, 
locally by far the largest contributor to production, 
reverses in sign with dVjdy near z/c=-0.66. Velocity 
autospectra measured at the center of the merging 
region (z/c=-0.66, y/c=.02) are compared with 
corresponding spectra measured on the centerline of 
the 2D portion of the right-hand wake in figure 5. 
Consistent, with stretching, spectral levels are 
elevated in the vicinity of the peak associated with 
the passage of coherent spanwise structures, visible 
in the normal to wake component (figure 5b). It is 
rather surprising that the center frequency of this 

peak is only slightly higher (at fc/U„/=4) in the 
merging region than in the 2D part of the wake. One 
would expect a frequency doubling in the merged 
region because of the presence of structures from 
both wakes. 

Moving out of the merged region the wakes 
separate suffering strong lateral curvature in the 
process (see near z/c=-0.9, ,y/c=0.15 for the right- 
hand vortex) and a consequent suppression of 
turbulence levels. The wakes then straighten and 
turbulence levels once more increase reaching a 
second maximum (near z/c=-.7, .y/c=0.37). Finally, 
turbulence levels fall as the wakes converge on the 
cores, presumably due to the increasing rates of 
shear strain and transverse curvature they experience. 
After coming out of the merging region, turbulence 
production recovers a more conventional wake-like 
form (figure 3f) and is concentrated in a crescent- 
shaped region that surrounds the wake centerlines. 

The solid lines in figure 3b show both core 
edges defined as the locus of peak tangential velocity 
about each core center. The cores are both closely 
circular with radii of 0.044c. The velocity vectors 
(figure 3a) and a profile through the right-hand core 
(figure 6) shows that tangential velocities at the core 
edges vary substantially with circumferential location 
from 48% Uref on the side closest to the plane of 
symmetry to 35% Unf on the outer edge. This 
variation is partly a consequence of the fact that the 
cores lie at an angle of about 3° to the freestream 
direction and thus to the coordinate system in which 
these vectors have been resolved. (This is also why 
the point of zero cross flow velocity does not appear 
exactly at the core center.) The contours of a>^/Uref 

(figure 3b), being less affected by this skewing, are 
approximately circular in the core regions and 
concentric with the core edges. A profile of axial 
mean velocity through the right-hand core center 
(figure 6) shows there to be a deficit, of maximum 
value 19%Uref. The deficit is not symmetric, being 
considerably greater toward the inside edge of the 
core, partly because of the angle between the core 
and free stream. There is also a local peak in the 
profile close to the core center. Figure 3c shows this 
as an irregularity in the axial velocity contours on 
the right-hand side of the core. A similar peak 
appears at the mirror image location in the left-hand 
core. We have investigated the possibility that these 
peaks may be due to errors associated with the finite 
size of the hot-wire measurement volume (about 
lmm) and high tangential velocity gradients. 
However, these errors seem too small and, 
furthermore, would be of opposite sign in the left 
and right-hand vortex cores. We are therefore in no 
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doubt that this feature is real. Such a peak could be 
a remnant of the axial velocity surplus that probably 
exists in the cores further upstream. 

Within the core region the turbulence stress 
contours (figures 3d and e) show velocity 
fluctuations rising to a maximum. The large 
fluctuation levels at the core center are mostly a 
consequence of small amplitude wandering, also 
observed in helium-bubble flow visualizations26. If 
we assume that this is the only source of low- 
frequency fluctuations we can estimate, using the 
measured mean velocity gradient here and the 
method of Devenport et al.11, an upper bound for the 
r.m.s. amplitude of the core motions. This turns out 
to be 3.7% of the core diameter. Given Devenport et 
al.'s correction formulae we would therefore expect 
the present measurements to over-estimate the true 
core size by only 0.7% and underestimate the peak 
tangential velocities around it by an equal amount. 
Likely errors in the measured turbulence stresses 
(estimated by multiplying the estimated amplitude of 
wandering motions by the local mean velocity 
gradients) are of course larger. Figures 2d and e 
show shaded regions within which wandering is 
estimated to have contributed more than 30% to the 
Reynolds stresses. (For comparison, 30% is 
approximately the contribution that inactive motion 
makes to the streamwise normal stress in an attached 

turbulent boundary layer.) For "/^ this region 
only occupies a very small crescent shaped area 
towards the lower edge of the right-hand core. Even 
setting a much tighter tolerance of 10% only 
eliminates measurements made in the immediate 

vicinity of the cores. For (V2+w<2)/t/^ the region is 
larger but still only extends about 1 core radius 
beyond its edge. Thus the vast majority of the 
turbulence-stress data outside the core regions can be 
considered free of substantial wandering effects. This 
is not to say that all the turbulence stresses here are 
generated by conventional turbulent processes. The 

elevated ^ l^rrf levels around the core edge, for 
example, may well be due to core waves or 
distortions generated by the surrounding turbulence. 
Indeed this is indicated by the velocity spectra 
presented below. 

Figure 7 shows autospectra of V and W 
velocity component fluctuations (plotted as GJUnf 
and GKJUrefc vs fc/Vrep where / is frequency in 
Hertz) for various locations along the right half of 
the profile presented in figure 6. Locations are 
identified in terms of distance from the core center 
y/c, listed in the legend. Absolute locations are 

indicated by the dots marked on figure 3d. 
The spectra aty/c = 0.176 and 0.126 show 

the character of velocity fluctuations in the curled up 
wing wake. These bear a qualitative resemblance to 
those measured in the 2D portion of this wake 
(figure 4), suggesting that the instantaneous turbulent 
structures here may not be that different, despite the 
strong distorting effects of the nearby vortex. The 
G„ spectra show a peak presumably associated with 
the passage of large coherent structures in the 
vicinity of fc/Uref = 4. Spectra of u-component 
fluctuations at these locations show an inertial 
subrange, indicating a well developed energy 
cascade. 

Moving into the vortex core spectral levels 
at very low frequencies/c/i7re/< 2 rise dramatically 
as a consequence of the wandering. It seems 
probable that some of the wandering motions are 
associated with Crow1 instability. A theoretical 
calculation of Crow instability requires an estimate 
of the core diameter where, in this context core 
refers to the region carrying the bulk of the 
streamwise vorticity. From figure 3b we choose this 
distance to be 0.15c (the diameter of the contour 
where the vorticity is l/10th of its value at the core 
center) which, using Crow's results, implies a most 
unstable wavelength of 3.3c that would grow by a 
factor e (= 2.71828) over a streamwise distance of 
10c. A 3.3c wavelength implies a frequency fc/U„f 

of 0.3. Spectral levels are strongly elevated around 
this frequency but the spectra do not show a distinct 
peak. This suggests that other sources of wandering 
may also be important at this stage. 

While wandering dominates the low- 
frequency end of velocity spectra in the core, wave 
motion appears to be a factor at mid frequencies 2 < 
fc/Uref < 20. Here the diffuse hump in the Gm 

spectra, attributed to the passage of large-scale 
structures in the wake, develops into two sharp peaks 
as the core is entered, atfc/Ur^= 4.9 and 8.2. These 
bear some resemblance to peaks seen at similar non- 
dimensional frequencies by Bandyopadhyay et al.33, 
within the core of an isolated vortex, which they 
suspected were the result of axisymmetric and helical 
instabilities travelling along the core. The fact that 
there appears to be a connection between these peaks 
and the passage of large-scale structures in the 
surrounding wake may not be coincidence. 
Devenport et al.11 have demonstrated that higher 
frequency velocity fluctuations in the core of an 
isolated trailing vortex tend to scale on the 
parameters of the wake that spirals around the vortex 
and not on those of the core. This behavior can be 
explained if the bulk of fluctuations in the core are 
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created by core motions and waves generated in 
response to the motion of large-scale structures of 
the surrounding wake. 

At the high frequency end of the spectrum 
fc/Uref > 20, where we would expect to see 
contributions from the smaller turbulent scales, 
spectral levels in both components fall by as much 
as an order of magnitude as the core is approached 
and entered. Bearing in mind the strong stabilizing 
effects of rotation, it is no surprise to see suppression 
of turbulence at the core center, However, it is a 
surprise to see it at the core edge (r/c = 0.04). The 
core edge is the region of maximum tangential rate 
of strain and therefore the place where we would 
expect the most production of turbulence from the 
rotational motion of the vortex. The absence of small 
scale turbulent fluctuations here suggests that such 
production may not take place or may be 
insignificant at this stage. Recent large eddy 
simulations by Ragab and Sreedhar34 appear to show 
a complete absence of turbulence production in and 
around an isolated vortex core. Note that 
corresponding axial velocity spectra measured at the 
core center and edge show no inertial subrange or 
similar region, implying that the turbulent energy 
cascade is severely disrupted here. 

The true turbulence structure in the core 
regions can be illustrated for a broader range of 
positions by plotting filtered statistics. In figure 8 we 

—_     2 

plot contours of "* l^nf high pass filtered at 
frequencies of fc/UnJ=3 and 40, corresponding to 
length scales of 0.33c (7.3 core radii) and 0.025c 
(0.56 core radii) respectively. Filtering atfc/Urtf=3 
(figure 8a) would be expected to eliminate most of 
the velocity fluctuations associated with wandering, 
but leave intact the bulk of fluctuations associated 
with coherent wake structures and core waves. The 
flow structure appears nearly identical to that shown 
by the conventional Reynolds averaged 
measurements (figure 8a) confirming that wandering 
is not an overwhelming contributor to the axial 
normal stress at this station. Filtering at/c/C/r<^=40 
(figures 8b, c and d) would be expected to eliminate 
all but the smaller turbulence scales. These contours 
show no maximum in the wake merging region 
between the cores. This is expected since the 
stretching of the wakes here should suppress smaller 
scale turbulence through increased dissipation. In the 
cores these contours show fairly constant but very 
low stress levels, perhaps indicating laminar flow. 
Outside the cores stress levels increase reaching local 
maxima that sit on diagonally opposite sides of the 
core about 1.25 core radii outside its edge. The cause 

of these maxima is not immediately clear. We will 
discuss them later along with the corresponding 
results for x/c=30. 

Measurements at x/c - 30 
Figure 2b shows the overall flow structure 

in terms of contours of axial normal stress «7^ . 
Figure 9 shows mean cross-flow velocity vectors, 
contours of mean axial velocity V/Urtfi mean 
streamwise vorticity (üje/U^ axial normal stress 

i^Wnf , cross-flow normal stress (V^+w^/C/^ and 
turbulence kinetic energy production in the vicinity 
of the cores, normalized on Uref and c. 

By x/c=30 the vortices are slightly further 
apart, their separation here being 0.52c. They have 
also drifted further under their mutual induction, to 
z/c=-1.73. The fact that the z-location of the vortex 
centers at x/c = 30 is less than three times that at x/c 
= 10 is an indication that the rate of drift decreases 
slightly. The mean velocity vectors, contours of 
streamwise vorticity and axial velocity (figures 9a, b 
and c) show a mean-flow structure very similar to 
that at x/c=10, though slightly diminished in 
intensity. The axial normal stress contours (figure 
2b) still show the wing wakes which, having been 
further stretched by the upward drift of the cores, are 
only slightly thicker than at x/c=10. Turbulence 
stresses and velocity spectra measured in the portions 
of the wakes found below the core regions (z/c> -1) 
show the same features (increased anisotropy, an 
enhanced peak at the passage frequency of large 
structures) taken as symptomatic of lateral wake 
stretching at x/c=10. The merging region between 
the cores is less distinct than at x/c=10 but still 
apparently dominated by stretching, z-profiles of 
normal stresses along the plane of symmetry (figure 
10) show, if anything, an even greater imbalance 

between va and wa. The large values of vß again 
lead to positive and negative regions of turbulence 
production below and above the line joining the 
vortex centers (figure 9f). 

Apart from the merging region, the 
turbulence structure that envelopes the cores appears 
quite different than at x/c=10. Gone are the wake 
spirals, having been replaced by a more homogenous 
turbulence structure. Judging from the development 
of the flow implied by the velocity field measured at 
x/c=10, it seems that much of this turbulence should 
have originated in the wakes, having been brought 
through the merging region. The forcing together and 
then pulling apart of this wake fluid would have 
destroyed its large scale organization, producing the 

687 



structure seen here. Interestingly, velocity spectra in 
this region (see below) still appear wake-like, 
however, suggesting that the larger scale 
instantaneous flow structure may not be destroyed by 
this process. 

The solid lines in figure 9b show both core 
edges. The cores are again closely circular with radii 
of 0.054c. A profile through the right-hand core 
(figure 11) shows peak tangential velocities varying 
from 34% Uref on the side closest to the plane of 
symmetry to 25% Uref on the outer edge. The 
contours of <üjc/U„f remain circular in the core 
regions and concentric with the core edges but peak 
vorticity levels are significantly less than atx/c = 10. 
A profile of axial mean velocity through the right- 
hand core center (figure 11) shows there to be a 
deficit, of maximum value 16%Urcf. The deficit is 
not only smaller but also more symmetric than at x/c 
= 10. In addition there is no evidence of local peaks 
in the axial velocity in either core. 

The turbulence stress contours (figures 9d 
and e) again show velocity fluctuations rising to a 
maximum at the core center. Normal stress levels at 
the core center and measured mean-velocity gradients 
here suggest an upper bound for the amplitude of the 
core motions of 10.5% of the core diameter. Given 
Devenport et al.'s correction formulae we would 
therefore expect, as a worst-case scenario, the present 
measurements to over-estimate the true core radius 
by 5% and underestimate the peak tangential 
velocities around it by an equal amount. We 
therefore estimate, for example, a true core radius 
closer to 0.051c. Outside the core edge, mean- 
velocity errors rapidly become negligible. Figures 9d 
and e show shaded regions where it is estimated that 
wandering   contributed  more  than  30%   to  the 

Reynolds stresses. For « these regions still only 
cover the cores and their immediate surroundings. 

For v^+w , however, these regions are much larger 
and we must rely more on spectra and filtered results 
to infer the turbulence structure. 

Even after accounting for the possible 
effects of increased wandering it is clear that there is 
substantial decay of the cores between x/c=10 and 
30. Core radius increases by about 16% and peak 
tangential velocities fall by about 22%. Significant 
decay over this distance is not observed in the 
equivalent isolated trailing vortex produced with one 
of the NACA 0012 half wings removed11. We 
therefore have strong circumstantial evidence that the 
interaction between the counter-rotating vortices 
stimulates a more rapid decay of their cores. Thus, it 
seems possible that the sudden onset of core decay 

in aircraft trailing vortices seen by previous authors 
is a consequence of interaction between the two tip 
vortices and not self induced. 

We may gain insight into the turbulence 
structure in and around the cores from velocity 
autospectra. Figure 12 shows autospectra of V and W 
velocity component fluctuations for various locations 
along the right half of the profile presented in figure 
11. Locations are indicated in the legend of figure 12 
in terms of y distance from the core center y/c and 
are shown as dots in figure 9(d). 

The spectra at y/c = 0.214 and 0.167 show 
the character of velocity fluctuations in the outer 
crescent of turbulent fluid surrounding the cores. 
Abovefc/Urj=l these bear a remarkable resemblance 
to spectra measured in 2D portions of the wing 
wakes at x/c=3026. In particular, Gm shows a peak at 
a frequency of 2.7 - close to the passage frequency 
of large-scale structures in the 2D regions. This peak 
frequency lower than that seen in the spiral wakes at 
x/c=10, but by an amount roughly consistent with 
the expected wake the development over the 
intervening streamwise length. These results suggest 
the seemingly unlikely conclusion that instantaneous 
turbulent structures surrounding the cores retain a 
strong memory of their origins, despite 
overwhelming curvature, strain and the merger 
process. 

Below fc/Urif=l these spectra already show 
elevated levels due to wandering. Moving into the 
core these rise by more than two orders of 
magnitude. In contrast to x/c=10 the wandering 
motions here appear to a preferred frequency, since 
the G„w spectrum develops a clear peak centered at 
fc/Ur<f = 0.36. This is close to the frequency 
predicted for Crow instability of fc/Unf = 0.3. (Note 
that using conditions at x/c=30 instead of those at 
x/c=\0 in this prediction makes no significant 
difference to the results.) The direction of this 
dominant core motion is clearly shown by the 
double-peaked distributions of axial normal stress 
visible in both core regions (figure 9d). It is simple 
to show that these distributions are a consequence of 
oscillation of a near Gaussian axial velocity deficit 
along an axis coincident with a line joining the two 
peaks. These lines are seen to lie along ±45° planes 
consistent with Crow's prediction. Over the 
intervening distance between x/c=l0 and 30 we 
would expect the amplitude of Crow instability to 
become magnified by a factor e2, and thus associated 
spectral levels to increase by e4 = 54.6. In fact the 
increase in Gww at the core center is about ten fold. 
This explains why the spectra at */c=10 show no 
distinct peak associated with this instability, it being 
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well buried in the surrounding spectrum. 
In the middle frequency range 2 <fc/Uref < 

20 the core center Gm spectrum does show some 
evidence of core waves. However, only one peak is 
visible, centered ztfc/Urif = 4.5 - very close to the 
location of the lower-frequency peak seen atx/c=10. 
In addition this peak is spread over a significantly 
broader range of frequencies than at x/c=l0. 

At the high frequency end of the spectrum 
fc/Uref > 20 spectral levels again fall as the core 
center is approached. However, the fall is much less 
than that seen at JC/C=10. In addition, high frequency 
turbulent fluctuations at the core edge (r/c=0.051) are 
barely suppressed at all, in complete contrast to 
;c/c=10. This change in relative spectral levels is not 
observed in the equivalent isolated vortex suggesting 
that some aspect of the interaction between the 
vortices is the cause. 

The change in core structure implied by the 
above results is also apparent in the filtered statistics. 

In figure 13 we plot contours of "lUrf , high pass 
filtered at frequencies offc/Unf=3 and 40. Removing 
stress contributions from Crow instability and other 
wandering by filtering at fc/Urej=3 (figure 13a), 
makes little difference to the turbulence structure 
(compare with figure 9d), except that it eliminates 
the double peaked core stress distributions. Filtering 
at fc/UnJ=40 (figures 13b, c and d) reveals the 
distributions of small-scale turbulence in and around 
the cores. Outside the core edges (figures 13 c and 
d) the turbulence structure is quite similar to that 
seen at x/c = 10. The two local maxima that sit on 
diagonally opposite sides of each the core are still 
visible, lying a little closer to the core edge than 
before. However, contrary to the expected decay, 
small scale turbulence levels outside the core are 
higher at x/c=30 and penetrate much deeper into the 
core, substantially changing its turbulence structure. 
Turbulence levels within the core vary much more 
than at x/c=10 and/ are considerably greater. 

This change in core structure implies more 
turbulent mixing of core fluid and is thus consistent 
with the decay of core parameters observed above. It 
may also indicate that some production of turbulence 
from the rotational motion of the vortices has begun. 
If this is so we speculate that the two maxima seen 
outside of the edge of the cores are the centers of 
turbulence production, but confirming this will 
require further analysis of the data and, perhaps, new 
measurements. Such production could be stimulated 
by instability of the velocity fields surrounding each 
core brought on by the close proximity of the other 
vortex. 

CONCLUSIONS 

The turbulence structure associated with a 
pair of counter-rotating trailing vortices has been 
examined in detail through analysis of a large 
experimental database. The vortices were generated 
by two rectangular NACA 0012 half wings placed 
tip to tip, separated by 0.25 chordlengths (c). The 
database consists primarily of detailed 3-component 
hot-wire velocity records measured in planes 10 and 
30 chordlengths (c) downstream of the wing leading 
edges for a chord Reynolds number of 260,000. 

The vortices rise under their mutual 
induction drawing the two wing wakes upward 
between them. This motion stretches turbulence in 
the wakes, intensifying dominant spanwise turbulent 
structures within them while supressing smaller-scale 
turbulence. As a result the Reynolds stress tensor 
becomes strongly non-isotropic, dominated by 
velocity fluctuations in directions normal to the 
wakes and parallel to the free-stream. In between the 
vortices stretching becomes most intense. Its effects, 
combined with the rotational velocity fields of the 
vortices, result in some negative production of 
turbulence kinetic energy here. 

As the wakes pass between the vortices they 
also come together. At x/c=10 this merging process 
has just begun. Turbulence levels in the merged 
region appear high, but this seems to be at least 
partly due to stretching. Velocity spectra here are 
wake-like. Above the merged region at x/c=10 the 
wakes separate again, each spiraling around its 
corresponding core. In the spiral, the wakes suffer 
strong lateral curvature and increasing rates of shear 
strain, both of which appear to influence turbulence 
levels. Despite these effects the spectral character of 
the turbulence remains similar to that of a two- 
dimensional wake. 

At x/c=30 a similar merging region is seen 
between the vortices but the rest of the turbulence 
structure enveloping the cores appears quite different. 
Gone are the wake spirals, having been replaced by 
a more homogenous turbulence structure. Judging 
from the development of the flow implied by the 
velocity field measured at x/c=10, it seems that 
much of this turbulence should have originated in the 
wakes but, having been brought together in the 
merging region and then forced apart, it has lost its 
large scale organization. Further evidence of this 
comes in the form of velocity spectra in this region 
which are still very wake like. 

The vortex cores themselves remain closely 
circular, increasing from a radius of 0.044c atx/c=10 
to 0.051c at x/c=30. Peak tangential velocities vary 
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substantially around each core edge and reach a 
maximum at the point closest to the plane of 
symmetry. The average peak tangential velocity falls 
from 42% of the free-stream at x/c=10 to 30% at 
x/c=30. The rapid growth and decay of the cores 
with streamwise distance implied by these numbers 
is not seen in the core of an equivalent isolated 
trailing vortex. We therefore infer that some aspect 
of the interaction between the vortices stimulates the 
decay of their core. 

Some vortex core wandering was observed, 
of r.m.s. amplitude 0.3 %c and 1.1 %c &tx/c = 10 and 
30, respectively (3.7% and 10.5% of the local core 
diameters). A substantial proportion of the motions 
at x/c=30 was due to Crow instability, with a 
frequency and direction very similar to that predicted 
by Crow's theory. Errors in mean-velocity 
measurements due to wandering were estimated and 
found to be small. Errors in turbulence stress 
measurements were found to be significant in and 
immediately surrounding the cores, especially at 
*/c=30. However, the turbulence structure here could 
still be deduced from velocity spectra and filtered 
statistics. 

Velocity records were high pass filtered at 
two frequencies; fc/Ure/=3, eliminating fluctuations 
due to wandering but not those due to other inactive 
core motions (such as waves), and /c/t/„y=40, 
eliminating all but the smaller turbulence scales. 
Turbulence stress levels for fell)„p-3 show velocity 
fluctuations rising to a maximum inside the cores. 
Spectra show that much of this energy is associated 
with narrow peaks strongly reminiscent of those seen 
by Bandyopadhyay et al.33 in isolated vortices. These 
may be produced by core waves stimulated by large 
turbulent structures in the surrounding wake fluid, 
since they occur at almost the same frequency. 

Filtering at fc/Uref>40 better reveals the 
turbulence structure in the core regions, which 
appears quite different at the two streamwise 
locations. At x/c= 10 small-scale turbulence levels are 
very low and vary little within the cores, raising the 
possibility that the entire core flow may be laminar. 
At JC/C=30 core turbulence levels are much greater, 
and vary more within the cores, suggesting more 
turbulent mixing. This increase in core activity, not 
observed in isolated vortices, is consistent with the 
relatively rapid decay of core parameters. It may 
indicate that some production of turbulence from the 
rotational motion of the vortices has begun. If this is 
so it seems likely that the centers of turbulence 
production lie about one core radius outside the core 
edges. Small scale turbulence levels show two local 
maxima here located on diagonally opposite sides of 

each core. 
We conclude, therefore, that interaction 

between a pair of counter-rotating vortices appears to 
stimulate turbulent decay that is absent in an isolated 
vortex. This may explain why previous authors have 
observed two stages of trailing-vortex decay in the 
far wakes of aircraft and other lifting bodies. 
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Quantity Uncertainty1 Uncertainty2 

U 0.015 0.015 

V,W 0.025 0.025 

UP- 3.1x10-* 1.4xl0"5 

^ 9.5x10^ 1.5xl0'5 

w^ 9.9x10"* 2.0x10'5 

Hh? 4.3x10"* 1.4xl0"5 

v'w' 4.5x10-* 2.3 xlO"5 

u'w' 2.9x10-* 8.5x10^ 

Table   1. Uncertainties   in velocity measurements 
calculated for 20:1 odds at typical locations in 'wake 
and 2core regions.  All uncertainties are in terms of 
Urcf or Urcf

2 as appropriate. 

U 'ref £> 

f c/41 

4.38c 

k 

1.83m 

^ ACA 0012 wings of 0.203m 
chord (c) at 5 degrees angle of attack 

Figure 1. Schematic of the stability wind tunnel test- 
section showing the NACA 0012 half wings and 
the coordinate system. Coordinate z is measured 
out of the paper. 

-0.5 -0.3 -0.1 0.1 0.3 y/c0.5 

-0.7   -0.5   -0.3   -0.1    0.1     0.3    0.5   ,0.7 
y/c 

Figure 2. Contours of u2/Ur
2

ef <x 105 at (a) x/c=10 and 
(b) x/c=30. Note difference in distance scales. 
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(a) Mean cross-flow 
velocity vectors 

-1 

z/c 

-0.9 

-0.8 

-0.7 

-0.6 

(b) Contours of mean 
streamwise vorticity 
normalized on Uref andc.     -0.7 
Solid lines show core edge. 

(c) Contours of mean 
axial velocity U/Uref 

i ,itimm^\\\\\\vu\\\i\\\\\\\wmj^.....\.... 
' • • • ♦ ♦ * HuUVVi 

. wmtfimtttmi    _ 

0.4 <■ ■ , ■ I ■ 

-0.5     -0.4     -0.3     -0.2     -0.1       0 0.1       0.2      0.3      0.4   ,  0.5 
y/c 

Figure 3. Reynolds-averaged velocity measurements at x/c = 10. 
Gray line shows wake centerlines defined by locus of peak axial 
normal stress. 
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(d) Contours of axial      5 

normal stress i?/[^/-xlO 
Dots show locations of 
autospectra in figure 7 

(e) Contours of the sum 
of cross-flow normal 
stresses (vT+w?)/Ur

2
ef 

xlO5 

(f) Contours of turbulence 
knietic energy production 
normalized on c and Urgf 
Grey lines - negative levels. 
Black lines - positive levels. 
Spacing between contour   -0.6 
levels is 5 x 10' 

-0.3     -0.2 

Figure 3. Reynolds-averaged velocity measurements at x/c = 10. 
Gray line shows wake centerlines defined by locus of peak axial 
normal stress. Shaded regions indicate where wandering has con- 
tributed more than 30% to the normal stress plotted. 
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Figure 4. Normal stress profiles at y/c=0.023 along 
the plane of symmetry between the vortices at 
x/c=10. 

Figure 5. Autospectra of velocity fluctuations meas- 
ured at the center of the merged region (symbols) 
compared with thos measured at the center of the 
2D portion of the wake, (a) Axial component, (b) 
Normal-to-wake component and (c) Component 
parallel to wake centerline. Spectral levels norm- 
alized on UK{ and c. 

0        0.1        0.2       0.3        0.4        0.5        0.6 
y/c 

Figure 6. Mean velocity profiles through the right- 
hand core center at x/c=10. (a) Axial velocity, 
(b) Tangential velocity as seen in the W component. 

0.1 1 10 1002 
-i—i i 11 ny 10 

fc'Uref 
Figure 7. Velocity spectra normalized on U ref and c 
at locations along the right-hand half of the profile 
in figure 6. Legend shows y-locations relative to 
the core center at y/c=0.25. Absolute locations 
indicated by dots in figure 3d. 
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(a) Contours of axial      5 
normal stress u^/t^/xlO 
high-pass filtered at 
fc/Uref =3. 

(b) Contours of axial      6 
normal stress i?/C^xlO 
high-pass filtered at _o 7 
fc/Uref =40. 

-0.4 
-0.5     -0.4     -0.3     -0.2     -0.1        0        0.1       0.2      0.3       0.4   .0.5 

(c) 

-0.35  -0.3  -0.25  -0.2  -0.15  -0.1  -0.05 0.1    0.15   0.2   0.25   0.3   0.35   0.4 

Figure 8. High-pass filtered turbulence normal stress distributions at ;t/c=10. Parts (c) and (d) show detailed 
views of the left and right-hand core regions for part (b). 

696 



(a) Mean cross-flow 
velocity vectors 
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(b) Contours of mean 
streamwise vorticity ~ 1 • ° 
normalized on I£.ey andc. 
Solid lines show core edge. -1.7 
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(c) Contours of mean 
axial velocity U/Uref 
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Figure 9. Reynolds-averaged velocity measurements at x/c = 30. 

697 



-2.1 

z/c 
-2 

-1.9 
(d) Contours of axial      5 

normal stress ir/t^/xlO        . 
Dots show locations of 
autospectra in figure 12 

-1.7 

(e) Contours of the sum 
of cross-flow normal 
stresses ( v^+ w^)/ Urlf 
xlO5 

(f) Contours of turbulence 
knietic energy production    -1-8 
normalized on c and Urej- 
Grey lines - negative levels. -1.7 
Black lines - positive levels. 
Spacing between contour    _j g 
levels is 5 x 10" 

Figure 9. Reynolds-averaged velocity measurements at x/c = 30. 
Shaded regions indicate where wandering has contributed more 
than 30% to the normal stress plotted. 
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lxlÖ 

8x10" 
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Oxid1 ■ x x £,xxxx: 
-1   -1.2  -1.4  -1.6  -1.8   -2   -2.2  -2.4 

z/c 

Figure 10. Normal stress profiles aty/c=0.02 along 
the plane of symmetry between the vortices at 
x/c=30. 

0       0.1      0.2     0.3     0.4 0.5     0.6 
y/c 

Figure 11. Mean velocity profiles through the right- 
hand core center at x/c=30. (a) Axial velocity, 
(b) Tangential velocity as seen in the W component. 

Figure 12. Velocity spectra normalized on U ref and c 
at locations along the right-hand half of the profile 
in figure 11. Legend shows y-locations relative to 
the core center at y/c=0.25. Absolute locations 
indicated by dots in figure 9d. 

699 



-2.1 
z/c 

-2 

-1.9 - 
(a) Contours of axial      5 

normal stress ir/t^xlO       , o 
high-pass filtered at 
fc/Unf =3. 

-1.7 -; 
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z/c 
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(b) Contours of axial      6 

normal stress ur/li-ef xlO     -1-8 
high-pass filtered at 
fc/Uref =40. 1.7  - 

-1.6 - 

-1.5 - 

-1.4 
-0.6    -0.5    -0.4   -0.3    -0.2   -0.1      0      0.1     0.2     0.3     0.4 0.5     0.6 

y/c 

(c) 

-1.6 
-0.35 -0.3 -0.25 -0.2 -0.15 -0.1  -0.05 0.1    0.15   0.2   0.25   0.3   0.35   0.4 

Figure 13. High-pass filtered turbulence normal stress distributions at x/c=30. Parts (c) and (d) show detailed 
views of the left and right-hand core regions for part (b). 
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DISCUSSION 

M. Graham 
Imperial College, UK 

The direction in which the wing wakes feed into the 
vortex in your experiment is the reverse of the usual 
direction. Did you think that this may influence the 
results? 

AUTHORS' REPLY 

The trailing vortex pair was generated by two 
opposing wing tips. This configuration allowed 
substantial interaction between the vortices to be 
observed while maintaining a high Reynolds number. 
However, the price paid was that certain details of the 
turbulence structure of this flow are not the same as if 
the vortices had been generated by opposite tips of 
the same wing. Most notably, the vortex cores are 
not connected by a single, roughly horizontal, section 
of wing wake as they would be in this case. 

The questions here would seem to be whether these 
differences might have affected the primary 
conclusion of the paper (that counter-rotating trailing 
vortices decay initially as laminar flows and then, as 
a consequence of mutual induction, undergo 
transition to turbulent decay). We believe not, since 
many previous studies of conventionally generated 
vortex pairs (see Iversen1 and references therein) 
show that such vortices undergo a two-stage decay, 
entirely consistent with the present findings. 
Furthermore, we would expect the instability 
producing transition to be an inviscid one 
(specifically Widnall's2 short-wave instability) 
operating on the mean-velocity field. Outside the 
immediate vicinity of the cores the wakes have little 
influence on the mean-velocity or vorticity fields (see 
figures 3a, b, and c of the paper for example). It 
therefore seems unlikely that their exact arrangement 
would have substantially affected the presence of the 
instability. 

1 Iversen, J.D., 1976, "Correlation of turbulent 
trailing vortex decay data," Journal of Aircraft, Vol. 
13, no. 5, pp. 338-342. 
" Widnall, S.E.; Bliss, D. B.; and Tsai, C, 1974, "The 
instability of short waves on a vortex ring," Journal 
of Fluid Mechanics, Vol. 66, part 1, pp. 35-47. 
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Hydroelastic Analysis of a Flexible Bag Structure 
T. Ulstein, O. Faltinsen 

(The Norwegian Institute of Technology, Norway) 

ABSTRACT 

A numerical and analytical study of the inter- 
action between a flexible bag structure and the 
free water surface is presented. The flexible bag 
is the stern seal of a SES and behaves hydrody- 
namically as an unsteady two-dimensional plan- 
ing surface at high Froude numbers. A solution 
of the water entry problem is found by combin- 
ing the solution for an unsteady lifting surface 
in infinite fluid with an integral equation for the 
wetted length. The "dry" mode superposition ap- 
proach for the flexible behavior of the bag is com- 
bined with extensive use of analytical expressions 
for the excitation and reaction forces. The cur- 
vature of the bag and the coupling between the 
elastic longitudinal and transverse oscillations are 
accounted for. Scaling of water entry of a flexible 
bag is discussed. The relative importance of main 
parameters of the bag influencing the cobblestone 
oscillations of a SES is presented. 

1    INTRODUCTION 

During the last decade an increasing interest for 
high speed marine vessels is observed. One con- 
cept is the surface effect ship (SES). The idea with 
a SES is to partly lift the vessel out of the water 
by trapping an air cushion between two catama- 
ran hulls, a bow skirt and a stern seal (see Figure 
1). A consequence is that the resistance of a typ- 
ical SES is lower than the resistance of a similar 
sized catamaran in most sea states of practical 
interest. 
A problem with the SES is high vertical accelera- 

Figure 1: Sketch of a SES air cushion with a 
bow finger seal and a 3-loop flexible bag seal aft. 
Toyama, Ono and Nishihara [1]. 

tions in very small sea states. This phenomenon 
is often referred to as the cobblestone effect and 
is a resonance effect due to the compressibility 
of air in the air cushion. The cobblestone effect 
is excited because the water waves dynamically 
change the air cushion volume. This resonance 
phenomenon occurs at high frequencies relative 
to the resonance frequencies for the rigid body 
motions of displacement ships of similar length. 
The two lowest resonance frequencies in the air 
cushion of a 30-35 m long SES are approximately 
2 Hz and 5 Hz. Due to the frequency of encounter 
effect there are waves with sufficient energy in 
small sea states that excite these resonance os- 
cillations. The eigenfunction for the dynamic air 
cushion pressure is constant in space for the low- 
est eigenfrequency and represents acoustic reso- 
nances for the higher eigenfrequencies. The rigid 
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ship motions in this frequency range are small, 
but the vertical acceleration level is high. The 
hydrodynamic damping due to the rigid ship mo- 
tions is negligible in this frequency range. Im- 
portant damping mechanisms are due to the air 
flow into the air cushion through the fans and the 
air leakage underneath the seals and through lou- 
vers that are part of a ride control system. Steen 
[2] found in his studies of the cobblestone effect, 
that the dynamics of the stern seal bag was im- 
portant for the global acceleration level in low 
sea states. He considered the effect of a dynam- 
ically varying leakage area underneath the seal 
together with the deformation of the bag due to 
change in the air cushion pressure at the stern. 
The deformation of the bag was analyzed quasi- 
statically. The dynamically varying leakage area 
and the deformation of the bag will have a simi- 
lar effect on the air cushion as a moving piston at 
the end of a long tube. The acoustic waves in the 
air cushion were shown to be significantly effected 
by this mechanism. Steen neglected the hydroe- 
lastic interaction between the bag stern seal and 
the free water surface. By hydroelastic interac- 
tion we mean that the hydrodynamic loading is a 
function of the structural deformations resulting 
from the hydrodynamic loading. This interaction 
is focused on in this paper and is believed to effect 
the cobblestone oscillations. 

The flexible bag" behaves hydrodynamically as an 
unsteady planing surface at high Froude numbers. 
The authors are not aware of any analysis of the 
unsteady interaction between a flexible bag struc- 
ture and the free water surface. However, Doc- 
tors [3] studied the two-dimensional steady plan- 
ing of a flexible beam with bending stiffness. He 
used linearized potential theory to solve the hy- 
drodynamic boundary value problem. The effect 
of gravity was included. Bessho and Komatsu 
[4] studied the two-dimensional unsteady planing 
problem based on a frequency domain solution of 
an airfoil. The analysis accounts for the effect of 
the wetted length change, but does not consider 
deformations of the planing surface. 

The following analysis presents a numerical and 
analytical study of the unsteady interaction be- 
tween a flexible bag structure and the free water 
surface. The flexibility is mainly due to axial stiff- 

ness in the bag structure. However, the effect of 
bending stiffness is also included. The hydrody- 
namic part of the problem has similarities with 
the linearized unsteady foil problem. An impor- 
tant difference is that the wetted length of the 
structure changes rapidly with time. The wetted 
length is found from a non-linear integral equa- 
tion, by generalizing what Wagner [5] did in the 
case of slamming. A difference is that the forward 
speed of the bag is included. 
The bag structure is pressurized with air, and it is 
deformed due to the hydrodynamic pressure dis- 
tribution on the wetted surface of the bag and 
the compressibility of air in the bag. The un- 
steady deformation of the bag is found by a nu- 
merical time integration. High numerical accu- 
racy is needed. This has been achieved by using 
the "dry" mode superposition approach for the 
flexible behavior of the bag in combination with 
extensive use of analytical expressions for the ex- 
citation and reaction forces. "Dry" mode super- 
position implies that the eigenvalue problem is 
solved without accounting for the hydrodynamic 
reaction forces and the pressure forces due to the 
compressibility of air in the bag. The finite radius 
of curvature of the bag and the coupling between 
the elastic longitudinal and transverse oscillations 
are found to be important. 
Results for the volume change of the air cushion 
due to the bag motion, indicate that the interac- 
tion between the free water surface and the bag 
structure may be important for the excitation of 
the cobblestone oscillations. In order to draw any 
further conclusions, a more complete model of the 
coupling between the bag and the air cushion of 
the SES is necessary. 

2   STRUCTURAL   MODELLING    OF   THE 
BAG 

The analysis of the bag structure will be simpli- 
fied. A two-dimensional problem is solved in a 
cross-section of the bag structure in the longi- 
tudinal plane of the SES. The bag structure is 
modelled as a cable. The bag is not touching the 
water in the static case and the pressure force 
acting on the bag is an order of magnitude larger 
than the gravity force. The contributions from 
gravity will appear as restoring terms in the dy- 
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Figure 2: Static geometry of the 1-loop flexible 
bag seal. The bag consists of two circle seg- 
ments with constant radii of curvature (Ri and 
R2). The tension in the two segments is constant 
and equal to To. AP; = static pressure difference 
across segment i. 

namic case and will be negligible compared to the 
tension terms. The effect of gravity is therefore 
neglected. This implies that the bag structure is 
modelled as a weightless but not massless cable. 

The bag geometry is shown in Figure 2. The 
problem is simplified by assuming that the bag 
has only one loop. The bag geometry consists of 
two circle segments with different radii of curva- 
ture, because of different pressure differences over 
the two segments. Details about the solution of 
the static case can be found in Steen [2]. The 
length L, and the height H, are known geometric 
parameters. The unknowns are TQ,R\, R2 and 8\, 
where To is the constant tension in the cable. R\ 
and R2 are the radii of curvature for the two cable 
segments and Q\ is the angle defined in Figure 2. 
It is assumed that the tangent to the loop is con- 
tinuous and horizontal at the connecting point of 
the two cable segments. 
To derive the equations of dynamic motions for 
a cable, force equilibrium of an infinitesimal ele- 
ment must be satisfied (see Figure 3). The or- 
thogonal coordinate system that is used, is fixed 
to the static geometry, where the longitudinal co- 

9 + A6 

Figure 3: Infinitesimal element of a two- dimen- 
sional cable model of the bag. Tension and pres- 
sure forces are shown together with the defini- 
tion of the coordinate system used in the dynamic 

analysis of the bag. 

ordinate is pointing in the tangential direction of 

the cable. 
The equations of motions are derived by making 
a perturbation on the known static solution. All 
non-linear dynamic terms are neglected. Com- 
patibility gives a relationship between tension and 
the motion in the transverse and the longitudinal 
directions. The radius of curvature is assumed 
constant and equal to R. This means that the 
equations of motions are set up separately for the 
two cable segments with different radii of curva- 
ture and then afterward linked together with the 
boundary conditions. The equations of motions 
can be written as (see Bliek [6]), 

M     •■ T&Vn        (T0+EA)dTH 
MmTln      =      To-TTTT + 

ds2 

EA 
R ds 

and 

Mmfjt = EA 
ds2 

EAdrin 
R   ds 

(1) 

(2) 

where r)n and 774 are respectively the motions in 
the transverse and longitudinal directions. Mm 

is the structural mass per unit length of the ca- 
ble.  T0 is the static tension in the cable, E the 
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elasticity modulus of the material and A the cross 
dimensional area of unit width, s is the longitu- 
dinal coordinate and AP is the dynamic pressure 
acting on the cable. AP includes the eiFect of in- 
ternal and external pressure. Dot stands for time 
derivative. 
We will show how the solution of equation (1) and 
(2) can be represented by a "dry" mode superpo- 
sition approach. We will first focus on how the 
eigenvalues and the corresponding mode shapes 
are determined. The following solution of the gen- 
eral form is considered, 

r,n(s,t)    =   Cne^'e*"'* 

r]t(s,t)    =   Cte0'^'* (3) 

where C„ and Ct are constants. Dj can be inter- 
preted as the wave number that is yet unknown. 
i is the complex unit, t is the time variable and 
Uj is the circular eigenfrequency. The solution 
defined by equation (3) is substituted into the 
governing equations defined by (1) and (2) with 
AP set equal to zero. This results in a set of 
two coupled linear equations with the constants 
Cn and Ct as the unknowns. In order to find a 
nontrivial solution of this equation system, the 
determinant must be equal to zero. The roots of 
the resulting equation give the relation between 
the eigenfrequencies and the wavenumbers, Dj, 
and is therefore interpreted as the dispersion re- 
lation of the cable. 
Assuming that J^ < 1> the four possible com- 
plex roots Dj = ±kj and Dj = ±ßj can be writ- 
ten as, 

-Mmcj](l + ^k+Kj+Kj) 
2T0 

and 

Here 

A2 -Mr, ^(l + ^ + Kj-Kj) 

2Tn 

(4) 

(5) 

K)    = 
To 

Mmu]B? 
and 

+ 

+ 

(*]-!) 
^1 + &K) + {K}YEA 

K)    =    Jl+6K} + (K})' 

Since R is finite, we cannot neglect Kj for all val- 
ues of u)j. By studying equations (4) and (5), we 
see that ßj is real for low frequencies and imag- 
inary for higher frequencies. The fcj-value is al- 
ways imaginary so that kj = ikj where kj is real. 
The solution for the mode shapes can therefore 
be written as follows; 

ßj is real (ßj = ßj), 

0™(s)    =   Cji cos kjs + Cj2 sin kjS 

+   CJZ cosh ßjS + Cji sinh ßjS 

<A*(s)    =   Cj5 cos kjS + Cje sin kjS 

+    CJT cosh iijS + Cjs sinh ßjS     (6) 

and ßj is imaginary (ßj = ißj), 

4>j(s)    =    Cji cos kjS + Cj2 sin kjS 

+   Cj3 cos ßj s + Cji sin ßj s 

^(s)   —   CJS cos kjs + Cj6 sin kjs 

+   Cji cos ßjS + CJS sin ßjS.      (7) 

Here <£™(s) and 4>lj(s) are respectively the mode 
shapes in the transverse and longitudinal direc- 
tions of vibration mode j. The relationships be- 
tween the coefficients Cji, Cj2, CJZ, Cj$ and CJS, 
cj6i CJ7I Cj& are found by substituting the solu- 
tions in equation (6) or (7) into the governing 
equations (1) and (2) with AP = 0. The terms 
proportional to either sine, cosine, hyperbolicsine 
or hyperboliccosine are collected and the result- 
ing coefficients ahead of each of these terms are 
set equal to zero. 
To find the eigenfrequencies and the four remain- 
ing coefficients, the boundary conditions have to 
be used. The geometry is defined in Figure 4. 
Two circle segments with different radii are cou- 
pled together at point A. Continuity of the deflec- 
tions must be satisfied at this point. The tangent 
to the loop at this point must also be continuous. 
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free water surface 

eigenfrequencies are found by setting the determi- 
nant of this equation system equal to zero. This 
is done in order to find nontrivial solutions for the 
unknown coefficients. When the eigenfrequencies 
are found, the unknown coefficients and the mode 
shapes can be determined. The coefficients are 
normalized so that the largest coefficient is 1. 
The eigenfunctions represent a complete set of so- 
lutions. The motions in the transverse and longi- 
tudinal directions can therefore be written as, 

Figure 4: Static bag geometry with definition of 
the two different cable segments. The two differ- 

ent longitudinal coordinates used, are also shown 
for the two segments. The local xy-coordinate 

system is used in the hydrodynamic analysis. See 
Figure 2 for further explanations. 

In addition the dynamic tension has to be contin- 
uous at the connecting point A of the two cable 
segments. The boundary conditions are written 
as follows, 

Point A: 

Point A: 

Point A: 

Point B: 

Point C: 

4>l = ■ 4>nj2 and 4>) — -4>j2 

<V?i #?2 
ds ds 

ds 
1   AT 

di>)2 

ds J 

1 
'*2 

0£ = 0 and 4>)x = 0 

4>% = 0 and <j>)2 = 0. (8) 

where the second subscript denotes cable segment 
1 or 2. Another boundary condition were used by 
Ulstein and Faltinsen [7] at the connecting point 
A. Continuity in the tangent to the longitudinal 
deflections was used instead of continuity in the 
dynamic tension at the connecting point A. This 
former boundary condition leads to an unphysical 
discontinuity in the dynamic tension. 
The solution described by equation (6) or (7) is 
now substituted into the boundary conditions de- 
fined in equation (8) for the points A, B and C. 
An equation system of eight equations with eight 
unknown coefficients is obtained (four unknowns 
respectively both for cable segment 1 and 2). The 

^„(3,t) =£>(*)#(*) (9) 
i=l 

and 

r)t{s,t) = yjai{t)<^{s). 
=i 

(10) 

Here Oi{t) is the principal coordinate of vibration 
mode number i. Equation (9) and (10) are sub- 
stituted into the governing equations (1) and (2). 
The two equations are multiplied with <6" and $*-, 
respectively and integrated over the length L, of 
the two cable segments. The resulting two set 
of coupled equations of motions are added as fol- 

lows, 

\M$ + M^di + [Cfi + C^ai = J AP^ds (11) 

where 

M"- 

Cl 

Mm J 4>?4>?ds 
o 

=      -Tr '»I d?4>? 
ds2 *> 

<pys 

-(To + EA) 
J R ds 

<ftds 

+EA j jpft^ds 

=      MT. 
(To + EA) 

EA 
ds 
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0 

Mfi + Mji and C^ + C^ are not generally zero 
for j 7^ i. The forcing term consisting of the gen- 
eralized pressure (total modal force) on the right 
hand side in equation (11), can be decomposed 
into a term dealing with volume change of the 

bag-volume and a term dealing with the hydro- 
dynamic impact pressure. Based on this decom- 
position the following can be written, 

/    AP^ds 

L   L 

K^9 E / / *(*)#(0d^"(*)* 
i=1 0    0 

L 

+ I p{s,r]n,t)(f>^{s)ds (12) 

where Kbag is defined as Apressure = Kbag 

■ Avolume. Avolume is the dynamic volume 
change that causes a dynamic pressure change 
(Apressure) due to the compressibility of the air 
in the bag. This implies that the bag volume 
is modelled as an enclosed volume. Kbag is set 
equal to zero in the presented calculations. This 
is partly based on results by Steen [2]. However, 
in order to study the effect of the dynamic bag 
pressure properly one needs to analyze the cou- 
pling between the bag pressure and the air cush- 

ion pressure. 
A fourth order Runge Kutta method is used in the 
numerical time integration of the equation system 
denned in (11). 

3 THE BAG AS AN UNSTEADY PLANING 
SURFACE 

To study the dynamics of a given bag design, one 
must be able to analyze the hydrodynamic im- 
pact forces on the bag when it hits the free water 
surface. The following hydrodynamic analysis as- 
sumes a two-dimensional geometry in a longitudi- 
nal cut of the vessel, an incompressible medium 

and a high Froude number Fn, of the order of 
magnitude ten. Here Fn = U/y/gl where U is the 
forward speed of the SES. This velocity appears 
as a free stream velocity relative to the bag struc- 
ture. I is a characteristic wetted length and g is 
the acceleration of gravity. The high Froude num- 
ber implies that gravity can be neglected. The 
effect of gravity for the steady planing problem is 
discussed by Ogilvie [8] and Wagner [9]. 

We will analyze the behavior of a planing bag 
bouncing on the free water surface as a water 

entry problem, assuming a large forward speed 
of the SES relative to the relative vertical ve- 
locity between the bag structure and the water 
surface. The wetted length of the bag will vary 
strongly through the impact on the free water sur- 
face. The hydrodynamic loading will be much 
larger then the aerodynamic loading due to the 
relatively low pressure in the air cushion and in- 
side the bag. This implies that the immersion of 
the bag will be low. The body boundary con- 
ditions can therefore be transferred to a straight 
horizontal line. This leads to a square root singu- 
larity in the hydrodynamic pressure at the spray 
root in the planing problem. The modal hydro- 
dynamic forces defined by the last integral on the 
right hand side of equation (12), will not be ef- 
fected by the detailed behavior of the flow at the 

spray. 

We will assume that the vertical motions of 
the bag are negligible and consider the effect of 
the vertical fluid motions due to incident waves. 
A right-handed local xy-coordinate system that 
moves with the forward speed U of the vessel (see 
Figure 4) is used. The origin is fixed at the low- 
est point of the static bag configuration (point A 
in Figure 4). The x-axis is positive pointing to- 
ward the upstream direction of the undisturbed 
fluid flow and the y-axis is positive pointing up- 
ward. The undisturbed free stream velocity U 
is in the negative x-direction relative to this co- 
ordinate system. Since potential flow is assumed, 
the separation point must be determined a priori. 
Point A in Figure 4 is chosen. The body bound- 
ary conditions are transferred to a straight hori- 
zontal line that corresponds to the x-axis (y = 0) 
defined above (see Figure  4 and  5). 

The initial condition is that 4> = 0 on y = 0 where 
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<(> = 0 

1 L 
<j> = 0 

-Ut 0       4 2c(t) 

3 4> / 3y = vo (x,t) u 

Figure 5: Hydrodynamic boundary value prob- 
lem. <t> = velocity potential. 2c{t) — wetted 
length of the bag. U = forward speed of the bag. 

<f>(x,y,t) is the velocity potential for the water 
flow caused by the bag. The linearized kinematic 
free surface boundary condition can be written 

as, 

d± = (d_ 
dy      [dt 4" (13) 

for y = 0, x < 0 and x > 2c(t). Here r](x, t) is 
the free surface deflection and c(t) is an approx- 
imation of the half wetted length. By neglecting 
gravity and linearizing the dynamic free surface 
condition it follows that 

<■*-»&"> 

(14) 

for y = 0, x < 0 and x > 2c(t). Equation (14) 
says that the velocity potential 4> is unchanged 
when following a particle with the free stream ve- 
locity — U on the free water surface (y = 0). We 
will divide the free water surface into different re- 
gions. In the regions x > 2c(t) and x < -Ut a 
fluid particle on the free surface will start on the 
free surface at t = 0 with the initial value cf> = 0. 
This means 

</> = 0  at   x < -Ut , x > 2c(i) , y = 0.     (15) 

When -Ut < x < 0, we will use equation (14) 

i.e., 

ri fi 
( U — U = 0  at    -Ut<x<0,y = 0. 
at        ox ,    , 

(16) 

The body boundary condition can be written as, 

^ = «0(x, t)     at     0 < x < 2c(t), y = 0 (17) 
dy 

where v0(x,t) = -V{t) + ft— - U—^    L. 
Here V(t) is the vertical velocity (positive in the 
positive y-direction) of the incident waves at x = 
c(t) and y = 0. A characteristic wave length of 
the incident waves is assumed large relative to 
2c(t). r)bag(x,t) describes the unsteady geometry 
of the bag, that is the vertical distance between 
a point on the bag and a horizontal line defined 

by y = 0. 
At the trailing edge (separation point) we will 
require that the flow leaves the wetted surface 
smoothly and that the hydrodynamic pressure 

d<f>     TTd<j) (18) 

is continuous and equal to the atmospheric pres- 
sure p = 0 (Kutta condition). Here p is the mass 
density of water. The solution of this boundary 
value problem can be found from the linear so- 
lution of an unsteady foil in infinite fluid. In the 
latter solution a vortex sheet is shed into the wake 
downstream of the foil. The boundary condition 
in the wake is no pressure jump across the vortex 
sheet. This boundary condition can be written 

as, 

for -Ut <x<0 and y = 0. Here the superscript 
- denotes just below y - 0 and the superscript 
+ denotes just above y = 0. The boundary con- 
dition for x < -Ut, x > 2c(t) and y = 0, is <j> = 0 
in this problem. By using that 

d(p(x,0+,t) 
dx 

d<j>(x,0~,t) 
dx 

(20) 

at -Ut < x < 0 and y = 0, a relationship be- 
tween <p+ and 4>~ can be obtained by integrating 
equation (20) in the x-direction and using that 
(f> = 0 for x = -Ut and y = 0. We obtain 

<f>(x,0+,t) = -4>(x,0-,t) (21) 

foi-Ut < x < 0 and y = 0, If equation (21) is 
used in equation (19) we get, 
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(— - U—)<jT =0 at   -Ut<x<Q ,y = 0. 
at        ox 

(22) 

This boundary condition is exactly the same 
as the boundary condition denned in equation 
(16). The unsteady foil problem satisfies the same 
Kutta condition as the planing surface problem. 
By using the same body boundary condition in 
the unsteady foil problem it has now been shown 
that the artificial unsteady foil problem satisfies 
the boundary conditions for the unsteady plan- 
ing problem in the lower region below y = 0. The 
solution of the unsteady foil problem is therefore 
used. The solution of this hydrodynamic bound- 
ary value problem (HBVP) can be represented as 
a vortex distribution over the wetted body sur- 
face and the trailing vortex sheet (Newman [10]). 
When 0 < x < 2c(t), the vortex density is 

7(s,*) 

2c(t) 

7r[x(2c(t) - x)]1?2 

("J 
K(2c(t)-Q]^ 

v0(t,t)d£ 

1 r m-Mt))\1/2. 
-Ut 

+    -   /   *^-j-^—il£ + Ut)dt 

(23) 

Here PV means the principal value of the inte- 
gral. The velocity vo(x,t) at the wetted surface 
in equation (23) can be written as, 

v0(x,t) = v0(t) + v1(t)cos6 (24) 

where x - c(t) = c(t)cos9. v0(t) and i>i(t) are 
defined as, 

vo(t) = ^ Jvo(0,t)M (25) 

0 

and 

V!(t) = - f v0{e, t) cosfldfl. (26) 

0 

The vortex density 7 in the wake is found by us- 
ing that the vorticity defined by equation (23) is 

finite at the trailing edge (Kutta condition). The 
following equation is obtained, 

-ut ' 

g - 2c(t) 
i(Z + ut)dt 

«■c(t)(2«o(t)-T)i(t)). (27) 

A time domain analysis is carried out, where the 
wetted length will vary from zero to a finite value. 
The separation point is fixed in space at the low- 
est point of the static bag configuration (point A 
in Figure 4). 
To find the wetted length, an integral equation 
is set up, based on keeping track of particles on 
the free water surface that hit points on the up- 
stream side of the bag at different time instants 
t. The particles are convected in the free stream 
direction with the free stream velocity U. The 
vertical displacement is found from integration in 
time of the vertical fluid velocity v, at y — 0. This 
vertical velocity v can be written as, 

2c(t) 

-ut 

7(4,*) dt; (28) 

where x > 2c(t) and y = 0. The vortex dis- 
tribution given by equation (23) is substituted 
into equation (28) between the integration limits 
0 and 2c(i), and the order of integration is in- 
terchanged. The vortex distribution in the wake 
(-Ut < x < 0) is found by equation (27). The 
vertical displacement of the free water surface rel- 
ative to the undisturbed free water surface, is de- 
noted pile-up of water. The non-linear integral 
equation of the unknown wetted length (2 c(t)), 
can be formulated as, 

z 

0 = 7?0 + Vbag(2c(t), t) -   f V(T)d7 

v(x = 2c(t) + U(t - r),r)dT.     (29) 

Here 770 is the vertical distance between the low- 
est point of the bag (point A in Figure 4) and 
the free water surface at t — 0. Pile-up of water 
is represented by the last term on the right hand 
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side of equation (29). It is assumed that the bag 
is flexible, and has a shape described by rjbag(x,t) 

in the impact region. We decompose the bag ge- 
ometry as follows, 

T]bag(x,t) = fjbag(x)+fjba3(x,t). (30) 

Here fjbag{x) describes the static configuration of 
the bag and fjbag{x,t) is the transverse dynamic 

perturbation of the bag i.e., fjbag(x,t) = Vn(s,t). 
It follows from Figure 4, that L\ — s « x in the 
impact region. L\ is the length of cable segment 
1 and s is the tangential coordinate at segment 1. 
v(x = 2c(t) + U(t - T),T) is the vertical velocity 
upstream the leading edge of the wetted surface 

given by equation (28). The right hand side of 

equation (29) is equal to the vertical distance be- 
tween a point on the bag and a particle at the dis- 
turbed free water surface for x = 2c{t). When the 
bag leaves the free water surface, a negative pile- 
up of water is possible for x = 2c(t). The wetted 
surface will most probably be ventilated in this 
case, and the hydrodynamic forces will therefore 
be small. The hydrodynamic force is set equal to 
zero when a negative pile-up is encountered. 
When the wetted length and the vorticity on the 
wetted surface are known, the modal hydrody- 
namic force can be found. The hydrodynamic 
pressure acting on the bag is found by using equa- 
tion (18). The modal hydrodynamic force can be 

written as, 

/    p(s,T]n,t)4>^(s)ds 

2c(t) 

=      -P I d<p(x,0-,t) 
dt 

4>](s)dx 

2c(t) 

+±pU J 7(M)#(*)d* 
o 

oo 

«=1 

oo oo 

- ]£ BjMt) - J2 Ajiäiit).    (31) 
t=i i=l 

The terms on the right hand side of equation 
(31) are obtained by collecting terms that explic- 
itly depend on a;(i), di(t) and ä'i(t), respectively. 

The remaining terms are collected in Fexcj(t). 

Fexc,j{t) and the coefficients Aji, Bji and Cji 
are implicitly functions of the coefficients a,(t) 
through their dependence on c(t) and -^p-. This 
decomposition is carried out in order to move 
as much as possible of the total modal hydrody- 
namic force over to the left hand side of equation 
(11). The terms proportional to a,i(t), di(t) and 
d'i(f) are moved over to the left hand side in the 
numerical time integration of equation (11). This 
improves the numerical stability and accuracy in 
the numerical time integration. Equation (31) in- 
dicates that there are interaction effects between 
all vibration modes. Since Fexc<j(t), Cji, Bji and 
Aji depend on Oi(t), an iteration for the solution 
of Oi(t) has to be carried out at each time step. 
Three iterations are mainly used in this analysis. 

Equation (18) shows that the velocity potential is 
needed in the calculation of the modal force. The 
velocity potential on the wetted surface, can be 

written as 

2c(0 

4>{x, t) = --   /  l{x,t)dx. (32) 

This follows from the relationship between 7 and 
d<f>/dx and that the velocity potential goes to zero 
at the leading edge. The expression for the vor- 
tex distribution on the wetted surface given in 
equation (23) is substituted into equation (32), 
and the order of integration is interchanged. The 
resulting expression for the velocity potential is 
used in the first term of the hydrodynamic pres- 
sure defined by equation (18). The relationship 
between 7 and d<j>/dx is used together with equa- 
tion (23) in the last term of equation (18). 

It is assumed that the vortex strength in the wake 
can be approximated by piecewise constant seg- 
ments of vorticity in the numerical approxima- 
tions of equations (23) and (27). This requires 
that the time step is kept small relative to the 
time scale of the problem. The length of each 
segment is set equal to UAt. At is the constant 
time step used in the numerical time integration 
during the impact. Analytical integration over 
each segment is performed. This integration is 
only important on the segments near the trailing 
edge of the bag (point A in Figure 4). 
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We will now show how the pile-up of water is 
calculated. We write 

im+At 

V(X(T),T)(IT = Y^     /    V(X(T),T)(IT   (33) 

o m=1   tm 

where tm = (m - l)At and t = MvAt. The in- 
duced vertical velocity v(x(r), r) defined by equa- 
tion (28) has a square root singularity at the lead- 
ing edge (x = 2c(t)). V(X(T),T) is rewritten as 

V(X(T),T) 
V[X,T) 

(34) 
y/x(x — 2c) 

so that the singular behavior can be properly in- 

tegrated. In order to capture variations of v(x, T) 

in time, the timestep At is divided into N sub- 
timesteps (At = X^=1 Atn). Since the strongest 
variation of V(X,T) is near the leading edge, the 
sub-timesteps are decreased by using a cosine 
spacing. v(x, r) is approximated over each sub- 
timesteps by a linear function in time defined by, 

V(X,T) &An + BnT. 

This means that, 

(35) 

t,„+Al 

l V{X{T)>T)dT*VjM^dT- n=lA-       V*(* - 2C) 
(36) 

The time dependence of the coordinate x and the 
half wetted length c over the timestep At in the 
integral defined in equation (36) is written as, 

XQ — UT and c = c0 + c\ T. (37) 

The integral on the right hand side of equation 
(36) can be integrated analytically. For m = Mv, 
N is chosen to be in the range from 10 to 15, 
in order to obtain a satisfactory accuracy. For 
m < Mv, N is set equal to 1. Far away from the 
wetted surface we can write 

tm+At 

/ 
V(X(T),T)CIT a At 

V(X,T) 

\Jx(x — 2c). 
(38) 

where x and c are evaluated at the midpoint of the 
timestep. Here far away means that (x — c)/c is 

Figure 6:  Rigid wedge that hits the free water 
surface with constant velocity (U,V). Sedov [11] 

greater than 10. The discretized version of equa- 
tion (29) is used to find the wetted length at each 

time step by an accelerated iteration procedure. 

The numerical method has been verified by com- 
paring with analytical results for lift on rigid foils 
in infinite fluid. Both the Wagner problem and 
a harmonically oscillating foil has been studied. 
The analytical solutions are based on linear the- 
ory and can be found in Newman [10]. The Wag- 
ner problem analyzes a flat plate of zero angle of 
attack, that suddenly is given a constant angle of 
attack. 

Our numerical method has also been compared 
with the analytical solution by Sedov [11]. He 
studied a flat rigid wedge that enters the water 
with constant fall velocity (see Figure 6). The 
flow underneath the wedge at different time in- 
stants is dynamically similar. The vertical and 
horizontal components of the fall velocity are 
called V and U. The angle of attack ß and the an- 
gle between the fall velocity and the horizontal ve- 
locity K (a V/U) are assumed small. Results for 
the non-dimensional wetted length and lift force 
are presented in Figure 7. The results are only 
dependent on the ratio ß/n. The upper figure 
shows the ratio between the half wetted length 
with and without the pile-up of water. Neglec- 
tion of pile-up of water is referred to as a Von 
Karman approach. The lower figure shows the 
non-dimensionalized lift force, h = Vt is the im- 
mersion of the trailing edge relative to the undis- 
turbed free water surface. We can barely see the 
difference between the numerical and the analyt- 
ical solution. 

As long as the time step At, is small relative to 
the duration tirnpact of the impact, numerical tests 
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Figure 7: Results for non-dimensional half wet- 
ted length c(t) and non-dimensional lift force for 
a rigid wedge that hits the free water surface with 
constant velocity, h = Vt is the immersion of the 
trailing edge relative to the undisturbed free wa- 
ter surface, t = time and U = horizontal compo- 
nent of fall velocity, ß and K are defined in Figure 
6. 

dimensional parameters are then formed. 
The length L of the bag is chosen as length 
scale (see Figure 2). The equations that define 
the static equilibrium, are made non-dimensional 
with respect to this length. The non-dimensional 
radius of curvature for circle segment 1 is then 
only dependent on the ratio H/L of the bag. The 
non-dimensional radius of curvature for circle seg- 
ment 2 is dependent on both H/L and AP1/AP2. 
APi and AP2 are the static pressure differences 
across cable segment 1 and 2, respectively. Since 
the remaining parameters in the static problem 
can be expressed by APi, L, H/L and AP1/AP2, 
the static solution is only dependent on the non- 
dimensional parameters H/L and AP1/AP2. 
The time and deformation scales are called T and 
TV in the following derivation. Equations (1) and 
(2) can be made non-dimensional with the follow- 

ing result, 

Vn 
T0T

2 d2
V'n     (To + EA)T2 1 dm 

L2Mm ds2 

EAT2   1 

+ 

L2Mm R2 Vn + 

L2M„ 
APT2 

MmN 

Rds 

(39) 

and 

have shown that our solution converges as At de- 
fi^1 has mainly been used in 100 creases.   At 

this study. Since Ax = UAt, the length Ax of 
each vortex element is reduced when the timestep 
is reduced. The numerical solution for a rigid 
wedge mentioned above is not dependent on the 
time step. The reason is that the strengths of 
the vortices shed in the wake are not a function 
of time. The numerical approximation assuming 
piecewise constant segments of vorticity in the 
wake is therefore exact in this special case. 

4    SCALING OF THE DYNAMIC IMPACT 

Vt 
EAT2 d2rjt     EAT2 1 dyn 

L2Mm ds2      L2Mm R ds ' 
(40) 

Here i = t/T, s = s/L, v'n = Vn/N, rjt = Vt/N 
and R = R/L. Non-dimensional parameters are 
found from these two equations. Three of these 
non-dimensional parameters can be defined as, 

T0T
2      EAT2      j (T0 + EA)T2 

      and  
L2Mm ' L2M, L2M„ 

(41) 

Since T0 + EA « EA, the two last parameters are 
the same. The time scale T is chosen so that the 
first parameter is equal, to one. This means that, 

The results from the numerical simulations are 
made non-dimensional in order to generalize the 
dynamics of a bag-structure hitting the free water 
surface. This is done by choosing a time scale, a 
length scale and a deformation scale characteriz- 
ing the problem. These scales are used to non- 
dimensional the equations that defines the static 
equilibrium and the equations of motions.  Non- 

T = L 
Mrn 

To 
(42) 

This time scale is proportional to the natural pe- 
riods of a string with length L, tension T0 and 
structural mass per unit length Mm. The sec- 
ond parameter defined in equation (41) can be 
rewritten as EA/T0 by using equation (42). We 
will now focus on the excitation term in equation 
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(39), that is APT2/MmN. Since the interaction 
between the dynamic bag deformation and the 
bag pressure is neglected {Kbag = 0), AP is equal 
to the hydrodynamic pressure p, acting on the 
wetted surface of the bag-structure. This hydro- 
dynamic pressure can be written in the following 
form, 

d(t>       1   rr 

= -p\vRc{t)h{e) + vRC{t)h{e) 

+ uJdif3(o,i)i 

c(t)L + 
c(t) 

+   pu(vRf5(6) 

+ 

f2iß) I dlU(0,07 

^fmJdiMd,^. (43) 

Here VR is the relative normal velocity on the 

wetted surface of the bag. VR is assumed to be 
constant in space in the following discussion. 6 
is defined as x — c(t) = c(t) cos 6 where c(t) is 
half the wetted length, 7 is the vorticity in the 
wake downstream the wetted surface of the bag 
and £ = £/L. The functions /1, /2, /3, /4, /s and 
/6 are non-dimensional. The order of magnitude 
of the half wetted length can be written as, 

c(t) = 0[J-R1VR(t-tinlt] (44) 

where tinu is the initial impact time. This rela- 
tion follows from the analysis of a rigid bag struc- 
ture that hits the free water surface with a con- 
stant vertical velocity VR and where pile-up of 
water is neglected. 
The relative velocity is scaled as VR = VRT/N. 
By using the Kutta condition in the unsteady 
planing problem (see equation (27), with VQ = VR 

and Hi = 0) it follows that 

7 = 2nc(t)VR.        (45) 

This means that 7 is scaled as 7 = •yT/N. By 
multiplying the pressure given in equation (43) 
by T2/MmN, the following non-dimensional pa- 
rameters follow, 

p2RiN 

Ml 
PUT anA   f>L 
-rr— and —— 
Mm Mm 

(46) 

To sum up, the following six non-dimensional pa- 
rameters have been found, 

H 

L 

AP,  _.     EA 

' AP2 '   To 
p2R1N    pUT pL 
Ml Mn 

aild Wm (4?) 

The characteristic deformation scale N will be 
related to the maximum immersion of the rigid 
bag. N can be expressed in terms of the vertical 
velocity V of the free water surface and the initial 
gap 770 between the lowest point of the bag and 
the free surface at t = 0. We define 

V(t) = Va sin -£t. (48) 

Only one oscillation period will be discussed. The 
rigid body immersion of the bag occurs in the 

time interval i,„it < t < Tp — Unit where Una = 
Tp arccos(2/3 - l)/27r. The following relationship 

can be set up 

Vo = (1 .ß)*& (49) 

where ß is the ratio between the rigid body im- 
mersion of the bag and the double motion ampli- 
tude VaTp/it of the free surface (see Figure 8). 
N is chosen as 

JV = ßVaTp. (50) 

5   RESULTS AND DISCUSSION 

Numerical results will be presented and discussed 
in this section. First the effects of including struc- 
tural damping and bending stiffness will be fo- 
cused on and justified. Next some results from 
verification of the hydroelastic model will be 
shown. This model is then used to compute the 
effect of varying the non-dimensional parameters 
obtained in the previous section. 
The physical quantity focused on in this analy- 
sis is the dynamic volume pumping of the bag- 
structure due to the impact with the free water 
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Figure 8: Definition of the motion of the free wa- 

ter surface. 

surface. The dynamic volume pumping is defined 

as the time derivative of the integrated transverse 
deflection along cable segment 1 facing the air 
cushion (see Figure 4). The dynamic transverse 
motion of point A in Figure 4 is also of some 
interest in connection with the air leakage under- 
neath the bag-structure. Earlier investigations by 
Steen [2] have shown that these quantities are im- 
portant for the cobblestone effect on a SES. 

The external input data used as a starting point 
for the non-dimensional parameter variation are 
presented in Table 1. Linear structural damping 
is introduced in the equations of motions defined 
in equation (11). The linear structural damping 
coefficient is set equal to 2w;(M£ + M£)£ and 
included in the diagonal terms of the structural 
modal damping matrix. Here u>i is the eigenfre- 
quency for mode number i. Mt™ and M£ are de- 
fined in equation (11). £ is the relative critical 
damping ratio. £ = 0.01 is used in this analy- 
sis. Calculations with £ = 0.02 showed small dif- 
ferences. The structural damping cause the high 
frequency motions resulting from very high modes 
to quickly damp out. 

Large hydrodynamic forces occur on the wetted 
length of the bag during impact with the free wa- 
ter surface. The local restoring forces of the flex- 
ible bag are small relative to the hydrodynamic 
forces. This can be illustrated by Figure 9. The 
upper figure in Figure 9 shows a sudden increase 
in the wetted length during the first impact. The 
reason for this sudden increase may be explained 
by the lower figure. The deformation is mainly 
confined to the region of the wetted surface where 

Description Symbol Value 

Height of bag H 1.40 m 

Length of bag L 2.00 m 

Diff. pressure, 
segment 1 APi 750 N/m 

Diff. pressure, 
segment 2 AP2 5250 N/m 

Rad. of curv. , 
segment 1 Ri 2.12 m 

Rad. of curv., 
segment 2 Ri 0.30 m 

Arc length, 
segment 1 Li 2.60 m 

Arc length, 

segment 2 L2 
0.84 m 

Static tension To 1596 N 

Axial stiffness EA 0.6 • 106 N 

Structural mass Mm 4.3 kg/m 

Vert. vel. amp. va 2.35 m/s 

Oscil. period Tp 0.2 s 

Rel. immersion ß 0.1 

Forward speed 
of the SES U 23.1 m/s 

Table 1: An example of data used in the simula- 

tions of hydroelastic bag impact. 

the hydrodynamic pressure is applied. Due to 
this local deformation and the fact that the free 
water surface is approaching the bag in the verti- 
cal direction, this sudden increase in the wetted 
length is explained. In the time interval (0.0808 < 
t < 0.0823) where the sudden increase in wetted 
length occurs, the hydrodynamic forces are small. 
This may be explained by equation (17), where 
v0{x,t) = -V(t) H ft V      ^      .   ine 
bag is accelerated and deformed in the impact re- 
gion after the initial time of impact. This implies 
that the two last terms are cancelling the first one 
representing the vertical velocity of the free water 

surface. 

The separation point of the flow (trailing edge) is 
fixed at x = 0.0[m] in the numerical results pre- 
sented in Figure 9. In reality the flow will prob- 
ably detatch or separate from the bag ahead of 
this x value e.g. x « 0.06[m]'for time t « 0.082[s]. 
This "premature" detachment has been discussed 
by Tuck [12] in the case of a two-dimensional 
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Figure 9: Upper Figure: half wetted length c(t) 

as function of time t. Lower Figure: two snap 
shots of the deformed bag in the impact re- 
gion during the first impact. Bending stiffness 
is El = 0[Nm2]. Input data is tabulated in Ta- 
ble 1. xy-coordinate system is defined in Figure 
4. 

steady planing surface. If a separation point 
ahead of x = 0.0[m] e.g. x « 0.06[m] for time 
t « 0.082[s], were used, the hydrodynamic forces 
would not be small. 

If bending stiffness is included, the results pre- 
sented in Figure 9 will be different. An example 
with El = 4.0[7Vm2] is presented in Figure 10. 
The effect of bending stiffness is implemented by 
introducing the term — El dir)n/ds4 on the right 
hand side of equation (1). The non-dimensional 
parameter characterizing the effect of bending 
stiffness is EI/L2T0. The bending stiffness causes 
the local deformation due to the hydrodynamic 
load to be distributed over a larger length. This 
implies that " premature" detachment is less likely 
to occur. 

Results showing the effect of bending stiffness are 
presented in Figure   11. The upper figure shows 

-, 1 1 1 1 1 
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Figure 10: Upper Figure: half wetted length 
c(t) as function of time t. Lower Figure: two 
snap shots of the deformed bag in the impact re- 
gion during the first impact. Bending stiffness is 
El = 4.0[iVra2]. Input data is tabulated in Table 
1. xy-coordinate system is defined in Figure 4. 

the half wetted length as a function of time. En- 
ergy spectra S(f) are shown as functions of fre- 
quency f ([Hz]) in the two lower figures . The 
energy spectrum can be expressed as, 

S(f) 
G(f)G(f) 

2A/ 
(51) 

where G(f) is a complex quantity resulting from 
the Fast Fourier Transform of the time signal g(t) 
of the studied variable over the time interval de- 
fined by 1/A f. G(f) denotes the complex conju- 
gate of G(f). t is time ([s]) . 
The middle and lower figures in Figure 11 show 
the energy spectra for the transverse motion of 
point A in Figure 4 and the volume pumping 
due to the bag motion. The energy spectra for 
the volume pumping and the transverse motion 
are less sensitive to the bending stiffness then the 
wetted length. This indicates that the hydrody- 
namic impulse (integrated hydrodynamic force in 
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time) is more important for the volume pump- 
ing and the transverse motions of point A than 
the details in the wetted length and the hydrody- 

namic forces. 
Hydroelastic deformation of the bag during the 
impact of the bag with the free water surface, 
may lead to physical phenomena that are not 
accounted for in the presented hydrodynamic 
model. One example is negative pile-up. Ven- 
tilation will probably occur in this case and a hy- 
drodynamic model treating the water exit prob- 
lem should be considered. This is more likely to 
occur when bending stiffness is neglected. Prob- 
lems with convergence both with respect to the 
number of mode shapes and the time step was 
experienced when bending stiffness was not in- 
cluded. 70 mode shapes were used in the calcu- 
lations with no bending stiffness, that are pre- 
sented in Figure 11. Still, the results for volume 
pumping and transverse motion of point A were 
not completely converged. To avoid these prob- 
lems, bending stiffness is included in the struc- 
tural model. This increases the local restoring 
force. Based on the results presented in Fig- 
ure 11 it is believed that the over all motion of 
the bag is not sensitive to the bending stiffness. 
From here on the bending stiffness is set equal to 
El = 4.0[Nm2}. 

Results from a convergence study by the complete 
model together with a simplified hydroelastic load 
model are presented in Figure 12. The modal 
force (see equation (31)) is calculated as 

Figure 11: Upper Figure: half wetted length c(t) 
as function of time t. Middle Figure: energy spec- 
trum of transversal motion r]n of point A in Fig- 
ure 4 as function of frequency f. Lower Figure: 
energy spectrum of volume pumping dvol/dt as 
function of frequency f. Input data is tabulated 
in Table   1. 

J    p(s,r]n,t)(j)^{s)ds 

2c(t) 

^(5 = Li -C(t))      /    p(x,T]n, t)dx(52) 

in the simplified load model. Figure 12 shows 
that the results for the transverse motion of point 
A and the volume pumping have converged when 
thirty mode shapes are used in the calculations. 
Results for the simplified load model are also pre- 
sented in this figure. The simplified load model 
predicts very well the transverse motion of point 
A and the volume pumping. One reason for this 
is that the maximum half wetted length is small 
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Figure 12: Upper Figure: half wetted length c(t) 
as function of time t. Middle Figure: transverse 
motion r}n of point A in Figure 4 as function of 
time t. Lower Figure: volume pumping dvol/dt 
as function of time t. Input data is tabulated in 
Table  1. 

compared to the wave length corresponding to 
mode shape number thirty (cmoi / A30 « 0.1). 
The difference between the wetted length 2c(t) for 
the complete and simplified load model is larger. 
Since the higher mode shapes are triggered dif- 
ferently in the simplified load model, the local 
deformation in the impact region and the wetted 
length are influenced. 

It is interesting from a design point of view to 
know what external parameters that are impor- 
tant for the dynamic impact of a bag structure. 
The six non-dimensional parameters defined in 
equation (47) will be used in the following text 
to discuss the impact of the bag. One set of pa- 
rameters has been used as starting point for the 
parameter variation, and is given in Table 1. It 
has been found that the volume pumping caused 
by the bag and the transverse motion of the lowest 
point of the bag are mainly dependent on three 
of the non-dimensional parameters. That is, 

AP1    H        piRiN 

Äft ' T and ~W (53) 

We will only focus on the two last non- 
dimensional parameters in the following discus- 
sion. The first non-dimensional parameter is as- 
sumed to be constant. That means that the ratio 
between the excess pressure in the air cushion and 
the excess pressure in the bag is constant. Re- 
sults as a function of H/L for a constant value of 
p2RiN/M%l equal to 5408 are presented in Fig- 
ure 13. When considering the cobblestone ef- 
fect, the frequency of interest is approximately 5 
[Hz] for a 30-35 [m] long SES. This corresponds 
to the lowest natural frequency for the acoustic 
modes inside the air cushion. This is approxi- 
mately equivalent to a non-dimensional frequency 
of 0.5. The lowest figure in Figure 13, shows 
that volume pumping at a non-dimensional fre- 
quency of 0.5 is small for H/L equal to 0.5 and 
0.7. It is considerably larger for H/L = 0.9. De- 
spite this there is large increase in volume pump- 
ing if the frequency is shifted up or downwards 
on the frequency axis. The middle figure shows 
that the non-dimensional transverse deformation 
at the lowest point of the bag (point A in Figure 
4) can be large when H/L = 0.5. There are rel- 
atively large differences between the response for 
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Figure 13: Results for non-dimensional wet- 
ted length c(t)/L , transverse motion spectrum 
S[rin/N] at point A in Figure 4 and volume 
pumping spectrum S[dvol/dtT/NL] for different 
H/L ratios. The remaining non-dimensional pa- 
rameters defined in equation (47) are kept con- 
stant. ti/T is non-dimensional time and fT is 

non-dimensional frequency. U = t — Unit where 
Unit is the time of initial impact. H and L are 
defined in Figure 2 and N is defined by equation 
(50). T is defined by equation (42). 

different H/L-values. The non-dimensional fre- 
quency of oscillation for the vertical motion of the 
free water surface is approximately 0.5 for these 
calculations. The calculations indicate that this 
frequency of oscillation is less important than the 
natural frequencies of the bag. The peaks of the 
response shown in the two lower figures in Fig- 
ure 13 correspond approximately to the natural 
frequencies of the bag-structure. 

Results for the variation of ß, that is variation of 
the non-dimensional parameter p2RiN/M%1, are 
shown in Figure 14. H/L is constant and equal 
to 0.7. When ß is increased, it means that the 
rigid body immersion of the bag increases. The 
upper figure in Figure 14, shows that maximum 
wetted length, is not significantly increased, while 
the duration of the impulse is increased. This is 
a result of the flexibility of the bag. This is also 
reflected in the two lower figures in Figure 14. 
The difference in non-dimensional response for 
the volume pumping and transverse deformation 
at point A in Figure 4 is small at least in the non- 
dimensional frequency region near 0.5. Based on 
the way the response is made non-dimensional, we 
may conclude that the response in volume pump- 
ing and transverse motion of the lowest point on 
the bag is approximately proportional to the de- 
formation scale N = ßVaTp, at least in the fre- 
quency region near 0.5. This indicates that the 
effect of volume pumping will increase with in- 
creasing ß. There is relatively small response at 
a non-dimensional frequency of 0.5, but a small 
shift in frequency may result in a significant in- 
crease of the response (see two lower figures in 

Figure  14). 

To get the order of magnitude of the volume 
pumping caused by the bag due to the impact 
with the free water surface, a typical volume 
pumping amplitude can be compared with the 
effect of a typical leakage area amplitude under- 
neath the bag. The dynamically varying leakage 
area was found by Steen [2] to be important for 
the cobblestone effect. We obtain the following 
approximate value of the dynamic leakage ampli- 
tude by assuming that these two effects are of the 
same order of magnitude, 
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Figure 14: Results for non-dimensional wet- 
ted length c(t)/L, transverse motion spectrum 
S[r)n/N] at point A in Figure 4 and volume 
pumping spectrum S[dvol/dtT/NL] for different 
ß values. This implies that p2RiN/M^ is varied, 
while the remaining non-dimensional parameters 
defined in equation (47) are kept constant. U/T is 
non-dimensional time and fT is nondimensional 
frequency. U = t - tinit where tinit is the time 
of initial impact, ß is denned by equation (49) 
and Mm = structural mass per unit length of the 
cable. For further explanations see Figure  13. 

Ah « {dvol/dt)/^2pc/pair « l[cm].       (54) 

Here pc is the excess pressure in the air cushion, 
pair is the density of air and Ah is the dynamic 
leakage amplitude. This indicates that the effect 
of the volume pumping of the bag due to the im- 
pact with the free water surface, may be of the 
same importance for the cobblestone effect as the 
dynamic leakage variation. Since the presented 
analysis is a local analysis, one should be care- 
ful to conclude about the cobblestone effect. A 
more complete analysis where both the effect of 
more loops on the bag and the coupling to the air 
cushion pressure, is necessary. 

6   CONCLUSIONS 

A numerical and theoretical two-dimensional 
study of the interaction between the free water 
surface and the flexible bag stern seal of a SES is 
presented. The bag is pressurized with air, and is 
deformed due to the hydrodynamic pressure dis- 
tribution on the wetted surface of the bag and the 
compressibility of air in the bag. High numerical 
accuracy is needed. This has been achieved by 
using the "dry" mode superposition approach for 
the flexible behavior of the bag. The coupling be- 
tween the elastic longitudinal and transverse os- 
cillations as well as the curvature are accounted 

for. 
The hydrodynamic boundary value problem is 
solved as a water entry problem, assuming a large 
forward speed of the SES relative to the relative 
vertical velocity between the bag structure and 
the water surface. The flexible bag behaves hy- 
drodynamically as an unsteady two-dimensional 
planing surface. A solution of this problem is 
found by combining the solution for an unsteady 
lifting surface in infinite fluid with an integral 
equation for the wetted length of the bag. The 
integral equation is a generalization of what Wag- 
ner [5] did for slamming. An important difference 
is the effect of the forward speed of the bag. 
It is found that bending stiffness improves the 
robustness of the numerical solution of the wetted 
surface of the bag. Results indicate that the over 
all motion of the bag structure is not sensitive to 
bending stiffness. 
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Two parameters have been found to be of spe- 
cial importance for the volume pumping and the 
transverse motion of the lowest point of the bag 
(point A in Figure 4). That is the relative rigid 
body immersion of the bag and the ratio H/L 
where H is the height and L is the length of the 
bag defined in Figure 2. The volume pumping 
and the transverse motion of point A is approxi- 
mately proportional to the rigid body immersion 
of the bag. 
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DISCUSSION 

W. Schultz 
University of Michigan, USA 

This is an interesting analysis. Are the pressures in 
the bag and cushion considered constant? It would 
seem that the aerodynamics of the leaking air would 
be required for an accurate accounting of the bag 
dynamics. Any comment? 

L. Doctors 
University of New South Wales, Australia 

In Figure 5 (as it appeared in the presentation), the 
pressure in the cushion region is shown to be zero (or 
atmospheric) rather than the cushion pressure. Can 
you clarify why you can ignore the static cushion 
pressure in the dynamic problem? In my own work 
on the motions of air-cushion vehicles, I found that 
that steady state static depression of the free water 
surface had a profound influence on the dynamic 
behavior. This was principally due to the fact that 
linear superposition could not be applied to the 
problem of interaction between the skirt and the 
water surface. 

AUTHORS' REPLY 

The pressures in the air cushion and in the bag are 
considered constant in the presented analysis. Here 
only a local analysis has been considered. Due to the 
fact that the bag pressure is coupled to the global air 
cushion pressure at the bag, the bag pressure and the 
air cushion pressure have been considered constant 
for the sake of simplicity in the presented local 
analysis. 

We are now working on a more complete analysis 
where the bag pressure is coupled to the air cushion 
pressure. In this case, the air cushion pressure and 
the bag pressure will no longer be constant. We 
agree with the discussion of Prof. Schultz that the 
aerodynamics of the leaking air will be required for 
an accurate accounting of the bag dynamics. This 
effect we also intend to include in the more complete 
analysis. 

We reply to the discussion of Prof. Doctors as 
follows. Given the wetted length of the bag, the 
problem is linear. The hydrodynamic boundary 
value problem of the static depression of the free 

water surface underneath the air-cushion can 
therefore be solved separately from the 
hydrodynamic boundary value problem of the bag. 
In the problem of finding the wetted length of the bag 
there will be a coupling between these two problems 
due to the static deformation of the free water 
surface. Due to the high forward velocity of the SES 
the wave length that corresponds to the static 
deformation of the free water surface due to the static 
cushion pressure, is much larger than typical wetted 
lengths of the bag. This indicates that the coupling 
will be small. 
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Blunt-Body Penetration into a Slightly 
Compressible Liquid 

A. Korobkin (Lavrentyev Institute of Hydrodynamics, Russia) 

ABSTRACT 

This paper is concerned with the unsteady 
plane liquid motion due to the penetration 
of a blunt undeformable body through its 
free surface. The liquid is assumed to 
be ideal and slightly compressible, both 
the effects of viscosity, surface tension and 
gravity are neglected. At the initial stage 
of the entry, when the compressibility of 
the liquid is of major importance, the flow 
is described within the framework of the 
acoustic approximation. The main feature 
of the problem is the existence of a contact 
line between the free surface and the en- 
tering body surface. The position of this 
line is unknown in advance and is to be de- 
termined together with the solution of the 
problem. Near the contact line, the flow 
of the liquid is nonlinear, approximately 
quasi-stationary and is described by the 
subsonic jet theory. Both mass and ki- 
netic energy of the spray jet generated by 
the impact are under investigation. It is 
shown that at large time, a half of the en- 
ergy is concentrated in the bulk of the flow 
and the another half does in the spray jets. 

INTRODUCTION 

The problem of interaction between a solid 
body and a liquid with a free surface at- 
tracts a widespread attention of both sci- 
entists and engineers. Interest in this field 
of hydrodynamics arose more than a half 

century ago in connection with the prob- 
lem of the landing of flying boats. The 
processes of such kind are essentially un- 
steady and characterized by existence of 
a contact line between the free surface of 
the liquid and the solid-body surface. De- 
tailed investigation of the processes can 
be applied to problems in ship hydrody- 
namics (slamming problems), ocean engi- 
neering (impact of sea waves on coastal 
structures and ocean platforms) and sea 
ballistics. Many advanced marine vehicles 
(catamaran, SES, SWATH) have their fiat 
structures which are elevated above the 
water surface. While operating in waves, 
those structures can, however, contact the 
liquid and resulting high hydrodynamic 
loads can occur. The loads can lead to 
hull vibration, damage of the structure 
and loss of the ship speed. 

The initial stage of the interaction, which 
immediately follows the instant of the 
first contact between the liquid and the 
body, is of particular interest. At this 
stage the topology of the flow, the hy- 
drodynamic load, the body acceleration 
and some other values are significantly 
changed, that determines the further evo- 
lution of the impact process. In some 
cases (for example, for flat-bottom or 
blunt-body impact) these changes are of 
shock character and the liquid compress- 
ibility has to be taken into account. On 
the other hand, experimental studies in- 
dicate that the hydrodynamic loads reach 
their maximum values just after the im- 
pact and then vanish quite quickly. The 
analysis of the initial stage of the liquid- 
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solid interaction can give helpful estimates 
for the dynamic-strength investigations of 
the bottom plating behaviour and pro- 
vides also initial data for further numeri- 
cal calculations. 
The first theories of liquid-solid impact 
the penetration theories of von Karman 
1] and Wagner [2], impact theory of Sedov 
3]) were directed to a global description of 
;he process. A lot of problems were solved 
on the basis of these theories. As was 
noted in a review of Korobkin & Pukhna- 
chov [4], some global characteristics can 
be determined with good accuracy from 
quite simple knowledge of the interaction 
mechanism. But in some cases, more com- 
plete information about the impact is re- 
quired. This is necessary not only for 
calculation of local characteristics but in 
some cases for theoretical understanding 
of the phenomenon on the whole. 
The ideal incompressible liquid model is 
usually used under both numerical and 
analytical studies of the liquid-solid im- 
pact. Unfortunately, this model is not 
able to describe some important details 
of the blunt-body impact. For example, 
this model predicts infinite hydrodynamic 
pressures just after the impact moment 
and it cannot describe the formation of 
spray jets. The main reason why this 
model fails at the initial stage is connected 
with the fact that the velocity of a sig- 
nal propagation in the model is infinite. 
This approximation is valid only if acceler- 
ations of liquid particles are not very large 
(this is not so for the impact of a plate 
floating on the liquid surface) and if the 
speed of the involving the liquid particles 
in motion, i.e. the speed of expansion of 
the wetted part of the entering body bot- 
tom, is much less than velocity of a signal 
propagation (sound velocity). Therefore, 
in the case of both flat-bottom and blunt- 
body impact we need to take into account 
the acoustic effects, i.e. the effects which 
are connected with the finite value of the 
sound velocity. 
The sound velocity c0 for water is approx- 
imately Co = 1500m/.sec. But the impact 
velocities in ship hydrodynamics are rela- 
tively small, they are of the order of some 
meters per second. That is why the Mach 
number M = V/c0 where V is the impact 

velocity is very small. This means that 
the variation of the liquid density under 
the impact is small and the sound velocity 
which, in general, is dependent of the den- 
sity can be taken approximately as con- 
stant. Moreover, the velocities of the liq- 
uid particles can be assumed of the order 
of V and are small compared with CQ. 

In this case the equations of the motion 
of a compressible liquid can be simplified, 
that leads to the so called acoustic theory 
of the impact. In this theory the boundary 
conditions on the free surface and on the 
contact region can be taken on the undis- 
turbed liquid level and can be linearized 
in the leading order as M —> 0. The phys- 
ical reason for this is that the duration 
of the impact stage, when the liquid com- 
pressibility is of major importance, is very 
small and, hence, the deviation of the liq- 
uid boundary from its initial position can 
be neglected in comparison with the di- 
mension of the contact spot. 
In order to estimate the stage duration, 
we consider the case of a parabolic con- 
tour entry. Initially the liquid is at rest 
and occupies a lower half-plane (y' < 0) 
and the body touches its free surface (y' = 
0) at a single point taken as the origin 
of the Cartesian coordinate system x'Oy' 
(dimensional variables are denoted by a 
prime). At some instant of time, taken as 
initial (2' = 0), the body begins to pene- 
trate the liquid vertically with a constant 
velocity V. External mass forces and sur- 
face tension are neglected. Then the en- 
tering contour position at the moment t 
is 

„'2 
i 

y = 2R 
-Vt' (1) 

where R is the radius of the curvature at 
the body top. The coordinate x't(t) of the 
right-hand side point where the contour 
1) intersects the undisturbed liquid level 
yf = 0) is 

x't(t) = V2RVt'. 

Therefore, the speed of involving liquid 
particles in motion is equal to 

dx't 

~dT 
IRV 

~2V 
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which just after the impact moment (£' = 
0) is much greater than the sound velocity 
c0. Hence, the free surface remains undis- 
turbed at the initial stage during which 
dx'Jdt' > CQ. At this stage the intersec- 
tion points x' = ±x[(t), y' = 0 move at a 
supersonic velocity, which is why the stage 
is referred to as the supersonic one. The 
duration of the supersonic stage T can be 
found from the equality (dx't/dt')(T) = c0 

which gives 

T = §*. 
The dimension of the wetted part of the 
entering body at the end of this stage is 
equal to 2x',(T\ = 2RM. 
To analyse the initial stage of the impact, 
where the liquid compressibility is the gov- 
erning factor, let us change to dimension- 
less variables, which are designated by the 
above-mentioned terms without a prime. 
We take the half-width of the contact re- 
gion at the end of the supersonic stage 
RM as the lengthscale and the impact 
velocity V as the velocity scale of liquid 
particles. The quantity RM/c0, being 2T, 
is taken as the timescale. Therefore, the 
liquid-particle displacements are 0(RM ) 
as M —> 0, which allows us to use the 
acoustic theory and to put the boundary 
conditions on the undisturbed initial level 
of the liquid. 
The entry of a parabolic shape is consid- 
ered for simplicity only: all the results ex- 
cept as otherwise noted are also valid in 
the general case. 

FORMULATION OF THE PROB- 
LEM 

In non-dimensional variables, which are 
designated by the above-mentioned terms 
without a prime, the liquid flow is de- 
scribed by the velocity potential <f>{x, y, t), 
for which the boundary-value problem has 
the form 

<f>tt = <f>xx + <f>yy {y < 0), 

4> = 0 (y = 0,   | x |> o(<)), 

<t>y = -l  (y = 0,   I x |< a(t)),     (2) 

^ = <f>t = 0 (y < 0,  t = 0), 

^-»0 (x2 + y2 -+oo). 

After scaling both the sound velocity and 
the impact velocity are equal to unity in 
the new variables. The interval -a(i) < 
x < a(t) corresponds to the wetted part 
of the entering contour. The points x = 
±a(t), y = 0 correspond to the contact 
points of the water surface with the sur- 
face of the rigid body. The function a(t) 
is unknown in advance, method of its cal- 
culation was suggested by Korobkin [5]. 
The position of the entering contour is 
given by the equation y — M(x2/2 - t). 
At the supersonic stage, 0 < t < j, we 

have a(t) = (2t)a. After the escape of 
the shock wave generated under the im- 
pact onto the free surface, it was found 

that a(t) = (3(5 + 8i)* - 5)/4 [5] when 
I < t < y (the beginning of the subsonic 

stage). 
The problem (2) was analysed for the su- 
personic stage [6] and for the subsonic 
stage [7] in detail. Main attention was 
paid to the pressure distribution over the 
contact region and to the geometry of the 
flow domain. It was shown that the acous- 
tic approximation fails near the contact 
points, where the pressure and the veloci- 
ties of the liquid particles are much greater 
than inside the main liquid domain. This 
fact indicates that near the contact points 
the liquid flow is nonlinear and the de- 
formation of the free surface can be very 
large. This means that the inner solu- 
tion near the contact points has to be con- 
structed to describe fine structure of the 
flow. Asymptotic analysis of the original 
problem for M —► 0 shows that at the ini- 
tial stage of the impact the flow region 
must be divided onto the following parts: 
1) the main region where the free surface 
deformation is negligible small, and the 
wetted part of the entering contour can be 
approximately changed for a plate; 2) the 
root of the spray jet where the curvature 
of the free surface is large; 3) spray jet. It 
was shown that inside the jet root the flow 
is two-dimensional, nonlinear, and quasi- 
stationary in the leading, order asM->0 
[8]. In order to determine the flow char- 
acteristics in the jet root, the subsonic jet 
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theory can be used. The liquid particles 
are accelerated in the jet root region and 
then they are thrown out the region at the 
double velocity of the contact point and 
tangentially to the bottom. Further these 
particles are not affected by any forces due 
to the pressure inside the jet is near the at- 
mospheric one. This means that the par- 
ticles in the jet move inertially. Hence, all 
parameters of the spray jet are determined 
by the characteristics of the flow in the jet 
root region. 
Let us assume that the body shape is given 
in the dimensionless variables by the func- 
tion f(x) where /(0) = 0, /'(0) = 0. 
Then the asymptotic behaviour of the free 
surface, y = 77(1,2), near the right-hand 
side contact point, x — a(t), y = 0, can 
be written as 

r,(x,t) = f{a(t)) - t - A(t)y/x - a{t) + ■■■ 
(3) 

where the function A(t) must be found to- 
gether with a(t). The inner solution in the 
jet root region allows us to find the jet 
thickness S(t) as 

*(*) = 
7T A2(t) 
16 )/l-Ä2(*)" 

(4) 

Dot stands for the time derivative. It is 
of importance that just after the escape 
of the shock wave onto the free surface, 
t —» T+0, the jet thickness is small and in- 
creases then with time. Correspondingly, 
the mass of the liquid 2Q(t), which leaves 
the main volume at the instant t is equal 
to 2ä{t)8(i). The factor 2 is due to there 
is two jets in the plane case. 
In the leading order as M —> 0, the ver- 
tical component of the liquid particle ve- 
locity can be neglected, compared to the 
horizontal one U(x,t), and the jet charac- 
teristics are given in the parametrical form 

x = 2ä(r)(t-r) + a(r), 

U = 2<Z(T), 

, = ,(r)|1_2|2(i_T)r, (5) 

S = _i+2ä(r)/'(a(T))(i-T)+/(a(T))-T. 

where r is the non-dimensional parame- 
ter, T < T < t. Here M2h(x,t) is the jet 

thickness, the equation y = MS(x,t) de- 
scribes the shape of the upper boundary 
of the jet. In the axisymmetrical case, the 
formulae (5) remain be valid except of the 
equation for the jet thickness. This equa- 
tion now takes the form 

h{x,t) = S(r)\l-2^(t-r)r   (6) 

x 

where x is the radial coordinate. Anal- 
ysis of the jet geometry was presented 
earlier [8]. In the present paper we are 
concerned with the integral characteris- 
tics of the spray jets generated under the 
liquid-solid impact. We shall determine 
the asymptotic behaviours of the jet en- 
ergy and the jet mass as t —> oo. 

KINETIC ENERGY AND MASS 
OF THE SPRAY JET IN THE 
PLANE CASE 

The kinetic energy of the jet Kj is given 
as 

Ki = \QOCIL
2
M> 

x [       [U2(x,t) + 0(M2)]dydx 
Ja(t)    JO 

rs.(t) rh(x,t)r 

where x = x(t,r), xt(t) = x(t,T), L is 
a half of the contact region width at the 
end of the supersonic stage (L = RM for a 
parabolic contour), go is the liquid density. 
In the leading order as M —> 0, we obtain 

1 /■*•(*) 
Kj = -QoL2V2 /        U2(x,t)h(x,t)dx+- 

2 Ja(t) 

It is convenient to change the integration 
variable for r and to take into account that 

dx = xT(t,T) dr. 

Using (5), we get 

hxr = —^(r)ä(r), 

Kj = 2g0L
2V2 \£6(r)ä3{r)dr + 0(M2) 
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The formula (4) makes it possible to ob- 
tain the expression for the jet energy, 
which does not contain any characteristics 
of the jet 

+ 3     % h   Jl-ä2(r) 
. (7) 

The last integral is regular for finite times 
t and tends to infinity as t —* oo. In order 
to prove this statement, we should notice 
that the solution of the problem (2) tends 
to the Wagner solution for the incompress- 
ible liquid model as t —* oo. This means 
that the asymptotic behaviour of the liq- 
uid flow for large times does not depend on 
the process history and can be found us- 
ing the incompressible liquid model only. 
Therefore, the pressure distribution over 
the contact region is given as 

p(x,0,t) = 
a(t)a(t) 

(8) 

(\x \<a(t)), 

and the vertical velocity v(x,0,t) of the 
free surface, | x |> a(t),  y = 0, as 

v(x,0,t) 
<J*2 - °2W 

-1 (9) 

when t —» oo [2]. 
The equation (9) allows us to find the 
asymptotics of the function A(t) for large 
times 

For the blunt-body impact the velocity 
a(t) of the contact region expansion van- 
ishes with time. Hence, the asymptotic 
behaviour of the integrand in (7) is 

A2{t)h\t) 
2a(t)h(t) + (10) 

as t -* oo. In the blunt-body case, we 
have that a(t) = 0(ta) as t —> oo where 
0 < a < 1. Thus 

a{i)h{t) = 0{t2a-^) 

and the integral in (7) tends to infinity as 
t -* oo. This means that the asymptotic 
behaviour of the jet kinetic energy Kj(t) 
as t —»• oo is determined by the asymp- 
totics of the integrand. Taking (10) into 
account, we obtain 

■K 
Kj(t) = ^goL*V2a2(t) + (11) 

as t —> oo. 
The kinetic energy of the main bulk of the 
liquid Km(t) is defined in the dimension- 
less variables by the formula 

Z J — ooJ — oo 

The velocity potential <f>(x,y,t) is approx- 
imately harmonic function in the lower 
half-plane y < 0 for large times. Taking 
into account the Green's second indentity 
and the boundary conditions in (2), we 
find 

1 /,a(0 
Km(t) = --QQV

2L2        J>(x,0,t)dx+--- 
£ J—a\t) 

The potential distribution over the con- 
tact region is given by the incompressible 
liquid model as t —► oo 

^(s,0,t)=-)/o»(t)-x» + 

Therefore, 

7T 
Km(t) = ^2oV2L*a\t) + (12) 

On the other hand, the energy E(t), which 
is necessary to apply to the entering body 
to compensate the hydrodynamic force 
F(t) and to conserve a constant velocity 
of penetration V, is 

E(t) = g0V
2L2 f F(t)dt 

Jo 

where 

F(t)=  r    p(x,0,t)dx. 
J-a(t) 

For large times 

F(t) = 7T0(<)0(<) + 
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that follows from (11). Therefore, we have 
got 

7T 
E{t) = ^g0V

2L2a2(i) + (13) 

asymptotically as t —* oo. 
The equations (11), (12), (13) give the fi- 
nal equality 

E{t) = Km(t) + 2Kj(t) + • • • 

which is asymptotically valid for large 
times. Thus, for an arbitrary blunt-body 
shape a half of the energy, lost by the en- 
tering body, is concentrated in the bulk of 
the flow and the another half does in the 
spray jets. 
The jet mass Mj(t) is defined as 

Mj(i) = Q0M
2L2 f Q{r)dr. 

The asymptotic behaviour of Mj(t) as t —* 
oo can be found in the same manner as it 
was done above and we get 

,, / N      Ti"     ,,»r»  /' a(r)dT 

Let us assume that a(t) = kta, k > 0, 
0 < a < 1, then 

Mm ■K 

16 a 
■QOM

2
LH

2
 + -- 

X 
Kj(t) = ^k2g0V

2L2t2a + --- 
o 

as t —» oo. The average velocity of the jet 
yov(t): which is defined by 

K = -MV2 

is equal approximately to 

Vav(t) = V^kcot-2^1-^ 

for large times. It can be seen that Mj{i) 
and Kj(t) grow in time, but Vav(t) van- 
ishes. The integral characteristics of the 
spray jet are useful to estimate the dam- 
age caused by this jet impact onto ship 
structures. 

KINETIC ENERGY AND MASS 
OF THE SPRAY SHEET IN THE 
AXISYMMETRICAL CASE 

The kinetic energy of the spray sheet is 
given as 

K,(t) = \g0c
2

0L
3M2x 

/•2ir /-x.(t)   /   fh(x,t) \ 
I  I /        U2(x,t)dy\xdxd9+--- 

as M —»■ 0. Here L is the radius of the 
contact region at the end of the supersonic 
stage, x is the radial coordinate, y is the 
vertical coordinate, 8 is the angular co- 
ordinate, xt(t) = x(t,T), g0 is the liquid 
density. We obtain 

K.(t) = irgoV2L3 f"    U2(x,t)xdx + ■ ■ ■ 

Inserting (4)-(6) into the integral, one can 
write 

■K 2r3 

I 
K.{t) = -goV'L 

« A2{T)a{r)h\r) dr 
x / —' ; ' '   ' '— + 

IT       Ji - b?{r) 
(14) 

In contrast to the plane case, there is 
not any method to calculate the functions 
a(t), A{t) in the axisymmetrical case. But 
we can assume that for large times the flow 
of a slightly compressible liquid will be 
approximately the same as in the incom- 
pressible liquid model. Within the frame- 
work of the incompressible liquid model 
the axisymmetrical water-entry problem 
was solved by Schmieden [9]. His results 
allow us to find that 

*>-§# + 
<ß(x,0,t) = Va2 -x2 + 

7T 
(15) 

p(x,0,t) = 
aa 

7T \/o2 — x2 + ■ 

(\x \<a(t)), 
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as t —» oo. Inserting (15) into (14) and 
taking into account that the speed of the 
contact spot expansion ö(t) vanishes in 
time, we get the asymptotics of Ks(t) as 
t —» oo 

K.{t) = \QoV
2L*a\t) + ■■■ 

The kinetic energy of the main bulk of the 
liquid Kam(t) is defined in the dimension- 
less variables by 

When a(t) - kta, 0 < a < 1, the asymp- 
totics of M3(t) as t —> oo is given as 

2 7-3 M,(i) = ?oMU 
kt2+c 

a(a + 2) 
+ 

In the case the curvature of the axisym- 
metrical body R is different from zero and 
infinity, we have a = |, k = 3*, L = RM, 
t = t'V/(M2R), and the last formula gives 

oi-4 

Km = *goV2L*J ^ dyJo°°(<f>l + <t>l)xdx. M.(t) = -^QoR- 
R . + 

The last formula can be rewritten us- 
ing the Green's second identity and the 
boundary condition on both the free sur- 
face x > a(t), y = 0, and the contact spot, 
0 < x < a(t), y = 0, for large times as 

fa(t) 
KaTn = -TTQ0V

2L3 <f>(x,0,t)xdx + --- 
Jo 

With the help of (15) we find 

Kam{t)=2-QoV
2Lza\t) + --- 

We have found that asymptotically 

Kam{t) « K.{t) 

as t —»• oo. 
The body energy Ea{t) lost under the pen- 
etration is calculated in the same manner 
as in the plane case and is equal to 

Ea(t) = ^g0V
2Lza\t) + ■■■ 

as t —► oo. Therefore, 

Ea{t)^Kam{t) + Ks{t) 

for large times. 
The liquid mass M,{t) leaving the main 
liquid volume with spray sheet is 

M3(t) - 2-KQ0M
2
L

3
 [ a(T)Q(r)dT. 
JT 

Taking (4) into account, we find the exact 
formula 

,   N 7T2 ,    ,    ft A2(T)ä(T)a(T)    , 

For example, if V = 6m/sec, R = 5m then 
M,(0.01sec) = 13.6^ and M,(0.l3ec) = 
4320%. Correspondingly, in the plane 
case 

Mi(t) = -QOR 
*       -7(W 

R 
+ 

The last formulae can be derived also us- 
ing the incompressible liquid model when 
t'V/R -► 0. 

CONCLUSION 

It was proved in the present paper that a 
half of the energy lost by the body under 
its penetration the water surface trans- 
fers to the kinetic energy of the spray jet 
generated under the impact. The another 
half of the body energy is concentrated in 
the bulk of the liquid. Those proportions 
have to be understood in an asymptotical 
sense as t —* oo. This means, for example, 
that the energy taken away by the acous- 
tic wave initiated under the water impact 
can also grow in time. But in any case 
this part of energy will be much less than 
the kinetic energy of the jet. 
It is worth to notice that the fact that 
only a half of the entering body energy 
transfers to the kinetic energy of the main 
liquid flow was known many years ago 
[10]. But to calculate the kinetic energy 
of spray jets was quite difficult. In order 
to do this, it is necessary to describe the 
process of the jet formation. The process 
is dependent of the liquid compressibility. 
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That is why the calculation of the jet en- 
ergy became possible only after the devel- 
oping acoustic theory of the water impact. 
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ABSTRACT 

The Flux-Vector Splitting Method is applied to 
analyze the air flow between the ship bottom and 
the water surface during slamming. As the air 
is trapped between the ship bottom and the wa- 
ter surface, it is compressed and escapes from 
the bottom edges. As the bottom is close to 
the water surface, the velocity of the air flow 
at the edges approaches the local sonic speed 
and an air-water mixture is generated. This flow 
of air-water mixture is simplified as a free air 
jet. When the bottom touches the water sur- 
face, an air cushion is trapped. A mathematical 
model is established for this trapped air cush- 
ion, where the shock waves are numerically cap- 
tured and the slamming pressure is calculated. 
For solving the nonlinear governing equations, a 
numerical scheme is derived based on the Flux- 
Vector Splitting method. Computed results of 
slamming pressure and captured shock waves are 
presented and discussed. 

NOMENCLATURE 

[B] = Jacobian matrix of F. 
c0 = velocity of sound in the undisturbed air. 
ca — velocity of sound in the air. 
e = total energy per unit volume of gas. 
F = flux vector of the air flow. 
g = gravitational acceleration. 
h = thickness of the air layer. 
H = initial dropping height. 
/ = half breadth of the ship hull. 
m = pu, mass flow rate. 
M = mass of the ship hull per unit length. 

Ma = Mach number of air. 
p = pressure in the air flow. 
po = pressure of the undisturbed air. 
[T] = eigenvector matrix of [B]. 
t = time variable. 
u(x, t) = horizontal velocity of air flow. 
V(t) = falling velocity of the ship hull. 
7 = gas constant. 
e = internal energy per unit mass of gas. 
C = £ + «7, complex variable. 
f = £ + if}, nondimensional complex variable. 
T)w = elevation of the water surface. 
At- = eigenvalues i = 1,2,3 
p = density of air. 
po = density of undisturbed air. 
pw = density of water. 

INTRODUCTION 

Ship slamming is an important field of study 
in ship hydrodynamics. Both experimental and 
theoretical investigations have been conducted. 
Although the theoretical prediction of slamming 
has been improved significantly, the estimation 
of slamming load on a flat bottom is still mainly 
based on empirical formulae [1], [2], [3]. 

The existing theoretical approaches are mostly 
applicable to wedge-shaped bodies with large 
deadrise angles [4] [5]. For a ship section with 
a flat bottom, the theoretical modelling of slam- 
ming is complicated. There are two physical phe- 
nomena involved. One is the compressible air 
flow between the hull and the water surface; and 
the other is the mixture of air and water in the 
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region of the outboard extremities of the hull. 

Experiments have been carried out both for flat 
bottoms and for wedges by dropping models 
from various heights onto a calm water surface 
[1] [6]. It has been observed that before the 
hull bottom touches the free surface, a compress- 
ible air layer(CAL) is developed between them 
and the air in the CAL escapes from two edges 
of the bottom. When the hull bottom touches 
the free surface, a trapped air cushion(TAC) is 
formed. The experiments verified that the max- 
imum slamming pressure on the flat bottom is 
caused by the compressed air flow [1] [6]. The 
slamming pressure in the CAL was analyzed by 
using the method of characteristics, and the de- 
formation of the water surface was taken into 
account [6] [8]. It has also been noticed that 
shock waves exist and travel from the edges to 
the center of the flat hull bottom with a lo- 
cal velocity of sound in the TAC [6]. In Ver- 
hagen's work [6], the mathematical model used 
in the TAC was different from that used in the 
CAL. He assumed that at the moment the TAC 
was formed, the downward velocity of the water 
surface under the hull bottom was only a func- 
tion of time and was independent of the space- 
coordinate. In his method, the air flow was ne- 
glected in the horizontal direction and the pres- 
sure was thus space-independent. Furthermore, 
the shock waves could not be caught with this 
approach. 

When the air escapes from the edge of the bot- 
tom, the air and water is mixed. This situation 
is complicated to describe with proper mathe- 
matical models. Both Johnson [9] and Verhagen 
assumed that the flow is like a uniform jet. A 
simplified model was introduced in [7]. The flow 
was considered as a free air jet (FAJ). The pres- 
sure in the jet was constant and equal to the 
atmospheric pressure. 

The Flux-Vector Splitting Method [10] is ap- 
plied in this paper to solve the nonlinear equa- 
tions for slamming pressure on a flat ship bot- 
tom. This method is applicable to solve the gov- 
erning equations for the cases of the CAL, TAC 
and FAJ. A numerical scheme is devised on the 
basis of this method. The characteristic method 
gives exact solutions if computation is carried 
out along the characteristic curves on which the 
Riemann invariants are constants. However, the 
numerical computation is complicated, since the 
characteristic meshes determined by the solu- 

tion in the numerical calculation are not regu- 
lar, so that when the CAL becomes very thin 
and the pressure increases rapidly some numer- 
ical errors are easily introduced. Although the 
finite difference schemes are convenient to use 
from the point of view of mesh design and nu- 
merical computation, the numerical scheme has 
to be designed based on the propagation of pres- 
sure waves in order to obtain a convergent result, 
especially in the case of the existance of discon- 
tinuities. The Flux-Vector Splitting Method has 
the advantages of both the characteristics and 
finite difference methods. The pressure and ve- 
locity are traced along the characteristic direc- 
tions, the regular finite difference meshes can be 
simply devised, and the numerical solutions are 
stable and convergent. 

A mathematical model is established for the air 
flow in the CAL and in the TAC. The similar 
finite difference scheme in the CAL is applied 
to capture the shock waves and to calculate the 
maximum slamming pressure in the TAC. Us- 
ing this model, the shock waves travelling inside 
the TAC can be simulated. The pressure and 
velocity in the TAC are both time and space de- 
pendent. The velocity of air flow in the FAJ can 
also be calculated with the Flux-Vector Splitting 
method. 

THE FLUX-VECTOR SPLITTING 
METHOD 

Governing Equations 

In order to simplify the slamming problem for 
a flat bottom ship, it is necessary to make the 
following assumptions: 

1. A two-dimensional ship section with a flat 
bottom of 2/ in width is falling downward 
at a velocity V(t), as shown in Fig. 1. The 
flat bottom keeps parallel to the horizontal 
surface. 

2. The Cartesian coordinate system is set up 
as shown in Fig. 1. The ship bottom is 
symmetrical about the center-line, which is 
the y axis, positive upwards. The x-axis is 
along the surface of the calm water toward 
the right, The origin is located at the in- 
tersection of the calm water surface and the 
center line of the flat bottom. 
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d(ph)  ,  a(puh) 
dt    '     'Bx 

** + «£ l.   öt 

= 0 
— _I£E —      p8i 
_ _ 1 g(P") 

p    fix 

(2) 

where /i is the thickness of the air flow. 

Substituting the continuity equation into the 
momentum and energy equations, equation (2) 
becomes 

Incompressible Water Flow 

{p)t + {pu)x =-%{ht + uhx) 

where e is the total energy per unit volume, 
(3) 

Figure 1: Air flow in CAL and FAJ 

3. In the region of the mixing air and water, 
the flow of the mixture is assumed to be a 
free air jet with the following conditions: 

for x > I 
P = Po 
p = Po 
ca = Co 

4. The thicknesses of the air layer between 
the water surface and the bottom is small, 
therefore it is reasonable to assume that 
h/l «1, and that the air motion between 
the flat-bottom and the free-surface can be 
described as the one-dimensional, compress- 
ible, invicid and unsteady flow. 

5. When Ma = 0.3, the rate of change of den- 
sity dp/p is approximately equal to 0.05. If 
Ma > 0.3, the air flow is considered to be 
compressible. Therefore the pressure can be 
expressed as 

pu" 
J,= (7_l)(e_C_) 

6. The viscous effect is neglected. 

(1) 

Based on above assumptions, the governing 
equations can be derived from the conservation 
laws of mass, momentum and energy: 

e = pe + 
pvr 

(4) 

and e is the internal energy per unit mass. 

The one-dimensional system of conservation laws 
(3) can be expressed by 

Üt + Fx = Ü-R (5) 

where Ü is a vector and F is the so-called "flux 
vector", 

(6) U = 
p 
m 
e 

m 

F(U) = 
—.3 

7-+P 
(e+p)m 

P         J 
m = pu, and 

*=-£ {ht + uhx) 

(7) 

(8) 

Substituting (4) into (1), the flux vector F(U) 
can be rewritten as 

F(U) = 

m 

(7_i)e + fl^=! 
yem 

P 
(7-1)"' 

2pJ 

(9) 

can be expressed as a homogeneous function of 

Ü: 
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F = [B]Ü 

where 

[B] = 
dF(U) 

du 
and 

{ 
Ai =   « 
A2 =   « + ca 

A3 =   u — ca 

Equation (3) can be expressed as: 

Üt + [B]ÜX = Ü-R 

(10) 

(11) 

8?(U) _ 

0 1 0 
<I=f^ (3-7)«       7-1 

(7-l)tt»-3H-    ^-i&^l      7U 

is the Jacobian matrix. 

The eigenvalues of [5] are 

(12) 

(13) 

[T\ 

a0(u + c„) c*o(« - ca) u 

Jf   ao^ + uca + ^r)    «o(T + uc--Ä) 

m-a = 
7i «ca

2 -7ic;2 l-^7ica-2 

/?o(^-«2 - uca)     /?o[c0-7i"]       A>7i 
^o(^«2 + «ca)    -/?o[ca + 7i«]      Ml 

where a0 = ^, A, = ^j and 71 = 7 - 1- 

Based on the stability analysis [10], Aj (/ = 
1,2,3) can be further split into A,+ and Af. Then 
the backward and forward finite difference oper- 
ators can be properly chosen according to the 
eigenvalues of AJ1" and A,-, i.e. 

X, = X+ + Xr       1 = 1,2,3 (15) 

where Aj1" and Af are given as follows: 

Xt = ±+M    and   K = *=M (16) 

Flux-Vector Splitting 

In the flux vector splitting method, the govern- 
ing equations are expressed in terms of the flux 
vector F. The flux vectorJs then split into two 
subvectors F+ and F-. F+ corresponds to the 
positive eigenvalue of the Jacobi matrix, and F- 
is associated with the negative eigenvalue. Ac- 
cording to the directions of pressure wave prop- 
agation, which can be determined by the eigen- 
values, the backward finite difference is devised 
for F+ and the forward finite difference for F_. 

If [T] is the eigenvector matrix of [B], and [T]-1 

is the inverse matrix of [T\, then 

[T]-i[B}[T} = [A] = 

[T] and [T]  x can be derived as: 

Ai    0 0 
0    A2 0 
0     0 A3 J 

(14) 

From (15) and (16), [A] can be split into two 
matrices: 

where 

and 

[A] = [A+] + [A-J 

[A+] = 
Xt     0 
0 
0      0 

A+ 
0 
0 

A3- 

[A-] = 

Since [B] = PI [A] pH-1, we have 

A^ 0 0 
0 AJ 0 
0 0 A3 

-1 

(17) 

(18) 

(19) 

F   =   pnfAjpT1!? 
= [rp+jpi-1!/ + \T\[A-][T\-

1
ü(20) 
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F is split into where 

F = F+ + F~ 

where 

F+ = [ritA+itr]-1^ 

F- = tntA-ipr1*? 

Substituting (21) into (5), 

Üt + F+ + F- = Ü-R 

(21) 

(22) 

(23) 

(24) 

A Fj = Fj+1 - Fj (29) 

The flux term F can be splitted into F+ and 
F~ which are assosiated with A+ and A-, re- 
spectively. If the A is positive, we choose the 
backward operator, otherwise we choose forward 
operator. By splitting the flux term F, the finite 
difference equations become: 

ü^=u?.AtziQl-At^R 
Äs As 

+Rh (30) 

In order to obtain a stable solution numerically, 
F+ has to be approximated by the backward fi- 
nite difference and F~ by the forward finite dif- 
ference  [10]. 

Second-Order Scheme 

In order to develop a second-order finite differ- 
ence scheme, the MacCormack approach [12] is 
employed in the numerical computation. The 
backward difference is used in the predictor step, 
and the foreward difference is used in the correc- 
tor step. 

The predictor step is 

U?+l = U?-At^- + Rh 1 J Ax 
(25) 

where At and Ax are the lengths of time step 
and spatial step, respectively, and 

Rh = 

where 

-U?(h]-h]-i + Atu]^JL)      (26) 

V Fj = Fj - Fj-i 

and the corrector step is 

(27) 

U?+1 = ±(U?+l+U?)--At-£r+Rh (28) 

uri=wr1+uf) - fA^(F+)"-f(F*)? 

iA/a^i+Äk (31) 

where 

and 

V2^- = Fj - 2Fj-i + Fj-2 

A2Fj = Fj+2-2Fj+1 + Fj 

(32) 

(33) 

The Flux-Vector Spliting method splits the flux 
term into components in order to effectively use 
the extrapolation procedures along the direc- 
tions of the characteristic lines. The finite dif- 
ference grids are used in numerical computations 
so that the approach can take advantages of the 
characteristic method and the finite difference 
method effectively. 

The above finite difference schemes will be ap- 
plied to solve the slamming problems regarding 
to the air flow in the CAL and the FAJ. 

COMPRESSIBLE AIR LAYER 

When the bottom is just starting to drop down, 
the Mach number, M„, is very small. At this 
stage, the air flow between the ship bottom and 
the water surface is considered incompressible. 
The initial thickness and velocity of the com- 
pressible air flow can be obtained from the mo- 
tion of the incompressible flow. In order to solve 
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the governing equations for the flow in the CAL, 
the flow in the FAJ, the elevation of water sur- 
face, and the interaction of water and air flow, 
the initial conditions and boundary conditions 
have to be defined. 

Effect of the Free Air Jet 

at 

I      »£. 

ly=o 
1 ft     fl        ZJL 

npw Jo J-i x — ? 
(35) 

where T}w is the elevation of water surface and 
pw is the water density. 

Two approaches can be used to calculate the 
pressure under the bottom. The first approach 
is to start computation from the center (x = 0) 
of the bottom to the edge {x = I); The other 
approach is from the center to the end of the air 
jet (x = 2l). In the first approach, there is a 
singularity of pressure at the edge of the plate, 
and we have to specify u(t, I) by extrapolation as 
a boundary condition. However, using the sec- 
ond approach, we can obtain results in the CAL, 
and also efficiently calculate the distribution of 
velocity in the air jet. 

The air flow at the bottom edge escapes with 
the maximum velocity under the bottom. The 
behavior of air flow at the bottom edge is quite 
similar to the compressed flow at the throat of a 
nozzle. Therefore we consider the flow as a free 
air jet. 

The property of the free air jet has been studied 
by Birkhoff [14]. The jet, from Ref. [7], expands 
with an angle ß = 25" to 30". The pressure in 
the FAJ is taken to be the atmospheric pressure. 
The distribution of velocity in the FAJ is deter- 
mined in Ref. [7] as: 

u(t,x) = 
h(t,lHt,l) 

h(t, l) + (x- l)tan{ß/2) 
(34) 

We calculate the distribution of velocity with the 
Flux-Vector Splitting method, and the equation 
(34) is employed to provide the boundry condi- 
tion of velotity at x = 21. 

Deformation of the Water Surface 

During slamming, the pressure on the water sur- 
face will make a wave elevation which will also 
affect the air flow between the bottom and the 
water surface. The water surface elevation can 
be obtained according to Wehausen & Laitone 
[13] for the slamming problem in which the im- 
pact pressure lasts a very short time span: 

Interaction of Wat er-Surface and 
Air Flow 

Since h, || and J| affects the numerical results 
in computation, we have to consider the effect 
of the water surface to the compressed air layer, 
and vice versa. 

The relation between the thickness of air layer h 
and the elevation of water surface is: 

_^M = yW + «ifl      (36) 

The pressure in the compressed air layer under 
the bottom causes the water surface to deform, 
and |£ directly affects the shape of water sur- 
face. A singularity exists at the bottom edge, 
thus j£ must be set to zero in order to obtain a 
meaningful wave elevation. 

Initial Conditions 

When the hull is just starting to drop , the air 
flow is incompressible. The bottom dropping ve- 
locity V can be found from: 

M ■ dV/dt = M-g- /  (p-Po)dx (37) 

If we consider that the air is initially incompress- 
ible, the pressure distribution can be obtained [6] 
as follows: 

p(t, x)-po = po 
P-x 

h2 
2{Ä2-^}(38) 'dt' 2 dt2 

where the thickness of air layer h(t) = ho — 
/0 V(t)dt. The sonic speed can be derived as: 
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e«(0,r) _ ,        r-1 l3V( 
Co       - X +     2    Tfä' 

(l-fr){l + *&(^W (39) 

The initial distribution of velocity in the CAL 
can be expressed as: 

u(0,x) _ XVQ 

CQ hoco 
(40) 

In computation, we start to compute the com- 
pressible air flow in the CAL as the Mach num- 
ber u(0,l)/co reaches 0.1. 

He showed that the shock waves travel from 
the edges to the center of the bottom with the 
local sonic velocity. The experimental results 
also clearly showed that the maximum slamming 
pressure occurs in the traped air cushion. In this 
paper, we use numerical method to reveal this 
phenomenon. 

A mathematical model is established for captur- 
ing shock waves in the TAC. At the instant when 
the air is trapped in between the dropping bot- 
tom and the water surface, the distribution of 
velocity can be assumed to be zero except at the 
edge where Therefore we can assume that the ini- 
tial conditions for the air flow in the air cushion 
(—I < x < I) are: 

Boundary Conditions 

Since the air flow is symmetrical about the y 
axis, the boundary conditions at the center of 
the bottom, x = 0, are: 

• u(t,0) = 0, 

• 8c-ft.°? = Q 
OX 

At the end of the jet, x = 21 

• p(t, 21) = 1.29     kg/m3 

• ca(t,2l) = 330.0     ml sec 

To avoid specifying u(t, /) at the boundary x = 1, 
the computation domain is set to be within 0 < 
x < 21. Then u{t, 21) can be reasonally assigned 
at the end of the free air jet. The length of the 
air jet is taken as I = 0.2  m. 

SHOCK WAVES IN THE TAC 

When the ship bottom just touches the water 
surface a trapped air cushion (TAC) is formed. 
In the TAC, the compressible air is trapped in 
between the water surface and the bottom where 
the shock waves may be formed. This phe- 
nomenon has been discussed by Verhagen [6]. 

• p{0,x) = p{ti,x) 

• ca(0,x) = ca{ti,x) 

• u(0,x) = 0 

where the t\ is the time when the bottom touches 
the water surface. 

The boundary conditions are: 

• p{t,±l) = po 

• ca(t,±l) = c0 

• u(t, ±1) = Tco 

where p0 = 1.29 kg/m3 and Co = 330 m/sec. 

The thickness of the compressed air layer h is 
assumed to be constant. Therefore the effect of 
h can be neglected from (3) .The governing equa- 
tions for the compressed air flow in the trapped 
air cushion are: 

8(pu)   ,   S(pu3+p) 

7t~ 5r 

= 0 
= 0 
= 0 

(41) 

The Flux-Vector form of the governing equation 
is 

Ut + Ft = 0 (42) 

The second-order finite difference equations are 
as follows, 
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the predictor step: 

ur1 * _ A<Z£2L m-At Ax 

**'      Ax (43) 

the corrector step: 

tr;+1 = 
1A,V(^)?+V3(^+)? 

"24*1 As 
!        A(F-)?+A'(F-)? 

"2^1 Ar (44) 

The shock waves can be numerically captured 
based on this mathematical model, and the max- 
imum slamming pressure can also be computed. 

NUMERICAL RESULTS 

A flat bottom ship section is adopted in compu- 
tation, with m/pwl2 = 0.5 and / = 0.2 m. The 
numerical schemes have been developed for the 
flow computation in the CAL, FAJ, and TAC. 
2I = 0.4 and the Courant number (c„ + u) || = 
0.95 are chosen in all computations. 

The initial normal atmospheric conditions are 
taken as follows: 

0000000000000 0000000c 

CM 0.12 

Figure 2: Distribution of density in CAL 

At the instant when the bottom almost touches 
the water surface, the numerical results are ob- 
tained for the case of the dropping height H = 
0.4 m. As shown in Fig. 2, the distribution of 
density in the CAL is decreased from the center 
to the edge of the bottom along the x-direction. 
The air is gradually compressed from the edge 
to the center. 

• g = 9.81 m/sec.2 

• po = 1.29 kg/m3 

• pw = 103 kg/m3 

• po = 10s N/m2 

• ca = 330.0       m/sec. 

• 7 = 1.4 

Figure 3: Distribution of pressure in CAL 

In Fig. 3, the distribution of air pressure in the 
CAL is presented. The maximum pressure along 
a;-axis is at the center of the bottom before the 
TAC is formed. In the FAJ, the pressure keeps as 
the constant atmospheric pressure. The pressure 
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is increased from the edge to the center of the 
bottom along the s-axis. 

When the bottom is dropping close to the crests 
of the water wave, the velocity of air flow at the 
edges approaches to the sonic speed. The ve- 
locity of air flow increases very rapidly near the 
edge of the bottom. 

-0.« -0.3 -0.2 0.2 0.3 

Figure 4: Water surface under a ship flat bottom 

The water elevation caused by the air pressure 
is shown in Fig. 4. The locations of the wave 
crests are controlled by dp/dx. In the region 
of the air jet, the pressure is constant, therefore 
dp/dx = 0. If dp/dx is not set to zero near the 
edge of the bottom in the region of the air jet, 
the wave crests may move into the region of the 
air jet. 

0.08 "3-12 

X ,   m 

Figure 5: Distribution of velocity in CAL 

The distribution of velocity in the CAL is shown 
in Fig. 5. The velocity of air flow is increased 
from x = 0 to x = /. At the edge of the bot- 
tom, the velocity of air flow increases with time. 

Figure 6: Distribution of velocity in FAJ 

The distribution of velocity of air flow in the re- 
gion of the free air jet is shown in Fig. 6. With 
such distribution of velocity, reasonable numeri- 
cal solutions in the CAL can be obtained. 
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Figure 7: Captured shock waves in TAC 

The distribution of pressure in the TAC is shown 
in Fig. 7. It is clearly demonstrated that a shock 
wave is formed in the TAC. The time history of 
the slamming pressure in the TAC is shown in 
Fig. 8. The shock wave travels from edges to 
the center of the bottom. It also shows the spa- 
tial distribution of the slamming pressure. The 
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local maximum pressure is built up as the shock 
wave passes there. The numerical results indi- 
cates that the maximum slamming pressure in 
TAC is almost a constant along the bottom. This 
property has been experimentally discovered by 
Verhagen [6]. 

Figure 8: Travelling shock waves for H = 0.4 m 

The numerical results for the dropping heights 
H = 0.2 m and 0.04 m are shown in Fig. 9 and 
10. The slamming pressure in these two cases 
shows the same property as that for H = 0.4 in 
Fig. 8. The maximum pressure is proportional 
to the initial dropping height. 

The maximum slamming pressure which we ob- 
tained from the computation and Verhagen's ex- 
perimental results [6] are given in Table 1. It 
can be seen from Table 1 that the numerical re- 
sults of maximum slamming pressure are quite 
agreeable with the experimental results. 

section. We find that the maximum slamming 
pressure is sensitive to the mass only when M is 
very small. 

O.   °: 
ti,t3,t»,t*,tt,ts,tr 

Figure 9: Travelling shock waves for H = 0.2 m 

tl,t3,ta,tt,t&,ts,t7 

r1- 1 1 1 1 °-i 1 1 1 1 ' 
-0.20 -0.16   -0.12   -0.08   -O.M     0.00     0.04     0.0B     0.12     0.16     0.20 

x,   m 

Figure  10:   Travelling shock waves for H 
0.04  m 

H 
Maximum Pressure p/po 

Experimental [6] Numerical 
0.4   m 3.5—5.2 5 
0.04   m 1.2—1.25 1.6 

Table 1: Comparison of maximum slamming 
pressure 

Fig.    11 shows the variation of the maximum 
slamming pressure versus the mass of the ship 

CONCLUSIONS 

The slamming impact of a ship with a fiat bot- 
tom has been analyzed and investigated with 
the Flux-Vector Splitting Method. The math- 
ematical models for the flow in the compress- 
ible air layer and trapped air cushion are illus- 
trated. Numerical scheme based on the Flux- 
Vector Splitting method is derived.   Using this 
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method, the slamming pressure has been com- 
puted and the shock waves have been numeri- 
cally captured. 

The velocity is increased from zero to the local 
sonic speed along the x-axis with time when the 
bottom approaches the crests of the water sur- 
face. The performance of the compressed air in 
the passage between the bottom and the water 
surface is similar to the compressible flow in a 
nozzle. The mixture of air and water at the 
bottom edge is simplified as a free air jet. The 
velocity of air in the jet decreases along the x- 
axis from the local sonic speed at the bottom 
edge and increases with time before the bottom 
touches the water surface. The pressure, density 
and sonic speed are taken as the atmospheric 
conditions in the FAJ. 

Interaction between the air flow and the water 
surface in the CAL and FAJ has been consid- 
ered. A water wave under the ship bottom is 
produced. The deformed wave surface responds 
to the pressure variation along the bottom of the 
ship hull. 

Shock waves travelling from the edge to the cen- 
ter of the bottom have been computed. The 
maximum slamming pressure attains a constant 
value during the period when the shock waves are 
formed and travel to the center. It is important 
to calculate the maximum slamming pressures 
and to determine their locations for structural 
analysis. The maximum slamming pressures 
which we obtained from the dropping heights 
H = 0.4 m, H = 0.2 m and H = 0.04 m 
are reasonable compared with the experimental 
results. 

The Flux-Vector Splitting method has been 
shown to be a powerful tool to solve slamming 
problems. This method has the advantages of 
both the characteristic method and the finite 
difference method. Thus the effects caused by 
shock waves in the trapped air cushion on the 
ship structure can be effectively invastigated. 
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Figure 11: Effect of Falling Mass 
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Interaction of Bubbles with Turbulent Flow: Particle 
Tracking and Flow Field Characterization 

A. Kolaini, S. Sinha, V. Rajendran 
(University of Mississippi, USA) 

ABSTRACT 
An experiment has been designed to 

investigate the dynamic behavior of bubbles 
injected into water jets. It has been observed that 
if bubbles remain in the center of the jet, they 
break into two or more smaller bubbles.   If an 
adult bubble is injected into the high shear-induced 
regions of the jet, acoustic re-excitation occurs. 
3-D stereoscopic particle tracking velocimetry 
(SPTV)  and   hot  wire  anemometry   were 
implemented for measuring the flow parameters 
and resulting bubble response in a turbulent jet. 
A single bubble was injected into the field where 
two high-speed video cameras were capturing 
images of the response of the bubble.    The 
Reynolds number of turbulence, based on the root- 
mean-square turbulent velocity, and the Taylor 
lateral   microscale,   was   estimated   to   be 
approximately 1200. This leads to a Kolmogorov 
microscale of about 33 p.m. The characterization 
of the dynamics of bubbles in a turbulent flow 
field depend on three factors: (1) the estimated 
integral  and  micro-length   scales;   (2)   the 
corresponding Reynolds numbers; and (3) the 
critical Weber numbers for both bubble distortion 
and breakup.   A critical Weber number was 
estimated to be 0.52 for an adult bubble re- 
excitation without breakup and 1.10 for bubble 
breakup. 

1.  INTRODUCTION 

1.1  Background 

Much work has been done in the past on 
the dynamics of a single air bubble in water 
subject to various forms of excitation. However, 
the mechanisms of excitation of a single bubble, 

or a bubble cloud, by a turbulent pressure field not 
yet fully understood. In general, the pressure 
spectrum of a turbulent flow is relatively broad, 
and there is the possibility that large changes in 
bubble volume and surface may arise from the 
small spectral intensity of the pressure at the 
natural resonance frequency of the bubble. 

Some of the earliest studies of noise in 
the ocean were published in 1948 by Knudson et 
al. Since then, much progress has been made 
toward the understanding of ocean ambient noise. 
We now know that many sources contribute to 
ocean ambient noise. Some of these bubble- 
related mechanisms are splash or rain noise 
(Prosperetti et al., 1989), hail and snow (Crum et 
al., 1992), breaking waves (Medwin and Daniel, 
1990; Loewen and Melville, 1994; Kolaini and 
Crum, 1994) and capillary waves (Longuet- 
Higgins, 1993; Kolaini et al., 1994). The noise 
from these sources is all bubble-related. How a 
bubble makes noise is a fundamental question that 
has important consequences in many fields, 
especially in oceanography. 

In the ocean, bubbles can be distorted or 
deformed by turbulent flow fields created by 
dynamics of breaking waves and Langmuir 
circulation. An important scientific question is 
what role the shape oscillation of bubbles play in 
monopole acoustic radiations. The linear theory 
predicts that, the most efficient mechanism that a 
bubble has for the emission of sound into the far- 
field is through volume pulsations where the 
higher modes (surface modes) of oscillations are 
volume preserving and thus radiate inefficiently. 
Recently, however, Longuet-Higgins (1989) 
suggested that volume pulsations might derive 
energy from the nonlinear coupling of surface and 
volume modes. Longuet-Higgins (1991) and 
Ffowcs-Williams and Guo (1991) have debated 
what effect these surface oscillations have on the 
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volume pulsations. Longuet-Higgins (1989) 
predicted that the distortion modes could 
contribute to the far field sound radiation by 
producing a monopole radiation of sound at a 
second order of magnitude. Ffowcs-Williams and 
Guo used the method of multiple scales to 
examine the problem. They acknowledged that a 
transfer of energy from the surface mode to the 
volume mode occurs at the exact resonance, and 
that a periodic exchange will occur near resonance. 
However, they believe that the amount of energy 
exchanged is so small that no significant sound 
radiation occurs. 

The issue has been much-debated in the 
acoustics community, because the overwhelming 
contribution to ambient noise in the ocean is due 
to bubbles. However, there is a fundamental 
disagreement about how a bubble produces sound. 
Therefore, a more complete understanding of the 
basic physics of sound generation by bubbles is of 
considerable importance. It is well known that 
turbulence is a weak radiator of sound. The 
radiation properties of turbulent flow in water 
have been shown to be greatly modified by the 
presence of a small distribution of air bubbles in 
the turbulence (Crighton and Ffowcs-Williams, 
1969). This process may be relevant to 
underwater sound generation at low and high 
frequencies. 

1.2 Significance of the present work 

It has been recently shown that the 
injection of a single bubble into an axisymmetric 
fully developed turbulent flow resulted in fission 
and fusion of the bubble (Kolaini et al., 1992; 
Kolaini, 1994). The sound produced by bubbles 
encountering turbulent flow fields depends upon 
the Reynolds stresses and the mean velocity field. 
The knowledge of the flow field is of paramount 
importance for an understanding of sound 
production mechanisms in a turbulent flow. In 
this paper we discuss the turbulent flow field 
characterization of a submerged water jet 
containing bubbles. 

1.3     An     assessment     of 
experimental  techniques 

available 

In order to study and understand the 
mechanisms which govern the exchange of energy 
between the liquid and bubbles, one has to be able 
to measure velocities in both phases 
simultaneously. This is an extremely challenging 
problem since intrusive hot-film probes cannot be 
used. Non-intrusive point-wise measurement 
techniques like laser-Doppler velocimeters will 
also fail to identify much of the interesting 

physics. Full-field quantitative imaging 
techniques like Particle Image Velocimetry (PIV), 
are probably the only methods which may work 
(Hassan, 1991). These methods rely on optically 
recording the positions of small tracer particles, 
along with the bubbles, over several time steps. 

Although commercial packages for 2-D 
PIV are currently available, these cannot capture 
the essence of the 3-D turbulent structures which 
play a crucial role in bubble deformation. 
Therefore, a 3-D adaptation of this technique is 
needed. Two approaches have generally been used 
to attain this; namely, (1) holographic imaging, 
and (2) multi-view stereoscopic imaging. 
Holographic imaging enables storing 3-D 
information on one image, but suffers from a 
reduction in accuracy in depth perception, and the 
need for elaborate data reduction processes and 
equipment. Orthogonal stereoscopic imaging can 
in principle remove both shortcomings, but 
suffers from restrictions imposed by depth of field 
limitations of the imaging lenses. A method 
employing orthogonally acquired holograms, as 
implemented by Weinstein et al. (1985) does not 
suffer from depth of field limitations, and can 
provide very accurate estimates of particle 
positions. However, the complexity of data 
reduction effectively rules out this method for 
analyzing large number of data points over a large 
number of time steps. Therefore, the present 
study used the nonholographic stereoscopic 
technique, which will henceforth be referred to as 
Stereoscopic Particle Tracking Velocimetry 
(SPTV). 

Although SPTV is simple in principle, 
and investigators have attempted to use it for 
different types of flows, an acceptable level of 
performance has yet to be reached. The main 
reason for this is that any practical 
implementation of SPTV ultimately reduces to a 
complex multi-variable optimization problem 
with many conflicting requirements. With this in 
mind, the present work focuses on comparing 
SPTV measurements with hot-film anemometer 
(HFA) data for turbulent flow in the liquid phase. 
The range of applicability of each method is 
discussed in view of unraveling the liquid-bubble 
interaction physics. 

2.0  EXPERIMENTAL  SET-UP 

A simple experiment was set up that 
injected bubbles into an axisymmetric, turbulent 
jet. Fig. 1 shows the schematic of the 
experimental setup. It consists of two high-speed 
Kodak Ekta-Pro video cameras and a video 
digitizer, a three watt Lexel Argon Ion laser, a 
PC 486, 50 kHz for data and image processing, a 
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plenum chamber, water tank (62 cm x 62 cm x 
3.3 m), a Cole-Palmer peristaltic pump, and a 
bubble generating mechanism. The plenum 
chamber contained an interchangable nozzle 
through which the jet was discharged to the tank. 
The Cole-Parmer pump was used to pump water 
at a controlled flow rate into a plenum chamber. 
The nozzles were replaceable type with diameters 
ranging from 3.2 mm to 12.4 mm. In this paper, 
we discuss jets produced by only the 3.2 mm 
diameter nozzle. SPTV as well as a 2-D TSI 
cross-wire hot film probe were used to characterize 
the flow field. 

The SPTV technique utilized the high- 
speed video cameras. This technique enables 
quantitative, non-intrusive measurements of free 
turbulent structures containing a bubble. The 
tracer particles used in the experiment were made 
of polystyrene (S.G. 1.04) and were 100-200 \i in 
size. A laboratory syringe pump was used to seed 
the particles into the jet. The syringe was placed 
on top of the plenum vertically above the nozzle. 
The particle injection arrangement was found to 
impart minimal disturbances to the actual flow. 

The Argon Ion laser along with a system 
of optical lenses and mirrors was used to 
illuminate the test section with a volume of 
approximately 1.5 cm (width), 3.0 cm (height), 
and 2.0 cm (depth). The cameras which consisted 
of 105 mm Nikon lenses were connected to the 
Ekta-Pro real time digitizer and the captured 
images were stored on large-capacity magnetic 
tapes. A real-time Digital Vision Image grabber 
was used to grab images and the digitized data 
were downloaded to a PC-486 microcomputer for 
further processing. The images were captured at 
the rate of 2000 frames per second. 

3.0 EXPERIMENTAL  PROCEDURES 

3.1 System  calibration 

The optical axis of the cameras were 
set at an angle of 35° with respect to each other. 
There were focused in the middle of the test 
section. Spatial calibration of the cameras over 
the entire test volume was done using reference 
grid points whose spatial coordinates were known 
within 2.5 |im. This grid was placed inside the 
test volume for calibration, using an electronically 
controlled mechanical positioner capable of 65 
(i/step in x, y, and z direction. Fig. 2 shows the 
photograph of the jet with velocity of 2.2 m/sec. 
A special colored dye was used to visualize this 
image. The reference points were photographed in 
three planes (by moving the grid across the width 
of the tank). The images were processed much the 

same way the particles would be processed. The 
3-D positions of the reference points (x,y,z) were 
reconstructed by data reduction equations based on 
colinearity conditions from the corresponding 
image coordinates xi and yi in each camera. 
Since two cameras were used, four equations were 
employed for each reference point. These 
equations are, 

xA p = xApp- fA. 

an(Xp - XQA) + ai2A(Yp-YoA) + ai3A(Zp-ZoA) 

a3iA(Xp-X0B) + a32A(Yp-YoA) + as3A(Zp-ZoA) 

yAp= yApp-fA. 

aaA<Xp - XQA) + azzACYp-YpA) + a23A(Zp-ZoA) 

a31A(Xp-XoB) + a32A(Yp-YoA) + a33A(Zpr-ZoA) 

xBp= xBpp-fA. 

anB<Xp - XQB) + ai2B(Yp-YoB) + ai3BA(Zp-ZoB) 

a3iB(Xp-XoB) + a32B(YP-YoB) + a33B(Zp-ZoB)   ' 

and 

yBp= yBpp-fs. 

aae(Xp - XQB) + azzBOfe-Yoa) + 823B(ZP-ZQB) 

a3iB(Xp-XoB) + as28(Yp-YoB) + a33B(Zp-Zc») 

(1) 

(2) 

(3) 

(4) 

where Xoi,Yoi,Zo; are coordinates of the 
projective centers for two cameras. The 
coefficients aij, are the elements of 3x3 rotational 
transformation matrices needed to align the (x,y,z) 
world coordinates with respect to the two imaging 
axis. The ft, is the principal distance, which is 
the distance between a camera projective center and 
its principal point. The xipp, yipp are coordinates 
of the principal point where i = A and B indicating 
camera A and B. The principal point of the 
camera is the image of lens center formed on the 
image plane of the camera. 

There are nine unknowns for each 
camera. The unknowns are Xoi, Y"oi, Zoi, aij, 
fj, xipp, yipp. These equations relate the point 
P(xp, yp, zp) in space to its image coordinates 
xip, yip. The first six of the 9 camera parameters 

are the camera's exterior parameters and the 
remaining are the interior parameters. These 
equations were solved simultaneously by 
employing a non-linear least squares method to 
get the 9 (converged) camera parameters. Using 
the camera parameters and the image coordinates, 
the spatial locations (x,y,z) of the reference points 
are reproduced. Comparison of these reproduced 
spatial coordinates with the known object point 
coordinates (which were measured earlier) revealed 
a lateral shift in the x,y and z coordinates. The 
bias errors were caused by multi-media refraction 
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as a result of viewing through air, water and the 
glass wall of the tank. These systematic (bias) 
errors are readily subtracted (Mangla, 1992; Sinha 
& Kuhlman, 1992) from the reproduced x,y,z 
coordinates. These procedures completed the 
calibration of the system. After the calibration, 
the RMS errors of the coordinates were measured 
to be 70,170(depth), and 70 microns in x,y and z 
directions, respectively. The predicted positions 
of the particles were, however, significantly less 
accurate due to additional uncertainties in 
estimating the particle image coordinates. 

3.2 Image and data processing 

The determination of image coordinates 
of white particles on dark background is a trivial 
task (Fig. 3). After removing some of the non- 
uniformities of the background, the following 
steps were used to determine the image 
coordinates: 
1. Particle image thresholding 
2. Particle identification and validation. 
3. Stereoscopic matching of the particle images in 
each time step. 
4. Particle tracking over subsequent time steps. 
5. Calculating the x ,y, z coordinates of particles 
using the camera parameters bias error correction. 
6. Calculating instantaneous velocities. 
7. Calculating fluctuating components in x, y, z 
directions. 
8. Calculating Reynolds stress tensor 
components. 

The gray level thresholding was done to 
enhance the particle images from the surrounding. 
Size threasholding was performed to facilitate 
identification and to differentiate particles from 
background noise. Centroids of the enhanced 
particle images were determined. The bias errors 
in the reference points calculated in the calibration 
stage were interpolated using a multiquadric 
interpolator on to the centriodal positions of these 
enhanced particle images. The interpolator 
parameters were optimized (Sinha & Kuhlman, 
1992) during the calibration stage and positions of 
the same particle were determined in successive 
image frames. Knowing the initial and final 
positions of a particle and the elapsed time the 
instantaneous velocities were estimated, 

U = xtzxi) v = yillL, and W = 5t^l 
At At At 

The locations of these velocities were taken as the 
midpoint between the particle initial and final 
positions.  The velocity vector at any instant is 
given        by        V = Ui + Vj + Wk,       where 

V(x,y,z,t) = V(x,y,z,t) +V'(x,y,z,t)   and 

=l|   Vdt=-^-£ ViAt, 
Tj0 nAti=i 

(5) 

where n is the number of time steps and 
V'(x,y,z,t) is the fluctuating velocity vector. 
After calculating the mean velocity by Eq. (5) the 
fluctuating components of velocities were 
obtained by 

V'(x,y,z,t) = V(x,y,z,t) - V(x,y,z). Similarly the 
fluctuating       velocity       vector       is 

A A ^ 

v' = u'i + v'i + w"k and the Reynolds stress 
tensor component can be estimated by the 
expression, 

         n _ _ _ _  _ _ 
uV = i£ u'i (x, y, z, iAt)v'i (x, y, z, iAt)- 

i=l 

Similar expressions can be written for the other 
five components of the symmetric stress tensor, 
ü"2, ÜV, v'2, vW, w'2 . 

3.3 Automatic Matching and Tracking of 
Particles 

Due to recent advancements in imaging 
techniques data processing of images with 
numerous numbers of particle is possible. With 
the nozzle velocity at 2.2 m/s, the flow field was 
photographed at 2000 frames/sec using Kodak 
Ekta-Pro high-speed video cameras. Typical 
particle images containing a bubble of 1.1 mm 
radius are shown in four consecutive but not 
sequential frames in Fig. 3. The particle images 
in each frame were digitized, and processed to 
obtain estimates of the particle image centriods. 
Overlapping particle images, identified by their 
relatively larger sizes, were excluded to reduce 
errors. However, this also resulted in significant 
data dropout. This procedure was followed by 
matching (determining corresponding images of a 
particle in the other view at the same time step) 
and tracking (determining correspondence through 
the next and subsequent time steps). An 
algorithm was developed (Rajendran, 1993) to 
automatically match and track using geometrical 
search criteria. Non-unique matches were 
examined for tracks in the next step, failing which 
they were discarded. About 50 to 70 particle pairs 
were identified each time step. This resulted in 
about the same number of velocity vectors, 
obtained by dividing particle displacements by the 
time interval. Data for 100 frames (50 ms total) 
were processed. 
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4.  RESULTS   AND   DISCUSSIONS 

4.1  Bubble deformation 

Prediction of the bubble deformation and 
breakup in a turbulent flow field is a formidable 
problem, primarily because of the inherent 
theoretical and experimental difficulties in treating 
turbulent two-phase flows. 

The detailed quantitative characterization 
of bubble deformation due to interactions with 
high Reynolds number flow fields is an ongoing 
research. In this paper we discuss the effect of the 
overall velocity field on bubble deformation and 
subsequent acoustic emissions utilizing both the 
SPTV and HFA velocity field measurement 
techniques. The SPTV technique provides us with 
the nearly instantaneous spatial velocity field 
measurement, while the HFA technique can be 
useful in long-time temporal averaging of the 
fluctuating velocity components. 

Before injecting bubbles into the 
turbulent flow field, the distribution of mean 
velocity, mean shear, turbulent intensities, and 
length scales of the water jet were measured at a 
distance of x/D ~ 10 by means of 2-D hot film 
anemometer. At 10 diameter from the nozzle, the 
flow is in a fully developed turbulent region. The 
mean horizontal velocity distribution in the jet is 
shown in Fig. 4. Görtier (1942) developed a 
theory for round submerged jets with velocity 
profile of (Schlichting, 1979) 

-U-=ll + 
U™    I       4 

(6) 

where § = 15.2 J , and Umax = 7.4 (J/p)1/2/x . 

The term J is the jet momentum, \ is the 
similarity variable, p is the density of the water, 
Umax is the maximum velocity at the center of 
the jet, and x is the distance from the nozzle exit 
A comparison of the mean horizontal velocity 
measurements with Eq. (6) shows a very good 
agreement. The radial distribution of turbulent 
fluctuating velocities are shown in Fig. 5. The 
size of the mixing region is related to the integral 
length-scale Lx while the time-scale is related to 

the local mean shear -r-.  The product of these 

two quantities is shear velocity. Since the rate of 
production of turbulent kinetic energies (TKE) is 
proportional to the mean shear, it seems likely 
that a relation exists between the turbulent 
intensity and the shear velocity. Therefore, the 
turbulent intensity can be expressed as, 

Ur 

const © 
3(U/U—) 

3(r/D) 
(7) 

The measured turbulent intensity is in good 
agreement with Eq. (7) providing the value of the 
constant in Eq. (7) to be about 0.035. The 
turbulent intensity has a maximum value at a 
region where shear stress is maximum and vice 
versa. At r — R, the mean velocity is small and 
the local turbulent fluctuation of velocities is 
relatively large. This region of the flow field 
plays an important role in the adult bubble 
deformation and subsequent acoustic radiation. 

The longitudinal and transverse rms 
turbulent intensities, u' and v\ shown in Fig. 5 
have the same general trend and order of 
magnitude. Therefore, it is reasonable to assume 
that the flow field under consideration is 
homogeneous and isotropic and that the eddies in 
question maybe in the inertial (-5/3 power) 
subrange. This assumption is unlikely to be valid 
in an overall sense though it may be reasonable 
locally or for the high wavenumber (small) eddies 
which are of primary interest, using these 
assumptions, the lateral Taylor microscale can be 
estimated to be (Hinze, 1975) 

■'J*ffi (8) 

The value of Xg measured at x/D ~ 10 and r = R 
is about 0.23 cm.   The Reynolds turbulence 

number Re^g = 
e based on the root-mean- 

square turbulent velocity and lateral microscale, 
Jig, is equal to about 1200. The Kolmogorov 
microscale T) is therefore given by 

T, = Xg (15) -1/4 (Rex) "1/2 , (9) 

and equal to 3.3 x 10"3 cm. The life time of the 
turbulent Kolmogorov eddies can be estimated to 

be around 71 usec using x^ = T\H u'2. The life- 

time of the Taylor microscale, x\& = A,g/V u' is 
estimated to be about 5.1 msec. Consider a 
bubble of a radius 1.1 mm with a resonance 
frequency / given by (Minnaert, 1933), 

2TIR  V     p 
(10) 

where R is the radius of the bubble, Po is the 
atmospheric pressure, p is the water density, and y 
is the ratio of the specific heats and equals to 1.4 
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for adiabatic processes. Therefore, the resonance 
frequency of this size bubble is 3.3 kHz and is 
very close to the measured value (3.18 kHz). The 
bubble oscillation period falls between eddies with 
a life-time ranging, xn < x< xxg . This implies 
that the bubble will have enough time to respond 
to dynamic fluctuations. The eddies with length 
scales greater than the Kolmogorov scale and 
much smaller than the Taylor microscale may be 
responsible for bubble deformation and surface 
mode oscillations. These observations are 
consistent with Longuet-Higgins (1992) 
prediction that the shape oscillations of bubbles 
will necessarily be accompanied by the emission 
of a monopole component of radiated sound. The 
analysis of splitting of drops and bubbles due to 
the capillary and dynamic pressures were made by 
Kolmogorov (1949), and Hinze (1975). 
Kolmogorov concluded that the fate of a bubble 
depends on two nondimensional ratios, the Weber 
number defined as 

We = -^1 
0/2R 

(ID 

2R 
and ratio of length scales —, where a is surface 

tension in dyn/cm. For our case 2R » T|, and for 
high Reynolds numbers the wave numbers of the 
energetic eddies and the dissipation range wave 
numbers are widely separated. Under these 
circumstances, Kolmogorov's universal 
equilibrium theory postulates an inertial subrange 
at the lower end of the equilibrium range where 
energy transfer through the spectrum is 
independent of viscosity and where 

v2 = 2.0 (2eR j2/3 , (12) 

where e is the energy dissipation per unit mass 
and time. Under these conditions Eq. (11) will 
have a new form, 

(We)critical = 6.35(£e2^R5'3). (12) 

Since the small-scale structure of turbulence at a 
large Reynolds number is always approximately 
isotropic (Fig. 5), therefore, 

e= 15t> (13) 

where Xg is defined by Eq. (8). To obtain the 
lowest Weber umber at which bubble deformation 
and subsequent acoustic radiation will occur, we 

•2 • use the maximum Reynolds shear stress pu   in a 
region where the surface mode of the bubble may 
have coupled with volume pulsation as was 
suggested by Longuet-Higgins (1992).    The 
resulting critical Weber number is about 0.52. 
The critical Weber number at which bubble 
breakup will occur is about 1.10 and is slightly 
smaller than values predicted by Sevik and Park 
(1973). It should be noted that these two Weber 
numbers, 0.51 and 1.10, were calculated based 
upon the values of the high shear-induced region 
and center of the jet, respectively. 

4.2 Post-processing the SPTV data 

In order to determine the details of the 
flow that can be practically unraveled by SPTV, 
experiments were conducted in a circular water jet 
at about 10 diameters downstream of a 3.2 mm 
diameter nozzle. Earlier acoustic measurements 
(Kolaini, 1994) showed that adult bubbles injected 
in this region acoustically can be re-excited 
without breakup. 

Since the obtained velocity vectors were 
rather sparse, and unevenly distributed in space, a 
Multiquadric 3-D spatial interpolator (Sinha and 
Kuhlman, 1992) was initially used. However, 
this resulted in smoothing the velocity profiles 
unrealistically. Therefore a different approach was 
followed here which involved dividing the 
measurement volume into small regular control 
volumes. The velocity vectors over the entire 100 
time steps were assigned to which ever control 
volume they fell in. The vectors within each 
control volume were then averaged, and the 
average value assigned to the center of the control 
volume. Deviations of the instantaneous 
velocities from the time-averaged means indicated 
the fluctuating components. The fluctuating 
components were therefore calculated for each 
control volume, every time step. If a control 
volume had more than one velocity vector at a 
given time step, the fluctuating components were 
averaged. On the other hand, several control 
volumes had no assigned velocity vectors over 
many time steps. These facts were taken into 
account for computing turbulent Reynolds stresses 
and scales. In order to simulate traversing the jet 
across a diameter with a hot-film probe, some of 
the control volumes were selected as concentric 
rings, centered about the jet axis. It is to be 
noted, however, that the results obtained this way 
depend heavily on the choice of control volumes. 

Fig. 6 shows profiles of the mean U, V 
and W velocities normalized with respect to the 
maximum centerline velocity at this location. As 
expected, the cross-stream velocities are nearly 
zero, while the streamwise velocity approximates 
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the familiar Görtier profile (Eq. 6). Error 
propagation in the SPTV processes were 
accentuated in the estimates of the Reynolds stress 
components. Within limits of experimental 
uncertainties the three shear stresses were found to 
have the same order of magnitude as those 
measured with the HFA. 

The principal advantage of SPTV over 
point-wise velocity measurement techniques is 
that it enables estimation of the vorticity field. 
Since the vorticity estimates are dependent on the 
spatial density of the data (Sinha and Kuhlman, 
1992), data for all 100 frames were pooled. The 
resulting vorticity field therefore contained a range 
of vortices with time scales from 0.5 to 50 ms. 
Figs. 7a-c show contours of the streamwise 
vorticity component ßx, ancl tne spanwise 
components ßy and ßZ) respectively on the 
central vertical (X-Y) plane. Contour levels of 
750, 500, 250 and 0 s"1 are shown. Positive and 
negative values indicate the sense of rotation. 
Vortical structures outside this range were found 
to be extremely small, for the total 50 msec 
period, and have therefore not been shown. As 
expected, the streamwise component is seen to be 
significantly weaker, while ßy and ßz values are 
comparable. Since errors in estimates of the Z- 
velocity (depth direction) were highest compared 
to the other two components, the Z-vorticity 
estimates are the most accurate. 

The vortical structure depicted in Fig. 7c 
can be assumed to represent eddies of varying 
strengths and sizes which existed during the 50-ms 
period. If a bubble is present in the flow field, it 
will be acted upon by the vortices. Severe bubble 
deformation can occur if the bubble falls in the 
junction of two strong counter rotating vortices 
(i.e. a strong strain field). The average spacings 
of the centers of vortices, as estimated from the 
ßz contour plots ranged between 3.2 mm to 7 
mm (from -750 s"1 to 750 s"1), depending upon 
the vorticity strength. These spacings indicate the 
approximate diameter of a bubble which may be 
deformed by a vortex of a given strength. It is 
interesting to note that the minimum spacing is at 
about 3.2 mm corresponding to a vortex strength 
of 500 s"1. This is therefore the most densely 
spaced vortical structure within the spatial and 
temporal resolution of the SPTV measurements. 
This diameter compares extremely well with the 
lateral microscale. The time scale of these eddies 
is 2 ms, which is about one half the time scale 
associated with the lateral microscale. The eddies 
responsible for re-excitation of the bubble are 
however much smaller than those measured by the 
lateral microscale.  However, the data density in 

the present SPTV measurements was insufficient 
to resolve these. 

Photographs of deforming bubbles in the 
flow field (Kolaini et al. 1994) have indicated that 
bubbles usually undergo severe deformations 
without breakup prior to re-excitation. Not every 
bubble of a particular size displays this behavior. 
It is speculated at this point that the re-excitation 
or breakup of the bubble can be directly attributed 
to the presence of a vortical structure of the 
appropriate strength and size. However, this can 
only be verified by simultaneously imaging the 
bubbles with the particles with faster rate (i.e. 
6000 f/s) which is currently under consideration. 

5.   CONCLUSIONS 

Preliminary SPTV experiments and HFV 
measurements of a turbulent jet were performed. 
Both methods showed that at x/D » 10, the mean 
velocity field closely approximates the fully 
developed Görtier profile. The turbulent stresses 
were found to be about the same in all directions, 
thereby confirming the isotropicity of the 
turbulence. It has been shown that an adult bubble 
injected into a fully developed turbulent field 
experiences a severe deformation. This 
deformation (since the damping is very small) 
leads to bubble fission and fusion. The scaling 
analyses using both HFA and SPTV show eddies 
responsible for these phenomena fall between 
Taylor the lateral and Kolmogorov microscales. 

The adult bubble fission and fusion by 
turbulent pressure fluctuations depend upon a 
critical Weber number. In the case of an adult 
bubble fusion, the critical number estimated to be 
around 0.52 while it is 1.10 for a bubble fission. 
The estimated critical Weber number for bubble 
break-up is slightly lower than the value predicted 
by Sevik and Parker (1973). 

Even though, we used both the HFA and 
the SPTV techniques to estimate eddies 
responsible for deformation of a bubble, we were 
unable to measure eddies with life times less than 
2 ms using the SPTV technique. The eddies 
responsible for re-excitation of the bubble are 
much smaller than those measured by SPTV. The 
primary sources of error in the SPTV data were in 
identifying the image coordinates of particle 
centroids (Sinha et al. 1994), and in the implied 
interpolations due to data pooling. The 
experimental facility, and the data processing 
software are currently being modified to address 
these shortcomings. Additionally, efforts are 
currently underway to image the flow and the 
bubbles simultaneously with faster rates (6000 
fps). 
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Fig. 1: Schematic drawing of the experimental 
set-up. 

Fig. 2: Instantaneous photograph of the jet with 
velocity of 2.2 m/sec. 

Fig. 3: Examples of the digitized stereoscopic 
high-speed images of a bubble with radius 
1.1 mm injected into a fully developed 
turbulent jet with jet velocity of 2.2 
m/sec. The imaging rate was 1000 
frames/sec. These images are consecutive 
but sequential. Left half of each frame is 
the camera-A image, while the right half 
is the camera-B image. The bubble is 
seen as a large dark spot. The particles are 
white. The mean flow is from left to 
right. 
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Fig. 6: The mean velocity components, U, V, and 
W as a function of r/D normalized with 
respect to Umax measured at x/D =10. 
The SPTV technique was used to measure 
these velocity distributions. 

Fig. 7: Contour plots of vorticites measured at 
x/D = 10 of a) X-direction, b) Y-direction, 
and c) Z-direction. Vorticites in levels +/- 
705,500,250, and 0 s"1 are shown here. 
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DISCUSSION 

H. Oguz 
Johns Hopkins University, USA 

This paper examines the interaction between a bubble 
and a turbulent flow experimentally. The 
significance of this process can be found in 
underwater acoustics, industrial gas-liquid reactors, 
aeration systems, etc. Here, the turbulent flow field 
is generated by a liquid jet emerging from an 
underwater nozzle and a single bubble is introduced 
by means of a hypodermic needle below the jet. The 
authors make a commendable effort to monitor the 
details of the bubble-flow field interaction. A novel 
idea introduced by this work is the simultaneous 
collection of optical and acoustical data. Since 
bubbles are strong acoustic scatters one would hope 
to establish a relationship between the flow field 
measured optically and the recorded acoustic signal. 

This difficult experiment seems to have been carried 
out with great care. As for the theoretical analysis, 
the authors make use of the Kolmogorov's theory of 
turbulence. Bubble deformation and breakup can 
occur in the presence of a turbulent eddy of 
comparable size. The response of a bubble depends 
on the Weber number defined by 

pulsations resulting from splitting bubbles are more 
likely to be caused by the jump in the equilibrium 
pressures after the breakup. 

Finally, a recent work by Parthasarathy and Ahmed 
(1994) who examined the bubble breakup process in 
a vessel agitated by a turbine is worth mentioning. 
They also addressed the bubble breakup problem 
experimentally and employed similar ideas. 
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We = 
pv 

a/2R 

where R is the radius of the bubble, v2 is the average 
value of the squares of the velocity differences, a is 
the surface tension and p is the density. The 
description of the calculation of the critical Weber 
number (We)cril lacks certain details that may allow 
one to reconcile differences with other studies. 
According to Sevik and Park (1973) the critical 
Weber number for bubble breakup in a turbulent field 
is about 1.24. This value is nearly attained at high 
shear regions of the flow field where We is reported 
tobe 1.10. 

The connection between bubble shape oscillations 
and acoustic radiation is implied as if there exists a 
one-to-one correspondence between the two 
processes. In reality, pressure fluctuations caused by 
turbulent eddies may be more effective in causing 
acoustic excitation than shearing action that induces 
shape oscillations. In other words, it is entirely 
possible to register a strong acoustic pulse without 
observing  any  shape  oscillations.     Also,  volume 
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Direct Simulations of Bubbly Flows 
P.-W. Yu, A. Esmaaeli, S. Ceccio, G. Tryggvason 

(University of Michigan, USA) 

ABSTRACT 

Direct numerical simulations of bubbles are 
presented. The full Navier-Stokes equations are 
solved by a finite difference/front tracking method 
that allows a fully deformable interface between the 
bubbles and the ambient fluid and the inclusion of 
surface tension forces. Two problems are discussed: 
The collapse of a three dimensional cavitation 
bubble in a shear flow near a wall and the rise of a 
two-dimensional buoyant bubble cloud. The 
computations for the cavitation bubbles suggest that 
a shear flow may prevent the formation of a 
reentrant jet during the late stages of the collapse. 
The bubble cloud simulations show that freely 
evolving bubbles generate considerable amount of 
small scale vorticity that leads to large velocity 
fluctuation and reduces the rise velocity of the 
bubbles. 

NOMENCLATURE 

ai void fraction 
d effective diameter of deformable bubbles 
r0 initial radius of cavitation bubbles 
u velocity 
u, v, w   components of the velocity vector 
g gravity acceleration 
&p pressure difference 
p density 
ß viscosity 
a surface tension 
S three-dimensional delta function 
co shear rate 
<uu>, <vv>, <uv> Reynolds stresses 
M Morton number 
Eo Eotvos number 
N Galileo number 
a, ß, "/ Nondimensional numbers for cavitation 
D Deformation tensor 
T Stress Tensor 

INTRODUCTION 

The importance of bubbly flows to Naval systems 
can not be underestimated. While cavitation damage 
has been a prevailing concern in the past, current 
interest is strongly motivated by the acoustic 
properties of bubbles and bubbly flows. Advanced 
detection techniques pick up noise created by 
cavitation bubbles, and bubble clouds can distort a 
signal, leading to difficulties in detection as well as 
aiding in noise reduction and shielding. Bubble 
ejection into a boundary layer can lead to a 
substantial drag reduction, and bubbles can 
contribute to surface signatures detected by remote 
sensing techniques, both by creating short waves 
when encountering the surface, as well as by adding 
to the persistence of large scale wake motion, that, 
in turn, modifies small scale waves. In order to take 
advantage of the properties of bubbly flows, as well 
as to be able to control the formation and properties 
of such flows, an understanding, both on a 
macroscopic and microscopic level is essential. 

While the generation of cavitation noise and 
cavitation erosion is basically a "one bubble" 
problem, detection and drag reduction involve the 
collective effect of a very large number of bubbles of 
a relatively small size. Consequently, the ultimate 
product of a research directed toward these 
applications is a macroscopic model, capable of 
predicting relatively low level information directly, 
based on only the statistical properties of the 
mixture. However, in order to derive either a large 
scale model from small scale information, or to 
close a system of averaged macroscopic conservation 
equation, it is necessary to have a thorough 
understanding of the microstructure of the flow. 
Bubbly flows often have large scale separation, so 
the prospects for a successful macroscopic model are 
reasonably good. However, the microstructure of 
bubbly lows is only simple when the mean bubble 
concentration is low, and when the bubbles can be 
considered to be moving in either completely 
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inviscid, or very viscous fluid. At intermediate 
Reynolds number the motion of a single bubble can 
be fairly complicated, and for higher bubble 
concentrations the bubbles will interact 
considerably. 

Detailed measurement of bubble behavior is usually 
made difficult by the small spatial scales and the 
short time scales involved, and the use of computer 
simulations to complement experimental 
observations of bubble behavior is nearly as old as 
the application of computers to large scale fluid 
dynamic simulations. Generally, a number of 
simplifications, such as the assumption of inviscid 
or Stokes flow, have been made to render the 
problem tractable. Although these simplified models 
do can capture the significant physical processes of 
the flow involved, many of the fundamental 
problems of Naval interest require the solution of 
the full Navier-Stokes equations. We have recently 
developed a numerical method that appears to be 
suited for such simulations, and two application of 
the technique are discussed in this paper. First we 
discuss the collapse of a single cavitation bubble in 
a uniform shear; then we examine the collective 
behavior of a few buoyant bubbles. 

One of the first use of computer simulations to aid 
in the understanding of bubble motion are the 
computation of a collapsing cavitation bubble by 
Plesset and Chapman's (1) and Mitchell and 
Hammitt (2). Both authors use a grid based finite 
difference method based on the MAC method of 
Harlow and Welch (3). Later authors have taken 
advantage of the fact that in some cases the liquid 
can be assumed to be inviscid and it is thus possible 
to reformulate the problem in terms of an integral 
equation over the bubble surface. See, for example, 
Blake and Gibson (4) and Chahine (5). Inviscid, 
boundary integral techniques have also been used to 
simulate the initial acceleration of buoyant bubbles 
(e.g., Baker and Moore, (6) and Yang, (7)). Since 
there is no drag, the bubbles deform continuously 
and the computations generally can only be carried 
out for a limited time. To compute the steady-state 
motion of bubbles, or the long time evolution of a 
bubble system it is necessary to include viscous 
effects. Ryskin and Leal (8) presented an extensive 
set of computations for the steady-state rise of a 
single axisymmetric bubble using a finite difference 
method and boundary fitted coordinates. By solving 
the full Navier-Stokes equations they investigated 
the effect of a finite Reynolds number for a wide 
range of parameters. This study still remains one of 
the most comprehensive numerical investigations of 
bubble motion. The computations clarified many 
open questions about bubble shapes and their wakes, 
but did not deal with unsteady aspects and 
interactions of bubbles with each other. Although 
other authors have repeated the single bubble 

computations of Leal and coworkers (see, e.g., 
Shopov et al., (9)) the full unsteady motion and 
bubble/bubble interactions has not been dealt with 
in any detail by numerical simulations. 

FORMULATION AND NUMERICAL 
APPROACH 

The Navier-Stokes equations govern the fluid 
motion both inside and outside the bubbles and a 
single vector equation can be written for the whole 
flow field. In conservative form these are 

i2L + V.püü = -Vp + (p0-p)g 
at 

Here, ü is the velocity, p is the pressure, and p and 
\i are the discontinuous density and viscosity fields, 
respectively. Fa is the surface tension force and g is 
the gravity acceleration. p0 is the average density 
and p0g is a force to prevent uniform acceleration 
of the whole flow field in the direction of gravity 
when we use periodic boundary condition in that 
direction. Notice that the surface tension force has 
been added as a delta function, only affecting the 
equations where the interface is. The detailed form of 
Fa will be discussed below. The above equations 
must be supplemented by additional conditions 
leading to an equation for the pressure. For both 
problems we assume that the ambient fluid is 
incompressible, so that 

Vu = 0 
which, when combined with the momentum 
equations leads to a non-separable elliptic equation 
for the pressure. For the buoyant bubbles we take 
the fluid inside the bubbles to be incompressible 
also, but for cavitation bubbles we specify 

P = Pv> 
where pv is the vapor pressure, inside the bubble, 
and specify pressure along one or more boundaries. 
We also have equations of state for the density and 
viscosity: 

?£ + Ü.Vp = 0 
dt 

dt 
These last two equations simply state that density 
and viscosity within each fluid remains constant 

The rise of a single buoyant bubble is governed by 
two nondimensional numbers, in addition to the 
ratios of the bubble density and viscosity to the ones 
of the outer fluid. The ratios of the material 
properties are usually small and have little influence 
on the motion. The remaining two numbers can be 
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selected in a number of ways. If we pick the density 
of the outer fluid, p, the effective diameter of the 
bubble, de, and the gravity acceleration, g, to make 
the other variables dimensionless we obtain: 

p.1 O 
The first number is sometimes called the Galileo or 
the Archimedes number (see ref. 10) and is a 
Reynolds number based on the velocity scale 

gde . The second one is usually called the Eotvos 
number. The behavior of a single, clean, buoyant 
bubble is reasonably well understood. For low Eo, 
bubbles remain spherical and their terminal velocity 
is steady, usually expressed as a rise Reynolds 
number, is a function of N only. For low AT, the 
bubbles remain spherical for all Eo, but at higher N 
the bubbles become ellipsoids as Eo increases, and 
eventually "spherical cap bubbles" at very high Eo. 
For moderate N, the ellipsoids have a steady state 
rise velocity, but at higher N, their motion is 
unsteady, following a zigzag or a helical path. At 
high N, the wake of spherical cap bubbles is usually 
turbulent. In the chemical engineering literature, N 
is usually replaced by the so-called Morton number, 

M = gp.*/p0<?3 = TJEO
3
/N , which is a constant 

for a given fluid if the gravity acceleration is 
constant. For bubbly clouds where many bubbles 
rise together, the void fraction must also be specified 
and for more complex flow fields, such as a shear 
flow, additional parameters must be specified. 

For cavitation bubbles in a shear flow, a different set 
of nondimensional numbers is more appropriate. 
The driving force is the difference between the vapor 
pressure inside the bubble and the ambient pressure, 
and in many cases the initial radius of the bubble 
and the density of the liquid are the main parameters. 
Using these to nondimensionalize other quantities, 
namely the shear rate, co, the viscosity, ß, and 
surface tension, a, we get 

a = cor0  f-;   ß = ^-  ——;   y = ——. 
"^Ap r0\pAp r0Ap 

The same variables can also be used to generate a 
time scale, the Rayleigh time: 

!AP" 
The Rayleigh time is proportional to the collapse 
time of an unbounded, spherical vapor bubble. This 
time scale will be used to nondimensionalize time 
for the cavitation results. For initially spherical 
bubbles near a wall, we also need to specify how far 
the bubble center is from the wall, d. Thus we 
define 

6* = dfr.. 

tR = roy 

To solve the Navier Stokes equations we use a fixed, 
regular, staggered grid and discretized the momentum 
equations using a conservative, second order centered 
difference scheme for the spatial variables and an 
explicit second order time integration method. The 
pressure equation, which is non-separable due to the 
difference in density between the drops and the 
ambient fluid, is solved by a Black and Red SOR 
scheme or a multigrid iteration. The novelty of the 
scheme concerns the way the boundary, or the front, 
between the drops and the ambient fluid is tracked. 
The front is represented by separate computational 
points that are moved by interpolating their velocity 
from the grid. These points are connected by 
triangular elements to form a front that is used to 
keep the density and viscosity stratification sharp 
and to calculate surface tension forces. At each time 
step information must be passed between the front 
and the stationary grid. This is done by a method 
similar to the one discussed by Unverdi and 
Tryggvason (11), that spreads the density jump to 
the grid points next to the front and generates a 
smooth density field that changes from one density 
to the other over two to three grid spaces. While this 
replaces the sharp interface by a slightly smoother 
grid interface, all numerical diffusion is eliminated 
since the grid-field is reconstructed at each step. The 
surface tension forces are computed from the 
geometry of the interface and distributed to the grid 
in the same manner as the density jump. Generally, 
curvature is very sensitive to minor irregularity in 
the interface shape, and it is difficult to achieve 
accuracy and robustness at the same time. However, 
by computing the surface tension forces direcfly by 

Fc = ami x fids 

where the integration is over the boundary of each 
element representing the front, we ensure that the 
net surface tension force is zero. This is important 
for long time simulations since even small errors 
can lead to a net force that moves the bubbles in an 
unphysical way. 

As the bubbles move and deform, it is necessary to 
add and delete points at the front and to modify the 
connectivity of the points, to keep the front 
elements of approximately equal size and as "well 
shaped" as possible. This is described in Unverdi and 
Tryggvason (11). 

The method and the code has been tested in various 
ways, such as by extensive grid refinement studies, 
comparison with other published work and analytical 
solutions for simple cases. It has also been used to 
investigate a number of other multifluid problems. 
Head-on collisions of drops have been computed by 
Nobari, Jan and Tryggvason (12), three-dimensional 
collisions by Nobari and Tryggvason (13); Unverdi 
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Figure 1. The collapse of a spherical bubble 
computed on a 163 and a 323 grid. The radius of the 
bubble is plotted versus time. Also plotted is the 
radius as predicted by the Rayleigh-Plesset equation. 

and Tryggvason (14) simulated the collision of fully 
three dimensional bubbles; Ervin (15) investigated 
the lift of deformable bubbles rising in a shear flow 
(see also Esmaeeli, Ervin, and Tryggvason (16); Jan 
and Tryggvason (17) examined the effect of 
contaminants on the rise of buoyant bubbles and 
Nobari and Tryggvason (18) followed the 
coalescence of drops of different sizes. Nas and 
Tryggvason (19) presented simulation of thermal 
migration of many two dimensional bubbles. 

RESULTS   AND   DISCUSSIONS. 

Cavitating   bubbles 

To validate our implementation of the numerical 
method described in the previous section, and to 
assess how rapidly it converges under grid 
refinement, we have computed the collapse of a 
spherical vapor bubble and compared the results with 
the predictions of the Rayleigh-Plesset equation. The 
computations are done with the fully three- 
dimensional method, but in a relatively small 
computational domain. The pressure is prescribed on 
the boundary of the computational domain (whose 
side lengths are twice the initial diameter of the 
bubble) instead of at infinity as in the theory. This 
approximation, however, results in a relatively 
small error initially, when the pressure is nearly 
uniform. Indeed, the theory predicts that the 
difference between the pressure at infinity and at the 
boundary is less than 10% at 0.9 times the 
theoretical collapse time. Figure 1 shows the radius 
of the bubble for both a 163 and a 323 grid as well 
as the theoretical results. The results show that the 

evolution is well predicted during the early stages by 
both resolutions, but eventually the loss of 
resolution leads to a strong (and rather sudden) 
deviation from the analytical prediction. The 
resolution limit is reached when the radius of 
slightly less than 40% of the initial radius for the 
coarse grid and about 20% for the finer grid. This 
translates into about two and a half grid point across 
the bubble at the point when the results diverge. We 
have also examined the method by two-dimensional 
calculations, both for a bubble collapse as well as a 
"one-dimensional" collapse of a cavity at the end of 
a tube. In all cases do we find good accuracy for 
moderate resolutions. 

Figure 2 shows the evolution for a bubble 
collapsing near a wall in a quiescent fluid. The 
bubble is shown at four times (not equispaced), and 
the view is from the side and above so the three 
dimensional aspects of the evolution are apparent. 
The computational domain is a cube whose bottom 
side is shown in the figure. The domain is resolved 
by 323 grid and the initial bubble diameter is 0.5 
times the side length of the computational domain. 
The pressure is specified at the top of the 
computational domain, but both horizontal 
boundaries are periodic. Here, a=0, ß =0.007, 
7=0.288, and 8 * = 1.5. The bubble collapses in a 
way that is now well understood. After shrinking 
nearly spherically for a while, the "roof of the 
bubble eventually "caves in" and a down ward 
moving jet forms that eventually pierces through the 
bubble. The volume of the bubble is plotted versus 
time in figure 3a where we have also plotted the 
results for a computation on a coarser and a finer 
grid as well. All the curves are in a reasonably good 
agreement initially, but at late times resolution 
effects appear. In figure 3b we plot the maximum 
velocity of the bubble surface which takes place at 
the tip of the downward moving jet, once it has 
formed. Initially, all computations are in a good 
agreement, but as the jet becomes thinner and the 
curvature at its tip higher, we eventually lose 
resolution and the jet is artificially slowed down. 
Even the finer two grids produce results that differ at 
large times. We note that the grid is uniform and 
that no attempt has been to refine around the jet. 
The results of Plesset and Chapman (1) are also 
plotted in figure 3b and those fall close to our 
medium resolution, suggesting that their jet was 
somewhat underresolved also. 

In figure 4 we show the collapse of a bubble in a 
shear flow. Here, a=0.15, ß =0.022, 7=0.288, and 

8 *=1.5. The bubble is shown at time zero at the 
top, and then at three subsequent times, as in figure 
2. This bubble also develops a jet, but now the 
shear deforms the bubble and moves the jet in the 
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Figure 2. Computations of the collapse of a 
cavitation bubble near a wall. The computations are 
done in a cube computational box resolved by a 32^ 
grid. The initial bubble diameter is 0.5 times the 
side length of the box. a=0, 0=0.007, 7=0.288, 
and 5 * = 1.5. The bubble is shown at times 0.0, 
0.94, 1.1, and 1.16. 

Figure 3a. The volume of the bubble in figure 2 
versus time. Also plotted are the results from 
calculations on both a coarse 163 grid as well as a 
finer 64^ grid, 
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Figure 3b. The maximum downward velocity of 
the bubble surface for a non-sheared bubble as 
computed by three different resolutions. 

downstream direction. How far downstream the jet 
moves during the collapse depends on the shear rate. 
We note that the jet is smaller here, as compared to 
the no-shear case, and we therefore run out of 
resolution earlier. As the shear is increased, the jet is 
displaced further back, and figure 5 shows the late 
time stage of three other calculations where the shear 
is larger than in figure 3. The jet is moved further 
backward than in figure 3, and in the bottom figure 
(highest shear) the jet has disappeared. The larger 
shear leads to an earlier appearance of underresolved 
scales and therefore to shorter time that we can 
reliably follow the evolution of the collapse. The 
results, nevertheless, show that the effect of shear is 
to change the bubble shape rather dramatically, and 
suggest that for strong shear no distinct jet will be 
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Figure 4. Computations of the collapse of a 
cavitation bubble in a shear flow near a wall. The 
bubble is shown at the initial time and three 
subsequent times. The computations are done in a 
cube computational box resolved by a 32 grid. The 
initial bubble diameter is 0.5 times the side length 
of the box. a =0.15, 0=0.022, 7=0.288, and 
8*=1.5. The bubble is shown at times 0.0, 0.94, 
1.1, and 1.16. 

Figure 5. Late time in the collapse of three 
bubbles in a shear flow near a wall. The 
computations are done in a cube computational box 
resolved by a 323 grid. The initial bubble diameter 
is 0.5 times the side length of the box. The bubbles 
are all shown at r=1.04, and 0=0.022 and y=0.288 
in all cases. a= 0.25, 0.5, and 1.0, respectively, 
from the top. 

formed. Instead, the downstream side of the bubble 
will collapse first. For even stronger shear, the effect 
of shear and collapse combine to flatten the bubble 
into a slightly asymmetric "saucer" shape. To 
investigate the effect of shear on the rate of collapse, 
we plot, in figure 6 the volume of the bubbles for 
three different shear rates and compare it with the 
zero shear case. In spite of the considerable 
differences in shape, all computations give 
comparable results, except for the very strongest 
shear rates, showing that by the time the jet forms, 
the bubble has lost most of its initial volume. 
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Figure 6. The volume of several bubbles as a 
function of time for different shear rate. The 
resolution is 32^ all cases. For all runs, ß =0.022 
and y=0.288. The nondimensional shear rate is a= 
0.15, 0.25, 0.5, 1.0, 1.58, and 3.16. Also plotted 
are the results predicted by the Rayleigh-Plesset 
equation. 
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Figure 7. The velocity field in the center plane of 
a collapsing, sheared bubble. The conditions are 
those of the bubble shown in figure 4. t = 1.12. 

We have yet to analyze the flow field for the three- 
dimensional calculations in detail (and are hindered 
in doing so because the relatively low resolution of 
the computations does not allow us to follow the 
evolution to very late times where the bubble has 
had any effects on the flow), but preliminary two- 
dimensional simulations suggest what to expect. 
For the no-shear case the collapse eventually results 
in two, counter rotating vortices but for the sheared 
bubble, only one vortex is visible at the final stage. 
The three-dimensional counterpart of the vortex pair 
for the bubble in quiescent fluid is a ring, but the 
three dimensional counter part of the single vortex 
for the sheared collapse must include trailing 
vortices extending downstream from the side of the 
bubbles. Indication of such trailing vortices are seen 
in the experimental photographs of Ceccio and 
Brennen (20)- Figure 7 shows the velocity field in 
the centerplane of our computational box for the run 
in figure 2 for one instant in time. The velocity 
vector is plotted at every other grid point and shows 
clearly the asymmetry in the velocity field. 

The above calculations were done for a linear 
velocity profile. The primary motivation for that is 
to simplify the problem as much as possible and add 
only one dimensionless number. This situation 
corresponds to a small bubble in a thick boundary 
layer, whereas in many experimental situations the 
opposite situation, where the bubble is relatively 
large compared to the boundary layer, is the case. 
For those problems the thickness of the boundary 
layer, and possibly its shape and rate of growth must 

also be accounted for in addition to the shear rate. 
We are currently examining problems with more 
complex boundary layer interactions as well as 
problems with time dependent external pressure. 

Bubble  clouds 

Bubble clouds usually consists of a large number of 
bubbles, and it is the collective behavior of the 
bubbles in the cloud, rather than the motion of 
individual bubbles, that is of interest. Standard two- 
fluid models that are used in engineering prediction 
of such flows can be derived by averaging the 
Navier-Stokes equations over a small volume 
containing several bubbles (see Drew (21) for 
example). The averaged equations can take several 
different forms, one of which is: 

da-, <ü;>   „ _       _ 
Pi —'     '    +V-a, <«,- ><Uj > + 

at 

V■ a,; < üffi>= -Va, < Pi > +(p0 -pi)ccig 

+V ■ IcCiHi < D,;> \Tnda 

Here, £>; is the deformation tensor, T the stress 
tensor, and <> denotes a suitably averaged variable, 
which in our case is most conveniently taken to be 
volume averaging. V is the elementary volume over 
which the average is taken. If 0;- is defined to be 1 
in phase i, and zero otherwise, then, for example, 
the average velocity is: 
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Figure 8 Six frames from a computation of the evolution of four bubbles in a periodic domain. Here, the void 
fraction is 0.126, density and viscosity ratios are 20, Eo=3, and #=1643. The bubbles and the velocity vectors are 
shown at t=25, 34,44, 65,94 and 103, starting in the top left corner and reading down each column. 
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Figure 9. The vorticity (top frame) and the stream 
function (bottom frame) at t=22 for the run in figure 
8. 

The volume fraction is defined as 

a(=lj^v. 
By averaging the incompressibility conditions, we 
find that alpha is governed by: 

da;    „    _ „ —L + V-<« >a, =0. 
dt 

The subscript J=1,2 denotes the different fluids and 
we have one set of equations for each fluid. This 
model is usually called the two-fluid model, as 

Figure 10. The shape of the bubbles and the 
velocity field for a simulation with 16 bubbles at 
time =10. The grid used here is 3862 and all 
parameters are the same as in figure 8 

opposed to models that treat the fluids as one 
mixture. The momentum equation retain most 
aspects of the original Navier Stokes equations, with 
the addition of two new terms. These terms are 
generally unknown, and a closure relation must be 
postulated based on experimental data, simplified 
analysis or pure speculations, just as for the 
Reynolds equations for turbulent flow. For 
multifluid flow these terms are of two form. The 
first is due to velocity fluctuations, exactly 
analogous to the Reynolds stress term for turbulent 
flow, except that this term is usually non zero even 
at very low Reynolds numbers since the fluctuations 
are caused by the bubble motion (in addition to 
unsteady vorticity at higher Reynolds numbers). For 
this reason it is sometimes referred to as pseudo 
Reynolds stress, as opposed to true Reynolds 
stresses that are due to the fluid vorticity and can, of 
course, also be present in high Reynolds number 
bubbly flows. The second additional term is the 
averaged momentum exchange between the fluids or 
the average force that one fluid exerts on the other. 
This force can be further decomposed into several 
components, such as steady drag, added mass effect, 
lift, Basset force, etc. For homogeneous bubbly 
flow that is in a statistically steady state, this force 
is exactly balanced by the buoyancy force, and the 
average süp velocity is me only information needed 
to construct a drag coefficient for the mixture. 

To help gain the insight needed to construct realistic 
closure models, we are in the process of conducting 
relatively large scale simulations of many bubble 
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Figure 11. The vertical coordinate of the centroid 
of the bubbles in figure 8 versus time. 

systems. In the computations presented here, we use 
a doubly periodic domain, so that the bubbles that 
exit the domain on one side, reappear on the other 
side. Such cell models have been proposed by 
several authors, see for example Brennen and Happel 
(22) for low Reynolds number flows and Wallis (23) 
for inviscid flows. Although there is no fundamental 
restriction to only one bubble per cell, most 
previous studies have had to make this assumption 
in order to make the problem tractable. Here, we do 
not have to do so. 

We have conducted a number of two-dimensional 
simulations in doubly periodic domains with a 
relatively high void fraction where the bubbles 
interact strongly. Two-dimensions allow us to use 
considerably higher resolution than what is practical 
in three-dimensions thus allowing us to include 
many bubbles. Nevertheless, even in two- 
dimensions, resolution requirement increase rapidly 
with Reynolds number. Most of our early work has 
therefore been limited to very low Reynolds 
numbers where the resolution per bubble is modest. 
This has allowed us to do a number of runs for 16 to 
32 bubbles where we have followed the evolution of 
the flow until the behavior has become completely 
independent of the initial conditions. We have also 
done a few three-dimensional computations with 2 
to 4 bubbles to verify the trend seen in the two 
dimensional runs. 

At higher Reynolds numbers we have so far been 
limited to a smaller number of bubbles and fewer 
runs. Figure 8 shows several frames from a 
calculation using only four bubbles. Here, M=10"5 

and Eo=3, so N=1643, and a single three- 
dimensional bubble in an unbounded domain would 
rise with a terminal Reynolds number of about 50. 
Both the bubble surface as well as the velocity 
vectors are show. The grid is 1942 meshes, but the 
velocity is shown only at every 6th gridpoint. The 

bubbles are initially placed on a regular grid, but 
with strong perturbations. Initially, the bubbles rise 
vertically. For low Reynolds numbers the first 
instability is generally where the bubbles in each 
column catch up with each other. Here, this is not 
the case, and the bubble motion becomes irregular 
without such pairing taking place. The subsequent 
figures are sufficiently far apart that the flow field 
has changed greatly from one frame to the next one. 
All frames are characterized by very strong velocity 
fluctuations, both in the horizontal and the vertical 
direction. The velocity field contains both strong 
vortices as well as prominent internal stagnation 
points. Although the bubbles collide occasionally, 
and the fifth frame has been selected to show one 
such event, this is actually very rare. Indeed, a 
careful analysis of the results for this run showed 
only one other collisions. Considering the relatively 
long time computed, and the high void fraction, one 
must conclude that this is indeed a rare occurrence. 
For a slightly more informative view of the flow 
field, the vorticity and the stream function at time 
22 is plotted in figure 9. This is a relatively early 
time, but the shed vorticity is clearly seen. We are 
in the process of computing the interaction of a 
larger number of bubbles for these parameters, and 
in figure 9 we show the early stage of a 16 bubble 
calculation on a 3862 grid. The bubbles have 
deformed strongly and considerable interaction has 
already taken place. We have also computed the 
evolution of just a single bubble in a "unit cell" for 
these parameters, to provide a comparison with the 
four bubble run (see Esmaeeli, Ervin, and 
Tryggvason (16)). The bubble is predicted to wobble 
as it rises and to have an oscillatory rise velocity. 

Figure 11 shows the centroid of the four bubbles in 
figure 8 as a fuction of time that originally occupy 
the period in which the computations are done. The 
units on the vertical axis are in terms of the "unit 
cell," in which the computational box is of 
dimension 2 by 2. During the time computed, the 
centroid has risen about 15 units, or, since the 
bubble diameter is 0.4, the bubbles have risen on 
the average about 37 bubble diameters. Although the 
curve is not completely straight due to fluctuations 
in the average rise velocity, it has a well defined 
average slope which gives a rise Reynolds number 
of about 21, except for the first 10 time units where 
the slope is steeper. During this initial time the 
bubbles are still rising vertically, without any 
significant vertical velocity fluctuations. We note 
that this is significantly lower than a single bubble 
in a periodic cell with the same void fraction would 
rise. Such a bubble has a rise Reynolds number of 
about 32, which is still lower than for a single three 
dimensional bubble in an unbounded domain. To 
show the fluctuations better, we plot in figure 12 
the path of each bubble that started out in the period 
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Figure 12. The path of the bubbles in the computations in figure 8. The boundaries of the periodic domain are 
denoted by thin horizontal and vertical lines. The thick line is the path of the centeroid. Notice that the vertical 
scale is greatly compressed as compared with the horizontal one. 

that we simulate. The path of the centroid is also 
plotted (thick dashed line). While the centroid 
shows relatively little horizontal fluctuations (as one 
would expect, with larger number of bubbles the 
fluctuations are even less), the individual bubbles 
undergo large fluctuations and are dispersed both 
horizontally as well as vertically. 

The velocity of the centroid of the bubbles in figure 
8, as well as from a computation with 9 bubbles 
that has only been run for about half the time of the 
4 bubble one, is plotted in figure 13. Notice that the 
vertical scale is greatly compressed as compared to 
the horizontal one. While the average velocities are 
relatively close, and both lines show relatively 
strong fluctuations, the fluctuations are larger for the 
run with the fewer bubbles. The fact that the mean 
velocities are close for both runs, suggest that freely 
evolving bubbles in a bubbly cloud at these 
Reynolds numbers rise slower than bubbles that are 
constrained to remain in a regular array (one bubble 
per unit cell). This contrast with our results for low 
Reynolds numbers, where clustering of bubbles 
generally lead to larger rise velocities for a freely 
evolving array. Here, we see less clustering and we 
suspect that the large velocity fluctuations in the 
liquid are responsible for this reduction. Figure 14 
shows the vertical and horizontal Reynolds stresses 
for both the 4 and the 9 bubble run. Initially, the 
vertical velocity fluctuations, <vv>, rise rapidly as 
the bubbles are accelerated upward, but as the 
horizontal fluctuations, <uu>, increase, the vertical 
fluctuations decrease significantly although they 
remain large compared to the mean. During the 

second half of the run, where the evolution has 
approached a statistically steady state, the vertical 
and the horizontal fluctuations are of a comparable 
magnitude. Again, this contrast with lower 
Reynolds number results where the horizontal 
fluctuations are much smaller. In both plots the 
fluctuations are larger for the smaller number of 
bubbles, but the average values are comparable. The 
average of the cross term, <uv>, should be zero and 
this is supported by our results. 

CONCLUSIONS 

Two examples of the use of direct numerical 
simulations to investigate the dynamics of bubbly 
flows are discussed. Although the results are 
somewhat preliminary, both examples demonstrated 
well the power of the approach. 

The simulations of the cavitating bubble showed 
how shear can alter the collapse mode and in some 
cases eliminate the reentrant jet seen for stationary 
bubbles. These results were obtained on an uniform 
three-dimensional grid and generally we found that 
we ran out of resolution at the end of the 
computations. Three dimensional computations are 
generally very demanding on computer resources and 
it is important to use the available resolution in 
places where the solution is changing rapidly. We 
have implemented non-uniform grids for an 
axisymmetric version of our method and the addition 
of that capability to our three-dimensional code 
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Figure 13. The average rise velocity of the 
bubbles versus time from both the 4 bubble run in 
figure 8 (solid line) and another run with 9 bubbles 
(dashed line) 

should allow us to better resolve the late stages of 
the collapse. 

The bubble cloud simulations suggest that for the 
parameter values simulated here there is considerable 
generation of unsteady vorticity by the bubble 
motion and that this vorticity induces large 
fluctuations on the bubble motion. Although long 
time simulations of many bubbles are necessary to 
obtain a reasonable statistical description of theflow, 
the results here show that such simulations can be 
done. The primary limitation is of course that these 
simulations are only two dimensional. We have 
done a number of fully three-dimensional 
simulations of two bubbles, and the possibility to 
do a many bubble three-dimensional simulation 
appears within reach. However, as with many new 
tools, considerable practice is need before the tool 
can be used effectively and the two-dimensional 
simulations provide us with the opportunity to 
explore what direct simulations can do for 
multiphase flow research, and therefore be in better 
position to take advance of three-dimensional 
results, which are likely to expensive and time 
consuming. 

ACKNOWLEDGMENT 

This work is supported by the Office of Naval 
Research under contracts N00014-91-J-1084 and 
N00014-91-J-1063 with Dr. E.P. Rood as technical 
monitor, and NSF grant CTS-913214. Some of the 
computations were done on the computers at the San 
Diego Supercomputer Center which is sponsored by 
the NSF. 

Figure 14. The Reynolds stresses for the 4 bubble 
run in figure 8 (solid line) and another run with 9 
bubbles (dashed line). Top frame, vertical 
fluctuations <vv>. Bottom frame: horizontal 
fluctuations <uu>. 
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Experimental Study of a Bubbly, 
Turbulent, Free Shear Layer 

P. Rightley, J. Lasheras 
(University of California-San Diego, USA) 

ABSTRACT 

Bubble-turbulence interaction in a two di- 
mensional free shear layer is analyzed experimen- 
tally, investigating the influence of the large coherent 
structures present in the mixing region. A homoge- 
neous, polydispersed distribution of small gas bub- 
bles is added to one side of a two stream horizontal 
water tunnel. The streams are allowed to mix at the 
trailing edge of a splitter plate. The bubbles, present 
in a low void fraction, have small Weber and Stokes 
numbers and remain spherical throughout the flow. 
Time and conditionally-averaged measurements of 
the carrier phase velocity field, bubble size volume 
pdf and concentration of the dispersed phase are 
made using optical techniques. It is shown that the 
initial evolution of the bubbly, free shear layer is 
characterized by large inhomogeneities in both the 
bubble size volume pdf and the void fraction. 

NOMENCLATURE 

a bubble radius 
D bubble diameter 
g gravity vector " 
I light intensity 
I0 light intensity w/o bubbles present 
L propagation length through test section 
u carrier phase velocity 
V bubble velocity 
x streamwise spatial coordinate 
y longitudinal spatial coordinate 
z spanwise spatial coordinate 
ä z-averaged void fraction 
v carrier phase kinematic viscosity 

/?F carrier phase density 
pp dispersed phase density 

INTRODUCTION 

The characterization of particle-turbulence 
interactions is of fundamental importance to a wide 
variety of applications. More specifically, under- 
standing bubble-fluid interaction in turbulent flows 
is a keystone in the development of models related 
to naval, chemical and nuclear reactor safety appli- 
cations. Due to the highly complex nature of the 
interface between the phases, transfer laws for mass, 
momentum and energy are difficult to define, leading 
to the use of empirically based closure assumptions 
that may be difficult to justify. Although models 
based on such assumptions may be successful for spe- 
cific applications, they often do not allow for a full 
understanding of the physical mechanisms involved. 
Thus, the complete experimental characterization of 
the evolution of the two phases in a prototypical, 
turbulent, bubbly flow is critical to the general for- 
mulation of bubbly flow models. Toward this goal, 
an experimental study is conducted of a bubbly, tur- 
bulent, free shear layer. 

Studies of turbulent, two-dimensional, free 
shear flows over the past two decades have stressed 
the importance of large scale, spanwise, coherent, 
vortical structures in the evolution of the layer [1,2]. 
Such a flow is both well understood and possesses the 
prototypical characteristics of an anisotropic, non- 
homogeneous turbulent flow. The interaction of the 
bubbles with such an underlying flow (especially the 
large scale structures) forms the basis of this study. 

A significant amount of theoretical and nu- 
merical work has been done regarding the dispersion 
of buoyant and heavy particles in free shear layers 
[3,4,5]. This work assumed no modification of the 
base fiowfield due to the presence of the dispersed 
phase. One result of this one-way coupling work 
is that, depending on the bubble's Stokes number 
and on the ratios between the viscous relaxation and 
buoyancy times to the bubble entrainment time, the 
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Figure 1: Experimental Facility 

interaction between the bubbles and the large eddies 
may result in bubble accumulation near the center of 
the spanwise vortices [4,5]. Thus, the presence of the 
large scale structures will not only affect the disper- 
sion of bubbles throughout the shear layer, but due 
to the possible creation of large local void fractions 
the underlying flowfield itself may be influenced. De- 
tailed experimental work similar to that presented in 
this paper, regarding the one-way coupling of water 
droplets in air, has also been carried out [6,7]. 

It is well known that in free shear layers, 
after the three dimensional transition, the energy 
of the small scales increases appreciably at what is 
called the mixing transition [8]. Modification of the 
turbulent energy spectra of the small scales follow- 
ing this transition may also occur [9,10] through the 
dispersed phase interacting with the small scales of 
the flow. Previous research [9] has noted an effect of 
the dispersed phase on the slope of the turbulence 
spectrum at high wavenumbers, though the bubble 
size in that case was on the order of the Taylor mi- 
croscale. A numerical study [10] has noted an effect 
of small, heavy particles present in a very low void 
fraction on the turbulence spectra. 

In this study, care was taken to create flow 
conditions for which it is possible to determine the 
contributions of the various terms in the momentum 
equation of the bubbles and so that modern opti- 
cal flow diagnostic techniques can be applied. For 
the flow conditions described in this paper, turbu- 
lence modification in the region of study is expected 
to be negligible. The results presented here form a 
preliminary part of a longer study still in progress. 

The intent of this project is to provide a detailed ex- 
perimental investigation of the evolution of both the 
carrier and dispersed phases in a free shear layer. 

EXPERIMENTAL FACILITY AND 
MEASUREMENTS 

The experimental facility consists of the 
horizontally oriented, two-stream water channel de- 
picted in Figure 1. Each of the streams is indepen- 
dently supplied and controllable. Care is taken to 
match the stream's temperatures so that index of re- 
fraction differences will not exist within the mixing 
region, since these would disrupt optical flow diag- 
nostics. Free surfaces exist at the channel's supply 
points and along the test section. The water ex- 
iting the test section is pumped to holding tanks 
where the bubbles are allowed to settle out of the 
system before the water is recirculated. The forc- 
ing mechanism consists of a modified audio speaker 
and a bellows driven by a function generator. This 
arrangement provides a small pressure perturbation 
to the flow used to enhance the growth rate of the 
most unstable wavelength in the shear layer. Figure 
2 describes the coordinate axes used in this paper. 

The bubbles were injected into the lower, 
faster moving side well upstream of the test section, 
though they can be added to either side. The bub- 
bles are created using the "novel" injection scheme 
depicted in Figure 3. Water, saturated with CO2 
at 90 psi by a water carbonator, is expanded as a 
jet through small holes drilled into a grid of brass 
tubes. The resulting negative pressure step that the 
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Figure 2: Coordinate Axes 

carbonated water experiences causes homogeneous 
nucleation to occur in the jet. Due to the rapid mix- 
ing with non-carbonated water, the bubble growth 
is limited, resulting in a small polydispersed bubble 
size distribution. Bubble production is not uniform 
in the vertical direction due to varying pressure steps 
along the small brass tubing, however, the mixing 
induced by the jets homogenizes the bubble sizes 
throughout the stream. Any bubbles produced that 
are too large rise rapidly and are removed by the 
free surface just downstream of the injection loca- 
tion. Accumulations of bubbles on the underside of 
the splitter plate in the slow moving flow prior to 
the contraction are removed by suction. 

Characterization of the flow was made us- 
ing several techniques, including flow visualization, 
laser attenuation, laser diffraction particle sizing and 
laser Doppler velocimetry (LDV). Both instanta- 
neous and time averaged flow visualization was per- 
formed by creating a light sheet at the midplane 
of the experimental facility and observing the light 
scattered from either fluorescein dye (in the case 
without bubbles) or the dispersed phase itself. The 
Malvern 2600 HSD was used for particle sizing mea- 
surements. In this system, a laser beam propagates 
across the spanwise extent of the facility. The low 
angle scattering of the beam can be analyzed in the 
context of Franhaufer diffraction theory to provide 
the volume-size pdf of the dispersed phase within 
the laser beam. The nature of this system limits it 
to time and spanwise-averaged results. 

The laser attenuation measurements also 
use a laser beam propagating in the spanwise di- 

Figure 3: Bubble Generation 

rection. A photodiode measures the intensity of the 
laser beam after passing through the flowfield. For 
dilute systems of spherical particles, it can be shown 
from Mie theory [10] that the attenuation of the 
beam intensity across the test section, I/Jo, will be 
given by 

-ln(J//o) = 3Läj[~ffi^ (1) 

Even though such attenuation measurements include 
the effects of both size and concentration, such mea- 
surements can be used to study the qualitative spa- 
tial and temporal evolution of the bubble void frac- 
tion [10]. Due to the quick response of the photodi- 
ode, instantaneous, time and conditionally-averaged 
measurements may be made with this device. It 
should be noted that the attenuation is averaged 
across the entire spanwise extent of the flow and 
therefore three dimensional effects can contribute to 
some homogenization of the data. 

A Dantec LDV system was used with two 
burst spectrum analyzers to provide two components 
of velocity simultaneously (streamwise and longitu- 
dinal). The LDV was operated in 180° backscat- 
ter mode with the transmission and reception oc- 
curring through the side wall of the test section. 
Titanium dioxide particles were used to seed the 
flow. These measurements provide instantaneous, 
time and conditionally-averaged velocity values at a 
single point in the flow. The velocities presented in 
this paper were measured in the absence of the dis- 
persed phase, however, the bubble generation grid 
was operated using tap water in order to duplicate 
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the lower stream's initial conditions. 

EXPERIMENTAL CONDITIONS 

For the results presented here, the lower, 
bubble-laden stream was moving at 16.5 cm/s while 
the upper stream moved at 4.0 cm/s, with freestream 
rms values of 6% and 4%, respectively. This pro- 
vided a velocity ratio of 4.1 and an average convec- 
tive velocity of 10.25 cm/s. The Reynolds number 
based on integral momentum thickness grew from 
183 at x = 2 cm to 546 at x = 12 cm the farthest 
downstream location studied here. The flow per- 
turbation introduced by the forcing system was a 
single 2.0 Hz sinusoid. This, combined with the av- 
erage convective velocity, gives a wavelength of the 
Kelvin-Helmholtz billows of approximately 5 cm. 

The time-averaged bubble volume-size pdf 
in the freestream just below the tip of the split- 
ter plate is shown in Figure 4. It can be seen to 
be nearly log-normal with a Sauter mean diameter 
of approximately 50 pm. A vertical traverse of the 
bubble-laden freestream below the tip of the split- 
ter plate shows the bubble volume-size pdf and the 
concentration of bubbles rises slightly when moving 
vertically due to gravitational settling. Using Equa- 
tion (1) with the volume-size pdf of Figure 4 and a 
time-averaged laser attenuation measurement at the 
same point give a freestream void fraction of approx- 
imately 2 x 10"5. Though this is a small value for 
the void fraction, it should be noted that, even at 
this value, 50 percent of the laser beam propagat- 
ing through the freestream was attenuated.   Also, 

bubble-bubble interaction (agglomeration, etc.) can 
be ignored at this freestream void fraction except 
in regions of locally high void fraction as may ex- 
ist near the cores of the spanwise vortical structures 
when there is sufficient shear. 

The momentum equation for a small, spher- 
ical particle moving in a nonuniform fluid flow is 
given by [12] 

-ira3pp-j^    =    Qiravpp (u — V) 
dt 

4    3    -Du 

(u - V) dr 

(2) 

The five terms on the right-hand side of (2) rep- 
resent the forces acting on the particle which re- 
sult from Stokes drag, buoyancy, the fluid acceler- 
ation, the Basset history, and the effect of the added 
mass. Equating the buoyancy and drag forces gives 
a method of computing the bubble terminal velocity 
in a still fluid. From Figure 3, we can estimate our 
bubble sizes as ranging from 20 pm to 200 /xm in di- 
ameter, which gives approximate terminal rise veloc- 
ities from 0.01 cm/s to 10 cm/s. Likewise, equating 
the fluid acceleration and drag terms in Equation 
(2) can give an estimate for the "entrainment ve- 
locity." Estimating the vorticity distribution in the 
core of large eddies in the free shear layer as a mod- 
ified Rankine vortex [3] gives approximate entrain- 
ment velocities ranging from 0.001 cm/s to 1 cm/s 
toward the center of the vortex. The Stokes and We- 
ber numbers for all bubbles were less than 0.01 and 
0.05, respectively. 

The small Weber numbers associated with 
the bubbles strongly suggests that they re- 
main spherical throughout the flow, making them 
amenable to optical measurement techniques. The 
two streams present flat mean velocity profiles in 
the freestream with the bubbles being relatively ho- 
mogeneously dispersed in the faster, bottom stream. 
Ratios of bubble rise velocities to the average con- 
vective velocity range approximately from 0.001 to 
1.0 with the ratios for the entrainment velocity being 
an order of magnitude smaller. 

RESULTS 

From the instantaneous flow visualization 
presented in Figure 5 one can conclude that bubble 
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Figure 5: Instantaneous Bubble Dispersion Field 

dispersion in the initial, developing region of a free 
shear layer with small amplitude forcing exhibits a 
high degree of inhomogeneity and coherency in the 
concentration field. The flow is from left to right 
and lighting is from above, illuminating the central 
5 cm of the span. The end of the splitter plate can be 
seen on the left hand side of the image which extends 
to a distance of 16 cm downstream (approximately 
3 wavelengths). The bubble dispersion in the ini- 
tial, developing region of the shear layer is seen to 
be dominated by groups of bubbles rising into the 
mixing region, separated by tongues of non-bubbly 
fluid. These structures are qualitatively very similar 
to those seen by Winant and Browand [2] for ho- 
mogeneous fluids with fluorescein dye in the lower 
layer. Some homogenization of the apparent con- 
centration field is observed to begin to occur in the 
farthest downstream quarter of Figure 5. The onset 
of this homogenization seems to coincide with an in- 
crease in the number of small scales seen in similar 
visualizations without the bubbles present. 

Some global characteristics of the flow and 
dispersion fields are presented in Figures 6 and 7. 
The nonzero slope of the mean attenuation profiles 
in the freestream are attributable to gravitational 
settling. The shape of the velocity and attenuation 
profiles are somewhat dissimilar, though the attenu- 
ation profiles also include the effect of the change 
of the bubble volume-size pdf through the layer. 
Due to the nonzero slope of the mean attenuation 
profiles in the freestream, it is not straightforward 
to define integral thicknesses. Therefore, the lon- 
gitudinal position where the profile reached 5 per- 

Figure 6: Normalized Mean Attenuation Profiles 
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Figure 8: Normalized Attenuation RMS Profiles 

cent of the freestream (y = -40 mm) value was used 
as a measure of the growth rate of the mixing re- 
gion. In this study, the concentration field tended 
to have a growth rate identical to that of the carrier 
phase for only approximately one wavelength down- 
stream. Farther downstream than this, the momen- 
tum growth rate into the slower stream slows down 
as has been seen before (especially for forced free 
shear layers), while the attenuation field continues 
to grow nearly linearly. 

The normalized rms laser attenuation pro- 
vides insight into the spanwise-averaged evolu- 
tion of the particle concentration field (Figure 8). 
These profiles have been normalized with the mean 
freestream laser attenuation values for each down- 
stream location. The magnitude of the peak of 
the rms erodes monotonically with downstream dis- 
tance, however, two distinct regions can be seen. 
The first region maintains relatively sharp peaks of 
high rms values which decrease only slightly down- 
stream. The second region is revealed through a 
sudden decrease in the maximum rms value. The 
region maintaining high peak values of the rms is 
representative of a high degree of coherence in the 
concentration field, both streamwise and spanwise. 
The onset of the second region of lower rms peak 
values seems to begin somewhat before the transi- 
tion to smaller scales in the base flow is observed. 
This region suggests a loss of coherence within the 
concentration field in either the streamwise or span- 
wise directions, or both. Indeed, this homogeniza- 
tion is sufficient at x = 120 mm to keep the peak 
rms value at nearly its freestream value. The prefer- 

Ü 
> 

s 

:  -x = 20 
- -x = 40 
:  -x = 60 
r -x = 80 
:  -x = 100 
~-x = 120 

1 

lil 

| / 
\\ \ " 

I M 

\ 
\ '<\v \ 

■^ \ i 
i 
i 
1 l-^> 

, , 
''rttiag.waw.SBni i umi 

4 

^ 3.5 

1 3 

g   25 

f  * 
15 

1 

0.5 

°-60       -40       -20        0 20        40        60 

Longitudinal Position, y (mm) 

Figure 9: Velocity RMS Profiles 

ential growth of the bubble dispersion layer into the 
slow speed stream (which is a characteristic of the 
homogeneous free shear layer) can be seen from the 
motion of the peak rms values into the upper layer. 

It is interesting to compare the rms profiles 
for the velocity field without the bubbles present to 
those for the concentration field (Figure 9). With 
the exception of the first profile, the peak rms val- 
ues for the velocity on the centerline of the test sec- 
tion remain essentially constant with downstream 
distance (within the range studied). This suggests 
little loss of streamwise coherence downstream which 
is in general agreement with the body of data [1,2] 
suggesting the importance of the large, persistent, 
coherent structures in the development of the free 
shear layer. It should be noted that a loss of span- 
wise coherence would not necessarily be noticed in 
these'profiles, and so the comparison with the con- 
centration profiles cannot be complete. 

To examine the structure of the developing 
bubble dispersion region along with the carrier phase 
velocity field, conditional averages are presented in 
Figures 10 and 11. These phase-averaged measure- 
ments were obtained by recording the forcing func- 
tion simultaneously with the laser attenuation sig- 
nal. The attenuation signal was then discretized 
into bins based on the phase of the forcing function, 
resulting in an effective ensemble average over ap- 
proximately 120 Kelvin-Helmholtz structures. Simi- 
lar averaging was performed on the LDV data using 
a triggering output of the function generator after 
subtracting the average convective velocity. Each 
part of Figures 10 and 11 depicts one entire cycle of 
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Figure 10: Phase-Averaged Laser Attenuation Surfaces 

the forcing function at a given downstream location. 
The phases of the concentration and velocity fields 
for each downstream location are aligned. An im- 
portant characteristic to note is the fact that the re- 
gions of bubbles rising into the upper layer do so near 
the cores of the spanwise vortical structures. This is 
qualitatively dissimilar to the behavior of heavy par- 
ticles in such a regime [6,7] which rise in "streaks" 
through the braid region and over the cores, how- 
ever, this dissimilarity is to be expected. Analytical 
works [3,4,5] point out that the term representing 
the fluid acceleration in equation (2) changes sign for 
buoyant particles and always points toward the core 
of vortical structures.   Therefore, this entrainment 

velocity translates the bubbles entering the disper- 
sion region toward the cores of the coherent struc- 
tures. This same analytical work also describes the 
process by which bubbles escape the free shear layer, 
primarily through the regions near the free stagna- 
tion points. This provides one of the mechanisms 
for streamwise homogenization of the concentration 
field. This is manifested through the smearing of 
the phase-averaged attenuation field which can be 
seen occurring in Figure 10 as the flow progresses 
downstream. By x = 120 mm, the attenuation field 
maintains very little streamwise coherence, though 
the velocity field does not seem to experience this 
smearing to the same degree.   It should be noted 
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Figure 11: Phase-Averaged Velocity Fields 

again that loss of spanwise coherence will also in- 
fluence these comparisons, though this is not be- 
lieved to be the predominant factor. These results 
are clearly consistent with the rms profiles presented 
earlier. 

Time and spanwise averaged 
bubble volume-size pdf's for several downstream lo- 
cations are presented in Figure 12. The flow condi- 
tions for this data are slightly different from those 
presented previously, though not significantly. It can 
be seen that, as the mixing region is traversed ver- 
tically at each downstream location, the pdf's tend 
to larger sizes. This is intuitively obvious due to the 
importance of gravity for these conditions.   How- 

ever, the pdf's do not show a simple transition from 
small to large sizes. Instead, they consistently be- 
come noticeably bimodal within the mixing region. 
The transition to larger sizes appears to occur as 
the growth of a larger mean, nearly log-normal pdf 
and the decay of the peak of the original freestream 
log-normal pdf. A single log-normal pdf with a high 
mean value would presumably exist just at the upper 
edge of the mixing layer, however, at such a vertical 
location, there were not enough bubbles to make a 
measurement. These bimodal pdf's result from the 
passage of the large scale structures within the mix- 
ing layer. If the core regions of these structures pos- 
sess bubbles distributed similarly to the freestream 
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Figure 12: Time-Averaged Bubble Volume-Size pdf's 

and the braid region is populated with larger bub- 
bles escaping the layer through the braid regions be- 
tween the cores, a time average would likely result 
in such a bimodal pdf. It is important to note the 
persistence of this feature. This bimodality can still 
be seen, albeit with a reduced depth of modulation, 
5 wavelengths downstream, even though the coher- 
ence of the attenuation field was lost after only 2 
wavelengths. 

CONCLUSIONS 

Qualitative experimental results have been 
presented characterizing the evolution of the dis- 

persed phase in a bubbly free shear layer. The ini- 
tial, developing region of the shear layer is seen to be 
characterized by inhomogeneities in both the bub- 
ble volume-size pdf's and the void fraction, which 
are associated with the large scale, coherent struc- 
tures present in the mixing layer. Bubbles escap- 
ing through the shear layer at the regions near the 
free stagnation points associated with the large scale 
structures and three dimensionalization are seen to 
increase the homogenization of the void fraction as 
the flow evolves. However, the bimodal nature of 
the bubble volume-size pdf's remains apparent 5 
wavelengths downstream. Further work is directed 
towards a more complete characterization of both 
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phases including the effect of a polydispersed distri- 
bution of small bubbles on the carrier phase itself. 
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Effects of Regular Waves on the Body 
Submerged in a Stratified Fluid 

E. Ermanyuk, I. Sturova 
(Lavrentyev Institute of Hydrodynamics, Russia) 

ABSTRACT 
It is a common practice in marine hydrody- 

namics to assume that the density of fluid is con- 

stant in the entire domain. Indeed, the density 

of sea water does vary with the depth. When a 

body is moving in this stratified fluid, the varia- 

tion of the density affects on the hydrodynamic 

loads. This is associated with the power required 

to generate the internal waves. In stratified fluid 

the incident waves may be both the surface and 

internal waves. 

The present paper will describe the experi- 

mental measurements of hydrodynamic loads due 
to internal waves on a restrained sphere located 

either under the pycnocline or inside of it ; and 

the theoretical analysis of a 2-D linear problem on 

radiation and scattering of the surface and inter- 

nal waves by a horizontal cylinder placed under 

a pycnocline. Contrary to the theoretical investi- 

gations, the force action on a 3-D as opposed to 

2-D body is simpler to determine experimentally. 

NOMENCLATURE 

x 
y 
t 

p\ 
pi 
e = 

9 
9 = 
p{y) 

Pi — Pi 
Pi 

2+t 

horizontal axis 
vertical axis 
time 
density of upper layer 
density of lower layer 
relative density variation 
gravity acceleration 
modified gravity acceleration 
fluid density distribution 
in undisturbed state 
oncoming wave amplitude 

u oncoming wave frequency 
KC Keulegan-Carpenter number 
Re Reynolds number 
N Brunt-Vaisala frequency 
U velocity of a body 

INTRODUCTION 

The dynamic interaction of floating bodies 

with stratified fluid was first recognized as the 

phenomenon of dead water. This phenomenon 

was studied by Ekman [1] in the series of classi- 

cal experiments demonstrating the role of inter- 

nal Froude number (see, also Nikitina [2]). In the 

case of the linearly stratified fluid the drag on the 

moving bodies has been experimentally studied 

by Mason [3], Lofquist and Purtell [4] for a sphere 

and by Castro and Snyder [5] for 2-D obstacles. 

It was shown that the flow over a body is general- 

ly affected by stratification, the drag depends on 

Reynolds and Froude numbers and cannot be eas- 

ily decomposed in wave and viscous components 

using a simple (say, Froude's) hypothesis. The 

generation of internal waves by moving sources 

has been extensively studied, both theoretical- 

ly and experimentally; for the review see Stepa- 

nyants et al. [6], Voisin [7]. Among the less 

known dynamic effects, it is pertinent to note the 

possibility of ricochet for a body moving at an an- 

gle to two-fluid interface that was experimentally 

shown by Chervyakov [8]: 

An extensive theoretical investigation of the 

wave resistance for floating and submerged bod- 

ies in the two-layer fluid has been performed at 

the St.  Petersburg Marine Technical University 
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(former Leningrad Shipbuilding Institute) (see, 

for example, Vasilieva [9]). 

The problem of the dynamic action of inci- 

dent internal waves on free or restrained bod- 

ies has been less studied compared to the above- 

mentioned problems. The attention to this prob- 

lem was drawn in the connection with extensive 

development of underwater vehicles, submersibles 

and offshore structures. Some practical exam- 

ples concerning submerged bodies are described 

in [10]. C.O'D.Icelin [see 11] suggested the con- 

sideration of the Thresher accident in the context 

of internal waves. The action of internal waves 

on the moored drillship has been studied in the 

full-size experiments by Osborne et al. [12]. 

The goal of this paper is to give a more de- 

tailed description of the free/restrained body in- 

teraction with stratified sea. To do this, the com- 

plex approach is adopted. The typical environ- 

mental features of internal waves and definition 

of parameters is given in Section 2. The experi- 

mental part (Section 3) treats the internal waves 

loading on a fixed submerged sphere both in ho- 

mogeneous fluid and in the mixed layer separat- 

ing the fluids of different densities. It should be 

noted that the special case of a body placed in 

the mixed layer presents considerable difficulties 
for a correct theoretical analysis, being, however, 
of immediate practical interest as the most stable 
position for a free submerged body. 

The theoretical analysis (Section 4) is car- 

ried out in the linear treatment assuming that 

the fluid is ideal and incompressible. The sharp 

and smooth pycnoclines are simulated by two- 

layer fluid with homogeneous layers and three- 

layer fluid, involving the linearly stratified up- 

per and middle layers and the homogeneous lower 

layer, respectively. In a two-layer fluid, the up- 

per layer can be both infinite and bounded by a 

rigid lid or free surface. In a three-layer fluid, the 

upper layer is bounded by a rigid lid. In all the 

cases concerned, a submerged body is fully locat- 

ed in the lower layer of infinite depth. The fluid 

motion in this layer is assumed to be potential. 

2. CHARACTERISTICS OF INTERNAL 

WAVES. DEFINITION OF DIMENSION- 
LESS PARAMETERS 

Internal waves are commonly observed every- 

where in oceans (see, for example, Miropolskii 

[13]. The existence of internal waves is condi- 

tioned by the vertical density gradient due to 

temperature and/or salinity variation with depth. 

The total density difference across the ocean 

depth ranges up to 5 %. A typical density dis- 

tribution is characterized by the presence of a 

quasi-homogeneous 20-100 m thick upper layer, 

followed by the sharp season thermocline with 

increasing density. Below the level of 50-200 m 

the density variation with depth becomes less 

pronounced. This is the main thermocline lay- 

er where the density gradually increases to the 

depth about 1 km. The lower ocean is practical- 

ly homogeneous. 

The amplitudes of internal waves in the main 

thermocline may reach 100 m with the corre- 

sponding wavelengths of tens kilometers. Howev- 

er, from the dynamic standpoint, the responses 

of underwater vehicles, submersibles and offshore 

structures are most pronounced under the action 

of short-period internal waves in the season ther- 
mocline. 

Normally, the density variation e = /»2/P1 — 1 
in the season thermocline is of order 0.01, where 
pi and pi are the densities of lower and upper 

fluid layers respectively. The characteristic pe- 

riod of internal waves in the season thermocline 

ranges from 5 to 60 min. This waves are moder- 

ately sized with the amplitudes about 5-30 m and 

wavelengths about 500-8000 m. Generally, long 

waves are nearly sinuous, whereas the short ones 

are strongly non-linear and propagate in groups 
of several waves. 

The characteristic lengths of marine structures 
fall within the range between 10-200 m. Normal- 

ly, these lengths are small as compared to wave- 

lengths. Thus, a complete solution of the diffrac- 

tion problem would be essential either for large 

gravity platforms and study of diffracted wave 

motion over uneven bottom with the aim of pre- 
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diction of local wave kinematics or in the case 

of pronounced modal behavior when the length 

of diffracted waves may be comparable with the 

length of a body. 

The knowledge of local wave kinematics is 

required for the prediction of the loads exerted 

by internal waves on submerged bodies. For a 

small (compared to wavelength) body, the force 

action of the wave flow of stratified fluid is char- 

acterized by four local parameters, i.e. Keulegan- 

Carpenter number KC = 2?rCi//, Reynolds num- 

ber Re = (,\uljv , dimensionless frequency Q = 

u>/N and orbital shape parameter / = C2/C1 

where u is the angular frequency of oncoming 

waves, £1 and £2 are the local amplitudes of hori- 

zontal and vertical motions of fluid particles, / is 

the charateristic length of a body, v is kinematic 

viscosity, N = J— | ■£■ is Brunt-Vaisala frequen- 

cy, where p(y) is the fluid density distribution in 

the undisturbed state with the y -axis pointed 

vertically upwards. 
For the above-mentioned range of wave pe- 

riods and characteristic lengths of a body, the 
values of parameters would run to KC ~ 0.2 -*■ 
80, Re ~ (1 -=- 360) • 106. The value of the orbital 

shape parameter / is generally small as the length 

of internal waves is large compared to the thermo- 

cline depth. The dimensionless frequency varies 

from w ~ 0.1 in the thermocline to ü ~ 200 for 

the upper ocean after storm. 

3. EXPERIMENTS 

The surface-wave loading on surface-piercing 

and submerged bodies is the subject of the exten- 

sive literature. The detailed review of the works 

treating the wave loading on vertical and hori- 

zontal cylinders is given, for example, in [14,15]. 

The wave loads on a submerged sphere have been 

studied in [16,17]. Four types of the loading have 

been observed depending on the orbital shape pa- 

rameter / and the effects of flow separation con- 

trolled by KC and Re. 

The present study of the force exerted by in- 

ternal waves on a fixed sphere has been conduct- 

ed with the aim of qualitative description and 

quantitative evaluation of different types of load- 

ing. The parameters of the problem were var- 

ied within the ranges: Re = 10 -j- 280, KC = 

0.06-=-0.95,/= 0.8-5-1.0. 

Experimental setup 

The experiments were performed in the test 

tank (6 x 0.2 x 0.6m). The test tank was filled 

with two liquids of different density. The top lay- 

er consisted of water with density pi = Q.999g/cm3 

and bottom layer consisted of a solution of glyc- 

erin in water with density pi = 1.010g/cm3. The 

diagram of the experimental installation is shown 

in Fig. 1. 

Fig. 1. 

Internal waves were generated with the help of 

a half-cylinder undergoing heaving motion along 

the end wall of the test tank. The opposite end 

of the test tank was equipped with a wave break- 

er in the form of a plate sloping at an angle of 

6° with respect to the horizontal plane. Two- 

component balances were used for the measure- 

ment of the forces acting on the sphere. The 

forces were transferred with the help of strings 

and streamlined arms to the flexible elements 

whose deformation was measured by inductive 

displacement sensors. The maximum load in the 

experiments did not exceed 9 x 10-4yV. The spring 

displacement of the sphere under the action of 

such a force did not exceed 4.5 x 10-3mm. The 

diameter of the sphere d = 4cm. The minimum 

natural frequency of the balances with the model 

suspended on them in water was 2.7 Hz and max- 

imum frequency of the loading in the experiments 

did not exceed 0.24 Hz. A fixed rectangular refer- 

ence system Oxy (see Fig.l) is used. The origin of 
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the reference system is located beneath the center 

of the sphere. The xaxis is horizontal, and in the 

unperturbed state of the liquid it coincides with 

the line of constant density p0 = (pi + p2)/2, 

taken as a conventional interface; the y -axis is 

directed vertically upwards. The Oxy plane co- 

incides with the vertical symmetry plane of the 

test tank. Incident internal waves propagate in 

the positive x direction. In this reference sys- 

tem the density distribution with depth may be 

approximated by the relation 

p(y) = Po - 0.5(p2 - Pi) tanh(y/<5) 

where 6 is the parameter characterizing the thick- 

ness of the layer of variable density (pycnocline). 

In the experiments this parameter ranged from 

0.42 to 0.58 cm. The parameters of the internal 
waves were recorded with the help of a resistive- 
type wavemeter. The wavemeter was placed at 
the longitudinal coordinate of the center of the 

sphere. This made it possible to evaluate the 

phase shifts between the oscillations of the wave 

profile and the forces acting on the sphere. The 

wave amplitudes and the forces were recorded be- 

fore the arrival of the reflected waves, although 

the amplitude of these waves in the test section 

did not exceed 5 % of the amplitude of the in- 

cident waves. In the present problem it is most 

convenient to make comparisons to the linear the- 

ory of waves in ideal, unbounded, two-layer fluid. 
The sufficient condition for modeling of infinite 

depths is 

"2HU2/g > 3, (1) 

where e = 0.011, Hi(H2) is the depth of the top 
(bottom) layer, g = eg/'(2 + c). The minimum 

value of #i?2 in the experiments was 0.25 m. 

Moreover, the parameter d/Hi^ must be small. 

In the experiments this ratio did not exceed 0.16. 

Results and discussion 

The experiments were performed in two se- 

ries. The wave loads due to internal waves acting 

on the sphere located in the homogeneous lay- 

er were studied in the first series.   For this the 

sphere was placed far enough from the interface 

to meet the condition h > (a + T)0 + Z6) where h is 

the distance from the center of thepsphere to the 

laxis, a — d/2 is the radius of the sphere, 770 is 

the amplitude of internal waves. The frequency 

of waves and the distance h were varied. The 

results of this series of experiments are presented 

in Fig. 2. 

Cx, 
Cy   2" 

1.5- 

1 

12 3 4 
a  O V D A 

0.4                 0.8 
Fig. 2. 

The values of the parameter Fr* = u2a/g, 

which in such problems plays the role of inter- 
nal Froude number, are plotted along the abscis- 

sa. The coefficients of the horizontal and vertical 

forces, defined as 

Cx = Fxa/PlViia,    Cy = Fya/PlVwa      (2) 

are plotted along the ordinate. In Eq.(2) V is the 

volume of the sphere; ua = wa = TJQU
2
 X 

exp(—w2h/g) is the amplitude of the local ac- 

celerations of fluid particles at the depth corre- 
sponding to the center of the sphere evaluated 
from the linear theory of waves in ideal unbound- 

ed tworlayer fluid, Fsa and Fya are the ampli- 
tudes of the horizontal and vertical forces respec- 

tively. The sets of symbols a and b refer to the 

coefficients Cr and Cy, respectively; the variants 

1-4 correspond to relative depths h/d = 1.38, 

1.66, 1.81, 2.09. 

The lower limit for the experimental values of 

Fr* is conditioned by low efficiency of the wave- 

breaker for the long waves, whereas the upper 

limit is theoretically imposed by the maximum 

Brunt-Vaisala frequency (in our experiments this 

maximum falls within 3.1 -f- Z.6rad/s). However, 

the viscous attenuation of short waves imposes 

the frequency limit about 50 % of this value. 
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The condition for the absence of any influ- 

ence of the bottom and the free surface (1) holds 

for Fr" > 0.24. It follows from Fig. 2 that Cr 

and Cy are virtually constant and close to 1.5, 

i.e. the value predicted by the theory of ideal liq- 

uid for a sphere in oscillatory flow (see [18] for 

consideration). The increase in Cx and decrease 

in Cy for small values of Fr" are due to the ap- 

proximation of kinematics of fluid particles used 

for normalization in Eq.(2). When evaluating the 

amplitudes of local accelerations according to the 

theory of two-layer fluid of finite depths H\ and 

Hi coefficients Cx and Cy were found to be con- 

stant in the entire range of experimental values 

ofFr*. 

The relation (2) with constant Cx and Cy pre- 

sumes that the loads from a wave of unit ampli- 

tude have a maximum at u. = y/g/h for a pre- 

scribed depth of sphere. This relation was satis- 

fied in the experiments with the accuracy 1%. 
The phase shifts between the internal waves 

and oscillations of the vertical and horizontal for- 
ces show that the loads are mainly determined 
by the inertial component. The phase shift is 

V>i = 90° -t- <f>i for the horizontal force and Va = 
180° + 4>2 for the vertical force. The phase lags 

due to viscosity 4>i = 9° =F 2° and <t>2 = 18° =F 2° 
are small and virtually independent on frequency. 

In such problems the forces are decomposed in 

inertial and drag components using the Morison 

equation. For the special case of a sphere this 

equation is 

Fx = -Cdxp-xd2u\/u2 + w2 + -Cmxp*d3ii, 
o 6 

Fy = -Cdypnd2wy/u2 + w2 + -CmvpTrd3w  (3) 
8 6 

where u and w are the horizontal and vertical 

components of the velocity of the fluid particles; 

ü and w are the local accelerations; Cdx and Cdy 
are the coefficients of the drag forces;   Cmx and 

Cmy are the coefficients of the inertial forces. 

Equations (3), together with information on 

the phase shifts, give the following relations 

Cx cos(ut - 4>x) = —C&xKC sin uit + Cmx cos ut, 
ox 

Cs,sin(wt-4>2) = -—CdyKCcosut+Cmy smut. 

The experimental results for the sphere locat- 

ed in the homogeneous layer are represented well 

by the Morison equation with Cms = Cx cos<£i, 

Cmy = Cy cos ^2 and Cdx = 8xCr sin^i/3KC, 

Cdy = 8irCySm4>2ßKC (Cmx = 1-43, Cmy = 

1.26,Cd» = l.7/KC,Cdy = 3.4/KC). These val- 

ues of the coefficients agree well with the results 

obtained for regular surface waves [16,17]. 
The forces acting on a sphere located in the 

pycnocline were studied in the second set of ex- 

periments. In this case the buoyancy force domi- 

nated over the inertial force so that the summary 

vertical force varied virtually in phase with the 

oscillations of the interface. For the moderate 

wave amplitudes (rfc/a ~ 0.5), the visual study 

showed that the sphere located in the middle of 

the pycnocline had minor effects on the shape of 

internal waves and on the density distribution. 

Thus, the vertical force may be expressed by the 

equation 

Fy = Fb - -Cmypwd3w 

where Ft is the buoyancy force determined as fol- 

lows: 

a 

Fb = it I p{y- 77osinw*)(a2 - y2)dy. 

—a 

The experimental value of the coefficient Cmy = 

1.04. It implies very low value of the added mass 

coefficient Cay — Cmy - 1 = 0.04. The negative 

values of the added mass coefficient are reported 

in [19] for the free oscillating body piercing the 

interface of miscible liquids. 
The horizontal force acting on the sphere lo- 

cated in the middle of the pycnocline (A = 0) 

oscillates at the double frequency compared to 

the frequency of oncoming waves. This is non- 

linear effect of the second-order inertial loads due 

to variability of the volume immersed in the up- 

per and lower layers of nearly equal densities. 

For the equal depths of upper and lower layers 

Hi = i72 = HQ and moderate values of Tjo/a, 

the second-order horizontal inertial load may be 
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written as follows: 

Fx = pC'mxT)lu2 Scoth kH0sin2u)t 

where C'mx is the coefficient of the second-order 

inertial force, S = sra2 is the cross-sectional area 

of the sphere . The experimental value C'mx = 

1.2. 

If the center of the sphere is somewhat dis- 

placed from the middle of the pycnocline (i.e. 

h ^ 0), then the time-dependence of Fx and 

Fy is , generally, strongly non-linear. The cor- 

responding trajectories (hodographs) of the tip 

of the summary force vector presented as Lis- 

sajous figures are shown in Fig. 3 for different 

locations of the sphere. The hodographs illus- 

trate the relative importance of the first- and 

second-order wave effects. Here, the horizontal 

and vertical force components are presented in 

the non-dimensional form, the maximum scale of 

the buoyancy force epgird3/6 being used for nor- 

malization. Arrows indicate the sequence of time. 

t6Fy/spg7cd' 

0.05 oFx/spg^d' 
Fr* 

^MO.54  <^o.53 ryo 

0.15   (\jQr25 (\ J) 0.32 

.53 

A!K 

0.26 0.35     t    0.52 
Fig. 3. 

When increasing h, the disturbances of the 

local wave field due to the presence of the sphere 

became more pronounced. At intermediate h ~ 

(0.3 -f- 0.5)a, the ring-shaped wave disturbance 
with the features of the second-mode (varicose) 

radial solitary wave is generated in pycnocline 

at the entry of the sphere in a wave crest. For 

h ~ 0.5a, the jet currents are observed as wave 

crests hit the lower part of the sphere. The jet 

currents are similar to those observed for slam- 

ming. The characteristic hodographs are present- 

ed in Fig 3. Noteworthy are new time scales in- 

troduced by 'internal' slamming. Upon the pas- 

sage of the wave crest, the lower fluid flow down 

from the lower part of the sphere forming a 'stem' 

remaining in fluid up to the passage of the next 

wave crest. This 'stem' is easily observable be- 

cause of high density gradients at its boundaries. 

The analogous structure is typical for the prob- 

lem of a body emerging through liquid-liquid in- 

terface (see for example [20])- 

Thus, depending on the location of a body 

relative to pycnocline, four characteristic types 

of the wave loading may be identified: 
a) For a body located in a quasi-homogenious 

layer (<D ^> 1), the evaluation of the loading 

at first approximation may be obtained from the 

Morison equation. As it has been shown for a cir- 

cular cylinder [21], for Re > 105 the inertia and 

drag force coefficients have a weak dependence on 

KC and Re gradually approaching some definite 

values. For the bodies of complicated geometry, 

the force coefficients may be obtained in experi- 

ments with the oscillatory flow in U-tube at high 

Re. The solution of the diffraction problem is 

required for the large bodies. 

The order of magnitude of the loads due to 

internal waves can be inferred from the Table 

1 presenting the estimate based on the Morison 

equation for the case of the horizontal cylinder 

(diameter 10 m , length 100 m) aligned parallel 

to the wave crests. The values of the force coef- 

ficients are Cmx = Cmy = 1.8, Cn = Cay = 0.6 

(see [21]). The wave kinematics is evaluated from 

the theory of ideal two-layer fluid with the up- 

per layer of 150 m and the lower layer of infinite 

depth. The wave amplitude varies within the re- 
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alistic limits from 5 m for the waves with the 

period of 5 min to 30 m for the waves with the 

period exceeding 20 min. The force magnitudes 

are nondimensionalized using the weight of the 

body as the force scale. 

Table 1. 

wave period 5-20 min 20 - 60 min 
important 
flow effects inertial viscous 
wave length 500 - 2500 m 2500 - 8000 m 

force amplitude 
body weight 

close to free 
surface 
horizontal force 
vertical force 

3•10-4 

negligible 
10"3 

negligible 
close to pycnocline 
horizontal force 
vertical force 

4•10-4 

3 • 10"* 
10-3 

6•10_s 

From the Table 1, one can see that the drag 

force generated by the surface currents due to 

long internal waves with the period 20 - 60 min 

are predominant for the body located near the 

free surface. At the typical mooring line char- 

acteristics (see [22]) the horizontal body offset 

under the action of these forces may be of order 

several meters. This estimate is consistent with 

the field experiments [12]. 
For the body located near the thermocline, 

the inertial loads due to internal waves with the 

periods 5-20 min may be also of interest. 
b) As a body approaches the thermocline, the 

influence of the density gradient increases. The 
buoyancy force and the vertical component of the 

inertial force act in phase opposition. The idea 

of the existence of the depth where these forces 

may cancel each other has been proposed and 

experimentally verified by Razumeenko (person- 

al communication). It should be noted that when 

the body is small, so that the local density dis- 

tribution may be considered as linear, the above 

effect occurs at ü = 1, i.e. when the frequency of 

the incident waves is equal to the local Brunt- 

Vaisala frequency. It is pertinent to note the 

drastic reduction of the added mass coefficient 

at this frequency that was demonstrated in the 

calculations [23] for the ellipsoid oscillating in a 

linearly stratified fluid. 
c) For the body located in the thermocline, 

the vertical load due to the variable buoyancy 

force dominates. The coefficient of the vertical 

inertial force may be markedly reduced. The ef- 

fects of the modal behavior of internal waves and 

'internal' slamming may be pronounced at cer- 

tain range of parameters. 
d) The special case of a body piercing the py- 

cnocline is characterized by high-order horizontal 

load oscillating at the double frequency compared 

to the frequency of oncoming waves. This load is 

of second order with respect to the wave ampli- 

tude for inertial force and of third order for drag 

force. 
From the standpoint of the body motions, it 

should be noted that the characteristic natural 

period of the horizontal motions of the moored 

structures is of order 1-2 min and the natural 

frequences of heave motion for small bodies in 

the stratified fluid has the order of local Brunt- 

Vaisala frequency (see [24] for consideration of 

the free oscillations of a sphere) In the case of 

short natural periods, it is worth noting new short 

time scales is introduced by 'internal' slamming 

and by high order loads of double frequency. In 

the case of the natural periods comparable to the 

periods of oncoming internal waves, resonant mo- 

tions may occur. In this connection, the effects 

of encounter frequency for the underwater vehi- 
cles advancing in internal waves and motions of 
submerged elongated vertical bodies piercing the 

thermocline are of particular interest. 

4. THEORETICAL ANALYSIS 
The 2-D linear problem on radiation and scat- 

tering of the small-amplitude surface and internal 

waves by a horizontal cylinder moving at con- 

stant depth under a pycnocline is considered. 

Previously the problem of a submerged body 

advancing in regular water waves has been con- 

sidered only for surface waves in homogeneous 

fluid. The most efficient method of its solution 

for bodies of complicated shape in a 2-D and 3- 

D flows is recognized the coupled finite element 
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method (CFEM) [25, 26]. The velocity potential 

is represented by the finite element method in 

a narrow region surrounding a body and by the 

boundary integral equation in the outer region. 

This method may be also used in a stratified flu- 

id if the density varies only on the depths above 

and below a submerged body. 
The presentation of the below-mentioned the- 

oretical results is given in more detail in Sturo- 

va's papers [27-31]. The case of the two-layer 

fluid under a lid involving a possible occurrence 

of the only free internal waves is most completely 

analyzed. 
Let the fixed frame of reference be taken with 

the i-axis directed along an equilibrium position 

of the interface, orthogonally with respect to a 

cylinder axis, and the y-axis pointed vertically 

upwards. In the undisturbed state, the upper lay- 

er with the thickness H and density p\ occupies 

the domain —oo < x < co, 0 < y < H , the low- 

er one, with the density P2 = pi(l + e) (e > 0), 

occupies the domain —oo < x < oo, y < 0. The 

fluid flow in each layer is irrotational. 

In the fixed frame of reference the incident 
potential may be written as 

4'U I£V0'>exp[z-(ü;o* T M)], 
*o 

(i)         cosh k0(y - H)      (2) 

*°   = sinhifeoH      •*» 
»*oy 

where the incident wave frequency wo depends 

on the wave number to according to the disper- 

sion relation, 

w0 = fi(to),    ß(t) = y/egk/Bik), 

B{k) = 1 + c + cothkH, 

signs '+' and '-' correspond to waves travelling 

from right and from left, respectively, superscript 

s is equal to 1 for the upper layer and 2 for the 
lower one. 

In the moving reference frame   x = x — Ut 

the total potential can be written as 

$W(x, V, t) = -Ux + U¥'\x, y)+ 

4 

+ ReY/r]j^')(x,y)ei-\ 
j=0 

where $(*) is the steady potential due to the unit 

forward speed; the components $y (j = 1,2,3) 

are the radiation potentials due to motions of the 

cylinder with unit amplitude in each of three de- 

grees of freedom; ry are the corresponding mo- 

tion amplitudes; $(
0
J) = <£0 exp^t'to*) and 

$4 are the potentials of the incident and diffract- 

ed waves, respectively; and 770 = rj4 is the in- 

coming wave amplitude. In the moving refer- 

ence frame, the incident waves arrive with the 

encounter frequency u = UQ ^ koU. 

Based on the assumptions of linear potential 

flow theory, we can write the following governing 
equations for the steady potential 

A4<x> = 0    (0<y<H), 

A<l(2) = 0    (y<0) 

with boundary conditions 

di>W/dy = 0   (y = H), 

fi2$W     d2$W      eg d¥V 
(1 + £)—^-s x-r- + 

(4) 

dx2 Ox2 

dy 

d¥2i 

U2   dy 

(v = o), 

= 0, 

d<|(*) 

~dx~ 
0 (x — 00) 

dy 

- 0 (y-» -00), 

dx 
< 00 (x —♦ —00). 

The boundary condition for $W should be 

satisfied at a mean position of the body surface 

L: d$W/dn = nx (x,y € L), where n is the 

inward normal of the cylinder surface and nx is 

the component of n in the  x-direction. 

The radiation and diffraction components of 

the potential satisfy the equations, similar to (4), 

with boundary conditions 

d*V/dy = 0   (y = H), (5) 

(1 + £)Z?$j2) - Z)*51}- + egd*V/dy = 0, 

d^pfdy^dsf/dy    (y = 0), (6) 

sW d*y'/dy->Q   (y —-00), (7) 

b<2>/^_ d*y>/dn = iuTij - Umj (j = 1,2,3), 
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d^/dn = -d^/dn    (x, y £ L), 

where 

D = (Ud/dx-iu>)2,  (ni,n2) = (nt,n,), 

«3 = (y - Vo)nx - (x - x0)riy, 

d2¥2~> d2¥2~> 
(mi,m2,nj3; = < -?— 

dx ' dndy ' 

d_ 
dn (y-yo)(™ 

xo and t/o are the coordinates of a point with 

respect to which the body oscillates rotationally. 

The radiation condition for $j (j = 1, ...,4) 

states that a wave travelling in the direction of 

the forward speed and with its group velocity 

larger than the forward speed is far in front of 

the body, and otherwise the waves propagate be- 

hind. 
The moving body in waves is affected by the 

hydrodynamic force F and moment M de- 

termined by integrating the fluid pressure p = 
-pzid&V/dt + |V*(2>|2/2) over the cylinder 

surface  L 

=  / pndl,    M =  / pn2dl. (8) 

The representation F = (Fi,F2), M = F3 is 

commonly used and for the linearized problem 

Eq.(8) is substituted for the sum 

Fj = F,j + Re(Fnj + Fej)ei 
(9) 

where the first term is due to a steady speed of 
the body and equals 

F.j = piU2 f(d¥2>/dx - \V$™\2/2)njdl. 

The second term in (9) is the contribution from 

the unsteady potentials <£^2) (j = 1,2,3). Three 

components of the force and the moment are writ- 

ten in the matrix form 

3 

* = 1 

Tjk = -pi J {iu>${P + m|JV^/, 

where V = £/V(<|(2) — x) is the velocity vector 

of a steady flow in the lower layer relative to the 

moving reference frame. The radiation forces are 

represented in the form Tjk = u2fijk — iu\jk, 

where pjk and \jk are known as the added 

masses and damping coefficients, respectively. 

The exciting forces are determined as follows 

Fej=-P2Tl0jM*{0) + *(4))+ 

To use the coupled finite element method it 

is necessary to determine the Green function 

G**)(x, y, £, T})  , satisfying the equations 

AGW = 0   (0<y<H), 

AG(2) = 2x$(x-c:)y-77)    (y < 0) 

and boundary conditions similar to (5)-(7). The 

solution of the problem for the Green function in 

the lower layer G*2)  takes the form: 

G<2> = ln(m) + 2(1 + e)pv jT *W e^+^x 

x {[{U2k2 -w2)2 - {U7k2+u2)Q2(k)]cosk(x-^ 

+2iukUQ?(k) sin k(x - £)} dk+ 

+ff{cti exp[&i(y + 77 - i(x - £))]- 

-Q2 exp[fc2(y + V - *'(z - 0)]- 

-a3 exp[fc3(y + 77 + i(x - £))]+ 

+a4 exp[k4(y + t] + i(x - £))]}, 

where pv indicates the principal-value integra- 
tion, 

4 

J=l 

P3Ak) = Uk-u>T ti(k), 

a, = 
*        2k,[U--tcg{k,)\ 

(7 = 1 at s = 1,2,3 and 7 = — 1 at s = 4), 

cs{k,) — dQ/dk \kz=k.   is the group velocity of 

the wave  ks. The equation   Pi(k) = 0  has two 
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simple real solutions, ki and k?, with k\ > k?, 

if only 

U<UC,    u<uc, (10) 

where Uc = \JtgH is the critical velocity for a 

steady problem in the two-layer fluid and wc = 

Q(ke) — Uke is defined post-solving the equation 
cj(*e) = U. Solutions ibi and £2 coincide, 
if u = uc, and are absent, if conditions (10) are 

not met. There are no real solutions for equation 

P2(ib) = 0. In contrast, the equations /^(ifc) = 

0 and P^k) = 0 always possess unique real 

solutions, such as £3 and £4, respectively, with 

*3 > *4- 

With H —► 00, the k, solutions are equal to 

h,i=^(l-2T±Vl ■4r), 

*3,4= 2^2(1 + 2r±vT+47), 

where r = ull/g. In this case uc = g/iU. With 
e —* 00 one will obtain the known solution for a 
homogeneous fluid with a free surface [25]. 

The numerical calculations are performed for 

the elliptic cylinder 

x2/a2+(y+h)2/b2 = l, 

where a and 6 are the large and small half-axes 

of the ellipse, h is the depth of submergence of 

its center under the interface. 

The steady loads (a wave resistance, a lift and 

a trim moment) has been studied extensively for 

the different types of the density stratification in 

[27]. The numerical calculations are compared 

with the approximate analytical solution based 

on the use of the Köchin function and suitable 

for a body deeply submerged under the interface. 

For simplicity let us give the approximate so- 

lution for a wave resistance in the two-layer fluid 
under a lid : 

(l + e)P2Q(X) 
F' = -. r^2(A). 2B(X)[U - cg(\)Y 

Here A is the root of an equation fl(A) = UX, 

which exists only at U < Ue and K is the 

Köchin function for the elliptic cylinder 

K{X) = 2*UbJ^lj1(X\/a2 - 62)e-A\ 
V A - 0 

where J\ is the Bessel function of the first or- 

der. For small values of the product Xy/a2 — b2 

the Köchin function may be presented K{X) « 

irUbX(a + b)e~Xh. The wave resistance deter- 

mined by this means is called the dipole solution. 

The approximate solution for the wave resis- 

tance in two-layer fluid with a free surface presents 

a sum of surface and internal wave contributions. 

Fig. 4. 

A steady loads for the elliptic cylinder in the 

two-layer fluid with a free surface determined by 

CFEM with the element number m = 18 are 

shown in Fig. 4 for a = h = 26, e = 0.03, H = 

6, xo = 0, yo = —h (solid lines). The following 
designations are used 

(.Fr,Fy) = (-Fx,Fy)/p7U\ 

M = -M/-p2U
2b2. 

The above values are compared with similar ones 

for the two-layer fluid under a lid (dark points) 

over the range of the Froude number 0 < Fr = 

U/y/gK < 0.2 and for a homogeneous fluid (e = 
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0) (light points) over the range 0.2 < Fr < 3. In 

Fig. 4 are shown the approximate solution (dot- 

and-dash line) for a wave resistance and dipole 

solution (dash line). With small values of the 

froude number, the internal waves are principally 

excited and their characteristics agree practically 

with those of the two-layer fluid under a lid. Then 

with increasing Fr the generation of the internal 

waves ceases and the only surface waves are excit- 

ed. The critical velocity of the body for internal 

waves shown with an arrow is Uef\/gR = 0.1224. 

In the three-layer model of a smooth pycno- 

cline the fluid density distribution in the undis- 

turbed state takes the form: 

' px (Hi<y<Hi+ff3), 

P(y)=l   Pi[l + e(l-£)]    (0<y<ffi), 
. P2 = Pi(l + e) (¥<0), 

where H\, Hi are the depths of middle and up- 

per layers, respectively. The fluid flow in the up- 

per and lower layers is irrotational. The wave 

flow equation for the middle linearly stratified 
layer is used in the Boussinesq approximation. 

The steady loads in the three-layer fluid are 

presented     in     Fig.5     at c       —       0.03, 

Hi = 6, Hi = 0.56, a = 26, h = 1.56. In 

Fig.5 are shown the results of CFEM (solid lines), 

the approximate solution for the wave resistance 

(dash-and-dot line) and dipole solution (dash line). 

The following critical velocities of generating ap- 

propriate modes of internal waves are depicted 

(arrows with numbers): Ulygh — 0.1137 (n = 

1), 0.0336(n = 2), 0.0186 (n = 3). For compar- 
ison with the two-layer fluid, the value h — h + 

/fi/2 is entered, which defines the distance from 

the body centre to the pycnocline midline. Fig. 

5 gives the only range of values U/y/gh > 0.013 

wherein there are yet no more than three internal 

modes. From the comparison of Figs. 4 and 5 it 

is obvious that the internal wave in the two-layer 

fluid and the first wave mode in the three-layer 

one have a similar hydrodynamic effect. 

The solutions of radiation and diffraction prob- 

lems at   U = 0   are obtained for the two-layer 

fluid bounded both by a rigid lid and by a free 

surface [28,29]. In the diffraction problem, apart 

Fig. 5. 

from exciting forces, also is determined the be- 

havior of scattered waves in a far field. The reci- 

procity identities relating the solutions of radia- 

tion and diffraction problems are derived. The 

radiation load for the elliptic cylinder in the two- 

layer fluid with a free surface is demonstrated in 

Figs. 6,7. 

The flow parameters coincide with those used 

in Fig.4. The coefficients m, and A,y are 

compared with similar values for the two-layer 

fluid under a lid (dark points) and the homoge- 

neous fluid (light points). For the damping coef- 

ficient \{j, the approximate solution obtained by 

the Köchin function is shown with dash-and-dot 

line and the dipole solution is denoted with dash 

line. The values fijj are equal to the added mass- 

es coefficients for the elliptical cylinder in the un- 

bounded homogeneous fluid (/iii)/i22> 

^J = TP2[62,a2,(a2-62)2/8]. 
With small frequency of body oscillation, the 

internal waves are significantly excited and their 
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characteristics agree practically with those of the 

two-layer fluid under a lid. As the frequency in- 

creases, the generation of internal waves weakens 

and the surface waves whose characteristics are 

slightly affected by the density variation become 

dominant. 

An interesting peculiarity of the diffraction 

problem for stratified fluid is that when the giv- 

en mode wave incidents on a body it scatters not 
only into itself but also into all the other modes. 

This is one of the mechanisms of energy redistri- 

bution due to wave motions, in particular, that 

of the surface wave energy transfer to depth. 

Based on the approximate solution for a deep 

submerged body, the influence of anomalous fre- 

quency dispersion of internal waves on the pro- 

cesses of scattering and generation is determined 

[30]. This internal waves are characterized by a 

nonmonotonic behavior of their group velocities. 

One example of this fluid is a three-layer one in- 

volving linearly stratified upper and middle layers 

and a homogeneous lower one. In this case the 

mode 'leap-frog' is observed when the excitement 

of higher modes is more intensive then of lower 

ones. 

For radiation and diffraction problems with 

forward speed all the components of loads are 

correlated for the cylinder moving under the free 

surface in a homogeneous fluid and under the in- 

terface in the unbounded and the bounded by lid 

two-layer fluid [31]. Contrary to the case with- 

out forward speed the added mass and damping 

coefficients have no longer the symmetry proper- 

ties and there are some motion regimes where the 

damping coefficients take negative values. Start- 

ing from the assumption of a deep submersion of 

a bodv. the amplitudes of radiation and diffrac- 

tion waves in the far field, as well as the diagonal 

damping coefficients and exciting forces are cal- 

culated. The numerical calculations of /i<;- and 

\ij are shown in Figs.8,9 for the elliptic cylin- 

der located under the free surface in the homo- 
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geneous fluid (a), under the interface in the two- 

layer unbounded fluid (b) and in the two-layer 

fluid with a bounded upper layer (c) given the 

same parameters as in Fig.4 and  U/\/gB — 0.4. 

0.4    0.8 0     0.4   0.8 0    0.4     0.8 

Fig. 8. 

In Fig.9 are shown also the approximate val- 

ues of Xjj for the same three cases of the fluid 

density stratification. The following designations 

are used 

Mii = P:j/n'jj>(Mn'M21) ~ (A*i2,-/*2i)/Vii, 

{Mi3, A/23, M31, M32) = 
(^13,^23,^31,-^32) 

Aj; = rcbuXjj/gfi'j, 

(Ai2,A2i) = (Ai2,-A2i)w/p25&, 

(A13, A23, A3LA32) = (A13, A23, A31,— A32)w/p2^2- 

With forward speed the approximate solution is 
seen to provide a quite rough representation for 
damping coefficients, especially for A33. The val- 

ues u2
eb/g = 0.3906 (Figs. 8,9a,b) and 0.3642 

(Figs. 8,9c) are indicated by arrows. 

As may be seen from Figs.8,9 the relation of 

Timman-Newman for the given velocity of the 

body holds very well. 

Fig. 9. 

The numerical results for the exciting forces 

are presented in Fig. 10 with the head incoming 

wave (Fig. 10a) and with the following incoming 

wave (Fig.lOb). The flow parameters coincide 

with those used in Figs.8,9. The curves 1-3 are 

shown for the cases of the homogeneous fluid, the 

two-layer unbounded fluid and the two-layer fluid 

with a bounded upper layer, respectively. 

The values k0b = 1.5626 and *06 = 1-8277 

(fig.5b) are indicated by arrows and conform to 

the critical frequencies uc in the cases of the un- 
bounded ;tnd bounded upper layers, respectively. 

CONCLUSIONS 
The outlined results may be considered as one 

of the first attempts of experimental and theo- 

retical investigation of the influence of oncoming 

internal waves on the hydrodynamic loads acting 
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on a submerged body. It is shown that the fluid 

stratification is affected significantly the hydro- 

dynamic loads on a submerged body over certain 

ranges of the forward speed and the incident wave 

frequencies. 

For the body located in the homogeneous fluid 

layer, the internal wave loading is generally anal- 

ogous to the case of the surface waves taking into 

account the modified gravity acceleration. The 

hydrodynamic forces acting on a body in pycno- 

cline show a wide range of specific features. Con- 

sequently, the interaction of a body with the in- 

cident waves present the greater variety of types 

as compared to the case of homogeneous fluid. 
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A Method for Simulation of Viscous, 
Nonlinear, Free-Surface Flows 

B. Hodges, R. Street, Y. Zang 
(Stanford University, USA) 

ABSTRACT 

Presented is a numerical method for simulating 
free-surface flows through solution of the time- 
dependent, incompressible, Navier-Stokes equa- 
tions and the non-linear dynamic and kine- 
matic boundary conditions. The numeri- 
cal method uses boundary-fitted curvilinear co- 
ordinates with a finite-volume, time-splitting, 
approximate-factorization method formulated in 
primitive variables on a non-staggered grid. The 
pressure Poisson equation is solved using a multi- 
grid technique. A new extension of domain de- 
composition methods is developed which involves 
splitting the free surface from the fluid volume 
for the iterative enforcement of the pressure equa- 
tion and the dynamic boundary condition. A 
derivation in curvilinear coordinates of the Eu- 
lerian kinematic boundary condition is presented 
and is used for advancing the free surface in a 
Crank-Nicolson formulation. Development of the 
numerical method is presented for three dimen- 
sions; preliminary results are given from two- 
dimensional non-linear simulations of standing 

waves. 

NOMENCLATURE 

This paper uses tensor notation with the Einstein 
summation convention implied unless otherwise 
specifically noted. 

a wave amplitude 

Bi discrete operator for pressure gradient 

d discrete operator for convective terms 

d depth 

Da   :   a   =   1,2,3;   discrete  operators for 
approximate-factorized diffusive terms 

Dj implicit discrete operator for diagonal 

diffusive terms 

DE 
explicit    discrete    operator    for    off- 
diagonal diffusive terms 

eij rate of strain tensor 

Fii flux   tensor   in   Cartesian  momentum 
equation 

n flux tensor in curvilinear momentum 
equation 

F function representing curvilinear space 
position of free surface 

9 acceleration due to gravity 

9qr contravariant metric tensor 

9qr covariant metric tensor 

H free surface height measured in physical 

space 

7i free surface height measured in curvi- 

linear space 

I identity matrix 

J Jacobian 

k wave number 

L wave length 

L\,L-i discrete  linear operators for dynamic 
boundary condition 

iii normal unit vector 

P reduced dynamic pressure 

P pressure 

Qi discrete operator for grid motion 

Si source of discretized momentum equa- 
tion 

Si, S2 discrete   source   terms   for   dynamic 
boundary condition 
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t time   (at   fixed   location   in   physical 
space) 

ti tangent unit vector 

T wave period 

u, Cartesian velocity 

ua* intermediate Cartesian velocity 

Uq contravariant velocity 

U*q intermediate contravariant velocity 

U characteristic velocity of wave 

Xi Cartesian (physical space) coordinates 

X9 grid volume flux 

Z free surface vertical coordinate in phys- 
ical space 

Greek Symbols 

6{j   Kronecker delta 

At   time step 

As   thickness of free surface 

7   gradient of pressure variable (4>) at free 
surface 

p dynamic viscosity 

v kinematic viscosity 

<f> pressure variable 

p density 

I/J   second derivative of pressure variable 
(<p) at free surface 

T    time   (at  fixed   location  in   computa- 
tional space) 

£?    curvilinear coordinates 

u)    wave frequency 

Subscripts 
i,j,k   indices for Cartesian or covariant vec- 

tors 

S+   quantity computed in air at free surface 

S—   quantity computed in water at free sur- 
face 

5 - 1   quantity computed at first cell center 
inside free surface 

5 — 2   quantity computed at second cell cen- 
ter inside free surface 

Superscripts 

q,r,s,t    indices for contravariant vectors 

n, n + 1    discrete time step 

1    INTRODUCTION 

Simulations of flows with free-surface effects have 
been of interest to the numerical community both 
for their real-world engineering applications and 
for the challenges which moving-boundary prob- 
lems present. The physical phenomena that have 
been modelled using free-surface numerical tech- 
niques cover a wide range of areas, including wa- 
ter waves, viscous surface films, bubble dynamics, 
vortex/free-surface interactions, and geophysical 
flows. The numerical methods used have been as 
varied as the phenomena modelled, and include 
boundary integral methods, spectral methods, fi- 
nite element methods and finite volume methods. 
To date, no single approach has been proven su- 
perior, and the complexities of free surface phe- 
nomena almost guarantee that there will never be 
one perfect method for all free-surface problems. 

In this paper, we develop a technique 
that is suitable for addressing free-surface wave 
problems; where the primary characteristic of the 
flow is nonlinear viscous wave motions of a con- 
tiguous free surface. Numerical simulations of 
this type of free-surface flow face several fun- 
damental problems, including the need for ac- 
curate free-surface advancement, enforcement of 
the non-linear dynamic boundary condition, and 
practical computation in three dimensions. Both 
finite element and finite volume methods have 
been used in the past to study free-surface wave 
motions [1]. We shall, however, limit our in- 
troductory~discussion to finite volume methods, 
which appear to have more promise for future 
simulation of fully-turbulent flows. 

The primary purpose of this paper is to 
present a numerical method for free-surface flow 
simulation that incorporates a new method for 
enforcing the non-linear dynamic boundary con- 
dition and uses a curvilinear coordinate deriva- 
tion of the kinematic boundary condition to ad- 
vance the free surface. 

The new approach to the dynamic 
boundary condition is to computationally sepa- 
rate the free surface and the fluid volume, then 
link them through an iterative scheme. This 
strategy is borrowed from the method of domain 
decomposition, where solutions on adjacent do- 
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mains are iterated until the intergrid conditions 
converge. In our case, rather than enforcing a 
complicated dynamic boundary condition on the 
upper boundary of the fluid domain, a simple 
Dirichlet boundary condition is enforced and re- 
fined iteratively with separate computations of 
the dynamic boundary condition. This "surface 
decomposition" method may have its ultimate 
use in coupled simulations of air-water interfaces 
with decomposed domains consisting of the air 
volume, the free surface, and the water volume. 
In such an application, the free surface would be 
the communication channel for iteratively enforc- 
ing the boundary conditions on the two fluids. 

The derivation of the Eulerian kinematic 
boundary condition in this paper is based upon a 
Taylor-series expansion in curvilinear space, and 
is similar to the derivation of the Eulerian kine- 
matic boundary condition in physical space by 
Mei [2]. The curvilinear derivation is advanta- 
geous because it allows the simulation of free sur- 
faces which do not remain single-valued in phys- 
ical space. 

Previous finite volume simulations of 
free-surface flows can roughly be grouped into 
two categories: 1) "fixed grid" simulations where 
the governing equations are discretized in physi- 
cal space on a fixed Cartesian grid while the free- 
surface moves within the grid; and 2) "moving 
grid" simulations where a boundary-conforming 
grid that moves with the free surface is generated. 

Most fixed-grid simulations trace their 
ancestry to the marker-and-cell (MAC) method 
of Harlow and Welch [3], which uses moving 
marker particles to track the position of the free 
surface on a fixed, Cartesian grid. Modified ver- 
sions of this method are still useful [4] [5] [6]; 
however, the fundamental drawback of MAC sim- 
ulations is that the boundary of the computa- 
tional domain does not lie on the boundary of 
the fluid. The partially empty cells along the 
boundary make it difficult to conserve mass and 
accurately invoke the dynamic boundary condi- 
tion. 

An interesting and relatively new ap- 
proach using a fixed grid is the "level set" inter- 
face technique [7] [8], which is suitable for sim- 
ulating a coupled domain of two fluids with an 
immiscible interface. This technique does not ex- 
plicitly track the position of the free-surface in- 
terface, but instead defines a smooth function for 
the distance from each fixed grid point to the 
free surface. The simulation solves for this level- 
set function along with the fluid flow equations. 

The position of the interface is computed by in- 
terpolation from level-set values at the fixed grid 
points. The level-set technique has an interesting 
ability to handle flows where the topology of the 
interface may be changing, such as with combin- 
ing and dividing bubbles. The major drawback of 
this method appears to be in the handling of the 
dynamic boundary condition. As illustrated by 
Sussman et al. [7], the dynamic boundary con- 
dition cannot be directly discretized on the free 
surface in a level-set method because the surface 
is not given a discrete representation. Instead, 
the dynamic boundary condition is represented 
by a smoothed delta function which depends on 
prescribing a "thickness" of the interface that 
is greater than the spatial discretization. This 
requires the discretization be extremely fine, or 
an unrealistically thick interface be prescribed. 
We suspect this method may not prove practical 
for simulating the complicated dynamic bound- 
ary condition of a free-surface wave that includes 
transport of scalars on the surface and spatial 
variations in the surface-tension coefficient. How- 
ever, an intriguing possibility worthy of future 
investigation is a method that combines a level- 
set solution in computational space (to capture 
bubble effects) with a boundary-fitted moving 
grid (to compute a discretized, free-surface wave). 
This combination might allow efficient computa- 
tion of breaking waves with bubble effects and 
surfactant transports on the free surface. 

Moving-grid simulations are generally 
designed with the boundary of the computa- 
tional domain coincident with the physical do- 
main. This provides a framework for enforcing 
the dynamic boundary condition directly on the 
boundary of the computational domain. Most 
moving-grid simulations generate a structured 
system of boundary-fitted curvilinear coordinates 
to map the Cartesian coordinates of points in 
physical space to a regular orthogonal grid in 
"computational space". This approach is dis- 
cussed in greater detail in §2.1 of this paper. An 
unusual exception to this approach has been de- 
veloped by Hino et al. [9] for steady-state simu- 
lations using an unstructured, moving grid that 
is discretized wholly in physical space. 

Two different methods of curvilinear- 
coordinate grid generation have been used in 
finite-difference free-surface simulations. One ap- 
proach [10] [11] [12] is to simplify the compu- 
tation of grid motion by using what might be 
termed a "restricted" boundary-fitted grid. In 
this scheme,  the free surface is typically repre- 
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Figure 1: Restricted curvilinear coordinate grid Figure 2: Generalized curvilinear coordinate grid 

sented by a series of particles whose horizontal 

Cartesian coordinates (z, y) are fixed and whose 
vertical Cartesian coordinate (z) follows the free 
surface motion along fixed vertical grid lines, as 

shown in figure (1). 

A second approach to moving-grid gen- 
eration is to use "generalized" boundary-fitted 
curvilinear coordinates [13] [14]. This method 
generates smoothly curved grid lines in physical 
space and allows the grid to be tailored to the 
requirements of the fluid domain, as shown in fig- 
ure (2). A generalized curvilinear grid is prefer- 
able to a restricted grid because of the ability of 
the former to handle large surface deformations 
with minimum grid skewness. This is discussed 
in greater depth in §2.2. 

A number of different numerical tech- 
niques have been used to advance the free surface 
in the solution of viscous free-surface problems. 
Fully-implicit techniques have been developed for 
restricted curvilinear coordinates [10], for gener- 
alized curvilinear coordinates [14], and for un- 
structured grids [9] [15]. These "techniques simul- 
taneously solve a coupled set of equations con- 
sisting of the Navier-Stokes equations, the kine- 
matic and dynamic boundary conditions, and one 
or more grid generation equations. The advan- 
tage of the fully-implicit technique is that the 
free-surface advance is coupled directly to the 
flow solution and the dynamic boundary condi- 
tion, which is arguably more accurate than un- 
coupled methods. The disadvantage is that sig- 
nificant computational complexity is involved in 
the coupling of grid generation to the flow solu- 
tion. To date, the only three-dimensional fully- 
implicit approach for the Navier-Stokes equations 
found in the literature is limited to steady-flow 

solutions [15]. 

A three-dimensional approach for un- 

steady flow which appears to effectively advance 

the free surface without a fully-implicit cou- 
pling is that of Dommermuth [11]. His method 
uses a third-order Runge-Kutta time integra- 
tion of a kinematic boundary condition based on 
Helmholtz decomposition. 

To avoid the problems associated with si- 
multaneous solution of the flow and grid, many 
free-surface simulations use explicit free-surface 
advancement [6] [13] [12] [16] [17]. Explicit tech- 
niques generally suffer from the accumulation of 
error in the free-surface advance over long simu- 
lation times; however, the explicit Eulerian tech- 
nique is a stable and effective method for con- 
ducting shorter simulations to investigate phe- 
nomena and develop numerical techniques. 

Three different forms of the Eulerian 
kinematic boundary condition are found in the 
literature: 1) numerical enforcement of the physi- 
cal space Eulerian kinematic boundary condition 

[9] [10] [11] [15]; 2) computation of a curvilin- 
ear l^nsformätion of the physical space Eule- 
rian kinematic boundary condition [6] [13] [12] 
[14]; and 3) rotation of the Cartesian space frame 
to enforce the physical space Eulerian kinematic 
boundary condition in a more suitable orienta- 
tion [17]. The first two methods are unusable 
for waves which do not remain single-valued in 
physical space. The third method, rotation of the 
coordinate system, does allow computation of a 
free-surface that is not single-valued in physical 
space; however, the surface must remain single- 
valued in the rotated Cartesian space frame, 
which eliminates the method from use with over- 
turning waves. Most of the approaches to the 
kinematic boundary condition track the surface 
by the movement of particles that are required to 
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move vertically in physical space; this has some 
drawbacks in the accuracy of the free surface ad- 
vance for steep waves (see §2.5). 

There has been a wide range of nu- 
merical flow solvers used in free-surface simu- 
lations. -As of this date, no method can be 
said to be superior and we shall not try to de- 
bate the pros and cons of the various approaches 
in this paper. However, in order to put our 
method in perspective, it is worthwhile to briefly 
mention some of the approaches that other au- 
thors have taken. Dommermuth [11] has imple- 
mented a three-dimensional technique that uses 
fourth- and sixth-order finite differences with a 
third-order Runge-Kutta scheme. This method 
is unique in that it uses Helmholtz decomposi- 
tion to split the governing equations into irrota- 
tional and vortical flow parts, which provides the 
free-surface advance through an equation involv- 
ing the solenoidal velocity potential rather than 
the Cartesian or curvilinear velocity. Park et al. 
[6], Hinatsu [12], and Miyata et al. [13] use time- 
splitting methods that are discretized on a stag- 
gered grid. Hino et al. [9] have developed an 
artificial-compressibility multigrid method that 
is suitable for steady-state solutions about ship 
hull forms. Ohring and Lugt's [14] fully-implicit 
method uses artificial compressibility to solve for 
unsteady flow in two dimensions. Wang and 
Leighton [16] have developed a spectral method 
that discretizes the Navier-Stokes equations in 
a vertical-velocity, vertical-vorticity formulation 
that is suitable for periodic boundary condition 
problems. An entirely different approach was 
taken by Zhan and Zhaoshun [18], who investi- 
gated the characteristics of a drift current with 
regular waves by decomposing the surface motion 
into phase-averaged and fluctuating parts. 

The numerical approach in this paper 
is similar to those of Park el al. [6], Hinatsu 
[12], and Miyata el al. [13] in the use of finite- 
volume discretization of primitive variables with 
a time-splitting technique. Our numerical ap- 
proach differs by: 1) advancing the free surface 
in a method that is not limited to single-valued 
waves; 2) applying a non-staggered grid to re- 
duce storage requirements for metric terms; and, 
3) utilizing a multigrid solver for solution of the 
pressure Poisson equation with iterative enforce- 
ment of the dynamic boundary condition. Our 
numerical method is an adaptation of the method 
developed by Zang [19] for fixed-boundary prob- 
lems which has been shown to be second-order ac- 
curate in space and time as well as computation- 

ally efficient in three dimensions. The kinematic 
boundary condition enforcement is discretized by 
the "time-splitting implicit" method of Chan and 
Street [20]. 

This is an interim report on a project 
whose goal is the development of a three- 
dimensional, time-dependent, Navier-Stokes sim- 
ulation of finite-amplitude progressive water 
waves over an imposed current with non-linear 
dynamic and kinematic boundary conditions. 
Presented in this paper are the three-dimensional 
mathematical and numerical foundation of the 
method and preliminary two-dimensional simu- 
lation results for standing waves in a rectangular 
basin. 

The main body of this paper is divided 
into four sections, beginning with the mathemat- 
ical formulation and discretization of the govern- 
ing equations, §2, followed by a description of the 
numerical method, §3, a description of the sur- 
face decomposition method, §4, and a summary 
of results from numerical simulations, §5. 

2 MATHEMATICAL FOR- 
MULATION AND DIS- 
CRETIZATION 

2.1    Computational    Domain 
Coordinate Mapping 

and 

For moving-gricl numerical simula- 
tions, "boundary-fitted curvilinear coordinates" 
are often used. This technique is not unique 
to moving-grid problems, but has been applied 
to fixed-grid, finite-difference methods with com- 
plicated boundary shapes. The boundary-fitted 
curvilinear coordinate method is based on the 
concepts of tensor analysis and coordinate trans- 
formation that can be found in textbooks such 
as Aris [21]. Numerical application of boundary- 
fitted curvilinear coordinates involves developing 
a coordinate system which matches the bound- 
aries in physical space and maps to a regular or- 
thogonal grid in computational space. 

The distortions of the curvilinear coordi- 
nate system as viewed from physical space, fig- 
ure (2), are measured as metric terms. The met- 
ric terms are created when the governing equa- 
tions are transformed into a regular orthogonal 
grid in computational space. Using this tech- 
nique, an irregular domain in physical space can 
be discretized with a structured (e.g. finite dif- 
ference) numerical method on a regular grid in 
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computational space while maintaining the sim- 
ulation boundary coincident with the physical 
boundary. The main disadvantages of this tech- 
nique are that the governing equations are more 
complicated when transformed to computational 
space and the requirement to store metric terms 
can overwhelm computer memory. However, im- 
provements in computer speed and memory stor- 
age have made the use of curvilinear coordinate 
transformations more practical, and they can be 
considered a standard technique for simulations 
with non-moving grids and irregular boundaries. 

The extension of boundary-fitted curvi- 
linear coordinate methods from fixed-boundary 
to moving-boundary problems is relatively 
straightforward and is described by Thompson 

et al. [22]. Numerical implementation, however, 
can be computationally costly because a new grid 

and new metric terms must be computed at each 
time step. Implementation of boundary-fitted 
curvilinear coordinates requires that transforma- 
tion operators be used to transform the governing 
equations from physical space to computational 
space. The operators are derived from the chain 
rule for partial differential equations. For a mov- 
ing grid these operators can be presented as [22]: 

d_ 

d 

dxj 

_  d_ 
'   Or 

d^   d 

axj d?   0 

(1) 

ÖT äXj d£i ■^       w 

where xJt with j — l,2,:j art- ihe physical space 
coordinates; <f with q = 1.2.3 are the computa- 
tional space coordinates; ö/öt is a time deriva- 
tive taken at a fixed point in physical space; 
and d/dr is a time derivative taken at a fixed 
point in computational space, and repeated sub- 
script/superscript combinations imply summa- 
tion. 

2.2     Grid generation 

Boundary-fitted curvilinear coordinate grids can 
be generated either using restricted or general- 
ized methods as discussed in the introduction to 
this paper. Restricted boundary-fitted curvilin- 
ear coordinates are a useful simplification as long 
as the free surface deformations remain small. 
For steep waves, restricted coordinates provide 
a highly skewed grid: the grid parallelpipeds will 
be significantly distorted from the ideal rectan- 
gular shape. Such grid skewness is undesirable 
since it generally results in a decrease in accuracy 

[22]. The use of generalized boundary-fitted co- 
ordinates can avoid this problem by using a grid 
generation method that minimizes grid skewness. 

Restricted curvilinear coordinate sys- 
tems also suffer from a lack of boundary orthogo- 
nality. While it is^not possible to generate a com- 
pletely orthogonal grid for an arbitrarily-shaped, 
three-dimensional domain, it is possible to gen- 
erate a grid that is orthogonal to the bound- 
aries. There are distinct advantages in the imple- 
mentation of numerical techniques with bound- 
ary orthogonality. As shown by Zang [23] for a 
fixed grid, a non-orthogonal boundary in a finite- 
volume method requires a pressure boundary 
condition as well as a velocity boundary condi- 
tion for the Poisson pressure equation to prevent 
an inconsistent solution. The use of boundary or- 
thogonality removes the requirement for the pres- 
sure boundary condition. Furthermore, in deriv- 

ing a discrete form of the dynamic boundary con- 
dition, boundary orthogonality provides signifi- 
cant simplification by removing two of the three 
skew metric terms at the free-surface. That is, 
for a free surface £3 = 1, boundary-orthogonality 
provides g13 = g23 = 0. 

Generalized boundary-fitted curvilinear 
coordinates can be produced through algebraic 
methods (i.e. interpolation from the boundaries) 
or the solution of a set of partial differential 
equations (typically a Laplace or Poisson equa- 
tion) [22]. Algebraic, generalized, grid-generation 
methods are an improvement over the restricted- 
coordinate technique since the grid developed can 
be boundary orthogonal and grid skewness can be 
reduced. Algebraic methods have low computa- 
tional cost since they use direct solution rather 
than iteration techniques. However, algebraic 
methods do not necessarily produce the optimum 
grid with minimum skewness, thus they might 
be considered inferior to partial differential equa- 
tion methods for generating curvilinear coordi- 
nates. A Poisson-solution method will generate 
a grid with minimum skewness in generalized co- 
ordinates, but has the disadvantage of requiring 
iterative smoothing to obtain a final grid. De- 
pending on the shape of the domain, a Poisson 
grid-generation method can become the major 
driver of computational time for a free-surface 
simulation. 

In order to have control over grid skew- 
ness, we have incorporated into our code sec- 
tions from the EAGLE grid generation package 
developed at Mississippi State University [24]. 
This code uses an algebraic generation method 
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(transfinite interpolation) as an input to a Pois- 
son smoother, while leaving the user control over 
the level of smoothing and the maximum number 
of iterations (which may be set to zero for purely 
algebraic computation of generalized curvilinear 
coordinates). The free-surface is represented by 
a cubic spline over which the ends of grid lines 
may freely move so as to obtain a smooth grid 
with boundary orthogonality. 

2.3 Non-staggered grid 

The governing equations are discretized using 
the non-staggered grid technique developed by 
Zang [19]. This method solves for the pressure 
and the three Cartesian components of velocity 
at the grid centers and the normal volume flux 
through grid face. The main advantage of this 
technique over a staggered-grid method is the 
savings of storage for the metric terms. Zang's 
non-staggered grid method requires the storage 
of one set of metrics, consisting of nine vector 
surface area components [J~l öp /dxi), six non- 
trivial mesh skewness components (J~lg',r), and 
the inverse Jacobian, or cell volume (J~l) for 
each control volume. In contrast, a staggered- 
grid method may require up to seven sets of met- 
ric terms for each control volume [25] [26]. 

To adapt the non-staggered grid method 
for use in free-surface simulations, a full set of 
metric terms is defined on each cell face of the 
free surface. This allows the dynamic boundary 
condition to bo discretized with greater accuracy 
without significantly impacting the overall data 
storage requirements. 

2.4 Navier-Stokes equations 

The time-dependent, constant-density, incom- 
pressible Navier-Stokes equations in physical 
space can be written as: 

duj       dFu 
dt 

+ 
dxj 

= 0 (3) 

Ox- 
■J   _ 0 (4) 

where u, : i — 1,3 are the Cartesian (physical 
space) components of velocity, and the Cartesian 
momentum flux tensor (Fij) is: 

Fij  = UjUi + pbij - v— (5) 

where v is the kinematic viscosity, bij is the Kro- 
necker delta, and the reduced dynamic pressure 

(p) is related to the density (p), total pressure (P) 
and the vertical Cartesian coordinate (2:3) by: 

P = P(P - 9x3) (6) 

In order to simulate a flow with a free 
surface in boundary-fitted curvilinear coordi- 
nates, equations (1) and (2) are used to transform 
the physical space Navier-Stokes equations into 
computational space. To complete the transfor- 
mation, we must utilize the metric identity [22]: 

dp \      dxi 
=   0 

and the conservation of space [27], 

Or [J     >       dp \       Oxj dr 
= 0 

(7) 

(8) 

By applying equations (1), (2), (7) and (8) to 
equations (3) and (4) it is possible to formulate 
the Navier-Stokes equations in time-dependent 
boundary-fitted curvilinear coordinates as, 

£('-1"'> + 

Of« 

dp 

J-lU" )  = 0 

{J-lF?) = 0       (9) 

(10) 

where the curvilinear momentum flux tensor (F/) 
is: 

and other curvilinear quantities are defined as: 

-1    _ 

U"    = 

X"    = 

a i
r   — 

det 
dxi 

dp 
dp 
OXJ 

dp dxj 
dxj dr 

dp 
dxj 

d£ 
dxj 

(12) 

(13) 

(14) 

(15) 

Following the method developed by Zang 
[19], to discretize the momentum equation we 
apply the explicit 2nd-order Adams-Bashforth 
method to the convective terms and the off- 
diagonal viscous terms, with the implicit Crank- 
Nicolson scheme for the diagonal viscous terms. 
The addition of the free surface to Zang's method 
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requires a grid flux term which accounts for the 
convective motion of the grid. An explicit Euler 
discretization in the velocity is used for the grid 
flux term with an average of the time (n) and 
(n + 1) metrics. The pressure is removed from 
the momentum equation by a predictor-corrector 
method and a new pressure variable (<j>) is de- 
fined. A further simplification is made by using a 
second-order accurate approximate factorization 
on the left hand side of the discretized momentum 
equation. The resulting system can be presented 
as: 

1. predictor step 

= Si 

2. pressure Poisson equation 

(16) 

n + l 

1 6_ 
J-lU'q (17) 

3. corrector step 

(a) for the Cartesian velocity (on cell cen- 
ters): 

u?+1 = u' 
At 

-jrrBiio) 
n + l 

(18) 

(b)  for   the   normal   component   of   con- 
travariant velocity (on cell faces): 

(t/*)"+1   = Umq - Af ($»' 
6<p n + l 

(19) 

where the pressure variable (<f>) is related to the 
reduced pressure (p) by: 

Bi (p) '- - fo, Bi (<j>) 

J-1 (20) 

the source term of the predictor, equation (16) is: 

Si    = [7#^ {!(<? +"iWI 
1 -   -[c;ri + on

E 

+    Qi + (Jn-Jn+l)uA (21) 

The use of time (n+l) metric terms in the source 
of the predictor is allowed because our numerical 
method (see §3) solves for the time (n + 1) free 
surface position and the curvilinear grid prior to 
the solution of the predictor step. 

Discrete operators from equations (16), 
(18), (20), and (21) are defined as: 

D«»-#r«p »'-'«••JFIU   <22> <5£° 

where a = 1, 2, 3 with no summation. 

DE{)    = 6& {"•'4»L(23) 

D
<<) - 4f{'"",'r£oL<24) 

*<>    =    -£{'-'£"} <26' 
* - U(j-'x'yH»"},27) 

In the operator Qi, we use equation (14) to define: 

1 
2&i 

,-,*' + J -rW (*r 
(28) 

Note that in this method, the effect of 
the moving grid is carried in the grid velocity 
term (Qi) which is the net contravariant flux of 
physical space through the sides of a control vol- 
ume cell as viewed from computational space. 
The grid flux is a part of the source term for 
the computation of the intermediate (u*) veloc- 
ity, but does not explicitly appear in the pressure 
Poisson equation or the corrector steps. There- 
fore, the Poisson solver and corrector steps are 
only indirectly affected by the moving grid. 

2.5     Kinematic boundary condition 

The kinematic boundary condition is the La- 
grangian condition that a particle on the sur- 
face must remain on the surface. It is possible 
to use the Lagrangian condition directly and ad- 
vance the free surface by moving marker particles 
based upon their velocity at the free surface; how- 
ever, this method has been shown to be unstable 
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in long simulations where the free-surface is ad- 
vanced explicitly [20]. For fully-implicit solutions 
where the kinematic boundary condition is coup- 
led in an implicit solution of the velocity, such 
instability should not occur with the Lagrangian 
boundary condition. 

As an alternative to the Lagrangian ap- 
proach, the kinematic boundary condition in 
physical space can be written in a physical space 
Eulerian form which can be obtained through a 
Taylor series expansion [2]: 

8H ÖH dH _ = U3 _ ttl_ _ U2_        (29) 

where H is the height of the free surface mea- 
sured from some horizontal baseline in physical 
space This form of the kinematic boundary con- 
dition is enforced on surface particles that are re- 
stricted to vertical motion in physical space, and 
is ideally suited to restricted curvilinear coordi- 
nate applications. 

It has been demonstrated [12] that curvi- 
linear coordinate transformations (equations (1) 
and (2)) can be applied to the physical space 
Eulerian kinematic boundary condition (equation 
(29)) for use in numerical simulations. The sim- 
ulations that have used this approach [6] [12] 
have retained the underlying vertical motion re- 
striction on surface particles, thereby making the 
methods unsuitable for waves which do not re- 
main single-valued. 

A more general approach that does not 
have a single-valuedness restriction in physical 
space requires deriving the Eulerian kinematic 
boundary condition directly in curvilinear coor- 
dinates. We have not seen this form of the kine- 
matic boundary condition used by any previous 
authors and, therefore, present the derivation 
here even though it is, in some senses, a trivial 
extension of the textbook derivation of the physi- 
cal space Eulerian kinematic boundary condition 
by Mei [2]. 

To directly obtain a curvilinear Eulerian 
kinematic boundary condition, we will consider a 
fixed curvilinear space (f',£2,£3) such that the 
free-surface is single valued in £3. Note that 
we are not requiring the curvilinear coordinate 
system to be boundary-fitted or moving for this 
derivation. Define F as a scalar function for the 
free surface such that: 

F{i ,t) = e -n{^,e,t) = o    (30) 

where £ is a vector representing the curvilinear 
coordinates of a surface position at time t, and 

H is the height of the free surface measured from 
£3 = 0 along a line of constant £* and £2 in fixed 
curvilinear space. After some small time At, the 
free surface has moved, while the curvilinear co- 
ordinate system remains fixed. We require that 
At is small, so the free surface remains single val- 
ued in £3. Therefore, 

F(£ + VAt,t + At) 

= F(£ ,t) + 
dF_ 
dt 

+ U • VF )At 

+ o(Aty (31) 

where U is the contravariant vector velocity of a 
point on the surface. It follows that: 

ÖF_ 

dt 
+ U-VF = 0 (32) 

Substitution of equation (30) provides the curvi- 
linear kinematic boundary condition in fixed 
curvilinear coordinates as: 

£ = <* ;,.** - v>™       (3.3) 
de de 

To discretize the kinematic boundary 
condition, equation (33), we use a time-splitting 
implicit method that applies a Crank-Nicolson 
discretization for the surface position [20]: 

7^["+1l _ ftW  — 

At{Uc U* 
[»] 

+ O(At)2 

6V      + W 

: q = 1,2 (34) 

Now, we require that the fixed curvilinear grid 
used in the above derivation be boundary-fitted 
to the time (n) free surface; that is, at the surface: 

n[n]   _   ^ M constant (35) 
surface 

then the gradients of the time (n) free-surface 
height relative to the £l and £2 curvilinear coor- 
dinates will disappear, since: 

67£[n] 

6p 6? 

SW 
= 0 : q = 1,2       (36) 

An approximate-factorization of equation (34) 
using equation (36) provides our discrete kine- 
matic boundary condition. 
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+ 2   de 
At  ■> d 

I + —U2— +  2       dC- 
(?T+1 - W" 

= At(U3)n + 0(Atf (37) 

Solution of equation (37) in three dimensions re- 
quires the inversion of two tridiagonal matrices to 
obtain 7in+x. To obtain the time (n + 1) physi- 
cal space position of a particle on the surface, we 

can use: 

Ax{  = ^±Ae = 1,3 (38) 

with equation (35) this can be written as: 

x?+i = *? + (ftn+i-ftn)(|p)n (39) 

Our method requires that at time (n) 

there is a fixed curvilinear grid that is boundary- 
fitted in the £3 coordinate. To find the change 
in the £3 coordinates of the free surface at some 
small time later with reference to the same fixed 
grid, we apply equation (37). Then equation (39) 
is used to obtain the physical space coordinates of 
the free surface. The new free surface can then be 
used to generate a new boundary-fitted grid. The 
advantage of this method over a curvilinear trans- 
formation of (29) is that equation (33) is enforced 
upon points which move along a line of constant 
Z1 and f2 curvilinear coordinates rather than a 
line of constant x and y physical coordinates. 
As a result., the single-valuedness requirement in 
physical space is replaced by a single-valuedness 
requirement in curvilinear space, which is a less 
restrictive condition for a boundary-fitted coor- 

dinate system. 

2.6    Dynamic boundary condition 

The full equation for the dynamic boundary con- 
dition is quite complicated, and can be found in 
Scriven [28] and Aris {21]. If we neglect surface 
tension and its gradients, inertia of the surface, 
gradients of the dilational force, force due to total 
curvature and velocity, effects of varying normal 
velocity, normal forces due to dilation and shear, 
and the viscosity of the upper fluid, then we can 
write the dynamic boundary condition for an in- 
compressible fluid in its classic form (similar to 
that in Batchelor [29]): 

Ps+ - Ps- -lneijUiiij 

eijtitij    =    0 

(40) 

(41) 

where the subscripts S+ and S- indicate the 
pressure on the upper and lower sides of the free 
surface, e,j is the rate-of-strain tensor, and nt 
and ti are the unit normal and tangent vectors, 

respectively. 
Equations (40) and (41) are a form of 

the dynamic boundary condition that does not 
provide for straightforward implementation in a 
boundary-fitted curvilinear coordinate numerical 
method; therefore, our approach will begin with 
the tensor form of the full equation from Scriven 
[28]. By applying the same simplifications used 
tcTget equations (40) and (41), along with the 
definition of the reduced pressure (equation (6)) 
and the requirement that the curvilinear coor- 
dinate system be boundary orthogonal, the dy- 
namic boundary condition can be presented as: 

{ps+ - Ps-)    ~   9{Zs+ - Zs-) 
=    -2vUi 

U 

,3     ~     -033 | < 
2U\ + gl2U\ 

(42) 

(43) 

(44) 

where Zs+ and Zs- are the vertical physical 
space coordinates on either side of the free surface 
along a curvilinear coordinate line that is normal 
to the free surface. Defining As as the thickness 
of the free surface, it follows that: 

Zs, <  As (45) 

In order to neglect the thickness of the free sur- 
face while maintaining second order accuracy in 

space, we require: 

As <  (Ax)2 (46) 

where Ax is the grid spacing (measured in physi- 
cal space) at the free surface. Equations (45) and 
(46) allow equation (42) to be written as: 

(Ps+ - ps-) = -2vU% + 0(Ax) (47) 

Note that the differentiation in equations (43), 
(44), and (47) is covariant tensor differentiation 
and requires the- application of Christoffel sym- 
bols for deriving a discrete implementation. 

In order to get the reduced pressure (p) 
from equation (47) into terms of the pressure vari- 
able (<j>), we multiply equation (20) by 6£r/6xi, 
with a sum over i - 1,2,3; then use equations 
(7), (15), (24) and (26) to obtain: 
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J-lg* r  h     =   j-lV H 
6Z< 

At 6?   6 
2 Sxi 6& 

8£< 

"Wje 6xi 6? 
(48) 

Let r = 3 and apply boundary orthgonality so 
that g13 = g23 = 0, then equation (48) can be 
reduced to: 

Sp 

se - O {At) (49) 

A discrete version of equation (49) across a free 
surface of thickness (f|+ — £§_) , in curvilinear 
space, can be written as 

be reduced to a form that can be more readily 
implemented in a numerical method: 

du3 

de 

dUl 

d£3 

ÖU2 

d£3 

2^S+ 

1 „33  (rrl d9zz 
29    \U W 

05-) 

= -9» 

= -g3 

.11 w: 

dt 

.22 

ae 

+ u2^ +   ae 

T + 9 12 du3 

ae 

+ 9 
12 du3 

de 

(56) 

(57) 

(58) 

PS+  — PS-      =     05+  — 0S- 

- o(At)(es+ -es.) (50) 

The relationship between physical and curvilin- 
ear coordinates, equation (38), provides: 

Zs-\ Zs- = |j(3+-3-) (51) 

where Zs+ and Zs- are the vertical physical 
space coordinates on either side of the free surface 
along a curvilinear coordinate line that is normal 
to the free surface. Our grid spacing (in physical 
space) is defined as Ax while the grid spacing in 
curvilinear space is 1, so we can write: 

Zs+-Zs-  = Ax(es+ -£.)       (52) 

Using equations (45) and (46), it follows that, 

Ax > es+ d. (53) 

Because our numerical method uses an explicit 
discretization (Adams-Bashforth) for the con- 
vective terms, we are subject to the Courant- 
Friedrichs-Lewy condition: 

uAt 
Ax 

<  1 (54) 

So, if we apply equations (53) and (54) to equa- 
tion (50), the result is second-order accurate in 
space: 

ps+ - ps- = 05+ - 05- - O(Ax)2    (55) 

Applying equation (55) and some algebra 
and tensor manipulation, the dynamic boundary 
condition of equations (43), (44), and (47) can 

3    NUMERICAL METHOD 

We have expanded the non-staggered grid, 
approximate-factorization, time-splitting method 
of Zang [19] to handle moving grids and a free sur- 
face. Previous authors [22] [27] have noted that 
appropriate discretization of the Jacobian in a 
moving grid method is important in maintaining 
numerical accuracy. In our method, the Jaco- 
bian is updated using the conservation of space, 
equation (8). By applying the definition of the 
grid flux, X, equation (14), with an explicit Eu- 
ler discretization, the conservation of space can 
be written as: 

(J- 
-l\n + l = (J-l)n+At se (j-

lx") 
n + i 

(59) 
Equation (59) requires that the change in the 
physical-space volume contained in a computa- 
tional space cell must be computed by summing 
the fluxes of physical space through the faces of 
the computational space cell. This ensures that 
space is numerically conserved and prevents an 
inconsistency between the Jacobian computation 
and the convective grid flux term, equation (27). 
To demonstrate that our moving grid method is 
second-order accurate in both space and time, nu- 
merical simulations of a decaying vortex (without 
a free surface) have been conducted and are re- 
ported in §5.1. 

The numerical method can be summa- 
rized as: 

1. Use the kinematic boundary condition to ad- 
vance the free surface from time (n) to time 
(n + 1). 
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2. Compute grid and metrics for time (n + 1) 
grid using algebraic or Poisson solution 

method. 

3. Solve for u' at center of cells. 

4. Use quadratic interpolation (QUICK [30]) to 
obtain the normal component of U* on each 

cell face. 

5. Use surface decomposition to solve the Pois- 
son pressure equation for the pressure vari- 
able <j>, coupled with the dynamic boundary 
condition (which solves for the contravariant 
velocity If on the free surface and the pres- 

sure variable <ps- at the free surface). 

6. Compute time (n + 1) Cartesian velocity 

(ui) at cell centers. 

7. Compute time (n + 1) contravariant velocity 
components normal to cell surfaces, Uq■ 

8. Compute all three components of contravari- 
ant velocity Uq on free surface 

The free surface advance (step 1) and the u~ com- 
putation (step 3) are straightforward numerical 
implementations of equations (37) and (16) us- 
ing vectorized tridiagonal solvers. The grid gen- 
eration (step 2) uses the EAGLE code discussed 
in §2.2. The surface decomposition solution of 
the Poisson pressure equation and the dynamic 
boundary condition (step 5) is the most interest- 
ing part of our method and is covered in-depth in 
§4. Applying the corrector equations (steps 6 and 
7) provides the three components of Cartesian ve- 
locity at the cell centers in the fluid volume, and 
uiie contravariant flux at each cell edge by solving 
equations (18) and (19). In order to advance the 
free surface using the kinematic boundary condi- 
tion in the next time step, it is necessary to com- 
pute all three contravariant velocity components 
on the free surface (step 8). This can be done 
by using the dynamic boundary condition, equa- 
tions (56), (57), and (58), and the contravariant 
velocity normal to the free surface (computed in 
the surface decomposition). 

4    SURFACE    DECOMPO- 
SITION 

Inherently, the invoking of the dynamic boundary 
condition presents difficulties for a Poisson solver 
due to the complicated interrelation between the 
boundary pressure and velocity gradients that is 

found in equations (56), (57), and (58). It is pos- 
sible to directly enforce the dynamic boundary 
condition in the relaxation of the Poisson pres- 
sure equation; however, this is likely to impact 
future utility of the code. The difficulties in- 
volved can be illustrated by considering that the 
dynamic boundary condition directly affects only 
the layer of control volumes adjacent to the sur- 
face; however, in a multigrid method, this influ- 
ence is moved progressively further into the do- 
main as the grid is coarsened. This presents chal- 
lenges in the derivation and coding of the restric- 
tion and interpolation operators that are used for 
mesh coarsening and refinement. Our investiga- 
tions lead us to believe that this will make it diffi- 
cult to develop future refinements of the dynamic 
boundary condition with reasonable amounts of 

effort. 

To get around this problem, we have 
adapted the domain decomposition methods of 

Zang [31] to split the solution of the dynamic 
boundary condition from the solution of the pres- 
sure Poisson equation. That is, we decompose 
our solution into a two-dimensional surface and 
a three-dimensional volume for the pressure solu- 
tion step. In Zang's method (as originally devel- 
oped), the pressure Poisson equation is relaxed it- 
eratively through decomposed domains using one 
or two V-cycles of the multigrid solver on each 
domain. Pressure and velocity boundary condi- 
tions are exchanged only at the finest multigrid 
level. The result is a method that quickly con- 
verges to a consistent pressure field over decom- 
posed domains. Our new adaptation manipulates 
the dynamic boundary condition into an equation 
for the pressure at the free-surface and an equa- 
tion for the contravariant flux across the free- 
surface. Therefore, we can alternately sweep the 
free-surface and the volume in a manner similar 
to that presented by Zang |31]. Our information 
exchange at the free-surface provides the pressure 
Poisson equation with a Dirichlet contravariant- 
velocity boundary condition without requiring 
any changes in the restriction and prolongation 
operators. This method is more suitable for fu- 
ture expansions since the dynamic boundary con- 
dition can be changed by working only with the 
surface domain, without affecting the volume do- 
main and the fluid-flow Poisson solver. 

In addition to those already presented, 
two other types of equations are required to ob- 
tain our discrete implementation of the dynamic 
boundary condition. One is a discrete represen- 
tation of the contravariant velocity on the free 
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surface based upon the gradient of the contravari- 
ant velocity at the free surface and below the free 
surface: 

U • « =  u"> 
S-l 

1   8 
+    4# 3^? (60) 

5-1 

where subscript (5) indicates the discrete quan- 
tities are evaluated at the cell face on the free 
surface, and subscript (5—1) indicates the quan- 
tities are evaluated at the cell center inside the 
free surface. 

The second type of equation required for 
completeness is an interpolating method for com- 
puting the first and second derivatives of the pres- 
sure variable (<f>) at the free surface from the pres- 
sures at and below the free surface. For a two- 
dimensional flow with a one-dimensional surface 
we have tested both linear and quadratic interpo- 
lating forms, which can be written in the general 
form: 

6<p 

= «i <f>S-   + OC2<i>S-l  + <*2<i>S-2     (61) 

^      = 
62d> 

=      "4^5- 

S 

+  Q50S- -I- a&4>s-2   (62) 

where quantities subscripted with 5 and 5 — 1 
are as noted above, while 4>s- indicates the pres- 
sure in the water at the free surface, and <ps-2 
indicates the pressure at the center of the second 
cell center inside the free surface. 

The derivation of the three-dimensional 
discretized equations to be enforced as the 
dynamic boundary condition in the two- 
dimensional surface domain is too long to present 
in this paper. The method requires that equa- 
tions (56), (57), (58), (60), (61), and (62), be 
manipulated to express the dynamic boundary 
condition as two linear operators: one for the con- 
travariant velocity component normal to the free 
surface, 

Ly (t/j) = 5i (fa- ,<PS-I, U's^ ,i,i>)   (63) 

and a second operator for the pressure in the wa- 
ter at the free surface, 

Litfs-) = S2 (4>s+, U"s-i , U% , j)      (64) 

where <j>s+ indicates the pressure in the air at the 
free surface. 

For a three-dimensional flow with a two- 
dimensional free surface, the linear operators L\ 
and Li take a discretized Poisson-like form and 
are solvable by multigrid methods. For the two- 
dimensional flows with one-dimensional surfaces 
that we have tested to date, the linear opera- 
tors take on tridiagonal form and are solved by 
inversion. The coupled two-dimensional surface 
decomposition method can be summarized as: 

1. Solve the free-surface pressure equation (64), 
for an estimated free-surface pressure {<j>s-), 
using the pressure gradient and contravari- 
ant velocity from the last iteration. 

2. Solve the free surface contravariant velocity 
equation (63) for an estimated contravariant 
velocity ([/J) at the surface. 

3. Repeat steps 1 and 2. 

4. Perform one multigrid V-cycle, relaxing 
equation (17) to obtain a pressure estimate 
in volume. 

5. Compute the estimated free-surface pressure 
gradient, 7, and second derivative of pres- 
sure, ip, from equations (61) and (62) respec- 
tively. 

6. Repeat steps 1 through 5 until convergence. 

We expect that the three-dimensional 
implementation of this method (currently under 
development) will involve two V-cycles of the free 
surface pressure and contravariant velocity multi- 
grid equations for each V-cycle of the Poisson 
pressure equation. This method is likely to be 
more costly in computational time than a direct 
application of the dynamic boundary condition, 
but the overall computational costs should still be 
reasonable since they should be less than that for 
a three-dimensional, two-grid, domain decompo- 
sition case, such as Zang [31] has already shown 
to be feasible. 

5    SIMULATION RESULTS 

5.1     Decaying Vortex with a Mov- 
ing Grid 

The use of second-order accurate discretizations 
does not guarantee second-order accuracy in a 
numerical simulation [32]. This is especially true 
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with boundary-fitted curvilinear coordinates and 
moving grids. We have conducted several simu- 
lations of a decaying vortex to demonstrate that 
our Navier-Stokes solution method is second- 
order accurate in time and space with a moving 
grid, The decaying vortex is an analytical solu- 
tion of the two-dimensional Navier-Stokes equa- 
tions over the domain of (0 < X\,X2 < *") that 
can be written as: 

ui    =    — cos (zi) sin (2:2) e-2' (65) 

U2    =        sin(ri)cos(x2)e-2t (66) 
p   =    -0.25 [cos 2xi + cos2x2]e"4t (67) 

Figure (3) provides simulation results 
showing the reduction of the RMS velocity er- 
ror with the increase in grid points from 8x8, to 
16x16, to 32x32. Three different error lines are 
shown: the first represents the results for a fixed 
grid; the second is for a grid that is fixed in shape, 
but translates through the decaying vortex do- 
main; the third is for a grid that has boundaries 
which remain fixed, but whose interior grid lines 
are stretched with each time step. It can be seen 
that accuracy is approximately second-order in 
all these cases. 

s 
cc 

X 

1 

\\ * 

•0-       fixed grid 

 x  stretching grid 

grid points in one direction (n) 

Figure 3: Decaying vortex accuracy 

5.2    Standing Waves 

To test the ability of our code to simulate a 
free surface, we performed simulations of stand- 
ing waves in a two-dimensional rectangular basin. 
Free-slip boundary conditions were used for the 
sides and bottom of the 32 x 32 cell domain 

so that the simulations could be compared to 
nonlinear and linear standing wave theory. The 
grid points were distributed evenly in both di- 
rections. Using the wavelength L = 1 to non- 
dimensionalize the domain, the width is 0.5, and 
the depth d is 0.5. Simulations were run for 
small-amplitude waves with a non-dimensional 
wave height (or steepness) of 0.01 and for finite- 
amplitude waves with a non-dimensional wave 
height of 0.1. Using the wave amplitude a and 
the wave number k, these cases have ak values of 
0.031 and 0.31, respectively. We conducted simu- 
lations at Reynolds numbers of 10, 100, and 1000 
to illustrate capabilities of the simulation code 
with the relatively coarse grid. The Reynolds 
number is denned as: 

Re = 
LU (68) 

with v as the kinematic viscosity, and U as the 
characteristic Cartesian velocity based upon the 
wave amplitude (a) and the wave frequency (w): 

U = aui (69) 

From Lamb [33], the damping of a free 
wave due to viscosity as a function of time can 
be approximated from: 

a(t)  =  a(0)e' -2vkJt (70) 

Note that this is based upon an energy dissipation 
argument for linear waves in deep-water, so we 
can only expect this to provide a rough guide to 
our expected damping. 

From Wiegel [34] we can obtain predic- 
tions of wave period and shape for linear and non- 
linear standing waves. Both linear and non-linear 
irrotational wave theory predict the wave period 
(T) for an inviscid wave as: 

T = 
2vL /     ,  2-Kd 
     tanh —— 

9    \ L 

-1 

(71) 

For our simulation domain this provides a theo- 
retical period of 1.1339 seconds. 

According to linear theory for small am- 
plitude waves, the wave shape should be a sinu- 
soid, where the surface height (H) above the still 
water level is: 

H(x,t) = asin(kx)s'm(ut) (72) 

where u is the wave frequency (2TT/T). Nonlinear 
theory for finite amplitude standing waves pre- 
dicts a wave shape given by: 

804 



case ak Re initial 
wave shape 

comparison of simulation and theory: 
period 

difference1 
wave height 
difference2 

linear wave 
shape difference3 

nonlinear wave 
shape difference3 

la 
lb 

0.031 
0.031 

10 
10 

linear 
non-linear 

0.32 % 
0.32 % 

1.1% 
1.1% 

0.39 % 
.     0.37% 

0.32% 
0.31 % 

2a 
2b 

0.031 
0.031 

100 
100 

linear 
non-linear 

0.23 % 
0.23 % 

0.76-% 
0.64% 

1.5% 
1.1% 

0.54 % 
0.22 % 

3a 
3b 

0.31 
0.31 

10 
10 

linear 
non-linear 

11% 
11% 

0.59 % 
0.64% 

0.33% 
0.33 % 

0.20 % 
0.12% 

4a 
4b 

0.31 
0.31 

100 
100 

linear 
non-linear 

0.87 % 
0.87 % 

1.9% 
1.1% 

2.4% 
2.2 % 

0.59 % 
0.37 % 

5a 
5b 

0.31 
0.31 

1000 
1000 

linear 
non-linear 

0.32 % 
0.87 % 

6.4% 
3.7 % 

1.2% 
1.2% 

0.53 % 
0.32 % 

NOTES: 

1. "period difference" is meaii difference between the simulation wave period and theoretical period for the four 

oscillations simulated, and is expressed as a percentage of the theoretical period. 

2. "wave height difference" is RMS difference between the simulation and theoretical wave height for crests at x = 0 

from the first through fourth periods, and is expressed as a percentage of the wave height. 

3. the "wave shape difference" is the RMS difference between the simulation wave shape and theory for one wave, 

expressed as a percentage of the wave height, and measured at the second wave period for case 3 and the 

fourth wave period for all other cases. 

Table 1: Simulation Summary 

H (x,t) = otsin (fcx)sin(u^) 

— -ka~ coth (kd) cos {'2kx) 

( . , ,    „       3cos(2wt) + tanlr(/td)] 
sin- M) \  ! > I    (73) 

I 4sinh  (kd) J 

Note that for a small amplitude standing wave, 
the wave shape predicted by linear and non-linear 
theory are practically indistiguishable. 

We have run simulations using both the 
linear and non-linear free-surface shape as an ini- 
i.al condition in order to examine the ability of the 
method to move toward the correct free-surface 
shape. A summary of the simulation conditions 
and comparisons between simulation results and 
theory are presented in table (1). Note that the 
results show excellent agreement for both the 
nonlinear wave shape and viscous damping of 
the wave height. In all cases, the wave shape is 
closer to the theoretical nonlinear shape than to 
the linear shape. The wave shape- difference was 
computed independently of the effects of viscous 
damping by using the simulated wave amplitude 
in equations (72) and (73) instead of the theoret- 
ical amplitude from equation (70). Similarly, an 
adjustment was made for the difference between 
the theoretical period and the simulation period 
by applying a small time shift to adjust the the- 
oretical crest to the same time as the simulation 

crest. The simulations show an increase in the 
simulation wave period with increasing viscosity, 
which is a realistic physical result. 

To provide a better picture of the simu- 
lation accuracy, we present two types of graphs 
which compare the results of typical simulations 
to linear and nonlinear theory. Figures (4), (6), 
(8), (10), and (12) show the height of the free 
surface at. the wall x = 0 as a function of non- 
dimensional time (which is obtained using the 
theoretical period computed from equation (71)). 
The lines for linear and nonlinear theory are 
based on equations (72) and (73) with equation 
(70) used to compute the theoretical amplitude 
as a function of time. Figures (5), (7), (9), (11), 
(13), and (14) compare the wave shape for the 
simulation wave and theory. 

Figures (4) and (5) present results for 
case lb, showing that the simulation of a small 
amplitude standing wave at a low Reynolds num- 
ber maintains the correct, wave profile and is 
damped as predicted by theory. The results for 
case la (using a linear initial wave shape), are 
indistinguishable from the results from case' lb 
(using the non-linear initial wave shape). Fig- 
ures (6) and (7) present results for the small am- 
plitude standing wave at a Reynolds number of 
100, case 2b. These graphs demonstrate that the 
simulation of viscous, small-amplitude wave still 
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nondimensional time 

"~~ nonlinear ltl«ory  " ~ " 

Figure  4:    Free  surface   wall  height,   case   lb; 
Re = 10, ak = 0.031 

nondimensional x coordinate 

Figure  5:    Free  surface   wave  shape,   case   lb; 
Re - 10, ak - 0.031 

nondimensional time 

"■*"" nonlinaof thaoty   " ™ ■ 

Figure   6: Free   surface   wall   height,   case   2b: 
Re = 100, aJt = 0.031 

nondimynsional x coordinate 

Figure Free   surface   wave   shape,    case2b; 
Re = 100, ak = 0.031 

s 8 

If 
2 3 

nondimensionaJ time 

■ nontin«ar theory 

Figure   8:    Free  surface   wall  height,   case   3b; 
ße = 10, ak = 0.31 

nondimensional x coordinate 

Figure  9:    Free  surface   wave  shape,   case  3b; 
Re = 10, ak = 0.31 

follows the linear and nonlinear theory both in 
wave shape and in period. 

Figures (8) and (9) present results for the 
finite amplitude standing wave at Re = 10, case 
3b. In this case, the wave is rapidly damped out. 
It can be seen that the period for the simulation 
is significantly greater than that for the theory. 
This result is not unreasonable, as one would ex- 
pect that a highly viscous tlow will oscillate at 
a slower period than that predicted by inviscid 

theory. 

Figures (10) and (11) present results for 
the finite amplitude standing wave at Re = 100 
with an initial nonlinear wave shape, case 4b. It 
can be seen that, linear and non-linear theory are 
not coincident and the simulation wave shape fol- 
lows nonlinear theory very closely. 

Figures (12) and (13) present results for 
case ~>b (Re - 1000) for an initially nonlinear 
wave shape. It can be seen that this case is at 
the limit of our ability to resolve the viscous ef- 
fects with the coarse grid used in the simulation. 
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Figure   10:    Free surface   wall height,   case 4b; 
Re - 100, ak = 0.31 

* linear theory 

nondtmensonal x coordinate 

Figure  11:    Free surface  wave shape,   case 4b; 
Re - 100, ak = 0.31 

|   E 
o   O 

II 

noncmensional lime 

~■" noiknear theory   ~ *" ' * linear theory 

Figure   12:    Free surface   wall  height,   case  5b; 
Re - 10UÜ, ak = 0.31 

" linear theory 

nondimens>onal x coordinate 

Figure   13:    Free surface   wave shape,   case  5b; 
Re - 1000. ak = 0.31 

To show that the simulation can evolve 
a nonlinear wave from an initially linear profile, 
figure (14) presents the wave shape for case 4a. 
which is similar to case 4b. (shown in figure (11)), 
except that the initial wave shape is a sinusoid 

from linear theory. 

-o.oos " 

-0.01 ■■ 

-O.0IS ■• 

•0.02 

•o.oss 

«mutation 

■ nonlinear theory 

■ linear theory 

nondimonsional x coordinate 

Figure   14:    Free surface  wave shape,   case 4a; 
Re - 100, ak = 0.31 

CONCLUSION 

The numerical method presented has been shown 
to be second-order accurate in time and space 
with a moving grid, and has been shown to 
effectively simulate two-dimensional nonlinear 
waves. The method presented for deriving the 
kinematic boundary condition does not artifi- 
cially restrict the free surface movement or limit 
wave shapes to single-valued functions in phys- 
ical space. The surface decomposition method 
presented has been shown to be effective in the 
simulation of two-dimensional non-linear waves, 
and it is expected that future three-dimensional 
implementation will provide an effective method 
for invoking extremely complicated implementa- 
tions of the dvnamic boundary condition. 
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A Panel Method for Lifting Potential Flows Around 
Three-Dimensional Surface-Piercing Bodies 
Z. Zou, H. Söding (Universität Hamburg, Germany) 

ABSTRACT 
A panel method using Rankine singulari- 

ties for calculating steady three-dimensional lift- 
ing potential flows about surface-piercing bod- 
ies is presented. The disturbance potential is 
expressed by a source distribution on the body 
surface and free surface, and by a normal dipole 
distribution on the body centerplane and in the 
wake. The singularity strengths are determined 
so that the corresponding boundary conditions 
and the Kutta condition at the trailing edge are 
satisfied. 

Numerical procedure is especially deve- 
loped for a ship in steady motion at small drift 
angles. The flow around the ship is divided into 
a symmetric one due to the longitudinal motion 
of the ship and an antisymmetric one due to the 
lateral motion, which are determined in sequence. 
Numerical results are presented for three ship 
hulls: a Wigley hull, a Series 60 with CB = 0.60 
and a Mariner type hull. 

NOMENCLATURE 

Ä        = V^V^» ■ V$),    approximation to the 
particle acceleration 

B Hull breadth, or 
Coefficient as defined in Equation (8) 

CN      = N/~pV2SL,   yaw-moment coefficient 
Cw       = Rw/kpu2S,   wave-resistance coefficient 
Cy       = Y/\pV2S,   lateral-force coefficient 

F Force acting on the hull due to the pres- 
sure of the fluid 

Fn       = u/y/gL,    Froude number 
g Gravitational acceleration 
h Water depth 
L Hull length 

M 

N 
Nv 

N' 

V 
Rw 
S 
SB 
T 
u 
V 

V. 
W 

x,y, 
Y 
Yv 

Y' 

ß 
AT 
AT? 

C 
Z 

P 

4> 

Moment acting on the hull due to the pres- 
sure of the fluid 
= ("l, n2, "3)1   unit normal vector point- 
ing into the hull 
Yaw moment 
= ^.)     hydrodynamic coefficient 
= Nvj\pLzu,  non-dimensional hydrody- 
namic coefficient 
Pressure of the fluid 
Wave resistance 
Wetted hull surface area at rest 
Wetted hull surface 
Hull draught 
Forward velocity of the ship 
Sway velocity of the ship 
= (ti,v,0),   ship's speed 
= V$ — Va,   approximation to the relative 
velocity 
Cartesian coordinates 
Lateral force 
_ ÖY -g-,   hydrodynamic coefficient 
= Yv/\pL2u,    non-dimensional hydrody- 
namic coefficient 

Drift angle 
Dynamic sinkage 
Dynamic trim 
Negative free-surface elevation 
Approximation to C 
Water density 
= 2AT/F2L,    non-dimensional sinkage 
= 2Ad/F%,   non-dimensional trim 
Disturbance velocity potential 
Approximation to <j> or <f>a 

Symmetric velocity potential due to the 
longitudinal motion of the ship 
Antisymmetric velocity potential due to 
the lateral motion of the ship 
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1.   INTRODUCTION 

About thirty years ago, three-dimensional 
panel method for flow computation began its 
development and design application as Hess and 
Smith (1) proposed the first three-dimensional 
surface-source method for calculating incompres- 
sible nonlifting potential flows about arbitrary 
configurations in an unbounded fluid. At 
the early development stage, efforts were made 
mainly by investigators in the field of aerody- 
namics for whom lift force is all-important, so 
that emphasis was put on the means of hand- 
ling lift. A three-dimensional panel method for 
lifting potential flows was developed by Rubbert 
and Saaris (2) by adding dipole panels on the 
wing camberplane to the surface-source method 
of Hess and Smith. Alternatively, Hess (3) ex- 
tended the method of Hess and Smith to lifting 
potential flows in an unbounded fluid by using 
dipole panels on the surface of the lifting portion 
of the configurations. Since then, numerous panel 
methods for computing lifting potential flows in 
an unbounded fluid have been successfully deve- 
loped in the field of aerodynamics. 

In contrast with the application in aero- 
nautical engineering, three-dimensional panel me- 
thods were applied a little later to marine hydro- 
dynamics problems involving surface ships, and 
main development efforts were directed towards 
nonlifting flows. A typical case is the wave re- 
sistance computation. Since the pioneering work 
of Dawson (4) who used Rankine source distribu- 
tion on both the hull surface and the portion of 
the undisturbed free surface surrounding the hull, 
various three-dimensional Rankine source panel 
methods with different degree of complexity re- 
garding the free-surface boundary condition, from 
linear to fully nonlinear, have been developed for 
solving the steady wave resistance problem. In 
recent years, there have also been a few efforts 
devoted to the unsteady ship motion problem by 
using three-dimensional Rankine panel methods. 
However, in almost all of the approaches, lifting 
effects remain unconsidered. 

On the other hand, many problems in ma- 
rine hydrodynamics are associated with lifting 
flow phenomena. A body with forward speed will 
experience hydrodynamic lift force and moment 
whenever the body or the flow is asymmetrical. 
For a symmetric body, e.g. a ship, such effects 
can be due to maneuvering and/or transverse mo- 
tions in waves, or due to interaction with other 
bodies or rigid boundaries in the neighbourhood. 
Because of the complexity of the flow phenom- 
ena involved, lifting flows around surface-piercing 

bodies were calculated in the past mainly under 
assumptions concerning the body geometry and 
speed. Traditionally, thin-wing theory or slender- 
body theory are used and/or the free surface is 
replaced by a plane rigid wall. However, in order 
to understand better the hydrodynamic mecha- 
nisms involved, more rational numerical methods 
which can account for three-dimensional and free- 
surface effects should be applied. 

Regarding the calculation of three-dimen- 
sional lifting potential flows around surface-pier- 
cing bodies, there are only few papers published. 
Xia and Larsson (5) developed a panel method 
for computing free-surface flows around yawed 
three-dimensional bodies by combining Dawson's 
method for nonlifting free-surface flows with the 
method of Hess for lifting flows in an unbounded 
fluid. Only keels of sailing yachts and foils were 
treated as lifting portion of the configurations. A 
similar method was proposed by Raven (6), but 
with vortices inside the lifting surface and with 
a Kutta condition in a form similar to the hull 
boundary condition. 

Alternatively, Maniar et al. (7) developed a 
three-dimensional panel method using Kelvin sin- 
gularities for calculating steady flow past a yawed 
surface-piercing plate, while Guilbaud et al. (8) 
reported an effort with Kelvin singularity panel 
method for calculating free-surface lifting flows 
including thickness effect. 

A more practical panel method for free- 
surface lifting flows with marine application was 
proposed by Nakatake et al. (9). They con- 
sidered steady motion of a yawed ship, utilized 
a Rankine source distribution on the hull sur- 
face and a part of the free surface and a dis- 
tribution of Rankine type vortices on the cen- 
terplane of the ship, with the free vortices ex- 
tending obliquely backwards into infinity. The 
nonlinear free-surface boundary condition and a 
pressure-equality Kutta-condition were satisfied 
iteratively. Numerical results were presented for 
a Wigley hull in deep water without sinkage and 
trim. 

In the present paper, a three-dimensional 
panel method using Rankine singularities for 
computing free-surface lifting potential flows is 
described. This method is similar to that of 
Nakatake et al. and is especially developed for 
conventional ships in steady motion at small 
drift angles with free-surface effects. The hull is 
treated as a lifting body which pierces the free 
surface. In addition to the Rankine source dis- 
tribution on the hull surface and a portion of the 
free surface surrounding the hull, a distribution of 
Rankine type normal dipoles on the centerplane 

811 



of the ship and in the wake is used to create cir- 
culation. Correspondingly, a Kutta condition is 
imposed along the trailing edge of the hull. 

In the next section, the physical problem 
is first described mathematically, resulting in a 
boundary-value problem. Then the method of 
solution is explained in Section 3. In Section 4, 
numerical results are presented and discussed for 
three ships, a Wigley hull, a Series 60 hull with 
CB = 0.60 and a Mariner type hull, and com- 
pared with other published numerical and experi- 
mental results where available. 

2.   MATHEMATICAL FORMULATION 
A surface ship in steady oblique motion 

in deep water or in shallow water with constant 
depth is considered. The fluid is disturbed only 
by the ship. 

We adopt a right-handed ship-fixed (except 
for the squat) Cartesian coordinate system o-xyz. 
The origin of the system is located at the intersec- 
tion of the centerplane, the midship section and 
the undisturbed free surface, with i-axis pointing 
forward, z-axis vertically downward and y-axis to 
starboard. The ship's speed V, is directed under 
an angle, the drift angle /?, relative to the x-axis, 
see Figure 1. The ship is free to sink and trim. 

77777777777 
Figure 1.   Coordinate system 

It is assumed that the fluid is inviscid and 
incompressible. The absolute velocity of the fluid 
is represented by the gradient of a disturbance ve- 
locity potential 4>(x, y, z) which satisfies Laplace's 
equation in the fluid domain and the following 
boundary conditions: 

1) Kinematic boundary condition on the free 
surface z = C(x>v): 

(V<£-K)-VC = <^ (1) 

where V, = (u, v, 0), with u and v the forward 
and sway velocity of the ship, respectively; 
C, is the negative free-surface elevation. 

2) Dynamic boundary condition on the free 
surface z = £(x,y): 

C = - (-V, • V<t> + iw • V^ ,      (2) 

where g is the gravitational acceleration. 

3) Kinematic boundary condition on the wet- 
ted ship surface SB '■ 

V4> ■ n = Vs • n, (3) 

where n = (ni,02,03) is the unit normal 
vector pointing into the hull. 

4) Kinematic boundary condition on the bot- 
tom z — h: 

4>z = 0. (4) 

5) Disturbance-decay condition at infinity: 

V*-> (0,0,0). (5) 

Moreover, the velocity potential should 
satisfy a radiation condition which states that no 
waves appear ahead of the ship at a great dis- 
tance, and a Kutta condition which requires the 
velocity at the trailing edge to be finite. 

Eliminating the unknown free-surface ele- 
vation C from (1) and (2), we obtain a single 
boundary condition on the free surface: 

(V<£ - V,) ■ V I -V, ■ V<f> + -V<f> ■ V<t>\ = g4>z 

on Z = C(T,J/).      (6) 

The obtained boundary-value problem for 
the velocity potential is highly nonlinear, since 
the boundary conditions on the free surface are 
nonlinear and should be imposed on the bound- 
ary, the position of which is not known a priori. In 
order to solve this problem iteratively, the bound- 
ary conditions on the free surface are linearized 
about Z and $, the approximations to C an<i </■> 
respectively. Using Taylor series expansions and 
neglecting the higher-order terms, we obtain from 
(2) and (6): 

w -V(i>- |v$ - v$ - gZ 
g _   W  ■ V$2 

on z = Z(x,y),    (7) 

C-Z  = 

{2[Ä - V(f3 • V$)] + BW} ■ V4> 

+W ■ [(W ■ V)V<£] - g<j>z 

= 2V*-[Ä-V(K-V#)] 

+B[-V$-V$+$Z 

on z = Z(x,y),   (8) 
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where 

W  =  V$-V,., 

B = 
g-W ■ V$z 

From the solution of this boundary-value 
problem we can calculate the force and moment 
acting on the hull: 

F 

M 

=    //   pfidS, (9) 

=    //   p(Rxn)dS, (10) 

where R = {x, y, z) is the position vector, and p 
the pressure which is given by 

p = p(v,-V<f>-^V<j>-V4> + gz\,       (11) 

where p is the density of the fluid. 

3.   METHOD OF SOLUTION 

3.1   General 
The boundary-value problem is solved by 

a panel method using Rankine singularities. The 
velocity potential is represented by a source dis- 
tribution on the ship surface and a part of the 
free surface, and by a normal dipole distribution 
on the centerplane of the ship and downsteam 
of the trailing edge. The ship surface up to a 
horizontal plane above the undisturbed free sur- 
face is discretized into triangular or quadrilateral 
panels. On each of the panels, a source distribu- 
tion with constant density is used. The portion of 
the free surface surrounding the ship is discretized 
into quadrilateral panels. The source distribu- 
tion on the free surface is raised to a horizontal 
plane above the free surface and replaced by point 
sources as in Jensen et al. (10). Additionally, the 
semi-infinite dipole sheet is discretized and re- 
placed by a system of discrete horseshoe vortices. 
The singularity strengths are determined so that 
the boundary conditions on the hull surface and 
free surface and the Kutta condition at the trail- 
ing edge are satisfied simultaneously. In case of 
shallow water, the method of images is used to 
satisfy the boundary condition on the bottom. In 
order to satisfy the radiation condition, the nu- 
merical technique of "staggered grid" suggested 
by Jensen et al. is used. Under the assumption 
of small drift angles, the point sources above the 

free surface are shifted backwards relative to the 
collocation points on the free surface only in the 
longitudinal direction. 

3.2   Decomposition of the Flow 
In comparison with the wave resistance 

problem, the flow around a yawed ship is not 
symmetric about the centerplane of the ship. To 
solve the resulting boundary-value problem by 
using a panel method, the boundary surface on 
both sides of the centerplane must be paneled and 
covered with singularities, so that the computa- 
tional burden would be increased substantially. 
In order to avoid this, the flow is divided into 
a symmetric one due to the longitudinal motion 
and an antisymmetric one due to the lateral mo- 
tion of the ship. Correspondingly, the velocity 
potential <j> consists of a symmetric part <f>a and 
an antisymmetric part <p: 

<t> = 4>, + <p- (12) 

It is assumed that the drift angle is so small 
that <p < <f> on the free surface. Hence the original 
boundary-value problem for 4> can be linearized 
about the solution of the symmetric flow. This 
results in a boundary-value problem for <j>, and 
another one for tp, which can be determined in 
sequence. 

Consequently, only one half of the bound- 
ary surface and flow field need to be considered, 
and the centerplane of the ship serves as an image 
plane. The source strengths on the image body 
and on the original body are equal in magnitude, 
and have same sign for the symmetric flow and 
opposite sign for the antisymmetric flow, respec- 
tively. On the other hand, the distribution of 
dipoles or vortices is only required for the anti- 
symmetric flow, and, as explained in the follow- 
ing, will be put on the symmetry plane of the 
ship. 

3.3   Solution for the Symmetric Flow 
The boundary-value problem for the sym- 

metric velocity potential is solved first. This 
problem corresponds to the wave resistance prob- 
lem with 

V, = (U,0,0), (13) 

where U = u is the forward speed of the ship. 

For this nonlifting flow problem, only a 
symmetric source distribution on the hull sur- 
face and free surface is required, while the source 
strengths are determined by satisfying boundary 
conditions at the collocation points on the hull 
surface and free surface. The dipole distribution 
and the corresponding Kutta condition are un- 
necessary here. 

813 



From (3), (8) and (13) we obtain 

T7<f>,-n = U ni onSß, (14) 

[2(I-t/V#*) + W]-V<^ 

+W ■ [{W ■ V)V<j>,] - 9<$>,z 

= 2V$ ■ {Ä - UV$X) 

ßv$v$ + gzj 
onz = Z(x,y).   (15) 

+5 

Here # and Z are approximations to <f>s 

and C due to the longitudinal motion. 
Correspondingly, we obtain from (7) and 

(13): 

W-V4>s- JrV$  V$-gZ 

on z = Z{x,y).  (16) 

C  =  Z + 

This boundary-value problem is solved 
iteratively, starting from Z = 0 and $ = 0 
(Neumann-Kelvin formulation). During each ite- 
ration step, the source strengths are determined 
from (14) and (15) at first. Then the free-surface 
elevation is calculated using (16); the wave re- 
sistance, the vertical force and trim moment are 
obtained by integration of the pressure over the 
wetted ship surface; and the sinkage and trim are 
determined from the dynamic equilibrium of the 
ship. This iterative procedure is continued un- 
til the nonlinear boundary condition on the free 
surface is satisfied. 

3.4   Solution for the Antisymmetric Flow 
After the problem for symmetric flow is 

solved, we obtain from (3), (8), (12), (14) and 
(15) a linear boundary-value problem for the an- 
tisymmetric velocity potential <p: 

Vy • n = v 7i2 on SB, (17) 

{2{Ä - V(V, ■ V*)] + BW) ■ V^ 

+W ■ [(W • V)Vy>] -g<Pz=0 
onz = Z(x,y).    (18) 

Here $ and Z are now the symmetric ve- 
locity potential and free-surface elevation due to 
the longitudinal motion of the ship, and V, = 
(u,v,0). 

The antisymmetric flow is a lifting poten- 
tial flow.   To represent this flow, not only the 

antisymmetric source distribution on the hull sur- 
face and free surface, but also the dipole distri- 
bution on the centerplane of the ship and in the 
wake are required. Under the assumption that 
the drift angle is small, the dipole sheet down- 
stream of the trailing edge is put on the symmetry 
plane of the ship. This simplification is necessary, 
because otherwise the decomposition of the flow 
into a symmetric part and an antisymmetric part 
would be disturbed. 

Corresponding to the dipole distribution, 
a Kutta condition should be imposed along the 
trailing edge of the hull. In this paper, it is 
applied indirectly by requiring the pressure on 
the collocation points of the hull panels adjacent 
to the trailing edge on both sides to be equal. 
This pressure-equality Kutta condition is nonlin- 
ear and must be satisfied by an iterative proce- 
dure, see e.g. Hess (3) and Nakatake et al. (9). 
However, by dividing the velocity potential <f> into 
a symmetric part $ and an antisymmetric part <p, 
this condition can be linearized, Zou (11), in the 
form 

V$-Vy>-u^ = t)$r (19) 

(19) is linear about the antisymmetric ve- 
locity potential <p and is satisfied at the collo- 
cation points of the hull panels adjacent to the 
trailing edge of the hull on the considered (star- 
board) side. Supposing that there are NK panels 
on the hull adjacent to the trailing edge, so there 
will be NK linear equations obtained by satisfying 
(19). Consequently, the number of unknowns in- 
troduced by the dipole distribution should not ex- 
ceed NK- TO ensure this, the semi-infinite dipole 
sheet on the symmetry plane of the ship is di- 
vided horizontally into strips according to the hull 
panels adjacent to the trailing edge. On each 
strip, the dipole strength is assumed to change 
linearly from zero at the leading edge to a non- 
zero value at the trailing edge. This dipole dis- 
tribution is equivalent to a vorticity distribution, 
the vertical component of which is independent 
of the longitudinal coordinate, between the lead- 
ing edge and trailing edge. For steady flows, the 
dipole strength on each strip on the free dipole 
sheet must be constant and equal to the dipole 
strength on the ship at the trailing edge in order 
to satisfy the pressure-continuity condition cross 
the dipole sheet. Correspondingly, the vertical 
component of the equivalent vorticity distribu- 
tion downstream of the trailing edge is zero. In 
the numerical procedure, vorticity distribution in- 
stead of dipole distribution is used. This vorticity 
distribution is, after discretization, replaced by a 
system of horseshoe vortices. Figure 2 illustrates 
the distribution of horseshoe vortices on the fc-th 
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strip, where the strip between the leading and 
trailing edge is discretized into .\'x panels. 

-,'" 

Figure 2. Horseshoe vortices on the k-th strip 

with7w = 7(') = ... = 7£_1 = 7(*) 

The boundary conditions (17), (18) and 
the Kutta condition (19) are used to determine 
the antisymmetric velocity potential <p. In con- 
trast with the calculation of symmetric flow, the 
antisymmetric flow is calculated once only, thus 
the nonlinear effects of the antisymmetric poten- 
tial on the free-surface conditions are neglected. 

From the solutions for the symmetric and 
antisymmetric velocity potential we can calculate 
the total free surface elevation and the hydrody- 
namic lateral force and yaw moment acting on 
the ship. 

From (7) follows 

C = z + 
W ■ (V* + Vtp) - \V$ • V$ - gZ 

g-W ■ V$2 

onz = Z(x,y),   (20) 

where $ and Z are the velocity potential and the 
free-surface elevation due to the longitudinal mo- 
tion, respectively. 

In order to determine the free-surface ele- 
vation on the other side of the symmetry plane of 
the ship, the numerator in (20) is divided into a 

symmetric part AQf and an antisymmetric part 

ACJy , and correspondingly, the denominator into 

A40 and Ac£\ with 

ACJv0 

A# 

1. 
—«<&. 

—v<by + V3» • V<p — uip. 

g- V$- V$z + u*«, 

V$-gZ -v<py, 

=   v$ *y 

The free-surface elevation on the other side 
of the symmetry plane of the ship is 

< = Z + ACJv} Ad°} 

ACF Ada)" 
(21) 

Similarly, the pressure in (11) is divided 
into a symmetric part p(s< and an antisymmetric 
part p{a), with 

„(')   - =   p    u$ 
1 
V$ . V4>4-5^ 

pW       =       P(v$y    ~   V$-  Vtp+UipX). 

The symmetric pressure induces only the 
wave resistance, the vertical force and trim mo- 
ment, while the antisymmetric pressure causes 
only the lateral force, the yaw moment and roll 
moment. The lateral force Y and yaw moment N 
are obtained by pressure integration as 

Y 

N 

=  JJ   p^n2dS, (22) 

=  JJ   pM(xn2-yn1)dS.      (23) 

4.   RESULTS AND DISCUSSION 

The proposed method has been applied to 
three ship hulls, a Wigley model, a Series 60 with 
CB — 0.60 and a Mariner class ship, at 0° and 
5° drift angle in deep and shallow water. The 
free-surface elevation C, the wave resistance Rw, 
the dynamic sinkage AT and trim At? due to the 
forward speed, the lateral force Y and yaw mo- 
ment N are calculated. In order to compare with 
measurements and other numerical results, the 
following non-dimensional coefficients are used: 

^w 
$p«»S' 

a = 
2 AT 
F*L' 

T = 
2 At? 
F2 ' -1 n 

CY = 
Y 

^pV?S' 

CN _ N 

where 5 is the wetted ship surface area at rest, 
L the ship length, Fn the Froude number, and 
V, = Vu* + v*. 

Here numerical results are presented and 
discussed only for ships in deep water. Results in 
shallow water are given in Zou (12). 
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4.1   Wigley Hull 
The underwater form of the hull at rest is 

given by 

B (.     Ax2 

1 
2" 

where L, ß and T are the length, breadth and 
draught of the hull, respectively. Above the wa- 
terline, sections are assumed vertical. 

The panel distribution on the hull is shown 
in Figure 3. Correspondingly, Figure 4 shows the 
free-surface grid used in the calculation. 

Figure 3. Panel distribution on Wigley hull 

for Wigley huil.     '.339 parti 
■Z    coUocauoc ro:=t. x     source :c: 

Figure 4. Free-surface grid for Wigley hull 

5° drift angle are shown together with numeri- 
cal results of Nakatake et al. (9), Maruo and 
Song (16) and the experimental data of Kashiwagi 
(which are taken from Nakatake et al.). These fig- 
ures illustrate that our results are relatively close 
to those of Nakatake et al., but ours oscillate over 
Fn more than those of Nakatake et al.. 

3       ?.-««nt Cikuiastou 
■_  C-lcuialica by jfifiser. 
    Zuveiuut oi expcr:m«:u.il ii.»C3. 

F, 

'3.-.5 3." a.rs J-33 

Figure 5. Wave-resistance coefficient of Wigley 
hull in deep water at ß = 0° 

■ai 

Calculation by Jeasea 
Meisaremca: 
Preaeat calculation 

u n 
,'J 

Figure 6. Wave profile along Wigley hull 
in deep water at F„ = 0.27 and ß = 0° 

Cy x 10: —^— present calculation 
  Nakatake et al. 

a Maruo and Song 
2 Measurement 

In Figure 5, the wave-resistance coefficient 
at 0° drift angle is shown and compared with nu- 
merical results of Jensen (13) and measurements 
of Kajitani (14). Figure 6 illustrates the wave 
profile along the hull at Fn = 0.27 and ß = 0° in 
comparison with Jensen's result and the measure- 
ment of Shearer and Cross (15). The agreement 
is good. 

Regarding oblique motion, there are only 
a few numerical results and experimental data by 
other authors available. In Figure 7 and Figure 8, 
the lateral-force and yaw-moment coefficients at 

3.3D 0.35 O.na 3.-5 

Figure 7.  Lateral-force coefficient of Wigley 
hull in deep water at ß - 5° 
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Figure 8. Yaw-moment coefficient of Wigley 
hull in deep water at ß = 5° 

Figure 9 illustrates the wave profiles along 
both sides of the hull at Fn = 0.27 and ß = 5°. 

Figure 10 and Figure 11 show the wave 
contours for the hull at Fn = 0.25, drift angle 
ß = 0° and 5°, respectively. In both cases the 
radiation condition is satisfied quite well. 

Figure 11. Calculated wave contours for Wigley 
hull in deep water at Fn = 0.25 and ß = 5° 
Distance between the contour lines: 0.7 x 10-3L. 

4.2   Series 60, CB = 0.60 
The lines and other data of the ship are 

given by Todd (17). Figure 12 shows the panel 
distribution on the hull, while Figure 13 illus- 
trates a typical free-surface grid for this ship. 

-ill 
o. r 

\i\ 

Pressure s;c* 
Suction sice /\ 

\  \ 

Figure 9. Calculated wave profiles along Wigley 
hull in deep water at F„ = 0.27 and ß = 5° 

Figure 10.  Calculated wave contours for Wigley 
hull in deep water at Fn = 0.25 and ß - 0° 
Lower half linear, upper half nonlinear result 
Distance between the contour lines: 0.8 x 10_3L. 

Figure 12. Panel distribution on Series 60 
hull with CB = 0.60 

for Series 60, Cs = 0.60, 
O    collocation point. 

I panels 
source point 

Figure 13. A typical free-surface grid for 
Series 60, CB = 0.60 
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In Figure 14, the calculated wave-resis- 
tance coefficient is shown together with nu- 
merical results of Jensen and measurements of 
Ogiwara (18). It seems that the proposed method 
overestimated the wave resistance, especially at 
Fn < 0.3. 

Figure 15 and Figure 16 show the lateral- 
force and yaw-moment coefficients at 5° drift an- 
gle respectively. Unfortunately, no experimental 
data or other comparable numerical results are 
available. 

? ruse tit eiiCJi-itior. 
'J_wuij.Lioa -jy Jetut 

/, 
/' 

3/ / 
/' 

/' 

As examples. Figure 17 shows the calcu- 
lated wave profile along the hull at Fn = 0.25 
and ß - 0° in comparison with the measurement 
of Ogiwara, while Figure 18 and Figure 19 illus- 
trate respectively the wave profiles and the wave 
contours for the hull at Fn = 0.25 and ß = 5°. 

Figure 17.   Wave profile along Series 60, CB — 
0.60 in deep water at F„ = 0.25 and ß = 0° 

Figure 14.     Wave-resistance coefficient of 
Series 60, CB = 0.60 in deep water at ß = 0° 

Cy x 10- 
2.C   - 

Present ca.icaia.tion 

Figure 18. Calculated wave profiles along Series 
60, CB = 0.60 in deep water at Fn = 0.25 and 
ß=5° 

:.3S a.« 

Figure 15. Calculated lateral-force coefficient of 
Series 60, CB = 0.60 in deep water at ß = 5° 

C.v x 102 

present caicmation 

Figure 16. Calculated yaw-moment coefficient of 
Series 60, CB = 0.60 in deep water at ß = 5° 

Figure 19.   Calculated wave contours for Series 
60, CB = 0.60 in deep water at F„ = 0.25 and 

0 = 5° _3 
Distance between the contour lines: 0.9 x 10    L. 
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4.3   Mariner Ship 
The Mariner ship is frequently used for in- 

vestigating ship manoeuvrability. The lines and 
other ship data are given by Russo and Sullivan 
(19). 

Figure 20 shows the panel distribution on 
the hull, while Figure 21 illustrates a typical free- 
surface grid for this ship. 

Mariner hull.     515 panels 

Figure 20. Panel distribution on Mariner hull 

for Mariner bull,     1349 panels 
0    collocation point,        x    source point 

,11      I ' 1 >hH ' 1    iU3JH.,.|.l.|.|.T 

a:;:;:;:::::::::: 

:i:::::::::::::ü" 

Figure 21. A typical free-surface grid for 
Mariner ship 

The following non-dimensional hydrody- 
namic coefficients are used for comparison pur- 
pose: 

Y'  = 

N'   = 

Yv 

hpvu 
Nv 

\plfiu 

Under the assumption of small drift angles, 
the following linearization is used: 

Nv = 

dY 
dv 

Y      -Y 
v       up 

6N 
dv 

N      -N 
—            j^   ____ 

v        uß 

Figure 22 and Figure 23 show the calcu- 
lated lateral-force and yaw-moment coefficients at 
5° drift angle in comparison with measurements 
of Fujino (20) and Wolff (21). The agreement 
of the calculated lateral force with the measure- 
ments is very good. On the other hand, the yaw 
moment calculated by our method is higher than 
measured. This difference is probably due to the 
effects of rudder and propeller, because the nu- 
merical results refer to the bare hull only, while 
the experiments were done with models having 
rudder and propeller. 

-K„' x 103 

20 

Present calculation 
Measurement by Fujino 
Measurement by Wolff 

J l_ 
0.10 0.1S 0.20 0.2S 0.30 a.3S 

Figure 22. Lateral-force coefficient of Mariner 
hull in deep water at ß = 5° 

-N' x 103 
~~9      Present calculation 

&      Measurement by Fujino 
o      Measurement by Wolff 

Q.'O 0.IS Q.20 0.2S 0.30 0.35 

Figure 23. Yaw-moment coefficient of Mariner 
hull in deep water at ß = 5° 

In Figure 24, the wave profiles along both 
sides of the hull at Fn = 0.22 and ß = 5° are 
shown. Correspondingly, Figure 25 illustrates the 
wave contours for this case. It is seen that, al- 
though the radiation condition is well satisfied, 
the diverging waves at the pressure side of the 
hull have not been calculated properly. It seems 
that a finer panel grid on the free surface is re- 
quired for this purpose. 
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Z/L 

1 
Figure 24. Calculated wave profiles along 
Mariner hull in deep water at Fn = 0.22 and 
/? = 5° 

Figure 25. Calculated wave contours for Mariner 
hull in deep water at Fn = 0.22 and ß = 5° 
Distance between the contour lines: 0.8 x 10_3L. 

5.   CONCLUDING REMARKS 
A three-dimensional panel method using 

Rankine singularities for calculating free-surface 
lifting flows is developed and applied to ships in 
steady oblique motion. Computations for three 
ship hulls have shown the usefulness of the pro- 
posed method in calculating the flow and the hy- 
drodynamic lateral force and yaw moment acting 
on practical ship forms. 

The proposed method can be directly or by 
further extension applied to other steady lifting 
potential flows, such as to calculate the hydrody- 
namic interaction of catamaran hulls or between 
a vessel and its lifting appendages. It can also be 
extended to attack unsteady free-surface lifting 
flows concerned in the ship motion problem. An 
ongoing effort in this aspect is reported in Zou 
(22). 

On the other hand, the proposed method 
has some disadvantages which restrict its applica- 
tion. At present this method is not applicable to 
bodies with immersed transom stern. Moreover, 
it will be inaccurate, if serious seperation along 
the length of the hull occurs. For these compli- 
cated cases, more effective and rational methods 
are required. 
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Steady and Unsteady Ship Waves by a Higher-Order 
Boundary Element Method 

S. Hong (Korea Research Institute of Ships & Ocean 
Engineering), H. Choi (Seoul National University, Korea) 

Abstract 

The steady and unsteady ship wave problems 
ore studied numerically by using a higher-order 
boundary element method. Both the ship hull 
and the free surface are represented by 8-node 
iso-parametric elements. To realize the disper- 
sion correctly and also to minimize the numerical 
damping of free surface waves, the velocity po- 
tential is assumed to vary bi-quadraticlly on each 
element. Kernel functions are evaluated by Gauss 
quadratures, but singular and quasi-singular in- 
tegrals are evaluated with help of bi-cubic trans- 
formation(Cerreloza,1989), which turns out to be 
very accurate and efficient. Careful attentions are 
paid on the flow near the intersection between the 
ship hull and the free surface. At the same time 
various types of the radiation condition are exam- 
ined to prevent wave reflection at numerical radi- 
ation boundaries. Among these, a parabolic-type 
partial differential operator is found promising so 
far. Numerical examples demonstrate the accu- 
racy and the efficiency of the present method. 

1. Introduction 

Since Gadd(1976) and Dawson(1977) intro- 
duced the so-called Rankine source method to the 
wave resistance problem of ships, it has become 
one of major numerical tools in naval hydrody- 
namics due to the simplicity of its kernel func- 
tion and its capability of treating various types 
of free surface conditions. However, this method 
invokes numerical dispersion and damping as like 
any other numerical methods. In addition, it 
bears some difficulties in implementing the radia- 
tion condition, which is due to the discretization 
of truncated free surface . Therefore the main 
stream of research on this method is directed to 

improvement of numerical dispersion and damp- 
ing, and effective enforcement of the radiation 
condition. 

Piers(1983), Jensen et al.(1986), Sclavounos 
and Nakos(1988), Nakos and Sclavounos(1990a) 
focused their researches on better treatment of 
the numerical dispersion and damping. Among 
these works, it is worthy to note that Sclavounos 
and Nakos(1988) used the bi-quadratic spline 
scheme to allow the variation of velocity poten- 
tials on free surface panels. They analyzed the 
stability of the scheme in Fourier space and found 
that it is free of numerical damping and it satisfies 
the dispersion relation for a wide range of wave 
frequencies. In this work, they also proposed a 
Kutta-like radiation condition at upstream. While 
Jensen(1987), Raven(1988) and Nakos(1990) con- 
tributed to the development of effective radiation 
conditions. Ni(1987), Kim and Lukas(1990) took 
nonlinear free surface conditions into account. 
Bertram(1990) and Nakos et al.(1990b) applied 
the Rankine source method to unsteady ship mo- 
tion problems. 

Recently higher-order boundary element meth- 
ods(HOBEM) are getting popular because they 
provide more accurate solutions with smaller num- 
ber of panels. To name a few, Matsui et al.(1987) 
and Liu et al.(1991,1992) applied HOBEM to un- 
steady wave problems of floating offshore struc- 
tures and demonstrated its efficiency and accu- 
racy. Boo(1993) extended it to the steady ship 
wave problem and also to the nonlinear wave sim- 
ulation generated by a 2-D wavemaker. 

In this paper we describe a new scheme which 
has been constructed by taking advantages of the 
bi-quadratic spline scheme and the higher-order 
boundary element method, we have taken the ad- 
vantages selectively depending on computation 
domains.  Boundary surfaces are represented by 
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8-node boundary elements to describe curved sur- 
faces of a ship and its neighboring free surface 
more accurately. The variation of the velocity 
potential complies with the characteristics of the 
8-node element on the body surface. But on the 
free surface it is assumed to follow that of the 
bi-quadratic spline scheme. 

As numerical examples, steady and unsteady 
Neumann-Kelvin problems are considered. The 
wave resistance computed for a submerged 
spheroid is compared with the analytic result of 
Farell(1973). Comparisons are also made for Se- 
ries 60{CB = 0.6) with experiments and other 
numerical results. Hydrodynamic coefficients for 
a modified Wigley are calculated and compared 
with Nakos and Sclavounos( 1990b). The agree- 
ment is in general quite satisfactory. Lastly, as 
the first step to deal with problems for low re- 
duced frequencies, r = ^f < \, a parabolic- 
type operator is tested as the upstream radiation 
condition. The idea is developed based on the 
observation of upward propagating waves, which 
largely depend on the so-called fci wave num- 
ber(Hoff, 1990). The relevance of this operator 
has been confirmed in the case of unsteady Kelvin 
source potential. 

2. Formulation of Boundary-value 
Problem 

Bottom Condition 

V$ 0 as x (4) 

• Radiation Condition 
The disturbed fluid motion should vanish at 

infinity. 

The total potential $(£, t) may be decomposed 
into three parts; the basic flow <p{x), the steady 
wave flow o(x) and unsteady wave flow ip(x,t). 

${x,t) = 4>(x) + <l)(x) + Tp{x,t) (5) 

In the case that the basic flow is chosen to be 
uniform stream, <£(£) = -Ux, and the free sur- 
face condition is linearized, the well-known Neumann- 
Kelvin problem is deduced. 

The linearized boundary conditions are as fol- 
lows: 

• Steady Case 

U2<pxx + g<t>z =    0   on z — 0, (6) 

C(*,y,o) =   — 4>x, 
9 

(7) 

d<t> 
dn 

=    Uni   on SB- (8) 

Unsteady Case 

The fluid is assumed to be inviscid and in- 
compressible, and the flow irrotational. The gov- 
erning equation becomes the Laplace equation for 
the velocity potential. 

V2$(f, t)=0,    x in fluid domain V     (1) 

A Cartesian coordinate system, x = (x,y,z), 
is taken which moves with ship's mean speed U. 
The positive x-axis points upstream and the pos- 
itive z-axis directs against the gravity. The fol- 
lowing boundary conditions are to be fulfilled on 
the surfaces which enclose the fluid domain(see 
Fig. 1). 

• Body Boundary Condition 

d$(x,t) 
dn 

= VB(x,t) -n   on SE 

Free Surface Condition 

$a    +   2V$ • V 
dt 

+   -V$-V(V$-V$) + </$- = 0 

(2) 

(3) 

; = ; 

fL-ljJL)   ijj + gv-=0   onz = 0,        (9) 
dt        ox J 

dip     v^ fdWj 
dn      £-~*\dt 

3 = 1 

where 

on SB,     (11) 

n    =    (ni,n2,n3) 

(n4,n5,ne)    =    x x n. 

It is to note that non-zero m-terms are m5 = D"n3 

and m6 = —Uno- 
Based on the Neumann-Kelvin linearization, 

wave resistance and hydrodynamic forces are de- 
rived as below- 

Wave Resistance Rw 

R,„ pn ids, 
.">D 

p = -p(-\7d> ■ V<j> - U4>x 

(12) 

(13) 
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Figure 1: Coordinate system 

Added Mass and Damping 

Oij    = -55R {Jsl-i^j ~ USJx)mds} , (14) 

h     = -Z* {Ssi-^i ~ l'^>*ds) ■ (15) 
Where 3? and 9 stand for the real and the imag- 
inary part, respectively. The radiation potential 
is given by 

^(x,t) = K\e-^tj^rhVj)- (16) 

3. Application of HOBEM 

In higher-order boundary element methods, 
surfaces are represented by a sum of curved ele- 
ments, which are expressed in terms of bi-quadratic 
or bi-cubic iso-parametric shape functions. Phys- 
ical quantities such as velocity potential and nor- 
mal velocity are approximated with help of the 
same shape functions. Therefore boundary-value 
problems are solved more accurately by using a 
HOBEM. 

In this paper, 8-node bi-quadratic elements 
are adopted to describe the geometry of the whole 
boundary surfaces(body surface and free surface). 
The velocity potential is to vary in accordance 
with the geometrical property. But the veloc- 
ity potential on the free surface is determined by 
using the bi-quadratic spline scheme. The rea- 
son is that the bi-quadratic spline scheme has the 
same order of accuracy as the cubic-spline scheme 
as pointed out by Sclavounos and Nakos(1988). 
They also proved that the scheme is a robust 
and accurate algorithm. The basic idea of the 
present method is to utilize the proven advantages 
of HOBEM and the bi-quadratic spline scheme . 

3.1  8-node Boundary Element 

For 8-node boundary elements, coordinates and 
physical variables are approximated by a weighted 
sum of their values evaluated at nodes(Brebbia et 
al..l989). 

Xj = £ >*'. yj = £ -vV• z3 = £ N^ (i- 
*;=i fc=i fc=i 

$, = X>fc*fc, *Jn = !>**:; 
t=i k=i 

Here the superscript k denotes the local node 
number and the subscript j the element number. 
The shape functions are defined by 

A^i-k)   =   i(l + fc)(l + fc)(6+&-l) 

N2(h,&)  =  i(i-6)(i+ &)(-&+6-1) 

W4(&5&)  =   £(i + 4i)(i-fc)(6-&-D 

w6(&,&) = i(i-€i)(i-ft) 
w7(fc,fc)  =   |(i-€?)(i-ft) 
Ns(Hi.&)   =   i(l-^')(l + €i) 

(18) 
where (£i, £2) are the normalized coordinates 

of the mapped plane(see Fig. 2). 

(-1.1)2 

=>        6 

(-1.-1)3 

5 1(1,1) 

8 
$1 

4(1.-1) 

Figure 2: 8-node boundary element 

Since the velocity potential is given in terms of 
the mapped coordinates, the velocity is calculated 

824 



by the following coordinate transformation. 

a± 
dx 
d± 
dy 
9* 

= J -1 

Vf / 
;1$ (19) 

it y 
where 

J 

/    9x 
/     96 96 oil    \ 

c?x 
96 9s6 

dz 
96 

dx 
\   96 

_9jL 
96 

ÄB.   J 
96   / 

3.2 Bi-quadratic Spline Scheme with 
8-node Element 

In the Rankine source method, the free sur- 
face is to be discretized properly. It is well known 
that it invites some distortion of numerical disper- 
sion as well as numerical damping. Therefore the 
choice of discretization of the free surface should 
be carefully made to minimize the distortion and 
the damping. 

In our study, the bi-quadratic spline scheme 
is used for the velocity potential on the free sur- 
face. Its outstanding performance, i.e. free of nu- 
merical damping and excellent numerical disper- 
sion is proved by a systematic stability analysis in 
Fourier space by Sclavounos and Nakos(1988). In 
order to treat the curved element near the wa- 
terline precisely, we normalize the bi-quadratic 
spline function on a mapped plane. 

.v,   .v„ 

i=i j=l 

-V....V,, 

(22) 

Y^  Bm{x)^,n. (m = (i-l)-Xx+j) 
m=l 

The subscripts i and j represent the i — th 
element in z-direction and the j — th element in 
y-direction, respectively. Nx denotes the number 
of panels in ^-direction on the free surface and Ny 

that in the ^/-direction. The derivatives of the ve- 
locity potential on the free surface take a similar 
form. The derivatives of the basis function can 
be obtained by the coordinate transformation. 

(23) 

where 

(24) 

■h = 

dx 2 

96 
dx  dx 
96 96 

dx 2 

96 

o dx   dy 
"96 96 

dx   9y    ,    dx   dy 
96 96 "•" 9£2 96 

■-> dx   9?/ 
- a?2 di2 

djL2 

96 
dy   dy 
96 9^2 

dy2 

96 

M&.fc) =   bi(Si)bj(S2) 

=   bij(x) 

(20) 

with x = Yfk=i Nkxk, where the orthogonality of 
the spline function has been utilized. The one- 
dimensional equal spaced quadratic spline func- 
tion is written in a normalized form. 

6(0 = bj     = i(-ef+ 3) -1<£I<1 

V 6J+1 = |(-£1+1)- 
(21) 

Then the velocity potential on the free surface is 
given by the sum of basis function multiplied by 
its weight evaluated at the panel centroid. 

3.3 Application of HOBEM to 
Integral Equation 

Taking the inner product of the velocity po- 
tential $ with V2G and integrating over the fluid 
domain, we get the following integral equation. It 
is equivalent to Green's second identity. 

$V-Gdv = -$ 

$—ds- 
s    on 

S7$VGdv 

xdG <3$ J $  - -z-G on on 
(25) 

where the normal vector n is defined as pos- 
itive inward the body surface, x and £ are the 
coordinates of field and source points. 
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The free surface and the bocv surface are dis- 
cretized into XSF and A's curved element*, re- 
spectively. Then the collocation is made at the 
centroids of free surface panels. But the node 
points are taken as collocation points for the body 
surface. Finally we obtain the following algebraic- 
equations. 

do* 
**i<Pj    =    3*-Q^ (26) 

(i,j = 1,NSF + -
V

D: 
k = -XSF ~ 1--VSF + XD) 

ctij    =    dSij + A,k + Aij + A,j 

ft* = E^ÄiÄ//A5--vk(m|H- 

where, 

Oj = • 

XSF 

XB 

XD 
n 

Jfc(m) 
C, 

*; 

<£,  or ipj (j = -Ysr T l.-Vcf + Aro) 

number of elements on free surface 
number of elements on body surface 
number of nodes on body surface 
number of elements including node k 
global node number aim- th element 
solid angle at i — th node / 2TT 

Kronecker delta function 
ship speed 
gravitational acceleration 

circular frequence- 

s' End Conditions at Waterline 

When the collocation is made at the node 
points of all panels, some conflicts arise at the wa- 
terline for surface-piercing bodies. It is the case 
for the conventional HOBEM. Boo(1993) circum- 
vented this difficulty by introducing the so-called 
discontinuous elements. Such a difficulty does not 
occur in our case, because the collocation points 
of the free surface are not located at the water- 
line. Instead we need an imaginary free surface 
panel, which penetrates the body surface, a* IOIIJI 

a? the spline scheme is used. In fact it was applied 
for the end conditions to determine the weight 
of imaginary free surface panels along the water- 
line. Two conditions are imposed for the imagi- 
nary panel as end conditions at the waterline. 

driB 

§B 

at waterline OOF 
dnß 

=   Jf   at waterline 

(28) 

(29) 

In the above equations, the subscripts B and 
F denote the body surface and the free surface, 
respectively. Eq.(28) makes the normal velocity 
on the free surface equal to that on the body sur- 
face along the waterline. While eq.(29) enforces 
the velocity potential on the body surface to be 
equal to that on the free surface along the wa- 
terline. Numerical results reveal that the second 
condition contributes to smooth the wave profile 
at the stem and stern, where the geometry is quite 
complicated. 

3.5 Radiation Condition 

As only a finite portion of the free surface is 
actually taken in computation, a proper radia- 
tion condition should be imposed at truncated 
free surface boundaries. Nakos(1990) proposed 
the Kutta-like radiation condition for the steady 
and unsteady flows. 

= {-i*-U&)1>{xb) = 0, (30) 

(&-c£)a*(*o.*) 
= {-iu-U£)2il>(xb) = 0. (31) 

This radiation condition is not relevant to ap- 
ply for subcritical reduced frequencies, r, j, be- 
cause it was assumed that there are no waves 
propagating upstream. For subcritical reduced 
frequencies, however, there exists a wave system 
propagating upstream. This wave system is known 
to be governed by fci wave(Hoff, 1990) and thus 
it can be approximated by a plane wave propa- 
gating upstream with this wave number. 

B0e
,{*1I"u"), 

(32) 

(33) 

h i — — 
i_ ,/i>47 
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where A0 and Bo are complex amplitudes. Thus 
obtained velocity potential and wave elevation sat- 
isfy the following parabolic-type operator. There- 
fore we adopt it as a new radiation condition for 
subcritical reduced frequencies. 

-+Cl£)TP(xb,t) Kdt 

(34) 

= (& + <*£)( dt U&)C (35) 

= (-«» + Ci^) (-*w - tf £) tf(f0) = 0 

Ci = fcT 
The performance of the proposed radiation 

condition has been investigated for the unsteady 
Kelvin source potential. 

In addition to it, a radiation condition $yy = 
0 is imposed at the lateral truncation boundary 
under the assumption that the velocity changes 
negligibly small in that direction. 

4.  Numerical Results and Discus- 
sions 

4.1 Wave Resistance of a Submerged 
Spheroid 

To validate the present method, the wave re- 
sistance of a submerged spheroid is calculated. 
The calculation conditions are summarized as be- 
low: 

free surface -1.5L < x < 2.5L 
-1.6L < y < 0.0L 
NSF = 45 x 16 
Ax = L/10, a = £§ = 1 
Fh = -#= = .95 ~ 2.53 

ND = 133 body surface 

Froude number 

As shown in Fig. 3, the present result coin- 
cides quite well with the analytic result of Farell 
(1973) and also with the numerical result of Doc- 
tors k Beck(1987). Sclavounos and Nakos(1988) 
used 400 panels on the half body to obtain sat- 
isfactorily accurate result for the same model by 
Rankine source method. In our case we needed 
only 40 panels. This agreement with relatively 
small number of panels demonstrates the advan- 
tage of higher-order boundary element methods. 

The convergence test is shown in Fig. 4, where 
the panel resolution on the free surface is kept 
constant as Fh = 2.53 for FN = 0.8. The error is 
defined as the relative deviation from the Farell's 
analytic solution. Cosine spacing is taken in the 
longitudinal direction, while even spacing is taken 
in the circumferential direction. The increase'of 
panels'^,) from 5 to 20 in the longitudinal direc- 
tion does not bring any decisive improvement in 
accuracy. But the increase in the circumferential 
direction's) from 2 to 8 enhances the accuracy. 
But as clearly indicated in the figure, the error 
can be hardly decreased for NB > 40. Based on 
these, we may conclude that accurate numerical 
results can be obtained for submerged bodies by 
a HOBEM, when the free surface wave resolution 
is Fh > 1. 

.a' ♦'-. 
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ci Doctors&Bock Präsent FamU 
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i . 1          i ' i 
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Figure   3:     Wave   resistance   of  a   submerged 
spheroid(L/£ = 5, H/B = 0.8) 
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Figure 4: Convergence test of HOBEM 

4.2 Wave Resistance of Series 60 
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Series 60(CS = 0.6j is chosen to examine rhe 
wave resistance of a real ship hull form. The cal- 
culation conditions are 

free surface -1.01 < x < 1.51 
-1.01 < y < 0.0L 
XSF = 51 x 15 

body surface 

Froude number 

A.r = 1/20. Q = |f = 1.5 
= .98 ~ 1.56 

.\B = 20 x 4.   ND = 289 

Fx = 0.22 ~ 0.35. 

A typical panel representation is illustrated 
in Fig. 5. Our results are compared with those 
of Kim and Lukas (1990) as well as experiments 
(ITTC,1984). Fig. 6 shows the wave resistance 
coefficients. The shadow region means the confi- 
dence interval of experimental results. Our result 
falls inside the shadow region and it is closer to 
the nonlinear result than the linear one of Kim 
and Lukas(1990). To clarify it, we have exam- 
ined the wave field. Fig. 7 shows the numerical 
and experimental wave elevations along the wa- 
terline. It is to observe that the present result 
predicts lower bow waves and higher stern waves 
than the experimental data. As a result our wave 
resistance at this speed must be smaller as in- 
dicated in Fig. 6. We also examined the linear 
and nonlinear wave elevations given by Kim and 
Lukas(1990), but there is no such a clear indica- 
tion in their result. 

Figure 5: Panel representation of Series 60(Cß 
0.6) 

4.3  Flow near Waterline 

To confirm if the waterline end condition is 
properly imposed, the wave elevation along the 
waterline is calculated based on the body surface 
panels as well as based on the free surface.  The 
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Experiment                                                                              /   / 
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                   i                 '.•■'/ .■■' 
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. 
U.25 

Froude Number 

Figure 6:   Wave resistance coefficients of Series 
60(CB = 0.6) 

2x1. 

Figure 7: Wave elevation along the water- 
line(Series 60, CB = 0.6, FN = 0.32) 

agreement between two results is quite satisfac- 
tory except small discrepancies at the stem and 
the stern. This discrepancy seems to be caused by 
different approximations of the velocity potential 
on each surfaces. 

To look at the effects of the waterline end con- 
ditions, wave elevations are calculated by using 
different end conditions. In Fig. 8, the dotted 
line corresponds to the case when only eq.(28) is 
imposed and the solid line to the case when both 
conditions eq.(28) and eq.(29), are used. No sig- 
nificant differences are found except the stem and 
stern, where the solid line is smoother than the 
dotted line. In this sense, the additional condition 
given by eq.(29) seems to play a role of smooth- 
ing wave profile when the body geometry change 
abruptly. 

It is well known that, the computation are dif- 
ficult as the free surface panels adjacent to the 
waterline becomes smaller.   This problem is in- 
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herent to any numerical schemes, in which the 
free surface condition is linearized. To test the 
sensitivity for the change of panel size on the 
free surface near waterline in (/-direction, calcu- 
lations are made for various panel aspect ratios. 
Q(^£) =,1.0.1.5,2.0 and 3.0. In these compu- 

tations, Ax is kept constant as 1/20. As shown 
in Fig. 9, the computed wave resistance varies 
significantly depending on the aspect ratio of the 
panel. In particular when the aspect ratio is as 
large as 3.0, the deviation becomes drastically 
large for high Froude numbers. The main source 
of this deviation comes from the radical change 
of stern waves for different panel aspect ratios as 
shown in Fig. 10. It is conjectured that the stern 
wave seems to be sensitive to the end condition, 
eq.(28), which acts as an additional forcing to the 
free surface panels. It is interesting to note that 
Nakos and Sclavounos(1994) obviously had a sim- 
ilar difficulty and introduced a low-pass filter for 
smoothing the basis flow, which acts as a forcing 
of the double-body free surface condition. In our 
study no additional filtering technique has been 
tried. 

Figure 8: Wave elevation along the waterline for 
2 different end conditions(F/v = 0.35, Series 60, 
CB = 0.6) 

4.4 Unsteady Kelvin Source Poten- 
tial for r <\ 

As a first step to develop an unsteady radia- 
tion condition, we extended the Rankine source 
method to subcritical reduced frequencies, r < \. 
Calculations are made for r = 0.1,0.2, A() = 
-Sj. = 1 (Fh = 2, o = 1). The submerged depth 
is cZ = j£. Fig. 11 compares the velocity poten- 
tials computed by the present method with those 

Cl.2« 0.3 11.32 

Froude Number 

Figure 9:   Variation of wave resistance for free 
surface panel aspect ratios(Series 60, CB = 0.6) 

2x1. 

Figure 10: Variation of wave elevation for free 
surface panel aspect ratios(FiV = 0.32, Series 60 
CB = 0.6) 

by the Green function method. In each figure the 
lower half corresponds to the result by a Rankine 
source and the upper half to that by a unsteady 
Kelvin source. Two results are very similar except 
the upstream wave field. In reality, the upstream 
waves is very low in our result. 

Fig. 12 shows the numerical results for two 
different radiation conditions with r = 0.2. Our 
result with a parabolic-type radiation condition 
is shown in Fig. 12a, and that with the Kutta- 
like condition of Nakos is given in Fig. 12b. In 
both figures the upper part is the result by using 
a unsteady Kelvin source while the lower one is 
that by a Rankine source. As clearly observed 
in the "figure, the present result contains less dis- 
tortion near the source and upstream. Therefore 
it may be concluded that the proposed radiation 
condition can be effectively applied for subcritical 
reduced frequencies. 
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Figure 11: Wave contour of unsteady Klevin 
source potential for r = O.l(upper) and T = 
0.2(lower) 

4.5 Hydrodynamic Coefficients of 
a Modified Wigley 

A modified Wigley model is taken to investi- 
gate the hydrodynamic coefficients. The modi- 
fied Wigley model is a variation of the standard 
parabolic Wigley model, which has a fuller mid- 
body (see Nakos,1990). 

The calculation conditions are 

free surface -0.8L < x < 1.2L 
-1.0L < y <0.0L 
XSF = 40 x 20, 60 x 30 
Ax = 1/20. L/30 

^-1.0 
= 1.34. 1.64 

Ay u 

body surface 

Froude number 

nond. frequency 

a = 
Fn 

I gAx 

NB = 20 x 4.   30 x 6 
A'D = 289, 613 

F.x = 0.3 

^ = 2.5 ~ 5.0. 
<7 

The added mass and damping coefficients for 
heave and pitch are given in Fig. 13 ~ Fig. 16. 

-8.25 

7.76 

im'üiii! 

(a)Present condition 

il i i I/I M ii 11 i i i i i i i iiiiiiii i i I i i i i i r 

-I i 2^    -8 25     -5.25     -2.25      0.75        5 75       6.75 
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5.82 

3.88 

1.94 

0 00 

-0 97 

-3.40 

-5.82 

-8.25 

-   /// I V. (b)Kutta-like condition: 
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■11.25    -8.25     -5 25     -2.25      0 75        3.75     x_£. 

Figure 12: Wave contour of unsteady Klevin 
source potential for r = 0.2((a):present radiation 
condition. (b):Kutta-like radiation condition) 

In these figures, the solid line corresponds to the 
double-body linearized model and dotted line to 
the linearized Neumann-Kelvin method, both 
given by Nakos. The present result shows in gen- 
eral good agreement with the linearized Neumann- 
Kelvin method, except the case of heave-pitch 
coupled dampings. It is found that differences 
between two discretizations of NB = 20 x 4 and 
NB = 30 x 6 are small, only the results of the 
finer case(iVB = 180) are shown in figures. But 
there are clear differences in the result of Nakos 
and Sclavounos( 1990b) for the model with same 
dicretizaions. It implies that a more accurate rep- 
resentation of body surface enhances the numer- 
ical convergence for a given resolution of the free 
surface panels. Fig. 17 shows the real part of the 
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Figure 14: Pitch added mass and damping coef- 
ficients of a Modified Wigley 

Figure 16: Coupled pitch added mass and damp- 
ing coefficients of a Modified Wigley 
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Figure 18: Unsteady wave patterns due to heave of a Modified Wigley 
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^-component velocity along the waterline clue ro 
heave(wn = 2.5,5.0). The solid line stands for 
the case of NB = 30 x 6 and the dotted line 
for the case of NB = 20 x 4, respectively. The 
velocity profiles are similar each other not only 
for low frequencyU'n = 2.5) but also for high 
frequency(Jn = 5.0). It supports that the present 
method is useful with a smaller number of panels. 

The radiated wave patterns due to heave and 
pitch are shown in Fig. 18 and Fig. 19, respec- 
tively. The waves shown here seem to be almost 
two-dimensional. Namely the crest line of the 
waves becomes parallel to the .r-axis as the fre- 
quency increases. In the case of heave, the mo- 
tion is symmetric with respect to the midship. 
Therefore the generated waves propagate down- 
stream with keeping the symmetry. But in the 
case of pitch, the generated waves consist of an 
anti-symmetric pair. i.e. elevation and depression 
as clearly observed in Fig. 19. 

5.   Conclusion 

An effective numerical method has been devel- 
oped for the steady and unsteady wave problems, 
which selectively utilizes the higher-order bound- 
ary element method and the bi-quadratic spline 
scheme. As shown in numerical examples, its ca- 
pability of describing body surfaces more closely 
enhances the numerical accuracy and efficiency. 

It is found that the wave elevation and resis- 
tance are sensitive to the aspect ratio of panels 
adjacent to the waterline. Further research is re- 
quired for any conclusions. 

A parabolic-type radiation condition is derived 
for unsteady free surface problems with r < £. 
Numerical results support its usefulness. 

Extensions of the method to steady nonlinear 
problems and the ship motion problems are the 
topics of our next research. 
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A Review of Reynolds Stress Models 
for Turbulent Shear Flows 

C. Speziale (Boston University, USA) 

Abstract 

A detailed review of recent developments in 
Reynolds stress modeling for incompressible turbu- 
lent shear flows is provided. The mathematical foun- 
dations of both two-equation models and full second- 
order closures are explored in depth. It is shown how 
these models can be systematically derived for two- 
dimensional mean turbulent flows that are close to 
equilibrium. A variety of examples are provided to 
demonstrate how well properly calibrated versions of 
these models perform for such flows. However, sub- 
stantial problems remain for the description of more 
complex turbulent flows where there are large de- 
partures from equilibrium. Recent efforts to extend 
Reynolds stress models to non-equilibrium turbulent 
flows are discussed briefly along with the major mod- 
eling issues relevant to practical Naval Hydrodynam- 
ics applications. 

1. Introduction 

Turbulent shear flows are of central importance for 
a variety of Naval Hydrodynamics applications rang- 
ing from flow around submerged bodies to free surface 
flows. Most of these turbulent flows are at extremely 
high Reynolds numbers - and in complex geometrical 
flow configurations - where the application of direct 
or large-eddy simulations are all but impossible for 
the foreseeable future. Reynolds stress models are 
likely to remain the only technologically feasible ap- 
proach for the solution of these problems for the next 
few decades to come, if not beyond (see Speziale [1]). 

It is widely believed that Reynolds stress models 
are completely ad hoc, having no formal connection 
with solutions of the full Navier-Stokes equations for 
turbulent flows. While this belief is largely warranted 
for the older eddy viscosity models of turbulence, it 
constitutes afar too pessimistic assessment of the cur- 
rent generation of Reynolds stress closures. It will be 

shown how second-order closure models and two 
equation models with an anisotropic eddy viscosity 
can be systematically derived from the Navier-Stokes 
equations when one overriding assumption is made: 
the turbulence is locally homogeneous and in equilib- 
rium. Moderate departures from equilibrium - where 
there are weak inhomogeneous effects — can then be 
accounted for in a relatively straightforward fashion. 

A brief review of zero and one equation models 
based on the Boussinesq eddy viscosity hypothesis 
will first be given in order to provide a perspective 
on the earlier approaches to Reynolds stress model- 
ing. However, it will then be argued that since turbu- 
lent flows contain length and time scales which can 
change dramatically from one flow configuration to 
the next, two-equation models constitute the mini- 
mum level of closure that is physically acceptable. 
Typically, modeled transport equations are solved for 
the turbulent kinetic energy and dissipation rate from 
which the turbulent length and time scales are built 
up; this obviates the need to specify these scales in 
an ad hoc fashion for different flows. While two- 
equation models represent the minimum acceptable 
level of closure, second-order closure models consti- 
tute the highest level of closure that is currently fea- 
sible from a practical computational standpoint. It 
will be shown how the former models follow from the 
latter in the equilibrium limit of homogeneous turbu- 
lence (see Speziale, Sarkar and Gatski [2] and Gatski 
and Speziale [3]). However, it will be demonstrated 
that the two-equation models which are formally con- 
sistent with second-order closures have an anisotropic 
eddy viscosity with strain-dependent coefficients - fea- 
tures that the most commonly used models do not 
possess. 

For turbulent flows that are only weakly inhomoge- 
neous, full Reynolds stress closures can then be con- 
structed by the addition of turbulent diffusion terms 
that are formally derived via a gradient transport hy- 
pothesis. Properly calibrated versions of these mod- 
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els are found to yield a surprisingly good description 
of a wide range of two-dimensional mean turbulent 
flows that are near equilibrium. In particular, plane 
turbulent shear flows are accurately described with 
the stabilizing or destabilizing effect of a system ro- 
tation predicted in a manner that is quantitatively 
consistent with hydrodynamic stability theory. How- 
ever, existing second-order closures are not currently 
capable of properly describing turbulent flows that 
are far from equilibrium and have major problems 
with wall-bounded turbulent flows. In regard to the 
latter point, it will be argued that we do not cur- 
rently know how to properly integrate second-order 
closure models to a solid boundary with the no-slip 
condition applied. A variety of ad hoc wall damping 
functions are currently used that depend on the unit 
normal to (and/or the distance from) the wall - a 
feature that makes it virtually impossible to reliably 
apply these models in complex geometries. Conse- 
quently, in many applications of second-order closures 
to wall-bounded turbulence, the integration is carried 
out by matching to law of the wall boundary condi- 
tions, which do not formally apply to complex turbu- 
lent flows. The really disturbing feature here is that 
many of the commonly used second-order closures are 
not even capable of reproducing law of the wall results 
for an equilibrium turbulent boundary layer unless an 
ad hoc wall reflection term is added. This term typi- 
cally depends inversely on the distance from the wall, 
further compromising the ability to apply these mod- 
els in complex geometries. Entirely new approaches 
to the modeling of complex non-equilibrium and wall- 
bounded turbulent flows will be discussed briefly. 

A variety of illustrative examples involving turbu- 
lent shear flows will be provided in order to amplify 
the central points discussed in this paper. In addi- 
tion, a special effort will be made to address the cru- 
cial issues in turbulence modeling that are relevant 
to practical Naval Hydrodynamics applications. 

2. Basic Equations of Turbulence 

We will consider the incompressible turbulent flow 
of a viscous fluid under isothermal conditions. The 
velocity field »,- and kinematic pressure P are solu- 
tions of the Navier-Stokes and continuity equations 

given by 

dv{ dvi dP 2 
—- + Vi-— = —z V vVvi 
dt ^  3dxj dxi 

dxi 

(1) 

(2) 

where v is the kinematic viscosity and the Einstein 
summation convention applies to repeated indices. 

As in all traditional studies of turbulence modeling, 
the velocity and kinematic pressure are decomposed 
into mean and fluctuating parts as follows: 

Vi=Vi + Ui,     P = P+p (3) 

where an overbar represents a Reynolds average. This 
Reynolds average can take a variety of forms for any 

flow variable <f>: 

Homogeneous Turbulence 

?=  lim  1 f ^(x,*)d3x 
V—»oo V Jv 

^ = ^(t)    (Spatial Average) 

Statistically Steady Turbulence 

?= lim 1/   *(x,t)A 

4> = 4>(x)    (Time Average) 

(4) 

(5) 

General Turbulence 

N 

(6) 
a=l 

<j> = <f>{x,t)    (Ensemble Average). 

In (6), a represents a given realization of the turbu- 

lence. 
The Ergodic Hypothesis is assumed to apply. In a 

homogeneous turbulence, 

^ensemble = ^spatial (7' 

whereas in a statistically steady turbulence, 

^ensemble = ^time- (8) 

For general turbulent flows that are neither statis- 
tically steady nor homogeneous, ensemble averages 
should be used (cf. Hinze [4] for a detailed discussion 
of these issues). 

The Reynolds-averaged Navier-Stokes and continu- 
ity equations take the form (cf. Hinze [4]) 

dvi     _ dvt dP   ,    _2_      Ortj 

dvi 

dxi 
= 0 

where 
Tij = UiUj 

(9) 

(10) 

(11) 
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is the Reynolds stress tensor. 
The Reynolds-averaged Navier-Stokes equation is 

not closed until a model is provided that ties the 
Reynolds stiess tensor mj to the global history of the 
mean velocity v,- in a physically consistent fashion. In 
mathematical terms, Ttj is a functional of the global 
history of the mean velocity field, i.e., 

7v(x,<)   =  ^[v(x',t');xI<] 
x!eV, t'e(-oo.i) 

(12) 

where ^y[ • ] denotes a functional over space and 
time, and V represents the fluid volume. In (12), it 
is understood that there is an implicit dependence 
on the initial and boundary conditions for u,- and, 
hence, on those for the entire hierarchy of moments 
constructed from the fluctuating velocity. For the 
construction of Reynolds stress closures, it is typ- 
ically assumed that the initial and boundary con- 
ditions for any turbulence correlations beyond the 
Reynolds stress tensor and dissipation rate merely 
serve to set the level of the length and time scales 
(see Lumley [5] and Speziale [1]). 

3. Zero and One Equation Models 

The Reynolds stress tensor can be decomposed into 
isotropic and deviatoric parts as follows: 

Ttj = ö-^ü + DTxj (13) 

where the deviatoric part oTij is a symmetric and 
traceless tensor. Virtually all of the commonly used 
Reynolds stress models in this class are based on the 
Boussinesq hypothesis where it is assumed that 

given that v? is the eddy viscosity. For most incom- 
pressible turbulent flows, the isotropic part of the 
Reynolds stress tensor (§#) is not needed for the 
determination of the mean velocity field since it can 
simply be absorbed into the mean pressure P in (9). 

The eddy viscosity can be written as 

vr — — (15) 

where to is the turbulent length scale and to is the 
turbulent time scale - quantities that can vary dra- 
matically with space and time for a given turbulent 
flow. In zero equation models, both to and to are 
specified algebraically by empirical means. The first 
successful zero equation model based on the Boussi- 
nesq eddy viscosity hypothesis was PrandtPs mixing 

length theory (see Prandtl [6]). In PrandtPs mixing 
length theory, 

»r = 4\ -I dyl 
(16) 

where to = ny is the mixing length, K is the von 
Karman constant, and y is the normal distance from 
a solid boundary. This representation is only for- 
mally valid for thin turbulent shear flows - near a 
wall - where the mean velocity is of the simple uni- 
directional form v = «(j/)i. 

Several decades later, this simple mixing length 
model was generalized to multi-dimensional turbulent 
flows. Three alternative tensorially invariant forms 
have been proposed: 

Smagorinsky [7] Model 

Vr = 4{2SiiSij)
1'3 (17) 

Cebeci-Smith [8] Model 

1/2 

Vr (18) 

Baldwin-Lomax [9] Model 

^ = /2(örtär,)1/2 (19) 

where 5$i = \{dvi/dxj + dvj/dxt) is the mean rate 
of strain tensor and w = Vx vis the mean vor- 
ticity vector. The former model has been primarily 
used as a subgrid scale model for large-eddy simula- 
tions whereas the latter two models have been used 
for Reynolds-averaged Navier-Stokes computations in 
aerodynamics. Each of these models reduces to the 
simple mixing length formula (16) in the thin shear 
flow limit. However, they suffer from the same defi- 
ciency as the original mixing length model in their 
need for an ad hoc specification of the turbulent 
length scale to - a task that is all but impossible 
to do reliably in complex turbulent flows. 

Beyond the length scale specification problem with 
zero equation models, there is another criticism that 
can be raised: it is not physically consistent to build 
up the turbulent velocity scale from the mean velocity 
gradients as done in (17) - (19). The proper measure 
of the turbulent velocity scale is the intensity of the 
turbulent fluctuations (i.e., we should take vo = K1'2 

where no = toßo)- Hence, a more physically consis- 
tent representation for the eddy viscosity is given by 

vr = K1/2to. (20) 
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Prandtl [10] - who expanded on many of the earlier 
ideas of Kolmogorov [11] - developed a one-equation 
model based on (20) wherein a modeled transport 
equation for the turbulent kinetic energy was solved. 
Subsequent to this early work, a variety of researchers 
have proposed one-equation models along these lines 
for near-wall turbulent flows (cf. Norris and Reynolds 
[12] and Rodi, Mansour and Michelassi [13]). 

One-equation models based on the solution of a 
modeled transport equation for the turbulent kinetic 
energy still suffer from one of the major deficiencies 
of mixing length models: they require the ad hoc 
specification of the turbulent length scale which is 
virtually impossible to do reliably in complex three- 
dimensional turbulent flows. Recently, one-equation 
models have been proposed based on the solution of 
a modeled transport equation for the eddy viscosity 
vr (see Baldwin and Barth [14] and Spalart and All- 
maras [15]). These models do alleviate the problem of 
having to specify the turbulent length scale in the def- 
inition of the eddy viscosity (20). Nonetheless, an ad 
hoc specification of length scale must be made in the 
destruction term within the modeled transport equa- 
tion for VT which depends empirically on the distance 
from the wall. 

This leads us to one of the central points of this pa- 
per: the turbulent length and time scales (4>i*o) are 
not universal; they depend strongly on the flow con- 
figuration under consideration. Consequently, two- 
equation models - wherein transport equations are 
solved for two independent quantities that are di- 
rectly related to the turbulent length and time scales 
— represent the minimum acceptable level of clo- 
sure. In the most common approach, the turbulent 
length and time scales are built up from the turbu- 
lent kinetic energy K and dissipation rate c (i.e., 
to oc K3/2/e, to « K/e) with modeled transport 
equations solved for K and c. These two-equation 
models should be formulated with a properly invari- 
ant anisotropic eddy viscosity that is nonlinear in 
the mean velocity gradients. The standard Boussi- 
nesq eddy viscosity hypothesis makes it impossible to 
properly describe turbulent flows with: (a) body force 
effects arising from a system rotation or from stream- 
line curvature, and (b) flow structures generated by 
normal Reynolds stress anisotropies (e.g., secondary 
flows in non-circular ducts). 

At this point, it would be useful to comment on 
the most sophisticated level of Reynolds stress clo- 
sure that is now practical. Limitations in computer 
capacity, and issues of numerical stiffness, appear to 
make second-order closure models - wherein modeled 
transport equations are solved for the individual com- 
ponents of the Reynolds stress tensor along with a 

scale equation - the highest level of closure that is 
currently feasible for practical computations. 

4. Turbulent Transport Equations 

The transport equation for the fluctuating velocity 
m, which is obtained by subtracting (9) from (1), 
takes the form 

dui     _ dui 

~dt+Vj"dx~ 
dui 

18xj 
— Ui 

Svi 
8X4 

dp 
dxi (21) 

This equation can be written in operator form as 

Afui = 0. (22) 

The Reynolds stress transport equation is obtained 

by constructing the second moment 

mtfuj + UjMui — 0. 

Its full form is given by (cf. Hinze [4]) 

d-r.i dra dvj dvi 

at 

In (24), 

dxk 
1 dxk dxk 

-<«-^f+"V 

(23) 

(24) 

*-'(£+£)      <25> 
dm duj 

,j dxk dxk 
(26) 

djk = UiUjUk + püiSjk + füjSik (27) 

are, respectively, the pressure-strain correlation, the 
dissipation rate tensor and the turbulent diffusion 

correlation. 
The transport equation for the turbulent kinetic 

energy K = \rti is obtained by contracting (24): 

dK        dK     m d   (I  ,  \,„T7iJr 
lH+^8x- = V-£~8x- [2UiUiU> +PUj   +VV K 

(28) 
where 

V = -TS 
dv~i 

'3 dxj 

du,- du,- 

(29) 

(30) 
dxj dxj 

are, respectively, the turbulence production and the 
turbulent dissipation rate. By constructing the mo- 
ment   

2^^-(^u,) = 0, (31) 
OXj OXj 
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a transport equation for the turbulent dissipation rate   In (38), 
e can be obtained. This equation takes the form [1] 

%+*i^rT<-*<+'D<+vV2e    (32) 

where 

_ duk du* dvi out duj dvj 

dxi dxj dxj dzk dxk dxj 

duk dvt din dm 
—2v———— 2i/«jt 

d2v: 

dxi dxj dxj dxj dxjdxf; 

#e = 2i/3 a2«,-   d2u{ 

dxjdxk dxjdxk 

(33) 

(34) 

Ve = -2i/ 
8   f dp du, \ _     d_ (    dv.j dut \ 

dxj\dxidxi)     Vdxj y'dxtdxk) 
(35) 

are, respectively, the production, destruction and tur- 
bulent diffusion of dissipation. 

Both two-equation models and second-order clo- 
sure models are obtained by modeling the Reynolds 
stress transport equation (24) and the dissipation 
rate transport equation (32). Second-order closures 
are obtained by modeling the full Reynolds stress 
transport equation. Two-equation models are for- 
mally obtained by assuming that the turbulence is lo- 
cally homogeneous and in equilibrium; the Reynolds 
stress anisotropies axe then derived algebraically from 
(24) and a modeled version of (28) for the turbulent 
kinetic energy is solved. 

5. Two-Equation Models 

It will now be shown how two-equation models 
can be systematically derived from the Reynolds 
stress transport equation. As alluded to earlier, two- 
equation models - with an algebraic representation 
for the Reynolds stresses - are obtained by assum- 
ing that the turbulence is locally homogeneous and in 
equilibrium. Hence, we start with the Reynolds stress 
transport equation for homogeneous turbulence given 
by: 

dvj dvt .    . 

^ = ~r'k dx~k ~ Tjkdx-k 
+ *« - eij- (36) 

Since, the fluctuating pressure p is a solution of the 
Poisson equation 

V2
P = 

dui duj        dvt duj 

dxj dx{        dxj dx{ 

it follows that the pressure-strain correlation can be 
written in the form 

dvk 
$ij = Aij + Mijti 

dx\ 
(38) 

1 ~ 4* J I J |x - x* | dx\ dx\ \8xj + 8xi) 
— oo 

(39) 

dict- 

dxj 
+ d3x* 

—oo 

. (40) 

are, respectively, the slow and rapid terms which are 
obtained by implementing the Green's function solu- 
tion of (37) for an infinite flow domain. 

In the developments to follow, extensive use will 
be made of the Reynolds stress and dissipation rate 
anisotropy tensors defined as 

r,j - äKSjj 
on =   

2K 

da = l*i 
2e 

(41) 

(42) 

respectively (see Lumley [16] and Reynolds [17]). 
Furthermore, use will be made of the transport equa- 
tion for the turbulent kinetic energy which is exact 
for homogeneous turbulence: 

K = P-e (43) 

Eq. (43) is obtained by contracting (36). The di- 
rect substitution of (38) - (42) into (36) yields the 
Reynolds stress transport equation 

hi = -jStj- [bik— + bjk— - 3^*.;J 

1    / dvk\      e 
■¥2K\eAii + KMiihl^xl)~Kdii 

(44) 
given in terms of the anisotropy tensors alone. In 
(44), Aij = Aij/e and Myw = Mijki/K are the 
dimensionless slow and rapid pressure-strain terms. 

The fundamental assumptions underlying two- 
equation models are that the turbulence is locally ho- 
mogeneous and an equilibrium state is reached where 

jr 
hj, dij, Aij, Mijki, — 

attain constant values that are largely independent 
of the initial conditions. In general, Aij and Mijki 
are functionals, in wavevector space k, of the energy 
spectrum tensor Eij(ln,t) where 

oo 

nj = j j J Eij(k,t)d3k (45) 
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(cf. Reynolds [17]). This has prompted turbulence 
modelers to construct one-point models for Aij and 
Mijti of the form (Lumley [16]) 

Aij=Aij(b),    Mijki = Mijki(b).       (46) 

It should be said at the outset that models of the 
form (46) cannot be expected to apply to general ho- 
mogeneous turbulent flows since nonlocal effects in 
wavevector space are neglected; it is well known that 
Mijti is of the form (cf. Reynolds [17]) 

oo 

Mijkl~ jjjk-^-Ekl(Y,t)d*k. (47) 
—oo 

However, for homogeneous turbulent flows that are 
in equilibrium, there is evidence to suggest that 
Aij,Mijki and 6y achieve constant values that are 
independent of the initial conditions as alluded to 
earlier (homogeneous shear flow represents a prime 
example; see Tavoularis and Corrsin [18]). Any con- 
stant tensor can be written as a finite expansion in 
three linearly independent vectors that are also con- 
stant. Since bij is a symmetric tensor, its eigenvectors 
are linearly independent; hence, (46) is expected to 
be formally valid for a homogeneous turbulence that 
achieves this type of structural equilibrium. 

Speziale, Sarkar and Gatski [2] showed that for two- 
dimensional mean turbulent flows that are homoge- 
neous and in equilibrium, the pressure-strain correla- 
tion reduces to the simple general form: 

#, •j 
&4tf (b) + KMijki(b) 

&Vk 

dxi 

=    —Ciebij + C\ '1^ I bikbkj — —t>mnbmn6ij 1 

where 

+C2KSij + C3K (bitSjk + bjkSit 

--bkiSktSij ) + C4K{biküjk + bjküik) 

—        1 /dvi      SVJ\ 
Sij = 2 \dx~j + dx~i) 

_   _ 1 (dvj _ dvj\ 
Wij~ 2 \dxj      dxi) 

(48) 

(49) 

(50) 

are, respectively, the mean rate of strain tensor and 
the mean vorticity tensor. In (48), Ci — C4 are con- 
stants that are not necessarily universal; in principal, 
their specific numerical values can vary from one flow 
to the next. However, it is encouraging to note that, 

consistent with its definition (47), the basis expan- 
sion (48) has a rapid part that is linear in TXJ and, 
hence, linear in the energy spectrum tensor. It is 
only in the limit of two-dimensional mean turbulent 
flows that the general basis expansion for (46)2 sat- 
isfies this linear consistency condition - a result of 
the fact that II, III and 633 achieve universal equilib- 
rium values in the two-dimensional limit (Speziale, 
Sarkar and Gatski [2]). For uniformly strained tur- 
bulent flows near equilibrium, there is substantial ev- 
idence from physical and numerical experiments to 
suggest that the quadratic return term in (48) (with 
coefficient C{) can be neglected without introducing 
an appreciable error. Then, the representation (48) 
becomes completely linear in the Reynolds stress ten- 
sor. This allows for the superposition of solutions 
and maintains consistency with the linearity of the 
rapid pressure-strain correlation in the energy spec- 
trum tensor - a property that follows from its defi- 
nition as stated above. In the opinion of the author, 
this constitutes the primary reason for the relative 
success that (46) has had in the description of two- 
dimensional mean turbulent flows that are near equi- 
librium. The applicability of (46) to non-equilibrium 
turbulent flows or to three-dimensional mean turbu- 
lent flows is highly debatable. In regard to the lat- 
ter case, the general basis representation for (46)2 
is highly nonlinear in 6,-j (see Lumley [16], Reynolds 
[17] and Speziale [1]) - and, therefore, nonlinear in 
the energy spectrum tensor - in violation of (47). 

If we neglect the anisotropy of dissipation, then in 
the equilibrium limit where 6y = 0, Eq. (44) reduces 
to the following linear system of algebraic equations 
(see Gatski and Speziale [3]): 

-WkWlj+bhW" 

where 

3j===»T(2-ft>s« 2* e 
1   K 
2gl 

Wa = \gT& - Ci^ 

bh 

(51) 

(52) 

(53) 

^(f + 7-1)'- (55) 

For turbulent flows in non-inertial frames of reference, 
Coriolis terms must be added to the right-hand-side 
of (44) along with a non-inertial correction to the 
pressure-strain correlation model (48). As shown by 
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Gatski and Speziale [3], these teims can be accounted 
for exactly by simply replacing (53) with the extended 
expression 

three-dimensional turbulent flows is as follows: 

G(6) = -9/D 

^ = ^(2-0 w,i + 
» 

,0* ■mji*'m 

where em,-,- is the permutation tensor and il„ 
(56) 

is the 
angular velocity of the reference frame (in an inertial 
frame of reference, where (lm = 0, the expression (56) 
reduces to (53)). 

Equation (51) constitutes a set of linear algebraic 
equations for the determination of V-j in terms of StJ- 

and W*fj; the solution to (51) is of the general math- 
ematical form 

G(1) = -|(6-3J7I-21JJ2 

-2ifc + 30Vi)/D, 
G<2> = -(3 + 37/x - 6% 

+27/3 + 6TJ4)/A 
G<3) = (6 - 3!?! - I2772 

-2773 - 6774)/!), 
G(4) = -3(377! + 2773 

+6774)/I>) 

G(5> = -9/D, 

G<7> = 9/D 

G<8) = 9/D 

G<9> = 18/D 

G(10) = 0 

(60) 

b*=f(S*,W ). (57) 

As first suggested by Pope [19], the general solution 
to the implicit algebraic stress equation (51) is of the 
form: 

10 

h* = j2G{x)TW (58) 
A=l 

7 ,     15 o2 .2 

D = 3 - -771 + 77J - —772 - 8771772 + 3772* - 773 + -771773 

-2772773 + 2I774 + 24775 + 2771774 - 6772774 (61) 

T7i = {S*2}, V2 = {W*2}, 773 = {S*3}, f62) 

7,4 = {rw*2}, 7te={s*2w*2}. 

While the results provided in (60) - (62) constitute 
the general solution of (51) for three-dimensional tur- 
bulent flows, questions can be raised about its overall 
usefulness. As alluded to earlier, (51) is based on 
the use of (48) which is only formally valid for two- 
dimensional mean turbulent flows that are near equi- 
librium. For two-dimensional mean turbulent flows, 
(60) - (62) simplifies substantially to the form 

where 

TWzzS*, T(
6

> = W*
2
S*+S*W 

2 

-|{rw*2}i 

hii 3 - 2T72 + 6£2 [^ij+Kwlj + S^kW.i 

^(s^.-is;,«;,*«)] 
T(2) = rw*-w*s*,     T(r) = WTw (63) 

-w s w —* where 

T(3) _ s*2 _ I{r2}I, T<8> = S*W* S* 
^(SJSJ)1",    i = mjW*ijY

12        (64) 

-S   W S By making use of (52) - (55), we can write (63) in 
terms of the Reynolds stress tensor as follows: 

T(4> = W*2- |{W*2}I,     T<9) = W*2S+S*2W 
--=♦2= -§{T'w"}i 

_   2 3 
~    3K6ij " 3 - 2772 + 6£2 cti Sij 

T(5) _ =^*g* s*2w* T(IQ)=w*r2w*2 
 *2—*2——* -w s w 

(59) 
are the integrity bases ({•} denotes the trace). Pope 
[19] only obtained the solution to (51) correspond- 
ing to the Launder, Reece and Rodi [20] model sim- 
plified to two-dimensional mean turbulent flows in 
an inertial frame - a case for which the calculations 
become much simpler since only the integrity bases 
IC1) — T(3) are linearly independent. Gatski and 
Speziale [3] showed that the general solution (58) for 

where 

+a2\{SihWki + SjkWki) 

a3—2" [S.-fcSjt; - -SiciSkiSijj 

= ^(|-Ca)(2-C4) 

(65) 

a2 

(66) 

(67) 
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«3 = g2Q-C2)(2-C3) (68) 

The coefficients 0:1,0:2 and 0:3 are not constants but 
lather are related to the coefficients C\ — C4 and g. 
In mathematical terms, they are "projections* of the 
fixed points of Aij and Mijki onto the fixed points of 
b{j, which can vary from one flow to the next. How- 
ever, for 2-D turbulent flows, C\ — C4 can be approx- 
imated by constants due to the linear dependence on 
bij which allows us to use superposition. 

Gatski and Speziale [3] evaluated Cx - C4 using 
the SSG second-order closure which will be discussed 
later; this model was calibrated largely based on the 
use of data for homogeneous shear flow (see Table 1). 

Equilibrium 
Values 

LRR 
Model 

SSG 
Model 

Data 

(611)00 0.158 0.204 0.201 

(^22)00 -0.123 -0.148 -0.147 

(612)00 -0.187 -0.156 -0.150 

(SK/eU 5.32 5.98 6.08 

Table 1. Comparison of the predictions of the Laun- 
der, Reece and Rodi (LRR) model and the Speziale, 
Sarkar and Gatski (SSG) model with the experimen- 
tal data of Tavoularis and Corrsin [18] for homoge- 
neous turbulent shear flow. 

The constant values that are taken for C\ — C4 are 
given by (see Gatski and Speziale [3]): 

where the fourth rank tensor ay« depends on the 
symmetric and antisymmetric parts of the mean ve- 
locity gradients. Quadratic models of this type have 
recently been obtained by Yoshizawa [21], Speziale 
[22] and Rubinstein and Barton [23] based on two- 
scale DIA, continuum mechanics and RNG based 
techniques, respectively (in regard to the latter, see 
Yakhot and Orszag [24]). Furthermore, it must be 
noted that while the traditional implicit algebraic 
stress models such as that due to Rodi [25] (which 
is of the general form (51)) have an explicit solu- 
tion of the form (63), they are ill-behaved and can 
give rise to divergent solutions when applied to non- 
equilibrium turbulent flows. This explains why previ- 
ous anisotropic corrections to eddy viscosity models 
have only had limited success: 

(i) A quadratic expansion is not adequate; the coef- 
ficients should depend nonlinearly on rotational 
and iirotational strain rates. 

(ii) Only the regularized explicit solution to alge- 
braic stress models - which has just recently 
emerged - has the proper such dependence. Tra- 
ditional algebraic stress models are ill-behaved 
and should not be applied to complex turbulent 
flows that are significantly out of equilibrium. 

If we have a clear cut separation of scales where 

d = 6.80, C2 = 0.36, C3 = 1.25, C4 = 0.40   (69)    then (65) reduces to the eddy viscosity model 

It should be noted at this point that if (63) is ap- 
plied to turbulent flows that are far from equilibrium, 
singularities can arise through the vanishing of the de- 
nominator containing TJ and £ (it is straightforward to 
show that this cannot happen in equilibrium turbu- 
lent flows). Hence, this model needs to be regularized 
before it is applied to complex turbulent flows that 
are not in equilibrium. This can be accomplished via 
a Pade type approximation whereby 

o Jf2  
(72) 

3(1 +1?2) 

3-2»?2 + 6£2    s + ^ + e^V + e^2 
(70) 

which forms the basis for the standard K — e model 
of Launder and Spalding [26]. However, in basic tur- 
bulent shear flows, we do not have a separation of 
scales: 17 and £ are of order one. Nonetheless, there 
are some circumstances where (65) yields results that 
are comparable to (72). For example, in the loga- 
rithmic region of an equilibrium turbulent boundary 
layer, the explicit algebraic stress model (65) yields 

(see Gatski and Speziale [3]). It is a simple matter 
to show that (70) constitutes an excellent approxi- 
mation for turbulent flows that are near equilibrium 
and, unlike the original expression, is a bounded and 
non-negative function for devalues of 77 and £. 

The representation (63) constitutes an anisotropic 
eddy viscosity model of the general form 

'*» = -C— - 
* c  dy 

for the shear stress, where 

(73) 

(74) 

Oij'JH 
dxf 

(71) 

given that dvt/dxj = du/dy 6n6j2. This is virtually 
identical to the standard K-e model which, for this 
case, yields (73) with Cß = 0.09. Of course, for more 
complex turbulent flows the models are substantially 
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different; unlike the standard K — e model, the ex- 
plicit algebraic stress model has a strain-dependent 
eddy viscosity and anisotropic eddy viscosity terms. 

In order to achieve closure, a modeled trans- 
port equation for the turbulent dissipation rate t 
is needed. For homogeneous turbulence, the exact 
transport equation (32) for the turbulent dissipation 
rate reduces to: 

e    = 
dvi       U) dvi     n  duk duk dv* 

dxi dxj dxj dxi " dxi 

-2v* 
d2iH      d2Uj 

dzjdxk dxjdxk 
(75) 

where ey is the turbulent dissipation rate tensor de- 
fined in (26) and 

*j       dxi dxj 
(76) 

is the complementary dissipation rate tensor.  If we 
introduce the anisotropy of dissipation tensors 

dij = — 
e 2    c.. 

2e 

« 2e 

(77) 

(78) 

(where c = |e« = |e,-;*), a simple closure can be 
developed for the production of dissipation terms in 
(75). Here, it is assumed that 

dij = Cd hj,    djf = C*d btj, (79) 

which physically implies that the anisotropy of dis- 
sipation is proportional to the anisotropy of the 
Reynolds stresses due to the fact that the former fol- 
lows from the latter as a result of the energy cas- 
cade from large to small scales. Results from Direct 
Numerical Simulations (DNS) of homogeneous shear 
flow (Rogers, Moin and Reynolds [27]) only provide 
justification for (79) as, at best, a low order approxi- 
mation. 

The third correlation on the right-hand-side of (75) 
can be written in the form 

is the generalized velocity derivative skewness and 
Rt = K2/ve is the turbulence Reynolds number. For 
isotropic turbulence, (81) reduces to the classical def- 
inition of the velocity derivative skewness which is 
given by SK = -(öu/3x)3/[(öu/öx)2]3/2 (here we 
define the skewness with the negative gauge). In spec- 
tral space, the destruction of dissipation term on the 
right-hand-side of (75) behaves as follows: 

2v 
dujt duk dui 

dx{ dxj dij TZt**"*      <80) 

where 

SK = - 

r—       fllUb But:  9UJ 
6V15      dx; dx-j dxj 

(a«„a«„\3/2 

\dx„ dxn) 

(81) 

2i/ 2    ^ Ö2«,- 

dxjdxk dxjdxt 
2i/2 ^k4E(k,t)dk     (82) 

Jo 

where E(k,i) is the three-dimensional energy spec- 
trum. Consequently, most of the contributions to this 
term occur at high wavenumbers where the energy 
spectrum scales with the Kolmogorov length scale, 
Ik = v3/4/e1/i. With this Kolmogorov scaling, it fol- 

lows that 

2v' 
a2m    a2m  

dxjdxt dxjdxt ~ 3\/l5 K 
GKR\I2£- + Ce2 

K 
(83) 

(see Speziale and Bernard [28]). The direct substitu- 
tion of (79), (80) and (83) into (75) yields the trans- 
port equation 

dvi 1/2 < 
K 

-Ce2- 

(84) 
where Cei — Cd + C*d (in general homogeneous tur- 
bulence, Cel, Ce2, SK, and GK can be functions 
of time). For equilibrium turbulent flows at high 
Reynolds numbers, 

SK = GK (85) 

and Cei and Ce2 can be approximated as constants 
(when (85) is not valid, then e changes on the Kol- 
mogorov time scale - an extremely rapid change 
at high Reynolds numbers that constitutes a non- 
equilibrium flow situation). This leads us to the com- 
monly used modeled dissipation rate equation for ho- 
mogeneous turbulence: 

dv. 
i = -CelKnid^ 

-cc2- (86) 

with Cei and Ce2 taken to be constants. Typically, 
Cc2 is determined from the decay of isotropic tur- 
bulence; for isotropic decay, (86) implies that (cf. 

Speziale [1]) 

K ~ t~ (c«3-i>. (87) 

The most cited experimental data [29] indicates that 
the exponent of the decay law (87) has a mean value 
of approximately 1.2; this implies a value for Ce2 « 
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1.83. In practice, a value of Cg2 = 1-90 has been 
more commonly used starting with Launder, Recce 
and Rodi [20]. This typically has been used with a 
value of Cei — 1.44 based on a calibration with a 
range of benchmark turbulent shear flows. 

Recently, Speziale and Gatski [30] showed that 
when the effects of anisotropic dissipation are more 
rigorously accounted for, a variable Ct\ results that 
is of the form Cei = Cei (»?,£)• This form is obtained 
by starting with a modeled transport equation for 
the full tensor dissipation ey. An algebraic equation 
- analogous to that obtained from the ASM approx- 
imation for the Reynolds stress - is arrived at when 
the standard equilibrium hypothesis 

dti = 0 

is invoked. For two-dimensional mean turbulent 
flows, it has the exact form: 

=    -2C, pe Sij + (Jte«±kJ\ 
\Ces + V/e-lJ 

(88) 

ksjk 

1—*   —* .)] 
where 

C ■pe 15(Ce5 + V/e-l)1 

+    "" \C.s + V/e-lJ 

2 (  ^3-Jr  >>r.gr 1 
-i 

U{j = Wit" 
e ■' ' e 

and Ce5 and e*3 are constants (Speziale and Gatski 
[30]). The substitution of these algebraic equations 
into the contraction of the e,j transport equation 
yields the scalar dissipation rate equation (86) with 

Ci = 1+ 
(1 + a)(Ce5 + Crf - 1) 

15C„ [(Ce5 + Crf - l)2 +ßU2 ~ kßW\ 
(89) 

where 

„^s^.)172. i = QEn&i)lli 

3 /14 16\ 

15 

02 = YJtt3 —,    Ce5 « 5, 

7 1 
na3+n 
as « 0.6. 

The constants a3 and Ce5 were evaluated using DNS 
results for homogeneous shear flow (Rogers, Moin and 
Reynolds [27]). 

For two-dimensional turbulent shear flows that are 
in equilibrium, (89) yields 

Cel « 1.4 

which is remarkably close to the traditionally cho- 
sen constant value of Cei = 1.44. It is interesting 
to note that an alternative variable Ce\ of the form 
Cei = Ceifa) was recently proposed by Yakhot et al. 
[31] based on a heuristic Pade approximation. How- 
ever, the model of Speziale and Gatski [30] depends 
on rotational as well as iirotational strain rates (77, £). 
It has long been recognized that the dissipation rate 
is dramatically altered by rotations. The results of 
Speziale and Gatski [30] clearly show that this ef- 
fect can be rationally incorporated by accounting for 
anisotropic dissipation. To the best knowledge of the 
author, this model constitutes the first systematic in- 
troduction of rotational effects into the scalar dissipa- 
tion rate equation. Previous attempts to account for 
this effect (see Raj [32]; Hanjalic and Launder [33]; 
and Bardina, Ferziger and Rogallo [34]) were largely 
ad hoc. 

For weakly inhomogeneous turbulent flows that are 
near equilibrium, we can extend the K and e trans- 
port equations by the addition of turbulent diffusion 
terms that are obtained by a formal expansion tech- 
nique: 

dK 
dt dxi \<rk dxij 

e e2      d   fvr de\      „ 

Bi ... 
(91) 

where o> and tre are constants that typically assume 
the values of 1.0 and 1.3, respectively. 

This model can be integrated directly to a solid 
boundary, where the no-slip condition is applied, 
without the need for ad hoc wall damping functions. 
It is only necessary to remove the singularity in the 
destruction of dissipation term 

-a e2 K 

on the right-hand-side of (91).   Durbin [35] argued 
that this expression should be replaced with the term 

-C, t2: 
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where T is the turbulent time scale. For high 
Reynolds number turbulence, T = K/e; for low 
Reynolds number turbulence near a wall, the tur- 
bulent time scale is proportional to the Kolmogorov 
time scale, i.e., T a y/v/e. These considerations lead 
Durbin [35] to propose the expression 

T = max 
K ,CKS/^fe 

where CK is a constant of order one. A damping 
function, however, can also be used. Namely, we can 
take the destruction term to be 

-ce2h K 

where f2 is a wall damping function which, for exam- 
ple, can be chosen to be of the form 

/2 = l-exp(-Ä„/10) 

where Ry = K^y/v is the turbulence Reynolds 
number based on the distance y from the wall. No 
wall damping is needed in the eddy viscosity; the 
strain-dependent terms in the eddy viscosity pro- 
vide natural damping as the wall is approached (see 
Speziale and Abid [36]). 

We will now consider several non-trivial appli- 
cations of the two-equation model discussed herein 
which can be referred to as an explicit algebraic stress 
model (ASM) based on the SSG second-order clo- 
sure. The first case that will be considered is ho- 
mogeneous shear flow in a rotating frame (see Fig- 
ure 1). In this flow, an initially isotropic turbulence 
(with turbulent kinetic energy KQ and turbulent dis- 
sipation rate eo) is suddenly subjected to a uniform 
shear with constant shear rate 5 in a reference frame 
rotating steadily with angular velocity il. In Figures 
2(a)-2(c), the time evolution of the turbulent kinetic 
energy predicted by this new two-equation model is 
compared with the large-eddy simulations (LES) of 
Bardina, Ferziger and Reynolds [37], as well as with 
the predictions of the standard K — e model and the 
full SSG second-order closure. From these results, it 
is clear that the new two-equation model yields the 
correct growth rate for pure shear flow (fi/S = 0) 
and properly responds to the stabilizing effect of the 
rotations U/S = 0.5 and il/S = -0.5. These results 
are remarkably close to those obtained from the full 
SSG second-order closure as shown in Figure 2. In 
contrast to these results, the standard K — e model 
overpredicts the growth rate of the turbulent kinetic 
energy in pure shear flow (O/S = 0) and fails to pre- 
dict the stabilizing effect of the rotations illustrated 
in Figures 2(b)-2(c). Since the standard K-e model 

makes use of the Boussinesq eddy viscosity hypothe- 
sis, it is oblivious to the application of a system rota- 
tion (i.e., it yields the same solution for all values of 
ft/S). The new two-equation model predicts unstable 
flow only for the intermediate band of rotation rates 
-0.09 < tl/S < 0.53; this is generally consistent with 
linear stability theory that predicts unstable flow for 
0 < fi/S < 0.5. 

In Figure 3, the prediction of this new two-equation 
model for the mean velocity profile in rotating chan- 
nel flow is compared with the experimental data of 
Johnston, Halleen and Lezius [38] for a rotation num- 
ber Ro = 0.068. It is clear from these results that the 
model correctly predicts that the mean velocity pro- 
file is asymmetric ia line with the experimental data - 
an effect that arises from Coriolis forces. In contrast 
to these results, the standard K-e model incorrectly 
predicts a symmetric mean velocity profile identical 
to that obtained in an inertial frame (the standard 
K — e model is oblivious to rotations of the reference 
frame, as alluded to above). As demonstrated by 
Gatski and Speziale [3], the results obtained in Fig- 
ure 3 with this new two-equation model are virtually 
as good as those obtained from a full second-order 
closure. This is due to the fact that a representation 
is used for the Reynolds stress tensor that is formally 
derived from a second-order closure (the SSG model) 
in the equilibrium limit. It is now clear that previous 
claims that two-equation models cannot systemati- 
cally account for rotational effects were erroneous. 

Two examples will now be presented that illustrate 
the enhanced predictions that are obtained for tur- 
bulent flows exhibiting effects arising from normal 
Reynolds stress differences. Here, we will show re- 
sults obtained from the nonlinear K — e model of 
Speziale [22]. For turbulent shear flows that are pre- 
dominantly unidirectional, with secondary flows or 
recirculation zones driven by small normal Reynolds 
stress differences, a quadratic approximation of the 
anisotropic eddy viscosity model discussed herein col- 
lapses to the nonlinear K-e model (see Gatski and 
Speziale [3]). In Figure 4, it is demonstrated that 
the nonlinear K — e model predicts an eight-vortex 
secondary flow, in a square duct, in line with experi- 
mental observations; on the other hand, the standard 
K — e model erroneously predicts that there is no sec- 
ondary flow. In order to be able to predict secondary 
flows in non-circular ducts, the axial mean velocity vz 

must give rise to a non-zero normal Reynolds stress 
difference ryy - TXX (see Speziale and Ngo [39]). This 
requires an anisotropic eddy viscosity (any isotropic 
eddy viscosity, including that used in the standard 
K — e model, yields a vanishing normal Reynolds 
stress difference which makes it impossible to describe 
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these secondary flows). 
In Figure 5, results obtained from the nonlinear 

K — e model are compared with the experimental 
data of Kim, Kline and Johnston [40] and Eaton 
and Johnston [41] for turbulent flow past a back- 
ward facing step. It is clear that these results are 
excellent: reattachment is predicted at x/H « 7.0 
in close agreement with the experimental data. In 
contrast to these results, the standard K — e model 
predicts reattachment at x/H « 6.25 - an 11% un- 
derprediction. This error predominantly results from 
the inaccurate prediction of normal Reynolds stress 
anisotropies in the recirculation zone as discussed by 
Speziale and Ngo [39]. As alluded to above, the new 
two-equation model can be integrated directly to a 
solid boundary with no wall damping. In Figure 6, 
the skin friction coefficient obtained from this model 
- plotted as function of the Reynolds number based 
on the momentum thickness, R@ - is compared with 
experimental data and with results obtained from the 
K — e model with wall damping. Clearly, the results 
are extremely good. 

6. Second-Order Closure Models 

These more complex closures are based on the full 
Reynolds stress transport equation with turbulent 
diffusion: 

at 

-D^ij   ~    ge£ii 
dxk 

(92) 

where £>e,j is the deviatoric part of the dissipation 
rate tensor. Full second-order closure models are 
needed for turbulent flows with: 

(i) Relaxation effects; 

(ii) Nonlocal effects arising from turbulent diffusion 
that can give rise to counter-gradient transport. 

In virtually all existing full second-order closures 
for inhomogeneous turbulent flows, #,j and x>e,j are 
modeled by their homogeneous forms. The pressure- 
strain correlation $,j is modeled as 

$ij=eAij(b) + KMijkl(b) 9vt 
dx\ 

(93) 

as discussed earlier. In Section 5, the equilibrium 
limit of the Speziale, Sarkar and Gatski (SSG) model 
was provided.   For turbulent flows where there are 

departures from equilibrium, the SSG model takes 
the form (see Speziale, Sarkar and Gatski [2]) 

$,_,-    =    -(Ci£ + Cp>)bij + C2e {buhj 

+C4K(bikSjk + bjkSik - -hiSktSij) 

where 

+C5K(bikWjk + bjkWik) 

; 3.4, C{ = 1.80, C2 = 4.2, C3 = - 

(94) 

C$ = 1.30, C4 = 1.25, C5 = 0.40, IIb = hjbij. 

The Launder, Reece and Rodi [20] model is recovered 
as a special case of the SSG model if we set 

d = 3.0, C{ = 0, C2 = 0, C3 = -, C| = 0, 

C4 = 1.75, C5 = 1.31. 

In most applications, at high Reynolds numbers, 
the Kolmogorov assumption of local isotropy is typi- 
cally invoked where 

Ddj = 0 

(then, cij = |e*,j and a modeled transport equation 
for the scalar dissipation rate c is solved that is of 
the same general form as that discussed in Section 
5). However, this assumption is debatable as dis- 
cussed by Durbin and Speziale [42]. More generally, 
a representation of the form 

DCij = 2ed{j 

can be used where the algebraic model (88) of 
Speziale and Gatski [30], discussed in Section 5, is 
implemented. 

The only additional model that is needed for clo- 
sure in high-Reynolds-number inhomogeneous turbu- 
lent flows is a model for the third-order diffusion cor- 
relation Cijk. This is typically modeled using a gra- 
dient transport hypothesis: 

C{jk — Tsijklmn dxn 

(95) 

Some examples of commonly used models are as fol- 
lows: Launder, Reece and Rodi [20] Model 

Ca ijk 
drjk            drtk   . _ 
-£J- + Tjm- bUt 1 a 

OXn 

tog) 
dxmJ 

(96) 
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Mellor and Serring [43] Model 

2     X2 

Daly and Harlow [44] Model 

nrrK     dm 
Cijk = —2C,—7i/ —— (98) 

where C, w 0.11 is a constant. When these mod- 
els are used in a full second-order closure, counter- 
gradient transport effects can be described. 

There is no question that, in principle, second- 
order closures account for more physics. This is quite 
apparent for turbulent flows exhibiting relaxation ef- 
fects. The return to isotropy problem is a prime 
example where suddenly, at time t = 0, the mean 
strains in a homogeneous turbulence are shut off; the 
flow then gradually returns to isotropy (i.e., 6^ —» 0 
as t —* co). In Figure 7, results for the Reynolds 
stress anisotropy tensor obtained from the Speziale, 
Sarkar and Gatski (SSG) and Launder, Reece and 
Rodi (LRR) models are compared with the experi- 
mental data of Choi and Lumley [45] for the return- 
to-isotropy from plane strain (here, T = eot/Ko). 
It is clear from these results that the models pre- 
dict a gradual return to isotropy in line with the 
experimental data. In contrast to these results, all 
two-equation models - including the more sophisti- 
cated one based on an anisotropic eddy viscosity de- 
rived herein - erroneously predict that at T = 0, 6,-j 
abruptly goes to zero. In addition, it is worth noting 
that while the SSG model was derived and calibrated 
based on near equilibrium two-dimensional mean tur- 
bulent flows, it performs remarkably well on certain 
three-dimensional, homogeneously strained turbulent 
flows. The predictions of the SSG and LRR mod- 
els for the normal Reynolds stress anisotropies, com- 
pared in Figure 8 with the direct simulations of Lee 
and Reynolds [46] for the axisymmetric expansion, 
demonstrate this point (here, t* = Tt where V is the 
strain rate). 

While the previous results are encouraging, it must 
be noted that the Achilles heel of second-order clo- 
sures is wall-bounded turbulent flows: 

(i) Ad hoc wall reflection terms are needed in most 
pressure-strain models (that depend inversely on 
the distance y from the wall) in order to mask 
deficient predictions for the logarithmic region of 
a turbulent boundary layer; 

(ii) Near-wall models must typically be introduced 
that depend on the unit normal to the wall - 

a feature that makes it virtually impossible to 
systematically integrate second-order closures in 
complex geometries (see So et al. [47]). 

In regard to the first point, it is rather shocking as 
to what the level of error is in many existing second- 
order closures for the logarithmic region of an equilib- 
rium turbulent boundary layer, when no ad hoc wall 
reflection terms are used. This can be seen in Table 2 
where the predictions of the Launder, Reece and Rodi 
(LRR), Shih and Lumley (SL), Fu, Launder and Tse- 
lepidakis (FLT) and SSG models are compared with 
experimental data (Laufer [48]) for the log-layer of 
turbulent channel flow. Most of the models yield er- 
rors ranging from 30% to 100%. These models are 
then typically forced into agreement with the experi- 
mental data by the addition of ad hoc wall reflection 
terms that depend inversely on the distance from the 
wall - an alteration that compromises the ability to 
apply a model in complex geometries where the wall 
distance is not always uniquely defined. Only the 
SSG model yields acceptable results for the log-layer 
without a wall reflection term. This results from two 
factors: (a) a careful and accurate calibration of ho- 
mogeneous shear flow (see Table 3) and (b) the use 
of a Rotta coefficient \C\ that is not too far removed 
from one (see Abid and Speziale [49]). The signif- 
icance of these results is demonstrated in Figure 9 
where full Reynolds stress computations of turbu- 
lent channel flow are compared with the experimental 
data of Laufer [48]. It is clear that the same trends 
are exhibited in these results as with those shown in 
Table 2 which were obtained by a simplified log-layer 
analysis. 

The near-wall problem largely arises from the 
use of homogeneous pressure-strain models of the 
form (93) that are only theoretically justified for 
near-equilibrium homogeneous turbulence. Recently, 
Durbin [35] developed an elliptic relaxation model 
that accounts for wall blocking - and introduces non- 
local effects in the vicinity of walls - eliminating the 
need for ad hoc wall damping functions. While this 
is a promising new approach, it does not alleviate 
the problems that the commonly used pressure-strain 
models have in non-equilibrium homogeneous turbu- 
lence (the Durbin [35] model collapses to the stan- 
dard hierarchy of pressure-strain models given above 
in the limit of homogeneous turbulence). The failure 
of these models in non-equilibrium homogeneous tur- 
bulence can be illustrated by the example shown in 
Figure 10. This constitutes a rapidly distorted ho- 
mogeneous shear flow that, initially, is far from equi- 
librium since SKo/eo = 50 (the equilibrium value of 
SK/e is approximately 5). It is apparent from these 
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CHANNEL FLOW 

Equilibrium 
Values 

LRR 
Model 

SL 
Model 

FLT 
Model 

SSG 
Model 

Experimental 
Data 

611 0.129 0.079 0.141 0.201 0.22 

6l2 -0.178 -0.116 -0.162 -0.160 -0.16 

622 -0.101 -0.082 -0.099 -0.127 -0.15 

&33 -0.028 0.003 -0.042 -0.074 -0.07 

SK/e 2.80 4.30 3.09 3.12 3.1 

Table 2. Comparison of the model predictions for the equilibrium values in the log-layer (T/e = 1) with the 
experimental data of Laufer [48] for channel flow. 

HOMOGENEOUS SHEAR FLOW 

Equilibrium 
Values 

LRR 
Model 

SL 
Model 

FLT 
Model 

SSG 
Model 

Experimental 
Data 

&11 0.152 0.120 0.196 0.218 0.21 

&12 -0.186 -0.121 -0.151 -0.164 -0.16 

&22 -0.119 -0.122 -0.136 -0.145 -0.14 

&33 -0.033 0.002 -0.060 -0.073 -0.07 

SK/e 4.83 7.44 5.95 5.50 5.0 

Table 3. Comparison of the model predictions for the equilibrium values in homogeneous shear flow (V/e 
1.8) with the experimental data of Tavoularis and Karnik [50]. 

results that all of the models perform poorly rela- 
tive to the DNS of Lee et al. [51]. Even the SSG 
model, which does extremely well for homogeneous 
shear flow that is not far from equilibrium, dramat- 
ically overpredicts the growth rate of the turbulent 
kinetic energy for this strongly non-equilibrium test 
case. 

In the opinion of the author, it is a vacuous ex- 
ercise to develop more complex models of the form 
(93) using non-equilibrium constraints such as Mate- 
rial Frame-Indifference (MFI) in the two-dimensional 
limit (Speziale [52, 53]) or realizability (Schumann 
[54] and Lumley [16]). While these constraints are 
a rigorous consequence of the Navier-Stokes equa- 
tions, they typically deal with flow situations that 
are far from equilibrium (two-dimensional turbulence 
and one or two-component turbulence) where (93) 
would not be expected to apply in the first place. 
Ristorcelli, Lumley and Abid [55] - following the ear- 
lier work by Haworth and Pope [56] and Speziale [57, 
58] - developed a pressure-strain model of the form 
(93) that satisfies MFI in the 2-D limit. Shih and 
Lumley [59] attempted to develop models of the form 
(93) that satisfy the strong form of realizability of 

Schumann [54]. Reynolds [17] has attempted to de- 
velop models of this form which are consistent with 
Rapid Distortion Theory (RDT). All of these mod- 
els involve complicated expressions for Mijti that are 
nonlinear in 6y. From its definition, Miju is linear in 
the energy spectrum tensor 2?fcj(k,t) (see Eq. (47)). 
Since, 

bij = 
f — $K6jj 

2K 
where TJ7- is given by (45), it follows that models for 
Mijti that are nonlinear in bij are also nonlinear in 
Eij. This is a fundamental inconsistency that dooms 
these models to failure. It is clear that is impossible 
to describe a range of RDT flows - which are linear 
- with nonlinear models (the principle of superpo- 
sition is violated). Furthermore, Shih and Lumley 
[59, 60] unnecessarily introduce higher degree non- 
linearities and non-analyticity to satisfy realizability. 
In the process of doing so, they arrive at a model 
that is neither realizable nor capable of describing 
even basic turbulent flows (see Speziale, Abid and 
Durbin [61], Durbin and Speziale [62] and Speziale 
and Gatski [63]). 

Entirely new non-equilibrium models are needed 
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for the pressure-strain correlation and the dissipa- 
tion rate tensor. The former should contain non- 
linear strain rate effects and the latter should ac- 
count for the effects of anisotropic dissipation and 
non-equilibrium vortex stretching where SK ^ GK 

in (84) (see Bernard and Speziale [64] and Speziale 
and Bernard [28]). Models of this type are currently 
under investigation for the Office of Naval Research 
ARI on Nonequilibrium Turbulence. 

Acknowledgements 

A significant portion of this research was funded 
by the National Aeronautics and Space Administra- 
tion under Contract NAS1-19480 while the author 
was in residence at ICASE. Funding provided by the 
Office of Naval Research under Grant N00014-94-1- 
0088 (ARI on Nonequilibrium Turbulence, Dr. L. P. 
Purtell, Program Officer) is also gratefully acknowl- 
edged. 

7. Conclusion 

The following conclusions and recommendations 
for Naval Hydrodynamics applications can now be 
made: 

(1) For turbulent flows with complex wall bounded 
or free surface geometries, two-equation mod- 
els with an anisotropic eddy viscosity - that 
are integrated directly to a solid boundary with 
the no slip condition applied - should be used 
for the immediate future. A new generation 
of two-equation models, systematically derived 
from second-order closures, has emerged that is 
far superior to the commonly used K — c model 
and competitive with existing full second-order 
closures. 

(2) There is no question that full second-order clo- 
sure models do, in principle, account for more 
turbulence physics than two-equation models. 
However, current versions of these models have 
major problems when integrated directly to a 
solid boundary with the no-slip condition ap- 
plied. They also perform poorly in even sim- 
ple turbulent flows that are far from equilibrium. 
Until these problems are overcome, their use 
should be limited to free turbulent shear flows 
that are diffusion dominated or to wall bounded 
turbulent shear flows which exhibit complex tur- 
bulence physics that does not preclude the use of 
simple law of the wall boundary conditions. 

Research is currently underway, as part of the Of- 
fice of Naval Research ARI on Nonequilibrium Turbu- 
lence, to extend these models to turbulent flows that 
are far from equilibrium and to resolve the near-wall 
problem. With the incorporation of improvements 
along these lines, we should start to see Reynolds 
stress models make a major impact on the compu- 
tation of the turbulent flows of relevance to Naval 
Hydrodynamics applications. 
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FIGURES 

Figure 1. Schematic of homogeneous shear flow in a 
rotating frame. 

  New Explicit ASM 
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 K-s Model 

o    LES 

Figure 2. Time evolution of the turbulent kinetic 
energy in rotating homogeneous shear flow: Com- 
parison of the model predictions with the large-eddy 
simulations of Bardina et al. [37]. (a) U/S = 0, (b) 
U/S = 0.5 and (c) U/S = -0.5 (from Gatski and 
Speziale [3]). 
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Figure 3. Comparison of the mean velocity profile in 
rotating channel flow predicted by the new explicit 
ASM of Gatski and Speziale [3] with the experimental 
data of Johnston, Halleen and Lezius [38]. 
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Figure 4. Turbulent secondary flow in a rectangular 
duct: (a) experiments, (b) standard K — e model, and 
(c) nonlinear K — e model of Speziale [22]. 
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Figure 6. Comparison of the predictions of the ex- 
plicit ASM of Gatski and Speziale [3] for skin friction 
with experimental data for the flat plate boundary 
layer (from Speziale and Abid [36]). 
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Figure 5. Turbulent flow past a backward facing step: 
comparison of the predictions of the nonlinear K — e 
model [22] with experiments, (a) Streamlines and (b) 
turbulent shear stress profiles. 
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Figure 7. Time evolution of the anisotropy tensor 
in the return to isotropy problem. Comparison of 
the predictions of the LRR model and SSG model 
with the experiment of Choi and Lumley [45] (from 
Speziale, Sarkar and Gatski [2]). 
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Figure 8. Time evolution of the anisotropy tensor 
in the axisymmetric expansion for SQ/TKO — 2.45. 
Comparison of the predictions of the LRR model and 
SSG model with the direct simulations of Lee and 
Reynolds [46]. 
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Figure 10.    Comparison of the SSG, SL and FLT 
model predictions for the time evolution of the turbu- 
lent kinetic energy with the DNS results of Lee, Kim 
and Moin [51] for homogeneous shear flow (SKo/eo = . 
50). 
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Figure 9.   Comparison of full Reynolds stress calcu- 
lations of channel flow with the experimental data 
(O)  of Laufer  [48] for Re   =   61,600.      SSG 
model; FLT model; - • - LRR model;  and 
 SL model,  (a) bu component and (b) 6j2 com- 
ponent (from Abid and Speziale [49]). 
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DISCUSSION AUTHOR'S REPLY 

S. Banerjee 
University of California at Santa Barbara, USA 

I was struck by the similarity of your formulations for 
the anisotropic eddy viscosity with various viscoelastic 
models and in rheology. Rheologists, however, have 
tried to factor in structure, even at a molecular level 
(e.g. Sam Edwards & Dori a couple of decades ago) 
into their models. How is all the recent information 
about coherent structures impacting modelling of the 
Reynolds stresses? 

I agree with you that it is crucial for a Reynolds stress 
model to yield accurate predictions for the skin 
friction. The new two equation model that I discussed 
in my presentation does precisely that for the turbulent 
flat plate boundary layer, without the need for ad hoc 
wall damping functions. I will add a plot of the skin 
friction as a function of the Reynolds number in the 
final draft of my paper (note: see Figure 6 of the paper 
which appears in this volume). 

DISCUSSION 

AUTHOR'S REPLY 

There is indeed a great similarity between Reynolds 
stress models with an anisotropic eddy viscosity and 
constitutive equations for viscoelastic fluids (the 
analogy between the mean turbulent flow of a 
Newtonian fluid and the laminar flow of a non- 
Newtonian fluid was first pointed out by Rivlin 1957 
and then later expanded upon by Lumley 1970 and 
Speziale 1987). However, it is not as easy to factor 
structural information into Reynolds stress models as it 
is into viscoelastic models. In viscoelastic fluids, this 
is related to the material constitution of the fluid— 
which is flow independent—whereas in turbulence this 
constitutes a feature of the dynamics of the flow that 
can change from one configuration to the next. 
Nonetheless, a well constructed Reynolds stress model, 
that is valid for time-dependent flows, can, in 
principle, describe the qualitative features of coherent 
structures that arise from simple shear instabilities (the 
case of rotating shear flows discussed in my paper 
represents a prime example). 

DISCUSSION 

T. Huang 
David Taylor Model Basin, USA 

Charles, we appreciated your excellent presentation. I 
suggest that more comparisons on different turbulence 
models be made by local skin frictional and total skin 
frictional coefficients at a range of high Reynolds 
number. Prediction of drag coefficients is one of the 
most important applications of computational fluid 
dynamics. Therefore, we must also emphasize our 
research on turbulence models for application to drag 
prediction. 

M. Tulin 
University of California at Santa Barbara, USA 

What progress has been made in the calculation of 
non-homogeneous flows (stratified, for example), 
which are so important in the ocean and atmosphere? 

AUTHOR'S REPLY 

Some preliminary but, nonetheless, significant 
contributions to the second-order closure modeling of 
stratified and buoyancy driven turbulent flows were 
made during the 1970s by Zeman, Lumley and others. 
However, progress has been slow since that time. In 
my opinion, serious questions can be raised about the 
appropriateness of using gradient transport models for 
the turbulent diffusion terms (these are used in 
virtually every existing second-order closure). 
Fundamentally, new representations for these terms are 
needed for the better description of the diffusion 
dominated turbulent flows that occur in the ocean and 
in the atmosphere—a difficult task that requires much 
more attention in the future. 
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Numerical Simulation of the Drift Motion of a Ship 
E. Campana, P. Esposito, R. Penna (Istituto Nazionale 
per Studi ed Esperienze di Architettura Navale, Italy) 

ABSTRACT 

The computation of the steady free surface flow past 
a ship hull advancing with a drift angle is presented. 
Viscous effects are taken into account in the neigh- 
bourhood of solid walls and in the wake by the 
Reynolds averaged Navier-Stokes equations, whereas 
the assumption of irrotationality in the external flow 
allows a description by a potential model. Free sur- 
face boundary conditions have been implemented in 
a linearized form at the undisturbed waterplane. Suit- 
able matching conditions are enforced at the interface 
between the viscous and the potential regions. Pre- 
liminary numerical and experimental results obtained 
for the Wigley hull, show the capability of the present 
approach to simulate the asymmetric flow structure. 

NOMENCLATURE 

B,B' the wetted ship hull and its 
image 

V fluid domain 

vp potential flow domain 

vv viscous flow domain 

u Froude number 

g acceleration of gravity 

H{x,y) free surface elevation 

J jacobian 

L ship hull length 

1 unit vector tangent to the 
double model streamlines on 
2 = 0 

I parameter defined along the 
double model streamlines on 
2=0 

n 

N* 

unit vector normal to T, ori- 
ented toward Vp) 

number of iterations in the 
Navier-Stokes solver 

N = NS + NC number  of boundary ele- 
ments Lk used 

boundary elements arranged 
on S 
boundary elements arranged 
onT 
field point 

NS 

NC 

P{x,y,z) 

P 

Po 

pressure 

double model pressure 

Q = (zQ, y0, zQ) source point 

q= (p,u,v,w) 

Re = ^ Reynolds number 

S free surface 

sp free surface G Vp 

sv free surface e Vv 

u = (u,v, w) fluid velocity expressed in 
Cartesian components 

u0 double model fluid velocity 

U free stream velocity 

Vt, vt influence matrices 

Vn 
boundary condition for y> on 
r 

vn boundary condition for <p on 
r 

x,y,z Cartesian coordinates in the 
body-fixed frame of refer- 
ence 

a drift angle 
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ß pseudo-compressibility co- 
efficient 

T interface between Vp and Vv 

r* secondary interface (over- 
lapping) 

Se fourth order artificial dissi- 
pation coefficient 

£i second order artificial dissi- 
pation coefficient 

V kinematic viscosity of water 

vT eddy viscosity coefficient 

<b = <p + ip velocity potential (defined in 
Vr) 

f potential of double model 

<p perturbation potential 

a simple layer density for <p 

ä simple layer density for <p 

T stress tensor 

INTRODUCTION 

The prediction of the manoeuvrability of a ship re- 
quires information about thehydrodynamic forces and 
moments acting on the hull. These can be obtained ex- 
perimentally with devices like Planar Motion Mecha- 
nism (PMM), steady state oblique tow tests or steady 
state rotating arm tests. From a numerical point of 
view it is possible to obtain the yaw coefficient by ex- 
trapolation of the lateral force for several small drift 
angles. 

Some attempts of computing lateral forces have 
been made using both viscous and inviscid flow mod- 
els ([1] - [5]). 

In the inviscid ones, the ship may be treated as a 
thick wing of small aspect ratio, with sources dis- 
tributed on the hull surface and a vortex distribution 
on the ship center plane [1], or with sorces and dou- 
blets distributed on the body and the wake surfaces 
[2], [3]. The wake surface is assumed to be parallel to 
the uniform flow and its position is fixed, being placed 
at the stern edge and at the keel line. These models 
gives satisfactory results once the separation line is 
known, as for the Wigley model. Unfortunately, this 
can be easily done only when the geometry is such to 
force the separation (i.e. sharp edges). Furthermore, 
to define the separation line in the case of 3D ship 
flows may not be an easy task. However, whether an 
approximate choice of the location of the separation 
line deeply influence the values of the hydrodynam- 

ical lateral force and the yaw moment is still to be 
investigated. 

On the other hand, a fully viscous computation 
close to the hull allows a good prediction of gener- 
ation and transport of vorticity in the boundary layer 
and in the wake. Thus an a priori estimation of the 
separation line is not required, nor a vortex sheet is 
needed to mimic the wake. Up to now, viscous ap- 
poaches in the computation of the flow around yawed 
ships, completely neglected the free surface effects 
[4], [5] (furthermore in [4] only the stern of the ship 
double model is considered). The difficoulty in con- 
sidering these effects lies in the asymmetry of the flow, 
which implies that both port and starboard sides have 
to be discretized. If the complicate behaviour of the 
wave pattern has to be catched, this in turn implies 
an extremely large amount of grid points and, as a 
consequence, of CPU time. 

To overcome these problems a viscous-inviscid for- 
mulation has been used here. Viscous effects have 
been considered only near the solid walls and in the 
wake, while the external flow field may be assumed 
to be inviscid. 

The present method assumes a fixed decomposi- 
tion of the fluid domain, with a matching surface, on 
which appropriate conditions are imposed, located a 
priori. A panel method is used for the solution of 
the potential free surface flow, whereas the Reynolds 
averaged Navier-Stokes (RANS) equations are dis- 
cretized by a Finite Volume technique. The linearized 
model of Dawson [8] has been used in the external 
flow, where the double model flow is chosen as basis 
flow for the linearization of the free surface boundary 
conditions. In the internal region these conditions are 
linearized in the sense that they are imposed on the 
undisturbed water plane, while the nonlinear relation 
between pressure and velocity is retained. The choice 
of a linear potential model is dictated by the need of 
CPU time saving. 

The matching conditions to be used with linearized 
free surface flows deserve a particular attention. In 
fact, the splitting of the external flow in a double 
model flow plus a perturbation term must be taken 
into account when forcing the matching conditions: 
the double model potential have to match the viscous 
double model flow, while the perturbation potential 
must be related to the difference between the free sur- 
face and the double model viscous flow. Therefore, 
a double model iterative computation is initially re- 
quired to define the basis flow, then the free surface 
flow can be computed for each Froude number. 

The present work can be seen as a sequel of [16,17, 
18], where the authors started the analysis of domain 
decomposition techniques for free surface flows. In 
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the previous work the global domain was divided into 
two non-overlapping zones; we have now analysed 
a domain decomposition with overlapping that seems 
to show better convergence properties in the iterative 
algorithm and a more regular transition of the solution 
from the inner to the outer domain at the matching 
boundaries. 

MATHEMATICAL MODEL 

In the following, we consider the steady flow past a 
ship hull B floating in an incompressible viscous fluid. 
The flow domain is bounded by the free surface S, by 
the hull surface and extends to infinity. We assume 
a body-fixed reference frame with the i-axis aligned 
with the uniform flow and the z-axis positive upwards 

(fig. 1). 

Overlapping zone 

Viscous Flow 

Potential Flow 

Figure 1: Computational sub-domains and overlap- 
ping zone 

The fluid is assumed inviscid and the flow irrota- 
tional in the subdomain Vp of the flow domain V 
that lies outside the surface Tp , whereas viscosity 
effects are taken into account in the inner region Vv 

bounded by Tv and the hull surface (see fig. 1). The 
two subdomains intersect over the region between Tp 

andr„. 
The variables have been nondimensionalized by 

the ship length L and the free stream velocity U. 
Two parameters characterise the flow: the Froude 
number Fr = U/(gL)i and the Reynolds number 
Re = ULp/p, where p is the fluid density, g the 
acceleration of gravity and p the dynamic viscosity. 

The Outer Region 

The fluid velocity u = {u, v, w) can be written as the 
gradient of a scalar function 4>: 

u(x,y,z) = V®(x,y, z) (1) 

The potential <t> is harmonic in Vp.  The boundary 
condition to be enforced are: 

Neumann boundary conditions on Tp, i.e. 

on 
(2) 

where W„ is the matching condition to be spec- 
ified later on. 

• At the free surface S : z = H(x, y) the pressure 
must be equal to the atmospheric pressure and 
therefore constant. From the Bernoulli theorem 
we have the dynamic condition: 

Ti{x,y) = ^-{l - \V0>[x,y,H(x,y)]\2} 

where surface tension has been neglected. The 
tangency of the flow to the unknown free surface 
gives the kinematic boundary condition 

3HSO      dH d®      39 
dx  dx        dy  dy        dz 

For computational purposes, the potential <i> is split 
into the double model term (p and the perturbation 
term tp: 

®(x,y,z) = <p(x,y,z) + ip(x,y,z) (3) 

The double model potential (f is used as basis flow 
for the linearization. It describes the flow past the 
body B and its image B', symmetric with respect to 
the (x, j/)-plane (i.e. ip2(x,y,0) = 0). The double 
model potential satisfies the matching condition 

dip 

dn 
= y„   on rp (4) 

The perturbation term describes the departure of the 
flow from the double model solution. It satisfies 

—   yn n 
on Tp 

where V„ is such that 

dip      dip _ <?<!> 

dn       dn        dn 
Vn + Vn = W„      on Tp 

(5) 

(6) 

V„ will be specified with W„ in the "MATCH- 
ING CONDITIONS" section. Then, the free surface 
boundary conditions are linearized following Dawson 
[8]: the squares of the derivatives of <p axe neglected 
and the kinematic and dynamic boundary conditions 
are merged to yield the unified boundary condition 

2 «, .        1   - 
<PlPll + 2<pi<pu<pi + —T<pz 

Fr -<t>i<pu (7) 
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where all terms in <p are known from the double model 
solution, and / is the curvilinear abscissa defined along 
the double model streamlines on z = 0. 

Finally, the asymptotic behavior of the wave po- 
tential <p(x, y, z) at infinity must be specified. Waves 
should never propagate upstream; this gives the radi- 
ation condition: 

lim   \V<p(x,y, 2)| = 0 (8) 

for every fixed (y, z) in Vp. 

The Inner Region 

The RANS equations describe the flow in the inner 
region Vv. The velocity field is divergence free 

V • u = 0       in X»„ 

and the momentum equation has to be satisfied 

u- Vu +VP = V • T in Vv 

In the previous equation P is the 'total' pressure, i.e. 
the sum of the pressure term and the gravity term 

VP = ^ + A = V 
p       FT2 

l + JL 
P     Fr 

k being the unit vector aligned with the z-axis. z is 
the stress tensor, including the turbulent stresses 

r=(^ + "r)[(Vu)+(Vu)r] 

vT being the kinematic eddy viscosity. In the present 
work the Baldwin-Lomax turbulence model [11] has 
been used. 

Apart from the surface Tv at which the potential 
and the viscous solutions are matched (this topic will 
be discussed later on), the boundary conditions to 
be imposed are the standard ones for Navier-Stokes 
computations. At the solid wall no slip conditions are 
enforced, i.e. velocity is set to zero at the boundary 
(no conditions are required for the pressure). On the 
free surface, the boundary conditions to be satisfied 
are the following: 

• the kinematic boundary condition 

dU      dU 
u— \-v-—- = w 

ox ay 
(9) 

• the dynamic boundary condition (constant pres- 
sure on Sv) 

P = ^ 
Fr 

(10) 

Figure 2:  Viscous and inviscid free surface grids: 
Q = 4° 

• zero tangential stresses 

„ = 0 TV: = 0 (11) 

NUMERICAL MODEL 

Since the study is extended to ships advancing in rec- 
tilinear motion with a drift angle, in the numerical so- 
lution of the mathematical model depicted before we 
cannot exploit the symmetry of the problem about the 
(x, z)-plane and therefore port and starboard sides are 
discretized. The topology of the computational grid 
is of C-type in the (£, 77)-plane, as shown in fig. 2. 
C-periodicity conditions in the wake are imposed for 
the viscous flow. 

Potential Solver 

The solution of the mathematical model described in 
sec. 3.1 can be obtained by a panel method. The 
double model term ip can be represented by a simple 
layer potential distributed on Tp 

v(P) •L- (Q) 
l 

\P-Q\     \P-Q' 
dSQ    (12) 

where P = (x, y, z) G Vp, Q = (xQ,yQ,zQ) £ Tp, 
Q' = {xQ,yQ,-zQ). 

If (12) is introduced in (4) we obtain the integral 
equation to be solved numerically. To this end, the 
boundary rp of Vp is discretized into yVr plane quadri- 
lateral elements Lk, ,k = 1,..., A/"r and the simple 
layer intensity a(Q) is assumed piecewise constant. 
The discrete form of the integral equation (4) for cr(Q) 
reads 
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t «{£/ [lp-°r'+     (13) 
k#i 

\P-Q' f'] dSQ\ - 2xcr, = V„(Pi) 
J J P=P, 

for i = Ns +1, ■ ■ ■, N. Equation (13) can be rewritten 
in the following form: 

J2   <rfc[n(P0-(V*(fl)+ (14) 

V't(Pi))] - 2%ai = V„(Pi) 

where   V*     =     (Vkx,Vky, VkJ   and   V't     = 
(VL,V'Vl)art 

v*(P) 

vUP) - / 
J Li 

P-Q 

P-Q\ 

P-Q' 
P-Q'\ 

■dSQ 

■dSQ 

(15) 

The resulting system of JVr linear equations in the JVr 
unknowns ak is solved with theLU factorization. 

Similarly, the perturbation term <p can be repre- 
sented by a simple layer potential on Tp and the part 
Sp of the free surface included in the boundary of Vp: 

*(P) = I    my 
Jrpusp 

I 
P-Q\ 

dSQ (16) 

where Q = (xQ, yQ, zQ) £ rpU«Sp. As for the double 
model problem, (16) is introduced in (5) and (7) to 
obtain the integral equations to be solved numerically. 
We discretize Fp U Sp into TV = jV5 + JVr plane 
quadrilateral elements Lk,k = l,...,N. Nr denotes 
the number of panels located on rp and Ns the number 
of those located on the average free surface Sp. The 
discrete forms of equation (5) is 

^^[n(P,)-V*(P.)]- (17) 

k±< 

2icäi = Vi{Pi)    (i = Ns+l,-..,N) 

while, for equation (7) 

2^(Pi)<Pü(Pi)]^2äkl(P) -\k(P.) 
fesl fc*. 

+j^^£J»kVzk{Pi)-2Täi} = 
k = \ 

-[<Pi(Pi)fMPi)    (i=U-,Ns) 

where l(Pi) is the unit vector tangent to the double 
model streamlines on z = 0, and 

<Pi{Pi)=[pl(Pi) + v\{Pi)} 

The derivatives of Vfc(P) are approximated with sec- 
ond order upwind finite differences along the coor- 
dinate lines. The upwind bias on each coordinate 
direction is determined by the corresponding double 
model velocity component. The radiation condition 
(8) is enforced in the following discrete form: 

Ni 

]T ökV,k{Pj)- 2x^ = 0 (19) 

where j - 1,..., N, is the index set corresponding 
to all panels whose control points Pj = (x;-, yj, 0) 
are such that XJ < xr, where x = xr is a plane that 
lies halfway the beginning of the potential domain and 
the bow of the ship. These equations replace the in- 
equations (18) corresponding to the control points Pj. 

The linear system (17),(18),(19) of N equations in 
the N unknows <pk is solved, as in the double model 
problem, by LU factorization. 

The reader is referred to [9] for a rigorous and 
extensive discussion of the topics illustrated in this 
section. 

Navier-Stokes Solver 

A well established implicit scheme developed in [12] 
has been used for the numerical solution of the prob- 
lem described in sec. 3.2. 

A pseudo-transient formulation due to Chorin [10] 
is used to solve the steady state incompressible RANS 
equations. In this scheme the continuity equation is 
replaced by a transient counterpart 

£+"■ 0 (20) 

where ß is the pseudo-compressibility factor.   The 
resulting system of conservation laws is 

[vi{Pi)f J2 äkl{Pl)' V[1(F,)' v"(p-)]+   (18> 
fcjSi 

dq      dF'       dF2      dF3 

dt       dx        dy        dz 
dq      £F 
dt      da 

= 0     (21) 

where 
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F2 = 

V 

/ p \ 
u 
V 

\  w  ) 

ßv 

V    + p — Ty 

J 

F' 

F3 = 

ßu 
V.2 +p — Tx 

ßw \ 
WU — Txx 

WV — Tyz 

W2 + p - Tzz   ) 

where 6qn = qn+1 - qn, Am and Bm r are the jaco- 
biansofF": 

Am = 
dFm 

3q 
B" 

d¥m 

3q«r 

A direct solution of the system of algebraic equations 
(25) would be too expensive, thus an approximate 
factorization technique is used to reduce it to the solu- 
tion of three simpler problems, with block tridiagonal 
coefficient matrix: 

If (£- »7, C) = (Ci, 6.6) is a curvilinear coordinate 
system, and we set (x,y,z) = {x\,x2,xi), equa- 
tion (21) can be recast in the form 

S? + 7&^-° (22) 

where the summation convention on repeated indices 
is adopted from here on for sake of conciseness, J is 

the Jacobian and (■) ,• = -^-. 
axi 

A finite volume technique is used to discretize equa- 
tion (22). The inner region Vv is divided in hexahedra 
Vijk- The application of the Gauss theorem in the con- 
trol volume Vijk yields 

dt + R(q)o* = o (23) 

with 

R(q) ']k = wJl FadS = 0 
Sijk 

where S,j * is the boundary of VJ;- jt, n = (nx, ny, nz) 
is the outer normal to S^k and T = (F\F2,F3). In 
the numerical approximation the values of T on the 
faces of the cell V^k are needed for the discretization 
of equation (23): a simple averaging of neighbouring 
points is used to obtain velocity and pressure, while 
the stress tensor is evaluated by centered differencing. 

The time marching procedure follows Beam and 
Warming [13] 

q-+'_q» 

A* -(.-.)£ 
•I1 

dt 

n+I 
= -(1-0 

+ (24) 

,n+'> 

where 0 < 6 < 1. Using a Taylor expansion, equation 
(24) can be written in "delta" form 

[l + 8At(A]+A2 + A3)]6qn~ (26) 

(I + 0At4') (I + 6MA2) (I + 9MA3) 6qn 

with accuracy 0(At). The operator A introduced in 
the factorization is defined as 

«'-7*r('*' 
Am + JSi.mB7 ..'i_ 

% 

with no summation on /. It can be noticed that all the 
second order mixed derivative in 6q were discarded 
in the implicit part of the system to maintain the tridi- 
agonal structure. This approximation, however, does 
not affect the steady state solution. 

To ensure the numerical stability of the scheme, a 
fourth order artificial dissipation term is added to both 
sides of (26). Thus the flux at the interface £i l.+ij.t 
is modified according to 

^•BUij,* = ^-n|,-+ij,*+ (27) 

£eV(qi+2,J,k -3qi+ij,* +3q,-,>,fc — q«—i.i,*) 

tt being a parameter 0(1) and V the average volume 
of the two neighbouring cells. A second order term 
is added to each tridiagonal operator in the left-hand 
side 

A'-mv«-mAm+J«-BmJik-°iVik 
where e* is again 0(1). 

The final form of the system of equations is, then 

(i + BtaAx) (i + 6AtA2) (I + 6 At A3) Sqn = (28) 

-AiR(qn) 

6At a 

-AtR(qn) 

J£t,mAm6q + J(i,mB' 
i,TdSq 

(25) 

where R(qn) includes the artificial dissipation terms. 
It can be shown that the steady state solution is 

second order accurate and that the above scheme is 
unconditionally stable in the linear case if 9 > 0.5 
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and Ei > 2ee. The reader is referred to [12] and [13] 
for a detailed discussion. 

In the implementation of the numerical code, all the 
metric terms in the above relations were computed in 
a finite volume fashion, i.e. the Jacobian Jijk was 
set equal to the volume cell Vtjk and the terms like 
J& at the cell interfaces £ = const, are computed, for 
instance, as 

Jt»\i+Lj,k       =      »»^i+Jj.* (29) 

where (nx, ny,nz) is the outer normal to the interface 
and ASi, i ,■ k is the area of the interface between 

Vijtk and Vf+i,;,*. 
A speedup in the computation can be achieved if a 
local time step is used 

i 
Atijk = CJt)k 

with C a stability parameter. 
The boundary conditions are enforced as follows: 

solid wall At the cell interface of the hull surface 
u is set to zero. The normal gradient of the 
velocity, needed for the computation of the stress 
at the boundary, is computed with a first order 
one-side difference, while the pressure is simply 
extrapolated from the cell center adjacent to the 
wall. 

outflow The flow is supposed to be completely devel- 
oped in this region and therefore both the pres- 
sure and the velocity vector are extrapolated (null 
gradient) from internal values. 

free surface The wave elevation V. is updated at each 
iteration by means of the unsteady kinematic 
boundary condition 

an ,   37i,   an ,„m —- + u— + v— = w (30) 
dt dx dy 

which is discretized with a finite difference 
scheme 

"H?/"' =H?j-At («*. + *.)olF.+<31> *n 

Once 7i is known, the total pressure at the free 
surface is computed from (10). The velocity 
components are simply extrapolated from the 
values at the cell center below the waterplane. 
Condition (11) has not been used, because the 
dimension of the cells near the free surface does 
not allow the resolution of the boundary layer at 
the water-air interface, which is extremely thin, 
being 0{Fr/Re±). 

Applications of this scheme to double model ship 
flow calculations can be found, for instance, in [14] 
or in [15]. 

MATCHING ALGORITHM 

The numerical algorithm used to couple the inner and 
the outer solution is the most important step of the 
whole procedure. The choice of the exchanged vari- 
ables and the location of the matching surface may 
deeply affect the convergence rate or even cause the 
failure of the algorithm. In the previous version of 
the method [16], a non-overlapping domain decom- 
position scheme was used. The values of the tan- 
gential component of the velocity and the pressure 
of the potential field at the matching surface were 
used as boundary conditions for the Navier-Stokes 
solver, while the normal component of the viscous so- 
lution was used as Neumann condition in the potential 
flow. With this kind of approach, the convergence was 
reached within round-off errors but the convergence 
rate was not very satisfactory and some relaxation 
factors had to be used when matching the solutions. 
Furthermore, non-smooth transition from the inner to 
the outer domain was observed. 

In the present work, the algorithm has been 
changed: the flow domain is divided in two subdo- 
mains that overlap in a small region, as illustrated in 
fig. 1 and fig. 3. These subdomains are bounded by 
rp and r„, which are the boundaries of the potential 
and viscous zones, respectively. The thickness of the 
overlapping region is equal to half the height of the 
outermost cells in the inner grid (fig. 3). 

In the iterative coupling procedure, the solution 
computed in the first domain is used to feed the solu- 
tion in the other domain with the boundary conditions, 
that is, in terms of the total potential O: 

• from the potential solver we get the velocity vec- 
tor and the pressure at the grid point B on Tv 

(see fig. 3); these values are enforced as bound- 
ary conditions on the viscous flow 

The spatial derivatives of ft in (31) are computed 
with second order upwind differences. 
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Potential Flow 

-•-•'\ B 

••<T Overlappikfl' : : 

Viscous Flow 

Figure 3: Location of the exchanged variables at the 
matching interfaces 

1. Double Model Flow: The solution is computed 
with the conditions 

wo   =    0 

^    =    OonS„    and^=0onSp (34) 
dz dz 
dvo 

~dz~ 
0 

on the waterplane z = 0, while the matching 
conditions on Tp and Tv are 

uo = V<? (35) 
r„ 

»lr. = V*lrv 

p\r,= i(l-V*.V*)| 

Po 
(32) 

r„ 

• the normal component of the velocity at the con- 
trol point A on Tp (see fig. 3) is computed from 
the viscous flow solution. This value is then 
used as a Neumann condition for the potential 
problem (see eq. 2) 

|\, = W„ = u.n|r, (33) 
an 

This new scheme improves the convergence rate, 
makes the relaxation factors useless and ensures a 
smooth transition across the matching surface. 

A further comment regarding matching conditions 
is worth making. In fact, if condition (33) cannot 
give rise to any doubt (it is just a Neumann condition 
for the Laplace equation), the same cannot be said 
for (32). This condition is redundant for the incom- 
pressible Navier-Stokes equations, because only the 
velocity vector and not the pressure, or alternatively 
only the pressure and the tangential components of 
velocity, should be assigned on the boundary. On the 
other hand, the matching surface is placed where both 
viscous dissipation and vorticity are supposed to be 
negligible. Therefore, the value of the pressure on 
the outermost cell centres (that lie on Tp) is computed 
from the Bernoulli theorem. 

As to the numerical implementation of matching 
conditions, we remind that for computational reason 
the potential flow field is expressed as the sum of a 
double model potential p and a perturbation potential 
<p. The multidomain solution has to be consistent with 
this decomposition, and therefore the solution must be 
obtained in two steps: 

dn 

-o-v^-v?) 

= Vn = uo • n 

(36) 

(37) 

where u0 and po are the velocity vector and the 
pressure in the inner double model solution. 

2. Free Surface Flow: Once the double model so- 
lution is obtained with the desired accuracy, the 
free surface flow can be computed. The match- 
ing conditions to be enforced are slightly more 
complex than in the previous step. In fact, the 
potential (p is a perturbation with respect to the 
double model flow and therefore it must be re- 
lated to the difference between the free surface 
velocity field and the double model velocity field 
in the viscous domain. At the same time, the vis- 
cous solution, which is not split, must be related 
to the total potential. This yields the following 
matching conditions: 

= Vn =  V(p + £ 

= :j(l-V(v» + v)-V(¥> + £)) 

d<p   = u • n - uo   n 
dn r, rP 

(38) 

(39) 

(40) 

863 



It is easy to verify that if (37) and (40) are summed, 
the global matching condition (33) is satisfied. 

The standard application of a multidomain decom- 
position technique would require the iterative cou- 
pling of the converged flow fields, each computed for 
assigned boundary conditions on the matching sur- 
faces, as done in [19]. 

The solution of the potential field for both the dou- 
ble model and the free surface problem is not very 
expensive to be computed, in that the problems are 
linear and therefore the coefficient matrix of the result- 
ing system of equations can be computed and stored in 
factorized form at the beginning of the computation. 
In fact, the coupling procedure affects only the RHS 
of the system of equations in the unknown a or ä, 
and therefore the solution can be calculated by back- 
substitution at each global step. We remark that in 
the potential free surface problem the coefficient ma- 
trix depends only on the double model solution that 
has already been computed at the previous stage, and 
therefore does not change while iterating, because the 
two problems have been solved separately, unlike that 
in [19]. 

On the contrary, the steady solution of the Navier- 
Stokes equations is extremely time consuming, be- 
cause we have to deal with a system of coupled non- 
linear equations, that must be solved iteratively. How- 
ever, the convergence of the viscous solver to the 
steady state solution seems not to be required. In all 
the test cases we have performed, the Navier-Stokes 
solver was iterated for a fixed number NNS of steps 
(typically 1 < NNS < 100) and the global algo- 
rithm never failed to converge. However, the number 
of sub-iterations affects the global convergence rate. 
Some properties of the algorithm have been inves- 
tigated in [20]: in particular the dependence of the 
numerical solution on the grid size, on the position 
on the surface Tp (and consequently on the size of 
the viscous subdomain) and on the artificial viscosity 
parameter zt. 

NUMERICAL RESULTS 

With this approach, numerical results for the case of 
a ship advancing in a straight course, have been pre- 
sented in [18],[20]. The major modifications we have 
introduced are associated with the boundary condition 
at the wake and with the size of the computational do- 
main. With these changes the numerical simulation 
can predict the asymmetric structure of the flow ob- 
served experimentally. As a first application of the 
present method, the simulation of a Wigley hull ad- 
vancing in a oblique course for a drift angle a = 4° 
at FT = 0.220 and Re = 4.5 x 106 has been carried 

.015 

0125 rl Suction side 

.01 

0075 A 
.005 

0025 i. »\  J\ 
\ \y^ j-^—* ■. 

0025 
i           i .... i 

Figure 4: Wave profile near the hull; Fr = 
0.220, Re - 4.5 x 106,a = 4°: suction (top) and 
pressure (bottom) sides.  ( ) numerical results, 
(* * *) experimental data [21]. 

out. For this computation we used 120 x 15 x 22 cells 
in the inner viscous domain (streamwise, normal, and 
girthwise directions respectively), 120 x 17 panels on 
the free surface, and 120 x 22 panels on Tp. 

The wave profile along the hull for the pressure 
and the suction sides is shown in fig. 4 in compari- 
son with some experimental data obtained at INSEAN 
[21] (figs. 7.a, 7.c). Figs.7.b, 7.d show a 3D view of 
the hull and the computed free surface. The wave 
profile at the bow is dramatically modified with re- 
spect to the case a = 0, since the different pressure 
values in that area, between port and starboard side, 
imply respectively an increase and a lowering of the 
wave height. The numerical results were able to catch 
the main features of the flow: the position of the first 
maxima of the wave profile and the shift of the first 
trough between the pressure and the suction side are 
well predicted. Another effect of the angle of inci- 
dence of the ship is the thickening of the boundary 
layer on the suction side (especially near the stern) 
and its thinning on the pressure side. This behaviour 
is well reproduced by the numerical result reported 
in fig. 5 where the contour map of the u component 
shows the asymmetry of the boundary layer and the 
wake. Finally, contour maps of the u component of the 
velocity (fig. 6) and of the crossflow velocity (fig. 8) at 
some transversal sections indicate the distorted wake 
pattern of the Wigley hull. 
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Figure 5: Contour map of u component of velocity on the z = 0 plane show the boundary layer and the wake in 
the inner viscous domain (a = 4°) 

Figure 6: Contour map of u component of velocity in some transversal sections (a = 4°) 
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Figure 7 a- Wave profile near the hull: suction side        Figure 7.b: A perspective view of the suction side of 
pi] the computed free surface flow past the Wigley hull. 

Figure7c: Wave profile near the hull: pressure side        Figure 7.d: A perspective view of the pressure side of 
[21-, the computed free surface flow past the Wigley hull. 

Figure 7: Experimental [21] and numerical wave pattern 
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x = 0.593 x = 0.811 

x = 0.962 x = 1.000 

x= 1.053 x = 1.369 

Figure 8: Crossflow velocity contour maps at different transversal sections (stations are given in the ship reference 
frame). 
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CONCLUDING REMARKS 

The steady motion of ship advamcing with an angle 
of drift is solved numerical by a viscous-inviscid ap- 
proach. The method take into account the free surface 
effects and may be considered as a first step in the 
simulation of this complex ship flow. The resolution 
of the numerical results can be further improved, but 
the method was capable in predicting some important 
feature of this flow. 
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DISCUSSION 

K.Mori 
Hiroshima University, Japan 

In your viscous computation is the shearing stress 
condition on the free-surface described by (11) taken 
into account? If not, let me have your opinion about 
the neglect. This is because it is neglected in most 
computations. 

AUTHORS' REPLY 

The shear stress condition on the free surface is 
neglected. As it is stated in Sec. "Navier -Stokes," 
condition (11) has not been used in the computation 
because the grid has not enough resolution near the 
free surface. Regarding the effects of the simplified 
conditions on the free surface, we think that it does 
not affect the solution very much, since we are 
solving the linearized problem. Thus in this case the 
zero vertical gradient conditions on the velocity 
components, together with the dynamic condition 
(10), are compatible with the true boundary 
conditions. 
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Prediction of Incompressible Tip Vortex Flows 
L. Eca, J. Falcäo de Campos (Instituto Superior Tecnico, Portugal), 

M. Hoekstra (Maritime Research Institute, The Netherlands) 

Abstract 

A numerical method for the calculation of in- 
compressible viscous flow at the tip of wings is ap- 
plied to the calculation of the flow at the tip of a 
wing with elliptical planform. The predictions are 
compared with experimental results in the vor- 
tex formation region and in the near-wake. The 
numerical method is based on a finite-difference 
discretisation of the Reynolds-averaged Reduced 
Navier-Stokes equations for steady incompress- 
ible flow, supplemented with an algebraic eddy- 
viscosity turbulence model. The computed re- 
sults show good agreement with the experimen- 
tal data as far the vortex position and the general 
flow characteristics are concerned. However, the 
size of the vortex core is overestimated, which 
is attributed to inadequate turbulence modelling 
and locally insufficient grid resolution. 

Nomenclature 

a 
c 
Co 

V9 

P 
Re 

Contravariant base vectors. 
Wing mean chord. 
Wing root chord. 

Pressure coefficient, (cp = %~~^" ) - 

Contravariant metric tensor. 
Jacobian of the coordinate 
transformation. 
Pressure. 
Reynolds number, (Re = ^£)- 
Free-stream velocity. 

XP -   Cartesian velocity components. 
V -   Contravariant velocity components 

T -   Velocity dependent variables, 

(V = JgüVi). 
x,y,z -   Cartesian coordinates. 
t,r,,C -   Curvilinear coordinates. 

ß -   Fluid effective viscosity. 
V -   Fluid kinematic viscosity. 

P -  Fluid mass density. 
T" -  Stress tensor. 

1    Introduction 

The tip vortices generated by marine propellers 
are often associated with cavitation. Tip vortex 
cavitation is usually the first type of cavitation to 
appear and can be a major source of noise. Design 
optimization requires the capability of accurate 
prediction of a propeller's behaviour with regard 
to tip vortex cavitation, either by experiment or 
by computation. 

It is well-known, however, that viscous effects 
play an important role in the inception of tip 
vortex cavitation. Scale effects influence there- 
fore the results of experimental investigations on 
reduced-size propellers. The correction of exper- 
imental results for scale effects is still guided by 
the classical work of McCormick, [1]. More re- 
cent studies have been reported in e.g. [2], [3], [4] 
and [5], but a considerable uncertainty remains. 
Computational studies, on the other hand, are 
usually frustrated by the complexity of the prob- 
lem. Nevertheless, the computational approach 
seems the most promising in improving our in- 
sight and prediction capability. 

In incompressible flow, the first approaches to 
the calculation of tip vortex flows were reported 
by Govidan  et al.     in  [6]  and  [7].     Govidan 
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ei al. used the parabolised Reynolds-averaged 
Navier-Stokes equations to calculate tip vortex 
flows. In Govidan's approach, streamwise diffu- 
sion is neglected and the streamwise pressure gra- 
dient is obtained from inviscid flow calculations. 
The present approach, [8], also neglects stream- 
wise diffusion, because tip vortex flows have a 
predominant flow direction, but the streamwise 
pressure gradient is obtained in the solution. This 
means that only a partial parabolisation is ac- 
complished because the elliptic character of the 
equations is retained in the pressure field. This 
approach was proposed by Rubin, [9], for flows 
with a predominant flow direction. As shown by 
Rubin in [10], these equations contain all the im- 
portant terms of the Navier-Stokes equations for 
high Reynolds number flows. Rubin's analysis 
also shows that the diffusion terms in the normal, 
T), momentum may also be neglected. In [11], Ru- 
bin et al. refer to these equations as the Reduced 
Navier-Stokes equations. 

The present method was developed from the 
ship stern flows calculation method of Hoekstra 
and Raven, [12], [13], [14] and [15]. A zonal ap- 
proach is adopted by decomposing the flow do- 
main into an outer inviscid region and a viscous 
region. The outer inviscid flow is computed with 
a conventional source-based potential flow panel 
code. The viscous flow close to the tip is com- 
puted by a finite-difference approximation of the 
Reynolds-averaged Reduced Navier-Stokes, RNS, 
equations. An eddy viscosity algebraic turbulence 
model based on the formulation of Cebeci and 
Smith, [16], completes the mathematical model. 
The first numerical studies with the method were 
made for wings of rectangular planform, [17], to 
investigate the numerical implementation of the 
boundary conditions and the sensitivity of the so- 
lution to the location of the boundaries of the 
computation domain. 

The predictions of the flow at the tip of a rect- 
angular wing with a squared tip were compared 
with experimental results in [17] and [8]. The cor- 
relation between the vortex location of the predic- 
tions and of the experimental results is excellent 
for three different angles of attack, [8]. Also the 
calculated flowfield away from the vortex center 
is in excellent agreement with the experimental 
results. However, the vortex core size is over pre- 
dicted in all the calculations, with a consequent 
underprediction of maximum transverse veloci- 
ties. 

The lack of discretization in the vortex core re- 
gion and the turbulence model are likely to be res- 

ponsible for the overprediction of the vortex core 
size. The insufficient grid resolution in the vor- 
tex core region may require the use of adaptative 
grids and the conception of a turbulence model 
suitable for tip vortex flows is a complex prob- 
lem. At this stage of the development we have 
not yet addressed these problems. Our focus is 
to investigate the possibility of predicting, with 
the present method, the formation of the tip vor- 
tex on a wing with a more representative shape 
of a propeller blade. Therefore, the present paper 
presents : The latest version of the computational 
method in section 2. A brief description of the ex- 
perimental programme undertaken to obtain data 
for comparison with the predictions in section 3. 
The results of the application of the method to 
the calculation of the flow at the tip of a wing 
with elliptical planform and its comparison with 
experimental results in section 4. The conclusions 
of this paper are summarized in section 5. 

2    Computational Method 

2.1    Mathematical Formulation 

The Reynolds-averaged Navier-Stokes equa- 
tions can be written in several different forms. 
The present choice of neglecting streamwise diffu- 
sion implies that the equations should be written 
in a roughly flow conforming coordinate system. 
The strong conservation form of the equations 
in general boundary-fitted curvilinear coordinate 
systems, see for example [18], expresses conserva- 
tion of momentum in the coordinate directions of 
a cartesian coordinate system, (x, y, z), [19]. In 
general, the x, y, z directions of a cartesian co- 
ordinate system are not flow conforming and so 
the strong conservation form of the momentum 
equations may not be compatible with the phys- 
ical approximations assumed in the momentum 
equations. 

The contravariant form is for our purposes a 
more attractive way to write these equations. 
This form of the equations expresses conservation 
of mass and momentum along the £, r?, C direc- 
tions of a boundary-fitted curvilinear grid, which 
may also be a flow conforming coordinate system. 
This form of the equations is not a strong conser- 
vation form, [19], and so unphysical source terms 
may appear in the discretized equations, [20]. To 
minimize the effects of these source terms, the 
equations are written with the cartesian velocity 
components, U', as the dependent variables, [20]. 
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For steady incompressible flow the equations of 
conservation of mass and momentum along the 
ft rj, C directions can be written as : 

a* • —T = 0, (1) 

(2) 
with 

T'J =n g,m   0 
dU \       Vm / ,    dU 

d? 
(3) 

and 

(4) 

(5) 

The tensorial summation convention applies; a1 

are the contravariant base vectors, 

p is the pressure, p the fluid mass density, n the 
fluid effective viscosity1, £ is a streamwise coor- 
dinate, r\ a coordinate normal to the wall and C 
a transverse coordinate, yfg is the Jacobian of 
the transformation between the two systems and 
g'i is the contravariant metric tensor. A par- 
tial parabolisation is obtained by neglecting the 
streamwise diffusion in the momentum equations, 
i. e. the terms with j = 1 in the viscous terms of 
equations (4). The elliptic character of the equa- 
tions is retained in the pressure field. 

As mentioned before, the use of equations thus 
simplified implies that a physical meaning is at- 
tached to the grid, since diffusion is neglected in 
the streamwise direction. This means that if the 
ft T],C system is roughly flow conforming, the use 
of contravariant velocity components as depen- 
dent variables is much more attractive than the 
use of cartesian components, because it enables 

1The fluid effective viscosity, fi, is obtained with an 
isotropic eddy-viscosity algebraic turbulence model, see 
section 2.1.2 

the possibility of using the physical characteris- 
tics of the flow in the solution procedure. 

Taking into account these considerations, the 
RNS equations written with the cartesian com- 
ponents, 17', as the dependent variables are used 
to obtain the discretized equations, but the de- 
pendent variables used in the calculation are the 
contravariant velocity components. This means 
that the relations between cartesian components 
and contravariant components, V, 

dx'    , « —        y1 
XT = 

dxi,« 
drj (6) 

are used to obtain the final form of the discretized 
equations after the discretization of the equations 
(1) and (2). With this procedure, we exploit 
the numerical advantages of discretizing the con- 
travariant RNS equations with U' as velocity de- 
pendent variables, and keep the flow-conforming 
contravariant velocity components as the depen- 
dent variables of the discretized equations. 

At a grid singularity ,{^/g = 0), the metric rela- 
tions of the coordinate transformation are not ap- 
plicable. This means that the relations between 
cartesian and contravariant velocity components 
can not be applied at grid singularities. In the 
present approach, grid singularities are dealt with 
explicitly. The cartesian components at grid sin- 
gularities are obtained by the arithmetic mean 
of the surrounding nodes in a previous iteration2 

and substituted in the discretized equations. 
The present discretization procedure and the 

explicit treatment of the cartesian velocity com- 
ponents at grid singularities avoids all the restric- 
tions imposed by grid singularities on the choice 
of the dependent variables. To obtain velocity de- 
pendent variables which are independent of the 
grid line spacing in the computational domain, 
the physical components of the contravariant ve- 
locity components, V , are chosen as the velocity 
dependent variables. These are defined by 

V'=VV*7, 

where 
dx2     dy 

9ii = -zr  + 
2      dz 

+ 
9fc " Oft 3ft 

The flow solution is obtained by solving the 
continuity and momentum equations with the 
appropriate boundary conditions. The velocity 
component in the normal direction, V2, is ob- 
tained by solving the continuity equation and the 

2The solution procedure has to be iterative due to the 
non-linearity of the equations. 
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three momentum equations are used to obtain the 
remaining two components of the velocity and 
the pressure. The coupling of the equations is 
maintained in the solution process. The diffusion 
terms in the t] momentum equation are dropped. 
As mentioned by Rubin et al. in [11], if the r\ 
coordinates are locally normal to £ - at least near 
boundaries - all the diffusion terms in the mo- 
mentum equation in the normal direction, 77, may 
be dropped.   This means that normal pressure 

variations, -J?-, are essentially inviscid in origin 

and so the present set of equations represents an 
extension of interacting boundary layer theory. 

2.1.1    Boundary Conditions 

The flow around the tip of a wing has six 
boundaries. A schematic view of these boun- 
daries in the physical and computational do- 
main is given in figure 1. The six boundaries 
of the flow domain are denoted as follows : The 
inlet3 ABCD and the outlet EFGH. The ex- 
ternal boundary BFGC, the wing surface and 
the inner4 boundaries ABFE and CDHG, which 
constitute the inlet and outlet of the cross-flow. 

The inlet boundary is placed downstream of the 
stagnation region, because in the present method 
a downstream calculation procedure is used. The 
inlet boundary is not a natural boundary of the 
flow and so the choice between Dirichlet and Neu- 
mann boundary conditions is not clear, because in 
both cases some approximations will be required 
to specify the boundary conditions. From the im- 
plementation point of view, a straightforward op- 
tion is to specify the three velocity components 
at the inlet boundary. However, it may be diffi- 
cult to obtain a good estimate of the inlet velocity 
profiles and this may produce a non-smooth be- 
haviour of the solution near the inlet boundary, 
[17]. Neumann boundary conditions proved to be 
more efficient in the earlier tests of the method, 
[17]. However, the method becomes more time 
consuming. 

In the present approach the inlet velocity pro- 
files are calculated solving equations (1) and (2) 
at the inlet station assuming that the streamwise 
gradients of velocity and pressure are equal to the 
ones obtained in a potential flow calculation, [21]. 
In the boundary layer region the velocity gradi- 

PHYSICAL DOMAIN 

F' 

3 In figure 1 the inlet boundary is a spanwise section of 
the wing. 

4 In figure 1 the inner boundary is a chordwise section 
of the wing. 

C D' 
COMPUTATIONAL DOMAIN 

Figure 1: Illustration of the boundaries of the 
calculation of the flow at the tip of wings in the 
physical and computational domains. 

ents are obtained from standard boundary layer 
profiles, [22]. At the boundaries of the inlet sta- 
tion the boundary conditions applied are equal to 
the ones described below. With these approxima- 
tions the inlet velocity profiles may be obtained 
before starting the sweeping process. 

At the outlet boundary a pressure boundary 
condition is required. In the present calculations 
the streamwise pressure gradient was set equal to 
zero, which proved to be an acceptable choice in 
the earlier tests of the method, [17]. 

The typical cross-sections of the wing and of 
the wake in the physical space and in the compu- 
tational domain are illustrated in figure 2. 

Boundary BC is the external boundary (sur- 
face BFGC of figure 1), where the tangential 
components of the velocity and the pressure are 
prescribed by a potential flow calculation, [21]. 
Boundaries AB and DC are the inlet and out- 
let of the cross-flow (surfaces ABFE k CDHG 
of figure 1). To obtain a finer discretization of 
the tip vortex region, for a given number of grid 
nodes, the inner boundary is placed close to the 
tip. This means that at the inner boundary ap- 
proximate boundary conditions will have to be 
used. In the present applications the cross-stream 
derivatives (J^-) of the cartesian velocity compo- 
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A = D> 

WING WAKE 
PHYSICAL DOMAIN 

#'? j,c' 

COMPUTATIONAL DOMAIN 
Figure 2: Illustration of the typical cross-section 
on the wing and wake and of the computational 
domain. 

nents and of the pressure were set equal to zero. 
Boundary AD has different properties in the 

cross-sections located on the wing and on the 
wake. On a cross-section of the wing it coincides 
with the wing surface, where the no-slip condi- 
tion applies. The three velocity components are 
set equal to zero and the flow is calculated down 
to the wing, without wall functions. At the wake 
section-, boundary AD is a fictitious boundary in 
the physical space. All the variables have to be 
calculated along this 'boundary', since the bound- 
ary nodes of the computational domain are field 
nodes in the physical space. At point S where the 
transformation is singular, y/g = 0, the procedure 
mentioned above for grid singularities is applied. 

2.1.2    Turbulence Model 

There is a wide range of turbulence models 
available in the literature varying from the sim- 
ple eddy-viscosity turbulence models, which can 
be algebraic or solve one or two transport equa- 
tions, to the more complex second moment clo- 
sures, which solve transport equations for each of 
the Reynolds stresses appearing in the momen- 
tum equations. 

Although the turbulence model may play a 
sginificant role in the present predictions, as sug- 
gested by the results of Deng et al. in a ship 
case, [23], at this stage of the development we still 

use the simple algebraic isotropic eddy-viscosity 
model of Cebeci & Smith, [16]. This option is 
mainly justified by the lack of guarantee that the 
computer time penalty for the use of a more so- 
phisticated model will improve the predictions, 
as shown by Deng et al. in [23]. The present 
implementation of the Cebeci k Smith turbu- 
lence model follows an approach similar to the 
one given by Cebeci et al. in [24]. A detailed 
description can be found in [8]. 

2.2    Numerical Solution 

2.2.1 Discretized Equations 

The continuity and contravariant momentum 
equations written for the cartesian velocity com- 
ponents, (1) and (2), are discretized in a single 
block regular grid by a finite-difference approxi- 
mation. All the variables are defined on the grid 
nodes, (i, j, k)5 since grid staggering is not used 
and Newton linearization is applied to the con- 
vective terms. The momentum equation in the 
£ and £ directions are discretized at the nodal 
points (i,j, k). The momentum equation in the 
normal direction, 77, is discretized at (i,j + A, k) 
and the continuity equation at (i,j — |, k). The 
discretization schemes are identical to the ones 
used in the method for the calculation of ship 
stern flows [12] to [15]. A detailed description of 
their implementation can be found in [8]. With a 
careful discretization of the diffusion terms, [20], 
the present discretization technique only requires 
first derivatives of the grid coordinates. 

2.2.2 Solution Procedure 

The solution procedure is based on the one used 
in the code PARNASSOS, [12], [13], [14] and [15]. 
Here we will only describe the major features of 
the procedure. A more detailed description can 
be found in [8]. The solution is obtained itera- 
tively by a space-marching process. Two itera- 
tion cycles can be distinguished : the local and 
the global iteration process. 

The local iteration process refers to the solu- 
tion of the flow at a streamwise station where all 
the grid nodes have the same main-stream coordi- 
nate, £. The solution is obtained simultaneously 
for all the variables with a Coupled Strongly Im- 
plicit Procedure (CSIP), [9]. Iteration is required 

*The indices refer to the £, r; and C direction, respecti- 
vely. 

875 



by the non-linearity of the differential equations 
and by the incomplete factorization of the CSIP. 

The discretized momentum equations at a 
streamwise station where all the grid nodes have 
the same main-stream coordinate, £, include the 
pressure field at the downstream station. This 
implies that in order to obtain the solution by a 
space-marching process in the main-stream direc- 
tion, the pressure field at the downstream stations 
has to be taken from a previous sweep. The down- 
stream marching process has to be repeated until 
the pressure field does not change between consec- 
utive sweeps of the domain. This iterative proce- 
dure constitutes the global iteration process. To 
increase the convergence rate of this process each 
downstream sweep is followed by an upstream 
sweep to update the pressure field, [15]. The 
two sweeps form a predictor-corrector method for 
the pressure, which is constructed adding a quasi- 
time derivative of the pressure to the £ momen- 
tum equation, [15]. Another improvement in the 
pressure field convergence can be obtained by us- 
ing a multiple stepsize in the first sweeps to al- 
low a rapid approach of the correct pressure level, 
[14]. This means that the grid is initially coarse 
in the main-stream direction and is subsequently 
refined in two or three stages. 

3     Experiments 

To verify the results of the calculations a set of 
experiments has been carried out at MARIN on 
a wing of elliptical planform. The experiments 
included detailed Laser-doppler velocity (LDV) 
measurements of the three velocity components 
on two planes along the wing chord and one plane 
in the wake. 

The experiments were conducted in the Large 
Cavitation Tunnel (CT) of MARIN. The tunnel 
has a 4 m long test section with a 0.90 m x 0.90 
m cross-section with rounded corners. The max- 
imum velocity attainable in the test section is 
about 10 m/s. 

The wing selected for the experiments has an 
elliptical planform with an aspect ratio of 4. The 
wing is without twist and has a NACA 0015 sec- 
tion. The wing has the following dimensions: 
half-span s = 0.450m, average chord c = 0.225m 
and root chord c0 = 0.2865m. The wing is 
mounted vertically on the bottom of the tunnel in 
the mid-part of the test section, as shown in figure 
3. The wing incidence can be varied from the out- 
side with a resolution of 0.1 deg.  The wing has 

been instrumented with pressure taps for mea- 
suring the pressure distribution in previous work 
and the wing zero lift incidence in the tunnel was 
determined by comparing the pressure on both 
sides of the wing at a spanwise location 0.85 and 
chordwise position 0.15 for the tunnel speeds of 
4 and 8 m/s. The difference in zero lift incidence 
for these two speeds were insignificant. 

OPTICAL HEAD 

GLASS 

WINDOW 

s = 450 mm 

\/;>//s>/>;s;/;r/ 

X/CQ - 0.400 

XICQ = 0.050 

xlc0 = -0.050 

0.90 m 

CQ = 286.5 mm 

'/////////////M 

MEASURING 

PLANES 

Figure 3: Schematic of wing and LDV arrange- 
ment in the test section of the Large Cavitation 
Tunnel. 

For LDV measurements, the tunnel is fitted 
with a water basin mounted on the top of the 
test section, figure 3. All optical components of 
the LDV system are assembled in an optical head, 
which is traversed inside the basin filled with wa- 
ter by a y-z computer-controlled traversing sys- 
tem. The system allows the positioning of the 
LDV measuring volume inside a 0.12 m x 0.15 m 
window with a resolution of 0.1 mm. The optical 
access to the test section is made through a 31.5 
mm thick glass window, which is now being used 
for measurements in cavitating conditions. 

The MARIN LDV system is a two-colour 
backscatter system for simultaneous measure- 
ment of the three velocity components [25], [26]. 
The laser light is supplied by a 4 W Argon-ion 
laser and is transmitted to the optical compo- 
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nents of the system in the optical head by a mono- 
mode fiber. In the optical head the laser light is 
separated into five beams. The measuring volume 
defined by the intersection of the 5 beams has 
the approximate dimensions 0.4 mm x 0.4 mm 
x 1.3 mm. The three signals containing velocity 
information are analysed by three burst spectrum 
analysers (BSA) for extraction of the Doppler fre- 
quencies. To increase the data rate, the flow in 
the tunnel was seeded with particles of Iriodin 
110 with an average size of 10 fim. The velocity 
data were collected during a measuring time of 10 
s with a maximum number of velocity samples of 
1000 on each channel. In a number of measuring 
points in the highly turbulent velocity region close 
to the vortex, the measuring time was increased 
to 30 s with a maximum number of samples of 
3000. 

In this set of experiments with the elliptical 
wing all the LDV measurements were made at 
the angle of attack a = 6 deg and Reynolds num- 
ber based on the root chord of 1.1 x 106. The 
measurements were made in three traverse planes, 
as shown in figure 3. The upstream measuring 
plane, x = -14.3 mm, x/c„ = -0.05 is very close 
to the inlet station of the viscous flow calcula- 
tion in the tip region. In the intermediate plane, 
x = 14.2 mm, x/c0 = 0.05, the tip vortex has just 
formed and is still very close to the wing's sur- 
face. The last downstream plane, x = 114.7 mm, 
x/c0 = 0.40 is located in the wake. The stepsize 
used in the two planes on the wing is 1 mm and 
the stepsize used in the downstream plane in the 
wake is 1.5 mm. 

4.1    Grid Characteristics 

The approximations assumed in the momen- 
tum equations imply that a flow conforming grid 
must be generated. For wings with rectangu- 
lar planform, [17], this is a straightforward grid 
generation problem, but for a wing with ellipti- 
cal planform the problem is more complex. The 
main difficulty is the location of the inlet bound- 
ary. The £ lines must be roughly aligned with the 
main stream direction and the r\ lines should be 
normal to the wing surface. This means that at 
the tip the inlet boundary must be placed close 
to the tip. This location of the inlet boundary, 
at a small distance from the region of tip vor- 
tex formation, imposes an additional difficulty to 
the specification of the inlet boundary conditions. 
The influence of the location of the inlet boundary 
in the inlet boundary conditions is investigated in 
the following section. 

Following the sensitivity studies reported in 
[17], the boundaries of the viscous flow region 
were placed at the following locations : 

- The inner boundary, inlet and outlet of the 
cross-flow is placed at a distance of 40% of the 
root chord length inboard of the tip of the wing. 

- The distance between the external boundary 
and the wing is 30% of the root chord length. 

- The outlet boundary is 1.6 root chords down- 
stream of the tip. 

- In the region close to the inner boundary, the 
inlet boundary is located 10% of the local chord 
downstream of the leading edge. Close to the tip 
two different locations of the inlet boundary were 
tested : 

4    Results and Discussion 

Calculations were carried out for the wing of 
elliptical planform used in the experimental pro- 
grain described in section 3. The calculations 
were all performed on a DEC Station 3000 AXP. 

In all the calculations, the global iteration pro- 
cess was stopped when the maximum pressure dif- 
ference between consecutive sweeps, (ACp)mal, 
was less than 5.0 x 10-3. The convergence criteria 
of the CSIP were differences between consecutive 
iterations of less than 1.0 x lO-3*/«, in the phys- 
ical components of the velocity and 2.0 x 10-4 in 
Cp. The calculations were performed for an angle 
of attack of 6 degrees and a Reynolds number of 
1.1 xlO6. 

£- = -0.06, (denoted as GRID A) 

X_ _ 
Co 

-0.11, (denoted as GRID B). 

In GRID A, the inlet boundary at the tip is 
only 1% of the root chord upstream of the plane 
-£- = —0.05 measured in the experimental pro- c0 
gram. 

In both grids, the discretization of the viscous 
flow region was performed with a 145 x 71 x 61 
grid. The grid was generated with a 3-D ellip- 
tic grid generator, based on the approach of the 
Eagle code, [27]. The stretching of the grid lines 
in the normal direction is applied algebraicly and 
the distance of the first grid node to the wall is 
specified to guarantee a maximum distance of the 
first grid node to the wing surface of j/+ = 2, 
where y+ = ^^ and y„ is the distance to the 
wall. An illustration of the grid is given in figure 

877 



4.   To obtain a clearer visualization of the grid 
the plots do not include all the grid lines. 

The experimental measurements were per- 
formed on planes perpendicular to the undis- 
turbed flow. The grid does not coincide with 
the measuring planes and so linear interpolation 
along the £ lines was used to obtain the predicted 
velocity components at the measured planes. 

EXTERNAL BOUNDARY 

INNER BOUNDARY 

INLET WAKE 
Figure 4: Illustration of the grid used in the cal- 
culation of the flow at the tip of an elliptical wing. 

GRID A 
0.08 

JL 
c, 0.02 

-0.04 
-0.08 -0.02 

Isolines, AJ71 = 0.04      {; 

--Measured 1.12 to 1.32 
— Predicted 0.96 to 1.28 

GRID B 
0.08 

0.04 

UL, = 1-33 
'-'max 1.28 

JL 0.02 

-0.04 
-0.08 

Isolines, AC/1 

-- Measured 1.12 to 1.32 
— Predicted 0.96 to 1.32 

0.04 

0.04       £ 

Kax = 1-33 
J71 
^ max : 1.38 

Figure 5: Comparison between predicted and ex- 
perimental axial velocities at f^ = —0.05, for 
the flow at the tip of an elliptical wing with a 
Reynolds number of 1.1 x 106 and an angle of 
attack of 6 degrees. 

4.2    Initial Condition 

The quality of the inlet boundary conditions 
was evaluated comparing the predictions with the 

experimental measurements at £- = -0.05. Fig- 
ure 5 presents the comparison between predicted 
and experimental axial velocities. Figure 6 shows 
the potential flow solution and the viscous predic- 
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tions obtained in GRID A. In both viscous predic- 
tions tbe viscous effects seem to be overpredicted, 
resulting in a thicker boundary layer region. This 
overprediction of viscous effects is larger in GRID 
B where the inlet boundary was moved upstream. 
The predictions obtained in GRID A show a fair 
correlation with the experimental results, with 
the exception of the upper surface close to the 
tip, where the maximum axial velocity is clearly 
underpredicted. 

0.08 

-0.02  - 

-0.04 
-0.08 -0.02 0.04 

Isolines, AU1 = 0.04       -jr 

- - Potential  0.96 to 1.32 
— Viscous   0.96 to 1.32 

^«x = 1-36 
UL* = 1-28 

Figure 6: Comparison between the potential and 
viscous flow predictions of axial velocities at -f- = 
—0.05, for the flow at the tip of an elliptical wing 
with a Reynolds number of 1.1 x 106 and an angle 
of attack of 6 degrees. 

The transverse velocity fields predicted by vis- 
cous flow solutions and potential flow solution are 
compared with the experimental measurements 
in figures 7, 8 and 9. A good agreement is ob- 
tained between the predictions obtained in GRID 
A and the experimental results. On the upper 
surface_ close to the tip, the magnitude of the 
predicted viscous flow transverse velocity compo- 
nents is lower than in the measurements. Neither 
from the predictions nor the measurements is any 
sign of vortex formation yet discernable. The re- 
sults obtained in GRID B show a significant re- 
duction of the magnitude of the transverse veloc- 
ity components. These is a significant velocity 
component pointing downward to the wall on the 

upper surface, indicating a close approach to the 
vortex formation. The correlation between pre- 
dictions and experimental results is clearly worse 
than the one obtained in GRID A. 

GRID A 
0.08 

^-0.02 

-0.04 

Ulintm k  
-0.08 -0.02 0.04 

= Ua 
z 

Co Wmax = 0.68Ua 

GRIDB 
0.08 

JL 0.02 

-0.04 
-0.08 -0.02 0.04 

= ua 
z 

Co Wmax = 0.62Ua 

Figure 7: Predicted transverse velocity field at 
— = —0.05, for the flow at the tip of an elliptical 
wing with a Reynolds number of 1.1 x 106 and an 
angle of attack of 6 degrees. 

These results show the importance of the in- 
let boundary conditions for this calculation. An 
unsuccessful attempt was made to perform the 
calculation using the potential flow solution6, il- 

6Including standard boundary layer profiles close to the 
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Figure 8: Potential flow prediction of the trans- 
verse velocity field at f- = -0.05, for the flow 
at the tip of an elliptical wing with an angle of 
attack of 6 degrees. 

obtained close to the inlet station. It was not pos- 
sible to obtain a converged solution in the finer 
grids7 and a strong separation of the streamwise 
flow close to the inlet boundary was predicted 
already with the sweeps performed with the step- 
size of 4. We note that for wings of rectangu- 
lar planform the influence of small inaccuracies 
in the inlet boundary conditions was restricted to 
a small region close to the inlet boundary. 

The comparison of the predictions with the 
measurements shows that the generation of the 
inlet boundary profiles and the calculation of the 
viscous region in the initial stations overpredict 
the viscous effects. We note that in the present 
approximation the flow is assumed to be fully tur- 
bulent and the approximations assumed are fairly 
simple for such a complex flow. Nevertheless, a 
fair correlation was obtained between the predic- 
tions obtained in GRID A and the experimental 
results. Due to the poor prediction of the inlet 
flow obtained in GRID B, the correlation between 
predictions and experimental results for the other 
two measured stations is clearly worse in GRID B. 
Therefore, in the following results we will restrict 
ourselves to the predictions obtained in GRID A. 
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Figure 9: Measured transverse velocity field at 
f- = —0.05, for the flow at the tip of an elliptical 
wing with a Reynolds number of 1.1 x 106 and an 
angle of attack of 6 degrees. 

lustrated in figures 6 and 8, as the initial condi- 
tion in GRID A. Large pressure oscillations were 

JL 
c, 0.02  - 

-0.04 
-0.08 

Isolines, AU1 = 0.05 

-0.02 
z 
Co 

0.04 

VL, = I-" 
uLx = 1-16 

-- Measured 0.90 to 1.10 
— Predicted 0.75 to 1.15 

Figure 10: Comparison between predicted and 
experimental axial velocities at ^ = 0.05, for 
the flow at the tip of an elliptical wing with a 
Reynolds number of 1.1 x 106 and an angle of 
attack of 6 degrees. 

wall. 

7As mentioned before, the sweeping procedure uses a 
multiple stepsize in the initial sweeps. 
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4.3    Vortex Formation 

The experimental program included also the 
stations at #- = 0.05 and f- = 0.40. At 

-£■ = 0.05 the vortex as just been formed and the 
last station is in the wake. These two stations 
were selected to evaluate the predictions of the 
tip vortex formation with the present method. 

Predicted 
0.08 

#•0.02 c0 

-0.0,4 
-0.08 -0.02 0.04 

U0 
z_ 

Co Wmax = 0MUo 

Figure 11: Comparison between predicted and ex- 
perimental transverse velocity fields at ■*- = 0.05, 
for the flow at the tip of an elliptical wing with 
a Reynolds number of 1.1 x 106 and an angle of 
attack of 6 degrees. 

The comparison between predicted and exper- 
imental axial velocities at ■§- = 0.05 is presented 
in figure 10. The predicted and measured trans- 
verse velocity fields at the same station are plot- 
ted in figure 11. A fair correlation is obtained for 
the axial velocity components, but the velocity re- 
duction in the vortex core is overpredicted (0.75 
predicted, 0.90 measured). The transverse veloc- 
ity components are in good agreement with the 
experiments. The size of the vortex core seems 
to be overpredicted but the position of the vor- 
tex is well predicted. The maximum transverse 
velocity component is underpredicted (0.64 pre- 
dicted compared with 0.86 measured). All these 
differences indicate that the vortex is excessively 
diffused in the predictions. 
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JL 0.02 

-0.08 
-0.12 -0.02 0.08 

0.88 < U1 < 1.08 
0.86 < U1 < 1.05 

Isolines, AU1 - 0.03       ■§; 

- - Measured 0.89 to 1.04 
— Predicted 0.86 to 1.04 

Figure 12: Comparison between predicted and 
experimental axial velocities at f- — 0.40, for 
the flow at the tip of an elliptical wing with a 
Reynolds number of 1.1 x 106 and an angle of 
attack of 6 degrees. 

Figure 12 includes the comparison between 
the predicted and the experimental axial veloc- 
ity components at ■§- = 0.40. The transverse ve- 
locity fields of predictions and measurements are 
compared in figure 13. The maximum and mini- 
mum values of the axial velocity components are 
in very good agreement. The isolines pattern of 
the predictions is similar to the experimental one 
but the velocity at the vortex core is again under- 
predicted. The predicted transverse velocity field 
shows the correct prediction of the locations of 
the tip vortex and of the vortical wake. The vor- 
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Figure 13: Comparison between predicted and ex- 
perimental transverse velocity fields at ^ = 0.40, 
for the flow at the tip of an elliptical wing with 
a Reynolds number of 1.1 x 106 and an angle of 
attack of 6 degrees. 

tex core size is clearly overpredicted. The com- 
parison of the present grid spacing at the vortex 
core with the experimental results indicates that 
the present number of grid lines is too small to 
resolve the high gradients existing in this region. 

Assuming that the vortex is axisymmetric, it is 
possible to estimate the vortex center from the lo- 
cations where the transverse velocity components 
change sign in horizontal or vertical traverses. 
This approach was used by Falcäo de Campos 

et al. in [28] to obtain the vortex center posi- 
tion of this flow in three different stations. Using 
the same approach, the predicted vortex center 
location was obtained as a function of ^. The 
approximation of an axisymmetric vortex is poor 
close to the tip, which causes some oscillations 
in the f- location of the predictions. Figure 14 
presents0 the comparison between the predicted 
vortex center location and experimental results 
of Falcäo de Campos et al, [28]. The differences 
between predictions and measurements are fairly 
small showing that although the vortex core is 
excessively diffused its location is correctly pre- 
dicted. 
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Figure 14: Comparison between the prediction of 
the location of the vortex center and experimental 
results 

The isobars at the three measured stations are 
plotted in figure 15. The results show a suction 
peak at the wing surface more intense than the 
suction peak in the vortex core. However, the ex- 
cessively diffused vortex, strongly affects the pre- 
diction of the pressure in the vortex core. The 
significant increase of pressure in the vortex core 
between the stations at ^ 0.05 and #- = 0.40 
illustrates the effect of the vortex core size in the 
pressure. 
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5    Conclusions 

0.08 

JL 0.02 

-0.04 
-0.08 -0.02 0.04 

Isolines, ACP = 0.05    ^     -0.18 <CP< -0.01 
0.08 

JL 0.02   - 

-0.04 
-0.08 -0.02 0.04 

Isolines, ACP = 0.10    ^     -0.67 <CP< -0.09 
0.08 

JL 0.02 

-0.04 
-0.08 -0.02 

Isolines, ACP = 0.10 
Co 

0.04 
-1.06 <CP< -0.07 

Figure 15: Predicted transverse pressure field at 
■*- = -0.05, -2- = 0.05 and — = 0.40, for the flow 
C0 'Co C0 

at the tip of an elliptical wing with a Reynolds 
number of 1.1 x 106 and an angle of attack of 6 
degrees. 

The prediction of the flow at the tip of a 
wing with elliptical planform with a numerical 
method based on the Reynolds-averaged Navier- 
Stokes equations has been investigated. LDV 
measurements of the three velocity components 
were made to validate the numerical results. 

The approximations assumed in the momen- 
tum equations, where streamwise diffusion is ne- 
glected, imply some geometrical restrictions to 
the grid. In the present zonal approach, the inlet 
boundary at the tip must be placed very close to 
the tip of the wing. The comparison between pre- 
dictions and measurements showed that the inlet 
boundary conditions are critical for a good pre- 
diction of the flow. The results show that the 
method overpredicts the viscous effects at the tip 
of the wing, which affects the prediction of the 
formation of the tip vortex. A better correla- 
tion with experimental results was obtained with 
the inlet boundary positioned slightly more down- 
stream. 

The method was capable of predicting most of 
the flow features of the vortex formation process 
on the wing. A good correlation with experi- 
mental results was obtained for the three velocity 
components in the tip region except in the vortex 
core. The method overpredicts the viscous core 
size and underpredicts the maximum transverse 
velocity in the vortex core, which precludes an ac- 
curate prediction of the core suction peak. This 
result was not unexpected and must be caused by 
the inadequate turbulence model and insufficient 
grid resolution near the vortex core. However, the 
prediction of the vortex center location is in good 
agreement with experimental results. 

The comparison between the predictions and 
the experimental results presented in this paper 
suggests that the present numerical method is a 
promising approach to a better understanding of 
tip vortex flows. 

References 

[1] McCormick B.W. - On Cavitation Produced 
by a Vortex Trailing from a Lifting Surface. 
- Journal of Basic Engineering, Transac- 
tions of the ASME, September 1962, pp. 
369-379. 

[2] Arndt R.A.E., Higuchi H., Quadrelli C.J. 
- Tip Vortex Cavitation. - Cavitation and 

883 



Multiphase   Flow   Forum,   ASME,   New 

York, 1985. 

[3] Higuchi H., Arakeri V.H., Arndt R.E.A. - 
Further Studies on Tip Vortex Cavitation. 
- Cavitation and Multiphase Flow Forum, 

ASME, New York, 1986. 

[4] Arndt R.A.E., Higuchi H., IkohagiT. - Tip 
Vortex Cavitation. - Proceedings of the In- 
ternational Symposium on Propeller and 
Cavitation, Wuxi, China, April 1986. 

[5] Arakeri V.H., Higuchi H., Arndt R.E.A. - 
Analysis of Recent Tip Vortex Cavitation 
Inception Data. - Proceedings of the 21— 
American Towing Tank Conference, Wash- 

ington, August 1986. 

[6] Govidan T.R., Levy R., Shamroth S.J. - 
Computation of The Tip Vortex Genera- 

tion Process for Ship Propeller Blades - 4* 
International Conference on Ship Hydrody- 

namics, Washington B.C., 1985. 

[7] Govidan T.R., Jong F.J., Levy R., Sham- 
roth S.J. - Validation of a Forward March- 
ing Procedure to Compute The Tip Vor- 
tex Generation for Ship Propeller Blades - 
17"" Symposium on Naval Hydrodynamics, 
August-September 1988, The Hague, The 

Netherlands. 

[8] Eca L. - Numerical Solution of the Para- 
bolised Navier-Stokes Equations for Incom- 
pressible Tip Vortex Flows - PhD Thesis, 
Instituto Superior Tecnico, Lisbon, March 

1993. 

[9] Rubin S.G. - Incompressible Navier-Stokes 
and Parabolised Navier-Stokes Formula- 
tions and Computational Techniques. - 
Computational Methods in Viscous Flows, 
Vol. 3 in the series Recent Advances in Nu- 
merical Methods in Fluids (ed. Habashi) 

Pineridge Press, 1984. 

[10] Rubin S.G. - Global Relaxation Procedure 
for a Reduced Form of the Navier-Stokes 
Equations. - Proceedings of the 9— Interna- 
tional Conference on Numerical Methods in 
Fluid Dynamics, Lecture Notes in Physics, 
Vol. 218, Springer-Verlag, 1985, pp. 62-71. 

[11] Rubin S.G., Tannehill J.C. - Para- 
bolized/Reduced Navier-Stokes Computa- 
tional   Techniques.   -   Annual   Review   of 

Fluid Mechanics, Vol. 24, 1992, pp. 117- 

144. 

[12] Raven H.C., Hoekstra M. - A Parabolised 
Navier-Stokes Solution Method for Ship 
Stern Flow Calculations. - 2th International 
Symposium on Ship Viscous Resistance, 

Göteborg Sweden, March 1985. 

[13] Hoekstra M., Raven H.C. - Application of a 
Parabolised Navier-Stokes Solution System 
to Ship Stern Flow Computation. - Osaka 
International Colloquium on Ship Viscous 
Flow, Osaka Japan, October 1985. 

[14] Hoekstra M., Raven H.C. - Ship Boun- 
dary Layer and Wake Calculation with 
a Parabolised Navier-Stokes Solution Sys- 
tem. - 4th International Conference on Nu- 
merical Ship Hydrodynamics", Washington 

D.C., 1985. 

[15] Hoekstra M. -Recent Developments in a 
Ship Stern Flow Prediction Code. - 5th 

International Conference on Numerical 
Ship Hydrodynamics, Hiroshima, Septem- 

ber 1989. 

[16] Cebeci T., Smith A.M.O. - Analysis of Tur- 
bulent Boundary Layers. - Academic Press, 

November 1984. 

[17] Eca L., Falcäo de Campos J.A.C., Hoek- 
stra M. - Computation of the Tip Vortex 
Flow on Three-Dimensional Foils with a 
Parabolised Navier-Stokes Solver. - Sixth 
International Conference on Numerical 
Ship Hydrodynamics, IOWA, August 1993. 

[18] Warsi Z.U.A. - Conservation Form of the 
Navier-Stokes Equations in General Non- 
steady Coordinates. - AIAA Journal, Vol. 
19, February 1981, pp 240-242. 

[19] Hoekstra M. - Some Fundamental As- 
pects of the Computation of Incompressible 
Flows. - Second Osaka International Col- 
loquium on Ship Viscous Flow, September 

1991, Osaka Japan. 

[20] E?a L.R.C., Hoekstra M. - Discretization of 
the Parabolised Navier-Stokes Equations. - 
First European Computational Fluid Dy- 
namics Conference, Brussels, September 

1992. 

[21] Raven H.C. - Berekening van de potentiaal- 
stroming rond draagvlakken met het pro- 
gramma DAWS ON, (in Dutch) 

884 



"Calculation of Potential Flow on Lifling 
Surfaces with the Program Dawson, (Engl. 
Transl.) - MARIN Report N* 50501-1-RD, 
May 1985. 

[22] Hoekstra M. - Generation of Initial Velocity 
Profiles for Boundary Layer Calculations. - 
Marin Report N^- 50028- 1-SR, March 1980. 

[23] Deng G.B., Queutey P, Visonneau M. - 
Navier-Stokes Computations of Ship Stern 
Flows : A Detailed Comparative Study 
of Turbulence Models and Discretization 
Schemes. - Sixth International Conference 
on Numerical Ship Hydrodynamics, IOWA, 
August 1993. 

[24] Cebeci T., Clark R.W., Chang K.C., Halsey 
N.D., Lee K. - Airfoils with Separations and 
the Resulting Wakes. - Journal of Fluid Me- 
chanics, Vol. 163, 1986, pp. 323-347. 

[25] Gottmer M.C., de Bruin W., van der Kooij 
J. - Three Component Laser-Doppler Ve- 
locimetry. Technique and Application. - 
MARIN Report N^ 50889-1-RM, November 
1989. 

[26] Gottmer M.C., Aalbers A.B., Falcäo de 
Campos J.A.C., Nienhuis U. - Recent Ex- 
perience with 3-D LDV Measurements at 
MARIN. - Developments in Marine Tech- 
nology, Vol 10., Hydrodynamics : Compu- 
tations, Model Tests and Reality., van den 
Boom H.J.J. Editor, Elsevier 1992, pp 521- 
531. 

[27] Thompson J.F. - A General 3D Elliptic 
grid generation system on a composite block 
structure. - Computer Methods and Ap- 
plied Mechanics and Engineering, Vol. 64, 
1987, pp. 377-411. 

[28] Falcäo de Campos J.A.C., George M.F., 
Mackay M. - Velocity Measurements of the 
Tip Vortex Flow in the Near- Wake of Hy- 
drofoils. - 1993, Submitted for publication 
to the Journal of Fluids Engineering. 

DISCUSSION 

D. Fruman 
ENSTA/GPI, France 

This is more of a comment than a question. In my 
recent review paper on tip vortex cavitation , I have 
reported work conducted in France1'2'3 to numerically 
simulate the tip vortex flow using two commercially 
available codes, namely FIDAP and STAR-CD. The 
conclusions reached are very much analogous to the 
ones of the paper under discussion: whatever the code, 
a good qualitative description of the vortex roll-up is 
achieved, but the vortex core size (outside of the tip) is 
overestimated and the maximum tangential velocity is 
underestimated. In view of this, it is our belief that, 
for achieving good qualitative agreement between the 
experimental and the numerical results, it is essentially 
necessary to improve the spatial definition. 
Experimentally, LDV allows to have measurements for 
steps as small as 30Tm in a radial direction. 
Numerically, the grid has to follow the vortex path and 
have radial mesh sizes of the order of 0.003 of the oil 
maximum chord or less. Moreover, refinements of the 
turbulence simulation will require to have a model 
adapted to a rotating flow situation. 

1 Fruman, D. H., Recent Progress on the Understanding 
and Prediction of Tip Vortex Cavitation, Proceedings 
of the Second International Symposium on Cavitation, 
H. Kato, editor, pp. 19-29,1994. 

2 Dupont, P. And Cerrutti, P., Comparison between Tip 
Vortex Development Calculation and Measurements 
on an Elliptical Platform, Third European FIDAP 
Users Group Meeting, Heidelberg, Germany, 1991. 

Pauchet, A., Briancon-Marjollet, L, Gowing, S., 
Cerrutti, P. And Pichon, T., Effects of Foil Size and 
Shape on Tip Vortex Cavitation Occurrence, 
Proceedings of the Second International Symposium 
on Cavitation, H. Kato, editor, pp. 133-139,1994. 
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DISCUSSION 

T. Miloh 
Tel-Aviv University, Israel 

What is optimal choice of the matching surface? 

DISCUSSION 

J.De Kat 
MARIN, The Netherlands 

To what extent does  appropriate  location of the 
matching boundary depend on the drift angle? 

AUTHORS' REPLY 

The matching surface must be located in a region 
where viscous effects are supposed to be negligible. In 
this sense there is a dependence on the drift angle; 
nevertheless, drift angles of 20° may be reasonably 
tackled. 

AUTHORS' REPLY 

The dependence of the numerical solution on the 
position on the matching surface (and consequently 
on the size of the viscous subdomain) is reported in 
fig. 1, where the wave elevations on the hull and in 
the wake, obtained with two different positions of the 
matching surface, are shown. The solid line is the 
wave profile computed with the matching surface 
placed at 1/20 of the ship length aside from the hull. 
The broken line is the wave profile computed with a 
matching surface much closer to the ship (1/100). 
The two computations are in reasonable agreement, 
although in the second case the boundary of the 
viscous subdomain is very near to the region where 
viscous effects are important. 

Figure 1: Wave profile on the hull: comparison between 
rp = L/20 solution (solid line) and rp = L/100 solu- 
tion (dashed line) for the free surface flow past the S60 hull 
Fr = 0.316 Re = 4 x 106 0. 
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Near-Field Flow Predictions for Ship Design 
K. Weems, R. Korpus, W.-M. Lin, M. Fritts (Science Applications 

International Corp., USA), H.-C. Chen (Texas A&M University, USA) 

ABSTRACT 

This paper describes an ongoing ef- 
fort to integrate state-of-the-art computational 
techniques - a Reynolds-Averaged Navier-Stokes 
(RANS) code with nonlinear free-surface capa- 
bility, second-order closure turbulence modeling, 
and integrated propeller flow modeling - into a 
system for predicting near-field ship flows. The 
combination of these methods provides a new 
level of realism for modeling the flow field around 
a ship, including thick turbulent boundary layers, 
separated flow, vortex generation and evolution, 
free surface effects, and propeller/hull coupling. 
The bottlenecks caused by inadequate grid gen- 
eration methods and a lack of code integration, 
which have prevented the use of these numeri- 
cal methods for practical configurations in design 
time frames, have been substantially alleviated by 
the incorporation of zonal calculation techniques, 
advanced gridding tools, and a "chimera" grid- 
ding method that allows arbitrary grid block over- 
lap. 

To demonstrate the predictive capability 
of the method, flow calculation results are pre- 
sented for a variety of configurations: the HSVA 
tanker, the appended "SUBOFF" submarine, a 
submarine body with propeller, and a Series 60 
surface ship. The complex problem of using ad- 
vanced flow analysis techniques in naval and com- 
mercial ship design is discussed as well. Finally, 
recommendations for the ongoing development, 
validation, and application of near-field ship flow 
prediction codes are presented. 

INTRODUCTION 

The naval and commercial ship design 
communities have long needed a predictive ca- 
pability to address the complex interaction be- 

tween a ship's boundary layer, the nonlinear free- 
surface, and the propulsor. In commercial ship 
design, the prediction of near-field flows is cen- 
tral to the problems of unsteady propeller loads, 
cavitation, and propeller-induced hull vibrations. 
The solution of these problems requires detailed 
knowledge of the turbulent stern flow (including 
thick and perhaps separated boundary layers), 
bilge vorticity, and propeller/hull interaction. In 
naval ship design, near field flow predictions are 
needed to develop designs with reduced acoustic 
and non-acoustic signatures, particularly through 
the prediction of propeller acoustic output and 
the far field wakes observed by synthetic aperture 
radar. 

Unfortunately, the technology for mak- 
ing these predictions has not been available to 
the designer. Until quite recently, ship designs 
were developed using regression and empirical 
formulas alone. At best, the use of flow codes 
was restricted to potential flow calculations aug- 
mented by boundary layer predictions to approx- 
imate viscous effects. Propeller calculations were 
performed using empirically generated effective 
wakes, and the propeller's interaction with the 
hull was approximated with the "thrust deduction 
coefficient." The free surface could usually be pre- 
dicted using linear approximations, but was gen- 
erally neglected in any viscous flow calculations. 
While RANS flow solvers are now available to pro- 
vide greater accuracy with detailed viscous flow 
predictions, their use has remained somewhat re- 
stricted by the lack of realistic turbulence model- 
ing and the complications of grid generation. De- 
sign applications were further restricted the lack 
of integrated geometry modeling and grid gener- 
ation makes design modifications, regridding, re- 
calculation, and redesign very expensive exercises. 

Techniques capable of providing the re- 
quired flow detail for a wide range of hull forms 
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are beyond the complexity of these previously 
available design tools, particularly for large block 
coefficient, single screw, or extreme transom de- 
signs. The further development and validation of 
computational fluid dynamics codes, and their in- 
tegration with geometry modeling and gridding 
tools are necessary steps in the effort to pro- 
vide practical viscous flow prediction. The last 
five years have seen significant advances in these 
areas, and the new code systems now becom- 
ing available herald the arrival of a more effi- 
cient, validated viscous flow prediction capabil- 
ity for design. The bulk of this paper presents 
the unique capability of one of these code sys- 
tems - one which combines geometry modeling, 
advanced gridding tools, and a RANS solver in- 
corporating state-of-the-art Reynolds stress tur- 
bulence modeling, nonlinear free surface model- 
ing, and embedded propeller modeling. Results 
from recent validation studies for surface ships 
and submarines are provided. 

The paper also discuses plans for build- 
ing this capability into a practical computational 
design tools. This development would not be con- 
ceivable without the progress in computational 
fluid dynamics as discussed above. Now that suf- 
ficient accuracy seems attainable, it is time to 
build an integrated design system with quanti- 
tative evaluation of error and the propagation of 
that error through system sensitivities into quan- 
tified estimates of design risk. The final sections 
of the paper discuss the requirements for a com- 
putational design system that addresses the use of 
computational fluid dynamics from the designers 
perspective. 

Background 

The idea of applying computational fluid 
dynamics - in particular, viscous flow codes - 
to the flow around a ship's hull is hardly a new 
one. In 1980, SSPA Maritime Consulting and the 
International Towing Tank Conference (ITTC) 
sponsored a Ship Boundary Layer Workshop in 
Göteborg, Sweden. The purpose of the workshop 
was to examine the state-of-the-art of numerical 
computations around ship hulls and to set the di- 
rection of ongoing research. As suggested by the 
title, the principle computation methods repre- 
sented at the workshop were based on boundary 
layer theory. The primary conclusion of the work- 
shop was that boundary layer theory was too lim- 
iting when applied to stern and wake flows. 

In 1990, SSPA, Chalmers University of 
Technology (CTH), and the Iowa Institute of Hy- 

draulic Research (IIHR) sponsored the Workshop 
on Ship Viscous Flow, which was also held at 
CTH in Sweden. Workshop participants, mostly 
using Navier-Stokes solvers, performed viscous 
flow calculations on the HSVA tanker configura- 
tion and a "Mystery" hull form variation. While 
most of the calculations predicted the develop- 
ment of the hull boundary layer with good accu- 
racy, none properly predicted the development of 
the bilge vortex or its effect on the flow. The con- 
clusion was that more sophisticated turbulence 
models and improved grid resolution would be re- 
quired to capture this vortex. 

At about the same time as the Workshop 
on Ship Viscous Flow, the Advanced Research 
Projects Agency (ARPA) conducted the SUB- 
OFF program. In SUBOFF, RANS code devel- 
opers and users from several American universi- 
ties, government laboratories, and private com- 
panies were funded to perform blind calculations 
of the viscous flow around a submarine with vari- 
ous combinations of appendages. Simultaneously, 
wind and water tunnel experiments were carried 
out. The results of the competition were disap- 
pointing. While many of the calculations were 
able to capture the features of viscous subma- 
rine flow, few showed good quantitative agree- 
ment with the experimental results. The over- 
all conclusion from the SUBOFF program was 
that while RANS codes were able to capture most 
of the features of viscous submarine flow, signifi- 
cant improvements were still required before they 
could be applied to practical submarine design 
problems. In particular, grid generation and tur- 
bulence modeling were singled out as weaknesses 
in the state-of-the-art. 

In March of 1994, Japan's Ship Research 
Institute (SRI) hosted the CFD Workshop Tokyo 
1994 to revisit the SSPA investigations using more 
up to date RANS and free surface codes. Vis- 
cous and inviscid calculations were requested for 
a Series 60 CB=0-60 hull form at two speeds, 
Fr=0.160 and Fr=0.316. In general, the near- 
field flow features, including hull surface pres- 
sure, viscous boundary layer, and free surface 
elevations at the hull side, were well predicted 
by those Navier-Stokes calculations that included 
nonlinear free surface effects. In addition, both 
the skin friction and pressure components of re- 
sistance were fairly well predicted. However, it 
was noted that wave patterns away from the ship 
side were not accurately predicted. In addition 
to the Series 60 calculations, double body viscous 
flow calculations were repeated for the HSVA and 



"Mystery" tanker hull forms in order to follow up 
on the 1990 SSPA workshop. The newer HSVA 
results showed that codes utilizing state-of-the- 
art anisotropic turbulence models (including the 
second-order closure described herein), can finally 
capture the bilge vorticity missed in Göteborg. It 
should be noted, however, that the more common 
isotropic models continued to exhibit the same 
problems shown in 1990. Calculations for the SRI 
Workshop made with the present capability are 
presented in References [1, 2] and discussed later 
in this paper. 

Current Effort 

The capability described in this paper is 
the result of an ongoing effort to create a vis- 
cous flow prediction system for naval architec- 
ture applications. The effort can be divided into 
two distinct topics: computation fluid dynamics 
(CFD) and computational design. In the CFD 
area, the effort has focused on developing the ca- 
pabilities necessary for marine applications (such 
as free surface and propeller models) and on cor- 
recting deficiencies discovered during the work- 
shops (such as turbulence modeling and grid gen- 
eration). In the area of computational design, em- 
phasis has been placed on the integration of these 
codes into a system suitable for design applica- 
tions. 

The effort is described as ongoing, since 
the development of advanced flow codes and espe- 
cially computational design technology must con- 
tinue hand in hand with their application to de- 
sign problems. While CFD techniques are on the 
threshold of providing many realistic and prac- 
tical calculations, reliable full scale ship compu- 
tations remain a complex task. More impor- 
tantly, computational design must be developed 
as a complete technology - with emphasis on ac- 
curacy only at the level needed by the designer, 
quantified error estimates propagated into risk as- 
sessments, evaluation of system sensitivities and 
integration with developing ship synthesis mod- 
els. 

NUMERICAL METHOD 

This section describes the RANS-based 
numerical method that forms the core of our near- 
hull flow prediction capability. The computa- 
tional system described herein consists of three 
main parts: the Finite-Analytic Navier-Stokes 
(FANS) code for computing viscous, turbulent 
flows; the non-linear zonal free-surface model for 

including free surface effects; and the propeller 
modeling system for incorporating propulsor ef- 
fects. The sections that follow will discuss each 
of these capabilities in sufficient detail for a cur- 
sory understanding of the total system. It should 
be noted, however, that most of these methods 
have already been described in previous publica- 
tions, and the reader will often be referred there 
for more detail. 

Discretization of the Navier-Stokes Equa- 
tions 

In Cartesian coordinates (xi,X2,x3,t), 
the incompressible, Reynolds-averaged Navier- 
Stokes equations are: 

dUj 
dxi 

= 0 

dt       3 dx5 
+ dxi 

l   d2uf   | djmüj)   j, = 0 

(i) 

(2) 

Re dxj dxj        dxj 

where Ui, (uiuj), and p represent Cartesian mean 
velocities, Reynolds stresses, and pressure, re- 
spectively, and repeated indices indicate summa- 
tion. The term F,- is included for modeling of 
distributed force fields such as propulsors, and is 
assumed known. The Reynolds number, Re = 
U0L/v, is based on the length and velocity scales, 
L and U0, used to non-dimensionalize the equa- 
tions. 

The exact form of the Reynolds stresses 
depend on the turbulence model being used. 
FANS currently includes four different models: 
two of the k-e type and two of the second moment 
closure type. If a k-e model is used, Equations 2 
are modified by first substituting the Boussinesq 
approximation 

, . fdUi      dUj -{uiUj) = „t^— + — - hk 
(3) 

where k is the turbulent kinetic energy, ut — 
0.09k2/e is the eddy viscosity, and e is its dissipa- 
tion rate. For the second moment closure models, 
Equations 2 are solved with the Reynolds stresses 
inserted directly. The models themselves will be 
described in the next section. 

For solutions involving real-world geome- 
tries, Equations 1 and 2 must first be transformed 
into body-fitted coordinates. The transforma- 
tion used in FANS maps the Cartesian indepen- 
dent variables (xi,X2,x3,t) into (generally non- 
orthogonal) body-fitted coordinates (£',£2,£3,7"), 
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but leaves the dependent unknowns in Cartesian 
space. The transformed momentum equations be- 
come: 

-^5i*t/,jl+6)(iSi<7),i-« = »       (4) 

where bj refers to the inverse transformation ten- 
sor d£k/dxj, gik refers to the inverse of the fun- 
damental metric tensor gij, and T*m represents 
a Schwartz-Christoffel symbol of the second kind. 
Subscripts following commas denote covariant dif- 
ferentiations with respect to (^f2,?3). 

In FANS, transport equations like Equa- 
tion 4 are discretized using the finite-analytic 
method [3]. This is accomplished by first rewrit- 
ing each equation in the form of a general convec- 
tion/diffusion problem, and then linearizing by 
assuming the coefficients constant over each com- 
putational cell. The resulting equations can be 
written in generic form using <t> as a typical con- 
served quantity: 

d<f> 1 
a   +Ck4>,k - Tra or Re 

kk 4>,kk — S (5) 

where Ck = 6}t/J+5>mr}m/fle, and S = -b{ptj- 
bk(uTuJ),k + Fi+gmk<t>imk/Re, m^k. Note that 
if a k-e model is used, the Boussinesq approxima- 
tion will cause some of the Reynolds stress terms 
in S to appear convective and/or diffusive. FANS 
moves such terms to the left-hand-side so as to 
maximize their implicit treatment. 

The finite-analytic method solves Equa- 
tions 5 analytically in each computational cell us- 
ing separation of variables. Evaluation of the an- 
alytic solution at a grid point then provides a 
means to relate the unknowns to their nearest 
neighbors. Although almost any time or space 
stencil could be used, we have found the best com- 
promise of resolution and efficiency is obtained 
with Euler implicit time differencing, a 9-point 
cross-flow plane stencil, and a 3-point streamwise 
stencil. This "lumping" of upstream and down- 
stream influences into single points greatly sim- 
plifies the solver, and does not significantly effect 
convergence. The exact form of the solution, how- 
ever, is still quite complicated and will not be re- 
peated here. Additional details can be found in 
Reference [3]. 

The coupling between pressure and ve- 
locity is accomplished using the hybrid SIM- 
PLER/PISO algorithm of Chen and Patel [4]. 

The method satisfies continuity of mass by re- 

quiring the contravariant velocities, U' = bjUj, 
to have vanishing divergence at each time step, 
i.e. U\ = 0. Pressure is introduced using the 
concept of pseudo-velocities, and when combined 
with the finite-analytic discretization gives the ex- 
pected Poisson's equation for pressure. The ap- 
proach differs from other SIMPLER methods in 
that it introduces contravariant pseudovelocities 
at staggered grid point locations while leaving 
pressure (and all other dependent variables) at 
the grid nodes. It is also unique from most PISO 
methods in that complete iteration of the pressure 
solver is performed at every time step, thereby 
ensuring local conservation of mass at every grid 
point. 

Turbulence Models 

The two k-e turbulence models incorpo- 
rated in FANS are based on the multi-layer ap- 
proach of Chen and Patel [4, 5]. These models 
solve implicitly for the turbulent kinetic energy 
and its dissipation rate in the fully turbulent por- 
tion of the flow, but reduce to one-equation k- 
l models in the viscous sublayer. When trans- 
formed to body-fitted curvilinear coordinates, the 
fully turbulent portion of the model is: 

dk 
or J \Re 

+ v,    b?k,„ 

-P + e = 0, 

dr 
+ U\i - b) 

1       <     Vt     \  If»* 

Te + U) 6' '■' 

-1.44^P + 1.92j = 0 

(6) 

(7) 

3       3 

In the near-wall regions, the two-layer model re- 
quires the rate of turbulent dissipation to be spec- 
ified algebraically rather than computed from (7). 
The required relations, taken from Chen and Pa- 
tel, are: 

P/2 

E = (9) 

where lc is a dissipation length scale equal to 
Cty[l-exp(—Ry/As)], y is the normal distance to 
the closest wall, and Ry is the wall Reynolds num- 
ber Re\/ky. The constants Ct and Ac are chosen 
to yield a smooth distribution of dissipation rate 
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between the two regions, and take the values Ct — 
KC;

3/4
, K = 0.418, Cß = 0.09,and Ac = 1Ct. 
Implementation of such a two-layer model 

requires a mechanism for switching between im- 
plicit and algebraic dissipation rates. The first 
k-e option available in FANS (hereafter referred 
to as the "standard" two-layer model) handles 
this switching on a block by block basis - i.e. 
a block is assumed either entirely implicit or en- 
tirely algebraic. This approach has the disadvan- 
tage that an estimate of viscous sublayer thick- 
ness is needed before the grid can be blocked. To 
circumvent this deficiency, a block-independent 
two-layer version was developed. The modified 
model automatically switches dissipation calcula- 
tions for each point in the grid, and will use the 
algebraic approach if the wall Reynolds number 
Ry is less than 250. Efficiency and vectorizability 
are maintained using a chimera-like data blank- 
ing algorithm to avoid breaking the solver loops 
each time a change in model is needed. 

A second improvement has been added to 
the automated two-layer model to alleviate the 
accuracy problems of traditional k-e models in 
adverse pressure gradients. Known as "sensi- 
tization to irrotational strains" [6], the idea is 
to modify the production of dissipation to bet- 
ter mimic the behavior of e to pressure-induced 
strains. In FANS, this is accomplished by break- 
ing the production term from Equation 7 into two 
pieces, one containing only solenoidal-like deriva- 
tives, and the other containing only irrotational 
ones [7]: 

3       3 
P'"l = ?EE (bJ U^ + 6<^.*)2 i # J(10) 

«=1j=l 

Pirr = vx (bfUi,kf 

P = P'°l + L44Pir 

(11) 

(12) 

Validation studies have shown that CEz is better 
taken at Rodi's value of 2.4 [8] than Launder's 
original suggestion of 4.44. 

The first Reynolds stress model available 
in FANS is the fully implicit second order closure 
of Speziale, et al. [9]. Hereafter referred to as 
SSG, this model solves six independent Cartesian 
Reynolds stress equations in body-fitted coordi- 
nates: 

d(uiUj) 

dr 
+ Um(WÜJ),m = Pij + Duij 

where 

Pij = - {(mü^)bk
mUj,k + (üjü^)bk

mUi,k)  (i4) 

and 

Dv ij = ^" ((Ü7Üj),mn - Tk
mn(müj\k)        (15) 

are the production and viscous diffusion, respec- 
tively. The four terms 

Du ij = -dUiUjUm/dXr, (16) 

Dp ij = -dmp'/dxj - dxijj/jdxi (17) 

$ij = j/(dui/dxj+duj/dxi) (18) 

+Dpij+Dvij + 9ij-€ij (13) 

€ij = 2{dui/dxkdxij/dxk)/Re (19) 

are the turbulent transport, pressure transport, 
pressure/strain, and dissipation, respectively, and 
must be modeled. 

As with most Reynolds stress closures, 
SSG models the dissipation rate as e,j = 26JJE/3, 

and lumps turbulent transport Du ij and pressure 
transport Dp ij into a single term [10]: 

i-'u ij + L)p ij — 

0.22bk
m (j(wZ) K (^7),P) (20) 

What sets the SSG model apart is its treatment 
of $ij, the pressure-strain term. That part of 
the model is fairly complicated, however, and will 
not be reprinted here. Details of the fully turbu- 
lent portion can be found in Reference [9], and 
the near-wall modifications are given in Refer- 
ences [11] and [12]. 

The final unknown in the Reynolds stress 
equations is the isotropic dissipation rate e. 
FANS uses a sealer representation for this quan- 
tity that is similar to the one used in the sec- 
ond (i.e. automated) k-e model described above. 
Two changes are required, however, before Equa- 
tion 7 can be applied to a Reynolds stress model. 
First, the turbulent contribution to diffusion, 
V • vtVe, must be replaced with a diffusion aris- 
ing from Reynolds stresses rather then eddy vis- 
cosity. FANS uses the same Daly and Harlow 
model (Equation 20) applied to the Reynolds 
stress equation diffusion term. The second change 
required in Equation 7 is the removal of Launder's 
sensitization to irrotational strains. 

The second Reynolds stress closure avail- 
able in FANS is the explicit Algebraic Stress 
Model (ASM) of Gatski and Speziale [13]. Here- 
after referred to as GS, this model can simu- 
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late many of the anisotropic turbulence phenom- 
ena normally requiring full Reynolds stress solu- 
tions, but without the six additional unknowns. 
Its availability adds greatly to the practicality of 
Navier-Stokes methods in that anisotropic flows 
can be computed for about half the cost of an im- 
plicit Reynolds stress solution (i. e. six unknowns 
instead of ten). GS uses the k and £ models di- 
rectly from Equations 6 and 7 (including the au- 
tomated two-layer switching), except that Laun- 
der's modifications have again been left out. 

GS provides a significant improvement 
over previous ASMs. Because it was specifically 
developed for transformation invariance in non- 
inertial reference frames, it has proven more ac- 
curate then non-invariant models for flows with 
strong rotation (e.g. vorticity). Although valida- 
tion is not yet complete, it is believed this advan- 
tage will alleviate many of the problems previous 
models exhibit with excessive dissipation of vor- 
ticity. 

Multi-Block Grid Capability 

FANS solves the governing equations for 
mean flow and turbulence on structured multiple 
block grids. Within each block, the grid is defined 
as an ordered set of points (£1,^2 7 £3) = (i,j,k), 
where ij,k = 1,2,3,..., but no corresponding 
structure is required between blocks. Each block 
is allowed to overlap its neighbors in any conve- 
nient manner so long as their union completely 
covers the domain, i.e. no point-to-point connec- 
tivity is required between blocks. FANS works 
on only one block at a time, and communication 
between blocks is performed by interpolation rou- 
tines designed to be consistent with the discretiza- 
tion [7]. The technique is referred to as Arbi- 
trary Block Overlapping (ABO) and is similar to 
chimera schemes except that no points are allowed 
outside the flow domain. Addition of this last 
capability would essentially only require a more 
diverse data structure. 

The development of ABO has added 
greatly to the practicality of RANS solutions. 
Multi-block grids can now be developed without 
regard to the smoothness with which blocks fit 
together, and the fine resolution required near a 
body need not extend into the far field. Thus, 
grid generation is greatly simplified, and accurate 
solutions can be obtained with fewer points. The 
process is further streamlined through the addi- 
tion of a preprocessing utility called PREFANS. 
PREFANS reads ABO grids and calculates all the 
required block connections and interpolation pa- 

rameters automatically. The amount of input re- 
quired from the user is actually reduced compared 
to conventional multi-block structured grids. 

Two options are available in FANS for ma- 
nipulating computer memory requirements: the 
required variables can either be stored in core, as 
is typical of most RANS codes, or they may be 
stored off-line using a disk-based Data Manage- 
ment System (DMS). The DMS version can re- 
quire significantly less memory, and was designed 
to run on small machines. It works by locat- 
ing solution data in files stored on physical (or 
solid-state) disk, and only reads into core what is 
needed for solving one block at a time. 

One final grid generation related utility is 
available with FANS. Referred to as GRIDQUAL, 
this utility performs a point-by-point check gn 
multi-block grids using a number of criteria 
known to effect solution accuracy. Both tabular 
and graphical output are given, and can be very 
helpful for identifying grid induced solution prob- 
lems (either accuracy related or stability related) 
before a computation is attempted. 

General Solution Procedure 

Two versions of the FANS code have 
been developed: one using Cartesian indepen- 
dent variables in three dimensions and one using 
either cylindrical or Cartesian variables for two- 
dimensional flows. The solution procedure is the 
same for each, and consists of an outer iteration 
over time and an inner loop over the blocks of the 
grid. Within each block, the discretized equa- 
tions are solved in a scalar implicit manner using 
an ADI technique in the cross-flow plane and iter- 
ative relaxation in the streamwise direction. The 
pressure solver is sub-iterated at each time step 
to allow conservation of both mass and momen- 
tum at every iteration. Once an updated solution 
is available within a block, its boundary data is 
transmitted to all matching faces through data 
management surface files. 

Unlike RANS codes utilizing upwind dis- 
cretizations, the finite-analytic method does not 
rely on CFL related stability criteria. Globally 
constant time-steps can therefore be employed 
without the limits usually imposed by very small 
grid cells. For large cases, convergence can be 
further improved by starting the solution with a 
coarsened mesh created by removing every other 
point. Such a solution can usually be obtained in 
about one eighth the time of a fine grid calcula- 
tion, and provides an excellent starting point for 
the detailed computation.   Because the required 
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coarsening and fine grid re-interpolation can be 
quite complicated for multi-block grids, utilities 
called COARSEN and REFINE are provided to 
automate the process. 

The k-e and GS versions of FANS re- 
quire about 25 x 10-6 seconds of Cray C-90 
CPU time per grid point pre iteration (includ- 
ing sub-iteration). Implicit SSG model applica- 
tions require about twice that amount. FANS's 
total memory requirement is 71 words per grid 
point for a Jfc-e solution, and 89 words per grid 
point for a fully implicit SSG solution. The 
required total can be split between core mem- 
ory and off-line storage by using different op- 
tions in the data management system. The num- 
ber of iterations required for a converged solu- 
tion varies greatly depending on the application. 
Simple geometries started from coarse grid solu- 
tions can converge as quickly as a few hundred 
iterations, whereas complex separated flows can 
require many thousands. An interactive graph- 
ics utility called CONVERGE is provided for 
monitoring convergence statistics as the run pro- 
gresses. CONVERGE plots time histories of Eu- 
clidean norms, maximum norms, and computed 
forces, and allows users to interpret convergence 
using their own judgement. 

Unsteady Capability 

While unsteady RANS applications have 
traditionally required prohibitively large human 
and computational resources, such application are 
finally becoming practical. Unlike RANS codes 
utilizing artificial compressibility, however, FANS 
is ready for this transition without modification. 
The pressure solver has been specifically devel- 
oped for unsteady applications, and ensures that 
mass is conserved at every time step and ev- 
ery point in the grid. The recent addition of a 
chimera-grid capability and advanced Reynolds 
stress turbulence models make FANS an ideal 
code for examining complex unsteady flows. 

Recent unsteady applications have fo- 
cused primarily on acoustic problems. Thus 
far, FANS has been used to compute the un- 
steady pressure field behind automotive side-view 
mirrors, and is now being applied to compute 
Lighthill sources for acoustic transmission prob- 
lems. While it must be understood that Reynolds 
averaged codes can not be expected to provide 
turbulent time scales, a number of commercial 
flow problems exist where the lower frequencies 
are important. As this work progresses, therefore, 
it is planned to provide FANS with post-processor 

utilities for calculating Lighthill sources and for 
solving wave transmission problems in practical 
acoustics applications. 

Free Surface Model 

Free surface effects are modeled using a 
hybrid zonal approach developed under ONR's 
Nonlinear Ship Motion Program [14, 15, 16]. In 
this zonal model. FANS is used in the near field to 
resolve the turbulent boundary layer, wake, and 
nonlinear waves, while potential flow methods are 
used to provide the ship-generated waves away 
from the hull. 

For the inner domain calculation, a non- 
linear free surface boundary condition has been 
implemented in the FANS code. As part of the 
FANS calculation, the free surface elevation at 
each free surface grid point is computed and the 
grid is stretched to match the computed eleva- 
tion. An exact free surface boundary condition 
can then be imposed on the free surface grid face. 
The calculation is continued until the free surface 
elevations converge. 

For steady ship flow problems, the inviscid 
flow calculations are made using the Ship Lift And 
Wave (SLAW) code [17]. The SLAW code is a 
Rankine source free surface potential flow method 
(a la Dawson [18]) which incorporates a linearized 
free surface boundary condition, collocation point 
shift radiation condition, and a choice of nonlift- 
ing or lifting hull singularity models. SLAW was 
developed under SAIC's IR&D program as a ship 
resistance code and has been applied to a vari- 
ety of ship forms ranging from sailing yachts to 
SWATHs. 

The viscous-inviscid interaction is cap- 
tured through a direct matching of the velocity 
and pressure fields in the overlapping region be- 
tween the RANS and potential flow domains. Ini- 
tially, the velocity distribution on the outer face of 
the RANS domain is computed by a full domain 
SLAW calculation. After the inner domain RANS 
calculation is completed, far-field SLAW calcula- 
tions are made using the RANS velocities on an 
intermediate matching surface. A fully interact- 
ing solution is obtained by iterating between the 
RANS and SLAW calculations. Validation calcu- 
lations show convergence within three iterations 
at higher Froude numbers. At lower Froude num- 
bers, iteration is not usually required. 
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Propeller Model 

In order to model the interaction between 
a ship's or submarine's viscous flow field and its 
propeller, a RANS/propulsor flow model has been 
developed under ARPA's Submarine Technology 
Program. The model was developed in two steps. 
First, a body force model was added to the FANS 
code so that the effects of a propulsor could be 
included in the viscous flow calculation [7]. Sec- 
ond, an interface was built between FANS and a 
number of potential flow propeller codes so that 
the propeller/wake coupling could be automated 

[19]. 
The body force approach was chosen since 

it provides a convenient method for modeling pro- 
pellers as a three-dimensional force field distribu- 
tion over a background computational grid. Thus, 
the effects of a propeller, including axial, radial, 
and swirl forces, can be included directly into the 
RANS calculation without the complication of re- 
solving each propulsor element. The system was 
developed for both the propeller "design" prob- 
lem - in which the desired propeller loading is 
known - and the "analysis" problem - in which 
the propeller geometry is known. 

The propeller "design" problem is the eas- 
ier of the two because the loading is specified a 
priori and is not dependent on the viscous flow 
field. First, a suitable body force distribution 
is created for the specified loading. Second, the 
RANS code is used to compute the viscous flow 
field including the propeller effects. Finally, the 
resulting inflow at the propeller is extracted, and 
a design program such as MIT's PBD-10 is used 
to compute the required blade shape. 

In the propeller "analysis" problem, how- 

ever, the viscous flow field will depend on the 
propeller loading and the propeller loading will 
depend on the viscous flow field, so an itera- 
tive approach has been implemented as shown 
in Figure 1. The approach uses a RANS code 
to compute the viscous flow field, and a po- 
tential flow propeller analysis code to compute 
propeller performance, including blade loading 
and the propeller-induced velocity field. The 
RANS-PROP interface was designed to automate 
this process while allowing quick interchange of 
the RANS and/or propeller model components. 
RANS-PROP has modules for interpolating the 
total propeller inflow from the RANS flow field, 
subtracting the propeller-induced component of 
inflow to get effective wake, preparing propeller 
analysis code input files, extracting blade loading 
from propeller analysis output files, and comput- 
ing the appropriate RANS body force propeller 
distribution. By iterating between the RANS, 
RANS-PROP, and propeller analysis codes, the 
propeller/hull interaction can be computed. 

While RANS-PROP was originally config- 
ured to work with FANS and MIT's Propeller 
Steady Force (PSF-2) vortex lattice code, the 
code is designed so that other components can 
be substituted as needed. As long as the required 
analysis programs are available, propulsor config- 
urations of almost any complexity can be modeled 
without affecting the complexity of the RANS cal- 

culation. 

COMPUTATIONAL RESULTS 

This section summarizes flow calculations 
for four configurations: the HSVA tanker, the ap- 
pended "SUBOFF" submarine hull, a submarine- 
like body with propeller, and a Series 60 surface 
ship. The Series 60 calculations include both free 
surface and propeller effects. 

HSVA Tanker 

The first sample calculations presented 
are for the HSVA tanker studied as part of CFD 
Workshop Tokyo 1994. As noted previously, this 
hull form was selected for the workshop because 
the 1990 workshop calculations failed to predict 
the development of bilge vortices. To demonstrate 
the effect of turbulence modeling, FANS calcula- 
tions were made with three different turbulence 
models on the same grid: the basic two-layer k- 
e model, the automated two-layer k-e model with 
Launder/Rodi corrections, and the SSG Reynolds 
stress closure model. The calculations were made 
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Reynolds Stress Closure Model 

Figure 2: HSVA Surface Streamlines 

at a Reynolds number of 5 x 106 on a grid with 
370,000 points and free surface effects were ne- 
glected. 

Figure 2  compares measured  and com- 
putationed surface streamlines over the stern of 

Reynolds Stress Closure Model 

Figure 3: HSVA Axial Velocity Contours 

the HSVA hull. The first computational result 
uses the basic two layer k-e model and shows an 
excessively large separation region at the stern. 
The second result uses the modified k-e model 
and shows that the separation region is pre- 
dicted much more accurately. This is not sur- 
prising since the Launder/Rodi corrections were 
developed specifically to improve the behavior of 
turbulence dissipation in adverse pressure gradi- 
ents. The surface streamline for the last calcula- 
tion, which uses the SSG Reynolds stress closure 
model, shows very good, but not perfect, agree- 
ment. 

Figure 3 compares experimental and com- 
putational axial velocity contours at the propeller 
plane (x/L = 0.505). The bilge vortex creates a 
"hook" in the contours that is clearly visible in 
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Figure 4: SUBOFF Surface Pressure Contours 

the experimental data. The unmodified k-s re- 
sults miss this hook and show a significant sepa- 
ration area near the waterline. The SSG results 
show much better agreement, including the hook, 
though the strength of the bilge vortex seems to 
be underpredicted. This underprediction may be 
due to insufficient grid resolution of the bilge/keel 
of the ship. The need for advanced anisotropic 
turbulence models like SSG for complex 3-D flow 
field is clearly demonstrated. 

Appended SUBOFF Body 

This section describes a computation for 
the SUBOFF body with stern appendages. The 
configuration, which consists of only a hull and 
four identical stern appendages, was one of sev- 
eral configurations analyzed as part of ARPA's 
SUBOFF program, which was completed in 1990. 
The SUBOFF program, which included extensive 
wind and water tunnel experiments [20], eval- 
uated the ability of existing CFD capabilities 
to compute the viscous flow around a subma- 
rine with various combinations of appendages. 
The present calculation was made using the SSG 
Reynolds stress model at a Reynolds number, 
based on hull length, is 1.2 x 107. Figure 4 shows 
the geometry and contours of computed surface 
pressure over the appendages and aft portion of 
the hull. 

Figure 5 compares computed and mea- 
sured contours of axial velocity at the propeller 
inflow plane (x/L = 0.978) just aft of the ap- 
pendages. The thick body boundary layer and the 
effect of the stern appendages is clearly visible. 
The discrepancy between the computed and mea- 
sured body boundary layer profiles, which shows 
up here as radially shifted contours, is mostly due 

Measured 

Figure 5: SUBOFF Axial Velocity Contours 

to an overly coarse grid and is not seen in the 
fine grid calculations performed for other SUB- 
OFF configurations. However, some of this dis- 
crepancy may be caused by tunnel blockage in the 
experiment. Comparison of surface pressure, for 
example, shows that the blockage has a significant 
effect on the forward third of the hull. Unfortu- 
nately, no fine grid study has been performed for 
the appended case. 

Despite the coarse grid, the effect of the 
stern appendages is well predicted. Two major 
effects on the axial flow are discernible. First, the 
boundary layer on the appendage sides creates a 
momentum deficit, which is visible at the outer 
radii of the plot. Secondly, the appendage/hull 
junction creates a "horseshoe" vortex that inter- 
acts with the boundary layer. The effect appears 
as a pair of contra-rotating vortices, one on each 
side of the appendage root, and creates a region 
of higher axial velocity (thinner boundary layer) 
immediately behind the appendage by "pulling" 
high momentum fluid down toward the hull. This 
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Figure 6: Propeller Thrust History for Submarine 
Body 

effect is most noticeable close to the hull surface 
since the junction vortices remain close to the sur- 
face. Both the calculations and the experiments 
show these features clearly. The appendages also 
create vorticity at their tips, but the effect of this 
vorticity is outside the propeller diameter and not 
visible in these plots. A more detailed analysis 
of this calculation and additional second-moment 
closure validation calculations are presented in 
Reference [21]. 

Submarine Body with Propeller 

The RANS-PROP flow system was val- 
idated with calculations around an unappended 
submarine-like body with and without a pro- 
peller. This body was chose because validation 
quality experimental data was available. The 
Reynolds number based on hull length was 6xl06. 
FANS calculations were performed with the mod- 
ified k-£ two-layer turbulence model. The pro- 
pelled case included a four bladed B-series pro- 
peller (B4.40 P/D=0.68) at an advance coeffi- 
cient (J) of 0.47. MIT's PSF-2 code was used 
for the propeller analysis, and RANS-PROP han- 
dled the FANS/PSF iteration. In the experiment, 
the model was supported by an aft-mounted sting. 
The sting was also modeled in the calculation. 

The FANS calculation for the hull with 
propeller was initialized using the converged 
FANS solution with the body force set to zero. 
2,250 FANS iterations were then made, with 
RANS-PROP run after every 150 iterations to up- 
date the propeller performance. 

The history of the computed propeller 
thrust coefficient (A'T) is shown in Figure 6. 
The final converged thrust and torque are A'T = 
0.1859 and KQ = 0.0210, and are within 3% of 
the reported experimental values. 

The history of the axial component of the 
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Figure 7:   Axial Inflow History for Submarine 
Body 
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Figure 8: Comparison of Computed Axial Veloc- 
ity with Experimental Measurements 

interpolated total propeller inflow is shown in Fig- 
ure 7. The initial total wake, which was interpo- 
lated from the no-propeller solution, shows a very 
thick boundary layer including a significant sep- 
aration region at the root. As the propeller ac- 
celerates the flow, however, the separated region 
disappears and the inflow profile becomes more 
full. The reduction of the viscous deficit results 
in and increase of the effective inflow which causes 
the drop in AY shown in Figure 6. 

Figure 8 compares computed versus mea- 
sured profiles of axial velocity at x/L = 1.032 (the 
propeller is located at x/L = 1.015). The compar- 
ison to the experimental data is extremely good 
for both the propelled and un-propelled cases. 

Figures 9 and 10 show centerplane (z = 0) 
plots comparing the computed FANS flow field 
with and without the propeller. The views are 
close ups of the propeller region of the config- 
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Figure 9: Computed Axial Velocity Contours for 
Submarine Body with and without Propeller 
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Figure 11:   Waterline Elevation for Series 60, 
Fr=0.316 

Figure 10: Computed Streamlines for Submarine 
Body with and without Propeller 

uration with the flow coming from the left and 
the mounting sting on the right. In these plots, 
the top half of the plot shows the solution with 
the propeller while the bottom half is the no- 
propeller solution. The sweep of the propeller 
blade is shown as an outline in the top half of 
the figure. Figure 9 compares contours of con- 
stant axial velocity. The propeller-induced shear 
layers, the dramatic reduction of boundary layer 
thickness, and the elimination of separation are 
all clearly visible. 

Figure 10 compares computed streamlines 
in the stern regions. The streamlines are com- 
puted at regular radial grid intervals, starting 
near the aft end of the hull slightly upstream of 
the propeller. For the sake of comparison, the tan- 
gential (swirl) velocity induced by the propeller 
has been suppressed by restricting the stream- 
lines to z = 0 planes. The large hull separation 
region in the no-propeller case (bottom half of 
the plot) is clearly visible, as is the extent of the 
small separation region computed at the root of 
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Figure 12: Propeller Thrust Convergence For Se- 
ries 60 

the operating propeller (top half of the plot). The 
streamlines for the calculation with the propeller 
also show the dramatic thinning of the boundary 
layer and the contraction of the flow through the 
propeller. 

For additional results and a more thor- 
ough discussion of this validation case, see Ref- 
erence [19]. 

Series 60 Surface Ship 

Flow calculations have also been made 
for the Series 60, CB = 0.6 hull form. Model 
tests for this geometry have been made at the 
University of Iowa that include the effects of the 
free surface [23] and propeller [24]. Calculations 
were made at the model scale Reynolds number of 
4 x 106 for Froude number, Fr=0.0 (double body) 
and Fr=0.316. For each Froude number, calcula- 
tions were made with and without the propeller. 

For the unpropelled case, the Fr=0.316 
calculations were presented at the CFD Work- 
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Fr=0.0 No Propeller Fr=0.0 With Propeller 

Fr=0.316 No Propeller Fr=0.316 With Propeller 

Figure 13: Series 60 Stern Pressure Contours 

shop Tokyo 1994, and are discussed in detail in 
Reference [1]. This zonal calculation used FANS 
with a nonlinear free surface boundary condition 
in the near field and the SLAW linear free surface 
potential flow code in the far-field. In the near 
field, the grid is stretched to match the computed 
free surface elevation and an exact boundary con- 
dition is applied on this surface. Figure 11 shows 
the computed free surface elevation along the side 
of the ship. Comparison with the experimental 
data shows good agreement, but that the peaks 
and troughs are underpredicted and the shape of 
the shoulder wave is not quite right. This discrep- 
ancy is most likely due to grid resolution, since the 
free surface has been matched rather crudely by 
stretching the grid points vertically near the ship 
hull. A more sophisticated approach, which fol- 
lows a spline representation of the complete ship 
hull, is under development to alleviate this prob- 
lem. As with all the RANS results presented at 
the SRI workshop, the waves away from the ship 
side decay too rapidly and do not agree well with 
the experimental wave field. This decay is most 
likely a resolution problem since many grid points 
are required for each wave, and indicates that fur- 
ther work is required before accurate wave fields 
can be computed. 

Propelled calculations were performed us- 

ing MIT's PSF-2 vortex lattice propeller anal- 
ysis code to model the five-bladed MAU pro- 
peller described in Reference [24]. The RANS 
-PROP code was used to interface the viscous 
flow calculation and the potential flow analysis. 
For both Froude numbers, the advance coefficient 
(J) of the propeller was 0.654 and the calcula- 
tion was started from the unpropelled result. Fig- 
ure 12 shows the propeller thrust convergence his- 
tory for the Fr=0.0 calculation. When the pro- 
peller is first turned on (after 800 FANS itera- 
tions), the initial thrust coefficient (Ä"r) is quite 
high. As the propeller accelerates the flow and 
thins the boundary layer over the ship's stern, 
the effective inflow increases and K-r drops, con- 
verging in just a few iterations. The triangles 
on the plot mark the points at which the body 
forces were updated by interpolating propeller 
inflow from the RANS result and recomputing 
the propeller performance. The converged KT is 
0.275 and the torque coefficient (KQ) is 0.0445. 
These are higher than the experimental values of 
KT = 0.234 and Kq = 0.0411, probably due to 
an overprediction of boundary layer thickness and 
the use of steady propeller analysis. For more 
detailed ship calculations, an unsteady propeller 
analysis code should be used to include the effects 
of the circumferentially varying inflow. 
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Calculation No Propeller Calculation With Propeller 

Experiment No Propeller Experiment With Propeller 

Figure 14: Series 60 Axial Velocity Contours - x/L — 0.975 

Calculation No Propeller Calculation With Propeller 

Experiment No Propeller Experiment With Propeller 

Figure 15: Series 60 Axial Velocity Contours - x/L = 1.05 
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The Fr=0.316 with propeller calculations 
showed very similar behavior, with a final KT of 
0.2793 and KQ of 0.0450. The free surface calcu- 
lation had a slightly thicker boundary layer, which 
in turn caused slightly higher propeller thrust and 
torque. The effect of the propeller on the com- 
puted free surface elevation was minimal. 

Figure 13 shows pressure contours over 
the stern for all four calculations. The contour 
increment is ACP = 0.02 with the CP = 0.0 
contour drawn in bold. The uneven waterline on 
the Fr=0.316 shows how the grid has been fit- 
ted to the computed free surface elevation. The 
plots with propeller show that the propeller ef- 
fects the pressure over about the last 20% of the 
hull. These pressure distributions agree fairly 
well with the experimental values shown in [24], 
though the propeller effect is slightly exaggerated 
because of the overpredicted thrust. 

Figures 14 and 15 compare computed and 
measured axial velocity contours at two planes. 
The x/L = 0.975 plane is just upstream of the 
propeller while the x/L = 1.05 plane is just down- 
stream. Results are shown for Fr=0.0 with and 
without propeller. The Fr=0.316 results are simi- 
lar but show a slightly thicker boundary layer and 
some variations at the free surface. The effect of 
the propeller at the upstream location is a subtle 
thinning of the viscous wake, while downstream 
the effect is more dramatic. While the thickness 
of wake is overpredicted by the calculations, the 
wake's shape and the effect of the propeller are 
quite good. 

DESIGN APPLICATION ISSUES 

The ultimate application of developed 
near-field flow predictive capability should be re- 
lated to specific design problems. It should be 
noted that while RANS code systems like the 
present one are reaching a level of maturity where 
they can be applied to design problems by expert 
users, they are not yet tools in the traditional 
sense that can be applied as "black boxes". A 
collaborative effort between the designer and hy- 
drodynamicist is required both to maximize the 
success of the calculations and to guide further 
development of the code system. 

Multi-Level Code System 

Two key requirements for the application 
of CFD to design are the integration of codes into 
complete flow analysis systems, and the use of 
multiple levels of sophistication as the analysis 

proceeds. Integration of the CFD code into a 
system including geometry modeling, grid gener- 
ation, flow visualization, and performance eval- 
uation is required so that the impact of design 
variation or configuration changes can be rapidly 
and efficiently evaluated. In particular, the gen- 
eration of computational grids for realistic config- 
urations has proved to be a major obstacle to- 
ward the practical application of RANS codes. 
The present system uses the Air Force's highly 
interactive GRIDGEN code [25], grid resplining, 
reblocking, and quality evaluation utilities devel- 
oped at SAIC and FANS's arbitrary block over- 
lap capability to speed up the creation of suitable 
grids. 

The use of multiple analysis tools of vary- 
ing levels of accuracy, ease-of-use, robustness, and 
cost, is important in building an comprehensive 
analysis system. With multiple tools available, 
trade offs between cost and accuracy can be made 
to ensure the appropriate level of analysis for the 
stage of the design process. In addition, lower 
level analyses can be used to enhance the accu- 
racy of higher level analyses while mitigating the 
cost and risk. For example, in viscid potential flow 
calculations should be used with RANS analysis 
since the inviscid calculation can guide grid de- 
sign, help verify convergence, and highlight the 
effects of viscosity. The multi-level analysis ap- 
proach can also be applied within a single analy- 
sis code. RANS calculations for complicated ship 
configurations may be preceded by calculations 
on a coarse grid, simplified configurations (e.g. 
unappended body), simpler turbulence model, or 
neglected free surface effects. 

SAIC's implementation of the multi-level 
approach is called the Interactive Design, Evalu- 
ation, and Analysis System (IDEAS) [26]. The 
development of this system was motivated by ex- 
perience in the design of the 1987 America's Cup 
winner Stars & Stripes. While originally devel- 
oped to build a design system based on potential 
flow seakeeping codes, it is admirably suited to 
RANS viscous flow applications. 

On a larger scale, the multilevel approach 
is not restricted to CFD techniques. Empirical 
tools and procedures ranging from knowledge of 
existing ships, appendages, and propulsors to the 
ITTC friction line form an important first level 
of analysis that must be considered as part of the 
design system. Model tests must be included in 
this multilevel framework since they provide an- 
other level of design analysis. In addition, CFD 
can be used to support, plan, and analyze the 
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model test, while the model tests can be used to 
verify the CFD results. 

Design Problems 

The principle design applications of the 
current system relate to prediction of viscous 
stern flow, particularly the detailed viscous inflow 
to the propeller. Detailed knowledge of the pro- 
peller inflow is critical to the design and/or selec- 
tion of propulsors that maximize efficiency while 
minimizing undesirable effects such as vibration 
and cavitation. By incorporating the nonlinear 
free surface and propeller models into the RANS 
computation, both the effects of the free surface 
on the propeller inflow and the effect of the pro- 
peller on the free surface are computed. Similarly, 
the propeller model allows the propeller's perfor- 
mance in the viscous wake to be evaluated, and 
the true effective wake to be computed. 

Propeller inflow prediction is especially 
important for commercial ships with heavily 
loaded single propellers operating in the viscous 
stern flow. While viscous propeller inflow is not 
as important to most naval combatants (whose 
design usually allows the propellers to be posi- 
tioned outside of the hull boundary layer), it will 
continue to be important in the development of 
transport and support ships such as the new gen- 
eration of fast transports and auxiliaries. 

Other stern flow applications include the 
prediction of the wake behind appendages, and 
the interaction of the rudder with the viscous flow 
field, free surface, and propeller. Appendage flow 
is of particular interest for submarine design. The 
sail and stern appendages have a very significant 
impact on propeller inflow because of the viscous 
wake deficit behind the appendages and the inter- 
action of junction "horseshoe" vortices with the 
body boundary layer. Appendage and junction 
flows and their interaction with the free surface 
may also be important in the design of racing 
yachts. 

Transom sterns may eventually be a key 
application for this system. While linear poten- 
tial flow methods with simple transom models 
have been fairly successful in predicting the per- 
formance of conventional high speed transoms, 
they are unable to analyze off-design conditions 
(e.g. wet transom) and are too limited for model- 
ing extreme transom stern designs. A coupled 
RANS/free surface capability provides a more 
fundamentally sound basis for analyzing the prob- 
lem. 

A potential application to naval ship de- 

sign is the evaluation of the non-acoustic detec- 
tion characteristics of candidate hull forms. Near- 
field RANS calculations can be applied to com- 
pute realistic starting conditions for parabolized 
Navier-Stokes (PNS) far-field wake calculations, 
which until now had to rely on approximate near- 
field models built up from empirical data. 

While force prediction is not the focus of 
this paper, the calculation of resistance is a po- 
tentially important application of the near-field 
ship flow capability. With its free surface and 
propeller models, the current system can be used 
for computing almost all ship resistance compo- 
nents, including skin friction, form drag, wave re- 
sistance, appendage drag, and thrust deduction. 
Drag calculations made to date have been very 
encouraging: drag values for the HSVA and Se- 
ries 60 ship forms, unappended submarine bodies, 
and 2-D foils have agreed well with experimental 
values. Since most of the resistance components 
can be adequately predicted using simpler empir- 
ical or computational methods, however, RANS 
is is probably unnecessary for force predictions of 
conventional designs. 

FUTURE DEVELOPMENT 

As mentioned earlier, the capability de- 
scribed in this paper is the result of an ongoing 
effort to create a viscous flow prediction system 
for naval architecture applications. The develop- 
ment efforts can be divided into two main areas: 
computation fluid dynamics and computational 
design. In the CFD area, numerical methods have 
progressed to the point where they are now ready 
to be applied to design problems. However, the 
ship flow prediction problem has not been com- 
pletely solved. Continued development is required 
for the modeling of more complicated free surface 
flows, such as those around transom sterns, and 
for full scale ship calculations. 

In the computational design area, interac- 
tive grid generation, multi-level analysis, chimera 
grids, and improved code robustness have all en- 
hanced the ability to obtain viscous flow calcula- 
tions for practical configurations. Many ship flow 
problems important to design have been identified 
that can be computed with current capabilities. 
However, the complexity of the problem is such 
that an expert hydrodynamicist is still required 
to guide the calculations, and the hydrodynam- 
icist/designer collaboration is needed to develop 
procedures for incorporating CFD results into the 
ship design process. Furthermore, the complex is- 
sues of quantified accuracy, risk assessment, and 
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ship synthesis models have yet to be adequately 
addressed. 

For now, RANS-based methods like the 
current one should be applied to design while re- 
search continues in CFD and computational de- 
sign. Such studies, which must be carried out 
jointly by hydrodynamicists and designers, are 
necessary to create procedures for design analy- 
sis, for modifying the design process to incorpo- 
rate and exploit advanced numerical results, and 
to set the focus for future research. 

Also, CFD-based research and validation 
needs to focus on actual modern ship geometries 
including large CB low speed tankers, high speed 
container ships with large overhanging sterns, and 
fast naval combatants. Older hull forms like Series 
60 are no longer completely relevant to current 
ship design. However, they continue to be used 
because those are the configurations for which ex- 
tensive experimental data is available. Therefore, 
the database of experimental ship flow and ship 
performance data should be expanded to include 
modern designs and, if possible, full scale data. 

Accuracy and Risk 

Despite efforts in code validation, error 
estimation for CFD remains unsatisfactory. For 
flow prediction to be useful for design, the possi- 
ble error for any design parameters must be evalu- 
ated with respect to variations in the design vari- 
ables. That is, the system sensitivities must be 
evaluated from a synthesis model for the design, 
and re-evaluated as the design progresses. Cou- 
pling the possible error in each design parame- 
ter with its corresponding sensitivities leads to 
a measure of the accuracy required in assessing 
the design's performance with respect to that pa- 
rameter. Alternatively, propagation of the error 
through the system sensitivities provides a mea- 
sure of the risk involved in relying on that partic- 
ular method for evaluation. Detailed knowledge 
of accuracy requirements and the acceptable level 
of risk is the only rational method for determining 
whether an educated guess, a full RANS calcula- 
tion, or something in between, is appropriate for 
the evaluation. Non-expert use of computational 
fluid codes for design will ultimately depend upon 
the availability of error estimates and system sen- 
sitivities. 

Error estimation is generally very difficult. 
For the CFD codes discussed in this paper, the 
error estimates must include: error in modeling 
the geometry and in gridding. truncation error, 
convergence error, error introduced through the- 

ory and code approximations, error introduced in 
modeling {e.g. propeller and turbulence models), 
experimental error in validations, and scaling er- 
rors. It will not be easy to obtain reliable esti- 
mates of these individual errors. In some cases, 
new techniques are necessary, such as adaptive 
gridding driven by solution error. 

In addition to estimates of the error intro- 
duced through computation, it is also necessary 
to quantify the error inherent in other design pro- 
cedures, including regression techniques, empiri- 
cal rules-of-thumb, experimental procedures, and 
scaling from model to full scale. A comprehen- 
sive approach to error estimation in ship design 
does not yet exist. In some areas error estimates 
are not even attempted. Unless a systematic ap- 
proach is begun to record both the best available 
estimates of error and the rationale behind them, 
it will be very difficult to improve current prac- 
tice. 

As our knowledge improves, better esti- 
mates will replace these initial crude estimates. 
This iterative, systematic approach probably rep- 
resents our best chance at preserving and improv- 
ing current design knowledge and practice. In ad- 
dition to providing a quantified measure of design 
risk, it will allow us to discern the gaps in our ca- 
pability, and enable us to assign resources to fill 
those gaps. 

Full Scale Effects 

Perhaps the greatest benefit that CFD 
offers for ship design is the potential to predict 
flow fields at full scale Reynolds numbers. Few 
validated full scale ship or submarine calcula- 
tions have been made. There are several reasons 
for this. First, grid resolution requirements at 
Reynolds numbers of 109 and above require mul- 
timillion point grids to adequately model realis- 
tic ship geometries. The extremely fine boundary 
layer spacings make the generation of such grids 
difficult and the convergence of CFD codes very 
slow. Secondly, the accuracy of available turbu- 
lence models at these Reynolds numbers has not 
been adequately demonstrated. Finally and per- 
haps most importantly, there is a critical lack of 
quality data for full scale validation, particularly 
for ships. 

In 1990, limited FANS calculations were 
made for a submarine with sail at full scale 
Reynolds number with some success [27]. A qual- 
itative analysis of the results showed that the hull 
boundary layer was reasonably well predicted, but 
the sail vorticity dissipated  too  rapidly down- 
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stream. Because of the lack of detailed full scale 
experimental data for the configuration, a quan- 
titative validation was not possible. While sub- 
sequent improvements in grid generation, turbu- 
lence modeling, and computational capabilities 
would make full scale calculations more practical 
today, validation would still be very difficult. 

on the CRAY YMP at the Texas A k M Su- 
percomputer Center and on the Convex 220 and 
Convex 3840 at the ARPA-funded U.S. Navy Hy- 
drodynamic/Hydroacoustic Technology Center at 
David Taylor Research Center. We are grateful to 
Cray Research Inc. and to ARPA for the use of 
these computing resources. 

CONCLUSIONS 

A near-field ship flow numerical predic- 
tion capability is presented which combines a 
zonal RANS/nonlinear free-surface method, an 
interacting RANS/propeller flow model, and a 
new second-order closure turbulence model. The 
combination of these three methods has resulted 
in a state-of-the-art computational system for 
modeling ship flow fields including thick turbulent 
boundary layers, separation, vortices, free surface 
effects, and propeller/hull coupling. The capa- 
bility incorporates zonal calculation techniques, 
advanced gridding tools, and chimera arbitrary 
block overlapping to allow detailed flow calcula- 
tions for real configurations to be made in practi- 
cal time frames. Calculations have been presented 
which demonstrate the system's ability to model 
both propeller/hull interaction and free surface 
effects as well as demonstrate the need for second- 
order closure turbulence modeling. 

While numerical capabilities like the cur- 
rent one have not completely solved the ship flow 
problem, they have reached a level of maturity 
where they can and should be applied to ship de- 
sign problems. Viscous flow design studies carried 
out jointly by hydrodynamicists and designers are 
needed to establish design procedures incorporat- 
ing advanced flow calculations while driving con- 
tinued research in areas like full scale turbulence 
modeling and computational risk assessment. 
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Calculation of Boundary Layer Considering 
Free-Surface Effect Around Ship Hulls 

Y. Wang, Q. Wang 
(Dalian University of Technology, China) 

ABSTRACT 

For a unsteady incompressible fluid 

with nonlinear free surface condition and with 

infinite water depth the Navier-Stokes equations 

and the additional Poisson equation are applied 

to determine the viscous flow parameters around 

ship hulls and to calculate the viscous resistance. 

SSPA 720 model is used to examine this compu- 

tation and the corresponding results show that 

both mathematic model and numerical method 

are qualitatively reasonable at low Reynolds 

number only. 

INTRODUCTION 

The one of cruxes to calculate viscous 

flow around ship hulls is considering free surface 

effect on boundary layer in which the symmetri- 

cal model assumption can not be made and a free 

surface boundary condition must be taken into 

account. In fact to determine viscous flow an in- 

teraction between inviscid and viscous flow 

should be considered and the flow parameters 

near body wall and the wave-making on free 

surface may be provided in this computation. 

The Cartesian coordinates (x, y, z, t) 

in the physical domain are used and they can be 

transformed into the body-fittted coordinates 

(!> T)> £> t) to define the corresponding compu- 

tation domain which assures the easiness of the 

treatment of boundary conditions and the control 

of the grid spaceings. The Navier-Stokes equa- 

tions with the continuity equation are still em- 

ployed to be the governing equation system to 

describe viscous flow around ship hulls in which 

the Poisson equation is also adopted to determine 

the pressure term. As all simulation for the lam- 

inar flow at low Reynolds number in this compu- 

tation no turbulence models are introduced in or- 

der to control the computer resources and to save 

the CPU time. The computation domain is de- 

fined by the nonlinear free surface condition, by 

the no-slip body boundary condition, and by the 

uniform flow conditions. 

Velocity field is calculated by the fi- 

nite-difference form of the Navier-Stokes equa- 

tions in the time-marching procedure. At the 

steady step of simulating computation both ve- 

locity and pressure distribution can be deter- 

mined in the flow field and at the free surface 

and  the hull viscous resistance and  the wave- 
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making form can be calculated. A ship model 

named 720 provided by SSPA is used to simulate 

viscous flow considering the effect of free surface 

around ship hulls. 

MATHEMATICAL MODELS 

Coordinate System 

A Cartesian coordinates x'(x, y, z, t) 

are adopted in the physical domain in which x a- 

long inflow to the stern, y along the breadth 

outwards, and z along the draft upwards, and 

origin at the centre of design waterline plane. 

The body-fitted coordinates £'(4, i\, t,, t) are 

transformed by the following formulae^3 

fx=4 
N     M 

2 2 
o»lm=l 

lO<0<Jt 

y+iz=2 2r3-2nAM4m-1ez?C(3-2n)e]   (1) 

in which 

fr=ra,-n) = l+L(Ti)G(U 

L (TI) =2 0,71'- 
(2) 

j-i Gtt)=Sc,!' 
j=i 

L(0) = 0, ra,0) = l. 0 

The coefficient matrix Amn, b,, and CjCan be ob- 

tained from the mapping of body sections and 

the stretching functions of local and global 

stretching respectively. 

Governing Equations 

The governing equations, the continu- 

ity and the Navier-Stokes equations, can be 

written in the physical coordinates 

(uii = 0 

ul+UiU^-Px'+^uLy 

i=l, 2, 3 ; j=l, 2, 3 

(3) 

in which 

(4) 

x'=(x, y, z) 

u'=(u, v, w) 

P^CPx.Py.Pz+p^) 

Re=U0L/v 

Fn=U0/v'gL 

where U0 is the uniform flow velocity, u1 are the 

velocity components, P is pressure, and L is the 

characteristic length of ship hull. All variables 

are nondimensionalized by L , U 0 > L /U 0, and 

pUÜ respectively. The subscripts in Eq. s(3) and 

Eq. s(4) mean the partial differential. 

The continuity and the Navier-Stokes 

equations   are   transformed   into   the   following 

formCl] 

4i'uH0 

ui+uhi^-U'^+^cw) 

i = l, 2, 3 ; j=l, 2, 3 

(5) 

in   which   the   unsealed   contravariant   velocity 

components are 

U'=(U, V, W) = 4'I'u
J (6) 

the pressure excluding the hydrostatic compo- 

nent is 

<fr=P- Fn2 (7) 

and the viscous term can be expressed as follows 
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v2u'= (iio2u^+2ai'iitl)utit,+i+<ü'xOui' w 

where i= 1,2,3; j=l,2,3 (j>3 taking j=l)s 

and k = 1,2,3 respectively. 

Pressure Distribution 

The Poisson equation method^ is ap- 

plied to calculate the pressure term in Eq. s(3) 

based on the velocity components on the time 

step ahead. From the Navier-Stokes equations 

in the vector form the pressure gradient can be 

expressed into 

T=VP+(-U • Vu+vVzu)        (9) 
tft 

Taking discrete form in the time domain for Eq. 

s(9) and taking divergence for it the Poisson e- 

quation to determine pressure term can be writ- 

ten as 

V2P = V • Q°/At (10) 

where Qn = At ( —u • Vu + vV2u)° + u". It is 

transformed into the body-fitted coordinates 

from Eq. s(5) as follows 

V2O=-{|i'[U'u^-^(V2u0]6i}-Dt      (11) 

with i=l,2,3; j= 1,2,3; and k = l,2,3 re- 

spectively. In the above equation D, is the nu- 

merical error from the continuity equation in 

Eq.s(5). 

Metrical Quantities 

All of the metrical quantities in Eq. s 

(5)~(11) are deduced from the grid geometric 

parameters as 

|-|ij = (xprtxf1**—xfttxl** )/J 

i=l,2,3 ; j=l,2,3 (12) 

i,j>3 taking i,j=i,j —3 

and 

4Ly = (& )ti*<+aLO„Ty+aiO;k 

i=l,2,3 ; j = l,2,3 
(13) 

where 

f j= (x4'ytH-izt'+0 — (xt'+2yt'+izt<) 

i=l,2,3 ; j=l,2,3 (14) 

i>3, taking i=i—3 

BOUNDARY AND INITIAL CONDITIONS 

Free Surface Conditions 

Two conditions for defined free surface 

are adopted in this simulation. The hydrostatic 

condition means that pressure on the free surface 

is equal to the atmospheric pressure, P0, i- e. 

P=Po on &=0 (15) 

The kinematic condition describes that the verti- 

cal velocity component for fluid particles on the 

free surface is identity with the vertical deriva- 

tive of the free surface form and is written as 

fht+Uh5+Vh,-(l-rcos9)W=0 

l,h=rsi»(6) 
(16) 

Eq. (16) can be transformed into the finite-dif- 

ference form with the same manner as the 

Navier-Stokes equations (5). All of velocity 

components on the free surface may be extrapo- 

lated equally from the velocity at the lower grid 

points. 
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Other Boundary Conditions NUMERICAL COMPUTATION 

The no-slip condition is limited on the 

body wall boundary, for velocity 

u=v=w=0 (17) 

and for pressure term 

^ = fcoS(nO+^coS(nT1)+fc0,(nO       (18) 
3n     3| on °s. 

The uniform flow and the hydrostatic 

pressure are given on the inflow boundary as 

fu=1.0 
v=w = <I>=0 

h = 0 

and on the wake flow boundary as 

(19) 

(20) au_3v_3w_£P_3h 

as well as on the both flank boundaries as 

£u_£v_3w_3P_3h_Q ,^\\ 
dx\     dx\      dr\      CTT|      9r| 

On the other boundary pressure, velocity and 

wave height can be extrapolated equally from 

the inside. 

Initial Conditions 

The initial condition is a still state 

where velocity for fluid particle and wave height 

at free surface are zero and pressure equals to 

hydrostatics, i- e. 

u=v=w=h=0 

P=P„ 
(22) 

A SSPA Model No- 720 is used to sim- 

ulate viscous flow considering free surface effect 

around its hull with 7. 067 in length:beam ratio, 

2. 398 in beam-draft ratio and 0. 675 of block 

coefficient. The computation domain is defined 

as 

-0. 7<x<1.0 , 0<y<0. 5 , -0. 5<z<0 

The F. P. of the model is located at x= — 0. 5, 

y=0andthe A.P. at x=0. 5, y=0. Thestill 

water level is z=0. 0. The minimum spaceings 

of the grid measured in the computation coordi- 

nates are 0. 02, 0. 02 and 0. 03 in i,r\ and t, di- 

rections respectively. The numbers of the grid 

points are 80X25X15. The time increment At 

is 0. 0005. The computation are carried out un- 

der the conditions of Re=10* which is limited to 

be low and laminar flow only and of Fn = 0. 25 

which can reach in the 5000-th time step near 

almost steady motion. 

At the steady state the distribution of 

pressure on hull surface along each water line 

and of velocity component in the direction of 

normal to hull surface for each section from F. 

P. to A. P. can be obtained and the contour 

map of calculated wave configuration for given 

Froude number at free surface can be also pro- 

vided in which the viscous flow around ship hull 

considering free surface effect has been simulat- 

ed from this computation. 

In order to investigate the effect of free 

surface on viscous flow around ship hulls both 

the global and local resistance coefficients for the 

friction and the viscous-pressure resistance are 

calculated and the comparative analysis between 

different computation methods provided by 

Nagamatsu and Wang is carried out in Tab.  1 — 
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3. The friction and the visous-pressure resis- 

tance coefficients in Tab. 1 and Tab. 2 are calcu- 

lated based on the following relations 

Distribution of Viscous Resistance 

Coefficients with Station 

J-2SJ-lCf 

L2 f1 

dx 

>dx 

(23) 

(24) 

where L is ship length and S is wetted surface, 

with corresponding Reynolds number Re =10 . 

The local resistance coefficients of CF and CVp in 

Tab. 3 are the value on the section station which 

No. 20 at F. P. and No. 1 at A. P. respectively. 

Friction Resistance Coefficient 

Tab. 1 

Computation from CFX103 

present result 3.400 

thin layer theoryw 2.960 

higher order theory^ 2.958 

Nagamatsu^ 3.040 

1957 ITTC line 3.0 

Viscous-Pressure Resistance Coefficient 

Tab. 2 

Computation from CvpXl0s 

present t result 1.34 

higher order theory1-4-1 1.29 

Nagamatsu1-5-1 1.31 

Tab. 3 

CFX10S C'ypXlO3 

No. [4] 
present 

results 
[4] 

present 

results 

18 0.501 0.478 — 0.107 -0.091 

16 0.643 0.526 -0.143 — 0.127 

14 0.679 0.587 -0.129 -0.009 

12 0.642 0.633 -0.071 0 

10 0.571 0.607 0 0 

8 0.570 0.614 0 0.135 

6 0.557 0.605 0.1 0.273 

4 0.495 0.572 0.5 — 

CONCLUDING REMARKS 

A numerical simulation for a viscous 

flow around ship hull with a free surface from 

the finite-difference solutions of the Navier- 

Stokes equations is developed and an exploratory 

calculation for SSPA Model 720 is carried out 

and some essential results are presented in this 

paper. It should be pointed out that the mathe- 

matic models to describe the viscous flow with a 

free surface are reasonable and the numerical 

procedure to make solution of the Navier-Stokes 

equations is advisable. In fact the project of vis- 

cous-inviscid interaction or interaction between 

boundary layer and free surface around ship 

hulls is an important and a complex interested 

research in marine hydrodynamics and such as 

the simulation of the higher Reynolds number 

flow, the introduction of the turbulent models, 

and the treatment of the wake flow and the 

stern waves are the most pressing subjects at 

present. Thus, this present result is an essential 

and a begining investigation in this research 

field. 
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DISCUSSION 

L. Larsson 
Chalmers University of Technology, Sweden 

This is an interesting progress report on a method 
which could be quite powerful when a turbulence 
model has been incorporated. I have two questions: 

1. At the ONR Symposium in 1984, Dr. Broberg and 
myself presented a boundary layer method using the 
same conformal mapping grid generator as the authors. 
Later we had to abandon this when solving the Navier- 
Stokes equations, since it was very difficult to generate 
a smooth transition of the grid into the wake. Have the 
authors had any problems of this kind? How is the 
matrix determined in the wakes? 

2. It is stated that the computation for the SSPA Model 
720 is carried out at R„ = 104, i.e. in the laminar flow 
regime. But the comparison with others seems to be at 
R„ = 107. How is that possible? 

To be a comparative analysis some computations 
about CF, Cvp and their distribution along hull stations 
are listed in Tables 1-3 respectively. All final values 
in these tables are the corresponding condition of 
R,.=l 07 which is extrapolated from respective 
computation condition based on the plate friction law 
provided by 1957 ITTC line. 

AUTHORS' REPLY 

Thank you for your comments, 
reply to your two questions. 

The authors will 

The body-fitted coordinates as Eq. (1) are applied in 
which the coordinate system is composed with grid 
of hull surface and outside field. To achieve the 
transform from Cartesian coordinates x1 to body- 
fitted coordinates £' the following essentials should 
be paid attention to: 

The mapping of body section. In order to increase the 
fitting accuracy for body lines, especially for after- 
body sections, Lewis section is used to be initial 
values and then cubic spline function is also 
employed to be firstly approximate values. The final 
result can be obtained from the trial-and-error 
computation. 

The local stretching function. The velocity profile of 
u in boundary layer is used to be sample when 
determining the coefficients b;. 

The global stretching function. To ensure covering 
all regions considering both viscous and wave- 
making effects, the development of boundary layer 
along hull length direction for plate boundary layer 
and Kelvin wave system is referenced to be sample 
when determining the coefficients Cj. 
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Three-Dimensional Flow Around a Surface-Piercing Body 
R. Yeung, X. Yu 

(University of California-Berkeley, USA) 

ABSTRACT 

A pseudo-spectral formulation for solving un- 
steady, three-dimensional motion of an inviscid 
or viscous fluid with a free surface is presented. 
The formulation is implemented in cylindrical co- 
ordinates to study flows about a vertical surface- 
piercing structure. In these coordinates, a highly 
effective and accurate method is developed for 
treating the Poisson equation. Numerical solu- 
tions of three-dimensional inviscid wave motion in 
an annular domain are validated against analyt- 
ical solutions. The high accuracy and efficiency 
of the method are pointed out. By an appro- 
priate choice of the location of an outer bound- 
ary, the annular domain can be made laterally 
unbounded. A three-dimensional Cauchy-Poisson 
wave evolution problem in the annular domain is 
solved to illustrate the applicability of the method 
to complex wave problems. The procedure for 
extending this three-dimensional solver to obtain 
solutions of the Navier Stokes equations is de- 
tailed. The formulation is based on a projec- 
tion method for treating the momentum equa- 
tions and pressure Poisson equation. Validation 
is made against an analytical solution of Stokes's 
second problem in cylindrical coordinates. Sev- 
eral studies for viscous flow in an "annular cav- 
ity" are presented so as to compare the effects of a 
wall or free-slip "free surface". Finally, with the 
full free-surface conditions, results for a viscous 
Cauchy-Poisson wave problem are presented. The 
success of these investigations establishes the ca- 
pability of the present methodology for examining 
the "mixed-boundary shear flow" near a surface- 
piercing structure, in which the complex interac- 
tion of vorticity, free surface, and possibly surface 
tension is yet to be clearly understood. 

Nomenclature 

B = bottom of the fluid domain (at 
z = -d) 

T = free surface (at z = 0) 
FT = Froude number 

9 = gravitational acceleration 
K.E. = 

kinetic energy in the fluid 
domain 

L,M,N = number of grids in the r, 0 and 
z directions 

n = (nx,ny,n2) unit normal to 
fluid 

P = total pressure in the fluid 
P = dynamic pressure in the fluid 

P.E. ™ potential energy in the fluid 
domain 

Qr, Qe, Qz = difference operators in r, 6 
and z directions 

{r,e,z) = cylindrical coordinates in 
physical space 

Ti, To = inner and outer radii of the 
fluid domain 

(R,$,Z) = normalized cylindrical 
coordinates 

Re = Reynolds number 
S = body surface (at r = ri) 
t = time 

T.E. = total energy in the fluid 
domain 

Ü = characteristic velocity 
u, v,w = velocity component in r, 6 

and z directions 
(u ,v ,w ) = auxiliary velocity vector 

(u    ,v    ,w    ) = auxiliary velocity vector 
{u,v,w) = auxiliary velocity vector 

(U,V,W) 
= 

prescribed velocity vector on 
moving boundary 

At = time increment 

V. = free-surface elevation 

P = density of fluid 
£ — outer boundary (at r — r0) 

<A = velocity potential 
0 = fluid domain 
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1    INTRODUCTION 

In recent times, there has been considerable ad- 
vances in the development of predictive models 
for computing flows about ship hulls (see e.g. [1] 
- [5]), which include consideration of the effects of 
viscosity. Important progress has also taken place 
in the development of boundary element methods 
([6] and [7]). The aim of these works is to ulti- 
mately replace traditional tank experiments by 
CFD codes which will be used interactively by 
designers of ships or other marine structures to 
develop more economical and more efficient de- 
signs. 

As evidenced in [8], many of these existing 
techniques rely on the assumption that the mean 
flow about the hull is steady, while there are in- 
creasing experimental and numerical evidence that 
the vorticity structures near a free surface behave 
in an unsteady manner ([9], [10]). These observa- 
tions apply even at typical scales used in a model- 
testing tank. The behavior of the fluid motion in 
the region near the hull and the free surface has 
been most intriguing and is yet to be understood. 
Because it is a region which involves the conflu- 
ence of two types of boundary conditions, the free 
surface and the non-slip body, it has recently been 
named the "mixed-boundary shear flow" region. 
This region would generate flow features that are 
distinctly different from each of the two types of 
boundary surfaces if present only by itself. 

Perhaps one of the more well-known physical 
features which comes from such a region is the 
generation and intensification of the so-called neck- 
lace vortices from the bow area of a ship ([11]). 
In their recent work based on an elaborate fully 
nonlinear free surface and viscous-flow model, Ye- 
ung and Ananthakrishnan [12] found that a clean 
free surface was unable to generate a very strong 
cross-stream vortex. This disagrees somewhat 
with Baba's [13] stipulation that the bow-free- 
surface juncture bears the same vorticity intensi- 
fication phenomenon of the "wing-fuselage" junc- 
ture of Hawthorne [14]. However, Yeung and 
Ananthakrishnan's results are for the case of two- 
dimensional flows, its immediate implications to 
three-dimensions are still not obvious. Although 
the extension of their technique to three-dimen- 
sional problems is straightforward, the demand 
on computational resources and grid resolution 
is stringent. Another issue closely related to the 
mixed-boundary shear flow is the well known dif- 
ficulty of having a convergent solution of the wa- 
terline integrals in inviscid-fluid wave-resistance 

computations of ship hulls. This issue is addressed 
from a different viewpoint in another paper of this 
session ([15]). 

In order to investigate the flow structure in this 
mixed-boundary shear region, it is necessary to 
develop an accurate and efficient three-dimensional 
method that is less vulnerable to grid density as 
many standard finite-difference solvers are. Fur- 
ther, it is worthwhile to define a canonical prob- 
lem, for which analytical validation of the accu- 
racy of the method can be carried out, presum- 
ably at least for certain simple limiting boundary 
conditions. 

To meet the first goal, a pseudo-spectral for- 
mulation is adopted. During the past two decades, 
spectral methods and their pseudo counterparts 
have been extensively studied and applied to the 
numerical solution of many fluid dynamics prob- 
lems ([16]-[20]). Their efficiency and accuracy are 
outstanding. Such properties will be well demon- 
strated in this paper. Spectral methods are some- 
what restrictive in their abilities to handle general 
geometries; however, this is not an insurmount- 
able restriction. 

To meet the second objective, the canonical 
problem chosen is a vertical surface-piercing cylin- 
der enclosed by another vertical cylindrical sur- 
face, upon the latter a variety of far-field condi- 
tions may be applied. The fluid domain is bounded 
on top by a free surface and by a solid bottom 
boundary. In its simplest form, the canonical 
problem would be to examine the three-dimension- 
al inviscid or viscous flow bounded in an annular 
domain of finite height. Cylindrical shapes may 
be viewed as non-ship like, but they are of great 
practical significance in many marine-related ap- 
plications. Further, in terms of quantitative de- 
scriptions of separated flows, such shapes offer 
a more stringent test than most streamlined or 
thin-body shapes. Finally, with a minor increase 
in mathematical complexity, spheroidal hulls can 
be considered as natural generalizations of the 
double cylinder configuration. Much ground work 
has been done to enable the successful develop- 
ment of this new and powerful solution method 
[21]. Intermediate progress of some of these ex- 
citing developments and capabilities are reported 
here. 

In Section 2 of the paper, the basic develop- 
ment of the spectral method for the case of an in- 
viscid fluid is introduced and detailed. For inviscid- 
fluid motion, the boundary-integral formulation 
remains the most popular approach. Under this 
category, there are two basic approaches, one is 
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based on the availability of a time-dependent free- 
surface Green function, whose numerical evalua- 
tion is non-trivial ([22] and [23]). The other is 
based on the so-called Rankine-source formula- 
tion, in which case the free-space source is dis- 
tributed on the free-surface ([24] and [25]). This 
latter approach normally leads to a larger number 
of unknowns and requires the use of an approx- 
imate open-boundary condition. As an illustra- 
tion of our pseudo-spectral method development, 
we first demonstrate the accuracy and efficiency 
of a Poisson solver in cylindrical coordinates. So- 
lutions for two test problems corresponding to 
wave motion in the annular (or cylindrical) do- 
mains are examined. In particular, the Cauchy- 
Poisson problem for this geometry is solved and 
presented (Sec. 2.4). This sloshing problem is of 
practical interest in its own right. 

Section 3 provides the formulation and numer- 
ical details of how the viscous-flow problem is 
tackled as a non-trivial extension. This method- 
ology follows the projection method that had been 
successfully developed by Yeung and Ananthakr- 
ishnan ([12] and [26]). Central to the present pro- 
cedure is the availability of a fast Poisson solver, 
developed in Sec. 2.2 in anticipation of its role 
in the solution of the Navier Stokes equations. 
Viscous-flow solutions are presented in Section 4 
for three types of test problems: a) A rotating 
cylinder undergoing periodic motion, which corre- 
sponds to Stokes's second problem [27] for a cylin- 
drical body; b) An annular fluid cavity driven by 
a continuously sliding wall; and c) A cylinder os- 
cillating vertically in an annular cavity trapped 
on top by a free-slip or solid wall. Finally, the 
Cauchy-Poisson problem in Sec. 2.4 is re-solved 
for the case of a viscous flow. It is evident from 
the success of these computations that a detailed 
knowledge of the vortical structures in the mixed- 
boundary shear region of a surface-piercing body 
can be obtained in the very near future. 

2    WAVE-BODY INTERACTION IN AN 
INVISCID FLUID 

2.1     Mathematical Formulation 

In this section the theoretical background for solv- 
ing transient three-dimensional free-surface flows 
of an inviscid fluid is briefly reviewed. For sim- 
plicity, a cylindrical coordinate system is used 
throughout to validate a number of ideas, although 
extensions to other shapes are possible on the 
same framework. Consider a fixed cylindrical co- 

z = -d 

Figure 1: Notation and coordinate system. 

ordinate system (r, 6, z) chosen so that the z—axis 
points vertically upwards and the undisturbed free- 
surface is at z = 0 (see Fig. 1). The fluid region 
Q, is enclosed by the cylindrical body boundary S 
located at r = rt-, free-surface T at z = 0, far-field 
boundary Eat r = r0, and a bottom B located 
at z = — d. 

Under the assumptions that the flow is irro- 
tational and the fluid incompressible, it can be 
established that there exists a velocity potential 
of the flow <j>, which satisfies the Laplace equation, 

V2^ = 0 (1) 

in the domain fi, with the following boundary 
conditions: 

On T, a Dirichlet condition for <j> can be ob- 
tained by a advancing the potential in the time 
using the linearized dynamic condition: 

d<t> 
= -9V, (2) 

where g is the gravitational acceleration, and 7?(r, 
6, t) is the free-surface elevation. The latter satis- 
fies the following linearized kinematic condition: 

d-l = *± (3) 
at    dz  ' 

On S, which may be considered to have a pre- 
scribed velocity V, the appropriate normal deriva- 
tive for <j> is 

*»=V.n, (4) 

where n is a normal on the body surface point- 
ing outwards of Q. On B, the following no-flux 
condition is applicable: 

4>z = o. (5) 
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On the far-field boundary E, we may impose 

<$> = 0 (6) 

as an approximation to an open boundary if E is 
taken to be sufficiently large, or 

^» = 0 (7) 

if it is a solid vertical boundary. 
To complete the problem, initial conditions for 

4> itself and its time derivative on T should be 
specified. 

2.2    Pseudo-Spectral Method of Solution 

2.2.1   A Poisson-equation solver 

It is well known that the Poisson equation has 
many important application in fluid mechanics. 
Here we will develop a pseudo-spectral formu- 
lation to solve this equation, using some ideas 
similar to Tan [28]. For the present problem in 
cylindrical coordinates, we will exploit Chebyshev 
polynomials in the vertical direction and Fourier 
modes in the circumferential direction. The re- 
sulting ordinary differential equations for the ra- 
dial direction are solved by a spectral collocation 
method [16] with a diagonalization technique. The 
method developed can treat both homogeneous 
and inhomogeneous boundary conditions of the 
Dirichlet, Neumann, or mixed type, which encom- 
passes the classes of boundary conditions encoun- 
tered in many fluid-mechanics application. 

For the right-handed cylindrical coordinate sys- 
tem (r, 6, z) shown in Fig. 1, the independent vari- 
ables are defined in the following ranges: 

(8) 

where r, and r0 are the radii of the inner and outer 
cylindrical boundaries respectively. It is conve- 
nient to map the above domain into a normalized 
computational domain (R, $, Z) such that 

n < r < To 

0 < e < 2?r 

d < z < 0 

-1 <    R   < 1 
-1 <    $    < 1 
-1 

low 

<    Z    < 

ing relations: 

1 

r 
0 
z 

=   CR + t 
=    (1 + $)TT 

=    K(-1 + Z) 

(9) 

(10) 

where C = \{r0 - r,), £ = \(r„ + r<), and K = d/2 
are scale and translational factors. 

In (R, $, Z), the Poisson equation V2U - 
S(R, $, Z), as a generalization of (1), can be writ- 
ten as: 

• i       d2       a2 

C + ^R + £)2,r2 ö#2 + K2dZ2 U(R,*,Z) 

= S(R,*,Z), 
(11) 

where 

„      1   d2 d 
CdR2    c«R + t)dR 

(12) 

Here we use U to designate the more general case 
of an unknown function where the Poisson instead 
of the Laplace equation is satisfied. Clearly, for 
inviscid-fluid applications defined in Sec. 2.1, one 
would simply take S = 0. 

The boundary conditions in Eqns. (2), (3), (5), 
(6) or (7) can be treated as special cases of the 
following generalized form: 

a± U(*,Z) + ß±??%Q = F±(*,Z), 
dR 

at    R 

(13) 

±1 

A±U(R,*) + B±??i^}=H±(R,*),    (i4) 

at    Z = ±l 

with all a±, ß±, A±, and B± considered given 
constants. 

In our spectral approach to the solution of Eqn. 
(11), the functions U, S, F±, and H± are approx- 
imated by truncated Chebyshev-Fourier series of 
the form: 

f  U(R,*,Z) ) 
{   S(R,$,Z)   } = 
I    F±($,Z)    J 

N 

a--Mn=0 

Umn(R) 
Smn (R) 

(15) 

„jmjfj? Tn{Z), 

and 

JT±(Ä,*)=      J2     h±mn(R)e 
»mjr# (16) 

where the Chebyshev polynomials T„ (Z) are given 
by cos [ncos-1 Z], Note that by assumption, we 
consider Smn, /±m_, and h±mn as given, while 
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the sequence Umn are unknown functions to be 
solved for. 

By introducing a Chebyshev-Tau representa- 
tion [16] to incorporate the boundary conditions 
(14) at Z = ±1, and by applying the recurrence 
relations for the derivatives of Chebyshev polyno- 
mials, we can rewrite: 

d2U 

dZ2 

where 

-i   iV-l 

=    E    E U™ \R)*im'*T«(Z),   (17) 
,. = _M n = l 

N-2 

ff&2)(Ä) = EwWÄ)+A, 
q=0 

,(B).      (18) 

Expressions for j„q and Dmn(R) can be derived 
after some effort and form the crux of the present 
numerical development. The lengthy expressions 
for fnq and Dmn (R) in terms of known quantities, 
are omitted here for clarity of exposition. Substi- 
tution of the above results (Eqns. 17 and 18) into 
the Poisson equation (11) yields: 

1   N-2 

= Smn(R) 

Umn(R) + — E 'TngUmqiR) 
q=0 

jDmn(R) = &mn(R) 

for m = -f 
(19) 

to 4f - 1, and n = 1 to N - 1. 
To avoid solving Eqn. (19) with full coupling 

between m with n, we first proceed to diagonalize 
a matrix T with elements -ynq. T is of dimension 
TV — 1. Thus we assume 

mlTe = A, (20) 

where A is a diagonal matrix of dimension TV — 1 
with diagonal elements An,n=l,..,TV— l,as the 
eigenvalues, e is the associate eigenvector matrix, 
and e-1 its inverse. Next, if we consider the ma- 
trices U and S to be defined by elements Umn 

and <Tmn, we may define correspondingly a ma- 
trix Ü with elements Umn and S with elements 
ö"mn by the following relations: 

U 
s 

=    UeT, 
=    SeT, 

(21) 

where the superscript T denotes transpose. 
Thus by Eqns. (20) and (21), Eqn. (19) reduces 

to: 

Umn{R) + -^XnUmn(R) C- 
(C-R + 02 (22) 

for m = -4f to f - 1, and n = 1 to JV - 1. 
The significance of Eqn. (22), in comparison to 
Eqn. (19), is that the system of ordinary differ- 
ential equations in (22) is uncoupled in m and n. 
Had we not made this transformation, we would 
have to face with the insurmountable task of solv- 
ing m x n coupled differential equations. 

To solve the system of ODE's defined by Eqn. 
(22), we were successful in employing either a 
fourth-order differencing scheme or a Chebyshev 
collocation method [16], the latter option, consti- 
tuting a consistent full spectral form, yields the 
highest accuracy. 

2.2.2   Treatment of the free-surface conditions 

As pointed out earlier, the potential <f> and wave 
elevation TJ on the free surface T are obtained by 
integrating Eqns. (2) and (3) respectively. Im- 
plicit difference schemes are used here because of 
their excellent stability properties [30]. To imple- 
ment such schemes, the following iterative proce- 
dure is employed 

•»öW + f<*< k + 1   ,    ik 
(P)    +^ 

= ?-9*('&1 + 't) 

(23) 

(24) 
"(p+i) T ' 2 

Here the superscript h denotes an index of the 
time step and p denotes the index of iterations 
within a given time step. The iteration process is 
halted after the pth iteration when 

i<^fpy-<^(p+-i)i-£' (25) 

&mn(R) 

where e is a prescribed tolerance value. An abso- 
lute accuracy of e = 10-10 was used for all cases 
of results presented. 

2.3    Analytical Validations 

Before proceeding to some general and more com- 
plex problems, it is essential to establish the accu- 
racy and convergence characteristics of the pro- 
cedure presented in Sec. 2.1 and 2.2. For this 
purpose, we test the procedure against two ana- 
lytical solutions that can be worked out relatively 
easily. 

In the first case, we wish to verify that the 
Poisson solver for Eqn. (11) to (14) can treat 
any arbitrary function of 5. Here we assume 
an analytical form of U(r, 6, z) defined below (in 
Eqn. 26), and evaluate S(r,8,z) corresponding 
to Eqn. (11) accordingly. The boundary condi- 
tions (13) and (14) can be imposed by taking 
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the left-hand side as given and the right-hand 
side computed. Then the numerical algorithm for 
the solution of U is applied with 5, F, and H as 
given. The numerical solution can then be com- 
pared with the exact solution for different types 
of boundary conditions. 

For this test, we take U(r, 9, z) as 

U(r,6,z) = 

{£(r-0-i}+*{!*<-0-f}] 

{«£-u}+-»{*(£-i>}] 
x[cos{|(7-l)} + sin{^-l)}] 

(26) 
with r* = 1, r0 = 10. The boundary conditions 
considered are taken to be one of the following 
four types: 

x   cos 

(a) Dirichlet Conditions: 

(b) Neumann Conditions: 

(c) Mixed Conditions: 

(d) Dirichlet on   R - ±1 
and Neumann on   Z = ±1 

<x± — A± = 1, 
ß±=B±= 0; 
or-fc = A± = 0, 
ß±=B± = 1; 
a±=A± = 1, 
ß±=B± = 1; 
a± = B±= 1, 
/3± = A± = 0. 

(27) 
Once the solution for U has been obtained, its 

pointwise error can be computed over the entire 
domain £2. In Table 1 the maximum pointwise er- 
ror Er of the numerical solution in ft, relative to 
the exact analytical solution, is shown for a range 
of grid resolution. In these and later computa- 
tions, the grid resolution is measured by the num- 
ber of radial grids, L, and the number of spectral 
terms in the circumferential direction, M, and 
the number of spectral terms in the vertical di- 
rection, N. Table 1 shows that the value of the 
error Er decreases exponentially as the grid num- 
ber N increases for each of the above four types 
of boundary conditions. The timings shown in 
Table 1 are based on an IBM 320H workstation. 
It is clear from these results accuracy of the level 
of machine precision of 13 digits can be achieved 
for O(10, 000) grid points, and at the order of few 
seconds. 

To demonstrate the flexibility of the procedure, 
as well as to test the accuracy of our algorithm in 
the handling of wave-related problems, we solve, 
as the second test case, an axisymmetric Cauchy- 
Poisson wave problem [29]. Problems of this type 
usually consist of specifying an initial elevation 

Table 1: Maximum pointwise errors vs. grid res- 
olution for various boundary conditions 

Type of Resolutions Maximum CPU 
boundary pointwise time 

conditions ix M x N error Er (sec) 

Dirichlet 5 x 16 X 16 5.53E-04 0.39 

on all 10 X 16 X 16 2.51E-09 1.15 
boundaries 20 x 16 x 16 3.54E-13 4.17 

30 x 16 x 16 3.21E-13 9.38 

Neumann 5 x 16 x 16 1.35E-02 0.39 
on all 10 X 16 X 16 1.99E-07 1.15 
boundaries 20 X 16 X 16 7.62E-13 4.15 

30 X 16 X 16 7.76E-13 9.37 

Mixed 5 X 16 X 16 4.56E-02 0.38 

on all 10 x 16 X 16 1.64E-07 1.15 
boundaries 20 X 16 X 16 9.89E-13 4.18 

30 X 16 X 16 9.90E-13 9.39 

Dirichlet 5 X 16 X 16 1.04E-03 0.40 

on R = ±1, 10 X 16 X 16 2.96E-09 1.15 

Neumann 20 X 16 X 16 6.26E-13 4.18 

on Z = ±1 30 X 16 X 16 6.24E-13 9.25 

or velocity of the surface wave, and one is re- 
quired to predict the wave evolution at subse- 
quent time. The governing equations are given 
in Sec. 2.1, with the initial conditions to be spec- 
ified. Here we assume the initial conditions to be 
of an axisymmetric wave form that occurs be- 
tween two concentric impermeable vertical cylin- 
ders located at r = n (S), and at r = r0 (S): 

^=exp{_[r_(ri + ro)/2]2} = /(r), 
(28) 

4> = o, 

at t = 0 

at* = 0 (29) 

An analytical solution of the above problem 
can be derived by the use of Laplace transform 
and separation of variables. The details are omit- 
ted here. The final result for the wave elevation 
is 

v(r,t) = go 
oo 

n = l 
J»(t""-«No(fc"r: 

cos wnt 

(30) 
where Jv and N„ are the Bessel functions of the 
first and the second kind, and of order v. kn is 
the nth zero of the following equation for k 

Mkr^N^kro) - Ji(*r0)JVi(*r,-) = 0.      (31) 

The "natural" frequencies un satisfy a finite-depth 
"dispersion relation": 

ui^ = gkn tanh knd. (32) 
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Figure 2: Free-surface elevation at ^(fif/r,)1'2 = 
100.0 (left) and the root mean square of errors of 
free-surface elevation as a function of time steps 
(right) in an axisymmetric Cauchy-Poisson wave 
problem. 

The coefficients gn in Eqn. (30) are given analyt- 
ically in terms of /(r): 

_ /r
r° rf(r)dr 

90 ~     'f°rdr    ' Jri 

j;:rf(r)[jo(kmr)-±$^No(kmr) dr 

i;:r[Jo(kmr)-^^N0(kmr) 

for m = 1,2, 3 

dr 

(33) 

The numerical solution of this problem was 
obtained using the spectral method detailed in 
Sec. 2.2. The results of the computed wave eleva- 
tion ^(M) were compared with the correspond- 
ing analytical solution r)a(r, t) given by Eqn. (30). 
Excellent agreement was found at every value of 

(a) Time=0.1*0       L=48 M=72 N=24 

&ffia^ 

PP" 

(b) Time=0.1*100     L=48 M=72 N=24 

(c) Time=0.1*300     L=48 M=72 N=24 

Figure 3: Instantaneous free-surface elevation 
plots for the Cauchy-Poisson wave problem, L, 
M, N representing resolution in the radial, cir- 
cumferential, and vertical directions. 

919 



1.25 

0.75 

0.25 

100 200 300 400 500 600 
Number of Time-steps 

700 800 900 1000 

Figure 4: Energy balance in the Cauchy-Poisson wave problem of Fig. 3 

t. Fig. 2a shows the free-surface elevation for one 
such simulation at non-dimensional time ty/g/rt 
— 100. The RMS error in free-surface elevation 
as a function of time is defined as 

ERMs(t) = JSs{Mr,t)-Va(r,t)]/r,ordS 

(34) 
where r)0 is the elevation for the initial free-surface 
pulse, and 5 the planform area of the free surface. 
A plot of ERMs(t) versus the time-step index n 
is given in Fig. 2b. For L = 100, M = 24 and 
JV = 24, the error was found to be bounded by 
0.5% when a non-dimensional time step Aty/gjri 
of 0.1 was used, but reduced drastically to a mere 
0.05% if the time step was halved. These results 
lend credence to the potential and effectiveness of 
the method. 

2.4    Wave Sloshing in an Annular Domain 

A non-axisymmetric version of the Cauchy-Poisson 
wave problem solved in Sec. 2.3 is treated in this 
section. This has full three-dimensional features. 
Consider a non-axisymmetric initial wave eleva- 
tion located between two cylindrical walls. This 
initial wave form is taken, for mathematical con- 
venience, to be the following: 

r7(r,M = 0) = 

{-[rcose-(ri+r0)/2]2 
exp rsin ef}. 

(35) 
Its shape is depicted in Figs. 3a. Because of the 
reflections of waves from the outer wall and their 
interference with the inner cylinder, the free sur- 
face evolves in a complicated manner. The re- 
sults are shown in Figs. 3b to 3d. The outward- 
moving "ring waves" of the pulse (Fig. 3b) first 

hit the outer cylinder and rebound, interestingly, 
almost as a plane wave system (Fig. 3c). The 
inward-moving ring waves diffract around the in- 
ner cylinder and eventually bounce off the far side 
of the outer cylinder to interact with the "plane 
waves" which somewhat encircle around the in- 
ner cylinder to reach the far side. When all these 
waves meet at the far end, they evolve into waves 
of much shorter lengths, moving at much lower 
spatial velocities. All these flow features are well 
captured by a radial grid dimension of merely 48 
points. 

It is important to validate the accuracy of the 
solution. As a measure of the accuracy of this 
type of computation, we will demonstrate that 
the flow retains the same total energy as the ini- 
tial wave pulse. We define the following energy 
quantities following Yeung [30]: the total energy 
(T.E.) in the fluid domain as the sum of its ki- 
netic and potential parts 

T.E.{t) = K.E.{t) + P.E.(t) 

r l /" l (36) 
= / -PHndS+ /  -grfdS 

where the contributions to the first integral from 
<S, £ and B vanish because <j>n = 0. Clearly, in 
the absence of any energy source, T.E. must stay 
constant. Fig. 4 shows that the error in the total 
energy is no more than 2% of the initial potential 
energy of the wave form P.E.{t = 0) even af- 
ter a thousand steps of simulation. Interestingly, 
by the principle of equal energy distribution, one 
observes that P.E. and K.E. each hovers around 
and converges to the value of 0.5. This confirms 
that the wave motion would never vanish com- 
pletely, which is to be expected in the absence of 
viscosity. 
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3    WAVE-BODY INTERACTION  IN  A 
VISCOUS FLUID 

The formulation of the free-surface problem in 
a viscous fluid is similar to that given in [12]. 
The Navier-Stokes equations are complemented 
by dynamic free-surface boundary conditions rep- 
resenting the stress continuity relations. The stress 
conditions are linearized here for simplicity. Ap- 
proximate conditions are used for the closure of 
the open boundary. 

These equations are presently solved in cylin- 
drical coordinates using a fractional-step method, 
which is based on the so-called projection method, 
proposed by Chorin [31] and others. In this meth- 
od, an intermediate auxiliary velocity field is first 
evaluated using the momentum equations with- 
out the pressure term. An ADI scheme is used 
here for this purpose. The pressure field satisfies 
a Poisson equation, which, in the present work, is 
handled efficiently and accurately by the pseudo- 
spectral formulation described in Sec. 2.2. A pres- 
sure correction step concludes the procedure. 

3.1    Governing Equations 

If we take U as a characteristic velocity, r< or d 
as a characteristic length, the Navier-Stokes equa- 
tions for incompressible viscous flow in cylindrical 
coordinates (see Fig. 1) can be written as: 

du        du      v du du      v 
m+uTr+-rTe+w-d-z-- = 

Re 
V2u 

u 
72 

2 dv 
r2d0 

dv 

dP 
dr 

dv       dv     v dv        dv     uv 

m+ud-r 
+ -rde+wd-z 

Re 
W v 

3 
2_du 

^2 00 

r 
\dP_ 
r de' 

v dw dw dw        dw 
+    dr      rd6 dz dt 

Re 
[V2w] ö7' 

(37) 

where V2 = £ + 1 £ + 4^ + ^ is the Lapla- 
cian operator in cylindrical coordinates. Eqn. (37) 
is complemented by the continuity equation: 

1 d(ru)      1 dv      dw 
r    dr        r dB      dz 

(38) 

Here,  Re is an appropriately defined Reynolds 
number, say Ürt/v or Üd/v.   The quantity P 

represents the non-dimensional dynamic pressure, 
which is related to the total pressure p by 

P = p + Fr 
(39) 

where FT is a Froude number. 
Next, the boundary conditions that govern the 

viscous-wave problem are defined: 
On the body 5, the following no-slip conditions 

are used: 

u=U(t),   v = V(t),   w = W(t), (40) 

where U(t), V(t) and W(t) are prescribed instan- 
taneous velocities on the body. 

On the free surface ?, the boundary conditions 
can be linearized from the exact kinematic and 
stress-continuity relations (see e.g. [32]). The 
linearized dynamic boundary conditions are: 

du dw 

dz+-dr-=°' 
n        2  dw 

-P+F? + TeHz-=°> 
dv     1 dw _ 
dz+:r"de ~ 

at z = 0 (41) 

They provide the appropriate conditions for ve- 
locities and pressure. The kinematic condition is: 

dt] 
at z = 0 (42) 

which determines the free-surface elevation T) in 
a manner similar to Eqn. (3). Note the bound- 
ary conditions in Eqns. (41) to (42) are satisfied 
on the mean free-surface z = 0, in order to be 
consistent with the linearization procedure. 

It is worthwhile to point out that the free- 
surface boundary conditions in Eqns. (41) and 
(42) can be somewhat simplified if one consid- 
ers the Froude number to be sufficiently low so 
that Fr2/Re < 1 or Ü < rfg/v. This assump- 
tion yields the so called "free-slip boundary con- 
dition": 

du     o,    |^ = 0,    w = 0       atz = 0.    (43) 
dz 

Physically, this represents a flow symmetry of 
the velocity field about z = 0, with no shear stress 
and no wave elevation. In the viscous-flow so- 
lutions presented in this paper, we will restrict 
ourselves to flows governed by Eqn. (43) only. 

To complete the problem description, we may 
impose the following far-field boundary condition 
on E, 

u — 0,   v — 0, 0,   and   P = 0,       (44) 
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This approximation is asymptotically correct for 
a boundary sufficiently far away. We also note in 
passing that the use of RANS and the incorpo- 
ration of turbulent models is possible within the 
present solution framework. 

3.2    Numerical Procedure 

Numerical solution for Eqns. (37) and (38) are 
obtained at each time step t = kAt, for a given 
time increment A*. Consider difference schemes 
of Eqns. (37) and (38): 

>*+1-u')=S -(u.V)u+-V2u 

V • ufc+1 = 0, 

(45) 
(46) 

where Q is a suitable difference operator (to be 
defined in the next section), and V2 is the oper- 
ator in brackets of Eqn. (37). 

The numerical algorithm for solving Eqns. (45) 
and (46) is given as follows. We first introduce an 
auxiliary velocity field ü, satisfying 

At 
(ü-uk) = Q -(u- V)u+ — V2u 

Re 
,    (47) 

and we subtract Eqn. (47) from Eqn. (45) to ob- 

tain 

— (ufc+1 - Ü) =-VPfe+1. (48) 

Though Eqn. (47) is not of a momentum conser- 
vation form, it can be easily seen that Eqn. (47) 
and Eqn. (48) are numerical consistent with Eqn. 
(45) if one eliminates the auxiliary velocity ü. If 
we apply divergence operator onto Eqn. (48), we 
get a discretized Poisson equation for Pk+1: 

V2pfc + 1 _ JLv-u, 
At 

(49) 

where V2 is a Laplacian difference operator. Note 
that Eqn. (46) has been used to derive Eqn. (49). 

After the Pk+1 has been calculated from Eqn. 
(49), it is substituted into Eqn. (48) to obtain 
ufc+1. This formulation is a variation of Chorin's 
method [31], and was implemented by Yeung and 
Ananthakrishnan [12]. 

3.2.1    Calculation of Auxiliary Velocities u*, u** 

and ü 

The difference operator Q in Eqn. (46) will be ex- 
plained in some detail. A similar treatment was 

used by Goda [33]. To calculate an auxiliary ve- 
locity ü, the following difference schemes are in- 
troduced into Eqn. (47): 
For ti: 

= QrU", 

At 

1 Pl 

At r        Re r2 u$e 

-^J 

= Qeu**+Ak, 

#e' 
-L(ü-„») = -w«u, + -±:[u„] 

= Qzü; 
(50) 

For v: 

J_ 
A~t >--'*) = -«t* + jb^;-£ 

= QrV*, 

1 v* ukvk 

At r r 

1 r 1 ,** 

= Qev** + Ak, 

J 
Re1 ±(v -„••) = -»**«* + is;[*"] 

= Qzv; 
(51) 

For w 

I 

At 

= QrW*, 

1 ,   .,        »N v*    **  ,    1 r * 

At 

— (w - w**) - -w**wz + -=-[w„] 
At "" Re' 

= Qzw; 
(52) 

where u*, u** are auxiliary velocities, newly in- 
troduced for simplifying the computations. How- 
ever, these variables do not require extra storage, 
because u* and u" can share the same storage 
with ü. Qr, Qe and Q-, are difference operator in 
the r, 6 and z directions.  A\ are Ak are known 
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functions denned as: 

Ak = 

For ü: 

Rer2 v%, 

Ak - - A2 — — 
k   k U  V 

(53) 

+ Rer2 u
k

e. 

The scheme in Eqns. (50) - (52) is a variation of 
the ADI method [34].  Consistency of the above 
procedure can be easily shown. If we take Eqn. (50) 
for example, it can be rewritten as: 

u*       =     (1-AtQr) -1«* 
u"    =    (1 - AtQg)-1^* + AtA\],       (54) 
Ü       =    (1 - AtQzy Wu** 

Elimination of the intermediate velocities u* and 
u** yields the following: 

Ü   =    (1 - AtQr)'1^ - AtQe)-1 

[(1 - AtQz)~luk + AtAl] 
=    (1 + AtQT + AtQ + AtQ2)uk 

+AtAk
1 + 0(At2) 

(55) 

This shows that the present procedure is an ap- 
proximation of Eqn. (47). 

Note that Eqns. (50) - (52) are of implicit forms 
for each intermediate velocity u*, u** and ü. Thus, 
by von Neumann's linear stability theory [34], 
each of these schemes is unconditionally stable, 
assuming that the each coefficient of nonlinear 
terms is a local constant. Although each of Eqns. 
(50) - (52) is independently stable, the total sta- 
bility condition of Eqns. (50) - (52) and Eqn. (48) 
is not strictly established. 

The above Eqns. (50)-(52) can be further rewrit- 
ten and regrouped into the following three sets of 
ordinary differential equations (ODE's): 

For u*: 

«:. + (- - Reuk)u* + ( 2 ~ — K = - —« "TT 

v;r + £-ReukK+(-± 
At 

Re 
At K 

wr + (: Reuk)w* - —-w* 
At 

At 
Re 

'AT 
Re 
 1 
At 

-w 

(56) 
For u**: 

*ee — Rerv'ug* 

Vffg — Rerv*Vg* ■ 

wee — Rerv we 

Rer 

Rer 

~Ä1 
Rer 

~"5F 

Rer2 

At 

Rer2 

u* - Rer2Ak, 

v 

-w 

At 

Rer2 

At 

v* -Rer2A\, 

(57) 

„    „„.       Re.        Re  „ 
uzz - Rew   uz - —u = —^«   » 

vzz — Rew**vz 
Re 

-v = 

wzz — Rew   wz — —w = 

Re 
'A? 
Re 

"AT 

(58) 

-w 

The ODE's (56) and (58) are solved by a Cheby- 
shev spectral collocation method, and Eqn. (57) 
is solved by a Fourier spectral collocation method, 
subject to the boundary conditions given below. 

3.2.2   Implementation of Boundary Conditions 

As an example of the treatment of ü in Eqn. (50), 
the boundary conditions for u*, u** and ü are 
formally written as 

u*     =    u*+! - At(Q0u
k+1 + Ak+1+ 

Qzu
k^ - grP

k+1), 

u**    -    uk+1 - At(Qzu
k+1 - grP

h+l), 

ü    =  ufc+1 - At(-grP
h+1), 

(59) 
where QT denotes the gradient difference opera- 
tor in r direction. Eqn. (59) above is derived by 
subtracting Eqn. (50) from the actual numerical 
momentum equation for uk+1. In the actual com- 
putations, we use an explicit version for the pres- 
sure term in Eqn. (59), i.e., the Pk is used in 
place of Pk+1. Particularly, the first equation in 
Eqn. (59) is used as the boundary condition for 
the first ODE in Eqn. (56), and the third equa- 
tion in Eqn. (59) for the first ODE in Eqn. (58). 
Since no boundary conditions are needed for the 
solution of the second ODE in Eqn. (57) because 
of the periodic assumption implied in the cir- 
cumferential direction 0, the second equation in 
Eqn. (59) can be discarded. The boundary con- 
ditions in Eqn. (59) can thus be rewritten as: 

u* =       uk+l - At(Qeu
k+1 + 4+1+ 

QzU fc+1 GTP )      at  r = n or r0, 

Ü = u*+1 - At(-gTP
k) 

at  z = — d or 0. 
(60) 

The boundary conditions for v and w can be 
derived similarly and are given by: 

v*=       vk+1-At(Qevk+1+Ak
2
+l+ 

Qzv
k+1 -geP

k)       at   r = n orr0, 

vk+1 - At(-gep
k) 

at  z — — d or 0, 
(61) 
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and 

I»* =        wk+1 - At(Qewk+1+ 

Qzw
k+1 - QzP

k)      at   r = r,- or r0, 

tö= u;*+1-Af(-£,P*) 
at  z = —d or 0, 

(62) 
where öe and Qx, similarly, denote gradient dif- 
ference operators in the 9 and z directions. 

For the particular problems at hand, the bound- 
ary conditions in Eqns. (60) to (62) can be fur- 
ther simplified by using their physical boundary 
conditions, which, in normal and tangential coor- 
dinates, fall into one of the following forms: (a) 
The no-slip wall condition 

un = uTl = uT2 = 0, (63) 

or (b) The free-slip boundary condition 

un = 0, 
duT du T-2 = 0, (64) 
dn dn 

where u„, uTl and uT2 denote the velocity com- 
ponents along the normal (n) and two tangential 
(ri and r2) directions of the boundary surface, 
respectively. 

For numerical implementation of the above two 
boundary conditions, we set the normal compo- 
nent of the auxiliary velocity ü to be the same as 
the actual velocity uk+1: 

in = «n*+1 (65) 

Then Eqn. (65) together with Eqn. (48) implies 
the following homogeneous Neumann condition 
for Pk+1 on these boundaries: 

ßpk + l 
(66) 

dn 
= 0. 

Thus, the boundary conditions for auxiliary ve- 
locity ü in the second equations of Eqn. (60) to 
(62) can be reduced to: 

u = -At(-gTp
k) 

v = -At(-gep
k) 

w = 0 for  z = -d or  0 (67) 

for the case of no-slip wall, and 

du ,       dPk+1.     „ 
_ = -At(-<7r_) = 0 

dv dPh+1, 
fZ = _A<(-&-^—   =0 
az 
w = 0 

dz 
for   z = -d  or   0 (68) 

for the case of free-slip wall. We note in passing 
that Eqn. (63) and (64) have been used to derive 
the above expressions. 

3.2.3   Solution of the Pressure Equation 

In cylindrical coordinates, Eqn. (49) can be rewrit- 
ten more explicitly as: 

V2P = 
At 

1 d(ru)      1 dv      dw_ 
r   dr        r d6      dz 

(69) 

This falls precisely into a form that was discussed 
in Sec. 2.2, subject to the appropriate bound- 
ary conditions. The treatment of this pressure 
Poisson equation follows directly from spectral 
method described earlier. 

4    RESULTS AND DISCUSSIONS OF 
VISCOUS FLOWS 

4.1    A Test Case 

In order to validate our solution method, espe- 
cially its ability to handle large-time simulations, 
we solve as a three-dimensional test problem that 
corresponds to a cylindrical version of the Stokes's 
second problem for a viscous flow over an oscil- 
lating wall. 

Consider a solid cylinder of radius r,- spinning 
about its axis with angular frequency w in an ini- 
tially still and unbounded viscous fluid. If we 
choose to non-dimensionalize the flow parameters 
by r, and w, the non-dimensional circumferential 
velocity at the cylinder surface is specified as 

«(!,<) = { 0 
sin (t) 

when t < 0 
when t > 0. 

(70) 

The circumferential momentum equation govern- 
ing such a flow can be written as: 

dv _   1    <Pv_     1 dv _ v_ .    , 
m ~ Te^lfr* + r dr      r2J' [    ) 

where the Reynolds number Re is defined as wrf/v. 
A steady-state solution of the above equation is 
of the form 

v(r,t) = Im[f(r)eu]. 

It is not difficult to derive that 

(72) 

(73) 

where K\ denotes the first order modified Bessel 
function of the second kind. 

To test our code, we choose to solve this prob- 
lem as a fully three-dimensional problem. Specif- 
ically, free-slip boundary conditions (64) are used 
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Figure 5: Velocity profiles in the first period of 
motion and in steady-state. 
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Figure 6: Real and imaginary parts of f(r) in 
Eqn. (72). 

on top T, the bottom B and the far-field 2 bound- 
aries. Here the far-field boundary 2 is taken to 
be a distance of 10. Grid resolution of L = 48, 
M = 16 and N = 24, and Reynolds number 
Re = 100 is chosen for this study. Fig. 5 shows a 
sample of the velocity profiles v(r, t) at eight in- 
stants of time during the first period of oscillation 
and the corresponding steady-state profile at the 
7th cycle. Numerical results show that the tran- 
sients are only significant during the first couple 
of cycles of oscillation. To show the accuracy of 
our numerical solution, we further plot in Fig. 6 
a comparison of the real and imaginary parts of 
function f(r) (Eqn. 72) with the numerical val- 
ues. Excellent agreement is observed. 

4.2    Flows in a Cylindrical Cavity 

In this section, we proceed to solve a series of 
cylindrical cavity flow problems, in which the fluid 
is entirely enclosed by solid boundaries, and the 

Figure 7: Steady-state streamlines in a cylindrical 
cavity for different Reynolds numbers (driven by 
outer cylinder): (a) Re = l,t = 2.0; (b) Re = 10, 
* = 2.0; (c) Re = 100, t = 3.0; (d) Re = 200, 
t = 3.0. 
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Figure 8: Steady-state flow in a cylindrical cavity, 
driven by inner cylinder: (top) wall at all bound- 
aries; (bottom) free-slip wall on top. 

flow is driven by an impulsively-started sliding 
motion of one of the boundaries. The two-dimen- 
sional version of this problem is well known (see 
e.g. [35]). It has often served as a testing ground 
for competing numerical methods, the objective 
of the competition being to prove that one's fa- 
vorite method reveals accurately more realistic 
details of the flow than other methods with com- 
parable computation efforts. There is little litera- 
ture for the (three-dimensional) cylindrical cavity 
case, however. 

Imagine a three-dimensional flow enclosed in a 
cylindrical region (see Fig. 1) where boundaries 
F, B and S are stationary walls, while the re- 
maining boundary £ slides upwards with a con- 
stant speed W starting at t = 0. To solve this 
problem, we first non-dimensionalize the flow pa- 
rameters by the following natural choice of pri- 
mary variables: the height of domain d and wall 
velocity W. The Reynolds number Re is defined 
by Wd/v. No-slip boundary conditions (63) are 
applied at all these boundaries. 

The possibility of a steady-state solution in 
this problem is investigated. The three-dimension- 

al code was run for t as large as 4.0, using a time 
step At - 0.01, for a grid resolution oflxMx 
JV = 24 x 16 x 24 until less than 0.01 percent- 
age change in the velocity field was noted. It was 
found that steady-state solution is approached as 
early as t = 3.0 for the case of Re = 200, and a 
somewhat larger value for higher Reynolds num- 
bers. To accentuate the vortical patterns, only 
results for up to a value of Re = 200 are shown 
here. At higher Reynolds numbers, only a very 
thin vortical structure exists near S. 

In Fig. 7, we show the velocity-vector plots 
for four different Reynolds numbers on a plane 
of constant circumferential angle 8. Also plotted 
are the streamline patterns. Since the cavity is 
driven axisymmetrically (which is not a restric- 
tion in our method), the solution is axisymmet- 
ric. It is of interest to observe that at Reynolds 
number smaller than 10 (see Fig. 7(a),(b)), the 
core of the characteristic ring vortex is located at 
the mid-height of the cavity (z = -d/2). Con- 
siderable "symmetry" of the streamline patterns 
about the mid-height plane is observed. As the 
Reynolds number increases, the core of the pri- 
mary vortex is driven towards the top wall and 
towards the sliding surface. 

As mentioned earlier, the free-slip boundary 
condition corresponds to a special limit of the 
free-surface boundary condition. It is of interest 
to note that a steady-state configuration is also 
reached when the top surface T is replaced by 
a free-slip wall (defined by Eqn. 43). Fig. 8 con- 
trasts the steady-state flow patterns of the no-slip 
T with that of the a free-slip T. In this run, the 
inner cylinder S is given the steady vertical ve- 
locity while the outer cylinder has a no-slip wall 
condition. From this figure, we notice a larger 
vortical structure in the free-slip case. This is 
consistent with the expectation that a free-slip 
wall is less restrictive to horizontal flow motion 
than a no-slip wall, thus allowing vortex to grow 
more freely. 

4.3     An Oscillating Cavity with Free-Slip 
Boundary Condition 

In this section, we study the time-evolution of the 
cylindrical cavity flow driven by an oscillatory in- 
ner wall in the presence of either a free-slip T or a 
no-slip T. This flow, with minor modifications in 
the boundary conditions on some of the bound- 
ary surfaces, can mimic the vorticity structures 
generated by a hull surface of a ship in heaving 
motion. 
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Figure 9: Cylindrical cavity flow driven by an 
oscillatory wall, free-slip wall on top: (a) t = 4T; 
(b) t = 4^T; (c) t = 4^T; (d) t = 4*§T, where 
T is the period of oscillation. 

Figure 10: Cylindrical cavity flow driven by an 
oscillatory wall, no-slip walls on all boundaries: 
(a) * = 4T; (b) t = 4^T; (c) t = 4^T; (d) 
t = 455T, where T is the period of oscillation. 
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Consider again the flow configuration in Fig. 1, 
where the bottom boundary B and outer cylinder 
£ are stationary walls, and upper boundary T is 
assumed to be a free-slip wall. The flow is driven 
by the motion of a no-slip inner cylinder S, which 
oscillates periodically along the z—axis with pre- 
scribed velocity 

wm - / ° when * < ° (74\ WW-\ W0sm(ut)    whenr>0   '      l    > 

where W0 is the amplitude of the vertical velocity, 
and w the angular frequency of oscillation. 

Nondimensionalization is carried out in the same 
manner as Sec. 4.2. For convenience, the distance 
between the inner and outer cylinders is chosen 
to be the same as the height of domain d. The 
Reynolds number, defined in this case by W^d/v, 
is set to 100. The non-dimensional period of os- 
cillation T is defined by 2wW0/ud, and is taken 
to be 0.8. 

Numerical results are obtained by a mesh size 
of L x M x N - 24 x 16 x 24, and time steps 
At = 0.01 and 0.02 have been used to check con- 
vergence, which is excellent. Because of the non- 
linear nature of the Navier-Stokes equations, a 
periodic solution is not expected. However, the 
flow is found to display an "almost" periodic be- 
havior with a "steady streaming" effect [27]. 

Fig. 9 shows the velocity vectors and pathlines 
corresponding to four instants of time t = 4T, 
4^T, 4^T, and 4^§T during the first quarter 
cycle of the fifth period of oscillation. It is in- 
teresting to study the vortex evolution in this 
case. In Fig. 9b, the inner cylinder has just re- 
versed its direction of motion and is in the pro- 
cess of picking up some velocity. A thin shear 
layer is formed next to the cylinder while a small 
clockwise (ring) vortex is generated under the top 
surface, but above the counter-clockwise vortex, 
a residue of the earlier quarter cycle of motion 
(Fig. 9a). This clockwise vortex later becomes 
dominant in the flow region while the counter- 
clockwise vortex shrinks to the lower corner (Fig. 
9c). In Fig. 9d, the clockwise ring vortex has 
replaced the counter-clockwise vortex of Fig. 9a, 
and becomes the only visible vortex. The flow 
pattern in the second quarter of oscillation varies 
relatively slowly, while the pattern for the last 
two quarters represents a change of flow direction 
relative to the first two quarters. 

To study the effects of a free-slip wall, we re- 
place the free-slip wall at upper boundary T by a 
no-slip wall. For comparison purposes, the results 
for this case are shown in Fig. 10 in the same se- 

quence as Fig. 9. The difference of these two flows 
appears to be less distinct when compared with 
the steady-state cases shown in Fig. 8, in which 
the inner cylinder S is moving continuously up- 
wards, instead, oscillating. 

4.4    Wave Sloshing of a Viscous Fluid in 
an Annular Domain 

In this last results section, we present some pre- 
liminary results of a viscous flow with free surface. 
The Cauchy-Poisson wave problem solved in Sec. 
2.4 is studied here for a viscous fluid. In order 
to understand the comparative effects of viscos- 
ity, the results of viscous flow are compared with 
their inviscid counterparts. 

We first non-dimensionalize the flow parame- 
ters by the following primary variables: the ra- 
dius of inner cylinder r,-, and gravitational accel- 
eration g. The Reynolds number Re is defined 
by i/grln/v, and Froude number FT is equal to 
unity. Linearized free-surface boundary condi- 
tions (41) are applied on free surface T, while 
no-slip boundary conditions (63) are chosen on 
the inner cylinder S, the outer cylinder S, and 
the bottom B. The initial wave form is taken to 
be 

T)(r,e,t = 0) = 

Aexp {-2.651 [(rcos6 - 2.318)2 + (rsinÖ)2]}, 
(75) 

where A is the initial wave elevation at the cen- 
ter of the hump, which is located at r = 2.318. 
This corresponds to a hump located closer to the 
cylinder than in Eqn. 35, thus generating a higher 
velocity as the pulse "impacts" on cylinder. 

Numerical results for both viscous and invis- 
cid flows are obtained by a mesh size of L x 
M x JV = 64 x 64 x 32 and a time step At = 
0.05. The Reynolds number Re is set as 10,000 
for the case of viscous flow. A is taken to be 
0.1 in these computations. In order to capture 
the major wave-body interaction, the two three- 
dimensional codes were run for t as large as 12.50. 
Before viscosity effect plays a major role, the flow 
features of viscous and inviscid flows are expected 
to be similar during the early stage of simulation. 
This is evident from Fig. 11, in which the free- 
surface elevations at r = 1 (body-free-surface in- 
tersection) and r = 2.318 (center of initial hump) 
are plotted as functions of time. Furthermore, 
Fig. 11 shows that the waves are damped out 
sooner in a viscous fluid than in an inviscid fluid. 
This can also be observed from the perspective 
view of the overall field plotted in Fig. 12. 
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Figure 11: Time histroy of wave elevation at r = 1 
and r = 2.318, for the plane 0 = 0. The results 
for the case of r = 1 have been enlarged by a 
factor of 20 for clarity. 

Figure 12: Free-surface elevations for the cases of 
viscous flow (top) and inviscid flow (bottom) at 
t = 12.00. The elevations have been enlarged for 
clarity. 

For a close look at the viscous-flow results, we 
include a vorticity plot and a surface-contour plot 
in Figs. 13 and 14. In Fig. 13, the velocity vectors 
are overlaid onto a vorticity contour plot in the 
vertical plane of symmetry under the prescribed 
wave form for t = 12.00. Two vortices of opposite 
signs can be clearly seen near the intersection of 
the body and the free surface. A boundary layer 
immediately above the bottom is also observed. 

Fig. 14 shows the free-surface elevation con- 
tours at the same instant of time. Also plotted 
are the velocity vectors on the free surface. It is of 
interest to note that the vorticity component nor- 
mal to the free surface is vanishingly small (not 
shown) except near the body. This suggests vor- 
tex structures generated by the surface motion 
are primarily parallel to the water surface. These 
and other data of an extensive nature will offer 
valuable insights for understanding vortical free- 
surface flows near a body. 

5    CONCLUSIONS 

In this paper, a very effective pseudo-spectral meth- 
od has been described and demonstrated for study- 
ing the motion of an inviscid or viscous fluid in a 
cylindrical domain. High resolution, low compu- 
tational requirements, and the ability to handle a 
wide class of boundary conditions are the salient 
features of this method. The method has been 
applied to predict the evolution of waves within 
the confine of two concentric cylinders. Excellent 
accuracy and convergence characteristics were ob- 
served. As a new development, the method was 
applied to obtain solutions of the Navier Stokes 
equations in the same type of domain, but subject 
to no-slip or free-slip wall conditions. The formu- 
lation for this viscous-flow problem is similar to 
the fractional step projection algorithm of [26]. 
Solutions for several vortical flows in an annular 
domain driven by steadily moving or periodically 
oscillating walls were examined in detail. Finally, 
with the full free-surface conditions, results for 
a viscous Cauchy-Poisson wave problem are ob- 
tained. These preliminary results suggest some 
intricate vortex structures that need to be further 
studied. The present method is capable of cap- 
turing such flow details in the mixed-boundary 
shear region. It is worthy to mention that the 
inclusion of strongly convective effects associated 
with forward motion can be incorporated. With 
additional analysis, it is also possible to include 
the consideration of boundary shapes such as el- 
liptical struts or ellipsoidal hulls. 

929 



Figure 13: Velocity vectors and vorticity contours in the plane 9 = 0 at t = 12.00. 

Figure 14: Elevation contours and velocity vectors on the free-surface at t = 12.00. 
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DISCUSSION 

K. Mori 
Hiroshima University, Japan 

Although the use of cylindrical coordinate for a flow 
around a vertical cylinder is geometrically 
convenient, it may not be a good choice for the free 
surface flow. This is because the grid size in 
circumferential direction becomes larger as the radius 
increases. Needless to say, the grid size must be 
small enough compared with the wave length. Even 
though the number of grids is large enough, the size 
can not be controlled when the cylindrical 
coordinates are used. Eventually, the wave may not 
properly propagate or develop in the far region apart 
from the cylinder (large radius). 

AUTHORS' REPLY 

It is true that in cylindrical coordinates the grid size 
in circumferential direction increases as the radius, 
and will affect the accuracy for implementing free- 
surface conditions. However, for the hydrodynamic 
problems being studied, our interest is mainly 
focused on the region near the inner cylinder, where 
relatively few grid points will yield high resolution 
even in the circumferential direction. Our numerical 
results also show that free-surface flow can be 
simulated accurately with a reasonable number of 
grid points in cylindrical coordinates. Our excellent 
energy check is a proof (see Fig. 4). 

Finally, the spectral-based Poisson solver and 
momentum-equation solvers developed by us are 
found to be relatively insensitive to grid spacings in 
the physical space, thus assuring high accuracy even 
with a rather coarse grid. Further, since this 
numerical method is very efficient, an increase in 
grid points does not cause much penalty. 

treatment of the intersection feasible for the nonlinear 
wave flow problem? 

AUTHORS' REPLY 

The singularity is avoided by assuming, for the free 
surface cells, a constant pressure through the 
boundary layer. In the nonlinear case the physical 
phenomena involved (sprays, breaking waves,...) 
are too complex to be taken into account in a ship 
flow simulation. In that sense we believe that a 
similar hypothesis could be used in the solution of 
the nonlinear problem. 

DISCUSSION 

E. Novikov 
University of California at San Diego, USA 

The most interesting part of these calculations is 
vorticity generation by an oscillatory wall (Figure 9), 
which can be observed experimentally. In order to 
mimic the vorticity structures generated by a hull 
surface of a ship in heaving motion, apart from 
geometrical factors, the fully nonlinear boundary 
conditions on the free surface should be imposed 
(instead of free-slip wall on top), because in reality 
the Froude number is not small. The Reynolds 
number should also be increased for several orders of 
magnitude or a subgrid-scale modelling of turbulence 
should be incorporated. 

DISCUSSION 

M. Zhu 
University of Tokyo, Japan 

At first, you show a very efficient and accurate method 
which is promising for treating free-surface viscous 
flow problem. Could you show how you treat with 
body-free surface intersection where there is singu- 
larity in the computation? I believe that you use a 
linear-free surface condition in your work.   Is your 
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On the Intersection Flow Near a Fine Ship Bow 
P. Sclavounos 

(Massachusetts Institute of Technology, USA) 

ABSTRACT 

A fundamental study is undertaken of the flow near 
the bow of a ship advancing with constant forward 
speed. The objective is the derivation of a model 
which will enhance our understanding of this 
intersection flow and will allow its eventual 
integration into computational tools for the rational 
and accurate prediction of the flow around ship 
hulls. 

The relevant length scales governing domains of the 
flow in the vicinity of the ship bow are identified 
along with the appropriate set of equations and 
boundary conditions viscous or ideal. A simple 
model is proposed for the treatment of the formation 
of spray around a thin bow with vertical boundary 
and finite draft. The sensitivity of this flow upon the 
bow slope at the stem is investigated and a model is 
proposed for the  prediction of the spray strength. 

1. INTRODUCTION 

Significant progress has been achieved over the past 
decade towards the prediction of three-dimensional 
flow features around the hull of ships advancing in 
calm water and in waves. With the free surface 
modelled as a plane of symmetry, computational 
methods based on the solution of the three- 
dimensional Navier-Stokes equations have reached 
the state where they can reproduce detailed features 
of the viscous ship wake when equipped with 
advanced turbulence models. Several studies are in 
progress aiming to extend these methods in the 
presence of a free surface as witnessed in the recent 
Tokyo Workshop on Near Field Ship 
Hydrodynamics [1]. Important issues to address in 
the presence  of a free boundary  are the proper 

treatment of the intersection flow along the ship 
waterline, particularly near the ship bow, and the 
development of proper turbulence models in the 
vicinity of a free surface. 

In the absence of viscous effects, computational 
methods aiming to model steady and unsteady free 
surface flows past ships have also enjoyed 
significant progress. The majority of ideal flow 
methods are based on the distribution of Rankine 
singularities over the ship hull and the mean or 
actual position of the free surface and have been 
capable to predict with promising accuracy three- 
dimensional features of the steady flow not affected 
appreciably by viscous or nonlinear effects ([2],[3]). 
In the unsteady problem, such methods have been 
successful in predicting the seakeeping properties of 
realistic ship forms in waves of moderate steepness 
([4],[5]). While strong free-surface nonlinearities 
have been treated with success in model two and 
three-dimensional problems ([6],[7]), they have not 
yet be integrated into realistic ship flows in calm 
water and in steep ambient waves. 

A common hurdle facing both classes of methods is 
the proper modelling of the intersection flow along 
the ship waterline, particularly where significant free 
surface nonlinearity coexists with viscous effects. 
For a vertical flat plate in an ambient regular wave 
various flow regimes which arise in this intersection 
flow have been identified and discussed in [8]. One 
of the principal conclusions of this study is the need 
to better understand the flow in the vicinity of the 
free-surface boundary intersection where nonlinear 
free-surface, viscous and surface-tension effects are 
potentially of comparable importance. 

The present paper undertakes this task for the 
intersection flow which arises around a fine ship 
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bow with finite but small thickness, advancing with 
steady forward velocity. A semi-infinite fine bow 
with vertical wall sided boundary, finite draft and 
wedge or cusp-like entrance angles is considered. In 
Section 2, the exact problem statement is carried out 
and the relevant flow length scales are identified. 
Section 3, reviews two-dimensional ideal flow 
approximations for bow flows and draws upon the 
insights gained from such models. In Section 4 a 
three-dimensional model for the treatment of the 
flow around thin bows is developed and a 
methodology is proposed for the prediction of the 
spray strength for wedge and cusp-like waterline 
entrance angles. Section 5, discusses the coupling of 
ideal, viscous and surface tension effects and 
outlines directions of future research. 

2. PROBLEM STATEMENT 

Figure la illustrates the plan view of a fine ship 
bow and a Cartesian coordinate system (x,y,z) with 
the x-axis pointing upstream and the z-axis 
upwards, with the z=0 plane coinciding with the 
calm water surface. Denote by y=b(x) the half-beam 
distribution of the bow on the z=0 plane, such that 
b(0)=0 . The precise form of the function b(x) will 
be discussed in a later section, while the assumption 
is made that the derivative b'(x) is a sufficiently 
small quantity. A uniform inflow with velocity U 
far upstream is incident upon the bow shown in 
Figure 1 which is allowed to be of infinite extent in 
the  negative x-direction. 

A characteristic length-scale is introduced by 
assuming that the bow is wall-sided with uniform 
draft T, as illustrated in Figure lb. Denote by g the 
acceleration of gravity and by v the water kinematic 
viscosity. It follows that only one geometrical length 
scale is available, T, along with two dynamic 
length-scales, 5,= U2/g and 5v=v/U. Laminar flow 
will be assumed throughout the present study. 

The flow around this model geometry is governed 
by the following equations and boundary conditions: 

a) The Navier Stokes equations apply in the fluid 
domain. 

b) A zero-velocity  condition must be enforced on 
the bow boundary. 

c) The kinematic free surface condition states that a 
fluid particle on the free surface cannot find its way 

into the fluid domain. 

d) The dynamic free surface condition states that the 
normal and tangential stresses on the free surface 
must vanish, on the assumption that the air density 
is negligible relative to that of the water. 

e) Far upstream the free surface elevation and its 
slope must vanish. 

The set of equations a-e are highly nonlinear even 
for laminar flow and their solutions even for the 
idealized geometry considered in the present study 
is not yet possible. Progress towards their treatment 
has been achieved by identifying domains of the 
flow where either viscous or ideal flow effects may 
dominate or where the free surface conditions accept 
a linear treatment. 

Figure 2 illustrates a cross section of the flow past 
the bow shown in Figure 1. A number of flow 
domains are identified and their respective physics 
are discussed below. 

Domain I: 

At a sufficiently large distance from the body 
boundary and the free surface, the effects of 
viscosity are unimportant and the flow is governed 
by the Laplace equation. More precisely, the 
vorticity shed by the bow boundary cannot penetrate 
Domain 1. 

Domain 2: 

At a sufficiently large distance from the body 
boundary and over a small distance from the actual 
position of the free surface a thin free surface 
boundary layer develops. This layer develops 
because of the incompatibility of the irrotationality 
condition in Domain 1 with the condition of 
vanishing shear stresses on the actual position of the 
free surface. A comprehensive discussion of the 
equations governing this layer may be found in [9]. 
The thickness of this layer turns out to be small and 
its impact upon the flow in the remainder of the 
flow domains is negligible. 

Domain 3: 

Near the body boundary and at a sufficiently large 
distance from the free surface, a classical boundary 
layer develops which may be treated either via the 
direct solution of the Navier Stokes equation or by 
introducing   boundary   layer-approximations.   It is 
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however important to point out that its properties are 
driven by the pressure gradient induced by the 
exterior potential flow. Often, this pressure gradient 
may be approximated by that of a double body flow, 
an assumption which is undoubtedly convenient but 
questionable near the ship bow or further 
downstream at high Froude numbers. 

Domain 4: 

In the vicinity of the intersection of the bow 
boundary with the free surface the body boundary 
layer is strongly influenced by the free surface 
conditions which may or may not be possible to 
state in linearized form. The viscous flow of 
Domain 3 which is removed from the free surface 
may be assumed to be driven by the pressure 
gradient induced by a linearized potential flow. This 
is however not possible to justify in principle in 
Domain 4 where the free surface flow may be 
nonlinear. 

Domain 5: 

In Domain 5 spray may develop and the local flow 
may be affected by a combination of viscous, 
surface tension and strongly nonlinear free surface 
effects. This flow region is evidently the most 
difficult to study numerically or analytically. Yet, it 
is the complexity of the flow in Domain 5 which is 
the primary motivation of the present study and the 
selection of the simplified bow shape under 
consideration. 

Of all the domains illustrated in Figure 2, the 
length scales of Domains 2 and 3 follow from 
classical boundary layer theory over a solid 
boundary and a free surface. The length scale of 
Domain 5 is by no means obvious at the present 
stage. It will be the principal subject of the next 
section which reviews several studies of the two 
dimensional free-surface flow caused by an 
impulsively started wavemaker. 

3. BOW FLOWS  AND TWO-DIMENSIONAL 
WAVEMAKER PROBLEM 

The natural approach to the solution of the flow 
equations in Domains 1-5 is to start with the ideal 
flow in Domain 1 where several linear and nonlinear 
solutions have been obtained in the literature in two 
and three-dimensions. The flow solution in Domain 
1 then defines the pressure gradient driving the 
viscous flow in Domains 3-5, but more importantly 

determines the limiting behavior of these flows at 
sufficiently large distances from the body boundary. 

Several aspects of the flow in Domain 1 and insight 
into the strong free surface nonlinearity of the flow 
in Domain 5 may be revealed by approximating the 
flow along the transverse cut of the bow flow shown 
in Figure 1 as that caused by a vertical paddle of 
draft T pushed impulsively against a free surface. 

Ignoring for the moment the free surface boundary 
layer in Domain 2, the nonlinear ideal flow 
equations in Domain 1 are stated next. By virtue of 
irrotationality, the flow velocity in Domain 1 may 
be stated as the gradient of the velocity potential 

®(x,y£)=-Ux+§ (1) 

where § denotes the disturbance potential which 
along with the total potential satisfies the three 
dimensional Laplace equation 

V24>=V24)=0 (2) 

in the fluid domain. Denoting by C(x,y) the 
unknown position of the free surface, the nonlinear 
kinematic condition takes the form 

dx    dy dy    dx dx    dz 

The dynamic condition may be stated as follows 

dx 2 v ' 

On the bow boundary the a condition of zero normal 
flux yields 

dn dx 
(5) 

With respect to a Cartesian coordinate system fixed 
in space, the convective derivatives in the 
streamwise direction which involve a linear product 
with the velocity U, may be replaced with time 
derivatives, according to the Galilean transformation 
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dx   dt 

with the y=0 plane. Therefore the definition of b(x) 
(6) and b(t) with respect to the body and space fixed 

frames follows from (10) in the form 

It follows that the three dimensional equations may 
be cast in the alternative form 

dC   3c|>aC   6(j>aC_d<i> £i+«L2i=.2£,   z=C(xo0      (7) 
dt    dy dy    dx dx    dz 

^+gC+IV(j>-Vc|>=0,   z=Ux,y) (8) 
dt 2 

b(x)=-x tana = Ut tana (11) 

It follows that the normal velocity on the wedge is 
constant and approximately equal to Ua. With 
respect to the space fixed frame it is zero for t<0 
and equal to Ua for t>0. This is thus the case of an 
impulsive velocity for the two-dimensional 
wavemaker. 

THE CUSP 

ctydb 
dn    dt 

(9) 
The waterline of a cusp is a parabola which vanishes 
at x=0. Again b(x) and b(t) are defined as follows 

which along with the three-dimensional Laplace 
equation complete the statement of the ideal flow 
equations with respect to a frame fixed in space. 

The transition from equations (7)-(9) to a two- 
dimensional set is accomplished by assuming that 
convective derivatives in the x-direction are small 
compared to y- and z-derivatives in the Laplace 
equation and free surface conditions by virtue of the 
bow slenderness. A discussion of the validity of this 
approximation will be postponed until the next 
section. 

The elegant consequence of this slenderness 
assumption is that equations (7)-(9) reduce to the 
nonlinear equations governing the time-domain 
motion of a wavemaker with horizontal 
displacement b(t), a function of time. The time 
dependence of b(t) may be inferred by the bow 
shape with respect to the body fixed frame and the 
relationship 

b(f)=b[x(t)1,   x(t)=-Ut (10) 

Two kinds of wall-sided bows of finite draft T will 
be considered. 

THE WEDGE 

The waterline shape of a wedge is simply a straight 
line which is here assumed to form a small angle a 

b(x)=hx^hu2t2 

2 2 
(12) 

where ß is a small parameter with dimensions of 
inverse length. Here the normal velocity on the 
cusp grows linearly with x and with respect to the 
space fixed frame linearly in time from a zero value 
at t=0. This is the case of a ramp velocity for the 
wavemaker. 

The wavemaker velocity is hereafter defined as Uj(t) 
where, i=l corresponds to the impulsive and i=2 to 
the ramp velocity profiles. Evidently, U(t) = 0 for 
t<0 while for t>0 

Ux(t)=aU   U2(.t)=f>U2t (13) 

The evolution of the free surface of the two 
dimensional impulsive wavemaker problem has been 
the subject of many linear and nonlinear studies. 
Several aspects of the problem have been resolved 
while certain others await treatment. 

A comprehensive analysis of this problem was 
carried out in [10]. In that study earlier results were 
reproduced a new insight into the nature of the 
evolution of the free surface was gained. The 
principal conclusions of this and subsequent studies 
are summarized below. They will motivate their 
extension to the three dimensional problem in 
Section 5. 

It  is  appropriate   at  this  stage  to  introduce   the 
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following non-dimensional 
spatial  coordinates 

definitions of the two 

TI=- (14) 

gt' if 

For a sufficiently small wavemaker velocity U(t), 
the free surface initial value problem (7)-(9) may be 
linearized. Two domains of the linear solution 
deserve particular attention with respect to their 
relevance to the exact nonlinear problem. They are 
discussed below: 

z=0 plane. The same result was recovered by the 
large r\ expansion of the linear solution derived in 
[10]. Yet more important is the finding that this 
asymptotic expansion is in very good agreement 
with fully nonlinear computations of the impulsive 
wavemaker problem carried out in [12]. 

It may therefore be concluded that the outer 
expansions (15)-(16) are the leading-order 
representations for large TI of the nonlinear 
impulsive wavemaker problem. This property will 
exploited in three dimensions in Section 4 where the 
corresponding expansions will be derived for the 
three-dimensional bow. 

Outer Solution:   r\ —»00 

The solution of the linear free surface problem may 
be carried out with standard methods. For large 
values of r\, the free surface elevation and vertical 
velocity on z=0 assume the asymptotic expansions: 

 rln(l+—),    C2= 
TE y 2TI 

r2ln(l+—) 

(15) 

for the impulsive and ramp velocity profiles 
respectively. The corresponding vertical velocities 
on the z=0 plane take the form 

*vmX), wa=MW4> 
271 

(16) 

The most common interpretation of the outer 
solution of the impulsive wavemaker problem is to 
assume that (y,z) are fixed and allow t-»0. 
Alternatively, (y,z) may be allowed to approach 
infinity for finite time. 

Yet, it is the first interpretation which is the most 
interesting of the two. The small-time asymptotic 
expansions (15)-(16) where originally derived in 
[11] via a formal ascending series expansion in time 
and were shown to follow from the solution of a 
linear pressure release free surface problem where 
the leading order velocity potential vanishes on the 

Inner Solution:   T\ < 0(1) 

Over distances from the wavemaker comparable to 
or smaller than the characteristic length scale gt2 the 
flow may be fully nonlinear and a jet may develop. 
Moreover, the flow may be locally affected by 
surface tension and viscous effects. Our 
understanding of this flow regime is to date 
incomplete. 

The behavior of the linear solution in this inner 
domain was studied systematically in [10]. This 
analysis revealed that the free surface elevation 
develops a highly-oscillatory behavior with 
increasing wavenumber in the limit as t]->0, 
superimposed upon a slowly varying trend. The 
amplitude of this perhaps unphysical rapid 
oscillation was found to decrease as the power law 
governing the displacement of the wavemaker for 
small times was allowed to increase. Including 
surface tension effects, the study of the same linear 
problem was undertaken in [13]. Surface tension 
suppressed the high-wavenumber wiggles in the 
inner domain, and was found not to affect 
significantly the solution in the outer domain. The 
findings of these two studies suggest that the linear 
solution may be an accurate model of the flow in 
the inner domain if the power law governing the 
translation of the wavemaker is sufficiently large. It 
was suggested in [10] that a quadratic law, or a 
ramp velocity, is sufficient to justify linear theory, 
therefore implying the lack of a jet-like flow at the 
wavemaker. 

It was shown in [13] and [14] that the consistent 
formulation of the free surface flow in the inner 
domain consists of a fully nonlinear set of equations. 
Promise towards their solution, subject to the well 
established validity of (15)-(16), was demonstrated 
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by the use of Lagrangian formulation in [14]. This 
approach deserves further attention and will the 
subject of future research since it appears to be 
closely related to the modelling of the spray root 
generated by three-dimensional bows. 

A study of the linearized flow around a wedge-like 
bow based on the slender-body approximations 
introduced in the present study was carried out in 
[15]. Bow wave profile predictions were compared 
with experimental measurements for two wedge-like 
bows, one with a small and the second with a larger 
entrance angle. The agreement was generally found 
to be satisfactory, yet the need to include the 
complete three-dimensional effects was evident. As 
a first step in that direction, the derivation of the 
three-dimensional outer solution for two bow shapes 
is carried out in the next section, extending the 
corresponding outer expansions derived in [10] and 
[11] for the two-dimensional wavemaker problem. 

4. OUTER SOLUTION FOR 3D BOW FLOW 

The studies of the impulsive two-dimensional 
wavemaker problem discussed in the previous 
section, offer valuable guidance towards the 
treatment of the three-dimensional flow past a fine 
ship bow. In the present section, the corresponding 
outer solution will be derived for the wedge and 
cusp bows, extending the outer expansions (15)-(16) 
for the impulsive wavemaker problem. 

The outer domain is here defined as the region 
where the transverse non-dimensional length scales 

$=0, z=0 

The corresponding kinematic condition is 

(18) 

dx U dz 
z=0 (19) 

Moreover, the disturbance potential is subject to the 
three dimensional Laplace equation in the fluid 
domain and the boundary condition (5) on the 
wavemaker. 

The solution of (18)-(19) will therefore provide the 
leading order outer solution for the three- 
dimensional bow flow in Domain 1, which is 
expected to be valid in the linear as well as the 
nonlinear regime, as in two dimensions. 

For fine ship bows the body boundary condition (5) 
may be transferred to the centerplane y=0, leading 
to a boundary value problem which accepts a 
closed-form solution in terms of a distribution of 
singularities on the bow centerplane, here allowed to 
extend to negative infinity. The solution is carried 
out using the theory of Fourier transforms. Let 

*(yÄ*)=/_" dx e** 4>0r,v,z) <20> 

(K*;y,z)=— f " dke-** $(y,z*)      <21> 
2if,-<" 

T) = 
yU2 

g*2 
vv=- ZIP 

g*2 

(17) 

are large. The equivalence of (17) and (14) follows 
upon substitution of (10) in (14). It follows from 
(17) that the outer solution may be obtained as the 
leading-order high-Froude number approximation of 
the exact equations (3)-(4) governing the flow in 
Domain 1 [see Figure 2]. In the ensuing analysis the 
third non-dimensional coordinate xg/U2 is assumed 
to be of order one. 

The leading order high Froude number 
approximation of the dynamic free surface condition 
(4) subject to the radiation condition of vanishing 
wave elevation upstream, is merely the pressure 
release condition 

The Fourier transform of the leading order 
disturbance potential satisfies the modified 
Helmholtz equation in the fluid domain 

dy2   dz2 
(22) 

and the same homogenous free-surface condition 

4>=0,   z=0 
(23) 

Denoting for now V(x) the normal velocity to be 
enforced on the bow centerplane, it follows that 
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dy 
(24) 

The set of equations (22)-(24) define a two- 
dimensional boundary-value problem symmetric 
about the y=0 plane which depends parametrically 
upon the Fourier wavenumber k. Its solution may be 
written as a distribution of sources over the bow 
centerplane. Recalling that the unit strength point 
source singularity which satisfies the modified 
Helmholtz equation is 

G(r,k)=-±KQ(\k\f) (25) 

where K^z) is the modified Bessel function of order 
zero, it follows that 

[KJ\k\y)-K0(\k\(y2
+T2)1'2)] 

(29) 

The Fourier transform of the body normal velocity 
will next be determined for semi-infinite wedge and 
cusp bows using the theory of generalized functions 
developed in [16]. 

WEDGE BOW 

The normal velocity of a wedge-like bow jumps 
from zero for positive x to a constant value equal to 
ccU for negative values of x. It follows that its 
Fourier transform is related to that of the Heaviside 
step function, or 

*(yÄ*)=--?(*)f0 <*C [K0(\k\r)-K0(\k\r')] 
it        J-T 

(26) 

where 

r2=y2+(z-C)2,   (r^yMz+O- 
(27) 

The solution for the disturbance potential in the 
physical space then follows upon inversion of the 
Fourier transform (26) by substitution in (21). 

In analogy to the two dimensional problem, the 
quantity which is more revealing that the 
disturbance potential itself, is the vertical velocity of 
the flow on the z=0 plane. Upon differentiation of 
(26) with respect to the z-coordinate, it follows that 

/   - \ 
2,-„ 70fc)[tfo(|%)-Ko(|*|(y2

+r
2)1/2)] 

V&A=o   n (28) 

V(k)=aU[nb(k)^-] 
k 

(30) 

Upon substitution of (30) in the general solution 
(29) and inversion of the Fourier integral using the 
theory of generalized functions, the vertical velocity 
on the z=0 plane may be obtained explicitly in the 
form 

(<tg.,o=—(.sgnx-DWl+l-) 
n y 

Ua. 
2% 

sgtix ln- x+(x2+y2)m 

x+(x2+y2+T2)lß. 

(31) 

Expression (31) generalizes the small-time outer 
expansion of the wavemaker problem for a three- 
dimensional fine bow. The leading order term may 
be recognized as the two dimensional result which 
vanishes identically for positive x, or upstream of 
the bow. The second term in the right hand side is 
a three-dimensional effect. 

It is of considerable interest to derive from (31) the 
small-x expansion of the vertical velocity near the 
bow stem. It follows that on y=0 and x>0 that 

and upon inversion in   physical space the general 
solution follows in the   form 

[/a. (2x (32) 

indicating that the vertical velocity suggested by the 
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outer solution around a fine wedge bow is seen to 
develop a logarithmic singularity upstream of the 
bow. Weather this singularity will be decided by 
the solution of the inner flow equations which will 
almost certainly will end up being fully nonlinear. 

For x<0 and in the limit as y-»0, it follows form 
(31) that 

(*J z>z=0 vKr (33) 

It is seen from (33) that the logarithmic behavior 
found in the two-dimensional solution persists, but 
is corrected by a logarithmic singularity with respect 
to the x-coordinate of opposite sign to that obtained 
for positive values of the x-coordinate. 

CUSP BOW 

The Fourier transform of the normal velocity around 
cusp bow follows along similar lines in the  form 

F(jfc)=-ßi/2[-7ii5/(fc)-—] (34) 
jfc2 

Upon substitution in the general solution (29) and 
inversion using the theory of generalized functions, 
it follows that 

(fcW=-*tfß(4>,>- z'WEDGE 

-£/2ß-^ 
2TC 

r2      W2   / 

2 + 1 

\l/2 

- + 1 
W+T* 

(35) 

The leading term in the right-hand side is merely a 
product of the solution for the wedge-like bow 
derived above, with a replaced by ß, multiplied by 
x. The second term is regular in the limit as x,y-»0. 

The asymptotic behavior of this outer solution for 
the cusp bow as (x,y) -> 0 may be seen to follow 
from the corresponding behavior for the wedge bow 
multiplied by the x-coordinate. It takes the form 

2—^2^,2 
WCXP--XM1WEDGE-WT-*     R=X+y 2KT 

(36) 

As expected,  the outer solution suggests that the 

asymptotic behavior of the vertical velocity near the 
stem of the cusp bow is more regular than that of 
the wedge bow. 

5. SUMMARY AND FUTURE RESEARCH 

Drawing upon the insight gained by two- 
dimensional studies of the impulsive wavemaker 
problem, a three-dimensional solution has been 
derived for the outer flow around a thin wedge and 
cusp bow with wall sided uniform boundary and 
finite draft. As in two dimensions, this solution is 
expected to be valid in the nonlinear regime and 
serves as the outer limit of the inner flow which 
may be governed by a fully nonlinear set of 
equations. As in two dimensions the solution of the 
inner flow is still lacking. Its treatment holds the 
key to the prediction of the strength of the spray 
root which is seen to develop in many bow shapes. 

In Section 2, a number of domains were identified 
and the relative importance of viscous and ideal 
flow effects were discussed. The three-dimensional 
solution of the ideal flow equations in Domain 1, 
carried out in the preceding section, sets the stage 
for the formulation and solution of the flow 
equations in Domains 4 and 5 where nonlinear, 
viscous and surface tension effects are expected to 
be important. The flow in these domains will be 
driven by the velocity and pressure distributions 
derived in Section 4. Moreover, the singularity 
structure of the outer solution for the wedge and 
cusp like bows offer strong suggestions on the 
expected importance of nonlinear effects in Domains 
4 and 5. It appears certain that the inner solution 
for the wedge like bow will be fully nonlinear. For 
the cusp bow, however, it appears likely that the 
significance of nonlinear free surface effects is 
reduced. 

The importance of viscous effects on the evolution 
of the flow in Domains 4 and 5 and their impact 
upon the nonlinear evolution of the free surface is at 
best poorly understood. The flow solution in 
Domain 1, carried out in Section 4, suggests that the 
pressure gradient driving the inner flow has a well 
defined singular structure along the waterline. 
Classical boundary-layer theory is based on the 
assumption that the pressure gradient of the potential 
flow region is varying gently. In future research a 
rational formulation of the flow equations in 
Domains 4 and 5 carried out including viscous and 
fully nonlinear free surface effects. The matching of 
this formulation to the outer solution in Domain 1 
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will be sought and solutions will be attempted 
aiming to predict the generation and strength of the 
spray root. 
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DISCUSSION 

R. Beck 
University of Michigan, USA 

1. Would your conclusions about the log singular 
behavior at the bow change if you used a finite width 
(i.e. body exact) wedge? 

2. Would the conclusion change if the wedge was not 
sharp, but had a round harding edge? 

DISCUSSION 

the solution—as opposed to the solution to the 
problem. I found it interesting to see that you obtained 
a finite wave elevation at or just ahead of the bow (A 
logarithmic singularity is "finite"). I have two related 
questions. (1) How does your outer solution for the 
wedge relate to Francis Ogilvie's (1972) solution? (2) 
How does your solution relate to Maruo's slender body 
bow flow solutions/theory as presented in his 
Weinblum lecture or several years ago? 

I look forward to watching your progress as you 
incorporate a viscous flow near field into your 
solution. 

M. Tulin 
University of California at Santa Barbara, USA 

The solution near the bow does not contain gravity as a 
parameter. Does that mean that in your solution there 
is a higher speed limit? If so, then I think that 
logarithmic singularity is associated with your 
treatment of the wedge as a thin ship in the Michell 
sense. If you dealt with the thickness of the wedge, 
then I think that the singularity would likely become 
algebraic (xß). If so, Bob Beck has a good point in his 
question a moment ago. 

AUTHORS' REPLY 

Both Professors Beck and Tulin inquire about the 
vicinity of the bow, if the wedge angle were to be 
finite. While a conclusive answer would require an 
analysis similar to that carried out in the paper, I would 
be tempted to agree with both discussors that the 
logarithmic behavior of the normal velocity for the thin 
wedge will probably change to an algebraic power or 
possibly to the product of an algebraic and a 
logarithmic power. In response to Professor Beck's 
question if the asymptotic behavior would change if 
the wedge was round as opposed to being sharp, I 
doubt it would over distances from the bow stem a few 
times its radius of curvature. 

DISCUSSION 

A. Reed 
David Taylor Model Basin, USA 

Thank you for an interesting presentation. It is 
refreshing to see a problem in the midst of its 
solution—and to get some insight into the approach to 

AUTHOR'S REPLY 

We do indeed obtain a finite wave elevation at the 
bow. This result follows from the kinematic free 
surface condition (19) upon substitution of the 
asymptotic expression (31) for the vertical velocity and 
integration with respect to the x-coordinate. It is, 
however, important to bear in mind that this finite 
wave elevation is the result of an asymptotic analysis 
which is not valid in the immediate vicinity of the bow 
stem where the relevant flow equations are fully 
nonlinear and where surface tension effects may be 
important. 

Along the same lines, the experiments you and 
Professor Ogilvie did carry out at the University of 
Michigan for wedge like bows do clearly suggest that 
the wave elevation is indeed finite and roughly half of 
that predicted by the present analysis! 

We did not carry out a comprehensive comparison 
with the slender body approximations of Ogilvie and 
Maruo primarily because their approximations are 
based on the two-dimensional Laplace equation and 
the three-dimensional free surface condition. I would 
therefore not expect that their solutions will be able to 
reproduce the proper asymptotic behavior of the free 
surface elevation upstream of the bow. However, both 
these asymptotic theories are capable of predicting 
correctly the transverse asymptotic behavior of the free 
surface elevation downstream of the bow stern 
corresponding to the first term in equation (31). 

Concerning the future directions of this research, we 
are currently in the process of generating a fully 
nonlinear solution of the free surface flow around a 
wedge with finite angle, including finite Froude 
number effects, which will be used to drive the viscous 
flow in the vicinity of the waterline. 
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DISCUSSION 

L. Doctors 
University of New South Wales, Australia 

I remember Prof. Ogilvie's initial work on the flow 
near a fine bow in 1972 so it is very pleasing to see 
further development of this interesting work. At the 
beginning of your presentation you noted the 
importance of setting up a theory in which the bow has 
a finite draft. 

Could you please expand on this point. In particular, 
do your formulas behave well when the draft is 
allowed to approach infinity? 

AUTHOR'S REPLY 

We decided to carry out this analysis for a wedge with 
finite draft for two reasons. A finite draft introduces a 
length scale which is otherwise absent in a high-speed 
asymptotic analysis of the free surface flow around a 
wedge of infinite draft. Furthermore, the infinite draft 
result is possible to obtain in the limit. The second 
reason is practical. One of the objectives of this study 
is the prediction of spray generation around the bow of 
realistic ships; therefore in such a context the 
assumption of infinite draft could lead to misleading 
predictions. 

Concerning the behavior of our asymptotic analysis in 
the limit of infinite draft, and correcting my hasty 
response at the Symposium that the wave elevation 
tends to infinity, it is possible to see from equation (31) 
that a finite expression is obtained in the limit T-» ¥. 
Simply, the logarithmic singularity which arises from 
the leading term in (31) cancels a similar singularity 
which arises at the last term. 
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Numerical Simulation of a Wave-Viscous Flow about a 
Ship Including Propeller Effects 
O. Watanabe, A. Masuko, Y. Shiorose 

(Isikawajima-Harima Heavy Industries Co., Ltd., Japan) 

ABSTRACT 

A finite volume method for viscous flow 
around a ship with free surface is developed. The 
Reynolds-averaged Navier-Stokes equations are 
solved with SIMPLE algorithm. The k-s 
turbulence model with wall function is adopted. The 
curvilinear grid system is fitted both to the hull 
surface and to the free surface. Wave height is 
determined by. solving the steady equation of 
kinematic free surface condition iteratively. 
Computational results are presented for Series-60 
model at several speeds. Computed wave profiles 
on the hull surface agree well with experimental 
data and computed frictional resistance almost 
coincides with Schoenherr friction line. Computed 
pressure resistance is slightly high and wave 
contour is somewhat attenuated and diverged. 
Influence of the propeller action, influence of the 
grid spacing on the wave-viscous flow and 
possibility of the composite grid method in the 
wave-viscous flow calculation are discussed. 

NOMENCLATURE 

5 =ship breadth 
CD, Cv C2 =constants for k - e model 
Cf =local skin friction coefficient 
CT =thrust loading coefficient 
d =ship draft 
F/i=Froude number 
g =gravitational acceleration 
J =Jacobian 
P=pressure 
P0 =atmospheric pressure 
k =turbulent kinetic energy 
n =calculation step number 
Pk =production rate of turbulent kinetic energy 
AP =amount of pressure jump 
Rn =Reynolds number 

S„,Sl,Su,SP=somce  terms   in  finite difference 

equation 
S =wetted surface area of a ship 
£/=uniform flow velocity 
u,v,w =velocity components 
uv uv M3 =the same as above 

u =frictional velocity 
x,y, z =Cartesian coordinates 
x^x^x^Xhs same as above 
T#=diffusion    coefficient    in   finite   difference 
equations 
e =dissipation rate of turbulent kinetic energy 
7]p =minimum grid spacing on the ship surface 

ix =molecular viscosity 
/ineffective viscosity 
^,=turbulent viscosity 

|, 7], £ =body fitted coordinates 

f1; |2, f 3 =the same as above 
<P =dependent variable in finite difference equations 
p =fluid density 
ak, CT£=Effective Schmidt numbers for k and £ 

INTRODUCTION 

The problem of wave-viscous flow 
interaction and the problem of hull-propeller-rudder 
interaction are the traditional problems in ship 
hydrodynamics. 

The first theoretical treatment of this 
problem was carried out by Okabe and Jinnaka (XX- 
They proposed the idea that the effect of viscosity 
on the ship wave is a displacement effect of 
boundary layer. Since then a lot of theoretical 
studies were devoted to this problem. However it 
cannot be said that the whole aspects of the 
interaction between wave and viscous flow is 
explained by the theoretical approach. 

Recently CFD technique has progressed in 
ship hydrodynamics and the problem of wave- 
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viscous flow interaction has been tackled by the 
numerical method. The first work in this field was 
done by Miyata et al. {2}. They solved the Navier- 
Stokes equations of rotational form with MAC type 
algorithm. General curvilinear coordinate system 
was fitted to the hull surface and free surface. The 
wave height was derived by solving discretized 
kinematic free surface condition. Almost the all 
methods developed after that followed this 
treatment of free surface (3^.(4).{5) except (6J. 

Last March, CFD WORKSHOP TOKYO 
was held in Japan and ten papers were presented 
about the wave-viscous flow calculation around 
Series-60. Conclusion made by Mori et al.(7) 
pointed out the following aspects. The agreements 
with measured data were rather good concerning 
the wave profile on the hull surface and the 
resistance. However the agreements of wave 
patterns were poor and improvement of the results 
of wave patterns was the subject by means of the 
examination of grid spacing, free surface condition 
and so on. The most important aspect was that the 
flow had two independent parameters, namely the 
Reynolds number and the Froude number, and more 
attention should be paid to the wave length. 

Along the same consideration with this last 
comment, Lungu et al.(81 attempted the composite 
grid approach in the calculation of two-dimensional 
wave-viscous flow around a submerged hydrofoil. 

Concerning the hull-propeller-rudder 
interaction, Nakatake et al.{9). calculated by using 
Rankine-Source method. The hull, the propeller, the 
rudder and the free-surface are represented by the 
singurality distributions, and the viscous effect is 
taken into account roughly. In CFD field, Stern et 
al. (10) dealt with interactions between the hull and 
the propeller. Their finite analytic method for the 
Reynolds-averaged Navier-Stokes equation was 
coupled with a vortex lattice type propeller 
performance program giving propeller force. The 
propeller was modeled by body force which was 
given by the calculated propeller force. The viscous 
flow around Series-60 was calculated with propeller 
effects, however, the free-surface effect was not 
included. 

The authors have been developing a 
method to calculate a viscous flow about a ship 
(11).(12)/13V It is based on a finite volume method 
and uses the k - e turbulence model with the wall 
function. The curvilinear grid system is fitted to the 
hull surface. In the present study, algorithm of the 
calculation of free-surface is added to the previous 
method by the moving boundary fitted grid system 
according to the wave deformation. The propeller 
effects are calculated by using a pressure jump 
model which substitutes the pressure difference 
equivalent to the thrust force at the propeller plane. 

This method is applied to a flow about the 
Series-60 ship model with and without propeller, 
and availability of the method is investigated with 
comparison between measured and simulated 
results. Further, the effects of grid spacing are 
examined and the composite grid method which 
puts the free-surface grid system on the grid around 
a hull is tried. 

WAVE-VISCOUS FLOW 

Basic Equations 

The governing time-averaged equations for 
steady three dimensional viscous flow including 
free surface in the Cartesian coordinate, 
xt = [x,y,z), are written in: 

dx, 
■W-o 

d   , i        3H      d 
dx. v    ' ;/        dx.     dx. 

i ' i 

H = P+pgx3 

du.     du. 

^-dt+-dt. 

(1) 

(2) 

(3) 

where K, = (u,v,w) is velocity component, p is the 
fluid density, P is the pressure and g is the 
gravitational acceleration. nc is the effective 
turbulent viscosity as follows: 

C„pk2 

= fj. + fj.t = u+—^— (4) 

where u is the molecular viscosity, fi, is the 
turbulent viscosity andCfl is the constant, k is the 
turbulent kinetic energy and £ is the dissipation rate 
of k. In the k - e turbulence model, k and e are 
governed by the following equations: 

d   i      ,\       du 
dx. o. (5) 

d   i        \      d   u    de     ^ n E    ^    E2 

— {puE)=—^— + C,Pk--C2p—    (6) 
dx. dx. a   dx. k k 

where Pk is the production rate of k and given by 

du. [du.     du^ 
p*=t*'it:\-dt+-dx. (7) 

ok and ae are effective Schimidt numbers for k 
and £, and C1 and C2 are constants. The following 
standard values of these constants are used. 
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CD - 0.09, C\ -1 44, C2 = 192 

cr4 =L0,<7 =13 (8) 

Equations   (1)(2)(5)(6)   are   represented   in   the 
following general form: 

5>'*1 r.— + s, 
•Ac.        * 

(9) 

where   # = [XU^KE]    is   a   general   dependent 

variable, T9 is a diffusion coefficient and S9 is a 
source term. 

When   a  general   curvilinear   coordinate 

system (|v |2, |3) = (I, ?7, £) is introduced, in order 

to  use   a   body   fitted   grid   system,   Eq.(9)   is 
transformed to the following equation: 

d    i i        d 
+ 5 (10) 

where /= d{x,y,z) I d[%,r], f) is the Jacobian of 

transformation, 5* is the modified source term 
including cross terms. A:j is the metric coefficient 

for transformation and Gt is contravariant velocity 

component. When aif = /(<?£,- /At,-) is defined, 4; 

and G. are written as follows: 

4 - ß;*fl/* (11) 
(12) 

Production    term    Pk    in    general    curvilinear 
coordinate system is given by: 

Pk -/v 
djidU; ( ajjdu,    a^dUj' 

/*!,. j (13) 

Finite Difference Equation 

The governing equations are discretized by 
the finite volume method. Variables ut and H are 
set at staggered location to avoid spurious error. 
Integrating Eq.(10) over a control volume, the 
following finite difference equations are obtained. 

+\pG34>A^A§J 

r.4d*A§2A§, 

R 
JdL 

4|,4|2 

* JA?2     *   3 

(14) 

where 4£x- is a side length of control volume and 
e,w, n,s,t and 6 are the integral limits. Adopting 
the Hybrid scheme to Eq.(14), the following 
algebraic equation is obtained. 

Ap<Pp-AE<PE+Aw<Pw+AN0N 

+AS<PS +AT<PT + A3<P3 + SU (15) 

where 

AE = [0,Dle -0.5Cle,-Qj 

Aw = \Q,Dlw+0.5Clw,C1J 

^ = lo,An-o.5C2„,-c2J 

AS-[O,D» + o.5C2s,c2jJ 
AT = [0,D3!-0.5C3l,-C3,\ 

A,-[0,Dib+0.5C3b,Cib\ 
AP=AE+Aw+AN+As+AT+As- SP 

(16) 

and 

(17) 

where Z>> is the coefficient of diffusion term and C, 
is the coefficient of convection term. A sign 
[ , , J means the maximum value in I J. 

Su and Sp are given by the following equation. 

Sy+Sj.tfp-JS^dlj/llj (18) 

The velocity and pressure fields are solved 
by SIMPLE procedure. In order to solve Eq.(15) by 
using vector processor, the checker board method 
with SUR is adopted. 
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Free Surface Condition 

Let the location of the free surface be 
f = £{x,y), the free surface conditions are written 

as follows, omitting viscous stress and the surface 
tension on the free surface: 

fs w-u v—= 0 
äx       dy 

(19) 

(20) 

Here, P0 is the atmospheric pressure and assumed 
zero in this study. Eq.(19) is the dynamic condition 
and eq.(20) is the kinematic condition. 

In order to decide the location of the free 
surface, the kinematic condition Eq.(20) is solved 
iteratively. The new location at the (n+l)th step is 

£"+1=£" +a-F" (21) 

Here, a is the operator and this adjusts free surface 
movement of each calculation step so to be less 
than the minimum grid spacing near the free 
surface. 

Other Boundary Conditions 

In this study, H-O type grid topology is 
adopted and the computational domain is half under 
the assumption that the flow is symmetric to the 
center-plane. So there are six boundaries, that is, 
inflow, outflow, free surface, hull surface, outer 
boundary and center-plane. 

Al the inflow and outer boundary, the 
uniform flow velocity is imposed and the pressure 
is set to zero, k and e are set at small positive 
value. All values are kept constant throughout the 
computation. 

At the outflow boundary, all variables are 
set using zero-normal gradient condition. 

On the center-plane boundary, symmetric 
conditions are imposed, namely, the normal 
velocity to the boundary plane is set to zero and the 
zero-normal-gradient is used for the other variables. 

On the hull surface, no slip condition is 
given. The zero-normal-gradient for the pressure is 
imposed and the other flow variables are set to zero. 
The standard wall function is used since the k-s 
model cannot be adopted in the viscous sub-layer 
and transition layer near the hull surface. 

Computational Grid 

The computational grid is fitted both to the 
hull surface and to the free surface. In order to use 
the wall function, the nearest grid points to the hull 
surface should be within the log-law region. The 

minimum grid spacing rjp near the hull surface is 

set to 7xl0"4. This value satisfy the following 
equation at Rn = 4. Ox 106. 

AY* 
Vppu  _ VPPUJCP1 

= 100      (22) 

Here, u is the frictional velocity and Cf is the local 

skin friction coefficient. 
In order to deal with the free surface flow, 

the initial grid is prepared for the region from under 
still water level to somewhat above it. Then, in 0-th 
step level, the computational grid is generated using 
the initial grid, up to still water level. After that, in 
n-th step level, in order to fit wave height given by 
eq.(21), the new location of the grid is rearranged 
using initial grid and the calculated wave height as 
shown in Fig.l. 

I 

Initial grid 
0-th step 
grid 

n-th step 
grid 

Fig.l    Schematic    of   grid    rearrangement    by 
movement of free surface 

9 1/2           FP 

{ 

Fig.2 Configuration of Series-60 model 
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Fig.3 Computational domain and grid configuration 

Calculation of Wave-viscous Flow 

The calculation is carried out for the wave- 
viscous flow about a Series-60 model. Hie body 
configuration of the model is shown in Fig.2. The 
parameters LIB, Bid and CB are 7.5, 2.5 and 0.6, 
respectively. Here, L, B, d and CB are length, 
breadth, draft and block coefficient of the ship. All 
flow variables are made dimensionless with respect 
to ship length and uniform velocity U. The 
computations are carried out for the starboard only, 
since the flow about a ship in steady straight course 
is assumed to be symmetric. All computations are 
made for the model fixed condition. The origin of 
the coordinate system is set at the center of the ship. 
The inflow, outflow and outer boundaries are 
located at -1.0, 1.5 and 1.0, respectively. Therefore 
the location of the fore end and the after end of the 
ship are -0.5 and 0.5. Number of total grid points is 
78000, 100 in longitudinal direction, 26 in girth 
wise direction and 30 in transverse direction. 
Minimum spacing on the hull surface and on the 
free surface are set to 7xl0~4 and 1x10 , 
respectively. The grid system is shown in Fig.3. 
The movement of grid points on the free surface is 
set under lxl0~4 at each calculation step. 
Calculations are carried out under the following 
four conditions. 

iJ'n-0.16,ÄAz = 20xl06 

Fn = 0.20,i?n = 25xl06 

Fn = 0.25, An = 3. lxlO6 

F« = 0.32,ito = 4.0xl06 

-0.4 

FF^O.4   -0.2      0       0.2     0.4AP 
X 

Fig.4 Wave profile on the hull surface 
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Fig.5 Comparison of wave contour at Fn =0.32 

Here, Fn and Rn are the Froude number and the 
Reynolds number based on the ship length L, 
respectively. These combination of Fn and Rn are 
equivalent to the 4m model scale condition. The 
computation is continued up to 1000 calculation 
steps for each case. The calculations are executed 
by FACOM VP-2100 and the CPU time is about 90 
minutes for each case. 

The wave profile on the hull surface is 
compared with the measured results in Fig.4. The 
agreement seems to be well except the case of 
Fn = 0.16 . Especially, the wave height at ship stem 
which is influence by the boundary layer shows 
satisfactory agreement. In both cases of Fn = 0.25 
and Fn = 0.32, the computed wave height around 
the shoulder of the ship is a little higher than the 
measured one. 

The comparison of wave contours are 
shown in Fig.5. In the computation, two crests and 
two troughs of bow wave and one trough and one 
crest of fore shoulder wave are observed. However, 
first trough of bow wave is attenuated and the 
second crest of bow wave diverges large. The angle 
between center-line and wave system is rather large 
compared with measured data. 

The convergence histories of the resistance 
coefficients are shown in Fig.6. Each resistance 
coefficient is nondimensionalized by lIlpUS, 
where 5 is the wetted surface area of the ship. The 
frictional resistance coefficient almost converges 
around 200 steps, however , convergence of the 
pressure resistance coefficient is slow. In the case 
of low Froude number, the significant oscillation 
appears on the pressure resistance coefficient. The 
amplitude of the oscillation tends to become small 
with Fn, and the period tends to become long. 

The resistance coefficients curves is shown 
in Fig.7. The solid line is the total resistance, and 
the dotted line is the Schoenherr friction line. 
Because the pressure resistance somewhat oscillates 
shown as Fig.6, the average of last some periods is 
plotted. The computed frictional resistance 
coefficients well agree with the Schoenherr line, 
however, the computed pressure resistance is a little 
higher than the measured data. 

(2-10 10 
0     200   400   600   800   1000 

Calculation    step    number 

8-10 10"3 

i loio 

0^ ,200 .400    600   800, 1000 
Calculation    step    number 

c u 

u 
e 
es 

-5 10 

«-10 10 es 

5 IQ'* r   ~~ 

0 10' 

0     200    400   600    800   1000 
Calculation    step    number 

£-10 10"3 

0     200    400    600    800   1000 
Calculation    step    number 

Fig.6 Convergence history of resistance coefficients 
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Fig.7 Resistance coefficients 

Wave viscous flow including propeller effect 

Effect of a propeller suction on the wave- 
viscous flow is carried out. In this calculation, the 
effect of the propeller is modeled by the pressure 
jump. This model is rather simple and cannot deal 
with rotating flow behind the propeller, however, it 
is applicable to examine the propeller effect on the 
upstream of the propeller. 

In the pressure jump model, the amount of 
pressure jump AP is calculated from the measured 
thrust. Then it is added to the pressure gradient 
terms of the finite difference equation at the 
propeller section. In Cartesian coordinates, it is 
written as follows (see Fig.8): 

dx ' 

['.-f\-* 
Ax 

IP    P'-\P>+-2 \^f) 
dx Ax 

(23) 

(24) 

£/. 

& P     u fe 

{ propeller surface 

Fig. 8 Schematic of pressure jump 

-i  

1 

towing 

—i— 

AP 

Cr = 0.8 

—i— 

AP 

CT = 16 

Fig.9The effect of propellr on pressure distribution 
near the ship stern 
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Fig.10 The effect of propeller on the ship-side wave 
profiles 
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Above manipulation is done at the points inside the 
propeller disk. 

Calculations are carried out for the Series- 
60 model at the Reynolds number of 3.1 x 106 and 
the Froude number of 0.25. The diameter of the 
propeller disk is 0.037 and the propeller located at 
0.488 downstream of midship and 0.021 above the 
keel line. The calculation is carried out for 200 
steps starting from the previous result of calculation 
without propeller. Thrust loading conditions are 
Cr=0.8 and 1.6, CT is a thrust loading coefficient 
and Cr=0.8 is the self-propulsion point of the 4m 
model. 

Fig.9 shows the comparison of the pressure 
contour on the hull surface of stem with and 
without propeller. Reduction of the pressure due to 
propeller suction is observed upstream of the 
propeller near the keel. This area spreads with the 
thrust loading coefficient. The interval of the 
pressure near the free-surface becomes narrow with 
the thrust loading coefficient. 

The wave profiles on the hull surface of 
stem with and without propeller are shown in 
Fig.10. It seems that the influence of the propeller 
on the wave profile is limited for the range of 
0.3<x<0.5. The wave height is reduced for this 
range and the phase of stern wave moves toward the 
rear side slightly due to the action of the propeller. 

Table-1 Propulsion coefficients 

towing Cr = 0.8 Cr=L6 

Cr x 103 5.166 5.992 6.694 
Cfxl0> 3.565 3.602 3.630 
C xl0J 

p 1.602 2390 3.064 

1-t 0.845 0.857 

Table-1 shows the computed total 
resistance coefficient, frictional resistance 
coefficient, pressure resistance coefficient and 
thrust deduction factor. Thrust deduction factor is 
derived from the following equation : 

1        t        —      """'"E      \    Ulf       '■given) ,.., 

given 

lcal 

Here, Tgivai is the given thrust, R^,^ is the 
computational total resistance of without propeller 
and Rxlf is the computational total resistance of 

with propeller. Main part of the change of 
resistance due to propeller action is the change of 
the pressure resistance, however, the frictional 
resistance also changes slightly. The thrust 
deduction factor is not so changed due to thrust 
loading coefficient but slightly increase with it. 

-lill1!'!!'! III 
—TTjHIIjj'l] Ii! Sffijfll11' |'nHill!ll_ 

c.  

m il j'-. . ; 

Grid-A  100x30x26 

l 

Grid-B  100x30x26 

Fig.ll Comparison of computational grid 

Grid-A 

Grid-B 

Fig.12 Comparison of wave contour at FTJ=0.32 

SOME EXAMINATIONS FOR THE WAVE- 
VISCOUS FLOW CALCULATION 

Oscillation of resistance coefficient 

In the previous chapter, we pointed out the 
problem of the oscillation of resistance coefficient 
in convergence history. 

In Fig.5, some disturbances are found on 
the contour curves at the stern section and 
propagation of wave seems to be interrupted there. 
This seems to be due to the abrupt change of 
longitudinal grid spacing ( see Fig.3 ). Oscillation 
of resistance may relate to this phenomenon. 
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Fig.13 Time history of resistance coefficients 
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Grid-C   80x30x26 

Grid-D   80x50x26 

Fig.14 Computational grids for examination of 
transverse grid spacing 

Grid-C 

Grid-D 

Fig.15 Comparison of wave contour ( Change of 
transverse grid spacing ) at Fn=0.32 

In order to examine this, variation of grid spacing in 
longitudinal direction is changed as shown in 
Fig.ll. In Grid-B, the number of grid point is kept 
as Grid-A and the variation of grid spacing is made 
more smooth. 

Fig. 12 shows the comparison of wave 
contour between Grid-A and Grid-B at Fn =0.32. In 
the result of Grid-B, there are no disturbances on 
the contour curves and wave propagates smoothly 
beyond the stern section. In Figl3., the oscillation 
of resistance coefficient is suppressed and 
resistance converges around 1000 step in the cases 
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of Fn=0.25 and Fn =0.32. The result of ivi=0.20 is 
also toward convergence. However in the case of 
FTZ=0.16, the oscillation still remains. 

From the above results, it is found that one 
reason of the resistance oscillation is the 
smoothness of the grid spacing. However the reason 
is not clear about the oscillation in the case of 
Fn=0.l6. The variation of longitudinal grid spacing 
might be still large to the short wave length at 
Fn=0.16. 

Examination of grid spacing 

The calculated wave contour in Fig.5 is 
attenuated and somewhat divergent compared with 
measured one. Computational grids we use for the 
wave-viscous calculation are basically the same 
grid as for the viscous flow calculation. Grid 
spacing in transverse direction is small near the hull 
surface in order to capture boundary layer and 
wake, however, it gradually increases toward the 
outer boundary. The above problem may be due to 
the large grid spacing in transverse direction which 
cannot capture the diverging wave component. 

In the wave calculation, grid spacing must 
be chosen to capture the wave configuration well. 
According to Mori et al.(7k the recommended grid 
size is less than A /30 or Ä /20 at most from the 
study of two-dimensional calculation., where A is a 
wave length. This means that Ax = 0.021 in the 
case of Fn=032. On the hull surface, Ax = 0.0125 
in Grid-Aand Ax = 0.020 in Grid-B. Therefore this 
criteria is satisfied in the longitudinal direction in 
both grids. 

Grid-C   80 x 30 x 26   (50 on the hull surface) 

 HifflfflBsffl ÜUl   HUnrr-n 1 1  IIBiilili tw1 H J    
-=b^HBifflWBffsFi ■ ■   ■    I——: 

Grid-E   131 x 30 x 26   (100 on the hull surface ) 

Fig.16 Computational grids  for examination of 
longitudinal grid spacing 

Grid-C 

Grid-E 

Fig.17 Comparison of wave contour (Change of 
longitudinal grid sparing ) at Fn=032 

However this criteria is available only to 
the transverse wave component of propagation 
angle=0=. According to the linear ship wave theory, 
elementary waves of ship have their propagation 
angle from 0s to 90° and their wave lengths from 0 
to 2nFr?. From these considerations, Mori et al. 
mentioned about the importance of the grid spacing 
in transverse direction. 

In order to examine the effect of transverse 
grid spacing, calculation using the grids in Fig.14 is 
carried out. In Fig.14, longitudinal grid spacing and 
minimum grid spacing in transverse direction are 
same in both grids and the number of grid point in 
transverse direction is increased from 30 of Grid-C 
to 50 of Grid-D. Fig.15 shows the comparison of 
wave contour between Grid-C and Grid-D at 
Fn=032. Although small difference is found, 
drastic improvement cannot be obtained by Grid-D. 

The grids in Fig.16 are for the examination 
of longitudinal grid spacing especially on the hull 
surface. Ax in Grid-C is 0.020 and Ax in Grid-E is 
0.010. The minimum grid spacing and the number 
of grid point in transverse direction are same in 
both grids. Fig.17 shows the comparison of wave 
contour between Grid-C and Grid-E at Fn=032. In 
the result of Grid-E, some disturbances which 
seems to be due to abrupt change of variation of 
longitudinal grid spacing are observed on the 
contour lines. However the first trough of bow 
wave appears clearly and the angle between center- 
line and wave system becomes small. Clearly the 
result is improved. 

From the above two results, following 
consideration can be made. In spite of the above 
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mention by Mori, grid spacing in transverse 
direction does not influence so much on the result 
compared with longitudinal grid spacing in the 
presence case. Longitudinal grid spacing is 
considered to be sufficiently enough to resolve 
transverse wave in any case. Therefore the cause of 
improved result in Grid-G is not the matter of 
simulation of wave propagation but the matter of 
simulation of wave source namely pressure 
distribution on the hull surface. It is considered that 
the wave contour does not change drastically due to 
grid spacing unless the wave source does not 
change as shown in Fig. 15. 

Grid-C   80x30x26   (Hullgrid) 

Grid-F   71x71x21   (Wave grid) 

Fig.18 Two grid systems for the composite grid 
approach 

Composite grid approach 

As pointed out by Mori et al.(7), wave- 
viscous flow has two parameters that describe the 
phenomenon, namely the Reynolds number and the 
Froude number. In our calculation method, the 
same grid spacing can be used for wide range of the 
Reynolds number, from the model scale to the ship 
scale, because the standard wall function is adopted 
on the hull surface (13).. However the grid spacing 
and computational domain may have to be changed 
considerably in the wave calculation, because the 
wave length varies with Fnz. Considering the 
above fact, it is convenient in the wave-viscous 
flow calculation to prepare the two grid systems 
namely the viscous flow calculation grid (hull grid 
) and the wave calculation grid (wave grid) and to 
treat them interactively. This approach is one kind 
of the composite grid method. 

In the composite grid method, the physical 
domain is subdivided into some sub-regions and the 
grids are generated for each sub-region. 
Communication among the grids is carried out by 
interpolation of the dependent variables at grid 
boundaries. This method is usually employed for 
computation of flow around a complex geometry. 
One of the famous method of composite grid 
approach is the Chimera method developed by 
NASA (14). One of the author employed this 
approach to calculate viscous three-dimensional 
flow passing through waterjet inlet (15V Lungu et 
al.(8) employed the composite grid method for the 
calculation of two-dimensional wave-viscous flow 
around a submerged hydrofoil. 

Adopting the composite grid method to the 
wave-viscous flow around a hull is considered to 
have the following merits : 

1) In the wave grid, grid can be generated 
and mesh on the free surface can be arranged 
independently from the hull geometry. Therefore 
the grid generation and the examination of the 
effect of grid spacing become easy. 

2) For the change of the ship speed, only 
the wave grid must be changed. The resistance of 
the hull can be evaluated with the same hull grid for 
different ship speed. 

Fig.18 shows one example of the two grid 
systems for our composite grid approach. Grid-C is 
the hull grid and Grid-F is the wave grid. Fig.19 
shows how to overlay these two grids. In the case of 
Fig.19, Grid-F is set to join with j=10 line of Grid-C 
around a hull. 

At the present time, full composite grid 
approach for our wave-viscous flow calculation is 
not yet completed and only the calculation in the 
wave grid using the information from the hull grid 
is carried out. The process is as follows: 

1) Initial wave grid is generated using the 
wave height information of the hull grid. 

2) Flow information ( velocity, pressure, k 
and e ) is interpolated from the result of the hull 
grid at the planes of the inlet and the side toward a 
hull of the wave grid. Tri-linear interpolation of the 
following form is employed : 

Fig.19 How to overlay the two grid systems in 
composite grid approach 
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Grid-C 

Grid-F 

Fig.20 Comparison of wave contour between the 
hull grid and the wave grid at 7*>i=0.32 
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Grid-F   71x71x21 

Grid-G   71x71x21 

Fig.21 Comparison of wave grid 

+ a6ff+a7?7t+ag£?7£ (26) 

where 0 £■ §, r\, t, =sl are the coordinates of the point 
to be interpolated and the al-a8 depend upon the 
function values at the points forming the 
interpolation cell. 

3) Flow calculation is carried out in the 
wave grid under the interpolated boundary values. 

Fig.20 shows the comparison of wave 
contour between Grid-C and Grid-F. Boundary 
values of Grid-F are fixed to the interpolated results 

from Grid-C. Although some differences are exist, 
almost the same result with Grid-C is obtained in 
the calculation of Grid-F. 

In order to see the difference due to 
transverse grid spacing, we carried out the 
calculation using Grid-G in Fig.21. Ay in Grid-G is 
about one third of Grid-F. Fig.22 shows the 
comparison of wave contour between Grid-F and 
Grid-G. In spite of the considerable difference of 
grid spacing, the result of Grid-G is almost same 
with grid-F. This is same with the result in Fig. 15 
and it seems to support the consideration that the 
wave contour does not change drastically due to the 
grid spacing unless the wave source does not 
change. 

Further examination using the wave grid 
and development of the full composite grid method 
are the present subject for us. 

Grid-F 

Grid-G 

Fig.22 Comparison of wave contour 

CONCLUDING REMARKS 

The conclusions of this paper are as follows: 

(1) A finite volume method is developed for the 
viscous flow including free surface around a ship. 
(2) The computation about a Series-60 model is 
carried out. The computational results of the wave 
profile on the hull surface and frictional resistance 
show good agreement with experimental ones. 
However, computed pressure resistance does not 
converged in low Fn case, and the calculated wave 
contour is attenuated and slightly divergent. 
(3) The calculations of wave-viscous flow under 
propeller operating condition are carried out using 
the pressure jump model. Influence of the propeller 
action on the wave around the ship stem is 
represented. 
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(4) The effect of variation of longitudinal grid 
spacing is examined. When smooth grid spacing is 
used in longitudinal direction, the oscillation of the 
pressure resistance is suppressed except for low Fn 
case. 
(5) The effects of transverse and longitudinal grid 
spacing are examined. In the present study, grid 
fmess in transverse direction does not improve the 
result and longitudinal grid spacing improves the 
result considerably 
(6) A composite grid approach is tried for wave- 
viscous flow around a ship. Although the complete 
treatment of composite grid has not yet achieved, 
the difference due to grid spacing on the free 
surface is investigated by using this approach. 
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Comparison of Calculated and Measured Loads on a 
Flared Body Oscillating in a Free Surface 

B. Maskew (Analytical Methods, Inc., USA), 
M.-L. Wang, A. Troesch (University of Michigan, USA) 

ABSTRACT 

Experimental and numerical results are 
presented for the hydrodynamic loads experienced 
by a cusped body which is oscillating vertically with 
forced harmonic motion in a free surface. Results 
are presented for a range of frequencies and a 
range of amplitudes of oscillation. The numerical 
calculations used a three-dimensional time domain 
panel method formulated for large amplitude 
motions and non-linear treatment of the free 
surface. The comparative study, which is still 
ongoing, indicates good agreement between the 
calculated and measured loads. The effects of tank 
wall boundaries may cause some discrepancies. 

NOMENCLATURE 

A Amplitude of oscillation 
Cp        Pressure coefficient 

D Diameter of top of body 
dS Element of surface 
f Frequency of oscillation 
Fdy Dynamic force 
Ffcy Total hydrodynamic force = Fdy + Fst 

F^ Inertial force 
Flc Force measured by load cell 
Fr Froude number, V^^/y/gL 
F3[ Hydrostatic force 
g Acceleration due to gravity 
L Characteristic length (body diameter) 
LREF Reference length, L/2 
NB Number of panels on the body 
NS Number of panels on free surface 
NPAN Total number of active panels 

n Unit normal to the surface pointing into 
the fluid domain 

P 
PREF 

r 
s 
t 

V 

REF 

x,y,z 

X,Y,Z 

P 

4> 

Pressure 
Ambient atmospheric pressure 
Position vector in normalized space 
Surface distance (normalized) 
Time 
Normalized perturbation velocity, 

Ww - -V* 
Perturbation velocity, -V* 
Reference speed (peak plunging speed of 
body) 
Normalized Cartesian coordinates, 
x=X/ LREF, etc. 
Cartesian coordinates, dimensional 
Doublet density, 4>/4TI 

Source density, - (<3<|>/3/i)/4ii 
Normalized time, t ■ V^L^^. 

Water density 

Normalized velocity potential, ^/Lg^JVg^, 

Velocity potential (units of length2/time) 

INTRODUCTION 

Increasing demands for understanding the 
complexity of nonlinear free-surface flows, such as 
bottom and bow flare slamming and green water on 
deck, necessitate the experimental investigation on 
large-amplitude motion of an idealized axisymmetric 
flared body. Of particular interest are the nonlinear 
hydrodynamic phenomena of the flare-slamming 
and deck-wetness flows during large-amplitude oscil- 
lations. Among the many slamming experiments 
performed in attempting to investigate the forced 
vertical oscillations of different models are early 
slamming researches of a segmented ship model, a 
rectangular cylinder, wedges with different dead rise 
angles, and so forth. The experimental program 
described here is primarily designed to generate sets 
of quality   experimental  data,  e.g.,  time-history 
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acquisitions, for comparison with time-domain nu- 
merical codes, as well as video recordings to provide 
qualitative information for breaking wave profiles 
and contact line dynamics. 

The experimental tests were performed at 
the University of Michigan Marine Hydrodynamics 
Laboratory (MHL) to measure the time histories of 
the prescribed motions, the wave elevations and the 
resultant forces. The MHL's vertical motion mech- 
anism (VMM) is used to conduct such large-ampli- 
tude oscillation experiments. The axisymmetric 
flared body was forced to oscillate sinusoidally with 
different frequencies and amplitudes so that differ- 
ent wave profdes, such as steep waves, local wave- 
breaking, spray sheets, and so on, could be 
observed. In this experiment, the measured data 
included time histories of the prescribed displace- 
ment, the resultant force, and the wave elevation at 
several locations away from the body. Video re- 
cordings were also taken in each run for qualitative 
photographs. 

The problem of predicting the hydrodynamic 
impact loads has been under investigation for some 
time, starting with the classical formulation by Von 
Kannan (1) and Wagner (2). There have been a 
number of approaches to the problem (see for ex- 
ample, the review by Troesch and Kang (3)), but 
the majority are for two-dimensional conditions, 
e.g., the wedge impact work of Greenhow (4), 
among others. There are a number of examples 
where two-dimensional methods are applied in a 
strip theory approach to ship slamming problems, 
e.g., Oliver (5), but, as pointed out in (3), this can 
be misleading in strongly three-dimensional situa- 
tions such as at a ship's bow. The relatively few 
attempts at a three-dimensional method for impact 
loads, e.g., Miloh (6) or for simplified free surface 
conditions, e.g., Troesch and Kang (7), are really for 
axisymmetric conditions. 

Earlier work by Troesch and Kang (3, 7) 
and Kang (8) applied a three-dimensional panel me- 
thod to calculate the impact loads on the same 
flared body as is used in the present investigation. 
Numerical prediction of bottom impact loads for the 
body dropping freely into the water compared well 
with experimental measurements, but the flare im- 
pact load was overpredicted by the theory. The nu- 
merical calculations involved not only the prediction 
of the impact forces, but also the time integration of 
the equations of motion driven by these forces. 
Because of this, possible inaccuracies in the force 
prediction—due to such things as the simplified 
equipotential free surface boundary condition or the 

model discretization—could not be identified with 
certainty. The present tests are intended to isolate 
the impact force aspect by using a forced harmonic 
motion rather than a free fall. Thus the problem of 
predicting the impact force accurately can be 
investigated separately without the added un- 
certainty of solving the equations of motion as the 
falling body experiences these forces. 

The new experimental measurements are 
compared with numerical calculations carried out 
using the USAERO/FSP computer code (Maskew 
(9, 10). This is a time-domain panel code whose 
basis differs from that used in the earlier calcula- 
tions of Troesch & Kang (7) mainly in that the free 
surface treatment is fully non-linear. The code is 
being evaluated for non-linear seakeeping calcu- 
lations for which an additional module is coupled to 
integrate the equations of motions (Maskew, Tidd 
and Fräser, 11). In principle, the code can treat 
large amplitude motions in steep waves and so the 
present comparisons are needed to help validate the 
prediction of impact forces. 

One consideration of the numerical analysis 
is the proper treatment of the far field or truncation 
boundaries. If the numerical towing tank is to 
model the physical towing tank, then for zero speed 
or low speed calculations, tank wall reflection be- 
comes an important issue. See, for example, the 
discussion by Cohen and Troesch (12) where the 
added mass and damping coefficients of an oscil- 
lating sphere between two vertical walls showed a 
large dependence on frequency of oscillation and 
wall separation. Those results showed that there 
were frequencies at which interaction was significant 
and frequencies at which the sphere appeared to os- 
cillate in an effectively unbounded tank. While the 
sphere calculations were based upon a linear free 
surface condition, similar reflection effects will be 
present in fully nonlinear calculations as well. Con- 
sistent with that earlier work, the numerical and ex- 
perimental comparisons for the flared body given in 
this paper display varying degrees of tank wall-body 
interaction. 

EXPERIMENTS 

In order to conduct the vertical forced os- 
cillation tests on the idealized flared body, the 
VMM dynamometer, wave probes, and video re- 
corder were set up in MHL's towing tank to record 
time histories of vertical motions, load cell forces, 
wave elevations and video information, respectively. 
The description of the experimental setup is shown 
in the schematic illustration of Fig. 1. 
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Fig. 1. Schematic Setup of the Experiment. 

The VMM dynamometer was originally de- 
signed to determine the unsteady vertical forces 
acting on planing hulls (see Ashcroft, Troesch & 
Sullivan, 13). The dynamometer was designed to 
uncouple all forces and moments so that only pure 
vertical force and associated moments are measur- 
ed. Two of the four load cells, which were origi- 
nally configured to measure vertical forces and roll 
moments, were used in this test. The sum of two 
load cells gives the net vertical force while the dif- 
ference of the two load cells was used to estimate 
the error of the experiment due to unbalanced me- 
chanical vibration. The prescribed motions were 
sinusoidal oscillations with a starting ramp function. 
Four wave probes were installed to measure the 
wave elevation at different positions away from the 
body. In addition two wave probes were fixed on 
the deck of the body for the study of green water on 
deck. Finally, the video camera was set up to 
record wave profiles and observe the behavior of 
the free-surface intersection lines. As mentioned 
previously in the introduction, two types of large- 
amplitude oscillation experiments were conducted to 
investigate the slamming and deck wetness of the 
flared body oscillating in a free surface. Here these 
two cases are referred to as "deck dry condition" 
and "green water on deck", respectively. A range of 
oscillation frequencies and amplitudes were covered; 
details are shown in Table 1. The VMM is capable 

Run Frequency Amplitude FFT Range Freeboard 
Tests (Hz) (in) (sec.) (in) 

Deck Dry Condition 
06 0.907 0.976 10.0 - 36.471 3.0 
07 0.598 0.903 10.0 - 36.787 3.0 
08 0.895 1.873 10.0 - 36.832 3.0 
09 0.598 2.056 10.0 - 36.783 3.0 
10 1.220 1.087 10.0 - 36.259 3.0 
11 0.719 0.908 12.0 - 34.271 3.0 
12 1.221 1.357 10.0 - 36.216 3.0 
13 0.720 1.997 10.0 - 37.795 3.0 
14 1.213 1.471 10.0 - 36.389 3.0 
15 0.718 1.393 20.0 - 36.723 3.0 
16 0.599 1.623 10.0 - 36.743 3.0 
17 0.909 1.503 10.0 - 32.011 3.0 

Green Water on Deck 
18 0.908 1.732 10.0 - 36.453 0.0 
19 1.221 1.435 10.0 - 36.216 0.0 
20 0.720 1.908 10.0 - 37.811 0.0 
21 0.598 1.632 10.0 - 36.765 0.0 
22 1.223 0.848 10.0 - 36.173 0.0 
23 0.905 1.110 10.0 - 36.538 0.0 
24 0.719 0.825 10.0 - 37.834 0.0 
25 0.598 1.257 10.0 - 36.778 0.0 
26 1.222 1.455 10.0 - 36.195 0.0 
28 0.719 2.189 10.0 - 37.819 0.0 
29 0.597 2.372 10.0 - 36.801 0.0 
30 0.905 1.858 10.0 - 36.515 0.0 

Table 1. Test Matrix for the Experiments. 

of driving a stroke of ±4 in at a rate of ±3 in per 
second. Therefore, the frequency and amplitude 
shown in Table 1 were selected to demonstrate the 
dominance of hydrostatic forces in the low- 
frequency oscillation, steep wave profiles in the 
moderate frequency oscillation, and the local 
breaking waves and spray sheets in the high- 
frequency oscillation. However, for the green water 
on deck cases, the general parameters were care- 
fully selected to prevent the spray sheets from 
damaging the wave-probes or hitting the upper sup- 
porting structure. 

Table 1 shows twenty-four tests with run 
numbers from 06 to 30. The missing run numbers 
were bad runs which have been discarded here. 
The time histories of the prescribed vertical dis- 
placement, Load Cells 1 and 2, the sum and dif- 
ference of the load cells, four wave probes in the 
deck dry conditions and six wave probes in the 
green water on deck conditions have been recorded 
with individual run times equal to 40 seconds. 
Three thousand samples were taken in each run, 
i.e., the sampling internal At = 0.013333 seconds. 
Before the analog signals were digitized, they were 
passed through a multiple filter bank with a cut-off 
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frequency of 25 Hz. In Table 1, the freeboard 
values were also selected in each run so that dif- 
ferent drafts were used to produce desirable wave 
profiles. The other information shown in Table 1 is 
provided for the later Fast Fourier Transform 
(FFT) analysis of the experimental results. These 
details are given in the Appendix. The "FFT 
Range" denotes the time segments of each run that 
was Fourier analyzed. Table 2 gives the offsets of 
the flared body whose isometric view is shown in 
Fig. 2. The flared body used in the experiments was 
a wooden and aluminum structure with thin yellow 
waterproof coating and black measuring marks. 
The total weight of the flared body plus the upper 
supporting structure is 22.8 lbs. The photograph in 
Fig. 3 shows the oscillating object, the wave profiles, 
and part of the upper supporting structure. 

Formulation of Motion Equations 

An inertial Cartesian coordinate system 
OXYZ with its origin on the still water surface and 
its Z-axis pointing upwards is shown in Fig. 2. It is 
assumed that the body strictly undergoes forced ver- 
tical motions under the action of load cells, hydro- 

Radius Height Radius Height 

R (in) Z (in) R (in) Z (in) 
0.0000 0.0000 2.9023 5.9070 

0.3849 0.0285 3.1071 6.3008 

0.7550 0.1186 3.3434 6.6946 

1.0961 0.2950 3.5836 7.0884 

1.3951 0.5141 3.8632 7.4822 

1.6404 0.7969 4.1546 7.8760 

1.8228 1.1505 4.4854 8.2698 

1.9350 1.4614 4.8733 8.6636 

1.9729 1.5752 5.2691 9.0574 

2.0084 1.9690 5.7219 9.4512 

2.0360 2.3628 6.1866 9.8450 

2.0576 2.7566 6.6119 10.2389 

2.0970 3.1504 6.9309 10.6327 

2.1659 3.5442 7.2223 11.0265 

2.2447 3.9380 7.4784 11.4202 

2.3392 4.3318 7.6752 11.8141 

2.4534 4.7256 7.7854 12.4692 

2.5973 5.1194 7.7933 12.7251 

2.7290 5.5132 

Fig. 2.  Coordinate System and Body 
Geometry. 

Fig. 3.  Photograph of the Oscillating Body 
and It's Support Structure. 

dynamic action and gravitational force, where the 
upward acting forces are defined as positive. The 
equations of motion can be set up by equating the 
above forces to the inertial force associated with 
acceleration of the body mass m. Here the motion 
equations representing the body moving in a vertical 
direction are presented for deck dry condition and 
green water on deck, respectively. 

Deck Dry Condition 

For the deck dry condition, the equations of 
motion can be expressed as 

Fic® + FkyW ~ mg = ml (1) 

Table 2. Offset Table of the Flared Body. 

where F]c (t) represents the load cell measurement 
by the VMM; F^ (t) denotes the total hydrody- 
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namic force which, for potential flow, is given by 
Bernoulli's equations as follows 

w= Lp{~*' ■ 2V*"V*~ gZ)nids 
(2) 

presented later, the hydrostatic forces are computed 
with respect to S0 (t). 

NUMERICAL METHOD 

Mathematical Model 

The hydrodynamic force can be separated into 
dynamic and static terms, Fdy(t) and Fst(t), 
respectively, defined by 

F<*(t) = LP{~*'~\V* ' V*)"3<ÄS 
(3) 

and 

F*(') = ls Pi-gZ)"^ (4) 

with S(t) = S0(t) + ASj. The transient wetted body 
surface S(t) consists of the mean surface S0(t) below 
the Z = 0 plane which varies with the oscillation of 
the body and the difference ASf between the transi- 
ent wetted surface and the mean surface, which is 
due to the elevation; $ is the velocity potential; mg 
is the gravitational force, and Z is the vertical 
acceleration of the oscillating body. 

Green Water on Deck 

Two different approaches can be used to 
deal with the case of green water on deck. One is 
to treat the green water as added mass which is 
called the control volume integration method. Eq. 
(1) can be rewritten as 

Fk® + FJfi -mg =MZ + MZ (5) 

where M is the total mass consisting of the mass of 
the body and the added mass of the green water on 
deck; the dot indicates the differentiation with 
respect to time. The right-hand side of the above 
equation represents the time rate-of-change of the 
momentum of the body including the added mass 
contributed by the green water on deck. Another 
approach is the total surface integration which treats 
the action of the green water on deck as an external 
force. Its equation of motion has the same form as 
Eq. 1. 

We adopt Eq. 1 to decompose the compon- 
ents of the total forces. In the experimental results 

The mathematical model is formulated for 
the treatment of large amplitude, rigid body motions 
in a free surface. An inertial Cartesian coordinate 
system, OXYZ, is used with its origin on the still 
water and its Z-axis pointing upwards, as shown 
earlier in Fig. 2. The description below is a 
specialization of the more general basis of the 
USAERO/FSP method presented in Maskew (10). 

For the present problem, the effects of 
viscosity and surface tension are neglected. The 
perturbation velocity of the ideal fluid is described 
using the negative gradient of the velocity potential, 

-V* (6) 

It is convenient to non-dimensionalize the 
problem with respect to certain reference quantities. 
Velocities are non-dimensionalized by a reference 
speed, VREF, which will be the peak plunging speed 
of the body in this case. The geometry is non- 
dimensionalized by a reference length, L^p, which 
is normally chosen as half the characteristic length 
of the problem, L. (The latter is used together with 
VREF in the evaluation of Froude Number and 
Reynolds Number.) 

In non-dimensionalized space, therefore, 
the perturbation velocity is v ^VfVg^ = -V<J>. 

The potential is 

* = »/(W *w 

and time becomes 

T     * 'REP^REF 

The boundary value problem is formulated based on 
Green's Theorem with surface source and doublet 
distributions over the free surface and wetted part 
of the body surface: 

//jun -vflj + £ldS -2*up =0 (7) 
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where r is the length of the vector from a surface 
element, dS, to the general point P on the surface. 
S-P signifies that the point P is excluded from the 
surface integral, the limiting process for the singular 
point when r -* 0 yields the local contribution, 2xjip 
in Eq. 7. The local doublet value, p, is defined as 

4>/4n (8) 

and the local source value, a, is defined as 

a ~ n ■ VJ4n w 

For finite time, the disturbance due to the 
body motion vanishes at infinity, hence the surface 
integral in Eq. 7 may be performed over local sur- 
faces only. Thus, with care, the free surface may be 
truncated at a distance which will accommodate the 
disturbance wave propagation within the time-scale 
of the simulation. 

The pressure distribution throughout the 
flow field is provided by the unsteady Bernoulli 
equation which is written here in non-dimensional 
coefficient form: 

Cf - -u2-z/Fr
2 +2 34>/ax (10) 

p is the water density and z is the height of 
a point measured positive upwards from the still 
free surface. Fr represents the Froude number 
which is defined as V^^gl, g being the gravita- 
tional constant. 

Eq. 10 gives the pressure coefficient for a 
stationary point; a point that is moving through the 
inertial system at a velocity, Vs , experiences a 
pressure coefficient of 

CP = V% - li - z/F? + 2 d^dx       (11) 

where dtydx is the total derivative of <p experienc- 

ed by the moving point. Vg is the fluid velocity 
relative to the point, i.e., 

VR = v-Vs (12) 

The normal component of the fluid relative 
to the body surface must be zero, i.e., n • VR = 0, 
hence, from Eq. 12, n • v" = n ■ Vs   . Thus, from 

Eq. 9, the source term for the body surface can be 
written:- 

o = H • Vsl4n 03) 

With the body source distribution known, 
the solution of Eq. 7 provides the doublet dis- 
tribution on the body. 

On the free surface, the initial boundary 
conditions are that the potential, <p, and its normal 
derivative are zero and that the pressure is uniform. 
It is convenient to use the ambient static pressure as 
the reference pressure, in which case Cp = 0 on the 
free surface, and this is assumed to be transferred 
directly to the fluid, i.e., surface tension is neglected 
at this time. Using Eq. 11 for a surface point 
moving with the fluid, the total derivative of <p with 
respect to normalized time can be written 

d$ 
dx 

(zJF2, - v2)/2 (14) 

(since Vs = v and VR = 0 here) 

Integrating Eq. 14 for tp and using Eq. 8, 
the free surface doublet distribution can be written 

UM ^ f /K " v2K (15) 

Thus, with Eq. 7 applied to the free sur- 
face, the doublet distribution is known and the solu- 
tion provides the source term. This is opposite to 
the situation found for the body surface and so for 
the body in free surface, Eq. 7, becomes a mixed 
boundary value problem. The source solution on 
the free surface provides the normal component of 
the perturbation velocity, vN. The tangential com- 
ponent of the perturbation velocity, vT, is obtained 
from the surface gradient of the doublet, i.e., 

vN - 4%a 
v"r - - 4itVji 

(16) 

The kinematic condition on the free surface 
can then be satisfied by moving the particle with the 
local flow for a small time step, i.e., 

6f - vox 

Hence, the location of a free surface particle can be 
obtained by integration with respect to time 

r(x) = [ v*dt (17) 
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Numerical Procedure 

The solution of the boundary value problem 
in Eq. 7 is achieved using a quadrilateral panel 
discretization of the body and free surface. Assum- 
ing a uniform doublet and source distribution over 
each panel, the surface integrals in Eq. 7 can be 
performed in closed form for a panel acting at a 
point in the center of another panel. Thus, a set of 
simultaneous linear equations can be formed: 

NB NPAN 

E nxCjr+ E °KBJK + EJ = °; J=l>NPAN 

(18) 
£-1 x~m*i 

where C^ = -2n 

MB NPAN 

°KBX + EJ = E °A+  E »C
C

JK 

NB, NS are the number of panels on the body and 
free surface, respectively, and NPAN = NB + NS. 

MK> °k are the doublet and source densities 
on panel K, respectively. QK, BJK are the influence 
coefficients, respectively, for the uniform doublet 
and source on panel K acting at the central point of 
panel J.  (QK, Bm are given in Maskew (14)). 

In the numerical procedure, the body 
oscillatory motion over several cycles is discretized 
into a number of small time steps. At each step, 
the solution of the boundary value problem in Eq. 
18, together with Eqs. 15 and 13, provide the 
instantaneous doublet and source distributions over 
the body and free surface. This allows the 
perturbation velocities to be evaluated. 

v* = v„ n + vT (19) 

The normal component is evaluated from the source 
value, vw = Ana, and the tangential component, VT, 
is obtained from the surface gradient of the doublet, 
\fr = -4nVfi. To evaluate the resultant tangential 
velocity vector, the doublet gradient is evaluated in 
two directions over each panel. A second-order dif- 
ferencing scheme is used over three panels in each 
direction. 

With the perturbation velocity known, the 
panel pressures on the wetted part of the body sur- 
face can be evaluated using Eq. 11. The dfyjdx 
term is evaluated using second-order backward dif- 
ferencing based on the current and two previous 
solutions. This evaluation is complicated by the fact 

that the panel geometry changes at each time step 
in an automatic repanelling procedure (see below). 

Thus, for the evaluation of d^ldx, the true motion 
of the panel center must be used; this differs from 
the body motion, especially near the free surface. 

The vertical hydrodynamic force coefficient 
acting on the body is obtained by integrating -Cpnz 

over the wetted part of the body surface. The 
intersection of the free surface with the body is 
computed at each time step within USAERO/FSP. 
The body and the free surface are then 
automatically repanelled to the instantaneous 
waterline using interpolation. This ensures a "clean" 
panelling relationship across the body/free surface 
intersection. The "dry" panels identified in this 
procedure are temporarily deactivated and removed 
from the system of equations in Eq. 18. 

The free surface deformation is evaluated 
from Eq. 17 using a forward Elder scheme. A 
similar scheme is used in Eq. 15 to evaluate the new 
free surface doublet (i.e., potential) distribution for 
the next step. 

Sensitivity Studies 

A number of computer runs were made to 
test the sensitivity of the calculation with respect to 
panel density and time step size. For these tests, a 
pseudo axisymmetric condition was set up; a 
segment of the body geometry and free surface 
were constructed with a 10* wedge angle (Fig. 4), 
and the code was instructed to perform an 
azimuthal sum of 36 identical strength panels for 
each influence coefficient. This model allowed a 
wide range of panel densities and time step densi- 
ties to be explored without requiring a large amount 
of computer time. Fig. 4 shows the body at two 
points in a cycle to illustrate the repanelling effect. 
A very low panel density is shown for clarity. 

The conditions of experimental Run 12 
were used as a basis for these runs; i.e., high 
frequency, / = 1.22 Hz, and a moderate amplitude, 
A = 15 in (3.81 cm). The radius for the "edge" of 
the free surface was set at 24 body diameters; this 
should allow ample time before a disturbance wave 
returns from the outer boundary. Each case was 
run for four cycles for a total time of 3.28 seconds. 

The effect of body panel density on the 
integrated dynamic force history is shown in Fig. 
5(a). The number of panels along the strip was 
varied from 20 to 100, while the time step size and 
the number of free surface panels were .01 seconds 
and 240, respectively (i.e., free surface panel size is 
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AZIMUTHAL IMAGES 

SINGLE STRIP OF PANELS 

ON BODY AND ON FREE SURFACE 

Fig. 4. Model Arrangement for Numerical 
Sensitivity Studies. 

0.1 D). The main effect expected from the body 
panel density is with respect to the evaluation of 
surface gradients for the perturbation velocity and 
to the pressure integration for force. In fact, the 
integrated dynamic force history shows negligible 
effect in this range of panel density (the hydrostatic 
force had even less variation). Also, the calcula- 
tions indicate a very rapid convergence to "steady 
state" following the impulsive start. The history of 
wetted area, Fig. 5(b), is also insensitive to panel 
density in this range. Panel densities lower than 
this would not be considered practical for this 
geometry because of the extensive repanelling 
required over the curve of the flare during the large 
amplitude motions (see Fig. 4). 

Fig. 5(c) shows the history of wave height 
at the experimental station, W3 (38 in (96.5 cm) or 
2.99 D from the body center). Except for a small 
difference in the first cycle, the wave height is es- 

4 "I 

NB - 20 to 100 

-2 - 

1 2 
Time (sees.) 

Fig. 5(a). Effect of Body Panel Density 
on Total Hydrodynamic Force 

sentially converged with respect to body panel 
density. The figure also indicates that the wave 
height at this station would be essentially converged 
with respect to time in another cycle. 

The effect of free surface panel density was 
examined using panel numbers NS = 120 to 960; 
the normalized panel size ranged from .2 D to .025 
D. It would be expected that the detailed resolution 
of the free surface waves would be most affected by 
this parameter; NS = 120, for example, would not 

Fig. 5(b). Effect of Body Panel Density on 
Body Wetted Area. 

966 



0.020 

0.015 

«    0.010 
0) 
01 

0.005. 
£. 
to 
u   0.000 - 
3: 

5 -0.005 - 

-0.010 

-0.015 

-0.020 

NB - 20 to 100 

1 2 

Time (sees.) 

Fig. 5(c). Effect of Body Panel Density on 
Wave Height at Station W3. 

be expected to capture much of the detail of the 
surface waves, but it would be useful to determine 
to what extent the integrated body load suffers 
because of this. Potentially, the low density case 
offers a significant saving in computational effort in 
a fully 3-D problem such as hull bow flare slam if 
the impact load is predicted with reasonable accur- 
acy. Initial calculations with NB = 40 and 8t = .01 
showed a reasonable convergence of the body force 
(Fig. 6(a)), but a less satisfactory characteristic for 
the wave height (Fig. 6(b)). The implied number of 
panels required for a fully three-dimensional case 

would be impractical. The values plotted in Fig. 
6(b) are the peak and trough for the fourth cycle. 
Earlier calculations had suggested a possible 
interdependency between free surface panel size and 
time step size, possibly arising from the simple 
Euler time integration scheme adopted, coupled 
with the physical movement of the free surface 
points in the Euler-Langrangian treatment; i.e., the 
movement of a panel corner in one time step should 
be significantly smaller than the local panel size. 
Preliminary results indicated that bt should vary as 
the square of panel size. Accordingly, the sensitivity 
study of the free surface panel density and the 
sensitivity to time step size were combined, the time 
step size varying from .015 to .004 over the present 
range of NS. This significantly improved the 
convergence of the wave height as shown in Fig. 
6(b). The peak value of the integrated hydro- 
dynamic load improved slightly over that for 
constant 8 = .01. 

One of the objectives of the present (on- 
going) project is to determine to which extent the 
details of the jet/spray formation need to be 
modeled in order to obtain accurate predictions of 
the impact loads. A number of studies using two- 
dimensional methods have indicated that extremely 
high panel densities are needed to resolve the jet 
formation (15, 16); this would not be practical for 
treating a fully three-dimensional problem. If 
modeling the jet is necessary for accurate load 
predictions, then treatment in the three-dimensional 
case would clearly require a special local model of 
the jet (possibly semi-empirical) driven by computed 
local velocity conditions. One important parameter 
required for such a model would be the velocity of 
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Fig. 6(a).     Effect of Free Surface Panel Density 
on Maximum and Minimum Values 
of Hydrodynamic  Force;  f  =   1.22 
Hz, A = 1.5 in (3.81 cm) 

Fig. 6(b). Effect of Free Surface Panel Density 
on Maximum and Minimum Values of 
Wave Elevation at Station W3; / = 
1.22 Hz, A = 1.5 in (3.81 cm) 
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the free surface adjacent to the body. The present 
sensitivity study, therefore, examined the con- 
vergence of the predicted vertical velocity com- 
ponent of the first free surface panel next to the 
body as the free surface panel density was varied. 
Fig. 7 shows a satisfactory convergence charac- 
teristic. The panel density on the body itself had 
little effect on this over the broad range considered 
here. 

l.O  - 

1.0 - 
s 

/ 
/ / 

0.Ü - / / 
d 

I                               !                               I I 

200 400 600 

NS 

800 1000 

Fig. 7. Effect of Free Surface Panel Density on 
the Predicted Vz Component Adjacent to 
the Body Side. 

RESULTS AND ANALYSIS 

Based upon Eq. 1, we know that the load 
cell measurement Flc can be viewed as the com- 
bination of the dynamic term of the hydrodynamic 
force Fdy, the hydrostatic force Ftt, the inertial force 
Fto, and the gravitational force. Here the 
gravitational force was measured to be 22.8 lbs 
(101.5 N) and the hydrostatic force can be readily 
obtained by Eq. 4. The inertial force can be 
obtained from the prescribed displacement mea- 
sured in the experiment by differentiating twice. 

In order to obtain accurate inertial forces, 
three different methods were evaluated for the 
calculation of the vertical acceleration of the oscil- 
lating body, as described below: 

1) Assume the prescribed displacement is 
given by perfect sinusoidal oscillation, then the 
vertical acceleration can be calculated by 

Z(t) = -<o2Z(f) 

2) Based upon the prescribed displacement 
measured in the experiment, a finite difference 
scheme is directly applied to calculate the vertical 
acceleration. 

3) The FFT F+ - F (i.e., the Fourier 
transform and the inverse Fourier transform, 
respectively) can be employed to calculate the 
vertical acceleration, as follows: 

Z - F-{-w2F+ [Z(r)]} 

The first two methods suffer from 
inaccuracies due to the noise induced by the 
mechanical vibration of the VMM. The third 
method can easily be used to filter the unwanted 
noise and yield accurate results by zeroing the FFT 
above frequencies of wc = orw0 where wc is the 
cutoff frequency, wc is the fundamental frequency of 
the sinusoidal oscillation, and a is the cutoff 
frequency coefficient. 

Selected experimental values for the first 
seven Fourier coefficients of the force and 
displacement time histories are given in the 
Appendix. Both the deck dry and green water on 
deck conditions are presented. The inertia force 
was calculated assuming a value of a = 6. The 
coefficients are given in magnitude and argument 
form so that the time history, x(t) accurate through 
the sixth harmonic, is expressed as: 

x(t) = £*,cos(u/-4>y) 

where Rj and fy are the magnitude and phase of the 
jth harmonic, respectively. The table entries are 
nondimensionalized as follows: radian frequency 

"Ö) by •JW' where L is the flared body diameter 
equal to 15.59 in (39.6 cm), the displacement 
amplitude A(j) by L, and the various force 
components by pgL3. 

Numerical calculations were completed for 
comparison with selected experimental cases. The 
computer program, USAERO/FSP assumed an axi- 
symmetric domain with a boundary located at 24 
body diameters as used in the sensitivity studies. 
The panel model used NB = 40 and NS = 480 with 
time step size 5t = .01 sec. Time histories for these 
are shown in Figs. 8 and 9. A frequency sweep is 
shown in Fig. 8 where the inertial, load cell, and 
hydrodynamic forces (see Eqns. 3 and 4) for Cases 
12, 15, 16, and 17 are given. The amplitude of 
oscillation for these four cases was approximately 
1.5 in (3.81 cm) or A(l)/L = -0.096. Similar to Fig. 
8, an amplitude sweep is shown in Fig. 9 where the 
numerical values are compared with Cases 11, 13, 
and 15. The frequency for  these three cases was 
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/ = 0.719 Hz. For the force time histories shown in 
Figs. 8 and 9, the inertial loads were estimated 
based upon a value of a = 6. The approximation of 
dropping the higher harmonics in the vertical 
acceleration and therefore the inertia force, has a 
visible effect only at the highest frequency. Figs. 10 
and 11 show comparisons between calculated and 
experimental wave elevations at wave probe W3. 
The same runs as shown in Figs. 8 and 9 are used. 

Depending upon the frequency, numerical 
calculation and experiment show varying degrees of 
correlation. In general, the forces show significant 
nonlinearities. The hydrostatic force time histories, 
based upon S(t) for USAERO/FSP and S0(t) for 
experiment, are essentially equal indicating that the 
change in wetted surface, i.e, AS£ has little effect 
on the hydrostatic component for this particular 
body shape at these oscillation frequencies. 

The numerical and experimentally 
inferred forces due to the dynamic terms in the 
pressure equation, i.e., Eq. 3, compare rea- 
sonably well in magnitude and phase for the low 
frequency cases, Runs 15, 16, and 17. For the 
higher frequency case, Run 12, there is a 
relatively larger difference between calculation 
and experiment. The increased difference may 
be due to tank wall interference. The frequency 
of oscillation for Case 16, the lower frequency, 
corresponds to the third transverse slosh mode 
of the towing tank, while Case 12, the highest 
frequency, is approximately midway between the 
twelfth and thirteenth modes. Cohen and 
Troesch (12) have shown that at frequencies 
where the tank slosh modes are excited, signifi- 
cant increases (greater than factors of two) can 
be experienced in added mass and damping coef- 
ficients. Conversely, at oscillation frequencies 
between tank sloshing and natural frequencies, it 
is possible to measure forces that are quite 
similar to those obtained in unbounded domains. 
See Fig. 12 where the added mass and damping 
coefficients for a sphere and fifteen images 
spaced 22 radii apart are given. The curves of 
the coefficients for a single sphere in unbounded 
water trace approximately a mean line through 
the values shown in Fig. 12. In an attempt to 
understand the effect of the tank walls, further 
numerical studies with boundaries formed by 
walls are currently being conducted. The ex- 
periments demonstrate the truncation boundaries 

Added iu%s 

VVYYTT-^ 

IYVI 
Damping 

Fig. 

i.«     ■•     i.«     '•     ■• 

Frequency  8»«1«/? 

12. Heave added mass and damping 
coefficients for a sphere and 15 
images, spaced 22 radii apart (Cohen 
and Troesch (12). 

in the numerical analysis, particularly those near 
the body, can have a significant influence on the 
hydrodynamic forces. 

The wave elevations shown in Figs. 10 
and 11 are for the first few cycles of motion, 
before the return of the reflected waves become 
significant. The averages of the first few 
experimentally measured wave peaks (maximum) 
and troughs (minimum) are also indicated. Here 
the correlation between theory and experiment is 
generally good over the frequency range. For 
high frequency case, Fig. 10(d), the measured 
troughs over the first few cycles are somewhat 
lower than the calculated values, however, about 
16 seconds later the experimental values settle to 
a new steady value (shown dotted) that is very 
close to the predicted value. Even though 
station W3 is on the centerline, tank wall 
reflections will certainly be influencing the 
conditions by this later time. 

The computations exhibit higher fre- 
quency waves being generated by the large 
motion. Fig. 13 shows a station cut through the 
body and free surface shortly after a wave has 
propagated from the body. The higher 
frequency wave system is superimposed on 
the main wave and is particularly evident in the 
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Fig. 13. High Frequency Waves in the 
Predicted Wave Elevation. CASE 12, 
/= 1.22 Hz, A = 1.5 in (3.81 cm) 

region just preceding the wave. Later in the 
cycle, this high frequency feature is attenuated. 
Qualitatively, the appearance of the shorter 
waves was also observed by the experimental 
time histories and video recordings. 

The cases discussed above are for the 
deck dry condition. Similar time histories were 
recorded for the green water on deck conditions, 
but are not presented here due to page limita- 
tions. The experimental force coefficients for 
both conditions are given in the Appendix. The 
primary difference between the two conditions is 
that the mean of the hydrodynamic force, i.e., 
the mean of Eq. 2, is positive for the deck dry 
condition and negative for the green water on 
deck condition. The nonlinear hydrostatic force, 
Eq. 4, acting as a stiffening spring, produces a 
net positive offset. This is die dominant 
component of the mean shift for the deck dry 
condition. Conversely, the increased mass 
associated with the green water on deck case off- 
sets the hydrostatic component, the net result 
being a negative mean offset. 

SUMMARY AND CONCLUSIONS 

Numerical and experimental results are 
presented for forced, large amplitude oscillations 
of a flared body in a free surface. Critical 
issues that are being addressed in the on-going 
study include contact line behavior, jet develop- 

ment, sharp bow flare and green water on deck. 
The present results show varying degrees of 
correlation, depending upon the frequency of 
oscillation, the main discrepancy being at high 
frequency where the experimental dynamic 
pressure terms appear to be higher than 
predictable. This may be due to tank wall 
interference, and so further numerical studies 
will be conducted with the tank wall and tank 
bottom included in the model. 

The numerical code used in the present 
study is a developing, general purpose 
hydrodynamic method which provides a rational 
technology for evaluating a naval vessel's non- 
linear hydrodynamics. To be effective, such a 
computational tool needs to be evaluated in 
design situation. In particular, as is evident in 
the present study, careful treatment of truncation 
boundaries is required if extended numerical 
simulations are to be conducted. 
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APPENDIX 

Figs. Al and A2 show photographs of 
wave profiles for Run 12 (dry deck condition) 
and Run 19 (green water on deck). Figs. A3(a) 
to (d) qualitatively demonstrate the wave 
progress and green water progress on deck 
during one period. Through careful observation 
of these figures, we can see that among the large 
steep or even breaking waves, there are short 
waves located in front of the wavefront. These 
small waves had been originally thought to be 
primarily capillary waves generated by surface 
tension. However, the numerical results also 
show similar waves induced by the high-frequen- 
cy oscillations. 

Finally, the non-dimensional Fourier 
coefficients for selected experimental results are 
tabulated for Runs 10 through 17, dry deck 
conditions, and for Runs 18, 19, 21, 22, 26 
green water on deck conditions. 
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Fig. Al.  Run 12, Wave Profiles. 

Fig. A2.   Run 19, Wave Profiles. 
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(a) t = \T (b) t = \T 

(c) * = \T (d) * = T 

Fi<*. A3.  Run 19, Progress of Green Water on Deck During One Period. 

976 



Table A. I: Run 10, Nondimensional Foorier Coefficients: Gain and Phase Table A.5: Run M, Nondimensional Fourier Coefficients: Gain and Phase 

1; Ai) A{]) •AM) Fk,U) *».(;') 
0 

2 
3 
4 
5 
6 

.OOOOOE+OO 

.15397E+01 

.30795E+01 

.46192E+01 

.61589E+01 

.76987E+01 

.92384E+01 

91666E-02 
.69752E-01 
.42090 E-03 
.31306E-03 
.315SOE-04 
.13785E-03 
.16248E-03 

.31416E+01 

.21671E+0I 
U070E+01 
26143E+01 
17427E+01 

.34475E+00 
-.29547E+01 

.77915E-02 

.23898L-01 

.85197E-03 

.23504 E-03 

.52671 E-04 
•36377E-03 
.83963E-03 

.OOOOOE+OO 
-.14971E+01 
.31085E+01 
.69417E+00 
.28138E+00 
-.10968E+01 
-.2S679E+01 

; Ai) F*0) ♦*Ü> FAi) ♦-<» 

! 
2 
3 
4 

» 
6 

.OOOOOE+OO 

.15397E+01 

.30795E+01 

.46192E+01 

.61589E+01 

.76987E+01 

.92384E+01 

.31386E-02 

.17755E-01 

.31509E-02 

.23673E-03 

.10909E-03 

.35391E-03 

.904UE-03 

-31416E+01 
.2903SE+01 
.14S03E+01 
.13016E+01 
.15676E+01 
-.94782E+00 
-.25902E+01 

.10930E-01 

.33863E-01 

.33351 E-02 

.14111E-03 

.10700E-03 

.54296 E-04 

.67385E-04 

.OOOOOE+OO 
-.97460E+00 
-19486E+01 
-.58434E+00 
-.10819E+01 
-.24109E+01 
.26940E+00 

; Ai) Ai}) 9AU) F*U) **U) 
0 .OOOOOE+00 .16463E-01 .00000E+00 .44495E-04 .OOOOOE+OO 
1 1S320E+01 .94363E-01 .20400E+01 .29805E-01 -.1S946E+01 
2 .30639E+OI .18781E-02 .25118E+01 .26601E-02 .27302E+01 
3 .45959E+01 .75681E-02 -.17991E+00 .65289E-02 .97101 E-01 
4 .61278E+01 43646E-03 .97797E+00 .23291E-02 -.1S914E+01 
5 .76598E+01 .15599E-02 -.25662E+01 .45387E-02 -.26087E+01 
6 .91917E+01 .14302E-03 .31245E+01 .28182E-02 23368E+01 
i -0) F*U) **(j) FM) *«(» 
0 .OOOOOE+00 .37505E-02 .31416E+01 .37950E-02 .OOOOOE+00 
1 .15320E+01 .21935E-01 .27S09E+01 .42878E-01 -.10968E+01 
2 •30639E+01 .67334E-02 .14746E+01 .64273E-02 -20714E+01 
3 .45959E+01 .10026E-01 .23978E-01 35468E-02 .30307E+01 
4 .61278E+01 .30256E-02 -.14763E+01 .76051E-03 20249E+01 
5 .76598E+01 .52362&02 -.25943E+01 .70103E-03 64033E+00 
6 .91917E+01 .30699E-02 .23676E+01 .26754E-03 -.44329E+00 

Table A.2: Run 11, Nondimensional Fourier Coefficients: Gain and Phase Table A.6: Run 15, Nondimensional Fourier Coefficients: Gain and Phai 

; Ai) A{j) *AÜ) Fk,Ü) *t,0> 
0 
1 
2 
3 
4 
5 
6 

.OOOOOE+00 

.90724E+00 

.18145E+01 

.27217E+01 

.36290E+01 

.45362E+01 

.54435E+01 

.10304E-01 

.58213E-01 

.18129 E-03 

.10808E-03 

.70129E-04 

.50248E-04 

.13997E-04 

31416E+01 
.U278E+01 
•.955O3E+O0 
-.95553E+00 
-.19434E+01 
.94480E+00 
.22071E+01 

.76423 E-02 

.24745E-01 

.17395E-02 
55727E-03 
.1S614E-03 
.37745E-03 
.16215E-03 

OOOOOE+00 
-.22138E+01 
.17806E+01 
-14373E+01 
-.13595E+01 
.98725E+00 
.16128E+01 

i Ai) F*0') •*Ü) F*U) *Ai) 
0 
1 
2 
3 
4 
5 
6 

.OOOOOE+OO 

.90724E+00 

.18145E+01 
-27217E+01 
.36290E+01 
.45362E+01 
.54435E+01 

.19098E-02 

.63955E-02 

.1I278E-02 

.60367E-03 

.21943E-03 
40203E-03 

.16373E-03 

.31416E+0I 
20041E+01 

-.10133E+00 
-.13806E+01 
-.15632E+01 
.99926E+00 
.15845E+01 

.95521 E-02 

.28345 E-01 

.23450E-02 

.56875E-04 

.73633E-04 

.25015E-04 

.48764 E-05 

.OOOOOE+00 
-.20139E+01 
.22562E+0I 
.23499E+01 
.11351E+01 
-.19602E+01 
-.27843E+01 

j Ai)     II     A(j) Mi) F,,U) K(i) 
0 
1 
2 
3 
4 
5 
6 

.OOOOOE+00 

.90616E+00 

.18123E+01 

.27185E+01 

.36246E+01 

.45308E+01 

.54370E+01 

.U037E-01 

.89360E-01 

.43880E-03 

.19795E-03 

.58617E-04 

.14902E-03 

.30375E-04 

.3H16E+01 

.13074E+01 
-.51646E+00 
•62927E-02 
14536E+01 

.43583E+00 
-24332E+01 

.10346E-01 

.38122E-01 

.39064E-02 

.50830 E-03 

.13948 E-03 

.32146E-03 

.12227E-03 

OOOOOE+OO 
-.20220E+01 
.20378E+01 
-.15227E+01 
.61767E+00 
.91975E+00 
.28396E+01 | 

; "0) F*JU) **M) FA]) ♦-Ü)       \ 
0 
l 
2 
3 
4 
5 
6 

.O0O00E+00 

.90616E+00 

.18123E+01 
-27185E+01 
.36246E+01 
.45308E+01 
.54370E+01 

.53088E-02 
93870E-02 
.29023E-02 
53340E-03 
.15954 E-03 
.40015E-03 
12751E-03 

.31416E+01 

.21682E+01 

.3O658E+00 
-.13838E+01 
-.U434E-01 
.793O8E+00 
-.30177E+01 

.1S654E-01 

.43571E-01 

.52254E-02 

.76474E-04 

.94462E-04 

.90849E-04 

.53037E-04 

.0O000E+0O 
-.18341E+01 
.26181E+01 
.29256E+01 
.20773E+01 
-.28119E+01 
.13850E+01 

Table A.3: Run 12, Nondimensional Fourier Coefficients: Gain and Phase Table A.7: Run 16, Nondimensioaal Fourier Coefficients: Gain and Phase 

; Ai) Mi) *AU)      I]     F„U) ♦U/l 
0 
l 
2 
3 
4 
5 
6 

.OOOOOE+00 

.15413E+01 

.30826E+01 

.46239E+01 

.61652E+01 

.77065E+01 

.92478E+01 

.65297E-03 

.87014E-01 

.16010E-02 

.31375E-02 

.22577E-03 

.49204E-03 

.16394 E-03 

.OOOOOE+00 | 48637E-02 
-.23633E+01 8 .32052E-01 
-.39073E+00 1 .17701E-02 
-.90532E+00 1 27284E-02 
-.13888E+01 i  18519E-02 
-.21570E+01 1 .14634E-02 
.64077E+00 | 56197E-03 

.OOOOOE+00 

.26080E+00 

.31388E+00 
-.72586E+00 
-.96717E+00 
-.17734E+01 
.42225E+00 | 

1 -0) F*.{j) «*(i)             F*U) ♦-Ü) 
0 
1 
2 
3 
4 
5 
6 

.OOOOOE+00 

.15413E+01 

.30826E+01 

.46239E+01 

.61652E+01 

.77065E+01 

.92478E+01 

.46875E-02 

.20852E-01 

.53546E-02 

.42924E-02 

.20811E-02 

.16857E-02 

.60672E-03 

.31416E+01  I  95512E-02 
-.14877E+01 I .41213E-01 
-.U314E+01 | .54251E-02 
-.75864E+00 1  15680E-02 
-.93722E+00 1 23662E-03 
-.18001E+01 | .22624E-03 
.35160E+00 | 60865E-04 

.OOOOOE+00 

.78208E+00 

.16806E+01 

.232S9E+01 

.24409E+01 

.11680E+01 

.27833E+01 

Ai)     1 AÜ) »AU) F*U) «WJ) 
0 .OOOOOE+00 .22607E-02 .OOOOOE+00 .88742E-02 .OOOOOE+00 

.75604E+00 104UE+00 -.27156E+01 .4874SE-01 .34424E+00 
2 . 15121E+01 .70231E-03 -.25807E+01 .47351E-02 .55184E+00 
3 .22681E+01 .12037E-03 -.52S84E+00 .31237E-03 -.59290E+00 
4 .30241E+01 .44843 E-05 -.27033E+01 .49845E-04 .168S8E+01 
5 .37802E+01 .81083E-04 -.12459E+01 .33098E-03 .44885E+00 
6 .4S362E+01 .14812E-03 -.U204E+01 .15532 E-03 -20466E+01 

Ai) F+U) **Ü) FAi) *-<» 
0 .00O00E+00 .38206E-02 31416E+01 .12695E-01 .OOOOOE+00 
I .75604E+00 .39962E-02 -.1289SE+01 .49158 E-01 42S46E+00 
2 ■ 15121E+01 .27713E-02 -.17937E+01 .69614E-02 .84031E+00 
3 22681E+01 .40850 E-03 -.92612E+00 -15257E-03 .14817E+01 
4 .30241E+01 21163E-03 .16553E+01 -16182E-03 -.14957E+0I 
5 .378O2E+01 .32383E-03 .28420E+00 .54315E-04 .18058E+01 
6 .45362E+01 ] .22839E-03 --16010E+01 11076E-03 .21895E+01 

Table A.4: Run 13, Nondimensional Fourier Coefficients: Gain and Phase Table A.8: Run 17, Nondimensional Fourier Coefficients: Gain and Phase 

1 w(j) A{]) *AU) F*li) *»,(» 
0 
1 
2 
3 
4 
5 
6 

.OOOOOE+OO 

.90877E+00 

.18175E+01 

.27263E+01 

.36351E+01 

.45438E+01 

.54526E+01 

.10626E-01 
.12812E+00 
.61804E-03 
.18054E-03 
.13004 E-03 
.98900E-04 
.11562E-03 

.31416E+01 

.29189E+01 

.28338E+01 
-.17615E+01 
-.55017E+00 
.19755E+01 
.19735E+01 

.21768 E-01 

.54880 E-01 

.75391E-02 

.37520E-03 

.17087E-03 
328UE-03 
.24007E-03 

.OOOOOE+00 
-.39467E+00 
-.10228E+01 
-.30452E+01 
.98205E+00 
-23604E+01 
.26083E+01 

1 Ai) F*,U) **(» F„U) *AJ) 
0 
1 
2 
3 
4 
5 

« 

.OOOOOE+OO 

.90877E+00 

.18175E+01 
■27263E+01 
.36351E+01 
.45438E+01 
.54526E+01 

.34968 E-02 

.12590E-01 

.55488 E-02 

.46000E-03 

.35279 E-03 

.30762E-03 
34706E-03 

.31416E+01 
-.25210E+01 
-.27343E+01 
-29674E+01 
-41350E+00 
-.25546E+01 
.23633E+01 

.25264 E-01 

.62442E-01 

.99678E-02 

.90753 E-04 

.36420E-03 

.64915E-04 

.I2814E-03 

.OOOOOE+OO 
-.22252E+00 
-43906E+00 
.50165E+00 
.22479E+01 
-.12064E+01 
-.12498E+01 

i Ai) AU) *AU) Fk,(i) •w(j) 
0 
1 
2 
3 
4 
5 
6 

.OOOOOE+OO 

.11478E+01 

.22956E+01 

.34434E+01 

.45912E+01 
57390E+01 
.68868E+01 

.49489E-02 

.96389 E-01 

.50265E-03 

.26520E-03 

.S6076E-04 

.10928E-03 
10968E-03 

.31416E+01 

.13636E+01 
-.29630E+00 
.53561E+00 
-.39698E+00 
.25326E+01 
-12383E+01 

.10808E-01 

.41470E-01 

.37110E-02 

.39161E-03 

.21924E-03 

.61786E-03 

.39037E-03 

.00000E+00 
-.20153E+01 
-20498E+01 
-U079E+01 
-37017E+00 
.23763E+01 
.48135E+00 

1 Ai) F*U) *+U) FAi) «Ai) 
0 
1 
2 
3 
4 
5 
6 

.O0O00E+O0 

.U478E+01 
22956E+01 
.34434E+01 
.45912E+01 
.57390E+01 
.68868E+01 

.34911 E-02 

.11451E-01 

.38928 E-02 

.42007 E-03 

.40559 E-03 

.66371E-03 
39892E-03 

.31416E+01 

.23837E+01 

.23890E+00 
-.91992E+00 
-.61871E+00 
23719E+01 
.31984E+00 

.14300E-01 

.46299 E-01 

.59829E-02 

.81262E-04 
■20048E-03 
.45945E-04 
.64238E-04 

.OOOOOE+00 
-.17778E+0I 
-27339E+01 
-29408E+01 
.22505E+01 
-.82950E+00 
.21044E+01 
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Table A.9: Run lä, Nondimensional Fourier Coefficients: Gain and Phase Table A. 12: Ran 22, Nondimensional Fourier Coefficients: Gain and Phase 

1 w(j) Ml) **U) n,w ♦*(j) 
0 .OOOOOE+OO .15497E-01 .OOOOOE+00 .18527 E-01 .OOOOOE+OO 

1 .U466E+01 .11107E+00 .16430E+01 .64308E-01 -.21427E+01 

2 .22933E+01 .18573E-02 .17124E+01 37259E-02 .1953SE+01 

3 .34399E+01 .15830E-02 -13920E+01 .96256E-02 -551UE+00 j 
4 .45866E+01 .53035E-03 .23465E+01 .37977E-02 

.28605 E-02 

-.80220E+00 1 
5 .57332E+01 .62S26E-03 -.11109E+01 -710I9E+00 1 
6 .68799E+01 .28269E-05 -.23278E+01 .11207E-02 -.31062E+01 1 

> «(» F+U) «WÜ) F.Ü) •«I» 
0 .OOOOOE+OO .77864 E-01 .OOOOOE+OO .59337E-01 .31416E+01 1 
1 .11466E+01 .38526E-01 -.29161E+01 .4SS43E-01 -.1510SE+01 I 
2 .22933E+01 .18851E-01 3O596E+01 .17501E-01 .1095OE+O0 j 
3 .34399E+01 .85752E-02 -.45949E+00 .13401E-02 -.11765E+01 
4 .45866E+01 .37093 E-02 

.24266E-02 

-.17927E+01 .35687E-02 .25154E+00 
5 .57332E+01 -.7OOS2E+0O .43471 E-03 -.76368E+00 

I6 
.68799E+01 .22147E-02 -.28896E+01 .11458 E-02 .46376E+00 

1 "(» Mj) **U) F».(;) **,(>) 
0 .OOOOOE+00 .S5468E-02 .31416E+01 .34316E-01 .31416E+01 
1 .15444E+01 .54402 E-01 .43332E+00 .26147E-01 .30400E+01 
2 .3O889E+01 .22047E-03 .22759E+00 .12911 E-02 -.17250E+01 
3 .46333E+01 .87392E-04 .22433E+01 .69507 E-03 .21515E+01 
4 .61778E+01 .74737E-04 -.12963E+01 .27472 E-03 .20944E+01 
5 .77222E+01 .11435E-03 .22934E+01 .82594 E-04 26658E+01 
6 .92667E+01 .10210E-03 -.1M71E+01 .27884E-02 .55135E+00 

; «0) F+U) **U) F«(i) *«(» 
0 .OOOOOE+OO .97429E-02 .31416E+01 .24573E-01 .31416E+01 
1 .15444E+01 .13605E-01 .22178E+01 .19611E-01 -.27099E+01 
2 .3O889E+01 .78464E-02 .77579E+00 .89148E-02 -.22791E+01 

3 .46333E+01 .11229E-02 .17715E+01 .54255E-03 -.18653E+01 
4 .61778E+01 .14419E-02 -.14880E+01 .I6944E-02 .17228E+01 
5 .77222E+01 .25521E-03 -.12775E+01 .31823E-03 .20517E+01 
6 .92667E+01 .25143E-02 .77732E+00 .65700E-03 -.47S91E+00 | 

Table A. 10: Ron 19, Nondimensional Fourier Coefficients: Gain and Phase Table A.13: Run 26, Nondimensional Fourier Coefficients: Gain and Phase 

; <4i) Mi) *AU) F„,U) «».Ü) 
0 
l 
2 
3 
4 
5 
6 

.OOOOOE+OO 

.15413E+01 

.30826E+01 

.46239E+01 

.61652E+01 

.77065E+01 

.92478E+01 

.98626 E-02 

.92012E-01 

.210O2E-02 

.62513E-02 

.26365E-03 

.65859E-03 

.33399 E-03 

.OOOOOE+OO 
-.19787E+01 
.11066E+01 
.30871 E+00 
.29368E+01 
.23433E+01 
-.22978E+01 

.43162E-01 

.45632 E-01 

.46910E-02 

.13555E-01 

.20892 E-02 

.60303E-02 

.32771 E-02 

.31416E+01 

.57147E+00 
•83565E-01 
.47439E+00 
.28394E+01 
.24249E+01 
.24022E+01 

; W(J') f*ü) **(;) F.U) *«(>) 
0 
1 
2 
3 
4 
5 
6 

-OOOOOE+OO 

.15413E+01 

.30826E+01 

.46239E+01 

.61652E+01 

.77065E+01 

.92478E+01 

.46338 E-02 

.24848 E-01 

.13573E-01 

.14897E-01 

.30831 E-02 

.64857E-02 

.32083 E-02 

.OOOOOE+OO 

-.39696E+00 

.20343E+01 

-42869E+00 

.230S1E+01 

.24366E+01 

.21572E+01 

.47796E-01 
376ME-01 
.16507E-01 
14915E-02 

.16683 E-02 

.46125 E-03 

.79538 E-03 

.31416E+01 

.11471 E+01 
■.S6216E+00 
-31410E+01 
-.15280E+01 
-.55O87E+00 j 
-.25I87E+01 

j "»(>) Mi) **U) Fk,U) *k,U)      8 
0 .OOOOOE+OO .22042E-01 .OOOOOE+OO .56993 E-01 .31416E+01 | 

1 .15429E+01 .93334E-01 -.27806E+01 .46324E-01 -.21152E+O0 I 

2 
3 

.30857E+01 .23754E-02 -.42320E+00 .37485E-02 ..18316E+01 | 

.46286E+01 .74645E-02 -.20661 E+01 .16370E-O1 -.19127E+01 j 

4 .61715E+01 .48807E-03 .S5321E+00 .24425E-02 -.44493E+00 | 

5 .77144E+01 .13507E-02 -.15452E+01 .10974E-01 ■14123E+01 i 

6 .92572E+01 .67506E-04 -.21451E+01 .27132E-02 .S7440E-01   | 

; -<0) ft.0) *+U) F.U) ♦-Ü)        I 
0 .OOOOOE+00 .39978 E-02 .31416E+01 .52995E-01 .3H16E+01 

l .15429E+01 .24557E-01 -.12879E+01 .40859E-01 .34597E+00 

2 .3O857E+01 .13771E-01 .51215E+00 .16607E-01 -.24672E+01 
.54919E+00 3 .46286E+01 .17187E-01 -.19505E+01 .10343E-02 

4 .61715E+01 .30666E-02 -.74O23E+O0 .10188E-02 .16291E+01 

5 .77144E+01 .12266E-01 -.14083E+01 .12924E-02 .17669E+01 

6 .92572E+01 .24S93E-02 .36056E+00 .82028E-03 -.10509E+01 

Table A.11: Run 21, Nondimensional Fourier Coefficients: Gain and Phase 

J w(» Mi) *AU) F*U) «*(;)     I 
0 .OOOOOE+OO .S4245E-02 .31416E+01 .69884 E-01 .31416E+01 
1 .75528E+00 .10465E+00 -67230E+00 .56732E-01 18302E+01 
2 .15106E+01 .40534E-03 -22521E-H11 .13323E-01 -31410E+01 
3 .22659E+01 .24738E-03 -37246E+O0 .32185E-02 -24S44E-01 
4 .302UE+01 .20734E-03 -.15729E+00 .21840 E-02 -.2O495E+01 
5 .37764E+01 .13235 E-03 -.9S699E+O0 .33326E-02 .21538E+01 
6 .45317E+01 .65777E-04 -.14876E+01 27224E-02 18476E+00 
; «0) F+Ü) •*<j) F.U) *.U) 
0 .OOOOOE+00 .20925E-01 .3U16E+01 .48960E-01 .31416E+01 
l ■75528E+00 .34418E-01 .I1000E+01 .3S647E-01 .24663E+01 
2 .15106E+01 .18939E-01 -.21058E+01 .16693E-01 .17923E+01 
3 .22659E+01 -32400E-02 -.55387E-01 .10189 E-03 .17436E+01 I 
4 .30211E+01 .23761 E-02 -.19418E+00 .36509E-02 -.27242E+01 
5 37764E+01 .29918E-02 .20778E+01 .41671 E-03 .27297E+01 
6 .45317E+01 .23828 E-02 7I389E+00 13746E-02 -.88071E+00 | 
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DISCUSSION 

H. Choi 
Seoul National University, Korea 

I am very curious that the measured time history 
contains a lot of noise. In the case of forced 
oscillations, we normally do not have that much 
noise. Would you please explain where the noise 
came from? 

with regard to currently available computer 
resources—of complete ships in waves. The very 
high panel densities used by Professor Mario and 
others in the pursuit of the details of jet formation in 
2-D are not currently practical for complex three- 
dimensional situations; however, such work in 2-D 
should provide important insight into numerical 
modeling of jet effects in 3-D impact problems and 
should show to what extent the jet details need to be 
represented when computing slamming loads. 

AUTHORS' REPLY 

The unwanted noise mainly came from the 
mechanical vibration of the VMM dynamometer and 
the towing tank carriage. Before the analog signals 
were digitized at a sampling frequency of 75 Hz, they 
were passed through a multiple filter bank with a 
cutoff frequency of 25.6. The FFT analysis is used to 
filter the noise numerically by zeroing the FFT above 
a certain frequency, say the sixth harmonic 
frequency. 

DISCUSSION 

M. Tulin 
University of California at Santa Barbara, USA 

You have explained that your method does not have 
sufficient resolution to calculate accurately the water 
rise near the hull. In connection with Jim White's 
question about calculating water over the deck, it 
should be mentioned that in Session Ml, Professor 
Mario showed 2D+T calculations of bow impact in 
waves with water rise and thick jet formation; the 
resolution was very high. Water was followed to 
substantial height over the deck. 

AUTHORS' REPLY 

My remark concerning the panel density was in 
connection with resolving the thin jet formed during 
body impact, not the calculation of the water rise 
near the hull. Judging from the good agreement 
shown here between the calculated and measured 
loads and also free surface elevation, the general 
level of water rise to the base of the jet is represented 
very well by the calculation. I wanted to emphasize 
that the calculation shown here is from a fully three- 
dimensional nonlinear method and that the panel 
density used is consistent with practical treatment— 
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Computation of Viscous Marine Propulsor 
Blade and Wake Flow 

F. Stern, D. Zhang, B. Chen, H. Kim (University of Iowa, USA), 
S. Jessup (David Taylor Model Basin, USA) 

ABSTRACT 

Viscous-flow results are presented for 
the realistic SR7 turboprop and marine-propulsor 
P4119 and P4842 geometries, including both 
design and off-design conditions. For the design 
condition, overall close agreement with the data 
is shown for the performance, pressure and 
surface-streamline distributions, circumferential- 
average velocity profiles, phase-averaged flow, 
boundary-layer and wake development, and tip 
and hub/root vortices, including the significant 
effects of geometry. However, some differences 
are evident, which indicate lack of detailed 
resolution, e.g., certain aspects of the tip and 
hub/root vortices and boundary-layer and wake 
development. For the off-design condition, the 
results are similar and consistent with 
expectation, but with increased effects of lack of 
detailed resolution. The extensive results enable 
explication of the nature of the complex three- 
dimensional viscous propulsor blade and wake 
flow. Concluding remarks are provided, 
including comparison with inviscid-flow and 
related methods, prognosis for improvements, 
and future work. 

NOMENCLATURE 

c chord length 
Crj) section drag coefficient 
Cp pressure coefficient (=2p/pVR2) 
Cp power coefficient (=2;CKQ) 

D propeller diameter 
J advance coefficient (=Uo/hD) 
KQ thrust coefficient ^T/pn2!»4) 
Rp torque coefficient (^/pn2!)5) 
Ma Mach number 
n propeller revolutions per second 

(=CO/27T) 

p pressure 

Q torque 
R propeller radius 
Re Reynolds number (=U0D/v) 
s distance along chord or pitch helix 
Si,etc. solution-domain boundaries 
T thrust 
Uo freestream velocity 
u* wall-shear velocity 
VB streamwise pitchline velocity in 

noninertial coordinates 
(=Wcos<(H-Usin<t)) 

AVB wake velocity deficit (=VB-VBmin) 
VN normal pitchline velocity in noninertial 

coordinates (=Wsin<j>-Ucos<(>) 
VR resultant section inflow 

[^(cor)2]1'2 

V mean-velocity components in inertial or 
noninertial cylindrical coordinates 
(=U,V,W) 

x,r,8 cylindrical coordinates 
y>y+ normal distances 
Ay wake half width 
ß blade angle 
8* displacement thickness 
e momentum thickness 
V fluid kinematic viscosity 
vt eddy viscosity 
\s\£ nonorthogonal curvilinear coordinates 
p fluid density 
4> pitch angle 
cox axial voracity 
n propeller angular velocity (=co,0,0) 

INTRODUCTION 

Marine propulsors are unique in 
comparison to related applications (e.g., 
turbomachinery, turboprops, and rotors) in that 
they operate in the thick hull boundary layer 
and/or appendage wakes such that complex 
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naturally (hull flow) and forced (propulsor flow) 
unsteady interactions occur. In practice, inviscid- 
flow methods are used that rely on specified 
effective inflows, the latter of which, until the 
recent computational fluid dynamics (cfd) 
interactive approach of [1] was ill-defined. 
Although successful in providing a rational 
mechanics framework for calculating the effective 
inflow, the interactive approach is unable to 
predict the viscous propulsor blade and wake 
flow, which motivated the precursory cfd method 
of [2] that was demonstrated for an idealized 
propulsor-shaft configuration with infinite-pitch 
rectangular blades. The present work concerns 
further developments for realistic SR7 turboprop 
and marine-propulsor P4119 and P4842 
geometries. Also of relevance is the concurrent 
work for unsteady-flow calculations [3,4]. 

The work for related applications is 
impressive, especially with regard to 
developments for complex configurations, but 
primarily involves cfd methods for compressible 
flow [5]. Modifications of these methods for 
incompressible flow are possible [6,7], but not 
trivial and problematical for unsteady-flow 
calculations, such that the present work is a 
justifiable alternative. 

In the following, the computational 
method and experimental data are described and 
the computational conditions, grids, and 
uncertainty are given. Then, the results are 
discussed for the SR7, P4119. and P4842 for the 
design and in the former and latter cases off- 
design conditions. Lastly, some concluding 
remarks are made, including comparison with 
inviscid-flow and related methods, prognosis for 
improvements, and future work. 

COMPUTATIONAL  METHOD 

The unsteady Reynolds-averaged Navier- 
Stokes (RaNS) and continuity equations with the 
Baldwin-Lomax turbulence model are solved for 
the mean-velocity components V=(U,V,W), 
pressure p, and eddy viscosity vt. The transport 
equations for V are written in noninertial 
cylindrical coordinates (x,r,9) rotating with 
constant angular velocity ß=(co,0,0) in the 
physical domain and partially transformed into 
numerically-generated, boundary-fitted, 
nonorthogonal, curvilinear coordinates (£,T|,Ö- 
Variables are nondimensionalized using the 
freestream velocity Uo (=1), propeller diameter D 
(=1), and density p. The transformed equations 
are solved using a regular grid, finite-analytic 
discretization, a PISO-type velocity-pressure 
coupling algorithm, and the method of lines. 
Although the present solutions are for steady 

flow, the equations are solved in unsteady form 
with time serving as a convergence parameter. 
For laminar flow, Vt=0 and V and p are 
interpreted as instantaneous values. 

The physical and computational 
domains are shown in figure 1. The boundary 
conditions are specified as follows: on the inlet 
plane S-, uniform inflow with zero pressure 
gradient, i.e., (U,V,W,pe)=(l,0,cor,0); on the 

exit plane S_, which is located in the far wake, 
axial diffusion is negligible and a zero-gradient 
condition is used for pressure, i.e., (Vee,pe)=0; 
on the outer boundary S , uniform flow with 
zero pressure gradient, i.e., (U,W,pT1)=(l,cor,0) 
and V is obtained from the continuity equation; 
on the shaft and blade surfaces Sg, S^, and S^ , 
no-slip condition, i.e., (U,V)=0 and W=0 and cor 
for rotating and nonrotating parts, respectively; 
on the periodic boundary planes S    and S    , 
periodic boundary conditions, i.e., 
V/p(^,Ti>Ö=V/p(^Ti,C+Cp) where ^ corresponds 
to the blade-to-blade interval; and on the 
symmetry  axis  L ,   symmetry   conditions 

(V,W)=0 and 3(U,pÄ=0. 
The grid was obtained using a modified 

version of PMESH [8], which employs algebraic 
methods with transfinite interpolation. H-grids 
were used with clustering near the shaft and blade 
surfaces and leading-, trailing-edge, and tip 
regions. 

EXPERIMENTAL  DATA 

Initially, calculations were made for the 
SR7; since, PMESH was developd specifically 
for such geometries and its relatively high pitch 
(i.e., blade angle) was hoped to be easier to 
handle. Wind tunnel and flight data are available. 
In particular: surface-pressure data for a large- 
scale single-rotation configuration over a range of 
Mach numbers (Ma) and blade angles [9]; and 
laser-doppler velocimeter (ldv) data [10] and flow 
visualization studies [11] for counter-rotation 
configurations. Comparisons are made with tests 
5-8 of [9]. As discussed later, Ma effects and 
uncertainty in blade angles for the data 
complicates the comparisons. Also, qualitative 
comparisons are made with [10,11]. 
Subsequently, calculations were made for P4119 
and P4842 for which, without doubt, the most 
extensive marine-propulsor data is available, 
including flow-visualization studies and detailed 
boundary-layer and wake and tip, hub, and 
juncture vortex ldv data [12-15]. Calculations 
and comparisons are made with the complete set 
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of data. Also, although no data is available, off- 
design condition calculations were made for 
P4842. Reviews of other related data are 
provided by [9-14]. Also of relevance is the 
recently acquired multiple-blade-row data [16], 
which was the test case for [6]; however, detailed 
viscous-flow data is lacking. 

COMPUTATIONAL CONDITIONS, 
GRIDS,   AND   UNCERTAINTY 

The experimental and cfd conditions and 
propulsor geometries and cfd evaluation and data 
comparison locations are summarized in table 1 
and figure 2. In general, the cfd conditions 
correspond to those of the data; however, there 
are some differences, especially for the SR7. For 
the SR7: the cfd Ma = 0, whereas Ma = .2 and 
.5 for the data; the Reynolds number 
(Re=U0D/v) values for laminar (104) and 

turbulent (106) flow are less than that for the data 
(107), which is for natural transition; and there 
are differences in the blade-angle ß values for 
which there was large uncertainty for the data, 
i.e., in addition to the indicated setting-angle 
ranges, the deformation angles were significant 
and undocumented. For P4119 andP4842: the 
cfd is for laminar and turbulent and, in the former 
case, laminar/turbulent with fixed transition 
locations based on the data, whereas the data is 
for both natural and leading-edge roughness 
transition. 

A partial view of the P4842 grid is 
shown in figure 3 and is similar to those for the 
SR7 and P4119. The inlet, exit, and outer 
boundaries for P4119 and P4842 are located at 
x=(-3,4) and (-3,8), respectively, and r=2. The 
first grid points off the body surface are located in 
the range y+ (=ReUTyn)<6 (P4119) and 10-20 
(P4842). The grid distributions are 
105x46x52=251160 (P4119) and 115x51x46 
=269790 (P4842). The P4119 and P4842 grids 
are relatively fine and coarse, respectively, with 
regard to resolution of the blade boundary layer 
due to the differences in y+ values for the first 
grid points off the body surface. The values of 
the time increment and underrelaxation factors for 
velocity and pressure are: .01; .5; and .1. The 
CRAY C90 time and central memory were about 
25 min per 1000 global iterations and 25 mw. 
The convergence criterion was that the residual 
for all variables be about 10"4, which was 
satisfied in about 500-1000 global iterations for 
the laminar solutions and an additional 500 
global iterations for the turbulent solutions. 

The following discussions are based on 
the complete results, which, as indicated in figure 

2, are extensive; however, for brevity, only 
representative results are shown. Additional 
results are available upon request from the 
authors. The focus concerns the cfd and 
comparisons to the design-condition data with the 
terminology implied unless necessary for clarity. 
Lack of comparisons indicates lack of data. 

SR7 

The performance is also shown in table 
1. The J and ß trends are similar to the data; 
however, quantitative comparison is precluded 
due to the large uncertainty in ß for the data. The 
turbulent vs. laminar solutions display smaller 
Cp values. 

Typical surface-pressure distribution 
results for Test 7 are shown in figure 4, which 
are also indicative of the trends for Tests 5, 6, 
and 8. For design loading (i.e., for Tests 5 and 8 
and at the inner radii for Tests 6 and 7 where the 
loading is relatively constant over the chord), 
satisfactory agreement is observed, whereas for 
off-design loading (i.e., at the outer radii for 
Tests 6 and 7 where large leading-edge and tip- 
region suction peaks are observed due to the 
influence of leading-edge and tip vortices), the 
agreement is less satisfactory due to the lack of 
resolution of the suction peaks. The ß=63.5° 
particle traces (figure 5) display the nature of the 
predicted three-dimensional boundary layer with 
vortical/separation regions, including leading- 
edge and tip vortex and trailing-edge root 
separation, which is similar with the observed 
flow pattern; however, the surface-streamline 
patterns lack the details of the data with regard to 
the detachment/attachment lines. The overall and 
near-wake flow patterns are similar with 
expectation and data, respectively (e.g., evolution 
of blade boundary layers and wakes, tip vortex 
formation and trajectory, hub effects, etc.). 

In summary, the design-loading results 
appear to be satisfactory, whereas the off-design 
results are not due to the lack of resolution of the 
leading-edge and tip vortex; however, geometric 
differences and uncertainty and lack of Ma effects 
(increased suction peaks and shock waves) and 
data precludes a definitive evaluation. 

P4119   AND   P4842 

The predicted performance for the design 
(and off-design) condition is within 5-10% of the 
data, which is considered satisfactory in view of 
the present grid resolution and turbulence model, 
which is, in general, the case throughout the 
following discussions (see Concluding Remarks 
for discussion of prognosis for improvements) 
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and the differences between the present hub 
geometry and that used for the open-water tests 
and the fact that the data represents the difference 
between the measured propeller and hub-only 
loads. 

Consistent with the performance 
predictions, figure 6a shows close agreement for 
the P4119 design-condition surface-pressure 
distributions, except at the inner radii near the 
trailing edge, which is likely because the data is 
based on velocity measurements at the boundary- 
layer edge and the Bernoulli equation and viscous 
effects are substantial in this region (i.e., 
trailing-edge root separation). The P4842 design- 
condition and inviscid-calculation results at mid- 
span show close agreement, whereas near the tip 
the differences are significant, which, here again, 
is likely due to viscous effects. For the off- 
design condition, suction and pressure peaks are 
indicated near the leading edge. The pressure 
contours (figure 6b) display the overall 
distributions and significant effects of geometry, 
i.e., differences between the P4119 and P4842 
loading (larger loading per blade for P4842 than 
P4119, except near the hub and tip), pitch and 
skew distributions (P4119 has nearly constant 
pitch and zero skew, whereas P4842 has extreme 
variations of pitch and skew), number of blades 
(P4119 has 3 blades, whereas P4842 has 5 
blades), hub geometry, etc. 

The P4119 design-condition surface 
streamlines show remarkably close agreement: 
demarcation of regions of laminar/turbulent flow 
by increased/reduced radial-velocity magnitude; 
similarity between natural and leading-edge 
roughness transition and laminar/turbulent and 
turbulent flows, respectively; and trailing-edge 
root separation. Figure 7a shows the P4842 
design-condition turbulent flow surface 
streamlines. The laminar patterns are similar. 
The patterns are complex in comparison to those 
for P4119, especially on the suction side, 
indicating profound geometry effects: leading- 
edge and tip vortices, large regions of significant 
spanwise flow, and trailing-edge root separation. 
For the off-design condition, the spanwise flow 
and regions of trailing-edge root separation and 
leading-edge and tip vortices are increased. There 
is a direct correspondence between the 
vortical/separation and low pressure regions (cf. 
figures 6b and 7). Figure 7b shows the design- 
condition data, which, although similar in many 
respects to figure 7a, indicates less spanwise 
flow. 

Figure 8 shows wall-shear stress 
contours, which are consistent with expectation 
in indicating the fixed transition locations and 

boundary-layer thickening and vortical/separation 
regions. 

Figure 9 shows the circumferential- 
average velocity profiles. Close agreement is 
observed for many aspects, including upstream 
(extent, axial acceleration, hub-induced outward 
radial flow, and preswirl flow) and downstream 
(very significant axial acceleration, radial 
contraction, and swirl flow) influences. 
However, the upstream and far downstream radial 
flow is under predicted and the inner/outer swirl 
flow is under/over predicted. Figure 10 shows 
the radial circulation distribution deduced from 
the swirl profile with differences consistent with 
the differences in the swirl profiles. Note the 
increased tip loading for P4119 vs. P4842. The 
off-design results shown in figures 9 and 10 
display the increased loading effects and are 
consistent with expectation. 

Figures 11-13 show the phase-averaged 
flow for P4119 for upstream, mid-chord, and 
downstream planes, respectively, including both 
noninertial and inertial coordinates and velocity 
components (VB,V,VN) and (U.V.W), 
respectively. For the upstream plane: the 
pitchline- and axial-velocity contours display 
leading-edge stagnation effects, which are largest 
at the closest proximity to the blade (i.e., at the 
root) and the blade-to-blade axial acceleration, 
which is largest at a position approximately 
midway between the blades and r/R=.7; the cross- 
plane vectors and particle traces indicate 
inward/outward radial flow in the stagnation 
region for the inner (r/R<.5) and outer (r/R>.5) 
radii, respectively, whereas in the blade-to-blade 
region the flow is primarily tangential towards 
the position of maximum axial acceleration 
(inertial) and clockwise, including a hub/root 
vortex close to the pressure side (noninertial); the 
pressure contours correlate with the axial-velocity 
contours, but with reverse trend in magnitude; 
and the detailed circumferential velocity profiles 
are in close agreement. Note that the far- 
upstream plane primarily displayed the influences 
of the rotating shaft with minimal influence of 
the propeller. 

For the mid-chord plane: the pitchline- 
and axial-velocity contours display the low- 
velocity blade and hub boundary layers and tip- 
vortex region and the blade-to-blade axial 
acceleration with relatively larger values on the 
suction vs. the pressure side; the cross-plane 
vectors and particle traces (noninertial and 
inertial) indicate outward radial flow for both the 
pressure and suction boundary layers, except in 
the latter case, near the tip due to the effects of 
the tip vortex and the nature of the clockwise 
(i.e., pressure- to suction-side flow) passage and 
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tip vortices; the pressure contours display the 
blade loading and correlation with the axial- 
velocity contours and cross-plane vectors; and the 
pitchline- and axial-vorticity contours display 
relatively large values confined to the blade and 
hub boundary layers and tip-vortex region. 

For the downstream plane: the 
pitchline- and axial-velocity contours display the 
low-velocity blade wake, hub boundary layer, and 
tip-vortex region and the blade-to-blade axial 
acceleration albeit with reduced magnitudes; the 
cross-plane vectors and particle traces (noninertial 
and inertial) indicate complex sheared flow within 
the blade wake (i.e., upward flow on the suction 
side and downward/upward flow on the pressure 
side for the inner (r/R<.7) and outer (r/R>.7) 
radii, respectively, whereas in the blade-to-blade 
region the flow is primarily tangential from the 
pressure to the suction side and the nature of the 
clockwise evolving tip vortex and hub/root 
vortex close to the suction side; the pressure 
contours indicate relatively lower/higher pressure 
within the hub boundary layer and tip vortex and 
blade wake, respectively; the pitchline- and axial- 
vorticity contours are similar to the mid-chord 
plane, but with increased extent and reduced 
magnitude; and the detailed circumferential 
profiles indicate over/under prediction of the wake 
width/deficit and lack of detailed resolution of the 
tip and hub/root vortices. Note that the trends 
for the far-downstream plane are similar to those 
just described, but with physical and considerable 
numerical dissipation such that due to the latter a 
reduction is shown in the resolution of the flow 
and agreement with the data. 

The trends for P4842 are similar and 
consistent (figure 14); however, certain 
differences are apparent due to the significant 
effects of geometry: reduced influence at the 
upstream and downstream planes, except near 
r/R=.6 and .8, respectively, due to the differences 
in blade proximity; increased hub effects, 
including outward radial flow; and increasingly 
distorted flow patterns with downstream distance 
(stagnation flow, blade-to-blade flow, boundary 
layers and wakes, and tip and hub/root vortices), 
which roughly follow the blade skew/pitch 
distributions, apparently resulting in increased 
mixing. The off-design results are similar, but 
more exaggerated, which is the case, in general, 
such that they will not be further discussed. 

Figures 15-18 show the boundary-layer 
development for P4119 for r/R=(.7,.9,.95,.975), 
respectively. Pressure-gradient and three- 
dimensional effects (i.e., overall outward radial 
flow and tip-vortex effects) are evident. The 
trends for both laminar and laminar/turbulent 
flow are similar, but with increased boundary- 

layer thickness for the latter case. On the suction 
side, the displacement thickness initially reduces 
(Ooc/c<.6) and then rapidly increases (.6<x/c<l). 
The thickness increases towards the outer radii. 
On the pressure side, the displacement thickness 
gradually increases from the leading to trailing 
edge, except for r/R=(.9,.95,.975) where there is 
a small reduction near the trailing edge The 
thickness reduces towards the outer radii. The 
chordwise trends are consistent with the 
pitchline-pressure gradients and further exhibited 
by the pitchline-velocity profiles. Similarly, the 
radial trends are consistent with the radial- 
pressure gradients and further exhibited by the 
radial-velocity profiles. On the suction side: 
near the leading edge, the profiles are S-type with 
large outward values near the blade, whereas from 
mid-chord to the trailing edge the profiles become 
inward with increasing magnitude towards the 
outer part of the boundary layer and trailing edge, 
especially for r/R=(.9,.95). On the pressure side, 
the profiles display large outward values, 
especially near the blade, with increasing 
magnitude towards the trailing edge and outer 
radii. In general, the data shows similar trends; 
however, some differences are evident: 
differences in edge values, which is surprising in 
view of the close Cp agreement; reduced 
displacement thickness near the trailing edge for 
the outer radii on suction side; and complex 
pitchline-velocity profiles for r/R=.975 with 
large velocity deficits near the trailing edge. 

Figure 19 shows the wake development 
for P4119 for r/R=(.7,.9). The nature of the 
wake recovery is displayed, including significant 
three-dimensional effects (recall earlier discussion 
of the cross-plane vectors within the blade wake 
at the downstream plane). Figure 20 shows the 
wake deficit, half width, and momentum 
thickness parameters, which, interestingly, 
follow two-dimensional correlations. Also 
shown is the radial distribution of the section 
drag coefficient, which also follows two- 
dimensional correlations for the outer radii, but 
not the inner radii due to the effects of the 
trailing-edge root separation and, additionally, 
indicates smaller/larger values for the inner/outer 
radii than inferred from the momentum thickness. 
The agreement with the data is similar as 
described earlier for the phase-averaged flow for 
the downstream and far-downstream planes. 

Note that the trends for the inner radii 
(e.g., r/R=.3) show differences due to the effects 
of the trailing-edge root separation and passage 
and hub/root vortices: rapid increase of 
displacement thickness on the suction side near 
the trailing edge; large outward radial velocities 
on both sides near the blade surface with 
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increasing magnitude towards the trailing edge 
and inward radial velocities across the boundary 
layer on the pressure side with increasing 
magnitude towards the trailing edge; and large 
wake deficits and half widths and sheared radial 
velocities. 

The trends for P4842 (figures 20-21) 
display significant differences: complex 
boundary-layer flow with increased three- 
dimensionality and rapid wake recovery, which is 
consistent with the surface streamlines and phase- 
averaged flow, respectively. In particular: on 
both sides, the displacement thickness is nearly 
constant along the chord, except near the trailing 
edge where it rapidly increases; on the suction 
side, the displacement thickness increases from 
r/R=.5 to .7, which corresponds to the region of 
significant spanwise flow, and then reduces from 
r/R=.7 to .9, whereas on the pressure side, the 
displacement thickness is large at r/R=.5, which 
corresponds to the region of trailing-edge root 
separation, and then reduces towards the outer 
radii r/R=.7 and .9; the radial-velocity profiles 
display large values and inward/outward 
variations along the chord; and initially larger 
(s/Q<150) and subsequently (s/0>150) smaller 
deficits, overall significantly (i.e., order of 
magnitude) larger half widths, and smaller 
momentum thickness, except near the tip region. 

Lastly, the details of the tip-vortex 
development and evolution are considered (figure 
22). The tip-region velocity profiles for P4119 
display the earlier referenced lack of detailed 
resolution of the tip vortex, i.e., the vortex is 
not fully resolved and diffused over a broader area. 
The vectors display the roll-up process, which 
initiates at about x/R=0 with subsequent 
intensification and inward radial and outward 
tangential migration off the blade surface. The 
parameters indicate the level of the maximum 
vorticity and circulation, core size, contraction, 
and angular and pitch trajectory. The trends are 
in agreement; however, the maximum values and 
contraction are under predicted, whereas the core 
size is over predicted. 

Here again, the trends for P4842 display 
significant differences: the intensity of the roll- 
up process is reduced and elliptically shaped; 
large reductions in maximum values, radial core 
size, and contraction; and differences in angular 
and increased pitch trajectory. 

CONCLUDING   REMARKS 

Viscous-flow results have been 
presented for the realistic SR7 turboprop and 
marine-propulsor P4119 and P4842 geometries, 
including both design and off-design conditions. 

For the design condition, overall close agreement 
with the data is shown for the performance, 
pressure and surface-streamline distributions, 
circumferential-average velocity profiles, phase- 
averaged flow, boundary-layer and wake 
development, and tip arid hub/root vortices, 
including the significant effects of geometry. 
However, some differences are evident, which 
indicate lack of detailed resolution, e.g., certain 
aspects of the tip and hub/root vortices and 
boundary-layer and wake development. For the 
off-design condition, the results are similar and 
consistent with expectation, but, with increased 
effects of lack of detailed resolution. The 
extensive results enable explication of the nature 
of the complex three-dimensional viscous 
propulsor blade and wake flow. 

The work has successfully demonstrated 
the ability of cfd in simulating marine-propulsor 
flow, including not only the usual inviscid-flow 
quantities (i.e., performance, pressure 
distributions, and circumferential and phase- 
averaged flow), but, additionally, the viscous 
blade and wake flow (i.e., boundary layers and 
wakes and tip, hub/root, and passage vortices). 
The accuracy is at least as good as the inviscid 
methods, especially in view of the present grid 
resolution and turbulence model, without the 
necessity of their ad hoc parameters (i.e., 
empirical viscous corrections) and superior to the 
earlier mentioned related work with regard to 
detailed resolution of the viscous flow. 
Furthermore, applications to design, including 
development of tip-vortex reduction schemes and 
minimization of blade wake interactions with 
downstream appendages etc. and extensions for 
off-design conditions, backing and crashback, and 
propulsor-body interactions are surely possible, 
including unsteady-flow calculations, without, in 
the case of propulsor-body interactions, requiring 
the specification of the fictitious effective wake. 

Of course, improvements are expected 
through the incorporation of more advanced grid 
techniques (e.g., overlaid grids), turbulence 
modeling (e.g., Reynolds-stress models), and 
higher-order discretization procedures; however, 
these are the pacesetting issues of cfd such that it 
is recommended that such improvements be 
carried out in conjunction with extensions for 
unsteady-flow calculations, especially in view of 
the unique requirements for such simulations 
(e.g., unsteady turbulence models). As already 
pointed out, concurrent work on this topic is 
already underway, including a companion paper at 
this conference [4]. 

Lastly, more detailed boundary-layer 
data, including leading-edge and hub/root regions 
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and radial velocities, and turbulence data is 
imperative for further validation. 

ACKNOWLEDGMENTS 

This research was sponsored initially by 
ONR/DARPA SUBTECH Program Contract 
N00014-89-J-1342 under the administration of 
Dr. E. Rood and Mr. G. Jones and completed by 
ONR Grant N00014-92-J-1118 under the 
administration of Mr. Jim Fein. Computer funds 
were provided by the NASA Numerical 
Aerodynamic Simulation Program and by ONR 
NAVOCEANO Primary Oceanographic 
Prediction System. 

REFERENCES 

1. Stern, F., Kim, H.T., Zhang, D.H., 
Toda, Y., Kerwin, J., and Jessup, S., 
"Computation of Viscous Flow around Propeller- 
Body Configurations: Series 60 Cß = .6 Ship 
Model," J. Ship Research. Vol. 38, No. 2, June 
1994, pp. 136-156. 

2. Kim, H.T. and Stem, F., "Viscous Flow 
around a Propeller-Shaft Configuration with 
Infinite-Pitch Rectangular Blades," J. Propulsion 
Vol. 6, No. 4, 1990, pp. 434-444. 

3. Paterson, E. G., "Computation of 
Natural and Forced Unsteady Viscous How with 
Application to Marine Propulsors," Ph.D. 
Thesis, Department of Mechanical Engineering, 
The University of Iowa, Iowa City, Iowa, May 
1994; also, in part, Paterson, E. and Stern, F., 
"Computation of Unsteady Viscous Flow with 
Application to the MIT Flapping-Foil 
Experiment," Proceedings 6th International 
Conference on Numerical Ship Hydrodynamics. 
Iowa City, Iowa, August 1993. 

4. Chen, B. Stern, F., and Kim, W.J., 
"Computation of Unsteady Viscous Marine 
Propulsor Blade and Wake Flow," Proc. 20th 
ONR Symposium on Naval Hydrodynamics. 
Santa Barbara, CA, August 1994. 

5. Hall, E.J. and Delany, R.A., 
"Investigation of Advanced Counterroatation 
Blade Configuration Concepts for High Speed 
Turboprop Systems," NASA Contracter Report 
187126, January 1993. 

6. Dreyer, J.J. and Zierke, W.C., "Solution 
of the Average-Passage Equations for the 
Incompressible Flow Through Multiple-Blade- 
Row Turbomachinery," Applied Research 
Laboratory, Technical Report No. TR 94-05, 
February 1994. 

7. Uto, S., "Computation of 
Incompressible Viscous Flow around a Marine 
Propeller," J. SNAJ. May 1993. 

8. Warsi, S.A., "User's Guide to PMESH-A 
Grid-Generation Program for Single-Rotation and 
Counterrotation Advanced Turboprops," NASA 
Contractor Report 185156, December 1989. 

9. Bushnell, P., "Measurement of the 
Steady Surface Pressure Distribution on a Single 
Rotation Large Scale Advanced Prop-Fan Blade at 
Mach Numbers from 0.03-0.78," NASA 
Contractor Report 182124, July 1988. 

10. Podboy, G.G. and Krupar, M.J., "Laser 
Velocimeter Measurements of the Flowfield 
Generated by an Advanced Counter-Rotating 
Propeller," AIAA Paper 89-0434, January 1989. 

11. Vaczy, CM. and McCormick, D.C., 
"A Study of Leading Edge Vortex and Tip Vortex 
on Propfan Blades," ASME J. Turbomachinery. 
Vol. 109, No. 3, July 1987, pp. 325-331. 

12. Jessup, S.D., "Local Propeller Blade 
Flows in Uniform and Sheared Onset Flows 
Using LDV Techniques", Proc. 15th ONR 
Symposium on Naval Hydrodynamics. Hamburg, 
Germany. 1984. 

13. Jessup, S.D., "An Experimental 
Investigation of Viscous Aspects of Propeller 
Blade Flow," Ph.D. Thesis, The Catholic 
University of America, 1989. 

14. Jessup, S.D., "Propeller Blade Flow 
Measurements Using LDV," ASME Fluids 
Engineering Division Summer Meeting, Lake 
Tahoe, Nevada, June 1994. 

15. Jessup, S.D., private communications. 
16. Zierke, W.C., Straka, W.A., and 

Taylor, P.D., "The High Reynolds Number Flow 
Through an Axial-Flow Pump," Applied 
Research Laboratory, Technical Report No. TR 
93-12, November 1993. 

986 



Table 1. Experimental and computational conditions and performance 

SR7 

Test Ma Re J ß Cp % 
error 

Conditions 

OH 

W 

5 .2 1.3xl07 .88 26.6±1 .1±.002 Cutback 

6 .2 1.3xl07 .883 31.3+9 .25±.001 Takeoff 

7 .5 3.2xl07 3.083 58.5±1 .642±.009 Ma,J=const. 

ß>l => Cp-i 8 .5 3.2xl07 3.067 55.1+8 .361±.005 

c o 
is 3 
"3 
U 

5 0 104 

106 

.8926 

.8926 
26.5 
26.5 

.144 

.100 
44 
0 

6 0 104 .8951 31.5 .1889 24 

7 0 
104 

106 

106 

3.105 
3.105 
3.101 

59.5 
59.5 
63.5 

.5469 

.5228 

.8157 

15 
19 
21 

8 0 104 

106 

3.091 
3.091 

56.0 
56.0 

.3402 

.2596 
6 

28 

P4119andP4842 

Re J KT KQ T\0 

ON. 

a. 

c 
°55 

Open water test 

7.67xl05 .833 

.146 .0280 .692 
LDVdata 
Cal. laminar 
% error 

.157 
7.53 

.0284 
1.43 

.733 
5.92 

Cal. lam./turb. 
% error 

.153 
4.79 

.0282 
.71 

.720 
4.05 

OO 

c 
.2? 
"c/3 

Open water test 6.07x10^ 

.886 

.310 .072 .62 

LDVdata 

1.29xl06 
Cal. laminar 
% error 

.299 
3.55 

.0636 
11.6 

.662 
6.77 

Cal. lam./turb. 
% error 

.297 
4.19 

.0639 
11.3 

.656 
5.81 

c 
.£? "35 

o 

Open water test 6.07x10^ 
.7974 

.350 .0779 .586 

Cal. laminar 
% error 1.29xl06 

.349 
.29 

.0723 
7.19 

.612 
4.44 

Cal. lam./turb. 
% error 

.342 
2.29 

.0712 
8.60 

.610 
4.10 
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(b) computational domain 

Figure 1.  Definition sketch. 
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(a) cfd, turbulent flow 

Figure 7.  Surface-streamlines: P4842. 
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Figure 8.  Wall-shear stress contours: P4119, P4842. 
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Figure 15.   Boundary-layer flow: P4119, 
r/R = 0.7. 
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Figure 18.   Boundary-layer flow: P4119, 
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Figure 19.   Wake flow: P4119. 
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Figure 20.   Wake parameters: P4119, P4842. 
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DISCUSSION 

W. Day 
David Taylor Model Basin, USA 

The authors are to be thanked for providing such a 
large piece of valuable data on detailed flow and 
performance of propeller. 

Could the authors comment on the following: 

wider than the measured shear layer. This 
phenomena do not seem to exist for the boundary 
layer as shown in figures 15 and 16. Could the 
authors provide any explanation? 

(2) The displacement thicknesses on pressure side in 
figures 15a and 16a behaves strangely at T.E. In 
figure 15a, why did the lam and lam/turb generate 
different trends? In figure 15a, why did it drop 
towards T.E. 

(1) In table 1 the torque coefficient is predicted very 
well for P4119 but is significantly underpredicted for 
propeller 4842. Is there any indication or 
explanation available in the flow calculation for this 
difference, and what do the authors consider to be the 
cause? 

(2) In figure 7, a very nice detail is shown of the 
surface flow pattern on propeller 4842, indicating 
large radial flow patterns. Is this data for model scale 
Reynolds numbers and, if so, what would the authors 
expect the flow to show at much high Reynolds 
number, e.g. at ship scale? 

S. Dong 
China Ship Scientific Research Center, China 

It is a nice paper to validate CFD results with 
experimental measurements. Two questions: 

(1) As I know your experimental circulation 
distribution is determined by the LDV velocity 
measurements in the wake. Because of the 
contraction of the free vortex, especially near the tip, 
the corresponding radial position on the blade should 
be of some difference from the radial position in the 
wake where circulation is determined. How do you 
treat this difference? 

(2) Pressure distribution determined by LDV velocity 
measurement and Bernoulli equations, how do you 
consider the viscous effect in using Bernoulli 
equation? Have you ever tried to validate this 
method with direct pressure measurements, even for 
simple form bodies? 

Y. Lee 
David Taylor Model Basin, USA 

(1) For propeller 4119, figures 19 and 20b show the 
width of the predicted wake shear layer is much 

AUTHORS' REPLY 

We thank the discussants for their time and 
consideration of our work. Many of the issues raised 
are related to grid dependence and turbulence 
modeling. Grid-dependence tests for complex 
geometries such as marine propellers are a difficult 
task involving the investigation of many parameters. 
Recent results are provided in table 2 for P4119 in 
which the leading edge clustering was investigated 
with other parameters fixed, e.g., grid number and 
near-wall spacing y+. Also, the CFD is for turbulent 
flow vs. the laminar/turbulent with fixed transition 
flow results presented in the paper. The tests indicate 
the following: (1) the accuracy improves from about 
10% to 2-3% error for KT and KQ for coarse to fine 
leading-edge clustering factor; (2) increased axial 
grid from 100-110 (30-40 over the blade region) with 
fixed leading-edge clustering factor has a minimal 
influence; and (3) the grid for the results presented in 
the paper corresponds to a medium leading-edge 
clustering factor and the influence of 
laminar/turbulent with fixed transition is about 4% 
error for KT and KQ. 

In response to Mr. Day, the grid dependence tests 
indicate that grid quality has a large influence on the 
results. High-quality grids such as the fine-grid 
results shown in table 2 for P4119 are more difficult 
to obtain for propellers with large skew and rake, i.e., 
the grid for the results presented in the paper for 
P4842 has large y+ values and medium leading-edge 
clustering factor such that the results correspond to 
the accuracy of the coarse-grid results for P4119. 
We hesitate to conjecture as to the influence of high 
Re, but are currently making such calculations and 
hope to be able to answer this question in the future. 

In response to Prof. Dong, both the experimental and 
CFD radial circulation distributions shown in figure 
10 were deduced from the x/R=.334 swirl profiles 
neglecting the slipstream contraction, which has a 
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small influence, i.e., shifts the profile inward by 
about 3% r/R. Note that, as shown in figure 23, grid 
quality has a large influence on both the predicted 
swirl profile and radial circulation distribution. 
Validation of the pressure distribution determined by 
the Idv velocity measurement and Bernoulli equation 
by comparison with direct pressure measurements 
has not been done; however, surely such a procedure 
is limited to regions of weak viscous/inviscid 
interaction, as shown, e.g., in the present results. 

In response to Dr. Lee, grid quality and turbulence 
modeling are expected to have a large influence on 
the results in the boundary-layer and wake regions. 
Currently we are investigating the influences of grid 
optimization for this region and turbulence model 
modifications for pressure gradient and wake 
blending (e.g., [3]) and hope to be able to answer this 
question in the future. We believe that the 
displacement-thickness trends shown in figures 15a 
and 16a are physically realistic and display the three- 
dimensional nature of the flow, i.e., combined effects 
of axial and radial pressure gradients. 

Table 2. Grid dependence tests 

No. case grid space Fa. KT %ow %wt lOKo %ow %wt 
1 paper 105x51x61 .05 .147 .7 4.5 .293 4.6 1.0 
2 coarse 100x45x50 .20 .137 6.2 11.0 .255 8.9 12.0 
3 medium 100x45x50 .05 .147 .7 4.5 .276 1.4 4.8 
4 medium 110x45x50 .05 .147 .7 4.5 .276 1.4 4.8 
5 fine 100x45x50 .02 .149 2.1 3.2 .283 1.1 2.4 

Fa.: leading-edge clustering factor. 
%ow: % error open-water test. 
%wt: % error water-tunnel test. 
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Three-Dimensional Navier-Stokes Solutions 
for a One-Stage Axial-Flow Pump 

Y.T. Lee (David Taylor Model Basin, USA), 
C. Hah, J. Loellbach (NASA Lewis Research Center, USA) 

ABSTRACT 

This paper is presented in two parts. First, 
steady-state analyses of the incompressible flow past 
a single-stage inlet guide vane (IGV)/rotor 
propulsion pump are presented and compared to 
experimental data. A steady multiple-blade-row 
approach is used to calculate the flowfields of the 
IGV and the rotor. The Reynolds-Averaged Navier 
Stokes (RANS) equations are solved along with the 
standard two-equation k-e turbulence model. 
Numerical results for both mean flow and acoustic 
properties are compared with measurements in the 
wake of each blade row. Second, the same pump 
configuration is modified only at the rotor tip with a 
generic elliptical ring. Comparisons of flow features 
based on the computational results are presented. 

NOMENCLATURE 

CijC&CjjGfeCu constants    used    in    turbulence 
closure models 

Q Fourier coefficients 
Cp pressure   coefficient,   normalized 

by rotor tip speed 
c chord length 
f function defined in Eq. (6) 
IGV inlet guide vane 
k turbulent kinetic energy 
1 characteristic length 
PS pressure side 

P static pressure 
r radial 
SS suction side 
t tangential 
Us mean velocity components 
"i fluctuating velocity components 
u. shear velocity 
X; (x,y,z) cartesian coordinates 

E 

Veff 

P 
obac 

turbulence dissipation rate 
effective kinematic viscosity 
density 
constants    used    in    turbulence 
closure models 
angular velocity of rotor 

INTRODUCTION 

For rotating machinery operating in 
incompressible flows, flow separation, cavitation and 
vortex formation and transportation are the dominant 
factors in determining the performance of the 
turbomachinery. Although "exact" simulation of the 
complex flow inside turbomachinery is not yet 
possible, computational methods for solving the 
RANS equations (1,2,3) are the state-of-the-art 
techniques for examining these flows numerically. 

Recently, RANS solutions for incompressible 
flows in turbomachinery have emerged from more 
mature computational technologies for compressible 
flows. Stanier (4), for instance, extended Dawes' (5) 
viscous approach for marine open-water propeller 
calculations. And NASA Marshall Space Flight 
Center (MSFC) formed a consortium (6,7) to 
investigate the liquid fuel characteristics in rocket 
engines. Both pressure-based methods (1,8) and 
pseudocompressibility methods (2) have been used 
for pump inducer calculations. 

This paper presents an incompressible flow 
solution for a single-stage IGV/rotor axial-flow pump 
and compares results with measurements of detailed 
wake structures after each blade row. The present 
numerical procedure uses a pressure-based approach. 
The turbulence closure is the standard k-s model 

with a low-Reynolds-number modification near the 
wall. Based on this calculation method, an 
investigation was made to examine the difference in 
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flow features between two rotors with and without 
blade tip modification. 

PUMP GEOMETRIES AND EXPERIMENTAL 
DATA 

The baseline pump, shown in Fig. 1, was tested in 
the water. The pump consists of a 13-blade IGV and 
a 7-blade backward swept rotor. The IGV blades are 
lightly loaded and have a constant spanwise chord of 
0.1743 m (0.572 ft). The rotor blades have a NACA 
0016 Type II thickness distribution with the NACA 
66 (modified) a=0.8 camberline. The rotor trailing 
edge is modified to prevent it from singing and has a 
special thick trailing-edge section and a flow 
recirculating region in its near wake. The blade rows 
of the IGV and the rotor are separated at the tip by 
nearly 130% of the IGV chord. Although the IGV 
wake exists and was measured, the large spacing 
between the IGV and the rotor minimizes the effect 
of the IGV wake on the rotor tip flow and its wake. 

IGV   ROTOR 

UPSTREAM VIEW     SIDE VIEW 

Five-hole probe surveys were also performed at 
49.7% chord downstream of the IGV. These surveys 
provide three-component time-averaged velocities at 
eleven radial locations and cover 360 degrees 
circumference with 0.373° angular resolution. LDV 
velocity surveys were conducted at four axial stations 
located at 43.5% IGV chord upstream of the rotor tip 
leading edge and at 7.3%, 32.6% and 49% IGV 
chord downstream of the rotor tip trailing edge. The 
data include axial and tangential mean velocities and 
root-mean-square values of the turbulent fluctuating 
velocities. LDV surveys were also performed 
axially at r/rtip= .881 (or 76.2% span) and from 45% 
IGV chord upstream of the rotor tip leading edge to 
49% downstream of the rotor tip trailing edge. These 
surveys map the range of the rotor influence 
upstream of the rotor and the continuous wake 
formation downstream of the rotor. The details of 
the measurement matrix and measuring techniques 
are given in Zierke et al. (10). 

The modified pump considered in the present 
numerical study has the same IGV and rotor blade 
geometries as the baseline pump. The hub and 
casing configurations are also the same as the 
baseline pump. The only difference between two 
pumps is at the rotor tip, as shown in Fig. 2. For the 
baseline rotor, the tip clearance is 0.4 % of the blade 
span. The modified rotor has a tip clearance of 3 % 
of the blade span. In addition, a generic ring is 
attached to the blade tip of the modified rotor. The 
mid-section of the ring has a length equal to the 
chord length of the blade tip profile and a constant 
thickness equal to the size of the tip clearance. An 
elliptic profile is used at the leading and trailing 
edges of the ring. 

Figure 1 Configuration of the single-stage IGV- 
rotor pump 

The present axial-flow pump tested in the HIREP 
facility (11) has a constant hub diameter of 0.5334 m 
(21 in.) and a constant casing diameter of 1.067 m 
(42 in). The pump operates at an inlet velocity of 
10.67 m/s (35 fps) and an inlet pressure of 3.037 
kg/cm2 (43.2 psia). The rotor rotates at 260 rpm with 
a flow coefficient of 1.36 and a tip speed of 14.51 
m/s (47.6 fps). The tested Reynolds number based 
on the chord of the IGV blade is 2.3 x 106. 

The measured quantities include blade surface 
pressures, total pressures, inlet and wake velocities 
and turbulence quantities. The axisymmetric pump 
inlet velocities were surveyed using a five-hole probe 
at 37% IGV chord upstream of the IGV leading edge. 

Figure 2 Baseline and modified rotors 

PREDICTION METHOD 

The steady incompressible RANS equations are 
solved for the flow past the current pump, i.e. 
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3U, 

ft* 
= 0 (1) 

_    l3p ■%Wl+**v>=-is£ 
dr..  /öU^aUj    2dVkf 

where U; and u; are mean and fluctuating velocities, 
Q; is the angular velocity, and veff = v)am+ Vh,r. The 
turbulence model used to close the equations is the k- 
e two-equation model. This model is modified to 
include the low Reynolds number effects (11) for the 
laminar sublayer region. The following additional 
equations are solved for the turbulent shear stresses, 

u dk_  d/^effÖkN    ,—T 2vjc 

"kL^ f 

(3) 

where 

V veff = vlam+-^|-[l 

and 

_«-<**% vlam 

l.o 
The constants used in these equations are: 

] (4) 

(5) 

(6) 

q, = 0.09, Q = 1.35, Q = 1.8, ak = 1.0 

a£ = 13, Q = 0.00115 Q = 0.5 
(7) 

These governing equations are solved with a 
pressure-based implicit relaxation method using a 
fully conservative control volume approach (12) for 
isolated rotor configurations. A third-order accurate 
interpolation scheme is used for the discretization of 
the convection terms and central differencing is used 
for the diffusion terms 

In this study, the numerical procedure is 
expanded to handle a stage configuration. As the 
spacing between the IGV and the rotor is relatively 
large, a mixing plane is established approximately 
centered between the two blade rows. The 
computational grid of the pump stage is shown in 
Fig. 3. With the current steady-state multiple-blade- 
row calculations, the flowfields of the IGV and the 
rotor are computed iteratively. 

For the IGV, the radial distribution of the static 
pressure at the exit of the computational domain is 

obtained from the rotor flowfield. At this plane, all 
of the other flow variables are extrapolated from the 
IGV interior solution. 

For the rotor, radial distributions of all the flow 
variables at the inlet of the computational domain are 
obtained from the IGV solution. At this mixing 
plane, a classical mixing analysis is performed at 
each radial location to obtain circumferentially 
uniform values of velocity. The mixing analysis (13) 
is necessary to obtain a steady inlet condition for the 
rotor flowfield. The overall mass flowrate across the 
stage is determined by the specified velocity 
components at the inlet of the IGV. This calculation 
can also be performed by running two separate 
isolated blade row solutions. However, some human 
intervention during the solution process can be 
eliminated with the current procedure. 

RESULTS AND DISCUSSION 

Validation on Baseline Pump 

The current prediction method was applied to the 
baseline axial-flow pump described previously. The 
pump was operating at the design flowrate of 430.42 
m3/min (15,200 ft3/min). 

The computational grid, as shown in Fig. 3 for 
the blade surface grid, was generated to give an 
orthogonal grid near the blade surfaces, particularly 
near the blade leading and trailing edges. Two 
different grid densities were used for the present 
calculations. The coarser grid is 102x39x29 (axial, 
blade-to-blade, spanwise) for the IGV and 
102x39x35 for the rotor. The corresponding finer 
grids are 122x49x45 and 122x69x50. There are 6 
(coarser grid) and 10 (finer grid) grid nodes used to 

Figure 3 Surface computational grid 
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describe the tip-clearance region. Inside the tip gap, 
the grid is closed in the blade-to-blade direction and 
the periodicity condition is applied. Only minor 
variations are observed between the solutions 
obtained with the coarser and the. finer grids (14). 

Figure 4 shows the inlet conditions for each blade 
row as compared with the measured profiles. The 
experimental inlet axial-velocity profile for the IGV 
is located 37% chord upstream of the IGV blade. 
However, the computational inlet, located at 107% 
chord upstream, is prescribed by a boundary-layer 
profile. The comparison shown in Fig. 4a indicates 
that the measured boundary layer thicknesses at both 
the hub and casing walls are slightly thinner than the 
predicted ones. The rotor inlet was defined using the 
mixing analysis mentioned previously. Both the axial 
and the tangential velocities are compared in Fig. 4b 
at 43.5% IGV chord upstream of the rotor tip leading 
edge. Although the tangential component is slightly 
overpredicted, the comparison implies that the 
flowfield out of the IGV is correctly simulated by the 
present steady mixing analysis. 

flowfield. Nevertheless, the blade surface pressure is 
well predicted. 
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Figure 4 Comparisons of inlet conditions at IGV 
and rotor inlets 

Figures 5 provide comparisons of the blade 
surface pressure on each blade row at the midspan 
location. The loading on the IGV blade is about half 
of that on the rotor blade. The loading decreases 
along the span towards the tip for both blades (14). 
This also suggests the three-dimensionality of the 
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Figure 5 Pressure predictions on IGV and rotor 
blade surface 

Secondary-flow patterns after each blade row 
were presented in (14). The present viscous solution 
slightly underestimates the size of the casing vortex 
along the radial direction in the IGV wake. 
However, it predicts much more accurately for the 
location of the casing vortex when compared with the 
invisicid solution. The rotor wake flow is quite 
different from the IGV wake. Since the radial 
velocity in the rotor wake was not measured, Fig. 6 
shows the comparisons of the measured and 
predicted contours of the axial velocity at 49% IGV 
chord downstream of the rotor tip trailing edge. The 
radial expansion of the tip-clearance vortex is 
overpredicted as seen in the contour plots in Fig. 6. 
In addition, a very strong vortex due to the flow 
separation on the blade suction side occurs near the 
hub. This separation induced vortex is damped out 
quicker in the measurement than the prediction. 

Detailed quantitative velocity comparisons in the 
IGV wake were given in (14). The predictions 
generally agree well with the measurements. Figure 
7 compares predicted and measured velocity 
components for the rotor wake at three radii. The 
comparing axial location is shown in Fig. 7a. The 
axial-velocity comparison in the rotor wake agrees 
well with the measurements except at r/rtip = 0.905, 
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Figure 6 Axial velocity contours in the rotor wake 
for baseline pump 

here the effect of the casing vortex dominates in the 
experiment. The underpredicted maximum velocity 
occurs closer to the blade suction side, shown also in 
Fig. 6, instead at the mid-pitch as in the experimental 
data. This mid-pitch activity from the measurement 
is associated with the larger swirling effect of the tip- 
clearance vortex. The relative tangential velocity in 
the rotor wake was generally overpredicted slightly. 

Figures 8 shows the harmonic components of the 
measured and predicted rotor wake velocities shown 
in Fig. 7b. Similar comparisons in the IGV wake 
were presented in (14). The measured velocities 
were taken to cover 360° of the wake at each radius. 
Since these data reflect the variation between blade 
passages, significant noise exists in the experimental 
harmonic components. A simple filtering process 
was therefore used to eliminate those high harmonic 
components whose magnitude are less than or equal 
to the noise levels. The scale for the abscissas in Fig. 
8 uses multiples of 7, reflecting the numbers of 
blades for the rotor. The agreement between the 
measurements and the predictions is good up to the 
4th harmonics of the rotor blade passing frequency. 
The general agreement between the prediction and 
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Figure 7 Wake velocity comparisons for the 
baseline rotor 

the measurement indicates that the present solution 
method can provide useful acoustic predictions for 
this type of problem. 

Flow Features for the Modified Rotor 

The predicted pressure distributions on the blade 
surfaces for two rotors are shown in Fig. 9. The 
measured blade surface pressures for the baseline 
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Figure 8 Harmonic components of the baseline 
rotor wake velocities shown in Fig. 7b 

rotor   are   also   shown   as   the   symbols.      The 
comparisons indicate that the modified rotor sustains 
a larger total net loading compared to the baseline 
rotor.   In addition, the leading edge loading for the 
modified rotor is also reduced. 

Particle traces of the secondary flows and 
contours plots of the axial-component velocities for 
both rotors are shown in Figs. 10 and 11 at two axial 
cross sections, shown in Fig. 7a in relation to the 
rotor coordinates. The secondary flows were 
obtained by subtracting mean circumferential 
velocities from the total cross-flow velocity at each 
grid point. From the developments of these 
secondary flow patterns shown in Figs. 10a and 11a, 
the shroud vortex for the modified rotor is much 
weaker than that for the baseline rotor. Because of 
the reduction of the shroud vortex for the modified 
rotor, its hub vortex initially (i.e. at negative x- 
values) develops faster than the baseline rotor's hub 
vortex. Eventually the hub vortices from both rotors 
grow large enough to totally push the shroud vortex 
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Figure 9 Blade pressure distributions of the baseline 
and modified rotors 

out to the casing wall. In comparing the contour 
plots of the axial-component velocities shown in 
Figs. 10b and lib, the high velocity gradient occurs 
near the suction side of the baseline rotor. However, 
it distributes relatively uniform between the ring and 
the casing for the modified rotor. The secondary 
flow moves the low-momentum fluid near the 
pressure side to mix with high-momentum fluid near 
the suction side. This mixing balances the 
momentum distribution in the blade passage. The tip 
ring of the modified rotor slows down this mixing 
process initially. When the mixing reaches the hub, 
the difference in the contours between the two rotor 
flowfields becomes very small. 
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CONCLUSIONS 
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Steady-state RANS solutions for the 
incompressible flow past a single-stage inlet guide 
vane (IGV)/rotor axial-flow pump are presented. 
The prediction method uses a pressure-based scheme 
and a standard k-s model with low-Reynolds-number 
approach near the wall for the turbulence closure. 
The steady multiple-blade-row calculation which 
uses a simple mixing plane works well for the present 
two-blade-row calculations. The solution compares 
well with the experiment in terms of IGV and rotor 
loadings and IGV wake structures which include 
qualitative wake vortex patterns and quantitative 
velocity comparisons. Although the vorticity 
characteristics of the IGV wake are primarily inviscid 
in nature, the present viscous solution predicts more 
localized root and casing vortices, in agreement with 
the measurement, than those obtained from the 
inviscid solution. For the rotor wake, the axial 
velocity was predicted accurately except near to the 
tip. However, detailed assessment of the effects of 
the tip-clearance vortex and turbulence modeling 
require further in-depth study. 

The comparisons in flow features between the 
baseline rotor and the modified rotor, which has an 
elliptical ring section at the blade tip, indicate that the 
tip ring reduces the formation of the tip vortex and 
strengthens the root vortex initially in the blade 
passage. During the initial stage of the formation of 
the secondary flow, the tip ring also reduces the 
strength of the secondary flow for mixing low 
momentum fluid on the pressure side with the high 
momentum fluid on the suction side. When the fully 
developed stage is reached, the mixing process 
becomes similar between two rotors due to the 
limitation of the mixing area. 
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DISCUSSION 

S. Jessup 
David Taylor Model Basin, USA 

I would like the explanation of why the predicted and 
measured tangential velocity downstream of the rotor 
shown in figure 7 are so different. There appears to be 
a relatively constant difference that is equivalent to the 
rotor inlet swirl implying a confusion net versus the 
relative V/V distribution. Also, the usefulness of 
viscous should be in the prediction of the blade wake 
flow. It appears that your method predicts rotor blade 
wakes that are much wider than measurements. Can 
you comment on this? 

J. Kerwin 
Massachusetts Institute of Technology, USA 

The analysis of the flow around multi-component 
ducted propulsors is a challenging task for designers, 
and efforts to develop and validate better analytical 
tools are most welcome. The authors should be 
commended for providing extremely useful 
information to the propulsor community in their 
present paper. 

While their computed results compare well in many 
respects with the measurements of Zierke, et al., a 
close inspection reveals some discrepancies which I 
hope the authors can clarify. 

The first question is concerned with the circumferential 
mean tangential velocity behind each component, 
which is directly proportional to circulation and lift. In 
figure 4, the computed tangential velocity downstream 
of the IGV is about 9% higher than the measured 
value, which is not unreasonable (although designers 
might think this to be a large discrepancy). However, 
Figure 7 indicates that the measured tangential velocity 
downstream of the rotor is essentially zero, while the 
calculated value has a circumferential mean value of 
roughly V/V 0.15. The authors state that the relative 
tangential velocity in the rotor wake was generally 
overpredicted slightly. However, the tangential 
velocity corresponding to the design value of the 
circulation in the mid-span region is approximately V / 
0.19, which is of the same order of magnitude as the 
discrepancy between the Navier-Stokes prediction and 
the experiment. Have I misinterpreted Figure 7, or is 
there possibly a problem in communicating tangential 
velocities in the mixing plane between the two 
components? 

Since the rotor thrust and torque values were measured 
in the experiment, it would be useful to compare these 
values with those predicted from the Navier-Stokes 
code. Has such a comparison been made? This would 
not only be useful in assessing the usefulness of the 
Navier-Stokes code for actual design and analysis, but 
might shed some light on the apparent discrepancy in 
tangential velocities. 

The authors also indicate that only minor variations 
are observed between the solutions obtained with the 
coarser and finer grids. It would be particularly 
helpful if these differences could be quantified in terms 
of the predicted thrust and torque values. 

The authors show chordwise pressure distributions on 
the IGV and rotor in Figures 5 and 9. While the 
agreement with experiment is reasonable over most of 
the chord, it is notable that the experiments indicate 
essentially no load at the measurement point closest to 
the trailing edge, while the Navier-Stokes calculation 
predicts substantial load in this region. This 
discrepancy is similar to that found in the MIT 
flapping foil project1 in which a large two- 
dimensional foil with an anti-singing trailing edge was 
the object of extensive testing and computation. Could 
the authors comment on the abilities of current Navier- 
Stokes codes in providing quantitative predictions of 
viscous behavior at the trailing edge? 

AUTHORS' REPLY 

Professor Kerwin and Dr. Jessup raised a valid point 
about the predicted tangential velocity in the rotor 
wake. The authors had overlooked this discrepancy 
when preparing the manuscript. This discrepancy 
between the measured and the predicted data was 
reexamined afterwards. We found that the original 
computed data was processed incorrectly and this error 
was corrected in the final paper. 

The original purpose of this paper was to demonstrate 
the capability to predict the propeller wake for acoustic 
evaluation. It was not intended yet to be used as a 
propeller design tool.    The thrust and torque were 

Lurie, E.H., Unsteady Response of a Two- 
Dimensional Hydrofoil Subject to High Reduced 
Frequency Gust Loading, Master's thesis, MIT 
Department of Ocean Engineering, MIT, May 1993 
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therefore not predicted. One can, however, get a rough 
estimate of the predicted thrust and torque based on the 
blade surface pressure predictions. For the blade 
surface pressure predictions, the coarse and fine grids 
generate indistinguishable results as shown in Fig. 5. 

For the rotor trailing edge flow, as indicated by 
Professor Kerwin, the present rotor trailing edge 
shape closely resembles the trailing edge shape used 
in the MIT flapping foil project. The turbulence 
modeling is an important issue in predicting this flow 
correctly. The standard k-e model has difficulty in 
simulating the present trailing edge flow. A simple 
modification of the turbulence length scale used at 
the inlet provides better agreement with the flow 
visualization as discussed in (14)- 

Dr. Jessup commented about the viscous wake 
thickness prediction. This is why the predicted data 
was drawn using symbols in Fig. 7 to indicate the 
number of points to construct the wake. This should 
be the same problem for the experimental data. In 
our solutions, we have 5 to 7 points to define the 
blade wake along the tangential direction. 
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An Integrated Method for Computing the Internal 
and External Viscous Flow Field Around the Ducted 

Propulsor Behind an Axisymmetric Body 
L. Zhou, F. Zhao (China Ship Scientific Research Center, China) 

ABSTRACT 

This paper presents an effective method for 
computing the internal and external viscous flow 
field around the ducted propulsor behind an 
axisymmetric body by using a new Navier-Stokes 
equations solver with primitive variable continuity 
equation formulation. In the present numerical 
method, the calculation equation for pressure with 
well-defined coefficient, which form is similar to the 
artificial compressibility method, is developed. A 
semi-staggered grid system is adopted. Not only the 
advantage of staggered grid system can be retrained 
but the boundary conditions on the inner and outer 
surface of the duct can be also carried out easily. By 
using a special grid system and the programming 
technique for implementing the jump boundary 
condition on the duct surfaces, the internal and 
external viscous flow field around the ducted 
propulsor behind the axisymmetric body may be 
calculated integrally in an unified numbered grid 
system. Some configurations are calculated and 
compared with experimental date and numerical 
results of other methods. Illustrative calculations are 
also presented for a stern of axisymmetric body with 
the backstep fitted a duct to illustrate the capability 
of the present method. Beside that, the effect of axial 
distribution of body force is considered and 
discussed in order to extend the application range of 
the present method. 

INTRODUCTION 

It has been known in marine propulsion 
technology that the use of ducted propeller has often 
been an attractive alternative for ship and 
underwater vehicle propulsion as well. With a duct 
that accelerates the flow, the propulsive efficiency 

can be increased. With a duct that decelerates the 
flow, the inception of cavitation on the propeller can 
be delayed. In order to take advantage of the ducted 
propeller to obtain the desirable benefit, a clear 
understanding of the role it plays is important. The 
reliable  numerical  simulation  of the  flow  field 
around the ducted propeller is a useful tool to gain 
understanding. Various potential theories have been 
used to model ducted propulsors in uniform flow 
with varying degrees of success. For a submerged 
vehicle, the propulsor is operating within the thick 
boundary  layer  developed  near  the  stern.   The 
potential methods cannot take  into account the 
interaction between the ducted propulsor and the 
strong vorticity field inside the boundary  layer. 
Thus, it is necessary to use Navier-Stokes equations 
solver for analyzing the viscous flow field around 
the ducted propulsor/stem. When a ducted propulsor 
operates in the non uniform wake of ship, the 
resulting flow field is that due to the hull, duct and 
propeller combination body. For this flow field, the 
exact treatment is to incorporate the actual propeller 
into a viscous flow calculation method and no-slip 
boundary condition must be satisfied on surfaces of 
the hull, duct and rotating blades of the propeller. 
However, it is still a very difficult problem today to 
solve the flow field of a hull, duct and propeller 
combination body by using such an exact method. 
The popular research work is that the body force 
field  which  presents  the  effect  of propeller  is 
incorporated   into   the   Navier-Stokes   equations. 
Beside that, another difficult problem raised due to 
the  duct which  divides the  flow  field  into the 
internal and external flow field. In existed methods 
for computing the viscous flow field around the 
ducted propeller behind an axisymmetric body, the 
streamline-iteration method adopted by Schmiechen 
and Zhou [1] must know the flow rate entered the 
duct   beforehand,   and   the   multiblock   iteration 
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method employed by Yang et al [2] and Dai et al [3] 
will increase CPU time. 

In the present paper an effective method for 
computing the internal and external viscous flow 
field   around   the   ducted   propulsor   behind   an 
axisymmetric   body   is   developed.   In   numerical 
method, the time-dependence Reynolds  Average 
Navier-Stokes   equation   with   primitive   variable 
formulation is solved, k-e two equation turbulence 
model is employed and the effect of the propeller 
inside the duct is modeled by a body force. There 
are three features in our numerical method. Firstly, 
by using the point relaxation method the continuity 
equation is transformed the calculation formula for 
the pressure, which has a formal resemblance to the 
formula of artificial compressibility method, but its 
coefficient  is  well-defined  and  depends  on  the 
geometric parameters of grid and the velocities in 
the neighborhood of the calculating points. Thus, the 
pressure adjustment is adapted to the neibouring 
flow field. The drawback of slow convergence for 
the pressure and residuum of the continuity equation 
in   using   the   original   artificial   compressibility 
method,  which   is  due  to  the  inconsistency  of 
artificial velocity of pressure wave propagation with 
the real physics, is overcome. Secondly, a semi- 
staggered grid system is developed, i.e. u, w, k, and 
E are defined at the node of grid and v and p are 
defined   on   the   usual   staggered   grid   system. 
Therefore, not only the advantage of staggered grid 
system can be retrained but the boundary conditions 
on the inner and outer wall of the duct can be also 
easily carried out. Finally, by using a special grid 
system   and   the   programming   technique    for 
implementing the jump boundary condition on the 
transformed duct wall, the internal and external 
viscous  flow  field  around the  ducted propulsor 
behind the axisymmetric body may be calculated 
integrally in an unified numbered grid system. Thus, 
two block iteration calculation between internal and 
external flow field inside and outside duct may be 
avoided and the computing time is saved. Three 
difference    configurations    are    calculated    and 
compare with experimental data and the numerical 
results of other methods. These are, 1 .axisymmetric 
body with a duct, 2. axisymmetric body with a duct 
and an operating propeller, 3.  accelerate ducted 
propeller. Illustrative calculation is also presented 
for a stem of axisymmetric body with the backstep 
fitted a duct to illustrate the capability of the present 
method, which can calculate a very full afterbody 
even with backstep. Beside that, the effect of axial 
distribution   of   body   force   is   considered   and 

discussed in order to extend the application range of 
the present method. 

GOVERNING EQUATIONS AND BOUNDARY 
CONDITION 

The nondimensional equations of axisymmetric 
viscous incompressible flow are written in 
cylindrical polar coordinates (x,r,0) in the physical 
domain as follows: 

öx    rft     ' (1) 

5U 
a 

dU 
dx 

.dU+d_ 
dr    dx' 

—+ U^ + V^ + ^(p+ uu) + ^(uv) 
or' 

uv 
+ -F-V2U=fb r     Re * (2) 

av  Trav     av w   a,—N   a,    —s ■ + U —+ V —-y + ^(uv) + ^:(p+ vv) at ax 

vv     ww 

ar ax' ar' 

--^(v>v^) = o (3) 

aw  TTaw     aw  wv   a,—,   a — 
at       ox       arraxv/ar 

vw 
+2- 

dk   „5k 

1 w 
(VW-F) = fbe Re (4) 

ak   a , l sic 
5t+Uax + Var    5x(R.(r5x) + 

eff1 

1 a , 1    5k    „ 
- a- fe— r -«-) + G - s 

—    T r —    v — - — i— —\ 
5t + U äx+ V 57~5x(R^5? + 

(5) 

rör(Re/ 5T
1+ G«k"C^k (6) 

In above six equations U,V, and W is the mean 
velocity   components   in   the   (x,r,8)   coordinates 

system; p is the nondimensional pressure; Re = —— 

is the Reynolds number defined in terms of 
characteristic velocity Um , characteristic length L 
and molecular kinematic viscous v ; k and e are 
turbulent kinetic energy and  its  dissipation  rate 

respectively; the barred quantities uu , uv etc. are 

C k2 

the Reynolds stresses normalized by UÜ,; vt = —u— is 
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the eddy viscosity; Refr is the effective Reynolds 
number 

H-TYPE BOUNDARY FITTED GRID SYSTEM 
AND SEMI-STAGGERED GRID 

R*~K + k (7) 

where <j) = k for the k-equation (5) and <j> = s for the 
s-equation (6); G is the turbulence generation term. 

G = v. 2 
ÖU 
dx 

8V + dVY + 

dx    dx. 

dVf 
dFJ- 

3x, 
SW   W? 
5r     r (8) 

In the two-equation k-e turbulence model each 
Reynolds stress is related to the corresponding mean 
rate of strain by the isotropic eddy viscosity v as 
follows: 

—       (dU   3V 
" uv =v«löF+& 

uw  = V. 
<5W 
dx. 
5W   W 

\dv 
,->3U    2, uu =v.l2ärJ-3k 

—        LdV\   2, 

.-"^■=vt[2-J-|k 

The model constants are: 

(9) 

CM = 0.09, C„ = 1.44, Ce2 = 1.92, ok = 1.0, GE = 1.3 

The above equations (1) - (9) form a set of closed 
solving equations. For the axisymmetrical internal 
and external flow as shown in the figure 1., the 
boundary conditions are as follows: 

Inlet: V = W = 0, k = 0.00375l£ , e = k15/2, U is 
determined according to the boundary layer 
thickness of flat plate and 1/7 rule; 

Exit: -=r- = -=—: 

dx     dx 
5W = 5k = 5e 
dx     dx    dx 

Solid surface: U = V = W = 0, dkJdn = 0, s is 
determined by the wall function. 

Outer boundary: U = 1, V : 

Wake centerline: W: v = o— = — =— = 0 
' dn    on   dn 

The current method of elliptic boundary fitted grid 
generation [4] has been rather ripe, but the relations 
between the choice of the grid type and the practical 
physical problem are lesser considered. In the 
present method H-type grid is selected. It has the 
advantages that the form of the grid, boundary and 
relatively location in the calculation domain are 
coincident with those in the physical domain. This is 
specially suitable to the present internal and external 
flow problem. However, it is difficult to generate the 
good quantitative grid for H-type grid by using 
single block method. Therefore, the multiblock grid 
generation method [5] is used. The sketch of 
multiblock grid region is shown in Fig.l. For this 
multiblock grid, by using the programming 
technique for implementing the jump boundary 
condition on the both side of transformed duct 
surface and for properly taking boundary data in 
calculating the inner points near the both side of 
duct surface, the flow field of multiblock H-type 
grid which corresponds to the internal and external 
flow field around the duct can be solved in single 
block grid system. Thus, multiblock iteration 
between internal and external flow field inside and 
outside duct may be avoided and the CPU time is 
saved. 

To overcome the difficulty of implementing 
boundary conditions in the staggered grid system, 
and at the same time to keep the advantages of the 
staggered grid, the equations are discretized in the 
semi-staggered grid system, i.e. U, W ,k, and 6 are 
defined at the normal grid nodes, V and p are 
defined at the original staggered grid nodes, as 
shown in Fig.2. Thus the original advantage of the 
staggered grid can be retrained. The solving pressure 
is related to the neighbouring nodes and the pressure 
oscillation can be efficiently controlled. The 
boundary conditions on the inner and outer wall of 
the duct can be also easily carried out. Discreted 
difference equations are written on the grid of 
U,V,W,p,k and s, respectively. 

DIFFERENCE DISCRETIZATION AND THE 
PRESSURE SOLVING EQUATION IN 
CONTINUITY FORMULATION 

Firstly.the governing equations (1) - (9) are 
transformed into the boundary fitted grid systems. 
The discretization methods and forms for the five 
equations are the same. The up-wind discretization 
scheme is used in the convection terms in order to 
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keep the stability. For an example, the U equation is 
written as: 

LK1 - U"-1 

2At 
+ AuUn+l + BuPn+l = 0 (10) 

where the superscripts n+1 and n-1 represent the 
value at n+1 and n-1 time step, respectively, At is 
the time step, Au and Bu are coefficient marries 
after discretization. 

We calculate the middle time layer value to obtain: 

U* - un-' 
2At 

+ AuU* + BuP" = 0 (11) 

where U* represents value of Un+I at the middle time 
layer. By using point relaxation method for the 
equation (11), we have 

U'(k+o = u*w + © 
2Atl    A" 

[-A; U'<k+» • 

A°U*(k) - A*U*« - BuP" - ^IT« - U"-1) u u 2At 

U*« + Co -^I + A° 
2Atl    A" 

■ rmu (12) 

where U'(k) represents the k times iteration value of 
n+1 step at the middle layer; co is the relaxation 
factor; 

rmu is the difference remainder of the U 
momentum equation, 

rmu = -A;U'*+,> - A°U'<k> - A*U'<k> - BuP" ■ 
1 

2At 
(U*W - u-1) (13) 

A„ and A* are the lower-triangular matrix and the 

upper-triangular matrix of Au respectively, Au is the 
diagonal matrix of Au, I is unit diagonal matrix. 

The discretization method and form of the V 
equation is similar to the above U equation, and the 
continuity equation is discretized as : 

CuUn+1 + CvV+1 = 0 (14) 

where Cu and Cv are the coefficient matrices. 
The pressure equation is derived as follows by 

substituting U"+l and Vn+I into the discretized form 
of the continuity equation (14) 

co -I + A" 
.2At 

= Cui\J"m+G> 

CuBu + 

1 

2At 
-I + A? •CvB4P"*' 

-I + A! 
2At 

2 At 

+ CvlVn*l(k)+C0 -I + A° 
2 At 

-A~V"*Kk*" -A0V"*l<k) -A*V°*'<k) —(-v"*1<k, - V""1) 
2 At 

(15) 

Let us denote D as the coefficient matrix: 

D = co 2At :I + A CuBu + —I + A° 
2Af    Av CvBv 

(16) 

The equation (14) can be solved by point 
relaxation method. The initial value is assumed to be 
pn and U",and V* calculated by p". The equation (15) 
is written as the following simple form 

pn+l = pn . _E- y . y* 

P 

(17) 

where D are the diagonal elements of the matrix D; 
r is the pressure relaxation factor for the pressure. 

The form of equation (16) is similar to the artificial 
compressibility method[6] and relaxation coefficient 
r  is easily chosen. Because D„ has defined value, 

p J p 

which is related to geometric parameters of the grid 
and the velocities at the neighbouring grid nodes, 
thus, the pressure adjustment is adapted to the 
neighbouring flow field. The drawback of slow 
convergence for the pressure and residuum of the 
continuity equation in using original artificial 
compressibility method, which is due to the 
inconsistency of artificial velocity of pressure wave 
propagation with the real physics, is overcome. 
Comparing SIMPLE method, the solution of a 
Possion equation can be avoid and the CPU time can 
be decreased. 

The coefficients of above discretization have been 
strictly derived under the semi-staggered grid 
system in the references [7]. 
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REPRESENTATION OF THE PROPELLER 

As mentioned in the introduction, the popular 
research work on the hull-propeller interaction is the 
body force field presention of the propeller. In this 
method, the effect of the propeller is accounted for 
by the addition of body force terms in the source 
functions of Navier-Stokes equations. The essential 
parameters that defined the propeller effects are the 
thrust coefficient CT, the torque coefficient CQ , the 
advance coefficient J and the radial circulation 
distribution G(r). The same parameters are used to 
define the body force for the propeller model. The 
axial and circumferential body force per unit volume 
are obtained from the following equations: 

fbx =■ CTR?G(r)/4Ax f G(r)rdr , 

fbe = C0R?G(r)/2rAx f G(r)rdr 
JRh 

(18) 

where R^ and Rp are the radii of propellor hub and 
blade tip respectively, and Ax is the thickness. 
Owing to the fact that, the blade circulation 
distribution depends upon the inflow at the propeller 
plane which in rum is influenced by the blade 
circulation. This mutual dependence implies that the 
body force fbx and fbe which are functions of G(r) 
should be obtained by an iterative procedure. To 
complete this procedure, any propeller program can 
be used for this purpose. 

If the discreted radial distributions for thrust and 
torque, Tfrp and Q(r) j = 1,- n, are known , From 
the formula 

T = 27tpL2U^Ax| Pfbx(r)rdr 

Q = 27cpL3UiAxJ" Pfbe(r)r
2dr (19) 

(1) The flow field around the stern of and 
axisymmetric body only with a duct is calculated, 
and the inflow of the propeller may be obtained. 

(2) The propeller performance calculation is 
carried out under the calculated inflow condition. 
The dimensionless circulation distribution G(r) or 
the thrust and torque distributions T(r) and Q(r) may 
be calculated and consequently the body force 
distributions fbx(r) and fbe(r) may be obtained. 

(3) The flow field around the stern of an 
axisymmetric body with a duct and the body force 
field is calculated, and by substracting the propeller 
induced velocity from the calculated total velocity 
and the new inflow of the propeller may be 
obtained. 

(4) Repeat calculations of step (2) to step (3) 
until the convergence is reached. 

NUMERICAL EXAMPLES 

The four configurations that were calculated are 
1. flow over the body with a duct, 2. flow over the 
body with a duct and an operating propeller, 3. flow 
over an accelerative ducted propeller and 4. flow 
over a stern of axisymmetric body with the backstep 
fitted a duct with rotor and stator. The calculated 
results are compared with available experimental 
data and the numerical results of other methods. 

case 1. Flow over the Body with a Duct 

This numerical example is taken from [2]. Figure 
3 shows the calculated velocity vectors in the stern 
region by the present method. Figure 4 shows the 
results from both computation of Yang's method and 
experiment121. 

case 2. Flow over the Body with a Duct and an 
Operating propeller 

The body force field can be obtained as follows 

fb,0j) = 
T(r) 

27tAxpL2U2
5r*(rj+] - r) 

W-=7=r^ 
(20) 

27iAxpL3Uir;2(rj+| - Fj) 

where r- = 0.5(r + rj+|). Of course, to determine T(r) 
and Q(r) also needs an iterative procedure. 

The iterative procedure is follow as: 

This numerical example is also taken from [2]. 
In this case the circulation G(r) and consequently the 
body force was assumed to be given. Figure 5 shows 
the calculated velocity vectors in the stern region by 
the present method. Figure 6 shows the results from 
both computation of Yang's method and experi- 
mentra. Comparing the above figures it can be seen 
that the essential flow phenomena such as 
separation, acceleration and contraction can be 
realistically predicted by the present method. 

case   3.   Flow   over   the   Accelerative   Ducted 
Propeller 
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This numerical example is the ducted propeller 
combined duct BDI8 with propeller 6510. It was 
tested[9] and calculated by full-panel method[10] at 
CSSRC. In this example the viscous flow approach 
to the computation of hull-propeller interaction is 
carried out and the panel method developed by 
Xing'101 is used in computing propeller. Figure 7 
shows the calculated velocity vector field around the 
duct. Figure 8 shows the calculated velocity profiles 
at the various axial locations for the flow over the 
duct without propeller and the comparison with the 
calculated results of the panel methodflO]. Figure 9 
and Figure 10 show the convergence procedure of 
the interactive iteration in computing the radial 
distributions of thrust and torque respectively. Table 
1 shows the convergence procedure of the 
interactive iteration in computing the propeller 
performance characteristics and the comparison with 
the experiment and the calculated result of the full 
panel method. The agreement is satisfactory. 

Table 1 
performance 

iteration number 
K.T 10KQ 

1 0.2137 0.340 
2 0.1353 0.235 
3 0.1570 0.265 
4 0.1498 0.255 
5 0.1522 0.259 

experiment'91 0.1612 0.286 
full panel method1'01 0.159 0.297 

case 4. Flow over a Backstep Stern Fitted Duct 
with Rotor and Stator 

This case is an illustrative calculation to illustrate 
the capability of the present method. The 
configuration is a stern of axisymmetric body with 
the backstep fitted a duct with rotor and stator. 
Figure 11 shows the calculated flow field around 
this configuration. The calculations are also carried 
out for two forms of axial distribution of body force 
shown in Figure 12. Figure 13 shows the calculated 
velocity profiles for these two forms of axial 
distribution of body force. From the above figures it 
can be seen that the essential phenomena such as 
separation, vorticity, deceleration and contraction 

can be realistically predicted and the influence of the 
axial distribution form of body force can be 
responded. 

CONCLUSION 

A numerical method based on the H-type 
boundary fitted grid system, semi-staggered grid 
discretization and the new calculation equation for 
pressure was developed. Numerical results indicate 
that this numerical method is effective and is 
specially suitable to solve the internal and external 
flow field problem. In order to extend the 
availability of the present method the effects of the 
appendage and strut should be incorporated in the 
further research work. 
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Fig. 1 Multi-Block Grid Region 
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Fig. 4 Velocity Vectors in Stern Region for Case 1 
(Experiment and Yang's Method) 
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Fig. 3 Calculated Flow Field for Case 1 Fig. 6 Velocity Vectors in Stem Region for Case2 
(Experiment and Yang's Method) 
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Fi«. 7 Calculated Flow Field for Case 3 
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Fig. 9 Thrust Distribution for Propeller 6510 
in Duct BDI8 
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Fig II. Calculated Flow Field For the Axisymmetric Body 
with a Backstep Stem Fitted a Duct 
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Fig. 12 Two Kind Axial Distribution Forms 
of Body Force Field 
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Fig. 13 Calculated Velocity Profiles for Two Axial 
Distribution Forms of Body Force Field 
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DISCUSSION 

M. Schmiechen 
Berlin Model Basin, Germany 

Our colleagues at CSSRC are to be congratulated on 
the progress they have made in computing the flow 
field around ducted propulsors behind bodies of 
revolution since our joint project. We at VWS, the 
Berlin Model Basin, have continued our line of 
research as well. The basic idea of this systems 
engineering approach is to design for effective thrust 
rather than actual thrust. This is achieved by treating 
propulsors consistently as pumps and in the first 
place determining the design conditions for the 
actuators, i.e., the pump stages, for optimum 
propulsive performance (Schmiechen, 1993, 1994). 

The advantage of this design for the effective thrust 
is, that from the beginning only optimum conditions 
are considered and that all interactions between hulls 
and propulsor components are implicitly accounted 
for without approximation at any load condition. 
The effective thrust equals the effective resistance, 
which does not necessarily equal the towing 
resistance for innovative hull integrated propulsor 
configurations. The actual thrust at the pump stage is 
not designed for as in all other methods, but is 
obtained at the end of the design as a by-product as 
usual in pump design. As the thrust at the duct, 
which roughly equals the suction at the hull, the 
actual thrust at the pump stage is irrelevant as far as 
the propulsive performance is concerned. 

Along these lines ducted propellers for a body of 
revolution have been designed, manufactured and 
tested. The blade design on the basis of profile data 
from axial flow conditions was inadequate and will in 
future be replaced by CFD methods for pump stages 
developed at many places. Validation of design and 
computational procedures for these wake adapted 
configurations by model and full scale tests require 
of course adequate innovative test and analysis 
procedures based on local measurements or 
propulsion tests alone as proposed and successfully 
developed by the present discusser several years ago. 
(Schmiechen, 1991). 

Additional references: 

Schmiechen, M.: Entwurf und Bewertung von 
Düsenpropellern als Pumpen. 
Presented at the STF Spechtag at Berlin/Potsdam on 
September 03704. 1993. Trans. STG 87(1993). 

Schmiechen, M.: Design and Evaluation of Ducted 
Propellers as Pumps. 
To be presented at the International Shipbuilding 
Conference on the occasion of the Centennial of the 
Krylov Shipbuilding Research Institute at St. 
Petersburg on October 08./12. 1994. 

Schmiechen, M.: 2nd INTERACTION Berlin '91. 
2nd International Workshop on the rational theory of 
hull propeller interaction and its applications. VWS, 
the Berlin Model Basin, June 13./14. 1991. 
Proceedings. Mitteilungen der Versuchsanstalt für 
Wasserbau and Schiffbau, Heft 56, 1991. 
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Computation of Unsteady Viscous Marine 
Propulsor Blade and Wake Flow 

B. Chen, F. Stern, W. Kim 
(University of Iowa, USA) 

ABSTRACT 

Unsteady viscous-flow results are 
presented for the realistic marine-propulsor 
P4119 and P4132 geometries with idealized 
temporally and spatially oscillating axial 
inflows. The results are encouraging in 
demonstrating the feasibility of such large-scale 
computations and initial physical understanding 
of the complex unsteady three-dimensional flow. 
Fourier-series analysis is performed enabling 
discussion of amplitude and phase variations, 
which include large overshoots and lags/leads 
that, in general, correlate with the instantaneous 
angle of attack and, for the case of the spatial 
inflow, traveling-wave nature of the flow and 
agreement with the limited available data. 
However, clearly considerably more work needs 
to be done with regard to further development of 
the computational method and explication of the 
flow physics in order to reach the ultimate goal 
of complete configurations and propulsor-body 
interactions. Lastly, some concluding remarks 
are provided, including comparison with inviscid- 
flow methods, prognosis for improvements, and 
future work. 

NOMENCLATURE 

P 
Q 
R 
Re 
s 
Si,etc. 
T 
Ui,Un 

U mean 

Uo 
Ux 

VB 

AVB 
VN 

VR 

c chord length 
x,r,e 

Qn nth-harmonic section lift coefficient y,y+ 

cp pressure coefficient (=2p/pVR2) 
a,an 

ACp pressure difference 
T.Yn 

D propeller diameter 
tfn Fourier-series variable and nth-harmonic 8* 

amplitude, respectively e 
J advance coefficient (=Uo/nD) V 
KQ thrust coefficient ^T/pn2])4) Vt 
KT torque coefficient (=Q/pn2D5) \ 
L wake half width M 
n (1) propeller revolutions per second P 

(=CO/2JI) 

(2) Fourier-series harmonic [=0 (steady) 
and >0 (unsteady)] 
pressure 
torque 
propeller radius 
Reynolds number (=U0D/v) 
distance along chord or pitch helix 
solution-domain boundaries 
thrust 
total and nth-harmonic amplitude axial 
inflow, respectively 
Oth-harmonic circumferential-average 
axial velocity 
freestream velocity 
wall-shear velocity 
streamwise pitchline velocity in 
noninertial coordinates 
(=Wcos<|H-Usin<|>) 
wake-velocity deficit 
normal pitchline velocity in noninertial 
coordinates (=Wsin<}>-Ucos<|>) 
resultant section inflow 

[=U^+(cor)2]l/2 

Reynolds-averaged velocity components 
in inertial or noninertial cylindrical 
coordinates (=U,V,W) 
cylindrical coordinates 
normal distances 
total and nth-harmonic amplitude angle 
of attack, respectively 
phase and Fourier-series nth-harmonic 
phase, respectively 
displacement thickness 
momentum thickness 
fluid kinematic viscosity 
eddy viscosity 
frequency parameter (=COUQ/D) 

nonorthogonal curvilinear coordinates 
fluid density 

1021 



<(> pitch angle 
Q propeller angular velocity (=co,0,0) 

INTRODUCTION 

In a companion paper at this 
symposium [1], computational fluid dynamics 
(cfd) steady-flow results for the realistic SR7 
turboprop and marine-propulsor P4119 and 
P4842 geometries are presented, which showed 
overall good agreement with the data and enable 
explication of the nature of the complex three- 
dimensional viscous blade and wake flow. The 
present paper represents part of concurrent work 
for unsteady-flow calculations, which is the 
ultimate goal, including complete configurations 
and propulsor-body interactions. 

The initial effort [2] was for two- 
dimensional flow and addressed three issues of 
particular importance in extending cfd for this 
goal: (1) forced unsteady flow (i.e., resolution of 
blade boundary layers and wakes with traveling- 
wave external flows, including comparisons with 
the Massachusetts Institute of Technology 
flapping-foil experiment, a parametric study of 
the effects of frequency, waveform, and foil 
geometry, and detailed analysis); (2) interaction 
of natural and forced unsteady flows (i.e., 
harmonic forcing of the naturally unsteady wake 
of a flat plate at incidence using an oscillating 
body-force field and trailing-edge flap); and (3) 
overlaid grids for resolution of fixed (hull) and 
moving (propulsor) boundary problems. The 
results are encouraging in showing close 
agreement with the data and successful 
application of overlaid grids and important in 
documenting the complex physics for such flows 
(i.e., boundary layers and wakes with analogy to 
Stokes layers and two-layer structure, 
upstream/downstream traveling pressure waves 
induced by viscous-inviscid interaction, and wake 
receptivity with lock-in, quasi-periodic, chaotic, 
and non lock-in states) and need for cfd. 

The present effort involves extensions 
of [1,2] for unsteady three-dimensional viscous 
flow for realistic marine-propulsor geometries 
P4119 and P4132. Two initial test cases were 
selected, which, although idealized in 
maintaining blade-to-blade periodicity, are 
representative of the practical situation while 
reducing the scale of the computations, i.e., 
temporally and spatially oscillating axial 
inflows, which, hereafter, are simply referred to 
as temporal and spatial inflows. Some limited 
data is available for the latter case [3]. Although 
not as developed as [1,2], the work shows 
promise of cfd for the present application. 

In the following, the computational 
method is described and the computational 
conditions, grids, and uncertainty are given. 
Then, the results are discussed for the temporal 
and spatial inflows, including comparisons with 
the data for the latter case. Also, steady-flow 
results are discussed for P4132, including 
comparison to the solution of [1] for both P4132 
and P4119 and the mean values for the spatial 
inflow. Lastly, some concluding remarks are 
provided, including comparison with inviscid- 
flow methods, prognosis for improvements, and 
future work. 

COMPUTATIONAL METHOD 

[1,2] are based on extensions of [4] for 
realistic marine-propulsor geometries and time- 
accurate two-dimensional unsteady-flow 
calculations, respectively. Although, in 
principle, [1] could be directly extended for 
unsteady-flow calculations along the lines of [2], 
the scale of the computations for three- 
dimensional flow made such an approach 
prohibitive with regard to computational 
efficiency; therefore, further developments were 
required. In particular, the Piso-was replaced by 
a MAC-type velocity-pressure coupling 
algorithm along with additional vectorization. 
These modifications led to about a 20% increase 
in computational efficiency. The following 
provides an overview. 

The unsteady Reynolds-averaged Navier- 
Stokes (RaNS) and continuity equations with the 
Baldwin-Lomax turbulence model are solved for 
the Reynolds-averaged velocity components 
V=(U,V,W), pressure p, and eddy viscosity vt. 
The transport equations for V are written in 
noninertial cylindrical coordinates (x,r,0) rotating 
with constant angular velocity Q=(o),0,0) in the 
physical domain and partially transformed into 
numerically-generated, boundary-fitted, non- 
orthogonal, curvilinear coordinates (%,i\£). 
Variables are nondimensionalized using the 
freestream velocity U0 (=1), propeller diameter D 
(=1), and density p. The transformed equations 
are solved using a regular grid, finite-analytic 
discretization, a, as already mentioned and to be 
described next, MAC-type velocity-pressure 
coupling algorithm, and the method of lines. 
Sub iterations for both pressure and velocity are 
used sequentially to obtain time-accurate 
solutions. For laminar flow, vt=0 and V and p 
are interpreted as instantaneous values. 

With a given initial condition (or 
solution at time t), the pressure at time t+At is 
determined by solving a Poisson equation based 
on projected divergence-free velocity components. 
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The velocity at t+At is written in terms of the 
velocity at t using an explicit backward time 
derivative 

(Ui)n+1=(Ui)n+At[(Hi)n-^b|C^P
n+1] (1) 

where (Hi)n contains convection, diffusion, and 
source terms, i.e. 

1 8 
ft^N «m[ XCnb(Ui)nb+Cp(Cu(Ui)u+ RefrM> nb=i 

CD(U0D)-{ l+Cp(Cu+CD)}(Ui)p-Cp (SuOpl (2) 

and J is the Jacobian, b- is the metric tensor, and 

Cnb> ^-p' etc- are *e finite-analytic coefficients. 
The continuity equation at t+At is given by 

1 3 „m ^V]]=o (3) 

Substituting (3) into (1) yields the desired 
Poisson equation 

^(AtJgJk^pn.lj^CU^AtHk)«]       (4) 

High-frequency oscillations associated with the 
use of a regular grid are avoided through the 
addition of artificial 4th-order dissipation 
implicitly by averaging coefficients and 
velocities at the staggered nodes. Figure 1 
provides a flow chart of the computational 
method. 

The physical and computational 
domains are shown in figure 2. The boundary 
conditions are specified as follows: on the inlet 
plane Sj, V=(Ui,0,cor) and p=0 (temporal inflow) 
or p£=0 (spatial inflow); on the exit plane S , 
which is located in the far wake, axial diffusion 
is negligible VEE=0 and p is extrapolated 
(temporal inflow) or a zero-gradient condition is 
used p£=0 (spatial inflow); on the outer boundary 
SQ, (U,W)=(Ui,ör), V is obtained from the 
continuity equation, and p is obtained from the 
Euler equation (temporal inflow) or ^=0 (spatial 
inflow); on the shaft and blade surfaces S , S, , 
and S.   , no-slip condition, i.e., (U,V)=0 and 
W=0 and cor for rotating and nonrotating parts, 
respectively; on the periodic boundary planes S 

and S , periodic boundary conditions, i.e., 

V/p(£,Tl,ö=V/p(£,'n,C+Cp) where C corresponds 
to the blade-to-blade interval; and on the 
symmetry  axis  L ,   symmetry   conditions 

(V,W)=0anda(U,p)/^n=0. 
The grid was obtained using a modified 

version of PMESH [5], which employs algebraic 
methods with transfinite interpolation. H-grids 
were used with clustering near the shaft and blade 
surfaces and leading-, trailing-edge, and tip 
regions. 

COMPUTATIONAL CONDITIONS, 
GRIDS,  AND   UNCERTAINTY 

The temporal and spatial inflow 
calculations are for P4119 and P4132, 
respectively, which corresponds to [1,3]. The 
propulsor geometries and cfd evaluation and data 
comparison locations (spatial inflow) are shown 
in figure 3. The cfd is for laminar and turbulent 
flow, whereas the data (spatial inflow) is for 
natural transition. In all cases, the Reynolds 
number (Re=U0D/v) is 7.67x10s. In general, 
only the turbulent-flow results are presented and 
discussed. 

A partial view of the P4132 grid is 
shown in figure 4. The P4119 grid is similar to 
that used in [1]. The primary difference between 
the P4132 and P4119 grids is that in the former 
case a more uniform distribution is used in the 
blade-to-blade region in order to resolve the 
spatial variations, which, unfortunately, 
somewhat reduces the resolution of the boundary- 
layer and wake region [i.e., a reduction from 10- 
14 (P4119) to 5-6 (P4132) grid points in the 
boundary-layer and wake region]. The inlet, exit, 
and outer boundaries for P4119 and P4132 are 
located at x=(-3,4) and (-1.5,4), respectively, and 
r=2. The first grid points off the body surface are 
located in the range y+ (=ReUTy)<6-7. The grid 
distributions are 100x45x50=225000 (P4119) and 
100x45x62=279000 (P4132). The P4119 and 
P4132 grids are relatively fine and coarse, 
respectively, with regard to resolution of the 
steady blade boundary layer and wake due to the 
differences in number of grids points in this 
region. The resolution requirements for the 
unsteady blade boundary layer and wake have yet 
to be determined; however, based on [2], both 
present grids are relatively coarse for this 
purpose. Note that single job run time 
restrictions and current overall supercomputer 
resources precluded the use of finer grids. 

The values of the time increment and 
underrelaxation factors for velocity and pressure 
are: .0052 (temporal inflow) and .0011 (spatial 
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inflow); .5; and .1. The time increments 
correspond to 160 (temporal inflow) and 120 
(spatial inflow) per period T. The CRAY C90 
time and central memory were about 4 hr per 
period and 32 mw. The time-accuracy sub 
iteration convergence criterion was that the 
residual for all variables be about 10"^ with a 
minimum of 100 and 25 sub iterations for 
pressure and velocity, respectively. 

The format of the discussions follows [1], 
i.e., performance, pressure and surface-streamline 
distributions, circumferential-averaged velocity 
profiles, phase-averaged flow, boundary-layer and 
wake development, and tip and hub/root vortices 
with the focus on the modification of these flow 
features due to the temporal and spatial inflows. 
Storage restrictions precluded complete analysis 
of the solutions over an entire period, although 
this problem hopefully will be remedied for 
future work. The analysis includes performance 
time histories, other flow features at 
t/T=(.25,.5,.75,l), and performance, pressure 
distribution, and boundary-layer and wake profile 
Fourier-series analysis 

f(x,r,e)=fo(x,r,e)+£fn(x,r,e)sin[n£t+Yn(x,r,e)] 
n=l 

fn(xj,e)=(a^)1/2 

Yn(x4-,e)=tan-1(an/bn) (5) 

2T 

an^:Jf(x/,e)cos(n^t)dt 
L0 

2T 

bn=^Jf(x,r,e)sin(n£t)dt 
*0 

where yn is with respect to Ui (temporal inflow) 
or blade mid chord at top dead center (spatial 
inflow) and f represents any of the relevant 
variables. Also, comparisons are made with the 
Theodorsen and Sears/Horlock solutions for the 
temporal and spatial inflows, respectively, 
although, in the former case, the analogy is 
indirect due to the differences in far-field pressure 
and pressure gradient. 

The following discussions are based on the 
complete results, which as indicated in figure 2, 
are extensive; however, for brevity, only 
representative results are shown. Additional 
results are available upon request from the 
authors. 

TEMPORAL INFLOW 

For the temporal inflow: 

Ui=U0+Uisin£t 

-ap/3x=Ui^sin(^t+7c/2) 

a=a0+aisin(^t+Yi) 

(6) 

(7) 

(8) 

where Ui (=.05) is the lst-harmonic velocity 
amplitude, £=coU0/D (=7.54) is the frequency 
parameter, ai=Uicos2^r is the lst-harmonic 
angle-of-attack amplitude for small Ui (i.e., 
Ui«U0 or cor), and 7i=7t. For r/R=(.5,.7,.9), 
ai=(1.04°,.89°,.75°) [or ai=(amax-amin)/2 
=(1.15°,.95°,.8°)] and the reduced frequency 
k=coc/2VR=(.776,.62,.385). This corresponds to 
a relatively small-amplitude low-frequency 
oscillation with, as will be shown next, extreme 
response amplitudes, i.e., greater than the 
quasisteady values. Note that in the far field the 
pressure increases linearly with x due to the form 
of (7). Figure 5 shows (Ui-U0)/Ui and (a- 
a0)/ai vs. t and is useful for interpretation of 
the phase response. 

The performance is shown in figure 6. 
A periodic solution is obtained within about 3 
periods. The mean values (KT,KQ)=(.138,.0248) 
indicate about a 10% difference from the steady 
solution of [1] due to changes both in the 
computational method and grid. Discussion of 
differences between the present and steady 
solution of [1] and between the mean values and 
the steady solution is deferred for P4132 and the 
spatial inflow. The lst-harmonic amplitudes 
(KTi,KQ1)=(.039,.0079) are 56 and 204%, 
respectively, larger than the quasisteady values, 
which is unexpected; since, such values are 
usually considered an upper bound. The phases 
indicate about 10° lag and 30° lead, respectively, 
relative to a. Note that due to geometric effects 
tip loading primarily contributes to Kj, whereas 
the full span loading contributes to KQ such that 
the phase of the latter is consistent with the 
Theodorsen solution and the former is not due to 
viscous effects, as shown next in consideration of 
the surface-pressure distribution. 

Figures 7a-c show ACp(r/R=.7), ACpi, 
and Yi profiles. ACp oscillates about the mean 
value in correlation with a. ACpi amplitude 
decreases with increasing radii, which is 
consistent with the corresponding decreasing cxi 
values. At the outer radii, the amplitude is 
constant over the chord, whereas at the inner 
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radii, peaks are displayed near the leading and 
trailing edges. At the outer radii, the phase is 
nearly zero relative to a, except near the leading 
edge where relatively small leads are indicated. 
At the inner radii, large phase leads are indicated 
increasing from r/R=.7 to .5 and from the leading 
to the trailing edge. The section lift coefficient 
lst-harmonic amplitude and phase for 
r/R=(.5,.7,.9) values are Cn=(.072,.06,.045) and 
Yi=(70°,23°,5°). The ACp contours (figure 7d) 
display the overall distributions. The trends 
indicate similarity with the Theodorsen solution, 
especially for the mid radii: decreasing ACpi 
amplitudes with increasing radii, which is 
consistent both with the present corresponding 
decreasing ai and increasing k values; constant 
AC pi amplitude over the chord except for 
leading- and trailing-edge peaks; and 
corresponding section lift coefficient lst- 
harmonic amplitude and phase values 
Cn=(.061,.039,.021) and 7i=(29°, 20°,5°). 
However, differences are also evident due to 
viscous trailing-edge root separation and tip 
vortex effects 

The surface-pressure pitchline gradient 
lst-harmonic amplitude on both sides is fairly 
flat, except for large leading- and trailing-edge 
peaks. On the pressure side, the phase for 
0<s/c<.5 is about the average of a and -px (i.e., 
135°), and for .5<s/c<l, the outer radii follow a 
and the inner radii -px, whereas on the suction 
side, the phase is complex, but seems to correlate 
more with -px than a. 

The surface streamlines and wall-shear 
stress contours indicate oscillations about the 
mean patterns with decreased/increased trailing- 
edge root separation and tip-vortex effects on the 
suction and pressure sides for t/T=.25/.75 and 
.5/1, respectively. The former and latter are 
approximately in phase and lead a, respectively. 

Figure 8 shows the circumferential- 
average velocity profiles. For the upstream 
plane, (U,V) follow Ui, but in and out of phase, 
respectively (i.e., the maximum/minimum for U 
corresponds to Uj and vice versa for V), and W is 
relatively unaffected, except near the root and tip. 
For the downstream plane, all three components 
correlate with a, but with phase differences: U 
indicates a lag, which also correlates with KJI; 
and (V,W) are approximately in phase (i.e., large 
loading corresponds to increased radial and 
tangential velocities, which is consistent with 
the off-design calculations of [1]), except for W 
near the root and tip where a lag is indicated, 
which also correlates with U and Kxi- Other 
than the upstream plane W, the amplitudes are 
extreme, which corresponds to propeller-induced 

velocity and pressure overshoots and further 
explains the upstream/downstream V response. 
Figure 9 shows the radial circulation distribution 
deduced from the swirl profiles, which correlates 
with a similarly as W and, additionally, indicates 
extreme tip loading for t/T=l. 

Figures 10-11 show the phase-averaged 
flow for the upstream and downstream planes for 
inertial and noninertial coordinates, respectively. 
The mean patterns and profiles are nearly the 
same as [1], although some detailed differences 
are evident. In general, the flow for the upstream 
and downstream planes correlates with Ui and a, 
respectively, in a similar manner as described 
earlier for the circumferential-average velocity 
profiles. 

For the upstream plane: the axial- 
velocity contours display leading-edge stagnation 
effects, which oscillate about the mean with 
increased/decreased effects that correlate with a 
(i.e., minimum/maximum effects for t/T= 
251.15); the cross-plane vectors and particle 
traces indicate maximum inward/outward radial 
flow for .25/.75; and the detailed circumferential 
profiles show distortions in the stagnation region 
and (V,W) differences for the pressure vs. suction 
sides. 

For the downstream plane: the pitchline 
-velocity contours display oscillations of the 
blade wake with maximum (t/T=l) and minimum 
(t/T=.5) widths corresponding to the loading; the 
cross-plane vectors and particle traces indicate 
minimum/maximum tip and hub/root vortices 
for t/T=.5/l, which also correlates with the 
loading; and the detailed circumferential velocity 
profiles show similar trends as the upstream 
plane, but with increased variations. 

Figure 12 shows the boundary-layer 
development for r/R=.7. On the suction side, the 
shape of the displacement-thickness curves vs. 
t/T are similar to the mean curve, but with 
thinning/thickening which correlates with a, 
except for t/T=.75 where the shape is different 
due to the relatively larger values near the leading 
edge. On the pressure side, the displacement- 
thickness variations with t/T are relatively small. 
The detailed trends are exhibited by the pitchline- 
and radial-velocity lst-harmonic amplitude and 
phase profiles. For the pitchline profiles: on the 
pressure side, for the inner radii the response is 
minimal, whereas for the outer radii large 
overshoots and phase leads are exhibited with 
decreasing magnitude for increasing s/c and r/R; 
and on the suction side, very large overshoots are 
exhibited with decreasing and increasing 
magnitude for increasing s/c and r/R, 
respectively, and phase lags/leads for the 
inner/outer radii.   For both sides, the phase is 
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approximately consistent with that for the 
surface-pressure pitchline gradient. For the radial 
profiles: on the pressure side, overshoots are 
exhibited with no discernible s/c trends and 
increasing magnitude and decreasing phase lags 
for the outer radii; and on the suction side, the 
trends are similar, except increased and more 
complex amplitude profiles and phase leads. 

Figure 13 shows the wake development 
for r/R=.7. The profiles are complex with large 
amplitude and phase variations. Figure 16 shows 
the wake deficit and half-width parameters, which 
lag and are approximately in phase with a, 
respectively. 

The perturbation vectors and particle 
traces for r/R=.7 (figure 14) display the overall 
nature of the boundary-layer and wake flow: 
effects of Uj maximum/minimum and =0 for 
.251.15 and .5,1, respectively; secondary 
separation zones on the suction side near the 
leading/trailing edge for .5/1; and large 
perturbations in the wake. 

Lastly, the details of the tip vortex 
development and evolution are considered (figure 
15). The vectors and particle traces and 
parameters display the overall and detailed trends, 
respectively: the maximum vorticity and 
contraction and the circulation and core size are 
90° out of phase and lag and lead a, respectively. 
The former correlates with the radial circulation 
distribution and Kj. 

P4132  STEADY FLOW 

Before discussing the results for the spatial 
inflow, it is useful to discuss the steady-flow 
solution for P4132, including a comparison to 
the solution of [1] for both P4132 and P4119 and 
the mean values for the spatial inflow. The 
propellers are similar in that they have the same 
blade number, hub-diameter ratio, and thickness 
distribution and mean line. The difference is that 
the chord length of P4132 is half of P4119 with 
increased maximum thickness and camber 
distributions. However, both have nearly the 
same design-condition performance: J=.833; 
KT=0.154; and KQ=.027 (P4132) vs. .029 
(P4119). 

The performance is shown in table 1. 
The agreement with the data is relatively poor in 
comparison to the steady solution of [1] due, as 
already noted, to changes both in the 
computational method (i.e., velocity-pressure 
coupling algorithm) and grid. The reasons are 
uncertain, but indicate the need for continued 
improvements in the former. The mean values 
and steady solution differ by about 3-4%. The 
differences for the detailed flow between the 

steady solution and both the steady solution of 
[1] and the mean values are relatively small 
(except in the boundary layer); therefore, the 
following discussion focuses on the differences 
between the detailed flow for P4132 vs. P4119. 
The mean values for P4132 are provided in 
figures 19-23, 25-26, and 28. In general, the 
differences are consistent with expectation due to 
the increased thickness and camber for P4132. 

Table 1 Performance: P4132 
KT lOKo 

Exp. .155 .273 
Steady [1] 
%diff. vs exp. 

.145 
6.5 

.255 
6.6 

Steady 
%diff. vs exp. 

.133 
14.2 

.234 
14.3 

Mean 
%diff. vs exp. 

.127 
17.0 

.225 
17.6 

At the outer radii, the surface-pressure 
distributions are similar in shape, but P4132 has 
larger pressure difference and pitchline gradient. 
At the inner radii, additionally the shapes differ 
due to the increased trailing-edge root separation 
for P4132. The surface streamlines for P4132 
indicate increased trailing-edge root separation and 
spanwise flow, i.e., outward radial flow near the 
trailing edge for the full/half span on the 
suction/pressure sides. The circumferential- 
average velocity profiles and phased-average flow 
are nearly the same for the same relative axial 
positions from the blade leading and trailing 
edges. Some relatively small differences are 
evident primarily due to the effects of the 
increased trailing-edge separation for P4132: 
increased upstream outward radial flow near the 
hub; thicker hub boundary layer; and thicker 
blade boundary layers and wakes. The boundary- 
layer and wake development shows large 
differences for P4132 due to the earlier mentioned 
increased surface-pressure difference and pitchline 
gradient and trailing-edge root separation and 
outward radial flow: increased boundary-layer 
thickness, especially on the suction side near the 
trailing edge; and wider wakes and faster recovery, 
especially for the inner radii. Lastly, the tip- 
vortex development and evolution are also 
similar, although P4132 indicates a faster 
reduction in the maximum vorticity and reduced 
contraction. 

SPATIAL INFLOW 

For the spatial inflow in the inertial 

(9) 

frame: 

Ui=Uo+U6sin(6e+Y6) 
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where Uo is the mean velocity (i.e., Oth- 
harmonic) and U6 and Y6 are the 6th-harmonic 
velocity amplitude and phase, respectively, all of 
which were specified based on the data. For 
r/R=(.3,.5,.7,.9), Ufj=(1.001,.97,1.018,1.007), 
U6=(.0051,.08,.1375,.1891), and Y6=(-730,- 
82°,-74°,-69°). Note that: other harmonics 
were in the data, but not specified due to the 
present use of periodic blade-to-blade boundary 
conditions; Ui was modified (i.e., reduced) based 
on the experimentally determined decay factors 
between the screen (x/R=-.432) and propeller 
(x/R=0) planes for the without-propeller 
condition (about 12% for r/R=.7) since 
computationally such decay is negligible; and the 
nature of the screen wake is such that the 
amplitude of U6 is substantially reduced for the 
inner radii. In the noninertial frame: 

Ui=Uo+U6sin(St+Y6) 

a=a0+a6sin(£t+Y6) 

(10) 

(11) 

where £=6coU0/D (=45.2), Y6=(-107°,-98°,- 
106o,-lllo),a6=(amax-amin)/2=(.16o,1.9°, 
2.5°,2.7°), Y6=(93

0
,82

O
,74

O
,69°), and 

k=6coc/2VR=(2.73, 2.34,1.85, 1.15). Figures 
16 and 17 show Ui(r/R=.7) vs. 6 and (Ui-Urj)/U6 
and (a-a0)/a6 vs. t, including, in the former 
case, curves for all the harmonics and only the 
6th-harmonic both with and without the decay 
factor. 

The performance is shown in figure 18. 
Here again, a periodic solution is obtained within 
about 3 periods. In spite of the earlier discussed 
discrepancy for the steady solution, the 6th- 
harmonic amplitudes (KT6/KT,KQ6/KQ) = 
(.22,. 17) are within 10% of the data and, 
furthermore, indicate (20,15)% reductions from 
the quasisteady values, which is consistent with 
expectation. Both phases are 120°, which is 
within 1% of the data and indicates about a 45° 
lead relative to a. 

Figures 19a-c show ACp(r/R=.7), 
ACp6, and Y6 profiles. ACp oscillates about the 
mean value in correlation with a. ACp6 
amplitude increases with increasing radii, which 
is consistent both with the corresponding 
decreasing k and increasing ci6 values. At the 
outer radii, there is a large leading-edge peak and 
then the amplitude decreases towards the trailing 
edge, whereas at the inner radii, the amplitude is 
constant over the chord. The phase is nearly 
constant and indicates a lead relative to a 
(decreasing from about 60° to 30° from the outer 

to the inner radii), except near the trailing edge 
where the values for the inner and outer radii 
reduce and the mid radii increase. The section lift 
coefficient 6th-harmonic amplitude and phase for 
r/R=(.3,.7,.9) values are Ci6=(.026,.06,.06) and 
Y6=(140°,126°,95°). The Cp contours (figure 
19d) display the overall distributions. The trends 
indicate similarity with the Sears/Horlock 
solution, especially for the mid radii: leading- 
edge peak and then decreasing towards the trailing 
edge ACp6 amplitudes; nearly constant ACp6 
phase; and corresponding section lift coefficient 
6th-harmonic amplitude and phase values 
Ci6=(.005,.07,.l) and Y6=(191°,136°,93°). 
However, differences are also evident due to 
viscous trailing-edge root separation and tip 
vortex effects. 

The surface-pressure pitchline gradient 6th- 
harmonic amplitude on both sides is fairly flat, 
except for large leading-edge and small trailing- 
edge peaks. On the pressure side, for the outer 
radii the phase values are similar to those for 
ACp6 (i.e., lead a by about 30°-60°), whereas 
for the inner radii, the phase is about -90° for 
0<s/c<.6 and 90° for .6<s/c<l. On the suction 
side, the phase shows large variations about an 
average value of about -90°. 

The wall-shear stress contours show 
oscillations about the mean patterns with 
decreasing amplitude with radii (i.e., the inner 
radii are relatively unaffected), which is 
consistent with \J(,. On the pressure side, the 
minimum/maximum values occur for t/T=.5/l, 
and on the suction side, vice versa. On both 
sides, the oscillations correlate with a. The 
largest effects are near the leading edge and tip for 
the former and latter, respectively. The surface 
streamlines are relatively unaffected. 

Figure 20 shows the circumferential-average 
velocity profiles. For the upstream plane, (U,W) 
are relatively unaffected, whereas V displays 
oscillations about the mean such that the outer 
and inner parts of the profile are 90° out of 
phase, i.e., maximum inward/outward flow for 
t/T=l/.5 and vice versa for the outer and inner 
parts, respectively. For the downstream plane, U 
is relatively unaffected and (V,W) display 
oscillations about the mean: the outer part of the 
V and the W profile correlate with a, but with a 
£x/Umean=177° phase shift due to the traveling- 
wave nature of the flow; and the inner part of the 
V profile leads a by about 45°. The radial 
circulation distribution (figure 21) is similar and 
consistent with the W profile. 

Figures 22-23 show the phase-averaged flow 
for the upstream and downstream planes for 
inertial and noninertial coordinates, respectively. 
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For the upstream plane: the axial-velocity 
contours display leading-edge stagnation effects, 
which oscillate about the mean with 
increased/decreased effects that correlate with a at 
the leading edge (i.e., minimum/maximum 
effects for t/T=.25/.75) and the traveling-wave 
nature of the flow is apparent in the 
circumferential variations; the cross-plane vectors 
and particle traces indicate inward/outward 
movement of the position of maximum axial 
acceleration with the minimum/maximum 
positions corresponding to t/T= .5/1, which is 
consistent with the circumferential-average flow; 
and the detailed circumferential velocity profiles 
show the traveling-wave nature of the U 
component, including reduced amplitude for the 
inner radii and distortion within the stagnation 
region, the inward/outward oscillations of the V 
component, especially for the blade-to-blade 
region, and the circumferential oscillations of the 
W component, especially in the stagnation 
region. 

For the downstream plane: the pitchline 
-velocity contours display oscillations of the 
blade wake with maximum (t/T=.5) and 
minimum (t/T=l) widths corresponding to the 
loading and, here again, the traveling-wave nature 
of the flow is apparent in the circumferential 
variations; the cross-plane vectors and particle 
traces indicate maximum/minimum tip and 
hub/root vortices for t/T=.5/l, which also 
correlates with the loading; and the detailed 
circumferential velocity profiles show similar 
trends as the upstream plane, but with increased 
variations. 

Lastly, for the phased-averaged flow, 
figure 24 shows the variation of U/Uo vs. 8-6w 

(where 6=£t and 0W are in the noninertial and 
inertial frames, respectively) for x/R=0 and 
r/R=(.5,.7,.9), including data for the mid radii. 
The trends (i.e., minimum value in the blade-to- 
blade region and large/small peaks on the 
suction/pressure sides) and magnitude are 
accurately and under predicted (by about 5%), 
respectively. 

Figure 25 shows the boundary-layer 
development for r/R=.7. On the suction side, the 
shape of the displacement-thickness curves vs. 
t/T are similar to the mean curve, but with 
thickening/thinning which follow the loading. 
On the pressure side, the displacement-thickness 
variations with t/T are small. Significant three- 
dimensional effects are apparent, especially for 
increasing s/c and r/R. The detailed trends are 
exhibited by the pitchline- and radial-velocity 
6th-harmonic amplitude and phase profiles. For 
the pitchline profiles: on both sides, overshoots 
are exhibited with decreasing and increasing 

magnitude for increasing s/c and r/R and phase 
lags/leads, which are, in general, consistent with 
the surface-pressure pitchline gradient Two-layer 
structures are evident, but not clearly resolved. 
For the radial profiles: the mean profiles display 
the nature of the increased three-dimensional flow 
for P4132 vs. P4119; and on both sides, 
overshoots are exhibited with no discernible s/c 
trends and increasing magnitude for the outer radii 
and phase lagsAeads for inner/outer radii. 

Figure 26 shows the wake development 
for r/R=.7. The profiles are complex with large 
amplitude and phase variations. Also, the half- 
width parameter oscillations correlate both with 
a and the traveling-wave nature of the flow. 
However, here again, it is apparent the the level 
of resolution is reduced in comparison to the 
P4119 results as, e.g., exhibited by the deficit 
parameter. 

The perturbation vectors and particle 
traces for r/R=.7 (figure 27) display the overall 
nature of the boundary-layer and wake flow. The 
patterns are similar to those shown in [2], but 
with reduced resolution as already noted. 

Lastly, the details of the tip vortex 
development and evolution are considered (figure 
28). The vectors and particle traces and 
parameters display the overall and detailed trends, 
respectively: the oscillations correlate both with 
a (i.e., maximum tip vortex for t/T=l) and the 
traveling-wave nature of the flow (i.e., wave 
lengths corresponding to 2jtUmean/^=.167). The 
radial contraction and core size are relatively 
unaffected. 

CONCLUDING   REMARKS 

Unsteady viscous-flow results have been 
presented for the realistic marine-propulsor 
P4119 and P4132 geometries with idealized 
temporally and spatially oscillating axial 
inflows. The results are encouraging in 
demonstrating the feasibility of such large-scale 
computations and initial physical understanding 
of the complex unsteady three-dimensional flow. 
Fourier-series analysis is performed enabling 
discussion of amplitude and phase variations, 
which include large overshoots and lagsAeads 
that, in general, correlate with the instantaneous 
angle of attack and, for the case of the spatial 
inflow, traveling-wave nature of the flow and 
agreement with the limited available data. 
However, clearly considerably more work needs 
to be done with regard to further development of 
the computational method and explication of the 
flow physics in order to reach the ultimate goal 
of complete configurations and propulsor-body 
interactions. 
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Included in [3] were comparisons with 
inviscid methods from which it was concluded 
that the overall accuracy (i.e., over a range of 
screen-wake harmonics) for unsteady thrust and 
torque amplitude and phase was about 20-25%, 
although for certain harmonics the accuracy was 
improved (e.g., for the present case the accuracy 
was comparable to that shown here). Also, the 
results were dependent on prescription of the 
propeller wake model for which there is 
considerable uncertainty. Thus, the present work 
further supports the conclusion in [1] regarding 
the merit of viscous vs. inviscid methods for the 
present problem. 

Future work involves further 
developments of the computational method in 
conjunction with applications both for unsteady 
marine-propulsor blade and wake flow and 
propulsor-body interactions and detailed analysis 
for explication of the flow physics. With regard 
to the former, critical issues involve: spatial and 
time accuracy; efficient and accurate velocity- 
pressure coupling algorithms; optimization for 
large-scale computations; refined and advanced 
grid-generation techniques, including overlaid 
grids for propusor-body interaction applications; 
and development and implementation of advanced 
turbulence models. These, of course, are all 
pacesetting issues for cfd and thus will require 
long-term effort. With regard to the latter, 
applications include: parametric study for the 
spatial inflow, i.e., additional calculations for the 
3rd-, 9th-, and 12th-harmonic cases; inclined 
shafts; crashback and backing; and complete 
configurations. 

Lastly, it is critical that more data be 
acquired both for idealized geometries in support 
of the development of appropriated turbulence 
models and for realistic propulsor and propusor- 
body configurations for validation. 
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Figure 22.   Phase-averaged flow: P4132, x/R=-0.15. 
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DISCUSSION AUTHORS' REPLY 

Y. Lee 
David Taylor Model Basin, USA 

I have a comment about propeller unsteady flow 
simulation for ship applications. In this paper, to 
vary the propeller flow temporally, or spatially is fine 
to study. This study, as similar to ffx experiment, 
does not include any vortex/blade interaction as 
happened in many ship applications. 

J. Matusiak 
Helsinki University of Technology, Finland 

Do you take interaction of the blades into account? I 
understand that you model a single blade only (refer 
to figure 4). 

Do you consider including cavitation in your 
method? If so what kind of cavitation do you expect 
to be able to evaluate? 

We thank the discussants for their time and 
consideration of our work. In response to Dr. Lee, 
we agree that the temporally and spatially oscillating 
axial inflows are idealizations of the practical 
application of propeller-hull interaction, as was the 
ffx experiment; however, we believe that in both 
cases the results are important and provide insight 
with regard to practical applications. Currently, we 
are extending our work for practical applications. In 
response to Prof. Matusiak, the results include the 
effects of blade interaction, although the assumption 
is made that the flow is periodic for blade-to-blade 
intervals. We hope some day to be able to include 
cavitation in our method. 

Lastly, we take this opportunity to clarify an issue 
raised in the paper, i.e., the differences between the 
steady solution and that of [1], as shown in table 1. 
Upon further examination it was found that the 
results for the steady solution of [1] were not fully 
converged. Table 2 provides the fully converged 
results and indicates agreement between the two 
steady solutions, as one would hope for. The 
explanation for the differences between the two 
steady solutions and the mean values are as yet 
unknown. Note that the grid quality for these results 
corresponds to that for the coarse grid of the grid 
dependency tests done for P4119 (see discussion for 

[ID- 

Table 2. Performance: P4132 (steady [1] results corrected) 

No. case grid space Fa. KT %wt 10KO %wt 

1 Piso 
100x45x61 .20 

.133 14.2 .243 11.0 

2 Mac .133 14.2 .234 14.3 

^ Mean .127 17.0 .225 17.6 

Fa.:l eading-ed Ige clustering factor. 
%wt: % error water-tunnel test. 
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